Sheffield
Hallam
University

A human-machine interaction tool set for Smalltalk 80.

SPALL, Roger P.

Available from the Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/20389/

A Sheffield Hallam University thesis

This thesis is protected by copyright which belongs to the author.

The content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title, awarding
institution and date of the thesis must be given.

Please visit http://shura.shu.ac.uk/20389/ and http://shura.shu.ac.uk/information.html for
further details about copyright and re-use permissions.

http://shura.shu.ac.uk/information.html

TELEPEN

02649358 7

T

1337

Sheffield City Polytechnic Library

REFERENCE ONLY

ProQuest Number: 10701035

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

ProQuest.

ProQuest 10701035

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106 — 1346

A HUMAN-MACHINE INTERACTION TOOL SET FOR SMALLTALK 80,

by

Roger Paul Spall, BSc.

A thesis submitted in partial fulfilment of the
requirements of the Council for National Academic Awards
for the degree of Doctor of Philosophy

Sponsored by Sheffield City Polytechnic, in collaboration with MRC/SERC
Social and Applied Psychology Unit, University of Sheffield.

May 1990

LT PONTEC,

e Al ECHE o

Y T s

N ~ 5

e "W; . TR
a0s- w5

‘\ SPw .

N e - 4
4

/

S T <
e fORD STREET A

Contents.

Contents.cccoceuvureureucreneucennenen et e bbb e e bbb bbbt a s et sen i
LiSt Of FIGUIES. ...ttt st s besscssssssesssssassssssssssssssssasans vi
ACKNOWIedZEmMENES. ...ttt tss e eaesesesenesenes vii
ADSITACL. ..ottt ettt s ettt b bt s s e sasane viii
Chapter One.

Introduction and Thesis OUlINe. ...ttt ssseerenens 1
1.1, INPOAUCHON. ettt sttt setstssssssssessesessssssasassasesenes 1
1.2, TRESIS OUINE.cuneeeeeieeeeeeeriteceneteecteeeesseeenesessessaseessssnsessssesssssesessssssessssssesssssens 3

Chapter Two.

Software Related Influences Affecting User Acceptance of Computer

Software ApPPHCAtIONS. ...ttt sesessasasaressssssesesssssesesesssssssasss 6
2.1, INEFOAUCHON. wueteereitctcenrctctet st s st sa s se s s bnens 6
2.2, SIMPLICIHEY . ettt s e e s n st s 6
2.3. CONSISEEIICY . coveeririrnereriririetererenee sttt et e ssssesesessebesnasnessssssansasasans 7
2.4, INtEGTAHON. toieeeeeeeesesestststntst sttt st sttt se s e sesasnsnsnen b sn e ns 9

24.1. MOAES. «.uvurririrrrerererenensseneseseneseseseesesesesesesesesesesesesesesesssssssesssesesssssssssssssssasens 11
2.5, MEtAPNOT. ...ttt et n e e s e b 13
2.6. INteraction StYleS. ...ttt e sr e ans 15
2.6.1. Command and Natural Language.ccceceeeemernreereeeneenerenereieresnnennns 15
2.6.2. MENUS....ovtrteniritenriteteeeresense e es et sssbes s s sss e e ss s ssbsanebe st e b s sebananas 17
2.6.3. Direct Manipulation.......ceeeeeennensrctsstene e 18
2.6.4. ComDINALIONS. ...coveririerercritiitiicneincere et sa s sn e e s s erensenes 19
2.6.5. Dialogue Control and Specification........ccceoeueueieererreeeieceeeieeiennenae 20
2.6.6. Style GUIAES....cucuirreiererenretereiectercre ettt sre s enssssene e se s st snsssensbssssanas 20
2.7. Error HanAUNEcceuevereereeieieieseticctctnesteese et ssss s ses e enes s ssssnsse s sssssseseas 21
2.8. Documentation and Tutorials........cceveeerereienreerenieteee e 25
2.9. Interface Separation. ... ens 28
2.10. Interface ErgONOIMICS. cuucuermeerecemmeeerevecessensscrsessecsssesssssscsscsssessecsesscssessssasssssosases 29
2.11. SUMMATY. ceeeeeeeeerreesetssstatetsietssesetesetstesesetatesstssasasssssasasasatasasasssssassasasasassossssssasases 32

Chapter Three.

The Application of Artificial Intelligence to User Interface Design...........cceuce.... 34
3.1, INTOAUCHON. c.etteieitrtetetrienenee e snssssaerssess s seae st ssssss s s sesas s s bbb sasassasenns 34
3.2. Additional Intelligent Interface Modules............... vererereressn b ne e e s esensnsnsnenans 34

3.2.1. Intelligent Help SyStems. ...ttt enenesesesenacs 34
3.2.2. MOGEIS. cuuurirrcrtereretenetinineierereeseense e see s e e e e e se e e sesesesesesssnasasassssassssases 38
3.2.2.1. USer MOdEL ...ucuuuiuirienirrnrnrnnrisieseseessiesesesesisesissesessessssesessssssssanes 39

3.2.2.2. Application Model.couemeeeririsinrienteteneeeeietnnne e sesesnssenss 45

3.2.2.3. Real World Model. ...ccoeoueeiveniiiiieecnnnenae SS—— 46

3.2.2.4. Summary.cccoeuvuerenene retstst et e ettt st st sa e b e b b s bR aR bbb s 46

3.2.3. Adaptive Interfaces........cocovurreernerererersreranenenens reeserereeesassasaenenes verenennn 48
3.2.4. Planning AIdS.ccocveivinierniernenenieneseinssssssesssesessssssssssesesessessenssssseses ceeenns 51
3.2.5. General Architecture for an Intelligent Interface.coceuevueuerererennces 53
3.3. Interface ClassifiCatiON. ...cccecicvecrrresrcrercensesuesessiossesscssessessesssnsncessossssssssssssssersenses 56
3.4. Approaches to Interface DeSighi......ccusuvesersrsnsessensussussssrusinsssrsescnsasessasesssssssiaes 58
3.4.1. Requirements For Good Interface Design.ccceceerueuecnee. verresnenensaees 60
3.4.2. Graphics Environment Manager.cccoevevevererercenenne reeseseenineanasrsenans 63

e

3.4.3. The Model View Controller Mechanism used in Smalltalk

B0.uneniuireiirerene et bbb RS e st e aa R R bt sa st s s bt n b s 65
3.5, SUINIMATY . oottt ca st ss s sssasssssssssssnsansasasasssssssssasas 67
Chapter Four.
Experience With Other Influences which Affect User Acceptance of
COMPULET SYSTEIMS. c.curerrrierirenriteietsee et s rcss st esessesesaesssssssssssssssssassnnens 69
4.1, INtrOAUCHON. cuvereerrtttetectetttc ettt ststse e s sn s sa e s varens 69
4.2. The Working Library SYStem.cccviiirirsieiicnsescneeaeresssssessssssssnns 70
4.2.]. OVEIVIEW. ettt st st cs e s s ss et st esssesassasssasasass 70
4.2.2. Library System Description.........ceceeeeeietcieictctteeeesensenencesescecsnnns 71
4.2.2.1. Database StIUCLUTE.cviirrercveeiictricsiiicsesescsesenesescsesentacsenessnens 71
4.2.2.2. User INterface.ceeciciiciitnttcrssesisseesssscesesns 72
4.2.3. Library Investigation Results.cccuuiiininniiiiiieccecicicicncnnens 73
4.2.3.1. Initial Notebook Investigation.........cccevemereerrevenvenenreeerecrniennnnns 73
4.2.3.2. Initial INTEIVIEWS.....coevietitiiirtiiicicicrcitnrctte e 74
4.2.3.3. Further Interviews......coeeeerevevenereinienninnnnsenanns ferveetereenereannnens 75
4.2.4. SUIMINATY . coereerirersssreinssiessssssessssssisssasasassssssssssssssssssssssssssssassssnsasssssssssssses 79
4.3. The Influence of Systems Analysis and Design upon User
Acceptance of Computer SYStEmMS.....cccueiiirintienineninistnt st seeeseeneseneees 81
4.3.]. SUIMIMATY . ceeerereeererenseeessstsisiseerssassssssacs 87
Chapter Five.
An Investigation into the Quantitative User Modelling of User
Interactions for the purpose of Predicting User EXpertise......c.coevevenenineninirnnincnnnce. 89
5.1, INEFOAUCHON. wuvvriirrttitetetctctctttcttctettesee et en s s b snes s s sssnesenesenensnsnananes 89
5.2. Overview of the Proposed Quantitative User Model.coecuvrrrevnerreecnennns 92
5.3. Structure of the Proposed Quantitative User Model.........cceccueuerrrenerinnnnne. 93
5.4. Functioning of the Proposed Quantitative User Model..........ceceuveeeniennnne. 96
5.5. Evaluation and CONCIUSIONS.coeiiirinirerienitninteeteteretesstssesesesesssssessssnesnes 100
5.6. SUIMIMATY. .uciriiniiereritiineteesessstesesesessss s s e ss s en st s s e s ss s s sns st snsssssessasasesssanes 102
Chapter Six.
An Object Oriented User Interface Management System, and Integrated
Interface Design TOOI-Set. ...cceuiiriieeiiietiiesiintsc ittt st s essessnsenes 103
6.1. INtTOAUCHOM. oottt neres s s s s ss s s sbensnansnasanes 103
6.2. Overview of Object Oriented Programming........oceeeieenesesesesecenineneneennenee 103
6.3. The Smalltalk 80 Programming Language and Environment................... 106
6.4. The User Interface Management System and Software
ATCRIEECHUTE. v cueetrecctrncriiesnitit sttt s sa st s s er e aassessnssasans 107
6.4.1. The Pluggable View Controller Mechanism.ccoeeeveerneeencennncnnnas 108
6.4.2. Communication Between Objects and Pluggable View
CONUTOIIETS....cviviririicriiiteineieintee et as s ae e se e e se s e sssussaesnsnssnsansnen 110
6.4.3. Defining a Direct Manipulation Interface for an Object........ccecoeuunce 115
6.4.4. Part Pluggable View Controllers..........cccoceununeee eererasssnerenasssssassrsnsessntass 116
6.4.5. Interaction Pluggable View Controllers.........oouemeeenininnreescceneecunannnn 117
6.4.5.1. Internal Interaction Pluggable View Controller
SETUCHUTE...c.vevnemcrirnririrennissiaetiseseesenisnsess s sesssssenssssesssssassssssnsssssaasanssssssssens 119
6.4.5.2. External Interaction Pluggable View Controller
DESCIIPHON. . vtrteeieterrsssssessss sttt stssessasssss s sasasasseseasasseos 123
6.4.6. Communication Between Interaction Pluggable View
CONUTOIIETS .o cmeereciisesisesesetetsesnrssssssssssss b as s s s s stssssssssssssssssasssssnsusssasssasassens 127

6.4.7. Interaction Pluggable View Controller Cursors.........ccececveececseruenennee 129
6.4.8. Interaction Pluggable View Controller Multiple Linkage

SLOTS.c.viierirririnnnsresstnis ettt e s e st s st s s a st st st e sessa s e sasenaas 130
6.4.9. Default Part Pluggable View Controllers.........ccceeerverereencnerreessensenens 132
6.4.10. Part Pluggable View Controllers and Part Hierarchies..........cccevee... 133
6.4.11. Special Part Pluggable View CONtrollers..........c.cccoeueeueurersueeemevecnsennnn. 137
6.4.12. Interactive Creation of Smalltalk Objects.......ccccceeerurrrerrurerrrenerrrrernunns 138
6.4.13. Construction and Interaction Menus.........cccoeeeecveeuverererreivsrnerernuenennns 139
6.4.14. Extended Lean Cuisine Hierarchic Menus......c.ccccecvereernenerensrererereenee. 139
6.5. The Part Pluggable View Controller TOOI-Set.ccceceuvercmrerererecrerennranennn. 141
6.6. SUINIINIATY. c.cueueueirrnrerissrsisietststststeesete ettt et et e e s bbb sssssasasserersn b esessassesenns 142

Chapter Seven.
The Support of Part Hierarchy Mechanisms in an Object Oriented

LaNUAGE. ceeveueerreirriterereterenssisseeestssetsretesststs e s snsssssssssssatessssssssssssssssssasessssssassssasssssssesssns 144
7.1 INTOAUCHON. ottt e sensnenenes 144
7.2. What is a Part Hierarchy, and Why is it Needed ?......cccevuvveveereernrennnne. 144
7.3. Difficulties with Object Oriented Languages and Part Hierarchies. 146
7.4. Solving the Problemu.... ettt 147
7.5. A Solution Implemented in Smalltalk 80........cocovvuriennnrereneiereesennnen 150
7.6. An IMProved SOIUION. ..c.ocecieeririeetntetsrssesse ettt ssse s sssssssssssnsns 152
7.7. SUIMINQATY. ccooveriiriristereesinsssitesesssesesssssessssssssesssssesessssssssesesssssssssssssssssssssasassssssssssans 152

Chapter Eight.

Critical Evaluation and Assessment of the Proposed User Interface

Management System and Smalltalk 80......cceerieeeeeeceienincetntneeeee e 154
8.1, INtTOAUCHOMN. vttt sereben et s se st b s s e 154
8.2. Evaluation of the Underlying User Interface Management System
SOftware ATChIECLUTE. ...ttt sssssres s ssesssssas s s nsassns 154

8.2.1. Advantages of Interface Separation.........cccueereererereieisseiseneisnssensenens 155
8.2.2. Software Requirements for Interface Separation..........ccceeveueieecnnncse. 156
8.2.2.1. The Number of Components required.ceveevererererssenaunas 157
8.2.2.2. Application Function Set and its Preconditions.ccccevenuuee 159
8.2.2.3. Application and Interface States.cooeeuemreeerninnernrnrensesnnnas 161
8.2.2.4. Component Communication Requirements.cccevurueueucucns 164
8.2.2.5. Separation CONtroller.......oiimeemieeecieieerereeteneteeesnessteenenes 166
8.2.2.6. Interface Defaults........coceuviereeireteennininsieneeneetesssssnsesssssnsssens 167
8.2.3. Interface Separation Design Constraints........oceeeevevecneeneecnenencenccns 167
8.2.3.1. Application Independence..........ccoeeveeuererensrerererensnensuecscscnenns 167
8.2.3.2. General Application Design Constraints.cccececeeeeerercecccnccnc. 168
8.2.3.3. General Interface Design Constraints.cceceeueuerereusescscncncecs 168
8.2.3.4. Constraints imposed by the Separate Application on
the User INEEIfACe.cccuiviiirireritinieeeeesentessereserenssss s ssssss e sssssssasacnss 169
8.2.3.5. User Interface Constraints imposed on the
APPHCALION. ceitrrtstseetsteetstsestes sttt es st s ees 169
8.2.3.6. SUIMIMNATY. c.cerurtrreresrrrsrereressesssesssssssassssssssssssssssssssssessssssssscassmsmssasens 169
8.2.4. CONCIUSIONS. c.cucurerrerrrinirisisisisiiseisisrssissssissessassesssssessssssssssssssssssssssnsasasssoes 170
8.3. Evaluation of the Object Oriented Paradigm and Smalltalk 80
Programming LangUAage.ccceveureremserennusiscustscsensisisissustsissmsinsusissasssessnssssssssssssases 171

iii

Chapter Nine. :
Suggested FUIther WOTK. e sesesasasins 176

9.1, INTOAUCHON. ceeeteeee st sessesesensasaessssacsenescssnsnssenas 176
9.2. Extensions to existing User Interface Management System
IMPleMEentation. ettt esesss e ss e e s senasas 176
9.2.1. The User Interface Management System Architecture and
TOOL-S L vttt er st ettt as s sn 176
9.2.2. Quantitative User MOdel ...ttt ceeeeeeeeeeees e sseesseens 179
9.2.3. Part HIerarchies.ococeuueeeeiucucrciiiniiiscnctceeeencnceessessssesssssessssssssssesns 180
9.3. Further User Interface Management System Implementation. 180
9.4. Smalltalk 80 Programming Language EXtensions.c.ccececevevcveeuiercrccncs 181
9.5. Further Systems Analysis and Design Work........ccincincicninccninnnee 182

Chapter Ten.

Final CONCIUSIONS. ccouiriiuiniiieniiiiniisiii st ssssessssssssresssse s s snsasssssssssans 184

Bibliography ...ccccoeeererreeeeeetnreinieeesssensne e esssscssanenssimassnssasesnatssessnsasuenensesaesssuases 187

Appendix A.

Library Notebook Statements..........c.cveeeeeeeieiieierncnisnisssssssssisssssssssssesessssssssssasens 230
ALT. SUDJECE TWO. curereirereerrenitetetetesetetssense s tess st s st s s s sssssasssassssssssnsassssssnssssasasns 230
A.2. SUDJECE FOUL. ottt ettt as e st ss e sescscnns 231
A3, SUDJECE FIVE. .ottt ettt ssstes s s sas s st sssss s e s sasese e s senscaes 232

Appendix B.

An Overview of the Smalltalk 80 Programming Language and

ENVIFONIMENL. ottt sssssessssesessssssssessssssssasaessssessesssnssssssansass 234

Appendix C.

Object Oriented Quantitative User Model Source Code.....oovuerninecenisenecenncuccace 239

Appendix D.

Smalltalk 80 Example Object COde.ccururrrrnerrreninrnrnintstesssssssisiessss s s sssssssssssscscnes 250

Appendix E.

Extended Backus Naur FOImMats........ccoevuieerieineererirercsneeiereiessiesie s sssssssssssssesens 267
E.1. General SYNAX.....cccoerirerrusuriereesssssrsrstssessssssssssssssssssssssssssssasssssssssssssssssssssssssssesces 267
E.2. External PVC Slot DeScription. c..cuvueeeueieeieeeeeneiinestsssnssnesssesssesssnsssesesccnsan 267
E.2. Part PVC DeSCIiption.....cceeieieienenieieenerestsisisisnsseniresesssssissssnsssnesessassncsssssssnsasases 268
E.2. Extended Lean Cuisine DesCcIiption.....cccceerereeeininienniensnienesesissssescenessonsnes 269

Appendix F.

Interaction Pluggable View Controller Library.......cecoeecvemnneceriseseescnccncnsisincaens 271

Appendix G.

Class Hierarchy for Object Oriented User Interface Management System

860205334 =301 -1 103 | VU P TP 287

Appendix H. :

Example Interfaces and Associated Code Generated by the User Interface

Management SYSEEIM.ourrerrerressssssstusessetsissessenssssetsesseasenssssessssssssssassssssssssssassassssess 291

Appendix I.

User Interface Management System Tool-Set Documentation.ccceeeveunneee 345
L1. Creating New Part Pluggable View Controllers........cceeureecuererncerensnserennne 345
1.2. Default CONnStruction MenUS............uccoeuereecmeenseneniesssnnsesecsssersssecsesseesssnsssseesenns 346
1.3. Adding Interaction Pluggable View Controllers...........coceeeveeeeeeeemreevsercsenenns 348
L4. Adding Further Part Pluggable View Controllers.c.cocceueeereeemeerensrnsnne. 350
L5. Aligning Pluggable View CONIOIIETS.ccovuumrrererrrnrenerecascneseesensensensensssennes 350
L6. Linking Interaction Pluggable View Controllers to one another................ 351
1.7. Modifying Pluggable View Controller Size........ccocoeumrerruerrerrerceceseeneneseesennn. 351
1.8. Closing Pluggable View CONLIOIIETS.coceeeruernsuererrnsensersessensesssssesessenssnesnnes 351
L1.9. Modifying and Reviewing Pluggable View Controller Linkage Slots
using the INSpector WINAOW. ...t ssssssnnes 352
1.10. Code GeNETAtioN.ceuueeecuiuisinecssncnstecneaesensisssnssssssssssesssasssssssssssssssscnssnsens 352
L11. Setting Default Part Pluggable View Controller.........co.ccoueereuerererveererensennees 352
1.12. Changing Part Pluggable View CONtrollers.........cccceuerererrmreesrererersesssersserene 353
1.13. Spawning Part Pluggable View Controllers.oeceeueeueerereerinssrerseresserennas 353
1.14. Building Extended Lean Cuisine Hierarchic Menus..........cceceeeeveeerrrerecnnes 353

List Of Figures

Figure 2.6.2 - Hierarchic Menus.ccccecoeureresernennneenneeesecsseeeessessessssssssesssesses 17
Figure 2.7 - Error Classification Methodology........ccceuemeumruemrnernerenseeseeernermsenssesseennes 23
Figure 3.2.1. Traditional Application Configurationeeeeeeeereemreerrseerresresranss 35
Figure 3.2.2.1a - User ClassifiCation.ccceeueromreerunmieesreeenecsseseneesesessesssessessossssenes 40
Figure 3.2.2.1b - Two General User MOdels.cceeueruerremrereneeneineeeeeseressessessesses s 42
Figure 3.2.2.1c - Example Transition Diagram for MacWrite.ceooevvereevrn.... 43
Figure 3.2.3 - Adaptive Intelligent Dialogues Architecture.coocoevevcevrerren.... 49
Figure 3.2.5 - Complete UIMS ArchiteCture.ccocoeeeumeemrreniverrecnncesisecneceseesssasseennns 54
Figure 3.3 - Classification of INterfaces.........cceeeeesemrurrersseesrnssneneeneseesecseeecessses s 58
Figure 3.4.2 - GEM ATCRItECIUTE. c...ucveeteeicettccrcencenenneetssss s sees st sasaseees 64
Figure 3.4.3 MVC CONCEPL. c...uurreeneirctiniieaeincesenencssesssnsssesssses e ssessesssssssssssssssnssssenns 67
Figure 4.3 - Design Role ANAIOZYcuiuviuiueecurecemeesnuensensssasensnsensesessessesesssssssssssssens 87
Figure 5.3 - Quantitative User Model Structure.coeceeveeevversrersesrreesrsseressensennn. 93
Figure 5.4a - Usage Relationship Between Different Conceptual Levels............. 98
Figure 5.4b - User Learning CUIVe.........ccocvuiuiurircurucneeeseismensessissnsesssssssesessssssssesseses 99
Figure 6.2 - Object Class Definition and INStances.........c.coceeueeeecereseserssrererssessesennes 105
Figure 6.4.1 - Pluggable View Controller MechaniSm.........cceetveeereueverersvereensererenens 109
Figure 6.4.2a - Pluggable View Controller Communication..........ceeveeueveerrerennecn. 111
Figure 6.4.2b - Application / User Interface Communication........ccceeeeereverrernenens 112
Figure 6.4.4 - Part Pluggable View Controller Architecture..........ccceceeeverererereennns 116
Figure 6.4.5 - Interaction Pluggable View Controllers Model, and

connection to a Part Pluggable View CONtrollers........c.ccceevveruvereeeererenrsesresssesnnns 118
Figure 6.4.5.1 - Interaction Pluggable View Controller, Part Pluggable

View Controller, and screen Co-ordinate SyStems........ccceeceevereererererreeessirreresserennnns 122
Figure 6.4.5.2 - Example Interaction Pluggable View Controllers..........ccceeruenne.. 125
Figure 6.4.10 - Combining Part Pluggable View Controllers.........cccceceveverereerrrennne. 136
Figure 7.2 - An example Part Hierarchy.coccececceuuececncnemsenscrsersssesssssssssssssessonsens 145
Figure 8.2.2.1 - Two Approaches to Interface Separation...........ceceeeererersrernersuenen. 157
Figure 8.2.2.3 - Comparison of Switch Interaction Pluggable View

CONLTOLIETS. ettt tsense e ascssesssesst s sstss s s stasassassssassesessesassaranns 162
Figure 8.2.3.6 - Component Stability Within Separable Architecture.................. 170
Figure 9.2.1 - Further Separation Within a PVC......cccccoovcmnenninevnsnrcsrennesnsesnnenns 177
Figure B1 - Example Smalltalk Class.........cccceuveururiviireniuecnnunceesencnnenerersessssesesseesanes 235

vi

Acknowledgements,

This project was funded under grant number 8631820X by the Science and
Engineering Research Council.

I would like to thank my supervisor Bob Steele, and Director of studies
Professor F. Poole for their help, and advice during the period leading up to
this report. :

I would like to thank my wife Elaine, for all of her moral support and
encouragement during the project.

I would like to thank the MRC/SERC Social and Applied Psychology Unit at
Sheffield University, the Human Factors Laboratory at ICL, Bracknell, and
British Telecom Research Laboratories for their assistance with specific
components of the research.

I would also like to thank Ian Morrey, and Dr Jawed Siddigi who have also
given their help and advice regarding the contents of this thesis.

vii

Abstract.

This research represents an investigation into user acceptance of computer
systems. It starts with the premise that existing systems do not fully meet
user requirements, and are therefore rejected as 'difficult to use'. Various
problems and influences affecting user acceptance are identified, and
improvements are suggested. Although a broad range of factors affecting
user acceptance are discussed, emphasis is given to the impact of actual
computer software.

Initially, both general and specific user interface software influences are
examined, and it is shown how these needs can be met using new software
technology. A new Intelligent Interface architecture model is presented, and
comparisons are made to existing interface design approaches.

Secondly, the role of empirical work within the field of Human Computer
Interaction is highlighted. An investigation into the usability and user
acceptance of a large working library database system is described, and the
results discussed. The role of Systems Analysis and Design and its effect
upon user acceptance is also explored. It is argued that despite

improvements in interface technology and related software engineering
techniques, a software application is also a product of the Systems Analysis
and Design process. Traditional Systems Design approaches are examined,
and suitable improvements suggested based upon experience with emerging
separable software architectures.

Thirdly, the research proceeds to examine the potential of Quantitative User
Modelling, and describes the implementation of an example object oriented
Quantitative User Model. This is then evaluated in order to determine new
knowledge, concerning the major issues surrounding the potential
application of user modelling to interface design.

Finally, attention is given to the concept of interface and application
separation. An object oriented User Interface Management System is
presented, and its implementation in the Smalltalk 80 programming
language discussed. The proposed User Interface Management System
utilises a new software architecture which provides explicit user interface
separation, using the concept of a Pluggable View Controller. It also
incorporates an integrated design Tool-set for Direct Manipulation
interfaces. The proposed User Interface Management System and software
architecture represents the major contribution of this project to the growing
body of Human Computer Interaction research. In particular, the
importance of explicit interface separation is established, and the proposed
software architecture is critically evaluated to determine new knowledge
concerning the requirements, constraints, and potential of proper user
interface separation. The implementation of an object oriented Part
Hierarchy mechanism is also presented. This mechanism is related to the
proposed User Interface Management System, and is critically evaluated in
order to add to the body of knowledge concerning object oriented systems.

viii

Chapter One,
Introduction and Thesis Qutline,

1.1. Introduction.

Due to its reduced cost and improved power, computer technology is
becoming more widely used by people from a large range of backgrounds,
and with different experience. As this varied user population expands, so do
their requirements and expectations of new computer systems. Historically,
computer systems only needed to work properly and efficiently in order to
be acceptable. It was not unusual to employ and train specialist computer
staff to use complicated computer systems. However, today's computer
systems require a greater emphasis upon ease of use of the final system By
both experienced, and inexperienced users. Many factors influence a systems
'usability’, and research into these factors falls under the title of Human
Computer Interaction. ‘

Human Computer Interaction deals with the problems and issues affecting
the actual interaction of a user with a computer system [Rasmussen, J:1987].
Its primary goal is to improve the acceptance of new computer systems by
the user. Research in this area encompasses a vast number of topics, ranging
from the effect of social and organisational factors [Dray, S.M:1987], [Grudin,
J:1987] through to the effects of different software [Gould, J.D:1987] and
hardware components [Hulme, C:1986].

A software system is a product of both Systems Analysis and Systems Design
[Yau, S.5:1987], and its usage should always be viewed in the context of the
personal motivations and work environment of the user [Whiteside, J:1986].
Problems with software systems which are rejected as unacceptable by the
user, can often be traced to insufficient Systems Analysis, poor design and
implementation, or the work environment of the user. These influences are
closely related, and are often confused. Insufficient Systems Analysis will
result in a system design which does not match the expectations or
requirements of the user. Similarly, poor design and implementation will
result in a system which does not match the system specification. Systems
Analysis and design are related in many ways, and are dependant upon each
other. The availability of specific design and implementation tools and
techniques affects the type of analysis tasks performed, the decisions which
are made during the analysis process, and the information which is

-1-

gathered. The accuracy and detail of the system specification generated by the
Systems Analysis process also affects the precision of the final system design
and implementation. Other influences related to the work environment
and personal motivations of the user affect the final acceptance of software
systems. These influences include physical stress, workload, organisational
and managerial factors, and the personal prejudices and partiality of a user.

Certain factors affecting the acceptance of software systems are easier to
control and improve than others. Due to their theoretical basis,
enhancements to Systems Analysis and Design methods are possible, and
therefore attract a growing research interest. Several major areas for
improvement can be readily identified [Balzert, H:1987]. These include better
software design features, advanced software architectures and design tools,
and modified Systems Analysis and Design methods, which place emphasis
upon designing systems for the user.

Some features of software systems generally affect all users in the same way,
for example, consistency and integration. However, due to the variety of
computer users, in the majority of cases it is only possible to identify
software features which are 'user friendly" for specific types of user.
Similarly, features can be identified which may be 'user unfriendly' for
other user types. Unfortunately, the terms 'user friendly' and 'user
unfriendly" are incorrectly used as a means of classifying individual
computer systems. These terms are meaningless unless used in the context
of individual software features, individual user requirements, the Systems
Analysis and Design method employed, and the environment in which the
software system is being used.

To facilitate the design of 'usable’ software by software engineers, it is
proposed that software systems should be divided into two separate
components, the application and the user interface. The application
represents the functionality of the software system. The user interface is
defined as the software through which information flows between the user
and the application. Information flows in two directions, with users
specifying their information requirements and also viewing the application
results. These two components affect the 'usability’ of software in different
ways. The use of separation should therefore enable effort to be concentrated
in addressing these different affects. Other advantages also arise from the use
of separation, including the facilitation of multiple user interfaces for a
single application. Computer hardware also affects the working of a user

-2-

interface - for example, different keyboard layouts, the use of mouse or
tracker ball pointing devices, high resolution colour graphics terminals,
voice recognition and generation hardware [Burrough:1983], [Hagelbergef,
D.W:1983]. However, while acknowledging the effects of hardware, this
research concentrates specifically upon the influences of software upon user
acceptance of computer systems.

The discipline of Software Engineering traditionally emphasises the
importance of designing software systems which are reliable, portable, easy
to maintain, reasonably priced, delivered on time and perform well [Bell,
D:1987]. The software architecture model underlying traditional
implementation languages and systems, is also specifically aimed at meeting
these criteria. The significance of designing software which is 'easy to use' is
often ignored, and therefore remains unsupported within the underlying
software architecture. The need for new software architectures is necessary if
improvements to the 'usability' of future software systems are to be made.
In particular, attention must be given to the role of Artificial Intelligence as
a mechanism for automatically matching user interface software features to
individual users. New User Interface Management Systems must also
support the concept of explicit interface separation, and provide integrated
tools to enable the designer to implement 'usable’ user interfaces.

Empirical work plays a major role in the field of Human Computer
Interaction research [Galer, M:1987]. Interaction with a computer system is
an observable phenomenon, which can only be properly analysed using
practical experimentation. Theoretical Human Computer Interaction
research must therefore be based upon, or proven, using controlled
experiments enabling the evaluation of users actually using real computer
systems. This type of evaluation may be included as part of the regular
Systems Analysis and Design processes, or may be restricted to the 'Human
Factors' research laboratory.

1.2. Thesis Outline.

The research described begins with the premise that many existing computer
systems do not meet user requirements or expectations, and are therefore
unacceptable to the user. Chapter two identifies the major causes for the
rejection of computer systems, and suggests possible solutions. Emphasis is
given to the effect of software elements, and an extensive list of influential

software factors is presented. Where appropriate, improvements to existing
software technology, and in particular the user interface, are also described.

The research maintains that the potential of software improvements is often
dependent upon individual user preferences, and Artificial Intelligence is
presented as a mechanism for matching interface features to individual
users. Chapter three describes the application of Artificial Intelligence to the
user interface. Specific interface design requirements are identified, an
outline design for a new Intelligent Interface is given, and its individual
modules described. This chapter also highlights the need for improved
approaches to interface design, and discusses alternative methods, and their
associated tools. '

Chapter four relates the background work discussed in chapters two and
three to the results of a detailed investigation into a large library database
computer system, and its users. This chapter identifies the wider influences
affecting user acceptance of computer systems, and stresses the importance of
good Systems Analysis and Design methods.

Chapters five, six, and seven describe the Smalltalk 80 implementation work
which was completed as part of this project. These chapters represent the
original element of this research. Chapter five examines the application of
Quantitative User Modelling, and details an example object oriented
Quantitative User Model, which is then evaluated. Chapter six presents the
design of a new User Interface Management System and its underlying
software architecture. An integrated interface design Tool-set is also
described. Chapter seven presents the design of an object oriented Part
Hierarchy mechanism which is related to the work presented in chapter six.
This is again evaluated, and alternative approaches discussed.

The issue of explicit interface separation is discussed in chapter eight, which
critically evaluates the User Interface Management System, and software
architecture proposed in chapter six. This chapter examines in detail how
separation can be achieved, its potential, and its constraints.

Chapter nine describes further investigations and enhancements which may
be the subject of future research, and finally, chapter ten presents a summary
of the project's conclusions. This identifies the major research contributions
to the existing body of knowledge concerning Human Computer Interaction,
and object oriented systems.

Appendix A contains a list of statements collected during the Library System
investigation. Appendix B provides a detailed overview of the salient
Smalltalk 80 language features which are relevant to the proposed User
Interface Management System implementation. Appendix C contains the
Smalltalk 80 source code for the proposed Quantitative User Model
implementation. Appendix D contains the Smalltalk 80 code for the object
oriented examples used throughout the thesis. Appendix E presents the
relevant Extended Backus Naur Form syntax for the work described in
Chapter six. Appendix F describes the library of Interaction Pluggable View
Controllers implemented to demonstrate the potential of the proposed User
Interface Management System. Appendix G contains the Class hierarchy for
the proposed User Interface Management System implementation.
Appendix H contains example direct manipulation interfaces generated by
the interface design Tool-set, and the Smalltalk 80 code generated by the
proposed User Interface Management System. Finally, appendix I contains
the documentation for the Tool-set presented in chapter six.

Chapter Two.

Software Related Influences Affecting User Acceptance of Computer
Software Application

2.1. Introduction.

This chapter examines how various software related influences can affect
user acceptance of computer systems. It identifies the major influences, and
suggests methods for improving the quality of existing software. A
distinction is made between the functionality of the application, and the
user interface through which it is used. Inevitably, user acceptance of a
complete software application depends equally upon both a functionally
correct application, and a well designed interface. Certain software
applications make this separation more explicit than others, and this chapter
develops the argument in favour of explicit user interface separation.

2.2. Simplicity.

Current software is often complex and technically biased, tending towards as
many features as possible, allowing the user to do more things with greater
power. However, this trend is usually followed at the cost of simplicity, with
most software being difficult to use and understand [Dean, M:1983].

The increasing power of computer technology will undoubtedly be utilised
to provide more complex applications. However, the way in which this
complexity is presented to the user needs careful consideration [Kornwachs,
K:1987]. Novice users using an application for the first time are typically
concerned with learning basic functions and tasks. Only as they become
more familiar with the application, will they move onto more complex
functions. Simplicity in this respect does not refer to the extent of
application functionality, but rather to the way in which this functionality is
presented to the user [Clark, 1.A:1987]. Whenever possible, functional
complexity should be hidden.

Progression by the user with a particular system is often hampered by errors
made with commands or concepts they discover accidentally. They may
become confused by the error and accordingly assume that the rest of the
system is also difficult to use. Such errors and misconceptions at an early
stage quickly reduce the confidence of a user in that system [Carroll,

-6-

J.M:1988]. Also, users are typically discouraged by both the sheer functional
'size’ of an application, and having to 'navigate' this functional set in order
to perform what are often trivial tasks. This seems to suggest the need for
organising, and classifying application functions according to their
complexity, which would enable function sub-sets to be automatically
created by the interface according to the level of expertise needed to use
them. The complete functionality of an application could therefore be
hidden from a novice user [Spall, R.P:1987]. Function sub-sets may also
prevent novice users 'getting lost' within a software system, and from
accidently using irreversible tasks, such as deletion. Whether expert
functions are completely hidden, or shown to the user (who is prevented
from using them) is an issue which lies outside of the scope of this research.
An application should at least enable a novice user to use the basic function
set immediately, with relative ease [Karat, J:1987]. It may in fact be the case
that the extra facilities associated with expert functions encourage a novice
user to become more expert. Simplicity also applies to other software
influences including for example, length and content of error messages,
advice, prompts, and screen layout.

2.3. Consistency:.

A consistent application uses operation and object formats and structures
that do not contradict one other, but support and cross reference each other.
Consistency affects the relationship between the expectations of a user of the
application, and the actual application itself [Kellog, W.A:1987]. For example,
system errors always appearing in red at the bottom of the screen, which
leads users to expect all error messages to appear there, and anything that
appears there to be an error message. Any inconsistencies will cause
problems, with the user having to make adjustments to the way they view
the system. Another example is a <delete> command, which may apply in
many different parts of the system. In each case it should have an identical
format; e.g. DELETE <object name>, it should not be called ERASE in one
part, or have a different format elsewhere.

Some further examples of consistency include :-

- naming conventions, e.g. all word processor text file names
have a file extension of type .WS .

- screen layouts, where titles always appear in a certain place and
format '

- icons should have identical meaning and representation
between systems, or parts of systems.

Typically, one particular user may prefer, or use, different naming
conventions, and styles to another. Consistency does not address this
problem of individuality. However, individual user preferences must be
used consistently throughout an entire software system.

Inconsistency may occur within both the user interface and application
functionality. However, it may be possible for a separated user interface to
present inconsistent application functions in a consistent form to the user.
For example, a separated interface may provide a set of consistent user
interactions which, unbeknown to the user, are mapped onto inconsistent
application functions.

Consistency can be improved by the use of formal Systems Analysis and
Design methods, and by the use of consistent design and implementation
tools [Sharrat, B.D:1987]. Such methods and tools are particularly important
where large numbers of people are working on the same application.
Effectively, they force individual designers to follow certain agreed
standards. Consistency applies equally to other areas of concern such as the
user interface, documentation, and error messages.

The use of explicit software guide-lines provides a useful aid to consistency
[NTIS:1987]. Such guide-lines specify standards which apply to the entire
application, and usually take the form of internal printed documents.
However, if these guide-lines are described in a computer readable form, a
User Interface Management System could automatically interpret them and
generate the appropriate user interface. Individual user preferences could
then be handled by simple modification and re-compiling.

Consistency is difficult to achieve, and the consistency seen on the surface is
often affected by deep structural consistency within software. Generally
speaking there are two major goals for system developers :-

- consistency within software
- consistency between different software applications.

Consistency should enhance the confidence of a user in a system, as it
responds in a predictable way. The opposite is also true, as an inconsistent

-8-

system may cause mistrust. Consistency is a vital component of any interface
which is to be accepted and easily used. A minimum requirement therefore,
is consistency within a software package. Consistency across different
software packages is more difficult to attain, and a trade-off must often be
made between consistency and 'software enrichment', using specialised
application features or functions.

Consistency between software houses is an issue affected by many influences
including :-

- copyright laws/controls and intellectual property rights
- fine tuning of software to hardware ‘
- competition.

However, if consistency between products were attained, users could move
from one application to another, taking with them more of their previous
knowledge and experience, e.g. similar command names, icon shapes, and
menu/screen layouts. If one company manufactures many software
packages then there should be no problem in maintaining consistency across
all of these packages. As regards consistency between software houses, the
problem is more deeply rooted in business objectives. It is often in the
interest of a company for its products to be inconsistent with another
companies. This is more difficult to solve, and is beyond the scope of this
research.

2.4. Integration.

Integration is the combination of simple tasks in order to complete a larger
more complex task, and implies a high degree of functionality within these
simple tasks. In our everyday life integration is taken for granted [Chang,
D:1983]. However, many computer users pose intricate and complex tasks
that defy easy computerisation. Given the benefits of complete software
integration, these tasks become simple to solve by combining the use of
several software applications. For example, the integration of a Word
Processor, and Graphics system to provide a Desk Top Publishing system.

Integrated software must satisfy both human and machine requirements
[Brown, M.]J. 1983]. The human requirement is that information will pass
effortlessly from one application program to another within the context of

user tasks. The machine requirement, or 'performance view' is that user
information will be stored, shared and retrieved efficiently.

The crux of the problem is that individual applications often require unique
data structures to work at maximum efficiency. But unfortunately, the more
unique the data structures, the harder it is to exchange data. This is
analogous to the problems of people with different abilities who must work
together. For example, a group of programmers, engineers, accountants and
product managers, who specialise in each of their respective areas and
collaborate to achieve company goals. The problem occurs when a project
requires the interaction of two or more of these groups. Although each
person is competent in a given field, some proficiency in the other fields is
needed for a successful project. If we substitute the unique abilities of a_
worker for the unique data structures of our program, we can see that the
problem of information flow exists in both areas.

Components within a system should be fully integrated, e.g. spell checking,
reformatting, searching, and replacing within a Word Processor [Paul,
D.W:1987]. Systems should also be integrated with other systems. For
example, Word Processors should be able to take input from other systems
such as Accounting packages and Spread-sheets. They should also be able to
generate useful output for other systems such as Mailing systems. This
integration poses two major problems. These are, firstly, the technical
problem of swapping information between two different software packages,
and secondly, the conceptual problem of representing this integration to the
user [Dirlich, G:1987].

Integration is assisted by a distinct separation between information, and the
tasks which can use the information. The information can be moved
between applications, and viewed or used differently in each. For example, a
picture may appear as an icon to a file handling system, a certain size box to a
word processor, or an actual detailed drawing to a graphics editor. Similarly,
a user may create an initial picture using a painting package, move to a
specialised drawing package to add certain features, and finally move to a
word processor, where the picture is placed between certain text items.

Ideally software integration should model the way in which humans

integrate knowledge and applications so as to aid ease of use [Vandor,
S:1983]. The three most useful forms of integration are outlined below.

-10-

These are placed in order of 'naturalness’, that is, how well they match
human methods of integration.

Note Pad.
This method incorporates a Global Notebook to which
information can be written to or read from at any time. The
source of this information is the current screen or task. The
destination of any information read from the notebook is also
the current screen or task. The contents of this notebook are
maintained between sessions, and can be edited, using cut, copy
and paste functions.

Buffering Techniques. _
This method allows users to mark a block of text on the current
screen, and then make a copy of this block. The copy can then
be inserted anywhere on future screens. Only one block can be
copied at a time, and this overwrites the previously stored
copy. This method is similar to the note pad, but has no
intermediary store for information, just a simple linear buffer.

Interfaced files.
This method allows users to create an intermediary file full of
information, which can then be processed by another
application. This method is useful when a large amount of
information has to be exchanged between two applications.

Integration and consistency are closely linked, with consistent systems being
easier to integrate. As with consistency, integration between systems from
the same software house should be attainable (although technically
challenging), while integration with products from other software houses is
again more difficult.

2.4.1. Modes.

The concept of modes is considered by many an antithesis to integration
[Tesler, L:1981]. It is suggested that modes cause both novice and expert users
considerable problems [Sneeringer, J:1978]. The idea of a mode has
developed from the hierarchical structure of computer systems; that is,
systems comprised of sub-systems made up of smaller sub-systems, and so
on. Associated with each sub-system is a set of commands or operations,

-11-

which can be applied to a second set of objects. Although these sets often
overlap, there is the problem of remembering which operations and objects
apply to each sub-system or mode. This problem is also compounded by the
user having to remember which mode they are in, and how they reached
that point [Swinehart, D.C:1974]. There is also the potential problem of
identical operations having different effects in different modes. A final
problem is the freedom to transfer information easily from one mode to
another.

The counter argument is that modes are both 'natural' and beneficial when
using software systems [Canter, D:1985]. In examining the real world there
are many instances of behavioural modes. For example, dining at an
expensive restaurant as opposed to eating at a snack bar. Situations and
environments often dictate certain types of behaviour from individuals
placed in that environment, and these conditions provide security by
establishing boundaries of behaviour agreed by society. At the application
level, modes are unavoidable, with different applications for Word
Processing, Databases, Graphics Editors, Desk Top Publishing, and other
specialised software. However, the undesirable effects of modes described
above need addressing, and may be reduced by the use of other techniques.
Modes can be used to provide contexts in which a user can work. By making
clear which operations and objects are applicable in each context and what
their meanings are, the user can have the security of knowing whereabouts
they are in a system, and what they can do [Carter, J.A:1987].

Provided the modes, operations, and objects associated with each application
are explicitly defined, an interface can give mode sensitive advice to users.
This alleviates the need to memorise sets of operations. An interface could
also provide information concerning the current position of a user within a
system. That is, which mode they are in and how they got there. This
information could be presented using graphics or a simple text description,
and should alleviate the problem of 'getting lost' within the functionality of
a system. The problem of identical operations having different effects in
different modes, is due to inconsistency between sub-systems.

Finally, an application and its interface could allow users to open, or use,
more than one mode at a time. They could then copy information from one
mode into another. Obvious constraints involve graphical and text
information, where conversion is difficult. One tried and tested solution is
to use windows, coupled with the "‘What You See Is What You Get'

-12 -

(WYSIWYG) concept [Shneiderman, B:1987]. Each window represents a
separate application or mode, with its own set of operations and objects.
Although user interaction may only occur in one window at a time, many
windows may be active and multi-tasking supported. The integration
techniques described earlier can then be used to enable information transfer
between different windows.

2.5. Metaphor.

Essentially, a Metaphor provides a link between real world concepts and
ideas, and equivalent computer concepts and ideas. It enables users, both
novice and expert, to learn quickly and adjust to new computer applications,
thus making them easier to use. One example is that of the Desk Top, used
with several operating systems, including Apple Macintosh and the
Graphics Environment Manager (GEM) developed by Digital Research. Here,
graphical icons are used to represent various computer hardware and
software components - disks are represented using a Filing Cabinet icon, and
directories using a Folder icon. Individual files each have an icon
representing their purpose, while files and directories are deleted by
dragging an icon and putting it in a Waste Paper Basket represented by
another icon.

A Metaphor is an important feature of user interfaces [Drake, K:1985]. Often,
the virtue of an interface does not lie in the efficiency of its Metaphors, but
in their familiarity [Edwards, 5:1983]. For example, the hand calculator
Metaphor where a picture of a calculator appears on the screen. If available, a
hand held calculator is much faster to use, but the Metaphor is familiar to
most users.

The icon is one of the most common Metaphors used in new interfaces. An
icon is simply a small picture used to convey an idea, or other information,
within an interface. Underlying this is the assumption that we live in a
strongly visual and spatially organised environment [Rogers, Y:1989]. Icons
provide a pictorial representation for various aspects of a Metaphor. There
are many different types of icons, and their usefulness is the subject of
current research [Benest, 1.D:1987], [Card, S.K:1987], [Glinert, E.P:1987].

A Metaphor potentially offers many advantages to the interface designer,
and in many respects is both natural and unavoidable within the computer
interface. A Metaphor can portray complicated universal ideas, using simple

-13-

pictures, and concepts, avoiding the need for lengthy verbose descriptions.
However, this powerful tool must be used carefully, as various problems
exist. These are now discussed.

The understanding of a Metaphor is often related to cultural background, as
different countries have their own languages, protocols, and concepts. A
Metaphor must be chosen to avoid these differences, using commonly
understood ideas such as filing cabinets, and folders. A Metaphor must also
be obvious and easy to grasp. If users have to look up meanings of particular
Metaphors, then their use is pointless.

Metaphors, and particularly icons, can be context sensitive, which may cause
certain inconsistencies. For example, a magnifying glass may be used to
represent a button for selecting a more detailed view of a picture. However,
the same magnifying glass may be used to represent a function for
examining the text within a file which sits in a particular directory.

In an effort to imitate the familiar object, one may also imitate the
limitations of an object [Houston, T:1983]. A Word Processor patterned after
a typewriter so slavishly that you see a graphical image of the type ball swing
“up each time you type a character may be comfortably familiar, however it
can also become a distraction.

The interpretation of a Metaphor depends upon the knowledge associations,
and previous experience of the user [Abrams, K.H:1987]. For example, an
icon which has a picture of a specialised surgical tool, will probably only be
understood by medical people. When using Metaphors, the interface
designer must therefore carefully consider the background, and expertise of
the user group before deciding which ideas to represent within the interface.

Medical and Psychological theory suggests that the use of Metaphors allows
people to make use of more of the thought centres of the brain [Benzon,
B:1985], [Pope, A:1983]. This is an improvement over conventional
interfaces, which are thought to only stimulate the logical, analytical, and
calculatory centres. However, it is improbable that this is a major
motivation in development of new Direct Manipulation interface
technology which is predominantly rich in Metaphors.

Finally, Metaphors should be part of the interface, separate from the
application, and made as explicit as possible. Following these guide-lines, it

-14 -

should be possible to effectively modify the Metaphors of an interface
according to the characteristics of different user groups.

2.6. Interaction Styles.

Interaction Style governs the overall method of interaction with a computer
system, and affects what the final interface looks like. There are three main
divisions with many hybrids, and these are described in the following sub-
sections. Each of these interaction styles has its own advantages,
disadvantages and its own dedicated group of supporters in the field of
Human Computer Interaction. Certain styles are more suited to certain
applications, and are preferred by certain types of users, who will often
change style as their expertise increases.

The interaction style preferred by a user is very much a subjective choice,
and it is therefore difficult to design algorithms which accurately match
different styles to individual users. It is more important that an interface
offers a choice of interaction styles to the user. It may also be useful to allow
users to see their interaction with one particular style interpreted and
executed in another style. For example, the selection of a menu item which
not only selects the relevant function, but also displays the equivalent
command in another part of the interface. This may encourage users to
move between different styles, and select an appropriate one for their task. It
again requires that the application and interface be clearly separated, and
should result in an applicatioﬁ functionality which is style independent,
whilst the user interface itself can support different styles.

2.6.1. Command and Natural Language.

This style of interaction involves presenting the user with a prompt (e.g. a
flashing cursor), and expecting them to express their requirements in
Command or Natural Language. Users have to translate from their
perception of intent to a grammatical syntax which the computer
understands. Command language is a sub-set of Natural Language, designed
for computer efficiency and processing speed [Benbasat, 1:1984]. In many
situations Natural Language is the best form of input, as the user can specify
their requirements in English (or other natural language) without having to
learn the system dictated command structure. However, because of the great
complexity of language, Natural Language interfaces are difficult to design
[Grace,].E:1987].

-15-

Several problems arise with Command Languages. Users may not know
what commands are available, and therefore find it difficult to remember
syntax and names [Minor, 5:1987]. Users moving from one system to
another may also have problems with different names for similar functions,
e.g. DIR in IBM DOS and LS in UNIX, which both list directory contents.
Command abbreviations may be useful, but the type of abbreviation may be
difficult to choose [Jones, J:1988]. Generally the problem areas arise from
having to memorise command names, syntax, and their associated
functions. However, one advantage of Command Language is the possible
speed and expressive power when used frequently by expert users.

Natural Language is potentially better than Command Language, being far
more flexible and adaptable. Users do not have to remember difficult names
and syntax, as Natural Language interfaces should be able to recognise
alternative names and syntax [Abrams, K.H:1987]. Novice users should find
learning to use Natural Language interfaces easier and quicker. Also, as they
become more expert, they can derive their own Command Language sub-set
which suits them individually. However, the naturalness of such interfaces
is questioned [Dillon, A:1988], [Ogden, C:1987]. It is natural to speak, and
hear, language, but is it really so natural to type in this dialogue at a
computer keyboard ? Natural Language may be better suited to multi-media
input/output, where voice recognition and generation hardware is available
[Multiworks:1989], [MultiPoint:1989], [SOMIW:1989].

One comment relating to both Command and Natural Language systems
concerns the dialogue structure. The user is expected to type in a command,
the computer then processes this command and returns a suitable response.
When the user makes a mistake, this dialogue could become difficult to use
in error correction and advice consultation. It may also become tedious, and
there is the problem of waiting for system responses. The computer does not
always show what it is doing, and users can be left waiting (sometimes
anxiously) when they press the return key at the end of a command.

Natural Language processing is a wide field of interest to both the Artificial
Intelligence and Human Computer Interaction research community. Many
more questions, problems, and solutions exist which are outside the scope of
this research. These concerns are addressed within the relevant research
disciplines [Barlow, J:1989], [Bench-Capon, T.J.M:1989], [McKoy, K.F:1988],
[Meyer, B:1985], [Schroder, M:1988].

-16 -

2.6.2. Menus.

A Menu driven system, presents the user with a list of options from which
they can choose. One option may lead to another menu being displayed, and
options from there may do likewise. As figure 2.6.2 shows, the result is an
inverted tree, with nodes within the tree (that is nodes to which downward
branches are attached) being menus, and end nodes being the final result of
an interaction.

Plain

Bold

UnderLined 9 Point
Italic 10 Point
Shadowed 12 Point
Outlined 14 Point

18 Point

Font p———9> | Font Style
- 24 Point

Lines Font Size

Boxes Font Type
Chicago

v Shapes \ Font Other
halaleb N Courier

:‘ BQMpIS, UPPERCASE Geneva
lowercase Helvetica
Title Case Times
- Left Align
' Right Align
Centre Align

Figure 2.6.2 - Hierarchic Menus.

The main advantage of this style is that all the available system functions
are displayed. The user does not have to remember complicated syntax, and
only needs to know how to interpret the menus and make their selection.
Such a style is therefore useful for novice users.

However, when the number of menus is great and the depth of the tree (i.e.
number of connected menus) is large, problems arise [Brown, J.W:1982]. One
such problem is selection speed. When a user has to navigate through
numerous connected menus, it takes a considerable length of time, which is
unacceptable to regular expert users. The interaction process: read list and

-17 -

select choice - can again become tedious. Also, correct functionality often
depends upon well structured and well worded menus.

Another problem with menus is that of weak associations between choice
descriptions, and final selections [Snowberry, K:1985]. In a system where
there are many connected menus, the user may have to pass through a large
number of menus before arriving at their required function. At each of these
menus the user may get lost, and go down the wrong branch of the tree by
making the wrong choice. The choice descriptions must be carefully chosen
so that they correctly describe the sub-menus which follow from that choice.
The more sub-menus, the weaker the association between a choice
description and the final function. Therefore, it is more difficult for a user to
select the required function, and there is a greater possibility of 'getting lost'.

Menus serve two main purposes, chiefly selecting functions, and
representing a particular state from a list of possible states [Erklundh,
K.S:1987]. For example, a selected font from an available list of fonts. In
either case the menu structure can be separated from how the menu is
actually presented and how it is used. In some systems, menus are invoked
by pressing a certain mouse button while pointing to a particular window,
and in others by moving a cursor over a particular word representing the
title of the menu. In some systems hierarchical menus are also used,
whereby menu items may lead to other menus. In other systems, certain
groups of items are separated using lines or boxes. The actual menu
structure can be described using a formal syntax which is separate from how
the menu is actually presented, and used. The presentation and usage of a
menu ultimately depends upon the interface style, whereas the underlying
menu description remains constant. One well defined formal menu
description grammar is known as 'Lean Cuisine' [Apperley, M.D:1989]. The
potential for this form of separation is discussed in section 6.4.14, where an
extended 'Lean Cuisine' implementation is presented.

2.6.3. Direct Manipulation.

This is the latest advance in Human Computer Interaction, and is heralded
by many as the interaction style for the future [Shneiderman, B:1983]. Direct
Manipulation systems involve a considerable amount of user interaction

and Metaphors, with users moving objects (represented as pictures or icons)
around the screen, selecting tasks and objects to be worked on. Such systems

-18 -

include the Apple Macintosh family of software, and the Graphical
Environment Management (GEM) developed by Digital Research.

Direct Manipulation is based on the principle of "What You See Is What
You Get" [Warfield, R.W:1983]. Users are expected to, and usually do, grasp
basic conceptual ideas. These ideas relate to the selection and manipulation
of objects and tasks, and what happens as a result of their selection and
manipulation.

There are many examples of successful Direct Manipulation systems
[Lesniewski, A:1987], [Quint, V:1987], and experiment has shown them to be
readily accepted by novice and expert users [Shneiderman, B:1987]. Novice
users usually find learning and knowledge retention easy, and quickly grasp
the basic concepts of such systems. Meanwhile, expert users find complex
problems quick and easy to express. However there are some problems,
mainly due to inconsistencies, and the use of poor Metaphors.

The problems with Direct Manipulation stem directly from the very features
which provide its strength. Direct Manipulation is based upon a small but
powerful set of interactions which are rich with Metaphor - for example
dragging and selecting icons using mouse movement and button presses.
These interactions are easily remembered by users, who expect similar effects
for the same interactions in different applications. When the effects are
inconsistent, cognitive problems result from having to temporarily unlearn
previously well understood concepts. Similar problems occur when
particular Metaphors are misrepresented, or misunderstood.

2.6.4. Combinations.

Many interfaces combine the above styles to form hybrids. Direct
Manipulation and Menu interaction are often combined, as they use similar
Metaphors and user interactions. However, Command and Natural
Language styles are rarely combined with Menus or Direct Manipulation
because of the differences between them.

One hybrid is Form Filling [Frohlich, D.M:1985], where the user is presented
with a screen full of questions to answer in order to complete a certain task.
The form may be displayed as a result of typing in a command, or selecting a
function from a menu. The response to these questions may be typed, or

-19-

selected from menu lists. The complete form then provides the basis for
executing a particular task, or sequence of tasks.

2.6.5. Dialogue Control and Specification.

Underlying all interface styles is a specific dialogue control mechanism. This
describes the permissible user interactions, and the resulting effects upon the
interface and application functionality. As dialogue control is unavoidable,
it is preferable to make dialogue control mechanisms explicit within the
interface. This may take many forms and could serve several purposes.
Current descriptions include Task Action Grammar [Payne, S.J:1986],
Command Language Grammar [Moran, T.P:1981], and 'Goals Operations
Methods and Selections' (GOMS) [Card, S.K:1983].

Explicit dialogue descriptions should be executable, which would enable
novel styles to be easily tested, and encourage interface designers to explore
new interaction techniques [Alexander, H:1987], [Jeremaes, P:1987]. Libraries
of dialogue styles can also be accumulated and easily modified. Finally,
interface consistency should be improved by automatic style analysis and
cross referencing.

The use of executable dialogue descriptions again requires separation
between the interface and application functionality. Styles can then be ported
between different applications, which should improve the consistency
between them.

2.6.6. Style Guides.

Interface style is implementation independent, as it is possible to define
various interface styles, and implement them using different tools or
languages. Interface styles should therefore take the written form of style
guides. These guides can then be used as reference works by interface
designers, to implement consistent interfaces for disparate applications. In
addition, executable style descriptions may also be attached to these style
guides, for use within an interface design Tool-set.

These style guides may be marketed commercially, and distributed to
different software houses. This should encourage interface standards, and
several style guides are already available including Motif [Oldenburg, H:1989]
and 'Touch and Feel' [Kluger, L:1989]. However, the written style guide

-20-

approach may also lead to profiteering by the combined enforcement of
standards, and use of copyright controls.

2.7. Error Handling.

Software should be designed to deal with the mistakes which users
inevitably make. The prime objective of error handling must always be to
assist learning, and correct misunderstanding. Most applications merely
detect those user actions which would cause system problems, generate an
error message, and display it. This is useful, especially when the application
is simple and the error messages are easy to understand. However, new
applications must provide better facilities. As described below, error
classification is application independent and the same classification method
can be used for different applications. It is therefore contended that the
responsibility for error handling should lie within the user interface, which
must at least include advice giving components which can suggest the
reasons for an error, and provide relevant advice/documentation. This
approach leads the design of generic Intelligent Help System and Error
Handling modules incorporated as part of the user interface (see section
3.2.1).

Every application has a functional structure, which formally defines correct
and incorrect usage. Application structure may be explicitly defined using
various Systems Analysis and Design tools, or may exist only in the head of
the designer. Application functional structure is presented through a user
interface, therefore the Application Model is a product of both application
functionality, and user interface presentation. Similarly, a user has a
particular model or understanding of how they expect an application to
work - that is how to instantiate tasks, what response to expect, and the
understanding of Metaphorical meaning. Errors occur as a result of
mismatches between these two separate models. Although the Application
Model is usually fixed, the User Model is often incomplete, unstable, and
confused [Norman, D.A:1983]. This inconsistency must be dealt with by
suitable error handling mechanisms.

The type of mismatch can be classified according to various frameworks.
One such classification is Evaluative Classification Methodology [Booth,
P:1987]. The following definitions are used, and figure 2.7 shows the
classification system.

-21-

Objects.
An object is, in essence a thing to which something is done, or
about which something acts or operates. For example a data file
in an application, a figure, or a character. An object mismatch
can take the form of one of three possible types; an object-
concept mismatch, an object-symbol mismatch, or an object-
context mismatch. An object mismatch might be said to have
occurred where an object is unfamiliar to a user or has
unexpected and unwanted properties (concept mismatch), an
object is misrepresented (symbol mismatch) or an object may
appear in the wrong mode or situation as far as the user is
concerned (context mismatch).

Operations.
An operation is an action which is performed upon an object
or objects within the application - for example, saving a file,
deleting a character, changing a shape in a graphics package.
Again, there are three types of operation mismatch. An
operation-concept mismatch is where the application cannot
perform the operation in the way that the user intends. An
operational-symbol mismatch is where an operation is
misnamed as far as the user is concerned, and an operation-
context mismatch is where an operation cannot be performed
in the way that a user would like, in a particular situation or
mode.

Concept.
A concept may be either an object or operation whether
represented mentally (in the user) or in lines of code (the
computer). A concept mismatch is a fundamental difference in
the understanding and representation of application objects or
operations.

Symbol.
This is taken to mean a word, character, sign, figure, shape, or
icon employed by either the user or the application to represent
an object or operation within the application. A symbol
mismatch is not one of fundamental understanding, but occurs
where the application and the user adopt different terms to
represent the same concept.

-22-

Context.
This is the arrangement of, and the relations between, the
objects within an application at any point in time. An object-
context mismatch is then, where an object is in the wrong
situation or position as far as the user is concerned. An
operation-context mismatch is where an operation that can be
performed in other circumstances either cannot be performed
in the way the user intends, or cannot be performed at all.

Object Operation
Object-Concept Operation-Concept
Concept Mismatch Mismatch
Object-Symbol Operation-Symbol
Symbol Mismatch Mismatch
+ Object-Concept Operation-Concept
n . .
o Concept Context Mismatch Context Mismatch
Es
S Svmbol Object-Symbol Operation-Symbol
o 4 Context Mismatch Context Mismatch

Figure 2.7 - Error Classification Methodol

The majority of errors can be fitted into this classification framework, apart
from inefficiency errors [Elkerton, J:1987]. In the latter case, the user
understands an application and how it works, but does not realise that the
application provides a more efficient mechanism for achieving a certain
goal. For instance, consider an example which is concerned with deleting
multiple files - a user may use individual delete commands for each file,
while being unaware of a multiple delete command, which takes a list of
files to delete as an argument. Such inefficiencies waste time, and should be
prevented whenever possible.

Having established an Error Classification Methodology, a means of
recognising or detecting errors is required. Most errors cause a failure in the
dialogue between the user and the interface - for example, incorrect
commands, or trying to select invalid or inoperative functions from a

menu. Such errors are easily detected, as the application or interface is
designed to expect only certain types of response. The inefficient use of
application functions is more difficult to detect. Artificial Intelligence is
needed to monitor the interactions performed by a user, predict the intended

-23-

goal, and suggest an alternative sequence of interactions which achieves the
same goal more efficiently. Knowledge is therefore required concerning
application functionality and permissible user interactions.

Different interaction styles present, and restrict, certain types of errors.
Command and Natural Language styles allow a greater range of errors to be
made, and provide a mechanism for detecting the different types. Because
user interaction takes the form of worded command sequences, these can be
analysed to see whether particular types of mismatch occur [Smith, J.J:1985].
Direct Manipulation and Menu interaction styles present different problems.
Typically, the user is prevented from performing incorrect tasks. Users are
also prevented from using invalid symbols and operations as they are only
allowed to choose from the symbols and operations presented to them.
Some examples are listed :-

- the use of Menus which only list valid tasks, or operations

- invalid or inoperative tasks in a menu list are usually
presented in a different type-face

- pointer movement is often restricted, depending upon what
task is being performed, or which mode an application is in.

Because of the restricted interaction, mismatches are more difficult to detect,
and this can be misleading. It is wrong to imply that because a user is
prevented from performing certain operations, or using certain objects, that
they understand why this is so, as a user may wish to invoke an invalid
operation or incorrectly use an object. This type of error could provide an
interface with useful information concerning certain mismatches between
the User Model and Application Model. Questions arise as to whether these
restricions should be removed. Instead, errors could be detected and
corrected using Intelligent Help and Error Handling systems. Such concerns
are outside the bounds of this research.

Another pertinent issue is that of error description and advice giving. Most
applications usually display a simple error message, with the option of a
more detailed description. This is insufficient for complex applications,
where more assistance is required to help identify the cause of an error, and
to offer advice on how to avoid it in the future. Current research shows that
Expert System technology is necessary to meet these requirements [Carroll,
J-M:1987].

-24-

Errors can have different effects on different users, ranging from sheer panic
to disregard. It is therefore important that an interface provides a 'forgiving'
environment, reassuring the user that their mistakes are not critical, and
that any abnormal effects can be easily undone.

All errors must be resolved at their occurrence before the system proceeds. It
is important that the user is informed as rapidly as possible when an error is
detected, and suitable attention attraction mechanisms should be used, e.g.
Bell, Flashing Red Colour. However, this mechanism must not be so
intrusive as to inform non-users near the system of the mistakes made by
another user [Thimbleby, H:1986]. When an error is detected, users should be
returned to a system state which existed before the last command was issued
which caused the error. This provides a 'forgiving environment' and
encourages users to explore the system.

Error messages should be positive. For example, the message 'Deletion not
allowed BECAUSE you do not have sufficient security access' is less
provocative than 'access not allowed'. An error message should not deter
the user from exploring the application. It should reassure the user that no
unpredictable side-effects have resulted from the error. The user may then
continue confidently, knowing that the system is in a predictable state.

The issues being addressed within the field of error handling and advice
giving are complex, needing expertise from both Artificial Intelligence and
Expert System technology. Chapter three examines the role of Intelligent
Help Systems as a means of providing better error handling and advice
giving facilities. This chapter also presents an overview of current research
within this field.

2.8. Documentation and Tutorials.

The success or failure of a software application can often be influenced by the
quality of the accompanying documentation. The process of producing
documentation can sometimes be a difficult and lengthy task. Listed below
are some basic guide-lines which draw attention to the various concerns
within this field.

Documentation may take one of two media forms: the printed page, and on-
line documentation. The printed page is most common, with various
formats ranging from single page command summaries to extensive, fully

-25-

indexed, detailed manuals. Alternatively, on-line documentation uses
computer media, where the text and pictures are stored in a form which can
be read and presented to the user through an interface.

Documentation should use consistent terms, e.g. when using the term
'screen layout' it should not suddenly change to 'display format' at a later
date. It should also have consistent structure across different software
applications, e.g. Introduction, Index, Chapters, Command and Feature
summary, and Appendices.

Documentation should be simple to understand and clearly laid out, using
as many examples as are feasible. It should cater for both novice and expert
users, including special sections for expert users and concise, readable
command and function summaries.

Documentation should not assume that users have expert computer
knowledge, and any expectations should be clearly laid out, i.e. previous
experience, or manuals previously read [Wendel, R:1987]. There may also be
a need for manuals, tutorials, and help facilities on the subject of computer
skills, e.g. using disks, keyboard, mouse, printer, files, and directories.

Documentation should encourage users to get hands on experience as soon
as possible. Most users are keen to sit at terminals and start using the system
as soon as possible [Carroll,].M:1983]. Long tedious documentation has a
dysfunctional effect on people, and inhibits the learning process. The result
of this is counter-productive, as users typically try and use the system out of
desperation with no understanding or guidance. This inevitably results in
frustration and causes discouraging system errors.

Good programs do not need extensive comments, as the program code itself
should be clear and easily understood. Similarly, applications should not
require lengthy documentation to explain how to use them, as the
functional model should also be clear and easily understood. On-line
documentation for a particular system enables users to quickly access
information to assist them with their problem. This documentation could
also be linked to error messages. The only drawback with this facility is the
possible loss of software protection. With present software, lengthy manuals
are often required to use the software. Although the software can often be
easily illegally copied, documentation is more difficult and costly to
duplicate, thus restricting improper use of the software.

-26-

When on-line documentation is provided, context can also be used to
improve its accessibility [Moll, T:1987]. This can assist the user in finding the
relevant help or documentation. The interface effectively provides
assistance based upon where the user is in the system, what the user is
doing, and what the user has recently done. Ultimately this facility also
provides a type of 'panic button', to cope with the situation when the user is
completely lost, or 'functionally disoriented'.

Interactive tutorials may also provide a useful teaching tool. These could
take the form of real examples or problems with worked solutions, which
are seen running within the application. Along the way, a tutorial shows the
commands that must be entered and what they do within the framework of
the specific example. Effectively, the user can watch the interface simulate a
user using a particular application to solve a specific problem. One
manifestation of this is the 'rolling demonstration’, often used in sales
presentations.

It should always be made clear to the user how help can be obtained,
[Herbach, M: 1983]. The selection action should also be simple, e.g. pressing
the F1 key. Essential help which is often required by novice (and sometimes
expert) users is orientation and familiarisation. That is, what keys do what,
and what part of the screen holds what information. This basic information
should always be made clear to novice users at an early stage, as this aids the
learning process.

One useful addition to conventional on-line help techniques would be to
allow users to add their own comments to an existing documentation
knowledge base. Having requested, and received the appropriate help, users
could then have the option of adding their own comments to the help
displayed.

On-line documentation and interactive tutorials are closely related to error
handling. Again, Artificial Intelligence and Expert System technologies have
a great deal to contribute to this field. Errors often mark the start of a
tutorial or advice giving session, therefore knowledge needs to be shared
between the error handling and advice giving components of an interface.

-27-

2.9. Interface Separation.

Interface separation is a growing concern. If user interfaces were completely
inseparable from their application, there would be no such thing as an
alternative, customisable, or adaptive interface. Some degree of separation is
already possible, because various interface Tool-sets are currently available
to the interface designer, for example Open Dialogue [Patel, H:1989],
HyperNews [Pearce, D:1989], and XWindows [Sun:1990]. As a result, the
following questions arise :-

- what is the scope and definition of the application ?

- what is the scope and definition of the user interface ?

- where can the separation line be drawn, and how ?

- what are the advantages of separation ?

- what are the effects and limitation of separation ? Especially :-

- what constraints does the application put on the separable user
interface ?

- what constraints does the user interface put on the separable
application ?

Using terminology suggested by Cockton [Cockton, G:1987], it is proposed
that a software application can be divided into a Non-Interactive Core of
application functions and a separate user interface, which can communicate
with each other. The Non-Interactive Core of application functions does not
specify any User Interaction dialogue control. Effectively, it cannot directly
request user input, or generate any screen output. These tasks remain within
the user interface, which conversely does not implement any application
functions. Messages are sent to the application to instantiate functions, and
inquire on states. Similarly, results are returned by the application to the
user interface using arguments, or tokens. This link between application
functions and user interface should be formally defined.

The potential advantages of complete user interface separation are
numerous :-

- consistent user interfaces should result from the re-use of
separate interface components within different interfaces

- the same application may have many different interfaces
which can be easily tailored and adapted to individual users or
organisations

-28 -

- an interface can easily change over a period of time to meet the
changing needs of individual users

- new Human Computer Interaction technology can be utilised
when it becomes available, and the interface updated
accordingly without affecting the application functions

- prototyping of interfaces can be performed separate from the
development and implementation of the application functions

- cost and time savings arise from many features, incduding
prototyping, customisation for individuals, and interface
maintainability

- application can be designed without Input / Output or Human
Computer Interaction considerations.

These advantages however, depend upon the extent of separation supported
within the software architecture.

A truly generic interface is impossible to achieve. This is theoretically
defined as a user interface which can be used for many functionally different
applications, and implies that a Word Processor style interface can be used to
interact with a Database, or Graphics application. This would cause the user
many cognitive problems, as the underlying interface metaphor would be
difficult to match to application functions. Application functions therefore
do affect and constrain the user interface. Likewise, the interface constrains
the application functions. These constraints are not necessarily adverse, and
require further investigation.

This research focuses upon interface separation. A new interface software
architecture is proposed and implemented using an object oriented
language. This architecture uses separation, and is later evaluated in order to
derive the benefits and constraints that result from separation, and answer
the questions posed above.

2.10. Interface Ergonomics.

The primary objective of Ergonomics is the matching of a job to a particular
worker, with the aim of reducing the workload upon them [Matilla, M:1987].
It is a well founded research area with many applications in the industrial
and commercial sectors. Interface Ergonomics has a primary objective to
match a software application to a particular user, again with the aim of
reducing the workload upon them. In the case of Interface Ergonomics this

-29.

workload takes a mental form and is typically cognitive in nature, as
opposed to Ergonomics where the workload is usually physical.

Interface Ergonomics addresses many questions which relate to user
interface software [Balzert, H:1987]. These include :-

Use of highlighted and flashing text.

Screen layout.
That is where particular text and graphic items such as error
messages and help information should be positioned.

Metaphor.
That is what ideas to represent and what metaphor to use.

Dialogue style.
This should be matched to individual users, and the type of
task that they are trying to perform.

Undoing.
Actions should be discrete and their effects reversible. Users
should be offered an 'Undo' function, and the extent of this,
i.e. the number of sequential commands which can be undone,
should be adjustable [Waldor, K:1987].

Over-typing.
Consideration should be given to over-typing. The effect of
over-typing can be accomplished by combination of delete and
insert actions. By preventing over-typing, users need not worry
about whether they are in insert or over-type mode.

Auto Repeat keys.
Work by Thimbleby [Thimbleby, H. 1986] suggests that auto
repeat keys should be avoided (that is keys repeating
themselves when held down,). He suggests that a separate
repeat key should be provided, and not allowed when using
'dangerous’ keys. Another alternative is to provide key clicks
which provide a positive response to the user that a key was
pressed.

-30-

Response Time
The response time of an interface is important. People are used
to dealing with real world response times in the order of
several seconds at the longest, e.g. turning a steering wheel,
changing channel on a T.V. set. Although in certain conditions
people accept response times in the order of several seconds,
e.g. phoning, there is an intermediary response, i.e. a dialling
tone. This intermediary response reassures the person that
their request is currently being dealt with and that they must
wait. It also gives them the choice of cancelling an action they
know is currently being processed, returning the system to its
original state before the action was initiated. Other
circumstances where large response times are acceptable .
include starting or initialising a new system, and switching off
or closing down a system, e.g. turning on a T.V. set. Long
response delays reduce confidence in the system and disrupt
work flow.

User interfaces should be aware of this, so that any delay
between successive application states never exceed a maximum
value for example, a maximum response time of 2 seconds
[Thimbleby, H:1986]. Where this is not possible, intermediary
visual responses should be generated. If a user decides that they
wish to cancel a task during this intermediéry display, the
system should then be returned to the previous state before the
task was initiated.

Type Ahead.
Typing ahead is a useful feature for expert users, however, it
can be frustrating for novices. Type ahead buffers should be
variable in sizes and optional. Where typing ahead is allowed,
the resulting intermediary displays should not be displayed,
unless the response time again exceeds a pre-defined
maximum value [Thimbleby, H:1986].

This area falls under the responsibility of Cognitive Psychologists whose
skills lie in understanding how humans function cognitively [Dillon,
A:1987]. Primary concerns involve the matching of various interface
features and styles with appropriate human qualities [Rasmussen, J:1987].

-31-

The result of this type of work is the production of interface guide-lines.
These can then be used to help the interface designer design better interfaces.
For example, matching memory loads for the user by restricting the amount
of information displayed on the screen.

Results from this field are usually accompanied by theoretical and empirical
cognitive proofs. Although specific interface features can be identified, the
correct setting for these features may be either a unique value or one of a
finite set of values. For example, response time must always be less than a
maximum of 2 seconds, whilst the colour of an error message could be
either red, orange, or yellow. This encompasses the individuality of different
users.

Most of the issues discussed in the previous sections are addressed by
research within this field. It is the responsibility of the interface designer to
take notice of Cognitive Psychology research results, and incorporate them
into new interfaces. This should again be facilitated by the use of interface
separation, and suitable interface design tools.

2.11. Summary.

This chapter has discussed the many software related influences which affect
user acceptance of computer systems. The various affects of these influences
were discussed, and improvements to existing technology suggested.

Several criteria were developed. When applied, these should assist the
design and implementation of usable interfaces. The criteria are listed as
follows :-

separation between the interface and applicétion

- explicit descriptions of interface components whenever
possible

- the use of formal design methods

- development of new interface architectures and tools.

A need for new approaches to software design which incorporate these
criteria was identified. These must focus attention upon designing software
systems for the user, and also require suitable support tools and software
architectures. It is contended that separation between interface and
application functionality is paramount to any new design approach, and

-32-

must therefore be the basis for new software architectures and interface
design tools.

Finally, the issues presented in this chapter are fundamental to any software
application. They must therefore be correctly addressed before Artificial
Intelligence is used to improve the interface. Experience has shown that
failure to do so usually results in a powerful Intelligent Interface, which is
even more difficult to use than its Non-Intelligent counterpart.

- 33 -

Chapter Three,

The Application of Artificial Intelligcen r Interface Desi
3.1. Introduction.

An Intelligent Interface is one which uses techniques drawn from the field
of Artificial Intelligence to improve the user interface [Abrams, K.H:1987],
[Carroll, J.M:1987], [Rivers, R:1989], [Self,]:1988]. This is achieved by adding
extra modules which enable the interface to match certain user
characteristics. Intelligent Interfaces also provide the facility to personalize
an interface to suit an individual user. Knowledge is required about the
individual user and their characteristics, and also about the variable
interface features. Using this, an Intelligent Interface selects the correct
feature values for a user, and consistently applies them across the entire
interface.

Chapter two identified the main areas where software can be improved in
respect to usability, while this chapter shows how some of these areas may
be enhanced using Artificial Intelligence. Attention is given to interface
architectures, and a modular Intelligent Interface design is proposed.

This chapter reviews current research into Intelligent Interfaces, and
completes the background work for this thesis. Section 3.2 examines the
major applications of Artificial Intelligence to the user interface. Section 3.3
presents a simple classification for interface architectures and design
approaches. Section 3.4 examines the major design approaches, and lists the
requirements which they must meet. This section also describes and
evaluates several existing interface design approaches.

3.2. Additional Intelligent Interface Modules.

3.2.1. Intelligent Help Systems.

As discussed in chapter two and summarised in figure 3.2.1, traditional
approaches to help systems are based upon separate application
documentation, tutorial support, and training. Although documentation
may be in a computerised on-line format, the initiative for satisfying
application queries and for solving specific problems still remains with the
user. The effectiveness of written or on-line documentation as a learning

-34-

tool is dependent upon the quality and clarity of the literature provided.
Different styles of documentation are also necessary to assist the user as they
progress from novice to expert. Unfortunately, documentation style is fixed
and is usually aimed at the 'average' user. As a result, it can not take into
consideration the different abilities and backgrounds of individual users
who will use it.

Application :-

User
Interface

Task
Performance

Supplemental Material :-

Support in

Written Introductory Material
Task Performance

Written User Manuals/Guides
Reference Manuals
Interactive Tutorial Guides
On-Line Manual

On-Line Help

Computer Aided Instruction
Training Courses

Figure 3.2.1, Traditional Application nfi_ ration

As systems become more complex, training courses are also becoming a
popular means of learning. Training courses are better suited to matching
the learning abilities of different individuals, as professional tutors can
tailor teaching material to personal competence. However, these courses
tend to be expensive, and knowledge is easily forgotten over a period of
time.

Another solution to user support is that of Computer Aided Instruction
[Erlandsen, J:1987]. This typically entails a suite of programs which
interactively teaches the user the salient features of the application.
Computer Aided Instruction packages use the functionality of an application
to provide a tutorial style approach to learning. The Computer Aided
Instruction package effectively imitates a user, and illustrates on a step by
step basis how to accomplish specific tasks, using the available application
functions. However, Computer Aided Instruction packages have major
shortcomings in that they are often introductory in nature. Again, these

-35-

packages usually assume an 'average' user, and therefore cannot be tailored
to individual user abilities.

An alternate approach to user support is that of Intelligent Help Systems
[Lutze, R:1987]. An Intelligent Help System provides on-line user support
which is tailored to individual user requirements. These systems act as
'mechanised teachers' which monitor the progress of a user, and provide
assistance which is adapted to suit their individual capability. For example,
novice users are given verbose introductory help, while expert users are
given shorter concise descriptions. An Intelligent Help System may also
allow users to add their own comments to the existing documentation.

Intelligent Help Systems also need to incorporate Intelligent Error Handling
techniques. Whenever a user makes an error, the Help System can leave the
user to determine its cause and therefore correct it, or the system may assess
the current capabilities of the user and intervene to offer a possible
explanation for the error. Ultimately, it may also implement solutions upon
behalf of the user.

An Intelligent Help System may be directly invoked by the user whenever
assistance is required. It may also monitor the user, and when deemed
necessary interrupt the user to offer what it determines as useful advice. For
example, whenever a user is using the system inefficiently, or appears to be
'lost".

Adbvice, or help sessions may take several forms, the simplest of which is a
context sensitive description of relevant application features [Carter,
J.A:1987]. Other styles include interactive tutorial demonstrations, and
question and answer sessions. An interactive tutorial session provides the
user with worked examples which demonstrate how a particular application
function works. These examples may also be made more realistic by
constructing them from examples taken from dialogue which has already
taken place between the user and the application [Carroll, J.M:1987]. A
question and answer session allows the user to interrogate interactively the
help system in order to solve a particular problem [Hartley,].R:1988]. The
dialogue which occurs may also be used as feedback, to adjust intelligently
the help system for future help sessions. In all cases, assistance is
personalized to the individual capabilities of a user.

-36-

The main goal of an Intelligent Help System is therefore to support the
construction of a correct and sufficient conceptual model about the
application, by means of a behaviour similar to that of a human teacher
[Miller, J.R:1987]. In doing so, account must be taken of the background,
abilities, and previous interactions of the user. A balance must also be
maintained concerning the initiative for providing assistance. A user may
take the initiative to request help at any time. However, an Intelligent Help
System may take the initiative itself at certain times, and interrupt user
interaction to offer suitable advice. Unfortunately this may be dysfunctional,
as it is also possible for these interruptions to disrupt user interaction, and
therefore impede the progression of a user.

An Intelligent Help System can be clearly separated from the application. It
requires knowledge concerning the application and its proper use, but this
should be defined separate to the application itself. In order to work well,
Intelligent Help Systems also require detailed knowledge concerning the
available user interface dialogues and mechanisms, different teaching and
explanation strategies, Natural Language, and user characteristics and traits.
As described later in section 3.2.2.1, this knowledge is often implemented as
computerised User Models, Application Models, and Real World Models.
Generic Intelligent Help Systems can therefore be developed, and adapted to
individual applications or users by changing the appropriate model. Various
techniques are already available for representing these models in
computerised format, and for determining their knowledge [Carroll,
J-M:1988], [Sandberg,J:1988].

The major issues surrounding Intelligent Help Systems are related to the
design and implementation of suitable computerised models [Murray,
D.M:1987], the design of suitable intelligent inferencing mechanisms which
monitor user interaction and modify the appropriate model knowledge
[Kemke, C:1987], the selection and implementation of useful help session
dialogue styles [Dix, A:1987], and the representation of human learning
processes [Carroll,].M:1987]. As a result, current work into Intelligent Help
Systems benefits from research results derived within the disciplines of
Artifidial Intelligence, and Behavioural Psychology [Self,]:1988].

-37-

3.2.2. Models.

Models serve many purposes, and provide a powerful tool for the scientist
[Williges, R:1987]. Essentially a model can be defined as any abstract
representation of a real world phenomenon. This phenomenon may be
physical or conceptual, and the nature of a model will depend upon its
intrinsic aims. For the scientific community, models primarily enable
knowledge concerning difficult real world problem domains to be
represented in a clear, and understandable format. An example is Short
Term Memory and Long Term Memory [Thomson, N:1986]. These two
terms refer to an established Cognitive Psychology model which represents
the way in which human memory functions. Scientific models can also be
used as the basis for predictive reasoning in order to forecast events or
situations which may occur in the future of the domain being represented.
Finally, they may also be used as a basis for developing and testing new
hypothesis, and in generating solutions to problems which arise from the
domain of definition, and operation of the model.

A model is an abstraction and representation of some real world object or
situation. Physical modelling is probably the most common form of
modelling, and examples include sculptures, and pictures. Although useful,
it is difficult to physically model metaphysical or conceptual ideas, for
example the concept of how the human mind functions, or an individual's
political motivations [Spall, R.P:1986]. In such cases, models are built around
related facts, or hypotheses concerning the problem domain. These facts can
be organised to form the basis of the knowledge contained in a model, and
may appear as Natural Language statements, diagrams, mathematical
values, or logic expressions.

The use of mathematics and logic as a modelling tool facilitates the
generation of computable models. These models can be stored within a
computer, and used as the basis for computerised inferencing or prediction.
An Expert System is an example of a computable model and is comprised of
separate knowledge (either mathematical values, or logic expressions) and
heuristics which act on this knowledge in order to predict, or infer further
knowledge [Kidd, A:1986]. The knowledge contained in a model can
therefore be extended or modified manually by the Expert System user, or
automatically by intelligent heuristic inferencing mechanisms.

-38’-

Models are not necessarily true representations, and may be hypothetical.
They may also be difficult to prove or disprove, especially where models of
human qualities are concerned. Models form a natural part of life, and
provide a useful means of organising knowledge. Often, people do not
realise that they are using implicit models to solve or understand problems.
Every computer application and its interface assumes some form of model
concerning the user and the real world.

As far as Human Computer Interaction is concerned, models serve two
purposes. Firstly, models may be used as design tools to assist the interface
designer in generating usable interfaces [Whitefield, A:1987]. Secondly, a
model may be used by an actual interface in order to infer certain values, or
characteristics, about a user, application, or the real world [Murray, .
D.M:1987]. The issues being addressed by Human Computer Interaction User
Modelling research are related to the explicit definition of model structure,
the application of models within the user interface, and the elicitation of
knowledge which is contained within a model [Corbett, M:1987]. There are
three types -of model which are of particular interest to the Human
Computer Interaction designer :-

- User Model
- Application Model
- Real World Model.

3.2.2.1. User Model.

To capture the difference between computer users, we need a classification
framework to describe their individual characteristics. Users can be classified
along two scales which are illustrated in figure 3.2.2.1a. One is their
knowledge and understanding about the application domain, and the
second is their knowledge and understanding about the computer and user
interface domain. Both of these scales range from novice to expert, with the
centre representing intermediate knowledge. A novice has no, or little
knowledge or understanding, while an Expert has full knowledge and
understanding. The position of a user on the scales varies relative to other
users, and will also change with time, as they learn or forget knowledge.

;39-

- Expert

User
Progression

Computer Experience
Novice Inter ate Expert

L Novice
Application Experience

Figg_ re 3.2.2.1a - User Classification.

These classification scales are useful, but problems arise with more complex
applications. It is difficult to determine the range values, because a relative
scale is required based on a definition of 'full knowledge' or understanding,
and 'no knowledge' or lack of understanding. It is also difficult to define the
granularity of the scaling, i.e. how many ideas and skills need to be learnt
and understood before a novice progresses to become an expert user. Users
also have other characteristics, such as previous experience with other
applications, and cultural differences, which this does not represent. A
richer classification, known as a User Model, is required.

A User Model, in respect to Human Computer Interaction, is a description of
how users interact with software interfaces [Clowes, I:1985]. This model
serves to describe the different activities which take place during the
interaction between a user and a computer application. These activities
include psychological, or mental thought processes, and physical actions
such as key presses and mouse movement.

There are two broad types of User Model, namely: conceptual and
quantitative models [Williges, R.C:1987]. Conceptual models are primarily
concerned with representing cognitive processes, while quantitative models
deal with the numerical representation of user performance.

Figure 3.2.2.1b shows two general models of human information processing.
These originate from Norman [Norman, D.A:1986], and Wickens [Wickens,

-40 -

C.D:1984]. Conceptual Models serve to identify cognitive processes, cognitive
structure, and cognitive strategy. Cognitive processes deal primarily with the
procedural knowledge used by an individual while performing given tasks.

Work by Norman [Norman, D.A:1986] summarises the cognitive strategy of
a user, using 7 stages:-

(1) Establishing Goal

(2) Forming an Intention

(3) Specifying the Action Sequence

(4) Executing the Action

(5) Perceiving the System State

(6) Interpreting the State

(7) Evaluating the system state with respect to goals and
intentions.

Conceptual Models presented as tree diagrams, or networks, are often used
to analyse the cognitive structure of knowledge used in a task. Kieras and
Polson [Kieras, D:1985] make a distinction between two components of
knowledge in operating a computer based system. First, there is the
representation of tasks performed by the user, which can be stated as a
hierarchical goal structure based on a production system composed of a
collection of production rules. Secondly, there is the representation of the
application which can be modelled by using transition networks consisting
of a series of nodes connected by labelled arcs. As illustrated in figure 3.2.2.1c,
these transition networks show the possible user actions and the possible
resultant application states.

-41-

Application Application

Input Interaction Semantics Functions.
Devices Techniques
Interpreter
Dialogue
State

Attention
Resources

Short-term
sensory
store

3
=t P Decision and Response 2
g p| Perception |—@» response —pt egution S
g >—> selection 8
‘ (a2

Voo "“"“""tj‘";

) Working |

N l memory | |

\]

: Long-term l N

\]

\ | memory Memory

-— e

Norman - A General Mode]l Of Human Information
- Processing
Figg_ re 3.2.2.1b - Two General User Models.

Adoo

(emr0p =)
Koy aoedsyoeq ssaid

Josind %31 uonisod

‘guins

Josind 1x9) uonisod

ased

Sus

surejuod preogdi)
*PA1o9jag Sung

surejuod preogdip)
"P2109]2S SuryioN

-f1dws preogdi)

<

(erpp =)
K2y 9oedsyoeq ssaxd

KAidws preogdip)

"paroafag Surng

19008

10s1nd 1% uonisod

(erp0p =)

10938 Koy 9oedsyoeq ssaxd

"PA103]9S SunpoN

JOSImd
1x9) uomisod

re 3.2.2.1c - Example Transition Diagram for MacWrite.

Fi

In addition to representing procedural and structural knowledge, an analysis
of cognitive strategies is useful in understanding how people control

various pieces of knowledge. The most prevalent cognitive science view of

human information processing is that the user is goal driven, and that task

performance is directly related to specific goals. Several Conceptual Models

are based on this, especially 'Goals Operations Methods and Selections'
(GOMS) [Card, S.K:1983].

Rather than provide a Conceptual Model of the user, an alternative set of
design tools is concerned with developing a quantitative representation of
the performance of a user at the interface. Various types of Quantitative
Models are proposed which can be classified as either performance,
ergonomic, or computer simulation based. Performance Models attempt to
describe human performance as it relates to human information processing
capabilities and limitations. For example, the Key-stroke Model developed as
part of GOMS [Card, 5.K:1983]. Ergonomic Models are concerned with
anthropometric and biomechanical data relating to the user. Typically, these
describe the physical characteristics of the user. Finally, Computer '
Simulation Models specify a mathematical, or logical model of Human
Computer Interaction. Most Computer Simulation Models are Task-
network Models, which structure the interface around the task, sub-tasks,
inter-connection of sub-tasks, rules for connecting sub-tasks, and the time
taken to complete sub-tasks, for example, HOS [Lane, N.E: 1981] and SAINT
[Chubb, G.P:1981]. Chapter five presents an example object oriented
Quantitative User Model implemented in Smalltalk 80. This model
attempts to quantify system usage in order to assist error handling and
advice giving.

In essence, User Models play an important role in designing interfaces
which 'fit' the user. The current research issues centre upon :-

- identifying relevant user knowledge associated with the
Human Computer Interaction

- developing formal model specification methods [Hoppe,
H.U:1985], ,

- developing models which capture user differences

- developing interface design methods which capture and use
this knowledge

- development of Intelligent Interfaces which can directly
interpret these User Models, infer changes which occur in the
user, and update the models accordingly.

In the near future, it is probable that stereotypic User Models will be used to
adjust the interaction style and dialogue of interfaces. In the more distant
future, individual users may have their own computerised User Model

-44 -

which describes their individual characteristics and preferences. This model
can then be used by different Intelligent Interfaces as they move between
different systems. Each Intelligent Interface will be capable of interpreting
and updating this model accordingly, as the particular application is used.

3.2.2.2. Application Model.

These models serve to describe the functionality of an application [Adhami,
E:1987]. Such models are necessary for the development of separable
Intelligent Interface architectures. In order for the interface to communicate
with the application in a defined way, the application must describe its
structure. This structure can then be linked to user interactions at a higher
level, from which the user interface is built. The Application Model
comprises of this description. Indeed, the Application Model must at least
describe the functions, functional contexts, sub-function structures,
functional side-effects, and reversibility of functions. Further requirements
for Intelligent Help and Planning modules include function documentation,
and goal and task strategies which link functions to tasks and eventually to
user goals.

An application which was developed using a formal methodology should
already have some form of explicit Application Model defined, for example
Data Flow Diagrams [Weinberg, V:1979]. Applications which were not
specified using these formal methods, will require some form of task
analysis to generate this model [Samurcay, R:1987].

Several formal grammars are already proposed as a means to describe
Application Models. Command Language Grammar (CLG) [Moran, T.P:1981]
provides a framework for describing applications. This framework is
essentially an ordered set of descriptions, each description being at a different
level of abstraction. The same basic notation is used at each level. The four
levels used by Moran cover the tasks which the user brings to the
application (Task Level), the objects and procedures manipulated by these
tasks (Semantic Level), the Command Language available (Syntactic Level),
and the dialogue involved when using the application (Interaction Level).
The levels are then connected by means of mappings across adjacent levels,
e.g. the task level descriptions are linked to objects and procedures at the
semantic level. This, and further formal grammars are discussed by Clowes
[Clowes, 1:1985], Fountain [Fountain, A.J:1985], Green [Green, T.R.G:1988],
Hoppe [Hoppe, H.U:1985], and Hufit [HUFIT:Overview].

-45-

To conclude, Application Models potentially assist the design of interfaces in
many ways [Totterdell, P.A:1986b]:-

- consistency checking

- effidency checking

- integration cross referencing
- orthogonality checking

- Intelligent Help

- interface separation.

3.2.2.3. Real World Model.

Certain other knowledge, beside that which is application or user depehdent,
is required by an Intelligent Interface [Totterdell, P.A:1987]. This includes
knowledge concerning technical definitions, conversion formulae, and the
inter-relationships between similar applications especially functional, or
command equivalence (e.g. DIR and LS commands provide directory lists in
MSDOS and UNIX accordingly). This knowledge must also be made
available in a computer usable format, and is necessary for Intelligent Help
and Advice Giving modules.

3.2.2.4. Summary.

Although various types of modelling technique are now beginning to
influence the improvement of interface usability, many issues still remain
unresolved [Pratt, J.M:1987]. Current models tend to be too general to be
applicable to specific interface designs. The level of detail in the models
must be increased, and methods of analysis for defining these detailed
models must be improved. Further work is also required on model
validation. The accuracy and validity of models must be determined, and
the limits of their representation specified. Theoretical and empirical
research is needed to uncover the behavioural correlates of various
knowledge representations. Similarly, comparisons are needed so that the
correct models can be matched to different design processes and Intelligent
Interface types.

Further empirical work is required to test the usefulness of modelling
techniques as a means for improving the user interface. Before modelling

- 46 -

techniques become established as a tool for the interface designer, research is
needed to examine their potential and limitations within real applications.

The models discussed here can be difficult to define, and even more difficult
to implement in a formal computerised form. Unless models completely
describe their problem domain, they cannot accurately predict knowledge or
events in their real counterpart. User Models are particularly problematical
[Sutcliffe, A.G:1987]. User characteristics and needs are complex, and it is
often impossible to generalise from specific experiences. Individual users
can also be unpredictable, constantly changing, motivated in different ways,
and affected by a wide range of factors. However, work aimed at defining and
implementing computerised models should not be dismissed. Such research
offers insight into the diverse Human Computer Interaction influences. At
the other extreme, models are not the complete solution to improving.
interface usability, and there are many other influences which need to be
addressed. |

New interface architectures are required which can maximise the potential
of explicit modelling representations [Browne, D.P:1987]. Complete interface
design methodologies are also needed, rather than isolated, independent,
and often fragmented methods. New interface design methods must attempt
to formalise the interface specification to fit these new interface
architectures. They must focus attention upon the users, and their
individuality. Such methods must also be integrated with existing (or
possibly new) Systems Analysis and Design methods, enabling complete
applications and interfaces to be developed in unison.

Modelling draws upon techniques from both Artificial Intelligence and
Cognitive Science [Gilbert, G.N:1987]. Artificial Intelligence provides insight
into knowledge representation - e.g. expert systems; and inferences based
upon this knowledge. It also provides solutions to goal recognition and
discourse modelling. Cognitive Science provides a user centred approach to
modelling, and helps determine precisely what should be modelled. It
provides techniques for understanding how a user learns and retains
knowledge concerning computer applications and their associated domain.
It also provides an insight into how a person models the real world. The
closer a system parallels the way a person models the world, the more
chance it has of being predictable to the user.

-47-

3.2.3. Adaptive Interfaces.

One way of dealing with the problem of multiple users and their changing
requirements is to provide adaptive interfaces. Currently there are many
adaptable interfaces which can be customised for individual users [Minor,
5:1987], [Trigg, R H:1987]. Adaptive systems serve to automate this
customisation, which can therefore take place continuously as the
application is being used [Adhami, E:1987], [Fowler, C.J.H:1987]. This
adaptive function must have an overall objective [Cooper, M:1988]. Some
possibilities are listed :-

- adaption to improve accuracy

- adaption to increase interaction speed

- adaption to reduce errors

- adaption to increase a users understanding of an application.

The prime objective must always be to improve the usability of an interface,
and reduce the mismatch between User and Application Model. Adaptive
systems must know what can be adapted, and how and when to adapt.
Finally, they require a model of individual users in order to maintain
adaptions for different users across interaction sessions.

Adaption should apply strictly to the interface. Adapting the functionality of
an application would not only be extremely difficult, but may also violate
any Systems Analysis and Design methods which were used to generate it.
Modification of functionality could also endanger consistency and integrity.
Application functionality must remain constant between different users, as
it serves as the structure onto which an interface is built. This functionality
may be incorrect, which points to a failed or misused Systems Analysis and
Design process, but this failure needs to be addressed by application re-
design.

It is no use adapting to features which remain constant throughout the user
population. Deciding what can be adapted is therefore a question of
identifying what variations exist between the interaction requirements of
different users. How and when to adapt are difficult questions to address. For
each specific adaptive feature, an Intelligent Interface needs to know the
range of possible values, and the relationships to other adaptive features. A
set of adaption heuristics must also be maintained which match the
respective feature values to different users. This is a problem which may

-48 -

best be tackled within the scope Artificial Intelligence and Cognitive
Psychology, and assumes that user differences can be identified and defined
using knowledge bases, heuristics, and logic. Several adaptive systems
already exist [Croft, W.B:1984], [Greenberg, S5:1985]. A major adaptive system
development which has provided an insight into this difficult area is the
Adaptive Intelligent Dialogues (AID) project sponsored by the Alvey
Directorate in Man Machine Interaction [Hockley, A:1986].

The AID project set itself the objective of developing an adaptive front-end
user interface to the British Telecom Gold electronic mailing system. The
final system adapted along a number of selective adaption dimensions: level
of guidance, context switching, recognition of analogous mail systems, and
user tailoring. A generalised adaptive architecture based upon a dialogue
controller, User Model, and application expert was formulated, and this is
shown in figure 3.2.3 [Totterdell, P.A:1986].

AID Architecture:
DIALOGUE CONTROLLER APPLICATION EXPERT
Dialogue > Application
E
Monitoring | Control xpert
Translation
and
Response
Analysis
Triggers| Adaptor I
Modem
Model of User Driver ‘
USER MODEL COMMUNICATION
t Telecom Gold
Application
Processes
i 2.3 - Adaptive Intelligent Dial Archi

During its lifetime, the AID project demonstrated the great difficulty
involved with adaptive interfaces. It identified problems concerning which
interface components to adapt, and concerning the elicitation and use of
knowledge about the user, which is required in order to control adaption.

-49 -

The project discovered that adaption could be used to achieve many
different objectives. However, adaption to fulfil one objective often
conflicted with adaption to achieve another. For example, adaption to
improve accuracy conflicted with adaption to improve efficiency. The need
for separable interface technology was also recognised, but not addressed.
New user centred design methodologies were developed, a classification
system for adaptive interfaces proposed, and an extensive insight provided
into the requirements and potential of adaptive software.

The project failed to improve the 'usability’ of the Telecom Gold system,
and in actual fact made it more difficult to use [Durham, T:1988]. This raises
an important issue relating to the application of Intelligent Interface
technology. The initial Telecom Gold system was difficult to use and could
have probably benefitted from the application of Non-Intelligent Interface
technology. This includes improving interface consistency, support of
multiple interface styles, better command names, and on-line help. Instead,
Intelligent Interface concepts were applied without due consideration to
Non-Intelligent aspects. The result was an Intelligent Interface which was
more difficult to use than the original Non-Intelligent counterpart. This
experience illustrates the fact that Intelligent Interface technology must be
used carefully.

Beside implementation difficulties, many ethical and psychological
problems also arise from the use of adaptive interfaces. With legislation on
database protection now in force, User Models will need to be registered
under database protection laws. Therefore, users must be allowed to access
these models in order to correct any misrepresentations. This requires that
the User Model is explicitly defined, separated, and is itself customisable.
Effectively, adaptive systems may become customisable systems, where
customisation is automated and confirmed by the user. Each time an
adaptive system decides to transform itself, it may therefore have to confer
with the user. This places an interaction overhead upon the user, novice
and expert alike, and assumes that they understand the adaption and
confirmation process. If adaption confirmation is not used, then it is possible
that an interface may adapt incorrectly and cause an incorrect internal User
Model.

Traditionally, people adapt and machines either remain constant or can be
manually adjusted. That is, control remains in the hands of the user. If a
user tries to adapt to an interface which is itself trying to adapt to the user, a

-50-

complex recursive situation may occur, and the user's model of the system
will become unstable. Assuming that the interface and user can agree upon
who, or in the case of the interface, what, is going to adapt, several other
issues arise due to human nature [Bullinger, H.J:1987], [Nebeker, D.M:1987] :-

- the possibility of monitoring and reporting upon user
efficiency may cause mistrust

- the question of correct adaption and its assurance

- adaption reversibility when things go wrong.

Unless the User Model provides a perfectly complete and accurate
representation of the user, adaptive systems can never function correctly.
An apparent model mismatch for one user may be a short-cut for another.
Therefore, adaption is in itself subject to individual user characteristics, and
ultimately to higher levels of adaption. In certain situations involving
expert users, it may also be possible for a conflict to occur whereby the user
tries to 'out manoeuvre' an adaptive interface.

Although many problems need to be addressed, simple restricted adaptive
interfaces may be of great benefit to the user, especially where adaptation is
applied to the field of advice giving and error handling [Carroll, J.M:1987].
Adaptive interface research also provides an insight into Human Computer
Interaction, which is useful for non-adaptive user interfaces.

3.2.4. Planning Aids.

Human planning is essentially an activity concerned with the ability to
identify an objective, or goal, and construct a sequence of actions with which
to accomplish it. The sequence of actions is known as a plan, and may itself
contain smaller objectives which have their own associated plan. Humans
typically already know many plans for accomplishing various goals, and
therefore planning is both a 'top down' and 'bottom up' process, with
existing plans being re-used and new ones learnt.

When using a computer system, users also have specific tasks that they wish
to accomplish, for example adding a new customer to a database, or printing
out the salary cheques. To satisfy the task in hand, a user must execute a
sequence of application functions. In doing so, users construct a plan based
on their knowledge of the application, and previous experience with other
computer systems. The plan is then executed through the user interface, and

-51-

the relevant task is completed. This planning process is most prevalent
when using computer applications which are themselves designed to
support human planning activities, for example Project Planning and
Management Support Systems [Wiest, J.D:1977], and Military Tactical
Planning Systems [Noah, W.W:1986].

Computer systems have many levels of abstraction and different degrees of
functionality. To accomplish a certain task users must 'navigate' their way
through a system to a certain level, and then perform a particular sequence
of operations in a pre-defined order [Andriole, 5.J:1986]. Two issues arise
from the effect of planning upon the use of computer systems. Firstly, the
ability of a user to remember where they are in a sequence of actions, what
they have already done, and what is left to complete. Secondly, the ability of
a user to look forward to an objective, and plan the subsequent actions
required to arrive at that goal. Included in this second concern is also the
ability to remember past plans, which can then be applied repetitively.

It follows that an awareness and support of human planning activities
should improve an Intelligent Interface, making it easier to use [Hecking,
M:1987]. Simple facilities to show the user where they are in a particular
system, and how that position was achieved are essential, especially where
large applications are concerned. Intelligent Interfaces should also enable
users to return to a previous position, and undo any intermediate effects.
These extra facilities may make use of graphics, and require that an
Application Model be available.

Intelligent Interfaces may also provide more complex planning facilities
[Hagendorf, H:1987]. An interface should be able to remember, or record,
particular sequences of actions which constitute a specific plan, and 'replay"
them to users at their request. A library of known user plans can then be
maintained. Interfaces should also be capable of recognising inefficiencies in
a particular plan, and able to suggest an alternative improved sequence of

actions.

Modelling of user plans and goals should also be of benefit to Intelligent
Help, and User Modelling modules of an Intelligent Interface
[Carberry,S:1988]. If an interface can pfédict the goals of a user from the
current interaction, then it may be possible to specifically tailor the available
help facilities. It may also be possible to adapt the interface automatically for

-52-

a user, and cornp'lete the task in hand by automatically performing the
remaining plan actions.

Plan and goal recognition is closely related to Intelligent Help, User
Modelling and adaptive interface research [Desmarais, M.C:1987]. It also
draws from expertise and research from within the Artificial Intelligence
and Behavioural Psychology disciplines. Current research is mainly
concerned with inferencing mechanisms which can elicit knowledge
concerning the goals and planning processes of a user, based upon their
current and previous user interactions [Pollack, M:1986]. Research is also
being undertaken to develop new methods of representing this knowledge
within the user interface.

3.2.5. General Architecture for an Intelligent Interface.

Figure 3.2.5 illustrates a general architecture for an Intelligent Interface,
which draws together the different applications of Artificial Intelligence
discussed above. It shows the various modules of an Intelligent Interface,
and their knowledge requirements. Different Intelligent Interfaces may
implement these modules in various ways; this diagram does not attempt to
suggest the best implementation.

-53-

o3pajmouy]
9MPON SIIN
P CH. |
m 9[MpO SIN u
suonduosa(g sojf15 wadxg
pue sjuouodwo) [@—P>| uONLIUISAIJ pue
Q0B [EULIO] UOTIORIAU] Q08I

sau[-apng nordxg

QUI[-apIN.) [EIUID)

wadxyg
—(,

UOREAISSELD) | o ; wadxyg
Joug Sunpuey .ﬁome
SONSLINGH UONAL0D)

pue uonIugoay] Jouyg

wadxyg
SuI[[opoIA J9s}

SIOPOIN 39S}
[enpiatpu[

!

¢

JOmFZOO

-
\.

wadxg :osmo:&<

{

suonduosa(jeuonounyg

uonedsjddy jewog

Jasn

Q0BJIANU] 13S()
aeudorddy

wasAg djoH
Eomﬁoﬁ:

SONSUNQY pue
sojf1g djop/feIoIN,

e 3.2.5 - Complete UIMS Architecture.

Fi

The various modules and their functions are summarised :-

Intelligent Help System

This handles automatic, context sensitive, user tailored on-line

help and tutorial support for different applications. It requires

-54-

knowledge on tutorial and help styles, and application
structure.

Error Handling Expert
This handles all errors. It requires knowledge concerning error
recognition, error classification, error correction, application
structure, and documentation.

Application Expert
This module describes the application structure and handles
enquiries from other modules. It requires knowledge
concerning the formal structure of an application.

User Modelling Expert
This deals with personalized knowledge for individual users. It
maintains knowledge concerning their individual preferences
and characteristics.

General Guide-lines Expert _
This module maintains knowledge concerning general guide-
lines such as keyboard repeat rates, and minimum response
speed. It allows such knowledge to be modified and queried.

Interface Interaction and Presentation Expert
This formally describes the interface components, and how
they can be combined to create the final interface, for example,
windows, buttons, switches, and valid interactions. The same
components can then be combined in different ways to
generate other interfaces. The formal interface description can
then be executed in order to generate the actual application
interface.

Control
This lies at the centre of the architecture, and brings the
different modules together. It provides communication
between modules, and presents the final interface to the user.

In order to enable the knowledge contained in individual modules to be
~ manipulated and viewed in various ways, it is necessary to develop
spedialised interface design tools. The task of interface'design is now centred

/

-55- -

upon determining the knowledge required by each module, and the Tool-set
can then be used to specify this knowledge. As this knowledge is modified,
so new or variant interfaces are generated.

Fundamental to this architecture is the need for interface separation and
formal module descriptions. This research is primarily concerned with
software requirements for separation, and how these requirements can be
met with new software architectures.

3.3. Interface Classification.

From the preceding investigation it is possible to propose a broad
classification of interfaces according to their adaptability and design method.
Figure 3.3 illustrates the relationship between different interface design |
methods and the types of interface which they may be used to generate. The
terminology is defined :-

Fixed.
A Fixed interface is one which is designed with a particular
user, or group of users in mind. Once implemented, its
structure and features remains constant (unless future
versions are released). This class of interface is presently the
most common.

Adaptable.
Adaptable interfaces can be configured to a particular user, or
user sub-group [Trigg, R.H:1987]. This configuration can take
place at any time during the use of the interface. The
configuration must be performed by the user, or a trained
person who has an understanding of the individual
characteristics and preferences of the user. The granularity, and
scope of this configuration niay vary, and some interfaces may
need re-compiling after modifications are made.

Adaptive.
This type of interface behaves like an intelligent observer
which automatically adapts the interface to the habits and
expertise of a user, without being too obtrusive [Totterdell,
P.A:1987]. Again the granularity and scope of this automatic

- 56 -

adaptation varies, and ultimately interfaces will allow the
adaptive mechanisms to adapt.

Generic Interface Design.
As opposed to Application Specific Interface Design, this
approach re-uses existing interface components and interaction
dialogues within interfaces for different applications [Kraak,
J:1987]. The actual interface structure may differ between
applications, but the same interface features and components
are re-used. This term is best applied to the design Tool-set,
rather than the final interface that results.

Interface Framework design. _
This type of generic interface design (and its associated Tool-
set) packages the code that implements most of the user
interface into a reusable, and extensible skeleton [Coutaz,
J:1987]. The designer's task consists in filling the blanks of the
skeletons, adding new functions, or overriding parts that do
not fit the application domain.

User Interface Management Systems Design.
With this generic approach, the interface designer describes the
interface in a pre-defined language. This description is then
used by a User Interface Management Systems (UIMS) to
automatically generate an executable interface for the user
[Alty,].L:1987]. Modifying and prototyping new interfaces is
simply a case of changing the description and re-compiling the
new interface.

-57-

Design Method / Tool Set
Application Generic
Specific Framework UIMS

i

g Fixed

B4

0

9| Adaptable

“

I

0

A

5 Adaptive x x J

Figure 3.3 - Classification of Interfaces.

The UIMS design approach is potentially more powerful than the Interface
Framework approach, which in turn is more powerful than the Application
Specific design approach. However, the power of these approaches lies in
how well they are used. A well designed Application Specific interface may
out perform a poorly designed UIMS interface, in terms of 'usability'.
Similarly, a well designed Fixed interface may be more usable than a poorly
designed Adaptive one.

As figure 3.3 illustrates, certain types of interface require certain design
approaches. Each approach has an associated Tool-set for use by the interface
designer. In the case of Application Specific interface design, this Tool-set is
normally part of, or an extension to, the application implementation
language. With the case of Generic interface design (UIMS, and
Frameworks), this Tool-set is usually separated to some extent from the
application, resulting in a more distinct interface. Examples of Frameworks
include the Graphics Environment Manager system, where extensions to
the implementation language are provided. UIMS provide the most distinct
form of application and interface separation, where the interface design
Tool-set is normally completely separate from the application language,

3.4. Approaches to Interface Design.

From the viewpoint of the designer, inseparable Application Specific user

interface design is probably the simplest approach. Although some degree of
separation may exist, this approach does not distinguish between application
functions and the user interface. The application functions define their own

-58-

interface requirements. These are implemented using the application
implementation language, or an extension of the language. Little attention
is usually given to the user interface, which is simply mapped onto the
input / output requirements of the application functions. This approach
may be suitable for simple bespoke applications, but is insufficient for more
complex ones.

An alternative is the use of Generic design methods. With this approach the
interface is separated to some extent from the application functions and
implemented using special languages or tools which can be distinguished
from the language and tools used to implement the application function set.
One Generic approach is the framework approach, where a language or
system provides the framework for the final interface. The designer's task is
to select the necessary interface components, and fit them into the
framework provided. The designer is constrained to this framework, and
must design accordingly. Because of the constraints imposed by frameworks,
the application functions may often have to be designed to fit the interface
requirements. This will have the effect of binding application functions to
specific interface components, thus making interface and application re-
design more difficult.

A UIMS is potentially the most powerful generic design method. It is similar
to the framework approach, but the interface constraints are more relaxed.
This is because a UIMS specification language is more flexible and expressive
than a framework. The granularity and restriction imposed by a particular
UIMS specification language ultimately determines the potential of a UIMS.
This specification language effectively maps low level user interactions,
such as key strokes and mouse movements, onto high level concepts such as
goal and task modelling. As the UIMS language becomes more constrained,
so a UIMS moves towards a framework approach. This results in a grey area
between UIMS and framework approaches, which is difficult to classify.

Applications are based upon information and tasks. Tasks can be applied to
information in order to enquire upon, modify existing, or create new
information. Similarly, certain types of information can only be acted upon,
or used by certain tasks. A computer application models some physical or
conceptual real world system, or sub-system. Meanwhile the interface
presents these applications to the user. To use a software engineering term,
the interface is adhered to the application function set. If this adhesion is too
strong, then only certain interface components can be attached to certain

-59-

types of application functions. Thus the interface has a strong effect on
application functionality, which must be designed accordingly.

If the adhesion is too weak, then any type of interface can be built for any
application. The resulting interface may misrepresent the application
functionality, and therefore present an incorrect Application Model to the
user. For example using a Bar Chart to display textual rather than numeric
values. Assuming that this is possible, designers would have to constrain
themselves so that the final interface correctly represents the application
functions to the user.

The correct adhesion, or separation, lies somewhere between these two
extremes. A preferred intermediary is where the application constrains,
interface design so that it cannot be misrepresented to the user. At the same
time it must allow a certain amount of freedom for different interface
components to be used to represent the same application functionality.

3.4.1. Requirements For Good Interface Design.

There are two primary goals to be met by interface software design methods
and related Tool-set :-

- ease of use of the final user interface
- ease of use by the interface designer.

Fortunately, these goals reinforce one another and parallels can be drawn
between the two. Although easy to use design methods cannot guarantee an
easy to use interface, it stands to reason that they can improve and dlarify the
design process. Subsequent user interfaces should then reflect the quality of
such design methods. The major objectives, problems, and solutions
concerned with improving the usability of computer software identified so
far can be summarised :- '

Separation

An essential feature which ultimately determines the potential
of Intelligent Interfaces.

-60 -

Formal Descriptions
Required by different Intelligent Interface modules, and in
different formats.

Expert System Modules
The division of an Intelligent Interface into smaller
communicating Expert System modules. This provides focal
points for research, and aids Intelligent Interface
maintainability.

These criteria provide many advantages. Separation frees the interface
designer to concentrate on the interface alone. Various types of interface
may also be easily prototyped, and experimentation encouraged.

Formal descriptions should provide a formal 'backbone’ to interface design.
New interfaces are effectively generated by altering existing, or creating new
formal descriptions. The interface designer can observe the effects of these
changes, learn by experience, and repeatedly apply the same changes within
other formal interface descriptions. The use of formal descriptions should
also enhance interface consistency and integration [Bez, H.E:1987].

The use of distinct Intelligent Interface modules should assist the interface
designer by providing a framework within which to build the interface. The
- interface designer can then focus attention on various interface modules,
and observe the effects of any modifications. Ultimately, interface designers
may specialise in different interface module areas.

Further requirements for the interface designer include :-

- code re-use

- immediate feedback from changes to formal descriptions

- support of different interface design levels

- interactive Tool-set (i.e. Designing Systems by Example
[Dearnley, P.A:1983)).

Code re-use is a well understood software engineering term [Bell, D:1987]
and can be applied to Intelligent Interface design approaches and support
tools. For Intelligent Interface design, code re-use necessitates formal
interface descriptions within different modules. Particular interface styles,
features, and knowledge, could then be easily re-used within other

-61-

interfaces. A library of generic interface components can then be maintained.
These components may employ default values which can be customised for
individual interfaces.

The effects of changes to the formal description of an interface should be
seen immediately. As response time affects user acceptance of an interface
[Thimbleby, H:1986], so the Tool-set response time affects the acceptance of
the Tool-set by an interface designer. A fast Tool-set response time should
encourage experimentation with different interface styles. This should
enable the interface designer to be more creative, and hopefully design better
interfaces.

The design method and Tool-set should support different conceptual design
levels [Kraak, J:1987]. For example, a key-stroke level which maps user
interactions onto individual interface component tasks, and a presentation
level which maps the interface component output onto a virtual grapf{ics
window. An interface designer can then construct a complete interface from
the various interface components. In doing so, the designer does not need to
consider the key-stroke or presentation levels. This is coupled with
component re-use, whereby individual interface components can be selected
from a library with default key-stroke and presentation levels. Effectively, an
interface designer may interact with the Tool-set at different levels according
to their expertise and objectives.

The interface design Tool-set should provide an interactive Tool-set which
automatically maps onto the underlying formal interface description. The
interface designer may then implement an interface using either an
interactive Tool-set, or by directly specifying the formal description. The
Tool-set should support a 'Design by Example’ approach. The interface
designer would implement the final interface by interactively placing the
interface components on the screen, as they are to appear in the final
interface. Interactive tools should also be provided for modifying lower
component levels, and for other Intelligent Interface modules. The Tool-set
is in effect an extension of the UIMS, which produces the final Intelligent
Interface from the formal description. It serves two purposes; allowing
interfaces to be interactively implemented, and also generating the
appropriate interface formal description upon request. An interactive Tool-
set may also be self describing. Its own interface may itself be generated from
a similar UIMS Tool-set. Effectively, the same usability features which will

-62-

eventually be embodied into the final application user interface can be
incorporated into itself.

3.4.2. Graphics Environment Manager.

The Graphics Environment Manager (GEM) system was developed by
Digital Research for the IBM PC range of microcomputers [Bright, P:1988]. Its
purpose was to provide a user friendly operating system and graphics
software routine library. The operating system offers a window and mouse
based iconic graphic interface as an alternative to the traditional command
driven system. The graphics library provides a set of machine independent
routines to support standardised 'user friendly' interface features such as
windows, mouse pointer movement, icons, and drop down menus. These
routines can then be used within application programs, and are accessed
using function or procedure calls. Various implementation languages are
supported, and suitable binding files are available for purchase. The
complete GEM system is easily re-configured to support different hardware
devices, and this does not affect the execution of application software using
particular library routines. Several Desk Top publishing applications are also
supplied as part of the GEM system. Figure 3.4.2 illustrates the basic GEM
software architecture, and shows how an application uses individual library
routines.

The GEM system is a useful Tool-set for the interface designer, and provides
a set of standard re-usable interface components from which to build a
complete interface. GEM distinguishes between the interface and
application. However, this separation is based upon two components; the
interface and the application. Dialogue control is maintained within an
application program, which replaces its usual input / output statements
with calls to the interface routine library. Effectively, the interface
components are 'strung' together with the thread of dialogue control
remaining within the application. In order to modify an interface, the
application program code must be modified and re-compiled. This restricts
the flexibility of the approach, as interface knowledge is contained within
the application. Similarly, it is difficult to implement multiple interfaces for
the same application without duplicating the application, and varying the
interface library routine calls in each copy.

-63-

User Interface

lication Soff -
Application
Language Binding
Programmer Interface
System Software;-
Menu Buffer
Application
Environment Desk Accessory Buffer
Subroutine .
Library Dispatcher
Screen Manager
VDI/Raster Functions | "
Graphics Device Driver

Hardware Interface

Hardware

Interface Components

(9N

Interface Components

Interface Components

Applicatio
Y /

Dialogue
Control

Ficure 3.4.2 - GEM Architecture.

—

-64 -

A third separation component is needed if this problem is to be overcome.
As discussed later, this extra component contains knowledge which links
the interface and application. This knowledge can then be easily changed in
order to modify an existing interface. It also allows separate interface
components to be re-used within many interfaces.

3.4.3. The Model View Controller Mechanism used in Smalltalk 80.

Smalltalk provides a built-in interface concept, namely the Model View
Controller mechanism (MVC) [Smalltalk80:ReferenceGuide]. This is
illustrated in figure 3.4.3, and the three components are now described.

Model. .
This is the application itself described in Smalltalk code using
Classes, inheritance, polymorphism, and other object oriented
techniques. This is defined and tested first.

View.
This is the output interface which is seen by the user. Examples
of views are all graphical windows which are displayed on the
screen. These windows may contain graphics such as text,
boxes, and circles. Smalltalk provides many existing Classes
which cover all of the basic graphical functions, such as
drawing various shapes, rotating, translating and scaling
graphical pictures, and much more. These features facilitate the
description of complex views.

Controller.
This is the input interface. It effectively maps the input
functions onto application functions. Smalltalk input
functions are received either from the keyboard (i.e. pressing
various keys) or from the mouse (i.e. moving the mouse and
associated screen pointer, and pressing the various mouse
buttons).

Specific Smalltalk Classes are implemented to support the MVC
mechanism. Several different MVC mechanisms can be defined for the
same application, giving the user a choice of interface styles. Theoretically,
new interfaces can also take advantage of existing MVC component
implementations. This is achieved by code re-use and inheritance, which is

|

supported within most object oriented languages [FHorn, C:1987]. In practice,
this is difficult to achieve due to the two component separation model on
which the mechanism is based. The mechanism distinguishes between
interface and application functions, and dialogue control is correctly
maintained within the user interface (i.e. combined View and Interaction
Controller). However, the interface contains knowledge concerning
application functions. This takes the form of embedded Model, or
application function calls. If an existing MVC mechanism is to be re-used for
a different interface, these embedded calls must be changed. This often
requires considerable modification to the MVC Classes, and must be done by
an experienced Smalltalk programmer. Again, the need for a third
separation component can be identified which contains information which
links the application and the user interface.

Problems also exist with defining the boundaries of the separate MVC
components. That is, what functions should be included in the different
components. For example, it is easy to include dialogue control as part of the
View, rather than the Interaction Controller. Similarly, the View and
Interaction Controller may easily contain application functions. The choice
is ultimately left to the programmer, and may differ between various MVC
implementations. Finally, no MVC Tool-set exists apart from the standard
Smalltalk Class Browser. As a result, considerable programming expertise is
required to implement interfaces using the MVC concept.

-66-

Single MVC: MODEL

VIEW |« » CONTROLLER

Multiple MVC:

CONTROLLER

CONTROLLER
[MODEL I ‘
VIEW

VIEW |@————{ CONTROLLER

Embedded Application|
Function Calls

Embedded Application
Function Calls

Interface

Embedded Application
Function Calls

Control

3.5. Summary.

Chapter two discussed the principle software influences which affect the
user interface. This chapter has examined how Artificial Intelligence can be
used to utilise these influences in favour of the user. The major areas of
Artificial Intelligence application were identified as Intelligent Help and

-67-

Tutoring, Modelling, including User and Application Modelling, Intelligent
Planning Aids, and Adaptive Interfaces. An Intelligent Interface was
proposed based upon these areas, and this was summarised in figure 3.2.5.

This chapter has also examined the different approaches to interface design,
and their associated Tool-sets. The requirements which must be met by an
interface design approach were listed, and discussed in relation to several
existing design approaches. In order for the user interface to be improved
there must be a move towards Intelligent Interfaces, generated using
integrated UIMS. These UIMS require distinct interface separation and
should enable formal interface descriptions to be both generated and
executed. Finally, they must also provide specialist tools which support
interface designers in their task of designing consistent, personalized, and
usable user interfaces to a wide range of software applications.

The application of Artificial Intelligence to interface design must be viewed
in relation to the total impact which software factors have on the user
interface. First and foremost, attention must be given to the Non-Intelligent
factors listed in chapter two. The Adaptive Intelligent Dialogues project
demonstrated that unless these factors are correctly addressed, an Intelligent
Interface will probably make a poorly designed interface worse.

The effect of software design and Artificial Intelligence on the interface must
also be considered in context of other factors which affect user acceptance of
complete computer systems. These factors include Systems Analysis and
Design methods, political and organisational effects, and social influences.
The next chapter discusses these other effects in more detail.

-68 -

apter Four

Experience With Other Influences which Affect User Acceptance of
Computer Systems.

4.1. Introduction.

User acceptance of computer systems depends upon many factors. These
may be political, ethical, sodial and organisational as well as the
characteristics of the interface itself. Having so far examined the various
software factors which affect user acceptance, it is necessary to consider other
influences.

As part of this research, an investigation was undertaken to determine the
software factors which affect the 'user friendliness', and user acceptance of
real computer systems. An exemplary working library database computer
system was therefore selected. This investigation was intended to provide an
objective understanding of the problems associated with using computer
software systems, and a practical insight into the potential improvement of
computer software. The investigation revealed that many other factors also
affect user acceptance, and that it is often difficult to isolate specific software
effects.

Knowledge gained during the early stages of the library investigation
demonstrated the need for new software architectures and interface design
tools. As a result, effort was directed towards the development of a suitable
software architecture and Tool-set to support the design of computer
systems, which reflect the actual interaction requirements of individual
users. The results of this investigation are presented in section 4.2.

The experience gained during the library system investigation also provided
a valuable insight into the wide range of factors affecting user acceptance of
computer systems. In particular, the influence of Systems Analysis and
Design became apparent. General issues and observations arising from the
empirical library system investigation are presented in section 4.3. This
section also discusses the possible effects of separable User Interface
Management Systems (UIMS) upon traditional Systems Analysis and
Design.

-69-

4.2. The Working Library System.

A large library database system and its user group were selected as the subject
of a detailed investigation into user acceptance of computer systems. The
main selection criteria were :-

- large user group

- recent system design and implementation
- easy access to system and user group

- full support from management and union.

During the initial planning stages links were established with Sheffield
University Applied Psychology Unit (SAPU). This collaboration provided
expertise within the fields of experimental control and evaluation, and
cognitive psychology.

4.2.1. Overview.

The main role of the library system investigation was to provide an insight
into the software factors which affect user acceptance of computer systems,
and in particular the user interface. These factors could then be addressed by
improved software technology. The library system user group was also to
serve a secondary role as a specialised computer user group on which to test
new interface software. The selected system had a user group of over 35
users from varied backgrounds, with different levels of expertise in both the
application (i.e. library databases) and computer domains.

With assistance from Sheffield University Applied Psychology Unit, the
following plan was constructed :-

(1) Questionnaires to entire user population.

(2) Notebooks left with experimental group to note everyday
problems, and ideas.

(3) Initial interviews with experimental group to determine user
profile including information concerning their background,
job status and content, and general attitudes.

(4) Further detailed interviews concerning their use of, and
problems with the computer system.

(5) Video recording and analysis of the experimental group

' performing set tasks with the computer system.

-70-

(6) Follow up to stage (5) with further interviews.

To assist the control of the investigation, the user group was divided into 7
experimental groups each containing 5 subjects. All interviews were to be
recorded with audio tape, and any sessions using the computer were to be
recorded with video cameras. It was intended that the resulting data be
carefully analysed in conjunction with Sheffield University, using well
established experimental analysis techniques. Stages (2) - (6) were then to be
repeated again with further experimental groups. This was to help eliminate
individual bias which may be present within a user group.

In fact, the investigation only reached stage (4) with the first experimental
group, when it became apparent from the data gathered that the
investigation of new software architectures and interface design tools was
vital, in order to eliminate most of the problems encountered.

4.2.2. Library System Description.

The library computer system consisted of a mini-computer, with 20
terminals attached. These terminals supported text, and had no graphic
capabilities. Several terminals also had a printer attached, which could
handle screen dumps when required. The database software supported
multiple users, and was specifically tailored to the libraries information
requirements.

4.2.2.1. Database structure.

The database was hierarchical in structure, composed of a large, single file,
with approximately 40 fields. Some fields were grouped together into
repeating groups according to their function. Duplicate records were allowed
in this file, but the application software prevented identical records and
repeating groups from being entered.

The range of values of many of the database fields were restricted to pre-
defined sets. For example, Site Name can only be 1 of 5 values, i.e. Site 1, Site
2 ... Site 5. However, this information was not available through the user
interface, and users had to learn them. As a result, many incorrect or mis-
spelt entries occurred.

The main database tool was the Pointer File. This was a file which users
could create themselves, and contained a list of pointers to records within
the main database. Pointer Files could be created by various methods, e.g. the
results of a book search by title, or a selection on a certain author name. Once
created, each Pointer File was given a name and a creation date. Many
Pointer Files could exist at any one time, and were always owned by
individual users. These Files enabled users to manipulate sub-sets of the
main library data file. For example, Pointer Files could represent a group of
books by one author, or books containing the word 'byte’ in their title, or
books by certain publishers.

Once created, records could not be directly added to Pointer Files, although it
was possible to merge two existing Pointer Files to create a new one. Records
could be deleted from Pointer Files, which had the effect of deleting the
actual record from the main file. Finally, when the Pointer File itself was
deleted, none of the records in the Pointer File were physically deleted from
the main file.

4.2.2.2. User Interface.

The user interface was basic, and was primarily command driven. After
logging on with their user codes, users were presented with a single menu
containing six items, and prompted to type in a selection. The system
responded with a single one line message describing what part of the system
the user was in, and prompted them to enter a command. Once a correct
command, or abbreviation was typed, the user was prompted for further
information, using a single line question and answer interaction style.
Incorrect commands resulted in a basic 'no such command' error response.
When necessary, an example database record format was shown on the
screen. This comprised of field titles, and field values. Pressing the cursor
keys moved the cursor between field values, and pressing the return key
accepted the screen in its current state. By typing in different information in
the appropriate fields, specific records were selected for use by the current
task. After the last prompt the system initiated the command, and either
returned to the command line prompt, or displayed the required database
information. Users could quit to the previous level, i.e. command or main
menu at any time, using the quit command. They could also leave the
system by making the relevant main menu selection.

-72 =

Help was basic and only available at the command line prompt. It consisted
of lists of possible commands, or lists of possible field names.

4.2.3. Library Investigation Results.

This sub-section presents the results collected during the completion of
stages (2) - (4) of the investigation, for the first experimental group. It is
recognised that these experimental results came from a small subject group,
and may not be typical of all computer users, however they should not be
ignored.

4.2.3.1. Initial Notebook Investigation.

According to the plan detailed in section 4.2.1, stage two of the investigation
entailed the distribution of blank booklets to each subject. Subjects were
asked to describe points of interest regarding the library database system, and
any other comments they felt were relevant.

The response to this was varied. Three subjects were helpful, describing in
great detail many problems with the system. The remaining two expressed
problems because of lack of time, and a preference for verbal descriptions.
Appendix A contains a list of statements collected during this initial
investigation by the three participating subjects.

The main user interaction problem areas identified by the participating
subjects were as follows :-

- unforgiving environment

- inconsistencies between field names, and meaning

- insufficient, and non-context sensitive help

- slow response time

- insufficient, and unforgiving help messages

- no apparent logical ordering of records

- inconsistencies between command syntax within similar tasks

- unable to switch context and perform another task while
maintaining current state of system

- lack of continuity of tasks. Previous tasks cannot always have
an effect which is desirable for a later task to use

- cognitive problems understanding the applicability of actual
information in the computer

-73-

- problems transferring knowledge between different systems.

Although there were other problems mentioned relating to the areas of
organisational structure and office environment, these are only
acknowledged as they were not studied in any depth.

4.2.3.2. Initial Interviews.

Stage three of this investigation involved a detailed background interview
with each participant. This was aimed at gathering background information
about each person regarding previous experience with computers and library
information systems, job description and daily tasks, amount of work done
using computer systems, attitude towards computers, and initial comments
on the library system. The main objective was the specification of individual
user profiles. These could then be used to help understand their various
comments throughout the remaining investigation.

Because of the change in direction made after the completion of these
interviews, the original recorded transcripts are not included. However,
several interesting issues arose.

Experienced computer users appeared to have fewer problems with the
system. They were more able to deal with inconsistencies, and were
apparenﬂy used to interacting with difficult to use computer systems.
Inexperienced users were less tenacious, and quicker to blame themselves
for any difficulties rather than the computer system. Unfortunately this
created a difficult situation, whereby inexperienced users found it difficult to
progress because of their inexperience.

Stereotyping was a problem; One member of the group was very experienced
and was branded a 'computer boffin'. Other group members did not want to
‘end up like him' and only used the computer system when it was essential.
Several users also felt threatened by the introduction of new computer

technology.

Users found it difficult to distinguish between problems caused by poor
interface and application functional design. They simply saw a complete
computer system and could not classify the difficulties encountered with the

system.

-74-

One subject who disliked the system and found it difficult to use, expressed
the opinion that they knew how the system was chosen, and implemented.
This selection and implementation process was, in their eyes, inferior, and
the computer system was forced upon them. In their opinion the resulting
system was a second rate product of this inferior design process, and
therefore was not acceptable.

Most subjects saw the potential capabilities of computers in the future, and
some looked forward with great enthusiasm to new applications of
computer technology. Others were more cynical, and saw computers as a
'necessary evil'.

4.2.3.3. Further Interviews.

After further interviews with members of the library subject group, the
following issues were discovered and discussed.

Most users of the library system (not only the subject group) had conceptual
problems with the manipulation of Pointer Files. Users were prevented
from directly deleting records from the main file, and understood the
reasons for such protection. Pointer File deletion was, however, allowed.
Also, when the Pointer File itself was deleted, none of the records in the
Pointer File were physically deleted from the main file. This was
conceptually different from deleting individual Pointer File records.
Similarly, they could not understand why additions were allowed with the
main file but not with Pointer Files. The Pointer File appeared as a sub-set of
the main file, yet the same tasks could not be done against it. These
problems with Pointer Files were due to inconsistencies within the
application, rather than the interface.

On-line help for the system was minimal, and only available at the
command level. A help option was available from the main menu, but gave
the response that help was not yet available. This suggested to some users
that it never would be. Expert users found the help useful, but novices
found it insufficient.

The documentation for the system was difficult to read or understand, and
was obviously aimed at technical experts. As a result, user training was on a
person to person basis and most problems were sorted out by asking a more
experienced user.

-75-

Abbreviations in the system were inconsistent at different levels, with one
letter meaning one command at one level and a different command in a
another part of the system. Also, in certain parts of the system abbreviations
were not allowed. This problem was due to inconsistencies within the
interface itself.

The system allowed users to make only three consecutive errors when
answering the prompts for data that a command required. It then returned
the user back to the command prompt. Users often used negative responses
to interrogate the system. For example, searching for non-existent books
resulting in a 'record not found' message. After several consecutive 'not
found' searches, which the system treated as actual errors, the user was
returned to the command prompt. As a result, they had to traverse back to
the same database search screen before continuing with further queries.

There were still some obvious bugs in the system. These bugs were well
known to the users, who knew how to avoid them. However, they affected
their confidence in the system.

The type ahead buffer caused problems, especially with novice users. The
system displayed all intermediate states of the system, but when it was slow
in responding users often press return repeatedly, or re-entered a command
without realising that the system employed a buffer. As a result, tasks were
often repeated and users accidentally selected incorrect functions.

The system rarely gave positive responses after completing a task, informing
the user that it was completed. Instead, it returned the screen to the state it
was in before the task was instantiated, i.e. the command prompt.

Sometimes, pressing the return key meant 'Yes' at a prompt, but at other
times it meant 'No'. This inconsistency often caused serious problems if
users were not aware of it.

With only three levels, the system functional structure was broad and
simple. Users said that they did not have problems getting lost in this
structure, however they wanted the facility to move sideways between the
three levels. They would also have liked to use the results of one action
elsewhere in the system, without having to maintain temporary Pointer
Files.

-76 -

From the main menu there were four options, and selecting one moved the
user to the relevant part of the system. Once there, a line of information
confirmed which sub-system they were in, and they were then presented
with a command line. Because some of the options supported similar
commands, users were sometimes confused about what part of the system
they were in, and had to enter a specific query command to find out.

The system did not prevent users from performing actions which could
damage the database, e.g. deletion. As a result, users were frightened to
explore the system. Instead, they used the system in the way that they were
rote taught by their supervisors.

There were some problems which were due to insufficient specialised
cataloguing skills. The cataloguing sub-system expected the use of
standardised punctuation, and abbreviation. Because of its power, some
non-cataloguing staff were using this sub-system and were having problems
remembering and using its specialised syntax.

Problems with integrity rules occurred when a full screen of information
was displayed to the user (consisting of field names, and boxes for data
entry), to enable them to enquire, add, delete or modify database
information. Certain field values had integrity constraints such as
alphabetic, and numeric restrictions. Some fields were also interrelated, so
that the value entered in one field affected the integrity rules placed on
further fields. These integrity rules had to be learnt by users, as the system
gave no guidance to the rules which applied to each field. When integrity
errors occurred, the system simply highlighted the rogue fields, and reported
that an input error had occurred.

Users requested a facility to terminate functions once they were instantiated.
They also requested some positive system response while it was performing'
lengthy tasks. Whenever the system failed to respond for a long period of
time, users thought that either the computer had not understood what they
wanted, or they had made a mistake. As a result they typed in other
commands, or pressed the return key repeatedly, forgetting the type ahead
buffer. This again caused problems when the system finally returned, only to
process the extra erroneous commands.

Users said that concentration time was a problem, and that after a period of
constant use, typically four hours, they lost concentration and often failed to
notice errors in the information that they had typed. Management were
trying to resolve this problem by changing working practices, and thereby
reducing the stress placed upon the users.

Whenever a user made an error, the system not only informed them of the
error, but usually returned them to some previous system state. This often
resulted in information being lost, necessitating re-typing of the relevant
data.

At the command line, the only correction key that worked was <backspace>.
Although the cursor arrow keys actually moved the cursor backwards and
forwards, any corrections made using these keys were not accepted by the
system. However, the cursor keys functioned properly when specifying a
range of database records using the example record screen. This interface
inconsistency again caused some problems, which expert users eventually
learned to avoid.

Another inconsistency was caused by capital letters. In one part of the system
the computer distinguished between upper and lower case characters,
generating an error if the user typed uppercase characters in a command.
However in another part of the system, the user was required to type in
uppercase characters. This caused confusion, especially when the shift lock
key was utilised, and users forgot to take the lock off.

Some users expressed the desire to change the format of the field layout on
data screens. These included :-

- re-ordering of fields so that they made more sense in terms of
ordering or topic

- re-ordering of fields so that data input was easier, i.e. entering
single columns of data in identical format, rather than using
two columns

- reducing the amount of information on one screen

- dividing the screen into sections containing information that
could and could not be altered.

Some users however, preferred not to change any data screen formats. They
accepted what they were given, and adjusted their work accordingly.

-78 -

All users described problems with memorising command syntax, and often
forgot how to use certain commands over a period of time.

Once users had adjusted to the style of the system manual, they used it only
as a technical reference guide whenever they forgot the exact syntax of a
command.

- When asked whether they would like the facility to edit and paint their own
information screens, one expert user raised the following issue. If such an
adaptable component was only available to expert users (because novice
users may get lost, or make mistakes), then it would have a reduced effect.
This is because by the time users become expert with a system, they have
accepted the system standard screen layouts, and adapted themselves to any
abnormalities or inconsistencies. For an expert user to then tailor the system
to themselves, would entail extra work, and render some of their
accumulated knowledge inappropriate. This would mean extra work
modifying the system, and adjusting to its new style. Whether this would
render an adaptive system useless remains to be seen. and would depend
upon when adaption takes place.

4.2.4. Summary.

The library system did in fact meet the information system requirements for
the library staff. However, the computer system was difficult to use and was
not accepted by the majority of users. It appeared that the system design and
implementation process, and the user interface software were major
contributory factors to this rejection.

The major software problems identified were inconsistency, poor help and
documentation, lack of integration, difficulties with modes and badly
designed application functionality. These criticisms can be related to the
work presented in chapters two and three. The library computer system was
functionally simple, and it is probable that it would not benefit from the
application of Artificial Intelligence to its user interface. Instead, attention
should be given to the more fundamental software concerns listed in
chapter two. In particular any software redesign should focus upon
consistency within the system. Other non-software issues were also
identified.

-79-

Results suggest that care must be taken during systems design, especially
when end users become involved in, or are aware of the design approach
taken. One point of importance arose concerning user consultation. Certain
users felt that although they were consulted about their requirements and
preferences, their opinions were ignored, and the resulting system did not
reflect any of their comments. User consultation should only be undertaken,
if the resulting comments are to be properly considered [Bennett, J.L:1987],
[Eason, K.D:1987], [Galer, M:1987], [Hirscheim, R:1988], [HUFIT:Overview],
[Mumford, E:1979], [Mumford, E:1981], [Poulson, D.F:1987], [Tyldesly,
D.A:1987].

It was difficult to define whether the library system was or was not 'user
friendly'. It became apparent that the user interface was not the only factor to
affect the acceptance of a computer system. Results suggest that it is possible
for an interface to be 'user friendly', while the complete computer system is
still rejected by users. Likewise it is possible for a system with a ‘user
unfriendly' interface to be acceptable. If a system provides major
improvements over existing information systems, in terms of availability
and power of manipulation, then users are prepared to learn how to use a
difficult interface in order to access the system. However, it is also possible
for users to reject a 'user friendly' computer system because of personal
issues and motivations [Green, E:1990].

Certain reasons for rejecting or accepting computer systems were identified
as a result of this investigation. These are outside the sphere of influence of
software or hardware engineers and are listed :-

- future job prospects

- salary benefits

- reduction in working hours

- increased power and control provided by better information

- personal objections

- dislike of stereotyped 'computer boffin' personnel

- dislike of jargon

- lack of variation in job tasks

- threats posed by the capabilities of computers

- constant workload as opposed to a workload which varies
cyclically

- physical strain on eyes and body.

-80-

Unfortunately, the existing library system was already branded by its users as
difficult to use, and 'unfriendly'. Further software redesign and
modification would probably alleviate some of the contributory factors
described above. However, an improved system may still be rejected by the
users based upon experience with the existing system. The question of how
to introduce improved computer systems to an already distrusting and
hostile user group is outside the scope of this research.

4.3. The Influence of Systems Analysis and Design upon User Acceptance of
Computer Systems.

There are many reasons why interactive computer systems fail and are
rejected as 'user unfriendly' [Thimbleby, H:1983]. In particular, the library
investigation highlighted the following problems :-

- designers design for themselves and not the user

- changing requirements as design develops

- users adapt to systems which are difficult to use

- confusion between functionality and ease of use

- interface design is not systematic, and it is hard to reason about
design except by hindsight

- interface design is experimentally based

- designers (both application and interface) and programmers
tend to have a high threshold for complexity. This makes it
difficult for them to appreciate the different needs of ordinary
users.

The main source of these problems appears to be a breakdown in
communication between the system designer and the user [Bullinger,
H.J:1987]. As a result, the designer builds systems which they think the user
wants, rather than systems which they actually need and can use.

User acceptance may be considered as an equivalent system design goal to
production quality control. As such, it must be made a primary objective for
computer system design and implementation. More emphasis must be
given to designing computer systems for the user [Gould, J.D:1987].
Furthermore, the user must not only be involved in the design process, but
must be seen to play an active and influential role. User involvement
should not be a front for management manipulation, it must have a
genuine effect on the final system. The information processing

-81-

requirements of an organisation can be met by correct systematic
information system design methods, while user interface needs can only be
met by proper user consultation.

There is a need for user oriented design principles which can guide the
designer in their difficult task [Thimblebly, H:1983]. These principles may be
in written form, should be explicitly defined and consistently applied.
Feedback from users of the final computer system should also be used to
refine and extend these principles. Some example principles include:-

- the system can be used with your eyes shut

- what you can see is what you have got now

- what you type is what you get

- you can always do the same things at any time

- how you do something does not affect what you do

- you always know where you are, and what you are doing.

Design principles should be agreed by users. As discussed in chapter three,
mismatches between the user's model of the system, and the actual System
or Application model are a major source of interaction errors which occur
during the use of a system. Matching the actual Application Model to the
user's expected model is therefore the primary role of the system designer
and programmer. These two roles must work in unison to both improve
system design, and correct user misunderstandings. The sooner the User and
Application Models are harmonised during a systems design life cycle, the
better. It follows that if the user is allowed to help define the design
principles, unification can begin at the start of the design process. As a result,
users should be able to understand the rationale behind the Application
Model, and can then begin to formulate their User Model based upon correct
foundations. Subsequent system design should then match the expectations
of the user.

User design principles should be standardised and compiled as design
reference documents [Thimbleby, H:1986]. With regards to the library system,
users held the opinion that the system was designed ad hoc and
inconsistently. Explicit design standard documents agreed by users,
management and system designers should not only improve the final
system acceptance, but should give users and management more confidence
in the design process. They should also provide a metric by which to
measure the delivered system in terms of quality assurance, and software

-82-

certification. Ultimately, it should be possible to implement executable or
compilable Human Factor design guide-lines, from which the final user
interface is automatically generated [Galer, M:1987].

Every system is a potential experimental prototype. Even after a system is
released into the commercial market place, software developers should
actively encourage feedback from their customers. This feedback in regards
to the 'usability' of a computer system is beneficial for both further system
refinements, and the development of other independent systems.

User acceptance cannot be achieved without user exposure [Eason, K: 1988].
The amount of user exposure, and system evaluation depends upon the
design approach taken. Typically there are two major approaches, the
traditional 'Waterfall' System Life Cycle Model [Parkin, A:1980] and
Experimental Prototyping [Gimnich, R:1987], [Hekmatpour, 5:1987]. The
Traditional System Life Cycle Model is based on a sequence of clearly defined
Systems Analysis and Design stages. Each stage provides input to the next
stage, and this input may take the form of written documentation,
specifications, or program code. Individual stages may be repeated until their
objectives are met and if necessary, part of the cycle may itself be repeated.
Actual program implementation and testing is performed at the lower
levels, only after the Systems Analysis and Design is correctly completed.
Various examples of this approach include SSADM [Downs, E:1987], [Cutts,
G:1987], and Jackson Structured Design [Cameron, J.R:1986]. User
consultation occurs during the early stages of the system life cycle, in order
to determine the system requirements. However, the user does not see the
results of this consultation until the final stages, when it is often difficult to
modify the design of a program. As a result, the final system may be difficult
to use. Other problems also exist [McCracken, D.D:1982], highlighting the
need for new, or modified approaches to system design.

Alternatively, Experimental Prototyping is based on the cycle of computer
system design and implementation, followed by evaluation [Harris,
J.R:1987]. A new system is then designed and implemented, and the
evaluation repeated. The process continues until the designer is satisfied
that a suitable system is realised. In most cases the process is repeated until
no more time is left, and the last prototype may become the final system.

The evaluation cycle provides user exposure, and must be carefully
controlled. If the evaluation results are to be formally used to re-specify the

-83-

next prototype, proper empirical and statistical experimental control
techniques must be enforced [Jagodzinski, A.P:1988], [Monk, A:1986¢], [Monk,
A:1986d], [Morris, D:1988].

The potential advantages of prototyping are numerous [Harker, 5:1988],
[Vonk, R:1990]. Prototyping particularly favours good interface design, and
ultimately a high probability of 'user acceptance’ of the final system. Users
actively participate and evaluate various prototype computer systems, and
may observe the final system being developed. They also learn about the
final system before its full implementation, and the learning is spread out
over a longer period of time. Prototyping also has its problems. Prototyping
is easier to use when developing small systems for small user groups
[IBudde, R:1984]. Inconsistencies may result, where a larger system is being
developed by a team of designers for a large user population . In an attempt
to satisfy the personal requirements of an individual user, a certain part of
the computer system may be modified, rendering it inconsistent with other
parts. Strict standards and communication controls are necessary if this effect
is to be minimised. Prototyping may also take a long time to complete
because of the large amount of communication and evaluation overheads.
This may lead to deadlines being missed.

The use of Prototyping for successive system design may lead to the
repetition of certain evaluation tasks. For example, an identical group of
users should typically have the same user interface requirements for
different applications. In order to 'streamline’ the design process, results
from previous prototype design cycles should be reusable. This may be
achieved by the continued development of written design guide-lines,
which may be used in future prototyping exercises. Alternatively, a
specialised design Tool-set such as a UIMS may be used to carry this
knowledge forward to future design projects.

The design of a fixed interface using any design approach is extremely
difficult, as the question arises as to how to solve individual user
differences. That is, where a user prefers an interface feature which conflicts
with another feature preferred by a second user. The resulting 'best fit'
approach to interface design becomes wrought with complex design
decisions. Fortunately, this can be resolved using adaptive or customisable
interfaces which make use of the concept of separation. These tools remove
the need for some of these compromise design decisions, by providing sets
of alternative interface styles.

-84-

A UIMS Tool-set based on interface separation could also be used to
improve traditional life cycle design approaches. As the library system
illustrated, these traditional approaches often result in computer systems
which are functionally correct, but difficult to use. Modifications could be
made to the life cycle, enabling UIMS interface design tools to be used in
parallel with the system design stages. These tools could then be used during
interactive user sessions to prototype the user interface, before the final
computer system is implemented. A UIMS Tool-set should also breed
familiarity. Repeated system design using the same methods and Tool-set,
should help the user become more acquainted with the design process. This
familiarity should both speed up and improve a design methodology.

The library system investigation revealed that proper evaluation of users
using computer systems requires considerable resources and skills. In order
to determine these requirements, a visit was made to the Human Factors
Laboratory at ICL, Bracknell. This visit established the need for specialised
and expensive recording, time stamping and play-back / mixing equipment.
It also identified the necessity of a controlled work environment where
different user sessions could be recorded. Finally, the visit highlighted the
necessity for specially trained personnel to operate the equipment and
evaluate any results produced. To illustrate the complexities involved with
this type of detailed analysis, it is worth noting that one hour of video and
audio tape often took the entire laboratory staff many weeks to analyse. The
visit served to emphasise the difficulties of detailed computer system user
evaluation, and also provided an insight into the role of the Cognitive
Psychology within the field of Human Computer Interaction.

Cognitive Psychologists examine computer systems, and particularly the
user interface, from the human psychology viewpoint [Dillon, A:1987]. They
attempt to look deeper than the 'surface mechanics' involved in using a
computer system, and seek to develop general models which describe how
users actually view and use particular systems [Rasmussen, J:1987]. These
models are based upon established human psychology principles such as
Long and Short Term Memory, and planning strategies. Cognitive
Psychologists are not directly concerned with identifying specific hardware
and software problems. They are more interested in developing, testing, and
refining high level theories as to how users perceive and interact with
computer systems. It is left to software and hardware designers to consider
these theories, or models when designing their computer systems.

-85-

Typically, this type of evaluation is far too extensive for inclusion in the
regular system design process. Its main purpose is fine detailed analysis of
existing computer systems. Results can then be collected together and
presented as recommendations for future computer system development.
The cognitive approach stands alone as a valid technique for improving the
usability of interfaces. As such, work is needed to examine new
methodologies for applying its accumulated research results to the interface
design process.

Utilising interface separation, the results of Cognitive Psychology research
can be used to develop individual UIMS components. Existing components
can then be evaluated and improved, and new ones developed. Intelligent
Interfaces incorporating results from this work should then closely match
user requirements. This technique can also be used to identify individual
user differences, which should be supported within customisable or
adaptive Intelligent Interfaces.

The library system showed that many users find it difficult to differentiate
between problems which are caused by them, and problems which are
caused by poor design. A typical response from a non-computer expert (not
necessarily an application novice) to an error, is that they are to blame. They
see the Application Model as correct, and are quick to condemn themselves
as being at fault. This is in stark contrast to computer experts who more
confidently identify the problem as being within the computer. It is
suspected that this is due to a wide range of social and psychological
influences [Grudin, J:1987]. These include :-

- incorrect stereotyped views concerning the exaggerated
capabilities of computers

- fear of the unknown

- personal insecurities.

These issues need to be addressed within the relevant spheres of research,
with the design, introduction and acceptance of computer systems being
examined within the larger context of other social, psychological and
organisational influences.

Interface analysis and design, although part of the complete Systems
Analysis and Design process, is separate and requires different skills.

-86-

Similarities can be drawn between both, especially concerning proper user
consultation. However, these differences need addressing with different staff
training and software support tools such as separable UIMSs.

4.3.1. Summary.

Experiences with the initial stages of the library system investigation
identified the complexities involved, and specialist skills required for
detailed user interface investigation. These experiences also helped identify
the need for new software architectures which support the use of interface
guide-lines and recommendations which would result from this type of
experimental work. Having recognised these issues at an early stage,
research emphasis was moved away from empirical investigation. Instead,
effort was directed towards the design of new separable software
architectures, which were identified as being fundamental if the results from
this type of work are to be beneficial to user interface design.

The field of Human Computer Interaction is multi-disciplinary with the
main research fields being Cognitive Psychology, Software Engineering, and
Systems Analysis. There is also an overlap with other disciplines such as
Social and Organisational Studies. A need is identified for new tools and
methods which encompass these disciplines. Awareness is already growing
concerning the influences affecting user acceptance of computer systems,
especially regarding the importance of designing 'usable' user interfaces.
However, existing tools and design methods can be further improved.

Software

Architecrmre: | APP1iCation
Communication/
Analogous ADP||CATION y_Cooperion INTERFACE

design roles: DESIGNER DESIGNER

Fingge 4.3 - Design Role Analoﬁgy.

Interface separation provides both a focal point for the Human Computer
Interaction research community, and a meeting place for the various
specialised analysis and design roles. The distinction between interface and

-87-

application facilitates the utilisation of results generated by the Human
Computer Interaction research community. An analogy can be made with
the separate roles of interface and application designer. The application
designer may use formal methods and design tools, according to current
knowledge embodied within their discipline. Similarly, the interface
designer is able to apply the current interface design and implementation
techniques. As figure 4.3 illustrates, these two roles can be brought together
by the use of new separable software architectures. Communication between
the two roles, eventually leads to the specification of the knowledge which
links the user interface to the application.

-88-

Chapter Five,

An Investigation into the Quantitativ r Modelling of r Interaction

for the purpose of Predicting User Expertise,

5.1. Introduction.

This chapter describes an investigation into the requirements and
complexities of Quantitative User modelling [Spall, R.P:1990]. An object
oriented Quantitative User Model is proposed, and experiences are discussed
concerning its implementation and practical application. This Quantitative
User Model serves as a research ‘vehicle, demonstrating the intricacies of the
general User Modelling research field. In particular, it shows the difficulties
surrounding the elicitation of useful user interaction knowledge, the
structuring of such knowledge into a computable User Model, and the
application of User Models as a means for inferencing user characteristics.

A Quantitative User Model embodies knowledge concerning the actual
performance of a user with a particular application. Once stored in a
computable form, it can be utilised to infer user characteristics such as level
of expertise, and preferred interaction style. This can ultimately be used to
improve the usability of a user interface. For example, in tailoring a help
system to the experience level of a particular user.

Various user characteristics may be modelled in order to provide useful
knowledge for an Intelligent Interface [Gilbert, G.N:1987]. User preferences
can be modelled as a means of describing the personal tastes of a user, for
example, preferring menu style interaction to command language, or certain
text styles and colours. The modelling of user motivations and objectives
could provide knowledge concerning the tasks which a user is trying to
achieve. The knowledge can then be exploited within Intelligent Planning
modules. The modelling of user expertise may provide knowledge
concerning the understanding which a user has of the computer system
being used. This can be utilised to control the amount of user assistance
given by an Intelligent Interface. Similarly, modelling of user interaction
skills such as mouse movement, and keyboard familiarity, should also
prove beneficial, especially where disabled users are concerned.
Psychological, or Behavioural Modelling could provide helpful knowledge
concerning the overall characteristics and profile of a user [Benyon, D:1988].
This can then be used to match specific interface interaction styles for

-89 -

individual users. Finally, the modelling of the background of a user with
other computer systems should enable an Intelligent Interface to make
analogies with other computer systems, and possibly adapt itself to mimic
them.

A computable Quantitative User Model may use several techniques in order
to determine the knowledge it contains. Stereotyping can provide an initial
Quantitative User Model based upon pre-described user groups [Rivers,
R:1989]. A particular stereotype is chosen from a set of general user
stereotypes, according to information supplied by a user in reply to an initial
question and answer session. Alternatively, the appropriate stereotype may
be directly specified by the user, interface designer, or automatically selected
based upon initial user interactions [Benyon, D:1987]. This approach limits
the flexibility of a Quantitative User Model, and assumes that it is possible to
classify users into groups according to psychological or behavioural
frameworks. Instead, a Quantitative User Model may determine its
knowledge using an extensive question and answer session with the user
[Murray, D.M:1987]. This approach makes use of well proven psychological
and behavioural questionnaires and analysis techniques, and a finer
granularity is achieved. However, this technique is obtrusive and requires
that the user answers questions accurately. It also assumes that users can
describe themselves correctly, and that the analysis techniques work. Finally
a Quantitative User Model may derive its knowledge from actual user
interactions [Warren, C:1987]. This requires that the Quantitative User
Model monitors user interaction and from this infers knowledge about the
characteristics of a user. The Quantitative User Model must be capable of
inferring the intentions of a user and recognising any difficulties,
contradictions, or conflicts which occur. This technique is relatively
unobtrusive, but problems may arise due to incorrect inferencing. Some
Quantitative User Models may in fact combine these techniques. For
example, using stereotyping to determine the initial Quantitative User
Model knowledge, while employing interaction inferencing techniques to
refine its accuracy.

Several types of information concerning user interactions are available to a
Quantitative User Model for inferencing purposes [Corbett, M:1987]. These

include correct application usage, incorrect usage or errors, requests for help
and tutorial support, and time lapses between usage. These interactions can
each be used to infer different types of knowledge concerning the user. They
can also be used to infer different things at different times, depending upon

-90-

the context of their occurrence. For example, correct application usage can be
used to infer user development, that is progression towards an expert user.
However, application errors can be used to infer user regression at certain
times, while at other times they may be used to infer user progression. This
may occur when an expert user is exploring a new application, or is using
negative error responses to interrogate an information system. Inferencing
based upon user interaction is also dependent upon the learning abilities of
a user, which must therefore also be represented within a Quantitative User
Model.

Three main issues therefore need addressing within the field of
Quantitative User Modelling, namely knowledge representation, knowledge
acquisition, and knowledge inferencing [Payne, 5.J:1987]. Knowledge
representation deals with the actual structure of a Quantitative User Model.
That is, what knowledge it contains and how the knowledge is actually
structured. The structure can be separated from the knowledge itself, and
may therefore be used to structure many similar types of Quantitative User
Model. Internal structure is important, and ultimately determines the
usefulness of any Quantitative User Modelling technique. Knowledge
acquisition addresses the problem of determining the knowledge contained
within a Quantitative User Model. In certain situations this may be a 'one
off' process in order to define the initial Quantitative User Model. However,
it is typically a continuous process, as the user being modelled is constantly
changing. Finally, knowledge inferencing is concerned with the way in
which a Quantitative User Model is used to infer new knowledge. This
knowledge is not new in terms of being non-deterministically created by the
Quantitative User Model, rather it arises from the structure of the
Quantitative User Model and the intelligent heuristics which make use of
this structure. This illustrates a major use of modelling, which is to
represent existing knowledge using new structures, in order to provide
different ways of looking at a problem. In doing so, further knowledge may
be derived which only exists as a result of combining existing fragmented
and disparate knowledge.

This proposed Quantitative User Model tests the hypotheses that the
interactions of a user with an application, can provide the basis for
predictive reasoning to determine knowledge concerning the expertise of a
user. Such knowledge can then be used within an Intelligent Interface. For
example, an Intelligent Help System may be derived for the purpose of
tailoring its response to user requests for assistance. The proposed

-91-

Quantitative User Model was developed as a 'test vehicle’, and uses a
mathematical approach to describing knowledge concerning a user. It
embodies knowledge concerning correct and incorrect application usage, and
takes full advantage of the principles and benefits of object oriented design.
User expertise is classified as either Novice, Intermediate, or Expert, and
classification is applied to three object oriented conceptual levels, namely
application, object and function. However, the Quantitative User Model
does not extend to error recognition and classification, and it is assumed that
this knowledge will be supplied by the user interface. The Quantitative User
Model represents the learning abilities of a user with a traditional Learning
Curve.

5.2. Overview of the Proposed Quantitative User Model.

The expertise of a user with a computer application can be divided into
different conceptual levels. For example, overall interface expertise, overall
application expertise, and both individual interface and application
component expertise. The proposed Quantitative User Model only considers
user expertise with an application, and organises this according to three
conceptual levels. These are overall application expertise, expertise with
component objects, and expertise with object functions.

Individual user expertise classification is required for the various objects and
functions at different conceptual levels. This classification may be stored
directly as a value, or inferred from other knowledge contained within the
model. Classification is maintained for individual components at each
conceptual level, rather than as a general level classification. For example,
users are classified accordingly for each individual object, application and
function rather than being given a single classification which generally
applies to all applications, objects or functions. Usage of functions and
objects at different conceptual levels indirectly affects the expertise of a user
with other functions and objects. For example, individual function usage
may well affect the overall expertise of a user with an application. Similarly,
use of one function may affect the expertise of a user with other related
functions. This shows the need for an explicit Application Model which
describes the relationship between various application functions, and the
objects on which they act.

Traditional procedural languages do not provide this self describing
function, and the application architecture is often hidden within the

-92-

program structure. Because of this, separate Application Models are required
which must be specified in computable formats [Carberry, 5:1988]. These can
then be extended to incorporate knowledge which describes the
relationships between individual functions and conceptual objects.
Fortunately, object oriented languages support a self describing explicit
Application Model based upon an application, its component objects, and
their behaviour (which is determined by their explicit message protocol).
This is utilised by the proposed Quantitative User Model.

5.3. Structure of the Proposed Quantitative User Model.

Figure 5.3 illustrates the basic Quantitative User Model architecture, and the
information flows between the application and the Quantitative User
Model. An object oriented application is used by sending messages between
different self contained objects. The architecture uses this feature to
determine what objects and functions were correctly or incorrectly used. The
Quantitative User Model is implemented separate from the Smalltalk
message handling mechanism. It therefore expects to be independently
informed of the correct and incorrect messages issued by the user, and those
arising from communication between various application objects.

[User Model

owledge
concerning use
of individual
functions,
objects, and
application

Knowledge
concerning
Application
Model

. Automatic Adjustment .
Enquiry Expert Expert Manual Override
)))
\4 \4 v
User Enquiries User Application Manual Control over
concerning classifications Interactions and Errors Model Structure
Fi .3 - Quantitativ I 1

As shown in figure 5.3, the Quantitative User Model is divided into
knowledge and heuristics, which are shown using circles and boxes
respectively. Knowledge is implemented using internal data which is

-93-

hidden inside the Quantitative User Model, and describes both the use of an
application by a user, and the Application Model. The knowledge
concerning application usage is related to the Application Model, and is
therefore structured accordingly. Separate heuristics, implemented as
Smalltalk 80 code, access and modify this knowledge. These heuristics are
divided into three groups, and provide an interface between the
Quantitative User Model and the user.

The Application Model is represented at three conceptual levels. These are
based upon the object oriented concept of an application comprised of objects
which provide a specific function, or method protocol. The three levels are :-

- application
- application objects
- object methods or functions.

The application effectively represents the highest conceptual level, while
object methods denote the lowest. There may also be many objects and
methods at the intermediate object and method conceptual levels. These are
referred to as Application Components, and are individually represented
within the internal Application Model. The relationship between the
individual Application Components belonging to an application are also
contained within the internal Application Model. The object to which a
method belongs must always be defined. Likewise, the application to which
an object belongs must also be specified.

The following information is stored within each Quantitative User Model,
for each Application Component :-

- number of uses

- date of last use

- number of errors (for each error type)

- number of uses since last error (regardless of error type)

- Intermediate Classification Trigger (controls move from
Novice to Intermediate)

- Expert Classification Trigger (controls move from Intermediate

_ to Expert)

- current Experience Classification (when set to nil, user
classification is inferred from knowledge contained within the
Quantitative User Model. When set to a numeric value

-94-

between 1 and 3, it is assumed that the automatic inferencing is
to be overridden with a classification specified by the user. A
value of 1 implies Novice experience, while 2 and 3 imply
Intermediary and Expert experience classifications)

- Usage Transfer Factor, i.e. the effect of usage on higher
conceptual level (not maintained at application conceptual
level)

- a single mathematical formula is also maintained for each
Quantitative User Model to represent the Learning Curve for a
user.

This knowledge is constantly updated according to the interactions made by
a user, and is maintained between different sessions. The purpose of this
knowledge is described below in section 5.4.

The complete Quantitative User Model is implemented as a single Smalltalk
Class, with the internal knowledge encapsulated within instances of the
Class. This class mechanism is further discussed in section 6.2 and appendix
B. The necessary heuristics are implemented as instance methods using
Smalltalk code. A user requires a separate quantitative Quantitative User
Model for each application, and this is achieved by creating new instances of
the QuantitativellserModel abstract Class. Each Quantitative User Model
effectively contains separate knowledge, but shares the same instance
methods or heuristics defined by the QuantitativellserModel abstract Class.

Individual application objects are implemented using the object oriented
Class mechanism [Goldberg, A:1981]. Application objects which share the
same Class definition behave identically, and knowledge concerning their
usage need only be modelled at the Class level. Multiple instances of the
same Class are therefore represented as a single Application Component
within the Quantitative User Model, and usage of individual instances only
affects the one Quantitative User Model Class Application Component
representation.

Objects sharing the same Class definition may also be used within different
applications. The objects used within a specific application are not explicitly
described, and the Quantitative User Model needs to be told which Class
definitions relate to which application. This knowledge is incorporated
within the internal Application Model. The first step in using the
Quantitative User Model must therefore be to define the Classes used by an

-95-

application, and also the messages which any Class instance, or object can
understand. This is achieved by sending the appropriate messages to the
Quantitative User Model.

5.4. Functioning of the Proposed Quantitative User Model.

Three function or method sub-sets are provided by the Quantitative User
Model. The first 'Automatic Adjustment Expert' sub-set enables the
Quantitative User Model to be informed of application usage. It contains the
necessary heuristics to modify the Quantitative User Model according to
specific user interactions. The second 'Enquiry Expert' sub-set provides
inferencing heuristics for classifying the expertise of a user. Finally, a third
'"Manual Override' sub-set allows the internal Quantitative User Model
knowledge to be manually modified, thus providing an override facility.
Appendix C contains the relevant Smalltalk 80 implementation source code.

The Automatic Adjustment Expert provides a set of messages which must
be used to inform the Quantitative User Model of specific application user
interactions. Interactions may occur at the application, object or method
conceptual levels, and must be identified using appropriate names. When
object usage is reported, the application in which the object is being used
must also be identified. Similarly, when method usage is reported, both the
object to which the method applies or belongs, and the application in which
the object is being used must be specified. This enables both correct and
incorrect application usage to be monitored.

If the Quantitative User Model is informed of an interaction using an object
or method which is not described within its Application Model, the new
object or method is automatically added. In doing so, default values are set
for the usage Transfer Factor, and Classification Triggers.

When the Quantitative User Model is informed of correct application usage,
the appropriate internal Usage Count is incremented. Similarly, when
incorrect usage occurs, the relevant Error Count is increased. The date since
last usage and number of uses since last error are also updated accordingly.

Using a particular method not only affects the expertise of a user with that
method, but also with the object to which it belongs. Similarly, use of an
object also affects the expertise of a user with the application of which it is a
part. The Quantitative User Model imitates this effect by providing a

-96-

Transfer Factor for each Application Component. This determines the effect
of the usage of one component upon another component at a higher
conceptual level. For example, the effect of the usage of a method upon the
object to which it belongs. As illustrated in figure 5.4a, this Transfer Factor is
a simple decimal number which is passed on to the component at the next
conceptual level. In the case of method usage the next conceptual level is the
object conceptual level, while in the case of object usage the next level is the
‘application conceptual level. The Transfer Factor can be set for individual
Application Components and should be in the range of 0 to 1. As an
example consider an instance of the Person Class which understands the age
message. Use of the age method increases the Usage Count by one, for the
Person Class age method defined within the Quantitative User Model. If the
age method Application Component has a Transfer Factor of 0.2, then using
it causes the Usage Count for the Quantitative User Model Person Class
definition to increase by 0.2, i.e. 1 * 0.2. Assuming that the Person Class
Application Component has a Transfer Factor of 0.1, the appropriate
application Usage Count is finally increased by 0.02, i.e. 0.2 * 0.1.

An application may comprise of many objects, each of which has a separate
Transfer Factor. Similarly, each object may have many methods each of
which also has a separate Transfer Factor. The Usage Count for an
Application Component may therefore be directly affected by user
interaction, or indirectly by the use of a related Applicaﬁon Component at a
lower conceptual level.

-97-

Usage Effects:-

Internal Model Representation

Many Methods attached Many Objects attached
to ONE Object & T to ONE Application L

Methods . .
Objects Application
Inforfnauc?n Information Information
contained in . . .
contained in model concerning overall
model for . N
for each object Class Application usage.
Transfer Factor

A

v M v

Method Object Application
Interactions Interactions . Interactions
and Errors and Errors and Errors

Information Concerning Application Usage by the user

Figure 5.4a - sa_eR lationship B een Differen nceptual Levels.

Although the Quantitative User Model does not provide any error
recognition or classification facilities, it does support more than one Error
Count for each component in order to represent different types of error. It is
up to the implementor of the Quantitative User Model to interpret the
meaning of different error types, and to inform the Quantitative User Model
when errors of a particular type arise. When the Quantitative User Model is
notified of an error made while using an Application Component, the
appropriate Error Count is incremented by one. Knowledge is also
maintained concerning Application Component use since the last error was
made, and this is reset to one whenever an error of any type occurs.

Unlike correct interactions, the effect of an error is passed onto the next
conceptual level on a one to one basis. This is analogous to setting the
Transfer Factor to 1. For example, consider the effect of a user who makes an
error of type One with a particular method. This would cause an increase of
one in the type One Error Count field for that method, the Class to which it
belongs, and the application in which it is being used.

A Learning Curve is maintained within the Quantitative User Model in
order to represent the ability of a user to learn new knowledge concerning
Application Components, and is stored as a mathematical formula. The

-98 -

Learning Curve is used to define the rate at which a user learns knowledge,
and assumes that the user learns all knowledge at the same rate across
different conceptual levels. As figure 5.4b illustrates, this formula is used to
plot a graph showing Usage Count against User Knowledge. The User
Knowledge is shown along the vertical axis, and ranges from 0 (Novice) to 1
(Expert). The Usage Count is shown along the horizontal axis, and its range
may differ between Quantitative User Models. The Learning Curve formula
is stored in the form X = f (Y), where Usage Count can be substituted for Y,
and X represents actual User Knowledge.

Two triggers, the Intermediate Classification Trigger and the Expert
Classification trigger, are used to calculate the classification of a user for a
particular Application Component. These triggers represent the User
Knowledge required for a user to move from novice to intermediate
classification, and from intermediate to expert classification respectively.
Their values should range from 0 to 1, and the Expert Trigger should always
be greater than, or equal to the Intermediate Trigger. These triggers break the
Learning Curve into three regions, namely: novice, intermediate, and
expert. Using these triggers, the Learning Curve formula and the current
Usage Count, the user classification for a particular Application Component
is computed. Although a single Learning Curve formula is used for the
entire Quantitative User Model, the two Triggers may be set for individual
Application Components.

Learning Curve
(Defined as Mathematical
Formulae) \

Expert
Expert Level Trigger

nterme(.liate
\

Usage Intermediate Level Trigger

Count

-—— - > -

0 T T T 1
User Knowledge

Figg_ re 5.4b - User Learning‘ Curve.
-99 -

The knowledge contained in the Quantitative User Model is automatically
updated according to user application interactions. However, this knowledge
may also be directly modified using the Manual Override methods
provided. These enable the internal Application Model structure to be
changed, as well as the information stored for each Application Component
- as listed in section 5.3 above. The Quantitative User Model Learning Curve
may also be modified. Finally, the automated expertise classification
mechanism may be overridden, and an explicit experience value set for each
Application Component. This may be set to either 1, 2, or 3 implying
Novice, Intermediary, or Expert knowledge with the appropriate
Application Component. Automatic classification may be resumed at any
time by setting this value back to nil. Again, Quantitative User Model
methods are provided to simplify switching between manual and
automated classification.

5.5. Evaluation and Conclusions.

After initial testing, it was realised that the proposed Quantitative User
Model could not accurately predict the expertise of a user based upon correct
usage alone. In response, attempts were made to modify the heuristics
contained within the Quantitative User Model to take into account both
errors and time lapses. Again, the Quantitative User Model failed to
accurately predict the expertise of a user. The reasons for this inaccuracy
appeared to lie in the complexity of structuring, acquiring, and inferencing
from quantitative knowledge concerning a user.

Determining the initial Quantitative User Model knowledge was difficult. In
particular, it was hard to fix the Application Component Classification Level
Triggers, Learning Curve formula, and Transfer Factors. Assuming that
these values could be accurately calculated, extensive empirical work would
be necessary to investigate the mathematical relationship between the
different values for each Quantitative User Model, and the individual user
characteristics being represented. This definition stage would also take a long
time as there appear to be numerous interrelationships between Application
Components at different conceptual levels.

User interaction is complex, and the relationship between correct usage and
user expertise is difficult, and may be impossible to mathematically express
completely. Similarly, the effect of errors and time lapse is also difficult to

-100 -

mathematically represent. User interactions can not be considered
independently of other factors which also affect Human Computer
Interaction. These include work environment, personal motivations, work
pressures, and stress. Again, assuming that this extra knowledge could be
acquired, the complex relationships that result would require tremendous
computing power to solve.

While using the Quantitative User Model, it was realised that certain types
of knowledge concerning the application bore no direct relationship to the
actual Application Model. For example, knowledge describing the general
understanding of information systems, or object oriented concepts by a user.
Similarly, knowledge concerning user understanding of the application
domain and terminology was not described. Without this knowledge it
would not be possible to accurately determine user expertise with different
Application Components. The knowledge represented within a Quantitative
User Model would therefore have to be expanded to include information
concerning these, and other more general concepts.

In effect a large amount of extra knowledge is required to improve the
accuracy of the proposed Quantitative User Model. This raises the issue of
organising, capturing, and using this extra knowledge within a Quantitative
User Model. Reflecting upon the complexities of these issues, the
implementation and use of accurate Quantitative User Models will
undoubtedly require both immense computer resources and Artificial
Intelligence.

Another problem identified by the proposed model relates to inconsistency
between the Quantitative User Model and the real user. If small
inconsistencies were not immediately corrected, the Quantitative User
Model quickly became inconsistent with the real user, and therefore useless.
Ultimately, this implies that a Quantitative User Model has to exactly
represent the user at all times or not at all. This could be achieved by
periodic question and answer sessions with the user. However, the
overhead of extra question dialogue may defeat the very purpose of
Quantitative User Models. Alternatively, the heuristics for updating and
inferencing from the Quantitative User Model must take account of every
factor which can possibly affect the real interaction processes of the user.

A final problem is that of heuristics which may themselves change. The
heuristics for updating the Quantitative User Model and for inferring

-101-

knowledge about it, were themselves subject to change. For example, the
effects of errors and correct usage upon user expertise changes, as a user
moves from a Novice to Expert. Similarly, these effects are probably different
during each cycle of the repetitive move from Novice to Expert, and Expert
back to Novice over a period of time. It is also probable that the mechanisms
for changing the heuristics are themselves subject to change, and so on.

5.6. Summary.

The very least that this research shows is that an object oriented design
facilitates the definition and updating of a Quantitative User Model to
represent user interactions with a software application.The mechanism for
monitoring and describing user interactions are relatively straight forward,
and can be implemented within the interface software. The body of
knowledge required to define the parameters influencing the 'shape’ of the
Learning Curve for individual users is less clear, and needs to be extracted
from the fields of Educational Psychology, Cognitive Psychology, and
Artificial Intelligence. The future of User Modelling, and in particular
Quantitative User Modelling depends upon the success of these fields in
solving the problems identified.

-102 -

n i rien r Interf Managemen m,and In

Interface Design Tool-set.

6.1. Introduction.

This chapter proposes a new object oriented User Interface Management
System (UIMS) implemented in Smalltalk 80. This UIMS uses a novel
software architecture based upon distinct interface and application
separation. It also incorporates an integrated interface design Tool-set
enabling the re-use of interface components within different interfaces. This
Tool-set assists the interface designer in building separable re-configurable
Direct Manipulation Interfaces for object oriented applications. The
proposed UIMS has arisen out of the need for new interface design methods
which was outlined in chapter three, and will eventually form part of a
complete integrated UIMS for generating Intelligent Interfaces.

6.2. Overview of Object Oriented Programming.

Central to object oriented programming is the concept of a self contained
object. This object contains its own data representing its state, and exhibits
certain behaviour according to the functions it can perform. The data
belonging to an object can only be referenced by the functions defined for
that object, and not directly from outside of the object. It comprises of a list of
field names, each of which points to another object. Individual functions are
named, and have attached code which is executed whenever they are called.
They usually return a value, and may allow arguments to be included.

These returned values and arguments are normally themselves objects.

An object oriented application is used by instantiating object functions,
usually by sending a message to an object with a name which matches the
appropriate function name. The object which receives the message is known
as the Receiver. The instantiated function code may then send further
messages to objects pointed to by its data fields, and so on. As an example
consider the expression '1 + 2'. In object oriented terms, 1 and 2 are both
objects, and + is a message or function name. The + message requires a
single argument, in this case the object 2, and returns the value 3 when sent
to the object 1.

-103 -

The structure of every object is described by an abstract data type, which for
the purpose of this research is known as a Class. Every object is an instance
of a Class. One Class may have many instances, and instances of the same
Class share the same function definitions. However, they contain separate
internal data fields representing their individual state.

A given Class, 'A', may be the Sub-class of another Class, 'B'. In such a case,
'B' inherits the function definitions, and internal data fields defined in 'A’,
and may add its own functions and internal data fields. This is known as
inheritance and results in an inheritance hierarchy tree (or a net if a Class
can inherit from more than one Super-class).

Figure 6.2 illustrates the object concept, and the relationship between
instance and Class. It shows how an object presents itself as a separate unit
with a self contained state, exhibiting a certain type of behaviour. The Person
Class defines two internal data fields for all of its instances, and four
functions which can be used by any instance. Two of these functions serve as
queries, and reply with the Age and Surname of a Person instance. The
remaining two modify the state of an instance and allow the Age and
Surname to be changed. As such, the two functions SetAge, and SetSurname
require arguments.

In order to design an object oriented application, the designer must decide:-

- the object Classes to include in a system

- the internal representation of their state (i.e. what data fields)

- the behaviour they exhibit (i.e. the function definitions)

- the inheritance structure between Classes

- the relationships that exist between Classes, e.g. part
aggregation, associations, generalisations, and any qualified
relations.

-104 -

Person Class
Definition : Surname SetSurname
Internal Data
Fields:
SurName

Enquiries on, and DOB

modifications to

the internal data

fields.
Age | SetAge

Interface to other

objects, or user :
queries / requests Named Object Functions

(function name must be ~ (actual function code
specified, and arguments omitted).
may be included. A single
object may be returned
as a result).
Named Person Class instances :-
(each has its own separate internal data fields, and shares the same function
definitions)
Figure 6.2 - Obj Definition and I

When an object is presented to a user, they do not need to be aware of the
internal implementation of the object, they merely see the name, or
identifier of the object and the set of messages they can send to the object in
order to instantiate tasks. Consider the Person Class shown in figure 6.2. To
enquire on the Age of a Person, the function Age is used. The actual age is
not maintained as an internal data field but is worked out from the date of
birth (DOB internal data field). The user of this object or function need not
be aware of this. This is known as data hiding, and provides object
encapsulation [Thomas, D:1989].

-105-

Finally, object oriented languages support polymorphism. Objects may
respond differently to the same message, according to their specific Class. In
effect, similar objects provide identical external function names which each
implement different behaviour. For example, a set of graphical objects such
as rectangles, circles, and polygons, may provide the same external
functions, such as draw, rotate, translate, enlarge, and reduce, while
individual objects may implement these functions differently.
Conventional imperative programming languages would require complex
conditional statements to simulate polymorphism, while object oriented
languages simplify its implementation, and present it to the programmer in
a 'more natural' way.

A wide range of object oriented design methods are available to the software
engineer [Bailin, 5.C:1989], [Booch, G:1986]. Object oriented software deéigns
may be implemented using specialised object oriented languages, or using
traditional imperative and functional languages. The latter can be difficult,
and requires special programming skills, and careful application of the
available languages facilities. Typically, there is a move towards adding
object oriented facilities to traditional languages, for example LOOPS
[DeMichiel, L.G:1987], and Objective C [Rawlings, R:1989], C++ [Stroustrup,
B:1986]. These hybrid languages are powerful, and can help the programmer
move from traditional imperative and declarative programming concepts to
those of object oriented programming. However, there is the danger of
mixing traditional programming techniques with object oriented
techniques. This can result in complex programs which are labelled as object
oriented, but in reality are not. An alternative is to use recognised object
oriented languages such as Simula [Birtwistle, G.M:1973], Ada [Barnes,
]J.G.P:1980], EIFFEL [Meyer, B:1987] and Smalltalk 80 [Mevel, A:1987].
Although, the ideas presented above form the basis of most of these
languages, each portrays object orientedness in a slightly different way, and
as such provide different concepts and structures. The Smalltalk 80 language
was chosen for this project, and is briefly outlined below.

6.3. The Smalltalk 80 Programming Language and Environment.

Smalltalk 80 is an object oriented language, incorporated into an interactive
environment. Everything in Smalltalk is an object (an instance of a Class),
and therefore provides for a consistent and 'pure' object oriented software
design. Smalltalk applications are developed by adding, and changing Class
definitions. The Tool-set for doing this is also built around objects, and can

-106 -

itself be modified accordingly. The complete Smalltalk 80 system is not
described in any great detail, but certain elements do need attention.
Appendix B contains a concise description of the salient Smalltalk features
which are relevant to this UIMS implementation, and deals with object
representation, creation, inter-object communication, inheritance,
polymorphism, and explains the important concept of object dependency.
Further Smalltalk reference material includes the Smalltalk 80 Reference
Guide [Smalltalk80:ReferenceGuide], the Xerox Park Smalltalk 80 books
[Goldberg, A:1983], [Goldberg, A:1983b], Mevel [Mevel, A:1987], and Byte
Magazine [Byte:1981].

6.4. The User Interface Management System and Software Architecture.

The underlying UIMS software architecture divides a software application
into three sub-systems; Application Functions, Interface View and Interface
Interaction Controller. The Interface View and Interface Interaction
Controller sub-systems represent the user interface, which is clearly
separated from the Application Functions. This enables an interface to be
implemented separate from the application using the Tool-set provided.
The concept of a Pluggable View Controller (PVC) was conceived as a
mechanism to achieve proper interface separation. The PVC mechanism
provides a generic software architecture component from which complex
direct manipulation interfaces can be built. As a result, the subsequent
interfaces exhibit clear separation from the underlying application, and
enable the advantages of distinct interface separation to be utilised.

The PVC mechanism comprises of separate View, Interaction Controller,
and Separation Controller components. Together, these form the complete
interface which is separated from an application using the Separation
Controller. Interfaces implemented using the PVC mechanism have an
underlying formal interface description which describes what the interface
looks like. The proposed UIMS uses this formal syntax to construct the
appropriate interface and present it to the user. The UIMS Tool-set allows
individual interfaces to be interactively created using the PVC mechanism,
and supports the automatic generation of the relevant underlying formal
interface description. The UIMS effectively executes formal interface
descriptions generated by the integrated interface design Tool-set.

-107 -

In object oriented terms, the application appears as an Application Object.
An Application Object may comprise of many other smaller objects, each
with their self contained state. It appears to the PVC as a single object, and
provides a set of Non-Interactive Functions which can be accessed by the
PVC. The following implementation assumes that a single Application
Object exists for each application, which provides a 'front end' through
which any constituent objects are accessed.

6.4.1. The Pluggable View Controller Mechanism.

Figure 6.4.1 illustrates the Pluggable View Controller mechanism. The View
component controls user interface output, the Interaction Controller
handles user interactions, and the Separation Controller provides
application and interface separation.

The View provides a virtual window area to which graphics and text can be
written. Whenever an interface is used, this virtual window is mapped onto
a physical display window. The size and location of the physical window is
variable, and is set by the user. The constant virtual window is then

- automatically scaled and translated to match the physical window.

The Interaction Controller handles user input. This component monitors
the various input devices (i.e. keyboard, and mouse) and processes the
relevant user interactions.

The Separation Controller controls all communication between interface
and application, enabling both interface and application to be designed and
implemented independently. It is used to contain knowledge which maps
the interface processes on to appropriate application functions.

-108 -

View Physical
Window

Virtual Window

Interaction
Devices:
Keyboard,
Mouse, etc.

Interaction
Controller i

Three Component PVC

aration

g1
1] | g
Ere
3
H
(&]]
Separate Application, Separate User Interface,
providing a Non ' providing appropriate
Interactive Function Core 4 Input and Output

Ficure 6.4.1 - Pluggable View Controller Mechanism

With this approach, the complete Pluggable View Controller (PVC)
mechanism, can be effectively 'plugged' onto Application Objects. The state
of an application is then presented to the user through the PVC View, while
the Interaction Controller allows the user to interact with the Application
Object. The 'plugging' process entails defining which Application Object
functions map onto the Interaction Controller and View processes, and is
performed by the interface designer. Any number of different interfaces can
be implemented for the same Application Object, giving the user a choice of
interface styles. For example, several different PVC mechanisms could be
implemented to provide alternative interfaces to a personnel database
Application Object which provides functions to enquire upon the hourly
pay, and number of hours worked by an employee. One PVC mechanism
may display these values as text upon the screen, and provide an editor with
which to modify them. Another PVC may display the values using sliding
bars, and allow the values to be modified by altering the position of the
relevant bar. In each case, the PVC Interaction Controller would handle user
interactions, while the View would handle output to the screen. The
Separation Controller would then map the relevant user interaction and

-109 -

display functions which require information from, or modify the
applicatidn, onto appropriate Application Object functions. The same PVC
mechanisms used to provide a sliding bar or text editor can also be re-used
within other interfaces. Neither an Application Object, nor the interface (i.e.
Interaction Controller and View) can perform this 'plugging’, as the two are
implemented separately and brought together by the interface designer.

Communication between the Separation Controller and Application Object,
View and Application Object, and Interaction Controller and Application
Object takes the form of Smalltalk message passing. This consists of service
requests made to the Separation Controller. For example, an Application
Object sends messages to the Separation Controller informing it of any
changes made to itself. The appropriate messages are then passed onto the
relevant PVC View and Interaction Controller components, according to the
knowledge contained in the Separation Controller. Similarly, when the '
Interaction Controller informs the Separation Controller of any interactions
which occur, the appropriate Application Object functions are instantiated.

6.4.2. Communication Between Objects and Pluggable View Controllers.

Communication between the interface and Application Object may only
occur indirectly through the Separation Controller. This ensures that PVCs
and Application Objects can be implemented separately. Indirect
communication is explicitly defined for every PVC implementation, and is
achieved using Linkage Slots. These Linkage Slots define what input is
required from an Application Object, and what output can be sent to an
Application Object in relation to the PVC. Although the View and
Interaction Controller define what Linkage Slots are required, the Separation
Controller contains the actual knowledge used for communicating. This
effectively allows the same PVCs to be re-used by changing the knowledge
contained in the Linkage Slots.

-110 -

Yalue

Pluggable

1/0 Smalltalk View
Message Controller
Mechanism

Application Smalltalk

- wn o e en m G e e Em o E tm Gm e e M am Gm me m e

Object Message

<_°“tp"_t. :(Sm alltalk : Output
1\ _Message ‘—\
1

Application Knowledge
Object | contained PDVCf ‘E‘.x'tte.rnal

Communication ! in etfini ion,
| Separation comprising of Named
1 Controller Linkage Slots.
1
]
! Separation

Application ' Controller User Interface

Figur 6.4.2a-P11i_ able View Controller Communication

As shown in figure 6.4.2a, each Linkage Slot is identified with a unique
name, and there are three types of Linkage Slots defined in relation to the
PVC, namely: Input, Output, and I/O. Output Linkage Slots send results to
the Application Object, or inform of interactions such as button presses, and
may require arguments. Input Linkage Slots gather information from, or
determine the state of the attached Application Object. They do not normally
require arguments, and results are returned to the PVC as Smalltalk objects.
I/0 Linkage Slots are used for both Input and Output.

Each Linkage Slot must contain either a Smalltalk 80 message, a literal
value, or nil. A nil value implies that a Linkage Slot is not being used, and
the PVC implementation should define the appropriate default when input
is required. In the case of output Linkage Slots, a nil value implies that no
message is sent. A Smalltalk 80 message implies that a specific message is
sent to the Application Object in order to inform of an interaction event, or
to obtain an input value. A literal value may only be used for an Input Slot.
Instead of sending a message to the object, the specified literal value is
returned whenever input is required by the PVC.

-111-

L]
Communication Application N User Communication
Type \ Interface Type
\
\
: PVC
A. INPUT Aeanaanannnd Separation OUTPUT
\ Controller
\
\
\
\
N
PVC
PASSIVE N > . ACTIVE
B. I Separation
DIALOGUE 2 : ¥ Controller DIALOGUE
\
N
\
N
T »PVC
C. OUTPUT 29] Separation INPUT
3: Controller : :
\
\
\
\
\
PVC
CTIVE]
D 'D&LOGUE N >| Separation gﬁggﬁ
\ Controller
\
L}
Separation Line
KEY:- <«@—— =Required Communication - - = =\ - =PVC Equivalent
Figure 6.4.2b - Application / User Interface Communication.

Figure 6.4.2b illustrates the four types of communication which may occur
between application and interface. These types are named relative to both
PVC and Application Object, and communication is shown using arrows. In
each case, except type D, two types of arrow are used to distinguish between
actual communication, and the PVC equivalent. Examining each type in
detail :-

A This communication is initiated by the PVC, and is used to
inform an Application Object of any state changes that result
from user interaction. The communication is one way, and the
Separation Controller does not expect any reply from the
Application Object. This is achieved using an output Linkage
Slot which contains a Smalltalk message to be sent to the
Application Object, along with any necessary arguments. This
message is sent via the Separation Controller as illustrated
with arrow 1.

-112 -

This communication is again initiated by the PVC, and is used
to request information from the Application Object. The PVC
then has to wait for the object to return the appropriate item of
information. This is achieved using an input Linkage Slot
containing a Smalltalk message, which does not usually
require arguments. The Separation Controller sends this
message to the Application Object (arrow 1), and waits for the
Application Object to reply with the relevant information
(arrow 2). The returned information takes the form of a
Smalltalk object.

This type of communication is initiated by the Application
Object. It occurs when the Application Object wishes to inform
any active PVCs that a change has occurred which may affect |
the representation displayed by their View component. This is
achieved using object dependency. Whenever a PVC is
activated, it is made dependent upon the Application Object to
which it is 'plugged'. This dependency does not affect the
Application Object. Whenever an Application Object wishes to
inform active PVCs of a state change, it must send the changed
or changed: (with an argument) message to itself. This is then
processed by the Smalltalk dependency mechanism as
described in appendix B. The Separation Controller receives
the update or update: (with the same argument) message
accordingly, as shown by arrow 1. If the update message is
received, then all input Linkage Slots are notified that their
attached Application Object may have changed in a way that
affects the value returned by them. If the update: message is
received, then only the input Linkage Slots whose value
matches the argument which is passed are notified of possible
changes. The affected input Linkage Slots then request new
information as shown by arrows 2 and 3. Finally, the PVC
View updates itself accordingly.

This type of communication is again initiated by the
Application Object, which requests certain information to be
input by the user. This was not implemented, and is further
discussed in chapter eight.

-113 -

Often, an Application Object changes only a small part of its state, and the
message changed: is used to inform dependents. The Application Object also
supplies the names of the methods which are affected by a particular state
change. For each method, the message changed: with the method name as
an argument, must be sent to itself. The wider the effects of the change to an
object, the more likely it is that the change message will be most efficient.

This can be illustrated using the Person Class example from appendix D. The
method which updates the age of a Person (age: or dOB:) must inform any
dependents of the change in one of two ways :-

(@) Two messages :- self changed: age and self changed: dOB.
(b) One message :- self changed.

Changing the age of a Person affects the response by that Person to the age
and dOB messages. Method (a) uses two changed: messages, one for each of
the two effects. In each case the message affected determines the argument
used. Method (b) is more general and uses only one message, which informs
any dependents that the entire Person instance may have changed. Method
(a) requires that only dependents which use the two messages age and dOB
update themselves accordingly. However, method (b) requires that all
dependents, regardless of which messages they use, update themselves.

This constrains the application designer who has to describe the effects of
changes to an Application Object using the change and changed: messages.
This may not be as limiting as first appears, because only the direct
Application Object effects need be defined. The PVC mechanism also
imposes the constraint that the object to which it is attached responds to all
of its Linkage Slot message values.

The Separation Component provides specific methods which enable
communication to occur between Application Object and PVC. For example,
consider a PVC with an input Linkage Slot called <inputSlot>, an output
Linkage Slot called <outputSlot>, and an I/O Linkage Slot called
<inputOutputSlot>. Whenever input is required, the message input: should
sent by the View or Interaction Controller to its Separation Controller, with
the Slot name as an argument. For example, input: inputSlot or input:
inputOutputSlot. This then returns the appropriate item of information. If
required the message currentValue: may be used to return the current or
previous slot value. This method does not perform any actual model input,

-114 -

and simple returns the current slot value, which was determined when the
last input: message was issued. Whenever output is required the message
output: should be used, e.g. output: outputSlot or output: inputOutputSlot.
If the output message requires arguments, then these arguments can be sent
by using the alternative method output:using:, with the appropriate
arguments, e.g. oufput: outputSlot using: 123. The Separation Controller
then handles the relevant Application Object communication according to
the knowledge it contains. The implementation and use of Linkage Slots by
a PVC is described in more detail in section 6.4.5.

6.4.3. Defining a Direct Manipulation Interface for an Object.

The architecture uses two types of interface components, which are based
upon the PVC mechanism. A Part Pluggable View Controller (Part PVC) is
used to describe the entire interface, while Interaction Pluggable View
Controllers (Interaction PVC) are used to describe the individual elements
from which it is comprised. Interaction PVCs represent specialised interface
components, and examples include buttons, menus, graphs, sliders, and
switches, while Part PVCs are analogous to a window which contains the
Interaction PVCs. A Part PVC is attached to an Application Object, while
Interaction PVCs are attached to a Part PVC. As discussed later, Application
Objects may appear as aggregate parts of other Application Objects, hence the
term Part Pluggable View Controllers. In such situations, a Part PVC may
also be attached to another Part PVC in a similar way to Interaction PVCs. To
summarise, the Part PVC effectively handles screen output, and user input
for each Interaction PVC or Part PVC attached to it. It also controls the
communication between different Interaction PVCs, and between the
Application Object and the interface.

For every interface there is a corresponding Part PVC description which is
attached to an Application Object using a Class instance method with a
unique Part PVC title. This grammatical description defines the component
Interaction PVCs, how they are related to one another, and specifies any
communication with the Application Object. A user can use any of the Part
PVC descriptions defined for an Application Object Class, to interface with it.
When a Part PVC description is selected, it is executed by the UIMS and the
appropriate Direct Manipulation interface generated. The Direct
Manipulation interface can then be used by the user. A Part PVC description
that has been executed and is being used is known as an active Part PVC.

-115-

Similarly, the Interaction PVCs which make up an active Part PVC are
known as active Interaction PVCs.

6.4.4. Part Pluggable View Controllers.

Figure 6.4.4 illustrates the component structure of a Part PVC, which is based
on the PVC mechanism. However, with regards to the actual
implementation of a Part PVC, the View and Separation Controller are
combined together into one component. Any communication between the
Application Object and the Interaction Controller travels through the View,
and effectively through the Separation Controller. This simplifies the
Smalltalk Code required for implementation, but does not affect the
functioning of the theoretical model.

Handles User
) Interactions and
Interaction passes them onto
Controller appropriate IPVC
Interaction
‘ t Controllers
o Displays own
Separation ' View Representation,
Controlier : and attathd
+ Virtual Window IPVC View
' windows.
Complete PPYC
Figure 6.4.4 - P able View Controller Architecture

Direct Manipulation interfaces are built by combining Interaction PVCs,
attaching them to a Part PVC, and placing them appropriately within the
Part PVC virtual window. Effectively, the Part PVC serves as a container for
Direct Manipulation interface Interaction PVCs, and as a Separation
Controller. All Interaction PVCs attached to the same Part PVC share the
same Application Object. Interaction PVCs and Part PVCs are defined using
Classes, and re-use is easily achieved by creating new instances.

For every Application Object, the user is presented with a choice of interfaces
which may be used, each of which correspond to a Part PVC description.
Each description is implemented as a Smalltalk method which is attached to
the Application Object Class. The method name identifies the Part PVC or
interface name. This Part PVC method code has a strict format which is

-116 -

described using Extended Backus Naur Form in appendix E. This code can be
implemented directly by the interface designer, or can be automatically
generated using the UIMS integrated interface design Tool-set described in
section 6.5. »

A Part PVC groups together Interaction PVCs and acts as their Separation
Controller. A Part PVC View component virtual window is used to contain
individual Interaction PVC View virtual windows, and provides suitable
scaling, translation and display functions. Every Interaction PVC which is
attached to a Part PVC defines the position of its View component virtual
window, within the Part PVC View component virtual window. This
assumes a Part PVC virtual window X Y coordinate system which is scaled
in a range from 0 to 1. Whenever a Part PVC is used, it then automatically
scales the virtual window of its View component to the specified physical
screen area. User interaction is also monitored by a Part PVC, and passed on
to the appropriate Interaction PVC Interaction Controller. This must then
take the necessary actions.

Although basic abstract Part PVC View and Interaction Controller Classes are
provided, special Part PVCs may implement additional functions. These
special Part PVCs must be implemented as Sub-classes of the basic abstract
Part PVC Classes, and must again use Linkage Slots in the usual way to
provide any extra communication requirements with the Application
Object. This facility is described in section 6.4.11.

6.4.5. Interaction Pluggable View Controllers.

As for Part PVCs, each Interaction PVC uses the View and Interaction
Controller structure from figure 6.4.1. However, the Separation Controller
function is now provided by the Part PVC to which an Interaction PVC is
attached. Figure 6.4.5 illustrates the structure of an Interaction PVC, and
shows how individual Interaction PVCs are combined in order to generate
complex Direct Manipulation interfaces.

-117-

Interaction
Controller <4

N\ > d
Apgléjc;téon Virtual Window
Complete IPYC
Other IPYCs

Connecting IPYCs to a PPYC:-,

elevant User
Interactions
passed from
PPVC

Mapped onto
specific area
of PPVC View
virtual window

Identical

IPVCs
mapped |

onto

different
physical
windows

\/

N

f

Connections to Application Object Different PPVC
via PPVC (Not shown when IPVC virtual Virtual
actually working) windows Window

Ficure 6.4.5 - Interaction Pluggable View Controllers Model, and

connection to a Part Plug1gable View Controllers.

Each Interaction PVC represents some type of interaction component, for
example a button, switch, bar chart, or tree diagram. It contains a set of

Linkage Slots which describe the communication required for it to work.
These linkages are made to an Application Object through the Part PVC to

which the Interaction PVC is attached. All Interaction PVCs attached to the
same Part PVC effectively share the same Application Object. Each Linkage

Slot is described using a special syntax which is detailed below in section

6.4.5.2.

-118 -

An interface is implemented by selecting Interaction PVCs and attaching
them to an Application Object Part PVC. This attachment, or 'plugging’ is
achieved by specifying the values contained in the Interaction PVC Linkage
Slots, and finally by defining where the Interaction PVC appears in the Part
PVC window, and its relative size. '

Once attached to a Part PVC, the Separation Controller function for an
Interaction PVC is provided by the Part PVC, and any communication
between Application Object and Interaction PVC occurs through the Part
PVC. When an active Part PVC is being used, the user is provided with a
pointer which is moved around the screen using the mouse device.
Whenever the pointer is over the physical window of an Interaction PVC
(mapped onto the Interaction PVC virtual window), the Part PVC sendé any
user interactions to that particular Interaction PVC. The Part PVC uses a
specific set of messages for informing of user interactions, and the
Interaction PVC Interaction Controller must be implemented to respond to
these messages appropriately.

A set of Interaction PVCs has been developed, and these are listed in
appendix F. If Interaction PVCs are required which are not in this set, then
the interface designer has simply to create new Interaction PVC Class
descriptions using the outline described below in section 6.4.5.1. A library of
generic Interaction PVCs can therefore be built up.

6.4.5.1. Internal Interaction Pluggable View Controller Structure.

The internal structure of an Interaction PVC is based on a specific
framework. This framework will be of interest to the interface designer who
needs to implement new Interaction PVCs. The framework is implemented
using two Smalltalk abstract Classes. One Class implements the Interaction
Controller structure, and the second the View. Although implemented
separately, the View and Interaction Controller Class are linked together by
information contained in the View. An Interaction PVC is used by
generating a new instance of the View Class. This automatically creates the
relevant Interaction PVC Interaction Controller Class instance which is
linked to the View. Effectively, the same Interaction PVC Interaction
Controller Class can be used by different Interaction PVC Views, and vice
versa. The View and Interaction Controller Class instances may
communicate with one another. This may be initiated by either, and suitable

-119-

Smalltalk methods are provided. The Linkage Slots which define
Application Object communication are contained within the View Class.
Any communication between Interaction Controller and Application Object
must therefore pass through the View. Again, this consolidation does not
affect the theoretical functioning of the PVC mechanism, and simplifies the
code required.

A basic View and Interaction Controller abstract class have been
implemented, and these provide default Interaction PVC methods. They
also specify any methods which must be implemented in subsequent
Interaction PVC Sub-classes. New Interaction PVCs must be implemented as
Sub-classes of these Interaction Controller and View abstract Classes. They
may also be implemented as Sub-classes of other Interaction PVC Interaction
Controller and View Classes, which are themselves Sub-classes of the two
abstract Classes. This utilises the benefits of inheritance, as new Interaction
PVCs can re-use code from existing Interaction PVC Super-classes. New
Interaction PVCs may also contain code which is copied from other
Interaction PVCs.

The complete basic Interaction Controller and View Interaction PVC abstract
Class implementations are too extensive to include as a code listing within
the appendices. However, the complete Class hierarchy is given in appendix
G, while the actual Smalltalk 80 Interaction and Part PVC Class
implementations are available for inspection in listing, or code format,
upon request from Sheffield City Polytechnic.

All communication between View and Application Object is controlled by
the Part PVC to which it is attached. This takes the form of Linkage Slot
input and output calls. The Part PVC directs any user interactions to the
appropriate Interaction PVC Interaction Controller, which must then
interpret them. The Interaction Controller message protocol is therefore
fixed and the method code should be re-defined accordingly.

The View essentially provides three message protocol sub-sets. One deals
with the Linkage Slots, a second with the handling of Application Object
state changes, and a third with displaying information on the screen. The
Linkage Slot sub-set can be used for each Linkage Slot, and the relevant
Linkage Slot name must be specified. The Linkage Slot sub-set method code
should not be re-defined in any of the Sub-classes.

-120 -

Application Object state changes are handled automatically by the Part PVC,
which expécts a specific Interaction PVC View message protocol. An
Interaction PVC View should provide a message called changedSlotName
for every input or I/O Linkage Slot, where SlotName is the name of the
Linkage Slot, e.g. changedcurrentltem, or changedcurrentList for Linkage
Slots currentltem and currentList respectively. The appropriate method is
then called when the attached Application Object changes in such a way that
may have affected a specific input Linkage Slot. As the object change may in
fact have not affected the value returned by a particular input Linkage Slot,
the following method code is recommended. This first checks whether the
linkage slot value has actually changed, before performing appropriate
update functions :-

changedSlotName
(self currentValue: #SlotName) = (self input: #SlotName)
ifFalse: [UPDATE FUNCTIONS]

Whenever an Interaction PVC is used for the first time, or the entire
Application Object changes (i.e. the Application Object issues the changed
message) several message are sent to the Interaction PVC in a strict order,
these are modellnitialize: 0ldObject, initializeInputValues, and displayAll
(where oldObject is the previous Application Object before its change, or nil
when the Interaction PVC is being used for the first time). The
corresponding method code for these messages should be re-defined in the
Interaction PVC View Sub-classes. The default code for modellnitialize: and
initializeInputValues is empty, i.e. does nothing.

Every View provides a rectangular area to which text and graphics can be
written. This area is mapped onto the screen window by the Part PVC, when
the Interaction PVC is activated. The Interaction PVC designer need not be
concerned with the actual physical screen window as the mapping from
virtual to physical window is handled automatically. The coordinates of this
virtual window may be defined in several coordinate systems :-

- in its own coordinate system

- in the Part PVC coordinate system
- in the coordinate system of the screen.

-121-

Each View has an internal coordinate system which can be mapped onto the
coordinate system of the Part PVC View to which it is attached, and onto the
coordinate system of the screen itself. This is illustrated in figure 6.4.5.1,
where the coordinates belonging to a View are indicated inside the View,
and the coordinates of that view within its Superview are shown outside. In
order to move from one view coordinate system to another, simple
geometric transformations are implemented. The Smalltalk
WindowingTransformation Class serves to represent these geometric
transformations. Each View has two instances of this Class, to transform
between the coordinate system of the View and both the Part PVC and
physical screen coordinate systems.

A specific method protocol is expected when generating the display for a
View, and this should be followed when implementing new Interaction
PVCs. One method called modelDisplay is expected, and is called whenever
the Interaction PVC is first displayed or when the attached Application
Object changes in a major way as indicated by the use of the general changed
rather than the more specific changed: message. Other methods should also
be implemented which are called whenever an Application Object changes
its state in a way which affects only part of the view generated by an
Interaction PVC View. These can then be called by the changedSlotName:
method code, and may also be used by modelDisplay method to display the
initial representation.

L/0@0 VDU Screen
140@130
L/0@0 PPVC Virtual Window
0.125@0.235

Po@o IPVC Virual Window

| 1@1 .
iransformation 0.75@0.7
1@177]
displayTransformation 880@850
Y 1024@102477]

Ficure 6.4.5.1 - Interaction Plu le View Controller Plu 1
View Controller, and screen Co-ordin m

-122 -

Finally, two other View instance methods are expected, initialize and
release. The initialize method is called once whenever a new Interaction
PVC is first added to a Part PVC, and release is called when an Interaction
PVC is closed. Default methods are implemented within the basic View
abstract Class, and any Sub-classes which override these methods must
ensure that they first call the abstract View Class methods, using the super
initialize, and super release messages.

6.4.5.2. External Interaction Pluggable View Controller Description.

The Linkage Slot requirements for each Interaction PVC are specified using
an external description defined by the View Class. This is used by the
interface design Tool-set when adding new, or modifying existing
Interaction PVCs. Every View Class definition must respond to the Class
message SlotDescription with the Interaction PVC external description. The
response to SlotDescription should be an array which describes the format of
individual Interaction PVC Linkage Slots. The syntax for this description is
now defined and explained using examples from appendix F. Appendix E
also gives the full Extended Backus Naur Form syntax.

Consider the List and BarChart Interaction PVC examples, and figure 6.4.5.2

List IPVC

Linkage Slot Descriptors SlotDescription: :-

((currentltem 'Current Selected Item' (Input Message with (0)
noMsgArgs))

(newSelection 'Informing Model of new selection’ (Output
Message with (1) noMsgArgs))

(itemList Ttem List' (Input Any Collection with (0)
noMsgArgs) '#()") '
(stringPrint 'Print List as String ?' (Input Literal Boolean))
(oneltem 'Only One Item in List ?' (Input Literal Boolean))
(yBM 'Interaction Menu' (Input Any Menu with (0)
noMsgArgs)))

-123-

Bar Chart IPVC

Linkage Slot Descriptors SlotDescription :-

((label 'Title of Chart' (Input Any String with (0) noMsgArgs)
"'No Label™)

(barValues 'Bar Values' (Input Any Number with (0)
noMsgArgs) multiSlot)

(barTitles 'Bar Labels' (Input Literal String) "'No Label™
multiSlot)

(yBM 'Interaction Menu' (Input Any Menu with (0)
noMsgArgs)))

Input Linkage Slots may be typed. This type identifies the Class type of the
Smalltalk object which the Linkage Slot message returns to the Interaction
PVC. It is used interactively to request a new, or modify an existing
Interaction PVC Linkage Slot literal value.

-The Interaction PVC designer must describe all Linkage Slots, and
implement the Class method accordingly.

Every Linkage Slot descriptor comprises an array containing 3 conditional
items, and two optional items in a specific order. The three conditional
items are Slot Name, Slot Title, and Slot Type in that order. The two
optional items which follow the conditional ones are Slot Default Value,
and Multiple Slot ID.

The Slot Name identifies the Linkage Slot name (e.g. <currentltem> and
<barValues>), while the Title represents a description of the Linkage Slot
which takes the form of a string (e.g. <'Current Selected Item'> and <'Bar
Values'>). This Title is used by the Tool-set when adding an Interaction PVC
to a Part PVC. :

The Slot Type consists of an array which identifies what type of
communication the Linkage Slot is used for, and what type of value it can
contain. The first item in the array identifies the Communication Type and
must be either <Input>, <Output> or <IO>, implying either input, output, or
input and output in relation to the Interaction PVC. The next item is known
as the Value Type, and identifies the type of value the Linkage Slot must
contain. The Value Type can be either <Literal>, <Message>, or <Any>.

-124 -

However, when the Communication Type is defined as <Output>, the
Value Type must be set to <Message>, as Literal values are not allowed. A
Value Type of <Literal> implies that the Linkage Slot must contain only
Literal values, and a third and final item in the array must identify what
type of Literal value may be contained, e.g. <(Input Literal Boolean)>. This
must correspond to an existing Smalltalk Class, and is used by the Tool-set to
acquire a Literal value when the Interaction PVC is being added to an
existing Part PVC.

]
! currentltem
CRequires a Unary Smalltalk Messaga—’
(]
] .
Requires any Keyword Smalltalk | nespelection
Message allowing 1 argument , ‘
o ; LIST
equires a Literal object of Collection lteleSt. Interactive
Class, or a Unary Smalltalk Message | Pluggable
Requires a Literal Smalltalk , STTingETizs ConvtLeOY]er
object of Boolean Class 4 .
' Mechanism
Requires a Literal Smalltalk 1 oneitenm
object of Boolean Class ;
! yBM
Requires a Literal object of Menu '\
Class, or a Unary Smalltalk Message '
]
H
! label
Requires a Literal object of String \
Class, or a Unary Smalltalk Message g
. I barValues BARCHART
(Requires a Literal object of Nume___’ Interactive
Class, or any Smalltalk Message : Pluggable
- - , - 1 barTitles Yiew
(Requires a Literal object of Strmg)_’ controll
Class, or @ Unary Smalltalk Messagae/, Stk , oF
' - Mechanism
Requires a Literal object of Menu Y
Class, or a Unary Smalltalk Message \

PVC External Definition,
comprising of Named

Type of knowledge to be
contained in the Separation

Controller Linkage Slots.
K.EY:
Unl)&sgoer‘g]);:ogeg{]?:;gﬂ:nts) —> lg?:tt
e ot eguirements) = slot
4,52 - Example Interaction Pl View Controller

-125-

A Value Type of <Message> signifies that the Linkage Slot must contain a
Smalltalk message. As a result, three further array items must be included to
identify the type of Smalltalk message allowed, e.g. <(Input Message without
() noMsgArgs)>. The first of these may be either <with> or <without>, and
the second must be an array of positive integers, which may be empty. These
two items are combined to decide what type of Smalltalk message the
Linkage Slot can contain. Smalltalk messages may or may not require
arguments. The numeric array represents a list of argument counts for
Smalltalk messages, where 0 implies no arguments. If <with> is specified,
then this array represents which Smalltalk messages are allowed, e.g. <with
(0 1 2 3)> implies that only messages which require 0, 1, 2, or 3 arguments are
allowed. If <without> is used, then the array represents the Smalltalk
messages which are not allowed, e.g. <without (0 1 2 3)> implies that any
Smalltalk messages are allowed, except those which require 0, 1, 2, or 3
arguments. It follows that <with ()> is an invalid entry, implying that no
Smalltalk messages are allowed. This should not be used.

The final additional item determines whether the Linkage Slot message
arguments (if any) are to be included in the Part PVC description, and
therefore requested when adding new or changing existing Linkage Slot
values. Its value may be either <noMsgArgs> <msgArgs> or <nilMsgArgs>.
The value <noMsgArgs> implies that if arguments are required, they are not
requested when the Interaction PVC is added. This implies that the
Interaction PVC will determine its own arguments. The value <msgArgs>
implies that the arguments required by the selected Linkage Slot message are
to be fixed, and specified within the Part PVC description. The arguments
must therefore be requested when the Linkage Slot value is added or
modified. They are requested in matching key-word order using the Please
type argument n' prompt. For each argument, the interface designer is
presented with an editor window in which to type Smalltalk code. This code
is executed, and the value returned as the appropriate argument. For
example, consider the Smalltalk message abcd:efgh:ijkl:mnop: which
requires 4 arguments. The user would be prompted for these 4 arguments,
and the order would match the message order, i.e. abcd: argumentl efgh:
argument2 ijkl: argument3 mnop: argument4. Finally, <nilMsgArgs>
implies that arguments are specified in the Part PVC description, but they
are all set to a value of nil.

-126 -

The final Value Type option <Any> implies that a Linkage Slot can contain
either a Literal value, or a Smalltalk message. Four additional array items
are then required, e.g. <(Input Any Collection with (0) noMsgArgs) >. The
first identifies the type for any Literal value, while the remaining three
identify any Smalltalk message type in an identical way to the three
additional items included when a Value Type of <Message> is used.

The optional Default Value determines what default value is returned by an
input Linkage Slot. This default value is used whenever the returned value
is nil. This occurs when either the Linkage Slot value is nil, or the
Application Object returns nil in response to a PVC input request. It takes
the form of a piece of Smalltalk code enclosed by single quotes which is
executed to determine the default value, e.g. '12', 'Array new with: 3 with: 5
with: 6','1 to: 30 by: 5'. If no default is stated, then the returned nil value is
used.

Finally the Multiple Slot ID may be included and takes the form of the verb
<MultiSlot>. This implies that the Linkage Slot may contain Multiple
Values, and is discussed in 6.4.8 below. If this optional verb is excluded then
the normal Single Linkage Slot is assumed.

6.4.6. Communication Between Interaction Pluggable View Controllers.

Interaction PVCs connected to the same Part PVC may communicate directly
with one another. When the interface is defined, the designer has the option
of linking different Interaction PVCs to one another. An Interaction PVC
may be connected to one or many Interaction PVCs. Whenever a link is
made between Interaction PVC A and Interaction PVC B, any links that
already exist between A and other Interaction PVCs are passed onto B. ’
Similarly, any of existing links belonging to B are passed onto A. This type of
relationship is similar to the Smalltalk object dependency mechanism, but
may only be used for Interaction PVCs.

Messages are provided by the Interaction PVC abstract Classes, to enable
these Interaction PVC links to be utilised. How these messages are used, and
the effect of linking different Interaction PVCs together is decided by
individual Interaction PVC implementations. For example, a bank of
switches may be created by linking many individual Interaction PVC
switches together. The effect is similar to a set of TV station selector
switches, where only one can be selected at a time, and selecting one de-

-127 -

selects the currently selected switch. These inter Interaction PVC link
messages can be instantiated by an Interaction PVC View sending the
relevant message to itself :-

allLinks
This returns an array of pointers, pointing to the linked
Interaction PVCs including the Interaction PVC which sent the
message. This array of pointers can then be used to
communicate with the linked Interaction PVCs.

myLinks
This returns an array of pointers, pointing to the linked
Interaction PVCs excluding the Interaction PVC which sent the
message. This array of pointers can again be used to
communicate with the linked Interaction PVCs.

isLinked
This returns true, or false depending upon whether an
Interaction PVC is linked to any other Interaction PVCs.

Each Interaction PVC determines whether it can be linked by its response to
the View Class message IsLinkable. This must return one of three verbs,
<None>, <Identical>, or <Any>. The verb <None> implies that an
Interaction PVC cannot be linked to any other Interaction PVC. This is the
default response provided by the example Interaction PVC View Class. The
verb <Identical> implies that an Interaction PVC View can be linked to any
other Interaction PVC View of the same Class as itself. Finally the verb
<Any> implies that an Interaction PVC View can be linked to any other
Interaction PVC View attached to the same Part PVC, regardless of its Class.

An Interaction PVC links itself to another Interaction PVC by sending the
appropriate message to the other Interaction PVC, and setting the argument
(anIPVC) to itself. A differentiation is made between the linking together of
Interaction PVCs interactively at run time (i.e. when an interface, or Part
PVC is being interactively designed), and when a Part PVC description is
being executed (i.e. after the link has been interactively defined and the Part
PVC description automatically created). The abstract Interaction PVC View
Class implements the following messages which may be re-defined in
subsequent Interaction PVC View Sub-classes.

-128 -

addLinkInteractive: anIPVC
This message links anIPVC to the message receiver, i.e.
another Interaction PVC. It is used to link together two
Interaction PVCs at run time. That is once a Part PVC has been
executed, and is being interactively modified.

addLinkCreation: anIPVC

This message again links anIPVC to the message receiver. It is
used to link together two Interaction PVCs at execution time.
That is while a Part PVC description is being executed in order
to generate a Direct Manipulation interface. Once an
Interaction PVC link has been defined interactively it is stored
as part of the Part PVC description, and this message is used to
recreate the linkage when the Part PVC description is re-used.

The reason for this distinction is due to state conflict resolution. When two
Interaction PVCs are linked to one another, their different states may
conflict, this needs resolving. For example, linking a switch which is on to a
bank of other switches; only one banked switch is allowed to be on, and
therefore either the switch being linked, or the conflicting banked switch
which is on, must be switched off. While an interface is being used this
conflict can be resolved by interrogating the user or interface designer.
However, this type of interrogation is impractical during Part PVC execution
because an interface may be being used by somebody who knows nothing
about the design decisions which were made. '

6.4.7. Interaction Pluggable View Controller Cursors.

This feature allows individual Interaction PVCs to define the cursor shown
when the mouse pointer appears over their Interaction PVC window (after
it is mapped onto the physical screen).

Smalltalk provides a special Class called Cursor, which defines graphic
shapes which can be displayed on the screen. These shapes are used to
represent the position of the mouse pointer, and move according to the
mouse movement from the user. Individual Interaction PVC Views may
implement the Class method Cursor such that it returns an instance of the
Cursor Class, which defines their cursor. This cursor is then displayed
whenever the mouse pointer is over their Interaction PVC View window.

-129 -

As the mouse pointer moves out of the window, the previous cursor is
restored. The default cursor is defined as an arrow.

6.4.8. Interaction Pluggable View Controller Multiple Linkage Slots.

Because the number of Linkage Slots is fixed by the Interaction PVC
implementor, this feature can be used to provide dynamic Multiple Linkage
Slot definition. This enables a Linkage Slot to contain more than one value,
and the number of values may be altered at run time. A Multiple Linkage
Slot uses a variable length array to contain the Linkage Slot values, i.e.
either a Smalltalk message, literal, or nil. An example which uses this
feature is the BarChart Interaction PVC, where the number of bars displayed
is variable. It is not feasible to represent each bar value with a separate
Linkage Slot. Instead, the values represented by each bar can be determined
using a single input Multiple Linkage Slot. Multiple Linkage Slots may also
be used for output, and input/output.

As described in section 6.4.5.2, an Interaction PVC Multiple Linkage Slot is
described in a similar way to a normal Linkage Slot. However, the external
Linkage Slot descriptor must include the verb <MultiSlot>. The external
Linkage Slot descriptor applies to all multiple values, i.e. all values are of
the same Communication Type (input, output, or input/output), same
Value Type (Literal, Message, or Any), and share the same Default Value. A
set of specialized messages are provided to enable the Interaction PVC
implementor to determine how a Multiple Linkage Slot is used. These are
in addition to the message interface described in section 6.4.5.2, and are
implemented in the Interaction PVC View abstract Class MultilIPVCView.
These messages are now listed. In each case slotName identifies the
Interaction PVC Multiple Linkage Slot being modified, value represents the
new, or modified value at a particular position (i.e. a Literal value, Smalltalk
message, or nil), while all positions must be integers. Suitable error checking
is also incorporated.

addMultiSlot: slotName value: newValue type: aType
This allows a new Linkage Slot value newValue of Type aType
(either #Literal of #Message), to be added to the end of the
existing Multiple Linkage Slot called slotName.

-130-

changeMultiSlot: slotName atPos: pos value: newValuetype: aType
This allows the Multiple Linkage Slot value for an existing
position pos, to be set to newValue.

removeMultiSlot: slotName at: pos
This allows the slotName Multiple Linkage Slot value at

position pos to be removed.

swapMultiSlot: slotName posl: posl pos2: pos2
This enables the Multiple Linkage Slot values at pos1 and pos2
to be swapped.

multiSlotCount: slotName
This returns a count of the current number of values
contained within a Multiple Linkage Slot.

input: slotName at: pos
This performs input, and returns the value for the particular
Multiple Linkage Slot value at position pos.

inputAll :

This performs input, and returns the value for all of the
Multiple Linkage Slot entries, An Array of values is returned,
which is ordered according the Linkage Slot order.

currentValue: slotName at: pos
This returns the current / previous value for the particular
Multiple Linkage Slot value at position pos. No actual input is
performed.

output: slotName at: pos |
This outputs to the model using the current Multiple Linkage
Slot value and arguments at position pos.

output: slotName at: pos using: object

This outputs the object object using the MultiplevLinkage Slot
value at position pos.

-131-

The current values for a Multiple Linkage Slot are stored when the
underlying interface syntax description is automatically generated. These are
then restored when the interface description is next used, or executed. When
an Interaction PVC is added to a Part PVC, the first Multiple Linkage Slot
value must also be specified. Once attached to a Part PVC which is active,
further values for a Multiple Linkage Slot may be added. In the Bar Chart
example, this would be the equivalent to adding more bars. The order of
Linkage Slot values is maintained, with the last value added placed at the
end of the array. Interactive tools are provided for removing, changing, and
re-ordering the list of values contained in a Multiple Linkage Slot.

All Interaction PVCs which require Multiple Linkage Slots must be
implemented as Sub-classes of the MultiIPVCView abstract Class. In doing
so, several methods must be implemented to handle Application Object
state changes which affect the Interaction PVC. These methods are similar to
those described earlier in section 6.4.5.1 for single Linkage Slot, and are
invoked by the Separation Controller whenever the Application Object state
changes in a way which affects individual Multiple Linkage Slot values. '
Two methods are required, namely changedSlotName, and
changedSlotName: aPos, where SlotName should be replaced with the
name of the Multiple Linkage Slot, and aPos represents the number of the
Multiple Linkage Slot value which is affected. The former method is
invoked when the entire set of Multiple Linkage Slot values have been
affected or changed, while the latter is invoked whenever the value
returned by individual Slots may have changed. Examples include
changedBarTitles, and changedBarTitles: aPos, for a Multiple Linkage Slot
called barTitles.

6.4.9. Default Part Pluggable View Controllers.

Each Class defines the Part PVCs which can be used to interact with any
instances of itself. Similarly, each Smalltalk Class may also define a default
Part PVC to be used to interact with its instances. This takes the form of a
Part PVC name, and may be changed using the Tool-set described later. This
default Part PVC user interface is used in various ways throughout the
-system.

-132-

6.4.10. Part Pluggable View Controllers and Part Hierarchies.

Every Smalltalk method returns an object upon completion of its code. The
object returned may be specified using the Upward Pointing Arrow ()
character, and defaults to the receiver object. The object which is returned
can itself be used as a receiver for other Smalltalk messages. For example 1 +
2 + 4 which returns 7. This is accomplished by sending the message + with
the argument 6 (a Smalltalk object identified with the name 6) to the object
titled 1. The object titled 6 is obtained from the result of sending the message
+ with the argument 4 to the object titled 2. All these objects are instances of
the Integer Class. This concatenation of messages is one of the major
strengths of Smalltalk. Unfortunately, if used incorrectly it also causes major
problems. Objects are referred to by a name which points to them in
memory. Object messages may return similar pointers to objects. In actual
fact, an object may return a pointer pointing to one of its internal data fields.
Once returned, this internal data field pointer (or rather the object it points
to) may be the receiver of other Smalltalk messages. These chained messages
may then alter the state of the internal data field without going through the
message interface of the owner object. The internal data fields of a Smalltalk
object can therefore be changed without the knowledge of the object itself.
This breaks the encapsulation concept provided by object oriented languages.

Using an example from appendix D, consider the behaviour of an instance
of the Person Class called <freddy>. The message department, when sent to
<freddy>, returns an instance of the Department Class, which represents the
department to which <freddy> belongs. The message location: with the 'new
location' string as an argument may then be sent to this returned instance of
a Department Class. Note that this Department Class instance has no named
pointer, and the message location: is sent :-

freddy department location: 'the new department name'

This has allowed changes to be made to the internal data field called
department, which belongs to a Person Class instance called <freddy>, and
was performed without the knowledge of the owner to which the internal
data field belonged, i.e. <freddy>. The correct way to access and change the
location of the object pointed to by the department internal data field, would
be to implement an instance method called newLocation: (or an equivalent
name) in the Person Class. This method would take the new location as an

-133 -

argument, and would then update the location for the department internal
data field. It could also handle any side effects which may result.

Instead of returning pointers to internal data fields, Smalltalk should return |
pointers to copies of these fields. Although identical clones, these new
objects would be separate from the actual internal data fields, and therefore
not subject to this error. However, this inconsistency is often used to make
Smalltalk code more efficient, and perform special types of functions. One
way around this problem is to provide Part Hierarchies

Smalltalk does not usually provide the facility to build objects out of parts,
i.e. Part Hierarchies. In this situation, the parts are themselves separate
objects which are defined using Smalltalk Classes. As such they may be
'stand alone' instances, or attached as a part of an owner object. When
attached as a part, their behaviour and state may change. Likewise, the state
and behaviour of the owner may also change. One such Part Hierarchy
implementation is discussed in chapter seven.

When an object Part Hierarchy exists, a Direct Manipulation interface may
be required to provide access to the parts. Consider some of the examples
from appendix D. The Sparkplug, Engine and Car Classes are implemented
separately, and each Class may define its own set of Part PVC Direct
Manipulation interfaces which can be used to interact with their instances.
The Part PVCs defined for a part can be used when examining the part
through a Part PVC defined for the owner. For example, we may define a
Part PVC on a Car which allows the user to interact with the engine part
belonging to a Car. Any of the Part PVCs defined on the Engine Class may be
used in the Direct Manipulation interface defined to interact with the Car.
The Engine Part PVC acts as a special type of Interaction PVC, and its
Separation Control is provided by the Part PVC to which it is attached. This
also handles the display and user interaction functions in a similar way to
normal Interaction PVCs.

The effect of modifying a part, and how these effects are passed on to the
owner are discussed in chapter seven. Needless to say, any effects that result
from a change in an owner or part state are immediately seen in the affected
PVC mechanism. Using figure 6.4.10, consider a Part PVC defined on a Car
(C), which shows the acceleration, weight, and tyre pressures of the Car at a
particular engine rev speed. The engine part is also shown using a Part PVC
defined on the Engine Class (B). This Part PVC shows the engine rev speed,

-134 -

and power being generated. It also provides an interface to the spark plug
part using a Part PVC defined on the Sparkplug Class (A). This final Part
PVC shows the efficiency of a sparkplug, and allows it to be modified. Any
changes to the efficiency of a sparkplug immediately affects the power of the
engine, and the acceleration of the car. These effects will be shown
immediately in the relevant PVC Views. If an instance of the same
Sparkplug Class, which was not part of an engine but a 'stand alone' object,
was being interfaced with, the same Sparkplug Part PVC interface could be
used. In this case, no effects would be passed on to a part owner object.

Using Part Hierarchies, Interaction PVCs are allowed access to part
behaviour at lower levels. An Interaction PVC attached to a Part PVC may
access the application messages belonging to the Application Object being
accessed through the Part PVC. For example, a Bar Chart Interaction PVC
may be attached to a Part PVC on a Car. This Bar Chart may then access
individual wheel parts, and enquire on their pressure. The results may then
be displayed as four bars in the Bar Chart. The Bar Chart Interaction PVC is
attached to the Part PVC which is defined on the Car, and the Part Hierarchy
allows 'safe' access to the wheel parts without breaking any data hiding or
encapsulation rules. If this were not allowed, then the Car Class would need
to implement some of the wheel part behaviour within its own behaviour,
which would defeat the concept of Part Hierarchies.

-135-

A:PPVC defined on Sparkplug Class:

<
- _ <¢+— General /O IPVC showing
Sparkplug Efficiency = 98.22 '| Sparkplug Efficiency, and allowing
L) it to be modified

B:PPVC defined on Engine Class (including above Sparkplug Class PPVC):

7 | Sparkplug PPVC used
to view sparkplug Part
Sparkplug Efficiency = 98.22
A
| Slider IPVC used to display

and vary engine revs

(Power Qutput = 123 }—— General Output IPVC
showing Power Output

C:PPVC defined on Car Class (including above Engine Class PPVC):
§ Bar Chart IPVC on

_ tyre pressures
3 [Weight = 1234 l ¢]General Output IPVC
showing Car weight

Acceleration = 999 _Gener?] Output IPYC
showing acceleration

7 <
Sparkplug Efficiency = 98.22

N 4d | Engine PPVC used

[to view engine Part

(Power Output = 123)

I_igl_lre 6.4.10 - Combining Part Plug_ga ble View Controllers,

-136 -

6.4.11. Special Part Pluggable View Controllers.

PVCs have their own functionality which can be distinguished from that of
their attached Application Object. This can serve as a separate Non-
Interactive Function Core, on to which further Interaction PVC mechanisms
can be linked.

For example, consider an Interaction PVC which displays a graphical
representation of a tree. Assuming that only part of the tree is displayed on
the screen, the Interaction PVC may provide functions for actions such
finding nodes and branches, and zooming in and out. The Interaction PVC
may itself have further Interaction PVC components attached to it, for
invoking these functions. For example, there may be buttons to zoom in and
out, a slider to represent and change the percentage zoom, and a text editor
to search for named nodes and branches. These further Interaction PVC
components would be linked to the tree Interaction PVC, and access its Non-
Interactive methods.

The concept of Special Part PVCs is included to investigate the possibility of
these type of PVCs. This step is completed, and has proven that once Special
Part PVC concepts are extended to Interaction PVCs this facility can be
provided for all PVCs.

A Special Part PVC is essentially a Part PVC which provides additional
application functions which are not supported by the Application Objects to
which they are attached. Consider the Array Class in Smalltalk, which
represents an array of heterogeneous objects. This Class does not provide a
pointer to point to the current array item being examined. However, if this
feature is required by an interface the Part PVC must provide it. A Special
Part PVC may implement extra functions which use existing Application
Object functions to provide more complex application behaviour. Any extra
Application Object communication must be provided by additional Part PVC
Linkage Slots.

These extra Part PVC functions appear to the designer as part of the
functionality of the Application Object. As such, Interaction PVCs attached
to Special Part PVCs can use these extra functions. This facility is useful but
an important conceptual problem arises as to whether an interface should be
allowed to implement additional Application Object functions. Chapter

-137 -

eight includes further discussion, as well as justification for moving this
implementation into the Separation Controller.

Special Part PVC Views must be implemented as Sub-classes of the
PPVCSpecialView abstract Class, while the Part PVC Interaction Controller
remains the same as the normal Part PVC Interaction Controller. The new
Special Part PVC View must also provide an instance method called
localMenultems which returns an array containing a list of the additional
methods. This distinguishes between the functionality of the Application
Object, and the additional Special Part PVC functions. Finally, they must
respond to the Class message SlotDescription with their Linkage Slot
description, as previously discussed.

An example Special Part View Class called PPVCUserModelView has been
implemented to demonstrate this facility. This Class enables individual User
Model methods and Classes to be interactively selected for modification - a
feature not provided by the User Model implementation itself. The External
Linkage Slot Description for this Class is given in appendix H.

6.4.12. Interactive Creation of Smalltalk Objects.

New instances of Smalltalk objects are normally created by sending the new
message to a specific Class. However, this is insufficient when a Literal
Linkage Slot value is required while adding a new Interaction PVC to a Part
PVC. An interactive means of creating new instances is required. A
universal Class method called interactiveCreate: aString on: oldValue was
added, which can be understood by all Smalltalk objects. The aString
argument determines the title which is used when requesting a new
instance, while oldValue represents an existing instance of the Class which
may be nil - implying that a brand new instance is required. The response to
this message is expected to be a new instance of the Class, which has been
interactively created. When new Classes are added, the programmer should
re-define this method appropriately. The default response is intended to
present an editor window into which Smalltalk code can be typed. The result
of executing this code is then returned as the new Smalltalk object. The
method was implemented for other Classes such as Boolean which responds
by asking whether true or false is required. Similarly, the String Class
implementation is different. This displays the existing value oldValue, or "'
if it is nil, in an editor window. The user is then allowed to modify the

-138-

window contents, and the end result is returned as a new String with the
appropriate value.

This method is used when an Interaction PVC Literal Linkage Slot value is
required, or is being modified. Finally, the method code can itself use Part
PVCs defined on the Class.

6.4.13. Construction and Interaction Menus.

Smalltalk 80 provides three mouse buttons namely red, blue and yellow,
selected by combining keyboard and mouse button presses. All PVCs have
the option of providing a construction and interaction menu associated with
the blue and yellow mouse buttons respectively. The construction menu is
for use by the interface designer when building Direct Manipulation
interfaces. Some example entries would be 'modify size', 'add links', and
'close Interaction PVC'. The interaction menu is for the user when
performing normal interactions with the interface. Example entries for a List
Interaction PVC include 'Add list item’', 'Remove List Item', and 'Re-order
List".

Both menus must use the Extended Lean Cuisine Syntax described below,
and may be generated using the design Tool-set. The functions associated
with individual options must map onto the functions provided by the
relevant PVC View Class, and may also be inherited from any Sub-class
hierarchy.

The abstract Interaction PVC View Classes described earlier implement
default interaction and construction menus for all Sub-classes. The options
provided by these menus are listed in appendix L

6.4.14. Extended Lean Cuisine Hierarchic Menus.

All UIMS menus are defined using an Extended Lean Cuisine (ELC)
Hierarchical Menu syntax. This is based upon an extension of the Lean
Cuisine' formal menu syntax described by Apperley [Apperley, M.D:1989].
Appendix E gives the full Extended Lean Cuisine Extended Backus Naur

Form syntax.

-139-

Briefly, ELC menus are made up of groups of named items. These named
items may be either Terminators, or Non-terminators. Terminators
represent items which can be selected. They may be used to invoke
functions, or display the state of an application. A Non-terminator points to
- another ELC menu and its appropriate description, hence ELC menus are
hierarchical. Selecting a Non-terminator causes another menu to be
displayed, from which a further choice must be made. Various types of Non-
terminators exist, namely Real and Virtual. Also, a Non-terminator can
stipulate that at least one of its items, or sub menu items, has a true state.

ELC syntax can effectively be used to describe all types of menu structures
[Apperley, M.D:1989]. The ELC syntax was implemented in Smalltalk, along
with a graphical interpreter and rule set which converts the ELC syntax into
an interactive menu displayed on the screen. The syntax is separate from the
graphical interpreter, and the result of interacting with a displayed ELC
menu is a list of Smalltalk messages which need to be sent to an Application
Object. The graphical interpreter and rule set use recursive code to display
and process menu interaction for the user. These can easily be modified to
suit alternative interaction styles.

The ELC extensions involve the introduction of two special types of
Terminators :-

Bistable Terminator.
This terminator is similar to a switch, and contains an internal
state which is either true or false. When a Bistable Terminator
is selected, one of two messages are returned depending upon
whether the state is to be switched on or off. These messages
are labelled onMsg and offMsg, and their values are defined
according to the ELC description for a menu. A Bistable
terminator is displayed as a menu item plus a small box which
represents the state. If the state is on, the box appears black, if
off it appears white, i.e. invisible - this is a simpler alternative
to using a tick to represent on.

Monostable Terminator.
This terminator has no state, and only uses one message.
Whenever a Monostable Terminator is selected in an ELC
menu, the value of this message is returned.

-140 -

ELC menus can be built by either explicitly specifying the ELC syntax, or by
using the interactive menu editing tool provided. When a Linkage Slot is
used for PVC menus and contains a Smalltalk message, it is expected that
the attached Application Object will respond to the message with an ELC
menu instance. When a Linkage Slot contains a literal, this literal must be a
definition of an ELC menu using the ELC syntax. This is then executed to
generate a hierarchic menu.

6.5. The Part Pluggable View Controller Tool-set.

An Application Object Direct Manipulation Interface may be constructed by
explicitly defining the Part PVC description and implementing a new
Smalltalk method. Alternatively, the designer may use the integrated
interface design Tool-set. The Tool-set allows a Direct Manipulation
interface to be constructed using a 'Design by Example' approach. This
entails selecting the required Application Object, and designing the interface
in real time. The Tool-set supports the selection of individual Interaction
PVCs from the library of available Interaction PVC. These can then be placed
in the appropriate screen positions, and sized according to requirements.
Existing Interaction PVCs may also be moved around, re-sized, linked to
other Interaction PVCs, or removed altogether. Existing Part PVC interfaces
can be selected and added to the current interface. The interactive
implementation of hierarchical menus is also supported.

The interface being implemented or modified may be tested at any time, and
when completed the Tool-set automatically generates the necessary Part PVC
description as a Smalltalk method code. Once generated, this PVC
description can be executed by the UIMS. In doing so, the relevant user
interface is reconstructed and presented to the user for interaction.

The major functions provided by the Tool-set are as follows :-

- creation, and addition of new Part Pluggable View Controllers
to existing interface

- creation of the underlying interface syntax description

- addition and deletion of new Interaction Pluggable View
Controllers to existing interface

- alignment and sizing of the physical windows associated with
individual Pluggable View Controller View components.

-141-

- linking of Interaction Pluggable View Controllers to one
another

- modification of Pluggable View Controller Linkage Slot values
using an interactive inspector window

- specification of Default Part Pluggable View Controllers

- spawning of Part Pluggable View Controllers to generate new
interfaces

- the interactive construction of Extended Lean Cuisine
Hierarchic Menus, and the automatic generation of the
appropriate ELC syntax description.

The main purpose of the Tool-set is the specification and modification of the
knowledge contained within a PVC Separation Controller. As such, the
Tool-set uses information concerning PVC communication requirements
which are explicitly defined using external Linkage Slot descriptors.
Knowledge is also required concerning the available Application Object
method protocol, or Non-Interactive Function Core. Essentially, the Tool-set
assists the designer in the task of specifying which values to place in the
relevant PVC Linkage Slots. The possible values depend upon the PVC
external Linkage Slot descriptor, and the available Application Object
methods. The Tool-set provides the interface designer with a list of possible
PVC and Application Object linkage strategies. The designer then selects the
required strategy, and places an Interaction PVC or Part PVC in its required
position within the current interface window.

The Tool-set uses Direct Manipulation and menu style interaction, which
are implemented using PVC mechanisms. Appendix H shows example
interfaces implemented using the Tool-set, and the associated automatically
generated Smalltalk code. The complete Tool-set is briefly documented in
appendix L.

6.6. Summary.

The Tool-set and basic UIMS architecture were successfully implemented
and tested on an Apple Macintosh II micro-computer, with 5 Megabytes of
memory, and a 20 Megabyte hard disk. The Smalltalk system used comprises
Virtual Image Version VI2.2, and Virtual Machine Version VM1.1. The
system was also tested using other Smalltalk Virtual Machine platforms on
the Apple Macintosh Plus, and Sun Work-station. The response time of the
final UIMS is fast, and the Tool-set adequately fulfils the rudimentary

-142 -

interface design requirements. Further work is needed to extend this system,
and this is discussed in chapter nine.

The successful UIMS implementation has established that it is possible to
completely separate the interface and application. Results from the use of
the proposed UIMS have also shown that separation places certain
constraints upon application and interface design. These are examined in
chapter eight, which critically evaluates the proposed UIMS with emphasis
given to the underlying software architecture model. This chapter also
identifies the practical advantages and disadvantages arising from this
approach to interface design. The implementation work is critically assessed
and evaluated, and the Smalltalk 80 language is examined in relation to user
interface design.

-143-

apter Seven

The Su f Part Hierarchy Mechanisms in an i riented Lan

7.1. Introduction.

The use of object oriented languages to implement databases is a growing
research interest [Tsichritzis, D.C:1988], [Lindsjorn, Y:1988], [Wiederhold,
G:1986]. The support of Part Hierarchies is an issue arising out of this
concern. The problem of representing part aggregation relationships in an
object oriented language is examined. After initial definitions, an example
Part Hierarchy is proposed and assessed according to experiences with its
implementation in Smalltalk 80.

Although a diversion from the main Human Computer Interaction
research objectives, this investigation of Part Hierarchies was a direct
consequence of the Smalltalk problem described in section 6.4.10.

7.2. What is a Part Hierarchy, and Why is it Needed ?

In real life, objects are often constructed from parts using the whole-part
relationship. A whole is made up of parts, which themselves represent
further wholes, and can be made up of other parts, and so on. Individual
parts belong to the whole, which can therefore be referred to as the owner of
the parts. This creates a hierarchy of parts which needs to be modelled in an
object oriented language. However, we are confronted with an apparent
dilemma: either sacrifice the data encapsulation properties of an object
oriented language, or utterly flatten the Part Hierarchy [Blake, E:1987].

The following examples, along with figure 7.2 illustrate the concept of a Part
Hierarchy :-

- aChair is made up of 4 legs, a seat and a back

- aCaris made up of a chassis, an engine, 4 wheels, etc

- an Engine is made up of an engine block, cylinders, crankshaft,
and sparkplugs.

-144 -

car Object (instance of Car Class)
engine Part (instance of Engine Class)

sparkplug Part (instance of Sparkplug Class)

Wheell Part wheel2 Part
(instance of Wheel Class) (instance of Wheel Class)

wheel3 Part wheel4 Part
(instance of Wheel Class) (instance of Wheel Class)

Figure 7.2 - An example Part Hierarchy.

The advantages of object oriented Part Hierarchies arise from part re-use.
Parts are in themselves separate objects which have their own behaviour
and state, and can usually exist by themselves. As a result, the same part can
be used to assemble different owner objects. For example a wheel object may
be re-used in car, lorry, bike, and bus objects. This facilitates system
maintenance, and effectively reduces programming effort. Invmany ways
Part Hierarchies are the object oriented equivalent of top down step-wise
refinement. They are an essential feature for object oriented languages
which are to be used in modelling the real world.

The features which good Part Hierarchy implementations should provide
are :-

- parts must themselves be distinguishable from the whole

- parts must be reusable within different assemblies

- information should be stored, and behaviour implemented in
a Part Hierarchy at the corresponding logical level

- information about the whole must not be stored in the parts

- part information and behaviour which is not affected by the
whole should remain within the part.

In summary, the whole should know about the parts, while the parts need
not know about the whole. Typically, most object oriented languages do not
provide facilities to describe the explicit relationships between different
objects, especially the part relationship. The problems associated with the
implementation of Part Hierarchies are now discussed.

-145-

7.3. Difficulties with Object Oriented Languages and Part Hierarchies.

Data abstraction is a fundamental aspect of object oriented languages. Proper
object oriented data abstraction results in an explicit object interface protocol
. and a hidden local state. It results in object encapsulation, whereby the local
state of an object can only be modified or accessed by the functions explicitly
defined for it. When an object is assembled from its parts, these parts are no
longer independent. A part belongs to the local state of the whole, and
communication between the part and the whole is mediated by the whole,
or owner.

This creates a problem. If object oriented principles are strictly followed, then
the existence of parts should be invisible to the user of the whole object, as
they comprise the hidden internal state. Effectively, the method protocols
understood by a part may have to be implemented again in the whole. As
the part may adequately implement some of these methods, this defeats the
objective of Part Hierarchies. The effect of this restriction is that Part
Hierarchies are replaced by a single monolithic whole as far as the external
world is concerned.

Consider the example Car Class from appendix D. A Car would have to hide
the engine, wheels and chassis parts within its internal state. This means
that it would have to implement its own engine, wheel and chassis method
protocols. Similarly, other objects which may wish to use an engine chassis
or wheel would also have to implement their own part method protocols,
which may be identical.

Alternatively, if parts were not hidden in the internal state of an object, then
a user could explicitly modify parts. These modifications could be done
without the knowledge of the whole, and the resulting changes may violate
the integrity of the whole. Similarly, the response of a part could be made
independent of the whole. This breaks the data hiding and encapsulation
principles of object oriented languages.

Using the same example, the engine size of the engine part belonging to the
Car could be modified without affecting the power of the Car. The power of a
Car depends upon the engine size and total weight, and unless the engine
part notifies the Car owner of a relevant change, the power can not be
updated. Likewise, a wheel part could respond to the pressure message
without considering the effect of the weight of its Car owner.

-146 -

An implementation of Part Hierarchies is required which meets these data
abstraction demands. At the same time conceptually correct access must be
allowed to the individual parts and whole by the Part Hierarchy user.

7.4. Solving the Problem.
In summary, the implementation requirements are as follows :-

- parts need to know which changes are significant to their
owner

- parts need to know what properties are affected or modified by
their owner .

- owners need to know what behaviour is provided by their
parts.

The object dependency mechanism described in appendix B is insufficient to
meet these demands, and a more complex solution is needed. Using
Smalltalk 80 as an object oriented implementation language, the following
Part Hierarchy concepts are presented in order to develop a final solution.

Every object which uses parts must provide individual part methods which
return the actual part. For example, a Car which uses an Engine and a
Chassis part must supply two methods which return the actual Engine and
Chassis part. The name of these part methods also identifies the part names,
for example, engine and chassis. The object returned by the part method
represents the part, which must be a Smalltalk object. The part returned may
be stored within the internal state of the owner, that is as an internal data
field, or it may be constructed by the named method. This follows the data
hiding principles of object oriented languages, where the internal state is
hidden. The user of an object should not be able to determine whether the
response of an object to a message is actually stored within the internal state,
or constructed from the internal state.

Information processing occurs within Smalltalk as a result of sending
simple messages, and associated arguments, to specific objects. A more
complex type of message is required for Part Hierarchies, namely a
Compound Message. This is made up of a series of simple Smalltalk
messages separated by full stops, for example, engine.sparkplug.efficiency: 20
which can be sent to a Car in order to change the efficiency of the sparkplug

-147 -

part belonging to its Engine, to 20 percent. Compound messages are
interpreted by a Part Hierarchy in a specific way. The last part of the message,
which follows the last full stop, is known as the selector part and represents
a simple Smalltalk message, i.e. efficiency: 20. The first part of the message,
up to the last full stop, is known as the class part, and identifies the part to
which this simple Smalltalk message is to be sent, i.e. engine.sparkplug. The
class part can be broken down into individual part names, each separated by
a full stop. The order from left to right identifies the Part Hierarchy, e.g. the
sparkplug part of an Engine which is itself a part of the Car object.

Access to parts is always provided by the owner. Any messages, simple or
Compound, sent directly to a part are automatically redirected to the part
owner. If the owner is itself a part, then it also redirects the message to its
owner, and so on until the top of the Part Hierarchy is reached. An owner
object is therefore given the choice of modifying the behaviour of any of its
parts. Similarly, an owner object can 'intercept’ a message sent to one of its
parts, and effect any changes which occur in itself as a result. However, an
owner object may send messages directly to its parts. Such messages which
pass down a Part Hierarchy are not automatically redirected, and can only
arise within the internal method code of an owner part. All other messages
which arise external to an object are redirected appropriately.

Message redirecting is achieved by the automatic generation of a Compound
message which is sent to the part owner. Consider the message efficiency: 20
being sent to a Sparkplug which is part of an Engine, which is itself part of a
Car. The Sparkplug, knowing that it is a part of an Engine with the part
name sparkplug, constructs the Compound message sparkplug.efficiency: 20
and sends it to its owner Engine. Knowing that it is part of a Car, the Engine
again redirects this message. The Compound message
engine.sparkplug.efficiency: 20 is now sent to the owner Car. This Car is not
a part, therefore it does not redirect the message any further. A Part
Hierarchy therefore requires that the relationship between owners, or
wholes, and their parts is known within the system.

Individual owner objects may implement methods which override the
methods implemented by their part assemblies. These overriding methods
have names which take the same form as a Compound message. For
example, a Car Class may implement an instance method named
engine.size:, which overrides the normal Engine Class instance method
called size:, whenever an Engine is implemented as part of a Car. Similarly,

-148 -

a Car Class instance method called engine.sparkplug.efficiency: would
override the efficiency: Sparkplug Class instance method whenever a
Sparkplug is implemented as part of an Engine, which is itself implemented
as part of a Car. Overriding methods may implement their own code
accordingly, and if necessary may call the overridden part method.

Once redirected, a part message eventually reaches the top of a Part
Hierarchy. At this point, the overriding messages may take effect. The top
owner is given the first option of overriding a Compound message resulting
from a simple message being sent to a part. For example, a Car checks to see
whether it has an overriding method for the Compound message
engine.sparkplug.efficiency:. If so, this is instantiated and the result
returned. If no overriding message is found, the Compound message is
broken down and sent to the next part in the hierarchy. In this example, the
Compound message sparkplug.efficiency: is now sent to the engine part
belonging to the Car. The process is then repeated until the simple message
is sent to the lowest part in the hierarchy. That is, the engine part now
checks to see whether it overrides the Compound sparkplug.efficiency:
message, if so the appropriate method is executed. If not, the final simple~
efficiency: message is sent to the sparkplug part belonging to the engine,
which itself belongs to the top most Car owner.

In summary, any messages sent by the user to a part, are redirected to the top
owner in the Part Hierarchy. In doing so, a Compound message is created. If
a user wishes, they may also send a Compound message to a part. Again, this
is compounded further, and redirected to the top owner in the Part
Hierarchy. Internal messages sent by the method code of an object are
handled differently. An owner object may send a message to one of its parts
by simply naming the part and sending the message. If a simple message is
sent, then the part handles it appropriately, and no redirecting is performed.
If the message is Compound, the immediate receiving part is given the
option of overriding the message. If no overriding takes place, the
Compound message is broken down and sent to the leftmost part. For
example, consider a Car Class instance method which sends the message
sparkplug.efficiency to its engine part. This message arises from an instance
method implemented by the Car Class, rather than from a user. Instead of
redirecting to the top most part, an engine part checks first whether it
overrides this message. If so, the appropriate code is executed. If not, the
Compound message is broken down, and the efficiency: message sent to the
sparkplug part belonging to the Engine. However, when a message is sent by

-149 -

a part object to itself (using the Smalltalk self, or super construction
as described in appendix B) it is treated as a message which arose from the
external user. As such, it is redirected to the top of the Part Hierarchy, and a
suitable Compound message constructed as described above.

Overriding methods must inform dependents of the effects of part changes
using the change or changed: messages. An owner may also inform
dependents of changes in a part by issuing the changed: message with the
changed part identified using a Compound message, for example self
changed: engine.sparkplug.

Message redirecting, and the use of overriding methods should be invisible
to the user. The main issue concerning the implementation of Part
Hierarchies in an object oriented language is the representation of the
relationships between parts and whole. This is discussed further in the next

section.
7.5. A Solution Implemented in Smalltalk 80.

Compound messages are already provided for in later versions of Smalltalk
80. This provision was made to incorporate multiple inheritance within
Smalltalk [Borning, A.H:1982]. The existing Compound message
implementation is extended to allow Part Hierarchy Compound messages to
be constructed and broken down into part and message constituents.

Smalltalk 80 provides a method called doesNotUnderstand:, which is used
to handle errors. If a message is sent to an object whose Class or Super-
classes do not implement an appropriately named method, the
doesNotUnderstand: method is invoked with the argument set to the
incorrect message name. This is used as the basis for handling Compound
messages sent to part owners. If an object is sent a Compound message
which it does not override, the doesNotUnderstand: method is invoked.
The existing doesNotUnderstand: method code is modified so that
Compound messages which are not overridden are broken down and passed
onto the relevant parts. Overriding methods are implemented as normal
Smalltalk methods in the appropriate Class using Compound message
names.

Every object which uses part assemblies must implement a special Class
method called Parts in its Class definition. This should return an array of

-150 -

symbols each representing the name of its parts. These symbols when sent to
an instance of the Class, must return the part object. This part list is not
essential for the functioning of Part Hierarchies. However, it is required for
the construction of Part Pluggable View Controller (Part PVC) hierarchies
which match the Part Hierarchy. It is used by the interface Tool-set described
in section 6.5 to list the available part interfaces. The central issue, and major
difficulty, is that of representing and identifying the owner-part
relationships. These relationships must be identified in order to redirect part
messages to the part owners. The implementation of these relationships
must be invisible to the Part Hierarchy user, and at the same time must not
drastically increase the normal message handling processing time.

One implementation would be to maintain a list of owner part relationship
pairs. Whenever a message is sent to an object, this list would be checked to
see whether the object was a part. This places an overhead on the message
interpreting mechanism of Smalltalk, although it could be reduced by
building it into the Smalltalk system at the interpreter level. Part
Hierarchies would only require the relationship between part and owner to
be maintained, as an owner already knows about and can access its parts.
Unfortunately, this solution would require the Smalltalk programmer to
specifically add part relationships to this list as they are made. Similarly, part
relationships must also be removed from the list when they are broken.
This overhead becomes even more impractical when we consider that some
parts are not actually stored in the internal state of an owner, but are
constructed from it. In short, part owner relationships should be
automatically maintained by the system, and not by specific programmed
methods. This facility is built into the UIMS presented in chapter six.
Provided a Part Hierarchy is accessed using an interface implemented with
the PVC mechanism, the relationships between parts and owners are
automatically controlled. When a Part PVC interface is used to interact with
a part belonging to an owner, the Part PVC maintains its own representation
of the underlying Part Hierarchy. Likewise, when a Part PVC is used to
interact with a part which belongs to an owner which itself belongs to
another object, and so on. The provision of Compound messages, and
message overriding is hidden from the user of the Part PVC interface.

-151-

7.6. An Improved Solution.

The immediate problem with the proposed Part Hierarchy implementation
concerns separation. The Part Hierarchy is incorporated as an integral
component of the UIMS implementation. Although from a programming
point of view it can be separately identified, in order to use the Part
Hierarchy, the UIMS must be used. The reason for this type of
implementation was to simplify the required code. The Part Hierarchy also
slows down the UIMS architecture, and the deeper the Part Hierarchy, the
slower the system becomes. A refined solution would implement the same
Part Hierarchy as an intrinsic component of the Smalltalk system. This
would have to be incorporated at a low level within the Smalltalk system,
and requires extensive system redesign.

One problem not addressed by the proposed Part Hierarchy implementation
is the handling of messages sent by a part to itself, or to its Super-class.
Again, in order to handle this problem the refined Part Hierarchy
implementation would need to be at a low level. Such a solution would also
require the introduction of formal Smalltalk part creation methods. Every
new object created would need a special internal data field which identifies
how the object was created. In the case of new objects returned by a part
method, this field would point to the owner object and identify the part
name. The Smalltalk message interpreter would then need modifying to
check whether a message receiver is a part. If so, the message could be
redirected accordingly. Finally, the interpreter would need to distinguish
between messages arising externally to an object, and those which arise from
within the object method code of another object.

7.7. Summary.

Although incomplete, the proposed Part Hierarchy mechanism provides a
useful addition to object oriented languages. It considerably enhances the
existing data abstraction and encapsulation rules, and provides an extra
facility to assist the design and implementation of object oriented
information systems. Further object relationships such as associations with
other objects also need to modelled by object oriented languages. This
requires further investigation, and research into Part Hierarchy mechanisms
should assist this additional work.

-152-

Finally, it should be noted that the proposed Part Hierarchy implementation
is conceptually different from how it is perceived by the user. Modified part
behaviour is implemented by the owner. This behaviour then overrides
default part behaviour, which would normally be seen if the part were used
as a separate object. In the real world, the behaviour of a part is never
contained in the owner. However, the Part Hierarchy mechanism appears
different to the user. When this Part Hierarchy is used, it appears that the
modified behaviour is actually provided by the part rather than the owner. If
the implementation were to contain modified part behaviour in the actual
parts, then the required code would be far more complex. This makes use of
data abstraction, where the internal implementation of an object is hidden
from the actual external interface.

-153 -

Chapter Eight.

ritical Evaluation and A ment of the Pr r Interfa

Management System and Smalltalk 80.

8.1. Introduction.

This chapter evaluates the User Interface Management System (UIMS)
software architecture described in chapter six. The chapter consists of two
main sections. Section 8.2 examines interface separation and evaluates this
software architecture based upon experience with its implementation and
application. The key issues surrounding interface separation are discussed
and conclusions are drawn. Relevant criticisms and suggestions for further
work are made, and these are later detailed in chapter nine. It is important to
emphasize that the proposed architecture represents a research vehicle and
is not intended for commercial use, although chapter nine describes various
possible enhancements which would lead to the development of a
professional object oriented UIMS in Smalltalk 80.

Section 8.3 evaluates and reviews the Smalltalk 80 object oriented
programming language and environment. Particular attention is given to
the application of the object oriented paradigm in designing 'usable’
computer information systems. Several criteria influenced the choice of
Smalltalk as an implementation language for the proposed UIMS. These
criteria are detailed, and justifications are made to support the selection of
Smalltalk in the form of comparisons to traditional imperative languages.
Problems arising from the use of object oriented languages are also
described, while further refinements to Smalltalk 80 are again detailed in
chapter nine.

8.2. Evaluation of the Underlying User Interface Management System
Software Architecture.

The potential of separation is ultimately determined by the underlying
interface software architecture. A list of advantages arising from interface
separation is given in sub-section 8.2.1. Sub-section 8.2.2 examines how
complete interface separation was achieved within the proposed software
architecture. This sub-section also discusses other interface separation
approaches, and draws conclusions regarding software requirements which
must be met if complete separation is to be achieved.

-154 -

It was discovered that the use of software architectures based upon interface
separation imposes certain design constraints. Sub-section 8.2.3 examines
these constraints, and draws attention to the ways in which a separable
interface can affect the application, and vice versa.

8.2.1. Advantages of Interface Separation.

The major benefits of interface separation discovered by this work were
interface standardisation and consistency, component re-use, application
and interface maintenance, provision of focal points for the application of
specialist knowledge and research, customisation, potential improvements
in Systems Analysis and Design methodologies, support of specialist
interface design tools, and improvement in the 'usability’ of actual user
interfaces.

Different interfaces implemented using the same separable architecture can
utilise identical components such as windows, buttons, and menus. This
effectively enforces standards and consistency which will be seen
throughout all of the available interfaces. As described in chapter two, this
can improve user acceptance of a user interface.

Component re-use is also of advantage to the interface designer, it is
equivalent to modularity within software engineering [Sommerville, 1:1985],
and bestows similar advantages. Libraries of specialist interface components,
or Interaction Pluggable View Controllers can be easily maintained and
expanded. Individual components from these libraries may then be tailored
to suit the fine detail requirements of different interfaces, and to enable
interface customisation. Savings in implementation time and cost should
result and interface reliability improved. This should be particularly
beneficial when complex interfaces, comprising of many different
components are being developed.

Separation provides a focal point for improving interface design. Interface
separation enables the practical implementation and testing of specific
Human Computer Interaction theories and technology. This should provide
a clearly defined field of research, whose body of knowledge can be
distinguished from other computer science research endeavours.

-155-

Interface customisation for individual users, either by the users themselves
or through an Intelligent Interface, can help solve the problem of designing
interfaces for a user population with varying needs. Separation draws a clear
line between interface and application, thus providing a framework for
customisation. The application should not be customised, and the line
drawn by separable architectures protects the application functionality from
any customisation.

Personalized interfaces may be implemented for individual users, user
groups, or complete organisations. This work has shown that many different
interfaces can be implemented for the same set of application functions.
Customisation can be performed relatively easily using specialised tools
associated with separable interface architectures. This should reduce
interface development cost and provide a great deal of design flexibility.
Although it is unlikely that exactly the same interface can be re-used with
different applications, it should be possible for various interface preferences,
such as style, to be transferable between different interfaces.

Finally, separation has the potential to improve the complete Systems
Analysis and Design process. Using separation, it should be possible to
independently design, implement and test the interface and application.
New user centred design approaches can be developed, and specialised
knowledge and tools can then be applied. This can be equated to the effect of
formal software engineering principles upon conventional computer
software development.

8.2.2. Software Requirements for Interface Separation.

This work has provided a practical investigation into interface separation. A
more formal abstract approach to separation was taken by Cockton [Cockton,
G:1986], who has arrived at similar theoretical conclusions. In summary,
Cockton presents a definition of separation based upon operational
semantics, and the explicit representation of the state vector in the state to
state transition relation between user interface and application. He
concludes that a system described using a transition relation has separable

sub-systems, if :-

- there is partition of the rule set,
- there is partition of the state vector object set,

-156 -

- there is a bijective mapping from rule sub-sets to state object
sub-sets,

- each rule in a sub-set is exclusively triggered by references, and
changes only those state objects in the sub-set associated with it
by the bijection.

The proposed UIMS has provided a practical insight into the requirements,
and constraints of interface separation. These requirements and constraints
are now discussed.

8.2.2.1. The Number of Components required.

The proposed PVC software architecture uses three components, namely:
Application Function Set, Separation Controller, and User Interface. The
interface is itself comprised of an Interaction Controller and View
component. However, this refinement is intended to improve actual
interface design and does not affect the overall application and interface
separation. The three component architecture is shown in figure 8.2.2.1 (b),
where it is contrasted with a two component system (a) comprised of a User
Interface and Application Function Set.

TWO COMPONENT MODEL THREE COMPONENT MODEL
(a) (b)

User N?{l Irlllteractive S ion |
pplication cparation
Interface Function Controller |-

(UD Set (AFS)

Complete Application /
Information System

Figure 8.2.2.1 - Two Approaches to Interface Separation.

A two component system requires a compromise whereby either the
interface knows about the application (1), or the application knows about the

-157 -

user interface (2). Compromise (1) results in an interface which directly calls
application functions, and an example would be the Model View Controller
mechanism described earlier. The interface must know about the application
function names and preconditions. As a result it is harder to re-use different
components of an interface, and perform any customisation. Compromise
(2) is often seen within the 'tool kit' approach, such as that of the Graphics
Environment Manager system. The interface is modularised into
components, but the high level interface structure is threaded through the
application functions. The application functions use different interface
components to fulfil their user interaction requirements, and interaction
control remains primarily within the application. Again, this makes it
difficult to customise interfaces, and experiment with different dialogue
control mechanisms.

For strict separation to be achieved the interface state transition rules cannot
directly reference or be directly conditional upon the state transition rules of
the application functions, and vice versa. Mutual ignorance is only
achievable if the two components have no direct access to one another's
state information and related data. That is, no communication is allowed
between the two, and a third intermediary component is required.

Separable components are separate systems which cannot be sub-systems of a
super-system without the use of an intermediary component. This strict
separability is compromised within the two component system. Only a three
component system suffices. The extra intermediary component 'knows
about' both the two separate components, and controls or coordinates
communication between them. With respect to the proposed architecture,
this intermediary component represents the Separation Controller, and the
two separated components are the User Interface and the Application
Function Set implemented by the Application Object.

The Separation Controller is critical to any User Interface separation model.
It enables dialogue control to be contained within the interface. At the same
time it may allow application preconditions to be specified by the application
function set. These preconditions permit application functions to be blocked
due to unavailable data. When the interface makes this data available, the
relevant functions can then be instantiated and the results returned. An
application may state its preconditions, but does not specify what user
interactions are used to meet them. The Separation Controller contains this
knowledge, which may vary between different interfaces. For example, an

-158 -

application function may specify that it requires 10 integer values, and a
boolean 'true' value before it can be invoked. These preconditions may then
be mapped onto interface processes by the Separation Controller. Similarly,
the Separation Controller may also add its own preconditions which are
independent of both the application and interface. These can be varied
without affecting the interface or application. Strict separation therefore
requires a strategy for instantiating the interface processes and application
functions in a way that avoids mutual dependencies. This strategy must
therefore constrain any design decisions. These constraints are discussed
below.

8.2.2.2. Application Function Set and its Preconditions.

The proposed architecture deals with all possible types of interface and |
application communication, apart from Active Dialogue which is initiated
by the application. Figure 6.4.2b in chapter six summarises the four possible
types of interface and application communication. It also shows how this
architecture supports Input, Output, and Passive Dialogue in relation to the
application.

Active dialogue occurs when an application function requests specific
information from the user through a user interface. In effect, the application
interrupts and takes over the interaction dialogue control. Whenever this
occurs, knowledge concerning the interaction dialogue is also required. That
is, how the information is to be collected.

The application function may itself specify how to collect the information.
For example, 'ask the user to confirm deletion using a button’, or 'using a
text editor'. This results in the compromise two component system
described above, wherein the application specifies interface dialogue control.
Alternatively, defaults may be specified. For example, a certain interface may
specify that all requests for boolean values appear as buttons, and all text
requests use a special type of editor. This type of generalisation is again
unacceptable, as it severely reduces the flexibility of a separable architecture.
Another technique would be to explicitly define any application interaction
requirements. Whenever a new interface is to be implemented, the designer
would specify what interface processes should be used to meet these
requirements. This would be impractical, especially where large applications
are concerned. Even if a particular application function were not used, the

-159 -

interface designer would have to provide this link. Again, this would also
give dialogue control to the application.

In conclusion, Active Dialogue should not be allowed if strict separation is
required. However, the ability for application functions to specify data
requirements must be provided. This can be fulfilled using application
function preconditions. The proposed architecture does not support
application preconditions, as this would require a parallel implementation
and further extensive work. Nevertheless, the proposed architecture has
provided a useful insight into this requirement.

An analogy can be made to Batch Systems, which cannot interactively
acquire data and are typically controlled by a Job Control Language. Any data
requirements must be met by including the data in the batch function call, or
by supplying a suitable file. Batch functions may call other batch functions
and may communicate using shared files. Individual batch functions may
also be partially invoked and therefore made to wait upon incoming data.
For example, a sort function may be invoked which reads and sorts records
until some terminator record is given. The function does not know how
many records to sort, and may be able to sort records from many different
sources. If a parallel architecture is available, batch systems may also allow
several suspended asynchronous functions, each of which awaits certain
preconditions.

Application function sets should be designed and implemented as batch
systems. They may however, specify function preconditions. For example,
an averaging function may specify that it requires ten numbers as its
argument list. The Separation Controller can ensure that these ten numbers
are provided before the function is invoked. The application does not specify
how these numbers are to be input, and this is left to the interface designer.
Another example would be an application function to delete a record which
requires a record key and boolean confirmation. The Separation Controller
will not invoke the function until both preconditions are met, and it is up to
the interface designer to decide how this is mapped onto user interactions.
The complexity of these preconditions depends upon the implementation,
and a formal language is needed for their specification.

-160 -

8.2.2.3. Application and Interface States.

An application has many states which may be represented within its
interface. At any time, the application will always be in one of these states.
The current state changes as a result of user interactions defined by the
interface processes, and may also be affected by other external influences. An
interface also has its own set of states.

Consider the example of a Switch Interaction Pluggable View Controller
(Interaction PVC) as shown in figure 8.2.2.3. This Switch has a state of either
on or off, and instantiates one of two Application Object functions
depending upon whether it is switched on or off. The Switch state may be
maintained within the Application Object (b), or within the Switch itself (a).
Where the state is maintained by the Application Object, the Switch is |
linked to the Application Object using a specific function which returns the
state - using a Linkage Slot called currentState. When the state is maintained
within the Switch, no such link is required. Instead an Application Object
function link is needed which determines the initial state - using a Linkage
Slot called initialState. After this is determined, the Switch maintains its
state separate from the Application Object, according to user interactions.
Two different types of Switch are therefore required.

When the Switch maintains its own state (a), this state may map directly
onto an Application Object state. As a result, it may be possible for the
Switch state to be out of phase with the equivalent Application Object state.
This is because the Switch and Application Object states are only
synchronised at the beginning of an interaction session. If this is to be
avoided, the Application Object must update its state correctly whenever the
switch on, and switch off messages are issued, using the values contained in
the switchOn and switchOff Linkage Slots.

-161 -

i initialstate

\'
—’ Requires single Smalltalk Message\.-—' (a)
5 switchOn Switch
v
<—¢\Requires single Smalltalk Messagel ‘— IPYC
\ »
§ﬁ switchOff Mechanism
‘-\Requwes single Smalitalk Message) ‘_1 (Own State)
ir 3 currentState
—’;Requires single Smalltalk Message } (b))
E switchOn Switch
«(Reqmres single Smalltalk Message } ‘—— IPYC
switchOff Mechanism

Requ1res single Smalltalk Message ‘——1 (No State)

Ll :1

Y Contains Code for determining N\ currentsState
—*.: current state. May call application
5\ functions. . (¢c)
\ T : s
«——— Contains Code. This may inform N switchon General
‘ Y application using appropriate ‘___ Purpose
% functions, and may send messages Switech
Mo the IPYC regards state changes./ IPVC
4___fConta1ns Code. This may inform N _ .0 oo Mechanism
4_: application using appropriate
Y functions, and may send messages
No the IPYC regards state changes. A
§
\
Application { Separation Controller Interface
\
\ .
KEY:
Linkage Slot Requirements
Description -
. Input ‘ Output
Slot Slot
Communication between different
44— linkages slots. Defined within
Separation Controller.
Figure 8.2.2.3 - Comparison witch Interaction P le View

Where possible, PVCs should not maintain separate copies of Application

Object states. These should be derived directly from the Application Object.

Whenever user interaction occurs, the appropriate Application Object

functions should be instantiated. The PVC should not change its state as a

result. Instead it should wait for the Application Object to inform it of

-162 -

appropriate state changes. Using the Switch example, user interaction
resulting in switching on or off should invoke the Application Object
functions defined within the Separation Controller. The Switch PVC View .
should then wait for the Application Object to inform the Separation
Controller that its state has changed in a way which affects the Switch PVC
View representation. The Switch PVC View can then update itself
accordingly for example, by the use of screen highlighting.

The problem of states is further complicated by situations where the state of
a PVC does not have a direct mapping onto an equivalent Application
Object state. Consider an Application Object which represents a TV. This
may provide a function which answers queries regarding the current
channel, and a function which allows the channel to be changed. A
particular interface may implement a bank of channel selector Switches
labelled according to the channel. These Switches are linked to one another,
in that switching one on has the effect of switching all the others off. For
each Switch, the required switching off Application Object function is set to
nil, while the switching on function is set to the Application Object channel
change function, along with the necessary argument e.g. 'BBC1', 'BBC2'". The
state of individual Switches is determined using the Application Object
function which enquires on the current channel. The result from this is
then compared to the channel name, and if it matches that of the Switch, the
Switch is set on, otherwise it is set off. Here the Switch state is indirectly
mapped onto an Application Object function. The existing architecture
cannot cope with this situation, as the simple Linkage Slots are insufficient.

As shown in figure 8.2.2.3 (c), Linkage Slots should be allowed to contain
actual Linkage programs, which may take the form of Smalltalk code. These
programs would be contained within the Separation Controller, and issue
appropriate function calls to the Application Object. A Switch Interaction
PVC would still specify that two output (switching off and on), and one
input (determining switch state) Linkage Slots are required. However, these
slots could contain actual code for comparing results of Application Object
functions. This would also enable application preconditions to be handled,
and linked to interface processes.

Linkage Slots should also be permitted to send messages to the PVC itself, or
other active PVCs; bearing in mind that an PVC only receives messages
from the Separation Controller, and does not need to know where the
messages originated. As a result, a single Switch Interaction PVC (c) could be

-163 -

implemented to cope with both types of Switch described. When the Switch
state is maintained within the Application Object, the state Linkage Slot
would contain the Application Object function name which returns the
current state. When it is maintained within the Switch, this Linkage Slot
would contain code which sends a message to itself informing of the new
Switch state. Although it appears that the Switch maintains its own state,
this code is contained within the Separation Controller and is not specified
within the implementation of the Switch Interaction PVC. This removes
the need for the provision of communication between Interaction PVCs
discussed in section 6.4.6. Finally, the on and off Linkage Slots of a Switch
may be set to nil, effectively enabling a PVC to be used without an actual
Application Object being present. This provides a flexible means of interface

prototyping.

Higher level Application Object functions may also be built within the
Separation Controller. If a new function can be built by the structured
combination of existing Application Object functions, then this may be
accomplished by implementing Linkage Slot code which invokes the
necessary Application Object functions. This is an alternative to
implementing new Application Object functions, which may only be
required within one customised interface.

8.2.2.4. Component Communication Requirements.

Associated with the Separation Controller must be a formal message, or
token passing mechanism. The Separation Controller receives messages
from, and sends messages to both the interface and the Application Object.
Different Separation Controller implementations may define different
formal definitions. In the case of this implementation only two types of
messages may be sent by the PVC View or Interaction Controller. These are
either requests for Application Object states or information, or messages
informing of particular user interactions. Accordingly, the Separation
Controller issues two types of message to the Application Object either
asking for specific information, or informing of user interactions. Two types
of messages can be received from the Application Object. These are either a
message informing of a state change, or a reply to a request for information.
The state change informant message takes the form of a simple changed or
changed: argument message, where argument identifies the Application
Object function whose response has altered. The reply takes the form of a
Smalltalk object. Finally, two types of message can be sent by the Separation

-164 -

Controller to the PVC. These are either messages informing of Application
Object changes, or messages returning a value in reply to a query made by a
PVC.

The actual messages which are sent depend upon the knowledge contained
within the Separation Controller. Individual PVC Separation Controllers
decide whether the related PVC View is affected by any Application Object
state changes. It then issues the appropriate messages to the View. The
proposed architecture only supports synchronous communication. Requests
by a PVC for information causes the interface to pause until a reply is
received from the Separation Controller. A need for asynchronous parallel
communication was identified, to enable the interface and Application
Object to function independently. While testing the architecture, the need
for further message passing requirements was also recognised. These are
now discussed.

Based on experience with the library system, indicators are needed within
the interface to show what percentage of a particular task has been
completed. Whenever a lengthy task is instantiated by the user, the
Separation Controller must monitor the completion of an Application
Object function, and inform the PVC accordingly. This requires that the
Application Object provides functions which allow the Separation
Controller to enquire on the percentage completion of a task. When
required, a PVC must also provide facilities to receive messages from the
Separation Controller relating to the percentage completion of a task. The
Separation Controller must then contain knowledge which controls and
instantiates the completion monitoring task. Suitable information can then
be presented through the interface for the user.

Error handling was not considered during the design of the architecture.
However, a need was identified for messages which deal with application
errors. Theoretically, the only type of application errors which may occur are
due to resource failures such as disk errors. Errors due to incorrect function
instantiation, and incorrect or invalid user interaction, should not affect the
Application Object if it is consistently designed, and the interface is correctly
defined upon it. Provision must therefore be made for error messages to be
sent by the Application Object to the Separation Controller, informing of any
resource failures. The Separation Controller can then inform the Error
Handling module, which can then take necessary action such as displaying

-165-

alert messages, and on-line assistance. Recovery strategies may also be
required and may need to be defined within the Separation Controller.

Interaction errors within the interface are of a different nature, and should
again be managed by the Error Handling module. Errors such as misspelling,
and invalid interactions, should not be passed onto the Application Object.
Note that help and tutorial information concerning the Application Object
should be maintained separate to the Application Object, and made available
to the appropriate Intelligent Error Handling sub-system.

Also relating to errors, further messages are required for undoing and
redoing Application Object functions. These messages could be sent by the
interface, and need to be linked either directly to suitable Application Object
functions, or to high level functions implemented within the Separation

Controller.
8.2.2.5. Separation Controller.

The Separation Controller knows about both interface communication
requirements, and Application Object function requirements. These are then
mapped onto one another using information stored within this component.
The proposed architecture only supports a simple binary relationship
between the interface and Application Object. As described, this is
insufficient and the facility to include specialised linkage code, or strategies,
is needed.

The Separation Controller manages communication between interface and
Application Object. It must support both synchronous and asynchronous
communication. It must also allow Application Object function
preconditions to exist, and enable partial instantiation of certain functions.

A parallel software architecture is essential, if the full potential of separation
is to be realised. Many suspended application functions may coexist,
awaiting the satisfaction of their preconditions. A PVC must not be forced to
wait for replies to its Application Object communication requests, although
this synchronization may sometimes be required. The interface must also
permit several PVC dialogue control sequences to execute in parallel, which
may or may not be dependent upon each other. Suitable parallel controls are
also needed to prevent incidents such as deadlock.

- 166 -

8.2.2.6. Interface Defaults.

Current PVC communication defaults are implemented within the actual
interface components. For example default window size, default Linkage
Slot values, and default text style. The actual default values should be
specifically adjustable for individual interface implementations. A PVC
could explicitly define what defaults are required. The Separation Controller
can then store the actual default values, which may differ between
implementations.

8.2.3. Interface Separation Design Constraints.

Interface separation imposes certain interface and application design
constraints. Although these may restrict the interface and application
designer, they are not necessarily detrimental to the design process. Like
most formal methods, restriction has the potential to improve
standardisation, maintainability, and quality control. The following
separation constraints were discovered.

8.2.3.1. Application Independence.

Interface separation does not imply application or interface independence.
Although 'physical' software separation is desirable, conceptual separation
should be a matter of choice. It is up to the designer to decide what influence
the application objects and operations have upon the user interface. Good
interface metaphor communicates the underlying application functions, if
its features suggests those of the underlying application [Rosenberg, J:1983].
Application concepts must therefore be properly understood and
represented within the interface. Interface separation minimises software
dependency, allowing designers to determine any conceptual dependency for
themselves.

The interface presents the application to the user, and is therefore affected by
the underlying application functional structure. Different application
functional structures will undoubtedly require different interface structures.
It is not the purpose of interface separation to provide a generic interface. In
fact, this is probably impossible to achieve. It is the component parts of an
interface that are generic, that is the individual PVCs, along with any

interface design tools.

-167 -

Some dependencies are unavoidable, such as numeric and text values,
which can only be represented using certain interface components.
However, it should be possible to implement special Separation Control
code. This may convert the values returned by an application function, for
example special code for changing text into numbers so that they can be
displayed using a Bar Chart.

8.2.3.2. General Application Design Constraints.

The chief constraint is that an application must be designed as a set of Non-
Interactive Functions. Consideration should not be given to user
interactions, dialogue control, or graphic and textual representation.
Functions may specify preconditions, but may not contain direct requests for
user input, or screen output. This approach to program design is simpler to
achieve using declarative and object oriented implementation languages.
Where other languages are used, the programmer must constrain their
implementation techniques.

Finally, application functions must inform of state changes which may affect
an interface. Any implementation language must therefore provide special
statements to support this requirement. For example, the Smalltalk changed
and changed: messages. Depending upon the final software architecture
implementation, these statements are then handled by the Separation
Controller.

8.2.3.3. General Interface Design Constraints.

The interface must provide its own dialogue control. With this
implementation, this was implicit within individual Interaction PVC
interface components. However, it would be better to make this control
more explicit thus enabling it to be easily modified. The interface can be
designed, tested and implemented separate to the application. Although
knowledge concerning application concepts is necessary for the interface
designer, design may progress while the application is being independently
implemented.

-168 -

8.2.3.4. Constraints imposed by the Separate Application on the User
Interface.

Constraints imposed by the application on the interface are mainly
representational. These constraints are difficult to avoid. For example, an
object oriented application cannot be used with a relational style interface.
Concealment or misrepresentation of the underlying Application Model
could result in 'deceptive' interfaces which would probably confuse the user.
This must be avoided, and in most cases would probably be impossible to
accomplish due to these representational constraints. However, knowledge
contained in the Separation Controller may still be used to change how an
application is presented to the interface. This provides flexibility, allowing
for example, equivalent Application Functional Models to use the same
types of interface.

Finally, the application requires that the interface can receive suitable error
messages informing of resource failures within itself. The interface must
handle these errors, and advise the user accordingly.

8.2.3.5. User Interface Constraints imposed on the Application.

Two main interface features constrain application design, progress reporting,
and undoing. The application should provide functions which correctly
undo the effect of its normal functions. A minimum requirement would be
to provide an 'undo last action' function which would return the
application to its previous state. Similarly, the application must also provide
specialised functions which report on the progression of normal functions.
These can then be used by the Separation Controller to keep the interface
informed of task progression.

8.2.3.6. Summary.

Figure 8.2.3.6 summarises the dependencies that exist between interface and
application. It lists the different components which may be affected due to
specific application and interface modifications.

-169 -

Modificati 1 E . C n
User Interface
Representational Changes -
Changes to Dialogue Control -
Defaults Separation Component.

New Input / Output requirements
Undoing

Separation Component.
Separation Component, Application.

Percent Done Indicators Separation Component, Application.
New Functions required Separation Component, Application ?.
Modifications and Extensions to mponen f

Application Functions

Changed Input / Output requirements Separation Component.
Changed Preconditions

Changed Error states

Separation Component.
Separation Component, Interface ?

Figg_ re 8.2.3.6 - Component Stability Within Separable Architecture.

A hyphen indicates that no other component is affected, while a question
mark signifies that a component may be affected depending upon the extent
of the modification.

8.2.4. Conclusions.

Separation is an enabling technology, providing new software architectures
which offer many benefits to the system designer. Unfortunately, it is
difficult to impose design methods and standards using software
architectures and support tools. It is therefore still possible to design poor
interfaces using separation.

Further development of improved separation architectures and tools should
establish separation within the software engineering community. The full
effects of separation will depend upon how it is used within new integrated
User Interface Management Systems. Hopefully, it will simplify the interface
design process, and enable ordinary users to implement their own
customised interfaces.

Although incomplete, the proposed three component architecture should
help settle the argument as to what actually constitutes an interface and an

-170 -

application. The line drawn by the Separation Controller clearly determines
the role and content of the separate interface and application. Although
further work may change the specified interface and application boundaries,
a reference model is now established.

Finally, new interface technology should be viewed in context of the
complete information system design process. A poor user interface can spoil
a fine application, but a wonderful interface is unlikely to broaden the scope
of a narrowly defined application [Sproull, R.F:1983]. New ways of accessing
the same bapplicaﬁon functions are provided. However, if these functions
fail to meet the application requirements, the complete computer system
will fail. Separation should help distinguish between poor application
functional design and poor interface design. As such, responsibility for
different aspects of computer system design can be clearly established and
allocated to appropriate experts.

8.3. Evaluation of the Object Oriented Paradigm and Smalltalk 80
Programming Language.

Many people who have experience with computers find object oriented
systems strange. In contrast, many people who have no idea how computers
work find the idea of object oriented systems quite natural [Robson, D:1981].
Although computer experts have the experience to understand and use
object oriented design tools and methods, the systems which result are often
far from object oriented. The initial learning curve for computer experts is
steep, and is probably due to well established preconceived ideas concerning
traditional imperative programming languages. Meanwhile, computer
naive people find object oriented systems easy to use, but because of their
inexperience, difficult to design and implement. The comprehensibility
realised by non-computer experts is most likely due to the virtues of the
fundamental underlying concepts of object oriented applications, and the
close relationship of those virtues to the way in which people actually view
the real world. As the majority of users are not computer experts,
understandable object oriented applications provide a good foundation on
which to build 'usable' user interfaces, and ultimately 'usable’ computer

systems.

Object oriented systems directly support good interface design in several
ways. First and foremost, the concept of separation is clearly supported. An
object oriented application is implemented as a group of distinct objects

-171-

which can communicate by sending messages to one another. Each object
provides an explicit set of 'external’ methods which can be invoked by the
user, or other objects. These methods therefore define the behaviour of an
object, while its implementation is hidden internally within the object. The
basic user interface is one of message passing, whereby the user sends a
named message to an object, along with any arguments. The receiving object
then executes the associated method, and returns a value depending upon
the method code. As a result, it is easy to implement application objects
which have no element of user interaction. Instead, each object expects to be
given the necessary arguments as part of the invoking message, and
therefore does not need to request any user input. Similarly, returned values
are themselves objects which can be used or displayed in a variety of ways
which is of no concern to the application. As this research has shown, a
separate user interface can be readily implemented on top of this message
passing mechanism. Unfortunately, it is still possible to implement non-
object oriented applications in an object oriented language, and object
oriented applications which have embedded user interaction control.
However, with good training and experience this possibility can be reduced.

Intrinsic object oriented separation mechanisms can be contrasted with the
mechanisms provided by traditional imperative languages. Imperative
languages are based upon the concept of separate data and functions. The
functions modify the data, and the results of a programs execution are
usually left in the data. Encapsulation, or data hiding, is rarely directly
supported and specialist programming techniques are necessary for its
accomplishment [Bell, D:1987]. The concept of separation is not intrinsically
supported by imperative languages, although the similar software
engineering goal of modularity is provided by some languages such as
Modula-2 [Welsh, J:1987]. Effectively, user interaction processes must be
implemented as part of the program code and suitable language statements
are normally provided. The result is a program which 'drives user input
and output', rather than the object oriented situation where user input and
output 'drives the program'. As this work has shown, the latter situation is
preferable and necessary if true interface separation, with all its benefits, is to

be achieved.

The object oriented notion of code re-use provides many benefits to the
interface designer [Ingalls, D.H.H:1981]. Code re-use is supported in
Smalltalk by the Class / instance relationship, whereby one Class may have
many instances, each of which behaves identically but has its own internal

-172 -

state. This enables the development of pre-written interface routines, or
Classes which can be re-used within different interfaces. For example,
standard buttons, menus, and windows. Object oriented systems, such as
Smalltalk 80, which support the concept of inheritance [Halbert, D.C:1987],
also enable new Classes to be implemented as Sub-classes of existing Classes.
Sub-classes inherit the behaviour and internal state of their Super-classes,
and add new or modify existing behaviour and state. Effectively, Super-
classes represent generalisation, while Sub-classes implement specialisation.
Object oriented programming typically becomes a process of programming
by the modification and extension of existing facilities. Code re-use reduces

* the programming effort required to implement new interface components,
and also improves the consistency of the interface. This increase in
consistency arises out of the repeated use of identical interface components
and styles, improving the 'usability’ of the final interface. The proposed
UIMS utilises these code re-use mechanisms, and facilitates the
management of a library of Interaction PVCs and Special Part PVCs.

The programming environment provided by Smalltalk 80 also assists and
enhances interface design. Interface design is primarily an interactive
process. The specification of user interfaces using a specialised syntax
description has its place as a method for defining and storing existing
interfaces. However, it does not enable the designer to visualise the
interface, and test its functioning. Interface syntax descriptions require the
usual edit and compile development cycle, which can become laborious and
time consuming. Smalltalk 80, and in particular the proposed UIMS Tool-
set, enables interfaces to be interactively designed and tested. At the same
time, the Tool-set provides an underlying interface syntax as a means of
storing existing interface descriptions. The interactive environment
approach to interface and application design also promotes the use of
prototyping. As discussed in chapter four, prototyping assists the design and
implementation of 'usable’ computer systems.

Many other advantages arise out of the use of object oriented design
methods and programming languages. Typically, these are associated with
software engineering and relate to areas such as integrated program support
environments [Barstow, D.R:1984], [Wasserman, A.I:11982], programmer
productivity [Boehm, B.W:1987], and program modularity [Bell, D:1987].

Several problems also emanate from the use of object oriented methods.
Fortunately these do not directly relate to interface design, and are currently

-173 -

addressed within other research fields. Object oriented systems are typically
large, often comprising of thousands of independent objects. This raises the
issues of object persistence, with objects needing to be stored between
different sessions. Due to memory constraints, these objects also need to be
frequently passed between disk and memory. The underlying model of
object oriented systems is difficult to match with traditional Von Neumann
hardware architectures [Pountain, D:1988]. As a Consequence, there is a need
for complex time consuming algorithms to accomplish the necessary paging
and object management [Lambie, K:1989]. As a result, object oriented systems
require large work-stations, or powerful microcomputers to run on. Hence,
the choice of Apple Macintosh IT hardware, with 5 megabytes of memory
and a 20 megabyte hard disk drive. Current research trends indicate a move
towards new hardware architectures which are specifically designed to
provide 'hard wired' object management facilities. These new architectures
are radically different from Von Neumann style computers, and potentially
provide a hundred fold increase in the execution time of object oriented
applications. An example hardware architecture is Rekursiv [Harland,
D.M:1989], which should improve the viability of object oriented systems in
the commercial sector.

The need for object oriented databases which provide a 'matural’ model of
real world objects is a growing field of research [Wiederhold, G:1986],
[Tsichritzis, D.C:1988], [Lindsjorn, Y:1988]. Such databases hypothetically
enable many thousands of objects to be easily managed, and provide the
facility to relate different objects to one another using aggregation or
association relationships. Such systems should also assist in the provision of
multiple user interfaces for a single application. However, many problems
arise chiefly due to the conflict between the object oriented concept of object
independence, and the database concept of data independence. Again,
current research is addressing these issues [Banerjee, J:1987].

A final problem relates to the controversy between static and dynamic typing
in computer programming languages [Bell, D:1987]. Static typing requires
that the value of a variable data item be of a specific type, which is fixed
during compile time. In contrast, dynamic typing allows a variable data item
to change the type of its value at any time during a programs execution.
Dynamic typing is more flexible than static typing, and is provided by most
languages which use interpreters and run time environments, for example
Smalltalk 80, and LISP. However, dynamic typing requires that type checking
is performed at run time. For example, it is meaningless and incorrect to add

-174 -

a variable of type integer to a variable of type character. A compiler using
static type checking would detect most errors of this sort during compilation,
and would therefore not need to use type checking algorithms while a
program was running. However, a language which provides static type
checking could not check for this error at compile time, because the type
associated with a variable may change during the programs execution.
Instead type checking must be performed at run time, which requires an
overhead of extra type checking code.

The problem of type checking particularly effects the efficiency of a UIMS. As
discussed above, an interface is representationaly constrained by the
application. That is, certain types of information can only be displayed or
collected in certain ways. Where static typing is employed, type checks to
prevent the incorrect representation or collection of application data can be
made while an interface is being interactively designed. Where dynamic
typing is employed, these checks must be made at run time whenever a
particular interface is used. The overhead of these checks was alleviated in
the proposed architecture by assuming that an application enforced its own
static types. Because Smalltalk 80 supports dynamic typing, the failure of an
application to adhere to this assumption results in an error.

In conclusion, the object oriented paradigm allows for the construction of
highly interactive user interfaces. It naturally leads the way to the definition
of UIMS where the user interface is implemented as separable small
manageable units, rather than a single monolithic system. In addition it
makes it possible to distribute the semantic, syntactic, and lexical levels of
user interaction at various levels of interface abstraction rather than at a
single level. It also facilitates the interactive prototyping of consistent
interfaces based upon the use of interface component libraries. Finally the
concepts of object oriented systems are easily understood by non-computer
experts, enabling the novice user to quickly understand how new

applications work.

-175-

Chapter Nine.
Suggested Further Work.

9.1. Introduction.
Further work can be directed along three major avenues :-

(@) Extending the existing implementation

(b) Investigation of related Human Computer Interaction work

(c) Refinement, and 'polishing' of the proposed User Interface
Management System Implementation (UIMS) to produce a
complete interface design Tool-set for Smalltalk 80.

Extensions (a) and (b) will be of benefit to the Human Computer Interaction
research community, while (c) will be of interest to the commercial sector.
As Smalltalk does not currently provide an interface design Tool-set, this
work may potentially form the basis of a standard interface Tool-set for
Smalltalk 80, and possibly for other object oriented languages.

This chapter summarises the further work which may be carried out as an
extension to the research presented.

9.2. Extensions to existing User Interface Management System
Implementation.

The primary objective for the proposed UIMS implementation was to
investigate the potential of interface separation. A lesser consideration was
the implementation of a complete UIMS Tool-set. As such, the
implementation lacks many useful features which could make it more
acceptable as a professional interface design Tool-set. This may be the subject
of further work, and the following improvements are suggested.

9.2.1. The User Interface Management System Architecture and Tool-Set.

Further Interaction Pluggable View Controllers (Interaction PVC) need to be
implemented, covering a wider range of user interface needs. These could
include Tree Browsers, further Knobs, Buttons, Sliders, Thermometer
Scales, and Dials. Further Special Part Pluggable View Controllers (Part PVC)
are also required, providing interfaces to various Smalltalk data structures

-176 -

such as Dictionaries, Linked Lists, Bags, and Ordered Collections. Finally,
new Class Browsers could be implemented as Special Part PVCs to replace
the existing Class Browser interface.

The syntax for the External Linkage Slot Description, Extended Lean Cuisine
Menu Definition, and Part PVC Description could be improved. A more
formal language is needed to replace the existing token based language,
which simply encompasses the fundamental syntactic requirements. Parsers
could then be implemented to analyse the language and perform necessary
error handling and automatic error correction. Although new features
would not be added to the existing syntax, a formal language would be more
flexible and easier to read.

The Pluggable View Controller (PVC) mechanism currently specifies an
external description which defines the separation requirements of both its
View and Interaction Controller. As figure 9.2.1 shows, it is envisaged that
the View and Interaction Controller will eventually be completely separated,
with an explicit formal description linking the two.

Various User
interactions
handled by
the Interaction
Controller
Appropriate Application ' '
Object connections <@—— Appropriate Interaction
Controller
connections
Formal Interaction
Controller Link
Specification
Application .
ObjCCt View
Formal Separation
Specification
Eigrg 9,2,1 - Further Separation Within a PVC,

The formal separation specification would still define the separation
requirements to be met by the Application Object. Similar to the existing
Linkage Slot descriptions, this would define the input and output allowed.
The Interaction Controller link specification would define the interactions

-177 -

required by the View. The Interaction Controller can then map relevant user
interactions onto this specification. For example, a red, blue, or yellow
mouse button press can be used to trigger off the same View function.
Alternatively a keyboard character can be used, or a combination of the
mouse and keyboard interactions. The new PVC mechanism would be more
flexible, and an extra key-stroke, or physical interaction layer added.

The interface design Tool-set itself could be refined, with more editing
functions added. For example, functions are needed for :-

- PVC duplication

- PVC window rotation, and translation functions

- making PVC windows transparent, thus allowing PVCs to
overlap one another

- gridding, enabling PVC to be aligned and sized more easily.

Interaction PVCs should allow further Interaction PVCs to be attached to
them, making use of their own functionality. This would enable complex
Interaction PVCs to be built from simple Interaction PVC components.

Ultimately, a Tool-set is also required which assists the interface designer in
implementing new Interaction PVCs. This Tool-set could generate the
Smalltalk Class 'stubs', which can then be refined by the interface designer.
" The interface to such a Tool-set could itself be defined using PVC concepts.

Further work is required developing the concept of Linkage Slots. Linkage
Slots should be allowed to contain actual Smalltalk code, as well as simple
Smalltalk messages. As discussed in section 8.2.2.3, this would allow more
knowledge to be contained within the Separation Controller. As a result the
UIMS would be more flexible and better suited to solving interface problems
of greater complexity.

Work is required in improving the existing Smalltalk window handling
mechanism. A user should be allowed to open more than one Part PVC
direct manipulation interface at once. Information can then be moved
between different Part PVC windows. A window is opened as the result of

" executing Smalltalk code. If this code appears as part of a group of Smalltalk
statements, then further code must be executed when the opened window is
later closed. In the case of Part PVC interface windows, the result of closing a -

-178-

window is to return the Part PVCs attached object. This object may then be
used by the Smalltalk code in which the opening statement is embedded.

Smalltalk supports multi-windowing. However, once a window is opened,
the code which instantiated the opening is terminated and no value
returned upon closing. If this were not the case, then problems could arise
from closing the parent window before the child window. In Smalltalk this
would leave the child window looking to complete the Smalltalk code
which instantiated it. If the parent is already closed, then this code would
not be found, and the system would be left 'hanging'. Instead, closing a
parent window should automatically close all of the spawned children, and
grand-children windows. This requires modification to the Smalltalk
window handler.

Difficulties with PVC window sizing need addressing. If a PVC virtual
window is mapped onto too small a physical window, problems arise. At
best, the display cannot be understood because it is too cramped, and at
worst, errors may result from within the PVC presentation code. PVCs
should be allowed to specify their minimum physical window size. The
interface designer can then be forced to set the physical window size
accordingly. Alternatively, the View presentation functions can be ignored if
the physical window size is too small. Then, when the mouse pointer points
at a particular PVC, an exploded view may be displayed. This same view can
then be use for capturing user interaction.

Scrolling is another area for further work. This would enable partial PVC
Views to be displayed. Scrolling would be required in both the vertical and
horizontal planes.

9.2.2. Quantitative User Model.

Further work is needed to extend the Quantitative User Model presented in
chapter five. The heuristics, knowledge base, and implementation could all
be improved.

A greater number of error types could be monitored according to a specific
error classification. Further Learning Curves for individual classes and
messages could be added. The relationships between different classes,
messages, and applications also needs to be described. This would allow the

-179 -

side effects of learning from different message, class, and application usage to
be inferred.

A great deal of empirical work is required to determine the various
heuristics and knowledge relationships described. This work is necessary if
the Quantitative User Model is to vtruly represent the real user. Further
knowledge can also be added, with a history of user interactions being
maintained between different sessions. Knowledge is also required about the
background of a user with other systems, and their personal preferences.

The Quantitative User Model should be implemented as an intrinsic part of
Smalltalk, rather than as a simulation of user interactions. As the Smalltalk
application is used, the message interpreter should automatically update the
Quantitative User Model.

9.2.3. Part Hierarchiés.

Work is required to separate the Part Hierarchy implementation and the
UIMS. The Part Hierarchy should again be implemented as an intrinsic
component of Smalltalk. Meanwhile, the UIMS architecture can also be
implemented as a separate intrinsic component. Presently the two
mechanisms are implemented together. This has the effect of slowing down
the working of the UIMS. This is misleading, as the UIMS is itself fast.

Further work is also required in examining other object relationships beside
part aggregation. Various types of association relationships exist between
real world objects, and these need to be explicitly represented within object
oriented systems. For example, the relationships that exist between family
members, the relationship between flight bookings and actual plane seats,
and the relationship between students and their courses.

9.3. Further User Interface Management System Implementation.

The other Intelligent Interface modules presented in chapter three also need
to be implemented if a complete UIMS for generating Intelligent Interfaces is
~ to be realised. Abstract Classes can be used to implement the various
modules. Communication between modules can take the form of Smalltalk
messages, and a special Controller Class instance could coordinate their
associations. Such a UIMS would be restricted to object oriented applications,

-180 -

although it may be possible to provide links to other languages and
environments.

Prolog provides a useful language for describing the knowledge required by
the various expert system modules. Prolog is already successfully
incorporated into the Smalltalk 80 system [SmalltalkV:1980]. This allows
Prolog knowledge structures to be built and queried using Prolog-like
statements. Further work is required in evaluating the potential of this
Prolog sub-system for building knowledge bases within Smalltalk.

Individual models could be implemented as instances of the same Smalltalk
Class. A general purpose Model Class could be implemented, and Sub-classes
may implement their own specialist functions.

9.4. Smalltalk 80 Programming Language Extensions.

Further work is required in extending the Smalltalk 80 system itself. These
extensions should help maximise the potential of Smalltalk as an object
oriented system for designing usable, separable applications and interfaces.

Many applications are implemented within the same Smalltalk
environment. These different applications may share the same Classes, but
are rarely used simultaneously. This is due to the environment provided by
Smalltalk. Rather than writing and compiling separate application
programs, applications are implemented by extending the existing
environment. Tools are required to isolate individual applications, and aid
the designer in their job. These tools could be linked to some object oriented
design method, and allow individual applications to be viewed,
implemented, and modified separately. The relationships between
communicating objects could be shown graphically, and specialist Browser
and editor tools provided.

Smalltalk is often used as a prototyping tool. After prototyping is complete,
the new system is usually re-coded in a conventional, compilable language.
Smalltalk does not allow applications to be compiled into executable
machine code. In order to run a particular application, the Smalltalk
environment and interpreter must be loaded. This is a major weakness, and
will probably prevent Smalltalk from being substantially used in the
commercial sector. Work is therefore required to develop a Smalltalk
compiler which can generate machine executable code.

-181-

The inherent Smalltalk Application Model could be utilised as the basis for
formal documentation. As individual applications, classes, and methods are
implemented, the programmer can be prompted to enter the appropriate
user documentation. This documentation can then be used to generate on
line help for the user. Similarly, users of the application should be able to
add their personalized comments.

Although the implicit Smalltalk 80 Application Model is expressive, further
development is required. Application usage is usually goal directed. The
user typically has a goal they wish to achieve, and performs a sequence of
tasks in order to accomplish it. These tasks represent further sub-goals and
often comprise of smaller tasks. Smalltalk must be able to represent this goal
mechanism. A means of relating individual objects to a task / goal model is
required. The methods which an object can understand must be related to
tasks which they fulfil. Such an extension would enable intelligent goal
inference mechanisms to be used to predict the intentions of a user, suggest
alternative and more efficient task sequences, and intelligently correct any

errors which arise.
. 9.5. Further Systems Analysis and Design Work.

The final interface, the implementation language and Tool-set, and the
Systems Analysis and Design process are closely related. Further work is
required to develop complete integrated implementation and design
approaches, along with any necessary tools.

Complete Systems Analysis and Design methodologies are required which
take full advantage of new UIMS. These must encompass both the
information system requirements of an organisation, and the user interface
requirements of its personnel. Work is also needed to empirically test and
prove these methodologies.

New user centred methods are very much a long term objective. In the short
term, work is required in drawing attention to the importance of the user in
the Systems Analysis and Design processes. Systems analysts and designers
need to be made aware of the importance of building computer systems that
not only meet an organisations information system requirements, but
which also meet the needs of its eventual users. The various factors which
affect user acceptance of a computer system need highlighting, and Systems

-182-

Analysts and Designers must be taught how to utilise these factors in favour
of the user.

-183 -

apter Ten

Final Conclusions.

The research described has established that the acceptance of computer
software by the user is becoming an important goal within the field of
computing science. This goal is affected by a wide range of complex
interrelated factors, which can be grouped according to actual computer
software and hardware influences, the effects of the Systems Analysis and
Design process, or the effect of the personal work environment of the user.
The field of Human Computer Interaction research has arisen out of the
need to address these factors and influences.

The research has successfully accomplished the objectives outlined in
chapter one. In doing so, it has added to the body of knowledge within the
field of Human Computer Interaction. The main contribution is concerned
with the development of separable interface software architectures, and the
identification of the potential benefits and constraints which result form
their usage. Other contributions include the development of an object
oriented User Interface Management System and integrated interface design
Tool-set, an object oriented Part Hierarchy implementation, a practical
investigation into Quantitative User Modelling, and a general overview of
the diverse Human Computer Interaction field.

The major software design features which influence user acceptance of
computer systems were identified as Simplicity, Consistency, Integration and
Modes, Metaphor, the impact of various interaction styles such as

Command and Natural Language, Menus, and Direct Manipulation, the use
of Explicit Dialogue Control Specifications and standardised Style Guides,
Error Handling, Documentation and Tutorial Support, and Interface
Ergonomics. A need for software features which can be adjusted to satisfy the
requirements of individual users was also established as necessary, in order
to deal with the variability of users, in terms of their experience and
background.

The field of Artificial Intelligence was highlighted as a major contributor to
solving the problems arising from satisfying the needs of individual users.
Existing Artificial Intelligence theories and practice can be used to
automatically select appropriate software features for individual users, and
some existing techniques were described. The main application areas of

-184 -

Artificial Intelligence were categorised as Intelligent Help Systems, User and
Application Modelling, Adaptive Interfaces, and Intelligent Planning Aids.

The controlled experimental evaluation of computer software was
examined as a means of developing new interface designs, and for
identifying software features which improve the 'usability’ of computer
systems. The importance and complexity of empirical evaluation was
highlighted, using personal experience with the evaluation of a large library
database user group. The related role of cognitive psychology research was
also examined, and mechanisms for incorporating its research results into
interface design suggested. ‘

The need for improved Systems Analysis and Design methods was
discussed, with emphasis placed upon designing systems for the user. The
necessity of analysis techniques for eliciting the personal requirements of
individual users, and the need for design methods and support tools for
incorporating these requirements were established. The Prototyping
approach was shown to be better suited to the design of interactive software
than the traditional system life cycle method. Systems Analysis and Design
methods were also proven to be dependent upon the availability of interface
design and implementation tools. The influence of separation, and interface
design tools incorporating separation, upon Systems Analysis and Design
methods were discussed. The major influence was identified as the possible
dichotomy in Systems Analysis and Design roles, resulting in separate
interface design and application design disciplines.

Existing approaches to interactive software design were examined, and the
need for improved software architectures identified. The use of new User
Interface Management Systems was focussed upon, and a model for future
interface software architectures suggested. The potential of User Interface
Management Systems was successfully demonstrated with the
implementation of a new object oriented User Interface Management
System. This was implemented in Smalltalk 80, and was based upon and
tested the concept of three component interface separation. The proposed
architecture also showed the benefit of integrated interface design tools as a
means of interactively designing consistent, ‘usable’, user interfaces.

The research demonstrated that the effects of software upon user acceptance
could be best addressed if a line is drawn between the application software,
and user interface software. It was shown that distinct separation of the user

-185-

interface and application is only possible with the introduction of a third
separation component. Arguments based upon practical experience and the
evaluation of alternative approaches to separation, established that two
component separation is insufficient to meet the flexible requirements of
new User Interface Management Systems. The many advantages arising
from the use of three component separation were also discussed, and the
constraints of proper separation detailed.

The advantages of the application of object oriented concepts to software
design were discussed. The major advantage was identified as the similarity
between the underlying object oriented paradigm and that of the real world.
This facilitates the implementation of applications which can be easily
understood by non expert users. The explicit support of separation within an
object oriented language was also shown to assist the implementation of
new User Interface Management Systems, based upon interface separation.

Results from this investigation should have an application in both the
commercial and research sectors. As detailed in chapter nine, further
refinements to the proposed User Interface Management System ought to
provide a professional object oriented User Interface Management System in
Smalltalk 80. Such a system would be of benefit to commerce, where
Smalltalk 80 is already used as a Prototyping tool for interactive software.
Future research in the field of Human Computer Interaction should also
benefit from the proposed separation techniques. Other elements of the
research may also provide the basis for further Human Computer
Interaction investigations.

-186 -

Bibliography

[Abrams, K.H:1987]
"Who's the Boss ?: Talking to Your Computer in the Artificial
Intelligence Age."
Kenneth H. Abrams.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -
Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Adhami, E:1986]
"Emancipating the User Interface from Application System Semantics: An

Application Expert."
E. Adhami, S.K. Mitra, D.P. Browne.
Internal Paper: British Telecom Research Laboratories. 1986.

[Adhami, E:1987]
"Application Modelling for the Provision of an Adaptive User Interface:
A Knowledge Based Approach.”
E. Adhami, D. P. Browne, S. K. Mitra.
Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -
Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Alexander, H:1986]
"Formally Based Techniques for Designing Human Computer Dialogues.

H. Alexander.

Stirling University, Computer Science Dept. September 1986, Number:
RGP 35

[Alexander, H:1987]
"Executable Specifications as an Aid to Dialogue Design."
Heather Alexander.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -

Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Alty,J.L:1987] ' .
"The Role of the Dialogue System in a User Interface Management
System."
J. L. Alty, J. Mullin.
Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -

Elsevier Science Publishers B. V. (North-Holland). September 1987.

-187 -

[Andriole, S.J:1986]

"Graphic Equivalence, Graphic Explanations, and Embedded Process
- Modelling for Enhanced User-System Interaction.”

Stephen J. Andriole.

IEEE Transactions on Systems, Man, and Cybernetics. 1986, Volume: 16,
Number: 6.

[Andriole, S.J:1986b]
"Intelligent Aids for Tactical Planning."
Stephen J. Andriole, Harlan H. Black, Gerald W. Hopple, John R.
Thompson.
IEEE Transactions on Systems, Man, and Cybernetics. 1986, Volume: 16,

Number: 6.

[Apperley, M.D:1989]
"Lean Cuisine: A Low Fat Notation for Menus."
M. D. Apperley, R. Spence.
Interacting With Computers. 1989, Volume: 1, Number: 1.

[Bailey, P:1986]
"Speech Communication.”
Peter Bailey.

Book: The User Interface: Human Factors in Computer Based Systems.
Publishers - York University. 1986.

[Bailin, S.C:1989]
"An Object Oriented Requirements Specification Method."
Sidney C. Bailin.
Communications of the ACM. May 1989, Volume: 32, Number: 5.

[Balzert, H:1987]
"Objectives for the Humanisation of Software: A New and Extensive
Approach.”
Helmut Balzert.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -
Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Banerjee, J:1987]
"Data Model Issues for Object Oriented Applications."

-188-

Jay Banerjee, Hong-Tai Chou, Jorge F. Garza, Won Kim, Darrel Woelk,
Nat Ballou.

ACM Transactions on Office Information Systems. January 1987,
Volume: 5, Number: 1.

[Barlow, J:1989]
"Interacting WITH Computers."
Judith Barlow, Roy Rada, Dan Diaper.
Interacting With Computers. 1989, Volume: 1, Number: 1.

[Barnard, P:1986]
"Human Computer Dialogues with Interactive Systems."
Phil Barnard, Nick Hammond.
Book: The User Interface: Human Factors in Computer Based Systems.
Publishers - York University. 1986.

[Barnard, P:1988] .
"Approximate Modelling of Cognitive Activity with an Expert System: A
Theory Based Strategy for Developing an Interactive Design Tool."
Phil Barnard, M. Wilson, A. Maclean.
The Computer Journal. 1988, Volume: 31, Number: 5.

[Barnes,].G.P:1980]
"An Overview of Ada."
J. G. P. Barnes.
Software - Practise and Experience. 1980, Number: 10

[Barstow, D.R:1984]
"Interactive Programming Environments."
David R. Barstow, Howard E. Shrobe, Eric Sandewall.
Publishers - McGraw-Hill Book Co, London, U.K. 1984.

[Begeman, M.L:1988]
"The Right Tool for the Job."
Michael L. Begeman, Jeff Conklin.

Byte Magazine. Qctober 1988.

[Bell, D:1987]
"Software Engineering: A Programming Approach.”
Doug Bell, Ian Morrey, John Pugh.

-189-

Publishers - Prentice Hall International, London, U.K. 1987.

[Benbasat, 1:1984]
"Command Abbreviation Behaviour in Human Computer Interaction.”
Izak Benbasat, Yair Wand.

Communications of the ACM. April 1984, Volume: 27, Number: 4.

[Benbasat, 1:1986]
"An Experimental Program Investigating Color Enhanced and Graphical
Information Presentation: An Integration of the findings."
Izak Benbasat, Albert S. Dexter, Peter Todd.
Communications of the ACM. November 1986, Volume: 29, Number: 11.

[Bench-Capon, T.].M:1989]
"People Interact through Computers, not with them."
T. J. M. Bench-Capon, A. M. McEnry.
Interacting With Computers. 1989, Volume: 1, Number: 1.

[Benest, 1.D:1987]
"A Humanised Interface to an Electronic Library."
I. D. Benest, G. Morgan, M. D. Smithurst.
Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -
Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Bennett, J.L:1987]
"Developing a User Interface Technology for use in Industry."

John L. Bennett, Douglas J. Lorch.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -
Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Benyon, D:1987]
"System Adaptivity and the Modelling of Stereotypes."
David Benyon, Peter Innocent, Dianne M. Murray.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -

Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Benyon, D:1988]
"Modelling Users Cognitive Abilities in an Adaptive System."
David Benyon, Diane Murray, Steve Milan.
Internal Paper: Faculty of Mathematics, Open University, UK. 1988.

-190 -

[Benyon, D:1988b]
"Experience with Adaptive Interfaces."
David Benyon, Diane Murray.

The Computer Journal. 1988, Volume: 31, Number: 5.

[Benzon, B:1985]
"The Visual Mind and The Macintosh."
Bill Benzon. '
Byte Magazine. January 1985.

[Bez, H.E:1987]
"A Formal Design Methdodology for End-User Interfaces: A Small Case
Study Based on UNICON."
H. E. Bez, D. J. Cooke.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -

Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Birtwistle, G.M:1973]
"Simula begin."
Graham M. Birtwhistle, O. J. Dahl, Bjorn Myhrhaug, Kristen Nygaard.
Publishers - Auerbach Publishers Inc, Philadelphia, U.S.A. 1973.

[Bjorn-Andersen, N:1988]
"Are 'Human Factors' Human ?"
N. Bjorn-Andersen.
The Computer Journal. 1988, Volume: 31, Number: 5.

[Blake, E:1987]
"On Including Part Hierarchies in Object Oriented Languages, with an
Implementation in Smalltalk."
Edwin Blake, Steve Cook.
Proceedings for the 1988 ECOOP Conference. Publishers - Springer-
Verlag, New York, N.Y., U.S.A. 1987.

[Boehm, B.W:1987]
"Improving Software Productivity."
Barry W. Boehm.

IEEE Computer. September 1987.

-191-

[Booch, G:1986]
"Object Oriented Development.”
Grady Booch.

IEEE Transactions on Software Engineering. February 1986, Volume: 12,
Number: 2.

[Booth, P:1987]
"An Evaluative Classification of Mismatch Between Human and
Computer (ECM)."
Paul Booth.

Internal Paper: The HCI Research Unit, Huddersfield Polytechnic, UK.
[uly 1987.

[Borning, A:1987]
"Deltatalk:An Empirically and Aesthetically Motivated Simplification of
the Smalltalk 80 Language."
Alan Borning, Tim O'Shea.

Proceedings for the 1988 ECOOP Conference. Publishers - Springer-
Verlag, New York, N.Y., U.S.A. 1987.

[Borning, A.H:1982]
"Multiple Inheritance in Smalltalk-80."
Alan H. Borning, Daniel H. H. Ingallls.

Proceedings for the 1982 American Association for Artificial Intelligence

National Conference, Pittsburgh. Publishers - Morgan Kaufmann, Los
Altos, California, USA. 1982.

[Breuker, J:1988]
"Coaching in Help Systems."
Joost Breuker.

Book: Artificial Intelligence and Human Learning:Intelligent Computer

Aided Instruction. Publishers - Chapman and Hall, London, UK. 1987.

[Bright, P:1988] _
"Digital Research's Graphics Environment Manager (GEM)."

Peter Bright.
Personal Computer World Magazine. March 1988.

[Brown, J.W:1982]
"Controlling the Complexity of Menu Networks."

-192 -

James W. Brow.
Communications of the ACM. July 1982, Volume: 25, Number: 7.

[Brown, M.J:1983]
"The Complete Information Management System."
Michael J. Brown.

Byte Magazine. December 1983.

[Browne, D.P:1986]
"The Formal Specification of Adaptive User Interfaces using Command

Language Grammar."
Dermot P. Browne, Brian D. Sharrat, Michael A. Norman.

Proceedings for the 1986 CHI Conference. Publishers - QQ. April 1986.

[Browne, D.P:1987]
"Metrics for the Building, Evaulation, and Comprehension of Self

Regulating Adaptive Systems."
Dermot P. Browne, Robert Trevellyen, Peter Totterdell, Mike Norman.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -
Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Budde, R:1984]
"Approaches to Prototyping: A Collection of Papers."
R. Budde (editor).
Publishers - Springer-Verlag, New York, N.Y., U.S.A. 1984.

[Bullinger, H.J:1987]
"Technology Assessment Concerning Impacts of Information Systems.
Hans-Jorg Bullinger, Klaus Kornwachs.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -

Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Burroughs:1983]
"An Ergonomic Overview."

Internal Paper: Burroughs Machines Limited, UK. April 1983.

[Byte:1981]
"Special Edition on Object Oriented Programming."
Byte Magazine. August 1981.

-193 -

[Cameron,]J.R:1986]
"An Overview of Jacksons Structured Design."
John R. Cameron.

IEEE Transactions on Software Engineering. February 1986, Volume: 12,
Number: 2.

[Campbell, F.W:1974]
"Contrast and Spacial Frequency."
Fergus W. Campbell, Lamberto Maffei.
Scientific American. November 1974, Volume: 231, Number: 5.

[Canter, D:1985]
"Characterizing User Navigation through Complex Data Structures."
David Canter, Rod Rivers, Graham Storrs.

Behaviour and Information Technology. 1985, Volume: 4, Number: 2.

[Carberry, S5:1988]
"Modelling the User's Plans and Goals."

Sandra Carberry.
Computational Linguistics. September 1988, Volume: 14, Number: 3.

[Card, 5.K:1983]
"The Psychology of Human Computer Interaction.”
S. K. Card, T. P. Moran, A. Newell.
Publishers - Erlbaum, Hillsdale, New Jersey, U.S.A. 1983.

[Card, 5.K:1987]
"CATALOGUES: A Metaphor for Computer Application Delivery."
Stephen K. Card, D. Austin Henderson Jnr.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -

Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Carroll, J.M:1983]
"Presentation and Form in User Interface Architecture.”

John M. Carroll.
Byte Magazine. December 1983.

[Carroll, J.M:1986]
"LisaLearning."
John M. Carroll, Sandra A. Mazur.

-194 -

IEEE Computer. November 1986.

[Carroll, J.M:1987]
"Interface Design Issues for Advice Giving Expert Systems."
John M. Carroll, Jean McKendree.
Communications of the ACM. January 1987, Volume: 30, Number: 1.

[Carroll, J.M:1988]
"Learning by Doing with Simulated Intelligent Help."
John M. Carroll, Amy P. Aaronson.

Communications of the ACM. September 1988, Volume: 31, Number: 9.

[Carter, J.A:1987]
"The Basis for User-Oriented Context Sensitive Functions."”

James A. Carter Jnr.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -
Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Cawsey, A:1989]
"Explanatory Dialogues.”
Alison Cawsey.
Interacting With Computers. 1989, Volume: 1, Number: 1.

[Chang, D:1983]
"An Introduction to Integrated Software."
Dash Chang.
Byte Magazine. December 1983.

[Chubb, G.P:1981]
"SAINT, A Digital Simulation Language for the Study of Manned
Systems."
G. P. Chubb.

Book: Manned System Design: Methods, Equipment, and Applications. A
Publishers - Plenum, New York, N.Y., U.S.A. 1981.

[Clark, I.A:1987]
"Designing a User Interface by Minimizing Cognitive Complexity."

Ian A. Clark.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -

Elsevier Science Publishers B. V. (North-Holland). September 1987.

-195 -

[Clarke, A.A:1986]
"A Three Level Human Computer Interface Model."
A. A. Clarke.

International Journal Man-Machine Studies. 1986, Number: 24

[Clowes, I:1985]
"User Modelling Techniques for Interactive Systems."
I. Clowes, I. Cole, F. Arshad, C. Hopkins, A. Hockley.

Proceedings for the 1985 HCI Conference. Publishers - Cambridge Press.
1985.

[Cockton, G:1986]
"Where do we Draw the Line ? - Derivation and Evaluatiuon of User

Interface Software Separation Rules."
Gilbert Cockton.

Book: People and Computers: Designing for Usability. Publishers -
Cambridge Press. 1986.

[Cockton, G:1987]
"Interaction Ergonomics, Control and Separation: Open Problems in User
Interface Management."
Gilbert Cockton.
Information and Software Technology. May 1987, Volume: 29, Number:
4.

[Cooper, M:1988]
"Interfaces that Adapt to the User."
Martin Cooper.

Book: Artificial Intelligence and Human Learning:Intelligent Computer
Aided Instruction. Publishers - Chapman and Hall, London, UK. 1988.

[Corbett, M:1987]
"Computerizing Data Presentation and Analysis."
M. Corbett, J. Kirakowski.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -

Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Coutaz, J:1987]
"The Construction of User Interfaces and the Object Paradigm.”

-196 -

Joelle Coutaz.
Proceedings for the 1988 ECOOP Conference. Publishers - Springer-
Verlag, New York, N.Y., U.S.A. 1987.

[CPlusPlus:1987]
"C++: Exposition and Experience.”
Discussion.
Object Oriented Programming Society Newsletter. October 1987.

[Croft, W.B:1984]
"The Role of Context and Adaptation in User Interfaces."
Bruce W. Croft.

International Journal Man-Machine Studies. 1984, Number: 21

[Cutts, G:1987]
"Structured Systems Analysis and Design Methodology."
Geoff Cutts.

Publishers - Paradigm Publishing I.td, London, U.K.. 1987.

[D'Arcy, B.G:1985]
"Development of an Issue Centred Methodology for Systems
Investigation and Analysis."
Brian G. D'Arcy.
Internal Paper: Sheffield City Polytechnic, School of Computing and
Management Science. 1985.

[Dean, M:1983]
"Simplify, Simplify, Simplify."
Martin Dean. _
Byte Magazine. December 1983.

[Dearnley, P.A:1983]
"In Favour of System Prototypes and Their Integration into the Systems
Development Cycle."
P. A. Dearnley, P. J. Mayhew.

The Computer Journal. 1983, Volume: 26, Number: 1.

[DeMichiel, L.G:1987]
"The Common Lisp Object Oriented System: An Overview."
Linda G. DeMichiel, Richard P. Gabriel.

-197 -

Proceedings for the 1988 ECOOP Conference. Publishers - Springer-
Verlag, New York, N.Y., US.A. 1987. S

[Desmarais, M.C:1987]
"The Diagnosis of User Strategies."
Michel C. Desmarais, Serge Larochelle, Luc Giroux.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -
Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Deutsch, L.P:1981]
"Building Control Structures in the Smalltalk 80 System."
Peter L. Deutsch.

Byte Magazine. August 1981.

[Diaper, D:1987]
"POMESS:A People Oriented Methodology for Expert System
Specification.”
Dan Diaper.
Alvey HI Club, July 1987. 1987.

[Dillon, A:1987]
"A Psychological View of User Friendliness."
Andrew Dillon.

Proceedings for the 1987 Interact Conference gStuttgart.Q. Publishers -
Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Dillon, A:1988]
"Reading from Paper Versus Reading From Screen."
A. Dillon, C. McKnight, J. Richardson.
The Computer Journal. 1988, Volume: 31, Number: 5.

[Dirlich, G:1987]
"Integration at a Work Place for Statistical Consulting."
G. Dirlich, H. Federkiel, E. Hansert, A. Yassouridis.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -
Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Dix, A:1987]
"Giving Control Back to the User."
Alan Dix.

-198 -

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -
Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Dodani, M.H:1989]
"Separation of Powers."
Mahesh H. Dodani, Charles E. Hughes, Michael J. Moshell.
Byte Magazine. March 1989.

[Downs, E:1987]
"SSADM: Application and Context."
E. Downs, P. Clare, I. Coe.
Publishers - Prentice Hall International, London, U.K. 1987.

[Drake, K:1985]
"The Application of Metaphor to Constrained User Interface Design."
Kieron Drake.
Internal Paper: Queen Mary College, IRL. June 1985, Number: 361

[Dray, S.M:1987]
"Getting the Baby into the Bathwater: Putting Organisational Planning
into the Systems Design Process."
Susan M. Dray.
Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -
Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Ducournau, R:1987]
"On Some Algorithms for Multiple Inheritance in Object Oriented
Programming."
R. Ducournau, M. Habib.

Proceedings for the 1988 ECOOP Conference. Publishers - Springer-
Verlag, New York, N.Y., U.S.A. 1987.

[Dunlavey, N:1986]
"The Use of Object Oriented Techniques for Programming the User

Interface."”
Nicholas Dunlavey.
Internal Paper: Queen Mary College, IRL. October 1986.

[Durham, T:1988]

-199 -

"Hit or Myth ? A Hunt for an Elusive Beast (Adaptive Intelligent
Dialogues)."

Tony Durham.

Computing. October 1988.

[Eason, K.D:1987]
"A User Centred Approach to the Design of a Knowledge Based System."
Ken D. Eason, S. D. P. Harker, P. F. Raven, J. R. Brailsford, A. D. Cross.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -

Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Eason, K.D:1988]
"The Supplier's Role in the Design of Products for Organisations."
Ken D. Eason, Susan Harker.
The Computer Journal. 1988, Volume: 31, Number: 5.

[Edmonds, E:1987]
"Good Software Design: What does it mean ?"

Ernest Edmonds.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -
Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Edwards, 5:1983]
"Why is Software so Hard to Use."
Sam Edwards.

Byte Magazine. December 1983.

[Ege, RK:1987]
"The Filter Browser. Defining Interfaces Graphically."
Raimund K. Ege, David Maier, Alan Borning.
Proceedings for the 1988 ECOOP Conference. Publishers - Springer-
Verlag, New York, N.Y., US.A. 1987.

[Eklundh, K.S:1987]
"Digressional vs Semantic Subordination: On the Role of Menu

Structures for User's Understanding of a Human Computer Dialogue.”

Kerstin Severinson Eklundh.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -
Elsevier Science Publishers B. V. (North-Holland). September 1987.

-200-

[Elkerton, J:1987]
"A Summary of Experimental Research on Command Selection Aids."
Jay Elkerton, Robert C. Williges.

~ Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -
Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Elsom-Cook, M:1988]
"Guided Discovery Tutoring and Bounded User Modelling."
Mark Elsom-Cook.

Book: Artificial Intelligence and Human Learning:Intelligent Computer
Aided Instruction. Publishers - Chapman and Hall, London, UK. 1988.

[Erlandsen, J:1987]
"Intelligent Help Systems."
Jens Erlandsen, Jan Holm.

Information and Software Technology. April 1987, Volume: 29, Number:
3.

[Fountain, A.J:1985]
"Modelling User Behaviour with Formal Grammar."
A.]. Fountain, M. A. Norman.
Book: People and Computers:Designing the Interface. Publishers -
Cambridge Press. 1985.

[Fowler, C.J.H:1987]
"Gender and Cognitive Style Differences at the Human Computer

Interface.”
C.J. H. Fowler, D. Murray.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -

Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Frohlich, D.M:1985]
"Requirements for an Intelligent Form Filling Interface.”
D. M. Frohlich, L. P. Crossfield, G. N. Gilbert.
Book: People and Computers:Designing the Interface. Publishers -
Cambridge Press. 1985.

[Galer, M:1987]
“The Presentation of Human Factors to Designers of LT. Products.”

Margaret Galer, A. J. Russell.

-201-

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -
Elsevier Science Publishers B. V. (North-Holland). September 1987. .

[Garvey, M.A:1989]
"Introduction to Object Oriented Databases."
M. A. Garvey, M. S. Jackson.
Information and Software Technology. December 1989, Volume: 31,
Number: 10.

[Gilbert, G.N:1987]
"Cognitive and Social Models of the User."
G. Nigel Gilbert.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -
Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Gimnich, R:1987]
"Constructive Formal Specifications for Rapid Prototyping."
Rainer Gimnich, Jurgen Ebert.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -
Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Glinert, E.P:1987]
"A (Formal) Model for (Iconic) Programming Environments."
Ephraim P. Glinert, Jakob Gonczarowski.
Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -

Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Godwin, A.N:1989]
"A Comparison of Jackson Structured Design and Data Flow Diagrams as
Descriptive Tools."
A. N. Godwin, M. B. Gore, D. W. Salt.
The Computer Journal. 1989, Volume: 32, Number: 3.

[Goldberg, A:1981]
"Introducing the Smalltalk 80 System."

Adele Goldberg.
Byte Magazine. August 1981.

[Goldberg, A:1983]
"Smalltalk 80: The Language and its Implementation (The 'Blue Book’)."

-202 -

Adele Goldberg, David Robson.
Publishers - Addison-Wesley, U.K. 1983.

[Goldberg, A:1983b]
“"Smalltalk 80: The Interactive Programming Environment (The 'Orange
Book')."
Adele Goldberg.
Publishers - Addison-Wesley, U.K. 1983.

[Gould, J.D:1987]
"How to Design Usable Systems."
John D. Gould.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -
Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Grace,].E:1987]
"The Man-Machine Interface: The Natural Language Barrier."

J. E. Grace.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -
Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Gray, P.M.D:1988] '
"Expert Systems and Object Oriented Databases: Evolving a New Software
Architecture.”
Peter M. D. Gray.

Proceedings for the 1988 Expert Systems Conference. Publishers -
Cambridge Press. 1988.

[Green, E:1990]
"Designing Systems, Defining Jobs: A Gender Perspective on the

Development of Office Information Systems."
Eileen Green, Jenny Owen, Den Pain.

Internal Paper: Sheffield City Polytechnic, Department of Applied Social

Studies. 1990.

[Green, T.R.G:1988]
"Formalisable Models of User Knowledge in Human Computer

Interaction."”
Thomas R. G. Green, Franz Schiele, Stephen J. Payne.

-203 -

Book: Working With Computers: Theory versus Qutcome. Publishers -
Van der Veer. 1988. |

[Greenberg, S5:1985]
"Adaptive Personalised Interfaces - A Question of Viability."
Saul Greenberg, Ian H. Witten.

Behaviour and Information Technology. 1985, Volume: 4, Number: 1.

[Grudin, J:1987]
"Social Evaluation of the User Interface: Who does the Work, and who
gets the Benefit ?"
Jonathon Grudin.
Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -

Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Hagelbarger, D.W:1983]
"Experiments in Teleterminal Design."
David W. Hagelbarger, Richard A. Thompson.

IEEE Spectrum. October 1983.

[Hagendorf, H:1987]
"A Framework of Developing Semantic Models of User Performance."

" Herbert Hagendorf.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -
Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Halbert, D.C:1987]
"User Types and Inheritance in Object Oriented Languages."
Daniel C. Halbert, Patrick D. O'Brien.

Proceedings for the 1988 ECOOP Conference. Publishers - Springer-
Verlag, New York, N.Y., U.S.A. 1987.

[Hanne, K.H:1987]
"Design and Implementation of Direct Manipulative and Deictic User

Interfaces to Knowledge Based Systems.”
K. H. Hanne, A. Grable.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -

Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Harker, 5:1988]

-204-

"The Use of Prototyping and Simulation in the Development of Large
Scale Applications." |
Susan Harker.

The Computer Journal. 1988, Volume: 31, Number: 5.

[Harland, D.M:1989]
"The REKURSIV and LINGO"
David M. Harland, Brian Drummond.

Internal Paper: Linn Smart Computing Limited, 257 Drakemire Drive,
Glasgow G45 9SN, Scotland, U.K. 1989.

[Harris, J.R:1987]
"Evaluation of Rapid Prototyping Methodology in a Human Interface.”
J. R. Harris, D. W. Parker.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -

Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Hartley, J.R:1988]
"Question Answering and Explanation Giving in On-Line Help Systems.

Roger J. Hartley, Michael J. Smith.

Book: Artificial Intelligence and Human Iearning:Intelligent Computer
Aided Instruction. Publishers - Chapman and Hall, London, UK. 1988.

[Heckel, P:1983]
"Walt Disney and User Oriented Software."
Paul Heckel.

Byte Magazine. December 1983.

[Hecking, M:1987]
"How to Use Plan Recognition to Improve the Abilities of the Intelligent
Help System SINIX Consultant.”
Matthias Hecking.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -
Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Hekmatpour, S:1987]
"Evolutionary Prototyping and the Human-Computer Interface."
S. Hekmatpour, D. C. Ince.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -
Elsevier Science Publishers B. V. (North-Holland). September 1987.

-205-

[Henskes, D.T:1987]
"Rapid Prototyping of Man-Machine Interfaces for Telecommunications
Equipment Using Interactive Animated Computer Graphics."
D. T. Henskes, J. C. Tolmie.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -
Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Herbach, M:1983] -
"The User Interface: Two Approaches.”
Martin Herbach, Richard Katz, Joseph Landau.
Byte Magazine. December 1983.

[Hirscheim, R:1988]
"Information Systems and User Resistance: Theory and Practise.”
R. Hirschheim, M. Newman.

The Computer Journal. 1988, Volume: 31, Number: 5.

[Hockley, A:1986]
"Adaptive Intelligent Dialogues."
Andrew Hockley.

Internal Paper: British Telecom Research Laboratories. 1986.

[Hood:1989]
"HOOD Manual, Issue 2.3, Draft A, February 1989."
CISI Ingenierie, Matra Espace.

ESTEC Repro Service February 1989.

[Hoppe, H.U:1985]
"A Survey of Models and Formal Description Methods in Human
Computer Interaction with Example Applications."
H. U. Hoppe, M. Tauber, J. E. Ziegler.
ESPRIT Project 385 - Human Factors in Information Technology. 1985,
Number: B.3.2a

[Horn, C:1987]
"Conformance, Genericity, Inheritance, and Enhancement.”
Chris Horn.
Proceedings for the 1988 ECOOP Conference. Publishers - Springer-
Verlag, New York, N.Y., US.A. 1987.

-206 -

[Houstoﬁ, T:1983] |
"The Allegory of Software: Beyond, Behind, and Beneath the Electronic

Desk."
Tom Houston.

Byte Magazine. December 1983.

[Hudson, S.E:1989]
"Cactis: A Self-Adaptive, Concurrent Implementation of an Object

Oriented Database Managament System."
Scott E. Hudson, Roger King.

ACM Transactions on Database Systems. September 1989, Volume: 14,
Number: 3.

[HUFIT:Overview]
"Human Factors in Information Technology: Project Overview."

Internal Paper: ESPRIT Project 385 - HUSAT Research Centre,
Loughborough, UK. 1987.

[Hulme, C:1986]
"Language by Eye."
Charles Hulme.
Book: The User Interface: Human Factors in Computer Based Systems.
Publishers - York University. 1986.

[Ingalls, D.H.H:1981]
"Design Principles Behind Smalltalk."

Daniel H. H. Ingalls.
Byte Magazine. August 1981.

[Ingalls, D.H.H:1981b]
"The Smalltalk Graphics Kernel."
Daniel H. H. Ingalls.

Byte Magazine. August 1981.

[Jagodzinski, A.P:1988]
"A Multidimensional Approach to the Measurement of Human

Computer Performance."
A. P. Jagodzinski, D. D. Clarke.

-207 -

The Computer Journal. 1988, Volume: 31, Number: 5.

[Jarke, M:1985]
"A Framework for Choosing a Database Query Language."
Matthias Jarke, Yannis Vassiliou.
Computing Surveys. September 1985, Volume: 17, Number: 5.

[Jeremaes, P:1987]
"Specifying a Logic of Dialogues."
P. Jeremaes.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -
Elsevier Science Publishers B. V. (North-Holland). 1987.

[Jones, J:1988]
"Understanding User Behaviour in Command Driven Systems."

John Jones, Mark Millington, Peter Ross.

Book: Artificial Intelligence and Human Learning:Intelligent Computer
Aided Instruction. Publishers - Chapman and Hall, London, UK. 1988.

[Kaehler, T:1981]
"Virtual Memory for an Object Oriented Language.”
Ted Kaehler.

Byte Magazine. August 1981.

[Kantorowitz, E:1989]
"The Adaptable User Interface."
Eliezer Kantorowitz, Oded Sudarsky.
Communications of the ACM. November 1989, Volume: 32, Number: 11.

[Karat, J:1987]
"Evaluating User Interface Complexity."
John Karat, Richard Fowler, Mary Gravelle.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -
Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Kellog, W.A:1987]
“"Conceptual Consistency in the User Interface.”
Wendy A. Kellog.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -
Elsevier Science Publishers B. V. (North-Holland). September 1987.

-208 -

[Kemke, C:1987]
"Representation of Domain Knowledge in an Intelligent Help System.
Christel Kemke.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -
Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Kidd, A:1986]
"Expert Systems."
Alison Kidd.

Book: The User Interface: Human Factors in Computer Based Systems.
Publishers - York University. 1986.

[Kieras, D:1985]
"An Approach to the Formal Analysis of User Complexity."

D. Kieras, P. G. Polson.
International Journal Man-Machine Studies. 1985, Number: 22

[Kluger, L:1989]
"The Open Look Graphical User Interface and its Tollkits."
Larry Kluger.
IEEE Special Colloquium on "User Interface Management Systems".
November 1989.

[Kornwachs, K:1987]
"A Quantitative Measure for the Complexity of Man-Machine Interaction

Process."
Klaus Kornwachs.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -

Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Koved, L:1986]
"Embedded Menus: Selecting Items in Context.”
Larry Koved, Ben Shneiderman.
Communications of the ACM. April 1986, Volume: 29, Number: 4.

[Kraak, J:1987]
"Multi-Level User Interfaces: Software Tools and an Application.”

J. Kraak.

-209-

Procegdings for the 1987 Interact Conference (Stuttgart). Publishers -

Elsevier Science Publishers B. V. (North-Holland). September 1987. '

[Kreutzer, W:1987]
"A Modeller's Workbench: Experiments in Object Oriented Simulation
Programming."
Wolfgang Kreutzer.

Proceedings for the 1988 ECOOP Conference. Publishers - Springer-
Verlag, New York, N.Y. U.S.A. 1987.

[Kristensen, B.B:1987]
"Classification of Actions or Inheritance also for Methods."
Bent Bruun Kristensen, Ole Lehrmann Madsen, Birger Moller-Pedersen,

Kristen Nygaard.

Proceedings for the 1988 ECOOP Conference. Publishers - Springer-
Verlag, New York, N.Y., U.S.A. 1987.

[LaLonde, W:1989]
"Pluggable Tiling Windows"
Wilf LaLonde, John Pugh.

Journal of Object Oriented Programming. September 1989.

[Lambie, K:1989]
"Introducing the REKURSIV."
Kirstine Lambie.

Internal Paper: Linn Smart Computing Limited, 257 Drakemire Drive,
Glasgow G45 9SN, Scotland, U.K. 1989.

[Lane, N.E:1981]
"The Human Operator Simulator: An Overview."
N. E. Lane, N. L Strieb, F. A. Glenn, R. J. Wherry.

Book: Manned System Design: Methods, Equipment, and Applications.
Publishers - Plenum, New York, N.Y., U.S.A. 1981.

[Lehner, P.E:1986]
"On the Role of Artificial Intelligence in Command and Control."

Paul E. Lehner.
IEEE Transactions on Systems, Man, and Cybernetics. 1986, Volume: 16,

Number: 6.

-210-

[Lesniewski, A:1987]
"Designing a User-Oriented Interface to a Document Management

System."
A. Lesniewski, H. Rossler, P. Szabo, K. H. Jerke.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -

Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Lindsjorn, Y:1988]
"Database Concepts Discussed in an Object Oriented Perspective."
Yngve Lindsjorn, Dag Sjoberg.
Proceedings for the 1988 ECOOP Conference. Publishers - Springer-
Verlag, New York, N.Y., U.S.A. 1988.

[Loomis, M.E.5:1987]
"An Object Modelling Technique for Conceptual Design."
M. E. S. Loomis, A. V. Shah, J. E. Rumbaugh.

Proceedings for the 1988 ECOOP Conference. Publishers - Springer-
Verlag, New York, N.Y., U.S.A. 1987.

[Lutze, R:1987]
"Customizing Help Systems to Task Structures and User Needs."
Rainer Lutze. :

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -
Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Maruichi, T:1987]
"Behavioural Simulation Based on Knowledge Objects.”
Takeo Maruichi, Tetsuya Uchiki, Mario Tokoro.

Proceedings for the 1988 ECOOP Conference. Publishers - Springer-
Verlag, New York, N.Y., U.S.A. 1987.

[Matilla, M:1987]
"Computer Aided Ergonomics Design: A Program for Suitable Control
Locations.” '
Markku Matilla, Markku Leppanen.
Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -
Elsevier Science Publishers B. V. (North-Holland). September 1987..

[McCoy, K.F:1988]
"Reasoning on a Highlighted User Model to Respond to Misconceptions."

-211-

Kathleen F. McCoy.
Computational Linguistics. September 1988, Volume: 14, Number: 3.

[Mevel, A:1987]
"Smalltalk-80."
A. Mevel, T. Gueguen.
Publishers - MacMillan Education Ltd, London, UK. 1987.

[Meyer, B:1985]
"On Formalism in Specifications."
Bertrand Meyer.

IEEE Software. January 1985.

[Meyer, B:1987]
"EIFFEL: Programming for Reusability and Extendibility."
Bertrand Meyer.
Object Oriented Programming Society, Newsletter. October 1987.

[Meyer, B:1987b]
"Object-Oriented Software Construction."

Bertrand Meyer.
Publishers - Prentice Hall International, London, U.K. October 1987.

[Miller, J.R:1987]
"The Role of the System Image in Intelligent User Assistance."
James R. Miller, William C. Hill, Jean Mckendree, Michael E. J. Masson,
Brad Blumenthal.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -

Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Minkowitz, C:1987]
"A Formal Description of Object Oriented Programming Using Vienna
Development Method."
Cydney Minkowitz, Peter Henderson.

Internal Paper: University of Stirling, Stirling, FK9 4LA, Scotland. 1987,

Number: FPN-13

[Minor, S:1987]
"Structured Command Interaction Based on a Grammar Interpretting

Synthesizer."

-212-

Sten Minor.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -)

Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Minstrel:1987]
"Project Minstrel - Technical Overview."
ESPRIT Project Number 59. 1987, Number: 156/1987-11-17/DDC36

[Moll, T:1987]
"Do People Really User On-line Assistance 2"
Thomas Moll, Roland Sauter.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -

Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Monk, A:1986]
"Artificial Intelligence."
Andrew Monk.
Book: The User Interface: Human Factors in Computer Based Systems.

Publishers - York University. 1986.

[Monk, A:1986b]
"Introduction - Man as a Processor of Information."

Andrew Monk.
Book: The User Interface: Human Factors in Computer Based Systems.

Publishers - York University. 1986.

[Monk, A:1986¢]
"Principles of Experimental Design."
Andrew Monk.
Book: The User Interface: Human Factors in Computer Based Systems.
Publishers - York University. 1986.

[Monk, A:1986d]
"Statistical Evaluation."
Andrew Monk.
Book: The User Interface: Human Factors in Computer Based Systems.

Publishers - York University. 1986.

[Moran, T.P:1981]

-213-

"The Command Language Grammar: A Representation for the User
Interface of Interactive Computer Systems." '
Thomas P. Moran.

International Journal Man-Machine Studies. 1981, Number: 15

[Morris, D:1988]
"Human Computer Interface Recording."
D. Morris, C. J. Theaker, R. Phillips, W. Love.

The Computer Journal. 1988, Volume: 31, Number: 5.

[Multipoint:1989]
"Esprit Project - Multipoint Interactive Audiovisual Communication

(MIAC)."
ESPRIT Project Number 1057. 1989.

[Multiworks:1989]
"Esprit Project - Multiworks."

ESPRIT Project Number 2105. 1989.

[Mumford, E:1979]
"A Participative Approach to Computer Systems Design: A Case Study of
the Introduction of a New Computer System."
Enid Mumford, Don Henshall.
Publishers - Manchester Business School, Manchester, U.K. 1979.

»[Mumford, E:1981]
"Values, Technology, and Work."
Enid Mumford.

Publishers - Nijhoff. 1981.

[Murray, D.M:1987]
"Embedded User Models."
Dianne M. Murray.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -

Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Nebeker, D.M:1987]
"Automated Monitoring, Feedback, and Rewards: Effects on Work-station

Operator's Performance, Satisfaction, and Stress."
Delbert M. Nebeker.

-214 -

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -
Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Noah, W.W:1986]
"Adaptive User Interfaces for Planning and Decision Aids in C3I
Systems."
William W. Noah, Stanley M. Halpin.
IEEE Transactions on Systems, Man, and Cybernetics. 1986, Volume: 16,

Number: 6.

[Norcio, A.F:1989]
"Adaptive Human-Computer Interfaces: A Literature Survey and
Perspective.”
Anthony F. Norcio, Jaki Stanley.

IEEE Transactions on Systems, Man, and Cybernetics. March 1989,

Volume: 19, Number: 2.

[Norman, D.A:1986]
"Cognitive Engineering: User Centred System Design."
D. A. Norman, S. W. Draper.
Publishers - Erlbaum, Hillsdale, New Jersey, U.S.A. 1986.

[Novara, F:1987]
"Usability Evaluation and Feedback to Designers: An Experimental

Study."
F. Novara, N. Bertaggia, N. Allamanno.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -
Elsevier Science Publishers B. V. (North-Holland). September 1987.

[NTIS:1987]
"Design Guidelines for User System Interface Software."

Reproduced by MicroInfo Ltd.
MicroInfo Ltd, PO Box 3, Alton, Hampshire, GU34 2PG. 1986.

[Oddy, R.N:1977]
"Information Retrieval Through Man Machine Dialogue.”

R.N. Oddy.

The Journal of Documentation. March 1977, Volume: 33, Number: 1.

[Ogden, W.C:1987]

-215-

"What do Users Say to Their Natural Language Interface ?"
William C. Ogden, Ann Sorknes.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -
Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Oldenburg, H:1989]
"OSF MOTIF: The User Interface Standard."”

H. Oldenburg.

IEEE Special Colloquium on "User Interface Management Systems".
November 1989.

[Ord, J.G:1989]
"Who's Joking ? The Information System at Play."
Jacqueline G. Ord.
Interacting With Computers. 1989, Volume: 1, Number: 1.

[Parkin, A:1980]
"Systems Analysis."
Andrew Parkin.
Publishers - Edward Arnold Ltd, London, U.K. 1980.

[Patel, H:1989]
"Open Dialogue”
Hitash Patel.
IEEE Special Colloquium on "User Interface Management Systems".
November 1989.

[Paton, N.W:1989]
"A Rule Based Query Optimiser for Object Oriented Databases."

Norman W. Paton, Peter M. D. Gray.

Internal Paper: Department of Computing Science, University of

Aberdeen, Scotland. 1989.

[Paul, D.W:1987]
"An Approach Towards a Truly High-Level and Integrated User-
Computer Interface.”
Dietrich W. Paul, Hans R. Wiehle.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -
Elsevier Science Publishers B. V. (North-Holland). September 1987.

-216-

[Payne, S.J:1986] '
"Task Action Grammars: A Model of the Mental Representation of Task
Languages."

Stephen J. Payne, Thomas R. G. Green.
Human Computer Interaction 1986, Number: 2

[Payne, S.J:1987]
"Complex Problem Spaces: Modelling the Knowledge Needed to Use
Interactive Devices."
Stephen J. Payne.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -
Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Pearce, D:1989]
"HyperNeWS: An Interactive Design Tool."
Danny Pearce.
IEEE Special Colloguium on "User Interface Management Systems".
November 1989.

[Phillips, C:1986]
"Smalltalk V: Screentest."
Carl Phillips.

Personal Computer World Magazine. Novem‘ber 1986.

[Pollack, M:1986]
"A Model of Plan Inference that Distinguishes Between the Belief of
Actors and Observers."
Martha Pollack.

Proceedings for the 1986 24th Annual Meeting of the Association for
Computational Linguistics, New York, NY. 1986.

[Poole, F:1988]
"DB4GL: An Intelligent Database System."

Frank Poole, Bryn Hird.
Internal Paper: Sheffield City Polytechnic, School of Computing and

Management Science. 1988.

[Pope, A:1983]
"Making Life Easier for Professional and Novice Programmers."
Andy Pope, Geoff Kates, Dan Fineberg.

-217 -

Byte Magazine. December 1983.

[Poulson, D.F:1987]
"The Use of Participative Exercises in Human Factors for Education and

Design."
D. F. Poulson, C. A. Johnson, J. Moulding.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -

Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Pountain, D:1988]
"REKURSIV: An Object Oriented CPU."
Dick Pountain.

Byte Magazine. November 1988.

[Pratt,].M:1987]
"The Social Impact of User Models."
John M. Pratt.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -
Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Pullinger, D.J:1989]
"Moral Judgements in Designing Better Systems."
David J. Pullinger.
Interacting With Computers. 1989, Volume: 1, Number: 1.

[Quesne, P.N:1988]
“Individual and Organisational Factors and the Design of Integrated
Program Support Environments."

P. N. Le Quesne.
The Computer Journal. 1988, Volume: 31, Number: 5.

[Quint, V:1987]
"An Abstract Model for Interactive Pictures."
V. Quint, I. Vatton.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -
Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Rasmussen, J:1987]
"Cognitive Engineering."
Jens Rasmussen.

-218 -

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -

Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Rawlings, R:1989]
"Objective C: An Object-Oriented Language for Pragmatists.”
Rosamund Rawlings.

IEEE Special Colloquium on "Applications of Object Oriented
Programming”. November 1989.

[Reenskaug, T.M.H:1981]
"User Oriented Descriptions of Smalltalk Systems."

Trygve M. H. Reenskaug.
Byte Magazine. August 1981.

[Reid, P:1986]
"Workstation Design: Devices, Activities, and Display Techniques."

Pete Reid.

Book: The User Interface: Human Factors in Computer Based Systems. -
Publishers - York University. 1986.

[Riekert, W:1987]
"The ZOO Metasystem: A Direct Manipulation Interface to Object
Oriented Knowledge Bases."
Wolf-Fritz Riekart.

Proceedings for the 1988 ECOOP Conference. Publishers - Springer-
Verlag, New York, N.Y., U.S.A. 1987.

[Rivers, R:1989]
"Embedded User Models - Where Next ?"
Rod Rivers.
Interacting With Computers. 1989, Volume: 1, Number: 1.

[Robson, D:1981]
"Object Oriented Software Systems."
David Robson.

Byte Magazine. August 1981.

[Rogers, Y:1989]
"Icons at the Interface: Their Usefulness."

Yvonne Rogers.

-219-

Interacting With Computers. 1989, Volume: 1, Number: 1.

[Rosenberg, J:1983]
"Evaluating the Suggestiveness of Command Names."
]. Rosenberg.
Proceedings for the 1983 ACM Human Factors in Computing Systems

Conference. Publishers - Gaithersburg, MD, USA. March 1983.

[Rouse, W.B:1986]
"Understanding and Enhancing User Acceptance of Computer
Technology."
William B. Rouse, Nancy M. Morriss.

IEEE Transactions on Systems, Man, and Cybernetics. 1986, Volume: 16,
Number: 6.

[Samurcay, R:1987]
"Design Systems for Training and Decision Aids: Cognitive Task Analysis
as a Prefequisite."
Renan Samurcay, Janine Rogalski.
Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -
Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Sandberg, J:1988]
"Research on HELP Systems: Emperical Study and model construction.”
Jacobijn Sandberg , Joost Breuker, Radboud Winkels.

Proceedings for the 1988 European Conference on Artificial Intelligence,
Munich. 1988.

[Schroder, M:1988]
"Evaluating User Utterances in Natural Language Interfaces to Databases."

Martin Schroder.
Computers and Artificial Intelligence. 1988, Volume: 7, Number: 4.

[Seidewitz, E:1986]
"Towards a General Object Oriented Software Development
Methodology."
Ed Seidewitz, Mike Stark.
Proceedings for the 1986 First International Conference on ADA

Programming Language Applications. 1986.

-220-

[Self, J:1988]
"Artificial Intelhgence and Human Learning: Intelligent Computer Aided
Instruction.”
J. Self (editor).

Publishers - Chapman and Hall, London, UK. 1988.

[Sharrat, B.D:1987]
"Top-down Interactive Systems Design: Some Lessons Learnt From Using
Command Language Grammar."
B. D. Sharrat.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -

Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Shneiderman, B:1983]
"Direct Manipulation: A Step Beyond Programming Languages."
Ben Shneiderman.
IEEE Computer. August 1983.

[Shneiderman, B:1987]
"Designing the User Interface. Strategies for Effective Human Computer

Interaction."
Ben Shneiderman.

Publishers - Addison-Wesley, U.K. 1987.

[Smalltalk80:ReferenceGuide]
"The Smalltalk-80 Programming System. Virtual Image Version VI 2.2.

Reference Guide and Release Notes."

Publishers - Parc Place Systems, Palo Alto, California. 1988.

[Smalltalk80:1981]
"The Smalltalk 80 System.”
Xerox Learning Research Group.

Byte Magazine. August 1981.

[SmalltalkV:1980]
"Smalltalk/V: Goodies Extension Pack."
Reference Manual.

Publishers - Digitalk Inc, Los Angeles, California, U.S.A. 1980.

-221-

[Smith, J.J:1985]
"SUSI - A Smart User-System Interface.”
J. Jerrams Smith.

Book: People and Computers:Designing the Interface. Publishers -
Cambridge Press. 1985.

[Smith, S.L:1984]
"The User Interface to Computer Based Information Systems: A Survey of
Current Software Design Practise."
Sidney L. Smith, Jane N. Mosier.

Proceedings for the 1984 Interact Conference Proceedings. Publishers -
Elsevier Science Publishers B. V. (North-Holland). 1984.

[Sneeringer, J:1978]
"User-Interface Design for Text Editting: A Case Study."
J. Sneeringer.

Software - Practice and Experience 1978, Number: 8

[Snowberry, K:1985]
"Effect of Help Fields on Navigating Through Hierarchical Menu

Structures."
Kathleen Snowberry, Stanley Parkinson, Norwood Sisson.

International Journal Man-Machine Studies. 1985, Number: 22

[Somiw:1989]
"Esprit Project - Secure, Open, Multimedia, Integrated Workstation

(SOMIW)."
ESPRIT Project Number 367. 1989.

[Sommerville, 1:1985]
"Software Engineering."
Ian Sommerville.

Publishers - Addison-Wesley, U.K. 1985.

[Spall, R.P:1986]
"A Program For Responding to Political Statements from Different

Ideological Points of View."

Roger P. Spall.

Thesis: BSc Dissertation, Sheffield City Polytechnic, School of Computing
and Management Science. March 1986. -

-222 -

[Spall, R-P:1988] o
"A Generalised Human-Machine Interface for Proprietary Software."
Roger P. Spall.

Thesis: MPhil to PhD Transfer Report, Sheffield City Polytechnic, School
of Computing and Management Science. June 1988.

[Spall, R.P:1990]
"An Investigation into the Quantitative User Modelling of User
Interactions for the purpose of Predicting User Expertise."
R. P. Spall, R. A. Steele.
Proceedings for the 1990 Interact Conference (Cambridge). Publishers -

Elsevier Science Publishers B. V. (North-Holland). 1990.

[Sproull, R.F:1983]
"Challenges in Graphical User Interfaces."
R. F. Sproull.
Proceedings for the 1983 Joint IBM/Newcastle University Seminar.

Publishers - Computing Laboratory, University of Newcastle Upon Tyne.

1983.

[Stroustrup, B:1986]
"The C++ Programming Language."
Bjarne Stroustrup.

Publishers - Addison-Wesley, U.K. 1986.

[Stroustrup, B:1987]
"What is "Object Oriented Programming" ?"
Bjarne Stroustrup.

Proceedings for the 1988 ECOOP Conference. Publishers - Springer-
Verlag, New York, N.Y., US.A. 1987.

[Sun:1990]
"Software Technical Bulletin: Window System Evolution.”

Sun Microsystems, Technical Information Services. March 1990,
Number: 1990-03

[Sutdliffe, A:1989]
"Task Analysis, Systems Analysis, and Design: Symbiosis or Synthesis ?"

-223-

Alistair Sutcliffe.
Interacting With Computers. 1989, Volume: 1, Number: 1.

[Sutcliffe, A.G:1987]
"Do Users Know they have User Models ? Some Experlences in the
Practise of User Modelling."
A. G. Sutdliffe, A. C. Old.
Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -
Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Swinehart, D.C:1974]
"Copilot: A Multiple Process Approach to Interactive Programming
Systems."
D. C. Swinehart.

Thesis: Stanford Artificial Intelligence Laboratory, Stanford University,

USA. July 1974.

[Tauber, M.J:1988]
"On Mental Models and the User Interface.”
Michael J. Tauber.

Book: Working with Computers: Theory versus Qutcome. Publishers -
Van der Veer. 1988.

[Tesler, L:1981]
"The Smalltalk Environment."
Larry Tesler.

Byte Magazine. August 1981.

[Thimbleby, H:1983]
"Dialogue Design: Principle or Prejudice? 'Generative User-Engineering

rn

Principles’'.
Harold Thimblebly.

Internal Paper: University of London, UK. 1983.

[Thimbleby, H:1986]
"Basic User Engineering Principles for Display Editors."
Harold Thimblebly.
Book: The User Interface: Human Factors in Computer Based Systems.
Publishers - York University. 1986.

-224 -

[Thomas, D:1989]
"What's in an Object."
Dave Thomas.
Byte Magazine. March 1989.

[Thompson, P:1986]
"Visual Perception.”
Peter Thompson.
Book: The User Interface: Human Factors in Computer Based Systems.
Publishers - York University. 1986.

[Thomson, N:1986]
"Human Memory."
Neil Thomson.
Book: The User Interface: Human Factors in Computer Based Systems.
Publishers - York University. 1986.

[Thomson, N:1986b]
"Thinking and Reasoning."
Neil Thomson.
Book: The User Interface: Human Factors in Computer Based Systems.
Publishers - York University. 1986.

[Totterdell, P.A:1986]
"Design and Evaluation of the Adaptive Intelligent Dialogues Front-End
To Telecom Gold."
Peter A. Totterdell, Paul Cooper.
Proceedings for the 1986 HCI Conference. Publishers - Cambridge Press.
1986.

[Totterdell, P.A:1986b]
"The Use of Models."
Peter A. Totterdell.
Proceedings for the 1986 Alvey Conference. July 1986.

[Totterdell, P.A:1987] |
"Levels of Adaptivity in Interface Design."
P. A. Totterdell, M. A. Norman, D. P. Browne.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -

Elsevier Science Publishers B. V. (North-Holland). September 1987.

-225-

[Trigg, R H:1987]
"Adaptability and Tailorability in 'NoteCards'."
Randall H. Trigg, Thomas P. Moran, Frank G. Halasz.
Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -
Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Tsichritzis, D.C:1988]
"Fitting Round Objects into Square Databases."
D. C. Tsichritzis, O. M. Nierstraasz.

Proceedings for the 1988 ECOOP Conference. Publishers - Springer-
Verlag, New York, N.Y., U.S.A. 19.

[Tyldesley, D.A:1988]
"Employing Usability Engineering in the Development of Office
Products."
D. A. Tyldesley.

The Computer Journal. 1988, Volume: 31, Number: 5.

[Vandor, S:1983]
"The Starburst User Interface: Linking Multiple Programs via Custom-
Menu Software."
Steven Vandor.
Byte Magazine. December 1983.

[Verity, J.W:1987]
"The OOPS Revolution."”
John W. Verity.

Datamation. May 1987.

[Vonk, R:1990] : .
"Prototyping - The Effective Use of CASE Technology."

Roland Vonk.
Publishers - Prentice Hall International, London, U.K. 1990.

[Waldhor, K:1987]
"Some Thesis on UNDO/REDO Commands."
Klemens Waldhor.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -
Elsevier Science Publishers B. V. (North-Holland). September 1987.

-226 -

[Warfield, RW:1983]
"The New Interface Technology: An Introduction to Windows and Mice."

Robert W. Warfield.
Byte Magazine. December 1983.

[Warren, C:1987]
"The Role of Task Characterization in Transferring Model of Users: The
Example of Engineering Design."
Clive Warren, Andy Whitefield.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -

Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Wasserman, A.I1:11982]
"The Future of Programming."
Anthony I. Wasserman, Stephen Gutz.
Communications of the ACM. March 1982, Volume: 25, Number: 3.

[Wasserman, A.1:1984]
"Developing Interactive Information Systems with the User Software
Engineering Methodology."
Anthony I. Wasserman.

Proceedings for the 1984 Interact Conference. Publishers - Elsevier Science
Publishers B. V. (North-Holland). 1984.

[Wasserman, A.I:1989]
"An Introduction to Object Oriented Structured Design."
Anthony I. Wasserman, Peter A. Pircher, Robert J. Muller.

Internal Paper: Interactive Development Environments, Inc, San
Francisco, California, USA. 1989.

[Wasserman, A.1:1990]
"The Object-Oriented Structured Design Notation for Software Design

Representation.”
Anthony I. Wasserman, Peter A. Pircher, Robert J. Muller.

IEEE Computer. March 1990, Volume: 23, Number: 3.

[Waterworth, J:1986]
"Interacting with Machines by Voice."
John Waterworth.

-227 -

Book: The User Interface: Human Factors in Computer Based Systems.
Publishers - York University. 1986.

[Wegner, P:1989]
"Learning the Language.”
Peter Wegner.
Byte Magazine. March 1989.

[Weinberg, V:1979]
"Structured Analysis."
Victor Weinberg.
Publishers - Yourdon Press, New York, N.Y., U.S.A. 1979.

[Welsh, J:19871]
"Introduction to Modula-2."
Jim Welsh, John Elder.
Publishers - Prentice Hall International, London, U.K. 1987.

[Wendel, R:1987]
"Developing Exploratory Strategies in Training: A General Approach, and

Specific Example for Manual Use."
Rigas Wendel, Michael Frese.
Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -

Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Whitefield, A:1987]
"Models in Human Computer Interaction: A Classification with Special
Reference to Their Uses in Design."
Andy Whitefield.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -

Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Whiteside, J:1987]
"The Dialect of Usability Engineering."
John Whiteside, Dennis Wixon.

Proceedings for the 1987 Interact Conference (Stuttgart). Publishers -

Elsevier Science Publishers B. V. (North-Holland). September 1987.

[Wichmann, B.A:1982]
"A Comparison of Pascal and Ada."

-228 -

B. A. Wichmann.
The Computer Journal. 1982, Volume: 25, Number: 2.

[Wickens, C.D:1984]
"Engineering Psychology and Human Performance."
C. D. Wickens.
Publishers - Merrill, Columbus and Ohio. 1984.

[Wiederhold, G:1986]
"View, Objects, and Database."
Gio Wiederhold.
IEEE Computer. December 1986.

[Wiest, J.D:1977]
"A Management Guide to PERT/CPM."
Jerome D. Wiest, Ferdinand K. Levy.
Publishers - Prentice Hall International, London, U.K. 1977.

[Williges, R.C:1987]
"The Use of Models in Human Computer Interface Design."
Robert C. Williges.

Ergonomics Society Lecture, Swansea, Wales. April 1987.

[Wolczko, M:1987]
"Semantics of Smalltalk 80."
Mario Wolczko.
Proceedings for the 1987 ECOOP Conference. Publishers - Springer-
Verlag, New York, N.Y., U.S.A. 1987.

[Yau, 5.5:1986]
"A Survey of Software Design Techniques."
Stephen S. Yau, Jeffery J.P. Tsai.

IEEE Transactions on Software Engineering. June 1986, Volume: 12,

Number: 6.

[Zhao, L.:1988]
"An Object Oriented Data Model for Database Modelling, Implementation

and Access."
Liping Zhao, S. A. Roberts.

The Computer Journal. 1988, Volume: 31, Number: 2.

-229-

Appendix A,

Library N k Statemen

This appendix lists the various notebook statements collected during the
library system investigation described in chapter seven. The statements are
grouped and listed in subject order, and are ommitted where subjects failed
to complete the notebook provided.

A.1. Subject Two.

"If you are at task edit and you remain on same record, same screen format,
but change to display task, any editing you have previously done on that
record, e.g. changing loan categories, amending incorrect spelling,
automatically reverts back to what it was before you amended it. This is OK
if you remember not to do it, but it can be irritating if you forget."

"I make pointer files of records that are to be deleted. The reference
numbers for these records often come to me from other people who
occasionally get the reference number wrong. This can be very irritating as
once in a pointer file you can only get out of it by closing that file down and
starting another - no good if you want to double check a reference. It means
you have to go running around looking for a vacant terminal to do a check.
Also without going through a very long and complicated procedure of
merging two pointer files you cannot add anything to a pointer file or
remove any records from a pointer file."

"Problem with not enough terminals. As more and more of our work is
based on the audit system we need more terminals. It is very difficult for
some people to find a spare one to work at, thereby causing frustration and
irritation. At really busy times people may come and use your terminal if
you are away for half an hour or so, doing something else. This I don't
mind, but you often have to wait for them to finish before you can use it."

"I find it very annoying that the system sometimes goes down, occasionally
for whole or half days, and the work is waiting to be done, but you can't do
it." "Another small but irritating point is the incredibly slow response time
encountered occasionally. There are, on occasions, times when I've been
convinced that the cursor has stuck because it has been so slow to respond.”

-230-

"I have still not found a really comfortable height combination for footrest
and chair. I find I get quite fidgety after a time."

"I find I have difficulty when having to look at 3 different things (e.g. the
screen, a book, and a form) and take information from them (this could
relate back to the above point about not sitting comfortably). I really find this
a strain on my eyes more than anything else I do."

A.2. Subject Four.

"Forgetting to use q when wishing to change data sets. Logging out, and
consequently having to go through full logon procedure to change data
sets."

"When inputting a bibliographic reference it is easy to put the preferred
form in the Name prefer box, even if it is not a name as there are no boxes .
differentiating other fields (apart from 'prefer’). Would be better if the field

were simply 'prefer’.

"When attempting to edit records in a pointer file, 'Help' typed at the
prompt pointer file task does not tell you how to-obtain the 'read from
pointer file' prompt which will allow you to get into a particular pointer file.
You have to remember that you must return to Task level (not pointer file
task) and type md to obtain the 'read from pointer file' prompt."

"Cursor takes a long time to move when changing through a series of
records to edit them."

"Very annoying when thrown back to task level with a '"MIDAS 2000" error
message, and it is not exactly clear why this has happened.”

"Fact that records are not in a logical order when working at a given key can

be annoying."

"When attempting to edit a series of records at the same key and ask for
'move' with one of the records and then try to return to original screen of
that record using =, doesn't work. Although it does work when editing
records not using a key. It is necessary to change screens, or move onto next
key and work backwards."

-231-

.

"If thrown back to task level for some reason, you need to check Ehat what
you have just edited has indeed been edited."

"Editing a record, adding a subject heading using e, Pressed return and this
heading is accepted. Then changed task to d since wished to use this task for
next record, pressed return before changing number in next box and the
subject heading I had added was deleted.”

"Changing to m in next box delete remaining numbers of reference
number, but move cursor slightly to far and the format number is deleted.
The message appears 'Not Found on Format File', and there is no time to
correct this before you are thrown back to task level, and any editing you
may have done on a record may have been ignored."

"If change record number in next box with a in task box, and a key, forget to
change the task to e or d, and press return you are moved on to the next
record at the key, and there is no warning of the fact that you need to change
tasks to obtain the record you want."

"When searching with 'f' and change to 'a' to edit a record and then 'f'
intending to move on to next record, you are thrown back to the beginning
of the sequence at that key. To avoid this you need to remember to change
the screen format and then change back to your original format."

"When finding a series of records the first record which appears differs on
separate occasions."

A.3. Subject Five.

"Slow response times make work erratic and frustrating - can't tell whether
system has registered a command and repeat it unnecessarily."

"It would be helpful if the Insert key functioned and would save time in
editing."

"There seems to be an optimum concentration span - after which I cease to
see errors in the text on the screen, but just continue to press keys
automatically. Stuffy office seems to be a contributing factor as well."

-232-

"What do you do when the system is down, and most of your work is _
geared to using terminals. It can be time wasting, and unproductive."

"Do I really see an end product ? Once I've input or edited a record, it
disappears into the system - doesn't seem tangible."

"Difficulty of moving between systems - Using AOLIB and then the Sirius
microcomputers.”

"There never seem to be enough terminals to go around.”

"If I use the system to answer a readers enquiry, I feel that I am creating a
mystique. They do not have access to the on-line catalogue."

-233-

Appendix B.

An Qverview of the Smalltalk 80 Programming Language and

Environment,

This appendix describes the salient features of Smalltalk 80, which are
relevant to the implementation work presented in chapters five, six and
seven. Its content provides an overview of the applicable Smalltalk 80
concepts and terminology. For a more detailed expose of the Smalltalk 80
language and environment, the reader is directed to [Byte:1981], and books by
Goldberg [Goldberg, A:1983], [Goldberg, A:1983b] and Mevel [Mevel, A:19871.

Smalltalk, object functions are known as methods. These methods have a
name, and are instantiated by sending a message to an object with that
name. Throughout the thesis, these messages are shown in italics. Internal
data fields are known as instance variables (other fields known as
temporary, global and Class variables also exist, but are not described here).
As shown in figure B1, example instance variables include fullName,
address, department and dOB; example methods include fullName,
fullName:, age, age:, dAOB, dOB:, address, and address:.

When a message is sent to an object, the defined method code for the
message name is executed. This code may then modify internal data fields,
and send messages to other objects. Upon completion, this method code also
returns an object. The programmer may specify the object returned, and the
default is to return the receiver object. In effect, a Smalltalk Class defines the
behaviour and implementation of all the Class's instances. Each instance
maintains its own unique, named instance variables, and shares the method
code defined within its class with all other instances of the same Class.
Whenever the method code refers to an instance variables, the instance
variable belonging to the receiving instance object is inferred.

-234 -

Class Name: a

Person

Super Class Name:
Object

Instance VYariables:

fullName

address

department dOB:
dOB

address address:
Instances :-
. | | | | .

Figure B1 - Example Smalltalk Class.

Objects are identified using a name, and messages are sent by first specifying
the receiver object, followed by the message name and any necessary
arguments. There are three types of messages (and therefore methods),
characterised by the number of arguments required. These are Unary,
Keyword, and Binary. Unary messages do not require any arguments, for
example freddy age, freddy address, freddy dOB, and freddy fullName (where
freddy is the receiver object). Keyword messages are probably the most
common type, and allow arguments to be specified. The Keyword message is
made up of one or more keywords preceding each argument. Each keyword
terminates with a colon (':'). For example, freddy fullName: ‘Bloggs’, and
freddy bornDay: 25 month: 4 year: 1960 (this is an example of a keyword
message which allows 3 arguments, with the method name being
bornDay:month:year:). How these arguments are interpreted by the method
code depends upon the programmer's implementation. Finally, in the case
of a single argument, it is possible to use a keyword made up of one or two
non-alphanumeric characters, without a terminating colon. This represents

-235-

a binary message and examples include 1 + 2 (which returns 3), and 23 > 45
(which returns false).

A Smalltalk object's method code may send further messages to itself by
setting the message receiver to self. For example, an instance method
defined for the Person Class may include the expression self age. This
effectively sends the message age to the receiver Person instance which is
executing the defined method code.

Smalltalk implements polymorphism by allowing Sub-classes to override
method code implemented in their Super-classes. For example, consider the
Engine Class from appendix D, which implements an instance method
called fuelType. In the case of an Engine instance this returns the string
"Petrol". A DieselEngine Class could be implemented as a Sub-class of the
Engine Class, and may also implement an instance method called fuelType.
However, in this case the DieselEngine Class implements method code
which returns the string "Diesel Fuel". Whenever the fuelType message is
sent to a DieselEngine instance, "Diesel Fuel" is returned. If the same
message is sent to an Engine instance, "Petrol" is returned instead. Smalltalk
also allows this method overriding to be overridden. The overriding
method code of a Sub-class may also invoke the overridden Super-class
method using the message receiver super. This is used in an identical way to
self. For example, the fuelType instance method code defined in the
DieselEngine Class may include the statement super fuelType. This
effectively invokes the method code for fuelType defined in the
DieselEngine's Super-class. In this case it would invoke the Engine Class's
fuelType method code and return "Petrol”. If the Super-class hierarchy does
not define the relevant method, and error will occur.

A Smalltalk Class defines the internal data fields and messages which are
understood by all of its instances. It also defines a set of Class messages
which only it (and any Sub-classes) understands. For example, the message
new, which when sent to a Class returns an object which is a new instance‘ of
the Class. Smalltalk Classes are themselves objects (i.e. instances of another
Class), and this concept makes Smalltalk a very flexible language.

Smalltalk differentiates between upper and lower case letters. This means
that two methods with the same name, but different case, can exist for the
same object, for example age and Age. All objects have names which act as
pointers to an object, and one object may have more than one name

-236 -

pointing to it. Class names are identified as starting with an uppercase letter,
and there should only be one name pointer per Class. All other names
should begin with a lower case letter. Only a Class object can understand a
Class message (provided an appropriate method is defined), while only
instances of a Class can respond to the instance messages defined by the
object's Class. All instance variables must begin with a lowercase letter, and
by convention, all instance methods also begin with lowercase.

Throughout the thesis unnamed instances of a Class are referred to by their
Class name. For example, 'A Person understands the age: message' is to be
interpreted as all instances of the Person Class understand the age: message.
When reference is made to the Person Class definition itself, the term
"Person Class' is used.

Smalltalk provides the facility to define dependencies between objects in
such a way that, when an object is dependent upon a second one, any
alteration of the second is signalled to the first, this is known as Object
Dependency. Messages are provided which allow object dependency to be
created and broken. An object's existing dependencies are automatically
passed on to any new objects which are made dependent upon it. Dependent
objects can communicate indirectly using specific messages. These include
changed and changed: which inform all dependents that an object has
changed, the latter allowing arguments to be included and passed onto the
dependents. Dependent objects must implement specific methods to
respond to changes within their dependents. Two methods, update and
update: are of particular interest. The former represents the message sent to
an object when one of its dependents has used the change message. The
latter is sent when a dependent uses the changed: message, and the
argument is set to the argument included in the original changed: message.

Two important concepts arise. Firstly, an object doesn't need to know how
many, or what type of objects are dependent upon it (although messages are
provided to accomplish this). An object sends only one message informing
of a change, or asking permission to change. Smalltalk automatically
informs relevant dependents and returns the results of any inquiries.
Secondly, the dependency between object A and another object B, can be
made or broken by either A or B. Effectively, an interface can be made
dependent upon an application without the application being affected.

-237 -

The change: message is more specific than change, and it requires a single
argument which is usually a method name, or identifier. It is used to notify
any dependents that a specific change has occurred and the interpretation of
the argument by the dependents identifies the specificity. As a consequence,
any dependents are notified of the change with the message update: being
sent to them. This message again requires a single argument, and this is
automatically set to the same argument as used in the initial changed:
message. What the dependents do when they receive this message depends
upon their method code.

A Smalltalk application is made up of a set of communicating objects, each
defined or represented by a set of corresponding Class descriptions. Only one
message can be sent to an object at a time. The receiving object may then
repeat the process, forwarding other messages to other objects within the
application. At the lowest level, interaction with an application take the
form of message passing with appropriate objects. This work is concerned
with building user interfaces upon this level, allowing separate
reconfigurable interface to be implemented for individual objects. The
interface description for these objects are then attached to the appropriate
Class descriptions.

-238 -

Appendix C.
Object Oriented Quantitative User Model Source Code.

This appendix contains the actual Smalltalk 80 source code for the
Quantitative User Model implementation discussed in chapter five.

-239-

Object subclass: #UserModel -
instanceVariableNames: 'usageDict learnFormula learnFormulaString defaultApplicationincrease
defauitClassincrease title defaultLevel2Trigger defaultLevel3Trigger usageCount errorCount errorCount2
lastUsed useSincelLastError level3Trigger level2Trigger userOverRide expertiseLevel’

classVariableNames: ”
pooliDictionaries: "
category: "User Model’

This class represents a Quantitative User Model, which enables use of an object oriented application-to be monitorred for the purpose of
predicting user expertise with different components of the application.

<usageDict> A dictionary containing usage information for individual classes and methods. The keys represent either class names, or
combined class/method names. The value associated with each key is also a dictionary which contains the relevant information. '
<learnFormulaString> A mathematical formula in the form of a string containing a block (e.g. [x/x*x]"), which describes a users ability to leam
<leamFormulaString> The compiled Block from <leamFormulaString. '
<defaultApplicationincrease>, <defaultClassincrease>, <defaultLevel2Triggers, and <defaultLevel3 Trigger>Numbers representing defauit
values when new Classes and methods are added.

<title> String representing User Model title. .

<usageCount>, <errorCount>, <errorCount2>, <lastUsed>, <useSincalastError>, <level3Trigger>, <level2Triggers, <userOverRides, and
<expertiseLevel> Informaticn describing overrall Application usage. Note that this same information is stored for every class and method in the

<usageDict>.
UserModel methodsFor: Addition/Deletion

addClass: aClassName
"Add new Class information®

| newClass |

newClass « Dictionary new.

newClass at: #errorCount put: 0.

newClass at: #errorCount2 put: 0.

newClass at: #usageCount put: 0.

newClass at: #lastUsed put: Date today.

newClass at: #useSincelastErmor put: 0.

newClass at: #applicationincrease put: defaultApplicationincrease.
newClass at: #level3Trigger put: defaultLevel3Trigger.
newClass at: #level2Trigger put: defaultLevel2Trigger.
newClass at: #userOverRide put: 0.

newClass at: #expertiseLevel put: nil.

usageDict at: aClassName put: newClass.

self changed: #availableClasses.

tnewClass

addMethod: aMethodName forClass: aClassName
"Add information for new Class method"

| newMethod |

usageDict at: aClassName ifAbsent: [self addClass: aClassName].
newMethad « Dictionary new.

newMethod at: #errorCount put: 0.

newMethod at: #errorCount2 put: 0.

newMethod at: #usageCount put: 0.

newMethod at: #lastUsed put: Date today.

newMethod at: #classincrease put: defaultClassincrease.
newMethod at: #useSincel.astError put: 0.

newMethed at: #level3Trigger put: defauitLevel3Trigger.
newMethod at: #level2Trigger put: defaultLevel2Trigger.
newMethod at: #userOverRide put: 0.

newMethod at: #expertiseLevel put: nil.

usageDict at: (aClassName , *." , aMethodName) asSymbol put: newMethod.
self changed: #methodsForClass:.

tnewMethod

removeClass: aClassName
"Remove existing Class information®

usageDict removeKey: aClassName ifAbsent: f].
self changed

removeMethod: aMethodName forClass: aClassName
*Remove existing Class method information®

usageDict at: aClassName ifAbsent: [self addClass: aClassName].
usageDict removeKey: (aClassName , *.' , aMethodName) asSymbol ifAbsent: J.
self changed

UserModel methodsFor: Enquiry - Application

-240 -

applicationErrorCount :) .
terrorCount :

applicationErrerCount2
terrorCount2

applicationExpertiselevel
“Calculate Application Expertise Level®

| adjustUsage |
+self applicationOverRidden
ifTrue: [expertiseLevel)
ifFalse:
[adjustUsage « leamFormula value: usageCount.
adjustUsage > level3Trigger
ifTrue: [3]
ifFalse: [adjustUsage > level2Trigger
ifTrue: [2]
ifFaise: [1]]}

applicationLastUsed
tlastUsed

applicationLevel2Trigger
tlevel2Trigger

applicationLevel3Trigger
tlevel3Trigger

applicationOverRidden
texpertiseLevel notNil

applicationUsage
tusageCount

applicationUseSinceLastError
tuseSincelastError

UserModel methodsFor: Enquiry - Class

classApplicationincrease: aClassName
t(usageDict at: aClassName ifAbsent: [self addClass: aClassName])
at: #applicationincrease

classErrorCount2: aClassName
+(usageDict at: aClassName ifAbsent: [self addClass: aClassName])
at: #errorCount2

classErrorCount: aClassName
t(usageDict at: aClassName ifAbsent: [self addClass: aClassName])
at: #errorCount

classExpertiseLevel: aClassName
"Calculate Class Expertise Level®

| adjustUsage class |
+self applicationOverRidden
ifTrue: [expertiseLevel]
ifFalse: [(self classOverRidden: aClassName)
ifTrue: [(usageDict at: aClassName)
at: #expertiseLevel]
ifFalse:
[adjustUsage « learnFormula value: ((class « usageDict at: aClassName ifAbsent: [self addClass: aClassName}) at:
#usageCount).
adjustUsage > (class at: #level3Trigger)
ifTrue: [3]
ifFalse: [adjustUsage > (class at: #level2Trigger)
ifTrue: [2]
ifFalse: [1]]]]

classLastUsed: aClassName
+(usageDict at: aClassName ifAbsent: [self addClass: aClassName])
at: #lastUsed

classLevel2Trigger: aClassName
t(usageDict at: aClassName ifAbsent: [self addClass: aClassName])
at: #level2Trigger

classLevel3Trigger: aClassName
t(usageDict at: aClassName ifAbsent: [self addClass: aClassName))

-241-

at: #level3Trigger

classOverRidden: aClassName
+((usageDict at: aClassName ifAbsent: [self addClass: aClassName])
at: #expertiseLevel) notNil

classUsage: aClassName
t(usageDict at: aClassName ifAbsent: [self addClass: aClassName])
at: #usageCount

classUseSincelastError: aClassName
+(usageDict at: aClassName ifAbsent: [self addClass: aClassName))
at: #useSincelastError

UserModel methodsFor: Enquiry - Method

methodClassincrease: aMethodName forClass: aClassName
+(usageDict at: (aClassName , *." , aMethodName) asSymbol ifAbsent: [self addMethod: aMethodName forClass: aClassName})
at: #classlncrease

methodErrorCount2: aMethodName forClass: aClassName
+(usageDict at: (aClassName , .’ , aMethodName) asSymbol ifAbsent: [self addMethed: aMethodName forClass: aClassName])

at: #errorCount2

methodErrorCount: aMethodName forClass: aClassName
t(usageDict at: (aClassName , ', aMethodName) asSymbol ifAbsent: [self addMethod: aMethodName forClass: aClassName})

at: #errorCount

methodExpertiseLevel: aMethodName forClass: aClassName
*Calculate Class Method Expertise Level”

| adjustUsage methodDict |
tself applicationOverRidden
ifTrue: [expertiselevel]
ifFalse: [(self classOverRidden: aClassName)
ifTrue: [(usageDict at: aClassName)
at: #expertiseLevel]
ifFalse: [(se!f methodOverRidden: aMethodName forClass: aClassName)
ifTrue: {(usageDict at: (aClassName , "." , aMethodName) asSymbol)
at: #expertiseLevel]
ifFalse:
[adjustUsage « leamFormula value: ((methodDict « usageDict at: (aClassName , *." , aMethodName)
asSymbol! ifAbsent: [self addMethod: aMethodName forClass: aClassName]) at: #usageCount).
adjustUsage > (methodDict at: #level3Trigger)
ifTrue: [3]
ifFalse: [adjustUsage > (methodDict at: #level2Trigger)
ifTrue: [2]
ifFalse: [1]]]1]

methodLastUsed: aMethodName forClass: aClassName
1(usageDict at: (aClassName , "', aMethodName) asSymbol ifAbsent: [self addMethod: aMethcdName forClass: aClassName])

at: #lastUsed

methodLevel2Trigger: aMethodName forClass: aClassName
t(usageDict at: (aClassName , *.’, aMethodName) asSymbol ifAbsent: [self addMethod: aMethodName forClass: aClassName])

at: #level2Trigger

methodLevel3Trigger: aMethodName forClass: aClassName
+(usageDict at: (aClassName , . , aMethodName) asSymbol ifAbsent: [self addMethod: aMethodName forClass: aClassName])

at: #level3Trigger

methodOverRidden: aMethodName forClass: aClassName
t{(usageDict at: (aClassName , .’ , aMethodName) asSymbol ifAbsent: [self addMethod: aMethodName forClass: aClassName])

at: #expertiseLevel) notNit

methodUsage: aMethodName forClass: aClassName
+(usageDict at: (aClassName , *.' , aMethodName) asSymbol ifAbsent: [self addMethod: aMethodName forClass: aClassName])

at: #usageCount

methodUseSincelastError: aMethodName forClass: aClassName
t(usageDict at: (aClassName , *.", aMethodName) asSymbol ifAbsent: [self addMethod: aMethodName forClass: aClassName])

at: #useSincelastError
UserModel methodsFor: Enquiry - General

avallableClasses
| classes |
classes + OrderedCollection new.
usageDict keys do: [:aClassName | aClassName isCompound ifFalse: [classes add: aClass Name]].

tclasses

-242 -

defaultApplicationincrease
tdefaultApplicationincrease

defaultClassincrease
tdefauitClassincrease

defaultLevel2Trigger
tdefaultLevel2Trigger

defaultLevel3Trigger
tdefaultLevel3Trigger

learnFormula
+leamFormulaString

methodsForClass: aClassName
| methods |
methods « OrderedCollection new.
usageDict at: aClassName ifAbsent: [tmethods].
usageDict keys do: [:aDesc | aDesc isCompound ifTrue: [aDesc classPart = aClassName ifTrue: [methods add: aDesc selectorPart]]].

tmethods

title
itle

UserModel methodsFor: Initialize

Initialize: aName
self initializeDefaults.
usageDict « Dictionary new.
tile « aName.
self learmnFormula: [:jlj .
usageCount « 0.
errorCount + 0.
errorCount2 « 0.
useSincelastError + 0.
level2Trigger « defaultLevel2Trigger.
level3Trigger « defaultLevel3Trigger.
userOverRide « 0.
expertiseLevel « nil

InitializeDefaults
self defaultClassincrease: 0.1.
.self defaultApplicationincrease: 0.1.
self defaultLevel3Trigger: 50.
self defaultLevel2Trigger: 35

resetCounts
usageDict
associationsDo:

[:assoc |
assoc value at: #usageCount put: 0.
assoc value at: #useSincelastError put: 0.
assoc value at: #errorCount put: 0.
assoc value at: #errorCount2 put: 0].

self changed

resetErrorCounts
usageDict
associationsDo:
[:assoc|
assoc value at: #errorCount put: 0.
assoc value at: #emrorCount2 put: 0].
self changed

resetUsage
usageDict
associationsDo: R
[:assoc|
assoc value at: #usageCount put: 0.
assoc value at: #useSincelastError put: 0].
self changed

UserModel methodsFor: Modification - Application
applicationErrorCount2: aNum

errorCount2 + aNum.
self changed: #applicationErrorCount2

-243 -

applicationErrorCount: aNum
errorCount « aNum.
self changed: #applicationErrorCount

applicationExpertiseLevel: aNum
userOverRide+ 5.
expertiseLevel « aNum.
self changed: #applicationExpertiseLevel.
self changed: #applicationOverRidden.
self changed: #classExpertiseLevel:.
self changed: #methodExpertiseLevel.forClass:

applicationLastUsed: aDate
lastUsed « aDate.
self changed: #applicationLastUsed

applicationLevel2Trigger: aNum
level2Trigger « aNum.
self changed: #applicationLevel2Trigger.
self changed: #applicationExpertiseLevel

applicationLevel3Trigger: aNum
level3Trigger + aNum.
self changed: #applicationLevel3Trigger.
self changed: #applicationExpertiseLevel

applicationOverRIdeOff
userOverRide+ 0.
expertiseLevel « nil.
self changed: #applicationOverRidden.
self changed: #applicationExpertiseLevel.
self changed: #classExpertiseLevel:.
self changed: #methodExpertiseLevel:forClass:

applicationUsage: aNum
usageCount « aNum.
self changed: #applicationExpertiseLevel.
self changed: #applicationUsage

applicationUseSinceLastError: aNum
useSincelastErmor « aNum.
self changed: #applicationUseSincelLastError

UserModel methodsFor: Modification - Class

changeClass: aClassName applicationincrease: aNum
| classDict |
classDict « usageDict at: aClassName ifAbsent: [self addClass: aClassName].
self applicationUsage: usageCount + ((classDict at: #usageCount)
* (aNum - (classDict at: #applicationincrease))).
classDict at: #applicationincrease put: aNum.
self changed: #classApplicationincrease:

changeClass: aClassName errorCount2: aNum
| classDict |
classDict « usageDict at: aClassName ifAbsent: {self addClass: aClassName).
self applicationErrorCount2: errorCount2 - (classDict at: #errorCount2) + aNum.
classDict at: #errorCount2 put: aNum.
self changed: #classErmrorCount2;

changeClass: aClassName errorCount: aNum
| classDict |
classDict + usageDict at: aClassName ifAbsent: [self addClass: aClassName].
self applicationErrorCount: errorCount - (classDict at: #errorCount) + aNum.
classDict at: #errorCount put: aNum.
self changed: #classErrorCount:

changeClass: aClassName expertiseLevel: aNum

(usageDict at: aClassName ifAbsent: [self addClass: aClassName])
at: #userOverRide put: 5.

(usageDict at: aClassName)
at: #expertiseLevel put: aNum.

self changed: #classExpertiseLevel..

self changed: #classOverRidden:.

self changed: #methodExpertiseLevel:forClass:

changeClass: aClassName lastUsed: aDate
(usageDict at: aClassName ifAbsent: [self addClass: aClassName))
at: #lastUsed put: aDate.
self changed: #classLastUsed:

-244 -

changeClass: aClassName level2Trigger: aNum
(usageDict at: aClassName ifAbsent: [self addClass: aClassName])
at: #level2Trigger put: aNum.
self changed: #classLevel2Trigger:.
self changed: #classExpertiseLevel:

changeClass: aClassName level3Trigger: aNum
(usageDict at: aClassName ifAbsent: [self addClass: aClassName])
at: #level3Trigger put: aNum.
self changed: #classLevel3Trigger:.
self changed: #classExpertiseLevel:

changeClass: aClassName usage: aNum
| classDict |
classDict « usageDict at: aClassName ifAbsent: [self addClass: aClassNamel].
self applicationUsage: usageCount + (aNum - (classDict at: #usageCount) * (classDict at: #applicationincrease)).
classDict at: #usageCount put: aNum.
self changed: #classUsage:.
self changed: #classExpertiseLevel:

changeClass: aClassName useSincelLastError: aNum
(usageDict at: aClassName ifAbsent: [self addClass: aClassName])
at: #useSincelastEmor put; aNum.
self changed: #classUseSincelastError:

. changeClassOverRideOff: aClassName

(usageDict at: aClassName ifAbsent: [self addClass: aClassName])
at: #userOverRide put: 0.

(usageDict at: aClassName)
at: #expertiseLevel put: nil.

self changed: #classOverRidden:.

self changed: #classExpertiseLevel..

self changed: #methodExpertiseLevel:forClass:

setAllClassesAndMethodsExpertiseLevel: aNum
usageDict
associationsDo:
[:entry
entry at: #userOverRide put: 5.
entry at: #expertiseLevel put: aNum].
self changed: #classExpertiseLevel..
self changed: #classOverRidden:.
self changed: #methodExpertiselLevel:forClass:.
self changed: #methodOverRidden:forClass:

setAllClassesAndMethodsOverRideOff
usageDict
associationsDo:

[:entry |
entry value at: #userOverRide put: 0.
entry value at: #expertiseLevel put: nii].

self changed: #classExpertiselLevel..

self changed: #classOverRidden:.

self changed: #methodExpertiseLevel:forClass:.

self changed: #methodOverRidden:forClass:

setAlIClassesExpertiseLevel: aNum
self availableClasses do:
[:aClassName |
(usageDict at: aClassName)
at: #userOverRide put: 5.
(usageDict at; aClassName)
at: #expertisel.evel put: aNum)].
self changed: #classExpertiselLevel:.
self changed: #classOverRidden:

setAllClassesOverRideOff
self availableClasses do:
[:aClassName |
(usageDict at: aClassName)
at: #userOverRide put: 0.
(usageDict at: aClassName)
at: #expertiselLevel put: nil].
self changed: #classExpertiseLevel:.
self changed: #classOverRidden:

UserModel methodsFor: Modification - Method

changeMethod: aMethodName forClass: aClassName classincrease: aNum

-245-

- | classDict methodDict |
classDict « usageDict at: aClassName ifAbsent: [self addClass: aClassName].
methodDict « usageDict at: (aClassName , *.' , aMethodName) asSymbol ifAbsent: [self addMethod: aMethodName forClass:
aClassName).
self changeClass: aClassName usage: (classDict at: #usageCount)
+ ((methodDict at: #usageCount)
: * (aNum - (methodDict at: #classincrease))).
methodDict at: #classincrease put: aNum.
self changed: #methodClassincrease:forClass:

changeMethod: aMethodName forClass: aClassName errorCount2: aNum

| classDict methodDict |

classDict « usageDict at: aClassName ifAbsent: [self addClass: aClassName).

methodDict « usageDict at: (aClassName , "’ , aMethodName) asSymbol ifAbsent: [self addMethod: aMethodName forClass:
aClassName). . :

self changeClass: aClassName errorCount2: (classDict at: #errorCount?2)

- (methodDict at: #errorCount2) + aNum.
methodDict at: #errorCount2 put: aNum.
self changed: #methodErrorCount2:forClass:

changeMethod: aMethodName forClass: aClassName errorCount: aNum

| classDict methodDict |

classDict + usageDict at: aClassName ifAbsent: [self addClass: aClassName].

methodDict + usageDict at: (aClassName , *.", aMethodName) asSymbol ifAbsent: [self addMethod: aMethodName forClass:
aClassName].

self changeClass: aClassName errorCount: (classDict at: #errorCount)

- (methodDict at: #errorCount) + aNum.
methodDict at: #errorCount put: aNum.
self changed: #methodErrorCount:forClass:

changeMethod: aMethodName forClass: aClassName expertiseLevel: aNum
(usageDict at: (aClassName , *." , aMethodName) asSymbol ifAbsent: [self addMethod: aMethodName forClass: aClassName}))
at: #userOverRide put: 5.
(usageDict at: (aClassName , *.’ , aMethodName) asSymbol)
at: #expertiseLevel put: aNum.
self changed: #methodExpertiseLevel:forClass:.
self changed: #methodOverRidden:forClass:

changeMethod: aMethodName forClass: aClassName lastUsed: aDate
(usageDict at: (aClassName , ', aMethodName) asSymbol ifAbsent: [self addMethod: aMethodName forClass: aClassName)
at: #lastUsed put: aDate.
self changed: #methodLastUsed:forClass:

changeMethod: aMethodName forClass: aClassName level2Trigger: aNum
(usageDict at: (aClassName , '’ , aMethodName) asSymbol ifAbsent: [self addMethod: aMethodName forClass: aClassName])
at: #level2Trigger put: aNum.
self changed: #methodLevel2Trigger:forClass:.
self changed: #methodExpertiseLevel:forClass:

changeMethod: aMethodName forClass: aClassName level3Trigger: aNum
(usageDict at: (aClassName , *." , aMethodName) asSymbol ifAbsent: [self addMethod: aMethodName forClass: aClassName])
at: #level3Trigger put: aNum.
self changed: #methodlLevel3Trigger:forClass:.
self changed: #methodExpertiseLevelforClass:

changeMethod: aMethodName forClass: aClassName usage: aNum
| classDict methodDict |
classDict « usageDict at: aClassName ifAbsent: [self addClass: aClassName].
- m;thod?ct « usageDiot at: (aClaczNamae , '.', aMethodName) asSymbol ifAbsent: [self addMethod: aMethodName forClass:
aClassName].
self changeClass: aClassName usage: (classDict at: #usageCount)
+ (aNum - (methodDict at: #usageCount) * (methodDict at: #classincrease)).
methodDict at: #usageCount put: aNum.
self changed: #methodUsage:forClass:.
self changed: #methodExpertiseLevel:forClass:

changeMethod: aMethodName forClass: aClassName useSinceLastError: aNum
(usageDict at: (aClassName , .’ , aMethodName) asSymbol ifAbsent: [self addMethod: aMethodName forClass: aClassName])
at: #useSincelastError put: aNum.
self changed: #methodUseSincelastError:forClass:

changeMethodOverRIideOff: aMethodName forClass: aClassName
(usageDict at: (aClassName , *.', aMethodName) asSymbol ifAbsent: [self addMethod: aMethodName forClass: aClassName])
at: #userOverRide put: 0.
(usageDict at: (aClassName , *.' , aMethodName) asSymbol)
at: #expertiseLevel put: nil.
self changed: #methodExpertiseLevel:forClass:.
self changed: #methodOverRidden:forClass:

setAllMethodsForClass: aClassName expertiseLevel: aNum

-246 -

(self methodsForClass: aClassName)
do:
[:aMethodName |
(usageDict at: (aClassName , *.", aMethodName) asSymbol)
at: #userOverRide put: 5.
+ (usageDict at: (aClassName, *.", aMethodName) asSymbol)
at: #expertiseLevel put: aNum].
self changed: #methodExpertiseLevel:forClass:.
self changed: #methodOverRidden:forClass:

setAliMethodsOverRideOffForClass: aClassName
(self methodsForClass: aClassName)
do:
[:aMethodName |
(usageDict at: (aClassName , ", aMethodName) asSymbol)
at: #userOverRide put: 0.
(usageDict at: (aClassName , *.' , aMethodName) asSymbol)
at: #expertiseLevel put: nil].
self changed: #methodExpertiseLevel:forClass:.
self changed: #methodOverRidden:forClass:

UserModel methodsFor: Modification - General

defaultApplicationincrease: newVal
defaultApplicationincrease « newVal.
self changed: #defaultApplicationincrease

defaultClassincrease: newVal
defaultClassincrease + newVal.
self changed: #defaultClass!ncrease

defaultLevel2Trigger: newVal
defaultLevel2Trigger « newVal..
self changed: #defaultLevel2Trigger

defaultLevel3Trigger: newVal
defaultLevel3Trigger « newVal..
self changed: #defaultLevel3Trigger

learnFormula: aString
learnFormulaString « aString.
learnFormula « Compiler new
evaluate: aString
in: nil
to: nil
notifying: nil
ifFail: .
self changed: #leamFormula.
self changed: #applicationExpertiseLevel.
self changed: #classExpertiseLevel:.
self changed: #methodExpertiseLevel:forClass:

title: aString
title « aString.
self changed: #title

UserModel methodsFor: Usage

errorWithApplication
errorCount « errorCount + 1.
useSincelastError « 0.
userOverRide « userOverRide = 0
ifTrue:
[expertiseLevel « nil.
0]
ifFalse: [userOverRide - 1].
self changed: #applicationErrorCount.
self changed: #applicationUseSinceLastError.
self changed: #applicationOverRidden.
self changed: #applicationExpertiseLevel

errorWithClass: aClassName
| classDict newTotal |
self errorWithApplication.
classDict « usageDict at: aClassName ifAbsent: [classDict + self addClass: aClassName].
classDict at: #errorCount put: (classDict at: #errorCount)
+1.
classDict at: #useSincelastError put: 0.
classDict at: #userOverRide put: ((newTotal « classDict at: #userOverRide) = 0

ifTrue:
-247 -

[classDict at: #expertiseLevel put: nil.
0]
ifFalse: [newTotal - 1]).
self changed: #classErrorCount:.
self changed: #classUseSincelastError:.
self changed: #classOverRidden:.
self changed: #classExpertiseLevel:

errorWithMethod: aMethodName forClass: aClassName
| methodDict newTotal |
self errorWithClass: aClassName.
c methodDict « usageDict at: (aClassName , '’ , aMethodName) asSymbol ifAbsent: [self addMethod: aMethodName forClass:
aClassName).
methodDict at: #errorCount put: (methodDict at: #errorCount)
+1.
methodDict at: #useSincelastError put: 0.
methodDict at: #userOverRide put: ((newTotal « methodDict at: #userOverRide) = 0
ifTrue:
[methodDict at: #expertiseLevel put: nil.
0]
ifFalse: [newTotal - 1]).
self changed: #methodErrorCount:forClass:.
self changed: #methodOverRidden:forClass:.
self changed: #methodUseSincelastError:forClass:. .
self changed: #methodExpertiseLevel:forClass:

useApplication
usageCount « usageCount + 1.
useSincelastError « useSincelastEmor + 1.
lastUsed « Date today.
self changed: #applicationUsage.
self changed: #applicationUseSinceLastEtror.
self changed: #applicationLastUsed.
self changed: #applicationExpertiselevel

useApplicationBy: aNum
usageCount « usageCount + aNum.
useSincelastError «~useSincelastEror + 1.
lastUsed « Date today.
self changed: #applicationUsage.
self changed: #applicationUseSincelLastError.
self changed: #applicationLastUsed.
self changed: #applicationExpertiseLevel

useClass: aClassName
| classDict |
classDict + usageDict at: aClassName ifAbsent: [self addClass: aClassName].
classDict at: #lastUsed put: Date today.
classDict at: #usageCount put: (classDict at: #usageCount)
+1.
classDict at: #useSincelastError put: (classDict at: #useSinceLastError)
+1. :
self useApplicationBy: (classDict at: #application!ncrease).
self changed: #classLastUsed..
self changed: #classUseSincelastError:.
self changed: #classUsage:.
self changed: #classExpertiseLevel:

.

useClass: aClassName by: increase

| classDict |

classDict « usageDict at: aClassName ifAbsent: [self addClass: aClassName].

classDict at: #lastUsed put: Date today.

classDict at: #usageCount put: (classDict at: #usageCount)
+increase.

classDict at: #useSincelastError put: (classDict at: #useSincelastError)
+increase.

self useApplicationBy: (classDict at: #applicationincrease)
* increase.

self changed: #classLastUsed:.

self changed: #classUseSincelastError:.

self changed: #classUsage:.

self changed: #classExpertiseLevel:

useMethod: aMethodName forClass: aClassName
| methodDict |
methodDict + usageDict at: (aClassName , *.', aMethodName) asSymbol ifAbsent: [self addMethod: aMethodName forClass:
aClassName]. ‘
methodDict at: #lastUsed put: Date today.
methodDict at: #usageCount put: (methodDict at: #usageCount)
+1.

) -248 -

methodDict at: #useSincelastError put: (methodDict at: #useSincelastError)

+1.
self useClass: aClassName by: (methodDict at: #classincrease).

self changed: #methodlastUsed:forClass..

self changed: #methodUsage:forClass:.

self changed: #methodUseSincelastError:forClass:.
self changed: #methodExpertiseLevel:forClass:

UserModel class
instanceVariableNames: "

UserModel class methodsFor: Instance creation

new
tself new: 'No Title'

new: aName
tsuper new initialize: aName

-249 -

Appendix D.

Smalltalk 80 Example Object Code.

This appendix contains the Smalltalk 80 source code for the example objects
referred to throughout the thesis.

Contents :-

(1) CarClass,

(2) Chassis Class,

(3) Department Class,
(4) DetailedPerson Class,
(5) DieselEngine Class,
(6) Engine Class,

(7) DPerson Class,

(8) Sparkplug Class,

(9) Tyre Class.

-250 -

Object subclass: #Car _
instanceVariableNames: ’engine wheel1 wheel2 wheel3 wheel4 weight chassis ’

o9

classVariableNames:
pooliDictionaries: ”
category: 'Thesis examples’

A Complete Car.
Uses 6 parts -

<engine> An instance of Engine Class.
<chassis> An instance of Chassis Class.
<wheell> ... <wheeld> Instances of Tyre Class.

.<weight> A number representing weight of the car excluding the weight of the <engine> and <chassis> parts.
Car methodsFor: Enquiry

acceleration
"Returns acceleration of car which is dependant upon total car weight and
engine power.
Although not scientifically correct, this shows part dependency.”

tself totalWeight * 10/ engine power

totalWeight
"Total weight of Car”

tweight + engine weight + chassis weight
Car methodsFor: Initialize/release

Initialize

engine « Engine new.
wheell « Tyre new: 30.
wheel2 « Tyre new: 30.
wheel3 « Tyre new: 35.
wheeld « Tyre new: 35.
chassis + Chassis new.
weight « 1000

Car methodsFor: Modifications

weight: aNum
"Modify weight of Car itself - Not Total weight (informs of changes to wheel pressures)*

weight « aNum.

self changed: #totalWeight.

self changed: #acceleration.

self changed: #wheel1.pressure.
self changed: #wheel2.pressure.
self changed: #wheel3.pressure.
self changed: #wheeld.pressure

Car methodsFor: Part stuff

chassis
tchassis

chassis.chassisDescription: aDescription
"Overriding Message - inform of changes to entire wheel parts®

chassis chassisDescription: aDescription.
self changed: #totalWeight.

self changed: #acceleration.

self changed: #wheelt.

self changed: #wheel2.

self changed: #wheel3.

self changed: #wheeld

chassls.chassisNumber: aNumber
Overriding Message - inform of changes to entire wheel parts

chassis chassisNumber: aNumber.
self changed: #totalWeight.

self changed: #acceleration.

self changed: #wheel1.

self changed: #wheel2.

self changed: #wheel3.
-251 -~

self changed: #wheel4

engine
tengine

engine.engineDescription: aDescription
"Overriding Message - informs of changes to wheel pressures®

engine engineDescription: aDescription.
self changed: #totalWeight.

self changed: #acceleration.

self changed: #wheel1.pressure.

self changed: #wheel2.pressure.

self changed: #wheel3.pressure.

self changed: #wheel4.pressure

engine.engineType: aType
"Overriding Message - informs of changes to wheel pressures”
engine engineType: aType.
self changed: #totalWeight.
self changed: #acceleration.
self changed: #wheel1.pressure.
self changed: #wheel2.pressure.
self changed: #wheel3.pressure.
self changed: #wheeld.pressure

engine.sparkplug.efficiency: aNum
"Overriding Message”

engine sparkplug.efficiency: aNum.
self changed: #acceleration

parts
t+#(chassis engine wheel1 wheel2 wheel3 wheel4)

wheel1
twheel1

wheell.pressure
*Overriding Message”

1self totalWeight * self wheel1 pressure / 1000

wheel2
twheel2

wheel2.pressure
*Overriding Message®

tself totalWeight * self wheel2 pressure / 1000

wheel3
+wheel3

wheel3.pressure
"Overriding Message”

1self totalWeight * self wheel3 pressure / 1000

wheeld
twheel4

wheeld.pressure
"Overriding Message”

+self totalWeight * self wheeld pressure / 1000

Carclass
instanceVariableNames: ”

Car class methodsFor: Instance creation

new
tsuper new initialize

-252 -

Object subclass: #Chassis
InstanceVariableNames: 'chassisNumber’
classVariableNames: 'DescriptionDictionary WeightDictionary *

poolDictionaries: ”
category: 'Thesis examples’

A Chassis.
<chassisNumber> a Number which represents the Chassis Type.
The following Global Dictionaries use the <chassisNumber> as a key to determine chassis characteristics :-

<DescriptionDictionary> A String representing the Chassis Description.
<WeightDictionary> A Number representing the Chassis Weight.

Chassis methodsFor: Enquiry

availableDescriptions
“"Allowable Chassis Descriptions®

tDescriptionDictionary values asOrderedCollection

chassisNumber
+chassisNumber

chassisNumberFor: aString
"Retums Chassis Number matching description aString”

DescriptionDictionary associationsDo: [:association | aString = association value ifTrue: [tassociation key]].
+nil

description
"Description for this chassis”

tDescriptionDictionary at: chassisNumber ifAbsent: ['Not Known']

weight
*Weight for this chassis”

+WeightDictionary at: chassisNumber ifAbsent: [0]
Chasslis methodsFor: Modifications

chassisDescription: aString
"Change Chassis so that its description matches aString.”

| newType |
t{newType « self chassisNumberFor: aString) isNil ifFalse: [self chassisNumber: newType]

chassisNumber: aNum
"Change Chassis Number”

chassisNumber « aNum.
self changed: #description.

self changed: #weight.
self changed: #chassisNumber

Chassis class
instanceVariableNames: "’

Chassls class methodsFor: Global dictionarys

addDescription: aNum forType: aType
*Add new Description”

DescriptionDictionary at: aType put: aNum

addWeight: aNum forType: aType
*Add new Weight"

WeightDictionary at: aType put: aNum

Chassls class methodsFor: Initialize

-253 -

initialize
“Initialize Dictionaries”

DescriptionDictionary + Dictionary new.
WeightDictionary « Dictionary new.

self addDescription: 'Frame A’ forType: 1.
self addDescription: ‘Frame B’ forType: 2.
self addDescription: ‘Frame C* forType: 3.
self addDescription: *Frame D’ forType: 4.
self addDescription: 'Frame E’ forType: 5.
self addDescription: 'Frame F' forType: 6.
self addDescription: ‘Default 2' forType: 7.
self addDescription: 'Default 3' forType: 8.
self addDescription: 'Default 4 forType: 9.
self addWeight: 100 forType: 1.

self addWeight: 150 forType: 2.

self addWeight: 200 forType:
self addWeight: 120 forType:
self addWeight: 110 forType:
self addWeight: 130 forType:
self addWeight: 160 forType:
self addWeight: 160 forType:
self addWeight: 160 forType:

CONONAW

Chassis class methodsFor: Instance creation

new
tself new: 1

‘new: aType
tsuper new chassisNumber: aType

-254 -

Object subclass: #Department
instanceVariableNames: 'departmentName head location noOfStaff’

classVariableNames: ™’
poolDictionaries: ”
category: 'Thesis examples’

A Department.

<deparmentName> A String representing department name.
<head> An instance of Person Class, representing who the Head is.
<location> A String representing department location.

<noOfStaff> A Number representing Number of Staff,

Department methodsFor: Enquiry

departmentName
tdepartmentName

head
thead

headName
thead isNil
ifTrue: ['No Head']
ifFalse: [head fullName]

location
tlocation

noOfStaff
tnoQfStaff

Department methodsFor: Modifications

departmentName: aString i
departmentName « aString.
self changed: #departmentName

head: aPerson
head « aPerson.
self changed: #head

location: aString
location + aString.
self changed: #location

noOfStaff: aNum
noOfStaff « aNum.
self changed: #noOfStaff

takeOnMember
self noOfStaff: (noOfStaff + 1)

Department class
instanceVariableNames: ”’

Department class methodsFor: Instance creation

new: aString
|a] _
a « self new departmentName: aString.
a noOfStalff: 0; head: ((Person new: temp’)
department: a).
ta

new: aString head: aPerson
lal
a + self new departmentName: aString.
a noOfStaff: 0; head: aPerson.
ta

-255-

Person subclass: #DetailedPerson] .
InstanceVariableNames: 'workToDo switchStatus hoursSoFar salary yearlySoFar’
classVariableNames: 'Salaryincrease ’
poolDictionaries: ” ,
category: 'Thesis examples’

A more Detailed Person.

<workToDo> A Number for storing a quantity of work to do.

<switchStatus> A Boolean to show how a self contained switch status is used.
<hoursSoFar> Number of hours worked by a person so far this week.
<salary> A persons hourly salary rate.

<yearlySoFar> Total salary so far this year.

<Salarylncraasas Global Salary Increase as a percentage.
DetalledPerson methodsFor: Salary

doSalincrease
"Perform Salary Increase”

self payRise: (salary * Salarylncrease) // 100

endOfWeek
"Perform Week End run"

self yearlySoFar: yearlySoFar + self paySoFarThisWeek.
self hoursSoFar: 0

hoursSoFar
thoursSoFar

hoursSoFar: aNumber
hoursSoFar « aNumber.
self changed: #hoursSoFar.
self changed: #paySoFarThisWeek

-payRise: aNum
“Do PayRise by aNum"”

self salary: salary + aNum

paySoFarThisWeek
tsalary * hoursSoFar

salary
tsalary

salary: aNumber
salary « aNumber.
self changed: #salary.
self changed: #paySoFarThisWeek

sallncrease
+Salaryincrease

sallncrease: aNum
Salarylncrease + aNum.
self changed: #sallncrease

work: aNumber
self hoursSoFar: (hoursSoFar + aNumber)

yearlySoFar
tyearlySoFar

yearlySoFar: aNumber

yearlySoFar « aNumber.

self changed: #yearlySoFar.
DetalledPerson methodsFor: Switches

switchOff
“Turn switch off”

switchStatus « false.
self changed: #switchStatus

-256 -

switchOn
"Turn switch on”

switchStatus « true.
self changed: #switchStatus

switchStatus
+switchStatus

DetailedPerson methodsFor: Work

doWork
“Work workToDo hours”

self work: workToDo

minus1
“Alter workToDo"

self workToDo: (workToDo - 1)

minus10
“Alter workToDo"

self workToDo: (workToDo - 10)

minuss
"Alter workToDo"

self workToDo: (workToDo - 5)

plust
"Alter workToDo"

self workToDo: (workToDo + 1)

plus10
"Alter workToDo"

self workToDo: (workToDo + 10)

plusS
“Alter workToDo"

self workToDo: (workToDo + 5)

statusi
"Initial Status for workToDo being 1"

ttrue

status10
“Initial Status for workToDo being 10"

tfalse

statusS
*Initial Status for workToDo being 5"

tfalse

workToDo
"Amount of workToDo"

tworkToDo

workToDo: aNum
*Change workToDo"

workToDo « aNum.
self changed: #workToDo

DetailedPerson class
instanceVariableNames: *’

DetailedPerson class methodsFor: Instance Creation

-257 -

Engine subclass: #DieselEngine

InstanceVariableNames:
classVariableNames: 'DieselDescriptionDictionary DieselEfficiencyDictionary DieselPowerDictionary

DieselSizeDictionary DieselWeightDictionary ’
poolDictionaries: ”
category: 'Thesis examples’

A Diesel Engine.

This Class overrides csrtain Engine Class methods. In particular the sparkplug part is no longer used.

The following Global Dictionaries use the <engineType> as a key to determine other engine characteristics :-
<DieselDescriptionDictionary> A String representing the Diesel Engine Description.
<DieselPowerDictionary> A Number representing the Diesel Engine Power.

<DieselSizeDictionary> A Number representing the Diesel Engine Size.

<DieselWeightDictionary> A Number representing the Diesel Engine Weight.

<DieselEfficiencyDictionary> A Number representing the Diesel Engine Efficiency.

DieselEngine methodsFor: Enquiry '

availableDescriptions
"Return available engine descriptions*®

+DieselDescriptionDictionary values asOrderedCollection

description
"Return Current Engine Description®

+DieselDescriptionDictionary at: engineType ifAbsent: ['Not in List]

efficiency
“"Return Current Engine Description*

tDieselEfficiencyDictionary at: engineType ifAbsent: [Not in List]

fuelType
+'Diesel’

power
"Calculate Power. Although dependant upon sparkPlug efficiency, this value is
not scientifically correct®

+(DieselPowerDictionary at: engineType ifAbsent: [0])
* self efficiency

size
“Return Engine Size."

+DieselSizeDictionary at: engineType ifAbsent: [0]

weight
“Return Engine Weight®

tWeightDictionary at: engineType ifAbsent: [0]
DieselEngine methodsFor: Initialize/release
Inltialize

engineType « #1.

sparkplug « nil.

running « false
DieselEngine methodsFor: Modifications

engineDescription: aString
"Modify Engine Description, by updating engineType"®

| newType |
newType « DieselDescriptionDictionary keyAtValue: aString ifAbsent: [tnil].
self engineType: newType

engineType: aType
*"Modify Engine Type”

super engineType: aType.
self changed: #efficiency

. -259 -

DieselEngine methodsFor: Part stuff

sparkplug
"Sparkplug part”

+'Diesel Engines do not have Sparkplugs’

DieselEngine class
instanceVariableNames: "’

DieselEngine class methodsFor: Global dictionarys

addDescription: a2String forType: aType
DieselDescriptionDictionary at: aType put: aString

addEfficiency: aNum forType: aType
DieselEfficiencyDictionary at: aType put: aNum

addPower: aNum forType: aType
DieselPowerDictionary at: aType put: aNum

addSize: aNum forType: aType
DieselSizeDictionary at: aType put: aNum

addType: aType
self addDescription: 'Diesel Default’ forType: aType.
self addEfficiency: 0.5 forType: aType.
self addPower: 70 forType: aType.
self addSize: 1600 forType: aType.
self addWeight: 1000 forType: aType

addWeight: aNum forType: aType
DieselWeightDictionary at: aType put: aNum

DleselEngine class methodsFor: Initialize

initialize
*Initialize Global Dictionaries.
DieselEngine initialize®

DieselSizeDictionary « Dictionary new.
DieselWeightDictionary « Dictionary new.
DieselPowerDictionary « Dictionary new.
DieselEfficiencyDictionary + Dictionary new.
DieselDescriptionDictionary + Dictionary new.

self addType: 1.

self addDescription: 'Diesel SuperCharged Version' forType: 2.
self addEfficiency: 0.8 forType: 2.

self addWeight: 1450 forType: 2.

self addSize: 2200 forType: 2.

self addPower: 130 forType: 2.

self addDescription: ‘Diesel SuperCharged Light Weight Version® forType: 3.
self addEfficiency: 0.9 forType: 3.

self addWeight: 1600 forType: 3.

self addSize: 1999 forType: 3.

self addPower: 115 forType: 3.

self addDescription: ‘Diesel Cheapo Boring Efficient Engine’ forType: 4.
self addEfficiency: 0.7 forType: 4.

self addWeight: 1300 forType: 4.

self addSize: 1500 forType: 4.

self addPower: 58 forType: 4

-260 -

Object subclass: #Engine
instanceVariableNames: 'engineType sparkplug running ’
classVariableNames: 'DescriptionDictionary PowerDictionary SizeDictionary WeightDictionary ’

poolDictionaries: "
category: 'Thesis examples’

An Engine.

Uses a single part called sparkplug, which should be an instance of the Sparkplug Class.
<engineType> a Number which represents the Engine Type.

<sparkplug> Sparkplug part.

<running> A Boolean representing whether the Engine is running or not.

The following Global Dictionaries use the <engineType> as a key to determine other engine characteristics :-
<DescriptionDictionary> A String representing the Engine Description.
<PowerDictionary> A Number representing the Engine Power.

<SizeDictionary> A Number representing the Engine Size.

<WeightDictionary> A Number representing the Engine Weight.

Engine methodsFor: Engine state

engineState
"Enquire on Engine State®

trunning
ifTrue: [#running]
ifFalse: [#notRunning]

startUp
"Start Up Engine”

running « true.
self changed: #engineState

switchOff

running « false.

self changed: #engineState
switchOn

running « true.

self changed: #engineState
Engine methodsFor: Enquiry

availableDescriptions
"Return available engine descriptions”

+DescriptionDictionary values asOrderedCollection

description
"Return Current Engine Description®

tDescriptionDictionary at: engineType ifAbsent: ['Not in List

engineType
tengineType

fuelType
+'Petrol’

power
"Calculate Power. Although dependant upon sparkPlug efficiency, this value is
not scientifically correct”

+(PowerDictionary at: engineType ifAbsent: [0])
* sparkplug efficiency

size
"Retum Engine Size.”

+SizeDictionary at: engineType ifAbsent: [0]

weight
“Return Engine Weight"

+WeightDictionary at: engineType ifAbsent: [0]
-261 -

Engine methodsFor: Initialize/release

initialize
engineType « #1.
sparkplug « Sparkplug new.
running « false

Engine methodsFor: Interface

eTypeMessage
"Message for inputing new engine type”

t'enter new engine type'
Engine methodsFor: Modifications

engineDescription: aString
"Modify Engine Description, by updating engineType”

| newType |
newType « DescriptionDictionary keyAtValue: aString ifAbsent: [¢nil].
self engineType: newType

engineType: aType
*Modify Engine Type"

engineType + aType.

self changed: #engineType.
self changed: #description.
self changed: #power.

self changed: #size.

self changed: #weight

Engine methodsFor: Part stuff

parts
"Return list of messages which return parts®

+#(sparkplug)

sparkplug
*Sparkplug part”

tsparkplug

sparkplug.efficlency: aNum
"Overriding Part message”

sparkplug efficiency: aNum.
self changed: #power

Engine class
instanceVariableNames: "’

Engine class methodsFor: Global dictionarys

addDescription: aString forType: aType
DescriptionDictionary at: aType put: aString

addPower: aNum forType: aType
PowerDictionary at: aType put: aNum

addSize: aNum forType: aType
SizeDictionary at: aType put: aNum

addType: aType
self addDescription: ‘Default’ forType: aType.
self addPower: 60 forType: aType.
self addSize: 1300 forType: aType.
self addWeight: 300 forType: aType

addWeight: aNum forType: aType
WeightDictionary at: aType put: aNum

Engine class methodsFor: Initialize

-262 -

initialize .
"Initialize Global Dictionaries”

SizeDictionary + Dictionary new.

WeightDictionary + Dictionary new.

PowerDictionary « Dictionary new.

DescriptionDictionary « Dictionary new.

self addType: 1.

self addDescription: ‘SuperCharged Version' forType: 2.

self addWeight: 450 forType: 2.

self addSize: 1999 forType: 2.

self addPower: 130 forType: 2.

self addDescription: ‘SuperCharged Light Weight Version' forType: 3.
self addWeight: 350 forType: 3.

self addSize: 1999 forType: 3.

self addPower: 115 forType: 3.

self addDescription: 'Cheapo Boring Efficient Engine’ forType: 4.
self addWeight: 300 forType: 4.

self addSize: 1200 forType: 4.

self addPower: 58 forType: 4

Engine class methodsFor: Instance creation

new
tsuper new initialize

new: aType
+self new engineType: aType

-263 -

Object subclass: #Person
instanceVariableNames: 'fullName address department dOB’
classVariableNames: ”
poolDictionaries: ”
category: 'Thesis examples’

A Simple Person.

<fullName> A String representing Full Name.

<address> A String representing the Address.

<department> An instance of the Department Class, representing what department the person belongs to.
<dOB> A Date representing the presons Date Of Birth.

Person methodsFor: Enquiry

address
taddress

age
"age in days"

tDate today subtractDate: dOB

department
+department

doB
+dOB

fullName
tfullName

Person methodsFor: Modifications

address: aString
address « aString.
self changed: #address

age: dayCount
dOB « Date today subtractDays: dayCount.
self changed: #dOB.
self changed: #age

department: aDept
department + aDept.
self changed: #department

dOB: newDate

dOB « newDate.

self changed: #dOB.

self changed: #age
fullName: aString

fullName « aString.

self changed: #fullName
Person methodsFor: Part stuff
parts

“Return list of messages which return parts. Athough department is not a real

part, this allows safe access”

t#(department)

Person class
instanceVariableNames: *’

Person class methodsFor: Instance creation

new
tself new: 'No Name*

new: aName]
tsuper new fullName: aName; address: ‘Not Known'; department: nil; dOB: (Date today)

-264 -

Object subclass: #Sparkplug
instanceVariableNames: 'name efficiency ’
classVariableNames: "
poolDictionaries: "
category: 'Thesis examples’

A SparkPlug

<efficiency> A number representing the sparkPlug efficiency (0.0 - 1.0).
<name> A String representing name of sparkPlug.

Sparkplug methodsFor: Enquiry

efficiency
tefficiency

name
tname

Sparkplug methodsFor: Modifications
efficiency: aNum

efficiency « aNum.

self changed: #efficiency
name: aString

name « aString.
self changed: #name

Sparkplug class
instanceVariableNames: ”’

Sparkplug class methodsFor: Instance creation

new
+self new: 'Default’

new: aName
t(super new) name: aName; efficiency: 0.85

-265-

Object subclass: #Tyre
instanceVariableNames: 'volume’
classVariableNames: "
poolDictionaries: ”
category: 'Thesis examples’

A Tyre
<volume> A number representing amount of air in Tyre
Tyre methodsFor: Enquiry

inflate: aNum
self volume: volume + aNum

pressure
“Calculate pressure for unloaded tyre, Not Physically correct, but shows
example of Part Message overriding”
tvolume * 10

volume
~-tyoiume

volume: aNum
volume « aNum.

self changed: #pressure.
self changed: #volume

Tyre class
instanceVariableNames:

Tyre class methodsFor: Instance creation

new
+self new: 500

new: aNum
+super new volume: aNum

- 266 -

Appendix E,

Extended Backus Naur Formats,

This appendix contains the Extended Backnus Naur Formats, for the various
interface description languages described in chapter six. These Formats make
use of the actual Smalltalk 80 EBNF [Goldberg, A:1983]. The Non-terminal
<SmalltalkExpression> provides this link to the Smalltalk 80 EBNF, and
represents a correct Smalltalk 80 expression.

E.1. General Syntax.
<UpperCaseLetter> = "A” | "B" | "C" | | "Z".
<LowerCaseLetter> = "a"” | "b" | “c” | ["z".

<Letter> = <UpperCaseLetter> | <LowerCaseLetter>.
<Space>="",

<FullStop> = ".".

<SemiColon> = ";".

<nil> = "nil”.

<Digit>="0"1 "1" | "2" |c.es 1 "9".

<Integer> = <Digit> {<Digit>}.

<Real> = <Integer> <FullStop> <Integer>.
<IntegerArray> = "(" {<Integer> <Space>} ")".
<SmalltalkString> = "'" {<Letter> | <Digit> | <Space>} "’".
<SmalltalkWord> = <Letter> {<Letter> | <Digit>}.
<SmalltalkSymbol> = "#" <SmalltalkWord>.

<SmalltalkClass> = <UpperCaseLetter> {<SmalltalkWord>}.

<SmalltalkExpression> = This represents any valid Smalltalk 80 Expression.

E.2. External PVC Slot Description.

<ArgumentsRequired> = "MsgArgs” | "NoMsgArgs” | "NilMsgArgs".
<ArgumentCount> = <IntegerArray>.

<Includer> = "With" | "Without".

<MessageDescription> = <Includer> <Space> <ArgumentCount> <Space>
<ArgumentsRequired>.

<LiteralType> = "Literal” <Space> <SmalltalkClass>.

<MessageType> = "Message” <Space> <MessageDescription>.

- 267 -

<AnyType> = "Any" <Space> <SmalltalkClass> <Space>
<MessageDescription>.

<SlotHeader> = "SlotDescription ~#".

<SlotType> = <LiteralType> | <MessageType> | <AnyType>.
<SlotDefault> = <SmalltalkString>.

<SlotDirection> = "Input” | "Output” | "10".

<SlotTitle> = <SmalltalkString>.

<SlotName> = <SmalltalkWord>.

<SlotDefinition> = "(" <SlotDirection> <Space> <$’lotType> ")".
<SlotDescription> = "(" <SlotName> <Space> <SlotTitle> <Space>
<SlotDefinition> ")" [<Space> <SlotDefault>] [<Space> "MultiSlot”].
<SlotDescriptionGroup> = "(" <SlotDescription> {<Space>
<SlotDescription>} ")".

<ExternalSlotDescription> = <SlotHeader> <SlotDescriptionGroup>.

E.2. Part PVC Description.

<Links> = <IntegerArray>.

<PPVCLinks> = "aPPVC addIPVCLinks:" <Space> <Links>.
<PPVCName> = <Smalltalk Word>.

<PPVCHeader> = <PPVCName> ": aPPVC".

<PPVCDescription> = <PPVCHeader> <PPVCBody>.
<LessThanOrEqualOne> = "1" | (0" <FullStop> <Integer>).
<XCoordinate> = <LessThanOrEqualOne>.

<YCoordinate> = <LessThanOrEqualOne>.

<PVCScreenPosition> = <XCoordinate> "@" <YCoordinate>.
<TopLeftCornerPosition> = <PVCScreenPosition>.
<BottomRightCornerPosition> = <PVCScreenPosition>.
<SubPVCPosition> = "(" <TopLeftCornerPosition> <Space> "corner:"
<Space> <BottomRightCornerPosition> ")".

<AssignSlotArgument> =

<AssignSlotName> = <SmalltalkSymbol>.

<AssignSlotType> = "#Literal” | "#Message".

<AssignSlotValue> = <SmalltalkSymbol> | <nil> | <SmalltalkExpression$.
<AssignSlot> = "slot:"” <Space> <AssignSlotName> <Space> "value:"
<Space> <AssignSlotValue> <Space> "type:" <Space> <AssignSlotType>.
<MultiSlotType> = "Literal” | "Message”.

<MultiSlotVal> = "add:" <Space> <AssignValue>.
<MultiSlotValues> = <MultiSlotVal> {<SemiColon> <Space>
<MultiSlotVal>}.

-268 -

<AssignMultiSlotValues> = "((OrderedCollection new)" <Space>
<MultiSlotValues> ")". '
<AssignMultiSlotTypes> = "#Literal” | "#(" <MultiSlotType> {<Space>
<MultiSlotType>} ")".

<AssignMultiSlot> = "multiSlot:" <Space> <AssignSlotName> <Space>
"values:” <Space> <AssignMultiSlotValues> <Space> "types:" <Space>
<AssignMultiSlotTypes>.

<SingleSlotArg> = <SmalltalkExpression>.

<MultiSlotArgVal> = "add:" <Space> <SingleSlotArg>.
<MultiSlotArgValues> = <MultiSlotArgVal> {<SemiColon> <Space>
<MultiSlotArgVal>].

<MultiSlotArgs> = "((OrderedCollection new)"” <Space>
<MultiSlotArgValues> ")".

<SlotArguments> = <MultiSlotArgs> | <SingleSlotArg>.
<AssignSlotArgument> = 'slotArgs:' <Space> <AssignSlotName> <Space>
"value:" <Space> <SlotArguments>.

<SlotAssignment> = <AssignSlot> | <AssignMultiSlot> |
<AssignSlotArgument>.

<SlotValueList> = <Space> | <SlotAssignment> {<SemiColon> <Space>
<SlotAssignment> }.

<PPVClnstantiationCode> = "A((" <SmalltalkClass> <Space> "new)"
<Space> <SlotValueList> ")".

<SubPPVCName> = "new” | "default” | <SmalltalkSymbol>.
<SubPPVC> = "aPPVC addPPVC:" <Space> <SubPPVCName> <Space>
"partMsg:" <Space> <SmalltalkSymbol> <Space> "variablePPVC:
#NotYetUsed at:" <Space> <SubPVCPosition> <FullStop>.
<SubIPVC> = "aPPVC addSubView:" <Space> <PVClnstantiationCode>
<Space> "window: (0 @ 0 extent: 1 @ 1) viewport:” <Space>
<SubPVCPosition> <FullStop>.

<SubPVCCode> = {<SubPPVC> | <SubIPVC>}.

<PPVCBody> = "aPPVC isNil ifTrue: [" <PPVClnstantiationCode> "] ifFalse:
[" <SubPVCCode> <Space> <PVCLinks> "]".

E.2. Extended Lean Cuisine Description.

<ELCName> = <SmalltalkWord>.

<MenemeStatus> = "true” | "false”.

<MenemeName> = <Letter> {<Letter> | <Digit> | <Space>).
<OnMethod> = <SmalltalkWord>.

<OffMethod> = <SmalltalkWord>.

-269 -

<SelectMethod> = <SmalltalkWord>.

<Terminator> = <Bistable> | <MonoStable>.

<NonTerminator> = <RealMEMenu> | <RealMCMenu> |
<VirtualMEMenu> | <VirtualMCMenu>.

<Meneme> = "(” (<Terminator> | <NonTerminator>) ")".

<Bistable> = "Bistable” <Space> <OnMethod> <Space> <OffMethod>
<Space> <MenemeStatus> <Space> <MenemeName>.
<Monostable> = "Monostable” <Space> <SelectMethod> <Space>
<MenemeName>.

<VirtualMEMenu> = "Virtual MEMenu" <Space> <MenemeStatus>
<Space> <MenemeName> "[" {<Meneme> <Space>} "]".
<VirtualMCMenu> = "VirtualMCMenu" <Space> <MenemeStatus>
<Space> <MenemeName> "[" {<Meneme> <Space>} "]".
<RealMEMenu> = "RealMEMenu" <Space> <MenemeStatus> <Space>
<MenemeName> "[" {<Meneme> <Space>} "]".

<RealMCMenu> = "RealMCMenu" <Space> <MenemeStatus> <Space>
<MenemeName> "[" {<Meneme> <Space>} "]".

<ELCDescription> = <RealMCMenu> | <Real MEMenu>.
<ELCMethodCode> = "A(Menu onString:" <Space> <ELCDescription> ")".
<ELCDescriptionMethod> = <ELCName> <ELCMethodCode>.

-270-

Appendix F,

Interaction Pluggable View Controller Libra

This appendix presents a short description of each example IPVC
implemented as part of this research project. For each IPVC, the relevant
External Slot Description is listed, and a picture is also included to show
what the IPVC looks like while it is being used.

Contents :-

)
)
3
4)
®)
6)
?)
8
©)
(10)
(11
(12)
(13)
(14)
(15)

Bar Chart IPVC,

Button IPVC,

Graph IPVC,

Horizontal Slider IPVC,

List IPVC

String Editor IPVC,

Switch IPVC with Self Contained Status,

Switch IPVC with Status Contained in Model,

Text Editor IPVC,

Vertical Slider IPVC,

View and Revise General Purpose IPVC,

View and Revise String IPVC,

View Only General Purpose IPVC,

View Only String IPVC,

Special PPVC PPVCUserModelView (Slot Descriptions only, as
this looks identical to a normal PPVC blank window).

-271-

IPVCBarChartView class methodsFor: slot definitions

SlotDescription
"BARCHART IPVC.

This IPVC allows numeric values to be displayed using a Bar Chart.
Two Multiple Linkage slots are used for determining bar value and bar title,
The following Linkage slots are used :-

<label> Used to determine Chart title (Not actually used as no title is
displayed).

<barValues> Used to determine Bar values.

<barTitles> Used to determine Bar titles.

<yBM> Used to determine Interaction menu, if any.”

+#((label "Title of Chart’ (input Any String with (0) noMsgArgs) “"No Label™)
(barValues 'Bar Values' (Input Any Number with (0) noMsgArgs) ‘0’ multiSiot)
(barTitles 'Bar Labels’ (Input Literal String) *"No Labe!" multiSlot)
(yBM 'yBM' (Input Any Menu with (0) noMsgArgs)))

(=}

Val 1 Val 2 Val 3 Val 4 Val §

-272 -

IPVCButtonView class methodsFor: slot definitions

SlotDescription
“BUTTON IPVC

An IPVC which displays a button, and sends a specific message whenever it is
pressed.

<label> Determine button label.
<switchPress> Determines what message is sent when button is pressed.
<yBM> Used to determine Interaction menu, if any.”

+#((label 'Label’ (Input Any String with (0) noMsgArgs) ™ *)
(switchPress 'Switch Press' (Qutput Message without () msgArgs))
(yBM 'YBM' (Input Any Menu with (0) noMsgArgs)))

A Button Label

-273 -

IPVCGraphView class methodsFor: siot definitions

SlotDescription
“GRAFH IPVC

IPVC for displaying a formula as a graph form. The formula must be of the
format ‘(:x|x}', and may be of Class String, or BlockContext. The X and Y axis

ranges may also be set, along with the unit size.

<curveBlocks> determines curve formula.
<minX>, <maxX>, <minY>, <maxY> determine axis ranges.
<step> determines unit size for X axis.”

+#((curveBlock 'Curve Block’ (Input Any String with (0) noMsgArgs) *'[:x|x]™)
{minX '"Minimum X' (Input Any Number with (0) noMsgArgs) '0")
(maxX '‘Maximum X' (Input Any Number with (0) noMsgArgs) *100")
(minY 'Minimum Y’ (input Any Number with (0) noMsgArgs) '0°)
(max¥ *Maximum Y" (Input Any Number with (0) noMsgArgs) '100")
(step "Step’ (Input Any Number with (0) noMsgArgs) '5")
(yBM 'yBM'® (Input Any Menu with (0) noMsgArgs)))

-274 -

IPVCHorizontalSliderView class methodsFor: slot definitions

SlotDescription
"HORIZONTAL SLIDER IPVC

An IPVC which displays numeric values using a graphical slider. The current
value can also be madified by moving the slider.
Two types are available, namely Vertical and Horizontal slider.

<sliderValue> Determines current value being displayed.

<sliderUpdate> A message for informing of modified value.

<sliderRange> An Interval which determines the slider range, and unit size.
<yBM> Used to determine Interaction menu, if any.®

+#((sliderValue "Slicer Current Value' (Input Any Number with (0) noMsgArgs) '50")
(sliderUpdate 'Updating Mcdel' (Qutput Message with (1) noMsgArgs))
(sliderRange 'Slider Range (as Interval)’ (Input Any Interval with (0) noMsgArgs) 1 to: 100 by: 10")
(yBM 'YBM' (Input Any Menu with (0) noMsgArgs)))

-275-

IPVCListView class methodsFor: slot deflnitions

SlotDescription
"LISTIPVC

Used to display, and select frem, a choice of options contained in an object of
Class Collection. These options are displayed in a list, and the current selection
is highlighted. When a new selection is made, the model is informed
approriately. Scrolling is used to move up and down the available list of
options. ’

<currentltem> A message which retums the current selected item in the option
list. <newSelection> A message which informs of a new selection.

<itemList> This returns the list of available options.

<stringPrint> A boolean which determines whether the options are printed using
the 'printString’ method.

<oneltem> A boolean which determines whether the option list only contains
oneltem.

<yBM> Used to determine Interaction menu, if any."

t#(

(currentltem ‘Current Selected item’ (Input Message with (0) noMsgArgs))
(newSelection "Informing Model of new selection’ (Qutput Message with (1) noMsgArgs))
(itemList 'ltem List’ (Input Any Symbol with (0) noMsgArgs) '#()")

(stringPrint "Print as String’ (Input Literal Boolean))

(oneltem 'One Item’ (Input Literal Boolean))

(yBM 'YBM' (Input Any Menu with (0) noMsgArgs)))

Entry 1
Entry 2
Entry 3
Entry 4
Entry &
\Entrye |
Entry 7
Entry 8

-276 -

IPVCStringEditorView class methodsFor: slot definitions

SlotDescription
"STRING EDITOR IPVC

An IPVC which allows Strings to be displayed and modified. The value is
displayed in an editor box, and may be modified accordingly. The new value
may be accepted by choosing an option from the selection menu (Yellow
Button), and the model is informed of the new value using a linkage slot. The
implementor must therefore define a suitable value for the <yBM> linkage slot.
Various Methods are provided for use in such a menu, and the implementoer is
directed to the methed 'localMenuitems’ implemented in the IPVCTextEditorlC
Class.

<inputString> String value to be displayed;
<modelUpdate> Message used to inform model of new vaiue.
<yBM> Used to determine Interaction menu, if any.”

+#((inputString "Display Value' (Input Any String with (0) noMsgArgs) "'Not Specified™)
(modelUpdate ‘Updating Model' (Qutput Message with (1) noMsgArgs))
(yBM 'yBM' (Input Any Menu with (0) noMsgArgs) })

Editor Valua

-277 -

IPVCSwitchView?2 class methodsFor: slot definitions

SlotDescription
"SWITCH IPVC (SELF CONTAINED STATUS)

An IPVC which displays a switch with a specific title. The status of the switch
is maintained within the IPVC, and its initial value is determined by a linkage
slot. The switch is highlighted when on, and normal when off. The user may
switch on and off by pressing the mouse button while over the switch.
Depending upon whether the switch is switched on, or off, one of two message
is sent to the model, as determined by linkage slots.

<label> Determine switch label.

<initialStatus> Determines Initial switch status.
<switchOff> Message sent when switching off.
<switchOn> Message sent when switching on.
<yBM> Used to determine Interaction menu, if any."

t#((label ‘Label’ (Input Any String with (0) noMsgArgs) ™ ™)
(initialStatus "Initial Switch State’ (Input Any Boolean with (0) noMsgArgs) ‘true’)
(switchOff 'Switching OFF" (Qutput Message without () msgArgs))
(switchOn "Switching ON’ (Output Message without () msgArgs))
(yBM 'YBM' (Input Any Menu with (0) noMsgArgs)))

hitibitbbtbbtb bbb hhidbbbbibid bbbt

A Switch Label

T

-278 -

IPVCSwitchView class methodsFor: slot definitions

SlotDescription
"SWITCH IPVC (STATUS IN MODEL)

An IPVC which displays a switch with a specific title. The status of the switch
is maintained by the model, and is determined by a linkage slot. The switch is
highlighted when on, and normal when off. The user may switch on and off by
pressing the mouse button while over the switch. Depending upon whether the
switch is switched on, or off, one of two message is sent to the model, as
determined by linkage slots.

<label> Determine switch label.

<status> Determines switch status.

<switchOff> Message sent when switching off.
<switchOn> Message sent when switching on.
<yBM> Used to determine Interaction menu, if any.”

+#((label ‘Label’ (Input Any String with (0) noMsgArgs) " *)
(status "Switch State' (Input Message Boolean with (0) noMsgArgs))
(switchOff 'Switching OFF" (Output Message without () msgArgs))
(switchOn *Switching ON' (Output Message without () msgArgs))
(yBM 'YBM' (Input Any Menu with (0) noMsgArgs)))

kb b

A Switch Label

T

-279 -

IPVCTextEditorView class methodsFor: slot definitions

SlotDescription
"TEXT EDITOR IPVC

An IPVC which allows Text to be displayed and modified. The value is
displayed in an editor box, and may be modified accordingly. The new value
may be accepted by choosing an option from the selection menu (Yellow
Button), and the model is informed of the new value using a linkage slot. The
implementor must therefore define a suitable value for the <yBM> linkage slot.
Various Methods are provided for use in such a menu, and the implementor is
directed to the method localMenultems’ implemented in the IPVCTextEditor!C
Class.

<inputText> String value to be displayed.
<modelUpdate> Message used to inform model of new value.
<yBM> Used to determine Interaction menu, if any.”

+#((inputText 'Display Value’ (Input Any Text with (0) noMsgArgs) "Text new’)
(modelUpdate 'Updating Model' (Output Message with (1) noMsgArgs))
(yBM 'yBM' (Input Any Menu with (0) noMsgArgs)))

Editor Valua

-280 -

IPVCVerticaiSliderView class methodsFor: slot definitions

SlotDescription
“VERTICAL SLIDER IPVC

An IPVC which displays numeric values using a graphical slider. The current
value can also be modified by moving the slider.
Two types are available, namely Vertical and Horizontal slider.

<sliderValue> Determines current value being displayed.

<sliderUpdate> A message for informing of modified value.

<sliderRange> An Interval which determines the slider range, and unit size.
<yBM> Used to determine Interaction menu, if any.*

t#((sliderValue "Slider Current Value’ (Input Any Number with (0) noMsgArgs) '50")
(sliderUpdate *Updating Model' (Qutput Message with (1) noMsgArgs))
(sliderRange 'Slider Range (as Interval)’ (Input Any Interval with (0) noMsgArgs) "1 to: 100 by: 10°)
(yBM 'YBM' (Input Any Menu with (0) noMsgArgs)))

-281-

IPVCGenerallOView class methodsFor: slot definitions

SlotDescription
“GENERAL PURPOSE VIEW AND REVISE IPVC

A general purpose IPVC which allows any type of value to be displayed and
modified. The value displayed is determined using the printString method in
conjunction with a linkage slot. The value is displayed in a box, and may be
prefixed with a specific message. The value may be modified by pressing the
mouse button while over the box. A prompt is then given to enter the new
value, and the model is informed of the new value using another linkage slot.

<label> Prefix displayed in front of value.

<displayValue> Value to be displayed.

<modelUpdate> Message used to inform model of new value.
<question> A String which is used to prompt for new value.
<yBM> Used to determine Interaction menu, if any.*

+#((label 'Title Msg’ (Input Any String with (0) noMsgArgs) ™ ™)
(displayValue *Display Value' (Input Any String with (0) noMsgArgs) *"Not Specified™)
(modelUpdate ‘Updating Modef’ (Output Message with (1) noMsgArgs))
(question 'String For Inputting New Value' (Input Any String with (0) noMsgArgs) ™ ™)
(yBM 'YBM' (Input Any Menu with (0) noMsgArgs)))

F b
Prefix Message: Display Value’ E

Question for inputting new value

‘Display Yaluef

-282 -

IPVCStringlOView class methodsFor: slot definitions

SlotDescription
"STRING VIEW AND REVISE IPVC

An IPVC which allows Strings to be displayed and modified. The value is
displayed in a box, and may beprefixed with a specific message. The value may
be modified by pressing the mouse button while over the box. A prompt is then
given to enter the new value, and the model is informed of the new value using
another linkage slot.

<labels Prefix displayed in front of value.

<displayValue> String value to be displayed.
<modelUpdate> Message used to inform model of new value.
<question> A String which is used to prompt for new value.
<yBM> Used to determine Interaction menu, if any.”

+#((label 'Title Msg' (Input Any String with (0) noMsgArgs) ™ ™)
(displayValue 'Display Value’ {Input Any String with (0) noMsgArgs) ""Not Specified"™)
(modelUpdate "Updating Model’ (Output Message with (1) noMsgArgs))
(question 'String For Inputting New Value' (Input Any String with (0) noMsgArgs) ™ ™)
(yBM 'YBM' (Input Any Menu with (0) ncMsgArgs)))

Prefix Message: *Display Value?’

Quecstion for inputting new value

’Display Yalue

-283 -

IPVCGeneralView class methodsFor: slot definitions

SlotDescription
"GENERAL PURPOSE VIEW ONLY IPVC

A general purpose IPVC which allows any type of value to be displayed. The
value displayed is determined using the printString methad in conjunction with a
linkage slot. The value is displayed in a box, and may be prefixed with a
specific message.

<label> Prefix displayed in front of value.
<displayValue> Value to be displayed.
<yBM> Used to determine Interaction menu, if any."

t#((label ‘Title Msg’ (Input Any String with (0) noMsgArgs) ™ ™")

(displayValue "Display Value' (Input Message with (0) noMsgArgs) ~Not Specified™)
(yBM 'YBM' (Input Any Menu with (0) noMsgArgs)))

Prefix Message: Mot Specified’

-284 -

IPVCStringView class methodsFor: slot definitions

SlotDescription
"STRING VIEW ONLY IPVC

An IPVC which allows Strings to be displayed. The value is displayed in a box,
and may be prefixed with a specific message

<label> Prefix displayed in front of value,
<displayValue> String value to be displayed.
<yBM> Used to determine Interaction menu, if any.*

t#((label ‘Title Msg' (Input Any String with (0) noMsgArgs) ™ **)
(displayValue 'Display Value' (Input Any String with (O) noMsgArgs) ""Not Specified™)
(yBM 'YBM' (Input Any Menu with (0) noMsgArgs)))

Prefix Message: Not Specified’

~-285-

PPVCUserModelView class methodsFor: Slot definitions

SlotDescription
"Special Part PPVC - PPVCUSERMODEL.

This is an example of of a Special Part PPVC which provides additional
functions to those implemented by the UserModel Class. These functions can
then be accessed by any PVCs attached to this PPVC.

The additional functions particularly enable an individual User Model method
and class knowledge to be selected for inspection / modification.

The following Linkage slots are used to communicate with the User Model, and
show the maximum number of slots supported by this implementation, i.e. 30"

t#((changeClassApplicationincrease ‘Change Class Application increase’ (output Message with (2) noMsgArgs))
(classApplicationincrease 'Class Application increase’ (input Message with (1) noMsgArgs))
(changeClassUsage 'Change Class Usage’ (output Message with (2) noMsgArgs))

(classUsage 'Class Usage’ (input Message with (1) noMsgArgs))

(changeClassExpertiseLevel 'Change Class Expertise Level’ (output Message with (2) noMsgArgs))
(classExpertiselevel ‘Class Expertise Level’ (input Message with (1) noMsgArgs))
(changeClassLevel2Trigger 'Change Class Level2 Trigger' (output Message with (2) noMsgArgs))
(classLevel2Trigger 'Class Level2 Trigger (input Message with (1) noMsgArgs))
(changeClassLevel3Trigger 'Change Class Level3 Trigger' (output Message with (2) noMsgArgs))
(classLevel3Trigger ‘Class Level3 Trigger (input Message with (1) noMsgArgs))

(classOverRideOff 'Class OverRide Off' (output Message with (1) noMsgArgs))
(changeMethodClassincrease 'Change Method Class Increase' (output Message with (3) noMsgArgs))
(methodClassincrease 'Method Class Increase’ (input Message with (2) noMsgArgs))
(changeMethodUsage 'Change Method Usage’ (output Message with (3) noMsgArgs))
(methodUsage '"Method Usage’ (input Message with (2) noMsgArgs))

(changeMethodExpertiseLevel ‘Change Method Expertise Level’ (output Message with (3) noMsgArgs))
(methodExpertiseLeve! 'Method Expertise Level’ (input Message with (2) noMsgArgs))
(changeMethodLevel2Trigger "Change Method Level2 Trigger' (output Message with (3) noMsgArgs))
(methodLevel2Trigger 'Method Level2 Trigger (input Message with (2) noMsgArgs))
(changeMethodLevel3Trigger *Change Method Level3 Trigger' (output Message with (3) noMsgArgs))
(methodLevel3Trigger 'Method Level3 Trigger (input Message with (2) noMsgArgs))
(methodOverRideOff '"Method OverRide Off (output Message with (2) noMsgArgs))
(availableMethods ‘available methods’ (input Message with (1) noMsgArgs))

(errorWithClass *Error with Class' (output Message with (1) noMsgArgs))

(useClass 'Use of Class' (output Message with (1) noMsgArgs))

(errorWithMethod ‘Error with Method' (output Message with (2) noMsgArgs))

(useMethod ‘Use of Method' (output Message with (2) noMsgArgs))

(removeClass 'Remove Class’ (output Message with (1) noMsgArgs))

(removeMethod 'Remove Method’ (output Message with (2) noMsgArgs })

(yBM 'yBM' (Input Any Menu with (0) noMsgArgs))

-286 -

Appendix G

ass Hierarchy for i riented r Interface Managemen m

Implementation,

This appendix contains the Class Hierarchies for the proposed UIMS
implementation. Due to its length, the actual Smalltalk 80 source code is
omitted. This is available for inspection upon request from Sheffield City
Polytechnic.

Contents :-

(1) PVC Combined View and Separation Controller Class
Hierarchy,

(2) PVC Interaction Controller Class Hierarchy,

(3) Extended Lean Cuisine Class Hierarchy.

-287 -

Extended Lean Cuisine Implementation - Class Hierarchy :-
Object ()

Meneme (‘title’ ‘owner’)
Menu ('size’ 'itemList’ 'selected’ 'selection’ ‘view’ 'oneOn’)
-MCMenu ()
RealMCMenu ()
VirtualMCMenu ()
MEMenu ()
RealMEMenu ()
VirtualMEMenu ()
Terminator ()
Bistable ('onMsg’ ‘offMsg’ 'state’)
Monostable ('selectMsg’

-288-

Object Orlented User Interface Management System Implementation - Class Hierarchy for Interaction '
Controller Component :-

Object ()
Controller ('model’ 'view’ 'sensor’)
MouseMenuController (‘redButtonMenu’ ‘redButtonMessages’ 'yellowButtonMenu’
'vellowButtonMessages' 'blueButtonMenu’ ‘blueButtonMessages’)
ScroliController ('scrollBar’ ‘marker’)

PVCIC (‘status’ ‘cursor’)
IPVCLIstIC ()
IPVCSliderIC ()
IPVCStringlC (‘paragraph’)
IPVCStringlOIC ()
IPVCTextEditorlC ('startBlock’ 'stopBlock’ 'beginTypelnBlock’ ‘'emphasisHere’ "initialText’
‘selectionShowing’) . .
IPVCSwitchlIC ()
PPVCIC ()
PPVCTopIC ('savedArea’

-289 -

Object Oriented User Interface Management System Implementation - Class Hierarchy for Combined -
View/Separation Controller Components :-

Object ()
View (‘model’ ‘controller’ 'superView’ 'subViews' ‘transformation’ 'viewport’ ‘window" ‘displayTransformation’
'insetDisplayBox’ "borderWidth' 'borderColor’ 'insideColor’ ‘boundingBox’)

PVCView (links’ 'slotValues’ 'slotDefaults’ slotArgs’ ‘inputSlotMsgs’ "outputSlotMsgs® ‘changedSlots’)
IPVCMuttiView ('multiSlots’)
IPVCBarChartView ()
IPVCView ()
IPVCGraphView ()
IPVCHorizontalSliderView (’sliderkKnobForm' 'underKnobForm' 'sliderTransformation’
‘'oldDTransformation’ ‘currentCursorPos’)
IPVCVerticalSliderView ()
IPVCListView ('list’ 'selection’ ‘topDelimiter’ "bottomDelimiter 'lineSpacing’ 'emphasisOn’ ‘itemList

IPVCStringlOView ()
IPVCGenerallOView ()
IPVCStringView ()
IPVCGeneralView ()
IPVCSwitchView (‘displayObject’)
IPVCButtonView ()
IPVCSwitchView2 ('switchState’)
IPVCTextEditorView ()
IPVCStringEditorView ()
PPVCView (label’ 'default’ 'changed’ 'partMsg’)
PPVCTopView (‘active’)
SpecialPPVCView ()
PPVCUserModelView ('currentClass’ ‘currentMethod’

-290 -

Appgndix H.

Example Interfaces and Associated Code Generated by the User Interface
Management System. :

This appendix contains example direct manipulation user interfaces
generated using the proposed UIMS tool-set. For each example, a screen
dump of the actual working interface is given, and the underlying
automatically generated PPVC description is listed.

Contents :-

(1) Interface on a SparkPlug,

(2) Interface on an Engine,

(3) Interface on a DieselEngine,

(4) Interface on a Tyre,

(5) Interface on a Tyre,

(6) Interface on a Chassis,

(7) Interface on a Car,

(8) Interface on a Car,

(9) Interface on a Car,

(10) Interface on a User Model,

(11) Interface on a Dept,

(12) Interface on a Person,

(13) Interface on a Person,

(14) Interface on a Detailed Person,

(15) Interface on a Detailed Person,

(16) Interface used for inspecting existing active PVC Slot values,
(17) Interface used to Align existing active PVCs.

-291 -

G8'0= 339 dg

|eloadg ,_ouom;—

Interface 1

-292 -

666l = @218

aulbu3 juaioiyl3 buiiog odeayy
uolsizp pabaeynasdng
HnEJE(Q

05 = 1ybiapy

Gl'l6 = demoyg

uoisaap 1yYbiagm 1y6)7 pebarygasdng

¢ = adA) aulbuy

§8'0= 442 dg

lneya(]

Interface 2

-293 -

6'0 = Asusioll3

uoisday 1yblas 14617 pabiaeyjgiedng |esaig

6661 = 3z2ig

05e = Wbia

uojsdap 1yBia 1ybyq pabarysdadng jesalg
aulbu3 juajoly3 buliog odesyg [asalg
uolsaap pabiarygaedng |asalg

HnE4a] |asaig

\

G'EOL = demod

¢ = adA) subu3

Interface 3

-294 -

00G :Wn(oA

000G = 2ANSsSadH

Interface 4

-295-

3leld=q

SIEPY

000G =uwnjo s

000G = LAnNSsSTdd

Interface 5

-296 -

DEL 1M SISSEYD

t HnejsQ
€ HnEJaQ
Z HUnEyaQ

sWe44

3WE4Y

dwedy

)
F]
3
Q PWed4
a
J sWedy

4 awedq

<

s

Q8
=

g Ol sISSEYQ

Interface 6

-297 -

, N v £ 2 2
0
) 86
L§'b22 = [909Y 961
62
z6¢
00b L 1M (BIOL

£ 1InEJeg
€ HhejysQ

00} 38 SISSEY] Z Hine4ag

Interface 7

Y SUWERA4 1053p

I {OH SISSEYYD

-298 -

| tat €M\ P2 LAy
0
go
| L5'F22 = |s00y 961
¥6e
26¢e
aok |l i1 |EIO]

sulbug 1ualoyy] buliog odeay)
00L) = 2218 uolstay pabaeyqaadng

1IhEJ=gd

0'Lg = Jamod i = =dA) suibu3

Interface 8

-299 -

0
€6
B2 = |200W
LE'FL2 = |B00y a5 |
¥62
26¢
00k} 304 |BIOL
alE|eq 31E|JU| s1eag 31E|JU| w
&
=
Lo..u. [}
GE fmuinjoy GE awnjoy = S
-)
\

06t = @4nssaad 06t = @4nssadd

0g t=wnjoy, 02 3wnjop

02b = @4anssadg

02k = @4nssady

PoYIal) Yiid 40443

SSBID YA, 40443

uolieolddy Yyl 40443

Poyls|y asn

SSE|D =51

uoiteolddy asp

330 3PIYI5A0 poylsly

330 3PIYI3AQ SSE|D

330 @plgisaQ uolieo)ddy

L'0 9SEB40U] SSB|J pOYlal

1'0 t8sE340u} ddy ssSE|g

0661 ABl 21 ipasn 15 ddy

06 4366141 €7 poyiapy

0G :49bb1al ¢ SSE(D

0g :4266141 g7 ddy

Gg 14266141 27 poyiapy

Gg t4ebbla| 27 ssE|D

g¢ 14866141 27 ddy

| tabesn poyia

2'0 'ebES SSE|D

t2'0 sbesp ddy

) i3si14adx3 poyla

} 18s51343dx3 SSE|D

} 1@s)149dx3 ddy

06 :426b141 €7 1neyaqg

L'0 {2SB340U| SSE|] 1|NBIE(Q

Gg 14abby4a) 27 1nEIRQ

L'0 taseaa0u} ddy 3jnegaQ

0 {lunog 443 ddy

[, (rabs D]

Lpoylaw

- —-—— - ——

LS5E|D
£S5E|0

I12poly 1581 15414 3111 |3poly

Interface 10

-301-

JJB1S U0 4B

0=33®15 40 ON

30019 Asiols gl

uyof = peaH

MO_M..A_._n_ = IWEY uQmD

Interface 11

-302 -

0661 ABP 2L = Yyia1g 30 31EBQ

umouy 1o

ined = swepy

Interface 12

-303 -

—_—

JJBIG U0 B3)E]

0 =33®15 3O ON

95SNOH 10l49H

Ined = peay

$31pn1s J2indwo) = swey 1dsg

0661 A®l 21 = ylaig 4o =1eQ

umouy 10p

Ined = awey

Interface 1

-304 -

9SEBI40U| AJBjES O

€ t9sERIOU] AdR|RS

0 P9 syl Arg 0 :ABd AldEa N

ANOH UE 40
0 93 SIYL sanoj

Pu3 o9

G tAde|Eg

tFGL 4990130 9¢ = Yi4ig 40O @81

waious 10N uyol = swey

Interface 14

- 305~

asedJiou) Adejeg oQ

. .1 195E310U] A4B|ES

0 333 Mm siyL Aed

s40 4 oq g | HOLIMS
| 0 tAed Aluea
0l =00 o Haop 0 133Ap SIYL SdnoH
Pu3 jaapm
G (Ade|ES

2661 Adenuer 22 = yidg 30 a1eQ

umouyl 1oy uyol = sawepy

Interface 1
-306 -

abury)

b

3N|EA ON = SSE|] 3NnjEA

P310adg JoH, = anjep

1ndy| = swwon

WaA = #1111 10]S

an|eAAE|dSIp
12qE|

Intei'face 16

MaIIAIRIBUBNIACI Ur = 3dA) JAdI

-307-

wojlog

PP

aduag

397

Interface 17

- 308 -

Sparkplug methodsFor: PPVCs

sparkplugView1: aPPVC
"Example Interface 1°

aPPVC isNil
ifTrue: [+self sparkplugViewlinstantiation}
ifFalse;
[self sparkplugView1s1: aPPVC.
self sparkplugView1s2: aPPVC.
self sparkplugView1s3: aPPVC.
aPPVC addIPVCLinks: nil]

-309 -

Sparkplug methodsi:or: Sub PPVCs

sparkplugView1tinstantiation
+((PPVCView new)
slot: #yBM value: nil type: #Literal)

sparkplugView1s1: aPPVC
aPPVC

addSubView: ((IPVCGeneralView new)
slot: #label value: 'Sp eff =' type: #Literal;
slot: #displayValue value: #efficiency type: #Message;
slot: #yBM value: nil type: #Literal) -

window: (0 @ O extent: 1 @ 1)

viewport: (0.0@0.398 corner: 1.0@0.74)

sparkplugView1s2: aPPVC
aPPVC

addSubView: ((IPVCHorizontalSliderView new)
slot: #sliderValue value: #efficiency type: #Message;
slot: #sliderUpdate value: #efficiency: type: #Message;
slot: #sliderRange value: (0 to: 1 by: 0.05) type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1) .

viewport: (0.0@0.74 corner: 1.0@1.0))

sparkplugView1s3: aPPVC
aPPVC
addSubView: ((IPVCStringEditorView new)
slot: #inputString value: #name type: #Message;
slot: #modelUpdate value: #name: type: #Message;

slot: #yBM value: (Menu onString: 'RealMCMenu false Top[(MonoStable accept Accept) I') type

window: (0 @ O extent: 1 @ 1)
viewport: (0.0@0.0 corner: 1.0@0.398)

-310 -

: #Literal)

Engine methodsFor: PPVCs

engineView1: aPPVC
"Example Interface 2"

aPPVC isNil

ifTrue: [tself engineViewlinstantiation]

ifFalse:
[self engineViewis1: aPPVC.
self engineView1s2: aPPVC.
self engineView1s3: aPPVC.
self engineView1s4: aPPVC.
self engineView1s5: aPPVC.
self engineView1s6: aPPVC.
self engineView1s7: aPPVC.
aPPVC addIPVCLinks: nil}

-311-

Engine methodsFor: Sub PPVCs

engineView1linstantiation
+((PPVCView new)
slot: #yBM value: nil type: #Literal)

engineView1s1: aPPVC
aPPVC
addPPVC: #sparkplugView1
partMsg: #sparkplug
variablePPVC: #variablePVC
at: (0.0@0.0 comner: 1.0@0.404)

engineView1s2: aPPVC
aPPVC

addSubView: ((IPVCStringlOView new)
slot: #label value: " type: #Literal;
slot: #displayValue value: #description type: #Message;
slot: #modelUpdate value: #engineDescription: type: #Message;
slot: #question value: 'engine description ?' type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.0@0.559 corner: 0.476@0.736)

" engineView1s3: aPPVC
aPPVC
addSubView: ((IPVCListView new)
slot: #currentltem value: #description type: #Message;
slot: #newSelection value: #engineDescription: type: #Message;
slot: #itemList value: #availableDescriptions type: #Message;
slot: #stringPrint value: false type: #Literal;
slot: #oneltem value: false type: #Literal;
slot: #yBM value: nil type: #Literal)
window: (0 @ O extent: 1 @ 1)
viewport: (0.0@0.736 corner: 0.476@1.0)

engineView1s4: aPPVC
aPPVC

addSubView: {(IPVCGeneralView new)
slot: #iabel value: 'Power = ' type: #Literal;
slot: #displayValue value: #power type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.476@0.404 corner: 1.0@0.601)

engineView1s5: aPPVC
aPPVC

addSubView: ((IPVCGeneralView new)
slot: #label value: 'Weight = * type: #Literal;
slot: #displayValue value: #weight type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.476@0.601 comner: 1.0@0.803)

engineView1s6: aPPVC
aPPVC

addSubView: ((IPVCGenerallOView new)
slot: #label value: 'Engine Type = type: #Literal;
slot: #displayValue value: #engineType type: #Message;
slot: #modelUpdate value: #engineType: type: #Message;
slot: #question value: 'new Type ?" type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.00606@0.403 corner: 0.476@0.56)

engineView1s7: aPPVC
aPPVC

addSubView: ((IPVCGeneralView new)
slot: #label value: 'Size = * type: #Literal;
slot: #displayValue value: #size type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.476@0.803 comer: 1.0@1.0)

-312-

DieselEngine methodsFor: PPVCs

engineView1: aPPVC
“Example Interface 3"

aPPVC isNil

ifTrue: [tself engineViewlinstantiation]

ifFalse:
[self engineView1s1: aPPVC.
self engineView1s2: aPPVC.
self engineView1s3: aPPVC.
self engineView1s4: aPPVC.
self engineView1s5: aPPVC,
self engineView1s6: aPPVC.
self engineView1s7: aPPVC.
aPPVC addIPVCLinks: nil]

-313 -

DieselEngine methodsFor: Sub PPVCs

engineViewlinstantiation
t({PPVCView new)
slot: #yBM value: nil type: #Literal)

engineViewis1: aPPVC
aPPVC

addSubView: ((IPVCStringlOView new)
slot: #label value: " type: #Literal;
slot: #displayValue value: #description type: #Message;
slot: #modelUpdate value: #engineDescription: type: #Message;
slot: #question value: ‘engine description ?* type: #Literal;.
slot: #yBM value: nil type: #Literal)

window: (0 @ Oextent: 1 @ 1)

viewport: (0.00362@0.717 corner: 0.476@0.998)

engineView1s2: aPPVC
aPPVC

addSubView: ((IPVCListView new)
slot: #currentitem value: #description type: #Message;
slot: #newSelection value: #engineDescription: type: #Message;
slot: #itemList value: #availableDescriptions type: #Message;
slot: #stringPrint value: false type: #Literal;
slot; #oneltem value: false type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.00362@0.233 comer: 0.476@0.717)

engineView1s3: aPPVC
aPPVC

addSubView: ((IPVCGeneralView new)
slot: #label value: 'Power = ' type: #Literal;
slot: #displayValue value: #power type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.476@0.0 corner: 1.0@0.233)

engineView1s4: aPPVC
aPPVC

addSubView: ((IPVCGeneralView new)
slot: #label value: 'Weight = ' type: #Literal;
slot: #displayValue value: #weight type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.476@0.233 comner: 1.0@0.552)

engineView1s5: aPPVC
aPPVC

addSubView: ((IPVCGenerallOView new)
slot: #label value: ‘Engine Type ="' type: #Literal;
slot: #displayValue value: #engineType type: #Message;
slot: #modelUpdate value: #engineType: type: #Message;
slot: #question value: 'new Type ?' type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.0@0.0 comer: 0.476@0.233)

engineView1s6: aPPVC
aPPVC

addSubView: ((IPVCGeneralView new)
slot: #label value: 'Size = type: #Literal;
slot: #displayValue value: #size type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.476@0.552 corner: 1.0@0.784)

engineView1s7: aPPVC
aPPVC

addSubView: ((IPVCGeneralView new)
slot: #label value: ‘Efficiency = * type: #Literal;
slot: #displayValue value: #efficiency type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.476@0.784 corner: 1.0@1.0)

-314 -

Tyre methodsFor: PPVCs

Tyre1: aPPVC
“Example Interface 4"

aPPVC isNil
ifTrue: [+self Tyretinstantiation]
ifFalse:
[self Tyre1s1:aPPVC.
self Tyre1s2: aPPVC.
self Tyre1s3: aPPVC.
aPPVC addIPVCLinks: nil]

Tyre2: aPPVC
"Example Interface 5"

aPPVC isNil
ifTrue: [tself Tyre2instantiation]
ifFalse:
[self Tyre2s1: aPPVC.
self Tyre2s2: aPPVC.
self Tyre2s3: aPPVC.
self Tyre2s4: aPPVC.
self Tyre2s5: aPPVC.
aPPVC addiPVCLinks: nil]

-315-

Tyre methodsFor: Sub PPVCs

Tyretinstantiation
+((PPVCView new)
slot: #yBM value: nil type: #Literal)

Tyreisi: aPPVC
aPPVC

addSubView: ((IPVCGeneralView new)
slot: #label value: 'Pressure = ' type: #Literal;
siot: #displayValue value: #pressure type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.0@0.0 corner: 0.763@0.502)

Tyre1s2: aPPVC
aPPVC

addSubView: ((IPVCGenerallOView new)
slot: #label value: 'Volume: * type: #Literal;
slot; #displayValue value: #volume type: #Message;
slot: #modelUpdate value: #volume: type: #Message;
slot: #question value: 'New Volume' type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.0@0.502 corner: 0.763@1.0)

Tyre1s3: aPPVC
aPPVC

addSubView: ((IPVCVerticalSliderView new)
slot: #sliderValue value: #volume type: #Message;
slot: #sliderUpdate value: #volume: type: #Message;
slot: #sliderRange value: (1 to: 500 by: 10) type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ Oextent: 1 @ 1)

viewport: (0.763@0.0 comer: 1.0@1.0)

Tyre2instantiation
+((PPVCView new)
slot: #yBM value: nil type: #Literal)

Tyre2s1: aPPVC
aPPVC

addSubView: ((IPVCGeneralView new)
slot: #label value: ‘Pressure = ' type: #Literal;
slot: #displayValue value: #pressure type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.0@0.0 corner: 0.763@0.502)

Tyre2s2: aPPVC
aPPVC

addSubView: ((IPVCGenerallOView new)
slot: #label value: 'Volume: * type: #L.iteral;
slot: #displayValue value: #volume type: #Message;
slot: #modelUpdate value: #volume: type: #Message;
slot: #question value: ‘New Volume' type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.00483@0.502 comer: 0.763@0.815)

Tyre2s3: aPPVC
aPPVC

addSubView: ((IPVCVerticalSliderView new)
slot: #sliderValue value: #volume type: #Message;
slot: #sliderUpdate value: #volume: type: #Message;
slot: #sliderRange value: (1 to: 500 by: 10) type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ Oextent: 1 @ 1)

viewport: (0.763@0.0 comer: 1.0@0.815)

Tyre2s4: aPPVC
aPPVC

addSubView: ((IPVCButtonView new)
slot: #label value: 'Inflate’ type: #Literal;
slot: #switchPress value: #inflate: type: #Message;
slotArgs: #switchPress value: #(10);
slot: #yBM value: nil type: #Literal)

window: (0 @ Oextent: 1 @ 1)

viewport: (0.0@0.815 comer: 0.502@1.0)

- 316 -

Tyre2s5: aPPVC
aPPVC

addSubView: ((IPVCButtonView new)
slot: #label value: ‘Deflate’ type: #Literal;
slot: #switchPress value: #inflate: type: #Message;
slotArgs: #switchPress value: #(-10);
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.502@0.815 comner: 1.0@1.0)

-317 -

Chassis methodsFor: PPVCs

chassis1: aPPVC
"Example Interface 6°

aPPVC isNil

ifTrue: [tself chassis linstantiation]

ifFalse:
[self chassis1s1: aPPVC.
self chassis1s2: aPPVC.
self chassis1s3: aPPVC.
self chassis1s4: aPPVC.
aPPVC addIPVCLinks: nil]

-318-

Chassis methodsFor: Sub PPVCs

chassistinstantiation
+((PPVCView new)
slot: #yBM value: nil type: #Literal)

chassisis1: aPPVC.
aPPVC .

addSubView: ((IPVCGenerallOView new)
slot: #label value: "Chassis No: ' type: #Literal;
slot: #displayValue value: #chassisNumber type: #Message;
slot: #modelUpdate value: #chassisNumber: type: #Message;
slot: #question value: ‘Type new Chassis Number’ type: #Literal:
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.0@0.0 corner: 1.0@0.502)

chassis1s2: aPPVC
aPPVC

addSubView: ((IPVCListView new)
slot: #currentltem value: #description type: #Message;
slot: #newSelection value: #chassisDescription: type: #Message;
slot: #itemList value: #availableDescriptions type: #Message;
slot: #stringPrint value: false type: #Literal;
slot: #oneltem value: false type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.0@0.502 comner: 0.5@1.0)

chassis1s3: aPPVC
aPPVC

addSubView: ((IPVCStringView new)
slot: #label value: ‘desc: * type: #Literal;
slot: #displayValue value: #description type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.5@0.502 comer: 1.0@0.776)

chassis1s4: aPPVC
aPPVC

addSubView: ((IPVCGeneralView new)
slot: #label value: 'Chassis wt: * type: #Literal;
slot: #displayValue value; #weight type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.5@0.776 corner: 1.0@1.0)

-319-

Car methodsFor: PPVCs

Cart: aPPVC

“Example Interface 7"

aPPVC isNil
ifTrue: [tself Carlinstantiation]

ifFalse:

Car2: aPPVC

[self Car1s1:aPPVC.
self Car1s2: aPPVC.
self Car1s3: aPPVC.
self Car1s4: aPPVC.
aPPVC addIPVCLinks: nil]

"Example Interface 8"

aPPVC isNil
ifTrue: [+self Car2instantiation]
ifFalse:

Car3: aPPVC

[self Car2s1: aPPVC.
self Car2s2: aPPVC.
self Car2s3: aPPVC.
self Car2s4: aPPVC.
aPPVC add!PVCLinks: nil]

"Example Interface 9*

aPPVC isNil
ifTrue: [tself Car3instantiation)
ifFalse:

[self Car3s1: aPPVC.
self Car3s2: aPPVC.
self Car3s3: aPPVC.
self Car3s4: aPPVC.
self Car3s5: aPPVC.
self Car3s6: aPPVC.
self Car3s7: aPPVC.
aPPVC addIPVCLinks: nil]

-320-

Car methodsFor: Sub PPVCs

Cartinstantiation
+((PPVCView new)
slot: #yBM value: nil type: #Literal)

Caris1: aPPVC
aPPVC
addPPVC: #chassis1
partMsg: #chassis
variablePPVC: #variablePVC
at: (0.0@0.0 corner: 1.0@0.574)

Car1s2: aPPVC
aPPVC
addSubView: ((IPVCBarChartView new)
slot: #label value: ‘No Label' type: #Literal;
multiSlot: #barValues
values: ((OrderedCollection new) add: ‘wheel1.pressure’ asSymbol; add: ‘wheel2.pressure’ asSymbol; add:
‘wheel3.pressure’ asSymbol; add: ‘wheeld.pressure’ asSymbol; yourself)
types: #(Message Message Message Message);
multiSlot: #barTitles
values: ((OrderedCollection new) add: 'W1'; add: 'W2'; add: 'W3'; add: 'W4'; yourself)
types: #Literal;
slot: #yBM value: nil type: #Literal)
window: (0 @ O extent: 1 @ 1)
viewport: (0.0@0.574 comer: 0.503@1.0)

Car1s3: aPPVC
aPPVC

addSubView: ((IPVCGenerallOView new)
slot: #label value: 'Total Wt: * type: #Literal;
slot: #displayValue value: #totalWeight type: #Message;
slot: #modelUpdate value: #weight: type: #Message;
slot: #question value: 'New Car Weight' type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ Oextent: 1 @ 1)

viewport: (0.503@0.574 corner: 1.0@0.776)

Caris4: aPPVC
aPPVC

addSubView: ((IPVCGeneralView new)
slot: #label value: ‘Accel = * type: #Literal;
slot: #displayValue value: #acceleration type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.503@0.776 corner: 1.0@1.0)

Car2instantiation
+((PPVCView new)
slot: #yBM value: nil type: #Literal)

Car2s1: aPPVC
aPPVC
addSubView: ((IPVCBarChartView new)
slot: #label value: 'No Label’ type: #Literal;
multiSlot: #barValues
values: ((OrderedCollection new) add: ‘wheell.pressure’ asSymbol; add: ‘wheel2.pressure' asSymbol; add:
‘wheel3.pressure’ asSymbol; add: ‘wheeld.pressure’ asSymbol; yourself)
types: #(Message Message Message Message);
multiSlot: #barTitles
values: ((OrderedCollection new) add: 'W1'; add: 'W2'; add: '"W3'; add: 'W4'; yourself)
types: #Literal;)
slot: #yBM value: nil type: #Literal)
window: (0 @ O extent: 1 @ 1)
viewport: (0.0@0.574 comer: 0.503@1.0)

Car2s2: aPPVC
aPPVC

addSubView: ({(IPVCGenerallOView new)
slot: #label value: ‘Total Wt: * type: #Literal;
slot: #displayValue value: #totalWeight type: #Message;
slot: #modelUpdate value: #weight: type: #Message;
slot: #question value: '"New Car Weight' type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.503@0.574 comer: 1.0@0.776)

Car2s3: aPPVC
-321-~

aPPVC .
addSubView: ((IPVCGeneralView new) '
slot: #label value: ‘Accel = ' type: #Literal;
slot: #displayValue value: #acceleration type: #Message;
slot: #yBM value: nil type: #Literal)
window: (0 @ Oextent: 1 @ 1)
viewport: (0.503@0.776 comer: 1.0@1.0)

Car2s4: aPPVC
aPPVC
addPPVC: #engineView1
partMsg: #engine
variablePPVC: #variablePVC
at: (0.0@0.0 corner: 1.0@0.574)

Car3instantiation
+((PPVCView new)
slot: #yBM value: nil type: #Literal)

Car3s1: aPPVC
aPPVC
addSubView: ((IPVCBarChartView new)
slot: #label value: ‘No Label' type: #Literal;
multiSlot: #barValues
values: ((OrderedCollection new) add: ‘wheel1.pressure’ asSymbol; add: ‘'wheel2.pressure’ asSymbol; add:
‘wheel3.pressure’ asSymbol; add: ‘wheeld.pressure’ asSymbol; yourself)
types: #(Message Message Message Message);
multiSlot: #barTitles
values: ((OrderedCollection new) add: 'W1'; add: 'W2'; add: ‘W3'; add: 'W4'; yourself)
types: #Literal;
slot: #yBM value: nil type: #Literal)
window: (0 @ O extent: 1 @ 1)
viewport: (0.0@0.574 comer: 0.503@1.0)

Car3s2: aPPVC
aPPVC

addSubView: ((IPVCGenerallOView new)
slot: #label value: "Total Wt: * type: #Literal;
slot: #displayValue value: #totalWeight type: #Message;
slot: #modelUpdate value: #weight: type: #Message;
slot: #question value: 'New Car Weight' type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.503@0.574 comer: 1.0@0.776)

Car3s3: aPPVC
aPPVC

addSubView: ((IPVCGeneralView new)
slot: #label value: "Accel = ' type: #Literal;
slot: #displayValue value: #acceleration type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ Oextent: 1 @ 1)

viewport: (0.503@0.776 corner: 1.0@1.0)

Car3s4: aPPVC
aPPVC
addPPVC: #Tyre1
partMsg: #wheel1
variablePPVC: #variablePVC
at; (0.0@0.0 corner: 0.507@0.289)

Car3s5: aPPVC
aPPVC
addPPVC: Tyret'
partMsg: #wheel2
variablePPVC: #variablePVC
at: (0.507@0.00295 comer: 1.0@0.289)

Car3s6: aPPVC
aPPVC
addPPVC: #Tyre2
partMsg: #wheel3
variablePPVC: #variablePVC
at: (0.0@0.289 corner: 0.509@0.575)

Car3s7: aPPVC
aPPVC
addPPVC: ‘Tyre2'
partMsg: #wheel4
variablePPVC: #variablePVC

-322-

UserModel methodsFor: PPVCs

UserModelView1: aPPVC
"Example Interface 10"

aPPVC isNil

ifTrue: [tself UserModelViewlinstantiation]

ifFalse:

[self UserModelView1s1: aPPVC.
self UserModelView1s2: aPPVC.
self UserModelView1s3: aPPVC.
self UserModelView1s4: aPPVC.
self UserModelView1s5: aPPVC.
self UserModelView1s6: aPPVC.
self UserModelView1s7: aPPVC.
self UserModelView1s8: aPPVC.
self UserModelView1s9: aPPVC.

self UserModelView1s10: aPPVC.
self UserModelView1s11: aPPVC.
self UserModelView1s12: aPPVC.
self UserModelView1s13: aPPVC.
self UserModelView1s14: aPPVC.
self UserModelView1s15: aPPVC.
self UserModelView1s16: aPPVC.
self UserModelView1s17: aPPVC.
self UserModelView1s18: aPPVC.
self UserModelView1s19: aPPVC.
self UserModelView1s20: aPPVC.
self UserModelView1s21: aPPVC.
self UserModelView1s22: aPPVC.
self UserModelView1s23: aPPVC.
self UserModelView1s24: aPPVC.
self UserModelView1s25: aPPVC.
self UserModelView1s26: aPPVC.
self UserModelView1s27: aPPVC.
self UserModelView1s28: aPPVC,
self UserModelView1s29: aPPVC.
self UserModelView1s30: aPPVC.
self UserModeiView1s31: aPPVC.
self UserModelView1s32: aPPVC.
self UserModelView1s33: aPPVC.
self UserModelView1s34: aPPVC.

aPPVC addIPVClLinks: nil)

-324 -

UserModel methodsFor: Sub PPVCs

UserModelView1instantiation
+((PPVCUserModelView new)

slot: #changeClassApplicationincrease value: #changeClass:applicationincrease: type: #Message;
slot: #classApplicationincrease value: #classApplicationincrease: type: #Message;
slot: #changeClassUsage value: #changeClass:usage: type: #Message;
slot: #classUsage value: #classUsage: type: #Message;
slot: #changeClassExpertiseLevel value: #changeClass:expertiseLevel: type: #Message;
slot: #classExpertiseLevel value: #classExpertiseLevel: type: #Message;
slot: #changeClassLevel2Trigger value: #changeClass ‘level2Trigger: type: #Message;
slot: #classLevel2Trigger value: #classLevel2Trigger: type: #Message;
slot: #changeClassLevel3Trigger value: #changeClass:level3Trigger: type: #Message;
slot: #classLevel3Trigger value: #classLevel3Trigger: type: #Message;
slot: #classOverRideOff value: #changeClassOverRideOff: type: #Message;
slot: #changeMethodClass|ncrease value: #changeMethod:forClass:classincrease: type: #Message;
slot: #methodClassincrease value: #methodClassincrease:forClass: type: #Message;
slot: #changeMethodUsage value: #changeMethod:forClass:usage: type: #Message;
slot: #methodUsage value: #methodUsage:forClass: type: #Message;
slot: #changeMethodExpertiseLevel value: #changeMethod:forClass:expertiseLevel: type: #Message;
slot: #methodExpertiseLevel value: #methodExpertiseLevel:forClass: type: #Message;
slot: #changeMethodLevel2Trigger value: #changeMethod:forClass:level2Trigger: type: #Message;
slot: #methodLevel2Trigger vaiue: #methodLevel2Trigger:forClass: type: #Message;
slot: #changeMethodLevel3Trigger value: #changeMethod:forClass:level3Trigger: type: #Message;
slot: #methodLevel3Trigger value: #methodLevel3Trigger:forClass: type: #Message;
slot: #methodOverRideOff value: #changeMethodOverRideOff:forClass: type: #Message;
slot: #availableMethods value: #methodsForClass: type: #Message;
slot: #errorWithClass value: #errorWithClass: type: #Message;
slot: #useClass value: #useClass: type: #Message;
slot: #errorWithMethod value: #errorWithMethod:forClass: type: #Message;
slot: #useMethod value: #useMethod:forClass: type: #Message;
slot: #removeClass value: #removeClass: type: #Message;
slot: #removeMethod value: #removeMethod:forClass: type: #Message;
slot: #yBM value: nil type: #Literal)

UserModelView1s10: aPPVC
aPPVC

addSubView: ((IPVCButtonView new)
slot: #label value: 'Error with Application' type: #Literal;
slot: #switchPress value: #errorWithApplication type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.0@0.941 comer: 0.351@1.0)

UserModelView1s11: aPPVC
aPPVC

addSubView: ((IPVCButtonView new)
siot: #label value: 'Error With Class’ type: #Literal;
slot: #switchPress value: #errorWithCurrentClass type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.351@0.941 comer: 0.683@1.0)

UserModelView1s12: aPPVC
aPPVC

addSubView: ((IPVCButtonView new)
slot: #label value: 'Error with Method’ type: #Literal;
slot: #switchPress value: #errorWithCurrentMethod type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.683@0.941 corner: 1.0@1.0)

UserModelView1s13: aPPVC
aPPVC

addSubView: ((IPVCGenerallOView new)
slot: #label value: "App Expertise: * type: #Literal;
slot: #displayValue value: #applicationExpertiseLeve! type: #Message;
slot: #modelUpdate value: #applicationExpertiseLevel: type: #Message;
slot: #question value: "New Application Expertise Level (1 - 3)' type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ Oextent: 1 @ 1)

viewport: (0.00346@0.486 comner: 0.351@0.545)

UserModelView1s14: aPPVC
aPPVC
addSubView: ((IPVCGenerallOView new)
slot: #label value: ‘App Err Count: * type: #Literal;
slot: #displayValue value: #applicationErrorCount type: #Message;
slot: #modelUpdate value: #applicationErrorCount: type: #Message;

-325-~

slot: #question value: ‘New Application Error Count’ type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.0@0.383 comer: 0.351@0.486)

UserModelView1s15: aPPVC
aPPVC

addSubView: ((IPVCGenerallOView new)
slot: #label value: 'App L2 Trigger: * type: #Literal;
slot: #displayValue value: #applicationLevel2Trigger type: #Message;
slot: #modelUpdate value: #applicationLevel2Trigger: type: #Message;
slot: #question value: '"New Application Level 2 Trigger' type: #Literal:
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.0@0.615 corner: 0.351@0.686)

UserModelView1s16: aPPVC
aPPVC

addSubView: ((IPVCGenerallOView new)
slot: #label value: ‘App L3 Trigger: * type: #Literal;
slot: #displayValue value: #applicationLevel3Trigger type: #Message;
slot: #modelUpdate value: #applicationLevel3Trigger: type: #Message;
slot: #question value: 'New Application Level 3 Trigger' type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.00346@0.686 comer: 0.351@0.756)

UserModelView1s17: aPPVC
aPPVC

addSubView: ((IPVCGeneralView new)
slot: #label value: 'App Last Used: ' type: #l.iteral;
slot: #displayValue value: #applicationLastUsed type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.00346@0.756 corner: 0.351@0.825)

UserModelView1s18: aPPVC
aPPVC

addSubView: ((IPVCGenerallOView new)
slot: #label value: 'Class Expertise: ' type: #Literal;
slot: #displayValue value: #currentClassExpertiseLevel type: #Message;
slot: #modelUpdate value: #changeCurrentClassExpertiseLevel: type: #Message;
slot: #question value: 'New Class Expertise Level (1-3) type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ Oextent: 1 @ 1)

viewport: (0.351@0.486 corner: 0.683@0.545)

UserModelView1s19: aPPVC
aPPVC

addSubView: ((IPVCGenerallOView new)
slot: #label value: ‘Method Expertise: * type: #Literal;
slot: #displayValue value: #currentMethodExpertiseLevel type: #Message;
slot: #modelUpdate value: #changeCurrentMethodExpertiselevel: type: #Message;
slot: #question value: 'New Method Expertise Level (1-3)' type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.683@0.486 corner: 1.0@0.545)

UserModeiViewis1: aPPVC
aPPVC

addSubView: ((IPVCStringlOView new)
slot: #label value: 'Model Title: * type: #Literal;
slot: #displayValue value: #title type: #Message;
slot: #modelUpdate value: #title: type: #Message;
slot: #question value: ‘New Model Title' type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.0@0.0 comer: 0.428@0.0683)

UserModelView1s20: aPPVC
aPPVC

addSubView: ((IPVCGenerallOView new)
slot: #label value: ‘'Class L2 Trigger: ' type: #Literal;
slot: #displayValue value: #currentClassLevel2Trigger type: #Message;
slot: #modelUpdate value: #changeCurrentClasslevel2Trigger: type: #Message;
slot: #question value: ‘New Class Level 2 Trigger type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ Oextent: 1 @ 1)

viewport: (0.351@0.615 comer: 0.683@0.686)

- 326 -

UserModelView1s21: aPPVC
aPPVC

addSubView: ((IPVCGenerallOView new)
slot: #label value: 'Class L3 Trigger: ’ type: #Literal;
slot: #displayValue value: #currentClassLevel3Trigger type: #Message;
slot: #modelUpdate value: #changeCurrentClassLevel3Trigger: type: #Message;
slot: #question value: ‘New Class Level 3 Trigger’ type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.351@0.686 comer: 0.683@0.756)

UserModelView1s22: aPPVC
aPPVC

addSubView: ((IPVCGenerallOView new)
siot: #label value: 'Method L2 Trigger: * type: #Literal;
slot: #displayValue value: #currentMethodLevel2Trigger type: #Message;
slot: #modelUpdate value: #changeCurrentMethodLevel2Trigger: type: #Message;
slot: #question value: ‘New Method Level 2 Trigger type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ Oextent: 1 @ 1)

viewport: (0.683@0.615 comer: 1.0@0.686)

UserModelView1s23: aPPVC
aPPVC

addSubView: ((IPVCGenerallOView new)
slot: #label value: 'Method L3 Trigger: * type: #Literal;
slot: #displayValue value: #currentMethodLevel3Trigger type: #Message;
slot: #modelUpdate value: #changeCurrentMethodLevel3Trigger: type: #Message;
slot: #question value: 'New Method Level 3 Trigger’ type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.683@0.686 corner: 1.0@0.756)

UserModelView1s24: aPPVC
aPPVC

addSubView: ((IPVCGenerallOView new)
slot: #label value: 'Method Class Increase: ' type: #Literal;
slot: #displayValue value: #currentMethodClassincrease type: #Message;
slot: #modelUpdate value: #changeCurrentMethodClassincrease: type: #Message;
slot: #question value: 'New Method Class Increase’ type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.683@0.756 comer: 1.0@0.825)

UserModelView1s25: aPPVC
aPPVC

addSubView: ((IPVCGenerallOView new)
slot: #label value: 'Class App Increase: ' type: #Literal; :
slot: #displayValue value: #currentClassApplicationincrease type: #Message;
slot: #modelUpdate value: #changeCurrentClassApplicationincrease: type: #Message;
slot: #question value: ‘New Class Application Increase’ type: #Literal,
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.351@0.756 corner: 0.683@0.825)

UserModelView1s26: aPPVC
aPPVC

addSubView: ((IPVCButtonView new)
slot: #label value: ‘Application OverRide Off' type: #Literal;
slot: #switchPress value: #applicationOverRideOff type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.00346@0.825 comer: 0.351@0.886)

UserModelView1s27: aPPVC
aPPVC

addSubView: ((IPVCButtonView new)
slot: #label value: 'Class OverRide Off type: #Literal;
slot: #switchPress value: #changeCurrentClassOverRideOff type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.351@0.825 comer: 0.683@0.886)

UserModelView1s28: aPPVC
aPPVC
addSubView: ((IPVCButtonView new)
slot: #label value: '"Method OverRide Off type: #Literal;
slot: #switchPress value: #changeCurrentMethodOverRideOff type: #Message;
slot: #yBM value: nil type: #Literal)
window: (0 @ O extent: 1 @ 1)

-327 -

viewport: (0.683@0.825 corner: 0.998@0.886) ’ ,

UserModelView1s29: aPPVC
aPPVC

addSubView: ((IPVCGraphView new)
slot: #curveBlock value: #leamFormula type: #Message;
slot: #minX value: 1 type: #Literal;
slot: #maxX value: 100 type: #Literal;
slot: #minY value: 1 type: #Literal;
slot: #maxY value: 100 type: #Literal;
slot: #step value: 1 type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.427@0.0 comer: 1.0@0.32)

UserModelView1s2: aPPVC
aPPVC
addSubView: ((IPVCListView new)
slot: #currentitem value: #cumrentClass type: #Message;
slot: #newSelection value: #currentClass: type: #Message;
slot: #itemList value: #availableClasses type: #Message;
slot: #stringPrint value: false type: #Literal;
slot: #oneltem value: false type: #Literal;
slot: #yBM value: (Menu onString: ‘RealMEMenu false top[(MonoStable addClass Add New Class) (MonoStable
removeCurrentClass Remove Class)]') type: #Literal)
window: (0 @ O extent: 1 @ 1)
viewport: (0.0@0.0683 comer: 0.428@0.214)

UserModelView1s30: aPPVC
aPPVC

addSubView: ((IPVCStringEditorView new)
slot: #inputString value: #learnFormula type: #Message;
siot: #modelUpdate value: #learFormula: type: #Message;
slot: #yBM value: #defaultMenu type: #Message)

window: (0 @ Oextent: 1 @ 1) .

viewport: (0.427@0.32 corner: 1.0@0.383)

UserModelView1s31: aPPVC
aPPVC

addSubView: ((IPVCGenerallOView new)
slot: #label value: ‘Default App Increase: * type: #Literal;
slot: #displayValue value: #defaultApplicationincrease type: #Message;
slot: #modelUpdate value: #defaultApplicationincrease: type: #Message;
slot: #question value: 'New Default Application Increase’ type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ Oextent: 1 @ 1)

viewport: (0.351@0.383 comer: 0.683@0.438)

UserModelView1s32: aPPVC
aPPVC

addSubView: ((IPVCGeneraliOView new)
slot: #label value: 'Default Class Increase: ' type: #Literal;
slot: #displayValue value: #defaultClassincrease type: #Message;
slot: #modelUpdate value: #defaultClassincrease: type: #Message;
slot: #question value: ‘New Default Class Increase’ type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.351@0.438 corner: 0.683@0.486)

UserModelView1s33: aPPVC
aPPVC

addSubView: ((IPVCGenerallOView new)
slot: #label value: ‘Default L2 Trigger: ' type: #Literal;
slot: #displayValue value: #defaultlevel2Trigger type: #Message;
slot: #modelUpdate value: #defaultLevel2Trigger: type: #Message;
slot: #question value: ‘New Default Level 2 Trigger’ type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.683@0.383 comner: 1.0@0.438)

UserModelView1s34: aPPVC
aPPVC

addSubView: ((IPVCGenerallOView new)
slot: #label value: 'Default L3 Trigger: * type: #Literal;
slot; #displayValue value: #defaultLevel3Trigger type: #Message;
slot: #modelUpdate value: #defaultLevel3Trigger: type: #Message;
slot: #question value: 'New Default Level 3 Trigger’ type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.683@0.438 corner: 1.0@0.486)

- 328 -

UserModelView1s3: aPPVC
aPPVC
addSubView: ((IPVCListView new)
slot: #currentitem value: #currentMethod type: #Message;
slot: #newSelection value: #currentMethod: type: #Message;
slot: #itemList value: #currentAvailableMethods type: #Message;
slot: #stringPrint value: false type: #Literal;
slot: #oneltem value: false type: #Literal;

slot: #yBM value: (Menu onString: ‘RealMCMenu false top[(MonoStable addMethod Add New Method) (MonoStable

removeCurrentMethod Remove Method) I') type: #Literal)
window: (0 @ O extent: 1 @ 1)
viewport: (0.0@0.214 corner: 0.428@0.383)

UserModelView1s4: aPPVC
aPPVC

addSubView: ((IPVCGenerallOView new)
slot: #label value: 'App Usage: * type: #L.iteral;
slot: #displayValue value: #applicationUsage type: #Message;
slot: #modelUpdate value: #applicationUsage: type: #Message;
slot: #question value: 'New Application Usage' type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.0@0.545 corner: 0.351@0.615)

UserModelView1s5: aPPVC
aPPVC

addSubView: ((IPVCGenerallOView new)
slot: #label value: 'Class Usage: ' type: #Literal;
slot: #displayValue value: #currentClassUsage type: #Message;
slot: #modelUpdate value: #changeCurrentClassUsage: type: #Message;
slot: #question value: ‘New Class Usage’ type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.351@0.545 comer: 0.683@0.615)

UserModelViewis6: aPPVC
aPPVC

addSubView: {(IPVCGenerallOView new)
slot: #label value: ‘Method Usage: * type: #Literal;
slot: #displayValue value: #currentMethodUsage type: #Message;
slot: #modelUpdate value: #changeCurrentMethodUsage: type: #Message;
slot: #question value: 'New Method Usage' type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.683@0.545 corner: 1.0@0.615)

UserModelView1s7: aPPVC
aPPVC

addSubView: ((IPVCButtonView new)
slot: #label value: 'Use Method' type: #Literal;
slot: #switchPress value: #useCurrentMethod type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.683@0.886 comer: 1.0@0.941)

UserModelView1s8: aPPVC
aPPVC

addSubView: ((IPVCButtonView new) '
slot: #label value: 'Use Class' type: #Literal;
slot: #switchPress value: #useCurrentClass type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ Oextent: 1 @ 1)

viewport: (0.351@0.886 corner: 0.683@0.941)

UserModeiView1s3: aPPVC
aPPVC

addSubView: ((IPVCButtonView new)
slot: #label value: 'Use Application’ type: #Literal;
slot: #switchPress value: #useApplication type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.0@0.886 comer: 0.351@0.941)

-329-

Department methodsFor: PPVCs

DeptView1: aPPVC
“Example Interface 11°

aPPVC isNil

ifTrue: [tself DeptViewlinstantiation]

ifFalse:

: [self DeptView1s1: aPPVC.
self DeptView1s2: aPPVC.
self DeptView1s3: aPPVC.
self DeptView1s4: aPPVC.
self DeptView1s5: aPPVC.
aPPVC addIPVCLinks: nil]

-330-

Department methodsFor: Sub PPVCs

DeptViewlinstantiation
t((PPVCView new)
slot: #yBM value: nil type: #Literal)

DeptView1s1: aPPVC
aPPVC

addSubView: ((IPVCStringlOView new)
slot: #label value: ‘Dept Name =" type: #Literal;
siot: #displayValue value: #departmentName type: #Message;
slot: #modelUpdate value: #departmentName: type: #Message;
slot: #question value: ‘New Dept Name' type: #Literal,
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.0@0.0 corner: 1.0@0.282)

DeptViewis2: aPPVC
aPPVC

addSubView: ((IPVCGenerallOView new)
slot: #label value: 'No Of Staff = * type: #Literal;
slot: #displayValue value: #noOfStaff type: #Message;
slot: #modelUpdate value: #noOfStaff: type: #Message;
slot: #question value: 'No Of Staff' type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ Oextent: 1 @ 1)

viewport: (0.0@0.79 comer: 0.51@1.0)

DeptView1s3: aPPVC
aPPVC

addSubView: ((IPVCStringView new)
slot: #label value: 'Head =" type: #Literal;
slot: #displayValue value: #headName type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ Oextent: 1 @ 1)

viewport: (0.0@0.282 corner: 1.0@0.521)

DeptView1s4: aPPVC
aPPVC

addSubView: ({IPVCButtonView new)
slot: #label value: 'Take on Staff type: #Literal;
slot: #switchPress value: #takeOnMember type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ Oextent: 1 @ 1)

viewport: (0.51@0.79 corner: 1.0@1.0)

DeptView1s5: aPPVC
aPPVC
addSubView: ((IPVCStringEditorView new)
slot: #inputString value: #location type: #Message;
slot: #modelUpdate value: #location: type: #Message;

slot: #yBM value: (Menu onString: '‘RealMCMenu false Top[(MonoStable accept Accept) |') type

window: (0 @ O extent: 1 @ 1) .
viewport: (0.0@0.521 corner: 1.0@0.79)

-331-

: #literal)

Person methodsFor: PPVCs

Personi: aPPVC
"Example Interface 12"

aPPVC isNil
ifTrue: {tself Persontinstantiation]

itFalse:
[self Person1s1:aPPVC.
self Person1s2: aPPVC.
self Person1s3: aPPVC.
self Personis4: aPPVC.
aPPVC addIPVClinks: nil]

Person2: aPPVC
"Example Interface 13"

aPPVC isNil
ifTrue: [+self Person2instantiation]

ifFalse:
[self Person2s1: aPPVC.
self Person2s2: aPPVC.
self Person2s3: aPPVC.
self Person2s4: aPPVC.
self Person2s5: aPPVC.
aPPVC addIPVCLinks: nil]

-332-

Person methodsFor: Sub PPVCs

Persontinstantiation
+((PPVCView new)
slot: #yBM value: nil type: #Literal)

Person1s1:aPPVC
aPPVC

addSubView: ({IPVCGeneralView new)
slot: #label value: 'Date Of Birth =’ type: #Literal;
slot: #displayValue value: #dOB type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.0@0.54 corner: 1.0@0.818)

Person1s2: aPPVC
aPPVC

addSubView: ((IPVCStringlOView new)
slot: #label value: "Name =" type: #Literal;
slot: #displayValue value: #fullName type: #Message;
slot: #modelUpdate value: #fullName: type: #Message;
slot; #question value: 'Enter New Name' type: #Literal;
slot; #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.0@0.0 corner: 1.0@0.338)

Person1s3: aPPVC
aPPVC
addSubView: ((IPVCStringEditorView new)
slot: #inputString value: #address type: #Message;
slot: #modelUpdate value: #address: type: #Message;
slot: #yBM value: (Menu onString: 'RealMEMenu false top[(MonoStable accept Accept) (MonoStable align Align) T’} type:
#Literal)
window: (0 @ O extent: 1 @ 1)
viewport: (0.0@0.338 comer: 1.0@0.54)

Person1s4: aPPVC
aPPVC

addSubView: ((IPVCHorizontalSliderView new)
slot: #sliderValue value: #age type: #Message;
slot: #sliderUpdate value: #age: type: #Message;
slot: #sliderRange value: (1 to: 36500) type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ Oextent: 1 @ 1)

viewport: (0.0@0.818 corner: 1.0@1.0)

Person2instantiation
+((PPVCView new)
slot: #yBM value: nil type: #Literal)

Person2s1: aPPVC
aPPVC '

addSubView: ((IPVCGeneralView new)
slot: #label value: 'Date Of Birth = ' type: #Literal;
slot: #displayValue value: #dOB type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.0@0.183 comer: 1.0@0.325)

Person2s2: aPPVC
aPPVC

addSubView: ((IPVCString!OView new)
slot: #label value: ‘Name = * type: #Literal;
slot: #displayValue value: #fullName type: #Message;
slot: #modelUpdate value: #fullName: type: #Message;
slot: #question value: 'Enter New Name' type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.0@0.0 comner: 0.446@0.183)

Person2s3: aPPVC
aPPVC
addSubView: ((IPVCStringEditorView new)
slot: #inputString value: #address type: #Message;
slot: #modelUpdate value: #address: type: #Message;
Literal slot: #yBM value: (Menu onString: 'RealMEMenu false top[(MonoStable accept Accept) (MonoStable align Align) ') type:
#Literal)
window: (0 @ Oextent: 1 @ 1)
viewport: (0.446@0.0 corner: 1.0@0.183)

-333 -

Person2sd4: aPPVC
aPPVC

addSubView: ((IPVCHorizontalSliderView new)
slot: #sliderValue value: #age type: #Message;
slot: #sliderUpdate value: #age: type: #Message;
slot: #sliderRange value: (1 to: 36500) type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.0@0.326 corner: 1.0@0.45)

Person2s5: aPPVC
aPPVC
addPPVC: ‘DeptView1’
partMsg: #department
variablePPVC: #variablePVC
at: (0.0@0.45 corner: 1.0@1.0)

-334 -

DetailedPerson meihodsFor: PPVCs .

DetailedPerson1: aPPVC
“Example Interface 14"

aPPVC isNil

ifTrue: [tself DetailedPerson tinstantiation}

itfFalse:
[self DetailedPersonis1: aPPVC.
self DetailedPerson1s2: aPPVC.
self DetailedPerson1s3: aPPVC.
self DetailedPerson1s4: aPPVC.
self DetailedPerson1s5: aPPVC.
self DetailedPerson1s6: aPPVC.
self DetailedPerson1s7: aPPVC.
self DetailedPerson1s8: aPPVC.
self DetailedPerson1s9: aPPVC.
self DetailedPerson1s10: aPPVC.
self DetailedPerson1s11: aPPVC.
self DetailedPerson1s12: aPPVC.
self DetailedPerson1s13: aPPVC.
aPPVC addIPVCLinks: nil]

DetailedPerson2: aPPVC
"Example Interface 15"

aPPVC isNil
ifTrue: [tself DetailedPerson2instantiation]
ifFalse:

[self DetailedPerson2s1: aPPVC.
self DetailedPerson2s2: aPPVC.
self DetailedPerson2s3: aPPVC.
self DetailedPerson2s4: aPPVC.
self DetailedPerson2s5: aPPVC.
self DetailedPerson2s6: aPPVC.
self DetailedPerson2s7: aPPVC.
self DetailedPerson2s8: aPPVC.
self DetailedPerson2s9: aPPVC.
self DetailedPerson2s10: aPPVC.
self DetailedPerson2s11: aPPVC.
self DetailedPerson2s12: aPPVC.
self DetailedPerson2s13: aPPVC.
self DetailedPerson2s14: aPPVC.
self DetailedPerson2s15: aPPVC.
self DetailedPerson2s16: aPPVC.
self DetailedPerson2s17: aPPVC.
self DetailedPerson2s18: aPPVC.
aPPVC addIPVCLinks: #((16 17 15))]

-335-

DetailedPerson methodsFor: Sub PPVCs

DetailedPersontinstantiation
+((PPVCView new)
slot: #yBM value: nil type: #Literal)

DetailedPerson1s10: aPPVC
aPPVC

addSubView: ((IPVCGeneralView new)
slot: #label value: 'Pay This Week: ' type: #Literal;
slot: #displayValue value: #paySoFarThisWeek type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.448@0.646 corner: 1.0@0.751)

DetailedPersonis11: aPPVC
aPPVC

addSubView: ({(IPVCHorizontalSliderView new)
slot: #sliderValue value: #sallncrease type: #Message;
slot: #sliderUpdate value: #sallncrease: type: #Message;
slot: #sliderRange value: (1 to: 100) type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ Oextent: 1 @ 1)

viewport: (0.0@0.748 corner: 1.0@0.865)

DetailedPerson1s12: aPPVC
aPPVC

addSubView: ((IPVCGenerallOView new)
slot: #label value: 'Salary Increase: ' type: #Literal;
slot: #displayValue value: #sallncrease type: #Message;
slot: #modelUpdate value: #sallncrease: type: #Message;
slot: #question value: 'New Salary Increase 7" type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.0@0.865 comer: 0.457@1.0)

DetailedPerson1s13: aPPVC
aPPVC -

addSubView: ((IPVCButtonView new)
slot: #label value: ‘Do Salary increase’ type: #L.iteral;
slot: #switchPress value: #doSallncrease type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.457@0.865 comer: 1.0@1.0)

DetailedPerson1s1: aPPVC
aPPVC

addSubView: ((IPVCGeneralView new)
slot: #label value: ‘Date Of Birth = * type: #Literal;
slot: #displayValue value: #dOB type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ Oextent: 1 @ 1)

viewport: (0.0@0.183 comer: 1.0@0.325)

DetailedPerson1s2: aPPVC
aPPVC

addSubView: ((IPVCStringlOView new)
slot: #label value: 'Name = type: #Literal;
slot: #displayValue value: #fullName type: #Message;
slot: #modelUpdate value: #fullName: type: #Message;
slot: #question value: 'Enter New Name’ type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ Oextent: 1 @ 1)

viewport: (0.0@0.0 comer: 0.446@0.183)

DetailedPerson1s3: aPPVC
aPPVC
addSubView: ((IPVCStringEditorView new)
slot: #inputString value: #address type: #Message;
slot: #modelUpdate value: #address: type: #Message;
slot: #yBM value: (Menu onString: '"RealMEMenu false top[(MonoStable accept Accept) (MonoStable align Align) 1) type:

#Literal)
window: (0 @ O extent: 1 @ 1)
viewport: (0.446@0.0 corner: 1.0@0.183)

DetailedPerson1s4: aPPVC
aPPVC
addSubView: ((IPVCHorizontalSliderView new)
slot: #sliderValue value: #age type: #Message;

-336-

slot: #sliderUpdate value: #age: type: #Message;
slot: #sliderRange value: (1 to: 36500) type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.0@0.326 corner: 1.0@0.45)

DetailedPerson1s5: aPPVC
aPPVC

addSubView: ((IPVCGenerallOView new)
slot: #label value: "Salary: * type: #Literal;
slot: #displayValue value: #salary type: #Message;
slot: #modelUpdate value: #salary: type: #Message;
slot: #question value: 'New Salary’ type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.0@0.449 corner: 0.448@0.545)

DetailedPersonis6: aPPVC
aPPVC

addSubView: ((IPVCGenerallOView new)
slot: #label value: "Hours This Week: * type: #Literal;
slot: #displayValue value: #hoursSoFar type: #Message;
slot: #modelUpdate value: #hoursSoFar: type: #Message;
slot: #question value: 'New hours ?' type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.0@0.545 comer: 0.448@0.64)

DetailedPerson1s7: aPPVC
aPPVC

addSubView: ((IPVCGenerallOView new)
slot: #label value: 'Yearly Pay: * type: #Literal;
slot: #displayValue value: #yearlySoFar type: #Message;
slot: #modelUpdate value: #yearlySoFar: type: #Message;
slot: #question value: ‘New Yearly So Far 7 type: #Literal;
slot: #yBM value: nil type: #Literal)

- - - window: (0 @ Oextent: 1 @ 1)
viewport: (0.00232@0.64 corner: 0.448@0.748)

DetailedPerson1s8: aPPVC
aPPVC

addSubView: ((IPVCButtonView new)
slot: #label value: "Week End" type: #Literal;
slot: #switchPress value: #endOfWeek type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ Oextent: 1 @ 1)

viewport: (0.448@0.449 corner: 1.0@0.545)

DetailedPerson1s9: aPPVC
aPPVC

addSubView: ((IPVCButtonView new)
slot: #label value: 'Work an Hour type: #Literal;
slot: #switchPress value: #work: type: #Message;
slotArgs: #switchPress value: #(1);
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.45@0.545 comer: 1.0@0.646)

DetailedPerson2instantiation
+((PPVCView new)
slot: #yBM value: nil type: #Literal)

DetailedPerson2s10: aPPVC
aPPVC

addSubView: ((IPVCHorizontalSliderView new)
slot: #sliderValue value: #sallncrease type: #Message;
slot: #sliderUpdate value: #sallncrease: type: #Message;
slot: #sliderRange value: (1 to: 100) type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport; (0.455@0.743 corner: 1.0@0.867)

DetailedPerson2s11: aPPVC
aPPVC ,

addSubView: ((IPVCGenerallOView new)
slot: #label value: 'Salary Increase: * type: #Literal;
slot: #displayValue value: #sallncrease type: #Message;
slot: #modelUpdate value: #salincrease: type: #Message;
slot: #question value: 'New Salary Increase ?' type: #Literal;
slot: #yBM value: nil type: #Literal)

-337 -

window: (0 @ O extent: 1 @ 1)
viewport: (0.0@0.865 corner: 0.457@1.0)

DetailedPerson2s12: aPPVC
aPPVC

addSubView: ((IPVCButtonView new)
slot: #label value: 'Do Salary increase’ type: #Literal;
slot: #switchPress value: #doSallncrease type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.457@0.865 corner: 1.0@1.0)

DetailedPerson2s13: aPPVC
aPPVC

addSubView: ((IPVCGenerallOView new)
slot: #label value: ‘Work To Do =" type: #Literal;
slot: #displayValue value: #workToDo type: #Message;
slot: #modelUpdate value: #workToDo: type: #Message;
slot: #question value: ‘New Work To Do ?' type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.448@0.547 comer: 1.0@0.643)

DetailedPerson2s14: aPPVC
aPPVC

addSubView: ((IPVCButtonView new)
slot: #label value: 'Do Work' type: #Literal;
slot: #switchPress value: #doWork type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.771@0.643 comer: 1.0@0.747)

DetailedPerson2s15: aPPVC
aPPVC

addSubView: ((IPVCSwitchView2 new)
slot: #label value: '1" type: #Literal;
slot: #initialStatus value: #status1 type: #Message;
slot: #switchOff value: #minus1 type: #Message;
slot: #switchOn value: #plus1 type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ Oextent: 1 @ 1)

viewport: (0.55@0.643 corner: 0.627@0.75)

DetailledPerson2s16: aPPVC
aPPVC

addSubView: ((IPVCSwitchView2 new)
slot: #label value: '5' type: #Literal;
slot: #initialStatus value: #status5 type: #Message;
slot: #switchOff value: #minus5 type: #Message;
slot: #switchOn value: #plus5 type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ Oextent: 1 @ 1)

viewport: (0.627@0.643 comer: 0.699@0.75)

DetailedPerson2s17: aPPVC
aPPVC

addSubView: ((IPVCSwitchView2 new)
slot: #label value: '10° type: #Literal;
slot: #initialStatus value: #status10 type: #Message;
slot: #switchOff value: #minus 10 type: #Message;
slot: #switchOn value: #plus10 type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.699@0.643 comer: 0.771@0.75)

DetailedPerson2s18: aPPVC
aPPVC

addSubView: ((IPVCSwitchView new)
slot: #label value: 'SWITCH' type: #Literal;
slot: #status value: #switchStatus type: #Message;
slot: #switchOff value: #switchOff type: #Message;
slot: #switchOn value: #switchOn type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ Oextent: 1 @ 1)

viewport: (0.448@0.643 corner: 0.55@0.747)

DetailedPerson2s1: aPPVC
aPPVC
addSubView: ((IPVCGeneralView new)
slot: #label value: 'Date Of Birth =’ type: #Literal;

-338 -

slot: #displayValue value: #dOB type: #Message; _ .
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.0@0.183 comer: 1.0@0.325)

DetailedPerson2s2: aPPVC
aPPVC

addSubView: ((IPVCStringlOView new)
slot: #label value: '"Name = ' type: #Literal;
slot: #displayValue value: #fullName type: #Message;
slot: #modelUpdate value: #fullName: type: #Message;
slot: #question value: 'Enter New Name" type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.0@0.0 corner: 0.446@0.183)

DetailedPerson2s3: aPPVC
aPPVC
addSubView: ((IPVCStringEditorView new)
slot: #inputString value: #address type: #Message;
slot: #modelUpdate value: #address: type: #Message;
slot: #yBM value: (Menu onString: ‘RealMEMenu false top[(MonoStable accept Accept) (MonoStable align Align) I') type:
#Literal)
window: (0 @ O extent: 1 @ 1)
viewport: (0.446@0.0 corner: 1.0@0.183)

DetailedPerson2s4: aPPVC
aPPVC

addSubView: ((IPVCHorizontalSliderView new)
slot: #sliderValue value: #age type: #Message;
slot: #sliderUpdate value: #age: type: #Message;
slot: #sliderRange value: (1 to: 36500) type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.0@0.326 comer: 1.0@0.45)

DetailedPerson2s5: aPPVC
aPPVC

addSubView: ((IPVCGenerallOView new)
slot: #label value: 'Salary: ' type: #Literal;
slot: #displayValue value: #salary type: #Message;
slot: #modelUpdate value: #salary: type: #Message;
slot: #question value: 'New Salary’ type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ Oextent: 1 @ 1)

viewport: (0.0@0.449 comer: 0.448@0.545)

DetalledPerson2s6: aPPVC
aPPVC

addSubView: ((IPVCGenerallOView new)
slot: #label value: 'Hours This Week: * type: #Literal;
slot: #displayValue value: #hoursSoFar type: #Message;
slot: #modelUpdate value: #hoursSoFar; type: #Message;
slot: #question value: 'New hours ?' type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.0@0.545 corner: 0.448@0.64)

DetailedPerson2s7: aPPVC
aPPVC

addSubView: ((IPVCGenerallOView new)
slot: #label value: 'Yearly Pay: * type: #Literal;
slot: #displayValue value: #yearlySoFar type: #Message;
slot: #modelUpdate value: #yearlySoFar: type: #Message;
slot: #question value: ‘New Yearly So Far 7" type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ O exten: 1 @ 1)

viewport: (0.00232@0.64 comner: 0.448@0.748)

DetalledPerson2s8: aPPVC
aPPVC

addSubView: ((IPVCButtonView new)
slot: #label value: 'Week End’ type: #Literal;
slot: #switchPress value: #endOfWeek type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ Oextent: 1 @ 1)

viewport: (0.448@0.449 corner: 1.0@0.545)

DetailedPerson2s9: aPPVC
aPPVC

-339-

addSubView: ((IPVCGeneralView new)
slot: #label value: 'Pay This Week: ' type: #Literal;
slot: #displayValue value: #paySoFarThisWeek type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.0@0.747 comner: 0.452@0.867)

-340 -

PVCView methodsFor: PPVCs

pVv1:aPPVC
"Example Interface 16"

aPPVC isNil
ifTrue: [tself pV1instantiation]
ifFalse:
[self pV1s1:aPPVC.
self pVis2: aPPVC.
self pV1s3: aPPVC.
self pV1s4: aPPVC.
self pV1s5: aPPVC.
self pV1s6: aPPVC.
self pV1s7: aPPVC.
aPPVC addIPVCLinks: nil]

-341-

PVCView methodsFor: Sub PPVCs

pViinstantiation
+((PPVCView new)
slot: #yBM value: nil type: #Literal)

pVisi: aPPVC
aPPVC

addSubView: ((IPVCGeneralView new)
slot: #label value: 'IPVC Type = ' type: #Literal;
slot: #displayValue value: #yourself type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ Oextent: 1 @ 1)

viewport: (0.0@0.0 comer: 1.0@0.1)

pV1s2: aPPVC
aPPVC

addSubView: ((IPVCListView new)
slot: #currentltem value: #currentSlotName type: #Message;
slot: #newSelection value: #currentSlotName: type: #Message;
slot: #itemList value: #slotList type: #Message;
slot: #stringPrint value: true type: #Literal;
slot: #oneltem value: false type: #Literal;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.0@0.1 comer: 0.4@1.0)

pVis3: aPPVC
aPPVC

addSubView: ((IPVCStringView new)
slot: #label value: 'Slot Title = * type: #Literal;
slot: #displayValue value: #currentSlotTitle type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.4@0.1 comer: 1.0@0.2)

pV1is4: aPPVC
aPPVC

addSubView: ((IPVCGeneralView new)
slot; #label value: 'Value =" type: #Literal;
slot: #displayValue value: #currentSlotValue type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.399@0.309 corner: 1.0@0.799)

pVisS: aPPVC
aPPVC

addSubView: ((IPVCStringView new)
slot: #label value: "Value Class =" type: #Literal;
slot: #displayValue value: #currentSlotValueClass type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.4@0.799 comer: 1.0@0.9)

pV1s6: aPPVC
aPPVC

addSubView: ((IPVCButtonView new)
slot: #label value: ‘Change' type: #Literal;
slot: #switchPress value: #changeCurrentSlotValue type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ Oextent: 1 @ 1)

viewport: (0.4@90.9 comer: 1.0@1.0)

pV1s7: aPPVC
aPPVC

addSubView: ((IPVCStringView new)
slot: #label value: ‘Comms = ' type: #Literal;
slot: #displayValue value: #currentSlotDirection type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.4@0.199 comer: 1.0@0.308)

=342 -

PVCView class methodsFor: PPVCs .

align: aPPVC
“Example Interface 17"

aPPVC isNil
ifTrue: [tself aligninstantiation]
ifFalse:
[self aligns1: aPPVC.
self aligns2: aPPVC.
self aligns3: aPPVC.
self aligns4: aPPVC.
self aligns5: aPPVC.
self aligns6: aPPVC.
aPPVC addIPVCLinks: nil]

-343 -

PVCView class methodsFor: Sub PPVCs

aligninstantiation
t((PPVCView new)
slot: #yBM value: nil type: #Literal)

aligns1: aPPVC
aPPVC

addSubView: ((IPVCSwitchView new)
slot: #label value: 'Left’ type: #Literal;
slot: #status value: #left type: #Message;
slot: #switchOff value: #verticalOff type: #Message;
slot: #switchOn value: #leftOn type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ Oextent: 1 @ 1)

viewport: (0.0@0.05 comer: 0.3@0.5)

aligns2: aPPVC
aPPVC

addSubView: ((IPVCSwitchView new)
slot: #label value: "Centre’ type: #Literal;
slot: #status value: #centre type: #Message;
slot: #switchOff value: #verticalOff type: #Message;
slot: #switchOn value: #centreOn type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.33@0.05 comer: 0.6@0.5)

aligns3: aPPVC
aPPVC

addSubView: ((IPVCSwitchView new)
slot: #label value: 'Right’ type: #Literal;
slot: #status value: #right type: #Message;
slot: #switchOff value: #verticalOff type: #Message;
slot: #switchOn value: #rightOn type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.66@0.05 corner: 1.0@0.5)

aligns4: aPPVC
aPPVC
addSubView: ((IPVCSwitchView new)
~ - slot: #labe! value: 'Top' type: #Literal;

slot: #status value: #top type: #Message;
slot: #switchOff value: #horizontalOff type: #Message;
slot: #switchOn value: #topOn type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.0@0.55 comer: 0.3@1.0)

aligns5: aPPVC
aPPVC

addSubView: ((IPVCSwitchView new)
slot: #label value: 'Bottom’ type: #Literal;
slot: #status value: #bottom type: #Message;
slot: #switchOff value: #horizontalOff type: #Message;
slot: #switchOn value: #bottomOn type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ O extent: 1 @ 1)

viewport: (0.66@0.55 corner: 1.0@1.0)

aligns6: aPPVC
aPPVC

addSubView: ((IPVCSwitchView new)
slot: #label value: 'Middle" type: #Literal;
slot: #status value: #middle type: #Message;
slot: #switchOff value: #horizontalOff type: #Message;
slot: #switchOn value: #middleOn type: #Message;
slot: #yBM value: nil type: #Literal)

window: (0 @ Oextent: 1 @ 1)

viewport: (0.33@0.55 comer: 0.6@1.0)

-344 -

Appendix I,
r Interface Managemen m Tool- Documentation

This appendix presents the documentation for the User Interface
Management System (UIMS) Tool-set described in chapter six. It lists and
describes the individual tools, and shows how they can be used. A set of
screen printouts at the end of the appendix shows the relevant tools being
used, and are referred to throughout the appendix as figures 1 .. 31.

L1. Creating New Part Pluggable View Controllers.

A Part Pluggable View Controller (Part PVC) direct manipulation interface
can be selected and executed by sending one of two messages to the object
being examined :-

(@) object plugView
(b) object plugView: PPVCName

Method (a) presents a list of available Part PVCs (figure 1), and allows the
user to select the appropriate one. The user is also given the choice of
selecting a new Part PVC, and the default Part PVC. Method (b) is more
specific and requires the Part PVC name. Once the correct Part PVC has been
selected, the user is prompted for a window to contain the active direct
manipulation interface (figures 2 and 3). The user must place the interface
window at the required position within the VDU Screen. The Part PVC and
Interaction PVC virtual windows are then automatically mapped onto this
interface window.

Once the window is located, the appropriate interface is displayed, and the
user is allowed to interact with it. If the new Part PVC option was selected,
then the user is further prompted for the type of Part PVC required. A menu
list containing Special Part PVCs is presented (figure 4), and the user must
choose the required type. The user is then prompted to specify the values of
any Part PVC Linkage Slots as described in section 1.3. While a particular
activated Part PVC is being used, the user is prevented from accessing other
Smalltalk windows without first closing the active Part PVC. Once the
interface is closed, the Part PVC mechanism returns the object to which the
Part PVC interface was attached (taking into account any changes which

-345 -

have been made), and continues executing the next Smalltalk statement, if
any. '

1.2. Default Construction .Menus.

The default Part PVC blue button, or construction menu is shown in figure 5
and provides the following functions:-

'Accept / Close'
This closes down the entire active Part PVC direct
manipulation interface.

'Add Pluggable View Controller
A sub-menu which allows further Interaction PVCs and Part

PVCs to be added to this Part PVC.

'Align’
Aligns Interaction PVCs and Part PVCs contained within this
Part PVC.

‘Change this PPVC'
Allows this Part PVC to be changed to another Part PVC.

'Close this PVC'
Closes this Part PVC, and removes its window from the VDU.

'Generate Code'
Generates the appropriate Part PVC definition for this Part

PVC.

'Inspect’
Opens an Inspector window on this Part PVC's Linkage Slots.

'Make this the Default PPVC'
Makes this Part PVC the default Part PVC for the attached

object.

'Modify Size'
Modifies position and size of this Part PVC's interface window.

- 346 -

'Re Draw'
Redraws the entire direct manipulation interface. This if useful
whenever PVCs have been re-sized and moved around.

'‘Spawn'
Opens a new Part PVC direct manipulation interface with this
Part PVC at the top.

The default Interaction PVC construction menu is shown in figure 6 and
provides the following functions:-

'‘Accept / Close'
This closes down the entire active Part PVC direct
manipulation interface.

'Close this IPVC'
Closes this Part PVC, and removes its window from the VDU.

'‘Generate Code'
Generates the appropriate Part PVC definition for this
Interaction PVC's Part PVC.

'Inspect’
Opens an Inspector window on this Interaction PVC's Linkage
Slots.

'Links'

A sub-menu which allows Interaction PVC links to be
established, broken, and made.

'Add Link'
Enables Interaction PVC links to be established.

'Remove Link'
Interactively removes any of this Interaction PVC's Links.

'Show Links'
Shows any links to this Interaction PVC.

- 347 -

'Modify Size')
Modifies position and size of this Interaction PVC's interface
window.

'Re Draw'
Redraws the entire direct manipulation interface. This if useful
whenever PVCs have been re-sized and moved around.

Finally, the default Multiple Linkage Interaction PVC construction menu is
shown in figure 7. This provides the following extra Interaction PVC
functions:-

'Multiple Selectors'
A sub-menu which enable the value contained in a Multiple

Linkage Slot to be modified.

'Add Value'
Allows the addition of a new value at the end of the existing
list of Multiple Linkage Slot values.

'Change Existing Value'
Allows the modification of the value of an existing Multiple

Linkage Slot.

'Remove Existing Value'
Allows the removal of an existing Multiple Linkage Slot value.

'Swap Two Existing Values'
Allows two existing Multiple Linkage Slot values to be
swapped around.

Any PVCs which implement their own construction menus must include
the appropriate functions from these lists. These functions are now
described.

1.3. Adding Interaction Pluggable View Controllers.

An Interaction PVC can be added to a Part PVC at any time. The appropriate
Interaction PVC is first selected from the Part PVC construction menu. The

-348 -

user is then prompted to set the appropriate value for each of the Linkage
Slots defined for the new Interaction PVC. The prompting mechanism
depends upon whether the Linkage Slot Value Type is set to <Literal>,
<Message>, or <Any>. When <Literal> is specified, the interactiveCreate:on:
Class method for the Linkage Slot Type Value is used. This only allows the
user to set the Linkage Slot value to a literal. If <Message> or <Any> is
specified one of two menus is displayed from which the user must make a
selection.The two menus are shown in figures 8 and 9 respectively. Each
menu is divided into two sections. The bottom section lists the available
Part PVC object messages which can be used for a particular Linkage Slot.
The top section differs depending upon whether <Message> or <Any> is
specified. The menu choices provided when <Message> is specified are
listed:-

'System Object Messages'
This offers a list of universal messages which are understood

by all Smalltalk objects. This list is separated from the object
message interface because of its extensive length, and the time
it takes to generate the appropriate menu.

'Enter Message Directly'
This allows a message to be directly entered using a text editor
window. No checking is done to see whether the message

entered is correct.

'"Part Message'

This option appears when the object attached to the Part PVC
uses the part hierarchy mechanism described in chapter seven.
It allows messages to be chosen from the message interface for
any of the parts used by the attached object. When this option
is selected, the interface designer is prompted to select the
appropriate part, and then asked to select the correct message
using the same type of construction menu described here.

'None'
This returns a nil value for the Linkage Slot Value.

When <Any> is specified this same set of choices is provided with the
addition of one extra choice. This choice, labelled 'Literal Value' allows a

- 349 -

literal Linkage Slot value to be set. This uses the same interactiveCreate:on:
Class method described above. |

After the Linkage Slot values have been correctly specified, the user is finally
prompted to place the new Interaction PVC View window within the Part
PVC View window to which it is being added. The interface designer may
terminate an Interaction PVC addition at any time by pressing the red
mouse button outside of the menu.

I.4. Adding Further Part Pluggable View Controllers.

Further Part PVCs can be added to an existing Part PVC by first identifying
the part which is to be viewed. The Tool-set automatically lists the available
Part PVC object parts, and allows the interface designer to select the
appropriate one (figure 10). The available Part PVC descriptions are then
displayed in a list for the interface designer to select (figure 1).

The user is then prompted to specify any Linkage Slot values, using the
menus described in section 1.4. Finally, the user is prompted to place the new
Part PVC View window within the Part PVC View window to which it is
being added. The interface designer may again terminate a Part PVC addition
at any time by pressing the red mouse button outside of the menu.

1.5. Aligning Pluggable View Controllers.

Individual PVCs within the same Part PVC may be aligned with one
another. A prompt describing how to use the align feature is first displayed,
and the user is asked to confirm their intentions (figure 11). The user must
then select the PVC View windows to align. This is achieved by pointing at
the appropriate PVC View window, and pressing the red mouse button. The
window will then be highlighted. To de-select a PVC window, the process is
repeated and the window highlight is removed. When the appropriate PVC
windows have been selected, a key on the keyboard must be pressed (figure
12). The user is then presented with a window which contains the aligning
information (figure 13). This window is itself generated from an executed
Part PVC description, and allows the user to express the type of alignment
they require. Once the correct alignments are selected, the user chooses
'Accept / Close' option from the alignment window construction menu.
The current interface is then redrawn with the appropriate alignments

made.

- 350 -

L6. Linking Interaction Pluggable View Controllers to one another.

An Interaction PVC can be linked to another Interaction PVC by choosing
the 'Add Link' option from the relevant Interaction PVC construction
menu. Once chosen, suitable instructions are displayed and the user is asked
to confirm their intentions (figure 14). The Interaction PVCs which can be
linked to then flash their View windows on the screen. The user must select
which Interaction PVCs to link to by pressing the red mouse button while
over the required Interaction PVC View window. The link is then made.
Further interactions may be required depending upon the effects of linking
together specific Interaction PVCs. For example Switch state clashes may
occur when adding another switch to an existing switch bank. If an
Interaction PVC cannot be linked to any other Interaction PVCs then
selecting the 'Add Link' option has no effect. Selecting a non flashing
Interaction PVC causes the 'Add Link' function to terminate.

An existing Interaction PVC link can also be broken by choosing the
'Remove Link' option. Again, if no link exists this option has no effect.

Finally, existing Interaction PVC links can be shown by choosing the 'Show
Links' option. After displaying a confirmation message (figure 15), any
Interaction PVCs linked to the selected Interaction PVC flash on the screen.
This flashing will continue until any mouse button is pressed.

1.7. Modifying Pluggable View Controller Size.

The size and position of a PVC View window can be altered at any time.
Once the option is selected, the user is prompted to mark the new window
area for the relevant PVC (figures 2 and 3). The interface is then redrawn
accordingly. Any attempt to place the Interaction PVC or Part PVC View
window outside of the bounds of the owner Part PVC is ignored, and the
new window size is suitably adjusted to fit into the current owner Part PVC
View window.

L8. Closing Pluggable View Controllers.

An individual PVC may be closed at any time. Doing so removes the
relevant PVC from the VDU screen. Each PVC also provides an 'Accept /
Close' option which terminates the entire direct manipulation interface. If
modification have been made, the user is prompted to confirm their

-351-

intentions (figure 16). Given confirmation, the complete active interface is
closed, the screen restored, and the attached object which was being viewed /
modified is returned.

1.9. Modifying and Reviewing Pluggable View Controller Linkage Slots
using the Inspector Window.

The Linkage Slots for a PVC can be altered at run time by choosing the
'inspect' option. This opens an Inspection Window, again generated from a
Part PVC description. This inspection window (figure 17) lists the available
Linkage Slot names and allows one to be selected. Once selected, the user
may view the current Linkage Slot value and change its value by selecting
the 'change' button. The Class, and communication direction of the Linkage
Slot value is also displayed. Any changes to the Linkage Slot values of a PVC
will take affect once the Inspection Window is closed, using the 'Accept /
Close' option from one of the Inspector PVC's construction menus.

1.10. Code Generation.

Whenever a new interface is built, or an existing one modified, the user
should choose the 'generate code' option to permanently store it. After
checking whether the Part PVC has been modified, the user is prompted to
enter the new Part PVC name (figure 18). If an existing Part PVC has been
modified, then the old name is given and the user allowed to modify it.
Once entered, the user is asked whether the Part PVC is to be hidden (figure
19). Answering yes to this question means that the Part PVC will not appear
in the available Part PVC list for the object described in section 4.4.1.
However, a hidden Part PVC can still be accessed using the plugView:
message and the correct Part PVC name. The appropriate Part PVC
description is then automatically generated and stored as Smalltalk 80 code
for future use. If a blank Part PVC name is given, the code generation
process is terminated.

L.11. Setting Default Part Pluggable View Controller.

A Part PVC may be made the default Part PVC for an object, or object part, by
using the 'Make this the Default PPVC' option from the Part PVC
construction menu. The user is then asked to confirm their intentions
(figure 20). The new default takes effect immediately.

- 352 -

I.12. Changing Part Pluggable View Controllers.

An existing Part PVC may be changed at any time using the 'Change this
PPVC' option. The user is presented with a list of possible Part PVC names
(figure 1), and must select the required one. The new Part PVC is then
executed, and the appropriate interface displayed using the window area
defined for the old Part PVC View.

1.13. Spawning Part Pluggable View Controllers.

A Part PVC may be spawned using the 'Spawn' option. This creates a brand
new direct manipulation interface with its own window. The interface is
constructed with the spawned Part PVC as the top most Part PVC. Once the
'Accept / Close' oiation is selected from the new interface, the user is
returned to the previous interface window. Attempting to spawn the top
most Part PVC in an existing interface is pointless and is prevented.

1.14. Building Extended Lean Cuisine Hierarchic Menus.

Tools are provided for interactively building Extended Lean Cuisine (ELC)
Menus. These tools may be used as a result of an input Linkage Slot which
allows Literal values, and specifies a <Menu> Type. They may also be used
independently by executing one of the following statements :-

(@) object editMenu: aMethodName.
(b) object editMenu.

In each case object refers to the Smalltalk object for which an ELC menu is
being defined. Method (a) requires the Smalltalk method name where the
resulting ELC definition will be stored. Method (b) assumes the default
method name of methodMenu.

Once the correct statement is executed the Tool-set looks for an existing ELC
definition with the appropriate method name. If it does not exist, then the
user is asked whether they wish to use the ELC definition from the object's
Super-class (figure 20). Again, if no such method exists in the Super-class,
the prompt is repeated until the top Super-class is reached. In this case, or if
the user specifies not to use the Super-class definition, it is assumed that a
new ELC menu is required, and the user is asked to specify the type for the
top menu in the hierarchy.

- 353 -

After specifying the top menu, or after executing the existing ELC definition,
a menu is displayed showing the available modification functions (figure
22). Once the required menu has been defined, the 'Accept' option should be
selected. The user is then requested to confirm that they wish to save the
appropriate ELC definition under the specified method name. If this is
confirmed, the appropriate definition is store in the objects Class definition
as an instance method with the specified name.

The available message interface is constructed from the instance methods
which the object can understand. Only messages which require no
parameters are allowed, and the appropriate menu offering the available
messages is automatically constructed (figure 8). The following functions are
provided, and the reader is also referred to a paper by Apperley [Apperley,
M.D:1989] for a detailed description of Lean Cuisine Menus.

'‘Add Above'
Allows another menu item to be added above an existing one.

This new item may be a further menu (Non Terminator), or
an actual function (Terminator).

'Add Below'
Allows another menu item to be added below an existing one.

'‘Change One On Status'
Allows a Non Terminator to set, or reset, its One On switch.
This switch dictates whether one of the Non Terminator's
items must always be selected.

'‘Change Title'
Allows the title of a menu item to be modified. This title is
displayed when the menu is used.

v

'Delete’
Allows a menu item to be deleted.

'Move Above'
Moves a menu item above another menu item.

-354-

'Move Below'
Moves a menu item below another menu item.

'Make New'
Creates a brand new ELC menu. This cancels the existing ELC
menu.

'Show / Set initial State'
This displays the current ELC menu that is being defined. The
user may then set the initial state accordingly.

'‘Swap'
This allows two menu items to be swapped.

The user is prevented from performing invalid functions, such as adding
two Mutually Exclusive Non-terminator menus with One On switches set,
to a single Mutually Exclusive menu. Similarly the user is prevented from
swapping two items where one is contained within the other's menu.

Whenever an option is selected which requires that an existing menu item
be identified, the current ELC menu is displayed, and the user prompted to
select the appropriate item.

Whenever a new item is added, the user is first prompted as to whether the
new item is an actual menu (Non-terminator) or function (Terminator)
(figure 23). The user is then prompted with an editor window to enter the
item's title (figure 24).

If a new menu item is being added, the user is prompted as to whether the
menu is Mutually Exclusive, or Mutually Compatible (figure 25). A
Mutually Exclusive menu only allows one of its items to be selected at a
time, while a Mutually Compatible menu allows any number. The user is
then prompted as to whether the menu is Real or Virtual (figure 26). A Real
menu appears as an actual sub-menu, while a Virtual menu appears as paft
of the menu to which it is attached [Apperley, M.D:1989]. Next, the user is
asked whether the existing One On status is true or false (figure 27). Finally
the user is asked to locate the position in the current ELC menu where the
new item is to be added (figure 28).

- 355~

If a Non-terminator is being added, the user is prompted as to whether the
new item is Bistable or Monostable (figure 29). A Bistable Terminator has a
state, and requires two method names to be executed whenever the item is
selected on, or off. A Monostable has no state, and simply requires a single
method name which is executed when the item is selected. The user is then
prompted to select the required method name(s) to be executed when the
Non-terminator is selected (figure 8). Finally the user is asked to locate the
position in the current ELC menu where the new item is to be added (figure
28).

Selecting the 'Accept option' exits the ELC construction facility. The user is
first prompted to confirm whether they wish to save the current ELC menu
(figure 30). If this is required, then the menu is saved using the method
name initially specified. The appropriate ELC description is automatically
generated and saved as a Smalltalk method attached to the appropriate Class.
This description can then be used to reproduce the ELC menu as required. If
the user does not confirm saving the ELC menu no further action is taken,
and the ELC menu is not saved.

The user may again terminate any function by pressing the red mouse
button outside of any of the menus offered.

Once a new ELC menu definition has been created, it can be used at any time
by executing one of the following statements:

(@) object plugMenu: menuName.
(b) object plugMenu.

Where object corresponds to the object whose ELC menu is being used, and
menuName corresponds to the method name which returns the ELC
definition. Method (a) requires that the menuName be specified, while
method (b) assumes a default of methodMenu. Once a correct ELC menu
definition has been selected, this is executed and the appropriate menu
displayed. The top menu offers two choices (figure 31), the first choice is
labelled according to the ELC top menu title. The second choice is labelled
'Accept'. Selecting the first choice displays the appropriate ELC menu, and
allows functions to be selected from it. Once a function is completed, the
user is returned to the top menu again. To leave an ELC menu the second
'Accept’ option must be selected. Upon leaving, the value returned by the

- 356 -

last function selected is returned as the executed instantiation statement's
value. Any further Smalltalk code is then executed. '

In the case of interaction or construction menus used by the proposed UIMS,

only the second menu is shown. Selection of specific options then invokes
the appropriate PVC behaviour, as determined by the interface designer.

- 357 -

Please Select aView -
bigEngineView I-_ F
busEngineView
carEngineView
engineView1
engineViewZ View Size
engineView3
engineView4d
littleEngineView
lorryEngineView

default
el

new

Figure 1 Figure 2 Figure 3

Please Select Type of Part View
Normal Part View
PPYCUserModelView

Figure 4
Accept / Close |
Bar Chart View
Align Button View [View and Revis¢g
Change This PPVC View Only
Close This PVC Graph View
Generate Code List View
Inspect Part View
Make this the Default PPVC Slider Views b
Modify Size Switch Views b
Re Draw String Views D
Spawn This PPVC Text Editor
Figure 5§
Accept / Close
Close This PVYC
Generate Code
Accept / Close Inspect
Close This PVC Links D
Generate Code . Modify Size
inspect Add Link Add Value
Remove&,ink Re Draw Change Existing Value
Modify Size | Show Links Remove Existing Value
Re Draw Swap Two Existing Value
Figure 6 Figure 7

- 358 -

‘Title Msgl

Literal Value
System Object Messages
Enter Message Directly
Part Message
None

Title Msg

System Object Messages
Enter Message Directly
Part Message
None

availableDescriptions
defaultView
description

availableDesecriptions
defaultView
description

engineType engineType
eType eType
initialize initialize
parts parts
power power
size size
spar!d’lug sparkPlug
weight weight
Figure 8 Figure 9

IPlease select a part
engine
wheelq
wheel2
wheel3
wheel

None
S

Figure 10

Do you wish to proceed ?

ALIGNING - Please select the views to align using the mouse button.
Once selected they will be highlighted, to deselect use the mouse button again.

Once all of the views are selected press any key,

yes

&

no

Figure 11

paul

Age in Days = 0

dOB = 23 October 1989

Pay This Year =0

Work an Hour

End Of Week

Figure 12

- 359 -

Left Centre Right

Top Middle

Figure 13

LINKING - The possible views to be linked will flash.

Please select the view to link to by using the mouse button,

Once selected, the view will be linked, selecting any other view will terminate.
Do you wish to proceed ?

yes Q no

Figure 14

Showing Links = All of my links will flash,
To terminate press the mouse button,
Do you wish to proceed ?

yes é no

Figure 15

Interface has been modified Confirm Close

yes no Q

Figure 16

- 360 -

IPVC Type = an IPVCListView

------------ Slot Title = Interaction Menu
currentitem

newSelection Comms = Input

itemlist

stringPrint Value = 'Not Specified’
oneltem

- IValue Class = No Value

Change

Figure 17

Please Type new Title

Is view hidden ?

Faroon®izwt
\ yes %no

Figure 18 Figure 19

Confirm that this view, PersonView1 is default
view for the class Person

yes @ no

Figure 20

- 361 -

No menu exists., Do you require menu from
my superclass (yes), or new menu (NO)

yes é} no

Figure 21

Please Select an option or Quit
Add Above
Accept Add Below
Change One On Status
Change Title
Delete
Move Above
Move Below
Make New
Show / Set initial Stat
Swap 1

Figure 22

Please Enter title

Does this item Point to a new Menu

yes Q no \

Figure 23 Figure 24

Do You want a Mutually Exclusive (YES) or Mutually Compatible (NO) Menu

yes % no

Figure 25

Do You want a Real (YES) or Virtual (NO) Menu

yes Q no

Figure 26

Must one item always be selected

yes Q no

Figure 27

- 362 -

Select Menu Item above which NEW ITEM VMC is insert;l

Accept / Close
NEW ITEM VMC b
Bar Chart View
Align Button View
Change This PPVC General Views RMED
Close This PVC Graph View
Generate Code List View
Inspect Part View
Make this the Default PPVC | Slider Views RME }
Modify Size Switch Views RMED
Re Draw String Views RME b
Spawn This PPVC Text Editor
Figure 28

Do You want a Bistable (YES) or MonoStable (NO)
yes Q no

Figure 29

Do you wish to save this new Menu

| |

no
Figure 30
Please Select an option or Quit
‘ Accept / Close |
fdd Flugaable Yiew Controller)EEIE L 8N
Align Button View
Change This PPVC General Views)
Close This PVYC Graph View
Generate Code List View
Inspect Part View
Make this the Default PPVC Slider Views)
Modify Size Switch Views b
‘Re Draw String Views D
Spawn This PPVC Text Editor

Figure 31

- 363 -

