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ABSTRACT

The conditions under which solidification cladding can he carried 

oat are considered, and the heat and mass transfer phenomena involved 

in the process are investigated.

Most of the experiments involve the exposure of rotating cylin­

drical probes to liquid metal at various superheats as well as at zero 

superheat, and have been carried out using lead and tin and certain of 

their binary alloys.

The initial chill-layer formed on the probe is remelted only in 

the presence of superheat. The melt back of the chill-layer is suc­

ceeded by dissolution of the probe surface. The rates of chill-layer 

growth and melt-back as well as the rate of surface dissolution have 

been determined experimentally for various degrees of superheat and 

probe rotation speeds. The problem has also been approached from the 

theoretical point of view by:

1. adopting an integral profile method and applying it to

a cylindrical geometry in order to predict the rate at 

which metal will solidify against a finite rotating cylind­

rical wall and the rate at which it subsequently remelts,
and

2 deriving the equations governing the relevant rate cont­

rolling dissolution mechanisms.

This theoretical work has involved the development of a model 

for unsteady conductive/convective heat transfer in a liquid metal, 

and an investigation into the mass transfer processes controlling the 

dissolution of lead and tin into lead/tin alloys. The results obtained 

in this work can be used to predict the heat and mass transfer conditions 

under which successful solidification cladding process can be carried 
out on an industrial scale.
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1 INTRODUCTION

The idea of combining two materials by coating one with the other, 

to give a composite material, having the more desirable properties of 

each of the components, has obvious attractions to metallurgists and 
engineers. In this manner the extra, cost of fabricating relatively ex­

pensive alleys can be eliminated, and the savings can be used much more 

satisfactorily in other directions.

Brooks has recently highlighted the difficulties of cladding by 

casting processes.

Hills and Brooks have shown that the liquid metal must attack 

the surface of the solid metal if a bo .d is to be farmed in this type of 

process, either by partial melting or by dissolution.

Strong bonds can only be produced, therefore, under certain specific 

conditions of heat transfer.

■X-Hills and Brooks have designed an experimental apparatus in which 

these conditions can be realized and studied, and have used this appar­

atus in attempts to bond stainless steel to cast iron and a lead/tin 

eutectic to lead. They have also used Hill*s integral-profile method ^  

to predict the heat transfer conditions required to bond one pure metal 

to another pure metal. They found however some discrepancies between 

theoretical and experimental results; this is thought to be partly as a re­

sult of applying an integral profile method derived for planar shapes 

to an axi-symmetrical heat flow situation. They were not able to form a 
bond between stainless steel and mild steel because of the high rate at which 

the stainless steel was dissolved by the molten mild steel, and because 

of the apparently random nature of the dissolution process.

* Unpublished work



The main objects of the present work are to study the pre-cladding 
conditions, by investigating:

1 the heat transfer phenomenon occurring during solidification 

and meltback of the chill-lpyer formed on a cylindrical rotating 

substrate when immersed in melts at different temperatures,
and

2 the substrate dissolution process that commences after melt­

back of the chill layer under static and dynamic conditions.



2 Literature Survey

After a brief review of the various processes for the cladd­

ing of one metal with another metal, an introductory review is presented 

of the structure of cast metals. This is followed by a listing of the 

mathematical methods for the prediction of solidification rates, followed 

by a detailed presentation of one integral-profile method.

The experimental apparatus used in the work described in this 

thesis involves fluid flow and heat and mass transfer in an annular 

space between two rotating cylinders. Relevant knowledge about these 

processes is reviewed in the final sections of the literature survey.



.1 Cladding

Increasingly dissimilar materials are "being brought together 
to solve material problems in all aspects of manufacturing.

Rolled gold and ’Sheffield plate' (silver on a copper
based substrate,) were the earliest examples of cladding.

Hot pressure rolling or electro-welding, were the pro­
cesses used to join the coatings to the substrate.

Copper cladding of steel is especially useful for wire 
or tube, and is normally carried out by casting.

The ductilities and thermal properties of steel and nickel 
are so similar, that nickel cladding is particularly useful for 
steel.

Electro-welding,-hot compacting, (rolling or pressing),
or casting, can be used to bond stainless steel to carbon steel,
but the bond strength is generally dependent upon the quality 
of fluxing.

Shepherd and Brooks ^ have reviewed the major processes 
that have been used to produce stainless clad steels.

Although not yet widely accepted, lead clad steel sheet, 
produced by roll bonding has considerable potential.

The desirability of obtaining cheap aluminium coating for 
mild steel, has led to interest in applying metal powders to the 
surface of steel strip, followed by a compaction or sintering 
process.

The Elphal process of Bisra has used electrophoresis to
2 3deposit aluminium from a suspension in methanel.

A parallel Japanese development ^ uses atomized injection 
to apply aluminium powder to the steel surface, and to ensure 
bonding, after a drying operation, an adhesive of the polymetha- 
phosphate type is used.

5Jenkins reviewed similar developments for chromium and 
zinc, and clearly there may be rapid advancements in this field.



Brooks has recently highlighted the difficulties of 
cladding by casting processes.

The work presented here, continues his work by investi­
gating pre-cladding conditions (e.g. surface cleanliness and 
smoothness, the influence of different modes of fluid mat­
erials) and proceeds to explain some of the phenomena 
involved.



2.2 Solidification and its Structures

The structures of the solidified metals are determined 
by three major factors:
1 Alloy constitution;
2 Thermal conditions;
3 Impurities.

Metal composition governs the basic mode of crystalli- 
sation, end determines whether the equilibrium structure will 
consist of a single phase or eutectic grains, or both. The 
composition cf alloy is also characterised by the distribu­
tion a^d diffusion coefficients of the solute in the liquid, 
and solid phases, which- determine tendencies for COnStitU-r̂ 'tionai under cooling and segregation.

The temperature distribution and rate of cooling in solid­
ifying metals depend on the initial temperature conditions, 
and the thermal -rope: L'*es of metal and mould. Since wide 
variations in thermal conditions can occur at various stages 
during the cooling of a metal, its overall structure may con­
sist of separate zones with widely different characteristics.

The relative possibilities for nucleation and growth 
depend upon foreign particles, or solutes present in the 
liquid, e.g. a pure metal solidifies with a plane solid/liquid 
interface, and the resulting micro-structure will only show 
very thin grain boundaries. When a minute quantity of solute 
is present, the solid/liquid interface will show small grooves, 
and the resulting micro-structure will show thick cell bound­
aries, (cellular structure). When the amount of solute is no 
longer small, its rejection may lead to the formation dend­
rites which can either be oriented in the heat flow direction 
(columnar dendrites) or randomly oriented. Where the oriented 
phase does not form secondary arms, the structures are called 
composites, or fibrous dendritic structures.
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Figure 2

The relationship between the ratio G/h. and the solute concentration

A

The ratio /„ (where G is temperature gradient, and 
R the rate of freezing), is a significant parameter, with 
respect, both to mode of growth, and to final structure in 
solid solution alloys. These successive stages are illus­
trated schematically in Figure 1 and the associated thermal 
conditions in Figure 2.

In the present investigation the microstructure of 
the solid layer growing on the substrate as well as the 
microstructure of the substrate itself have been observed 
and considered in relation to these various factors.



The Macro Structure of Solidified Metals

It is generally recognized that three macrostructural

Figure 5

The Different Macrostructural Zones in an Ingot

zones st in one solidified ingot:
1 a "chill” zone ox fine griins,
2 a "columnar zone" containing grains elongated in the

direction of heat flow,
3 a control zone of "ecuiaxed" grains.
These zones are shown shema^cally in Figure 3 and may occur
in various proportions, depending principally upon the rate 
of heat extraction, the amount and composition of the metal, 
and the potency of the nucleans present. The metalographic 
examination at the neat extraction direction of the lead and

(b) (c)
7The Effect of Cooling Rate on the Size and Shape 'of crystals in 

a pure metals and intermetalio compounds, 
b solid solution alloys and
c eutectics.



tin probes used in this work showed the existence of the 
’’chill” and ’’columnar” zones. Their significance and 
possible causes at the solution interfaces is-discussed 
later in the thesis.

In Figure 4? 'the effect of the cooling rate on the 
size and shape of crystals in pure metals, solid solutions, 
alloys and eutectics can be seen.

5»



The Theoretical Solution
of the 
Problem 

of
Heat Transfer during Solidification

The unsteady state heat conduction problem, which deals 
with one dimensional heat flow during solidification, or 
melting of material, is often referred to as the problem of 
"Stefan”. This problem has been the subject of numerous 
theoretical investigations, which can be divided into two 
broad categories.

(a) Approximate mathematical solutions using realistic and 
almost realistic solidification conditions, and 

oo  exact solutions under conditions rarely achieved in 
practice.
■*f -Approximate Solutions

■ Two types of approximate mathematical methods which can 
be .used ares
(a) Numerical \nteg3 ^ion cf the equations by finite 

difference methods, and 
o o  integral profile technique.
The first method has the disadvantage of being very lengthy
and tedious to apply, and must be repeated each time a parameter

■ * 8 is changed. The us'e of this method is described by Landau
9and Forster.

The Integral Profile Method 
for

Planar Solidification

The integral profile method (sometimes known as the heat 
balance integral) reduces the nonlinear boundary value problem 
to an ordinary initial value problem, which gives useful sol- . 
utions quite easily and in many cases leads to expressions 
which can be solved analytically.

Hills1 ^  integral profile solution for solidification 
of pure metals has been used in the development of the theory



■presented in Chapter 3» and- a full account of ?t is given below.

Integral methods were first introduced by Von Karman
and Pohlhauser in order to solve non - similar boundary

11 12layer problems in fluid mechanics. Goodman has applied 
the 'Heat Balance Integral' to problems involving phase changes,
and to problems involving the heating of bodies under Ifnear

13and non-linear boundary conditions. This method was further
used in analysing the melting of finite slabs ^  and for.

3 5materials with temperature dependent thermal properties.
Some numerical results for the case of a linearly varying sur­
face temperature, and for constant heat flux are presented in 

16 -Reference.

An integral profile approach to the solidification of
17alloys was used by Tien and Geiger who assumed in their 

treatment that the cooled surface remained at a constant temp­
erature below the solidus throughout the solidification
process. Thi3 unrealistic bour. laxy condition has been replaced

18in a subsequent solution given by the same author. Koump 
19and Tiens y have developed a method involving a time depend­

ent surface temperature,
20Schneider considers radiation cooling of finite slabs,

while additional comments on, and applications of, the integral
21 22method are presented, in references * .

In his most recent paper Hills ^  has concisely described 
a general integral profile solution, which allows solidification 
rates to be predicted under a wide range of different cooling 
conditions. The method is a generalisation of the integral*] ̂  23 2profile methods previously developed by Goodman and Hills. " 9

The generalization has been achieved by characterising 
the layers of solidified metals in terms of two variables, 
rather than the simple variable used before, and by formulat­
ing the relevant differential equations, in terms of the heat 
flow from the cooled surface, and its partial differentials, 
and the heat flux to the solidification interface. Hills* 
method has been the basis for the theory developed here, for 
cylindrical case, as presented in Chapter j, and a full account



of it is given in Section 2.3.1.5

Application of Integral Profile Method 
to Non-Planar Solidification

In all the above mentioned papers, in Chapter 2.3«1.1»
21 22with exception of References 9 the integral method has 

been applied to problems of planar geometry.
22Veinik treats several heat conduction problems, in 

both planar and non-planar geometries, under the assumption 
that the spatial temperature distribution are polynomial 
functions.

25However, Sparrow in a recent discussion, has indicated 
that some inaccuracy is present in the application of Goodmans 
Heat Balance integral approach, with polynomical profiles to 
problems involving non-planar geometry.

25Thomas J. Lardner and Frederick V. Pohie analyzed the 
case in which a cylindrical boundary is exposed to a constant 
heat flux, and showed the surface temperature to be logarith­
mically dependent on the cylinder radius i.e.

T « U x (lnr) 
where U = T x r 

Their result is presented in Figure 5 for parabolic and log­
arithmic profiles with the exact solution.

In the present investigations the cylindrical heat con­
duction equations has been used together with a linear profile, 
which has been found sufficiently accurate to tackle the 
present solidification problem.



Figure 5

H a

L */a2

Surface temperature

thermal conductivity 

constant flux

radius of cylinder hole 

time
k /diffusivity, /p #c • 

mass density
specific heat per unit mass

Effect of different profile equations for the radial temperature 

distribution in an infinite medium surrounding a cylindrical cavity 
on the predicted surface temperature of the cavity.'-



Hills1 Solution to the.integral Profile Method 
for a Growing Layer of Solid Metal/

Hills1 solution is presented in terms of two parameters, 
the temperature of the cooled surface and the thickness of 
the solid layer. Two simultaneous ordinary differential 
equations are derived for these parameters. The derivation 
is discussed here in some detail as it provides a general 
illustration of the integral profile method and it forms the 
basis of the theoretical methods developed later in this work.

Figure 6 ' Temperature distribution

across a layer of solid­

ifying metal under linear

q  heat flow conditions

XrO X -  t

The above Figure 6 illustrates the growing solid layer, cooled 
at the surface, x = 0. Heat crosses the moving boundary, 
x = t from the liquid metal. The temperature distribution 

within the solid metal must satisfy the unsteady state heat 
conduction equation

6 2Q „ „ 6 Q /nN



The integration of this equation across the solid layer yields

<£ 9 S x
cf'T'

dx (2)
x

*or applying the Leibnitz integral formula to the right- 
hand side,

t
cf 0

-k
cf x^

d r dt
/ p .  c0dx - Pc — (©) (3)dy j 1 1 dr,o t

Applying the heat conservation principle at the boundariei

U 0
- k 6 x

and

. H

- k
60 dt

qt ' P H 7 r

Thus equation (5) becomes

PHf!_ 4" + d r * + 9° d r Pc0dx - pcQ

(4)

(5)

dt / -/(6) 
dry

The most convenient auxiliary function to use in evaluating 
the integral in equation (6) is a quadratic polynomial.

/x / x \

The coefficients can be evaluated using the boundary conditions 
and equations (4)> which gives

s o
qot lX '

so that the integral becomes 
±

(7)

0 dx= -  0 + -© - - (8)
As the integral of an approximate function is more accurate 
than the function itself, the approximate integral can be 
substituted in equation (6) without great error.

Differentiating the resulting equation and re-arranging
gives

* Page 4 8



The variables can he most easily expressed in dimensionless 
form as

. - f c / o *•k _   Dimensionless thickness (10)
0 ks

* 9o0 = -q— 11 surface temp. (ll)
S /'n72 
/q / 'Y

^ |—    M time (12)
0g pek

H* H
cQs

latent heat (13)

it
* q
q = M surface heat flux (14)K J■|«o Io

t
It

q
*

KJ
heat flux from 
liquid metal (15)

In terms of these variables, equation (9) becomes

h *  +  !  (1 -  e * )  -  i t  , *  J  “ *  -  £  -

3 3 0 J 44 3 dS
*0 *

1 1 d9° * *-  —  =  q o  -  q t  (16)
6 d ̂

In general, the heat flux from the surface will be a 
function of the surface temperature, or of time, or of both. 
Thus we can write



(1-0 )-

Re-arranging equation (16) in forms of these partial differ­
entials gives

7 ** * / dt 1 „ * * N
* %  I t (4+fo * ) ~  =J d( 6 d£

* * 1 * p i
= qo - S + f6 <19)

Finally equation (19) gives a differential equation con­
sisting of two variables:
1 Dimensionless thickness of solidified metal
2 ” surface temperature of the metal.

But in order to solve the above equation, we require 
another equation and this can be derived by considering the 
variation of d0 across the solid metal layer.

aT

At the stationary surface, x = 0, we can write

[“ ]- ! V  (20)
M 0 d T

At the moving surface, x = t, the temperature is constant so 
we can write
d [~6Ql at Tdt 1
—  e(t ,T) = / —  / —  +/— - /  = 0  (21)
dT L 6 x J t dT  L £>T J t
Re-arranging this equation and substituting for the temp­
erature gradient from equation (5) gives 

d07 dt fpH dt q*r 1
-   -------------------------------------- (22)
a T[ k d T  k J

Integrating the heat conduction equation (1) across 
the solid layer gives

-s «-i *  / [ i * . j  r t i l i  r V L i

t  L U , J o p 0 L 6 x v  p° J  x
Substituting (20) and (22) into equation (23) we get
dt /pH dt q" 7 dO k /ffo_ _  L---------£ / _ o  = _  / (24)
dT"I k dT* k J a'T pc 6x

From equation (24) it seems that it is necessary to know 
accurately the temperature distribution across the solid 
layer. If there is no sudden change of cooling conditions



6 o
the value of ~~~ would not change very much within the solid 0 ‘
layer and, assuming this change to be linear, the value of
6 5e
— 7 will not alter significantly within the solid. The
0 x
integral appearing on the right hand side of equation (24) 
is thus given by

f - 6  ^  l ^ o l f *

J  I r d  Ja x " t / i ? i 0 (25)

Differentiating the heat conduction equation equation (i), 
with respect to x gives

1 4? ■ p° £  5 V  jr y  (2o>
Substituting equation ( 4 ) mfc (26) ant)(25) and writing this 
equation for x = o it

O dq^

: d r
(27)

thus equation (24) becomes
dt f pH dt q" / d9 t dq"
-  ~  —  - "  —  (26)d / ^ k  d 7 k j d f k d f
Re-arranging (28) in terms of dimensionless variables and 
substituting from equation (18) gives

H
*d9

i Y a t V  /i„ ,

\d€ J + qt, 7 j + t  f«
'   (29)*  1d£ 1 + t fG

Substituting this equation in (19) we get a quadratic equa­
tion in 

*dt ,,-*r \* Cit*\ 2 *at -H. _| + r
\a t ;

- -A. = o • (30)
Vd£

where -0. = E t (4 + t fQ ) (3l)
r-i* r— * . * \ * * ”7/ * * \ / \I = /  6H + 4 (1 -  0 ) -  2t  q 7 (1 + t  f  ) (32) 

* -x- . * t . “  w+ q^ t (4 + t fQ)

A  = 6(q* - )(1 + tig ) - 3 * * d (33)

Thus we can write



at _ r ± f  + 4-A/l
(34)

d£ 2 /I
* * A*' */ /Since is less than qQ , -/land dt /dvj will both be 

positive and the positive root of equation (30) is relevant. 
Multiplying both sides of equation (34) with
( lfp 2 + 4-A il + P ) we get

^  = 2 -^- (35)
d£ r’ + |[P~+

Equation (35) has no irregularities in this form and can be 
integrated numerically with equation (30) providing algebraic

, *  i » * -expressions are available for q q, f̂ , ff and q^



2.4 Heat and mass transfer to rotating cylinders

Heat and mass transfer between rotating cylinders has been 

fairly extensively investigated. These transport properties are affected 
very significantly by the geometry of the flow patterns between the two 

cylinders. At low rotation speeds a, laminar flow pattern is set up 

known as Couette flow in which the fluid between the cylinders flows in 

a tangential velocity, there being a uniform velocity gradient across

the annular space. When the inner cylinder is rotating and the outer
v

cylinder is at rest, centrifugal forces will tend to cause fluid to 

flow radially. This can result in breakdown of the laminar Couette flow, 

and this can strongly affect heat and mass transfer to the rotating • 
cylinder. ^



2.4. 1 Fluid Flow 
between

Concentric Rotating Cylinders

A considerable amount of work has been done on fluid
flow between concentric rotating cylinders concerning rotation
of both cylinders, or one stationary, one rotating, with
different speeds as well as different directions. A large
proportion of this work considers either a narrow gap, or
non metallic fluids. Most of the fundamental work has been

30reviewed by Forfman in his section on rotating cylinders.

31Taylor, " in a very early paper, showed that above a 
critical speed of rotation, the laminar Couette flow breaks 
down into a flow consisting of a set of cellular, toroidal 
vortices spaced regularly along the axis of the two cylinders. 
Figure 7 shows a cross section of these three dimensional 
ring-shaped vortexes.

32Hagarty has photographed such vortex patterns, using- 
the optical property of glycerine and water solutions, and 
concluded that there are three modes of flow when the annulus 
is very long:
1 When the inner cylinder rotates slowly, all particles 

move in circular paths concentric with the axis of the 
cylinders. This is a form of gouette motion.

2 As the speed of rotation of the inner cylinder is in­
creased, a stable secondary motion develops. Pairs of 
ring vortexes appear. In this motion each particle of 
fluid rotates simultaneously about the axis of the 
rotating cylinder, and about the core of the ring 
vortex, of which it is a part.

3 At relatively high speeds of rotation, the vortex motion 
becomes unstable, and the motion becomes generally 
irregular and turbulent.

33Fritz Schultz Gruncw and Hans George Hein used a sim­
ilar technique for examining Taylor Yortices, and showed that 
their number decreases with increasing speed. Evidence of 
this phenomenon has been observed on the rotating probes of the 
present investigation, as ring shaped grooves, wdiich increased
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in width with increasing probe rotation speed- 

31Taylor predicted the onset of the instability for a 
small gap in terms of inner cylinder radius R^, the gap be­
tween the cylinders b, angular velocity , and viscosity , 
in the form ' / 0/

R, b l>2 .
Ta , ^ --------  i (36;

which is named the Taylor Number*

In the case of a large gap it is convenient to form the
Taylor Number, not in terms of the inner cylinder radius R,
but in terms of the mean radius Rm = J- (EL̂  +
Taylor Number takes the form

2 3 ORm b ? Okrn =  (37)

In addition to the vortices discovered by Taylor which arise
. 34when the laminar flow becomes unstable, Pai observed

vortices that are formed in turbulent conditions as a result
of a secondary flow, at speeds which are several hundred
times the critical speed. (Figure 8)

35Recently E. H* Sparrow, W. P. Hunro and V. K. Jons son
investigated the instability of the flow for the wide gap
situation between rotating cylinders*. They produced critical
Taylor Numbers for laminar instability covering a wide range
of rotational speeds with different geometries.
They used the dimensionless term 

R4 q  2
* * 2 0 6 1 / \T = — --z1  (38)

V
as modified Taylor Number. In the present investigation the 
different modes of the flow have been considered as one of 
the effects governing the different surface patterns of 
erosion observed.
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Heat Transfer 
between

Concentric Rotating Cylinders

The three types of flow we have seen in the previous 
section are the main controlling factors for heat transfer 
between rotating cylinders. The simplest problem involving a 
rotating cylinder is the rotating cylinder in an infinite 
and still environment, where heat is transferred away from 
the cylinder by free convection.

Many authors are agreed on the strong effect of free 
convection at low rotational speeds, in wL.vch laminar flow 
and heat transfer by conduction prevail. For example,•z£ -zn
Anderson and Saunders and Dropkin and Carmi have come to 
the similar conclusions, namely that at rotational Reynolds 
Number below about one thousand, heat transfer is virtually 
un-affeo-f-ed by rotation, but between 1,000 - 10,000 the 
rotational Reynolds Number is c" importance.

58W. M. Kays and I. S. Bjorkland combined the effects 
of rotation, free convection and cross flow, and formulated 
the Nu -- 1—  ~  ----4-‘ —

for rotatirg Reynolds Numbers in the range 2,000 - 45>000*

"Whevn "NT ff'.T’nRR "Plow P pvnn lflR  Wnrnhpr^ nnrl TT ^Cr'n.shof

Number) and for Np^ = 0.7» Equation(38.l)above reduces to

data for the case of the inner cylinder only rotating by the 
equation

Number) are negligible compared to Np^(rotating Reynolds

(38.2)
39At high speeds of rotation Edmund and then Dropkin and

37 7Carmi showed Nu Re
In a later paper Bjorklund and Kays ^  correlated their

Nu cond 0.175 v /2 (58.3)

where N,r = Nusselts Number: N. Nu 9 ]Nu cond= Nusselts Number for

pure conduction



For Taylor Numbers between 90 - 2,000, Carl Gazley ^  
considered the convective heat-transfer charateristics of the 
flow in the annular gap between a rotating inner cylinder, 
and a stationary outer cylinder, using both smooth and slotted 
surfaces. His findings indicate that regular ring shaped 
vortices result in a heat-transfer rate that is even greater 
than that with turbulent flow.



2.4.3 •Mass Transfer from Rotating Cylinders

Many workers have investigated mass transfer from
cylinders rotating about their axis especially since the role
played by mass transfer in a solid/liquid reaction can be
ascertained by examining how its rate is affected by varying
the speed of rotation of a cylinder of the solid reacting in
the liquid. King 42 dissolved rotating cylinders in aqueous
acid using baffles, and found a linear dependence of dissolu-

43tion rate with rotational speed. Ward and Taylor have 
studied the kinetics of the dissolution of a solid copper 
cylinder in liquid lead and bismuth alloy and showed an approx­
imately linear power dependence.

Jackson and Grace 44 immersed a rotating zinc cylinder 
in bismuth allowing it to dissolve completely at constant 
speed so that the Reynolds Number decreased to zero during 
each experiment. The dissolution dependence was found to be 
nearly linear.

45Roald and Beck used rotating cylinders in a study of 
rates of dissolution of magnesium and its alloys in hydro­
chloric acid solutions and found that the rate of dissolution 
increased with the 0.71 power of the speed of rotation. 
Eisenberg, Tobias and Wilke dissolved solid organic acids 
in different glycerol solutions. Using the rotor diameter 
as the characteristic length in the Reynolds Number they 
found a power dependence of 0.7.

Sherwood and Ryan 4^ investigated heat mass and momentum 
transfer data from five different sources and showed that -all 
the data is close to a 0.7 power dependence on Reynolds Number.

A O

Olsson, Koump and Perzak investigated the rate of 
— dissolution of rotating iron and Pe - C alloy cylinders, in. 

graphite-saturated molten iron at temperatures below the 
melting point of the solid. They concluded that the rate of 
dissolution is controlled by mutual counter diffusion of 
carbon and iron in the boundary layer.

49In their more recent work ' they dipped rotating 
carbon cylinders in molten Fe - C and came to the conclusion



that the rate of dissolution of carbon in Fe - C alloys is 
controlled by the rate of carbon diffusion from the interface.

Both their investigations showed 0.7 power dependence 
on surface velocity.

50Pehlke, Goodell and Dunlop dissolved steel in molten 
pig iron and found that the rate of solution is a function 

* of bath composition, temperature and stirring.
51

Lommel and Chalmers looked at lead cylinders dissolving
in lead tin alloys keeping C -Cn \  0.05 8F* atoms (C beingL U /  L
concentration of the dissolving species of Liquidis Line at 
a chosen temperature; Co - concentration of the dissolving 
species in the bulk liquid.) They discovered that dissolution 
was independent of rotation speed and thus concluded that the 
surface reaction was the controlling step.

52In a more recent paper Ohno studied the dissolution 
of iron cylinders in liquid Cu and Cu-Fe alloys at different 
speeds and temperature ranges. Their rate constant is found 
to vary with the 0.85 to the O .96 power of the Reynolds Number, 
which suggested another diffusion controlled process.



3. Theoretical Treatment

Introduction

The theory may he conveniently divided into two sections. 
The first part is concerned mainly with the heat transfer 
phenomena and the second part with the dissolution process.

In the first section of the theory the dimensionless 
model of the integral profile method is given and the equations 
for cylindrical solidification are derived. These are basi­
cally applications of Hills integral profile method ^  to a 
different geometry by means of convenient modifications. The 
computer solutions for flat and cylindrical geometries describe 
the solidification and subsequent melt-back of a liquid metal 
in imperfect contact with a flat or cylindrical wall respect­
ively.

the second section of the theoretical treatment the 
different modes of dissolution are discussed and the 
equations for transport controlled dissolution are 
derived.



Dimensionless Model for a Growing Layer 
on a Plane Finite Wall

This model (Figure 9) has been extensively described 
Is 10 and B: 

survey (pagel9 ).
10 6 by Hills and Brooks and is discussed in literature

The resulting differential equations governing the 
change of chill-layer thickness, inside-layer temperature 
and wall temperature with time are expressed in dimensionless 
terms as

*dt

*d©

2 y\?

-P + fr ‘+4_/*jQ-
* / \ * • +qs 177"I+ 15 f*
* f * -i + t f •©

(39)

(40)

d©*w

where fl =
*

* 1fg and f^
f * * ©

i *

( r*  ( * *
* '  I

*R
* + 3

* * . ^ . H t (4 + t f9 )

*

@L* + 4(1-9*) - 2t* q^7(l+t* f * ) 

+ qg t (4 + t f*)
w  * *x / * * N *6(qo - qt) (1 + t fG ) - 3t

being

I

* / / * *\ = 3k / (R + 3k )
* , * * x 3k (© - © )x o w 7
..#■ * , * -x-N / R (R + 3k )

(41)

(42)

(42.1)
(43)

(44)

(45)

Results obtained using these equations will be compared 
with those for the cylindrical case in section 6 2

Dimensional symbols are described on page 192 .
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3*3 . Application-of Hills-'Integral Profile Method for 
Solidification on to the outside of a Cylindrical 
Probe

Figure 10•

Heat transfer during growth of a chill-layer on a 
cylindrical probe.

probe wall

liquid
r  conduction  
\ layer

iw

*0 r;L



As shown-in Figure 10 the cylindrical model can 
conveniently be divided into three zones: the probe wall, 
the chill-layer, and the liquid conduction layer. Heat trans­
fer in each of these zones is treated separately and a com­
plete solution obtained by a combination of the three .

3-3.1 Heat Flow in the Chill-Layer

A cylindrical interface between solid and liquid metal 
is considered during solidification (Figure 10) and the un­
steady state heat conduction equation is applied to the grow­
ing chill-layer. The Differential equation within the solid­
ifying metal in cylindrical co-ordinates, is:

or
. 6 8

= P°Tr (46)

Multiplying each side by r, integrating from r to r ando s
applying the Leibnitz integral formula to the RHS gives:

(Leibnitz Theorem for differentiation: an integral with 
moving limits.

d '■dfe-/ r or _ ' da \
f(x,y)dx = j —  dx + f(b,y)—  - f(a,y) —  /

a dy dx dx

6©
rs r n

rs r

6r _ r0
© +

r0
©
*r

k dr

dr
0 rdr - 9  r —s s a n

(47)

The first term of equation (47) is evaluated by considering 
the conservation of heat firstly at thê  solidification front, 
which gives

0 p H dr
(48)

r
= r - rd r

and then at the cooled inner surface of the solidifying 
metal, which gives



Substituting equations (48) and (49) into equation (47) 
and re-arranging gives

r t
dr's d TB ■

• rs< p H+ pcGs) w  ~ p° Tr / 0rdr = ~(io%-xbO  (50)

An approximation to the integral of the heat content 
of the chill-layer is made by assuming the temperature pro­
file to be linear

©
0 (r - r) - 0 (r - r) sx o / ox s '

(r - r ) v o s'
(51)

This profile satisfies the conditions
r = r 0 =  0
r = r 0 =  0o o

Substituting (51) into (50) and re-arranging gives

pHr + — -
P s 6

(r +2r ) (0 -0 )' O s' ' S o'!

—  (r q - r q )x o^o ŝ -s'
dr

dr p c 'd0o
— a  (r +2r )(r -r )—
d T 6 s 0 3 0 &r

(52)
aes oTo get a solution for  the term --- must be evaluated.

a r ar
At the moving boundary

hence
r = r : 0 = 0 = constant so that d0 = 0s s

60 T)J ~ - + dr = 0
. ’ <8r

Thus 6 0 <5 0 & r
6T cSr 6T

(55).

(54)

The conservation of heat at the moving boundary r = r gives:s



Substituting (55) into (54) gives

So 1 f U

. 1—
.-

1 kr p H r " 4sI d /

dr __s
a r (56)

At the inner cooled surface we have

. d069

Tr r

__o
a r

Assuming

where b = _4_ f <s ©) d2e
dr i*rj SyoT

r.

(57)

“ d©"
_7f_r

+ b(r - r ) v s'
r'_r ,

(58)

(59)

but

and 62Q
bT c5r

and at r = r

i © q
dr k

' k 6T 6 A 7
0

d 20
dr

1 dq ,
= - = b

k d T
substituting (6|) into (58) gives

d © © 1 / 11 \fdA \^-o
Ir_ r 4 r r k 11 r — r \ 0 s,

(60)

(61)

(62)

substituting .from ;(-57.) and~(56')”gives

d0

d r

H dr

d r

q dr Hs s
k d r

r - rs o
k

V I

d r
(65)

Providing qQ = f(0Q,T)



calling *

67'
If^  and

<5)90
then

ti
d q  » o » f- = fry + 9
d  r 1

d 9  ___0
dr

9

(64)

Substituting (64) into (63) and re-arranging will give

d9 __o
d r

dr 2 / \ dr
PH s
ar

s
d r - (r - r ) f V  v s o' T

k - (r - r ) f . ■ s o' (
(65)

Substituting (65) into equation (52) gives

A dr + r fdrs s
l a r i ia r

-A = 0

2where _Q_ = p He (r + 2r )(r - r ) f x s o7' s o7

r - A .  - (rB - r0) f0 -7 €  6 pHrs +

+ P o( ro + 2C )(es - e o) _ 7 - q ^ P o

(66)

(67)

(r + 2r )(r - r )S O S o (68)

-/V = p c(r + 2r )(r - r )^ “ 6(r q — r q )r v s o7,k s 0 v o4o s4s 7

£  k - (r8 -r0) fgj (69)
dr

Since — - is positive whilst - r a"*> - r a" »o^ox  s 4s
quadratic theory..gives the solution of equation (66) as:.



3.5.2 Heat Flow in the Probe Wall

©

Figure 11 
Heat Flow in the

probe wall

h, 0,wa '-

\ yiy
y ^ A  ho

©A

- q :
.a .

-C?//'o

0o

q" = - h (Q - © ) ' o o,eff v o w'

The forms of equation for 
q"o fVq and f ^  are to be de­
termined by considering heat 
flow into the probe wall. If vie 
represent the average wall temp­
erature by 0 the midwall temp- w
erature, the heat flow from the 
solidifying metal can be ex­
pressed in terms of an effective 
heat transfer coefficient
ho, eff:
■ -ua - -

X

(71)
and the heat flow from the probe wall to the cooling medium:

(72)

where is the temperature of the cooling medium . The 
two effective heat transfer coefficients are given by;

ho,eff =

h
T  - r *o r

2k
(73)

w

r,eff

hr

(74)
r - ro r
_ -2k

- •• w

A heat balance on the probe wall is necessary to determine 
the mid-wall temperature.
Heat gained by unit length of wall in unit time



Heat loss by" unit length, of wall in unit time
2 Tlxr r

Heat stored in unit length of wall

TT (r2 - r?. )v o r 7 P w °w
dQ __w
d r

Thus
d©

Y  (r^ - r^ )p c — = - 2 T (r qn -r. q ) v r. 7 W w d /  0M0 r 4r7-

(76)

(77)

o r

Substituting (7l) and (72) in (78) and rearranging gives

(78)

d© r h (9 -Q ) - r. h „„(© -0.) w _  ̂ 0 o,eff v 0 w r r,effv w A7
d r 0 r ' P w °w
Differentiating equation (71) with respect to time

(79)

dq o _ ,
iY ~ " o,eff

d0 d0 o  w
d T d T  ,

(80)

or,

d q 0 . . d9o
—  m£r + f eTyar (81)

where, obviously

f • = - h1 0 o,eff

+ h
d0w

T  ’ “o,eff
or substituting (71) into (83) we get

(82)

(83)

f = 2KY o,eff
r h ««(© -0 ) - r. h ^(0-9*) o o,effx 0 w7 r r.,effv tv. A7

✓ 2 2 s(r - r ) p c o r 7 r w w
(84)



•5« Heat Flow in the Liquid Metal

6Brooks work revealed the invalidity of treating the heat 

flow from a stirred liquid metal to a solid in terms of a boundary 

layer, of constant thickness having a constant heat transfer coef­

ficient. The shape of his experimental curves of solidified thick­

ness versus time for different amounts of superheat suggests that 

the heat flux is very high at the beginning, possibly due to un­

steady state heat conduction. The need for a more flexible model 

led to the assumption' that there is a conduction layer close to the 

solidification front whose thickness depends on time but also on 

the speed of rotation of the probe. This conduction layer lies ~ 

between rg and r^ as shown in Figure 10.

The thickness of this conduction layer was assumed to grow 
by unsteady state conduction during the early stages but then to 

be ’ disturbed by the convection currents that develop as the bath of 

eutectic metal becomes stirred by the rotating probe. Once this 

happens the conduction layer is assumed to decay in thickness, app­

roaching the thickness of the imaginary stationary film that is 

equivalent to the convective heat transfer coefficient at the sur­
face of the probe.

The heat flux from the conduction layer can be represented’ 

by the heat conduction formula for heat conduction across unit length 

of a hollow cylinder:

• » 0 . d0 _  2/fk (0T - 0 ) /Qcxq = - 2r k   f = - v L sx (85)
dr _ rTIn

rs
rL

Expanding In —  and taking the first terms of the series as an 
s

approximation



. Iq
k!f(rL + rs)(eL - es)

(rL “ V (86)

Dividing by 2 ^ r  gives:

.«»
q .

k(rT + r ) s L s'
2r (rT - r ) sx L s'

(0r. - e j • (87)

This equation is used throughout the model to describe the flow of

heat across the conduction layer to the solidification front. The 
.»variation of q is developed by the substituting the varying s

values of rg and r^ into this equation. The equations from which 

the values were determined are developed below. The growth of the 

conduction layer is assumed to occur by conduction only, so that

the heat conduction equation within the layer is 
1 6 9 V 6 © ■

= P°i? (88)
Providing [ ̂  \

\ dr / r7

r 6 r I

= 0, integrating equation (88) gives

dr ... drT \ - -
B s —  -0Lrlr^

s d r  % rl
L s (0t-9 ) = a Qx&r + 6, x
2(rT-r )

Where the temperature gradient at the solidification front has 

been determined from equation (87) which gives:

(rL + r s>
(eL - 0 ) (90)

d0

dr 2(rT - r ) ■ L s'

Assuming an effective temperature
between r and rT s L

 r   —

L e -!• 0
0 . rdr = ----— -

iQj + 0 \
— -— -I for the metal

2 /

2 2r_ - r L s

and
a 7 J

r

r 0 + 0 / dr dr
,rL Grdr = L s L  L - r £

2 I a-  sd~

(91)

(91.1)

s



Grar + 9 r 0 r L L
toL\

d T /
1 1

- + 0 r.
2 *2 s

dr / 1 \ drT / 1 1 drT
- 0 * _ !  1 -   T  1 " " Ls s ar \ 2 } a V 2 i 2 “ " ar

1 dr
- _  V s  —  (92)2 L s ar
re-arranging equation (92) and substituting in equation (89) 

gives the differential equation for the growth of conduction 
layer.

f h  /'ri + r 
rL ar = ^  1 ” r S ar> (95)

Solidification does not start immediately the probe wall 

is exposed to the liquid metal in the case of superheat. A short 

time will elapse before the temperature of the liquid metal surface 

reaches the solidification temperature.

Thus some heat must be transferred~to-the~probe wall ~befOre

solidification starts so that 0 will increase.w

The thickness of the cooled liquid layer at the moment solid­
ification starts is given by:

;■ {e _ e..) . k<I‘‘ " o ><9L - 6,) (94)
o o,eff v s w' ----    —

2r (rsT - r )0 h 0
s swhere r T and 0 are the values of rT and 0 just before solid- L w L w

sification starts. The only unknown value in this equation is 0 ^ 

which can be determined from a heat balance between the cooled 
liquid layer and the heated probe wall:

Heat lost from the liquid metal

■ ^ ( r T,S)2 - (r fj ------ Pr, Ct, (95)
©T - eL s

'L ' v 0' „ J L L



Heat gained by wall

2 2= // (r - r _) 0 p c (96)v o R' w rw w ■ \s /

from equations (95) and (96)
PL*°L (rTS)2 - (r f  0\ qs _ —----. • — .9—  ,(pL &,) (91)

w Pw*°w -2 £( ^ ) D

Putting (97) and (94) and re-arranging gives a cubic 
equation of r^S

A(rLs)5 - Aro(rLs)2 + (k - 9 - ArQ2) rLs + (k + 0 + rQ2A)ro= 0
(98)

S  "DThis equation can be solved for rT using Hewton - ^aphson method

Once this equation is solved, the value of rTs that has been de­li
termined is the value at which solidification starts and which 

could also be used to evaluate Q̂ S in equation (§5)

The time T  when solidification starts can be determined s
by integrating equation (95) between r and rTS.O Jj

dxs
Considering rg = r^ and  = 0 before solidification starts

equation (93) becomes
S 0 d r

drT k,. rT + r
- _ L  - ± ____0 (99)

A Y n fi •, _•L odr Plcl r~ - r
re-arranging and integrating the time dependent term between 

0 and T  :s

r s (rLS " ro)(rLS- 3ro> + 4ro2ln (-ih s r y )  (10°)

The main differential equations, number (65)? (70)>(79) and 

(95), can be solved simultaneously as soon as solidifying

starts.



3.1 The decay of the Conduction layer

Once .the convection currents are fully built up in the liquid 

metal, the heat transfer to the solidification front is given by:

i " .  -  ^ L I Q  (0 L  -  S s > <1 0 1 )
•where h ^ ^  is the heat transfer coefficient from the liquid to the 

probe.
The effective .stationary layer thickness t^-^ is very small so that 

the effect of the curvature of the cylindrical probe can have only 

a negligible effect. Thus we can write:

q" = 1~~ (0l - 0S) (101.1)s LIM

so that
h
\lQ.

The substitution of the limiting value of rT = r + tTTT, intoL s LIM
/ \ • ” equation (87; will produce a value of q almost identical to thats

given by equation (lOl).

Thus we have a situation during the early stages of solid­

ification in which the outer radius of the conduction layer, r^ 

grows as given by equation (93) and. then decays to a limiting 
value given by: -

rLIM = rs + ^LIM (l02)

An exact treatment for the.decay-of the conduction layer as the 
convection currents are established is extremely complicated, and 

certainly beyond the scope of the present treatment. The simplest 

approach to the decay is to represent it in terms of an exponential 

decay equation:



where T^ represents the half life of the decay process.

Equation (106) is used to describe the decay of the conduction 

layer after a certain time 7" , prior to which its growth was ass­

umed to be given by equation (94)• After 7“ then, the growth and 

melt back of the solidified layer is given by solving equations 

(65), (70), (79) ana (103).

For a probe rotating at 60 r.p.m., in lead/tin eutectic the 
following values have been used:

T  a= 5 secs, c
= 6 secs.

1^-= 8500 W/m2 °C.

The theoretical lines plotted in Result section have been 

determined using this model.

Other values have been used in determining theoretical lines 

related to probes rotating at different speeds, and in different 

media. These values are given in Table 19in Appendix 5 which 

lists all the values used in computing the results presented in 
the thesis.

The choice of the values of the parameters, and the validity 

of the model are discussed in Section 7»2.

ry/2



Numerical Methods of Solution and Computer Programme

The differential equations developed in 0hapter3O« and 
he solved numerically using a Runge-Kutta method of integration,,

Two different computer programmes are written concerning 
planar and cylindrical models, -

They both consist of a main programme and three sub­
routines written in Fortran IV assembly language.

The relationship between the main programme and the 
subroutines with respect to both cases are shown in Figure 12

The main programme and subroutine Difre related to the 
cylindrical case were _developed in the..present investigation.

The two other subroutines, Rukut and Step 4 were devel­
oped by Hills (Hills A. W.D.^ Ph.I) Thesis, University of 
London, 1966)

The main programme reads the data and calculates the 
initial values necessary for the start of integration as well 
as the corresponding time. All these calculated values are 
then written and Subroutine Rukut is called. This subroutine 
then calls subroutine step 4> the subroutine in which the 
numerical integrations are carried out. Rukut controls the 
integration by varying the step length used in step 4«

The original step length and print intervals are read 
from the main programme to which the values of the parameters 
are returned after integration and written at more or less ’ 
constant print intervals. Subroutine step 4 calls subroutine 
Difre in which the actual values of the differentials are 
calculated.

The computation is carried out for each experimental 
system first at zero superheat in conjunction with flat and 
cylindrical'models. Then it is repeated this time concerning 
only the cylindrical model, at superheats used experimentally, 
for different liquid heat transfer coefficients and halflife times 
of conduction layer until melt back is produced at times 
comparable to the experiments.
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Mass Transfer - Dissolution Process

The Nature and Kinetics of the Dissolution Process

The dissolution of a crystalline solid in a liquid in­
volves a dissolution step at the solid-solid interface, in 
which the atoms, ions or molecules of the - solid leave their 
positions in the lattice and enter the liquid phase, and a 
transport step in which the dissolved solid species is trans­
ported into the bulk of the liquid phase. The relative ease 
with which these.two steps occur will vary from system to 
system. If the transport step occurs very much more easily 
than the dissolution step, the latter will control the rate of 
dissolution and the dissolution process is said to be inter­
face controlled. If the dissolution step occurs the more 
readily, the rate of dissolution will be determined by the 
transport step and the dissolution process is said to be 
transport controlled.

In situations where there is little to choose between 
the relative ease of the two processes, they will both con­
tribute to controlling the rate of dissolution, a situation 
known as mixed control.

In addition of course heat will have to be transported 
to or from the solid/liquid interface because the dissolution 
step will involve an exothermic or endothermic heat effect.

It is thus possible that heat transfer may exert some 
controlling influence on the rate of the reaction although 
instances where this occurs are relatively rare.

The next section of the work derives an equation 
for the rate of dissolution, assuming it to be mass transfer 
controlled. Equations have" not~been presented for inter­
face control since, as will be seen later the dissolution 
processes studied in this work were found to be mass 
transfer controlled.
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Figure 14(a) represents the concentration gradients that exist 
before dissolution starts, and Figure 14(b) when solid B is 
dissolving in liquid A. The concentration terms used on both 
tbsse Figures has been demonstrated in Figure 13 on a simple 
eutectic system with limited solubility. The mass flux of 
B away from the surface is also shorn on the Figure 14(b).
It is transported by diffusion and by the convective motion 
of the liquid phase stirred by natural or forced convection. 
Since species B can be present in high concentrations in 
the liquid, analysis of this convection process is somewhat 
difficult to carry out. The following simplified approach, 
however, provides a result of sufficient accuracy.

The simplified approach is illustrated in Figure 14(c) 
in which the convective boundary layer in Figure 14(b) is 
replaced by an affective stationary layer of thickness b, 
b being smaller than the thickness of actual convective 
boundary layer. Species B is transported across the effective 
stationary layer merely by diffusion and by the bulk motion 
brought about by the transport of B itself. Thus we can write

n" - - D,_ C,„ 4 s + Cl n"    ....... . (l<W)B AB T dx ------ —33 X)

where
*C = mass, fraction of metal B in a binary alloy of

metals A and B .
= mass ' density of alloy

= binary diffusion coefficient in the liquid alloy
A/B at low concentrations of Bun _ = mass transfer flux of BJd

( ). = value at solidification interface
s ' 1

( )^ =~~ - -valueTn bulk~'liquid phase” " - ----- - -

Equation (104) ignores the fact that the solid/liquid 
interface recedes as dissolution takes place. The effect, 
however, is quite small and can be ignored without intro­
ducing a significant error.

Equation (104) can be re-arranged:
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so that
n r AB T .

Q B = - T “ ln
& a\
/ \ 

a\
(108)

since the liquid phase contains only A and B. Equation 
(108) can he re-arranged in the form:

/

„ D,_,CrT, - ** AB T
n B ~ b

*

/ *  \  / *  \ (c B)i  ~ (c B)
In-

x
<cV b

since (CB ). - (cj - (CA*) - (CA )
b b

(109)

(no)
Equation (109) can be represented in a simpler form by de- 
fining the log mean mass fraction of A:

(o**)A 'In
(°A*)b ' <°A*>i

In <°A*>b

1<°A*>1

(in)

so that

“b
bab °t 

b<CA*>ln
(cB*). - (cB*)o (112)

The value of b can be determined from the limiting



mass transfer situation - that is mass transfer that occurs 
when the transferred species is present at very low mass 
fractions. For. such situations it is possible to write:

(n B^lim “ °T ̂ A B  (^°B*^i, lim " (CB*\lim) (113)

where oL°^g is the limiting mass transfer coefficient, and is a
function of the stirring conditions only. Furthermore, since
C * -- > 0; C * -- -*1 •B A
and

(cA*)Ln - l (114)
so that comparison of equation (113) and equation (112) 
written for limiting mass transfer conditions, gives:

oc0̂  (us)

For non-limiting conditions, then, equation (112) becomes

„.B. Asa. (<oVi. (c.b)j (u4)
In ................................. .

Equation (ll6) controls the rate at which the dissolving 
species B is removed from the solid/liquid interface. If 
the dissolution process is transport controlled, (C^*)^,will 
be determined by equilibrium conditions at the solid/liquid 
interface. For example, consider a situation in which pure 
metal B is dissolving in a liquid A/B alloy, Figure 13 showing 
a binary alloy phase diagram.

(C' *)v B 7b is the composition of the bulk liquid alloy, 
and 9, is taken as the temperature at which the dissolution 
process is taking piace,"_(tJ_*)~and (Cl*")’ being -respectively,

£> Q  JJ jj
the solidus and liquidus alloy compositions at that temp­
erature. -

If the dissolution step at the solid/liquid interface 
is not rate controlling, equilibrium will exist at the inter­
face. This means that the liquid alloy at the interface will



contain ® an& "that the surface layers of the solid
metal B will contain sufficient A in solid solution for the
composition of the solid surface to be (C *)c, These layersJb m
will be continually dissolving so that this A does not leave 
sufficient time to diffuse into the bulk of the solid.

Under these conditions, then, the liquid composition 
at the interface is given by the liquidus line, and equation
(ll6) becomes: -

\

o
(117)

This equation will be used later to analyse transport controlled 
dissolution rates.



4.1 The Apparatus

The apparatus is similar to that originally designed 
by Brooks. It consists of three independantly mobile sections 
(Figure 15). A photograph of the apparatus is shown on 
Plate 1.

(2)

( D  (3)

Figure 15 The Apparatus

1 The furnace
2 The probe assembly P.A.)

Control panel (C.P)
Lifting and lowering system (L.L.S) 
Variacs (v)  and Motors (M)

3 The Recorders (ff)



4.1.1 The Furnace

The furnace consists of a large austenitic stainless 
steel crucible which is powered externally by a 2 kV thermo­
cord heater and internally by a 1 kW insulated, stainless 
sheathed heating coil. (Figure 16)

Both of the heaters are controlled by means of Variacs 
and in Figure (l5)J7

Heat losses are minimized by 100 mm of. vermiculite 
insulation.

The alloy is melted and remelted inside the crucible 
which has a tilting mechanism to pour out the molten metal 
if required.

The bulk liquid metal temperature is measured by a 
stainless steel sheathed chromel/alumel thermocouple.
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4• 1 • 2 The Probe Assembly and the Rotating Mechanism

The probe assembly (P.A) is supx>orted by a frame which enables 
the cylindrical probes to be lowered into or raised from the 
liquid bath at a constant speed by means of an A.C.Motor (M2) 
(Figure 15, Plate l)

The travel is limited at its upper and lower positions 
by micro switches.

Another A.C.Motor (id) which is attached to the probe 
assembly and controlled by the Variac enables the probe 
to be rotated at chosen speeds within the range 0 - 180 r.p.m.
The rotation mechanism used permits continuous, vibration-free 
rotation of the probe with continuous monitoring of up to 
three thermocouple outputs from the probe.

The mechanism (Figure 17, Plate 2a) originally constructed 
by Brooks (unpublished paper) is supported on a central stator
(d) by the ball race (a), and driven by a friction wheel 
pressed against the mechanism at (g), the side thrust being 
resisted by the ball race (*).

Six copper'slip-rings' (c)are'bonded'with“araldite 
to an ebonite sleeve attached to the stator. The contact 
brushes (e) are cold rolled Cu-Be strips mounted on a Tufnel 
block (f) attached to the rotating probe assembly. This block 
also acts as the terminal strip for the thermocouple leads 
from the Probe to the recorders. The cylindrical, hollow probe 
is suspended from the rotor by three threaded rods which 
screw into threaded tubes, integrally cast into the probe 
wall (Section 4»1»3)* Cooling air can be supplied to the 
inside wall of the probe by a 2.54 cm diameter pipe (i) 
attached to the stator and positioned concentrically inside
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The apparatus
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FIGURE 17

Section of Rotating Probe Support with Sliprings.



PLA1E 2

A close up to the rotation mechanism

A probe just after a chill-layer experiment
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4«io m e  uoircroi ranei ana m e  itscoraers

A close-up of the control panel can be seen on Pla/te

The control panel contains an emergency switch-off 
system as well as independent switches for operation of the 
variacs, lifting and lowering system and the rotation mech­
anism. Heater currents are displayed on the two ammeters.

The thermocouples are connected to the recorders via 
the panel.

One speedomax type recorder with ranges 0 2, 5> 10?
25? 50 and 100 m.v and two Honeywell Elektronik 15 type re­
corders with ranges 0 10, 100 m.v are used to monitor the
outputs of the thermocouples cast into the probe wall.

A push button on the control panel operates the battery 
powered ’event marker' which, by injecting a D.C. pulse into 
the recorder inputs, enables the exact moment that the probe 
enters or leaves the bath to be marked on the recorder charts.



PLATE 3

The control panel of the apparatus
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4.2 The cylindrical probes (

Figure 18 shows a section through the hollow probes used in

this work. The probes were produced by casting as described in the next 

sections. They were supported from the rotor mechanism by three rods 

that were screwed into three internal threaded tubes that were cast into

the top of the probe wall. Three thermocouples were cast in to the wall

of the probe as shown in the figure so that . the temperatures of 

the inner and outer surfaces of the probe wall could be continuously 

measured during the experiments. Probes we manufactured were of commer­

cially pure lead, commercially pure tin and three lead tin alloys, con­

taining 10$ tin, and 80$ tin and 90$ 'fcifr*
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4*2.1 Pre-casting Preparations

A cylindrical steel mould for casting the hollow cylind­
rical probes was prepared in two halves £  (a) and (b)_J7 by 
machining from a-solid bar of mild steel.

r

i

(a) ( b )

(c)
Figure 19 (a), (b) and (c):

Parts of the steel mould.
(d) wooden core-box
(e) sand core

A bottom piece (Figure19c) fits tightly to the 
main body to complete the mould. (Plate 4» 3*) 
The hole in the bottom section enables a sand-core 
to be centred in the mould to provide cylindrical 
cavity in the probe. (Plate 4 a, b.)

(d)

(e)
 The sand-cores were .prepared in a wooden core-box

(Figure 19d, plate 4a) from Windsor-Rose sand using the 
CO^ process.



PLATE 4

(a) Precasting arrangements showing sandcore as 

prepared in a wood-core-box, three steel 

connection rods and the stainless steel 

mould

(b) The above shown items put together ready for 

casting
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4.2.2 Casting of the Probes

Three hollow steel rods threaded on both surfaces 
are positioned at 120° angles in the top of the mould. After 
casting, these enable the probe to be attached to the rotor 
assembly by means of threaded rods of smaller diameter. 
(Plates 2 and 4).

Three chroinel-alurael thermocouples are carefully 
positioned inside the mould for measuring inside and outside 
wall-temperatures over the main reading section during the 
experiments. The core, ( Section if.2.1* FigureWd ) the 
thermocouples and the rods are held stationary by means of 
clamps whilst the probe is cast.

The closed bottom part of the probe is cast into 
position after the probe is removed from the mould.

A longitudinal section through a lead probe is shown 
diagramatically in Figure ( 18 ).

The stainless steel mould extracted heat very rapidly 
from the solidifying probe metal, ensuring that it solidified 
in a radial direction. A high degree of directional solidi­
fication was thus achieved in the production of all the 
probes, as can be seen from the micrographs of probe material 
shown in Plates 18, 20, 21, 22, 24 and 25.



EXPERIMENTAL PROCEDURE

All the experiments concerning heat and mass transfer 
were carried out on the apparatus described in the previous 
section.

The main object of these experiments was to provide 
sufficient data to test the theoretical developments and to 
give useful information to advance some parts of the theory.

Experimental sequence

" Chill Layer Experiments

These experiments were carried out to determine:

1 the rate of growth and meltback of the chill-layer 
on a cylindrical substrate;

2 the change of the inside and outside surface temp­
eratures of the probe wall with time.
Each chill layer experiment began by melting the 

alloy in the bath and preheating it to about 4 - 5°C. 
above the selected temperature. Then, with zero power 
input the melt would start-to .cool at about 1.8°C. - 
per minute.

In the meantime the probe was screwed to the probe 
assembly by means of the steel rods and the thermocouple 
leads connected to the terminal block on the rotating 
assembly.

Prior to each experiment the bath had to be stirred 
by a hand-held, motorized, rotary stirrer because of 
the large difference in density of the two component 
metals. "When the bath temperature had fallen to with- 

— —in to 1° of-the chosen temperature--the stirrer was . 
taken out of the bath, dross was removed from the 
surface of the melt and rotation of the probe 
commenced. (Failure to remove dross from the surface 
of the melt gave rise to an uneven probe surface.)
The rotation speed was measured by a hand hold tachometer. 
During all the chill layer experiments the rotation 
speed was kept at 60 r.p.m.



Each experiment was started by lowering the ro- 
rotating probe into the bath. The event marker was 
operated just as the probe touched the bath surface,
(and again just as it cleared the bath surface on 
withdrawal.)

During the period while the probe was in the melt 
the bath temperature and the probe wall temperature 
were monitored continuously. A stop watch was used 
to measure the time of immersion.

.1.1 Zero bath superheat

Before every experiment with zero bath superheat, 
the bath temperature was brought just above its melting 
point.

The first probe was lowered with zero power output 
of the heaters into the bath and removed immediately 
so as to obtain the minimum possible time of exposure. 
This gave about 6 seconds of exposure to the bottom 
end of the probe, (the probe moved at about 4cm/sec. 
the length exposed was about 12 cm.) The exposure time 
was then gradually increased for each set of experi­
ments (in 3 6 second, intervals), so that the thick­
ness of the ^VcnAing chill-layer on the probe could 
be measured as a function of the time of immersion.'
This measurement was made when the probe had cooled 
using a micrometer at various circumferential positions. 
The measurements were made in a 4 cm wide region start­
ing 4 cm above the bottom end of the probe, (i.e. mostly 
4 cm. below the melt surface) as this was found to be 
a suitable region in which to take a mean reading to 
give tbe thicknesses of the chill-layer at a specific 
time. (Figure 20).....

As Fig . 20and Plate 6 show, erroneously enhanced 
thicknesses of solid metal formed close to the bath 
surface and close to the bottom plug. These were due 
to the effect of heat flow upwards along the probe 
wall from the bath surface, and into the bottom plug 
of the probe. Three separate dips were made for each



Prob:

main, reading 

area (4 cm)

4 cm

CHILL-LAYER

Fig. 20

MAIN READiNG AREA



chosen exposure time and at least nine different measure­
ments were made of the chill-layer thickness for each 
such dip. Chill-layer experiments for zero superheat 
were discontinued once the layer was found to have 
stopped growing.

.1.2 Superheated baths

Another series of experiments was carried out 
with the bath at various degrees of superheat, cylind­
rical rotating lead probes again'being immersed in 
the eutectic lead-tin melt.

The time for which the rotating probe remained 
in the melt was progressively increased in separate 
experiments until it could be removed with a relative­
ly clean lead surface on which no chill-layer remained 
within the area designated in Section as
area within which measurements were made.

Thickness readings were taken in a similar way 
to those at zero superheat.

.2 Dissolution experiments

These experiments were carried out to determine 
the mechanism controlling the rate of dissolution b y ' 
investigating possible relationships between the rate 
of dissolution and :

1 the rotation speed of the probe,
2 the experimental temperature
3 the orientation dependence of the dissolution 

process. The probes for the dissolution experiment
were identical to those used.in the chill-layer experi­
ments except that they contained no thermocouple.

Immediately before the experiments, the probes 
were machined (Plate $))• To remove the thin oxide films 
films that readily form even at room temperatures, 
the lowest possible machining speed was chosen to avoid 
as far as possible recrystallisation of the probe 
material.



Prior to each experiment the probes were weighed 
and the experiments were started by dipping the probes 
into the melt. After the relevant chill-layer melt 
back time had been exceeded the probe was held in the 
bath for a pre-selected period of time after which it 
was weighed again to determine the amount of metal 
dissolved. Experiments were carried out for a range 
of "steadily increasing dissolution times. Selected 
probes were also prepared for a macro-structural examin­
ation.

These experiments were repeated for pure lead, 
pure tin and for some of their alloys at different 
rotation speeds, different concentration driving forces 
and different temperatures. (See Table 9 ). After 
each experiment the melt was brought back to the eut­
ectic composition by adding the necessary amounts of 
the metal. After every 5 experiments the bath compo­
sition was chemically analysed for Pb and Sn.

5.1.3 Preparation of Micro and Macro Structures

5.1.3.1 Pb - Sn in their pure form

To investigate the attack of liquid on the solid 
probes as well as the possible orientation dependence 
of this attack, samples were cut from some of the dis­
solved probes so that sections could be prepared through 
the surface layers.

Special attention was given to the preparation of 
the samples from the pure lead and tin probes since 
these materials can be easily deformed. Such deformation 
usually leads to immediate recrystallisation which 
changes the structure of the materials under-investi­
gations. The procedure adopted in this work is as 
follows.

The samples were cut out of those probes by a 
band saw at the lowest possible speed.

After the samples had been mounted in cold setting

r



Metset ’FT’ resin, they were hand-ground wet on the 
following series of waterproof polishing papers for 
the indicated periods of time:

(i) number: 120, 220 520 (about 20 minutes each)
(ii) 400 (50 minutes) and

(iii) 600 (60 minutes).
The specimens were then polished on a wheel covered with 
napped wool cloth impregnated with 4 - 8 diamond paste 
and rotating at around 40 - 60 r.p.m. until most of 
the scratches had dissappeared and the surface of the 
specimens had become bright. (6 - 8 hours.) The same 
operation was then carried out using No. 0 - 7 dia­
mond paste.

During the course of the fine polishing the lead 
and tin samples were etched several times. The samples 
of all metals were then finally etched to develop their 
micrastructures. For the etching of lead two different
solutions were tried:

1 Normal Vilella’s etching medium (3 minutes)
16 cm^ Nitric acid (l.40$

316 cm Glacial acetic acid 
368 cm Glycerol
*Z

2 20 cm nitric acid (1.40) (10 minutes)
380 cm distilled water

The second solution produced the best results, and all 
the micro- and macro-sections illustrated in the thesis 
have been prepared with this etchant. For the etching 
of pure tin the following solution was used:

32 cnr HC1
  lOg Ferric chloride

395 cm Distilled water 33 cm Alcohol



3.2 Pb - Sn Alloys

The bath material, as cooled in the air, and the 
growing chill layer of the same composition were sec­
tioned for micro-structural observation. (Plates 5> 7> 
The preparation of these micro-structures was not as • 
difficult as for the pure metals. The method of prep­
aration used is as indicated on the relevant plates.



PLATE 5

Pb-Sn eutectic(bath)cooled in air 

Etchant: Acetic acid; Nitric acid; Glycerol

Magnification: x 40



r>LATE 5



PLATE 6

Chill-layer grovm on a Pb-probe under unstirred 

conditions. '



PLATE 6



PLATE 7

Chill-layer growth on a Pb-probe from Pb-Sn eutectic 
bath under

(i) unstirred conditions

(ii) stirred conditions.

Magnification: x 20.

(iii) stirred conditions 

Magnification: x 40*

Etchant: Acetic acid; Nitric acid; Glyserol = 1:1:4



rLH I t f



PLA2E 8

A close up of one of the perturbations on the 

growing chill-layer shown on Plate  ̂(top 

right-hand comer),

Magnification: x 60

A section taken (normal) through chill-layer 

(normal to the growth direction). .

Magnification: x 60

Etchant: Acetic acid; Nitric acid; Glyserol = 1





RESULTS

Chill-layer resulxs

6.1.1 Chill-layer growth at Zero Superheat

The experimentally measured growth of the chill- 
layer on a pure Pb-probe immersed in a Pb - Sn eutectic 
bath at zero superheat using a probe rotation speed 
of 60 r.p •m. is shown by the error bars in Figure 21 
Each error bar covers the range of chill-layer thick­
nesses determined for three separate immersions. The 
results are also tabulated in Table 1 which shows the 
mean of three thickness readings taken in tnree diff­
erent radial directions at a specific height from the 
bottom of the pxobe, readings being taken at three such 
heights for each exposure time.

Experimental results obtained by Brooks under the 
same conditions are included in Figure 21 for comparison.

Also shown are the results of the present theor­
etical treatment for two different values of the inter­
face heat transfer coefficient.

Figure 2 2 compares the experimental inside and 
outside wall temperatures of the probe with the theor­
etically predicted midwall temperatures.

6.1.2 Chill-layer growth and melt-back in superheated
baths

The experimentally measured growth and melt-back 
of the chill-layers on pure lead probes immersed in 
Pb - Sn eutectic baths at 186°, 190°,195°> 200 , 210 and 
220°C. are shown in Figures 23, 24, 26, 27, and are tabul­
ated in Tables 1 - 8  . A  probe rotation speed of 
60 r.p •m. was used throughout.

These Figures also show the results of the present 
theoretical treatment for an appropriately chosen value’ 
of the interface heat transfer coefficient. Some theor­
etical results due to Brooks, for similar conditions 
are also shown.
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Results obtained at bath temperatures above 220°C 
are given in tabular form only (Table ) since
the chill-layer thickness melt back times at these 
temperatures were relatively small.

•3 Microstructural examination of chill-layer

Some microstructural examinations of chill-layers 
grown under either static or dynamic conditions showed 
a globular form of eutectic (Plates 7> 8) as opposed 
to the characteristically lamellar eutectic structure 
produced in the same composition when slowly cooled. 
(Plate 5.)

In an unstirred bath the growth of the chill-layer 
was accompanied by the formation of primary tin den- 
trite s which caused a roughening of the chill-layer.

Plate 6 shows the rough surface appearance of the 
probe resulting from dendritic growth of the chill-layer. 
The upper of the two chill layers shown in the top 
photograph in Plate 7 shows how this roughness is re­
lated to the dendritic structure. The top photograph 
in Plate 8, which is a magnification of the top right 
hand portion of this chill layer, shows how each pro- 
tuburence of the rough surface is related to an ind­
ividual dendrite.

This dentritic growth was avoided by stirring 
the bath prior to immersion and by rotation of the 
probe. This can be seen from the lower of the two 
chill layers in the top photograph of Plate 7 » which 
has been grown under identical to the upper chill 
_layer- except that the_hath ..was well stirred prior to 
the experiment, and the probe was rotated gently 
throughout the experiment.
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6•  ̂ Dissolution Results

Dissolution experiments have been carried out using probes 

made from the metals specified in Table 9, under the conditions 

of bath temperature and rotation speed also specified in this 

Table. The weights of the probe before and after each experiment 

were recorded and used to calculate a mean dissolution rate, the 

total weight loss being divided by the initial cylindrical sur­

face area of the probe in contact with the bath and by the time 

for which the probe surface was in contact with the bath. This 

latter time was determined as the total time of immersion less the 

time determined in the previous section for the melt-back of the 

chill layer. The results of these experiments are shown in 

Tables 10-16. . No measurements could be obtained for the alloys

containing QOfo and 9Offo tin since the probes were attacked so rapidly 

that they disintegrated.

In addition probes removed from the bath were examined and 

photographed and sections were obtained for metallographic observ­

ation. These plates are presented in Section 6.2.5.

6.2.1 Dissolution Rates

The mean dissolution rates listed in Tables 1 0 - 1 6  

are plotted in Figures 51 - 55 as a function of exposure time. 

Figure 51 shows the results for lead obtained when the rotation 

speed of the probe was 60 r.p.m. The Figure shows that the mean 

dissolution rates do not vary very much with exposure time, but 

increase quite rapidly with bath temperature. Figure 52 shows the 

results obtained for lead when the bath temperature was 250°C.

These results show that the dissolution rate increases slightly 

with exposure time and very markedly with the speed of rotation.
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Dissolution Results 

TABLE 9

EXPERIMENTAL CONDITIONS FOR DISSOLUTION EXPERIMENTS

Probe Metal Bath Temp. Rotation Speed 
(°C) (r.p.m.)

200 60

220 60

0

Pb 30

230 60

120

250 60

120

30

41
Sn 200 60

120

90^ Pb 230 50
10io Sn 100

lOfo Pb 190 60

9Qf?o Sn ’

2Qffo Pb 190 60

1o Sn



FIGURE 31
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Average rates of dissolution for pure lead at different rotation 
speeds but constant temperature (230°C)
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The results obtained for lead at 120 r.p.m. and at two different 

bath temperatures are shown in Figure 33 • The results obtained 

at 120 r.p.m. after fairly long exposure times suggest that the 

dissolution rate increases slightly at first with exposure time 

and then starts to decrease again.

Figures 34 and 35 show that the results obtained for pure tin and
90$Pb-10^ Sn probes tend to behave in a similar way to the results for 
lead.

.2 Calculation of Mass Transfer Coefficient

The dissolution rates presented in the previous section 

have been used to calculate mass transfer rates on the assump­

tion that the dissolution process is controlled by mass transfer 

as outlined in Section 3»4»2.

Equation (117) in that section: 

r" cLAB T r-f * X / * x 7 , X
n B - — ,----- ^ (C B>L " (C B}b -7 W

<C A) Ln

can be re-written in the form:

«"B = 4 ^  E  ( V l  “ A > b  - 7  • 0 0
<C A n

where (C^)^ and (C^)^ are the mass concentrations of the dissol­

ving metal at the liquidus, i.e. in equilibrium with the surface 
of the probe, and o f  dke L,^nicl jo hrfse .

Equation (b) has been used to calculate values of gn

from the initial dissolution rates obtained by extrapolating the 

lines in Figures 31 - 35 back to zero exposure time. The values
involved in these calculations are set out in in Tables 17 and 18.
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Values of the (CL,),. , the mass concentration of the dissolving.D JLl
metal, have been calculated from the bath temperature using the 

lead/tin phase diagram shown in Figure 36• This Figure gives the 

mass fractions at the liquidus, and the values of the mass con­

centrations were then calculated using the relationship pre­

sented- by W. Hofmann ^  for the variation of the density of lead/ 

tin melts with composition. The values for (C_,)T for the experi-
X) Jj

ments involving the 10jo Sn, JQffo Pb probe were calculated as if

the probe were made of lead. However, the value of dissolution

rate used to calculate the mass transfer coefficient was taken

to be the rate at which lead dissolved from the alloy probe, i.e.
9 /*y ^ths of the rate at which the probe dissolved.

Values of (C-g)̂  were calculated in a similar manner from 

the eutectic composition shown in Figure 36. These values are 

(Cpb)b = 3.05 g/cm5 (for 230°C.)

(cgn)b = 4.958 g/em5 (for 200°C.)

The values of the limiting mass transfer coefficient shown in 

Tables 17/18 are plotted in Figure 37 • The Figure also shows 

twp theoretical curves for the mass transfer coefficient in the 

system. The Figure will be discussed later.
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6*2.3 Visual Observation of the Probe System

The outer probe surface was visually examined after each 

experiment. Typical appearances of the probes are shown in Plates 

9 to 17.

Plate 9 shows a pure lead probe freshly machined and ready to 

be immersed in the eutectic bath, Plate 10 showing the patchy uneven 

attack that occurred when unmachined probes were used in the experi­

ments. All the subsequent Plates show the appearance of machined 

probes after dissolution attack. Plate' 11 shows a lead probe that 

had not been rotated during dissolution. It can be seen that the attack 

on the probe surface has tended to follow the vertical lines of the 

natural convection induced flow. Plate 12 shows the surface of a 

tin probe after it had been rotated at 41 r.p.m., equivalent to 

a Taylor Number of3.2xlO^ It can be seen that the attack on the probe 

now tends to follow tangential flow of the fluid flowing past the 

probe. Plate 13 shows a lead probe that was rotated at 60 r.p.m. mo60~
4.6x10^ during dissolution, and it can be seen that the regular

tangential patterns of erosion are beginning to be disturbed by the

more intense motion. Plate 15 shows tin probe treated under the same

hydrodynamic conditions and showing a very similar appearance. A

similar disturbance to the regular erosion patterns is demonstrated

in Plate 14 which shows a lead probe rotated at 40 r.p.m. for

some time and then at 80rpm Ta0~= 6.2x10^. Plate 16 shows the appear-oO
ance of a lead probe after a dissolution experiment at 120rpm Ta =

9.2 x 10^. It can be seen that the regular patterns of erosion have 

been broken down completely. The pattern has been similarly broken 

down in the case of the probe shown in Plate 17* This probe had been 

mounted on the rotor mechanism with a slight eccentricity. It was 

then rotated at 60 r.p.m. super imposing a vibratory motion on the



PLATE 9

Pb-probe, as machined prior to dissolution experiment
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PLATE 10

A dissolution experiment 

carried out with a Pb-probe 

without surface machining



P L A T E
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PLATE 11

The surface appearance 

of a Pb-probe exposed to a Pb-Sn eutectic bath 

under static conditions



P L A T E  11



- 122 -

PLATE 12

Probe: pure tin

Bath temperature: 200°C. 

Rotation speed: 41 r.p.m.
Dissolution time: 180 secs.



PL A T E  12
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PLATE 13

Probe: Pure lead

Bath temperature: 230°C.

Rotation speed: 60 r.p.m.

Dissolution time: 220 secs.



P L A T E  13
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PLATE 14

Probe metal: pare lead

Bath temperature: 230°C,

Rotation Speed Dissolution time

(r.p.m.) (secs.)

(i) 40 80
(ii) 80 80
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PLATE 15

Probe metal: Pure tin
oBath temperature: 200 C.

Rotation speed: 60 r.p.m.

Dissolution time: 120 secs.
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PLATE 16

Probe metal: pure lead 

Bath temperature: 250°C 

Rotation speed: 120 r.p.m. 

Dissolution time: 180° sec



P L A T E  16
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PLATE 17

Probe metal: pure tin 
Bath temperature: 200°C. 

Rotation speed: 60 r.p.m 

Dissolution time: 160 sec



P L A T  E 17



regular tangential flow.

4 Metallographic Examination of the Dissolving Probe Materials

A number of sections were taken through the walls of 

probes after dissolution and examined metallographically. Typical 

macro- and micrographs areshown in Plates 18 to 26. They have been 

prepared as outlined in. section Plates 18 to 21 show

sections through pure lead probes after dissolution attack at 

120 r.p.m. Plates 18, 20 and 21 show that the uneveness of the sur­

face attack is unrelated to the grain size, grain orientation or to 

the grain boundaries. Plate 19 demonstrates the problems involved 
in preparing micrographs of pure lead. The surface shown in this 

Plate had been polished for 4 hours, whereas the other three plates 

show surfaces that had.been polished for 8 hours. The surface that 

had been polished for a mere 4 hours still shows signs of the falsely 

fine grain size produced by recrystallisation during the sawing of 

the section from the probe.

Plate 22 shows sections through a 80^ Sn - 20ffo Pb probe the 

upper section having been photographed before the dissolution experi­

ment and the lower section after a second dissolution time. The 

overall attack on the surface appears to have been fairly uniform 

except that there is evidence of a more rapid attack into the inter- 

dendritic eutectic metal. When longer dissolution experiments were 

attempted with this alloy, the probe disentegrated, the bottom section 

of the probe breaking off from the remainder. The breaks appeared 

to be due to partial melting of the eutectic metal, especially in 

eutectic rich regions in the probe. This is demonstrated in Plate 23 > 

where the upper micrograph shows eutectic dense regions in a probe 

of this alloy, and the lower micrograph is taken through the region 

of fracture.
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PLATE 18

Macrostructure of a lead probe after a dissolution experiment 

Sectioned normal to the surface, viewed by oblique 

illumination.

Experimental conditions:

Bath temperature = 230°C

Dissolution time = 180 seconds

Magnification: x 2.5

Rotation speed = 120 r.p.m.

Magnification:

As above 

x 10





- 130 -

PLATS 19

Typical ambiguous structure 

preparation technique.

Experimental conditions: 

Probe material 

Rotation speed 

Dissolution time

Magnification:

produced as a result of incomplete

= lead 

= 60 r.p.m.

= 150 seconds

x 20

Magnification:

As above 

x 40





PLATE 20

Macrostructure of a lead probe after a dissolution experiment. 

Sectioned normal to the surface, viewed by oblique illumination.

Experimental conditions:

Bath temperature: 230°C

Rotation speed: 120 r.p.m.

Dissolution time: 120 seconds

Magnification: x 15



PLATE 20
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PLATE 21

Macrostructure of a lead probe after a dissolution experiment. 

Sectioned normal to the surface, viewed by oblique illumination.

Experimental conditions:

Bath temperature = 230°C

Rotation speed = 120 r.p.m.

Dissolution time = l60 seconds

Magnification: x 10

As above
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PLATE 22

Microstructure of 80 wt.$ Sn,20 wt.$ Pb alloy probe before 

dissolution experiment. (Sectioned normal to the surface.)

x 60

Microstructure of above alloy after 30 seconds of dissolution time 

(right hand side of the picture being the attacked surface).

Experimental conditions:

Bath temperature = 190°C

Rotation speed = 60 r.p.m.

-Etchant: - "" jfo Nital

x 60
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PLATE 23

Microstructure of 80 wt. 

experiment.

(Sectioned normal to the

Magnification: x 80

Microstructure of the above alloy after 60 seconds of dissolution 
time (section taken in the vacinity of the point at which the 
probe broke).

Experimental conditions:

Bath temperature 

Rotation speed 

Magnification:

Etchant: 2fo Rital

= I90°c
= 60 r.p.m.

x 120

io Sn, 20 wt io Pb alloy prior a dissolution

solidification direction)
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Plate 24 shows a JO/o Sn - IQffo Pb alloy probe after 40 seconds 

of dissolution time. The section A-A through the probe illustrates 

the approximate region in which sections were taken for all the micro­

graphs shown here. The micrograph in the lower picture shows the 
surface region,the attacked surface being on the right hand side.

Once again, there is evidence of more rapid attack into the eutectic 

metal. The upper micrograph of Plate 25 shows the surface of a sim­

ilar probe after exposure to dissolution attack for 60 seconds. The 

more rapid attack in the'eutectic regions is more obvious on the 
dissolution surface, (the right hand face of the upper micrograph).

The lower micrograph, presented for completeness, shows a section 

parallel to the surface of the probe. Only a limited range of ex­

periments could be carried out with this alloy since, once again, 

the alloy disintegrated after longer exposure times and at higher 
rotation speeds.

Plate 26 shows a section across the wall of a pure tin probe. 

The two micrographs at different magnifications, both demonstrate 

that the uneven surface attack is unrelated to the grain size, grain 

orientation or grain boundaries for tin as it is for lead.

Plate 27 shows the appearance of an attacked JQf/o Pb - IQffo Sn 

probe and a micrograph of the structure of this probe taken parallel’ 
to the surface of the probe.
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PLATE 24

A 90 wt. Sn, 10 wt. <$0 Pb alloy probe after 40 seconds of 
dissolution time. >
Experimental conditions:

Bath temperature = 190°C.

Rotation speed = 60 r.p.m.

Microstructure'of section A - A of above probe. Right hand 

side of the section showing attacked surface.
Magnification: x 60

Etchant: 51° Rital



PLATE 24
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PLATE 25

Micro structure of a 90 wt. <fo Sn, 10 wt. °Jo Pb alloy after 60 seconds 

of dissolution time, (sectioned normal to the surface).

Right hand side of the section showing attacked surface.

Experimental conditions:

Bath temperature = 190 C.

Rotation speed = 60 r.p.m.

Magnification: x 60

As above (sectioned normal to the solidification direction)

Etchant: 2°/o Nital
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PLATE 26

Macrostructure^of pure tin probe after a dissolution experiment, 

sectioned normal to the surface.

Experimental conditions:
Bath temperature = 200°C

Rotation speed = 60 r.p.m.

Dissolution time = 120 seconds

Magnification: x 10

As above

Magnification: x 15.



‘H'Wx X



PLATE 27

The surface appearance of a 90 wt. fo Fb, 10 wt. $ Sn alloy probe 

after 100 seconds of dissolution time.

Experimental conditions:

Bath temperature = 230°C.

Rotation speed = 100 r.p.m,

Microstructure of the above probe(sectioned normal to surface). 

Magnification: . x 60

Etchant: '2io Rital
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7 DISCUSSION

7.1 Introduction

The main object of this project was to establish conditions for 

successful cladding. For this purpose heat transfer phenomena during 

growth and melt back of a chill layer on a cylindrical substrate and 

the subsequent dissolution process were studied theoretically and ex­

perimentally.

Although the experimental results were mostly used to test the 

theories involved occasionally they were also used as an aid for making 

correct assumptions during the development of the theory.

7.2 Theoretical treatment of the heat transfer nhenomena

7.2.1 A comparison of the integral profile methods for cylindrical and

planar cases at zero superheat.

A comparison between the integral profile methods for planar and 

cylindrical cases is shown in Figure 38 .

An integral profile method derived for a plane wall as applied 

to a cylindrical shape without making any allowance for the reduction 

in area normal to the heat flow direction, showed discrepencies between 

the predicted and measured values for chill-layer thicknesses and 

wall-temperatures. Figure 38 shows that the predicted chill-layer 

, thickness is greater than the actual value at all times.

For zero superheat a "correction factor" can be obtained for 

each thickness using the solidification front radius predicted by the 

cylindrical method (r ) and a simple heat balance comparison between theo .L
two geometries . For a plane wall the heat balance for any solidifi­

cation front radius r gives:ci
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heat released during heat gained by
solidification the wall

P s H(rS l " ro)= Cp Pw 9s(ro - rr> <118)

calling r - r = tn & o 1
Cp pw

+ =  0 (r - r ) (119)1 s H s v o r7 \

Similarly for the cylindrical case 
heat released

fBH (%  - ro2) - Cp Pw ®s (ro2 - rr} (120)

calling r - r = t0 • e s2 o 2
Qppv 6S _ (ro - rr)(ro + rr> (121)
p H  ( r + r )is v s. o 72

dividing (t^) by (t^) we get

■fco ( r + r )O • V. n r 72 = •t~ x ' (122)
V  (rs2 + To)

or
( r + r )

t0 = --- -̂-----r _  (123)
2 ( \  + ro)

The broken lire in Figure 38 shows corrected thickness values (P.M. 

corrected) obtained by applying equation (123) to the results of 

the planar integral profile method (P.M.) The values are in good, but 

not perfect, agreement with the values actually predicted by the cyl- 

*_indriGal method_(C.M.). . As would be-expected the uncorrected predictions 

of the planar integral profile method give greater thicknesses than the 

cylindrical method. As the heat balance shows, this is because the 

extraction of a given quantity of heat will result in the solidifi­

cation of a progressively decreasing thickness of solid metal on the 

outside of the cylindrical probe. In the case of a plane wall, there
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would be no such decrease, so that the planar integral profile method 

will predict the greater thicknesses.

The theoretical curves in Figure J)Q have been calculated using a 
2 ovalue of 2250 W/m C for the interface heat transfer coefficient be­

tween the inner surface of the solidifying metal and the outer surface 

of the probe wall. The value of this coefficient is discussed in the 

next Section.

7.2.2 Interface heat transfer coefficient

One unknown parameter in the heat transfer model for the growth 

and melt back of the chill-layer is the heat transfer coefficient des­

cribing the transfer of heat across the interface between the solidified

chill layer, and the outer surface of the probe. The value adopted in
2 othis work for this coefficient is 2250 W/m" C. This value has been 

determined by a trial and error procedure in-which chill layer thicknesses 

and temperature variations predicted by the cylindrical integral profile

method for zero superheat using different values of the interface heat

transfer coefficient were compared with the values determined experi­

mentally.

Figure 21 shows growing chill layer thickness predicted using 

the two indicated values of the coefficient compared with the experi­

mentally measured thicknesses.

7.2.3 The prediction of chill layer growth and melt back

in the presence of superheat.

Figures 21 to 30 , showing the growth and melt back of chill 

layers of lead-tin eutectic on the lead probe, and the accompanying 

change of inner and outer wall temperatures^show computer predictions
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as well as experimental'results. The predictions have been made using 

the equations developed in Sections and 3»3*2 for heat flow in

the chill layer and in the probe wall, and the third model for heat 

transfer in the liquid metal described in Section 3■> 3- 3 •

The experiments in which the results shown in these Figures were 

obtained were carried out at 60 r.p.m., over a range of liquid metal 

temperatures representing degrees of superheat varying from 3°S to 

37°C.

The agreement achieved between theory and experiment for the chill 

layer thicknesses is remarkably good considering this range of degrees 

of superheat. The figures showing how the wall temperatures vary throug 

out the growth and melt back of the chill layer show similar good agree­

ment, since the predicted mean temperature of the wall always lies 

between the measured temperatures of the inner and outer surfaces of 

the probe.

The curves for the growth and melt back of the chill layer in 

the presence of superheat are all based on a complicated conduction/ 

convection model for heat flow in the liquid metal. This model, and 

its development are discussed in the next Section.
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7.2.4 The conduction/convection model for heat flow in

the liquid metal

Figure 39 shows some theoretical curves predicted by Brooks on 

the assumption that heat transfer from the liquid metal to the grow­

ing and then melting chill layer could be described in terms of a con­

stant heat transfer coefficient. Brook’s curves are slightly in error 

because he used equations describing solidification onto a plain wall 

and not onto a cylindrical hollow probe, but the discrepancy between 

the theoretical and experimental curves is very great indeed. It is 

obviously due to an incorrect model for heat transfer in the liquid 

metal. The overall heat balance on the solidification and melt back 

process is more or less correctly predicted since the theoretical 

amount of heat absorbed by the probe wall and the total melt back time 

predicted theoretically can be arranged to equal that measured experi­

mentally by choice of suitable values of the liquid heat transfer co­

efficient. The shapes of the experimental and theoreti oal growth and 

melt back curves, however, are entirely different and it is apparent 

that the heat transfer coefficient that predicts a correct melt back 

time provides too little heat during the early stages of solidification 

and too much heat during the later stages. The flow of heat from the 

liquid metal to the solidification front is incorrectly distributed 

throughout the growth and melt back time.

The cold rotating probe is suddenly immersed into the liquid 

eutectic_bath which at that time is stationary. The-liquid metal in

contact with the probe will cool rapidly giving up its heat to the probe

and a layer of cooled liquid will form around the probe growing out­

wards from the probe surface. At the same time, the liquid metal in

contact with the probe will start to rotate with the probe, and a layer

of circulating liquid will grow out from the surface of the probe.
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The rate at which the layer of cooled liquid will grow is determined 

by the value of the thermal diffusivity,and the rate at which the layer 

of circulating liquid will grow is determined by the kinematic viscosity, 

the ratio of the kinematic viscosity to the thermal diffusivity being 

termed the Prandtl number. Prandtl numbers for liquid metals are al­

ways considerably less than one because of the high contribution to 

the thermal conductivity made by the electrons in the liquid metal.

Thus the layer of cooled liquid grows much more rapidly than the layer 

of moving liquid. The initial growth of the cooled liquid layer is 

controlled by conduction, and it is conduction that is the mechanism 

whereby this layer gives up its heat to the probe surface.

For these reasons, a model for heat transfer in the liquid metal 

was developed in which a layer of chilled metal grew outwards from the 

probe, giving up its sensible heat to the probe by conduction. Figure 40 

shows theoretical curves predicted on this basis for liquid metal temp­

eratures of 180°C and 220°C compared with the experimental results 

measured at those temperatures.

The figure shows that this model for heat transfer in the liquid 

metal predicts chill layer thicknesses that agree very well with the 

measured values during the initial stages of solidification. After 

some 5 seconds, however, the theoretical results start to diverge from 

the measured values giving increasingly greater thicknesses.

_Obviously_the model involving a growing conduction layer predicts 

much higher heat fluxes from the liquid to the solidification front 

than the model based on a constant heat flow - the temperature grad- 

iants at the front are very high indeed being initially infinite.

These heat fluxes inhibit the growth of the solidification layer at 

a time when the high temperature gradients in the probe confer on it
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its greatest ability to absorb heat. Thus the heat transfer model based 

on the growing conduction layer predicts lower initial solidification 

rates than the model based on the constant heat transfer coefficient.

After the initial soldification process however, the thicknesses 

predicted by the conduction layer model are greater than the measured 

values - the model is predicting heat fluxes from the liquid metal that 

are too low. To see why this is, we must again consider the process 

occurring in the liquid around the probe. The growing conduction layer 

is followed by a growing layer c£ circulating liquid. At some stage 

the velocity of this circulating liquid will be sufficient to exceed 

the criterion for the formation of Taylor vortices. Once these vortices 

are formed, they will immediately stir up the liquid and destroy the 

conduction layer increasing very significantly the heat flux to the 

solidification front. It is for this reason that the measured thick­

ness soon start to fall below those predicted by the model based on the 

existence of the conduction layer.

Examination of the measured of chill layer thicknesses shown in

Figures 40 and 23 for 3°C of superheat (0^ = 186) show that the rate

of melt back tends to a constant value. A straight line drawn through

the measured values has a slope of -8.2 x 10-  ̂cm/s. A simple heat

balance of the layer of melting metal shows that this constant slope •

indicates that there is a constant heat flux from the liquid metal to

the surface of the probe. By this stage in the solidification and melt-

back process, the temperature difference across the interface between

the probe and the chill layer will have become negligibly small -

the chill layer is effectively insulated. A heat balance thus shows: 
n dt

q . p H - &  (124)
s AT

The constant heat flux from the liquid can be described in terms of a



constant heat transfer coefficient:

s h"XIQ (125)

Thus the value of this heat transfer coefficient can be determined 

• from the slope measured from figures 23 and 40*

Substituting the measured value of the slope into this equation gives:

Thus examination of the theoretical and experimental curves shown in

Figure 40 shows that a conduction layer grows initially in the liquid

but is then disturbed by the developing convection currents. These

convection currents eventually give rise to a boundary layer whose thick-

ness corresponds to the heat transfer coefficient value given in equation 
126.

The exact mechanism whereby the conduction layer is disturbed and 

the convection layer established is extremely complicated. If it could 

be analysed, any such analysis is certainly beyond the scope of this 

work. The simple approach described in Section 3»3*3 in terms of the 

half life of the process is the best approach that can be developed.

The value of the half life has been found by trial and error. Figure 41 

shows theoretical curves predicted for halflifes of 2.5* 5 and 6 seconds. 

The best agreement is obtained when the half life is chosen as 6 seconds, 

and it is this value that has been used throughout this work for all 

predictions made when the probe speed is 60 r.p.m.

The theoretical curves shown in Figures 23 to 29 all show very 

good agreement with the experimentally measured thicknesses. This 

agreement serves as justification for the appropriateness of the 

liquid metal heat transfer model proposed in this work. Further 

evidence for its appropriateness is provided by Figure A 2

(126)
(0T - 0 )L s

(127)
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Figure 42 shows results obtained by Brooks for the growth and 

melt back of a chill layer of lead/tin eutectic on a stainless steel

probe, rotated at 68 r.p.m. and at 200 r.p.m. The theoretical curve 

at 68 r.p.m. has been obtained using the liquid heat transfer coefficient 

and the half-life of the decay process used in obtaining the previous 

curves at 60 r.p.m. The curve at 200 r.p.m. has been obtained using 

the following values:

This value of the heat transfer coefficient has been obtained from the 

value at 60 r.p.m. on the assumption that the coefficient is propor--
0  7tional to (Re) * . The value of T  ± has been obtained by assuming 

that the time taken to establish the Taylor vortices will be reduced 

as the speed of rotation of the probe is increased, following a sim­

ilar power law.

= 17000 V /i

?"i = 3  seconds
2
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7.5 Dissolution of lead, tin and lead/tin alloys in molten

lead/tin eutectic

7.3.1 Mechanism of the Dissolution Process

Whenever a solid is dissolved in a liquid, the question is raised 

as to whether the dissolution step is controlled by mass transfer in 

the liquid, or by the actual dissolution step at the solid/liquid inter­

face. As pointed out in Section 2.4.3» a number of workers have invest­

igated the dissolution of solid metals in liquid metals using the 

rotating cylinder geometry used in this work. In the main, these workers 

have concluded that the processes are mass transfer controlled because 

their rate increases as the speed of rotation inceases. Lommel and 

Chalmers ^ , however, concluded that dissolution of lead in lead/tin 

eutectic was surface controlled.

The experiments on the rate at which lead, tin and lead/tin 

alloys dissolve in lead/tin eutectic reported here allow the mechan­

ism of the dissolution process to be investigated. The results of 

the experiments show quite clearly that the dissolution process is con­

trolled by mass transfer in the liquid metal and not by any effect at 

the dissolution interface. The separate items of evidence for this 

. conclusion are discussed in the subsequent sections.

7.3*2 Effect of grain size, orientation and grain boundaries

If the dissolution of a metal is controlled by the actual dis­

solution step at the surface, it will be dependent on differences in 

the orientation of individual grains to the surface. The dissolution 

interface will take on an uneven shape as different grains are attacked 

to different extents. Dissolution will also occur more rapidly at 

grain boundaries than in the middle of grains, further contributing 

to the uneveness of the dissolution surface. The external appearances
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of the probes shown in the Plates 12 - 17 show a very uneven attack 

which suggests surface control. For this reason, the micrographs shown 

in Plates 18 to 26 were prepared to allow investigation of any relation­

ship that might exist between the irregularities in the surface, and 

the grain size of the dissolving probe. The micrographs of pure lead 

and tin (Plates 18 to 21 and 26) show that the irregularities in the. 

shape of the surface are not dependent on the grain size or the orien­

tation of individual grains. Thus the irregular shape of the dissolution 

interface is not an indication that the dissolution of lead, tin or lead/ 

tin alloy is controlled by the surface dissolution step. As the next 

section shows the irregularities are directly related to mass transfer 

in the liquid phase.

The micrographs of the lead/tin alloys, which were obtained after 

much shorter exposure times and are presented at a greater magnification, 

show that the prime attack was on the inter-dcndritic eutectic metal.

The upper micrograph of Plate 25 being a particularly clear illustration 

of this. It is not surprising that the inter-dendritic metal was attacked 

preferentially because it merely has to melt off into the eutectic bath. 

Indeed, in the highly alloyed probes, the attack was so extensive that 

large regions in the probe melted, and the probe disintegrated. Plate 23 

• represents two micrographs which illustrate how areas with a high 

fraction of eutectic could be very rapidly attacked.

7.3*3 Morphology of the dissolution interface and fluid flow

The previous section has shown that the uneven shape of the sur­

faces of the probes after dissolution is not related to the grain structure 

of the probes. Close examination of the morphology shows, in fact, 

that it is related to the flow patterns in the eutectic bath.

Plate 11 shows a lead probe after it has been immersed, in the



eutectic bath but not rotated. It can be seen that the surface shows 

vertical grooves broken up by random attack in places. Molten lead 

is denser than the lead tin eutectic so that the lead saturated layers 

of liquid close to the probe will be denser than the bulk of the liquid 

eutectic. Thus concentration driven natural convection currents will 

be set up leading to a vertical flow down the probe. It is this down­

wards flow that results in the vertical grooves, the regions of irreg­

ularities correspond to regions of turbulence in the natural convection 

flow.

Plates 12 and 13 show respectively lead and tin probes that have been 

rotated at 41 and 60 rpm during dissolution. They both show fairly 

continuous tangential grooves regularly spaced along their lengths. ghe^4^ 

Taylor numbers corresponding to these speed of rotation are f= x n4 /
( 41 ~ x i

whereas the Taylor number that corresponds to the breakdown of Coutte 

flow and the formation of Taylor vortices is 1571 • Thus one would

expect Taylor vortices to be well established in the liquid melt around 

the two probes shown in Plates 12 and 13 •

Figure 43 has been taken from the work of Taylor and shows 

in the left hand sketch Taylor vortices as he observed them. The sim­

ilarity between this sketch and the two Plates is striking, and it is 

apparent that the grooves shown in the Plates are formed by the Taylor 

vortices, increased attack occurring where the vortex flow is inwards 

towards the probe surface. The morphology of the probe surface does 

provide, in fact, a permanent impression of the fluid motion around 

the probe.

Plate 15 shows a tin probe that has been rotated at 60 r.p.m.

The impression of the tangential grooves formed by the vortices still 

remains although it has been severely distorted. The right hand sketch



FIGURE 43

Braking of Taylor vortices at high rotation speeds



in Taylor’s figure shows how the Taylor vortices become distorted 

as the speed of rotation is increased and the vortices start to break 

up. Once again, a strong similarity exists between Plate 15 and the 

sketch. It is apparent that the morphology of the probe's surface shown 

in this Plate is again providing a permanent record of the fluid flow - 

this time of the break up of the Taylor vortices.

Increased distortion of the vortex flow is apparent in Plate 17 

which shows a lead probe that had been rotated at 60 r.p.m. and vibrated 

during dissolution. In this case, it is the vibration that is further 

disturbing the stable vortex flow.

At higher speeds, the vortices break up cumpletely, and the entire 

fluid flow regime becomes turbulent. Random turbulent eddies exist 

over the entire surface of the probe and give rise to the completely 

random erosion pattern shown in Plate 16^which shows a probe that has 

been rotated at 120 r.p.m. during dissolution.

Thus the surface morphologies resulting from the irregular dis­

solution of lead and tin probes do not indicate uneven attack on diff­

erent grains due to a surface controlled reaction. The morphologies 

are, in fact, directly related to the flow patterns existing in the

liquid during dissolution, and are a definite indication that the

dissolution process is controlled by mass transfer in the liquid.

So much is this so that the morphologies of the dissolved surfaces form 

a permanent impression of the fluid flow patterns existing in the liquid 

during dissolution.

7.3•4 Effect of rotation speed on dissolution rates

By far the most important evidence for the conclusion that the

dissolution of lead, tin and lead/tin alloys in lead/tin eutectic is



mass transfer controlled is contained in Figure 37 * This Figure shows

mass transfer coefficients calculated from the dissolution rates measured

in this work, plotted together with curves calculated from the correl-
46ations of Eisenberg, Tobias and Wilke and Kosaka and Minowa 55 •

These +i"C correlations have been based on extensive investigations 

into mass transfer rates of rotating cylinders involving a wide range 

of different systems. It can be seen that the coefficients obtained 

from this work fall very close to and mainly between the two curves.

It can thus be concluded that the dissolution processes studies in 

this work are mass transfer controlled®

.5 Comparison with previous work

As stated earlier, the majority of workers who have studied the

dissolution of solid metals in liquid metals have reached the same

conclusion as in this work - that the dissolution process is mass

transfer controlled in the liquid metal. The one notable exception
51is Lommel and Chalmers who concluded that the dissolution of lead in 

lead/tin eutectic was surface controlled.

Examination of reference 51? however, show why these authors came 

to a mistaken conclusion. They immersed lead rods 0. 63 cm in diameter 

into a eutectic lead/tin bath that was additionally stirred by a large 

impeller rotating at a constant speed. They found that the rate at 

which the rod dissolved was not dependent on the rate at which it was 

rotated. They also observed uneven attack on the surface of the probe - 

describing the uneveness as ’etching11 They did not, however, examine 

metallographically whether or not the uneveness was related in any way 

to the grain structure of the rods.

• It is apparent that the stirring effect produced by rotating 

the small rod will be very much less than that produced by the large
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impeller. Any effect on mass transfer rates to the rod‘s surface, and 

therefore on dissolution rates, produced by varying the speed at which 

the rod was rotated would be swamped in the overall effect produced 

by the impeller in the bath.

The ‘etching* effect that Lommel and Chalmers report as providing 

further evidence that the dissolution is surfs.ce controlled is nothing 

more or less than the effect of turbulence and fluid flow discussed in 

Section 7«2.3« Had Lommel and Chalmers been able to obtain micrographs 

of their probes after dissolution, they would have seen this to be 

the case.

v
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7.4 Accuracy of comparison between the theory and the experiments. 

7.4*1 Heat losses during chill-layer experiments

A considerable amount of heat was conducted longitudinally along 

the cylinder to the portion of the probe which was not immersed into 

the bath. The heat which escaped from the inner surface of the probe 

was negligable compared with other heat losses.

Starting the experiments l-1.3°Cabove selected experimental 

temperature provided the extra heat required during the first 4 - 10 

seconds of most of the experiments necessary to balance the sudden 

heat losses caused by lowering the cold probe (room temperature) into 

the bath. The ensuing 0.8 - 1.3°C drop in the bath temperature was 

recovered by the thermal heater in approximately 8 - 14 seconds, the 

heater being switched on as soon as the experiment started. After 

the first 3 - 4 experiments full experience was gained in keeping the 

temperature in the range + 1°C of selected temperatures.

The extra material at the bottom of the probes and the heat lost 

from top of the probes caused accumulation of extra chill layer around 

these areas. As a result of this, meltback of the chi11-layer took 

longer in these areas than it did in the remainder of the probe.
S

Figure (44) illustrates diagramatically the typical shape of

an initial chill-layer growing on the substrate, and its subsequent 
meltback.



FIGURE 44

Typical shapes of chill-layer diri ng growth and 

meltback
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Exploratory experiments showed that surface heat losses caused a cold 

layer to exist at the surface of the bath, this layer growing after 

the halt of stirring. But when the probe remained static and

the bath was not stirred, the temperature difference between this layer 

and the bulk of the liquid was never greater than 2°C. Further, this 

layer did not extend more than 3 cm below the surface. This was 

measured with a thermocouple tip being bent at a 90 angle so that 

it could lie in the plane of the isothermals, and conduction from the 

probe tip was minimised. During rotation of the probe the extent of 

this layer was reduced to about cm below the surface, thus being 

situated well above the main reading area.

7.4»2 The accuracy of the theory

7.4.2.1 Heat transfer phenomenon

Predictions made using the integral profile method for heat 

transfer during cylindrical solidification have already been compared 

with the experimental results in sections

These experiments were conducted using lead probes and Pb-Sn eutectic 

bath. Good agreement between experiments and theory was achieved.

The errors between successive integrations were always preset 

at a half a step length before the computation, and as the entire 

method relied on an original heat balance applied to each section in 

turn, the largest uncertaintity was in the physical data.

As a result of this the theoretical final temperatures with tin- 

lead systems after prolonged exposure were only 1 - 1.4°C greater than 

expected. The liquid and interface heat transfer coefficients were

determined by trial and error during computing. Due to the random 

nature of this "trial-and-error" technique, the accuracy of these
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values was hard to assess; this being, due in part to different comb­

inations of the variables giving numerically similar answers.

7*4*2.2 Dissolution

The experimental results agreed well with the theoretical results 

forecast by combination of the Thomas-Eisemberg relationship and the 

theory developed here for mass transfer controlled dissolution.

The power dependence (n) of 0.7 for dissolution rate was found 

to be linear between the speeds 40 - 120 r.p.m. for all experiments, 

when the results were plotted on a log-log basis. There was a slight 

positive deviation of the experimental results from linearity at lower 

speeds.

At lower speeds, it is thought that the power dependence (n) 

decreases slowly with decreasing speed, until it reaches a value 

corresponding to that for natural correction.

7*4*3 Errors of Measurement

7.4*3*1 Thickness

Each individual micrometer measurement was in error by less than 

0.02 mm, which is reduced to negligible proportions by averaging.

7.4*3*2 Time

The static exposure time, measured by stop watch, had an uncert­

ainty of 0.4 seconds which was between^4 and ^0.4 of the total exposure 

time. As the speeds of the monitoring recorders were preset and the 

starting and finishing of experiments were marked with the event marker 

it was possible to recheck the exposure time values from the charts of 

the recorders.
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The difficulty in measuring melt-back' time was mostly a matter of judg­

ment. For this reason the main reading area from several experiments 

was observed after removing the probe from the liquid in order to assess 

melt-back.

The real exposure times for chill-layer experiments are found 

by adding the static time to the two travelling times of that particular 

measurement.

This difference changed between 2 ~ 4 seconds for a 4 cm wide 

area starting 4 cm above the bottom of the probe (the main reading area). 

During the dissolution experiments, as the mainreading area was rep­

resented by the whole portion of the exposed probe the dissolution time 

was found by substracting the corresponding melt-back times from the 

appropriate exposure time.

7.4*3*3 Temperature

Although the thermocouples measuring the wall-end temperatures 

were bent through 90°, in order that the final 10 mm of their length 

lay in the plane of the isotherms in the probe wall, thus removing 

errors due to conduction, some conduction losses occurred to an unknown 

extend by movement of the thermocouple tip during casting.

It is believed that movement of the thermocouple tip caused the 

recorded temperature to fall below the predicted values when the lim­

iting values were approached.



The sliprings which conducted the e.m.f. from the inside and 

outside wall thermocouples indicated no error when rotating cold.

5*4 Additional possible sources of measurements

1 Inaccurate reading of some physical data.

2 Error in weighting of the probes.

5 The excentricity of the probe.

4 The possibility of an increased surface area of the probe.

5 The recorder readings.

The magnitude of these errors was small compared with the prev­

iously mentioned errors consequently their combined effect upon the 

accuracy of the results is thought to be negligible.



CONCLUSIONS

The growth and melt' hack of the chill layer formed when a solid 

metal is immersed in a liquid metal can be predicted accurately 

by the integral profile method provided appropriate values of 

the interface heat transfer coefficient can be ascertained, and 

the heat transfer process in the liquid metal is understood.

The values of interface heat transfer coefficients that are used 

in the theory in order to obtain agreement with experiments are
57similar to those quoted in the literature .

The heat transfer process that takes place in a superheated 

liquid metal is a complicated combination of unsteady conduction 

and developing convection, but it can be analysed in terms of a 

single model involving the growth of a conduction layer and its 

subsequent decay to form a steady convective boundary layer.

The dissolution of lead, tin and certain of their alloys in 

liquid lead/tin eutectic is controlled by mass transfer. The 

mass transfer process is dominated by natural convection when 

the speciman is stationary and by forced convection when the 

specimen is rotated.

The shape of dissolution interface can be very irregular since 

it forms an impression of the flow patterns in the liquid.

The conditions for solidification cladding can be predicted 

from heat and mass transfer considerations.



APPENDIX 1

An attempt to grow a bonded layer

Brooks has concluded that it is possible to bond two dissimilar 

metals by a process which entails controlled surface dissolution 

of the piece which is to be clad prior to the deposition of the clad 

layer by solidification.

The present work investigated the phenomena occurring both prior 

to and during surface dissolution of the probe which was to be clad.

The theory developed during the course of this work successfully 

described the heat transfer processes occurring during chill-layer growth, 

melt-back and surface dissolution, of a probe whose composition may be 

that of a pure metal or an alloy.

The experimental work and theoretical considerations examined 

during the course of this work enabled us to make predictions as to 

what pre-cladding conditions should exist within the probe. In fact 

the theory was developed in such a manner so as to enable the ready graft­

ing into a unified theory which allows not only for the growth of the 

chill-layer, melt-back and surface dissolution, but also for the growth 

of a clad layer of a dissimilar metal.

Although no actual cladding experiments were carried out, a series 

of computations were completed in which clad layer thicknesses were 

predicted using the previously described theory to establish pre-cladding 

conditions.

The precladding conditions may be summarised essentially by say­

ing that they allowed for 1 mm of dissolution once meltback was completed.



The results of these computations have been summarised in 

Figure 45 which shows two curves for 5°C superheat and 12°C superheat 

respectively.

• Once 1 mm of probe dissolution had beenaHowed for, a high cooling 

rate was .artificially created within the probe. This is achieved by 
putting a high heat transfer coefficient (for the heat transfer between 

the wall and the cooling medium) into the main program of computations 

which when entered the loop resulted in the growth of a clad layer.
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APPENDIX 2

TABLES OP EXPERIMENTAL CHILL-LAYER RESULTS



TABLE 1

Experimental "chill-layer thickness" results for 
"zero" superheat

(Bath temperature: 183.0°C)
(Probe Rotation speed: 60 r.p.m.)

Exposure
Time
(sec)

7-5
7.5
7.5

Measured
chill-layer
thickness
(mm)

5.06
2.86
3.4

iih.pusure
Time
(sec)

30 
30 
30

Measured
chill-layer
thickness
(mm)

5.40
5.55
5.95

12.5
12
12

3.69
3.7
3.5

41
40.5
40

6.36

5.85
5.8

15
15
15

4.06
4.2 •
4.6

60
60
60

6.4
6.2
6.7

20
20.5
20

5*29
4.81
4.60

100
100

120
120

6.
6.75

7.09
7.11



TABLE 2

Experimental "Chill-layer thickness" results for
"3 C" superheat.

Bath temperature = 186°C 
Probe rotation speed = 60 r.p.m.

Exposure
Time
(sec)

Measured
chill-layer
thickness
(mm)

2.81
2.51

Exposure
Time
(sec)

50
50

Measured
Chill-layer
thickness
(mm)

4.35*
4.05

10
10
10

3. 2 
3.61 
4.09

55
60
60

3.65
3.25
3.3S

15
15

4.9
4-5

JO
70

2.26

2.71

20
20
20

4.?
4.85
5.25

, 75 
75 
75

2.03
2.15
2.09

25
25

4.75
5.10

80
80

1.50
1.62

30
30

4.76
4.81

90
90

1.01
0.82

40 
40 

Comment:

4.45
4.67

100
100

0.25
0.18

With probe exposure times of 110 and 115 seconds 
examination of the probe surface revealed the presence of slight 
spiral patches of remnant chill-layer material around the 
main reading area. At an exposure time of 125 seconds, all 
such phenomena had disappeared, the probe surface being clear.



TABLE 3

Experimental "chill-layer thickness" results for 
"7°C" superheat.

Bath temperature: 190°C
Probe rotation speed: 60 r.p.m.

Exposure
Time
(sec)

Measured
chill-layer
thickness
(mm)

2.89
3.41
2.80

Exposure
Time
(sec)

25
25
25

Measured
chill-layer
thickness
(mm)

3.03
3.15
3.25

10
10
10

3.65
4.01
4.25

30
30
30

2.51
2.77
3.06

15
15
15

4.29
3.98
3.80

35
35
35

1.25
1.43
1.69

20
20
20

4.04
4.08
3.78

40
40
40

1.15
0.82
0.74

Comment:
With probe exposure time of 45 seconds examination of 

the probe surface revealed the presence of slight spiral patches 
of remnant of chill-layer material around the main reading 
area of the probe. At an exposure time of 55 seconds, all 
such phenomena had disappeared.



TABLE 4

Experimental "chill-layer thickness" results for 
"12°C" superheat.

Bath temperature: 195°C
Probe rotation speed: 60 r.p.m.

Measured 
chill-layer 
thickness 
(mm)

4 2.15 15 5.4 *
4 2.01 15 5.25
4 2.17 15 5.6

6 2.25 20 2.75
6 2.84 20 2.25
6 2.75 20 2.23

10 3.10 ‘'25 1.45
10 5.04 25 1.54
10 5.25 25 1.98

Comment:
With probe exposure time of 30 seconds examination of 

the probe surface revealed the presence, of slight spiral 
patches of remnant chill-layer material around the main read­
ing area of the probe. At an exposure time of 35 seconds 
all such phenomena had disappeared the probe surface being 
clear.

Exposure Measured Exposure
Time chill-layer Time
(sec) thickness (sec)

(mm)



TABLE 5

Experimental "chill-layer thickness” results for

Probe rotation speed: 60 r.p.m.

Exposure Measured Exposure Measured
Time chill-layer Time chill-layer
(sec) thickness (sec) thickness

(mm) (mm)

5 2.45 20 1,73
5 2.56 20 1.88
5 2.20 20 1,91

10 2.80 22 1.01

10 2.82 22 0.98

10 2.67 22 0.89

15 .2.54 26 clear
15 2.63 26 clear
15 2.60



TABLE 6

Experimental "chill-layer thickness" results for 
"27°C" superheat.

Bath temperature: 210*Dc
Probe rotation speed: 60 r.p.m.

Exposure Measured Exposure Measured
Time chill-layer Time chill-layer
(sec) thickness (sec) thickness

(mm) (mm)

3 1.125 10 1.82
3 0.92 10 1-93
3 0.93 10 1.91

' 6 2.08 13- 1.17
6 1.91 13 1.11
6 1.73 13 1.28

Comment:

With probe exposure times of 16 and 18 seconds 
examination of the probe surface revealed the presence of 
spiral patches of remnant chill-layer material around the 
main reading area of the probe.

At an exposure time of 18 seconds, all such phenomena 
had disappeared.



TABLE 7

Experimental results of "chill-layer thickness" for 
"57°C superheat.

Bath temperature: 220°C
Probe rotation speed: 60 r.p.m.

Exposure Measured Ex^o^ure
Time chill-layer Time
(sec) thickness (sec)

(mm)

Measured
chill-layer
thickness
(mm)

1.04
0.98
1.25

12
12
12

0.62
0.60
0.51

1.42
1.38
1.21

15
15
15

0.01
0.03
0.

17 Clear



TABLE 8

Experimental "chill-layer thickness" results for 
"47°C, 57°C end 67°C" superheats.

Probe rotation speed 60 r.p.m.

Bath Exposure Measured
Temperature Time chill-layer
(°C) ( sec) thickness

(mm)

230° 5 0.26
5 0.267
5 0.195

8 0.11
0.14

10 patches
10

12 clear

240° 4 0.1
4 0.12

8 clear

250° 4
4

clear
clear



APPENDIX 5

TABLES OP EXPERIMENTAL DISSOLUTION RESULTS



TABLE 10

Dissolution Rates of Pure Lead probes in Lead-Tin eutectic Baths.

Rotation speed: * 30 r.p.m. Meltback time: 18 secs.

Bath Dissolution Dissolution
Temp. Time Rate
(°c) (s) N x 10^

(g/cm2.s)
230 80 6.12

80 6.23
120 6.21
120 6.38
160
160
160

6.43
6.29
6.35



TABLE 11

Dissolution 
baths•

rates of static pure lead probes in Pb - Sn eutectic

Meltback time: 20 secs.

Bath Dissolution Dissolution 
Temp. Time Rate
(°C) (s) N x 10

(g/cm2.s)

230 60 4.58
60 4.67

120 4.59
120 5.01
180 5.10
180 5.9



TABLE 12

Dissolution rates of pure lead probes in Lead-Tin eutectic bath 
at different temperatures.
Rotation Speed: 60 r.p.m.
Meltback Bath Dissolution Dissolution

Time Temp. Time Rate g
(s) (c) (s) (g/cm .sec.)
26 200 60 ' 2.01

2.08
120 2.11

2.18
160 2.21

2.17'
13 220 100 5.25

5.31
. 140 5*53

5.39
160 5.29

5.3°
.. 13 .230 80 8.72

3.74
8.-73

140 8.83
8.80
8.84

160 s.sr
8.84

200 8.87
8.89
8.85

240 ; 8.68
8.73
8.75

35 250 60 14.35
14.39
14.38

120 14.43
14.49 
14.52

180 14.73
14.82 
14.84

240 14.3714.28



TABLE 13

Dissolution rates of pure lead probes in Pb-Sn eutectic baths.

Rotation Speed: 120 r.p.m •

Meltback Bath Dissolution Dissoluti<
Time Temp. Time Rate ^
(s) (°c) ■ (s) N x 10'

(g/cm2,s)

15 230 120 14.4
120 14.6
180 14.24
160 14.90
240 14.55
240 14.80
300 15.32
300 15.98

250 60 23.31
60 . . . 23.11

120 23.39
120 25.43
120 25.18
180 26.65
180 26.48

r



TABLE 14

Dissolution rates of 9Qf/o lead IQffo tin probes 
baths• ,

1 Rotation Speed: 50 r.p.m.

2 Rotation Speed:

Bath • Time Dissolution•a 
0

0)0EH"-' (s) Rate  ̂
R x lO"*

(g/cm2.s)
250 60 8.2

60 8.55
100 8.51
100 8.62
160 8.92
160 8.86

i: 100 r.p.m.

Bath Time Dissolution
Temp. (s) Rate -7
(°C) R x K T

(g/cm2.s)
230 60 13.62

60 13.81
100 14.1
100 14.39
160 14.70
160 14.96

in lead-tin eutectic

Meltback time: 15s

Meltback time: 10 s



TABLE 15

Dissolution rates of pure tin probes in Lead-Tin eutectic bath.

Rotation Speed 
V V
(r.p.m.) (cm/s)

30 9.72

41 13.29

Time Dissolution
(s) Rate: R x 10^

(g/cm2. sec)

75 5.69
75 5.58

120 5,40
120 5.31-

180 5.91
180 5.95

60 6.68
60 6.83

180 6.63
180 6.99

oThe bath temperature for all above experiments was 200 C.



TABLE 16

Dissolution rates of pure tin probes in Lead-Tin eutectic bath,

Rotation Speed Dissolution Dissolution ^ Meltbac
¥ V Time: (s) Rate: N x 10 Time

(r.p.m.) (cm/s) (g/cm .s)

105 9.61
105 9.46

60 19-45 120 9.56 29
120 9.68

180 9.93
180 9.81

60 15.25
60 15.31

120 58.9 100 15.43 18
100 15.52
150 15.91
150 16.05

Bath temperature for all the above experiments was 200°C.



APPENDIX 4

LEAD Commercial Purity

Tin Commercial Purity

Pb
1«

99-948
Cu 0.0050
Fe 0.0114
Mg 0.00025
Zn 0.0002
Sn 0.0050
A g 0.0002
Sb 0.020
Bi 0.010

Sn 99.89
Pb 0.0510
Cu 0.0292
Pe o .0115
As ' 0.0281
Sb 0.010

Cj



APPENDIX 5

Physical and thermal properties of Pb, Sn,and Pb - Sn eutectic 
and stainless steel.

H 36826 j/k g
0 o_ Liquid Pb - Sns 183 C — -— — --------
CL 217.36 j/kg°C Eutectic
k. 28.57 W/m°C^ -z

L 8010 Kg/m
230°C 0.0226 Poise

250°C 0.0215 Poise

0s 217 j/kg S Solid Pb - Sn
ks

s
52
8300 0*3 

\
B 

0 0 .;u hectic

°pb 150 j/kg C
Solid Pb

Pb 11300 kg/n?

kpb 31 V/m°C

Sn 7290 kg/n5 Solid tin
CSn 225 J/kg

cst 523 j/kg *

kst 17.28 W/m°C Solid stainless
St 7900 kg/n?

System W(r.p.m.) H0(w/m2C) BL(w/m2C) ri/2(s) rc(s)
Pb - Probe
Pb-Sn Eutectic bath 60 2500 8500 6 5
Stainless-Probe 
Pb-Sn Eutectic bath 68 3155 8500 6 5

200 3135 17000 3 5



NOMENCLATURE

Variable

*
B

H
h

k

k
i

n
N

o
R,r

Ta

Ta
V
r

S I

pi
0
ol

/

F
fl

A

AB

Description

Gap between rotating 
cylinders
Specific heat

Mass concentration

• Mass fraction of metal A in 
bina.ry alloy of metals A and B

Mass fraction of metal B in 
binary alloy of metals A and B

Latent Heat

Heat transfer coefficient 

Mass transfer coefficient 

Thermal conductivity 

Mass flux
Initial mass transfer rate

Initial heat flux ( = h 0 )v o s'
heat flux

radius

See eq. 36

See eq. 37 
peripheral velocity

Time

Angular velocity

Density

Temperature

Mass transfer coefficient 

kinematic viscosity 

viscosity

Functional expression defined 
by Eq. 67

Functional expression defined 
by Eq. 68

Dimension

cm

j/kg°C

k g/u?

J/kg

w/m2°C

cm/sec

w/m°C

gr/cm2 sec 
gr/cm2.sec
/ 2 w/m . sec
/ 2 w/m . sec

cm

cm/sec.

sec.

rad/sec.

kg/u?

cm/sec.
2/ cm /sec.

g/cm. sec.



NOMENCLA.TDHE (continued)

Variable Description Dimension

r Functional expression defrned
by Eq. 69

1f 0 See equation 82
1f See equation 84

c£ Boundary layer thickness (diffusion) cm
2HO Interface heat transfer coefficient W/m C

HL Liquid heat transfer coefficient W/m C



DIMERSIONLESS VARIABLES

liT . Nu. (ifu) Nusselts’ number

Re (Ee) Reynolds1 number

N ' Gr Grashofs1 number

Pr Prandl1s number

NNu .cond • Nussefcs1number for

NSc Schmids number
*t See eq. 10
*0 See eq. 11
*H See eq. 13
*h o!l

**

*k k* = k/kg
*

9 1 See eq. 15
* 

9 0 See eq. 14
T , \N_ ) modified Taylor number

ia See eq. 38
■¥r ■¥: )Y\JY thermal capacity y = _ __ = p.c.i * Y Of See eq. 45
i *f 0 See eq. 44

^ See eq. 12

SI Functional expression defined by equation 42
r*I it ii it it
' *

.-A ti tt «i it
42.1

45



SUBSCRIPTS

A Air

1 Inner

2 Outer

l/2 half life
ft value in bulk liquid phase

c conduction layer growth

i value at solidification interface (mass transfer)

L value on Liquidus Line (mass transfer)
L,LIQ Liquid metal

LIM Limiting value

iw inside wall of the probe

m mean

ow outside wall of the probe

r value at inner probe wall

s solidifying metal

t value at solidification front (heat transfer)

0 initial value or value at solid-solid interface
(probe-growing layer)

eff effective value (see eq. 73? 74)
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