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ABSTRACT

Within the current context of the UK’s commitment to reducing carbon dioxide 
emissions, a clear understanding of the nature of the problems, obstacles and 
complexities facing the implementation of renewable energy technologies, in particular, 
in urban areas is urgently required. Technical and economic obstacles are often 
regarded as the most important problems facing the use of renewable energy 
technologies. However, with the promise that the most significant technical and 
economic obstacles will be overcome in the foreseeable future, it is essential to 
determine whether any other obstacles exist. Given a better insight into what key 
stakeholders, namely energy suppliers and end users, expect from energy supplies 
and services, respectively, it is possible to have a clearer understanding of the issues 
involved with such non-technical and non-economic obstacles. Whilst technical and 
economic considerations should not disregarded, a systematic approach, which 
encompasses a means of establishing different stakeholder expectations, provides an 
analytical tool with which to assess the ability of the existing energy system and 
renewable energy technologies to satisfy the energy requirements of stakeholders.

Using Sheffield as a case study example, the relative potential contribution which 
renewable energy could make in reducing carbon dioxide emissions is assessed by 
means of an energy study. This provides a helpful framework for identifying key areas 
of energy consumption and carbon emissions, ways of reducing energy consumption 
through energy efficiency measures, and the impact of utilising local renewable energy 
resources. Substantial opportunities for reducing carbon dioxide emissions throughout 
Sheffield are established, especially in connection with utilising renewable energy 
technologies to supply energy efficient buildings.

Both renewable energy technologies and energy carriers, which are relevant to 
Sheffield, are examined systematically. This involves establishing the technical and 
economic status of passive solar design, active solar systems, photovoltaics, wind 
power, biomass energy and small-scale hydro technologies, followed by an evaluation 
of each technology against the relevant stakeholder demand criteria. The key issues 
facing the utilisation of existing energy carriers of electricity, gas networks and district 
heating systems, all of which link energy supply to demand, are also examined. The 
uses of hydrogen as a new energy carrier are explored in more detail to establish the 
technical and economic status of hydrogen technologies and its performance against 
the stakeholder demand criteria.

The result is a better understanding of the nature of the obstacles facing the 
implementation of renewable energy technologies in Sheffield. In addition to technical 
and economic issues, the influence of wider non-technical and non-economic obstacles 
on the uptake of renewable energy technologies in Sheffield is considered. Solutions 
to the problems are put forward and their likely ability to promote the implementation of 
renewable energy technologies in urban areas is briefly assessed. The overall 
outcome is that the potential exists for Sheffield and other urban areas in the UK to 
utilise local renewable energy resources provided that effective solutions, such as 
those proposed here, are instigated to ensure that established stakeholder 
expectations are met in full.
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1. INTRODUCTION

1.1 Context

In recent years, there has been growing interest in renewable energy and its long-term 

contribution to energy provision in the United Kingdom (UK). This interest has been 

stimulated by environmental and sustainability concerns over the use of fossil fuels, 

namely coal, oil and natural gas, and nuclear energy sources. The burning of fossil 

fuels releases carbon dioxide emissions, a major contributor to global climate change 

along with other greenhouse gases. Research has shown that on a global level, the 

energy sector is the largest single source of carbon dioxide emissions and 40% of all 

greenhouse gas emissions are released from the combustion of fossil fuels (PIU,

2002). The signing of the Kyoto Agreement in 1997 signified an important step in 

seeking to reduce greenhouse gas emissions at an international level. Based upon a 

recommendation by the Royal Commission on Environmental Pollution (RCEP), the UK 

has set a target to reduce carbon dioxide emissions by 60% below 1990 levels by 2050 

(RCEP, 2000 and DTI, 2003a). In addition to the problems of producing energy from 

fossil fuels, nuclear energy also poses serious environmental issues. Whilst nuclear 

energy is carbon neutral, its production results in radioactive waste and long-term risks 

of contamination. In the UK, the current energy system relies heavily on these 

conventional energy sources. Fossil fuels and nuclear energy contributed 89% and 9%  

respectively to primary energy production in the UK in 2002 (DTI, 2003a).

The reliance on fossil fuels and nuclear energy also raises issues over the 

sustainability of using such resources. Sustainability principles indicate that it is 

important for the UK to continue to develop without irreversibly damaging the 

environment, both now and in the future. The finite nature of fossil fuels and nuclear 

energy and the environmental problems associated with their use, makes them 

unsustainable. Although renewable energy sources only contributed 2% to primary 

energy production in the UK in 2002, they display a number of key characteristics 

which makes them more preferable than conventional energy resources (DTI, 2003a). 

Firstly, renewable energy sources, such as solar energy, wind power and biomass, are 

naturally replenished as they are consumed, so they never run out (IEE, 1994). 

Secondly, renewable energy sources are carbon neutral. Thirdly, renewable energy is 

readily available across the UK. As the majority of energy consumers live and work in 

urban settlements, towns and cities have high concentrations of energy demand. The 

high energy demand also makes urban settlements responsible for associated carbon
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dioxide emissions. Although some renewable energy sources are site-specific, most 

are ubiquitous to all urban areas. One of the most commonly available renewable 

energy sources in urban settlements is solar energy. Other renewable energy sources, 

such as geothermal power, are specific to certain towns and cities. And finally, it is 

recognised that all energy developments have environmental impacts. With careful 

management, any adverse environment impacts of renewable energy developments 

can be successfully mitigated against.

Whilst there is a need to minimise the environmental and sustainability impacts of 

energy provision, there is a continuous need for energy. Energy is an essential part of 

every day life as it provides consumers with key energy services of heat, motive power 

and electrical-based services. Without a plentiful supply of energy, everyday life, that 

people are accustomed to, would cease to exist. As such, energy is a key driver of 

human activity and environmental change. In order to reconcile environmental and 

sustainability concerns with the continuous demand for energy, a fundamental shift in 

energy provision needs to take place. Whilst the utilisation of energy efficiency 

measures can help to reduce the demand for energy and lower associated carbon 

dioxide emissions, they only provide part of the answer. The rest of the answer lies 

with renewable energy sources. An energy system based on renewable energy 

sources would deliver energy to consumers whilst meeting environmental and 

sustainability concerns. In particular, carbon dioxide emissions would be significantly 

reduced. This is a more sustainable approach which will test the commitment of the 

UK in seeking a balance between energy and the environment. Although this approach 

may be more preferable, the adoption of renewable energy technologies as a basis for 

sustainable energy systems will require fundamental changes at all levels in society. 

Energy production, supply and demand must be modified in order to achieve 

sustainability. This will require urban areas to become responsible for local energy 

consumption, carbon dioxide emissions and managing the impacts of energy 

production.

At present, the use of renewable energy technologies, particularly in urban areas in the 

UK, is very low. Whilst the environmental and sustainable advantages of renewable 

energy have been widely recognised and acclaimed, there is a gap between an 

awareness of the advantages and the practical deployment of renewable energy 

technologies within communities. To date, renewable energy projects have been 

influenced by a wide range of different technical, economic, non technical and non 

economic obstacles. Each obstacle, as a single issue or a combination of issues, has
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influenced the uptake of renewable energy and any move towards sustainability. As 

such, any transition towards the wider deployment of renewable energy is faced with 

problems, complexities and a new set of challenges. The transition raises questions 

concerning the practical ability of renewable energy sources to meet local energy 

needs, reduce local carbon dioxide emissions and contribute to the sustainability of 

urban areas in particular. Also, it is debatable whether a transition towards a 

renewable energy system can take place using existing energy infrastructure. Given 

the complexities of the issue, a detailed examination of the problem is necessary on a 

local level.

1.2 Aims and Objectives

1.2.1 Aims

The aims of this thesis are to:

•  Investigate the potential contribution which renewable energy technologies can 

make to the reduction of carbon dioxide emissions, specifically, and achieving 

sustainable development, generally, by their practical implementation in the 

urban environment with reference to Sheffield as a case study example, and

• Determine the most appropriate and suitable measures for promoting their 

deployment in towns and cities of the UK.

1.2.2 Objectives

The specific objectives of this thesis are to:

•  Determine the energy expectations of different stakeholders and evaluate the 

existing energy system against these expectations,

•  Review the current status of renewable energy technologies which are relevant 

to Sheffield in relation to their technological maturity, economic competitiveness 

and consider wider non-technical and non-economic issues,

•  Determine prospective carbon dioxide savings which can be achieved by the 

application of relevant renewable energy technologies within Sheffield,
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•  Establish the technical, economic, non-technical and non-economic obstacles 

to the deployment of renewable energy technologies in Sheffield,

• Identify suitable measures for the practical promotion of renewable energy

technologies in Sheffield, specifically, and the UK, generally.

1.3 Methodology

As indicated by the above aims and objectives, the evaluation of measures to promote

urban renewable energy use addresses a wide range of issues across many

disciplines. In order to prioritise key issues throughout the research, a systematic,

multi-disciplinary approach has been adopted based upon a case study. Sheffield has

been chosen as an example of a representative UK city for which a sound basis of
*

essential data is available. In particular, this research builds upon existing energy 

assessment work on the "Municipal Integration of Renewable Energies" (MIRE), 

carried out in Sheffield by the Resources Research Unit of Sheffield Hallam University 

in 1992. The earlier work produced preliminary assessments of energy consumption 

and renewable energy resources in Sheffield and the surrounding area (Grant, 1993, 

1994a, 1994b; Grant, Kellett and Mortimer, 1994a, 1994b, 1995a, 1995b; Grant et al, 

1994c; Kellett, 1993, 1994a, 1994b; Mortimer, 1993, 1995 and Mortimer, Kellett and 

Grant, 1994). Policy and planning procedures for the implementation of local energy 

strategies intended to reduce energy consumption and associated carbon dioxide 

emissions were also investigated (Kelly and Mortimer, 1996). The case study provides 

a realistic quantifiable basis for exploring the practicality of producing energy from local 

renewable energy resources and acts as a framework for identifying the issues facing 

the deployment of renewable energy technologies within an urban area.

A programme of research has been produced in which a number of key tasks are 

identified. Each task provides the basis for the next or later stages of analysis. The 

first task is to identify who are the stakeholders and what do they expect from energy 

services. Qualitative research methods are used to analyse secondary sources on 

consumer research, green consumerism and company information and reports. From 

this examination, a list of stakeholder demand criteria are produced which identifies 

and defines the energy expectations of energy Suppliers and end users. The existing 

energy system can then be evaluated against these criteria to identify areas of 

compatibility and incompatibility between current energy supply and demand. This

4



information provides the necessary context of the thesis, and is the subject of Chapter 

2 .

If renewable energy resources are going to provide the basis for achieving sustainable 

energy systems within urban areas, it is necessary to explore the availability of local 

renewable energy resources and their potential contribution to reducing associated 

carbon dioxide emissions. Using Sheffield as a case study example, the second task is 

to produce an energy study for the district of Sheffield. Energy studies are used to 

determine current energy demands and carbon dioxide emissions and, in some cases, 

to provide a base for predicting energy savings and renewable energy opportunities. 

Previous energy studies have been produced for buildings, transportation, cities and 

regions (including Best Foot Forward, 2002; Cooper et al, 2001; Cosmi et al, 2003; 

Grant and Kellett, 2001, 2002a, 2002b, 2002c and Pout et al, 1998). There are many 

quantitative methods available for producing energy and carbon dioxide assessments. 

A review of the different energy assessment methodologies can be found in Appendix 

A. The Sheffield energy study uses existing methodologies from the MIRE study to 

allow for future comparison between the results. The Sheffield energy study comprises 

of three sections, namely a baseline energy assessment, an energy efficiency 

assessment and a renewable energy assessment. The methodology and results of the 

baseline assessment of energy consumption and associated carbon emissions in 

Sheffield can be found in Appendix B. The methodology and results of the energy 

efficiency and renewable energy assessments for Sheffield can be found in Appendix C 

and D, respectively. Energy use and associated carbon emissions in Sheffield are 

examined in Chapter 3. This includes defining the study area and summarising land 

use patterns, presenting the key findings of the energy study and summarising the 

implications of these findings for Sheffield. The opportunities for reducing carbon 

dioxide emissions through the use of locally available renewable energy resources are 

explored in Chapter 4. Ways of reducing energy consumption in buildings through 

energy efficiency measures are presented followed by an assessment of local 

renewable energy prospects and future energy use in Sheffield.

In addition to examining ways in which the utilisation of energy efficiency measures and 

local renewable energy resources can lower carbon dioxide emissions within Sheffield 

and contribute to the development of a sustainable urban energy system, the energy 

study also provides the basis for identifying available renewable energy resources in 

Sheffield. A range of different renewable energy technologies, which could be utilised 

to exploit renewable energy resources in Sheffield, are put forward and examined in
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turn. Using qualitative analysis, a comprehensive literature review of the renewable 

energy technologies applicable to Sheffield is undertaken. Although renewable energy 

potential may exist within an urban area, it can only be exploited if renewable energy 

technologies are technically and economically available. In addition, wider non

technical and non-economic issues may influence their utilisation. As such, this review 

seeks to answer the following questions; how can the technologies be used in an urban 

environment, what is the current status of the technologies and what issues influence 

their implementation within an urban settlement. Using a wide range of sources 

including books, journals, reports and internet website addresses, the renewable 

energy technologies of passive solar design, active solar systems, photovoltaics, wind 

power and small-scale hydro power are evaluated against the following criteria:

•  Basic Aspects,

•  Resource Considerations,

•  Applications,

•  Technical Status, and

• Economic Status.

Unlike other renewable energy resources, biomass energy is complex due to the 

diversity of the resource. In order to convert biomass energy into useful energy, 

different types of conversion technologies can be used depending on the type of 

biomass and the final output required. To ensure that all the necessary issues 

concerning biomass energy resources are fully explained, more detailed criteria are 

necessary:

•  Basic Aspects,

•  Resource Considerations,

• Biomass Preparation,

• Conversion Technology,

• Processing Technology,

•  Outputs and Applications, and

• Economic Issues.

This detail can be found in Chapters 5 to 10, which examine solar energy technologies, 

wind power, small-scale hydro power and biomass energy, respectively. The basic 

aspects, resource considerations and status of each of the technologies are examined
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in the first half of each Chapter. The second half examines how renewable energy 

technologies currently differ from conventional energy technologies using the relevant 

stakeholder demand criteria as a benchmark for the analysis. This is necessary in 

order to clearly understand the differences between the ability of the technologies in 

meeting stakeholder expectations and to establish what would need to be in place, or 

what would need to change, if renewable energy technologies were utilised within 

Sheffield. The performance of the existing energy system and renewable energy 

technologies against stakeholder expectations are summarised in a table at the end of 

each chapter. A series of dots have been used to indicate where the existing energy 

system and renewable energy supply currently meet stakeholder expectations (3 dots), 

partially meet expectations (2 dots) and fail to meet expectations (1 dot). This analysis 

provides the basis for the identification of obstacles facing the deployment of 

renewable energy technologies in Sheffield. The obstacles relevant to each technology 

are discussed and summarised in a matrix at the end of each Chapter. Where 

applicable, a square symbol has been used to illustrate where the obstacle affects 

different stages of deployment.

In addition to exploring the characteristics and issues facing the implementation of 

renewable energy technologies, it is necessary to look at ways of linking renewable 

energy supply to demand through the utilisation of existing and future energy carriers. 

Electricity and gas are existing energy carriers within the UK. Alternative energy 

carriers which could be utilised in the UK are heating and cooling networks and 

hydrogen. At present, no single publication has been published on all relevant energy 

carriers and their role in the utilisation of renewable energy resources. As a result, a 

literature review of a wide range of sources including books, journals, reports and 

internet-based information is necessary. This review is needed to establish the current 

status of energy carriers in the UK and identify the key issues facing their utilisation in 

future renewable energy developments. The examination of existing energy carriers is 

provided in Chapter 11 followed by an examination of hydrogen as an energy carrier in 

Chapter 12. Electricity and gas networks are evaluated against the following criteria:

• Basic Aspects,

• Key Issues, and

• Future Developments.
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As the use of district heating networks are less common in the UK, they are evaluated 

against more detailed criteria:

•  Basic Aspects,

•  Resource Considerations,

•  Technical Status,

•  Economic Status, and

•  Additional Considerations.

Although hydrogen could be utilised as an energy carrier, questions are raised 

concerning how hydrogen could be produced and used in urban areas, the technical 

and economic status of hydrogen and what would need to be in place for the wider 

implementation of hydrogen in the urban environment. The evaluation of hydrogen 

follows the same format as that of each renewable energy technology. The first half of 

Chapter 12 evaluates hydrogen against more detailed criteria, as listed below.

•  Basic Aspects.

•  Resource Considerations,

•  Production Technology,

• Storage and Transportation Options,

•  Infrastructures and Appliances, and

• Economic Issues.

In the second half of the chapter, hydrogen is evaluated against the stakeholder 

demand criteria. The performance of the existing energy system and hydrogen against 

stakeholder expectations are summarised in a table at the end of the chapter. This 

analysis provides the basis for the identification of obstacles facing the use of hydrogen 

as an energy carrier in urban areas. The key obstacles facing hydrogen are discussed 

and summarised in a matrix.

The outcome of the above programme of work is the identification of a range of areas 

where renewable energy technologies currently fail to meet or partially meet the energy 

expectations of stakeholders. In Chapter 13, a summary of this earlier analysis is 

provided in two tables together with a discussion of the obstacles facing the 

deployment of renewable energy technologies in urban areas. Using qualitative 

research techniques, a series of measures for overcoming the obstacles are formulated
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and developed in detail. In order to consider whether the measures suggested may be 

suitable for promoting renewable energy developments in Sheffield, each measure is 

briefly assessed against each stakeholder expectation. A tick symbol has been used to 

illustrate which specific stakeholder expectation each measure could help overcome. 

Conclusions and recommendations for further work are presented in Chapter 14.

1.4 Terms and Definitions

1.4.1 Key T erminology

Most of the terminology used here is commonly used in the assessment of resources, 

energy consumption and carbon dioxide emissions and related environmental 

disciplines. The following sections introduce and define key terms and units of 

measurement used throughout this study.

1.4.2 Resources

Using a dictionary definition, resources can be defined as "a stock or supply that can 

be drawn on" (Thompson, 1995). The extent to which a resource base can be used as 

a practical energy source depends on the level of knowledge or information available 

and the economic feasibility of extracting and processing the resource. In order to 

distinguish between different resources, a simple classification system can be used:

•  Resource base; the total quality of energy or power which physically exists in a 

recognisable form,

• Resources; the part of the resource base which could be developed under 

present or future economic circumstances using existing or modified current 

technology, and

• Reserves; the part of the resources which have proved to exist and which could 

be exploited under present economic circumstances (Grant, Kellett and 

Mortimer, 1994b).

The resource base is all the energy available from a given source. Normally, it is 

physically impossible to exploit the extra resource base. New resources are 

discovered, technological advances and changing energy prices affect the availability

9



of resources and reserves. Reserves are essentially dynamic in nature due to 

fluctuating prices. As prices change and resource use becomes financially feasible, 

the size of resources changes very quickly (Grant, Kellett and Mortimer, 1994b).

1.4.3 Energy Sources

Energy sources fall into two main categories, renewable energy sources and non 

renewable energy sources. Renewable energy is a term used to describe a "source of 

energy which is naturally replenished as it is consumed" (IEE, 1994). Renewable 

energy sources include solar energy, wind power and water power. Whilst non 

renewable energy sources do replenish themselves, they do so at a rate which is so 

much slower than the rate of depletion in recent history that in effect they can be 

treated as finite stocks. Fossil fuels and nuclear energy sources are non renewable 

forms of energy. Fossil fuels are composed of carbon derived from plants and animals 

contained in sediments which are converted into coal, oil and natural gas over 

thousands of years. Nuclear energy is produced from radioactive materials such as 

uranium, which naturally occurs in minerals and rocks (Dineley et al, 1976).

1.4.4 Forms of Energy

There are three main forms of energy, primary energy, delivered energy and useful 

energy. In order to distinguish between each form of energy, the following definitions 

can be used:

• Primary energy; the amount of energy available in resources in their natural 

state, such as solar energy, wind power, coal, natural gas, oil and uranium 

deposits in the ground.

•  Delivered energy; following extraction and processing, primary energy 

resources are converted into suitable forms of fuels and electricity which can be 

used by consumers, termed delivered energy. Liquid fuels, gaseous fuels, solid 

fuels, electricity and heat are the main forms of delivered energy. Electricity is a 

diverse energy resource which can be used for many applications including 

heating, lighting and motive power, and

• Useful energy; consumers use fuels and electricity in appliances, equipment 

etc., to provide useful energy such as heat, light, motive power, etc. Useful
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energy consists of space, water and process heating and cooling, light, motive 

power for transport and machinery and electrical-based services (Elsayed and 

Mortimer, 2001).

1.4.5 Energy Carriers

An energy carrier is a term which refers to a means of carrying or transporting energy 

from the point of production to the point of consumption. Commonly used energy 

carriers in the UK are electricity and gas which are distributed to consumers using 

national networks. In some parts of the UK and other European countries, such as 

Germany, water, air and steam are used as energy carriers within heating and cooling 

networks. Additionally, research is being undertaken in developing hydrogen as a new 

energy carrier.

1.4.6 Stakeholders

Within the urban environment, there are two main categories of stakeholder, namely 

energy suppliers and end users. Energy suppliers comprise of electricity utilities, gas 

companies and district heating suppliers. They supply end users with delivered energy 

and are responsible for matching supply to demand. End users, who are commonly 

referred to as energy consumers, consume useful energy in order to heat, cool, light or 

ventilate buildings, to operate appliances and machinery and to power cars and other 

modes of transport. End users can be placed into three broad categories or sectors, 

namely the domestic sector, the industrial sector and the transport sector. The 

domestic sector comprises of all domestic households within a defined area. Using a 

Standard Industrial Classification system (SIC), all economic activities of a similar 

nature can be classified into different industrial groups (CSO, 1992). Within this thesis, 

two broad groups are used which incorporate the SIC definitions; business and 

industry. Industry, as expressed in this thesis, relates to primary and secondary 

activities, for example, manufacturing of all types. The business sector is very varied 

and includes education, health care, office employment and repair services. The 

transport sector comprises of a number of different modes of road, rail and air 

transport.
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1.4.7 Units of measurement

A variety of units have been used to measure energy consumption and carbon dioxide 

emissions. The following units have been used to measure energy consumption:

• Kilowatt hour (kWh): A unit of energy. 1 kWh is used when 1 kW of power is 

consumed for one hour. A kW is equivalent to 1000 watts (Max Fordham and 

Partners, 1999).

•  Terajoule (TJ): A unit of energy equal to 1012 joules. A joule is a unit of energy 

equal to the energy released by an electrical current of 1 ampere driven by 1 

volt for 1 second (DTI, 2001a).

Carbon dioxide emissions have been measured in terms of tonnes of carbon (tC). 

Carbon dioxide is released when fuels containing carbon are burnt, for example, coal, 

oil and natural gas. Different fuels have different carbon content which affects the 

amount of carbon dioxide released. In order to Calculate carbon emissions, carbon 

coefficients are used. Carbon coefficients show the amount of carbon released per unit 

of energy available either upon combustion of the energy source or generation of 

electricity, for example, tC per TJ (Pout et al, 1998).
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2. ENERGY IN CONTEXT

2.1 Energy Systems and Stakeholders

Within the UK, the existing energy system comprises of energy production, supply and 

consumption. Although the existing system can be split into three key areas, there are 

numerous interfaces between the production, supply and consumption of energy. The 

production and supply of energy and the role it has to play in the economic 

development of the UK has been widely documented. In addition, there has been 

considerable research on general consumer attitudes and behaviour when purchasing 

products and services. However, there appears to be limited research, if any, in 

examining the interface between end users, also referred to as energy consumers, and 

the energy system. In particular, the ability of the existing energy system to meet the 

energy expectations of end users has not been widely discussed. This examination is 

vital when considering the future deployment of renewable energy in the UK. If a future 

energy system based on renewable energy is pursued, this will have serious 

implications on the relationship between end users, the production and supply of 

energy and the overall success of the new system. This will also have implications for 

energy suppliers. As key stakeholders in the energy market, energy suppliers, also 

referred to as energy utilities, have expectations which must be addressed. Therefore, 

it is also necessary to take into account the expectations of energy suppliers when 

examining the existing energy system and certain renewable energy technologies.

In order to establish likely stakeholder perceptions, the expectations of end users 

(Section 2.2) and energy suppliers (Section 2.3) are explored. The existing energy 

system is then evaluated in light of stakeholder expectations in Section 2.4. Section

2.5 summarises the performance of the existing energy system against the 

expectations of end users and energy suppliers. This provides the basis for identifying 

key challenges facing the existing energy system. The future role of renewable energy 

technologies in the supply of energy in the UK is proposed and potential problems 

surrounding the deployment of renewable energy in urban areas are raised.

2.2 End Users

End users as consumers of energy expect a certain standard of energy service. The 

"expectations" of consumers have been the focus of consumer research undertaken by 

service suppliers, independent research organisations and social scientists (including
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Roberts, 1996; Corrado and Hines, 2001; Customer Champions, 2003 and MORI,

2002). Consumer research has tried to identify and understand what really matters to 

consumers, what influences the decisions consumers make, i.e. consumer behaviour 

and attitudes, and how services can meet consumer requirements. This research has 

highlighted a number of key drivers behind consumer behaviour. Consumers expect a 

product or activity to be labour saving (easy to use) (Warde et al, 1998), convenient 

(Corrado and Hines, 2001; Ottman, 1994; Roberts, 1996 and Warde et al, 1998), of a 

certain quality (Corrado and Hines, 2001; Customer Champions, 2003; Ottman, 1994 

and Roberts, 1996), affordable in relation to saving money, the price of products and 

getting value for money (Corrado and Hines, 2001; Customer Champions, 2003; 

Hobson, 2001; McGrath, 1992, MORI, 2002 and Roberts, 1996) and ethical (Corrado 

and Hines, 2001; Hobson, 2001; MORI, 2002; Roberts, 1996 and Warde et al, 1998).

In relation to the provision of energy services, it is also logical to assume that 

stakeholders may also be motivated by the accessibility, or availability, or a product or 

service, and the ability of a service to meet a growing range of stakeholder needs 

whilst being consistent with existing services (Shaw, Mortimer and Kellett, 2004).

Based upon this research, it is possible to compile a list of terms which could be used 

to describe end user expectations of energy services. From the end users perspective, 

the supply of energy services must meet the following criteria:

• Accessibility,

•  Ease of Use,

• Flexibility,

• Convenience,

•  Reliability,

• Consistency, and

• Acceptability.

The accessibility of energy services is important from the end users perspective. With 

a dictionary definition of "that can be readily reached, entered or used, readily 

available" (Thompson, 1995), energy services must be readily accessible and available 

all day, every day, wherever required. Energy is readily available to end users within 

buildings, filling petrol stations, etc. Electricity and natural gas are delivered directly to 

buildings using underground cables and pipes, respectively. Liquid fuels used for 

transportation purposes are available from filling stations, the majority of which are 

located in populated areas and are open for long periods up to 24 hours. The fuel is
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piped using a pump from storage containers located under the forecourt into the 

vehicle for immediate consumption. The existing supply system helps to support the 

notion that energy should be accessible at all times. Whilst there is some interaction 

between end users and energy, for example filling the car with fuel, they do not have 

the personal responsibility of worrying about how to obtain fuel. The existing 

infrastructure eases the supply of energy to end users.

Energy services are also regarded as easy to use by end users. Easy to use implies 

that energy is "not difficult" to use and can be used "without great effort" (Thompson, 

1995). Appliances and equipment in the home, office and industrial buildings convert 

electricity or gas into useful energy such as light and heat (Elsayed and Mortimer, 

2001). Additionally, engines in vehicles convert petroleum products into motive power. 

Whilst there is some interaction between end users and energy, consumers do not 

have to worry about how to convert fuel into useful energy services. Instead, the 

technology converts the energy into a useful form that is simple to use by almost 

everyone.

The flexibility of the supply of energy is an important end user expectation. Using a 

dictionary definition, flexibility can be defined as that which is "adaptable, versatile and 

variable" (Thompson, 1995). End users expect to be able to derive many energy 

services from single sources of energy. Electricity provides end users with a number of 

different energy services including lighting, heating, cooking and the operation of 

electrical equipment such as kettles, televisions and large-scale computer systems. In 

the same respect, natural gas is used within buildings mainly for space and water 

heating but also for cooking applications, industrial processing, etc.

End users expect energy services to be convenient. Convenience can be defined as 

"serving one's comfort or interests, suitable, free of trouble or difficulty, available or 

occurring at a suitable time or place" (Thompson, 1995). The concept of "modern 

convenience" has been explored in detail elsewhere (Warde et al, 1998). Although the 

concept of convenience is not new, modern convenience is focused on comfort and 

reducing the effort involved in undertaking routine tasks (Warde et al, 1998). Many 

products and activities in society are judged in terms of convenience and energy 

services are no exception to this rule. Energy services provide people with comfort and 

allow more time to be spent on other activities as opposed to labour-consuming tasks 

such as washing clothes, cooking and heating the home. Before the availability of 

electrical and gas-fired space heating systems, homes were heated using coal fires,
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which was relatively labour intensive. Now, more time can be spent on other activities. 

Although it is unlikely that end users would go back to having real coal fires, there is a 

demand for coal-effect gas fires. Coal-effect fires provide comfort and convenience in 

the home. The advantages of a coal fire i.e. the image or appearance having an open 

fire and burning coals are provided without the disadvantages of having a real coal fire 

i.e. labour intensive cleaning and maintenance of the fireplace. By using appliances 

and equipment, end users enjoy the benefits of energy services whilst having minimum 

interaction with energy production.

The reliability of energy services is important to end users. The term “reliability” 

indicates that energy services can "be relied upon" (Thompson, 1995), which suggests 

that end users expect energy to always be there and be available both now and in the 

future. Modern energy services are often reliable. A light will come on in a room at the 

"flick of a switch." Although disconnections of energy supply do occur occasionally, 

these conditions are only tolerated for short periods of time.

End users also expect a consistency of energy services both now and in the future. 

Consistency can be defined as being "of sound and consistent character or quality" and 

"conformity with other or earlier attitudes, practice" (Thompson, 1995). This 

expectation suggests that any developments or changes in the provision of energy in 

the future must continue to deliver the same benefits of existing energy services. This 

implies that any change must be consistent with what end users require, otherwise the 

change may be rejected.

The acceptability of energy services is an important driver of end user behaviour and 

attitudes. Acceptability can be defined as "worthy of being accepted, pleasing, 

welcome, adequate, satisfactory, tolerable" (Thompson, 1995). Although the notion of 

acceptability varies from person to person, there are three main drivers of acceptability; 

affordability, quality and cultural values. The acceptability of energy supply can be 

described as a "balance between the (monetary) cost of receiving a service and the 

quality of that service" (Consumer Champions, 2003). For some end users, the best 

service is that which offers the lowest price per unit of energy. In a recent study, the 

number of domestic consumers switching energy supplier and the motivations behind 

the move were investigated (MORI, 2001). The research showed that 38% of 

electricity consumers and 37% of gas consumers changed supplier over a 12 month 

period. Although price was identified as the main motivation for the change in energy 

suppliers, other benefits such as dual fuel, whereby consumers can receive electricity
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and gas from the same company, were also an important driver for switching supplier. 

For consumers who returned to original suppliers or who did not switch suppliers, 

better prices, quality of service and trustworthiness were identified as motivations 

behind consumer behaviour. This indicates that some end users are prepared to pay 

more for energy provided by a reputable energy utility and energy services which may 

offer additional benefits such as a better quality service.

However, end users on low incomes cannot always afford energy costs, which leads to 

fuel poverty. This has a negative impact on the quality of life of people at risk (DTI, 

2001b). The acceptability of energy services in terms of different cultural values is 

emerging as an important factor in consumer behaviour. In recent years, there has 

been growing interest in the environment and sustainability issues particularly in 

relation to the negative effects of human activities on the environment. Public 

awareness of environmental issues such as climate change, resource depletion and 

waste problems has led some end users to choose energy services which have a lower 

impact on the environment. Research has shown that some consumers are prepared 

to pay more for energy produced from alternative or "green" energy sources such as 

wind power (MORI, 2001). In 2001, ethical spending in the UK had increased with 

sales of green energy showing the most growth when compared to other sectors 

including food, household goods and ethical investments (CO-OP, 2002). However, an 

awareness of environmental issues does not always coincide with the actual 

purchasing of green products. The low uptake of green energy and other green 

products and services by domestic consumers has been the focus of extensive 

research (Pearce, 1990; Berger and Corbin, 1992; Roberts, 1996; Greenprices, 2001; 

Hobson, 2001; Customer Champions, 2003). Studies which have investigated people’s 

willingness to pay for green products have shown that the consumer’s willingness to 

pay does not always coincide with consumers actually buying the products (Pearce,

1990). There have been many suggestions and possible explanations for the gap 

between consumer awareness of environment issues and their inconsistent behaviour. 

It has been noted that consumers often find it difficult to relate local, national and global 

environmental problems to individual actions (Pearce, 1990). Also, mistrust and 

cynicism, confusion, the experience of other consumers, the perception of other 

people’s experiences and the prevalence of negative stereotypes associated with 

“environmentalists” affect the purchase of green products (Pearce, 1990; Berger and 

Corbin, 1992; Roberts, 1996; Greenprices, 2001; Hobson, 2001; Customer Champions,

2003). It has been suggested that in order to engage consumers, the environmental
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message needs to be believable and the service must meet consumer expectations of 

price, convenience, quality and value (Roberts, 1996).

As illustrated, there are a wide range of expectations that end users place on the 

supply of energy services. These expectations can be summarised as follows:

• Accessibility; all end users can satisfy their energy demand needs,

• Ease of use; all end users are capable of using the delivered energy, it is simple

to use,

• Flexibility; energy provides end users with a number of different energy 

services,

• Convenience; energy services reduce the effort involved in undertaking routine 

tasks,

•  Reliability; energy is always available both now and in the future,

•  Consistency; future developments in energy supply will still meet the demands 

of end users,

• Acceptability; end users choose energy services based on affordability, energy 

at a price which end users are willing to or can pay; quality, the energy is 

provided at an acceptable level of service; and acceptability, energy satisfies 

demand by acceptable (ethical, moral, political, environmental, sustainable) 

means.

2.3 Energy Suppliers

In addition to end users, energy suppliers are also important stakeholders within the 

energy system. In most urban areas, energy suppliers will supply end users with 

electricity and natural gas. However, in a few cities in the UK, district heating suppliers 

provide heat to buildings via an interconnected network of pipes. As consumer 

research tends to focus on the end user, there is limited information available from the 

perspective of the energy supplier. However, with recent changes in the electricity
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market, it is possible to suggest likely priorities facing electricity companies. The 

opening up of the electricity market through the Electricity Act of 1989 combined with 

the New Electricity Trading Agreement (NETA) in 2001 has created a market whereby 

electricity suppliers are responsible for balancing forecast supply with actual demand.

In addition, electricity suppliers must compete with other companies to gain customers 

whilst trying to keep existing ones. In order to reduce risks, reports have indicated that 

the quality and reliability of supply, investment into supply infrastructure and the 

security of supply are important priorities for electricity companies (Ofgem, 2003,

2004c; EA, 2004 and O'Hara, 2003). It is becoming increasingly evident that in order 

to keep customers and attract new ones, electricity companies must be responsive to 

consumer expectations. Additionally, electricity companies must comply with the 

Renewables Obligation by utilising electricity produced from renewable energy 

sources. In the past, electricity companies regarded electricity as electricity regardless 

of source. With the introduction of the Renewables Obligation, the source of electricity 

generation is becoming increasingly important.

Although the ‘expectations’ of district heating suppliers are less documented and 

researched, parallels can be drawn. Sheffield is an example of a city with a district 

heating system. This system is currently operated by a waste management 

organisation called ‘Onyx Sheffield’ and is based on the incineration of municipal solid 

waste (MSW), which is a mixture of non-renewable and renewable/organic wastes. 

Onyx seeks to provide its customers with an energy service which is reliable, economic 

and efficient, of a certain quality and which has a minimum impact upon the 

environment (Onyx, 2004). In order to supply these benefits to its consumers, it is 

logical to assume that Onyx will need a fuel supply that is continuous and reliable, 

flexible, cost-effective, of a certain quality with low environmental impacts.

The expectations of energy suppliers are not wholly dissimilar to the expectations of 

end users. Therefore, the terminology used in the end user demand criteria can be 

applied here. However, the definitions have been modified to reflect the likely 

expectations of energy suppliers, as set out below:
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•  Accessibility - the resource and energy supply is accessible,

• Flexibility - the resource and energy supply is available upon demand,

• Reliability - the resource and energy supply is reliable, both now and in the 

future, and

• Acceptability - the fuel is supplied at an acceptable price and quality and comes 

from environmentally acceptable resources.

2.4 Existing Energy Supply

The UK energy system has undergone significant structural change over the last 

century which has had implications on the accessibility, ease of use, flexibility, 

convenience, reliability, consistency and acceptability of energy services. The 

accessibility of energy, particularly electricity and gas supplies, increased due to a 

number of factors including legislation, post World W ar Two developments and the 

discovery of significant natural gas resources. Before the Electricity (Supply) Act 1926, 

electricity was produced on a small-scale and locally close to the point of demand. 

Some interconnected distribution networks were developed, providing electricity to a 

number of industrial applications (Eden and Evans, 1986). Electricity was a new form 

of energy and high electricity prices combined with limited applications resulted in a low 

demand for electricity. At this time, the bulk of urban energy needs were met by coal 

and town gas, a mixture of carbon monoxide and hydrogen, which provided domestic 

and industrial consumers with energy for lighting, heating and cooking. The Electricity 

(Supply) Act 1926 established the Central Electricity Generating Board (CEGB) to 

control and centralise the production of electricity and develop a national grid system to 

link generation plants to points of demand. Following the Second World War, the 

national grid system was established which delivered electricity to the vast majority of 

the population. Electricity was produced in large power stations, away from the point of 

demand. A national network connected production to demand, therefore increasing the 

accessibility of electricity throughout the UK. The discovery of large natural gas 

reserves in the North Sea in the 1960s stimulated investment into converting the gas 

supply system from town gas to natural gas between 1967 and 1973 (Roberts et al,

1991). During the oil crises of the 1970s, natural gas emerged as a convenient and 

cheap energy source and, as a result, the use of natural gas has risen rapidly over the 

past 30 years (DTI, 2000a). A national gas infrastructure was put in place to link gas
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terminals with demand. As more and more end users had access to electricity and 

subsequently natural gas, the demand for electrical appliances and equipment 

increased and domestic coal fires were largely replaced by gas-fired central heating 

(PIU, 2002).

Electricity and gas are two important energy carriers. The term "energy carriers" refers 

to a means of carrying or transporting energy from the point of production to the point 

of consumption. As such, energy carriers provide an important link between the 

production of energy and its utilisation by end users. In the UK, electricity and gas are 

commonly-used energy carriers which are distributed to end users via national 

networks. In some parts of the UK and in other European countries such as Germany, 

water, air and steam are used as energy carriers within heating and cooling networks. 

Additionally, work is currently being undertaken in developing hydrogen as a new 

energy carrier.

Although most end users have access to energy supplies via conventional energy 

carriers in the UK, some areas are without access to gas supplies. In Great Britain, 

20% of domestic households are without access to mains gas (DTI, 2001b). Although 

the vast majority of these households are in rural areas, there are some urban 

buildings without access to mains gas. This is due to buildings being constructed 

without connection to mains gas and for safety reasons (DTI, 2001c). The 

inaccessibility of mains gas has been identified as one of the key reasons why some 

households are kept in fuel poverty (DTI, 2001c). A fuel poor household is commonly 

defined as "one that needs to spend in excess of 10% of household income on fuel use 

in order to maintain a satisfactory heating regime" (DTI, 2001b). It has been estimated 

that 29% of households without access to mains gas are in fuel poverty within Great 

Britain (DTI, 2001b).

In most instances, energy is easy and simple to use as it is delivered to end users in 

recognisable forms, namely electricity, heat, liquid fuels including petrol and diesel for 

transportation applications, gaseous fuels such as natural gas and solid fuels such as 

coal. The safety of the energy supply system adds to the ease of use of energy by the 

end user. Electricity, for example, is transmitted from large power plants over long 

distances at high voltages (400 kilo volts (kV) and 275 kV) overground using pylons to 

distribution companies. The electricity is transformed to lower voltages (132 kV to 230 

V) before being distributed to local end users for consumption within buildings (POST,

2001). Within buildings, an internal electrical system distributes electricity to power
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sockets. End users plug in electrical appliances and equipment which have been 

especially designed to operate with electricity.

Under current circumstances, energy is flexible as it provides end users with many 

different energy services. Electricity is the most flexible form of energy as it is used for 

a wide range of applications ranging from space and water heating to powering 

electrical appliances. However, despite the flexibility of energy, end users 

predominately use certain types of energy for certain uses; for example, electricity is 

used for lighting even though gas lighting is also feasible. In relation to transport, there 

are a growing number of different fuels which can be used for transportation purposes 

including petrol, diesel, liquid petroleum gas, electricity and hydrogen. However, the 

majority of end users continue to use petrol and diesel rather than alternative transport 

fuels.

The convenience of energy has changed over the last century as the relationship 

between the production and consumption of energy has changed. In the first half of the 

twentieth century, energy production was characterised by small-scale energy 

production which supplied onsite or local energy needs. Individuals, some private 

companies and Local Authorities owned energy ventures. From the Second World W ar 

up to the present day, energy production has been centralised in large power plants, 

operated by private companies, away from the points of demand. Energy is distributed 

using national interconnected networks. Electricity and gas meters, cables, pipes, 

fireplaces, boilers and plumbing are all serviced by specialists. End users purchase 

energy from energy suppliers and by doing so, pay for the convenience of energy 

provided by the existing system. There are very few instances whereby individual end 

users produce energy onsite to meet their energy demands. For the domestic end 

user, the changes in the energy system have had an enormous impact on the ability to 

undertake domestic tasks like heating, cooking and cleaning (Warde et al, 1998). 

Domestic households have moved from using coal for heating to the installation of gas 

or electric fires. Using coal for domestic fires involved the delivery and storage of coal, 

people making and maintaining a fire on a daily or regular basis, ash disposal and 

regular cleaning of the fireplace and chimney. Today, the vast majority of people have 

gas or electric fires which are turned on or off and the temperature controlled either 

simply by manual means or automatically via programmers. As such, the interaction of 

the end user has been reduced to a minimum. End users enjoy the benefits of energy 

without getting directly involved in energy supplies, generation or transmission.
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Energy suppliers also provide end users with consistent and fairly reliable supplies of 

energy. Even though end users may change energy suppliers, the supply of energy to 

the end user will continue to be of a consistent quality. Energy supplies are often 

continuous and uninterrupted with problems only occurring when surges in demand are 

not anticipated or when the network fails and there are power losses (POST, 2001). In 

some cases, the National Grid Transco Group, which owns and regulates the electricity 

network in England and Wales and Great Britain's national gas system, may ask large 

energy end users to shut down for short periods of time. This allows the supply of 

energy to domestic end users to continue uninterrupted (POST, 2001). In the longer 

term, however, the future reliability of the energy system is uncertain due to the 

reliance on finite resources for energy production. The reliability of energy supply is a 

focus of concern within the UK and other countries. In the UK, energy sources and 

suppliers have been identified as ways of diversifying future energy supply (DTI, 

2003a).

Energy services are valued by end users in terms of affordability, quality and 

acceptability. Within the existing energy system, large centralised power plants 

produce large quantities of energy for a low price, favouring economies of scale. Also, 

supplying large quantities of energy over long distances to concentrated areas of 

demand i.e. towns and cities is cheaper than supplying energy to scattered rural 

locations (Mortimer, Kellett and Grant, 1995). In recent years, the price of energy has 

been low (PIU, 2002). End users are billed for the quantity of energy consumed over a 

given period by privately operated energy utilities. Energy suppliers offer a range of 

services to end users including price tariffs, price reductions, a variety of payment 

methods and the installation and servicing of meters and pipes. Despite the low price 

of energy and the variety of payment methods available, there are still issues of fuel 

poverty within the UK (DTI, 2001b). The quality of the service provided by energy 

suppliers is important for end users. Considerable research has been undertaken by 

energy suppliers to identify end user requirements and to ensure that the supplier can 

provide services which will keep existing consumers and attract new ones.

For some energy suppliers and end users, the health and environmental impacts of the 

existing energy system are a source of concern. This concern is not unfounded as 

there are a number of health and environmental impacts or externalities associated 

with the production of energy. In a recent study, the externalities of electricity 

production from wind, solar, nuclear, biomass, coal, oil, natural gas and hydroelectric 

sources were calculated (ExternE, 2003). Quantifiable externalities were measured in
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terms of public health, occupational health, major accidents, damage to crops, 

ecosystems and materials, noise, visual impacts and global warming. The results of 

the study showed that if the external costs of electricity production were included in the 

price of electricity per kilowatt-hour (kWh), the price of electricity produced from oil and 

coal would double. Across all European countries, the external costs of electricity 

production from fossil fuels came out significantly higher than those of renewable 

energy sources (Rosenbaum, 2002). Additionally, nuclear energy poses problems 

related to waste disposal and radioactive contamination. The environmental 

externalities of energy production from nuclear energy sources are not reflected in the 

price of energy. For some end users, the response to such issues has been to 

purchase green energy.

2.5 Sustainable Energy Systems

Such qualitative assessment suggests that, whilst the existing energy system currently 

meets the majority of end user expectations, there are areas of concern for energy 

suppliers, as summarised in Table 2.1.

Table 2.1 Current Evaluation of the Existing Energy System against Stakeholder 

Expectations

Stakeholder Expectations Existing Energy System 
and End Users

Existing Energy System 
and Energy Suppliers

Accessibility • • • • •
Ease of Use • • • -

Flexibility • • • • • •
Convenience • • • -

Reliability:
Now • • • •
In the future • •

Consistency • • • -
Acceptability, in terms of:
Affordability • • • •
Quality • • • •
Environment • •

Sustainability • •

Key to symbols: •  Does not meet expectations

• •  Expectations are partially met 

• • •  Meets expectations 

Not applicable
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From the perspective of the end user, the existing energy system performs well in 

relation to the accessibility, ease of use, convenience, flexibility and reliability of energy 

services at present. In addition, the existing system offers consistency, affordability 

and quality. From the perspective of the energy supplier, the existing energy system is 

not perfect. Issues have been raised concerning the accessibility of resources and the 

reliability of energy supply, both now and in the future. There are also problems 

relating to the acceptability of resources and energy production and supply issues, in 

particular environmental and sustainability concerns. Overall, this assessment has 

placed doubts on the ability of the existing energy system to produce and supply 

energy in a sustainable way with minimum impacts on the natural environment whilst 

continuing to provide end users with reliable energy services in the future.

The sustainability and future reliability of the current energy system has been brought 

into question. Defined as "development that meets the needs of the present without 

compromising the ability of future generations to meet their own needs", sustainability 

in this context seeks to minimise the impacts of energy production, supply and 

consumption on the environment (WCED, 1987). One of the main challenges facing a 

sustainable energy system is the heavy reliance of the present system on non

renewable resources. Another key challenge is consumption levels particularly within 

urban areas. Towns and cities are centres of human activity and, subsequently, 

energy demand. In order to move towards a sustainable energy system, urban energy 

demand issues need to be addressed. In addition, an energy system based on 

renewable energy sources must not only meet stakeholder expectations of reliability 

and environmental and sustainability concerns, but it must also meet other stakeholder 

expectations of accessibility, ease of use, convenience, flexibility, consistency, 

affordability and quality.

It is important to consider whether the adoption of renewable energy technologies as a 

basis for a sustainable energy system will require fundamental changes to take place 

on all levels in society. The practical realisation of such a system can be explored by 

comparing current energy demand with the potential supply of renewable energy 

sources within the boundary of a town or city. In addition, the prospective carbon 

dioxide savings by using energy efficiency measures within buildings and renewable 

energy sources can be estimated. By using Sheffield as a case study example of a city 

in the UK, an urban energy study can be compiled. Such a case study would provide 

the basis for establishing the potential contribution of local renewable energy
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technologies to sustainable urban energy and for the subsequent investigation of 

barriers facing current and future renewable energy developments.
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3. ENERGY USE IN SHEFFIELD

3.1 Urban Energy Demand

Towns and cities are major consumers of energy services. With approximately 40 

million people living in urban areas in the UK, there is a constant demand for energy to 

meet energy needs (DETR, 1998). Most urban areas rely on the importation of energy, 

the majority of which is produced from fossil fuels, to meet internal energy demands.

As such, towns and cities are responsible for large quantities of associated carbon 

emissions. Very few urban areas utilise local energy resources, in particular low 

carbon energy resources such as solar energy and wind power, for local energy needs. 

The challenge that lies ahead is to reduce carbon emissions and make cities 

sustainable in energy terms. Renewable energy offers a means of achieving 

sustainability, particularly as they are not finite energy sources. The practicality of 

utilising local renewable energy resources to meet local energy needs and offset 

carbon emissions requires further examination. If renewable energy is going to provide 

the basis for achieving sustainable urban energy systems, it is essential to establish 

existing energy demands and potential renewable energy supply in a city such as 

Sheffield.

In order to investigate the potential contribution of local renewable energy supply in 

meeting local energy needs in Sheffield, current energy demand and associated 

carbon emissions must be established. This investigation is necessary in order to 

establish the extent of reliance on fossil fuels and look at how trends influence energy 

consumption patterns and carbon emissions over a given period. One way to estimate 

energy use within a city is to undertake a baseline energy assessment using national 

and local published statistics, as summarised in Section 3.2. In order to do this, the 

study area must be clearly defined, as demonstrated in Section 3.3. The results of the 

energy assessment are presented in Section 3.4. This begins by examining overall 

energy demand and carbon emissions in Sheffield in the year 2000. This is followed by 

a detailed examination of energy use and carbon emissions within each sector. 

Changes in energy consumption in Sheffield between 1992 and 2000 are presented in 

Section 3.5. Future developments in energy demand in Sheffield are examined in 

Section 3.6. Opportunities for reducing energy use and carbon emissions through the 

application of energy efficiency measures and local renewable energy sources are
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identified. This provides the basis for the subsequent examination of ways to reduce 

energy demand and carbon emissions in Sheffield.

3.2 Baseline Energy Assessment

Within the UK, there are national published statistics available including data on energy 

consumption, population and employment levels. Local statistical information 

published by Local Authorities and transport operators amongst others, are also 

available. This information can be used to produce local energy and carbon 

assessments. Energy assessments can be used as a basis for predicting future 

energy trends and carbon emissions, applying relevant energy efficiency measures and 

assessing the potential contribution of renewable energy sources to urban energy 

supply. Previous energy assessments of urban areas in the UK include Newcastle- 

Upon-Tyne (Newcastle City Council, 1992), Sheffield (Grant, 1993, 1994a, 1994b; 

Grant, Kellett and Mortimer, 1994a, 1994b; Grant et al., 1994c; Kellett, 1993, 1994a, 

1994b; Mortimer, 1993,1995 and Mortimer, Kellett and Grant, 1994) and Conisbrough 

and Denaby (Grant and Kellett, 2001, 2002a, 2002b, 2002c). By using statistical data, 

energy assessments provide a quantified assessment of energy use and carbon 

emissions within a defined area. As energy data can vary in terms of differing area 

boundaries, data formats and time periods, it is important to clearly establish this study 

area otherwise data analysis is difficult (Mortimer, Kellett and Grant, 1994).

There are different ways of estimating baseline or current energy use and carbon 

emissions within a city. A simple approach is to undertaken an approximate estimation 

using national published statistics to pro rata energy consumption. This pro rata 

approach takes national data and produces comparable statistics for a local level. This 

can be undertaken relatively quickly and easily. The use of national statistics allows 

the study to be replicated easily from city to city although local characteristics and 

variations are not identified. A more complex approach is to undertake a 

comprehensive assessment using information collected from local sources such as end 

users and energy suppliers. As this relies entirely on the collection of local data, it is 

difficult to execute due to difficulties in obtaining the necessary information as well as 

time and budget constraints. A compromise between the two approaches is a hybrid 

assessment which produces detailed energy assessments within the limitations of 

available resources (Bennett and Newborough, 2001). Due to the limitations of 

available time and information, a hybrid approach was adopted here based on the 

methodology adopted for the MIRE study of Sheffield in 1992 (Grant, 1993, 1994a,
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1994b; Grant, Kellett and Mortimer, 1994a, 1994b; Grant et al., 1994c; Kellett, 1993, 

1994a, 1994b; Mortimer, 1993, 1995 and Mortimer, Kellett and Grant, 1994). Using a 

hybrid approach allowed local estimations of delivered energy consumption and 

associated carbon emissions within district of Sheffield by fuel type and sector to be 

produced using available national and local data. This approach provides a more 

representative assessment of energy use and carbon emissions in Sheffield than using 

an approximate approach to pro rata national data on energy consumption. In addition, 

it provides a detailed picture of energy use by fuel type and sector without undertaking 

an in-depth and fully comprehensive energy assessment. The accuracy of the hybrid 

approach lies between the extremes of the comprehensive assessment and the simple 

approach based entirely on pro rata national statistics. In this context, results from 

undertaking a comprehensive assessment are likely to be very specific, and 

subsequently, very accurate whilst those from the pro rata approach cannot be 

regarded as anything more than indicative.

As part of the hybrid approach, national and local data were used to pro rata energy 

consumption within Sheffield. National energy consumption ratios were produced in 

relation to the number of domestic dwellings, numbers employed, the number of 

vehicles in use and resident population figures, and applied at a local level in Sheffield. 

Estimations of carbon emissions were produced using carbon coefficients, which show 

the amount of carbon per unit of energy released upon combustion of the fuel or 

generation of electricity. By establishing current energy use and carbon emissions 

within Sheffield, a baseline was set against which other assessments can be 

measured. Following a preliminary examination of available data sources, the baseline 

year of the study was set at the year 2000. This was mainly due to the unavailability of 

later information. For example, the 2001 UK Census was not published at the time of 

the study. Although the majority of information derives from data for the year 2000, 

other sources of data are generally current to within two or three years. The figures 

and percentages presented here are estimations of energy consumption and carbon 

emissions. In the main text, all numbers have been rounded to the nearest hundred 

and all percentages to the nearest whole number. However, in order to register the 

current contribution of renewable energy to delivered energy consumption, relevant 

percentages are given here to one decimal place. Further information on different 

approaches for conducting local energy and carbon assessments can be found in 

Appendix A. The Sheffield Energy Study comprises of three parts, namely a baseline 

assessment, an energy efficiency assessment and a renewable energy assessment. 

Detailed information on the baseline assessment of energy consumption and carbon
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emissions can be found in Appendix B. This includes an examination of the hybrid 

methodology and carbon coefficients adopted in the Sheffield Energy Study and the 

results of the baseline assessment. Appendix C contains the methodology use for the 

energy efficiency assessment and associated results. The methodology and results of 

the renewable energy assessment are contained in Appendix D.

3.3 Sheffield and the Surrounding Area

3.3.1 Study Area

The study area is defined as the Local Authority district boundary of Sheffield as shown 

in Figure 3.1. This boundary definition was chosen as national energy data and local 

statistical information, for example employment figures, are available for this 

administrative unit. Sheffield is centrally located within the UK and forms one of four 

Local Authority districts in the County of South Yorkshire, as illustrated in Figure 3.2. 

With a population of approximately 531,000, Sheffield covers an area of 36,755 

hectares (SCC, 1998 and ONS, 2000). Sheffield is situated on seven hills and the 

confluence of five rivers named the Don, Sheaf, Rivelin, Porter and Loxley (SCC,

1998). The district of Sheffield includes a large built up area which is divided into ten 

areas of Stocksbridge, Northwest, Chapel Green, Northeast, East End, Southeast, 

Mosborough, South, Southwest and the City Centre (SCC, 1998). Although Sheffield is 

largely an urban area, almost one quarter lies within the Peak District National Park. 

The towns of Barnsley and Doncaster lie to the north. To the east, Sheffield shares a 

contiguous administrative boundary with Rotherham across the Don Valley. North 

Nottinghamshire and Sherwood Forest are situated to the south east, the town of 

Chesterfield to the south and the Peak District National Park to the west. Sheffield's 

immediate surrounding area includes the contiguous districts of Rotherham, Barnsley, 

North East Derbyshire, Chesterfield, the High Peak and Derbyshire Dales as shown in 

Figure 3.3 (Kellett, 1993).

3.3.2 Land Use

The origins of Sheffield date back many centuries. Sheffield developed from a large 

village surrounded by smaller settlements to a market town and then to a city in 1893. 

By this time, Sheffield was a major industrial centre for iron, steel, tool and cutlery 

trades. The completion of the local turnpike road system, the canal and the railway 

stimulated industrial, commercial and population growth within Sheffield (Hey, 1998).
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Figure 3.3 Sheffield and the Surrounding Area
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Many of the changes made to the built environment in the late nineteenth century 

remain today. A central commercial core was developed with terraced residential 

housing erected in the industrial quarters and suburban housing in the west of the city, 

away from the industrial smog. After the Second World War, city centre slums were 

cleared and high rise local authority housing at sites such as Park Hill and Gleadless 

were constructed (Hey, 1998).

A broad mix of housing types remain evident in Sheffield including detached and semi

detached housing, terraces and flats (Grant, 1993). The collapse of the heavy 

industrial sector during the 1970s and 1980s resulted in major job losses. 

Consequently, South Yorkshire currently has Objective One status, awarded by the 

European Commission (SCC, 1998). Despite the industrial changes, Sheffield has 

remained a major centre for employment, services and education. Sheffield contains 

two universities, major sporting and cultural facilities and Meadowhall, one of the 

largest out-of-town shopping complexes in the UK. Other land uses within the district 

include commercial developments such as offices, industrial sites and public service 

facilities including schools and health care centres.

The city centre is the focal point for transport routes. There are a number of trunk 

roads running through Sheffield in addition to the M1 motorway to the east of the city. 

Sheffield has railway stations located at Dore, Meadowhall and in the city centre. 

Supertram, a light rail system, is in operation with three routes totalling 29 kilometres in 

length (Anon, 2002a). The light rail system operates between Hillsborough, 

Meadowhall and Halfway and links five park and ride schemes to the city centre (Anon,

2002). Sheffield canal runs between the city centre and Rotherham and a small airport 

is based at Tinsley. In addition, Sheffield has a district heating network which is 

supplied by the Bernard Road waste incinerator. A number of buildings including the 

City Hall, the Crucible and Lyceum theatres, Sheffield University, Sheffield Hallam 

University and Park Hill flats are connected to this network.

3.4 Energy Assessment Results

3.4.1 Overall Energy Demand and Carbon Emissions

The estimated total delivered energy consumption of Sheffield in 2000 was 52,000 TJ. 

This delivered energy consumption comprises of five fuel types, namely natural gas, oil 

products including petroleum, electricity, solid fuels including coal and coke and
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renewable energy, which has been used to produce renewable or “green” electricity.

As shown by Figure 3.4, the three main fuels consumed within Sheffield are natural gas 

(43%), oil products (32%) and electricity (20%). Smaller amounts of solid fuels are also 

used in the city. Although the vast majority of all delivered energy comes from fossil 

fuel sources, a small percentage is supplied by renewable energy sources. This 

reflects the growing use of renewable energy sources for energy production nationally.

Figure 3.4 Total Delivered Energy Consumption by Fuel Type
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The consumption of 52,000 TJ of energy resulted in carbon emissions of approximately

1.1 million tC. The three main fuels consumed within Sheffield are also the three main 

sources of carbon emissions as illustrated by Figure 3.5. Although natural gas is the 

main fuel used within Sheffield, it is only the third largest source of carbon emissions. 

This is because different fuels have different carbon contents. Due to the diverse 

mixture of fuels used for electricity generation, such as natural gas and coal, the 

carbon content per unit of electricity is much higher than those of oil products and 

natural gas. More information on the carbon content of the fuels can be found in 

Appendix B. All carbon emissions in Sheffield are a result of using fossil fuel-based 

resources.
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Figure 3.5 Total Carbon Emissions by Fuel Type
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Energy consumption in Sheffield varies from sector to sector. The main energy 

consumers within Sheffield were identified as the domestic sector, the business sector, 

the industrial sector and the transport sector. For the purposes of this study, the 

domestic sector refers to residential buildings. The business sector represents 

business and commercial activities which are very varied and include office 

employment, education, administration, health care, retail etc. The industrial sector 

represents manufacturing of all types. Within the transport sector, there are three main 

modes available within Sheffield, namely road, rail and air. Road transport comprises 

of private cars and taxis, motorcycles, scooters and mopeds, buses and coaches, light 

goods vehicles and heavy goods vehicles. Rail transport consists of the national rail 

network and Supertram, Sheffield's light rail system. At the time of the study, Sheffield 

had a small airport which operated a limited number of services. Within the UK, energy 

consumption by sector is often subdivided into thirds, with the business sector, the 

domestic sector and the transport sector all using approximately one third of total 

energy supply. As shown by Figure 3.6, Sheffield is not typical of this national picture. 

The business and industrial sector consumed 42% of total delivered energy, followed 

by the domestic sector (34%) and the transport sector (24%). Energy consumption by 

the business and industrial sector is large due to the industrial heritage of Sheffield and 

the energy-intensive manufacturing industries that still remain in the district. It is likely 

that the main use for energy within manufacturing industries is process heating, 

especially due to remaining metalworking and heavy engineering in Sheffield.
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Figure 3.6 Total Delivered Energy Consumption by Sector
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As a direct result of the energy consumption by this sector, business and industrial 

activities are also responsible for the largest amount of carbon emissions in Sheffield 

as shown in Figure 3.7. This is followed by the domestic sector and the transport 

sector. In order to provide an insight into energy consumption within each of the 

sectors in Sheffield, energy use and carbon emissions within the business and 

industrial sector, the domestic sector and the transport sector are explored in more 

detail subsequently.

Figure 3.7 Total Carbon Emissions by Sector

□  Business and 
industrial sector

□  Domestic sector

□  Transport sector
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3.4.2 Business and Industrial Sector

Estimations on energy consumption by the business and industrial sector were 

produced using national energy data (DTI, 2001a) and employment data (National 

Statistics, 2002a, 2002b and Swain, 2002). Although local energy data for this sector 

was unavailable due to information confidentiality, local industrial and employment 

characteristics were drawn out using the SIC system (CSO, 1992). This system 

classifies economic activities of a similar nature into "industries," for example, 

manufacturing, construction and commerce. Using the SIC categories, local 

characteristics were identified and compared with the results of the 1992 MIRE study.

A description of the different SIC categories and approach used can be found in 

Appendix B.

The assessment of energy consumption by the business and industrial sector shows 

that manufacturing still forms an important part of Sheffield's economic base. Out of 

the total 21,800 TJ consumed by the business and industrial sector, 63% is consumed 

by manufacturing industries alone. As Figure 3.8 shows, the two main fuels consumed 

by industry are natural gas and electricity. These two fuels are the main sources of 

carbon emissions from this combined sector as illustrated in Figure 3.9. It is also worth 

noting that industry consumes more solid fuels than any other sector in Sheffield.

Figure 3.8 Industrial Energy Consumption by Fuel Type
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Figure 3.9 Industrial Carbon Emissions by Fuel Type
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In addition to manufacturing, there is a diverse range of business activities in Sheffield 

including health care, education etc. and a wide of service activities. Business 

activities predominately use natural gas and electricity with some oil products as shown 

in Figure 3.10. Small amounts of solid fuels and renewable energy are used by 

business practices in the city. As a result of this energy use, natural gas and electricity 

are the main sources of carbon emissions for business in Sheffield, as shown in Figure 

3.11.

Figure 3.10 Business Energy Consumption by Fuel Type
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Figure 3.11 Business Carbon Emissions by Fuel Type
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3.4.3 Domestic Sector

Estimations of energy use by the domestic sector have been produced using national 

domestic energy consumption data (DTI, 2001) and information on the number of 

dwellings in the UK and Sheffield (Sheffield First, 1999 and ODPM, 2001). Due to the 

limited availability on the number of households in the UK (Harrison, 2002), this 

methodology was based upon the number of dwellings. Dwellings can be defined as a 

unit of accommodation, for example, a house. A household relates to the number of 

people living at the same address, which can range from one person to a group of 

people (ODPM, 2002). It is important to note that this methodology does not pick up 

local variations in energy consumption patterns. For example, Sheffield, once part of a 

large mining region, is likely to have higher than average of coal consumption which 

will not be identified by this methodology.

The domestic sector consumes 34% of the total delivered energy consumption within 

Sheffield. Within this sector, domestic dwellings use the majority of energy for space 

heating followed by water heating. Lesser amounts of energy are used for lighting, 

appliances and cooking (DEFRA, 2002 and Zacarias-Farah and Geyer-Allely, 2003).

In order to meet these energy needs, the domestic sector primarily uses natural gas 

followed by electricity as demonstrated in Figure 3.12. As a result of this pattern of 

energy consumption within this sector, natural gas and electricity are the main sources 

of carbon emissions as shown in Figure 3.13.
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Figure 3.12 Domestic Energy Consumption by Fuel Type

□  Natural gas

□  Electricity

□  Oil products

□  Solid fuels

IB Renewable 
energy

Figure 3.13 Domestic Carbon Emissions by Fuel Type
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3.4.4 Transport Sector

There are many difficulties when trying to allocate transport energy use within a city. 

Unlike buildings which are static, each mode of transport available in Sheffield can 

travel within, through, from and/or to the city from other areas. There are many 

suggested ways of allocating transport energy consumption within an area including 

allocating transport energy consumption per person in residence or collectively 

allocating energy consumption to each mode of transport starting its journey in 

Sheffield. With such issues in mind, there is a need to allocate energy use and carbon
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emissions of road, rail and air transport to Sheffield. Road transport energy 

consumption was estimated based on local vehicle ownership projections for private 

cars (SYPTE, 2000) and taxis (Boyd, 2002). In the absence of local data, national 

vehicle ownership projections for motorcycles, mopeds and scooters (CSRB, 2001 and 

National Statistics, 2000a), buses, coaches, light goods vehicles and heavy goods 

vehicles (DFT, 2001) were used together with national and local population estimates 

and national road transport petroleum consumption statistics (DFT, 2001). In order to 

produce estimations of energy consumption by rail transport in Sheffield, a pro rata 

approach was adopted based on national and local track length and national rail 

petroleum consumption statistics (CSRB, 2001 and Williams, 2002). Energy 

consumption estimations for Supertram were calculated based on the number of 

passenger kilometres travelled in Sheffield for 2000/2001 and energy consumption 

estimations per passenger kilometre for light rail systems (Barry et al, 1998 and DFT, 

2001).

Estimations of energy consumption of air travel in Sheffield were produced based on 

domestic flights from Sheffield City Airport. Using flight schedules and an air distance 

calculator, the total length (kilometres) of outbound flights were calculated. Return 

flights were not included in the calculations as it was assumed that the refuelling of the 

aeroplanes formed part of the energy consumption of the destination airport rather than 

Sheffield City Airport. Private flights and helicopter flights were not included in the 

assessment due to the unavailability of relevant information. Specific details of the 

approach used for each of these transport modes can be found in Appendix B.

With such issues in mind, it has been estimated that the transport sector consumed 

12,800 TJ of total delivered energy and was responsible for carbon emissions of 

257,000 tC for the year 2000. This amounted to 24% of total carbon emissions within 

Sheffield. Throughout the UK, road transport has been identified as the main source of 

transport-related carbon emissions (DFT, 2002). This is true in Sheffield as 

approximately 99% of transport energy consumption can be attributed to road 

transport. The remaining 1% of energy consumption is primarily used by rail, with a 

small share being used by air transport. As shown in Figure 3.14, private cars and 

taxis consume the largest amount of energy (61%) in Sheffield. This is followed by 

heavy goods vehicles (32%) within the road transport sector. The remaining 7% of 

delivered energy is consumed by buses and coaches (3%), light goods vehicles (3%) 

and motorcycles, scooters and mopeds (1%). There are different ways of powering 

motorised vehicles. The conventional way is to use oil products which mainly include
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petroleum derivatives such as leaded and unleaded petrol, and diesel. Alternative 

fuels include liquid petroleum gas (LPG) and electricity. However, due to the limited 

information available on alternatively powered vehicles in Sheffield, it has been 

assumed that petrol and diesel are the main fuels used. As Table 3.1 shows, the main 

fuel consumed by the transport sector was oil products (99.7%) with a significantly 

lesser amount of electricity (0.3%). Although these numbers are presented to the first 

decimal place, they are approximate and have been used to illustrate the reliance on oil 

within the transport sector in Sheffield. All transport modes, with the exception of the 

Supertram network, consumed petroleum. The national rail network that runs through 

the district does not include any electrified sections currently. The Supertram network 

consumes an estimated 37 TJ of electricity and is responsible for approximately 0.5% 

of carbon emissions in this sector. The remaining carbon emissions are a result of the 

high levels of oil consumption by transport.

Figure 3.14 Delivered Energy Consumption by Mode of Road Transport
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Table 3.1 Transport Energy Consumption and Carbon Emissions

Fuel type Energy consumption (%) Carbon emissions (%)

Oil products 99.7 99.5

Electricity 0.3 0.5

Total 100.0 100.0
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3.5 Trends in Energy Consumption

Between 1992 and 2000, the total delivered energy consumption of Sheffield has fallen 

slightly from 53,500 TJ to 52,000 TJ. Over this period, carbon emissions have fallen by 

19% from around 1.4 million tC to 1.1 million tC. The business and industrial sector 

has remained the largest consumer of energy within the city, followed by the domestic 

sector and the transport sector. However, there have been changes in the share of 

energy demand by these sectors as illustrated by Table 3.2.

Table 3.2 Comparison of Energy Consumption bv Sector

Sector Energy Consumption (%)
1992 2000

Business and Industrial 48 42
Domestic 31 34
Transport 21 24
Total 100 100

Table 3.2 shows that energy consumption by the business and industrial sector has 

fallen whilst domestic and transport energy consumption has risen over this period. As 

Table 3.3 shows, there has been an increase in natural gas, electricity and renewable 

energy consumption and a fall in the use of solid fuels and oil products. This can be 

explained by examining changes in fuel mix within each of the sectors in Sheffield. 

Within each sector, there have been some important changes in fuel mix. For the 

business and industrial sector, there has been an increase in the use of natural gas, 

electricity and renewable energy sources. There has been a reduction in the use of oil 

products whilst the use of solid fuels by this sector has significantly fallen. Within the 

domestic sector, there has been a slight increase in the use of natural gas, electricity 

and oil products and a reduction in solid fuel use. This sector consumes more energy 

from renewable sources than any other sector. Within the transport sector, the fuel mix 

has changed slightly due to the introduction of the electric Supertram system.

The changes in fuel mix within Sheffield have had a significant impact on carbon 

emissions. Between 1992 and 2000, total delivered energy consumption has fallen 

slightly, but total carbon emissions have fallen by 19%. This reflects a number of key 

national and local trends. Nationally, there has been a move towards the increased 

use of natural gas for electricity generation as opposed to using solid fuels. Between 

1992 and 2000, the use of coal for electricity generation in the UK fell by 25%  and oil 

by 9% whilst the use of natural gas increased by 32% (DTI, 2002b). Additionally, there
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Table 3.3 Comparison of Energy Consumption bv Fuel Type

Fuel Type Energy Consumption (%)
1992 2000

Natural gas 33 43
Electricity 25 20
Solid fuels 23 4.6
Oil products 19 32
Renewable energy 0 0.4
Total 100 100.0

have been changes in the carbon coefficients of different fuels which have a direct 

impact upon the calculation of associated carbon emissions. For example, the 

changes in the fuel mix of electricity generation have resulted in the lowering of the 

carbon coefficient for electricity. In 1992, the carbon coefficient for electricity was 60  

tC/TJ compared with 37.4 tC/TJ in 2000, a reduction of 22.6 tC/TJ (Grant, Kellett and 

Mortimer, 1994c and Pout et al, 2002). As a result, carbon emissions from electricity 

consumption have fallen within Sheffield even though electricity consumption has 

increased. On a local level, Sheffield has experienced a move away from energy 

intensive manufacturing towards public administration and commerce. This has 

resulted in less energy-intensive industries and a reduction in the use of solid fuel for 

applications such as process heating. The combination of national changes in fuel mix 

and unplanned local economic changes has resulted in lower carbon emissions in 

Sheffield in 2000 when compared to 1992.

3.6 Future Developments

This quantitative assessment suggests that the energy demand baseline for Sheffield is 

not static and will change over time. According to national projections of future energy 

demand (DTI, 2000b), overall energy consumption is forecast to increase at around 1% 

a year up to 2010. Over the same period, carbon emissions will continue to fall due to 

the reduction in emissions from electricity generation. From the local baseline 

comparison, the total delivered energy consumption has fallen by 3% and carbon 

emissions have fallen by 19% between 1992 and 2000. From 2010 onwards, carbon 

emissions are expected to rise due to growing emissions from road transport and the 

domestic sector. As illustrated in Table 3.4, buildings currently consume more than 

two-thirds of total delivered energy consumption and, as such, are responsible for more 

than two-thirds of carbon emissions in Sheffield. As such, the built environment offers 

an opportunity to significantly reduce energy demand and carbon emissions within the 

district. Although further examination of transport is beyond the scope of this study, it
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is important to note that in 2000, road transport consumed 99% of the total delivered 

energy by the transport sector in Sheffield. As energy consumption by road transport is 

forecast to increase (DFT, 2003), road transport will also emerge as a significant area 

to address within a city such as Sheffield in the future.

Table 3.4 Energy consumption bv the built environment in Sheffield. 2000

Built environment by Sector Energy Consumption (%) Total (%)
Domestic 34

76Business and Industry 42

The reduction in carbon emissions in Sheffield has happened as a result of changes in 

the economic base of the district and changes in carbon coefficients, amongst other 

reasons. These changes have indirectly resulted in lower carbon emissions in 

Sheffield. If unplanned actions such as these can lead to a significant reduction in 

carbon emissions, then what would happen if planned reductions were introduced? 

There are two prominent ways of reducing carbon emissions in buildings. The first is 

through the introduction of energy efficiency measures. Once buildings are efficient in 

energy terms, then the remaining energy supply could be met by local renewable 

energy sources. By using the energy and carbon emissions assessment for Sheffield 

in the year 2000 as a baseline, it is possible to examine how energy use and carbon 

emissions can be reduced through the application of energy efficiency measures and 

increasing local renewable energy supply in a city such as Sheffield.
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4. REDUCING CARBON EMISSIONS IN SHEFFIELD

4.1 Current Situation

Over the last ten years, it has been estimated that carbon emissions in Sheffield have 

fallen by around 19% (Chapter 3). Local and national changes in the economic base of 

the city, lower carbon contents of fuels and a change in the national fuel mix for 

electricity generation, have had both a direct and indirect impact on local carbon 

emissions. Although carbon emissions have fallen, there is still a continued reliance on 

fossil fuels to meet energy demands in Sheffield. It has been estimated that natural 

gas, electricity, oil products and solid fuels constitute 99.6% of total delivered energy in 

Sheffield when compared to 0.4% from renewable energy sources (Chapter 3). This 

over-reliance on finite fossil fuels in meeting local energy demands is essentially 

unsustainable. The challenge facing Sheffield is to continue to reduce carbon 

emissions whilst moving towards the use of more sustainable sources for energy 

supply, such as renewable energy. Renewable energy offers a way of achieving 

sustainability as these sources of energy are carbon neutral and cannot be depleted.

In order to realise these prospects, the practicality of reducing energy demand and 

carbon emissions in Sheffield through a planned approach requires further 

examination. If renewable energy is going to provide the basis for achieving 

sustainable urban energy systems, it is necessary to look firstly at how current energy 

demands could be reduced before assessing potential renewable energy availability in 

a city such as Sheffield.

According to the baseline assessment of Sheffield, buildings accounted for two-thirds 

of total delivered energy consumption and associated carbon emissions in Sheffield in 

2000 (Chapter 3). As such, ways of reducing energy consumption through increased 

energy efficiency in buildings and substituting the remaining energy demand with local 

renewable energy supply can be investigated. One way of assessing energy and 

carbon savings within buildings is to undertake an energy efficiency assessment using 

national published statistics, as summarised in Section 4.2. In Section 4.3, the results 

of the energy efficiency assessment are discussed. This provides an illustration of 

potential energy savings which could be achieved in buildings through the 

implementation of energy efficiency measures. Further details on energy efficiency 

assessments and the methods and results of the Sheffield energy efficiency 

assessment can be found in Appendices A and C, respectively. Once energy savings
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have been established, a renewable energy assessment can be undertaken to 

establish local renewable energy supply, as summarised in Section 4.4. In Section 4.5, 

the results of the renewable energy assessment are compared with the baseline and 

energy efficiency assessments of Sheffield. This identifies available renewable energy 

supply, summarises the characteristics of relevant renewable energy technologies and 

discusses the contribution of renewable energy to existing energy supply. Further 

details on renewable energy assessments and the detail of the assessment of Sheffield 

can be found in Appendices A and D, respectively. Based on the findings of the 

Sheffield energy study, Section 4.6 looks at future energy use in Sheffield. Throughout 

Chapter 4, energy demand and supply has been presented in terajoules (TJ) and 

associated carbon emissions in tonnes of carbon (tC). All numbers have been rounded 

to the nearest hundred and all percentages have been rounded to the nearest whole 

number. All terms used here are consistent with those laid out and defined in Chapter 

3.

4.2 Energy Efficiency Assessment

Energy efficiency assessments are produced for a wide range of purposes including 

identifying ways of reducing energy consumption and carbon emissions through the 

introduction of energy efficiency options and providing the basis for implementing 

energy efficiency plans (Grant and Kellett, 2002a). Energy efficiency options include 

technical measures, such as replacing light bulbs and improving insulation, and non

technical measures, for example, addressing occupant behaviour (Grant and Kellett, 

2002a). There are two general approaches to energy efficiency assessments, namely 

approximate and comprehensive estimations. Approximate estimations use 

generalisations and extrapolate energy efficiency data from national statistics. This 

approach requires less data and is relatively quick and easy to undertake. By using 

national data, local variations in energy efficiency improvements, which differ from 

building to building, sector to sector, cannot be identified. Comprehensive estimations 

are carried out on a case-by-case basis, for example, estimations of energy use, 

related carbon emissions and energy efficiency opportunities for individual buildings 

can be produced. Comprehensive estimations are detailed, in-depth and accurate 

quality assessments which are time consuming and costly. Further details on the 

different approaches which can be adopted when conducting energy efficiency 

assessments can be found in Appendix A. For the purpose of this investigation, it was 

decided that subsequent approximate savings would be adequate. The examination 

provides an illustration of energy savings which could be achieved in a city such as

48



Sheffield in order to provide a framework against which any renewable energy 

contribution could be assessed. In essence, the examination of energy efficiency 

savings is a prerequisite for looking at ways in which local renewable energy supply 

might be increased. Potential savings are compared against baseline energy demand 

and carbon emissions of buildings in Sheffield in 2000, as set out earlier (see Chapter 

3). This approach provides a broad indication of potential energy and carbon savings 

that could be achieved in buildings in Sheffield based on national trends. Detailed 

information on the approach adopted and the results of the Sheffield energy efficiency 

assessment can be found in Appendix C.

4.3 Reducing Energy Consumption in Buildings

Buildings in Sheffield consumed an estimated 39,000 TJ of delivered energy in 2000. 

This energy consumption comprised of natural gas (57%), electricity (27%), oil 

products (9%), solid fuels (6%) and renewable energy (1%) (Appendix B). This energy 

consumption resulted in the release of 855,000 tC, the majority of which came from 

electricity consumption (46%) and natural gas (38%), followed by oil products (9%) and 

solid fuels (7%) (Appendix B). It has been estimated that by improving energy 

efficiency, energy consumption and carbon emissions in buildings could be reduced by 

14.5% and 14.0%, respectively. As shown by Figures 4.1 and 4.2, this assessment 

results in a modest energy and carbon savings overall. Energy consumption would be 

reduced from 39,000 TJ to 33,600 TJ and carbon emissions from 854,500 tC to 

735,400 tC.

Figure 4.1 Effects of Energy Efficiency Measures on Energy Consumption of 

Buildings. Sheffield 2000
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Figure 4.2 Effects of Energy Efficiency Measures on Carbon Emissions of

Buildings. Sheffield 2000
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Energy and carbon savings as a result of the energy efficiency assessment vary from 

sector to sector. Figure 4.3 depicts illustrative energy savings which might be achieved 

over the next 20 years. Within the business sub-sector and the industrial sub-sector, 

energy savings of 10% may be achieved. Energy savings of 20% could be achieved 

within the domestic sector. Reducing the energy consumption of buildings lowers 

associated carbon emissions. By improving energy efficiency, carbon savings could be 

achieved across all sectors within the next 20 years, as illustrated by Figure 4.4.

Figure 4.3 Effects of Energy Efficiency Measures on the Energy Consumption of 

Buildings in Sheffield by Sector. 2000
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Figure 4.4 Effects of Energy Efficiency Measures on the Carbon Emissions of

Buildings in Sheffield bv Sector. 2000
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In order to reduce carbon emissions further, local renewable energy supply must be 

increased. Renewable energy can supply buildings with electricity, heating, cooling 

and/ or ventilation. In order to target significant areas of energy consumption within 

buildings with energy efficiency, it is possible to rank relative energy demand in 

buildings in decreasing order as shown in Table 4.1. The information presented in 

Table 4.1 has been produced from data contained within Appendix C. A percentage 

breakdown of overall energy consumption and carbon emissions has been provided to 

highlight key consumption within buildings in Sheffield. As the shaded area in Table

4.1 shows, natural gas and electricity accounts for 84% of all energy demand and 

carbon emissions in buildings in Sheffield following energy efficiency measures. 

Therefore, natural gas and electricity offer a significant opportunity for substitution by 

available renewable energy supply in Sheffield.

4.4 Renewable Energy Assessment

In order to derive estimations of renewable energy supply in Sheffield, it was necessary 

to undertake a renewable energy assessment. Renewable energy assessments are 

produced for a wide range of purposes including identifying local renewable energy 

sources, estimating economic feasibility of utilising available resources and exploring 

the possibilities for carbon savings within a defined area. There are two main ways of
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Table 4.1 Ranked Energy Demand and Carbon Emissions of Buildings with

Energy Efficiency in Sheffield

Sector Fuel type
Energy

Demand
Carbon

Emissions Potential application®
TJ % tc %

Domestic Natural Gas 9506 28.3 138782 18.9
Space & water heating, 
cooking

Industry Natural Gas 5768 17.2 84211 11.4 Process heating

Business Natural Gas 3740 11.1 54610 7.4 Space heating

Industry Electricity 3494 10.4 130679 17.8
Lighting, appliances, 
machinery

Domestic Electricity 2874 8.6 107503 14.6
Lights, appliances, 
cooking, heating

Business Electricity 2698 8.0 100902 13.7 Lighting, appliances

Industry Oil products 1496 4.5 29915 4.1 Machinery

Industry Solid fuels 1449 4.3 37395 5.1
Space & process 
heating

Domestic Oil products 968 2.9 19360 2.6 Heating

Business Oil products 764 2.3 15290 2.1 Heating

Domestic Solid fuels 578 1.7 14923 2.0 Heating

Industry
Renewable
energy 77 0.2 0 0

Electrical-based
appliances

Business Solid fuels 73 0.2 1876 0.3 Heating

Domestic
Renewable
energy 70 0.2 0 0

Electrical-based
appliances

Business
Renewable
energy 34 0.1 0 0

Electrical-based
appliances

Total 33590 100 735447 100

estimating available renewable energy sources, namely approximate and 

comprehensive assessments. Approximate estimations are essentially scoping studies 

which provide a broad view of local renewable energy potential. This approach uses 

available published data and modelling techniques to predict resource availability, 

assess economic feasibility of potential developments and indicate potential sites for 

exploiting renewable energy sources. When looking at sites for commercial 

development, approximate estimations can provide a basis for comprehensive 

assessments. Comprehensive assessments are essentially site-specific and provide 

an in-depth, detailed and accurate assessment of available renewable energy at a 

particular site. Such assessments are feasibility studies undertaken by developers. In 

order to produce accurate results, more time, effort and cost is involved in collecting
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accurate data and assessing the technical, economic, non-technical and non-economic 

issues facing potential development.

In the UK, renewable energy assessments have been produced for regions and local 

rural and urban areas. One example is the MIRE study where national and local data 

and modelling techniques were used to produce a quantified renewable energy 

assessment of Sheffield (Grant, 1 9 9 3 ,1994a, 1994b; Grant, Kellett and Mortimer, 

1994a, 1994b, 1995a, 1995b; Grant e ta l, 1994c; Kellett, 1 9 9 3 ,1994a, 1994b;

Mortimer, 1993 ,1995 and Mortimer, Kellett and Grant, 1994). As such, a sound basis 

of information on renewable energy potential is available for Sheffield, the results of 

which form the basis of the renewable energy assessment of Sheffield in 2000. By 

using an approximate approach, potential renewable energy supply was compared 

against the current energy demand of energy efficient buildings in Sheffield. This 

approach was adopted to provide a general indication of available renewable energy 

supply and potential carbon savings that could be achieved in Sheffield. Detailed 

discussion of the MIRE study and renewable energy assessment of Sheffield in 2000 is 

contained in Appendix D.

4.5 Local Renewable Energy Prospects

In order to determine available renewable energy sources within Sheffield's boundary, 

an assessment of the resource base, resources and reserves was necessary. The 

resource base, which can be defined as "the total quantity of energy or power which 

physically exists in a recognisable form," comprises mainly of solar energy (99%), with 

smaller contributions from wind power, biomass energy and hydro power, as 

summarised in Table 4.2.

Table 4.2 Renewable Energy Resources in Sheffield (Grant, Kellett and Mortimer, 

1994b)

Renewable Energy Resource Base Resources Reserves
Source (TJ/year) (TJ/year) (TJ/year)

Solar energy 2,200,000 8,262 400
Wind power 6,100 2,808 60
Biomass energy 5,000 2,291 0
Small-scale hydro 1,200 90 20
Total 2,212,300 13,451 480
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As Table 4.2 shows, a resource base of over 2 million TJ exists. This supply far 

exceeds current and likely future energy demands in Sheffield. The practical potential 

of renewable energy supply depends on technical and economic issues. Such 

considerations make it impossible to exploit the entire resource base. The practical 

potential of these energy sources depends on the ability and efficiency of renewable 

technology in collecting and converting renewable energy into useful forms. Resources 

can be defined as "the part of the resource base which could be developed using 

existing or modified current technology" (Grant, Kellett and Mortimer, 1994b). By using 

existing technologies, it has been estimated that available renewable energy resources 

amount to 13,500 TJ per year. As shown by Table 4.2, this consists of predominately 

of solar energy (61%), followed by wind power (21%), biomass energy (17%) and 

small-scale hydro power (1%). Reserves can be defined as "that part of the resources 

which have proved to exist and which could be exploited under present economic 

circumstances" (Grant, Kellett and Mortimer, 1994b). Reserves are essentially 

dynamic in nature due to fluctuating energy prices. It is widely accepted that in an 

energy market with high energy prices, renewable energy would be able to compete 

with energy produced from conventional sources. However, energy markets with low 

energy prices make it uneconomic to exploit renewable sources of energy. In the 

future, the economic exploitation of reserves may become viable. Although energy 

prices are beginning to rise, there are uncertainties in relation to how long this will last 

and to what extent prices will rise. The uncertainty facing the exploitation of reserves is 

problematic when seeking to assess available renewable energy supply in a city such 

as Sheffield. Therefore, in order to determine available renewable energy supply in the 

future, the assessment of resources rather than reserves is most relevant.

In order to provide a brief insight into how renewable energy could meet the most 

prominent energy demands as laid out in Table 4.1, it is possible to summarise the 

technologies which could be used to gather and convert renewable energy into useful 

energy. At present, electricity is likely to be used for a wide range of electrical-based 

services in buildings whilst the majority of natural gas is likely to be used for space and 

water heating (DEFRA, 2002). As Table 4.2 shows, solar energy would make the 

largest contribution to local energy supply. The utilisation of this resource would 

involve installing passive solar design features and roof and/or fagade mounted solar 

hot water heating or PV panels onto buildings. Sources of biomass which could be 

utilised include forestry waste, green waste from households and the growth of short 

rotation coppice. Biomass energy could be utilised to supply buildings with heat in 

Sheffield. Wind turbines located within the district boundary and the installation of 

small-scale hydro power schemes would provide renewable electricity for Sheffield.
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As illustrated above, Sheffield has potential in terms of available and technically 

exploitable renewable energy resources. From this assessment, renewable energy 

resources could provide 38% of the energy demand of energy efficient buildings in 

Sheffield and displace 50% of associated carbon emissions as shown by Figures 4.5 

and 4.6, respectively. Although it is possible to substitute some of the conventional 

energy supply with renewables, there remains a shortfall in renewable energy supply. 

In order to meet this supply, short term and long term measures would need to be 

deployed. One option could be to increase energy efficiency improvements within 

buildings used within the business and industrial and domestic sectors. In addition, 

conventional energy sources could continue to be used in the short term, moving 

towards the importation of renewable energy from surrounding areas in the longer 

term.

Figure 4.5 Renewable Resource Contributions to the Energy Demand of Buildings 

in Sheffield
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Figure 4.6 Renewable Resource Contributions to Reducing Carbon Emissions in

Buildings in Sheffield
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As identified in Table 4.1, natural gas and electricity are the two main fuels and sources 

of carbon emissions in Sheffield. Within buildings, natural gas is likely to be used 

mainly for heating requirements. Renewable energy technologies, such as solar hot 

water heating systems and biomass energy, could be utilised to provide stakeholders 

with heat and/or cooling. By utilising such available resources in Sheffield, natural gas 

consumption and associated carbon emissions could be reduced by 38% in energy 

efficient buildings, as shown by Figures 4.7 and 4.8, respectively. Figures 4.7 and 4.8 

also show that renewable electricity could meet 90% of the total electricity demand of 

energy efficient buildings. This would require solar PV panels to be fitted onto the roofs 

and fagades of business and industrial buildings for use within the buildings or for 

export to the domestic sector. Exporting solar electricity produced on business and 

industrial buildings to the domestic sector raises issues concerning supply and 

demand. Whilst solar electricity is generated during the day, most domestic electricity 

demand occurs during the evening. One way of matching this supply to demand would 

be to store the electricity in batteries or to utilise fuel cells. Other electricity demands 

could be met through the utilisation of wind power and small-scale hydro resources.
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Figure 4.7 Renewable Resource Contribution to Reducing Natural Gas and

Electricity Usage in Energy Efficient Buildings in Sheffield
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Figure 4.8 Renewable Resource Contributions to Reducing Carbon Emissions 

Associated with Natural Gas and Electricity Usage in Energy Efficient 

Buildings in Sheffield
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Substituting natural gas and electricity with solar hot water heating systems and 

renewable electricity has an impact on the energy mix consumed by each sector in 

Sheffield. As Figures 4.9, 4.10 and 4.11 show, increasing local renewable energy
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supply reduces the need for using conventional energy sources within the business 

sub-sector, industrial sub-sector and domestic sector, respectively. At present, the 

vast majority of energy consumed by energy efficient buildings comes from fossil fuel 

sources (Chapter 3). This situation is typical across all sectors in Sheffield. By 

increasing local renewable energy supply, the need for conventional sources of energy 

is reduced. By increasing local renewable energy supply, half of the energy demands 

of the business sub-sector could be met by renewable energy. Additionally, local 

renewable energy supply could meet one-third of the energy demand of buildings in the 

industrial sub-sector and one-third of the energy demand of buildings in the domestic 

sector.

Figure 4.9 Renewable Resource Contributions to the Energy Supply of Energy 

Efficient Buildings in the Business Sub-sector in Sheffield
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Figure 4 .10 Renewable Resource Contributions to the Energy Supply of Energy

Efficient Buildings in the Industrial Sub-sector in Sheffield

14000
12000
10000
8000
6000
4000
2000

0
Non

renewable
energy

Renewable
energy

Before

Non
renewable

energy

Renewable 
energy

After

Industrial

Figure 4.11 Renewable Resource Contributions to the Energy Supply of Energy 

Efficient Buildings in the Domestic Sector in Sheffield
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Perhaps more importantly, substituting renewable energy for natural gas and 

conventional electricity results in lower carbon emissions across all of the sectors. 

As Figure 4.12 shows, increasing local renewable energy supply reduces the 

consumption of fossil fuels, therefore reducing associated carbon emissions. The
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largest carbon reductions could be achieved within the business sub-sector (65%) 

followed by the industrial sub-sector (50%) and the domestic (40%).

Figure 4.12 Effects of Energy Efficiency and Renewable Energy Contributions on 

Carbon Emissions from Buildings in Sheffield
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4.6 Future Energy Use in Sheffield

As examined above, the utilisation of local renewable energy resources could meet 

38% of the existing energy demands of energy efficient buildings in Sheffield and offset 

associated carbon emissions by 50%. At present, the energy system in Sheffield relies 

heavy on fossil fuels imported from outside sources. This system is essentially 

unsustainable in the longer term as it relies on finite resources which have detrimental 

environmental impacts, particularly in terms of carbon emissions. By increasing local 

renewable energy supply, Sheffield's energy system would become more sustainable 

in the longer term. This examination has shown that the potential exists for lowering 

energy demand in buildings and increasing local renewable energy supply. Although 

this potential exists, many actions would be required in order to implement the 

transition from an energy system based on fossil fuels to a system based on local 

renewable energy sources. Questions surrounding the current status of renewable 

energy technologies and their economic feasibility need to be answered. In order to 

ensure that renewable energy can meet the energy requirements of stakeholders, 

renewable energy technologies need to be evaluated against the relevant stakeholder 

demand criteria. As previous renewable energy projects in the UK and other countries
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have indicated, many obstacles face the deployment of renewable energy in any 

situation. In particular, it is necessary to establish if these obstacles could be 

overcome so that energy suppliers can deliver renewable energy to end users in 

Sheffield. The issues raised here are examined in more detail in the following 

chapters. The renewable energy technologies applicable to Sheffield are 

systematically examined and consist of the solar energy technologies of passive solar 

design (Chapter 5), active solar systems (Chapter 6) and photovoltaics (Chapter 7), 

wind power (Chapter 8), biomass energy (Chapter 9) and small-scale hydro power 

(Chapter 10).
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5. SOLAR ENERGY TECHNOLOGIES: PASSIVE SOLAR DESIGN

5.1 Solar Energy

Solar radiation varies by geographic location, time of day, time of year and weather 

conditions such as cloud cover and haze (IEA, 1991). In the UK, solar radiation is not 

direct but diffuse with long periods of low radiation levels, making it less intense than 

direct solar radiation (Hill et al, 1995). Solar radiation can be collected and converted 

into useful forms of energy including space and water heating and electricity. A range 

of solar technologies are available to capture and convert solar energy into useful 

energy. Solar energy technologies fall into two broad categories of active and passive 

solar technologies. Active solar technologies comprise of active solar hot water 

systems and photovoltaic panels for electricity generation. In contrast, passive solar 

technologies do not need active components such as solar collectors or pumps to 

operate. Instead, the design and orientation of the building and the use of building 

materials are used to provide comfortable internal heating, cooling, lighting and 

ventilation.

Within Sheffield, solar energy has been identified as the largest single source of 

renewable energy. Solar energy resources could contribute approximately 8,262 TJ 

per year. The utilisation of this resource would require installing passive solar design 

(PSD) features in buildings and using a combination of active solar (hot water) systems 

on domestic buildings and PV panels on suitable roofs and fagades of buildings within 

the business and industrial sector. Within this Chapter, the practicality of using PSD is 

examined. The Chapter is split into two key parts. The first part (Sections 5.2 to 5.8) 

reviews PSD in the broad context of the UK. The basic aspects of PSD are introduced 

in Section 5.2. The resource considerations (Section 5.3) and applications (Section 

5.4) are then discussed. Sections 5.5 and 5.6 explore the technical and economic 

status of PSD, respectively. The second part of the chapter examines stakeholder 

expectations of energy services and highlights the differences between PSD and 

conventional technologies in delivering end users with heating, cooling, ventilation and 

lighting in buildings. Section 5.7 evaluates PSD against the relevant stakeholder 

demand criteria, which has been used as a basis for this analysis. From this 

examination, obstacles facing the practical implementation of PSD in Sheffield are 

identified. In Section 5.8, additional issues facing PSD are raised. The key challenges 

facing the widespread realisation of PSD in Sheffield are summarised in Section 5.9.
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5.2 Basic Aspects

Buildings provide protection from weather conditions and variations in temperature. 

Heating or cooling may be required to counteract external conditions to produce a 

comfortable internal environment for the occupants of the building. Additionally, the 

availability of light and quality of the indoor air has an influence on the level of comfort. 

Before the development of mechanical space heating/cooling systems powered by 

fossil fuels, building design techniques were used to produce comfortable internal living 

conditions (Santamouris and Asimakopolous, 1996). In Southern dry climates in 

particular, large openings in buildings allowed air movement and provided a source of 

daylight. Shading provided protection from direct solar gain and light coloured surfaces 

reflected the sunlight, reducing the amount of heat entering the building (Santamouris 

and Asimakopolous, 1996). This design technique is called PSD.

Through the use of PSD, the solar gain of buildings is enhanced and the artificial 

energy needs of buildings are reduced. The structural design of buildings and the 

building materials used can be arranged to heat, cool or light the building without the 

need to rely on active components such as solar collectors, fans or pumps (IEA, 1991). 

By increasing the thermal mass of walls, floors and ceilings, heat can be absorbed 

during the day and radiated out at night (Anon, 2000a). High thermal masses and 

good insulation can also keep the building cool during the day with ventilation cooling 

the building at night (ICLEI, 2000a). Increasing the thermal mass of the building 

materials provides a means of heat storage within the building.

Using traditional passive solar technologies, such as Trombe walls and roof pond 

systems, can provide additional storage. A Trombe wall is a wall, which is blackened 

and glazed on its exterior (Gan, 1998). Using solar radiation to power the effect, the 

wall allows air to move in a controlled way through the opening and closing of vents 

(Ashley et al, 1996). Roof ponds store water in a large container covered by glazing. 

The warm water in the pond heats the space below (Anon, 2000a). To help ensure 

that the supply of passive heat is reliable, a conventional heating source can provide 

back-up heating should a shortfall in supply occur. The type of PSD techniques used 

varies from application to application. The diversity of PSD allows the occupiers 

needs, the characteristics of the building and the resources available to be matched 

resulting in enhancing the passive heating, cooling, ventilation and/or lighting of the 

building.
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5.3 Resource Considerations

For passive solar features to reach their full potential in the UK, the optimum orientation 

of buildings is north-south facing. Glazed areas must face south or within 30 degrees 

of south, and have glazing or shutters to minimise heat loss at night (ICLEI, 2001a). 

Overshadowing can reduce the performance of the passive solar system as the level of 

heat and light entering the building and the ventilation flows are reduced (Littlefair, 

1998). To optimise PSD, the areas of the building that require more heat and/or light 

should be south facing, with other areas being situated on the north-side of the 

building. PSD maximises solar energy gain of buildings. The opportunity to maximise 

solar energy gain is influenced by the number of opportunities to use PSD features in 

buildings. PSD can be incorporated into the design of new buildings or added to 

existing buildings when refurbished. Refurbishing existing buildings with PSD features 

can be difficult as the orientation of the building, the type and position of surrounding 

objects and the building materials are already in place. New buildings offer more 

flexibility in the positioning of the building, the size and position of the glazed areas, the 

density of the buildings and the building materials used (NEF Renewables, 2001). The 

opportunity to integrated passive solar features into the buildings depends on the rate 

of new development and the take-up of PSD features in new build designs. Within the 

UK, the rate of replacement of buildings is between 1-2% per year. This means that it 

would take a minimum of 50 years to replace existing buildings with PSD and other 

solar energy technologies (Ashley et al, 1996). As such, a more realistic alternative 

would be to retrofit existing buildings with PSD features.

5.4 Applications

Most buildings in the UK utilise passive solar energy to some extent through windows, 

conservatories and larger glazed areas such as atria. Windows allow daylight and heat 

to enter existing buildings whilst allowing occupants to view outside. Beyond this 

largely unplanned use of passive solar energy, PSD has been used in combination with 

energy efficiency measures, in particular good insulation measures, to reduce energy 

costs in housing, as in, for example, the Autonomous House at Southwell, 

Nottinghamshire (ETSU, 1999). Other demonstration projects and studies have shown 

that low-energy and 'zero energy' housing is feasible with energy savings being made 

over a given period. The number of buildings specifically designed to use passive solar 

energy in the UK is estimated at a few thousand (ETSU, 1999). Other features that 

can be used in buildings in the urban environment include glazed balconies.
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5.5 Technical Status

Passive solar heating technologies are largely mature whilst passive solar cooling 

technologies are less developed. There is a drive to improve passive solar 

technologies and reduce technology costs overall. Technological improvements are 

being developed to improve building designs, the air tightness of buildings, the yields of 

glazed areas and the building materials used. Additionally, work is being undertaken 

to minimise heat loss and maximise energy savings. A number of advances have been 

made in glazing. Using transparent insulation in windows reduces the transmission 

losses of solar gain (ETSU, 1999). Triple glazed windows with special coatings can 

increase the insulation value of the window. This allows the windows to be net 

producers of heat, even when facing north in the winter (ICLEI, 2000a). Improvements 

in the thermal storage of glazed areas are being developed combined with 

improvements in passive solar energy storage facilities. Advances have been made in 

improving the thermal storage capacity of building materials. In particular, the thermal 

storage of wallboards can be increased by impregnating the wallboards with phase 

change materials (PCM). With PCM, heat is stored when the material changes its 

chemical composition unlike other building materials, such as bricks, that store heat as 

the temperature of the material increases. Work is being directed towards reducing 

high investment costs associated with some applications by reducing technology costs 

through technological innovation (ETSU, 1999). Research and demonstration projects 

are exploring the adaptability of PSD technologies for existing and new buildings.

Whilst achieving technical and economic improvements, it is hoped that the thermal 

and visual comfort of buildings will be maintained and improved (Voss, 2000).

5.6 Economic Status

There is a close relationship between the complexity of the PSD, the components used 

and the capital investment costs required. Whilst some features can be introduced at 

little or no extra cost, other features, such as high performance glazing or atria, can 

significantly increase costs (IEA, 1991). However, the amenity value of atria may 

outweigh their costs (ETSU, 1999). In general terms, it is more economic to 

incorporate PSD into new buildings since retrofitting existing buildings can be 

expensive. When retrofitting existing buildings, the fabric and structure of the building 

may have to be significantly altered. Cost savings can be gained by avoiding rooms 

and/or buildings with air conditioning units or additional heating systems (ETSU, 1999).
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5.7 Meeting Stakeholder Expectations

5.7.1 PSD and End Users

If, in order to reduce local carbon emissions, there is a move towards the wider use of 

PSD in Sheffield, this will have implications for the relationship between end users and 

the production, supply and use of energy in buildings. End users have different 

relationships with buildings depending on if they own and/or occupy the building. The 

relationship of the occupier to the building is important when decisions are made on 

how the building will be heated, cooled, lit and ventilated. At present within the UK, 

buildings and energy provision are viewed as separate entities. Traditionally, energy 

has been delivered or supplied to buildings from external sources rather than using 

natural energy flows and building design/materials to enhance the heating, cooling, 

lighting and ventilation of a building. Unlike conventional energy systems, the use of 

PSD turns the building into an energy system. This has implications on how the 

occupier interacts with the building and its energy systems. Interaction between the 

occupier and the buildings is important as, once in place, it is important that the energy 

from PSD substitutes existing energy supply rather than increases energy 

consumption. In addition to these issues, end users expect a certain level of energy 

service. The success of any new technology or energy service is dependent on its 

ability to meet existing end user expectations of accessibility, ease of use, flexibility, 

convenience, reliability, consistency and acceptability, as identified in Chapter 2. The 

ability of PSD to meet these expectations will influence the success of the practical 

deployment of PSD within buildings in Sheffield, as examined below.

5.7.2 Accessibility

The extent to which PSD is accessible by all end users is variable. Due to differing 

occupier needs and the characteristics of the buildings, PSD applications may be 

suitable for some buildings and unsuitable for others. New build increases the 

accessibility of PSD as features can be integrated into the building's design and 

construction. The other option is retrofit in which PSD applications are building- 

specific. Another option would be to incorporate PSD features into routine building 

refurbishments, for example, extensions to households and roof replacements. Whilst 

it may be difficult to encourage end users to opt to change their building solely for PSD 

purposes, combining PSD with other building work may be a more viable option.
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Although it is easier and often cheaper to install PSD into new buildings, the 

replacement rate of new build is generally low in the UK. For a district such as 

Sheffield, installing PSD into new build would mean that it might take between 50-100  

years to equip each building in Sheffield with PSD features. Taking these time scales 

into account raises a number of significant questions, namely, is this viable? Is new 

build the answer or should Sheffield be concentrating on incorporating PSD into routine 

building refurbishments? If the latter option is chosen, can it be done and, if so, how? 

Although PSD is a mature technology, features such as Trombe walls and roof ponds 

are unheard-of by the vast majority of end users in the UK, and as such, are not 

common features of buildings. Therefore, in order to instigate its wider use, numerous 

actions will be necessary over the longer term.

5.7.3 Ease of Use

There are two issues surrounding the ease of use of PSD, namely, choosing PSD  

features as a way of heating and cooling a building for example, and the operation of 

PSD features within buildings. The necessary infrastructure required to sell PSD to 

end users and install PSD features within buildings does not exist. There are few 

systems in place to make people aware of PSD opportunities, to provide information 

and guidance to end users. PSD features are not readily available for end users to 

view and there are few trained specialists to install and/or maintain the systems. Also, 

there is limited financial support in the form of grants, etc. In many respects, a "chicken 

and egg" situation exists as there is no supply of PSD features due to the lack of 

demand and, as such, there are very few products available for end users to purchase 

in shops etc. This situation needs to be overcome for PSD to be more widely deployed 

in the UK.

Once PSD features are installed in buildings, end users may perceive PSD as difficult 

to use as they are unfamiliar with the technology and the way it works. Whilst 

conservatories and atria are quite common place, other PSD features, such as roof 

ponds or Trombe walls, are not widely utilised. There are very few examples of such 

features in the UK except for demonstration projects. As PSD features do not conform 

with conventional energy systems within buildings, unfamiliarity may be a problem. 

Unfamiliarity is likely to impact upon end user's perceptions of PSD as being easy and 

simple to use. As with any new technology, end users will have to learn how to use the 

technology in order to use it to its greatest potential. In addition, mis-use of PSD  

technologies could lead to energy wastage and an increase in energy consumption.
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One example of this is heating conservatories in winter. This results in more energy 

being used to heat the conservatory in addition to heat being lost through the un

insulated glass panels.

5.7.4 Flexibility

In general, PSD is flexible as it can provide end users with a number of different energy 

services. At present, these energy services are provided by the existing energy system 

and conventional energy technologies such as fireplaces, radiators, fans and electric 

lighting systems as opposed to utilising the building's orientation, structure and 

materials to create an energy system. When looking at individual buildings, the 

flexibility of PSD is brought into question. In new build, PSD can meet a range of 

energy requirements as the orientation and building materials can be specifically 

chosen to take full advantage of PSD. However, in retrofit schemes, the extent to 

which PSD is flexible enough to meet end user's energy needs is questionable. With 

the orientation of the building pre-determined, the only alternative is to change 

buildings materials inside and outside the building. Although this can enhance the 

buildings natural heating, cooling, lighting and ventilation to some extent, its energy 

provision may be limited.

5.7.5 Convenience

Adding PSD to existing buildings, as with any other type of building work, is rarely 

regarded as convenient. Although changes to buildings are planned, inconveniences 

occur to the remaining occupants in the building during the time of retrofit. However, if 

PSD is incorporated into existing refurbishment schemes, such as building extensions, 

it could be argued that the inconvenience is reduced. This integration allows all the 

necessary changes to be made in a single operation rather over separate periods of 

construction work. With new build, no inconvenience would arise as the incorporation 

of PSD would fit in with the overall construction of the building.

It is difficult to determine the extent to which the supply of heating, cooling, lighting and 

ventilation from PSD will be seen as convenient by end users once these measures are 

in place. Although PSD can supply important energy services, the ways in which it 

does this is different from conventional energy sources. As previously mentioned, 

changing the materials of a building and/or addition features such as sun pipes or 

Trombe walls, turns the building into an energy system. Some features operate

68



independently of occupant, such as sun pipes, whereas other features, like Trombe 

walls, require vents to be opened or closed. This could be done manually or using 

intelligent system controls, set on timers for example. It is fair to say that although 

such features are different to conventional energy technologies, conventional features 

such as boilers and radiators also require some level of human interaction, for 

example, when changing the internal comfort of a building. As with all new 

technologies, occupants would need to learn how to use PSD features. Over time, as 

occupiers become more familiar with PSD and learn how to view the building as an 

energy system in its own right, the convenience of PSD features are likely to increase.

5.7.6 Reliability

As previously examined, solar energy is a reliable energy supply as it is naturally 

replenished as it is consumed, unlike conventional energy sources (IEE, 1994). In 

seeking to reduce local carbon emissions associated with energy use, solar energy is 

carbon neutral, making it suitable for sustainable energy developments. Although solar 

energy supply is reliable, questions surround the reliability of PSD technologies and 

their installation and maintenance. When introducing PSD into retrofit schemes, the 

structure and/or external appearance of the building will be changed. Therefore, it is 

important that the PSD technologies and the materials used are reliable and perform in 

accordance with end user requirements. This raises the issue of the need for PSD 

materials, product and installation guarantees, in order to assure consumers that PSD 

technologies meet their energy requirements.

On another level, architects and builders would need to guarantee that the retrofit 

incorporating PSD feature will perform correctly. Whilst the performance of the 

technology may be guaranteed, poor retrofit design and workmanship could offset any 

advantages gained by the introduction of PSD. For example, it may be possible to 

guarantee the performance of a Trombe wall, but if the wall was installed on the north- 

side of a building in Sheffield, the wall would fail to work as a PSD system. Therefore, 

the product, its installation and performance are intrinsically linked. In addition to this, 

occupier interactions with PSD systems are also important in relation to reliability 

issues. Studies have shown that whilst there is current growth in demand for installing 

conservatories, subsequent mis-use of the conservatory can lead to a net-increase in 

energy consumption (Oreszczyn, 1993). Whilst product designers assume how 

occupiers will interact with products, in reality, this is not often the case. Although the 

product and its installation could be guaranteed, occupier use may also affect the
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performance of the system. Failure to recognise mis-management of the system could 

lead to end users labelling PSD as unreliable and inefficient.

5.7.7 Consistency

End users expect a consistent energy service, both now and in the future, which 

suggests that any changes in energy provision must continue to deliver the same 

benefits of existing energy services. PSD can supply end users with important energy 

services, which are consistent with current energy demands. To varying degrees, PSD  

can provide end users with heating, cooling, lighting and ventilation in buildings. 

However, in terms of energy provision, PSD is not consistent with traditional methods 

of heating, cooling, lighting and ventilating buildings. This inconsistency may act as a 

barrier to the wider use of PSD in buildings in the UK.

5.7.8 Acceptability

End users choose energy services based on affordability, quality and/or wider ethical, 

environmental and sustainability concerns. It is difficult to quantify the cost of PSD as 

its application is site-specific. Although solar energy is essentially "free", the 

installation of PSD into existing buildings has implications in relation to initial 

investment and payback periods. This is one of the reasons why integrating PSD into 

routine refurbishment schemes is important as, although extra costs may be incurred, 

overall costs may be lower than adding PSD to the building at a later date. This latter 

option may be very expensive. At present, there are no grants available to help offset 

the installation of PSD features into existing or new buildings. As such, the cheapest 

option facing PSD is to install the features into new build.

Within the existing energy system, the quality of service is a key motivation for end 

users switching suppliers. The use of PSD moves away from conventional energy 

provision. The building becomes more pro-active in providing heating, cooling, lighting 

and ventilation to the buildings occupants, therefore reducing the need for service 

provision by energy suppliers. Additionally, end user expectations of quality 

emphasises the need to ensure quality products, installation, operation and 

maintenance as a way of motivating end users to make decisions regarding the 

adoption of PSD technologies.
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The acceptability of energy is becoming increasingly important in terms of the 

immediate and long term impacts of energy production on the environment and the 

future sustainability of energy sources. Using natural energy flows such as solar 

energy reduces the need to rely on finite and harmful fossil fuel resources to meet 

energy needs. In addition, the utilisation of solar energy decouples end users from 

future fossil fuel energy price rises. The use of solar energy through PSD is site- 

specific, which means that any beneficial or adverse impacts from using this 

technology will have to be addressed within the local area. This contrasts with the 

existing system whereby any environmental impacts from large-scale energy 

production often occur away from the point of consumption. In the case of PSD, the 

local community and city as a whole will become responsible for energy production and 

managing its environmental impacts.

5.8 Additional Issues

5.8.1 Perception of Risk

People's perceptions often act as a barrier to the success of a new product or 

technology. It is these perceptions, whether accurate or not, which influence people's 

views and acceptance of change. Within the building industry, particularly in relation 

to domestic housing, there is a perception of risk associated with unconventional 

buildings. It has been suggested that housing incorporating PSD features will not sell 

due to the 'futuristic' appearance of the building and higher construction costs (DTI, 

2001 d). In a recent study, ways of introducing PSD features into three standard Barrett 

house designs were examined (DTI, 2001 d). The study found that passive solar 

features could be successfully integrated into housing design with no major changes in 

the appearance, cost and marketability of the building (DTI, 2001 d). This highlights 

that the lack of knowledge, information or perhaps inclination within the building 

industry to utilise PSD features within buildings.

In addition to the building industry, the owners of existing domestic and non-domestic 

buildings may also perceive cost and marketability risks when seeking to retrofit the 

building utilising PSD or selling the building. Such perceptions can act as a barrier to 

PSD in particular and towards changing from the existing energy system towards on 

based on renewable energy in general. People's resistance to change can occur for a 

number of reasons including self-interest, fear of the unknown, different perceptions,
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suspicion and conservatism (Anon, 2003). In order for PSD to become more widely 

used, it is important that such issues are understood and overcome.

5.8.2 Planning Issues

One key issue facing the wider use of PSD features in buildings is whether or not the 

changes are accepted by the local community. This issue raises questions, namely, is 

PSD something that people want and are prepared to see buildings altered to 

incorporate PSD? Are these features something that people would like to see on 

buildings in Sheffield? The planning system has an important role to play in 

determining whether or not PSD developments can take place. To date, there are very 

few examples of the incorporation of PSD into retrofit to act as precedent for planning 

decisions. This lack of precedent may cause problems for PSD planning applications. 

Any uncertainty surrounding the ability to gain planning permission for PSD is likely to 

breed uncertainty amongst planners, developers and other decision-makers. In turn, 

PSD may be labelled as a difficult option, therefore dissuading end users from 

investing in PSD developments.

It is difficult to ascertain the problems facing PSD in general as planning permission 

applications will take place on a building-by-building basis. However, given existing 

planning regulations, it is likely that where the entire character of a building may be 

changed through the addition of passive solar technologies such as glazing, external 

sunshades and Trombe walls, planning permission will be required (ODPM, 1995). For 

other passive solar features, such as conservatories, the size and sitting of the feature 

will determine the need for planning permission. It is unlikely that the addition of semi

transparent windows will require planning permission. Additionally, local variations 

such as area and building designation will influence the need for planning permission.

When considering planning applications, interpretation of existing planning legislation 

and policy by local planning authorities may vary due to varying degrees of policy 

guidance and local experience of active solar systems. Planning Policy Guidance 

(PPG) note 22 on renewable energy sets out the Government's national stance on 

renewable energy developments. This document has been criticised as lacking in 

clarity, a clear focus and policy direction (Gill, 2004 and Kelly and Evans, 2004). 

However, a new proposed planning policy statement (PPS) on renewable energy is set 

to supersede PPG22 (ODPM, 2003a). Planning Policy Statement 22 (PPS22) on 

renewable energy seeks to provide more guidance and support for renewable energy
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developments. The document advises Local Authorities to promote and encourage 

renewable energy developments rather than limit them. The revisions and updates 

have been welcomed although a companion guide to PPS22 is eagerly awaited (Kelly 

and Evans, 2004).

5.8.3 Access to Information

PSD features such as Trombe walls and roof ponds are likely to be unknown by the 

vast majority of end users in the UK, particularly as they are not common features of 

buildings. Due to the lack of necessary infrastructure in place to support the wider use 

of PSD, there are few systems in place to increase people's knowledge of PSD  

features. End user awareness of PSD is an important issue that needs to be 

addressed. For those who are aware of PSD and wish to install features within their 

own home, it is currently difficult to find relevant information and guidance on PSD and 

how to use these features to their full advantage. When decisions are being made in 

relation to having a building extension or installing a new heating system, for example, 

PSD technologies are not sold alongside their conventional counterparts. Shops which 

sell fireplaces, air-conditioning units and lighting do not sell or stock PSD technologies. 

In addition, there are few specialists exist whom end users could contact in relation to 

PSD. Existing specialists, such as architects, architect technicians and builders, may 

not have the necessary knowledge or experience associated with such systems. This 

is a problem for PSD as end users may consult specialists for help and advice. For 

end users who do not have the necessary knowledge on PSD or general building 

practices, they will trust and rely on the expertise of architects and builders in this area. 

Therefore, it is essential that professionals have the necessary knowledge and training 

in PSD in order to professionally advise clients.

5.9 Key Challenges for PSD

This analysis has highlighted the many diverse issues facing the wider deployment of 

PSD in buildings in Sheffield. As summarised by Table 5.1, PSD uses a reliable 

energy source which is environmentally acceptable but problematic in meeting end 

user expectations of accessibility, ease of use, flexibility, convenience, consistency, 

affordability and quality. From this examination, it is evident that a series of obstacles 

face the use of PSD in new and existing buildings in Sheffield. In essence, there is a 

lack of infrastructure supporting the implementation of PSD technologies. At present, 

there is very little in place to introduce and promote PSD technologies, guarantee
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products and install and guarantee the correct installation of PSD in new and existing 

buildings. In addition, there are few systems in place to advise people on the operation 

of the technologies and maintain PSD systems. As a result, the wider deployment of 

PSD in Sheffield faces numerous obstacles, as summarised in Table 5.2. In Table 5.2, 

the obstacles are subdivided into those that affect the introduction and promotion of 

PSD, the installation of PSD and the operation and maintenance of PSD technologies. 

It is important to note that some of the obstacles raised in Table 5.2 overlap and will 

affect more than one stage of deployment. In order to actively pursue PSD as one way 

of reducing carbon emissions in urban areas, it is essential that ways of overcoming 

these obstacles are identified. These are considered for PSD and other renewable 

energy technologies relevant to Sheffield in Chapter 13.

Table 5.1 Current Evaluation of PSD against End User Expectations and Existing 

Energy Systems

End User Expectations Existing 
Energy Systems

PSD

Accessibility • • • •
Ease of Use • • • •
Flexibility •  • • •  •
Convenience • • • •
Reliability:
Now • • •
In the future • •  • •
Consistency • • • •
Acceptability, in terms of: 
Affordability • • •
Quality • • •
Cultural expectations, in particular: 
Environmental concerns • •  •
Sustainability • •  •

Key to symbols: •  Does not meet expectations

•  •  Expectations are partially met 

• • •  Meets expectations

74



Table 5.2 Obstacles Facing the Deployment of PSD in Sheffield

End User 

Expectations 
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Issues
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Accessibility The use of PSD depends on end user needs and 

characteristics of the building

■

The decision on whether or not PSD will be introduced 

through new build or by retroffing/refurbishing existing 

buildings

■

Ease of Use Lack of infrastructure in place to promote and sell PSD ■

Lack of trained specialists to install and/or maintain 

PSD systems

■ ■

End user unfamiliarity with the operation of PSD can 

lead to mis-use and increases in energy consumption

■

Flexibility Problems may be encountered when 

retrofitting/refurbishing existing buildings with PSD.

■ ■ ■

Convenience Inconvenient building work associated with adding PSD 

features to existing buildings.

■

Reliability PSD technologies and materials must be reliable and 

perform well.

Consumer understanding of how PSD systems operate ■

Consistency Inconsistent and unconventional way of heating, 

cooling, lighting and ventilating buildings.

■ ■

Acceptability Unavailability of grants to help offset costs ■ ■

Cheapest option is to install PSD into new build ■

Need quality reassurances to help motivate consumers 

to invest in PSD

■

Site-specific nature of PSD leads to site-specific 

environment impacts which must be addressed locally

■ ■

Perception of 

Risk

Building industry - perception of risk associated with 

unconventional buildings & resistance to change

■

Owners of buildings - perception of cost and 

marketability risks either when seeking to incorporate 

PSD features or when selling the building

■

Planning

Issues

Lack of precedent as few examples of adding PSD to 

existing buildings

■ ■

Access to 

Information

Lack of infrastructure in place to increase consumer 

knowledge of PSD including shops and specialists

- ■

Key to symbol: ■  Obstacle affects this stage of deployment.
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6. SOLAR ENERGY TECHNOLOGIES: ACTIVE SOLAR SYSTEMS

6.1 Active Solar Systems

Active solar systems have specialised collectors, which gather and convert solar 

radiation into thermal energy (heat). This energy source can be used for space 

heating, domestic hot water (DHW) heating and cooling purposes (IEA, 1997). The 

most common application is for DHW heating in the UK. In Sheffield, active solar DHW  

systems could provide approximately 2,300 TJ of heat to domestic buildings per year 

and save around 33,770 tC (Appendix D). At present, very few domestic buildings 

utilise available solar energy for heating purposes. In order to understand why this 

situation exists, it is necessary to examine the issues facing the practicality of using 

active solar systems in domestic buildings in Sheffield.

The chapter is subdivided into two parts. The first part (Sections 6.2 to 6.6) reviews 

active solar systems in the broad context of the UK. The basic aspects of active solar 

systems are introduced in Section 6.2. Then the resource considerations (Section 6.3) 

and applications (Section 6.4) are discussed. The technical and economic status of 

active solar systems is explored in Section 6.5 and 6.6, respectively. The second part 

of the chapter examines the ability of active solar systems to meet end user 

expectations of energy services and highlights the differences between active solar 

systems and conventional energy technologies in delivering hot water to consumers. 

Section 6.7 evaluates active solar systems against the relevant stakeholder demand 

criteria, which acts as a basis for this analysis. From this examination, obstacles facing 

the deployment of active solar systems in Sheffield are identified. In Section 6.8, 

additional issues facing active solar systems are examined. The key challenges facing 

active solar systems in Sheffield are summarised in Section 6.9.

6.2 Basic Aspects

Active solar systems comprise of a solar collector and a heat transfer medium (liquid or 

air) that conveys the heat from the collector to the point of use or storage (IEA, 1997). 

Active solar systems can be designed to provide between 40-80% of the heating needs 

of a building (DoE, 2004). For cooling purposes, the energy from the solar collectors 

drives an absorption chiller generator, which produces cool air or water (Anon, 1998). 

For low temperature applications, such as domestic water heating, collectors supply 

heat at temperatures from 20°C to 100°C (Ashley et al, 1996). For high temperature
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applications, such as those required to generate electricity, solar technologies are used 

to heat a fluid up to temperatures ranging from 400°C to 3,000°C for use in a turbo 

generator or engine (Ashley et al, 1996). For applications that require higher power 

outputs, collectors can be connected together to form arrays. However, for domestic 

applications, collectors typically cover an area of 2-4 metres squared (m2). For a 

complete active solar heating system to operate, a number of other components are 

required. These components can consist of sensors for tracking, switches and/or 

motors to operate the system and provide back up heating, pipe work, a storage tank, 

filters for air systems, pumps and fans (DoE, 2004).

To ensure that the supply of thermal energy is reliable, the active solar system must be 

capable of supplying peak loads. If peak loads occur in the evening and supply of hot 

water or warm air exceeds demand during the day, storage is required. For small- 

scale DHW  applications, such as single-family households, the water is stored in a 

cylinder, often separate from the collector (Solar Design Company, 2000). The storage 

cylinder matches the uncontrollable heat source to the varying demand for DHW  (Solar 

Design Company, 2000). DHW storage units or diurnal storage units, store water on a 

daily basis. When the system cannot provide sufficient heat to produce hot water at 

the desired temperature at various times throughout the year, having a conventional 

heat source as a 'back-up' system can make up for any shortfall in supply (ETSU, 

1994). Larger-scale applications, such as communal group and district heating 

networks, can supply heat to collections of buildings. For such systems to operate 

effectively, long-term seasonal storage is required. Seasonal storage is designed to 

meet variations in demand and supply during the course of the year. The type of 

storage unit used depends upon the type of each individual application and can include 

steel water tanks, gravel/water storage pits, natural aquifers, geothermal storage and 

chemical storage (Lottner et al, 2000). Long-term storage units require more space 

than DHW  storage units. For space heating/cooling systems, large areas are required 

to store the energy and system equipment. Larger storage tanks are required to 

achieve the same thermal capacity for space heating as hot water systems. Large 

pipes, which are more difficult to insulate, and high power ventilators, that are required 

to circulate the air, take up space (Anon, 1998).

6.3 Resource Considerations

The power outputs of active solar systems are subject to variations in solar radiation. 

Solar radiation varies by geographic location, time of day, the seasons and weather
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conditions such as cloud cover and haze (IEA, 1991). The UK experiences solar 

radiation which is diffuse with long periods of low radiation levels. Therefore, the UK is 

suited to low temperature heating applications that do not require direct sunlight. For 

solar collectors to reach their full potential, the optimum orientation of the collectors is 

south facing, at an angle equal to the latitude of.the building (Ashley et al, 1996). 

Collectors can also be positioned between a southeast to southwest orientation as the 

sun moves throughout the day and year (CAT, 1995). Overshadowing caused by 

obstructions such as trees or other buildings must be kept to a minimum, as even 

partial shadowing will reduce the performance of the collector (DoE, 2004). There are 

different active solar systems available which have been designed to avoid potential 

frost damage during colder months. These are explored further in Section 6.5.

6.4 Applications

The traditional applications of active solar power in buildings are the production of 

DHW and space heating. In the UK, active solar systems are mainly used for DHW  

production. Other applications include swimming pool heating, electricity generation, 

cooling systems and solar-aided district heating. Electricity generation is a high 

temperature solar application requiring long periods of direct sunlight and a large area 

of land for ground-mounted solar collectors. As such, this application is not well suited 

to the UK where long periods of low solar radiation are common and land-use 

pressures exist. Solar cooling systems are being developed in Southern European 

countries. Here, solar collectors supply air conditioning or heating to residential and 

office buildings as required during the summer and winter months, respectively 

(Papakonstantinou et al, 2000). Solar systems can supply heat or cool air to any type 

of building including domestic properties, industrial premises, hostels and hotels.

There are a number of architectural ways of integrating active solar collectors, as with 

other solar technologies, into urban areas. Active solar collectors are commercially 

available in a choice of frame colours (Solar Design Company, 2000). The collectors 

can be mounted on independent structures or on structures parallel to the surface of 

the building (Anon, 1998). Independent structures allow the collector to be positioned 

to receive the optimum orientation and inclination, whilst the latter means of parallel 

implementation has less of a visual impact. Collectors can also be integrated into the 

building, providing both an architectural and energy functions (Anon, 1998). They can 

be integrated as overcladding or can become part of the roof orfagade of the building. 

Integration into the building allows collectors to be possible replacements for traditional
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roofing materials and wall cladding. The collectors can either maximise visual impact, 

if specified, or blend into structure of a building (Solar Design Company, 2000). 

Developments in the construction of large-scale storage allow the units to be integrated 

into urban areas. For example, the top surface of gravel/water storage constructions 

can be used for other urban functions such as streets or play areas (EDCL, 2000).

6.5 Technical Status

Active solar technology is at various stages of technological maturity and commercial 

availability. The most common collectors available on the market today are flat plate 

collectors and evacuated tube collectors. Flat plate collectors can either be glazed or 

unglazed. Glazed flat plate collectors are commonly used for water heating. Good 

quality glazed flat plate collectors have a collection efficiency of around 30% (Ashley et 

al, 1996). Unglazed flat plate collectors are not insulated and are less efficient than 

glazed collectors. Unglazed collectors are used for low temperature applications or 

where collector use is limited to days which have direct solar radiation. The latter 

would be suitable for heating swimming pools (Ashley et al, 1996). Good quality 

evacuated tube collectors have higher collection efficiencies of around 60% (Ashley et 

al, 1996). All commercially available collectors have a life expectancy of 25 to 30 years 

(EDCL, 2000).

The performance of active solar collectors is important all year round, especially in 

colder months. Resistance to frost damage is a major consideration facing the choice 

of solar collectors, particularly in the UK. Frost damage can be minimised by placing 

non-toxic antifreeze in the circulating water of solar collectors (NEF Renewables,

2000). Additionally, systems are available which have freeze tolerant pipe work or 

have a drain back system which empties the water from the collectors into the hot 

water tank during cold periods. Evacuated tubes are also suitable for colder climate as 

the heat exchanger is situated inside the building. Whilst evacuated tubes are energy 

efficient, rare problems, such as roof leakages, may occur as a result of fitting the 

tubes on the outside of the building to the heat exchanger inside the building.

Active solar systems vary in maturity by application. DHW systems and swimming pool 

heating systems are well established with the technology being available on the market 

for over 20 years (EUROPA, 2000). Space heating systems have experienced a low 

take-up, mainly due to the high costs of the systems and the large areas of collector 

that are required to supply sufficient heat in winter months (ETSU, 1999). Solar-aided
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district heating systems have been successfully demonstrated in Denmark and Sweden 

where district heating systems are commonplace. Less proven systems, such as solar 

cooling and industrial process heating, continue to be researched and demonstrated 

(EUROPA, 2000). Research and development is directed towards optimising the 

technical and economic aspects of systems, reducing costs, especially for space 

heating systems, and developing new technologies for cooling systems (EUROPA, 

2000). In addition, improvements in construction are being investigated together with 

ways of reducing operating and maintenance costs, and extending the durability, 

reliability and efficiency of collector technology (EUROPA, 2000). Long-term storage 

units for district heating networks are being used in other European countries.

Research and development continues to be directed towards achieving economical 

and reliable storage using different technologies (Heller, 2000).

6.6 Economic Status

Active solar systems have high initial capital investment costs although the economics 

of the system depends on the specific application. A wide variety of factors can 

influence the economics of the system (DG XVII, 1996). Costs will vary depending on 

whether the system is installed on an existing building or integrated into a new building, 

by professional contractors or by an individual with a do-it-yourself (DIY) kit. Also, the 

type of property, the pitch of the roof, how the collectors are mounted, the layout of 

existing plumbing and the scale of the application are important factors. To give an 

indication of the price range of individual active solar systems, Tables 6.1 and 6.2 show 

the cost and performance data for a typical DHW system and a typical solar heating 

system for heating an outdoor swimming pool (ETSU, 1999). The quality and durability 

of the collectors, system design and the method of installation influence the 

performance of a solar system. Once the system is installed, the annual running costs 

are low with minimal routine maintenance required.

Table 6.1 Cost Data for a Typical Solar Domestic Hot Water System 

(ETSU, 1999)

Typical system collector area 3-4 m2
Typical system price - retrofit including VAT £2,000-£6,000
Typical system price - DIY including VAT and new-build £1,000-£2,500
Annual pump running costs £6/year
Installation time 0.1 years
Assumed lifetime 25 years
Annual output 1,000-1,500 kWh(thermal)

80



Table 6.2 Cost and Performance Data for a Typical Solar Heating System

for an Outdoor Swimming Pool (ETSU, 1999)

Typical system collector area 
(assuming existing pool pump is running)

20 mz

Typical system price (including VAT)
(includes DIY and professionally installed systems)

£950-£2,700

Annual running costs Negligible
Installation time 0.1 years
Expected lifetime 15 years
Annual output (based on use from May to September) -6 ,000  kWh(t)

The cost data provided in Tables 6.1 and 6.2 illustrate the large price range of 

individual systems installed in new buildings, retrofitting existing buildings and DIY  

applications. One way to improve the economics of the systems would be through the 

introduction of communal or district heating systems, especially in new developments. 

Heat can be supplied to a group of buildings connected to a heating network. By 

sharing heat, the storage facilities can be shared and the heat supplied can meet 

variations in demand (OECD, 1995). In European countries, large-scale solar heating 

systems have proven to be more cost effective than single DHW applications, where 

costs can be reduced by approximately a third (Fisch et al, 1998). The integration of 

solar-aided district heating systems into the design and development of new housing 

estates have also proven to be more cost-effective than retrofit. Costs are influenced 

by storage costs in relation to the materials used, the nature of the construction and the 

performance of the system. The economics improve with larger solar systems and 

storage units (Lottner et al, 2000).

There are differing views on the future costs of active solar systems. As the technology 

is mature and commercially available with some of the components used coming from 

the plumbing industry, the potential for further cost reductions is low (ETSU, 1999 and 

Jackson and Lofstedt, 1998). It has been suggested that further cost reductions could 

be achieved by reducing overhead and marketing costs (ETSU, 1999). For 

specialised components in the active solar systems, costs are only likely to reduce 

once economies of scale have been established, through increased demand and 

higher production rates (ETSU, 1999). As the technology is largely mature, it has been 

predicted that the demand for active solar systems will only increase during periods of 

'heightened environmental concern' (ETSU, 1999). Although the economics of large- 

scale applications are more attractive, district heating networks are uncommon in the
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UK due to poor experiences with district heating systems and the low price of fossil 

fuels.

6.7 Meeting Stakeholder Expectations

6.7.1 Active Solar Systems and Domestic End Users

Out of the total energy used in domestic buildings, approximately 80% is used for 

space and water heating purposes (DEFRA, 2002). At present, domestic buildings in 

Sheffield consume large quantities of natural gas and electricity, the majority of which 

is likely to be used for heating requirements (Chapter 3). Although some domestic 

buildings have solar collectors for hot water heating, they are in the minority. In order 

to introduce active solar systems as a way of heating homes, solar collectors could be 

added to new build or existing buildings. As with PSD, new build offers an opportunity 

for installing active solar systems in buildings. However, the practical realisation of this 

has a long time scale. Therefore, in order to move towards active solar systems as a 

way of reducing carbon emissions, retrofitting existing buildings either solely for energy 

purposes or in combination with routine building work presents potentially quicker 

opportunities for change.

In existing buildings, the decision to replace conventional heating systems with an 

active solar system resides with the end user. In the domestic sector, there are four 

main types of decision-maker, namely owner-occupiers, private property owners, local 

authorities and registered social property owners (ODPM, 2003b). Owner-occupier's 

either own the house they are living in or are in the process of purchasing it with a 

mortgage or loan. Other individuals, local authorities and organisations, such as 

Housing Associations, own buildings or are in the process of buying them for the 

purposes of privately renting the property (ODPM, 2003b). The relationship of the 

occupier to the household is important when decisions are made on how the building 

will be heated and who will finance these changes. Additionally, how the occupier 

interacts with the energy systems affects energy consumption. As with PSD, it is 

important that any move towards renewable energy substitutes existing demand rather 

than increases energy consumption. In new build, the decision to install active solar 

systems rests with architects, architect technicians and developers.
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In order for active solar systems to replace existing ways of heating domestic buildings, 

the systems must meet the expectations of end users. End users expect energy 

services to be accessible, easy to use, flexible, convenient, reliable, consistent and 

acceptable, as identified in Chapter 2. This examination is necessary in order to 

identify any obstacles which will affect the wider deployment of active solar systems in 

Sheffield. The ability of active solar systems in meeting these expectations is 

examined below.

6.7.2 Accessibility

There are two main questions surrounding the accessibility of active solar systems by 

the domestic user, namely, are all domestic roofs suitable for solar DHW  collectors and 

can energy supply be matched to energy demand? Existing buildings can pose a 

problem for active solar collectors as the orientation of the building, the pitch of the roof 

and overshadowing, to some extent, is already pre-determined. Based on the MIRE 

assessment of solar DHW potential within the domestic sector in Sheffield, up to 80%  

of domestic roofs were assumed to be suitable for active solar collectors (Grant et al, 

1994c). This implies that, although there may be some problems with existing 

buildings such as pre-determined building orientation, roof pitch and overshadowing, 

there is an overwhelming potential for active solar hot water systems in Sheffield within 

the existing building stock. With new build, these issues can be easily resolved as 

there is more control over the orientation of the building, pitch of the roof and 

surrounding objects such as trees and buildings. End user access to hot water and 

space heating at any time of the day or night is another key issue facing active solar 

systems. As solar energy supply is only available during the day, storage is required to 

match supply with demand, as outlined in Section 6.2. Additionally, a conventional 

back-up supply could be used in case a short-fall in supply occurs, for example, during 

the winter months. If solar collectors were developed as part of a district or group 

heating system, single storage in one location could be developed.

6.7.3 Ease of Use

In relation to ease of use, active solar systems are similar to PSD features as there is 

limited infrastructure in place to sell, install and maintain active solar systems. 

Additionally, there are no systems in place to guarantee the performance of active solar 

collectors and the correct installation of the collectors. Active solar systems are not 

commonly installed throughout the UK. Unfamiliarity with this technology and the
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perception of it being new and difficult to use, may affect the purchase and operation of 

such systems as discussed earlier in relation to PSD in Section 5.7.3.

6.7.4 Flexibility

End users expect energy to provide them with a number of different energy services. 

Although active solar systems can be used to meet a wide variety of heating and 

cooling needs, as outlined in Section 6.4, the most common application of active solar 

systems is likely to be for hot water and space heating applications in Sheffield. As 

noted earlier, heating demands in domestic buildings accounts for the majority of 

energy consumed by this sector. In order to ensure flexibility of supply, storage is 

required to ensure that energy supply meets demand.

6.7.5 Convenience

The installation of active solar systems on existing roofs as part of retrofit or 

refurbishment work, and end user familiarity with the operation of such systems affects 

their convenience. Most building work is regarded as inconvenient. However, the level 

of inconvenience can be reduced by incorporating a number of changes into a single 

refurbishment of a building. This compares with retrofitting existing buildings solely for 

the purpose of installing active solar systems. For new build, the inclusion of active 

solar systems into the overall construction of a building is not inconvenient. As active 

solar systems are not commonly used in the UK, end users are unfamiliar with this 

technology. Until a building's occupants become familiar with the operation of active 

solar systems, the system may initially be regarded as inconvenient.

6.7.6 Reliability

In order for active solar systems to be attractive to end users, the energy supply and 

technology needs to be reliable. As previously established, solar energy is a reliable 

and carbon neutral energy source which makes it suitable for energy exploitation 

(Section 5.7.6). When adding active solar systems to buildings, it is important that the 

solar collector, its installation and the overall performance of the system is reliable and 

performs in accord with end user expectations. This raises the issue for the need for 

guarantees to be placed on the materials used, the product and the installation of 

active solar systems. In addition to guarantees, end user interaction with the system

84



may also affect the performance. Any mis-management could result in active solar 

technology being labelled as inefficient and unreliable by users.

6.7.7 Consistency

End users expect energy services to be consistent, both now and in the future. 

Therefore, changing from conventional ways of heating domestic buildings to active 

solar systems must continue to deliver the same benefits as conventional heating 

systems. The supply of heat is an important energy service. Active solar systems are 

both similar and different to conventional ways of heating buildings. The main similarity 

is that they both provide heating on a building-by-building basis, although there is the 

potential for large scale production to occur. At present, the heating of domestic 

buildings in the UK is mainly decentralised with few large-scale district heating systems 

producing and supplying heat to end uses via a distribution network. Although a district 

heating system exists in Sheffield, the majority of its end users are located in buildings 

used for business and industrial activities within the city centre. Active solar systems 

are inconsistent with conventional heating systems as they use solar energy, which is 

not widely utilised for energy generation purposes within the UK. Additionally, the 

technology used to collect and convert the energy supply is located externally on the 

building i.e. on the roof. The installation of active solar collectors on the roofs of 

domestic buildings raises questions over who owns the roof and who has responsibility 

for the system. Should it be the owner of the building? The occupier of the building? 

The company who installed the system? The manufacturer? Or should the 

responsibility lie with a new type of heating company who installs and oversees active 

solar system projects? These questions need to be explored further if active solar 

systems are to become common features of domestic buildings in Sheffield.

6.7.8 Acceptability

The acceptability of active solar systems can be divided into affordability, quality and 

environmental acceptability. The affordability of active solar systems varies greatly 

depending on the individual application and local conditions. Although the energy is 

"free," the cost of installing a system can be expensive. In order to combat economic 

issues and to encourage the uptake of active solar systems further, a three-year 

programme of capital grants is being developed for community and household 

schemes, which includes solar water heating applications in the UK (DTI, 2002a). It is 

intended that one of these schemes, entitled "The Community and Household Capital
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Grants Scheme" will be aimed at domestic households or buildings/land owned by non

profit making organisations (DTI, 2002a). However, the extent to which these schemes 

will exist in the wider deployment of active solar systems in the domestic sector has yet 

to be seen.

The integration of active solar systems into the design of new buildings can be 

significantly cheaper than refurbishing existing buildings. By integrating systems into 

new developments, it is possible that active solar heating could supply a group of 

buildings with heating. Also collectors and storage units can be integrated into the area 

to minimise any visual impacts and maximise available space, although with careful 

planning, this could be achieved in existing areas. Through the development of district 

heating networks, community ownership schemes may emerge where heating needs 

are managed by local people rather than traditional energy suppliers. Despite the 

advantages of district heating and community ownership schemes in promoting the 

uptake of active solar systems, such schemes are not commonplace in the UK.

The quality of energy service is a key issue for end uses who change energy suppliers. 

Whatever the energy supply or heating system, end users expect a quality product and 

supply of heat. As such, there is a need to ensure that quality active solar systems are 

produced and installed correctly. This also links to the issue of guaranteeing products 

and their installation, operation and maintenance, particularly as a way of encouraging 

end uses to switch to active solar systems as an alternative way of heating their home.

The environmental benefits of using solar energy have also been examined previously 

in Section 5.7.8. In comparison with PSD, the installation of active solar systems is site 

specific. Placing solar collectors on the roofs of domestic buildings raises questions 

concerning the environmental impact of the collectors, especially visual impacts.

Unlike conventional energy generation and supply, local energy generation from solar 

collectors means that local communities will be required to manage and mitigate 

against any negative environmental impacts created from installing energy 

technologies within cities rather than external to the city.
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6.8 Additional Issues

6.8.1 Planning Issues

Solar collectors can either be incorporated into the design of new buildings or fitted to 

existing buildings. In the case of new buildings, it is unlikely that planning issues will 

arise, as the planning application for the new development will include the solar 

systems. Adding solar collectors to existing buildings may raise a number of planning 

issues. Incorporating the collectors into the fagade cladding of a building, onto roof 

tiles or onto free-standing frames is likely to alter the character or roof slope of a 

building. Under the Town and Country Planning Act 1990, such developments 

normally require planning permission (ODPM, 1995). Local environmental constraints 

such as the historical status and location of the building will influence planning 

permission decisions. Any proposals to install active solar collectors on Listed 

Buildings, within the grounds of a Listed Building or in designated areas like National 

Parks, will require planning permission (ODPM, 1995).

A long standing issue facing active solar systems and other renewable energy 

developments has been the lack of precedent in this area, limited awareness of 

renewable energy technologies and their applications and poor access to information. 

The lack of precedent may cause problems in the deployment of active solar collectors 

within Sheffield, especially as uncertainty raises doubts amongst key decision-makers. 

Additionally, if end users are unaware of the availability of active solar systems when 

seeking to change or improve their domestic heating system, the uptake of active solar 

will remain low. It is hoped that the new PPS22 will help to alleviate some of these 

issues and make Local Authorities more pro-active in encouraging and supporting local 

renewable energy developments.

6.8.2 Health Issues

Any hot water system or large air conditioning plant runs the risk of legionnaire's 

disease. The bacterium Legionella, which causes the disease, is naturally found in 

water. At low concentrations, it is not a health hazard. However at high 

concentrations, Legionella can pose a serious health risk especially to the elderly, 

people with underlying diseases and those who smoke. In conditions where water 

temperatures are between 25°C and 45°C, Legionella can quickly multiply (Sadler et al, 

1996). There are a number of precautions which can be taken to minimise any risk.
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The most important precautions are to ensure that all hot water is heated to 60°C, cold 

water temperatures do not rise above 20°C and to ensure that the system is properly 

installed and maintained (Sadler et al, 1996).

6.8.3 Legal Issues

Solar access may become a legal issue in cases where the construction of new 

buildings overshadows an existing active solar system. Solar access is a term used for 

protecting a building's access to sunlight (DoE, 2004). Any shading of solar collectors 

reduces the performance of the system. Solar access can be restricted by a range of 

objects including trees, plants and chimneys. For active solar collectors, it is unlikely 

that existing obstacles, such as trees, should be removed when placing solar collectors 

on a building. With new build, any potential shadowing from surrounding objects can 

be minimised by changing the orientation of the building.

6.8.4 Insurance Issues

General household insurance policies cover damage to most DHW systems, except 

frost damage. However, in certain instances, the systems may not be fully covered 

against damage. Failure to inform the insurance company of the installation of the 

system, fitting the system without notifying the correct authority and failure to take 

reasonable care of the system, may result in the system not being fully covered (Sadler 

et al, 1996). Active solar systems can be susceptible to leaks, collector breakage, frost 

and storm damage (Sadler et al, 1996). However, care and maintenance of the 

systems can minimise risk from most causes of damage.

6.9 Key Challenges for Active Solar Systems

This analysis of active solar systems has shown that there are many issues facing the 

wider deployment of such systems in domestic buildings. As summarised in Table 6.3, 

active solar systems meets end user expectations of accessibility, flexibility, reliability 

and environmental acceptability. From this examination, it is clear that active solar 

systems share problems faced by the wider deployment of PSD features in Sheffield. 

As summarised by Table 6.4, there are obstacles facing the introduction, promotion, 

installation, operation and maintenance of active solar systems. These obstacles, in 

turn, affect the ease of use, convenience, consistency, affordability and quality of active 

solar systems and the energy service they provide. Similarly to PSD, the lack of
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Table 6.3 Current Evaluation of Active Solar Systems against End User

Expectations and Existing Energy Systems

End User Expectations Existing 
Energy Systems

Active Solar 
Systems

Accessibility •  • • •
Ease of Use • • • •
Flexibility • • • •  •
Convenience • • • •
Reliability:
Now •  • •  •
In the future • • • •
Consistency • • •
Acceptability, in terms of: 
Affordability • • •
Quality • • • •
Cultural expectations, in particular: 
Environmental concerns • • •
Sustainability • • •

Key to symbols: •  Does not meet expectations

•  •  Expectations are partially met 

• • •  Meets expectations

infrastructure surrounding the introduction and utilisation of a new energy technology is 

a major obstacle to the adoption of active solar systems. In order for solar DHW  

collectors to replace conventional heating technologies, ways of overcoming the 

obstacles need addressing. These are considered for active solar systems and other 

renewable energy technologies relevant to Sheffield in Chapter 13.

89



Table 6.4 Obstacles Facing the Deployment of Active Solar Systems in Sheffield

End User 

Expectations 

and Additional 

Issues

Obstacles
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Accessibility Adding solar collectors to existing buildings due to 

pre-determined factors.

■ ■

Matching supply of hot water and heat to demand ■ ■

Ease of Use Lack of infrastructure in place to guarantee the 

performance of collectors and their installation

■ ■

End user unfamiliarity with active solar technology ■ ■

Flexibility Without storage, active solar systems cannot provide 

a flexible energy service

■ ■ ■

Convenience Inconvenient building work associated with adding 

solar collectors to buildings

■

End user unfamiliarity with active solar systems may 

lead them to be labelled as inconvenient

■

Reliability Active solar systems must be reliable and perform to 

end user expectations

■ ■

End user understanding of how active solar systems 

operate

■

Consistency Inconsistent way of heating buildings

Roof ownership and responsibility issues ■ ■

Acceptability End user awareness of grant availability ■

Move from current heat provision to community or 

district-based schemes

■ ■

Need quality reassurances of product, installation and 

operation

■

The local community will be required to manage & 

mitigate any adverse environmental impacts 

associated with local energy generation

■ ■

Planning

Issues

Adding solar hot water panels to existing buildings is 

likely to require planning permission and there may 

be issues concerning lack of precedent in this area

■

Health Issues Risk of Legionella's disease ■ ■ ■

Legal Issues Solar access ■ ■ ■

Insurance

Issues

Frost damage implications ■ ■

Key to symbol: ■  Obstacle affects this stage of deployment.
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7. SOLAR ENERGY TECHNOLOGIES: PHOTOVOLTAICS

7.1 Photovoltaics

Photovoltaics (PV) or solar cells are a means of converting solar radiation directly into 

electrical energy. In Sheffield, it has been estimated that energy efficient buildings 

consume around 9,000 TJ of electricity per year. This consumption results in the 

release of approximately 339,000 tC per year (Appendix C). By placing PV panels on 

suitable roofs and fagades of business and industrial buildings, solar electricity could 

supply 5,122 TJ of electricity to buildings in Sheffield and save around 192,000 tC per 

year (Appendix D). This energy could be utilised solely by business and industrial 

practices and/or supplied to domestic buildings to meet some of their electricity needs 

(Appendix D). Although PV has potential in Sheffield, very few buildings currently 

utilise available solar energy for generating electricity. In order to understand why this 

situation exists, it is necessary to examine the technical and non-technical issues 

facing the wider deployment of PV systems on buildings in Sheffield.

In order to address these issues, this chapter is subdivided into two parts. The first 

part (Sections 7.2 to 7.6) reviews PV in the broad context of the UK. The basic aspects 

of PV are introduced in Section 7.2. Then the resource considerations (Section 7.3) 

and applications (Section 7.4) are discussed. The technical and economic status of PV 

is explored in Sections 7.5 and 7.6, respectively. The second part of the chapter 

examines end user expectations of energy services and highlights the differences 

between PV and conventional energy technologies in supplying consumers with 

electricity. Section 7.7 evaluates PV against the relevant stakeholder demand criteria, 

which act as a basis for this analysis. From this examination, the problems facing the 

utilisation of PV in Sheffield are identified. In Section 7.8, additional issues facing PV  

are examined. The key challenges facing PV are summarised in Section 7.9. The 

differences between PV and the existing energy system in meeting stakeholder 

expectations are summarised. The obstacles facing the deployment of PV in Sheffield 

are also considered.

7.2 Basic Aspects

PV cells can be designed to supply power from a few watts to thousands of watts (Hill 

et al, 1995). The cells are electronic devices made from thin slices or wafers of semi-
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conductive materials, mainly crystalline or amorphous silicon (Hill et al, 1995). Each 

cell typically has an area of 100 centimetres squared (cm2) and, in bright sunlight, the 

cells have a power output of 1.5 watts (W) (Ashley et al, 1996). To increase this power 

output, individual cells are grouped together in modules. Whilst the shape and size of 

modules vary, they typically contain 30-36 cells and produce 40-60 W  in peak sunlight 

(Ashley et al, 1996). For applications requiring a higher power output, modules are 

connected together to form arrays. Modules must be strong enough to withstand 

changing weather conditions and protect the cells and their electrical components from 

moisture and pollution over the cell lifetime (Hill et al, 1995). For a complete PV 

system to operate, a number of other components are required. Often referred to as 

the "balance of system", these components consist of a distribution box, an inverter, 

battery storage, which is optional, current and voltage regulators, power controls and 

other structural parts (IEA, 1991).

The size of the PV system depends upon the expected energy consumption and peak 

power demands of the application (Sick and Erge, 1996). To ensure that the electrical 

supply is reliable, the system must supply peak loads. If peak loads occur at night and 

supply of electrical energy exceeds demand during the day, storage is required. 

Electrical power from PV systems can be stored in batteries or supplied to the national 

grid. Storing large amounts of power in batteries can be very expensive (EDCL, 2000). 

The PV system can be connected to the national grid using meters to record imported 

and exported power (Ashley et al, 1996). Grid connection also provides a ‘back-up’ 

system should demand exceed supply. There are two metering options currently 

available in the UK, namely one-way meters for incoming supply and two-way meters 

for imported and exported electricity. In countries outside the UK, where the buying 

and selling price of electricity is the same, a single meter is used to measure imported 

and exported electricity (Max Fordham and Partners, 1999).

7.3 Resource Considerations

The power outputs of PV cells are subject to variations in solar radiation and the 

orientation and inclination of the cell. The orientation and inclination of the solar cell 

affects the amount of sunlight received by the cell. For solar cells to reach their full 

potential, it is necessary for the cell to be orientated at an inclination that receives the 

greatest amount of sunlight. For south-facing PV panels, the optimum inclination 

should be equal to the local latitude (Sick and Erge, 1996). For east to west facing PV  

panels, the panels gain 60% of the solar radiation received by south-facing panels, due
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to the low angle of the sun at the beginning and end of the day (Sick and Erge, 1996).

It is important to keep PV modules well ventilated as the performance of the modules 

decreases with rising temperatures. Shadows should also be kept to a minimum as 

they reduce the electrical output of PV panels (Max Fordham and Partners, 1999).

7.4 Applications

PV systems can be designed to supply energy for a wide range of applications. The 

main uses which have emerged for PV cells are in space applications to power 

satellites, the operation of a growing number of consumer products including 

calculators, watches and clocks and for stand-alone appliances. PV systems are used 

for rural applications such as monitoring and control devices and lights and to meet the 

power loads of farms and houses not connected to the national grid (Hill et al, 1995).

PV systems can be used in urban areas to meet the electrical loads of domestic and 

non-domestic buildings. In towns and cities, PV systems have three main applications:

■ Stand-alone units -  These units are easy to position to the optimum orientation and 

inclination. As the units are not connected to the national grid, they require battery 

storage.

■ Fagade cladding - PV systems can be attached to the fagade of existing buildings 

or incorporated into the design of new build. One example of the use of PV fagade 

cladding in the UK is the Northumberland Building at the University of Northumbria.

■ Roof-mounted arrays - Fastened to secure structures, the arrays can be either fixed 

in the best position on the roof to receive the optimum solar radiation or driven by 

motors to track the changing position of the sun (Ashley et al, 1996).

There are a wide variety of architectural ways of integrating PV systems into urban 

areas. PV tiles and panels are commercially available in a variety of colours including 

black, blue, red, green and yellow, and can be transparent or opaque (Ashley et al, 

1996). This makes them possible replacements for traditional roofing materials and 

wall cladding.

93



7.5 Technical Status

PV cell technology is at various stages of technological maturity and commercial 

availability. There is a constant drive to improve the conversion efficiencies and 

lifespan of cells whilst reducing manufacturing costs. The most common cell 

technologies available on the market today are mono-crystalline and poly-crystalline 

silicon cells, accounting for half of Europe's production of PV cells in 1996 (Jackson 

and Lofstedt, 1998). Commercial modules comprising of crystalline cells have 

conversion efficiencies of around 14% and a lifespan of 25-30 years (Hill et al, 1995 

and EUROPA, 2000). Thin film cell technology is also commercially available. The 

most common thin film cell technology is made from amorphous silicon, which 

accounted for 25% of European PV production in 1996 (Jackson and Lofstedt, 1998). 

Although thin film cells have low conversion efficiencies of around 6%, their 

manufacture uses less materials therefore reducing manufacturing costs. Thin film 

amorphous silicon cells degrade overtime and loose their efficiency (Hill et al, 1995). 

These cells are commercially available for low power applications such as watches and 

calculators.

At present, the lifespan of PV systems ranges between 25-30 years with the life of cells 

ranging between 15-30 years (EUROPA, 2000). Research and development is 

directed towards increasing the lifespan of PV cells to beyond 30 years, improving cell 

efficiency and reducing manufacturing costs. A number of advancements in cell 

technology are currently being explored including reducing the wafer thickness of 

crystalline silicon cells and using cadmium telluride, copper indium diselenide, gallium 

arsenide and titanium dioxide in thin film technology (ICLEI, 2000b). Research is 

taking place in developing different types of concentrator cells which have high 

conversion efficiencies. Concentrator cells concentrate light from a large area onto a 

small solar cell (Jackson and Lofstedt, 1998). Multi-junction concentrator cells are built 

up from several layers, each collecting a different part of the solar spectrum (Jackson 

and Lofstedt, 1998). Work is also being undertaken to develop frameless modules to 

avoid the use of energy-intensive support structures and frames (Alsema and 

Nieuwlaar, 2000).

There is a common assumption that the future prospects of PV cell technology are 

good. With investments into achieving greater cell efficiencies, longer cell lifetimes and 

lower manufacturing costs, PV systems are likely to become more commercially viable
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for a wide variety of applications. However, there is still significant scope for cost 

reduction and performance improvement of PV cells (ETSU, 1999).

7.6 Economic Status

At present, initial capital investment costs for PV systems are high, although the costs 

vary depending upon the type of application and PV cell technology used. It is likely 

that relative costs will fall over time. To illustrate present and likely future costs, cost 

trends of PV are shown in Table 7.1. Once the system is operational, annual running 

costs are low with minimal routine maintenance (ETSU, 1999).

Table 7.1 Present and Likely Future Photovoltaic Cost Data (ETSU, 1999).

Costs 1997 2010 2025
PV module (£/m2) 234-422 184-266 36-102
Inverter (£/kW):
Domestic system 1060 520 250
Non-domestic 600 360 250
Wiring (£/m2) 55 38 30
Operation and maintenance (£/kWh generated) 0.005 0.005 0.005

The economics of grid connection and the price that electricity utilities buy PV  

generated electricity act as barriers to PV developments in the UK. Grid connection 

prices vary and can form a significant part of the costs of the system. Periodic charges 

for grid connection and services of the electricity company may amount to 20% of the 

annual income of a commercial system and 60% of the income of a domestic system 

(Halcrow Gilbert Associates Ltd, 1993). Costs can be reduced if meters are installed 

when the PV system is fitted so that no additional fixed charges are made by the 

electricity company (Halcrow Gilbert Associates Ltd, 1993). At present, electricity 

utilities charge domestic consumers between 6-7.5p per kilowatt hour (kWh) purchased 

and pay between 2.5-4p per kWh for PV electricity exported to the grid (Anon, 2000b).

In addition to considering current electricity prices, there are differing views on the 

future cost of electricity from PV systems. It has been estimated that electricity 

produced from PV sources for non-domestic applications will not fall below 7p/kWh by 

2010 and 15-20p/kWh for domestic applications assuming an 8% discount rate and 25 

year lifetime for the latter (ETSU, 1999). Although there has been a past trend of 

falling industrial and domestic electricity prices, prices are now rising. Limited 

electricity generation capacity combined with a shortage in low cost natural gas is the
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reasons behind the price rise. The price of natural gas directly influences electricity 

prices as natural gas is a competitive fuel and is used to produce electricity. In 2000, 

coal was the main fuel used for electricity production (36%) followed closely by natural 

gas (34%) (DTI, 2003b). The rise in natural gas and electricity prices has been felt by 

the consumer. Domestic electricity bills have risen and industrial bills are expected to 

rise by 2010 (EEF, 2004). The recent price rise is favourable for electricity produced 

from PV and other renewable energy sources. Traditionally, there has been an 

absence of equal competition between electricity produced from conventional and 

renewable energy sources (Shaw, 1999). Rising electricity prices may, over the longer 

term, stimulate a more competitive and level playing field for electricity produced from 

renewable energy sources. Additionally, if this situation continues, greater investment 

in PV and other renewable energy sources may occur.

7.7 Meeting Stakeholder Expectations

7.7.1 Photovolatics and End Users

In order for PV to replace existing ways of providing electricity to buildings in Sheffield, 

it must continue to meet the expectations of end users. In the case of PV, end users 

are the owners/occupiers of business and industrial buildings. However, there may be 

some opportunity to export electricity to domestic users. Introducing PV as an 

alternative way of producing electricity in Sheffield would require the involvement of key 

decision-makers within the business and industrial sector. The owners, and possibly 

the occupiers, of business and industrial premises have an important role in localised 

electricity generation, as their buildings have been identified for solar PV generation 

(Grant et al, 1994c). Installing PV on existing buildings, either through retrofit or 

refurbishment, offers immediate opportunities and shorter timescales to reduce carbon 

emissions when compared to integrating PV into the design of new buildings. Although 

it is easier to install PV into new buildings, the replacement rate of buildings is low in 

the UK. Decisions need to be made on whether carbon emissions and sustainable 

urban energy systems are going to be achieved over the longer term or whether more 

immediate changes are going to be pursued. If new build was identified as the way 

forward for business and industrial PV in Sheffield, and action plans were pursued 

immediately, it may take up to 100 years before each building in Sheffield has PV  

panels (Section 5.7.2). If more immediate reductions in carbon emissions are sought, 

an alternative option would be to incorporate PV into the roofs and fagades of existing 

buildings through retrofit and refurbishment work.
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An essential requirement for promoting the uptake of PV by the business and industrial 

sector is to assess if it can meet end user expectations of accessibility, ease of use, 

flexibility, convenience, reliability, consistency and acceptability, as identified in 

Chapter 2. This examination is necessary in order to identify any obstacles which will 

affect the wider deployment of PV in Sheffield. The ability of PV in meeting the 

expectations of end users is examined below.

7.7.2 Accessibility

The extent to which PV is accessible by all end users in Sheffield depends on the 

characteristics of the building and the availability of information. The orientation of the 

building, pitch of the roof and overshadowing is an issue for PV. It is more difficult to 

change these factors with existing buildings as opposed to new build. In Sheffield, it 

has been assumed that 5% of the roof area and fagades of business buildings and 5% 

of the roof area of industrial buildings are suitable for PV panels (Grant et al, 1994c). 

The MIRE assessment assumed that PV would not be installed on domestic buildings 

as these are more likely to be fitted with solar hot water systems (Grant et al, 1994c). 

Despite these assumptions, the opportunity also exists for business and industrial 

owners to export excess electricity onto the national grid, for consumption by domestic 

users. End user access to information and advice is another key issue. Whilst energy 

agencies are available to guide people and organisations and written report and 

guidance is available, awareness of, and access to, this information can be a problem 

for potential PV investors.

7.7.3 Ease of Use

There are three important issues surrounding the ease of use of PV. From the end 

user's perspective, are PV systems easy to choose as an alternative way of supplying 

business and industrial buildings with electricity and how easy are PV systems to 

operate? In relation to moving towards the wider use of PV in cities, the question over 

how easy will it be to persuade electricity users to install PV systems arises. If building 

owners make the decision to move towards PV generated electricity, there is limited 

infrastructure in place in the UK to sell, install and maintain PV systems in buildings. 

This may impede any decision of having a PV system and getting such a system up 

and running. However, efforts are presently being made by the Energy Savings Trust 

to accredit PV organisations as part of the DTI's Major PV Demonstration Programme 

(EST, 2004). Such an accreditation scheme may help to guarantee the performance of
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the technology and its installation. Although such schemes are a positive step in the 

right direction, it is necessary to ensure that potential end users of PV technology know 

who to contact and are aware of such schemes.

Another issue which may affect the use of PV is the perception that PV is difficult to 

use. Although solar energy has been used to power calculators for many years, PV 

panels are not commonplace on urban buildings. Despite the growing number of PV 

applications in the UK, end user unfamiliarity may be a problem, particularly as PV  

systems do not conform to conventional ways of supplying buildings with electricity. At 

present, electricity is produced in central large-scale power plants and supplied directly 

to buildings via the national grid and local networks. Placing PV panels onto the roofs 

and fagades of individual buildings moves electricity generation away from a 

centralised system to a decentralised system, using small-scale plants located on 

individual buildings. This unfamiliarity with PV technology and local electricity 

generation is likely to influence potential investors in PV technology. Additionally, poor 

understanding of how PV systems work and subsequent mis-use of the systems by 

end users could lead to electricity wastage and the system being labelled as ineffective 

with poor performance levels.

Encouraging existing electricity end users to become electricity generators is unlikely to 

be easy. The current infrastructure in place to generate, distribute and sell electricity 

means that electricity is available at the flick of a switch. Additionally, industry receives 

special electricity tariffs which may act as a dis-incentive for industry to invest in its own 

electricity generation. As such, the transition towards localised PV electricity 

generation is likely to face many problems. It is unlikely to be easy to encourage 

businesses and industry in Sheffield to invest in PV systems when they already use 

electricity from the grid. If end users regard the current system as easy to use and 

prefer use the easiest option, this may inhibit the uptake of PV within Sheffield.

7.7.4 Flexibility

For any end user, it is important to match supply to demand. As electricity from PV is 

produced during the day, storage is required to meet electricity demands during the 

evening/night. Without storage, PV electricity cannot be regarded as a flexible energy 

supply. There are two main ways in which electricity can be stored, namely in batteries 

or feeding electricity back into the national grid. Storing electricity is likely to come at a 

cost for the potential PV generator. Using batteries to store large amounts of electricity
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can be very expensive (EDCL, 2000). Selling electricity back to the national grid using 

two-way metering is problematic as electricity suppliers do not often buy back electricity 

from small-scale generators for the same price at which they sell the electricity. It is 

important for potential PV users to take these additional cost issues into consideration. 

In the UK, electricity suppliers are largely unfamiliar with the prospect of buying 

electricity from small-scale generators. At present, their role is to sell and supply 

electricity to end users rather than enter into contracts with consumers to buy and sell 

electricity and manage supply and demand. If PV systems became more widely used 

within an urban context, the role and relationship of energy suppliers to local electricity 

generators would need to change.

7.7.5 Convenience

Moving towards a decentralised electricity generation system, also named embedded 

generation, has its advantages. Generating electricity on a local basis with adequate 

storage can provide extra security, particularly when blackouts occur. Transmission 

losses can also be reduced as the point of consumption is near the point of production. 

In a broader context, using PV locally can help to diversify energy production within the 

UK. However, despite the convenience of having local electricity generation, 

introducing PV into the urban environment could be initially regarded as inconvenient 

as the connection of a large number of PV systems to the national grid would require a 

great deal of management and organisation. The addition of PV panels to existing 

buildings and end user unfamiliarity affects the perception of the convenience of PV  

systems. Retrofitting or refurbishing existing buildings with PV raises issues over the 

convenience of installing PV and associated building work. Retrofitting existing 

buildings solely to install PV panels is disruptive. However, by incorporating PV work 

with other building activities, such as re-roofing or cladding of fagades, this may help to 

reduce the inconvenience imposed on the building occupiers.

7.7.6 Reliability

End user confidence in energy supply and new technologies are an important aspect in 

consumer decision-making and spending. Although solar energy is a reliable, carbon 

neutral energy source, which can be predicted through the use of clear sky incident 

solar radiation data, end users also need guarantees that PV panels, their installation 

and operation perform according to their expectations. When installing PV panels onto 

a building either through retrofit or refurbishment, the appearance of the roof or fagade
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is likely to be changed. Therefore it is important that the technology and materials 

perform in accordance with the expectations of end users. In some cases, PV panels 

or cells could replace existing roofing. In this situation, it is necessary that the panels 

not only generate electricity but also provide the occupants of the building with shelter 

and warmth.

In addition to technology and material guarantees, end users need to be confident that 

the panels are installed properly. Although the panel's performance could be 

guaranteed, if the architect or builder designs or installs the panel on the north side of 

the building at a 45° angle away from the sun, the panel will not perform. As with PSD 

and active solar hot water collectors, the product, its installation and performance are 

intrinsically linked. In addition, mis-management of PV systems by the end user could 

result in the performance of the panels being lowered. This may have the negative 

repercussion of PV being labelled as unreliable.

7.7.7 Consistency

As raised earlier, PV provides end users with a familiar energy service; electricity. 

However, the way in which this electricity is generated is more consistent with energy 

generation of 100 years ago. During the latter part of the nineteenth century and early 

part of the twentieth century, energy was produced and consumed locally rather than 

having large centralised plants with a national supply network (Chapter 2). Using PV to 

generate electricity raises issues concerning the move towards local embedded or 

decentralised electricity generation, as noted in Section 7.7.3. In particular, this type of 

electricity generation raises questions concerning the ownership of roofs and roof 

space and the role of electricity suppliers. As mentioned previously, PV panels can be 

placed directly onto roofs or integrated into the fabric of the roof (Section 7.4). If the 

PV system is owned by the owner and/or occupier of business and industrial buildings, 

the electricity is likely to be used for onsite consumption. Any excess electricity could 

be exported to nearby users or the national grid. In this situation, the building owner is 

likely to own the roof. However, opportunities may exist for electricity suppliers to have 

a more pivotal role in local PV developments. Should a situation develop whereby the 

energy supplier installs and maintains the PV system, over a given length of time, will 

the building owner or the electricity supplier be responsible for the roof? This, in turn, 

raises questions concerning the ownership and renting of roof space and cost and 

insurance implications. The issues raised here present opportunities for wider
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involvement by businesses, industry and traditional electricity suppliers in local PV  

electricity generation within Sheffield.

7.7.8 Acceptability

End uses expect energy services to be affordable, of a certain level of quality and 

environmentally acceptable. As with active solar hot water systems, the cost of 

installing a PV system varies depending on the site and local conditions. In order to 

encourage the uptake of PV systems, funding is available to assist capital costs of PV 

systems through the first phase of the DTI's Major PV Demonstration Programme 

(EST, 2004). Funding is available for individual applications on a small-scale which 

includes householders, schools, community groups and small businesses, where the 

funds are allocated on a first-come first-served basis as long as basic criteria are met. 

For private developers, local authorities and larger companies, funding is available on a 

competitive basis (DTI, 2002a). Although such opportunities exist, it is difficult to 

estimate the influence of the programme in the wider utilisation of PV systems within 

the business and industrial sector at present.

End users also expect electricity utilities to provide a quality service. In the case of 

placing PV systems on business and industrial buildings, the relationship between the 

end user and electricity supply companies is still likely to be important, especially if 

electricity is exported to the grid and imported to meet demand if shortfalls in supply 

occur. In this situation, electricity suppliers will expect a quality supply of electricity 

from local small-scale generators, and the generators will expect a quality service from 

the electricity supplier. As raised in Section 7.7.4, grid-connected PV will involve the 

electricity supplier to become a 'manager' of the balance between supply and demand. 

This relationship between electricity suppliers and local small-scale generators has 

worked in other countries. One example is the Nieuwland development at Amersfoort 

in the Netherlands where the energy supplier has placed PV panels on the roofs of 

suitable houses to generate electricity. The electricity supplier oversees the 

management of electricity supply and demand and the maintenance and operation of 

the PV systems. In return for the use of people's roofs, the supplier buys back the 

electricity at a competitive price. After the first ten years of operation, the ownership of 

the roof and the PV system returns to the owner of the building (Leeman, 2004).
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Although PV systems have significant environmental benefits associated with a readily 

available, carbon neutral renewable source of energy, certain environmental issues 

have to be addressed. Placing PV panels on the roofs of existing buildings is likely to 

raise environmental concerns, particularly relating to the visual impacts of the panels. 

PV panels can either be placed directly onto existing roofs or individual PV cells can be 

integrated with existing tiles. Integrating PV cells with existing roofing materials can be 

problematic due to the existing configuration, shape and colour of roof tiles. In 

Sheffield, it has been estimated that the majority of roofs are grey (Brown et al, 2001). 

Although PV cells could be manufactured in grey, effective integration/design 

techniques are also needed to ensure that any additional visual impacts can be 

minimised.

7.8 Additional Issues

7.8.1 Planning Issues

PV panels can either be incorporated into the design of new buildings or added to 

existing buildings. It is unlikely that planning issues will arise for new build as the 

planning application for the new development will include the PV system. Incorporating 

PV into the fagade cladding of an existing building, onto roof tiles or onto free-standing 

frames is likely to alter the character or roof slope of a building. Under the Town and 

Country Planning Act 1990, such developments will generally require planning 

permission. If the roof to be developed fronts a highway, planning permission is 

required (ODPM, 1995).

When considering PV planning permission applications, the interpretation of existing 

planning legislation and policy by local planning authorities may vary across the UK 

due to the size, scale and wide variety of PV systems available and the diversity of 

local environmental conditions. The main environmental impact of PV panels is visual 

intrusion, although this can be reduced to a minimum if suitably designed. In addition, 

local environmental constraints such as the historical status and the location of the 

building will influence planning decisions. Any proposals to install PV systems on 

Listed Buildings, within the grounds of a Listed Building or in designated areas like 

National Parks, are likely to require planning permission (GPDO, 1995). In a broader 

context, the proposed replacement of PPG22 by PPS22 and the publication of 

additional guidance, suggests that Local Authorities will be more likely to encourage 

renewable energy developments rather than limit them.
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7.8.2 Legal Issues

The connection of PV systems to the national grid via the local electricity network is a 

new issue facing electricity utilities in the UK. As the grid-connection of PV systems 

will have an effect on the performance of the network, it is necessary for the PV 

systems to comply with any technical regulations specified by the electricity supplier in 

line with the Transmission and Distribution Codes (Terence O'Rourke pic, 1998). 

Specifically, the electricity supplier is likely to require that the quality of the power 

exported to the grid is acceptable and that the PV system can be shut down 

automatically in the event of a loss of mains power (Max Fordham and Partners, 1999). 

However, grid-connection of PV systems is largely unregulated. The lack of demand 

for grid connecting PV systems has meant that specific regulations for PV systems 

have not been developed. As such, technical variations are likely to occur between 

electricity suppliers. This lack of standardised regulations for grid-connected PV has 

resulted in engineering recommendations being used for the grid connection of PV 

(ESRU, 2000). Average owners and occupiers of buildings may find the 

recommendations complicated to understand and apply (ESRU, 2000).

Aside from the legal issues raised through lack of regulation, the issue of solar access 

may become a legal issue for some PV system owners. Solar access of PV panels 

may become restricted when parts of one property, such as plants, chimneys or 

surrounding objects like trees, cause shading on the PV panels of an adjacent building, 

therefore reducing their electrical output and system performance (Cassedy and 

Grossman, 1998). Whilst small soft shadows are not a problem, large dark shadows 

will reduce the electrical output of the panels (Sick and Erge, 1996). Overshadowing is 

likely to be a problem when retrofitting existing buildings as surrounding objects cannot 

be moved. With new build, the orientation of the building can be controlled and any 

potential shadowing from surrounding objects can be minimised by careful design and 

positioning.

7.9 Key Challenges for PV

This analysis has highlighted the range of issues facing the deployment of PV in 

buildings in Sheffield. As summarised in Table 7.2, PV offers a reliable source of 

energy. However, its utilisation faces problems in relation to end user expectations of 

accessibility, ease of use, convenience, consistency and affordability. In addition, PV  

only partially meets end user expectations of flexibility and quality and there are
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Table 7.2 Current Evaluation of PV against End User Expectations

End User Expectations Existing Energy 
System

PV

Accessibility • • • •
Ease of use • • • •
Flexibility • • • •  •
Convenience • • •
Reliability:
Now • •
In the future • •  • •
Consistency • • • •
Acceptability, in terms of: 
Affordability • • •
Quality •  • •  •
Cultural values, in particular: 
Environmental concerns • •  •
Sustainability • •  •

Key to symbols: •  Does not meet expectations

• •  Expectations are partially met 

•  • •  Meets expectations

questions raised over the environmental and sustainability implications of using PV in 

urban areas. From this examination, it is clear that a diverse range of obstacles face 

the wider deployment of PV in Sheffield, as summarised in Table 7.3. There is a lack 

of supporting infrastructure surrounding the introduction, promotion, installation, 

operation and maintenance of PV panels. In addition, the use of PV in urban areas 

raises issues surrounding the management of supply and demand and roof ownership 

issues. The obstacles facing PV, contained in Table 7.3, are subdivided into three 

stages of implementation, namely the introduction and promotion of PV, the installation 

of PV panels, and the operation and maintenance of PV panels. It is important to note 

that some of the obstacles raised in Table 7.3 overlap and may affect more than one 

stage of development. The obstacles raised here will be addressed alongside other 

renewable energy technologies relevant to Sheffield in Chapter 13.
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Table 7.3 Obstacles Facing the Deployment of PV in Sheffield

End User 

Expectations 

and Additional 

Issues
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Accessibility Access to information and advice ■

The decision on whether or not PV will be introduced 

through new build and/or retrofitting or refurbishing 

existing buildings

■

Ease of Use Limited infrastructure in place to promote, sell, install and 

maintain PV systems in buildings

■ ■ ■

End user unfamiliarity with PV ■ ■ ■

Persuading end users to become local electricity 

generators

■

Flexibility Matching the supply of PV electricity supply to demand 

will have storage and cost implications

■ ■ ■

Electricity companies will need to become electricity 

"managers" who manage supply and demand and buy 

and sell electricity to/from local generators/end users

■ ■

Convenience Inconvenience and disruption caused by adding PV 

panels to existing buildings

■

Reliability End user confidence in PV technology and electricity 

supply

■ ■ ■

End user understanding of the PV system ■

Consistency Ownership of roof and roof space issues. This has 

installation, operation, maintenance, cost and insurance 

implications.

■ ■ ■

Acceptability Cost of PV systems ■

Quality of supply from consumers to electricity utilities 

and vice versa

■

Electricity companies will need to manage the balance of 

supply and demand

■

Planning

Issues

Visual impacts of PV panels on roofs and/or fagades of 

buildings

■ ■

Legal Issues Compliance with technical regulations specified by the 

electricity utility

■

Solar access of PV panels e.g. overshadowing ■ ■ ■

Key to symbol: ■  Obstacle affects this stage of deployment.
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8. WIND POWER

8.1 Utilising the Wind

Humans have harnessed the power of the wind for many centuries. Traditionally, 

windmills have converted the energy from the wind into mechanical power to pump 

water or grind grain (ICLEI, 2000c). Modern wind turbines can provide mechanical 

power, although they are more commonly used to generate electricity. Wind power is 

the second largest available renewable energy resource in Sheffield. Wind power 

could provide an estimated 2,808 TJ of electricity per year, which could be utilised for 

electrical applications within any sector. By utilising the wind power resource in 

Sheffield, it can be estimated that local annual carbon emissions could be reduced by

105,000 tC (Appendix B and D). Although this resource is available in Sheffield, it is 

significantly under-utilised at present. In order to find out why this situation exists, the 

technical, economic, non-technical and non-economic issues facing wind power need 

further investigation.

In order to address these issues, the chapter has been subdivided into two parts. The 

first part (Sections 8.2 to 8.6) reviews wind power in the broad context of the UK. The 

basic aspects of wind power are introduced in Section 8.2. The resource 

considerations (Section 8.3) and applications (Section 8.4) are then discussed. The 

technical and economic status of wind power is explored in Sections 8.5 and 8.6, 

respectively. The second part of the chapter examines stakeholder expectations of 

energy services and highlights the differences between wind power and conventional 

energy technologies in delivering consumers with electricity. This examination 

provides the basis for identifying obstacles which currently face the deployment of wind 

power in Sheffield. Using the relevant stakeholder demand criteria as a basis for the 

analysis, wind power is evaluated in Section 8.7. Any additional issues facing wind 

power are examined in Section 8.8. In Section 8.9, the key challenges facing wind 

power are raised. This section firstly summarises how wind power performs in relation 

to stakeholder expectations before looking at the obstacles that specifically influence 

the deployment of wind power in Sheffield.
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8.2 Basic Aspects

The majority of wind turbines in the UK have 2 or 3 blades mounted on a horizontal 

axis, although vertical axis wind turbines are also available. The turbines are 

mechanical devices comprising of rotor blades, a tower and a nacelle which holds the 

gearbox and generator. Using aerodynamic forces and rotating shafts, the turbines 

convert the energy in moving air into a useful power source (ETSU, 1999). Wind 

turbines are available in a range of power units and sizes. A single wind turbine can 

supply power from a few hundred watts to several megawatts. Small 100 W  turbines 

can be used on single homes and cottages with large 2 megawatts (MW) turbines used 

for commercial applications. To increase the power output, wind turbines can be 

grouped together in clusters or wind farms. In the UK, wind farms typically contain 20 

wind turbines (ETSU, 1999). Single turbines or wind farms can be constructed on and 

offshore. Any site used for wind power generation must be easily accessible for 

maintenance and repair work. The turbines are controlled by remote control systems 

and can be stopped during high winds or emergencies (Powergen Renewables Ltd, 

2001).

The expected energy consumption and peak power demands of the application 

determine the power unit and number of wind turbines. For electrical power 

generation, the electricity supply must coincide with demand. The amount of electricity 

produced by wind turbines depends on the wind speed and the power is generated 

according to the cube of wind speed (Jackson and Lofstedt, 1998). Low wind speeds 

generate proportionally less electricity than higher wind speeds. As such, the amount 

of electricity generated by turbines is subject to fluctuations in wind speed. Using 

storage facilities increases the reliability of the electricity supply from wind turbines. 

Electrical power from wind turbines can be stored in batteries, pumped storage or 

supplied directly onto the national grid. Batteries can provide a simple and economic 

option for remote areas where demand is low and storage is limited (Anon, 2000c). 

Batteries also require minimum maintenance, as they have no moving parts. Pumped 

storage facilities use the power from the wind to pump water up into a holding 

reservoir. When the energy is required, the water is allowed to flow down, powering a 

standby power station (Anon, 2000c). As an alternative to on-site storage, wind 

turbines can be connected to the national grid. At the point of connection with the 

network, the electricity from the turbines is usually metered to record supply. Although 

one-way meters which record the amount of electricity consumed by a building are the
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most common, there are also two-way metering systems available which can record 

outgoing and incoming electricity supply.

8.3 Resource Considerations

Wind power is an intermittent resource due to the dispersed and variable nature of the 

wind (ICLEI, 2000c). The wind resource in an area is determined by a number of 

factors including local wind speeds, which generally increase with elevation and the 

availability of land for wind power generation (ICLEI, 2000c). Wind power is not 

expected to be economically viable where average wind speed is less than 7.0 metres 

per second (m/s) (ETSU, 1999). In the UK, calculations have showed that 33% of the 

land area in England, Wales and Scotland and 4% of the land area in Northern Ireland 

has an annual mean wind speed of, or over, 7.0 m/s (ETSU, 1999). Whilst windy areas 

provide a potential energy source, wind turbines are sensitive to excessive, gusty 

winds and need to be protected against storms and high winds. The availability of land 

is an important consideration. Whilst the base of each wind turbine and access tracks 

only take up a small percentage of available land, the turbines must be spaced 

between 5-10 rotor diameters apart to reduce the level of turbulence between the 

turbines (ETSU, 1999). As such, the wind farms must be arranged so that the turbines 

do not "shadow" one another (BWEA, 2000). Physical constraints such as built up 

areas, forestry and local designations affect the siting of wind turbines onshore.

The offshore wind power resource is potentially greater than on land. However, 

harsher climatic conditions are an important consideration for wind turbine construction 

and operation. Increased emphasis is placed on the technical aspects of turbine 

design and the construction of the foundations (ETSU, 1999). The offshore wind power 

resource is constrained by working water depths, accessibility of the turbines, the use 

of the coastline for other activities and the capacity of the onshore electrical network 

(ETSU, 1999). Local designations such as coastal nature reserves may affect the 

siting of the turbines offshore.

8.4 Applications

The majority of wind turbines in the UK are used to generate electricity. Wind turbines 

can meet the electricity demands of a wide range of stakeholders as illustrated in the 

following examples:
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■ County Durham - A wind turbine at Cassop Primary School produces 270 kWh per 

day of electricity, which is twice the school's electricity requirement. The surplus 

electricity is exported to grid via an import/export meter (DTI, 2001 e)

■ East Kilbride, Scotland - A 600 kW wind turbine provides 35-40% of energy 

required by Sainsbury's Supermarket distribution depot (DTI, 2000c)

■ Great Yarmouth - A 1.5 MW wind turbine provides 4,000 households or 5% of 

Great Yarmouth's domestic electricity requirements (Anon, 2000c).

■ Royd Moor, Penistone, South Yorkshire - This wind farm contains 13 turbines and 

has a total generating capacity of 6.5 MW. The electricity is fed directly onto the 

national grid (Powergen Renewables Ltd, 2001).

■ Blyth Harbour on the Northumberland coast - This is the UK's first offshore wind 

power project. Two turbines, each providing 2 MW  of electricity, power 3,000  

households annually (Anon, 2000d).

■ Redcar in Teeside in the North East -  Planning permission has recently been given 

to develop an 18 turbine wind farm on an urban industrial brown field. This project 

has been named the TeesWind project (AMEC, 2004a and AMEC, 2004b).

■ London - A single turbine situated on the South Bank near the Royal Festival Hall in 

London was erected to provide power for the “Shell Electric Storm” event, which ran 

from November 2003 to February 2004 (RES, 2004). The turbine continues to 

generate electricity.

8.5 Technical Status

Wind power technology is well established with more than 8,000 MW  of wind power 

installed worldwide (ETSU, 1999). Modern wind turbines are designed to last for 15-25 

years and better designs have increased the efficiency and reliability of turbines whilst 

reducing costs. New machines are being developed which are 96% reliable (EUROPA, 

2001). Technical developments have also been made towards increasing public 

acceptance of wind turbines. In particular, refinements in the design of turbines has led 

to greater efficiency and reduced noise levels, as in, for example, the Ecotricity turbine 

installed at the Ecotech Centre in Swaffham, Norfolk (Anon, 1999a). The noise of the
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mechanical parts in this turbine has been reduced and the design has been refined to 

reduce the visual scale of the turbine (Anon, 1999a). Additionally, higher energy yields 

have been achieved through small increases in the height of the tower and length of 

the blades (Powergen Renewables Ltd, 2001). Advances have been made in offshore 

wind technology with designs aimed towards increasing energy output and reducing 

maintenance costs (Anon, 2000c). Further research has been directed towards using 

new lightweight materials for turbine blades, devising control systems to allow 

operation of large blades in storms, developing alternative electricity storage using 

compressed air storage and exploiting the offshore wind power resource (ICLEI, 

2000c).

8.6 Economic Status

Wind turbine projects are capital intensive. The capital costs of wind turbines can 

amount to 75-90% of the total cost (BWEA, 2000). Table 8.1 illustrates the cost 

breakdown for installing a 600 kW wind turbine.

Table 8.1 Average Costs Incurred for Installing a 600 kW Wind Turbine 

(ETSU, 1999)

Capital costs £ Annual costs £
Ex-factory cost 285,000 Operation & maintenance 9,000
Commissioning & installation 45,000 Local rates 3,843
Civil engineering 45,000 Land rental 2,000
Electrical engineering 75,000 Insurance 2,700
Miscellaneous
(including development, planning 
permission and financing costs)

30,000 Reactive power charges 1,400

Total installed cost 480,000 Total annual cost 18,493

As the majority of wind turbines in the UK are used for electricity production, the price 

of electricity per kWh from wind power is an important concern. The unit cost of 

electricity produced from wind power is influenced by a number of factors, namely wind 

speed, the performance of the turbine, the initial capital outlay, the running costs of the 

turbine and current electricity prices. Between 1990 and 2000, wind projects were 

supported through the Non Fossil Fuel Obligation (NFFO) in England, Wales and 

Northern Ireland and the Scottish Renewable Orders (SRO) in Scotland. The NFFO  

was introduced by the government to encourage renewable energy use in the UK. 

Regional electricity companies were obliged to purchase a percentage of their 

electricity supply from renewable energy sources (Shaw, 1999). Under NFFO, each
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renewable energy project received a financial subsidy, which stimulated their 

commercial success and ability to compete in the energy market. In Table 8.2, the 

price of electricity generated by wind turbines under the NFFO scheme and fossil fuel 

sources are compared. There were five NFFO programmes with NFF01 being the first 

projects commissioned under the scheme and NFF05 being the last group of projects.

From the comparison illustrated in Table 8.2, cheaper electricity is produced from 

large-scale wind farms. Under these circumstances, electricity generated from wind 

power is competitive with new coal fired plants. The generation of electricity from wind 

turbines has a number of benefits over fossil fuels sources. In particular, wind is a 

vast, free resource and the extraction of energy from the wind does not contribute to air 

pollution unlike electricity generation from fossil fuel sources. However, the 

environmental costs of electricity production from fossil fuel sources are not reflected in 

current electricity prices.

Table 8.2 Comparison of Electricity Prices from Different Energy Sources 

(BWEA, 2000 and DTI, 1998)

Energy Source Pence per kWh 
(p/kWh)

Average
p/kWh

Wind power
- average N FF05 price, large projects

2 .4 3 -3 .1 0 2.88

Wind power
- average N FF05 price, small projects

3.4 - 4.6 4.18

New combined cycle gas plant 1 .8 -2 .2
New coal fired plants 2.6 - 3.25
Existing coal fired plants (including cost of 
retrofitting flue gas desulphurisation)

Around 2.0

In April 2002, the Renewables Obligations replaced the NFFO scheme (Ecofys BV, 

2001). Under the Renewables Obligation, licensed electricity companies must source 

a specified amount of their total sales from renewable energy sources. In 2002/3, the 

Renewables Obligation started at 3% and will rise to 10.4% by 2010/11 (Ofgem, 

2004a). This intervention into the energy market by the Government and Ofgem, who 

regulate the gas and electricity market in Britain, has helped to stimulate a market for 

renewable energy, which will continue to grow as the Renewables Obligation 

increases. Each year, licensed electricity suppliers must produce Renewables 

Obligation Certificates (ROCs) in England, Wales and Northern Ireland or Scottish 

Renewable Obligation Certificates (SROCs) in Scotland to prove to Ofgem that they 

are complying with the Renewables Obligations. Each ROC is equal to 1 MWh of
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electricity and show that the electricity has been produced from renewable energy 

sources and supplied to end users in Great Britain (Ofgem, 2004b). Instead of the 

certificates, electricity suppliers can also make a buy-out payment, which has been set 

at £31.39 per MWh for 2004/5, or a combination of both options (Ofgem, 2004b).

In addition to the changes in electricity supply, there have also been regulations placed 

on business and industrial end uses. In April 2001, an energy tax was placed on 

electricity and natural gas consumed by the business and industrial sector. This 

energy tax was introduced through the Climate Change Levy. By switching their 

energy supply to green power, business energy users can claim exemption from the 

Levy. Levy Exemption Certificates provide proof that the electricity is produced from 

renewable energy sources and supplied by UK based generators (Greenprices,

2004a). Both the Renewables Obligation and the Climate Change Levy have created a 

favourable market for renewable energy developments, including the exploitation of 

wind power.

It is widely believed that the future prospects for wind power are good. Investment in 

wind power is directed towards producing more efficient and reliable designs and 

increasing public support of wind power projects. At present, technological 

improvements and economies of scale are reducing the costs of turbines and their 

components. More electricity can be produced from cost-effective machines (BWEA,

2000). As technical improvements are increasing the performance of wind turbines, it 

is likely that costs will continue to fall. It has been suggested that continued reductions 

will lead to the cost of energy from wind power being 75% of its 1996 cost by 2010 and 

to 70% of its 1996 cost by 2025 (ETSU, 1999). Additionally, the intervention and 

regulation into the supply and demand of electricity in the UK by the government and 

Ofgem has opened up the energy market for competition between renewable and non 

renewable energy sources. Also, if recent rises in domestic electricity and natural gas 

prices continue, this may stimulate more investment in renewable energy and increase 

competition between different electricity sources. With increased demand for 

renewable electricity, there are concerns that there will be a shortage in supply 

(Greenprices, 2004b). Already, organisations such as British Telecom, who are a 

major electricity consumer in the UK, are planning to invest in their own production 

capacity and are turning to wind power and solar energy technologies for the answer 

(Greenprices, 2004b).
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8.7 Meeting Stakeholder Expectations

8.7.1 Wind Power and Energy Suppliers

In addition to the technical and economic issues raised above, wind power must also 

meet the expectations of stakeholders. Within Sheffield, wind turbines are more likely 

to be grid connected as not all potential wind power sites are directly adjacent to 

electricity users. Additionally, feeding electricity directly onto the national grid will 

reduce electricity storage costs. In this situation, the main investors in wind-generated 

electricity are likely to be licensed electricity companies rather than the end users of 

electricity, such as domestic users.

As examined in Section 8.6, licensed electricity suppliers have to purchase a specified 

amount of their electricity from renewable energy sources. As such, wind-generated 

electricity is likely to be attractive to electricity suppliers as it can help them meet their 

Renewables Obligations. In order for electricity suppliers to buy electricity from wind 

power developments in Sheffield, the electricity supply must meet the expectations of 

electricity suppliers.

8.7.2 Accessibility

If electricity companies are to invest in wind power, they will want to know how 

accessible the supply of wind is in Sheffield. Although wind power has considerable 

potential in Sheffield, it is not fully exploited at present, which raises questions 

concerning the accessibility of the resource and its subsequent exploitation. The MIRE 

renewable energy study identified a number of key sites within Sheffield's built 

environment which have wind speeds of between 5.3-9.0 m/s (Grant et al, 1994c and 

Elsayed et al, 1996). The locations of these sites are shown in Figure 8.1. At each 

site, one, or in some cases two, 500 kW wind turbines could be installed. In addition to 

sites being located within the urban settlement of Sheffield, the MIRE study also 

identified some of sites which are located within or near to the Peak District National 

Park. This rural hinterland to the west of the city is under control of the Peak District 

National Park Authority, which acts as the planning authority for the whole of the Peak 

District National Park, whereas the urban conurbation of Sheffield is administered by 

Sheffield City Council. As Sheffield is under the control of more than one authority, this 

has had major implications on the exploitation and integration of renewable energy 

technologies, including wind turbines, within the district (Kellett, 1994b). Additionally,
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proposing wind developments within the Peak Park is problematic as there are strict 

planning controls and any proposed wind power developments are likely to face public 

opposition from residents and tourists. However, although commercial wind farm 

development may be opposed, some opportunities may exist for single turbines to be 

erected (Grant et al, 1994c).

In addition to the exploitation of wind power in the rural hinterland of Sheffield, there 

are also potential sites within close proximity of the built-up area, as shown in Figure 

8.1. Whilst these sites are not located in the Peak Park, their accessibility faces 

different constraints such as pressures on urban land use, proximity to residential 

properties, location within the green belt and dealing with visual impacts. One current 

pressure on urban land use is the growing need to build residential properties (ODPM, 

2004a). This increased competition for available land could have implications on the 

utilisation of identified sites in Sheffield with a good wind power resource. This raises 

the issue of problems with the possible allocation of renewable energy exploitation 

sites within local authority plans. If cities are to become responsible for their carbon 

emissions, it may be necessary to allocate land for energy purposes within the district 

boundary.

Many of the potential wind power resource sites in Sheffield are located on green belt 

land. This raises concerns over whether wind power developments will be acceptable 

within the green belt. Green belt designations exist in order to contain the city, prevent 

neighbouring towns from merging into one another, and safeguard the countryside from 

encroachment and to assist in urban regeneration by encouraging the use of brownfield 

sites within the district boundary (ODPM, 2004b). Additionally, as wind power 

developments are not rural in character, it is debatable that such developments would 

be acceptable on green belt land (ODPM, 2003).

If, in order to achieve sustainable urban energy systems within cities, Sheffield 

becomes responsible for lowering its carbon emissions, this will have implications on 

the relationship between the Peak District National Park Authority and Sheffield City 

Council. Whilst there is a need to move towards energy efficiency to lower energy 

consumption and utilise renewable energy sources to lower carbon emissions, there is 

also a need to conserve designated landscapes like the Peak Park. Reducing carbon 

emissions locally implies that in a district such as Sheffield, the rural and urban 

authorities will have to address local renewable energy exploitation issues jointly.

Whilst wind may not be acceptable in the Peak Park, less visible renewable energy
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technologies may be. In addition to these issues, placing wind turbines within urban 

areas means that local residents in Sheffield will have to deal with the environmental 

impacts of local electricity generation directly. These issues will be examined in more 

detail subsequently in Section 8.7.8.

8.7.3 Flexibility

Electricity from wind power can only be flexible if supply matches demand. Unlike solar 

energy, wind is available at any time of the day or night, although it is important to 

remember that it is an intermittent resource. Although sites have been identified which 

have suitable average wind speeds for wind power developments in Sheffield, there will 

be some occasions when the wind does not blow. This raises two key issues; firstly, 

the need for electricity storage and, secondly, the need for a back-up supply. As 

examined in Section 8.2, electricity can be stored in batteries, in pumped storage or 

shipped to supply demand via the national grid. Battery storage is expensive and may 

be an unsuitable form of storage for electricity suppliers. Using pumped storage as an 

option will require a suitable location to be identified and developed. Feeding electricity 

onto the national grid acts as a kind of 'virtual storage.1 Although the electricity is used 

to meet demand elsewhere, electricity can be taken from the grid in exchange for 

electricity supplied from wind turbines. This system is common practice and is 

therefore more familiar to electricity suppliers. When the wind fails to supply adequate 

electricity supply, alternative electricity supplies may be needed depending on the 

current level of demand. This will have implications for the management of the 

electricity system by electricity suppliers.

8.7.4 Reliability

In order for wind power to be considered as an alternative to conventional electricity 

supplies, the energy supply and technology both need to be reliable. Although wind is 

a free, carbon neutral energy source, which can be predicted using wind speed data 

software packages, electricity suppliers and other potential investors in wind power 

need to be confident that a particular site will deliver a given amount of energy supply 

over a particular period. In essence, the location of the wind turbine directly influences 

its performance and the feasibility of a wind power development. If electricity suppliers 

are to invest in wind power, they need to be re-assured that wind turbines will deliver 

what they are specified to deliver. In particular, electricity suppliers will need 

guarantees that the turbine is produced installed and operated correctly to perform in
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accordance with their requirements. When designing and constructing turbines, it is 

important that the turbine is reliable and performs according to its specifications. This 

raises the issue of the need for guarantees to be placed on the materials used and the 

manufacture and installation of wind turbines.

8.7.5 Acceptability

Investing in local wind-generated electricity supply will help electricity suppliers meet 

their Renewables Obligations. As examined in Section 8.6, electricity suppliers must 

purchase a percentage of their electricity from renewable energy sources as set out by 

the Renewables Obligation. If the wind power resource in Sheffield is going to be 

utilised to meet this Obligation, the supply of electricity must be of a certain quality. In 

particular, electricity supply must meet frequency and fluctuation specifications. The 

connection of single or multiple wind turbines to the grid would require the turbines to 

comply with any technical regulations as specified by the electricity supplier in 

accordance with transmissions and distribution codes (Terence O'Rourke pic, 1998).

8.8 Additional Issues

8.8.1 Planning Issues

Under the Town and Country Planning Act 1990, most forms of development require 

planning permission (HMSO, 1990). Land designations may affect the siting of 

turbines, particularly if potential sites are located within green belt land, on locally 

designated land and within the Peak District National Park. Any wind power 

development will require a power line to be installed to the nearest suitable electricity 

sub-station or other point of connection in the local distribution network. Electrical grid 

connection is normally subject to an assessment and planning application (BWEA, 

1994). Best Practice Guidelines for Wind Energy Developments recommend that this 

work is planned in line with the developer, the local electricity company, the planning 

authority, affected land owners and relevant consultees (BWEA, 1994).

In relation to wind power developments, specifically, and renewable energy 

developments, generally, the planning system has been viewed as a barrier to the 

success of developments (DTI, 2003a). In particular, the lack of precedent in this area, 

limited awareness and guidance, and lack of information has been a problem. A lack 

of precedent helps to create uncertainty amongst key decision-makers. Although
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Planning Policy Guidance (PPG) Note 22 on renewable energy, published in 1992, set 

out the Government's national stance on renewable energy developments, it has been 

criticised as lacking in clarity, focus and policy direction (Gill, 2004 and Kelly and 

Evans, 2004). With the new draft Planning Policy Statement (PPS) 22 is set to 

supersede PPG22 (ODPM, 2003a), it is hoped that this document will provide more 

guidance and support for developers and will encourage Local Authorities to become 

more pro-active in supporting local renewable energy developments (BWEA, 2003).

8.8.2 Convenience Issues

The installation of wind turbines in Sheffield may initially be regarded as inconvenient 

by local people due to the building work involved during the construction period. 

However, once this initial period has passed, locally generated electricity can be 

regarded as convenient as it can provide additional security if shortfalls in supply occur 

and can help to diversity electricity generation capacity in the UK.

8.8.3 Community Investment and Ownership

Placing wind turbines in urban areas may stimulate urban communities to invest in 

wind power. Although community ownership of urban wind turbines has yet to be 

tested in the UK, there have been some successful rural schemes such as the Gwmni 

Gwynt Teg in Wales (Yes2wind, 2004). Additionally, having local wind turbines may 

attract greater consumer investment in green electricity, as consumers may perceive 

the turbines to be the visual proof of their investment. This could act as a catalyst for 

increased public support of renewable energy developments and renewable electricity 

purchasing.

8.8.4 Local Environmental Considerations

Although it is accepted that wind power is a carbon neutral renewable energy source, 

there are some local environmental considerations which must be addressed. Wind 

power projects have received a lot of public attention and often opposition. Common 

issues of concern include noise, visual impact, impacts on wildlife, shadow flicker, land 

use, interference with electromagnetic signals, safety issues, vandalism and access. 

Each of these issues could occur in Sheffield, as outlined below:
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■ Noise - When the turbine blades move through the air this can create a continuous 

whirring noise. The extent to which this noise will be an issue depends on the site, 

the local topography, local weather conditions, the position of the turbine and its 

proximity to receptors such as people and buildings,

■ Visual Impact - The physical presence of a single or group of wind turbines has a 

visual impact on a landscape. In particular the size, number, grouping, design and 

colour of the turbines, the type of landscape and the size and location of the local 

population are important considerations facing the siting of wind turbines (ETSU, 

1999). However, it is important to recognise that in some urban contexts, such as 

areas with a traditional manufacturing and industrial base, the presence of one or 

more wind turbines may not be visually intrusive (Elsayed et al, 1996),

■ Wildlife - Studies have highlighted that the siting of wind turbines can disturb 

wildlife, especially migratory bird patterns. Unfamiliarity with wind turbine sites 

could disturb the behaviour of birds and may result in bird mortality (ETSU, 1999),

■ Shadow Flicker -  As the sun shines on wind turbines, the shadows from the 

rotating blades can cause a stroboscopic effect, called “shadow flicker” (Kellett, 

1990). This could have an adverse effect on people within close proximity to the 

turbines or on people at greater distances at certain times of the day, such as 

sunrise and sunset,

■ Land Use -  As discussed in Section 8.7.2, pressures on land use within Sheffield 

and other urban areas affects the utilisation of potential sites for wind power 

developments. In rural parts of Sheffield, the location of wind turbines near or in a 

designated green belt or in local or nationally designated areas could be 

problematic. The land around or between wind turbines could be used for many 

different purposes including grazing animals, growing crops or for bio-diverse 

natural environments. In urban areas, close proximity to residential estates may be 

an issue,

■ Electromagnetic Interference - The operation of wind turbines can interfere with 

electromagnetic signals as the rotation of the blades can scatter signals and reduce 

the quality of signal reception (Powergen Renewables Ltd, 2001),
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■ Safety Issues - Safety issues are an important concern for the design, construction 

and decommissioning of all developments. With wind turbines in particular, the 

aerodynamic design of the blades allows the blades to "fly" through the air. 

Detached blades could place the public in danger. Although there have been 

instances where this has happened, it is a very rare occurrence. Additionally, "ice 

throw" from blades could be a problem during colder months (Kellett, 1990),

■ Vandalism - Locating wind turbines in inner city areas may attract vandalism, 

particularly if the designation site has been subject to vandalism on previous 

occasions (Elsayed et al, 1996). Vandalism could include attempted damage to 

ground-based equipment and to blades from throwing stones and other projectiles, 

and

■ Access - Access to the site is an essential part of wind power developments. For 

routine maintenance and occasional repairs, easy access to the site is needed. 

Using existing routes to the site will increase the site's accessibility and minimise 

the need for additional work in constructing access routes.

8.9 Key Challenges for Wind Power

This examination has demonstrated that the technical and economic status of wind 

power have good prospects. Advances in wind power technology have created more 

efficient, reliable and quieter turbines with larger power outputs. Economies of scale 

have lowered the capital costs of wind turbines, therefore increasing the 

competitiveness of wind-generated electricity. However, in order for wind power to be 

purchased by electricity suppliers, it must also meet their expectations. The 

performance of wind power against the expectations of energy suppliers is summarised 

in Table 8.3.

As summarised in Table 8.3, the main problem facing wind power in Sheffield is the 

accessibility of the resource. However, in terms of flexibility, reliability and 

acceptability, wind power competes with non renewable-generated electricity. Placing 

wind turbines in Sheffield also means that the local community has to deal with impacts 

associated with local electricity generation. Therefore, wider issues of planning, 

inconvenience, community investment and ownership issues and local environmental 

considerations, also face the deployment of wind power within the district. These
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Table 8.3 Current Evaluation of Wind Power against the Expectations of Energy

Suppliers Companies and Existing Energy Systems

Energy Supplier Expectations Existing Energy Systems Wind Power
Accessibility • • •
Flexibility • • • • • •
Reliability:
Now • • • •
In the future • • • •
Acceptability, in terms of:
Affordability • • • •
Quality • • • •
Environment • • •

Sustainability • • •

Key to symbols: •  Does not meet expectations

• •  Expectations are partially met 

• • •  Meets expectations

issues or obstacles facing wind power in Sheffield are summarised in Table 8.4, which 

simplifies and summarises the analysis carried out in Sections 8.7 and 8.8. In Table 

8.4, the obstacles are sub-divided according to the expectations of electricity suppliers, 

wider community issues and at what stage of deployment they will affect the utilisation 

of wind turbines in Sheffield. The deployment of wind power in Sheffield can be split 

into two key phases; firstly, the wind turbine proposal and secondly, the installation and 

operation of the development. It is important to note that some of the obstacles raised 

in Table 8.4 overlap and will affect more that one phase of deployment. The obstacles 

raised in Table 8.4 will be addressed alongside other renewable energy technologies 

relevant to Sheffield in Chapter 13.
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Table 8.4 Obstacles Facing the Deployment of Wind Power in Sheffield

Energy 

Supplier 

Expectations 

and Additional 

Issues

Obstacles

W
in

d 
P

ow
er

 

Pr
op

os
al

In
st

al
la

tio
n 

an
d 

O
pe

ra
tio

n

Accessibility Location of potential wind power sites within the 

green belt, with local designations and within the 

Peak District National Park

■

Pressures on urban land use ■

No land allocation energy purpose within local plans ■

Flexibility Need to match supply with demand. This has 

storage and cost implications

■

Reliability Confidence that the site will deliver a reliable 

electricity supply

■

Energy supplier confidence in wind turbine 

technology, its installation and operation

■ ■

Acceptability Wind power development needs to be certified under 

the Renewables Obligations

■

Electricity supply must meet frequency and 

fluctuation specifications as laid out by the electricity 

company

■

Planning

Issues

Need for local authorities to become more pro-active 

in encouraging and supporting local wind power 

developments

■

Convenience

Issues

Inconvenience caused by building work when 

installing turbines

■

Community 

Investment & 

Ownership

Changes to traditional system of electricity 

generation and supply which can have positive and 

negative impacts within a community

■

Local

Environmental

Considerations

The move towards local generation will mean that 

local communities will be required to manage & 

mitigate any adverse environmental impacts 

associated with the energy development

■

Key to symbol: ■ The obstacle affects this stage of deployment
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9. BIOMASS ENERGY

9.1 Utilising Plants for Energy

During photosynthesis, green plants convert solar energy into chemical bonds including 

carbon and hydrogen. The solar energy stored in biomass or plant matter, can be 

extracted and converted into useful forms of energy including heat and power. Solar 

energy can be recovered from any land and aquatic plant and organic waste. Biomass 

is the third largest renewable energy resource available in Sheffield (Chapter 4 and 

Appendix B). By utilising local resources, biomass could provide Sheffield with an 

estimated 2,291 TJ of heat per year, which could be utilised for heating applications 

within any sector. Associated local carbon emissions could be reduced by around 

33,450 tC (Appendix D). Although this resource exists in Sheffield, it is under-utilised 

at present. In order to investigate why this situation exists, it is necessary to 

investigate the technical and non-technical issues facing the utilisation of biomass 

energy in Sheffield.

In order to address these issues, the chapter has been subdivided into two parts. The 

first part (Sections 9.2 to 9.8) reviews biomass energy in the broad context of the UK. 

The basic aspects of biomass are introduced in Section 9.2, followed by resource 

considerations in Section 9.3. Ways of preparing biomass are then discussed (Section 

9.4) followed by an examination of the technical status of conversion technologies 

(Section 9.5) and processing technologies (Section 9.6). The different types of output 

and applications are outlined in Section 9.7. Section 9.8 explores the economic status 

of biomass. The second part of the chapter examines stakeholder expectations of 

energy services and highlights the differences between biomass energy and 

conventional energy technologies in delivering energy to end users. This examination 

provides the basis for identifying obstacles which currently face the deployment of 

biomass in Sheffield. In Section 9.9, current and potential stakeholders are identified. 

Biomass energy is evaluated against their expectations, using the stakeholder demand 

criteria as a basis for the analysis. Additional issues facing biomass energy are 

examined in Section 9.10. In Section 9.11, the key challenges facing biomass energy 

are raised by firstly summarising how biomass energy performs in relation to 

stakeholder expectations, before looking at the specific obstacles which influence the 

deployment of biomass energy in Sheffield.
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9.2 Basic Aspects

Biomass can be obtained from a wide range of sources. Crops can be grown 

specifically for energy conversion. Typically, these "energy crops" include a range of 

trees, grasses and plants, although crops used for food production such as potatoes 

could also be utilised. Energy can also be extracted from organic wastes obtained 

from animal husbandry practices, forestry and arboriculture operations and agriculture. 

Due to the diversity of plants and organic wastes that can be utilised for energy 

conversion purposes, biomass energy resources can be placed into the following 

categories:

• Energy crops,

• Animal and human waste,

• Agricultural residues,

• Forestry and arboriculture residues,

• Organic municipal and industrial waste.

Before the Industrial Revolution, energy requirements for heating, lighting and cooking 

were met by biomass, in particular wood fuel. During the Industrial Revolution, the 

widespread exploitation of fossil fuels replaced the use of biomass. Today, fossil fuels 

continue to meet modern energy and fuel needs. However, modern advances in 

energy conversion technologies have opened up opportunities for biomass to be co

fired with fossil fuels or used as an independent energy source. Modern applications of 

biomass can extend to include domestic and industrial cooling, electricity generation 

and liquid fuel for transportation purposes. Biomass can be burnt directly or converted 

into solid, liquid or gaseous fuels. Using the biomass energy categories above, Figure

9.1 illustrates the various pathways for the utilisation of biomass energy resources.

The diversity of biomass resources that can be converted using modern conversion 

technologies is illustrated. Figure 9.1 shows that different biomass resources can be 

used in the same conversion technology for the same application. The range of initial 

outputs can either be used directly for various applications or can undergo further 

processing to produce electricity or refined fuels. Biomass energy can be used for a 

variety of applications ranging from supplying heat for individual rooms to whole 

districts, providing heat for industrial processing such as smelting, and for motive 

power and other liquid fuel applications. Further examination of the biomass 

resources, conversion technologies, processing technologies, initial and final outputs 

and applications featured in Figure 9.1 will take place over the following sections.
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9.3 Resource Considerations

9.3.1 Energy Crops

Energy crops are grown specifically for energy conversion purposes and cover of a 

wide range of crop types. The main crops that have been developed for use in energy 

conversion technologies are:

•  Short rotation coppice (SRC) e.g. willow and poplar trees,

•  Herbaceous crops e.g. miscanthus,

•  Vegetable-oil bearing crops e.g. oilseed rape,

•  Carbohydrate-rich plants e.g. saccharine plants, starchy plants and cellulose 

plants.

In Northern European climates, short rotation willow, poplar trees and miscanthus are 

the most common varieties used for energy conversion purposes (ETSU, 1999). 

Vegetable-oil bearing crops, such as oilseed rape and carbohydrate rich plants, could 

also be used. Once planted, energy crops are harvested on a regular basis. Some 

energy crops, in particular SRC, can be processed before being fed into the energy 

plant. SRC can be chipped using a chipper machine. This makes the fuel easier to 

handle, transport, store, dry, cool and burn (Shaw, 1999). Energy crops must be 

stored in well ventilated facilities to minimise the risk of rotting (Warburton et al, 1996). 

Drying the energy crops will ease the storage of the material and increase the energy 

content of the fuel. The energy content of a fuel is measured as the calorific value, 

which is the amount of heat released on complete combustion per unit weight of 

biomass (DTI, 2001a). The calorific value is influenced by the moisture content of the 

fuel. The lower the moisture content, the higher the calorific value and energy output. 

Energy crops tend to have low calorific values at around 19 gigajoules (GJ)/dry tonne 

(ETSU, 1999). When the moisture content of energy crops reaches 55%, the calorific 

value falls to 10 GJ/dry tonne. Energy crops have a low density of around 300 

kilogram's per metre cubed (kg/m3) when harvested which, after drying, can fall down 

to 150kg/m3. In comparison, coal has a calorific value of 27 GJ/tonne and a density of 

800 kg/m3 (ETSU, 1999).

Research and development has been directed towards improving the performance and 

reliability of existing growing and harvesting practices and reducing costs. In particular, 

work has been directed towards increasing the yield of energy crops, improving crop
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husbandry practices, and reducing the capital and investment costs involved in setting 

up projects. Advances have been made in increasing the dry yield of energy crops per 

hectare and developing varieties with greater disease resistance and fast growth rates, 

for example, willow hybrids (ETSU, 1999). In the UK in particular, pilot trails are been 

undertaken to develop experience in growing miscanthus, ready for future large-scale 

production (Anon, 2000e). Further research has been directed towards enhancing the 

breeding conditions of energy plants and improving their cost effectiveness (EUROPA,

2001).

The large-scale production of energy crops in the UK would require a significant 

amount of land. Before 1992, all agricultural land was designated for use for food 

production. In 1992, a policy was introduced in which 15% of productive agricultural 

land was designated for set-aside purposes (Shaw, 1999). Although set-aside land 

could be utilised for growing energy crops, the lack of demand for energy crops has 

limited their development. Sporadic markets have developed for particular projects 

such as the 10 MW ARBRE demonstration plant in North Yorkshire. Although the 

ARBRE plant is no longer functioning, the supplies of SRC for the plant are now being 

co-fired alongside coal at the Drax Power Station in Yorkshire (Gow, 2004). The 

financial viability of growing energy crops will benefit from large-scale production and 

economies of scale. At present, energy crop projects require a large amount of capital 

investment for crop establishment. When compared to subsidised food production on 

agricultural land, the growth of energy crops does not have the same financial returns 

(ETSU, 1999). Traditional uses of land, an uncertain future and investment risks affect 

all energy crop production.

9.3.2 Animal and Human Waste

Animal and human waste can be broken down two main categories, namely dry waste 

and wet waste. Dry waste includes cattle and pig manure and poultry litter whilst wet 

waste comprises of cattle, pig and poultry slurry, sewage and sewage sludge. Sewage 

sludge is a by-product from the treatment of sewage. For energy conversion purposes, 

the quality of animal and human waste is important for biogas production. Biogas is a 

mixture of methane and carbon dioxide. The freshness and the percentage of dry solid 

matter content increases the biogas yield (Warburton, 1997). W et or liquid wastes 

contain a low percentage of solid matter. After treating the waste, by reducing the 

water content and drying the material, the solid content will increase. Slurries and 

sewage may be subject to some dilution to improve the handling of the waste before

127



being used for energy conversion purposes (Warburton, 1997). The dry matter content 

for cattle and pig slurry is 12% and 9%, respectively, for every tonne of fresh waste 

(Warburton, 1997). The dry matter content per tonne of poultry litter is 30%, whilst the 

dry matter content of manure can reach up to 60% or more (Warburton, 1997). By 

adding straw to cattle slurry, the dry matter content can be raised from 6% to around 

12% (Baldwin, 1993a).

At present, there are no markets for animal or human waste, except for using animal 

wastes as farm fertilisers (ETSU, 1999). As large quantities of dry and wet animal and 

human wastes are generated on a regular basis, the disposal of this waste is a 

problem. Energy conversion could offer an alternative way to re-use and dispose of 

the waste. To minimise the cost of any potential projects, close proximity to the 

biomass source will reduce transportation and waste handling costs.

9.3.3 Agricultural Residues

Straw is the main dry agricultural residue that can be utilised for energy conversion 

purposes. Straw is available from cereal and other crops, such as oilseed rape, which 

are traditionally grown for food purposes (ETSU, 1999). Straw is produced when crops 

are harvested and can be recovered and baled for use (ETSU, 1999). When harvested 

dry, straw has a moisture content of 15% and a calorific value of 15 GJ/tonne (ETSU, 

1999). Further drying reduces the moisture content and can raise the calorific value to 

18 GJ/tonne (ETSU, 1999). Straw is a bulky material in proportion to its energy 

content. When compared with coal, the volume of straw is approximately 10-20 times 

greater per unit volume of energy equivalent material (Nikolaisen, 1992). By baling 

straw, the bulky nature of the material is reduced and the straw is easier to handle.

A market has already established for straw. Around half of the straw currently 

produced is used for agricultural purposes, mainly as animal bedding (ETSU, 1999). 

The remaining surplus straw could be utilised for energy purposes although the extent 

of this may vary from region to region. It has been suggested that regions which have 

a net surplus of straw less than 200,000 tonnes per year, large-scale energy production 

would not be viable (ETSU, 1999). Straw is being used on a small-scale in the UK for 

heating farm buildings. The economics of using straw as a fuel are affected by the 

price of the straw, the proximity of the straw to the energy plant, and the load factor of 

the plant and capital investment costs. Future research and development has been
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directed towards improving the cost-effectiveness of straw projects, especially in the 

preparation and handling of the fuel and reducing costs.

9.3.4 Forestry and Arboriculture Residues

Wood residues from forestry and arboriculture practices, such as tops, branches, 

foliage, logs and fallen trees can be used for energy conversion purposes. Present 

woodland management practices, including harvesting or thinning operations, generate 

wood residues. Wood can also be collected from existing woodland and forest areas. 

The feasibility of using wood residues for energy conversion projects depends on the 

availability of the biomass within a defined or reasonable catchment area, the energy 

content of the wood and the market for energy (Warburton, 1998). Wood can be 

collected, dried and used as a local fuel. The bulky nature of wood and the high water 

content makes localised use of the fuel more economical. Transporting wood residues 

to wider markets would increase the costs of-projects due to increased transportation 

distances. Reducing the wood to chip decreases the bulky nature of wood, making it 

easier to transport. Wood has a calorific value of around 19 GJ/dry tonne. When  

harvested, the moisture content of wood can be quite high at around 55%. This lowers 

the calorific value to 10 GJ/tonne (ETSU, 1999). A number of on-site constraints can 

influence the harvesting of wood from managed sites including the nature of the terrain, 

soil type, weather conditions, water courses, the proximity of roadside facilities and 

wildlife habitats (Warburton, 1998).

Whilst wood residues from some forestry and arboriculture practices are being used for 

small-scale energy conversion purposes, the supply of wood has not been fully 

developed in the UK. Using wood has the potential to stimulate economic development 

at local and regional levels whilst managing wooded areas and displacing on-site 

brought-in energy (Warburton, 1998). To enhance the viability of projects, research 

needs to be directed towards the economic collection and processing of wood fuel, in 

particular innovative chipping and baling equipment to reduce labour and transport 

costs (EUROPA, 2001a).

9.3.5 Organic Municipal and Industrial Waste

Organic municipal and industrial waste is generated by domestic, commercial and 

industrial activities. It covers a diverse range of organic wastes including food waste, 

gardening waste, waste wood and packaging waste. Current waste disposal streams
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can contain a mixture of organic and non-organic materials. However, wastes can be 

separated using different waste disposal techniques, such as segregating the waste at 

source. Developments have taken place to separate and turn paper and plastic 

products into pellets. This 'refuse-derived' fuel can then be used to power energy 

plants. The main processes for recovering energy from waste are to burn, or 

incinerate, the waste regardless of its organic content. The waste disposal technique 

of placing waste in landfill sites produces conditions in which the waste materials are 

broken down and methane and other trace gases are released. In essence, this 

'biogas1 can be recovered and used for heat and power generation purposes.

Due to the diverse range of municipal and industrial wastes, there is a wide variation in 

the dry energy content of the waste materials. It has been estimated that the energy 

content of municipal solid wastes is around 9 GJ/tonne although this varies depending 

on the type of waste (ETSU, 1999). In the UK, around 100 million tonnes of waste are 

generated each year by households, commerce and industry (DTI, 2004a). Although 

the majority of this waste goes to landfill, 35% of industrial and commercial waste and 

12% of household waste is recycled or composted (DTI, 2004a). Alternative ways to 

dispose of municipal and industrial wastes are being sought due to government policy 

and legislation changes, pressures to minimise and recycle waste, and shortages in 

landfill capacities (ETSU, 1999). Due to pressures on landfill sites and the introduction 

of the landfill tax, the incineration of waste or the use of waste treatment technologies, 

such as anaerobic digestion and pyrolysis, have become favoured waste disposal 

options.

9.4 Biomass Preparation

Before energy is extracted from biomass energy resources, the materials must be 

prepared to maximise the efficiency of the conversion process. Most biomass must be 

dried to enhance the calorific value of the material. Drying can take place before or 

after arrival at the energy plant. For the fuel supply to be continuous, biomass must be 

stored on site or within a reasonable distance from the plant. The volume of some 

energy crops and agricultural, forestry and arboriculture residues can be reduced by 

compressing the biomass or converting the material into chips, pellets or briquettes 

using specially designed machinery. Biomass resources must be screened to discard 

large contaminants, such as bricks or stones, which can cause significant damage to 

processing and conversion machinery. The quality of the biomass entering the energy
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plant can be guaranteed by introducing specifications to regulate the size, moisture 

content and calorific value of the fuel before combustion.

9.5 Conversion Technology

9.5.1 Direct Combustion

The main biomass conversion technology is direct combustion. Biomass is burnt in 

stoves or furnaces to provide heat that can be used directly or via boilers to produce 

steam for heat and/or electricity generation (Jackson and Lofstedt, 1998). Direct 

combustion technology is fully commercialised and mature (WEC, 1994). One 

advantage of direct combustion is that a wide range of biomass energy resources can 

be used in this technology. With research and development directed towards 

increasing the efficiency of the process whilst reducing capital costs, direct combustion 

has the potential to emerge as a flexible energy conversion option. Further research is 

required to demonstrate the flexibility of direct combustion, develop higher performance 

turbines for electricity generation, and simplify the conversion process to reduce capital 

costs for small-scale developments, reduce labour costs and improve wood drying 

techniques to increase the efficiency of the burning process (EUROPA, 2001a).

9.5.2 Carbonisation

Carbonisation converts wood into charcoal. Wood is heated to 280°C where the 

process becomes exothermic and the air/oxygen supply is cut off (WEC, 1994). 

Charcoal is produced which has double the energy density of the original material 

(Shaw, 1999). Carbonisation has been used for many years and is a fully 

commercialised energy conversion technology. The future role and development of 

this technology has yet to be determined (WEC, 1994).

9.5.3 Gasification

Gasification is an advanced conversion technology which has been used commercially 

since 1830 (WEC, 1994). A solid fuel is reacted with hot steam and air or oxygen to 

produce a gaseous fuel consisting of carbon monoxide, carbon dioxide, hydrogen, 

methane and small traces of other gases (Shaw, 1999 and Bridgwater and Evans, 

1993). For electrical power generation, gasification units are available in many sizes 

ranging from 100 kWe to 30 MWe (ETSU, 1994).
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Although gasification technology is fully developed and offers the possibility of using 

high-efficiency power conversion cycles, the economics are poor (Jackson and 

Lofstedt, 1998). There has been extensive research and development in using 

gasification for motive power applications (WEC, 1994). Extensive demonstration 

projects have taken place in developing countries such as Brazil (WEC, 1994). Using 

advanced gas turbine techniques, full scale demonstrations are required combined with 

a programme of demonstration to the power industry and export markets (EUROPA, 

2001a). Work is also directed at reducing costs associated with using this technology.

9.5.4 Pyrolysis and Fast Pyrolysis

With pyrolysis, solid biomass is heated to high temperatures in the absence of air to 

produce a gas mixture, oil and charcoal (IEA, 1997). The proportion of these elements 

depends upon the conditions under which the pyrolysis takes place (Jackson and 

Lofstedt, 1998). Fast pyrolysis rapidly heats biomass to high temperatures in the 

absence of oxygen to produce a liquid called bio-oil, which can be used directly for fuel 

applications or as a source for producing chemicals (Bridgwater et al, 1999). For fast 

pyrolysis to work efficiently, the biomass needs to be finely ground (Bridgwater et al, 

1999).

Pyrolysis and fast pyrolysis are both new technologies which are still at the 

demonstration stage. Research and development has been directed towards 

developing, piloting and optimising these technologies. Work has been directed 

towards finding the best conversion process for fast pyrolysis (Bridgwater et al, 1999). 

Research has also been undertaken on chemical production from fast pyrolysis and the 

development of commercial opportunities in this area (Bridgwater et al, 1999). Future 

research and development is being directed towards encouraging the competitiveness 

of the technologies, increasing the experience in using pyrolysis and fast pyrolysis 

whilst improving the economics for small and large-scale developments (Bridgwater et 

al, 1999).

9.5.5 Anaerobic Digestion

Anaerobic digestion uses bacteria to break down organic matter into biogas, fibre and 

liquor (Warburton, 1997). The fibre and the liquor contain low levels of plant nutrients, 

in particular nitrogen, phosphate and potash compounds (Warburton, 1997). The fibre 

is a bulky material which can be composted before being added to soil. The liquor can
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be used directly as a liquid fertiliser (Warburton, 1997). Anaerobic digestion is a 

reliable and effective way of producing biogas from organic waste (WEC, 1994). 

Anaerobic digestion can be used for small farm production or on a larger scale. The 

technology is well developed with a wide range of equipment being commercially 

available. Further research and development is required to disseminate information 

and experience with using the technology. Research and development has been 

directed towards improving the gas yield, optimising the solid content of feedstock and 

reducing capital costs (EUROPA, 2001a). The capital investment costs of anaerobic 

digestion projects are high. The equipment is produced to high standards to minimise 

any chance of corrosion (Warburton, 1997). This gives the equipment a long life span 

which can offset costs in the longer term. Other costs for anaerobic digestion projects 

include project development costs, running costs and training costs (Warburton, 1997). 

Efforts have been made to reduce the running costs of anaerobic projects by optimising 

plant reliability (EUROPA, 2001a).

9.5.6 Fermentation and Esterification

Using micro-organisms, usually yeast, fermentable sugars from wheat and sugarbeet 

are converted into an alcohol named 'ethanol' (WEC, 1994). The fermentation of 

ethanol produces large amounts of carbon dioxide which can be recovered, 

compressed and used in the food and beverage industries or used for refrigeration 

purposes (WEC, 1994). Ethanol fermentation from starches and sugars is fully 

developed (DTI, 2004b). Research has been directed towards developing the use of 

the fuel as an alternative to petrol. In Sweden, on-going trails have used ethanol to 

power inner city buses (SSEU, 1993). Further research and development has been 

directed towards identifying cheaper biomass resources and using alternative 

fermentable organisms, such as bacteria (WEC, 1994).

In addition to ethanol, oilseed rape and recycled vegetable oil can be used to produce 

biodiesel. Biodiesel is a substitute for diesel in vehicles. Oils are refined before treated 

with methanol to produce biodiesel. This process is called esterification. Esterificiation 

removes the fat from oil so that the biodiesel does not clog up the vehicles engines. 

Glycerine is the waste produced from this process. The main use of glycerine is for 

soap making. Research and development has focused on improving the technical 

viability and costs of biodiesel production in the UK. In particular, work has been 

directed towards looking at the energy and carbon balances of biodiesel and wider
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social and environmental costs and benefits (DTI, 2004b; Elsayed et al, 2003 and 

Mortimer et al, 2003).

9.5.7 Composting

Composting is an aerobic biological process in which micro-organisms decompose 

organic materials into a stable organic residue (Baldwin, 1993b). Composting has 

been used for many centuries and is a natural form of recycling (Anon, 2001a). The 

process depends upon the nature of the organic materials and the decomposer 

organisms involved (Anon, 2001a). There have been some advances in utilising the 

heat generated by composting for space and water heating applications. However, the 

future role and use of composting as an energy conversion technology is unclear.

9.6 Processing Technology

Following energy conversion, the initial outputs can either be used directly for various 

applications or can undergo further processing to produce electricity or refined fuels. 

The processing technology used can comprise either of a combined heat and power 

(CHP) unit, boilers, engines, turbines or refinery equipment. The type of final energy 

output required influences the nature of the processing technology used. In particular, 

there are different boiler designs depending on the moisture content, calorific value and 

potential contamination of the fuel. Boiler, engine and turbine technology and refinery 

equipment are fully mature and have been developed in line with advances in fossil fuel 

technology. CHP units are commercially developed. Different combustion 

technologies are commercially available for CHP units including grate fired boilers and 

fluidised bed boilers. Both grate fired boilers and fluidised bed boilers are well proven 

technologies with established markets. Further work is needed to reduce the capital 

costs of the boilers whilst improving combustion efficiencies. Advances have been 

made in developing smaller boilers with acceptable capital costs, which has made this 

technology ready for demonstration (EUROPA, 2001a).

9.7 Types of Output and Application

The biomass energy resource and conversion technology used determine the quality 

and type of the output. As illustrated by Figure 9.1, outputs consist of solid, liquid or 

gaseous products and heat and electricity which can be graded at various qualities i.e. 

low or high grade fuel. Initial outputs from the conversion process include heat,
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charcoal, gas, oil, fuel and compost. Following conversion, the energy sources can be 

used directly, can undergo further processing to refine the output or be used to 

generate electricity. As such, there are a wide range of possible applications for 

biomass energy, and the by-products from the conversion processes, as illustrated in 

the following examples:

•  District heating/cooling - Although more common in Europe, biomass technology 

can provide heating and cooling to buildings. In the UK, a small number of energy 

from waste schemes are operational, providing district heating for communities in 

Mansfield, Nottingham and Sheffield (Open University, 1994),

•  Space and water heating - Biomass energy can provide space and water heating 

for single or multiple rooms depending on the scale of the scheme,

• Process heating - Traditionally charcoal has been used to provide heat for smelting 

activities,

• Cooking - Charcoal, gas and electricity from biomass resources can be used for 

cooking purposes on barbecues and domestic and industrial appliances,

• Electrical applications - The electricity generated can be used to power any 

electrical application or can be fed directly into the National Grid,

•  Motive power applications - By distilling ethanol, refining rapemethylester or using 

rapeseed oil, liquid biofuels can be produced to power vehicles. In particular, 

distilled ethanol can be used as a petrol additive or blended with diesel for fuel 

purposes,

•  Liquid fuel applications - Liquid fuels can be used for a wide range of applications 

including lubrication,

•  Chemical applications - Chemicals derived from biomass can be used in a range of 

applications including lacquers, paints, medicine, disinfectants and windscreen 

washer fluids, and
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•  Applications to improve the quality of soil - Compost can be applied to soil to

improve the nutritional quality of the soil. In addition, by-products, such as fibre and 

liquor from anaerobic digestion, can also be used as compost or liquid fertilisers.

9.8 Economic Issues

Biomass projects face high capital investment costs due to a range of factors including 

the availability of the biomass, the scale of the development and the generating 

capacity of the plant. In particular, the transportation costs are an important factor in 

the economic feasibility of biomass projects. The bulky nature of the biomass, the low 

energy content per unit volume and the proximity of the biomass to the energy plant, 

can significantly affect the transportation costs of a project. As such, many biomass 

projects are site-specific to minimise costs. Additional costs incurred can include 

operational and maintenance costs, training, insurance, monitoring and costs of grid 

connection. Research, development and demonstration projects using biomass energy 

resources and conversion technologies are directed towards optimising the use of 

materials and the technology whilst seeking to reduce costs in the longer term.

As examined earlier in Section 8.6, the Renewables Obligation combined with the 

Climate Change Levy has helped to create a favourable market for renewable energy 

in the UK. In order to help create and maintain a biomass energy market, the 

Renewables Obligation has been modified to allow the co-firing of biomass with fossil 

fuels in existing generators until 2016 (DTI, 2004b). A phased approach has been 

introduced which specifically sets out to expand the use of energy crops for electricity 

generation purposes in the UK. Until the 31st March 2009, any amount of biomass can 

be co-fired with no minimum percentage of energy crops. From 1st April 2009 to 31st 

March 2010, 25% of co-fired biomass must be from energy crops. From 1st April 2010 

to 31st March 2011, the percentage of energy crops must amount to 50% of co-fired 

biomass. From 1st April 2011 to 31st March 2016, this figure must have increased to 

75%. From 1st April 2016, co-firing with fossil fuels will cease to be eligible under the 

Renewables Obligation (DTI, 2004b).
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9.9 Meeting Stakeholder Expectations

9.9.1 Biomass and Stakeholders

As identified in Figure 9.1, there are a diverse range of biomass energy sources, 

different ways of preparing biomass, different conversion and processing technologies 

and different outputs and applications. Subsequently, there is also a wide range of 

potential biomass energy stakeholders in the UK. The complexity of this situation is 

problematic when seeking to evaluate biomass energy against the expectations of 

stakeholders. However, by looking at available local biomass energy resources and 

potential energy applications, local stakeholders can be identified. Within the district 

boundary of Sheffield, the available biomass resource comprises of agricultural by

products such as straw and waste wood from forestry practices (Grant et al, 1994c). If 

this boundary was extended to include the adjacent local authority districts of Barnsley, 

Chesterfield, Derbyshire Dales, the High Peak, North East Derbyshire and Rotherham, 

a larger biomass energy resource could be utilised (Grant et al, 1994c). By utilising the 

biomass potential of the surrounding region, agricultural land could also be utilised to 

grow energy crops such as SRC.

It is likely that waste wood and SRC would be reduced to wood chip at source as wood 

chip is easier to handle, transport, dry and cool (Shaw, 1999). Within Sheffield’s built 

environment, it is likely that straw and wood chip would be utilised mainly for heating 

and cooling purposes. At present, a large percentage of energy consumed by 

buildings is for space and water heating applications. For example, in an average 

domestic building, space and water heating can account for 75% of the total energy 

consumed by the building (DEFRA, 2002). The majority of space and water heating in 

buildings in Sheffield is produced on a building-by-building basis using imported natural 

gas and/or electricity supplies. Space and water heating technologies, such as gas- 

fired and electric fires, radiators and air conditioning units, are used to convert natural 

gas and electricity into heating and cooling. As Sheffield is one of the few places in the 

UK with a district heating system in operation, there are two key types of energy 

consumer that can be identified, namely the district heating supplier and the end user. 

In relation to the energy or heat supplier, straw and wood chip could be co-fired with 

existing fuels in the energy plant. For the end user, it is likely that wood chip will be 

utilised for burning in wood room heaters, stoves and/or wood-fuelled boiler systems. 

Although there are end users of the heat supplied by the district heating system, this 

assessment will focus on those users who are not connected to the district-heating
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network. It is this group of end users who rely on the supply of natural gas and/or 

electricity for heating and cooling purposes. This group of end users have different 

relationships with buildings depending on whether they own and/or occupy the building. 

This relationship is important when decisions have to be made on how the building is 

heated and/or cooled.

If biomass energy is to replace or substitute existing ways of heating and cooling 

buildings in Sheffield, it must meet the energy expectations of the heat supplier and 

end users. In order to see if biomass meets the expectations of heat suppliers and end 

users, this section has been subdivided into two parts. The first part (Section 9.9.2) 

evaluates biomass energy against the expectations of the heat supplier. The 

expectations of accessibility are examined in Section 9.9.2.1, followed by flexibility 

(Section 9.9.2.2), reliability (Section 9.9.2.3) and acceptability (Section 9.9.2.4). The 

second part (Section 9.9.3) looks at the ability of biomass energy in meeting the 

expectations of end users. Accessibility is firstly examined in Section 9.9.3.1, followed 

by ease of use (Section 9.9.3.2), flexibility (Section 9.9.3.3), convenience (Section 

9.9.3.4), reliability (Section 9.9.3.5), consistency (Section 9.9.3.6) and acceptability 

(Section 9.9.3.7).

9.9.2 The Heat Supplier

9.9.2.1 Accessibility

A key issue facing the utilisation of biomass by district heating suppliers is the 

accessibility of the biomass resource and supply. Although a biomass resource exists 

within Sheffield and adjacent Local Authorities, there is no infrastructure in place at 

present to collect, dry, process and transport wood chip and agricultural by-products to 

the energy plant. This raises the issue of the current status of the biomass energy 

market in the UK. At present, there is no market for utilising waste wood or SRC for 

energy purposes. Forestry waste tends to be left on site to encourage biodiversity, and 

there is a limited UK demand and market for energy crops. In Sheffield, there is no 

demand for SRC. Unless farmers have confidence in the product and have a secure 

market for their crops, they are unlikely to invest in SRC. Although waste wood is 

available and SRC could be grown, the lack of supply and demand for these products 

means that they are not accessible at present. In contrast, straw is accessible and is 

currently utilised for a variety of purposes including storing vegetables, bedding for 

animals and in the production of packaging (Christin et al, 1996). However, in order for
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straw to be utilised as a fuel, the demand for energy would have to compete with 

existing demands for straw.

9.9.2.2 Flexibility

For the district-heating supplier, fuels can only be flexible if the supply of heat meets 

demand. Unlike some other renewable energy resources, biomass is available at any 

time of the day and night. As it can be stored at or near the point of consumption, 

straw and wood chip offer a varying heat supply that can be utilised to match heat 

demand within the district heating network (Christin et al, 1996).

9.9.2.3 Reliability

The supply of biomass needs to be reliable, both now and in the future. Although 

biomass is a renewable energy source, which can be constantly replenished as it is 

consumed, heat suppliers need to be confident that there will be a continuous and 

reliable supply of fuel. As noted in Section 9.9.2.2, there is no infrastructure in place at 

present within Sheffield to grow, process, dry, collect and transport biomass. The 

existing situation of ‘no market, no biomass -  no biomass, no market,’ will continue to 

have serious implications for investments into biomass production and its utilisation 

within district heating networks (ETSU, 1999). This situation raises the need for 

contracts between the heat supplier and fuel provider to ensure a continuous and 

reliable supply of biomass in both the short and longer term.

9.9.2.4 Acceptability

In order for heat suppliers to invest in biomass, affordability, quality and environmental 

concerns are important priorities. If the necessary conditions were in place, wood chip 

and straw can be affordable fuels. If local resources are utilised, this reduces the 

transportation costs of moving the wood chip and/or straw from the point of production 

to the point of consumption. Transportation costs can amount to a large percentage of 

total costs. In addition to the affordability of biomass, heat suppliers will be concerned 

with the performance and quality of the fuel. The moisture content of wood chip and 

straw determines the efficiency of the combustion process. The lower the amount of 

moisture in wood chip, the greater the amount of useful heat is produced (DTI, 1994). 

Also, the size of the particles within the wood chip or straw directly impacts the 

efficiency of the combustion process, the grade of the fuel produced and the value of
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the fuel (Shaw, 1999). Utilising biomass resources will also help heat suppliers reduce 

their impact on the environment. Biomass is regarded as ‘carbon neutral’ as the 

carbon emissions absorbed during the growth of the plant or tree is released during 

combustion. Therefore, no additional carbon is released into the atmosphere, provided 

that new trees are planted to replace those that are harvested (Shaw, 1999).

9.9.3 The End User

9.9.3.1 Accessibility

There are two main questions surrounding the accessibility of biomass by end users, 

namely how accessible is the resource and the technology used to convert the biomass 

into heat? As examined earlier in Section 9.9.2.1, a potential biomass resource exists 

in Sheffield and the surrounding area. However, the accessibility of this resource is 

limited, as there is no energy market for the biomass. Unless there is a secure 

demand for biomass, forest rangers and farmers face high levels of financial risk if they 

choose to invest in biomass when the market is uncertain. In addition to growing and 

collecting biomass, mechanisms are also needed to chip, dry, store and distribute the 

biomass to consumers. For straw, the existing market and supply chains could be 

extended. Whilst wood chip can be purchased from garden centres as it is used on 

gardens and allotments, this is only available in small quantities. The accessibility of 

biomass raises issues concerning the need to break the spiral of ‘no market, no 

biomass -  no biomass, no market’ (ETSU, 1999). In particular, contracts between 

suppliers and end users may be needed to secure supply and demand. Whilst a 

potential market and potential supply exists, problems of access to information and 

knowing who to contact for guidance is a key issue facing the development of biomass 

in Sheffield and across the UK.

Unlike the accessibility of the resource, a small market exists for wood burning stoves, 

which can be purchased from retailers selling fireplaces and fire surrounds. Although 

the technology is available and accessible, the limited accessibility of biomass 

resources may inhibit their purchase. Whilst wood-burning technologies can be utilised 

on a building-by-building basis, opportunities also exist for group or community heating. 

Whilst the current district heating network could be extended, small biomass plants 

could be built which supply a group or community of end users. As with district heating 

networks, the advantages of group heating include lower capital costs, lower energy,
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operating and maintenance costs, reliable heating and cooling and the utilisation of a 

renewable energy source (CHPA, 2004).

9.9.3.2 Ease of Use

There are two key issues facing the ease of use of biomass. From the end users 

perspective, are biomass systems easy to choose as a way of heating buildings and 

how easy are they to operate? As demonstrated by Section 9.9.3.1, there is a limited 

supply infrastructure in place at present to grow or collect biomass resources and 

distribute the produce to end users. In addition, there is a limited demand 

infrastructure in place to sell, install, maintain and operate wood burning stoves and 

boiler systems. This raises the need to guarantee the supply of the fuel, the 

performance of the fuel, the technology, its installation and operation. Encouraging 

end users to change to biomass for heating needs is unlikely to be easy. Unfamiliarity 

with biomass and wood-fired technologies may label this resource as difficult to use. 

This may affect the performance and operation of wood burning stoves. This raises the 

issue for the need for end users to learn how to use wood-burning stoves to ensure the 

technology performs correctly.

9.9.3.3 Flexibility

Heat from biomass can only be flexible if supply meets demand. As examined in 

Section 9.9.2.2, wood chip can be produced to meet heating demands at any time of 

the day or night. Wood chip can be easily stored which allows it to meet varying 

demands. However, the storage of wood chip may be an issue for end users who have 

limited additional storage space.

9.9.3.4 Convenience

For end users who use natural gas or electricity to provide heating in buildings, 

changing to biomass energy resources and appropriate technologies is unlikely to be 

regarded as convenient. Changing heating systems in individual buildings to open fires 

and wood-burning stoves may be perceived as a step back in time to having coal fires. 

As with coal, end users may regard buying wood chip, collecting it or having it 

delivered, making the fire, cleaning the stove and disposing of ash as inconvenient. As 

examined in Section 2.2, domestic households have moved from using coal for heating 

to gas-fired and electric fireplaces. Coal-effect fireplaces have replaced open fires.
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End users enjoy the benefits of having a coal-like fire without the disadvantages, for 

example, cleaning and maintaining the fireplace. Although coal-effect fireplaces are 

popular, there is a gap between end users having a coal or wood-effect fireplace and 

changing it for a wood-burning stove. Are end users willing to become more involved 

in energy production, for example, by putting wood in a stove? If wood is not regarded 

as convenient as switching on the gas fire, how can end users be persuaded to change 

from gas fires to wood-fuelled stoves?

9.9.3.5 Reliability

In order for straw and wood chip to be considered as an alternative to conventional 

heating supplies, the energy supply and technologies need to be reliable. Although 

biomass is a renewable energy resource which is carbon neutral, investors need to be 

confident that there is a market for biomass. Additionally, end users will need to be 

confident that by investing in biomass technologies, there is a reliable supply of energy 

both now and in the future. In addition to the supply of biomass, wood-burning stoves 

and boilers must perform in light of end user expectations. This raises the issue for the 

need for guarantees to be placed on the supply and quality of biomass and wood- 

burning technologies.

9.9.3.6 Consistency

End users expect a consistent heat supply, both now and in the future. This suggests 

that any changes in heating provision must continue to provide the same benefits as 

conventional heating supplies. Although biomass would supply end users with a 

familiar energy service, the way in which the heat is generated is not consistent with 

conventional heating provision in individual buildings. The use of biomass, in particular 

wood chip, is more consistent with heat production of 100 years ago. Until the 

Industrial Revolution, wood was a widely available and utilised resource (Shaw, 1999). 

This inconsistency may act as a barrier to the wider use of biomass for heating 

individual buildings in Sheffield.

9.9.3.7 Acceptability

End users choose energy services based on affordability, quality and wider 

environmental concerns. It is difficult to quantify the costs of biomass as the 

consumption of energy, supply of biomass and type of technology are site specific.
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However, wood chip systems tend to have higher capital costs when compared to 

conventional energy systems. Unlike fossil fuels, there is no guaranteed market for 

biomass, no contracts to match supply and demand and no economies of scale to 

justify investment (Mather and Chapman, 1995). Further examination of the economic 

issues facing wood chip utilisation in the UK is discussed elsewhere (Shaw, 1999). For 

householders and non-profit making community organisation, the Clear Skies scheme 

provides grants for room heaters or stoves with automated wood pellet feeds and wood 

fuelled boiler systems (ClearSkies, 2004). Additionally, the scheme provides a list of 

installers to help ensure good quality service and products.

As discussed in Section 9.9.2.4, the quality of biomass is important. The lower the 

moisture content of the fuel, the higher the amount of useful heat produced. In 

addition, end users will need to be re-assured that the materials used and the 

construction of wood-fuelled stoves, heaters and boilers are of a certain quality, and 

their installation is properly carried out. Additionally, with the immediate and long-term 

impacts of energy production on the environment becoming increasingly important, the 

utilisation of biomass helps reduce the consumption of fossil fuels and lowers local 

carbon emissions.

9.10 Additional Issues

9.10.1 Smokeless Zones

Burning wood chip and straw in smokeless zones is an important issue facing heat 

suppliers and end users. Through the Clean Air Act in 1956, smokeless zones came 

into effect (Bell, 1997). This designation means that once an area has been 

designated as a smokeless zone, it is an offence for the occupiers of premises to allow 

any smoke emissions from a chimney. This has important implications for the 

utilisation of biomass by the heat supplier and end user (Shaw, 1999). Wood chip is an 

unauthorised fuel as it emits smoke when burnt. However, there are certain appliances 

that are approved for use in smokeless zones. If wood chip is burnt in an approved 

appliance, it can be used in smokeless zones (NEA, 1995).

9.10.2 Planning Issues

There are planning issues, which affect both the production of biomass resources and 

their utilisation in the urban environment. In relation to growing energy crops, local or
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national land designations may have an impact upon their growth on certain sites. 

Constructing energy plants will require planning permission (ODPM, 1995). Conditions 

may be placed on schemes to minimise any adverse environmental impacts of the 

scheme. Adverse environmental impacts may include visual impacts from the size of 

the plant, traffic movements delivering biomass to the plant and noise generated by the 

operation of the plant and associated traffic movements. Existing land uses and local 

designations may also affect the siting of energy plants. It is hoped that the draft 

PPS22 on renewable energy will help to promote biomass developments within areas 

such as Sheffield.

9.10.3 Environmental Considerations

The growth of energy crops and the collection of organic wastes must comply with 

legislation and regulatory requirements of planning, environmental protection and 

health and safety. In addition to these issues, producing energy from local biomass 

resources and utilising this energy on a local basis, developments may have a number 

of potential local environmental impacts, as listed below:

• Transport impacts -  Transporting biomass resources from the point of production to 

the point of consumption will generate traffic. One way of minimising the impact of 

transport is to utilise locally available biomass energy resources,

• Visual impacts -  If energy crops such as SRC are grown locally, the crops may 

have a visual impact on the landscape. In a study which examined public 

perceptions of SRC, the study participants perceived that the growth of SRC would 

have a visual impact on the countryside (Sadler, 1993). Also, energy plants may 

have a localised visual impact on the landscape,

•  Ecological impact - Local ecosystems and biodiversity may be affected by the 

collection of energy crops, forestry wastes and arboriculture residues,

•  Noise - Increased traffic movements from the source to the energy plant can add to 

noise levels. Also, local noise may be generated by the operation of plant 

machinery such as chippers, and
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•  Health and safety risks - There are a number of various health and safety risks 

associated with the handling of biogas and other trace gases. Exposure can have 

serious health consequences (Warburton, 1997).

9.10.4 Resource Area for Biomass

Although the accessibility of the biomass resource has been examined in relation to 

heat suppliers and end users, wider issues also emerge. In particular, the utilisation of 

biomass potential in surrounding Local Authority districts raises issues concerning the 

utilisation of this resource for energy demands in Sheffield. Should the biomass 

resource in surrounding districts be used to meet the energy demands of Sheffield or 

used to meet energy demands within each respective district? If a market develops for 

biomass and adjacent districts to Sheffield grow SRC in response, competition for the 

resource may emerge between Sheffield and nearby towns and cities. This situation 

raises questions concerning the sustainability of energy systems within urban areas. Is 

it possible for towns and cities to become energy autonomous? At present, towns and 

cities rely upon the trade of goods and services on a local, regional and national scale. 

Is this situation likely to continue in relation to renewable energy supply?

9.11 Key Challenges for Biomass Energy

This examination has shown that biomass energy is a diverse resource. There are 

many different technologies available that are at various stages of maturity. Research 

and development has been focused towards improving conversion efficiencies and 

reducing costs. In order for biomass to be utilised for heating purposes within 

Sheffield, it must also meet the expectations of stakeholders. As Sheffield has a 

district-heating network in operation, it emerged in Section 9.9 that there are two types 

of energy consumer in Sheffield, namely the heat supplier and the end user who is not 

connected to the district-heating network. The outcome of the examination of biomass 

energy against the expectations of heat suppliers is provided in Table 9.1.
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Table 9.1 Current Evaluation of Biomass Energy against the Existing Energy

System and the Expectations of Heat Suppliers

Energy Supplier 
Expectations

Existing Energy System Biomass Energy

Accessibility • • •
Flexibility • • • • •
Reliability:
Now • • •
In the future • • • •

Acceptability, in terms of: 
Affordability • • • •
Quality • • • •
Environment • • •

Sustainability • • •

Key to symbols: •  Does not meet expectations

• •  Expectations are partially met 

• • •  Meets expectations

As summarised in Table 9.1, the main problem facing biomass is the accessibility of 

the resource. This has additional implications in terms of the current reliability of 

supply. In relation to flexibility and acceptability, biomass energy competes with non

renewable forms of heat production. In addition to the expectations of heat suppliers, 

biomass energy was also analysed against the expectations of end users of heat, as 

summarised in Table 9.2. Using the stakeholder demand criteria as a basis for the 

analysis, the main problems facing the utilisation of biomass by end users is the 

accessibility of the resource, the reliability of supply and energy conversion 

technologies, the lack of consistency with conventional ways of heating buildings and 

cost issues.

For both heat suppliers and end users, wider issues of smokeless zones, planning 

legislation and environmental considerations face the utilisation of biomass in Sheffield. 

The specific obstacles facing the production and utilisation of biomass in Sheffield are 

summarised in Table 9.3, which summarises and simplifies the analysis contained in 

Section 9.9. In Table 9.3, the obstacles are sub-divided into those that affect the heat 

supplier and end user. It is important to note that some issues raised in Table 9.3 

overlap and will affect more than one phase of development or stakeholder. The 

obstacles raised in Table 9.3 will be addressed alongside other renewable energy 

technologies relevant to Sheffield in Chapter 13.
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Table 9.2 Current Evaluation of Biomass Energy against the Existing Energy

System and the Expectations of End Users

End User Expectations Existing Energy System Biomass Energy
Accessibility • • • •
Ease of Use • • • • •
Flexibility • • • • •
Convenience • • • • •
Reliability:
Now • • •
In the future • • • •

Consistency • • • •
Acceptability, in terms of:
Affordability • • •
Quality • • • •
Environment • • • •

Sustainability • • • •

Key to symbols: •  Does not meet expectations

• •  Expectations are partially met 

• • •  Meets expectations
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Table 9.3 Obstacles Facing the Deployment of Biomass Energy in Sheffield

Stakeholder 
Expectations and 
Additional Issues

Obstacles

He
at

 S
up

pl
ie

r

En
d 

U
se

r

i

Accessibility The lack of supply and demand for biomass 
limits the accessibility of the resource

■ ■

Existing markets for straw and wood chip ■ ■
Ease of Use Lack of infrastructure in place to guarantee the 

performance of the fuel, technology and its 
installation

■ ■

Stakeholder unfamiliarity with using biomass 
as a fuel

■ ■

Stakeholder unfamiliarity with biomass 
technologies

■

Flexibility Storage is needed at or near the point of 
consumption to reduce transport costs and 
ensure that supply meets demand

■ ■

Convenience Wood-fired stoves and boilers require end 
users to become involved in energy production

Reliability The supply of biomass must be reliable both 
now and in the future

■ ■

Consistency Utilising biomass for heating in buildings is 
more labour intensive than conventional 
heating practices

■

Acceptability End user awareness of grant availability ■
Need to guarantee the quality of biomass ■ ■

Financial Risk Level of financial risk facing investment into 
biomass by producers of biomass, heat 
suppliers and end users

■ ■

Smokeless zones Biomass can only be burnt in approved 
appliances

■

Planning Issues Local designations may affect the growth of 
energy crops and the siting of new energy 
plants

■ ■

Environmental
Considerations

The move towards local generation and 
utilisation of biomass will mean that local 
communities have to manage any adverse 
environmental benefits associated with 
biomass developments.

■

Key to symbol: ■ Obstacle affects this stakeholder.
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10. SMALL-SCALE HYDRO POWER

10.1 HydroPower

The potential and kinetic energy in flowing water has been harnessed for many 

centuries. Water flowing from higher to lower levels has been used to drive 

waterwheels, producing mechanical power to grind grain or operate mill machinery. 

From the earliest times of electricity generation, hydro power has been used to 

generate electrical power (NEF Renewables, 2001b). Hydro power is the smallest 

available renewable energy resource in Sheffield (Chapter 4 and Appendix D). It could 

provide Sheffield with an estimated 90 TJ of electricity per year, which could be utilised 

for any electrical applications within the city. By utilising hydro power, local carbon 

emissions could be reduced by approximately 3,400 tC (Appendix B and D). Although 

hydro power is available in Sheffield, it is not currently utilised. In order to investigate 

why this situation exists, it is necessary to examine the technical and economic status 

of hydro power in the UK and evaluate its ability as an electricity source in meeting the 

expectations of stakeholders in Sheffield.

In order to address these issues, the chapter has been subdivided into two parts. The 

first part (Sections 10.2 to 10.6) reviews hydro power in the broad context of the UK. 

The basic aspects of hydro power are introduced in Section 10.2. The resource 

considerations (Section 10.3) and applications (Section 10.4) are then discussed. The 

technical and economic status of hydro power is explored in Sections 10.5 and 10.6, 

respectively. The second part of the chapter examines stakeholder expectations of 

energy services and highlights the differences between hydro power and conventional 

energy technologies in delivering stakeholders with electricity. This examination 

provides the basis for identifying obstacles which currently face the deployment of 

hydro power in Sheffield. Using the relevant stakeholder demand criteria as a basis for 

this analysis, hydro power is evaluated against stakeholder expectations in Section 

10.7. Any additional issues facing hydro power are examined in Section 10.8. In 

Section 10.9, the key challenges facing hydro power are raised. This section firstly 

summarises how hydro power performs in relation to meeting stakeholder expectations 

before looking at the obstacles which influence the deployment of hydro power in 

Sheffield.
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10.2 Basic Aspects

Hydro power schemes can be subdivided into two broad categories, namely large- 

scale and small-scale. In the UK, large-scale and small-scale hydro power schemes 

have defined installed generating capacities of greater than 5 MW and less than 5 MW  

respectively (ETSU, 1999). The generating capacity of hydro power schemes varies 

according to the volume of water available and the vertical distance the water falls, 

referred to as the head (ICLEI, 2001b). In the UK, large-scale hydro power schemes 

are used for electricity generation purposes and can have generating capacities of 

hundreds of megawatts (ETSU, 1999). Large-scale schemes usually involve a dam 

with water stored in a reservoir (ETSU, 1999). Small-scale hydro power schemes are 

either diversion-weir or run-of-river schemes. Diversion-weir schemes use a water 

intake placed above a weir or behind a low dam to abstract water from the water 

course. Here, the water is diverted to the turbine using a pipe (penstock) or water 

channel (leat). The rotation of the turbine produces mechanical power which can be 

transferred to a generator to produce electricity (ICLEI, 2001b). An outflow returns the 

water to its natural course. Low dams or weirs can be used to generate power from 

water courses with low heads of less than 3 metres. Run-of-river schemes use the 

natural flow of the river to generate power without using a dam (ICLEI, 2001b and 

ETSU, 1996). A turbine house contains the turbine, other power generating machinery 

and water monitoring systems (IEA, 1991).

Small-scale hydro power plants are designed to supply small base mechanical and 

electric loads, supplement peak electric loads or be connected to the national grid (IEA, 

1991). For supplying small mechanical loads, small-scale hydro power plants provide 

a continuous, reliable energy source. To meet peak electric loads, storage is required. 

Electrical power can be stored in batteries or pumped storage facilities, supplied 

directly to the source or directly onto the national grid. Batteries can provide a simple 

economic option for remote areas where demand is low and storage volume is limited 

(Anon, 2000c). Pumped storage facilities use excess electricity generated by the hydro 

power plant to pump water up to a holding pond. When the electricity is required, the 

water is allowed to flow down from the holding pond to power a standby power station 

(IEA, 1991). The electricity generated on site can be transmitted to local users or 

supplied directly onto the national grid.
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10.3 Resource Considerations

The exploitation of small-scale hydro power resources is site specific. The nature of 

the topography, geology and hydrology of the rainfall catchment area influences the 

resource available, the design of the hydro power plant and the economic viability of 

the scheme (Laughton, 1990 and IEA, 1991). In the UK, the availability of water 

resources suitable for small-scale hydro power purposes varies. Good sites with hydro 

power potential have been exploited leaving few accessible and commercially viable 

sites available (ETSU, 1999). At remaining sites, planning constraints may limit the 

development of the resource in sensitive areas, for example, local nature reserves 

(DTI, 2001f). Opportunities may exist to re-develop previously exploited hydro power 

resources, for example, from the Industrial Revolution, through the renovation of 

existing works.

10.4 Applications

Small-scale hydro power schemes provide a reliable, long term energy supply. With 

favourable geographical conditions, small-scale hydro power schemes can generate 

mechanical and electrical power on a range of water courses including streams, rivers 

and canals (Grant et al, 1994c). In the UK, small-scale hydro power schemes are used 

to meet the mechanical loads of farms and the electrical loads of local buildings, with 

surplus electricity being exported to the national grid. In remote areas, they can be 

used to displace diesel-fired generators and meet some of the electricity needs of 

buildings not connected to the national grid (IEA, 1991). In urban areas with an 

industrial heritage, derelict or disused weirs, mill ponds or leats could be renovated and 

re-used. Sensitive engineering works and the use of local materials can integrate 

small-scale hydro power schemes into the local environment. Multipurpose projects 

can incorporate hydro power developments to help deliver local improvements 

including flood protection, cooling water for thermal plants, improved navigation, 

recreation areas and land irrigation (Jackson and Lofstedt, 1998). They can also be 

used as a tourist attraction and for educational purposes.

10.5 Technical Status

Small-scale hydro power technology is commercially mature and widely available. The 

lifespan of small-scale hydro power plants ranges from 15-50 years with the civil 

engineering works lasting for more than 100 years (IEA, 2000 and ETSU, 1996).
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Although this technology is well-established, there is a drive to improve the existing 

technology, reduce the high capital costs of small-scale hydro power schemes and 

encourage the wider dissemination of information on developing schemes (ETSU, 1999 

and EUROPA, 2001). There are many different turbines available on the market suited 

to differing site conditions. The most common turbine technology available are Pelton 

turbines for use at high head sites with low flow rates and Kaplan turbines for lower 

heads with higher flow rates (ETSU, 1999). Cross-flow turbines are used for run-of- 

river schemes (ETSU, 1999). Modern turbines have high conversion efficiencies 

between 85-95% (IEA, 2000). This is considerably higher than solar power technology, 

which has conversion efficiencies ranging from 6-30%. Research and development is 

directed towards improving the performance of the turbines for low head applications.

A number of advances have been made in increasing the efficiency and cost- 

effectiveness of turbines by developing new designs and using different materials (IEA, 

1997). Variable turbines for generating power at sites with low heads and/or run-of- 

river schemes with seasonal water flows are being developed (ETSU, 1999). Further 

research is needed in developing low head turbines with low manufacturing costs, 

improving the design of power equipment and control systems, optimising generation, 

addressing the environmental sensitivity of civil works and minimising the ecological 

impact of schemes (EUROPA, 2001).

10.6 Economic Status

The capital investment costs of constructing small-scale hydro power schemes vary 

depending on a range of factors including site availability, site characteristics (head and 

flow), the proximity of the site to the load and the degree of civil engineering works 

required on the site (IEA, 1991). As such, the capital costs are very site specific. If 

there is an existing pond or weir, costs for low head schemes may start from £4,000  

per kW installed up to 10kW. If there is no existing civil works, hydro schemes are 

more expensive as more work is required. For medium heads, there is often a fixed 

cost of around £10,000 with additional costs of £2,500 per kW up to 10kW installed. As 

such, a 5 kW scheme could cost between £20-25,000 (EST, 2003). Operation and 

maintenance costs form a low percentage of the capital costs and can include 

insurance, annual site surveys, local rates and administration costs (ETSU, 1996). 

However, operation and maintenance costs can be higher for schemes with existing 

works as the equipment may require more maintenance than new equipment.

Although hydro power technology is mature and well-established, further improvements 

in harnessing small-scale potential will help to reduce capital costs.
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In addition to capital costs, the economics of hydro power is influenced by a range of 

factors including the water flow, the performance of the turbine, the capital outlay, the 

running costs and current electricity prices. Both the Climate Change Levy, introduced 

in 2001, and the Renewables Obligations, introduced in 2002, has helped to create a 

favourable market for renewable energy developments, including the exploitation of 

hydro power resources. As examined in Section 8.6, the Climate Change Levy has 

placed an energy tax on electricity and natural gas consumed by the business and 

industrial sector. By switching to electricity generated from renewable energy sources, 

business and industrial energy users can claim exemption from the scheme. In 

addition to targeting the end users of electricity, licensed electricity suppliers must 

purchase a specified amount of their electricity from renewable energy sources under 

the Renewables Obligations scheme. Electricity suppliers must prove compliance with 

the scheme by producing certificates or make a buy-out payment or both (Ofgem, 

2004b). This intervention by the Government and Ofgem has helped to stimulate the 

renewable energy market in the UK and this, in turn, may help to stimulate the 

utilisation of small-scale hydro power sites.

10.7 Meeting Stakeholder Expectations

10.7.1 Small-scale Hydro Power and Stakeholders

Within Sheffield, small-scale hydro power plants are more likely to be grid connected 

as not all potential sties are adjacent to or very near to identified points of consumption. 

However, there is also the possibility of stand alone systems, which would need 

additional storage. If sites are grid connected, feeding electricity directly onto the 

national grid will avoid electricity storage costs. In this situation, the main stakeholders 

of electricity from small-scale hydro power sites in Sheffield are likely to be licensed 

electricity suppliers rather than end users of electricity such as domestic users. In 

order for small-scale hydro power to meet the energy expectations of electricity 

suppliers, the electricity supply must be accessible, flexible, reliable and acceptable, as 

set out in Section 8.7.1. This examination is necessary in order to identify any 

obstacles which will affect the wider deployment of small-scale hydro power in 

Sheffield. The ability of hydro power to meet these expectations is examined below.
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10.7.2 Accessibility

The main question which electricity suppliers are likely to ask of hydro power in 

Sheffield is are the sites accessible? Although hydro power is not currently exploited in 

Sheffield, the MIRE renewable energy study identified 12 potential hydro power sites, 

as illustrated by Figure 10.1. At each of these sites, it was assumed that a 200 kW  

hydro turbine could be installed (Grant et al, 1994c). As Figure 10.1 shows, these 

potential sites are located to the west of the city on the River Loxley and the River Don. 

Surrounding land uses comprise of domestic buildings, business and industrial works 

or wooded areas. Most of the sites are former hydro schemes which now form part of 

the industrial heritage of Sheffield. It is possible that the derelict weirs, disused leats 

and mill ponds could be adapted and renovated for use in new hydro power schemes. 

This could significantly reduce initial investment costs and the subsequent unit cost of 

electricity generation. Due to potential conflicts with existing land use and the problem 

of flooding, the MIRE study suggested diversion weir schemes as opposed to schemes 

with dams as practical development of the latter would be severely constrained (Grant 

et al, 1994c).

10.7.3 Flexibility

Hydro power is available at any time of the day or night and its utilisation can provide a 

continuous source of electricity. To increase the flexibility of hydro power, electricity 

storage and a back-up supply of electricity are needed. As examined in Section 10.2, 

electricity can be stored in batteries, in pumped storage facilities or shipped to supply 

demand using the national grid. Whilst battery storage can be expensive and pumped 

storage requires a suitable location to be identified and developed, the national grid is a 

more familiar way of managing the wider balances of supply and demand. This system 

acts as a 'virtual' storage and, although the electricity is used to meet demand 

elsewhere, electricity can be taken from the grid in exchange for electricity generated 

by hydro power in Sheffield.

10.7.4 Reliability

If electricity suppliers are to invest in hydro power, both the energy supply and 

technology must be reliable. Hydro power is free, carbon neutral energy source and its 

utilisation would provide a continuous, reliable supply of electricity. Electricity suppliers 

and other potential investors would need to be confident that hydro power sites will
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provide a given amount of electricity over a particular period. If electricity suppliers are 

to invest in hydro power in Sheffield, they also need to be reassured that the 

technology performs well and delivers what it sets out to deliver. This raises the need 

for guarantees to be placed on the materials used, the manufacture, the installation 

and the operation of hydro power technologies.

10.7.5 Acceptability

Investing in small-scale hydro power developments will help electricity suppliers meet 

their Renewables Obligations. As examined in Section 10.6, electricity suppliers must 

purchase a set amount of electricity from renewable energy sources as set out under 

the Renewables Obligations (Ofgem, 2004b). In order for potential hydro power sites 

in Sheffield to quality under the Renewables Obligations, they must be certified under 

the scheme. If electricity generated by hydro power in Sheffield is going to be bought 

by electricity suppliers, it must be of a specified quality. The electricity must meet 

frequency and fluctuations specifications and other technical regulations as specified 

by the electricity utility in accordance with transmissions and distribution codes 

(Terence O'Rourke pic, 1998).

10.8 Additional Issues

10.8.1 Planning Issues

Most small-scale hydro power developments will require planning permission with the 

possible exception of refurbishing existing schemes where there is no change of land 

use (ODPM, 1995). Conditions may be placed on planning permission to minimise any 

adverse environmental impacts of the schemes, for example to minimise the visual 

intrusion of the powerhouse building (ETSU, 1996). Existing land uses and national or 

local designations such as National Parks may restrict small-scale hydro power 

developments. In relation to renewable energy developments, the planning system is 

often quoted as one of the key barriers facing the success of developments (DTI,

2003). Although in the past guidance in this area has been limited, the new draft PPS 

22 may provide more guidance, support and advice for developers and Local 

Authorities.
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10.8.2 Legal Issues

The impounding and abstraction of water is regulated by the Environment Agency 

under The Water Resources Act 1991. For small-scale hydro power schemes with 

dams or weirs, an impounding licence will be required. This licence will determine the 

level and location of the dam or weir and ensure an adequate supply of water 

downstream (ETSU, 1996). An abstraction licence is required where the flow of water 

will be diverted from the main water course to the turbine (ETSU, 1996). The 

ownership of land at existing weir sites or new hydro power sites can pose problems for 

any hydro power development. Determining the ownership of land on which the hydro 

power plant is to be built and adjacent land that may be affected by the development, 

for example for access purposes, can involve consulting multiple owners (ETSU,

1996). Water courses can form property boundaries. Also the ownership of banks and 

existing structures can be complex (ETSU, 1996). Securing land for hydro power 

developments either by purchasing the land or through rental agreements at a 

reasonable price pose a serious issue for hydro power developments (ETSU, 1994). 

Leasing arrangements may be required for buildings, pipelines, leats and grid 

connection cables (ETSU, 1996). Land prices and rents vary according to local 

circumstances (DTI, 2001f).

10.8.3 Environmental Considerations

The construction and operation of small-scale hydro power schemes can have 

localised impacts on the environment. The construction of such schemes can take 

between 1-2 years (ETSU, 1999). During this period, the building of temporary dams 

or other features can disturb the river bed and river ecology (DTI, 2001f). Once 

constructed, hydro power schemes can operate for a long period of time. During their 

lifetime, there will be some local environmental considerations which must be 

addressed. Common issues of concern, which could occur in Sheffield, are outlined 

below:

■ Visual impact - The physical presence of the dam, water intake, powerhouse or 

access roads can be visually intrusive (DTI, 2001f),

■ Ecological impact - Diverting the flow of the water and/or maintaining the level of 

flow can have an impact on local ecology, namely fish populations. In particular, 

the scheme can have an impact on the passage of fish, their migratory patterns and
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spawning grounds. Hydro power schemes can also cause inadvertent pollution of 

the water course (Laughton, 1990), and

■ Impact on groundwater levels - Groundwater levels may be affected by the 

construction of a dam or weir (DTI, 2001f).

10.9 Key Challenges for Small-scale Hydro Power

As examined above, small-scale hydro power is a reliable, long term energy source 

that can be used to supply small base mechanical and electric loads or supplement 

peak electric loads (IEA, 1991). The technology is proven, reliable and commercially 

available (ETSU, 1996). Despite such advantages, the feasibility of small-scale hydro 

power schemes depends upon geographical conditions which determine the size of the 

resource and the capital costs of developing the site. Further advances in turbine 

design may help to increase the viability of future developments. However, in order for 

the electricity generated by small-scale hydro power sites to be purchased by electricity 

suppliers, it must their expectations of electricity supply, as summarised in Table 10.1. 

As summarised in Table 10.1, the main problems facing hydro power is the 

accessibility of the resource and high capital costs. However, in terms of flexibility, 

reliability, quality and environmental acceptability, hydro power competes with existing 

electricity supplies. In some respects, hydro power is more favourable than existing 

supplies.

In addition to the supply-side of utilising hydro power sites, local people will have to 

deal with the impacts of local electricity generation. Planning, legal and environmental 

issues will have to be taken into consideration when developing hydro power sites 

within the city. These issues or obstacles are summarised in Table 10.1, which 

simplifies and summarises the analysis carried out in Sections 10.7 and 10.8. In Table 

10.2, the obstacles are subdivided according to the expectations of electricity suppliers, 

the impacts on the wider community and at which stage of deployment each obstacle 

affects. The deployment of small-scale hydro power in Sheffield can be subdivided into 

two key phases; first, the proposal, and secondly, the installation and operation of the 

site. It is important to note that some of the obstacles raised in Table 10.2 overlap and 

affect more than one phase of development. The obstacles raised in Table 10.2 will be 

addressed alongside other renewable energy technologies relevant to Sheffield in 

Chapter 13.
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Table 10.1 Current Evaluation of Small-scale Hydro Power against Energy Supplier

Expectations and Existing Energy Systems

Energy Supplier Expectations Existing Energy Small-scale
Systems Hydro Power

Accessibility • • • •  •
Flexibility •  • • •  • •
Reliability:
Now • • • • •
In the future • • • •
Acceptability, in terms of:
Affordability • • •  •
Quality • • •  • •
Environment • •  • •
Sustainability • • • •

Key to symbols: •  Does not meet expectations

• •  Expectations are partially met 

•  • •  Meets expectations
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Table 10.2 Obstacles Facing the Deployment of Small-scale Hydro Power in

Sheffield

Energy Supplier 

Expectations 

and Additional 

Issues

Obstacles
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Accessibility Surrounding land use and risk of flooding may 

constrain the development of some sites

■ ■

Flexibility Need to match supply with demand. This has 

storage implications.

■

Reliability Confidence that the site will deliver a reliable 

electricity supply

■

Stakeholder confidence in materials used, the 

technology, its installation and operation

■ ■

Acceptability Each site must be certified under the 

Renewables Obligations

■

Electricity supply must meet frequency and 

fluctuation specifications as set out by the 

electricity supplier

■

Planning Issues Need for local authorities to be more pro-active 

in encouraging and supporting hydro power 

developments

■

Legal Issues Licences required to operate. ■

Ownership of land on which the hydro power 

plant is to be built needs to be determined

■ ■

Land needs to be secured either through 

purchase or rental. Leasing arrangements may 

need to be drawn up.

■ ■

Local

Environmental

Considerations

Local communities will need to manage and 

mitigate against any adverse environmental 

impacts associated with the development 

including visual and ecological impacts and 

impact on groundwater levels.

■

Key to symbol: ■  The obstacle affects this stage of deployment.
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11. EXISTING ENERGY CARRIERS

11.1 Linking Supply to Demand

The term "energy carriers" refers to a means of transporting energy from the point of 

production to the point of consumption. Not only does this refer to the physical 

infrastructure which is used to distribute energy carriers to end users, but it also refers 

to the medium through which the energy is carried. In the UK, natural gas and 

electricity are the two main energy carriers or mediums through which energy is 

supplied to end users. Natural gas is distributed to end users using a network of 

nationally interconnected pipelines, whilst electricity uses an electrical transmission and 

distribution network. In addition to natural gas and electricity, a few urban areas use 

water and steam as energy carriers to distribute heat to end users via local networks of 

interconnected pipelines. This system is called district heating, which can also be used 

to supply cool water. Hot water can also be used to drive absorption chillers to provide 

air conditioning within buildings connected to the network.

This chapter builds upon previous examination of electricity, natural gas networks and 

district heating networks and highlights additional issues facing the utilisation of these 

three energy carriers in the deployment of renewable energy in Sheffield, specifically, 

and the UK, generally. The chapter is split into three key sections which address 

electricity networks (Section 9.2), natural gas networks (Section 9.3) and heating and 

cooling networks (Section 9.4). The ability of electricity and natural gas in meeting 

stakeholder expectations of energy supply was examined in Chapter 2. In addition to 

the issues raised in this earlier chapter, the basic aspects of electricity networks are 

introduced in Section 9.2.1. In Section 9.2.2, additional issues of price (Section 

9.2.2.1) and storage (Section 9.2.2.2) are examined. Issues facing the future 

development of the electricity network are summarised in Section 9.2.3. The 

examination of natural gas networks takes place in Section 9.3. The basic aspects are 

introduced in Section 9.3.1 followed by an examination of additional issues in Section 

9.3.2. Additional issues facing the production and supply of gas (Section 9.3.2.1), 

storage (Section 9.3.2.2) and the distribution network (Section 9.3.2.3) are also raised. 

The future development of gas is examined in Section 9.3.3.
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In addition to electricity and natural gas networks, Sheffield has a district heating 

network. The ability of this heating network to meet stakeholder expectations of energy 

supply was examined in the analysis of biomass energy in Chapter 9. In order to 

provide an insight into district heating networks, Section 9.4 examines the status of this 

energy carrier in the UK and additional issues facing its utilisation in Sheffield. The 

basic aspects are examined in Section 9.4.1, followed by an examination of resource 

considerations (Section 9.4.2), the technical status (Section 9.4.3) and the economic 

status of district heating networks (Section 9.4.4). Additional issues facing the 

utilisation of district heating networks in the deployment of renewable energy in 

Sheffield are also considered in Section 9.4.5. In Section 9.5, the key challenges 

surrounding the future role of existing energy carriers in the deployment of urban 

renewable energy systems are summarised.

11.2 Electricity Networks

11.2.1 Basic Aspects

Electricity is a flexible and convenient form of energy which is used for a wide range of 

applications ranging from powering electric appliances in the home to electric vehicles. 

Electricity is supplied to end users using a transmission and distribution network. Once 

produced, electricity is fed into the national grid system. Electricity is distributed using 

overhead lines supported by poles and pylons or underground cables. Using 

transformers, the voltage of electricity is gradually reduced for use by different 

applications (EA, 1999). Electricity is consumed by a large variety of energy users 

including most industries and the domestic and service sectors. Over the last five 

years, the domestic, industrial and service sectors have experienced a growth in 

electricity consumption and this trend is forecast to continue (DTI, 2000a, 2000b). At 

present, electricity is generated from a wide range of energy sources including fossil 

fuels, nuclear energy and renewable energy sources (DTI, 2000a). Although 

renewable energy use is favourable in terms of reducing carbon dioxide emissions and 

contributing to sustainable development, renewable energy sources only supplied 3%  

of UK electricity generation in 2002 (DTI, 2003a).

162



11.2.2 Additional Issues

11.2.2.1 Price

Until the introduction of the Renewables Obligation in 2002, the price of electricity has 

always been a key issue facing renewable electricity developments. The generation of 

electricity from fossil fuels has had significant economic advantages over renewable 

energy supply. This well-established industry has operated economies of scale which 

have produced cheap electricity. However, the full costs of production and 

consumption, namely the external social and environmental costs, are not reflected in 

the price of conventional electricity. External costs include negative impacts such as 

social disruption from energy production activities and environmental impacts resulting 

from the release of carbon emissions into the atmosphere (Shaw, 1999). Positive 

impacts include employment opportunities. It has been suggested that by internalising 

the external costs of conventional electricity production, the true cost of electricity per 

unit will be reflected and a level playing field between different sources of electricity will 

emerge.

Whilst efforts have been made to stimulate demand amongst end users for renewable 

electricity, for example green electricity tariffs and an energy tax placed on electricity 

and natural gas consumption by business and industrial end users, the introduction of 

the RO has created a demand for renewable electricity by electricity suppliers. As 

discussed in Chapter 8, licensed electricity suppliers must source a specified amount of 

their electricity generation from renewable energy resources. This specified amount 

will increase on an incremental basis up to 10.4% by 2010/11 (Ofgem, 2004a). This 

market intervention has helped to stimulate a market for renewable electricity. As the 

Renewables Obligation rises, the demand for renewable electricity will grow. As the 

demand for renewable electricity outstrips supply, electricity suppliers may be willing to 

pay a premium for renewable electricity and there will be increased investment in 

renewable energy to meet Renewables Obligation targets.

11.2.2.2 Storage

Electricity is produced to meet demand as the electricity network has limited capacity to 

store additional electricity. Short-term fluctuations in demand can be met using 

pumped storage and demand management techniques, for example, off-peak 

electricity tariffs (Open University, 1994). Large-scale fluctuations in demand are
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unlikely to be met by the present electricity system. It has been suggested that the 

intermittent nature of renewable energy generation makes it unsuitable for electricity 

generation. However, the present generation system predominately uses nuclear and 

coal, oil and gas-fired plants which operate at various technical and economic 

efficiencies. The technical difficulties of matching supply with demand using traditional 

plants have been overcome in order to provide an energy service to end users. 

Although some renewable energy sources are intermittent, for example, solar energy 

and wind power, others, like hydro power, provide reliable energy opportunities. In 

addition, biomass can be stored in large quantities and utilised to meet fluctuations in 

electricity demand.

11.2.3 Future Developments

Although electricity developments have historically been dominated by large-scale 

generators using fossil fuels, the liberalisation of the electricity market has opened up 

opportunities for smaller generators using alternative energy sources. It is likely that 

the growing demand for electricity combined with environmental concerns will stimulate 

demand for new generating capacity and the supply of green electricity. Although 

some favourable conditions are in place, namely the opportunity to compete in the 

energy market and the utilisation of the existing national grid infrastructure, high 

investments costs and premium prices for green electricity currently impede 

development. Further initiatives are required to stimulate end user demand for green 

electricity whilst making prices more competitive.

11.3 Natural Gas

11.3.1 Basic Aspects

Natural gas is consumed on a large-scale within the UK for many diverse applications 

ranging from heating buildings to powering vehicles. Town gas, a mixture of carbon 

monoxide and hydrogen, was commonly used in the UK from the mid-nineteenth 

century until the early 1970s. The discovery of large natural gas reserves in the North 

Sea in the 1960s stimulated investment in the conversion to natural gas between 1967 

and1973 (Roberts et al, 1991). During the oil crises of the 1970s, natural gas emerged 

as a convenient and cheap energy source and, as a result, the use of natural gas has 

rapidly risen over the past thirty years (DTI, 2000a). In 1999, the domestic sector 

consumed the largest amount of natural gas in the UK (DTI, 2000a). Natural gas is
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distributed to customers using a national network of pipelines. The majority of natural 

gas comes from gas reserves in the North Sea. Once ashore, the gas is cleaned and 

compressed before being distributed to gas users. For safety reasons, the gas is 

monitored to ensure that the pressure is maintained.

Natural gas is a fossil fuel resource with a finite lifespan. The future use and 

economics of natural gas relies on the discovery and accessibility of gas reserves. It 

has been suggested that biogas, produced from anaerobic digestion treatment of 

animal and human waste, could be used as an alternative to natural gas. Biogas is a 

mixture of methane and carbon dioxide. As with other biomass resources, the carbon 

dioxide absorbed during the growth of the biomass is released upon combustion, 

making the gas carbon neutral (Shaw, 2001). Although biogas is commonly used in 

some countries, for example China, the use of biogas in the UK has been limited to a 

few research, development and demonstration projects. In China, biogas is used daily 

for many applications including cooking, lighting, electricity generation, powering 

machinery and for use as a fuel in internal combustion engines (Hill et al, 1995). The 

use of biogas on a large-scale within the UK raises a number of issues regarding its 

distribution, integration with natural gas, or use as a replacement for natural gas in the 

future.

11.3.2 Additional Issues

11.3.2.1 Production and Supply

The main issue facing the use of biogas for gas applications in the UK is the lack of a 

production and supply infrastructure. At the moment, there is no demand for biogas 

and, as a result, there is no need to co-ordinate the production and supply of biogas. 

Within the UK, the raw materials are available for biogas production. It is likely that 

small-scale biogas developments will face high capital investment costs due to the low 

demand for the product and lack of economies of scale (Shaw, 2001). As such, the 

large-scale production of biogas would enhance the economic viability of such 

schemes. However, this situation is unlikely to occur until a market develops.

11.3.2.2 Storage

Unlike electricity, gas can be stored in pressurised containers, underground caverns or 

in former gas reservoirs (Anon, 2001c). Storing gas in pressurised containers allows

165



gas to be transported and used for stationary and/or mobile applications. Large-scale 

storage of gas in underground caverns or former gas reservoirs allows gas to meet any 

surges in demand.

11.3.2.3 Distribution Network

Although the existing gas infrastructure in the UK is based upon natural gas, any gas of 

the same quality as natural gas can be used. This has important implications for the 

supply and use of biogas in the UK. Biogas has a lower methane content than natural 

gas and, as a result, has a lower calorific value of 20 MJ/m3 when compared to 31.9 

MJ/m3 for natural gas (CADDET, 2001). Biogas would require refining and upgrading 

to the same quality as natural gas before it could be used in the existing gas 

infrastructure. Projects in the Netherlands have proven the technical and economic 

feasibility of producing and upgrading biogas for use within the existing gas grid and 

domestic properties (CADDET, 2001). Without refining, new distribution pipelines and 

equipment would be required, adding to the costs of biogas developments.

In the longer term, it may be necessary for biogas to replace natural gas. Upgraded 

biogas can be mixed with natural gas or used as a replacement for natural gas (Stohr, 

2001). Mixing upgraded biogas with natural gas may help in the transition from natural 

gas to biogas. Additionally, the use of biogas in the existing gas infrastructure would 

help facilitate the distribution of biogas on a large-scale. Biogas developments in the 

UK tend to operate on a small-scale for local consumption. The supply of biogas to 

end users using the existing gas infrastructure is a convenient way of introducing 

biogas and renewable energy to existing gas users. This has significant advantages as 

end users are not directly involved in the production of biogas (Christin et al, 1996).

11.3.3 Future Developments

Biogas has significant potential as a viable energy source in the UK. As illustrated here 

and in an previous working paper (Shaw, 2001), the technology is available, projects 

can be economically feasible, the existing gas infrastructure can be utilised, and, 

perhaps more importantly, there is a constant and growing demand for gas across all 

sectors in the UK. Although this demand for gas exists, the discovery of large natural 

gas reserves has reduced the need to find alternative gas sources. However, the 

growing dependency upon natural gas may have important implications for the 

utilisation of biogas in the near future. The strategic issues of access to reserves when
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existing reserves decline or become scarce may initiate biogas developments in the UK 

in the near future.

11.4 District Heating and Cooling Networks

11.4.1 Basic Aspects

Buildings provide protection from outside weather conditions and temperatures. In 

order to create comfortable living conditions within buildings, space heating or cooling 

may be necessary. In the UK, buildings are commonly heated by oil or gas-fired 

boilers or electricity. Heating equipment, such as radiators or blow heaters, are used to 

distribute the heat. For buildings requiring cooling, individual or centralised air 

conditioning units are used. Heating equipment and air conditioning units usually 

supply individual applications. The supply of heat or cool air to a number of buildings 

connected to a central plant is uncommon in the UK. Heating and cooling networks 

can operate on a group, community or district level. Although there are no precise 

definitions, the term used tends to indicate the scale of the heating network. Group 

heating involves a group of a few buildings, community heating supplies more buildings 

on a "community level", and district heating distributed heat to a wider area such as a 

town or city. Heating networks can supply buildings with space and water heating or 

heat for industrial applications. In addition, heating networks can be used to supply 

cool air to buildings. This combined usage allows the system to be utilised throughout 

the year and replaces the need for individual boilers and air conditioning units.

Heating networks use water as an energy carrier although some systems use high 

pressure steam (Christin et al., 1996). There are two main types of heating network 

available, namely open and closed loop heating systems. Open systems use a single 

pipeline to supply buildings with hot tap water. Closed systems supply hot water to the 

customer and return the cooler water to the plant using a looped pipeline. Heat 

exchangers are used to transfer the heat from the pipeline into the building (Anon, 

1999b). Closed systems heat water to higher temperatures than open systems as the 

water is not directly used as hot tap water. Variations in seasonal temperatures affect 

the demand for heating and cooling in buildings. To ensure that the supply of heat or 

cool air meets demand, the system must be capable of supplying peak loads. Single or 

multiple boilers can provide backup storage for any shortfalls in supply. Large-scale 

storage facilities including steel water tanks, gravel/water storage pits or chemical

167



storage may be used (Lottner et al., 2000). Careful management is required to ensure 

that the heating and cooling loads are met and that temperatures remain constant.

11.4.2 Resource Considerations

Heating and cooling can be produced from a single fuel or a range of fuels including 

fossil fuels, municipal waste, waste heat from industrial processes, biomass, solar 

power and geothermal heat. Geothermal heat occurs naturally in ground water 

aquifers or hot dry rocks (ETSU, 1999). The utilisation of renewable energy sources in 

heating and cooling networks has a number of advantages over the use of fossil fuels 

and non-organic municipal waste. Renewable energy sources are sustainable as they 

are "naturally replenished as they are consumed" (IEE, 1994). Little or no additional 

carbon dioxide emissions are released into the atmosphere following the utilisation of 

renewable energy sources such as solar power or biomass. In addition to the 

environmental benefits, the utilisation of renewable energy in heating and cooling 

networks has a number of economic and social advantages. As illustrated elsewhere, 

individual, small-scale renewable energy schemes face high capital investment costs 

(Shaw, 2001). The development of a number of renewable energy schemes within an 

area, improves the economic feasibility of the projects. Renewable heating and cooling 

networks are a convenient way of supplying energy to end users whilst utilising 

renewable energy sources. End users have access to renewable energy sources 

whilst not being directly involved in the technical and non-technical aspects of 

renewable energy systems (Christin et al., 1996). In addition, the requirement for 

individual boilers and coolers is replaced using the heating network, with any 

operational or maintenance of the network being the responsibility of an external body. 

As a result, the end user receives heating and cooling when it is required without being 

directly involved in the operation of the heating system (Christin et al., 1996).

11.4.3 District Heating and Cooling Networks in the UK

In the UK, approximately 1% of the total housing stock is connected to community 

heating networks (CHPA, 1998). There is no available information on the use of 

heating networks for community cooling applications in the UK, although this is likely to 

be low. District heating networks were first introduced in the early 1900s as a form of 

low cost heating. However, the systems were largely oil-fired and were installed in 

council housing. A combination of the oil crises in the 1970s and a decline in the 

construction of council housing estates led to a decline in the installation of heating
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networks. Some systems installed during the 1970s are still in operation today with 

new schemes being introduced in urban areas, for example:

•  Community Heating System, Nottingham - This system has operated since the 

1970s and supplies reliable, low cost heat and electricity to residents, businesses 

and institutions in Nottingham. The system uses municipal waste to generate heat 

and electricity,

•  Onyx Environmental (Sheffield) Ltd - An energy from waste scheme provides 

cooling, heating and electricity to a range of end users on the city's green heat 

network. This scheme has been in operation since 1988 (Onyx, 2004),

•  Community Heating System, London Borough of Tower Hamlets - A CHP plant is 

used to generate heat and electricity for use by domestic housing, a school and a 

leisure centre, and

• Southampton City Council - District heating, cooling and electrical power is 

distribution to a number of buildings in the city (Anon, 2000a). This system partly 

uses geothermal energy sources.

The majority of heating networks within the UK are powered by fossil fuels, although a 

small percentage use municipal waste sources (CHPA, 1998). In other countries, 

including Germany, Austria, Sweden and Denmark, renewable energy sources are 

used in district heating networks. In particular, biomass heating systems, solar- 

assisted heating systems or combined solar and biomass heating systems, are in 

operation. For heating networks utilising solar power, the network provides convenient 

energy storage. In such instances, the heat collected during the daytime is stored in 

the heating system. The hot water or space heating can be utilised during the evening 

and night when there is no solar power available directly. The utilisation of a range of 

fuels enhances the security of energy supply, allowing the heating and cooling network 

to function effectively during times of high fuel prices or scarcity. The utilisation of 

renewable energy sources can avoid issues surrounding fuel scarcity. In addition, the 

networks can combine supply from individual renewable energy sources.
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11.4.4 Technical Status

District heating networks can be utilised to provide both heating and cooling purposes. 

In relation to heating, there are two main ways of providing the initial heat source for 

district networks, namely boilers and CHP plants. Both boilers and CHP plants can be 

fuelled by a wide range of fuels ranging from fossil fuels to biomass energy sources. 

The heat generated from burning fuels in the boilers is transferred to water and 

distributed via pipes and radiators to where the heat is required (Harland, 1998).

Boilers are a mature and well established technology. Research and development is 

directed towards improving the efficiency of boilers. CHP or cogeneration 

simultaneously generates useable heat and power, usually electricity, in a single 

process although, trigeneration, which uses absorption coolers, can provide cooling 

and chilled water (Meeks, 2001). CHP plants are a more efficient means of generating 

electricity and heat than conventional plants. Large-scale CHP plants can be 80%  

efficient overall, comparing heat and electricity output to fuel input. If the plant is 

located on site and the energy is used on site, the energy losses from transmission and 

distribution are low and less fuel is required (EA, 1995). CHP plants range from micro, 

domestic and small-scale units operating from a few kilowatts up to 1 MW  to large- 

scale plants operating at 1000's of MW supplying electricity to power markets (EA,

1995 and Meeks, 2001). Micro and domestic CHP units are an alternative to the 

domestic boiler. For such technology, research and development has been directed 

towards optimising heat and power loads, and developing the use of fuel cells for 

energy storage and electricity generation. Future developments aim to deploy the 

technology on a large-scale. Small-scale and large-scale CHP plants are a relatively 

mature technology using gas turbines and gas engines for power generation.

Research and development has been directed towards improving energy efficiency, 

developing cooling systems using absorption chillers, developing small turbines, fuel 

cell technology applications and lowering costs of smaller units (Meeks, 2001).

There are two main types of cooling technology used in conjunction with district heating 

networks, namely centralised cold water production and individual refrigeration 

systems. Centralised cold water systems produce cold water in a centralised plant and 

distribute the water to end users using a network of insulated pipes (Christin et al., 

1996). Individual refrigeration systems are connected directly to the district heating 

network. Each building requiring air conditioning is fitted with absorption chillers. 

Chillers require a cooling tower to release heat into the atmosphere (Christin et al., 

1996). However, developments have taken place and systems with multiple chillers
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can operate using a single cooling tower. Research and development in cooling 

technology has been directed towards developing storage techniques, in particular cool 

thermal storage and thermal ice storage.

District heating and cooling is distributed to end users using a pipeline network. The 

distribution network can suffer heat/cooling losses depending on a number of factors 

including pipe insulation, the length of the pipe work, the size of distribution pipes and 

temperature levels (Anon, 1999b). Different systems have different controls for 

delivering the heat to end users. In Sweden, substations are used as an interface 

between the district heating system and the end users. Heat exchangers are used to 

transfer the heat from the district network to each building. The substations maintain 

the indoor temperature and hot tap water temperature at constant levels without 

fluctuations (Anon, 1999b).

11.4.5 Economic Issues

District heating and cooling networks cannot easily be categorised in terms of scale, 

energy source, technology or application. As such, the economic feasibility of 

developments is project specific. For example, the economic feasibility of heating and 

cooling networks using CHP plants varies depending upon the size of the CHP unit. At 

the moment, only large-scale units can compete with conventional heating methods 

(Meeks, 2001). Ways of making CHP more attractive as an investment is currently 

being explored (Meeks, 2001). Such developments are likely to have a positive impact 

on the economic feasibility of renewable energy projects. As illustrated elsewhere, 

renewable energy developments face high capital investment costs with long payback 

periods (Shaw, 2001). Heating and cooling networks face relatively high capital 

investment costs per unit of heat delivered. The operation and maintenance of the 

systems are influenced by the operating hours of the systems (IEA, 2001).

Refurbishing existing schemes or installing heating and cooling networks into new 

developments may lower costs. Schemes powered by fossil fuels are likely to be 

currently more competitive than those utilising biomass energy resources due to the 

low price of fossil fuels. Limited biomass supply chains currently exist due to the lack 

of demand for biomass fuel (Shaw, 2001). The absence of fair competition between 

different resources for energy applications makes it difficult for alternative energy 

sources to succeed. Biomass-fired district heating has significant environmental 

advantages over fossil fuel heating especially when comparing the release of carbon 

dioxide emissions. However, the impact of fuel combustion on the environment is not
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reflected in energy prices. Commitments by the UK government in reducing carbon 

dioxide levels through the introduction of the Climate Change Levy and other 

instruments, such as the Landfill Tax, may help facilitate a move towards the 

development of district heating and the utilisation of renewable energy sources.

In the supply of heat and means of payment by end users, different heating companies 

have different arrangements. In Sheffield, Onyx Environmental (Sheffield) Ltd have set 

a connection fee, a fixed charge which includes operation and maintenance costs and 

a charge for the heating or cooling supplied to the end user. Most of the buildings 

connected in Sheffield have meters which allow end users to pay for the amount of 

heat consumed rather than pay a fixed rate (CHPA, 1998). The costs for connecting to 

district heating networks can be significant depending on the extent of the distribution 

network. For small-scale users, including domestic buildings, district heating can be 

expensive. District heating can be a viable alternative in areas where existing heating 

systems are old or unreliable. For large-scale applications with a large heating 

demand, district heating can be more economical than traditional methods. In order to 

compete with traditional heating methods such as boilers, district heating must be 

competitive and reliable. From experiences in Sweden and Denmark, district heating is 

a viable option for areas which have a high concentration of buildings and, as such, 

high heat load densities. Heat load density is the amount of heat demand per unit 

area. The heat load density affects the capital costs per unit of heat delivered. The 

location of heating plants varies according to demand. By locating the plant close to 

the demand, pipeline instalment costs and network distribution losses are reduced.

11.4.6 Additional Issues

11.4.6.1 Community Ownership

Presently, the majority of heating consumed within the UK is produced within individual 

buildings. The utilisation of renewable heating and cooling networks would replace the 

need for individual heating systems. In addition, the heating networks could be owned 

and operated as private or public ventures. In Denmark, 60% of domestic heating 

systems are community-owned with 40% being commercially-owned (Macpherson, 

1998). As such, community ownership has acted as an effective mechanism in 

developing district heating networks and, in particular, the utilisation of renewable 

energy sources for heat production. Within the UK, community ownership of energy 

schemes is rare, although a few schemes exist. Cultural differences between Denmark
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and the UK have affected the development of community heating schemes. In 

countries such as Denmark and Sweden, higher fossil fuel prices, limited access to 

natural gas sources until the 1980s, and the high priority placed on environmental 

issues, have helped the use of renewable heating networks (Anon, 1999b). In the UK, 

low fossil fuel prices, the increasing use of natural gas and low priority placed on the 

way heat is produced and consumed has had an impact on the development of heating 

networks. One key obstacle facing clean energy technologies is the low priority placed 

on energy issues by end users (Brown, 2001). This low priority or value affects the 

utilisation of renewable energy sources and the development of renewable heating and 

cooling networks.

11.4.6.2 Property Ownership

In city centres, high building densities and high energy demand provides opportunities 

for affordable district heating and cooling networks to be developed. However, the 

willingness of property owners to connect to the networks may have a significant 

impact on the utilisation of such a scheme. In particular, buildings which have multiple 

owners, for example several flat owners in one building, will require the consensus of 

all owners before the building can be connected. Ways to encourage connection to 

heating networks include providing information about the scheme and metering 

opportunities. Metering allows the owner or occupier to pay for the amount of 

heating/cooling consumed rather than a flat rate. Previous experience with heating 

networks in the UK has shown that the payment of a flat rate has resulted in heating 

mis-management in buildings (Owen, 1992). In such cases, metering and/or 

information provision will help occupiers use heat wisely (Owen, 1992).

11.4.7 Future Developments

District heating and cooling networks have an important role to play in the utilisation of 

renewable energy sources and the provision of heating and cooling within buildings. 

District heating networks offer a flexible way of heating and cooling buildings. In 

particular, district heating networks can connect many different renewable energy 

sources in different locations. They can also provide storage for intermittent renewable 

energy sources. One example is the heat produced from active solar systems. If 

excess heat is produced, this could be stored on the district heating network until it is 

required by the producer of the solar heat or by other users. Similarly to the national 

grid, district heating networks act as a form of "virtual storage". It allows end users to
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receive heat without getting directly involved in operation of the system (Christin et al, 

1996). For several owners of individual renewable energy systems, district heating 

networks provide the opportunity for group heating networks to develop. Although the 

technical expertise is available as district heating and cooling networks operate 

successfully in other countries, economic issues and cultural issues need to be 

overcome in order for renewable-sourced district heating and cooling networks to 

develop in the UK.

11.5 Key Challenges facing Existing Energy Carriers

The key issues facing the utilisation of electricity, natural gas networks and district 

heating and cooling networks as a means of supplying customers with renewable 

energy have been highlighted. The main issues facing the use of each of these energy 

carriers have been systematically examined and the issues facing the utilisation of the 

energy carriers' in future renewable energy developments have been raised. From this 

examination, it is clear that each energy carrier has an important role to play in the 

short and long-term utilisation of renewable energy sources in the urban environment. 

Electricity and gas are the most viable options in the short-term with the possibility of 

utilising district heating and cooling networks in the longer-term. It is clear that 

electricity and gas are popular energy carriers which meet a wide range of energy 

applications across all sectors. Additionally, well-established distribution infrastructures 

are in place and electrical and gas-fired appliances are manufactured on a large-scale. 

Electricity is currently generated from a wide range of fuels including fossil fuels and 

renewable energy sources. Once generated, electricity from any source can be fed 

directly into the national grid system and supplied to end users. Whilst only minor 

changes may be required to the national grid when new generating capacity is added, 

economic issues can significantly affect the feasibility of electricity projects. For 

renewable electricity projects in particular, grid connection charges, combined with the 

low price charged by electricity companies to domestic users exporting electricity to the 

national grid, can significantly affect the economics of small-scale developments 

(Shaw, 2001). For energy suppliers, there is the added challenge of managing an 

electricity network full of distributed electricity suppliers. As end users will also become 

local electricity generators, energy suppliers may become "managers" of the balance 

between supply and demand.
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In addition to the growing demand for electricity, there is also a high demand for natural 

gas. Although the availability of large natural gas reserves has reduced the need to 

find alternative gas sources at present, the growing reliance on a popular but depleting 

energy source such as natural gas may stimulate biogas developments in the future. 

One key issue facing future biogas developments is the utilisation of the existing 

natural gas infrastructure. From this examination, it is clear that biogas can be 

upgraded and used in the existing natural gas network. If, in order to satisfy future gas 

demands, biogas is identified as a viable way forward, natural gas and biogas can be 

mixed together and distributed to end users using the existing natural gas 

infrastructure. This is likely to make any transition towards the wider use of biogas 

within the UK easier than developing new infrastructures.

Space heating and cooling are important factors in creating comfortable internal 

conditions within buildings. Heating and cooling, regardless of source, can either be 

generated for individual applications or distributed to multiple users using an 

interconnected network of pipes. Although district heating systems are commonplace 

in countries such as Denmark or Sweden, few such systems operate within the UK. 

Although the technical expertise exists to operate such networks, other issues prevent 

their utilisation. Feasibility studies are required to assess the economics of such 

developments and cultural changes must take place in order to facilitate any move 

towards the wider utilisation of district heating and cooling networks in the UK. 

Opportunities exist for community involvement in district heating networks and the 

utilisation of renewable energy sources for energy production. Although community 

ownership of local schemes is not widely practised and renewable energy sources are 

not widely used, such schemes present an opportunity to localise energy generation 

and consumption whilst empowering local communities.
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12. HYDROGEN

12.1 A New Energy Carrier

With growing pressures to reduce carbon dioxide and other greenhouse gas emissions 

and move towards sustainable energy production, hydrogen has been hailed as “the 

fuel of the future” (Hart, 2001). Hydrogen is a light element with a high-energy content 

making it suitable for use as an energy carrier and a form of energy storage for 

stationary and transport applications. Despite its versatility, hydrogen is not widely 

utilised as an energy carrier at present. If, in the pursuit of a sustainable urban energy 

system based on renewable energy, hydrogen has a role to play, it is necessary to 

establish the current status of hydrogen developments in the UK and its potential 

applications, its performance against stakeholder expectations of energy supply and 

any wider non-technical and non-economic considerations facing its production and 

utilisation within a city such as Sheffield, specifically, and the UK, generally.

In order to address these issues, the chapter has been subdivided into two parts. The 

first part (Sections 12.2 to 12.7) reviews hydrogen in the broad context of the UK. The 

basic aspects of hydrogen are introduced in Section 12.2 followed by an examination of 

the resource considerations in Section 12.3. The technical status of the technology 

used to produce hydrogen (Section 12.4), storage and transportation options (Section 

12.5) and fuel cells (Section 12.6) are then systematically examined. Economic issues 

are discussed in Section 12.7. The second part of the chapter examines the use of 

hydrogen against existing stakeholder expectations of energy services. This 

examination provides the basis for the identification of any obstacles which are likely to 

face the use of hydrogen in buildings in Sheffield. Using the stakeholder demand 

criteria, as outlined in Chapter 2, hydrogen is evaluated against the expectations of 

stakeholders in Section 12.8. Additional issues facing hydrogen are examined in 

Section 12.9. In Section 12.10, the key challenges facing the production and utilisation 

of hydrogen are discussed. This section firstly summaries how hydrogen performs in 

relation to meeting stakeholder expectations before looking at the specific obstacles 

which may influence the deployment of hydrogen in Sheffield.
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12.2 Basic Aspects

Hydrogen is a naturally occurring and abundant element which is found in combination 

with other elements, such as oxygen in water and carbon in fossil fuels and biomass 

energy sources. Hydrogen has a high energy content which has made it suitable for 

use as a chemical resource and an energy carrier where weight is a key issue, for 

example, fuel for spacecraft (Zittel and Wurster, 2001). Hydrogen has a long history of 

use in the UK. In the early twentieth century, hydrogen was mixed with carbon 

monoxide for use in town gas supplies. With the discovery of natural gas reserves, 

town gas was replaced by natural gas and the demand for hydrogen fell. Although 

hydrogen ceased to be used on a daily basis for energy demands in buildings, it 

continued to be produced for industrial applications. Hydrogen still continues to be 

produced on a large-scale by the industrial sector. It is also used to produce fertilisers, 

hydrated fats in the food industry and for rocket fuel in space programmes. Although 

changes in the energy sector have reduced the demand for hydrogen, increased 

environmental and sustainability concerns associated with energy production and its 

utilisation may stimulate a growth in the demand for hydrogen. In order for hydrogen to 

meet energy needs whilst reducing the impact of its production and use on the 

environment, hydrogen must be produced from renewable energy sources as opposed 

to fossil fuels. As such, the source of hydrogen is vital in terms of the environmental 

implications of energy production. Producing 'renewable hydrogen1 will help to avoid 

greenhouse gas emissions released during the combustion of fossil fuels, in particular, 

carbon emissions. Although renewable hydrogen may have an important role to play, 

current research is investigating possible links between hydrogen and climate change 

(Anon, 2003 and Choi, 2003). If the demand for renewable hydrogen increases, further 

research will be needed in this area.

12.3 Resource Considerations

Ideally, the production of hydrogen must use sustainable energy resources and have a 

minimum impact on the environment. Current hydrogen production uses fossil fuels, 

although water resources and biomass resources offer plentiful sources of hydrogen, 

as summarised below.
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• Fossil fuels - As noted in Section 12.2, the production of hydrogen from fossil 

fuels results in resource depletion and the release of carbon dioxide and other 

harmful emissions. This makes fossil fuels an unsustainable source for future 

hydrogen production, although mixing hydrogen with natural gas may have an 

important role during the transition phase from the use of natural gas to the 

wider use of hydrogen,

•  Water is a readily available renewable resource which contains hydrogen and 

oxygen. By using electrolysis, hydrogen can be produced from water. It is 

foreseeable that water will have an important role to play in the future 

production of hydrogen, and

• Biomass -  Any biomass energy sources, for example, land and aquatic plants 

and organic wastes contain hydrogen (Shaw, 2001). The combustion of 

biomass is carbon neutral as the carbon dioxide released on combustion is 

absorbed during the growth of replacement plants. As such, the direct 

production of hydrogen from biomass is important particularly in relation to 

reducing the impact of hydrogen production on the environment and offering a 

sustainable option for producing hydrogen in the longer term.

12.4 Production Technology

12.4.1 Existing and New Processes

There are a number of ways of extracting hydrogen from solid, gaseous or liquid 

resources. Gasification and pyrolysis techniques can be utilised to produce hydrogen 

from solid fuels such as coal or wood resources. Steam reforming is a well-established 

process used to extract hydrogen from natural gas. In the production of hydrogen from 

water, electrolysis can be used. New processes in photoelectrolysis and photobiology 

are being developed.

12.4.2 Gasification

Gasification can be used to extract hydrogen from any solid fuel including biomass 

energy resources. Here, the solid fuel is reacted with hot steam and air or oxygen to 

produce a gaseous fuel consisting mainly of carbon monoxide, carbon dioxide, 

hydrogen and methane (Shaw, 1999 and Bridgwater and Evans, 1993). Gasification
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technology is mature and has been used commercially since 1830 (WEC, 1994). 

Despite this maturity, the economics of the gasification process are poor (Jackson and 

Lofstedt, 1998). Research and development has been directed towards reducing the 

costs of the technology.

12.4.3 Pyrolysis

Pyrolysis is a relatively new technology, which has been directed at converting the 

energy in biomass into useful forms of energy. Using pyrolysis, solid biomass is 

heated to high temperatures in the absence of air to produce a mixture of gases, 

including hydrogen, oil and charcoal (IEA, 1997). Research and development have 

been focused on optimising the efficiency of the conversion process, increasing the 

competitiveness of the technology and improving the economics of small and large 

scale developments (Bridgwater et al, 1999).

12.4.4 Steam Reforming

Steam reforming is a two-stage process commonly used for producing hydrogen from 

natural gas. Firstly, steam is used to heat the natural gas to high temperatures to 

produce a gaseous mixture of hydrogen, carbon monoxide and carbon dioxide. By 

applying more steam, more hydrogen is produced. Steam reforming can produce 

hydrogen yields of 70-90% (US DOE, 2001a). Steam reforming of natural gas is a 

mature technical process which can be utilised on a large scale.

12.4.5 Electrolysis

Electrolysis is a technique in which an electric current is passed through water, 

separating the hydrogen and oxygen molecules. Water electrolysis is a well- 

established technique that has been used commercially. Research and development 

have been directed towards developing high-pressure water electrolysis and high 

temperature water electrolysis whilst reducing production costs (Zittel and Wurster, 

1996). Advances have taken place in the utilisation of hydrogen in renewable energy 

projects. Whilst water is a renewable energy source, the source of the electricity used 

for electrolysis is an issue. Electricity generated from fossil fuels utilises a finite 

resource and its production releases carbon dioxide emissions. The utilisation of 

electricity generated from renewable energy sources has the advantage of being 

carbon neutral.
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12.4.6 New Processes

There are new processes being developed to extract hydrogen from compounds whilst 

minimising the impact of the process on the environment. One such technique involves 

the use of photosynthesis for hydrogen production. During photosynthesis, green 

plants convert solar energy into chemical bonds involving carbon and hydrogen (Shaw, 

2001). Research and development have been directed towards using the 

photosynthetic activity of bacteria and green algae to produce hydrogen (US DOE, 

2001b). Additionally, photoelectrolysis is a technique under development, in which a 

semiconductor is immersed in water and sunlight is used to produce hydrogen and 

oxygen (US DOE, 2001a).

12.5 Storage and Transportation Options

12.5.1 Existing and New Options

In order to fully utilise hydrogen for heat, electricity and transport applications, 

stationary and mobile storage options will be required. There are two main storage 

options currently available for hydrogen purposes that are used in the storage of 

natural gas and nitrogen, namely compression and liquefaction. In addition, advances 

are taking place in the use of metal hydrides, carbon microfibres and glass spheres for 

the storage and transportation of hydrogen.

12.5.2 Compressed Gas

Compressing hydrogen allows more gas to be stored in a given volume and distributed 

for subsequent use. This storage option is a well-established technique currently used 

for compressing natural gas, although hydrogen compressors are also available. The 

technology used for compressing, storing and distributing natural gas can be modified 

and used for hydrogen applications (Zittel and Wurster, 1996). Gas can be stored 

above or below ground. Currently, large-scale storage of gas is in large aquifers or 

caverns with small-scale storage using tanks (Zittel and Wurster, 1996). Research and 

development in the storage and transportation of gas have been directed towards 

optimising technical efficiencies whilst reducing the costs of small-scale production. 

Specific work has focused on developing compact mobile pressurised gas tanks for 

use in gas-powered vehicles (Zittel and Wurster, 1996).
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12.5.3 Liquefaction

Liquefaction is a technique whereby materials assume a liquid-like state. This 

technique can be used to produce liquid nitrogen, helium and hydrogen. Liquefaction 

plants currently exist with capacities ranging from 200 kilgrammes per day for research 

purposes to 60 tonnes per day for industrial purposes (Zittel and Wurster, 1996).

Liquid hydrogen can be stored in containers or tanks for stationary or mobile 

applications. The storage of liquid hydrogen has been developed through space 

applications where the requirements are to store large quantities for long periods (Zittel 

and Wurster, 1996). Insulation is required due to the low temperatures of the liquid 

hydrogen. As such, the storage costs of liquid hydrogen are high. Cost reduction has 

been the main focus of research and development programmes. Research has 

investigated the use of alternative insulation materials, the energy efficiency of 

conversion and other production methods (Zittel and Wurster, 1996). In addition, work 

has been directed towards a liquid hydrogen infrastructure. In Germany, for example, 

a fuelling station for liquid hydrogen vehicles is in operation at Munich Airport (Pehr et 

al, 2001).

12.5.4 New Storage Options

Research and development is being directed towards finding new ways of storing 

hydrogen. One option is the use of metal hydrides. This involves reacting hydrogen 

chemically with a metal (US DOE, 2001b). By heating the metal later, hydrogen is 

released. It is hoped that the development of this technique will allow large amount of 

hydrogen to be stored in small volumes. Further research has been directed towards 

increasing the storage capacities of metal hydrides, reducing costs and using metal 

hydrides for mobile applications (Zittel and Wurster, 1996). For mobile applications in 

particular, technical advances in rechargeable batteries have led to the application of 

using hydrogen-absorbing alloys in metal hydride batteries (Geng et al, 1998).

Research and development is taking place in using absorption storage techniques for 

hydrogen. By using carbon micro fibres, large volumes of hydrogen can be absorbed 

and stored (Anon, 1999b). Advances in this area are taking place in Germany, Japan 

and Canada. In particular, research and development has been directed towards 

improving production methods and storage capacities (Anon, 1999b). Developments 

are taking place in high-pressure storage options. Glass spheres allow high-pressure 

storage of hydrogen. The permeability of glass allows the spheres to be filled with
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hydrogen. By applying heat, the hydrogen is released from the spheres for later use 

(US DOE, 2001b).

12.6 Infrastructure and Appliances

12.6.1 Hydrogen Infrastructure

If the demand for hydrogen increases in the UK, it has been proposed that there will be 

a transition period in which hydrogen will be gradually introduced as an energy carrier. 

In order for hydrogen to be supplied to end users, ways of introducing and supplying 

consumers with hydrogen are being investigated. One advantage of hydrogen, as 

noted in the use of hydrogen in town gas, is that is can be mixed with other fuels.

During this transition period, hydrogen could be mixed natural gas and supplied directly 

to end users using natural gas networks. Current research in the use of hydrogen in 

natural gas networks is being investigated. If hydrogen cannot be used in existing gas 

networks, separate hydrogen networks will need to be developed. The future role and 

application of hydrogen has been the focus of numerous studies and research 

programmes. Hydrogen programmes have been established in many countries 

including Japan, Iceland, Germany, USA and across the EU. Developments range 

from the introduction of hydrogen vehicles and hydrogen fuelling stations to the 

establishment of hydrogen economies. Iceland, in particular, plans to become the 

world’s first hydrogen economy by 2040 (Worldwatch, 2001).

12.6.2 New Appliances

In addition to the need for a supply infrastructure, new technologies will need to be 

developed to utilise hydrogen for different applications across all sectors. Within 

buildings in particular, new appliances which operate on hydrogen or a 

hydrogen/natural gas mix will be needed. Whilst these appliances will continue to meet 

consumers existing needs, for example gas-fired cookers and gas-fired heating 

systems, they will operate using the new energy carrier. Whilst research into 

developing new domestic and non-domestic appliances which operate on hydrogen is 

limited at present, significant research is taking place in developing hydrogen powered 

fuel cells for mobile and stationary applications.
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12.6.3 Fuel Cells

A fuel cell can be defined as "an electrochemical device that continuously changes the 

chemical energy of a fuel (hydrogen) and oxidant (oxygen) directly to give electrical 

energy and heat, without combustion" (Anon, 2004b). Hydrogen can be used in a fuel 

cell to generate electricity. Any 'waste' heat produced from the generation of electricity 

can be used for space and water heating and/or cooling purposes. Within a fuel cell, 

the energy generated from a chemical reaction between a fuel, such as hydrogen, and 

oxygen or air, can be directly converted into electrical energy or used for heating 

applications (ETSU, 1999 and Smith, 1999). Fuel cells operate in a similar manner to 

batteries with no moving parts and are quiet when in use (Smith, 1999). However, fuel 

cells differ in many respects to batteries. With fuel cells, the fuel is stored outside the 

cell and the cells do not run down or require charging (US DOE, 2001b). Electricity 

and heat will continue to be produced as long as the fuel is supplied (Renzi and 

Crawford, 2000). A wide range of fuels can power fuel cells, including natural gas and 

hydrogen. The conversion of any fossil fuel releases waste products, in particular 

carbon emissions. In order to minimise the impact of fuel cells on air quality and the 

environment, "renewable hydrogen", produced from renewable energy resources, 

could be used as an alternative to fossil fuels. By combining pure hydrogen with 

oxygen or air, the only waste product will be water. Fuel cells running on hydrogen 

produced from biomass will have zero direct carbon dioxide emissions (Brandon and 

Hart, 1999).

Although there are many different types of fuel cell available depending upon the 

application, fuel cells can be divided into two main groups - low temperature and high 

temperature fuel cells. Low temperature fuel cells operate at less than 100°C and start 

quickly (Hart, 2001). Low temperature fuel cells can have low or high power densities. 

Low power densities are suitable for small, stationary applications. High power 

densities are ideal for transport applications. High temperature fuel cells operate at 

between 600-1000°C. These cells take a long time to warm up, making them 

unsuitable for mobile applications (Hart, 2001). High temperature fuel cells are also 

suitable for stationary domestic and non-domestic applications on a small and large 

scale. The cells can generate useful waste heat which can be used for space and 

water heating and cooling purposes. In addition, temperatures of 500°C or more can 

be produced. This heat could be utilised by industrial applications and/or used to 

generate additional electrical power (Brandon and Hart, 1999).
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Although fuel cell use is not widespread, there are a growing number of mobile and 

stationary applications. In particular, fuel cell powered buses are in operation in 

Munich, Vancouver and Chicago, and Ford Motor Company and Daimler Chrysler are 

developing private cars powered by fuel cells. There are different fuel cells available 

that are at different stages of maturity and commercial availability. For all fuel cells, 

research and development has been directed towards improving cell performance, 

reliability and life expectancy, reducing manufacturing costs, achieving high efficiencies 

and simplifying the cells (EUROPA, 2001b). It is envisaged that fuel cells will have 

many applications in the future, particularly at a domestic level. Research and 

development is taking place in developing residential fuel cells which are the size of 

domestic washing machines (Smith, 1999). To assist in the integration of fuel cells into 

domestic and non-domestic energy generation, public acceptance of fuel cells is 

paramount. The introduction of new technology is dependent upon being accepted by 

users (LBST, 2001). As such, there is a need to further demonstrate the application of 

fuel cells on a domestic and non-domestic level to help any future transition (EUROPA, 

2001b).

12.7 Economic Issues

The main economic issues facing the use of hydrogen are the high capital investment 

costs associated with the production of hydrogen and fuel cells, and the establishment 

of a supporting infrastructure. The source of the hydrogen and the production method 

used affects the cost of the hydrogen. The production of hydrogen from renewable 

energy sources may be viable for sites where fossil fuels or grid connection is 

expensive or unfeasible (Dutton et al, 2000). The utilisation of fuel cells in energy 

conversion faces high capital, operation and maintenance costs when compared with 

other technologies (Brandon and Hart, 1999). Technological advances are directed 

towards reducing costs. However, fuel cell prices would benefit from economies of 

scale where increased production will reduce unit costs (Renzi and Crawford, 2000). 

Fuel cell plants are currently being constructed in Germany and the USA (Hart, 2001).

It has been predicted that a range of different markets with different prices will emerge 

for fuel cells as a result of the diverse number of potential applications of fuel cells 

(Brandon and Hart, 1999). The widespread utilisation of hydrogen will require a supply 

and distribution infrastructure. Research and development has been directed towards 

investigating ways in which a hydrogen infrastructure can be introduced quickly and 

with minimum costs (Dunn, 2001).
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12.8 Meeting Stakeholder Expectations

12.8.1 Hydrogen and Stakeholders

As examined above, there are many technical and economic issues facing the 

utilisation of renewable hydrogen as an energy carrier in urban areas. However, in the 

future, renewable hydrogen could have an important role in linking renewable energy 

supply to end users. As such, it must be able to meet the expectations of stakeholders. 

As the utilisation of renewable hydrogen in Sheffield is likely to affect both energy 

suppliers and end users, this section has been subdivided into two parts. The first part 

(Section 12.8.2) evaluates renewable hydrogen against the expectations of energy 

suppliers. The second part (Section 12.8.3) looks at the ability of renewable hydrogen 

to meet the expectations of end users.

12.8.2 The Energy Supplier

12.8.2.1 Accessibility

A key issue facing the utilisation of renewable hydrogen by energy suppliers is the 

accessibility of the resource and/or the supply of hydrogen. If renewable hydrogen is 

produced from biomass energy resources, this will have implications on the use of 

biomass within Sheffield. Ideally, renewable hydrogen should be produced from 

surplus biomass resources. If not, there may be conflicts over the use of biomass 

resources in Sheffield, for example, will biomass resources be used for heat production 

primarily or will they be used to produce renewable hydrogen? If biomass is going to 

be the main resource for hydrogen production, this raises issues concerning the 

accessibility of local biomass supplies. As examined previously, some biomass 

resources are available although largely inaccessible. The lack of infrastructure in 

place to collect, dry, process, store and transport biomass is a key problem which has 

implications for the production of renewable hydrogen from biomass supplies. An 

alternative resource available to energy suppliers is water. Using electrolysis, 

hydrogen can be produced from water supplies. This can only be considered as 

renewable, however, if the electricity used comes from renewable energy sources. If 

there are conflicts over the use of biomass energy resources, water resources may 

offer an alternative way of producing renewable hydrogen.
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In addition to problems regarding the supply of hydrogen In Sheffield, there is no 

demand for renewable hydrogen as an energy carrier. As with some renewable energy 

technologies, a situation of “no market -  no supply, no supply -  no market” exists. 

Unless energy suppliers have confidence in hydrogen and the infrastructure is in place 

to produce hydrogen and distribute it to end users, they are unlikely to invest in 

hydrogen technology.

12.8.2.2 Flexibility

Renewable hydrogen can only be considered as flexible if the supply of energy meets 

demand. If hydrogen is produced from local biomass resources, biomass can be 

stored at or near the point of production and/or consumption. Similarly to natural gas 

and electricity supplies, water is supplied to buildings via underground pipelines. As 

both of these resources can be stored or easily accessed, they offer a variable energy 

supply that could be used to match demand.

12.8.2.3 Reliability

In order for hydrogen to be considered as a new energy carrier in Sheffield, the supply 

of renewable hydrogen must be reliable over the longer term. If biomass energy and 

water resources are to be utilised in the production of hydrogen, this has implications 

on the reliability of the supply of these resources. Whilst both biomass and water are 

renewable energy resources which are carbon neutral, the inaccessibility of the existing 

biomass resource in Sheffield has implications on the supply of biomass for hydrogen 

production. Energy suppliers will need to be confident in the supply of hydrogen, 

hydrogen technologies and the support infrastructure. In order to develop confidence, 

guarantees could be introduced to ensure that the energy carrier and associated 

technologies perform according to expectations.

12.8.2.4 Acceptability

In order for energy suppliers to invest in renewable hydrogen, energy suppliers must be 

confident that it is affordable, of sufficient quality and can satisfy environmental 

concerns. At present, there are high capital costs facing hydrogen as there is no 

demand for this energy carrier. As there is no demand, energy suppliers are unlikely to 

invest in renewable hydrogen until it has been tried and tested on a larger scale than at 

present. As blending hydrogen with natural gas is still being researched, it will be a
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long time before the quality of hydrogen is determined. Utilising biomass resources will 

help energy suppliers reduce their impact on the environment.

12.8.3 The End User

12.8.3.1 Accessibility

There are two main questions facing the accessibility of renewable hydrogen by end 

users, namely how accessible is hydrogen and how accessible are hydrogen 

technologies? For the energy supplier and end user, hydrogen is not accessible at the 

moment nor is the supporting infrastructure. Although fuel cells have been trialled in 

the UK, for example, the use of fuel cells in black taxi cabs in London, their wider 

application is limited at present (Mourato et al, 2004). This has implications on the 

utilisation of hydrogen and fuel cells by end users within buildings in Sheffield. In 

particular, questions are raised regarding the short, medium and long term application 

of hydrogen and fuel cells. At what point will fuel cells powered by renewable hydrogen 

become available to end users for utilisation within buildings? What role will hydrogen 

have in the deployment of renewable energy in a city such as Sheffield?

12.8.3.2 Ease of Use

There are two main issues surrounding the ease of use of hydrogen. From the end 

users perspective, is hydrogen easy and safe to use and are fuel cells easy to operate? 

Unlike existing energy carriers of natural gas, electricity and district heating in Sheffield, 

end users are unfamiliar with the production and utilisation of hydrogen for energy 

purposes. This unfamiliarity may cause end users to perceive hydrogen, and fuel cells, 

as difficult, and perhaps dangerous, to use. Without careful management and safety 

procedures, all fuels are dangerous. Like other fuels, hydrogen can burn. Although 

hydrogen can catch on fire in air at a range of concentrations, it disperses rapidly and 

the fire burns out quickly. The flames released during combustion are nearly invisible 

and radiate with almost no heat. In sectors where hydrogen is used, for example the 

space or chemical industry, expertise and safety procedures exist (Pehr et al, 2001).

As such, the large-scale use of hydrogen would require standard safety levels to be 

introduced. However, most end users are acquainted with safety standards in relation 

to the operation of electrical equipment and machinery. As such, having safety 

procedures for the use of hydrogen may not be a problem.
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As fuel cells are still being developed and tested, it is difficult to determine the ease of 

use of this technology by the end user. Renewable hydrogen, hydrogen technologies 

and the supporting infrastructure are all unavailable within urban areas at present. As 

such, there are no mechanisms in place in which end users can buy renewable 

hydrogen, purchase or trial fuel cells or other domestic and non-domestic appliances 

that operate on hydrogen. Also, there are few trained specialists whom end users can 

contact for advice and information on the use of hydrogen within buildings. Once 

hydrogen and fuel cell technologies become available, end users will need to learn how 

to use the new technologies to ensure they perform correctly.

12.8.3.3 Flexibility

For the end user, hydrogen can only be considered as flexible if the supply of energy 

meets demand. As such, hydrogen-powered appliances will need to be sized to match 

the demands of the end user. In addition, end users are likely to ask if fuel cells switch 

off and whether they are immediate to respond to the flick of a switch. As end users 

are unlikely to become involved in the technical side of hydrogen and hydrogen- 

powered appliances, the appliances must be able to operate remotely within buildings 

and end users must be able to operate them successfully and safely. If hydrogen is not 

perceived to be flexible, it is unlikely that end users will use hydrogen.

12.8.3.4 Convenience

It is debatable whether end users would see any transition towards the wider use of 

renewable hydrogen as convenient. If hydrogen is supplied directly to buildings and 

existing appliances can be converted to operate on hydrogen, it may be regarded as 

convenient. However, if end users are required to purchase fuel cells and other 

hydrogen-powered technologies, this may be regarded as inconvenient. In order to 

increase the convenience of hydrogen, fuel cells could be marketed within showrooms 

alongside existing technologies and positive marketing strategies could be used. In 

many ways, the transition towards the wider uses of hydrogen parallels the conversion 

from town gas to natural gas. Although natural gas offered a cheaper and less 

dangerous energy supply, people perceived it to be dangerous, particularly as there 

was no smell associated with natural gas. Adding a smell and developing “modern” 

appliances which operated on natural gas, promoted the widespread use of natural gas 

as an energy carrier. It may be possible that similar methods are deployed to assist 

the wider utilisation of hydrogen in buildings in Sheffield.
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12.8.3.5 Reliability

End users are likely to question the reliability of hydrogen against the perceived 

reliability of other energy carriers, especially natural gas. As examined earlier, the 

supply of hydrogen will depend upon the availability of biomass energy, and possibly, 

water resources. For end users who invest in hydrogen technologies, there is likely to 

be a need to develop guarantees to reassure the end user that the energy carrier and 

the technologies perform correctly and are reliable over the guarantee period.

12.8.3.6 Consistency

End users expect a consistent supply of energy, both now and in the future. This 

suggests that any changes in energy provision must continue to provide end users with 

the same benefits as conventional energy carriers. If hydrogen is supplied directly to 

buildings, as with other energy carriers, the use of hydrogen will be consistent with 

existing ways of receiving energy carriers. If fuel cells are used, end users may 

become more involved in energy production in buildings. This inconsistency may act 

as an obstacle to the use of renewable hydrogen in urban areas.

12.8.3.7 Acceptability

End users choose energy services based on affordability, quality of supply and wider 

environmental and sustainability considerations. As hydrogen is a new energy carrier, 

it is difficult to quantify cost of hydrogen and fuel cells. Additionally, there are no grants 

available to assist investment by end users into hydrogen-powered technology. In 

addition to cost, the quality of supply is an important consideration of end users. If 

energy suppliers provide hydrogen for use in buildings, end users are likely to expect a 

quality service from energy suppliers and hydrogen of a certain quality. These 

expectations of quality service and energy supply stem from existing expectations 

which consumers place on electricity and gas providers in the UK.

In addition to cost and quality issues, some end users are also concerned about the 

impact of energy production and utilisation on the environment. The utilisation of 

hydrogen, produced from water and biomass resources, will have many benefits. It will 

assist in the deployment of renewable energy to end users in Sheffield, local carbon 

emissions will be reduced and the utilisation of renewable hydrogen would contribute to 

the long term sustainability of energy production and supply in Sheffield.
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12.9 Additional Issues

12.9.1 Public Acceptance of Hydrogen

One issue that will have to be overcome in the pursuit of a hydrogen economy is the 

public acceptance of hydrogen. The introduction of a new fuel, technology and 

infrastructure is largely dependent on the acceptance by its users. From research 

undertaken elsewhere on risk assessment, the perception of risk has been found to be 

different to that of actual risk. In the case of hydrogen, the development of a hydrogen 

economy will require users to interact with hydrogen and its infrastructure on a daily 

basis. Such research has examined the acceptance of hydrogen technologies, public 

knowledge of hydrogen and to identify areas where information is needed (LBST, 

2001). The research concluded that people, who came into contact with hydrogen 

technologies, for example travelling on a hydrogen bus or through educational 

programmes, were more inclined to accept hydrogen technologies than those who 

knew little about hydrogen. To increase public acceptance of hydrogen, the research 

recommended that demonstrations and pilot projects be introduced and information 

and key contacts on hydrogen needs to be readily available to the public and targeted 

through educational campaigns (LBST, 2001).

As highlighted by a recent study, hydrogen and fuel cells must meet the 'needs' or 

expectations of end users. The study, which examined driver preference for fuel cell 

taxis, showed that drivers were concerned about crime, personal safety and the 

impacts of traffic congestion on the health of drivers (Mourato et al, 2004). The trailing 

of new, cleaner and quieter fuel cell taxis was welcomed as these vehicles replaced 

old, noisy and dirty taxi cabs. Although people often consider hydrogen vehicles to be 

dangerous, the main drawbacks were identified as limited mileage and the cost of 

hydrogen when compared to diesel vehicles and the lack of refuelling stations across 

the city (Mourato et al, 2004).

12.9.2 Transition Period

There are well established infrastructures for the distribution of electricity, natural gas 

and transport fuels from the source to the point of consumption. Such infrastructures 

allow for the effective distribution of the energy on a large-scale to a wide range of 

diverse applications. For the utilisation of hydrogen as an energy carrier, chemical 

storage or transport fuel to materialise, the necessary infrastructure must be in place to
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facilitate its use. In some countries, hydrogen infrastructures exist on a small-scale. In 

Germany, producers of hydrogen, including chlorine and chemical industries, supply 

hydrogen into local networks (Zittel and Wurster, 1996). However, the adoption of 

hydrogen infrastructures on a large scale is limited by the "chicken and egg" situation. 

Without demand for hydrogen, there is no need to create a supply infrastructure, 

although without the necessary infrastructure in place, any demand for hydrogen 

cannot be fulfilled. Additionally, technical improvements in fuel cells and hydrogen 

storage options are needed to ensure the technical and economic feasibility of using 

hydrogen in stationary and mobile applications (Hart, 2001).

Should the adoption of hydrogen as an energy carrier become a reality, there are many 

issues concerning the move towards a hydrogen economy. Although it is agreed that a 

hydrogen economy cannot happen overnight, there is a great deal of speculation and 

confusion surrounding the transition period from the present fossil fuel economy to 

renewable energy hydrogen based economy. In particular, it is uncertain whether 

natural gas networks can be used for hydrogen or whether new infrastructures will be 

required. This confusion places uncertainty on the use of hydrogen as an energy 

carrier and its wider utilisation within the existing energy system in the UK. Ways of 

overcoming such uncertainties may emerge from the experiences of Iceland in its 

transition to a hydrogen economy by 2040. Whilst any move towards a hydrogen 

economy will have significant costs, the economic costs need to be weighed against 

the environmental and social benefits of hydrogen.

12.10 Key Challenges facing Hydrogen

From this examination, it is evident hydrogen has the potential to become a valuable 

energy carrier, a form of chemical storage and a transport fuel Although the technical 

expertise is available, further research and development is required in the production, 

storage and transportation of hydrogen between energy suppliers and end users. 

Additionally, significant advances are required in the use of fuel cells for energy 

production and storage for mobile and stationary applications. In order for hydrogen to 

be utilised as an energy carrier in Sheffield, it must meet the expectations of energy 

suppliers, as summarised in Table 12.1. For the energy supplier, renewable hydrogen 

is problematic in terms of the accessibility and reliability of supply, affordability and 

quality. This stems from technical and economic issues facing the utilisation of 

hydrogen technology at present and wider obstacles facing the utilisation of renewable 

energy sources in Sheffield, in particular, the accessibility of biomass energy
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resources. From the perspective of the end user, as summarised in Table 12.2, 

hydrogen could be a reliable energy carrier in the future although problems surround 

the accessibility, ease of use, flexibility, convenience, reliability, consistency and 

acceptability of hydrogen at present. In the short to medium term, the production and 

utilisation of hydrogen in Sheffield faces a number of obstacles. The obstacles facing 

the production and utilisation of hydrogen and fuel cells are presented in Table 12.3. 

Table 12.3 provides a simplified summary of the analysis of hydrogen against existing 

consumer expectations in Sections 12.8 and 12.9. It is important to note that some of 

the issues raised in Table 12.3 overlap. However, there are many parallels between 

the obstacles facing renewable hydrogen and those facing renewable energy 

technologies. In particular, the lack of supply and demand, support infrastructure, 

systems to guarantee the performance of hydrogen technologies and the lack of 

confidence in hydrogen as an energy carrier are key obstacles facing its utilisation. 

The obstacles raised here will be addressed alongside the solutions facing the wider 

deployment of renewable energy technologies relevant to Sheffield in Chapter 13.

Table 12.1 Current Evaluation of Hydrogen against the Existing Energy 

System and the Expectations of Energy Suppliers

Energy Supplier 
Expectations

Existing Energy System Hydrogen

Accessibility •  • •
Flexibility •  • • •  •
Reliability:
Now • • •
In the future • •  • •
Acceptability, in terms of:
Affordability • • •
Quality • • •
Environment • •  •
Sustainability • •  •

Key to symbols: •  Does not meet expectations

•  •  Expectations are partially met 

• • •  Meets expectations



Table 12.2 Current Evaluation of Hydrogen against the Existing Energy

System and the Expectations of End Users

End User Expectations Existing Energy System Hydrogen
Accessibility • • • •
Ease of Use • • • •
Flexibility • • • • •
Convenience • • • •
Reliability:
Now • • •
In the future • • • •
Consistency ■ • • •
Acceptability, in terms of: 
Affordability • • •
Quality • •
Environment • • • •
Sustainability • • • •

Key to symbols: •  Does not meet expectations

•  •  Expectations are partially met 

• • •  Meets expectations
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Table 12.3 Obstacles Facing the Deployment of Renewable Hydrogen in 

Sheffield

Stakeholder 
Expectations and 
Additional Issues

Obstacles

Accessibility Lack of supply and demand for hydrogen and fuel cell 
technology
Inaccessibility of local biomass resources for hydrogen 
production
Lack of market for hydrogen and fuel cells

Ease of Use Stakeholder unfamiliarity with the use of hydrogen as an 
energy carrier
Stakeholder unfamiliarity with fuel cells and their applications 
within buildings
Lack of infrastructure in place to buy and produce hydrogen 
and purchase fuel cells
Need management and safety procedures like other fuels

Flexibility Storage is needed at or near the point of consumption to 
ensure supply meets demand

Convenience End users need to be reassured that any move towards a 
hydrogen economy will be convenient

Reliability Supply of hydrogen must be reliable, both now and in the 
future
Need to guarantee the supply of hydrogen
Need to guarantee the performance of fuel cell technology, 
its installation, maintenance and operation
Stakeholder confidence in hydrogen and fuel cells

Consistency May involve end users in hydrogen production at or near the 
point of consumption

Acceptability No grants are available to end users to utilise hydrogen and 
fuel cells for energy needs in buildings, on an individual, 
group or community level
Need to guarantee the quality of hydrogen
Need to guarantee the quality of service from potential 
hydrogen suppliers

Public Acceptance Public acceptance may affect the utilisation of hydrogen and 
fuel cells in Sheffield

Transition Period Need to put the infrastructure in place to produce and supply 
hydrogen to end users
Need to establish if existing gas networks can be utilised to 
distribute hydrogen to consumers
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13. EXPLORING THE SOLUTIONS

13.1 Influencing Stakeholders

If renewable energy technologies are going to be used to reduce local carbon 

emissions and contribute towards the development of a sustainable energy system in 

Sheffield, they must be technically and economically available, whilst meeting existing 

stakeholder expectations of energy services. As previous chapters have shown, the 

use of PSD, active solar systems, PV, wind power, biomass energy and small-scale 

hydro is technically possible in Sheffield. One reason for the low uptake of renewable 

energy resources and technologies lies with their ability to meet existing stakeholder 

expectations. Stakeholders, namely electricity and district heating suppliers and 

domestic, business and industrial end users, have a key role to play in the deployment 

of renewable energy technologies in Sheffield, especially as they are key decision

makers. Stakeholders can influence the success or failure of a new or existing product, 

technology or service through their purchasing activities. Depending on the 

stakeholder, it is important that renewable energy services meet existing expectations 

of accessibility, ease of use, flexibility, convenience, current and future reliability, 

affordability, quality and environmental and sustainability concerns. Although it is 

difficult to directly change the purchasing behaviour of stakeholders, the right 

conditions can be created in which stakeholders can be influenced to take positive 

action.

One approach to this problem is to ensure that renewable energy technologies perform 

as well as, if not better than, the existing energy system in supplying energy for use in 

buildings in Sheffield. In this respect, the performance of the existing energy system in 

meeting stakeholder expectations provides a ‘yardstick’ against which renewable 

energy technologies can be judged. This analysis, which has been undertaken in 

previous chapters, is summarised in Tables 13.1 and 13.2. Here, the performance of 

the existing energy system and renewable energy technologies against energy supplier 

expectations (Table 13.1) and end user expectations (Table 13.2) is illustrated. To 

ensure consistency with the previous analysis, a series of dots have been used to 

indicate where the existing system and renewable energy supply currently meet 

stakeholder expectations (three dots), partially meet expectations (two dots) and fail to 

meet expectations (one dot).
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Table 13.1 Evaluation of Renewable Energy Technologies Relevant to Sheffield

against the Expectations of Energy Suppliers and the Existing Energy 

System

Energy Existing Wind Power Biomass Energy Small-scale
Supplier Energy (Electricity) (District Heating) Hydro

Expectations System (Electricity)
Accessibility •  • • • • •
Flexibility •  • • •  • • •  • •  • •
Reliability:
Now • • •  • • •  • •
In the Future • • • • •  • • •  • •
Acceptability:
Affordability •  • •  • •  • • •
Quality •  • •  • •  • •  •
Environment • •  • •  • • •
Sustainability • • • •  • •  • •

Key to symbols: •  Does not meet expectations

• •  Expectations are partially met 

• • •  Meets expectations 

Not applicable

As earlier analysis has shown, there is an element of uncertainty and lack of 

confidence associated with the ability of renewable energy to provide energy services. 

However, as Table 13.1 shows, the existing energy system is not perfect in meeting 

stakeholder expectations either. From the supplier perspective, there are problems 

associated with the accessibility of the resources used, the reliability of supply, and the 

cost and quality of resources. Additionally, there are questions over the future 

reliability of energy supplies, and the environmental and sustainability implications of 

current energy production. The low ranking of environmental and sustainability 

expectations also raises questions over whether or not energy suppliers are concerned 

about future energy supplies and the impact of energy production on the environment. 

Although energy suppliers may value resources as accessible, reliable, affordable and 

of sufficient quality now, mechanisms such as the Renewables Obligation may help to 

move environmental and sustainability issues higher up the agenda of energy 

suppliers. However, the Renewables Obligation is only likely to stimulate the use of 

local renewable energy resources for electricity production, as it does not cover heat 

production.
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According to Table 13.1, wind power, biomass energy and small-scale hydro offer a 

reliable energy source in the future and perform as well as the existing system in 

meeting stakeholder expectations of affordability and quality. In particular, small-scale 

hydro technologies perform as well as, and even better than, the existing energy 

system in meeting all stakeholder expectations. However, there are still obstacles 

facing the refurbishment of existing sites in Sheffield as explored in Chapter 10. In 

relation to wind power and biomass energy, Table 13.1 shows that the accessibility of 

wind power and biomass energy resources and the flexibility of biomass energy supply 

are three key areas where renewable energy supply fails to perform as well as the 

existing energy system. If wind power and biomass energy are to perform as well as 

the existing system in meeting energy supplier expectations, it is in these three areas 

where solutions need to be focused.

From the end user perspective, Table 13.2 shows that the existing energy system 

performs well overall. However, whether the existing system actually performs well, or 

is perceived by end users to perform well, is debatable. How end users view or 

perceive the existing energy system has implications for the way end users view the 

provision of renewable energy services. End users may perceive that the existing 

energy system meets all their main requirements, namely accessibility, ease of use, 

flexibility, convenience and consistency. As such, they may feel that there is no need 

to switch to renewable energy technologies. For those who are motivated by 

environmental and sustainability concerns, renewable energy technologies are likely to 

be viewed more favourably. Although this may be true, research has shown that there 

is a gap between people’s awareness of environmental issues and their purchasing 

behaviour (Hobson, 2001). Energy suppliers are driven by other motivations, such as 

the Renewables Obligation, increased environmental legislation and regulation, 

national and regional targets combined with existing concerns over the accessibility of 

resources, future reliability of supply, and cost and quality issues.

As Table 13.2 shows, in the view of end users, the existing energy system and 

renewable energy technologies perform well in contrasting areas. Where the existing 

system fails to meet end user expectations in terms of the future reliability of supply 

and wider environmental and sustainability issues, renewable energy technologies fully 

meets these expectations. Likewise, renewable energy fails to perform well in relation 

to accessibility, ease of use, flexibility, convenience and consistency. This suggests 

that when end users make decisions about energy services, they value accessibility, 

ease of use, flexibility, convenience, consistency, reliability, cost and quality over the
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Table 13.2 Evaluation of Renewable Energy Technologies Relevant to Sheffield

against the Expectations of End Users and the Existing Energy System

End User 
Expectations

Existing Energy 
System

PSD Active Solar 
Systems

PV Biomass
Energy

Accessibility •  • • • • • •
Ease of Use •  • • • • • •  •
Flexibility •  • • •  • • • •  • • •
Convenience • • • • . • • • •
Reliability:
Now • • • • • • • •
In the Future • •  • • • • • • • • • • •
Consistency •  • • • • • •
Acceptability:
Affordability • • • • •
Quality • • • • • •  • • •
Environment • •  • • • • • • • •
Sustainability • •  • • • • • • • •

Key to symbols: •  Does not meet expectations

• •  Expectations are partially met 

• • •  Meets expectations

future reliability of supply and environmental and sustainability concerns. Priority is 

focused on the immediate benefits of energy supply rather than considering current 

and future environmental and sustainability implications of their energy purchase and 

the future reliability of energy supply. Although renewable energy fails to meet many 

end user expectations, it is the interface between end users and energy utilities which 

is lacking, not the technology. End users expect to be able to ring up a utility and be 

connected to a service. With renewable energy, this service is unavailable at present 

unless end users purchase a green tariff. Therefore, it is the business structure which 

exists around the technology that is the issue.

It has been argued that if renewable energy technologies reduce in price and/or the 

price of energy continues to rise, more investment in these technologies is likely to take 

place. However, based on Table 13.2, it is debatable whether or not this would 

stimulate widespread end user, and possibly energy supplier, interest in renewable 

energy technologies. Not only is cost an issue, but the accessibility of energy supply 

and the technologies, the ease of use of new systems, the flexibility of supply and the 

convenience of the conversion to new systems are also important considerations facing 

end users/ decision-makers. The relatively poor performance of renewable energy
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technologies in meeting current end user expectations of accessibility, ease of use, 

flexibility, convenience and consistency, indicates that even with rising energy prices, 

end users might not be confident to invest in renewable energy technologies.

It appears that the key to the problem is to explore ways in which certainty and 

confidence can be developed amongst stakeholders. In addition, thought needs to be 

given as to what motivates and drives stakeholders into making decisions. Although 

cost is an important consideration, many actions are needed to ensure that renewable 

energy meets other stakeholder expectations whilst ensuring that the practical benefits 

of renewable energy technologies are realised within Sheffield. The following sections 

suggest possible solutions that could be used to stimulate and increase the use of 

renewable energy by energy suppliers and end users in Sheffield. The solutions are 

subdivided into three broad categories, namely land use planning (Section 13.2), 

building stakeholder confidence (Section 13.3) and increasing supply and demand 

(Section 13.4). The utilisation of renewable hydrogen is discussed in Section 13.5, 

followed by a discussion of the need to import additional renewable energy supplies to 

meet Sheffield’s energy needs (Section 13.6). The suitability of the measures to 

encourage the wider deployment of renewable energy technologies in Sheffield are 

evaluated against the stakeholder demand criteria in Section 13.7.

13.2 Land Use Planning

13.2.1 Energy Plans

As examined above, wind power fails to meet energy supplier expectations of 

accessibility. At present, the accessibility of the wind resource in Sheffield is limited 

due to conflicts between the potential siting of wind turbines and site availability. One 

solution would be to develop an energy and implementation plan for Sheffield. Energy 

plans have been produced for various cities across Europe (Kelly and Mortimer, 1996). 

In the UK, energy plans for local authority areas are less common although some work 

has been undertaken in producing and implementing community energy plans, for 

example, in Newcastle, Leicester and the North York Moors National Park (Newcastle 

City Council, 1992; Leicester City Council, 2004 and SDC, 2004). Producing an energy 

plan for Sheffield would require a more pro-active approach from Sheffield City Council 

in addressing and tackling local energy and carbon emission issues.
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An energy plan covering the whole of the district would allow energy and carbon 

emission issues to be identified and addressed as part of an ongoing programme. This 

would require a joint effort from both Sheffield City Council and the Peak District 

National Park. Although both of these Authorities are planning authorities in their own 

right, there needs to be some common approach in addressing the issue of renewable 

energy developments in the area of overlap between them. Ideally, specialist input 

would be required to work with the local community to develop the energy plan and 

support the local community in pursuing sustainable energy development within 

Sheffield. It is important that the onus for the development of the plan and its 

implementation rests with the local community with local authority specialist support 

and guidance for the process. Identifying local people as champions to lead and take 

the plan forward would help to ensure that the ownership and implementation of the 

plan are community led. In addition, having local champions and ownership of 

renewable energy schemes allows local people to weigh the benefits of the 

development against any disadvantages such as visual impacts of wind turbines and 

roof mounted solar water heating and PV panels.

An energy plan could also solve problems of accessibility for wind power and other 

renewable energy sources in Sheffield. In much the same way as minerals plans are 

designed, an energy plan could be produced which identifies a general area of search. 

By adopting this method, general areas where a wind resource, small-scale hydro 

resource, solar energy resource and/or a potential biomass energy resource could be 

identified. As with minerals planning, a presumption in favour of wind development, or 

other renewable energy development, could be granted. Designations of areas for 

prospective utilisation would help to increase the accessibility of wind power and small- 

scale hydro sites by energy suppliers and open up opportunities for the utilisation of 

solar and biomass energy resources by end-users. However, such an energy plan 

would need to be integrated and supported by planning policies and local plans.

13.2.2 Energy as a Material Consideration

There will always be pressures on urban land use as land is in short supply and there 

are competing demands for land within cities. The key is to manage the available land 

in the best possible way for the city. A task which is, in essence, the role of planning 

within local planning authorities. However, if Sheffield is committed to sustainable 

energy development based on renewable energy, it could be argued that sites, which 

are particularly suited for site-specific renewable energy developments, such as wind
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power, should be allocated accordingly. At present, energy use is not considered as a 

material consideration for development. Although previous planning policy guidance in 

the form of PPG12 set out the need for local authorities to consider energy use in their 

local plans, this national policy has not been widely applied on a local level. The 

revised PPG12, referred to as PPS12, advocates the development of new types of 

local plans in which energy should be a material consideration. PPS12 again places 

the onus on local authorities to put this policy into practice on a local level. In light of 

the revised PPS22 on renewable energy, combined with national and regional targets 

for increasing renewable energy production and lowering carbon emissions, local 

authorities may be more motivated to consider energy as a land use category. In order 

to help to ensure that local authorities address this, it may be possible for national 

government to ask local authorities to provide evidence of their adherence to this 

national policy.

Making energy use a land use category in local plans would help renewable energy 

developments take place on a local level. Allocating specific sites for wind power 

generation within a city or district would be a positive step forward in developing a 

sustainable local energy system based on local renewable energy resources. In 

addition, it would mean that local people would have to address the environmental 

impacts, both positive and negative, of having local energy generation plants within the 

city. If the use of land for energy development is not considered in land use plans, 

prime sites could be lost. This would have long term implications on the ability of 

Sheffield to reduce carbon emissions within the district and move towards the wider 

utilisation of local renewable energy resources. Sheffield would also continue to be 

reliant upon importing energy supplies, whether they are from renewable or non

renewable energy sources. Generally, local authorities need to adopt a more pro

active approach to land management, particularly as carbon emission targets have 

been set by the national government. If delays towards utilising local renewable 

energy resources continue, more pressure is placed on areas to achieve reductions in 

carbon emissions in shorter time-scales. This may result in some inappropriate 

developments that could have been avoided by better planning and a long-term view of 

energy provision within the city.
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13.3 Building Confidence Amongst Stakeholders

13.3.1 An Integrated Approach

Amongst energy suppliers and end users, there is a need to remove uncertainty when 

it comes to utilising renewable energy resources. Overall, there is a lack of confidence 

throughout the supply chain. Stakeholder unfamiliarity, lack of knowledge and 

understanding of renewable energy technologies, the operation of systems, access to 

information and advice, and awareness of grant availability are key barriers facing the 

uptake of renewable energy technologies in Sheffield. In addition, there is a lack of 

infrastructure in place to guarantee the performance of the technologies and their 

energy supply, and promote, sell, buy, install and maintain renewable energy systems. 

This situation is particularly relevant to the utilisation of biomass energy in Sheffield 

although similar obstacles also affect other renewable energy technologies. The 

influence of these obstacles are reflected in the poor performance of renewable energy 

technologies against stakeholder expectations of accessibility, ease of use, 

convenience, reliability and affordability in Tables 13.1 and 13.2. For many 

stakeholders, renewable energy technologies are different from conventional ways of 

providing heating, cooling, lighting and ventilation. Stakeholders need to be reassured 

that renewable energy is viable and can supply energy services that are accessible, 

easy to use, flexible, convenient, reliable, consistent and acceptable. There are a 

number of possible solutions that could be put in place to promote confidence in 

renewable energy technologies amongst stakeholders. Advertising and marketing, 

education and training, supporting infrastructure and demonstration, standardising 

products, providing guarantees and certification, and integrating renewable energy 

technologies into conventional building work are key areas where improvements would 

be beneficial. Although the solutions are discussed under each of these headings 

below, an integrated approach is needed to help ensure that confidence, knowledge 

and understanding is developed and expanded amongst all stakeholders.

13.3.2 Advertising and Marketing

Better promotion of renewable energy products, technologies and services is needed. 

Although there are many factors that affect the success or failure of a new technology 

or energy service, targeted and well thought out advertising and marketing plays a key 

role. With renewable energy technologies, the level of knowledge about their 

characteristics and applications varies greatly. People are likely to be unaware of
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them, have limited knowledge or believe the myths. Common myths surrounding 

renewable energy act as a barrier to their acceptance and utilisation. For example, the 

level of bird kill with wind turbines is often quoted and not set in context and compared 

with other aspects of life which kill birds on a regular basis such as cats and cars 

(Home Power, 2004). The myths need to be dispelled and people’s level of awareness 

and information about renewable energy and its applications needs developing and 

promoting. Unfamiliarity and lack of information on renewable energy applications 

leads to uncertainty and lack of consumer confidence in the technologies. It can also 

lead to the mis-management of installed renewable energy systems.

Before any advertising and marketing campaigns begin, it is necessary to establish the 

motivations of end users. Many studies have been undertaken by companies and 

organisations to try to understand the purchasing behaviour and needs of their 

customers or potential customers (including MORI, 2002 and Customer Champions, 

2003). However, energy is a difficult area in which to try and identify motivations of end 

users. As previously proposed, end users are motivated by accessibility, ease of use, 

flexibility, convenience and consistency of energy services. However, people’s level of 

interest in energy ranges from a detailed understanding of how energy is delivered, 

distributed and used in a building to those who simply expect the lights to come on 

when they flick a switch. Although there are many diverse and changing motivations of 

stakeholders, it would be fair to contend that most people expect a certain level of 

comfort within a building and the freedom to use appliances, machines or machinery on 

demand. It could be these areas in which advertising and marketing need to be 

focussed. As previously examined, end users who are motivated by environmental 

and sustainability concerns are more likely to invest in renewable energy technologies. 

For those who are not motivated by environmental and sustainability concerns, 

advertising and marketing must firstly be directed towards non-environmental concerns 

in order to stand any chance of success, before promoting the environmental benefits 

of the technology. If the general environmental awareness of end users is going to be 

raised, environmental links need to be in place to trigger connections in the mind of the 

stakeholder.

Advertising the non-energy benefits of using renewable energy technologies is 

beginning to appear in the promotion of green buildings. One example is a recent mill 

conversion in Huddersfield, West Yorkshire, which has been developed using energy 

efficiency measures, a wood-fuel heating system and PV panels (Anon, 2004a). The 

luxury of the apartment combined with SMART technologies including ceiling speakers,
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plasma screens, audio sound in every room, security systems, programmable curtains, 

blinds and shutters, digitally programmable lights and heating, and the ability to 

programme this from anywhere in the world were the main focus of the advertisement. 

Secondly, the green technology, low energy bills and a clean environment were given 

priority over advertised examples of the luxury lifestyle that one could obtain by using 

the mills facilities including a restaurant, bars, spa, pool, gymnasium and bistro. The 

price range of the apartments was listed last (Anon, 2004a). As such, the advertising 

focuses on the comforts of the home and the lifestyle associated with living in the 

building. End users can have all of this and advanced technologies to control the 

heating, cooling, lighting, ventilation, as well as being environmentally friendly. In this 

way, renewable energy technologies have been integrated into a complete "lifestyle” 

package. This approach is similar to that of car advertising where the lifestyle of 

travelling on the open road surrounded by beautiful scenery and/or attractive people is 

used as a key selling feature. Again, this implies that, although renewable energy 

technologies are available, it is the infrastructure around the technologies which is 

lacking. In addition to the need to incorporate renewable energy technologies into a 

lifestyle package and make them attractive, other advertising techniques could be 

utilised for the promotion of renewable energy. One example is product association, 

which can be a powerful tool in the success of a product, technology or service. The 

use of catchy slogans or tunes could help place renewable energy and what it offers in 

the minds of stakeholders.

Advertising and marketing needs to be part of a wider and ongoing renewable energy 

programme within the UK rather than the ad hoc approach currently taken. This would 

help to ensure that people understand and continue to be aware of the options and 

opportunities available to them particularly as these are likely to change over time. In 

addition, opportunities could also be developed to increase the profile of renewable 

energy by having large, city centre examples. A current example of this is the 

proposed refurbishment of the Co-operative Insurance Society (CIS) building in 

Manchester. The CIS has recently put in a planning application to have the 28 storey 

building clad in PV panels in a mosaic style in keeping with the original mosaic pattern 

of cladding initially used on the building (Kellett, 2004). At present, this building is a 

landmark building as it is the tallest in Manchester. Clad in PV panels, it could become 

an icon for PV technologies and would also provide a good example of how PV panels 

could be utilised and integrated within existing buildings in cities. In addition to the CIS 

building, more examples are needed to show how renewable energy can be used in an 

urban environment and to illustrate that they can be used in visually creative ways.
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13.3.3 Education and Training

Education is an important means for increasing people’s awareness and knowledge 

about the environment in general and specific issues, such as renewable energy 

applications. However, the extent to which education, in the traditional sense, reaches 

the majority of the population is debatable. Educating the young is an important part of 

increasing environmental awareness. For those who do not come into contact with 

children, this approach is limited. One suggestion would be to hold seminars and 

training sessions for adults run by organisations such as the Yorkshire Renewable 

Energy Network, Community Renewables Initiative, environmental consultancies and 

local authorities. However, who has the time or. inclination to attend such events and 

how would people hear about them? As such, the advertising of such events needs to 

be targeted at people in local communities. In addition to traditional ways of educating 

people, existing and new ways of interacting and communicating with people need to 

be tapped into. In this context, it should be noted that individuals receive information 

from a wide range of sources, including:

• Television and radio -  terrestrial and digital channels, news and non-news 

programmes, adverts,

•  Advertisements -  on the train, tram, roadside billboards, bus stations, street 

advertising, newspapers, magazines, TV, the internet, T-shirts, etc.

•  Word of mouth,

•  Articles in newspapers and magazines,

•  The internet,

•  Shops,

•  Trades people -  plumbers, electricians, etc.

•  Education -  schools, university, museums, and

• Cultural pursuits - galleries, theatre and the cinema.

There are many opportunities to utilise these areas to increase the coverage of 

renewable energy options, for example, showing advertisements or short educational 

films before films at cinemas. Another option would be to develop programmes, which 

increase the awareness of stakeholders. These programmes could be driven by 

national government in combination with local authorities, regional agencies, local 

businesses and groups and companies who sell renewable energy technologies. 

Significant funding would be needed to do carry out this programme on a national
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scale. However, other national programmes, such as increasing people’s IT skills, 

have been successfully deployed on a local level. A different range of programmes 

could be implemented ranging from increasing people’s basic awareness to producing 

business or community plans which focus on reducing energy use through energy 

efficiency measures followed by an increased use of renewable energy technologies. 

This would also tie in with the introduction of energy plans through the land use 

planning process, as discussed in Section 13.2.1.

Trades people, such as plumbers and electricians, are important contacts for 

information and advice on energy services. As such, they have an important role to 

play in the deployment of renewable energy technologies in Sheffield. However, at 

present, there is a shortage of plumbers, which would present more problems for the 

installation of certain types of renewable energy technologies. It is likely that plumbers 

and electricians would favour work, which is quick to undertake, and pays well. For 

those who are not trained or do not have much experience in installing solar hot water 

or PV panels, they may perceive its installation as time consuming and give preference 

to other work. However, if renewable energy technologies are advertised and 

promoted, this may lead to an increase in demand for the technologies. As such, 

business opportunities for skilled trade’s people in renewable energy applications are 

likely to emerge. Other shortages in skills, such as the shortage of teachers and 

plumbers, have gained attention and investment. For plumbers in particular, 

apprenticeship programmes have been set up to address the national shortage. The 

apprenticeship programme could be extended to train people to install renewable 

energy technologies, such as solar hot water and PV panels. Funding could be 

provided for people who undertake the courses and set up businesses or join 

companies installing renewable energy technologies.

One concern, particularly amongst end users, is the level of interaction involved with 

renewable energy options. Although some end users may wish to get involved in 

community renewable energy schemes and become local champions, other people 

may want the benefits without directly being involved. At present, there are few, if any 

companies who offer a comprehensive renewable energy package for end users. For 

example, if the owners of a terrace of buildings wanted to put a group heating system, 

how would they go about it and whom would they contact? Ideally, a company is 

needed to come in, sign people up and undertaken the project management. As such, 

people would get the benefits of renewable energy without having to get involved in the 

detail of, for example, seeking grant availability, submitting planning applications,
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sorting out legal contractual negotiations and organising general site management 

during installation.

The building industry perceives renewable energy technologies as a risky investment 

and buildings which incorporate these features are felt to be difficult to sell. However, 

the new building regulations, in which the energy performance of new and retrofit 

buildings is an intrinsic element, will help to stimulate change in this area. The building 

industry response to the new regulations may help to drive local changes in the way 

renewable energy technologies are viewed and utilised. In particular, the use of PSD  

features could become more widely incorporated into building work as a consequence 

of such building regulations. Depending on their success, future building regulations 

might attempt to encourage more radical approaches which promote renewable energy 

technologies even further.

13.3.4 Supporting Infrastructure and Demonstration

One of the key problems which renewable energy technologies face in addition to 

advertising, marketing and education is that there is limited infrastructure in place 

through which stakeholders can pursue renewable energy technologies. As noted 

earlier, there are few places where stakeholders can view the different varieties of 

renewable energy technologies in Sheffield. One of the few options would be for the 

stakeholder to look on the internet, but even here, there are few websites which 

provide details on the technologies for the consumer. For websites which supply 

advice on renewable energy technologies, such as the Save Energy Website, 

stakeholders need to know that such sites exist and where to access them 

(Saveenergy, 2004). Whatever the approach, the accessibility of information for 

stakeholders is limited. One solution would be to open up showrooms within cities in 

which stakeholders could view and discuss renewable energy technologies with 

professionals. In London, Solar Century, a PV supplier in the UK, has a showroom. 

However, it is questionable as to how many stakeholders from Sheffield would wish to 

travel to London to see solar technologies. By opening up a showroom in Sheffield, 

there may be opportunities for businesses to rent space for their own technology or for 

a new business to set up that trades in a variety of technologies. Although there are 

some limitations to this, for example, having a large wind turbine on site, with 

imagination and the use of different media, this problem could be overcome. In 

addition, it is important that expert advice is available to stakeholders, which is 

communicated in a non-technical way. This advice needs to be clear and
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straightforward and be able to answer the many diverse questions that end users are 

likely to have. Also, there is likely to be a need for expert help in matching the supply 

of energy from renewable energy technologies to existing demand within buildings 

together with the tools required by end users to carry out their own assessments.

Another option would be to sell renewable energy technologies alongside their existing 

counterparts. This is already done to some extent when stakeholders wish to purchase 

a new fireplace from a specialist shop. Here, electricity, gas, solid fuel and wood-fired 

heating stoves can be viewed in some shops. Integrating renewable energy 

technologies with existing options would provide consumers with the opportunity to 

view alternatives that they may not otherwise consider. This could also be expanded to 

include energy efficiency measures. This would improve the accessibility of renewable 

energy technologies by providing information, advice from professionals and the 

demonstration of technologies all in one location.

13.3.5 Standardising Products

Using biomass energy is an unconventional way of heating buildings. Although 

biomass, in particular wood, has a long history of use in the UK, natural gas and 

electricity have taken over from the use of wood since the Second World War.

Returning to the use of wood as a fuel within buildings will require more involvement 

from end users than with conventional energy supplies. There are ways of making the 

interaction between the fuel and the end user easier. Wood, for example, can be 

processed in a variety of ways which help to ease the handling of the wood, and the 

advancement of technologies has helped to create a more efficient combustion 

process. Depending on the type of wood-burning equipment in use, the processing of 

wood into chips, pellets or briquettes ensures a consistent (standard) product for the 

end user. By creating a standard product, the energy content, moisture content and 

size of the product could be controlled and assured to help develop end user 

confidence in the product.

13.3.6 Guarantees and Certification

One issue common to PSD and active solar systems is the lack of quality assurances 

that the technology will perform according to end user expectations. One solution to 

this would be to develop and establish technology standards, logos and guarantees. 

Similar to other products on the market, a product guarantee will help to ensure that the
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technologies perform correctly over the warranty period. Although product guarantees 

are important, it may also be necessary to extend these to cover the installation and 

maintenance of the product. In addition, logos and standards act as important 

measurements of the quality of a product and service and guarantees that the product 

performs correctly. Energy efficiency recommended labels have already been 

produced for approved appliances and the use of the EU Energy Label is a legal 

requirement for retailers, mail-order companies and manufacturers who must display 

the energy rating of domestic appliances (Saveenergy, 2004). As such, producing a 

certification system with logos for renewable energy technologies may be the next step. 

Linder some existing funding schemes, such as the Clear Skies Programme, 

accredited suppliers and installers must be used. This could be expanded into a 

nationally based system, which lasts beyond the end of these funding programmes.

In addition to developing product guarantees and certification schemes, it is important 

that such measures are communicated to stakeholders to avoid confusion and dispel 

any myths which may develop. In the case of burning wood in smokeless zones, 

confusion over whether this is legal has developed. Wood can be burnt in smokeless 

zones provided that approved wood burning appliances are used. This uncertainty 

may lead to some end users deciding not to utilise wood for energy needs within 

buildings, as they may feel that they are breaking the law. Although approved 

appliances are available, better communication to end users is required to dispel the 

myths.

13.3.7 Integrating Building Work

Adding any feature to an existing building will cause disruptive and inconvenient 

building work during construction. The same considerations apply to the installation of 

renewable energy technology on a building. One way of overcoming this obstacle is to 

incorporate, simultaneously, such installations into other building work to minimise 

disruption. It may also be possible to sell solar energy technologies as part of re

roofing work or when adding extensions onto existing buildings. In addition to reducing 

the amount of construction needed, it could also reduce costs. Although this would 

provide an ideal package, this pre-supposes knowledge on behalf of builders and end 

users. If builders are resistant to change and end users are unaware of the possible 

opportunities, it is unlikely that such developments would take place. This highlights 

the need for a new set of skills and trades in providing integrated building packages 

incorporating renewable energy technologies. As such, the opportunity may exist for a
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company or organisation to bring this all together and integrate existing building 

practices with renewable energy technology retrofits.

Resistance to change and unawareness of the possibilities can be illustrated by the 

limited application of PSD features on buildings in the UK. Although there has been an 

uptake in the number of conservatories added to domestic buildings in recent years, 

other PSD features such as Trombe walls are less common. By improving people’s 

general awareness and knowledge of PSD opportunities and identifying opportunities 

for development in energy plans and other policy documents, is likely to increase 

people’s familiarity with PSD. Additionally, having access to professionals who can 

offer sound advice and guidance will help the wider use of PSD in buildings. Used 

together, these measures may lead to an increased demand for PSD and precedent 

being set locally. Careful and creative design will also help in the uptake of PSD in 

Sheffield and the UK.

13.4 Supply and Demand

13.4.1 Renewables Heat Obligation

Currently, the lack of supply and demand for biomass energy limits the accessibility of 

this resource for energy suppliers. At present, there is neither demand nor incentives 

for district heating suppliers to invest in biomass energy. Although some waste 

biomass is mixed in existing municipal waste streams, no additional biomass is used in 

Sheffield. One solution would be to extend the Renewables Obligation to cover district 

and group heating developments. Groups, such as Friends of the Earth, who have 

suggested the need for a Liquid Biofuels Obligation, have also proposed the idea of a 

Renewables Heat Obligation (FOE, 2003; ENDS, 2004 and RPA, 2004). The 

Renewables Obligation, as discussed in Chapter 8, is a market mechanism which has 

created a market demand for electricity produced from renewable energy sources in 

the UK. By extending the obligation to cover heat, this would help to create a demand 

for biomass by district heating suppliers and may also generate further interest in 

biomass-fired district heating within other communities across the UK. By creating a 

demand for biomass on a large-scale within a city such as Sheffield, a supply can be 

created within the district and surrounding areas. In addition, this would help to 

stimulate the market for biomass beyond the existing demand for straw and some 

wood chip, increase investment whilst creating a more secure investment for farmers in 

biomass and reduce risks.
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If a Renewables Heat Obligation came into effect, this would create a market for the 

use of biomass and, possibly, active solar hot water systems for heating purposes. 

Opportunities could develop for biomass and/or active solar systems to develop on an 

individual building, group or district-heating basis. In addition, the opportunity to obtain 

Renewable Obligation Certificates for heat production may stimulate investment in this 

area. Apart from district heating, heating of business, industrial and domestic buildings 

are often carried out by the owners or occupiers. Developing heating systems in which 

traditional heat suppliers and end users interact, more closely will require a different 

management approach. This is discussed in more detail in Section 13.4.5.

13.4.2 Renewables Electricity Obligation

PV panels are currently an expensive way of generating electricity. Although one 

benefit of PV is that any excess electricity generated can be sold back to the grid, the 

price paid by the electricity utility is lower than the price the end user pays per unit of 

electricity from the grid. Although Renewable Obligation Certificates can help to 

increase the price per unit of electricity sold to the grid, a scheme must generate more 

than half a megawatt hour of electricity per year to be eligible. As such, this is having 

an impact on the use of a range of renewable energy technologies by the small-scale 

user. The government is currently investigating the possibility of lowering this limit to 

accommodate small-scale electricity generation from renewable energy technologies 

such as PV and small wind turbines (Powergen, 2004). In the meantime, one option 

would be to group sites together so that the combined amount of electricity produced 

by the whole scheme would be eligible for the certificates.

13.4.3 Fiscal Incentives

At present, there are high capital costs involved when investing in renewable energy 

technologies. Ideally, a financial market mechanism is needed to boost the uptake of 

renewable energy technologies in Sheffield and the UK. However, as this is unlikely to 

happen, there are other fiscal incentives which could be introduced to lower costs. At 

present, there are a number of grants available for individual and community-based 

renewable energy applications, with the exception of PSD. It could be argued that a 

PSD grant system is needed. One of the problems in developing such a system is 

defining PSD and the products that would fall under its remit. As examined in Chapter 

5, PSD covers a wide range of technologies ranging from inserting phase changing 

materials into existing walls for enhancing natural heating and cooling to adding glazed
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areas such as conservatories and atria. In the development of such a grant scheme, 

questions would need to be addressed regarding whether grant funding would be made 

for conservatories or whether the grants should be concentrated on less common PSD 

technologies in the UK, such as Trombe walls. Part of the problem facing PSD is that it 

is the “poor relation” of solar energy technologies in the UK. PSD is more complicated 

than active solar hot water and PV panels. Active solar and PV panels are usually a 

simple "add on” feature. As such, PSD opportunities and features need to be 

recognised and promoted both in Sheffield and on a national level. This could be 

achieved through applying many of the suggestions outlined here. Other mechanisms 

such as tax breaks and reducing VAT payments on renewable energy technologies 

could be used. In relation to VAT payments, VAT could be added to the technologies 

on an incremental basis over a set period. Tied with educational programmes and 

advertising and promotional campaigns, this may help to stimulate wider investment in 

renewable energy technologies, particularly in the domestic market.

13.4.4 Supply and Demand Management

Supplying electricity from a single PV panel onto the existing electricity grid would not 

be problem for an electricity company and network operator. However, if a large 

number of owners of suitable business and industrial buildings in Sheffield decided to 

invest in PV, this would create a potentially large body of distributed generators. 

Distributed energy generation is unconventional when compared with the existing 

production and provision of energy in the UK. Distributed energy generation would 

demand the creation of a new kind of energy utility, or a number of utilities, which 

would have to manage supply and demand within the district.

In addition to looking at supply issues from the perspective of the energy supplier, they 

would need to look at supply from the perspective of new energy suppliers i.e. end 

users. They would need to manage a diverse group of energy suppliers and different 

levels of supply within the district. Their level of support may extend to advising 

potential suppliers on the opportunities which would be open to them. In addition to 

managing internal supply and demand, they would also be responsible for managing 

imported energy to the district. One suggestion is that the energy utility could take the 

form of an Energy Service Company (ESCO) whereby individual end users are linked 

to a single local energy supplier (Clemitshaw, 2002). Operating as a community-based 

venture, ESCO's could supply energy to meet local needs. This mechanism could be
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used to secure energy supplies, alleviate issues of fuel poverty, promote energy 

efficiency and reduce carbon emissions.

New energy utilities or ESCOs may become involved in sorting out issues such as 

“who owns the roof when active solar systems and PV panels are added to existing 

roofs. There are many possible scenarios whereby solar systems could be installed on 

buildings and provide energy services to adjacent buildings, or in the case of PV, 

electricity could be supplied directly onto the national grid. Although changing roof 

ownership in relation to solar energy technologies is a relatively new idea in the UK, 

developments have taken place elsewhere in Europe. In Amersfoort near Amsterdam, 

for example, a system has been developed whereby the electricity utility, REMU, 

installed PV panels onto domestic roofs. For a ten-year period, REMU rent the roof 

space, maintain the PV system and the electricity produced by the panels goes directly 

onto the grid. After ten years, the ownership of the PV panel transfers to the building 

owner (Leeman, 2004). Introducing a similar system in the UK would require 

relationships between energy utility suppliers and end users which are different from 

current arrangements. Traditionally, energy suppliers have provided end users with 

energy rather than entering into a relationship whereby distributed energy generation, 

using renewable energy technologies installed on individual buildings, forms an 

important part of meeting the energy needs of a community, specifically, and the UK, 

generally. Entering into such a relationship, particularly in relation to electricity 

generation, would need to benefit both electricity suppliers and end users. Whilst 

arrangements with one-off buildings may not be of interest to electricity suppliers, a 

large number of buildings may be. For end users, the income received from renting the 

roof space could help offset investment costs. This would also result in lower electricity 

prices for the end user. There may also be opportunities for the owner of the system to 

enter into a contractual agreement if the energy is supplied to neighbouring buildings.

In this case, costs could be added to the price of such energy for the use of the roof 

space and any maintenance of the system.

In a wider context, ownership issues also affect the utilisation of small-scale hydro 

sites. Conflicts with surrounding land use and risk of flooding may constrain the 

development of some hydro sites. Additionally, the ownership of land on which hydro 

power plant is to be built needs to be determined. This is also an issue which affects 

other renewable energy technologies such as wind turbines, which may be sited on 

private or public land. Negotiations and contractual agreements will need to be entered 

into to ensure the site or resource can be exploited legally, for example, obtaining
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abstraction licences in the case of hydro sites. These negotiations could be entered 

into by the new energy utility or ESCO, which would specifically benefit those end 

users who would not wish to become directly involved in energy production.

13.5 Renewable Hydrogen

“Renewable hydrogen,” produced from renewable energy sources, offers an 

environmentally friendly and sustainable energy way of providing stakeholders with key 

energy services in Sheffield. However, there are questions over the local production 

and supply of hydrogen and its wider application in buildings. Similarly to renewable 

energy technologies, renewable hydrogen fails to perform as well as the existing 

energy system in meeting both energy supplier and end user expectations, as 

illustrated by Tables 13.3 and 13.4, respectively. The poor performance of renewable 

hydrogen in this regard is due to the general problems facing renewable energy, such 

as accessibility issues, and problems surrounding the technical and economic status of 

hydrogen technology at present. The production of renewable hydrogen is unlikely to 

be available in the short to medium term. Additionally, there may be problems of 

supply. Hydrogen produced from renewable energy resources will depend upon 

excess supply from such sources. Otherwise, it will be necessary to decide whether 

local renewable energy resources will be used directly in Sheffield or for hydrogen 

production purposes. Given that end use technologies and energy systems operate 

with established energy carriers, especially electricity, it could be argued that it would 

be more suitable for local renewable energy resources to meet existing needs directly 

rather than be used to produce hydrogen. In addition, domestic and non-domestic 

products that run on hydrogen have not been developed and tested for wide scale use 

within cities.

Many problems facing renewable hydrogen as an energy carrier are similar to those 

facing renewable energy technologies as sources of energy supply. Obstacles include 

the lack of supply and demand for hydrogen, the unavailability of grants, and the 

infrastructure needed to buy and sell technologies, guarantee the performance of 

technologies and manage the local environmental impacts of hydrogen production. In 

addition, stakeholders are unfamiliar with using hydrogen as an energy carrier, which 

may lead to lack confidence in hydrogen. As such, many of the solutions suggested 

elsewhere, could also be extended to include the promotion of renewable hydrogen, 

when the time comes. Further research and development is needed on essential 

issues such as the transmission and distribution of hydrogen in existing pipelines, the
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creation of new pipeline networks and the performance of hydrogen end use equipment 

and appliances, particularly fuel cells. A tremendous commitment is required to 

transform hydrogen from the research and development phase to the commercial 

phase where it is used by end users in much the same way as they use natural gas 

today. Consequently, renewable hydrogen may become regarded as a longer term 

option.

Table 13.3 Evaluation of Energy Carriers against the Expectations of Energy 

Suppliers and the Existing Energy System

Energy Supplier 
Expectations

Existing Energy System Renewable Hydrogen

Accessibility •  • •
Flexibility • • • •  •
Reliability:
Now •  • •
In the Future • •  • •
Acceptability:
Affordability •  • •
Quality •  • •
Environment • • •
Sustainability • •  •

Key to symbols: •  Does not meet expectations

•  •  Expectations are partially met 

• • •  Meets expectations

Table 13.4 Evaluation of Energy Carriers against the Expectations of End Users 

and the Existing Energy System

End User Expectations Existing Energy System Renewable Hydrogen
Accessibility •  • •
Ease of Use • • • •
Flexibility •  • • •  •
Convenience •  • • •
Reliability:
Now •  •
In the Future • •  • •
Consistency •  • • •
Acceptability:
Affordability •  • •
Quality •  • •
Environment • • • •
Sustainability • •  • •
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Key to symbols: •  Does not meet expectations

•  •  Expectations are partially met 

• • •  Meets expectations

One key issue which could be addressed is safety and its perception. It is likely that 

when people think about hydrogen they recall the Hindenberg disaster in 1937 and 

believe it to be a dangerous, explosive fuel. With other energy carriers, education and 

regulation have played an important role in reducing accident numbers and ensuring 

safety for end users. If renewable hydrogen has a part to play in the future energy 

provision in Sheffield, education, training and regulation need to be extended to cover 

hydrogen. In addition, pilot studies and demonstration projects would need to be 

developed to overcome any negative public perceptions. Hydrogen demonstration 

projects are already taking place, particularly in relation to the use of hydrogen in fuel 

cells for transport applications. In a recent study of the use of hydrogen in fuel cells in 

black taxicabs in London, driver reactions to the vehicles and their performances were 

investigated. The study concluded that, if packaged as a financially attractive option, 

then drivers would be willing to drive renewable hydrogen vehicles. Additionally, the 

high degree of vehicle regulation in the taxi industry meant that the drivers did not view 

hydrogen fuel cells as unsafe as they had been approved. In a wider context, drivers 

were more concerned about their personal safety out on the road with regard to risks, 

for example, from theft and stabbing. The study concluded that if other professional 

areas were highly regulated and renewable hydrogen was regulated too, this might 

eliminate concerns over safety.

13.6 Importing Renewable Energy Supplies

As raised in Chapters 3 and 4, local renewable energy resources in combination with 

energy efficiency measures could only meet 47 % of the current energy demands in 

Sheffield. Although this would have a significant impact on reducing carbon emissions, 

Sheffield would continue to rely on imported energy to meet its remaining energy 

needs. In order to have a completely sustainable energy system in Sheffield and 

eliminate carbon emissions, any imported energy would need to come from sustainable 

renewable energy resources. In order to achieve international and national carbon 

emission targets across the UK, other urban and rural areas would need to work 

towards establishing their own sustainable energy systems based on energy efficiency 

and renewable energy resources. In this scenario, there would be a series of locally- 

based networks of distributed energy generation in combination with centralised energy
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schemes such as wind farms and wood-fired plants. Under these circumstances, 

energy utilities, as managers of the balance of supply and demand would have to 

oversee a diverse range of locally-distributed and centrally-based energy plants. 

Although some areas would be able to meet all of their energy needs using local 

resources, other areas like Sheffield, would also rely on the importation of renewable 

energy carriers. The development of such a system of management might be 

encouraged by enabling cities, such as Sheffield, to buy and sell carbon emissions in 

an effort to reduce local carbon emissions and meet national targets.

13.7 Evaluation of the Solutions

In order to consider whether the solutions suggested here may be suitable measures 

for promoting renewable energy technologies in Sheffield, Table 13.5 provides an initial 

indication of where each measure may have an impact on the stakeholder criteria. 

Table 13.5 clearly shows that, taken together, the measures proposed cover all of the 

criteria. There are no gaps where stakeholder expectations have failed to be 

addressed. This brief assessment has illustrated that each solution may have an 

impact on more than one stakeholder expectation. This can be illustrated by the 

example of the proposed introduction of a new system of supply and demand 

management. This system is likely to increase the accessibility, ease of use, flexibility, 

convenience, reliability, consistency and acceptability of renewable energy 

technologies. However, this measure alone is unlikely to achieve complete change. It 

needs the support of other measures, in particular advertising, education, training, the 

design and implementation of energy plans by local community champions, changes in 

the Renewables Obligation and other fiscal incentives. Such partial impact of individual 

solutions is true of all of the measures listed in Table 13.5. This emphasises the need 

for an integrated approach to be adopted which draws on each of the solutions 

suggested. Whether such measures could be delivered collectively by means of an 

integrated approach or whether they would conflict is, of course, open to question. 

Despite this, Table 13.5 indicates the potential of the measures put forward as practical 

ways of promoting renewable energy technologies in urban areas.
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14. CONCLUSIONS AND RECOMMENDATIONS

14.1 Conclusions

Within the current context of the UK’s commitment to reducing greenhouse gas 

emissions, especially carbon emissions, a clear understanding of the nature of the 

problems, obstacles and complexities facing the deployment of renewable energy 

technologies in urban areas is urgently required. By using Sheffield as a case study 

example, practical ways in which renewable energy technologies could be used to 

reduce local carbon emissions and achieve sustainable energy systems within the 

urban environment have been examined. This investigation began by examining the 

interaction between the existing energy system, its energy suppliers and end users, 

and its ability to meet the energy expectations of these stakeholders. Means of 

evaluating the performance of the existing energy system against stakeholder 

expectations have been devised and it has been found that expectations vary 

depending on the type of stakeholder. Energy suppliers are motivated by expectations 

of accessibility, flexibility, reliability, affordability, quality and environmental and 

sustainability concerns. In addition to these particular expectations, end users place 

additional emphasis of ease of use, convenience and consistency on the energy 

services they receive. By assessing the existing energy system against these 

expectations, it was concluded that the existing energy system is not perfect. 

Specifically, doubts are raised about the ability of the existing system to produce and 

supply energy in an environmentally sustainable way whilst, simultaneously, continuing 

to provide stakeholders with key energy services into the future. As an alternative, it 

has been suggested that renewable energy technologies can address concerns over 

future environmental sustainability. However, this begs the question of whether such 

technologies can meet the everyday energy expectations of both energy suppliers and 

end users.

In order to determine the potential contribution which renewable energy technologies 

could make to reducing carbon emissions, specifically, and sustainable development, 

generally, an energy study of Sheffield was undertaken. This involved updating a 

previous energy study of Sheffield to provide a more recent account of energy 

demands and associated carbon emissions in Sheffield. Additionally, the potential 

contribution of energy efficiency measures in reducing demand and the availability and 

potential contribution of increasing local renewable energy supply were explored. By

219



means of this case study for Sheffield, the procedure and importance of updating 

energy assessments has been demonstrated. Furthermore, the possibility of 

replicating this approach adopted here has been established.

The essential purpose of undertaking an updated energy assessment was to provide a 

meaningful framework in which to examine the potential deployment and contribution of 

renewable energy technologies in an urban area. The energy study provided the basis 

for identifying key areas of energy consumption and carbon emissions within Sheffield.

It became apparent that the built environment was a significant sector as it was found 

to be responsible for two-thirds of total energy demand and two-thirds of associated 

carbon emissions in Sheffield. The remaining energy use and carbon emissions were 

attributed to the transport sector. Natural gas and electricity are the two main forms of 

delivered energy used by end users in Sheffield. However/it was shown that this has 

not always been the case. Comparison of the current study to earlier work carried out 

in 1992, indicates that both national and local changes have influenced energy and 

carbon emission patterns in Sheffield over the last eight years. The “dash for gas” in 

electricity generation combined with a shift in the economic base of Sheffield from 

heavy industry to the service industries were two of the main reasons why there was a 

19% reduction in carbon emissions over this eight-year period. This suggests that, 

whilst national changes in the energy supply mix are influential, local factors must be 

taken into account in the evaluation of carbon emissions. It can be seen that regular 

local assessment becomes important if local communities are to take responsibility for 

their carbon emissions.

Using the energy study of Sheffield, the role of energy efficiency measures in reducing 

energy consumption and associated carbon emissions in buildings was also 

investigated, along with identifying local renewable energy resources available for 

exploitation under current and future economic conditions. The study concluded that, 

in combination with energy efficiency measures, renewable energy resources could 

significantly reduce dependency on imported fossil fuels and associated carbon 

emissions. In particular, renewable energy resources could meet almost 40% of the 

energy demands of energy efficient buildings and reduce associated carbon emissions 

by 50%. Overall, a reduction of 72% in carbon emissions could be achieved within 

Sheffield’s built environment. Within the district of Sheffield, it was established that 

solar energy could make the greatest contribution to future energy supplies followed by 

local wind power, biomass energy and small-scale hydro resources. Using this 

evaluation of potential contribution, actual opportunities for the large-scale deployment
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of renewable energy technologies were outlined. PSD features could be added to 

buildings to enhance natural heating, cooling, lighting and ventilation. Solar hot water 

panels and biomass energy could provide heating for buildings. The latter could 

provide heating on an individual basis or through the utilisation of Sheffield's district- 

heating network. Adding PV panels to buildings, erecting wind turbines within the 

district boundary and installing small-scale hydro schemes could supply buildings with 

renewable electricity. It was suggested that as the replacement rate of new build is 1- 

2% per year, retrofitting existing buildings with renewable energy technologies may 

offer a more realistic way of reducing carbon emissions in the short to medium term.

Overall, the energy study demonstrated that renewable energy resources are available 

for exploitation within an urban area. Having established the possible potential of these 

resources, it was necessary to investigate what obstacles might be encountered in their 

actual deployment by undertaking a systematic analysis of the renewable energy 

technologies relevant to Sheffield. The solar energy technologies of PSD, active solar 

systems and PV were examined in turn followed by wind power, biomass energy and 

small-scale hydro. Firstly, the basic aspects, resource considerations and the technical 

and economic status of each technology were explored in order to determine whether 

these factors were influencing the uptake of renewable energy technologies. Then, 

using the relevant stakeholder demand criteria, the performance of each technology 

was evaluated against the expectations of stakeholders. This rigorous assessment of 

the issues facing the practical application of renewable energy technologies in Sheffield 

provided an important insight into the essential obstacles facing their deployment. 

Although there may be some outstanding technical issues, the renewable energy 

technologies considered here are largely mature and commercially available. Whilst 

current costs for some renewable energy technologies are high in comparison with 

conventional sources of energy, it is possible to envisage a future situation in which 

they are economically competitive. Hence, leaving economic considerations aside, it 

was necessary to consider whether other factors would be obstacles to the future 

deployment of renewable energy technologies in urban areas. Subsequent evaluation 

of renewable energy resources and technologies against stakeholder expectations 

indeed revealed that such obstacles might exist. In particular, it was discovered that 

there are questions surrounding the accessibility, ease of use, flexibility, convenience, 

reliability, consistency, affordability and quality of renewable energy technologies to 

varying degrees for both energy suppliers and end users. It was noted that people’s 

perceptions, the lack of supply and demand, the lack of support infrastructure, limited 

awareness and knowledge, and the lack of confidence in renewable energy may be
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some of the wider issues which would affect the deployment of renewable energy 

technologies in Sheffield.

Faced with the many obstacles, complexities and challenges that were identified by this 

investigation, a series of measures was proposed to promote urban renewable energy 

use. Although each solution is presented separately, they form part of an integrated 

and co-ordinated approach to help increase the profile of renewable energy in 

Sheffield, create the right conditions in which stakeholders can be influenced to invest 

in renewable energy technologies and develop an infrastructure to support renewable 

energy developments. Measures which address land use planning, building 

stakeholder confidence in renewable energy technologies and increasing supply and 

demand have been put forward. In relation to land use planning, it has been proposed 

that introducing energy plans and considering energy as a material consideration for 

development are two key ways to improve the accessibility of renewable energy 

resources for utilisation by energy suppliers, specifically, and end users, generally. 

Energy plans could provide a framework in which local authorities identify general 

areas of search with a presumption in favour of renewable energy development. In 

combination with energy becoming a material consideration for development, energy 

plans could provide a mechanism for stakeholders to identify local opportunities and to 

become actively involved in energy generation using locally available resources.

In order for energy suppliers and end users to become more involved in local energy 

production, stakeholders need to be confident in renewable energy technologies and 

their application in the urban environment. As such, an integrated approach has been 

proposed to help remove uncertainty, lack of confidence and increase understanding 

and knowledge amongst stakeholders. It has been suggested that there is a need for 

better advertising and marketing, education and training, supporting infrastructure and 

demonstration, standardisation of products, providing guarantees and certification and 

integrating renewable energy retrofits into conventional building work. The evaluation 

of renewable energy technologies against stakeholder expectations suggests that most 

stakeholders are unlikely to be motivated by environmental and sustainability concerns. 

It has been proposed that by integrating renewable energy technologies into an 

attractive “lifestyle” package, advertising and marketing could be used to emphasise 

the non-energy benefits of renewable energy technologies. This means that the focus 

is placed on the comforts and lifestyle provided rather than the specific details of the 

technology used. It is also suggested that other means of communication be utilised to 

increase the profile of renewable energy technologies, for example, having large, city-
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centre refurbishment examples and developing television, radio and educational and 

cultural programmes. In order to increase the availability of skilled trade’s people, 

training programmes are proposed together with the development and promotion of 

renewable energy business opportunities.

In addition to better advertising, promotion and education, this investigation has 

highlighted the need to make the interaction between the technology, the fuels and the 

stakeholder easier. It has been proposed that showrooms could be created in which 

customers can view and discuss renewable energy technologies with specialists as 

well as selling renewable energy alongside their conventional counterparts in existing 

shops. In light of possible stakeholder concerns regarding the consistency of using 

biomass energy, in particular wood fuel, the importance of producing standard products 

such as chips, pellets or briquettes has been emphasised. It has been suggested that 

creating a standard, consistent product may increase stakeholder confidence in wood 

fuel. In addition, technology guarantees and certification schemes have been 

proposed to help assure stakeholders that the technology will perform according to 

their expectations. Also, the possibility of integrating the installation of renewable 

energy technologies with existing building work is suggested. This may help to 

overcome problems of disruption and inconvenience and could also reduce the amount 

of building work needed and construction costs.

Although increasing stakeholder awareness and knowledge of renewable energy 

technologies is likely to stimulate supply and demand, there are additional mechanisms 

which could be put in place to promote the market for renewable energy technologies. 

At present, there is limited demand or incentives to invest in renewable energy sources 

and technology. The idea of extending the Renewables Obligation to include heat, 

which has been proposed by Friends of the Earth amongst others, is considered to be 

helpful. This market mechanism would help to create demand for renewable energy 

sources for heat production, particularly within the district heating network in Sheffield. 

In addition, changes to the existing Renewables Obligation are proposed. Lowering 

the threshold at which generators can receive ROCs could allow more small scale 

generators to take advantage of this support mechanism than is currently the case. 

Other fiscal incentives are also proposed including grant availability, particularly for 

PSD, tax breaks and reducing VAT payments on renewable energy technologies.
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The deployment of renewable energy technologies on a large-scale in Sheffield would 

mean a significant transformation of current energy provision to a distributed network of 

small-scale generators. In order to manage a diverse group of energy suppliers, many 

of which are likely to be end users, and different levels of supply within the district, a 

new type of energy utility has been proposed. The energy utility would be required to 

manage internal supply and demand and would also be responsible for managing 

imported renewable energy supply to the district. One suggestion is that the energy 

utility could take the form of an ESCO, whereby individual end users are linked to a 

single energy supplier. This contractual relationship can offer many advantages 

including financial benefits, social inclusion for those normally excluded through fuel 

poverty, and the opportunity of investing in and utilising local renewable energy 

sources. This relationship could also involve the energy utility or ESCO renting roof 

space in Sheffield for electricity generation from PV roofs and managing ownership 

issues in relation to the development of small-scale hydro schemes in the district.

Using the stakeholder demand criteria, the interface between stakeholders and 

different energy systems has been investigated. The criteria have provided a means of 

identifying and assessing the nature of the obstacles facing current and future 

renewable energy developments. In addition, they have been used to measure the 

potential success of solutions by evaluating their ability to meet and fulfil stakeholder 

expectations. Although the stakeholder criteria will be influenced by changing 

stakeholder expectations over time, this approach could be replicated in other urban 

areas. Using the criteria would help to ensure that wider non-technical and non

economic issues are taken into consideration rather than focussing on technical and 

economic factors.

The deployment of renewable energy in Sheffield would also require the utilisation of 

energy carriers to link energy supply to demand. Current energy carriers used by 

Sheffield, namely electricity, gas and district heating, were also examined to establish 

their technical and economic status and to identify any key issues facing their utilisation 

in future renewable energy developments. As an alternative, it has been suggested 

that hydrogen could be used as an energy carrier in the future. However, this raises 

the question of whether hydrogen is a suitable and realistic option. In order to 

determine the role of hydrogen as an energy carrier, a systematic examination was 

undertaken based on the examination previously undertaken for each renewable 

energy technology. The basic aspects, resource considerations and technical and 

economic status of hydrogen were examined. Then, using the energy supplier and end
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user demand criteria, the performance of hydrogen was evaluated against the 

expectations of stakeholders. This assessment showed that electricity, gas networks 

and district heating are the most viable options in the short term for Sheffield. Well- 

established distribution infrastructures are in place which could be modified for use to 

link the supply of renewable electricity, gas and heat to demand. The utilisation of 

hydrogen is more problematic. If produced from renewable energy sources, 

“renewable” hydrogen could become an important energy carrier in the future.

However, in the short to medium term, there are many questions surrounding the 

accessibility, ease of use, flexibility, convenience, reliability, consistency, affordability, 

quality and environmental sustainability of renewable hydrogen. In particular, its 

utilisation is limited by technical and economic difficulties in combination with many of 

the obstacles facing renewable energy technologies such as lack of supply and 

demand, lack of support infrastructure and lack of stakeholder confidence in the 

practical application of hydrogen.

Although there are questions over the use of renewable hydrogen, a number of 

measures were suggested to improve the prospects for the future use of hydrogen in 

towns and cities. Many of the measures suggested for renewable energy technologies 

could also be extended to promote renewable hydrogen, for example, advertising and 

promotion, education and training along with pilot studies and demonstration projects to 

increase consumer confidence in hydrogen. In particular, if hydrogen is “packaged,” in 

a marketing sense, correctly, stakeholders may be more likely to accept hydrogen as 

an energy carrier as its utilisation will also bring other lifestyle benefits. However, 

significant research, development and testing of renewable hydrogen are needed 

before this can happen. This will require a significant investment to transform 

hydrogen away from the research and development stage towards its wider utilisation 

within buildings.

It is proposed that the move towards the greater use of renewable energy resources as 

a way of reducing carbon emissions and introducing greater sustainability into urban 

systems is possible. However, this is obviously not an easy task. Using Sheffield as a 

case study example has provided an insight into the many issues and complexities 

facing the deployment of renewable energy sources and technologies within the urban 

environment. It is apparent that a great deal of commitment would be required to 

transform energy provision from the existing centrally-based system to one in which a 

diverse range of locally-distributed plants and schemes within towns, cities and rural 

areas throughout the UK meet their own energy needs. However, if major problems

225



from global climate change are to be avoided, the RCEP forecasts demonstrate that a 

very substantial shift in the energy base is needed in the UK (RCEP, 2000). This study 

has demonstrated that the potential exists for Sheffield and other UK cities to effect the 

required changes if the recommendations suggested here are implemented.

14.2 Recommendations for Further Work

Although some of the obstacles raised in this research may be specific to Sheffield, 

other obstacles are common issues facing renewable energy technologies generally. 

As such, all of the solutions suggested by this research could be extended to address 

the promotion of renewable energy technologies in other urban areas in the UK and 

elsewhere. In order to extend the conclusions from this research to other urban areas, 

the next step would be to communicate the findings of this research with key players in 

communities, such as Local Authorities, and produce articles and papers for release in 

journals and at conferences.

In terms of recommended further work, a key question that comes out of this research 

is whether the solutions suggested in Chapter 13 could be delivered collectively by 

means of an integrated approach, whether they would be effective, and whether they 

would conflict. As the current assessment was based upon a qualitative approach, the 

next step is to test the effectiveness of the solutions using quantitative research 

methods. Depending on the depth of such assessment, this research could be carried 

out in one study or in a series of studies. The aim of the work would be to investigate 

the effectiveness of the measure(s) in promoting the deployment of renewable energy 

technologies by their practical implementation within urban areas. Case study results 

for Sheffield could act as an essential basis for further research. This would allow the 

measure(s) to be investigated in detail on a local level. The wider implications for the 

UK and other countries could be drawn out in the conclusions.

The work would require a review of existing research in relation to the measures, which 

comprise of solutions associated with land use planning, namely energy plans and 

energy as a material consideration, solutions for building stakeholder confidence 

including advertising and marketing, supporting infrastructure and demonstration, 

standardisation of products, guarantees and certification and integrating building work, 

and solutions which address wider supply and demand, such as revisions to the 

Renewables Obligation, fiscal incentives and new supply and demand management. 

Additionally, solutions have been suggested in relation to the development and
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regulation of hydrogen in urban areas and these would have to be investigated. By 

using a variety of quantitative research methods including questionnaires and 

interviews, the effectiveness of the measures against the relevant stakeholder demand 

criteria could be assessed within existing decision-making and planning frameworks.

Using the land use planning solutions as an example, research could be directed 

towards assessing how effective other land use plans and land designations are in 

regulating and managing land use within urban areas and determining their impact on 

the type of development that takes place. Criteria could be produced as a means of 

assessment. Scenarios could be developed to suggest what the situation would be like 

if other land use designations and/or land use plans were not in place. This would 

provide a framework in which to examine the role of renewable energy plans and 

designations and to determine their influence within existing decision-making and 

planning frameworks. Questionnaires and interviews with decision makers, including 

planners, could be utilised to test out ideas and obtain feedback on the potential 

application of energy plans and the incorporation of energy as a material consideration. 

The effectiveness of these measures could be finally assessed against the stakeholder 

demand criteria. Once there is evidence that the solutions could work collectively 

and/or individually, a demonstration project could be initiated in Sheffield. This will 

provide practical experience and real results. This could then be extended into a pilot 

study, before practical implementation of the measure(s) take place within the UK.

This would involve comparing each measure against existing approaches such as, for 

example, the advertising of a product or service. If existing decision-making and 

planning frameworks are found to be ineffective in delivering the solutions, alternative 

structures should be suggested and the practicality of using them investigated.

In addition to the built environment, transport is another area where further work is 

required. In particular, more work needs to be done on transport energy consumption 

patterns and associated carbon emissions in urban areas, perhaps drawing upon the 

energy assessment of the transport sector contained in this research and developing it 

more for Sheffield or other towns and cities. In line with this research, a full energy 

study of transport is required in which ways of reducing energy consumption and 

carbon emissions are identified together with increasing the use of renewable energy 

sources for transport applications. This would also need extending to include the use 

of hydrogen. Additionally, transport demand criteria could be developed for different 

stakeholders including private motorists and motor cyclists, public transport providers 

and passengers, as well as pedestrians and cyclists. By undertaking a full research
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study, technical, economic, non-technical and non-economic obstacles which prevent 

the development of sustainable urban mobility could be identified and practical 

solutions to these problems could be posed. Following on from this, research which 

tests the effectiveness of the solutions would be necessary. This would have the effect 

of actually addressing the many diverse and complex issues facing the energy and 

carbon management of the transport sector to date and scenarios for the future could 

be examined. Using a case study example, such as Sheffield, would allow these 

issues to be addressed in detail on a local level with the opportunity to draw out 

parallels with other urban areas in the UK and further afield.
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APPENDIX A REVIEW OF ENERGY ASSESSMENT METHODOLOGIES

A1 Urban Energy Assessments

Urban energy assessments, or studies, provide important information on energy 

consumption and related carbon emissions within a defined area. This information can 

provide the basis for predicting future energy trends and carbon emissions. Within the 

UK, urban energy assessments have been produced for areas such as Newcastle- 

upon-Tyne (Newcastle City Council, 1992), Sheffield (Grant, 1993, 1994a, 1994b;

Grant and Mortimer, 1995; Grant et al., 1994a, 1994b, 1994c, 1995a, 1995b; Kellett, 

1993, 1994a, 1994b; Mortimer, 1993 and Mortimer et al., 1994), Conisbrough and 

Denaby (Grant and Kellett, 2001, 2002a, 2002b, 2002c) and Peterborough (Anon, 

2002b). Urban energy assessments utilise a number of energy assessment 

methodologies to produce energy and carbon emission estimations. Energy 

assessment methodologies can be used to evaluate energy supply and demand, 

energy saving potential and renewable energy prospects within a defined area. This 

review examines three different types of energy assessment and their respective 

methodologies, namely baseline energy use and carbon emission assessments 

(Sections A2 and A3, respectively), energy efficiency assessments (Section A4) and 

renewable energy assessments (Section A5). Conclusions of the review are presented 

in Section A6.

A2 Baseline Energy Assessment

A2.1 Energy Demand Estimation

Baseline energy assessments identify current energy supply and demand within a 

defined area. There are three main methodologies used to estimate energy use, 

namely approximate estimations, comprehensive estimations and hybrid estimations.

A2.2 Approximate Baseline Energy Estimations

Approximate estimations of energy use national published statistics to pro rata energy 

consumption within a defined area. Pro rata is a term used to describe the process of 

producing statistics using comparable national and local statistics. One example of this 

approach is to produce national ratios for energy consumption based on population 

statistics which can be applied at a local level (Grant, 1994a). By following this
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method, a basic assessment of energy consumption within an area can be achieved. 

This technique is particularly useful where local data are unavailable. An approximate 

estimation of energy use can be produced relatively quickly and easily and the use of 

national statistics means that the energy study can be easily replicated. However, 

where local estimations are extrapolated from national statistics, local characteristics or 

variations in energy supply and demand are not identified. This can have important 

implications for further studies, for example, the calculation of associated carbon 

dioxide emissions.

A2.3 Comprehensive Baseline Energy Estimations

Comprehensive estimations provide a detailed and in-depth energy assessment using 

information collected from a range of individual and large energy end users, including 

domestic and industrial end users, and energy suppliers. This approach is based 

entirely upon the collection of local energy data, making comprehensive estimations 

difficult to execute. The energy study of Newcastle-upon-Tyne conducted by 

Newcastle City Council in 1992 is the closest example to a comprehensive study 

carried out in the UK (Newcastle City Council, 1992). Using a steering group of major 

end user and supplier representatives, relevant energy data was collected from a range 

of sources including the Local Authority, energy suppliers and public transport 

operators (Newcastle City Council, 1992). A wide range of energy assessment 

methodologies were applied including undertaking pilot energy surveys of housing 

stock to gather primary domestic energy consumption data (Newcastle City Council, 

1992). However, where local data were unavailable, national statistics were used.

A2.4 Hybrid Baseline Energy Estimations 

A2.4.1 Hybrid Estimations

Hybrid estimations produce detailed energy assessments within the limitations of 

available resources (Bennett and Newborough, 2001). National published statistics 

and local energy data collected from a wide range of sources are used to produce 

energy demand estimations. Two examples of this approach are examined below.
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A2.4.2 MIRE Study

The MIRE study was produced for Sheffield by the Resources Research Unit of 

Sheffield Hallam University in 1992. The aim of the MIRE Study was to identify major 

energy consuming sectors within Sheffield for further examination at a later date 

(Mortimer et. al., 1994). Using national published statistics and local data including 

energy survey data of local buildings, estimates of energy use within the district were 

quickly compiled. This study used national statistics on population, energy use and 

employment to establish energy use within the domestic, business and industry and 

transport sectors. A range of energy assessment methodologies were applied to 

produce national energy consumption ratios based on numbers employed, floor area, 

number of domestic households and dwellings and number of vehicles/journeys. The 

national energy consumption ratios were then applied to Sheffield (Grant, 1994a).

Using this approach, preliminary estimates of final energy consumption per sector and 

fuel type were produced. National published statistical data used for the estimations. 

National energy statistics were taken from DUKES (DTI, 1993), population statistics 

from the National Census (1991) (OPSC, 1991) and employment data from the 

National Online Manpower Information Service (NOMIS) (NOMIS, 1993, 1994) and the 

Standard Industrial Classification (SIC) system (HMSO, 1980).

A2.4.3 CADRE Project

The overall aim of the "Conisbrough and Denaby Renewable Energy Scheme" 

(CADRE) was to achieve net zero carbon dioxide emissions in the communities of 

Conisbrough and Denaby (Grant and Kellett, 2001). A baseline assessment of energy 

use provided a detailed estimation of energy use and carbon dioxide emissions within 

the area. Using information supplied by the Local Authority and primary energy use 

surveys of individual sites and buildings, a comprehensive assessment of land use and 

energy demand within the area has been produced (Grant and Kellett, 2001). From the 

baseline energy study (Grant and Kellett, 2001), it emerged that domestic properties in 

Conisbrough and Denaby consume more than twice as much coal as the national 

average. In turn, the domestic properties are responsible for producing more than the 

national average of carbon dioxide emissions. This has additional implications in terms 

of domestic energy and carbon dioxide management within the area (Grant and Kellett,

2001). Without the local data, the high level of coal consumption in the area would 

have remained undiscovered. Where local information was unavailable, regional and 

national published statistics were used. Using a wide range of energy assessment
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techniques, baseline energy consumption and carbon dioxide emissions were 

produced for the study area and were compared to the UK. This included a breakdown 

of energy use and carbon dioxide emissions for the domestic, industrial and 

commercial sectors within Conisbrough and Denaby. As energy supply and demand is 

constantly changing, baseline energy studies can only provide a picture of energy 

demand at a particular place and time. In order to determine future patterns or 

changes in energy consumption, projections based on different scenarios including 

economic changes, the adoption of energy efficiency measures or the use of 

renewable energy sources can be forecast. The CADRE project used projections of 

future energy demand by sector produced by the Department of Trade and Industry to 

calculate projected increases in energy demand (DTI, 1995). This assessment 

indicated that the current baseline is likely to move over the next twenty years with 

some sectors experiencing higher growth in energy demand than others (Grant and 

Kellett, 2001). Further CADRE assessments examine energy efficiency improvements 

and potential renewable energy opportunities in the area.

A2.5 Key Points

In essence, energy studies require a balance between data requirements, cost, time, 

reflecting local characteristics and accuracy of the study. The availability of local 

information and resource investment are important elements for producing accurate 

studies which reflect energy use within a defined area. Limited data sources and 

limited investment compromises the accuracy and local character of energy studies. 

The Newcastle-upon-Tyne study illustrates that key energy contacts, accessible local 

information and investment in the study are important elements in ensuring successful 

energy estimations (Newcastle City Council, 1992). Without these elements in place, 

the level of detail required by comprehensive estimations is difficult to achieve. 

Approximate and hybrid estimations offer an alternative way of assessing energy use 

within a defined area where local data is limited or unavailable.

A3. Baseline Assessment of Carbon Emissions

Carbon estimations can be undertaken on a local, regional or national level and provide 

a useful indication of community-wide carbon emissions. By using estimations of 

energy demand and carbon coefficients, carbon emissions can be calculated. Carbon 

dioxide coefficients indicate the amount of carbon per unit of delivered energy. The 

carbon content of different fuels varies and, as such, the amount of carbon dioxide
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released also varies. Table A1 provides carbon coefficients for delivered energy by 

fuel type in 2000 (Pout, MacKenzie and Bettle, 2002). The coefficients take into 

account indirect emissions from processing and production and direct emissions at the 

point of use (Pout, MacKenzie and Bettle, 2002). The coefficients do not include 

carbon emissions released during the construction of the plant. The coefficients are 

presented in kilograms of carbon per gigajoule (kgC/GJ). By multiplying the total 

consumption of each fuel type by the relevant coefficient, the amount of carbon 

released can be calculated.

Table A1 Carbon Coefficients for Delivered Energy by Fuel Type for 2000 

(Pout, MacKenzie and Bettle, 2002)

Fuel Type Carbon emission coefficient (kgC/GJ)
Coal 22.5
Coke 28.2
Coke Oven Gas 16.7
Other Solid Fuels 26.7
Oil Products 20.0
Natural Gas 14.6
Electricity 37.4

Table A1 shows that natural gas produces the lowest amount of carbon per unit burned 

and electricity the highest. The emission factors for electricity reflect the mix of fuels 

used to generate electricity. Electricity is generated from a wide range of energy 

sources, namely fossil fuels, nuclear energy and renewable energy sources. The 

energy source used affects the carbon emissions released during electricity generation. 

This is illustrated in Table A2 where the differences between carbon emissions from 

nuclear power, combined cycle gas turbine (CCGT) and coal-fired power plants are 

shown. The coefficients shown in Table A2 are based on 1998 data and are for 

illustrative purposes only. The coefficients do not include carbon emissions released 

during fuel processing and plant construction. Table A2 illustrates that electricity 

generated from a coal-fired power plant produces almost two-and-a-half times more 

carbon than a CCGT power plant. Carbon emission coefficients are extremely variable 

and are constantly changing due to variations in fuel grade, conversion efficiencies and 

fossil-fuel and non-fossil fuel generated electricity.
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Table A2 Electricity Carbon Emission Coefficients (Mortimer et. al., 1998)

Electricity Source Carbon emission coefficient (kgC/GJ)
Nuclear power plant 0
CCGT power plant 34
Coal-fired power plant 80

Modelling energy use and carbon emissions improves the accuracy of any estimation. 

On a national level, models such as the Non-Domestic building Energy and Emissions 

Model (N-DEEM), have been produced to assess current emissions, investigate ways 

of reducing emission levels and provide estimations of future emissions using 

scenarios on an ongoing basis (Pout, MacKenzie and Bettle, 2002). The N-DEEM  

model uses a wide range of information sources including building stock data, energy 

audits, information provided by Local Authorities and external surveys of non-domestic 

building stock. The information collected and analysed in nationally-based models can 

be used on a local basis. The energy consumption for different activities in different 

sectors per unit of floor area has been calculated. This is also referred to as the end- 

use consumption per unit floor area (Pout, MacKenzie and Bettle, 2002). By 

determining local non-domestic activities and floor areas, the national figures can be 

applied to a local area. Extrapolating national figures uses readily available information 

and provides an approximation of energy use and emissions in relation to national 

figures. On a local level, energy surveys of local buildings including domestic buildings 

can be undertaken. When using this approach, the local sample size is important. In 

communities which have a large percentage of one type of building, for example, 

Connisbrough and Denaby, figures for a "typical" building can be compiled and applied 

to the total number of buildings/floor area within the area (Grant and Kellett, 2001). In 

a city such as Sheffield, the large diversity of buildings would make this approach 

difficult. One option would be to undertake a large number of local surveys to obtain 

representative results for the local area. Although this approach would provide a useful 

indication of local consumption and carbon dioxide emission patterns, it would require a 

significant investment in time and money to undertake the surveys and evaluate local 

data.

A4. Energy Efficiency Assessments

Energy efficiency assessments are produced for a wide variety of purposes including 

identifying ways of reducing energy consumption and carbon emissions through the 

introduction of energy efficiency options, identifying energy efficiency improvements
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and installation costs and providing the basis for implementing energy efficiency plans 

within a defined area (Grant and Kellett, 2002a). Energy efficiency options include 

technical measures such as replacing individual equipment and units including lights 

and refrigerators, improving insulation and installing control mechanisms, and non

technical measures to change occupant behaviour (Grant and Kellett, 2002a and Pout, 

MacKenzie and Bettle, 2002). The purpose of the assessment, the availability and 

quality of data and the level of investment in terms of time and monetary commitments 

affect the level of detail and analysis deployed and the accuracy and quality of the 

energy efficiency assessment.

There are two main approaches to energy efficiency assessments, namely 

comprehensive and approximate estimations. Comprehensive assessments are 

carried out on a case-by-case basis in which the energy consumption, carbon dioxide 

emissions and energy efficiency opportunities for individual buildings are assessed. 

Using this approach, the energy consumption and carbon dioxide emissions for the 

building can be modelled. This approach allows the level of investment and the cost 

effectiveness of specific energy efficiency measures to be accurately determined. 

Comprehensive assessments are in essence a "bottom-up" approach which produces 

detailed, in-depth and accurate quality assessments. With all energy efficiency 

assessments, a balance is required between data requirements, cost, time, accuracy 

and how representative the assessment is of the study area. Although comprehensive 

assessments produce accurate results, the approach is time-consuming and costly. An 

alternative approach would be to undertake an approximate energy efficiency 

assessment. Approximate assessments use generalisations and extrapolate energy 

efficiency data from national statistics. Although approximate assessments require 

less data and are quick and relatively cheap to produce, the approach cannot produce 

the same level of detail and accuracy as comprehensive assessments.

Energy efficiency assessments are an opportunity to reduce energy consumption and 

abate carbon dioxide emissions. Ideally, the best energy efficiency measures are 

those which are cost-effective, produce carbon savings and provide a net benefit 

financially (Mortimer et. al., 1998). One method of assessing the potential carbon 

savings and the cost-effectiveness of energy efficiency measures is to produce carbon 

abatement curves. The curves are a simple, clear and effective way of presenting data 

in a graphic format. In Figure A1, a schematic carbon abatement curve is presented. 

On the horizontal axis, the potential carbon emission savings for each measure is 

plotted in tonnes of carbon per year (tC/yr). The length of the measure indicates the
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amount of carbon that can be saved by its application. On the vertical axis, the net 

cost for each measure is plotted (£/tC). Each energy efficiency measure has a 

financial cost for installation and a financial saving from the use of the measure over its 

useful lifetime. Some measures also have operational costs. The net cost can be 

calculated by deducting the financial savings from the total financial costs, which are 

discounted over the useful lifetime of the measure, and dividing the result by the 

amount of carbon saved by the measure (Mortimer et. al., 1998). Discounting is a 

technique which enables cost flows which occur at different times to be compared on 

an equal basis by adjusting for the time value of money by means of the application of 

discount rates, which may be based on interest rates. Each measure is ranked from 

left to right in order of cost-effectiveness. The energy efficiency measures which 

appear below the zero cost line are cost-effective whilst those above are not cost 

effective.

Figure A1 Schematic Carbon Abatement Curve (Mortimer et. al., 1998)
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The ranking of the energy efficiency options on the curve are important as this 

approach can be used to propose that the most cost-effective measures should be 

implemented first. It be noted that although the measures that appear above the zero 

cost line are not cost-effective, some measures may have large carbon savings as 

indicated by the horizontal length of each measure. Carbon dioxide abatement curves 

can be used as a basis for evaluating potential energy efficiency options (Grant, Kellett 

and Mortimer, 1994b). When considering ways of reducing carbon emissions within a
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tight financial framework, carbon abatement curves provide a useful way of selecting 

appropriate measures (Grant, Kellett and Mortimer, 1995b). When cumulative carbon 

savings are required, a combination of measures can be selected from the curve. 

Carbon abatement curves can also be used to assess the carbon dioxide savings of 

renewable energy sources in a defined area.

A5. Renewable Energy Assessments

A5.1 Renewable Energy Estimations

From renewable energy assessments, local renewable energy sources are identified, 

costs, energy availability and carbon savings are established and possibilities for 

importing renewable energy into a defined area may be explored. The quality of 

renewable energy assessments depends on the purpose of the assessment, the 

availability and reliability of local data, the level of investment in the study in terms of 

time and monetary resources and the methodologies used. There are two main 

approaches to renewable energy assessments, namely comprehensive and 

approximate assessments.

A5.2 Comprehensive Renewable Energy Assessments

Comprehensive assessments are site-specific and provide an in-depth, detailed and 

accurate assessment of available renewable energy at a particular site. The 

assessments often result in a list of possible schemes for local development. 

Comprehensive assessments are feasibility studies undertaken by developers. A  

greater level of time and monetary investment is required in order to collect accurate 

data and fully assess the commercial feasibility of a site. Primary data for the site is 

collected and the site monitored over a given period. For example, to establish 

accurate wind speeds on a site, a wind mast would be erected to record wind speeds 

over a set period. In addition to assessing the technical and economic viability of a 

site, comprehensive assessments address non-technical and non-economic 

considerations such as planning and legal issues. Although a site may be viable in 

technical and economic terms, local land designations can have significant implications 

for renewable energy developments as the designations affect the availability of the 

resource.
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A5.3 Approximate Renewable Energy Assessments

Approximate assessments use available published data and modelling techniques to 

predict resource availability, estimate the economics of potential developments and 

indicate potential sites to exploit renewable energy sources. Approximate estimations 

are scoping studies which provide a broad view of local renewable energy potential 

within an area. A wide range of published data can be used, for example, the UK Wind 

Speed Data Software Package, which assesses wind energy potential within an area 

(ETSU, 1993). Using wind speeds based on actual readings at a  limited number of 

recording stations, the database extrapolates wind speed over wider areas and uses 

models to account for differences in local topography. The database can be used to 

assess the average wind speed for any grid reference square in the UK. This 

approach is important when identifying potential sites for commercial development and, 

as such, provides a basis for comprehensive assessments.

A5.4 Resource Cost Curves

With all renewable energy assessments, it is important to consider economic issues. 

The economic feasibility of using renewable energy sources is subject to many 

variables such as changes in production costs and fluctuating market prices for energy. 

Resource cost curves are a method of presenting resource data within an economic 

context in a graphical format (Grant, Kellett and Mortimer, 1994b). As such, the curves 

provide the basis for further evaluation of potential renewable energy developments. 

Resource cost curves can be formulated in approximate and comprehensive 

assessments. However, the curves are mainly generated from approximate 

estimations as the data collected for comprehensive assessments is often confidential 

and sensitive. Figure A2 presents a schematic resource cost curve. On the horizontal 

axis, the unit cost of a given resource is plotted. On the vertical axis, the cumulative 

quantity of the available resource is plotted. The curve shows that the amount of 

available resources increases as the unit cost increases. A line to indicate the market 

price of resources has been added. The sources to the left of this line could be 

exploited under present economic conditions and, hence, are the reserves. Although a 

greater amount of resources are clearly available to the right of the line, the exploitation 

of these resources is not economically viable at present.
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Figure A2 Schematic Resource Cost Curve (Grant, Kellett and Mortimer, 1994b)
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The market price line and the curve are not static. Changes in the market price of 

resources will have an impact upon the economic viability of resource developments. 

The curve will change over time due to new discoveries, technological improvements 

and production cost changes (Grant, Kellett and Mortimer, 1994b).

A6 Conclusions

In conclusion, there are a number of different methodologies available for producing 

energy assessments of a defined area. Assessments of energy use and associated 

carbon emissions, energy efficiency measures and renewable energy opportunities can 

be produced. The methodology used can vary from approximate estimations using 

nationally available published statistics to detailed comprehensive assessments based 

on local data. Hybrid methodologies offer a viable alternative for producing a detailed 

assessment based on locally and nationally available data. Schematic carbon 

abatement curves and resource cost curves are a simple way of presenting information 

on energy efficiency improvements and renewable energy potential in a clear format. 

The type of methodology applied depends on a number of crucial factors, namely the 

intention of the energy study, the level of detail required and the availability and quality 

of information. Without a clear purpose to the energy study, the identification of 

information sources and the right investment in terms of time, money and effort, the 

quality of the study can be compromised.
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APPENDIX B BASELINE ASSESSMENT OF ENERGY USE AND CARBON
EMISSIONS IN SHEFFIELD

B1 Hybrid Energy Assessment

A hybrid energy assessment methodology was adopted to derive local estimations of 

delivered energy consumption and associated carbon emissions within the District of 

Sheffield by fuel type and sector. This involved producing national energy consumption 

ratios in relation to the number of domestic dwellings, numbers employed, the number 

of vehicles in use and resident population figures and applied at a local level in 

Sheffield. A wide range of national and local statistical data on energy use, population, 

employment, domestic dwellings, transport and carbon emissions were used. The 

main source of information on energy use within the UK is the Digest of United 

Kingdom Energy Statistics (DUKES) (DTI, 2001a). The National Statistics Statbase 

(National Statistics, 2002a) contains population estimates. Information on national and 

local employment can be located in the Annual Abstract of Statistics (National 

Statistics, 2002b), on the National Online Manpower Information Service (NOMIS) 

(NOMIS, 2002) and from private communication with the Learning Skills Council 

(Swain, 2002). Domestic dwelling information was provided by the Office of the Deputy 

Prime Minister (ODPM, 2001, 2002). Information on transport was gathered from a 

wide range of sources including national publications (OPCS, 1991; National Statistics, 

2000a, 2000b, 2001a, 2001b, 2002b; CSRB, 2001 and DFT, 2001), regional 

publications (SYPTE, 2000) and local information sources (Boyd, 2002). Carbon 

coefficients compiled by the BRE Energy Technology Centre have been used for the 

purposes of this study (Pout, Mackenzie and Bettle, 2002). National and local statistics 

were used to pro rata energy consumption within Sheffield.

Following a preliminary examination of data sources, the study area was defined and 

the baseline year of the study, the main stakeholders and the main fuel types 

consumed within Sheffield were identified. The study area is defined as the Local 

Authority district boundary of Sheffield as shown in Figure B1. This boundary definition 

was chosen as national energy data and local statistical information, such as 

employment data, are available for this administrative unit. The baseline year of the 

study was set at 2000 due to the availability of information. In particular, information 

collected for the 2001 UK census was unavailable at the time of the study. Although 

the majority of information derives from 2000 data, other sources of data are generally
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current to within two or three years. Previous estimations of energy consumption within 

Sheffield, contained within the MIRE study, have been used to produce a baseline of 

energy consumption and carbon emissions of Sheffield in 1992 (Grant, 1993, 1994a, 

1994b; Grant, Kellett and Mortimer, 1994a, 1994b, 1994c, 1995; Grant and Mortimer, 

1995; Kellett, 1993, 1994a, 1994b; Mortimer, 1993 and Mortimer, Kellett and Grant, 

1994). The methodology used in the MIRE study forms the basis of the 2000 energy 

study of Sheffield. This approach was adopted in order to compare energy 

consumption patterns between 1992 and 2000.

Within Sheffield, the main end users were identified as the business and industrial 

sector, the domestic sector and the transport sector. The business and industrial 

sector represents many types of economic activities such as public administration 

activities including schools and hospitals, commercial activities and manufacturing of all 

types. The domestic sector comprises of all residential dwellings. Within the transport 

sector, there are three main modes available within Sheffield; road, rail and air. Road 

transport comprises of private cars and taxis, motorcycles, scooters and mopeds, 

buses and coaches, light good vehicles and heavy goods vehicles. Rail transport 

comprises of the national rail network and Supertram, Sheffield's light rail system. At 

the time of the study, Sheffield had a small airport which operated a limited number of 

services. Five fuel type categories of solid fuels, natural gas, oil products, electricity 

and renewables, were considered to be relevant in Sheffield and these were complied 

using the energy data contained in DUKES (DTI, 2001a). Solid fuels include coal and 

coke and oil products include petroleum products. Renewable energy refers to 

electricity produced from renewable energy sources such as solar and wind energy. 

Using carbon emission coefficients, estimations of carbon emissions were produced by 

sector and fuel type.

Baseline energy consumption in the UK and Sheffield were measured in terajoules 

(TJ). A T J  is a unit of energy equal to 1012 joules. A joule is a unit of energy equal to 

the energy released by an electrical current of 1 ampere driven by 1 volt for 1 second 

(DUKES, 2001).

1 TJ is equal to: 41.87 thousand tonnes of oil equivalent (ttoe)

3.6 gigawatt hours (GWh)

105.5 million therms (DUKES, 2001a).
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Carbon dioxide emissions were measured in tonnes of carbon (tC). Carbon dioxide is 

realised when different fuels containing carbon are burnt, for example, coal, oil and 

natural gas. Different fuels have different carbon contents which affects the amount of 

carbon dioxide released. In order to calculate carbon emissions, carbon coefficients 

are used. Carbon coefficients indicate the amount of carbon released per unit of 

energy available (tC per TJ) either upon combustion of a fuel or through the generation 

of electricity (Pout et al, 2002).

The subsequent sections summarise the methodologies and results of energy use and 

carbon emission calculations within the business and industrial sector (Section B2), the 

domestic sector (Section B3) and the transport sector (Section B4). The methodology 

and results of carbon emission calculations for each sector are presented in Section 

B5. Section B6 summaries the methodology and results of the MIRE study of 

Sheffield. In the absence of carbon emission data for 1992, the approach adopted for 

estimating carbon emissions in this year is also contained within Section B6.

B2. Business and Industrial Energy Use

Business and industrial energy consumption estimations were based on national 

energy data (DTI, 2001a) and employment data (National Statistics, 2002b and Swain, 

2002). This approach was adopted due to the extent, diversity, unavailability and 

confidentiality of local energy data within this sector. Industrial energy consumption 

data contained in DUKES and national employment data contained within the Annual 

Abstract of Statistics is subdivided according to the Standard Industrial Classification 

(SIC) system (CSO, 1992). In the UK, the SIC system groups economic activities of a 

similar nature into "industries". Under SIC, there are 17 broad sections (A-Q) which 

can be further subdivided into smaller sections. Table B1 provides a description of SIC  

sections A-Q. Although the SIC system is used to collate energy and employment 

data, differences in the way the data are presented required the formulation of 

aggregated industrial categories for the purpose of this study. The revised business 

and industrial sector categories used are presented in Table B2.

As illustrated in Table B2, Sections DJ and DK have been produced as a separate 

category to draw out local industrial and employment characteristics and allow for 

comparison with the earlier study on Sheffield. Under DUKES, mining and quarrying is 

classified as a fuel producer rather than final consumer of energy and has therefore 

been removed from the list (DTI, 2001a). In the preliminary examination, transport was
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identified as one of the three main end users in Sheffield and has also been removed 

from this list.

Table B1 Description of UK SIC Sections (CSO, 1992)

Section Description
A Agriculture, hunting and forestry
B Fishing
C Mining and quarrying
D Manufacturing
E Electricity, gas and water supply
F Construction
G Wholesale and retail trade, repair of motor vehicles, motorcycles and 

personal and household goods
H Hotels and restaurants
I Transport, storage and communication
J Financial Intermediation
K Real estate, renting and business activities
L Public administration and defence; compulsory social security
M Education
N Health and social work
O Other community, social and personal service activities
P Private households with employed person
Q Extra-territorial organisations and bodies

Table B2 Business and Industrial Categories (based on SIC 1992)

SIC Section Description
A, B Agriculture, fishing and forestry
DJ, DK Manufacturing of metals
D, E Other manufacturing
F Construction
G, H, J, K Commerce
L, M, N Public administration
O-Q Miscellaneous

Using the revised categories in Table B2, the total UK industrial energy consumption 

(DTI, 2001a) was divided by the number of people employed in the UK (National 

Statistics, 2002b). This produced a national industrial consumption ratio was then 

applied to the number of people employed within the business and industrial sector in 

Sheffield (Harrison, 2002). Within DUKES, a breakdown of industrial energy 

consumption by fuel type is provided (DTI, 2001a). By adopting a pro rata approach 

based on employment statistics, a breakdown of industrial energy consumption by fuel 

type was compiled for Sheffield as shown by Tables B3 to B7.
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Table B3 Solid Fuel Consumption by the Business and Industrial Sector.

Sheffield 2000

SIC Description UK Sheffield

ttoe TJ
No

employed
TJ per 
person

No
employed Total TJ

A, B

Agriculture, 
fishing and 
forestry 5 209.35 320000 0.000654219 70 0

DJ,
DK

Manufacturing 
of metals 1309 54807.83 885000 0.061929751 22440 1390

D,
E

Other
manufacturing 937 39232.19 3179000 0.012341047 17890 221

F Construction 0 0 1171000 0 9040 0
G,
H,
J, K Commerce 0 0 10764000 0 95120 0
L,
M,
N

Public
administration 197 8248.39 6101000 0.001351973 58120 79

O-Q Miscellaneous 6 251.22 1272000 0.0001975 10920 2
Total 2454 102749 23692000 0.076474491 213600 1692

Table B4 Consumption of Oil Products by the Business and Industrial Sector, 

Sheffield 2000

SIC Description UK Sheffield

ttoe TJ
No

employed
TJ per 
person

No
employed Total TJ

A, B

Agriculture, 
fishing and 
forestry 633 26503.71 320000 0.082824094 70 6

DJ,
DK

Manufacturing 
of metals 402 16831.74 885000 0.019018915 22440 427

D,
E

Other
manufacturing 5242 219482.5 3179000 0.069041378 17890 1235

F Construction 467 19553.29 1171000 0.016697942 9040 151
G,
H,
J, K Commerce 495 20725.65 10764000 0.00192546 95120 183
L,
M,
N

Public
administration 1145 47941.15 6101000 0.007857917 58120 457

O-Q Miscellaneous 147 6154.89 1272000 0.00483875 10920 53
Total 8531 357193 23692000 ■ 0.202204455 213600 2512
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Table B5 Natural Gas Consumption bv the Business and Industrial Sector.

Sheffield 2000

SIC Description UK Sheffield

ttoe TJ
No

employed
TJ per 
person

No
employed Total TJ

A, B

Agriculture, 
fishing and 
forestry 127 5317.49 320000 0.016617156 70 1

DJ,
DK

Manufacturing 
of metals 3261 136538.1 885000 0.154280305 22440 3462

D,
E

Other
manufacturing 12506 523626.2 3179000 0.16471413 17890 2947

F Construction 180 7536.6 1171000 0.006436038 9040 58
G,
H,
J, K Commerce 3744 156761.3 10764000 0.014563478 95120 1385
L,
M,
N

Public
administration 4680 195951.6 6101000 0.032117948 58120 1867

O-Q Miscellaneous 2350 98394.5 1272000 0.077354167 10920 845
Total 26848 1124126 23692000 0.466083222 213600 10565

Table B6 Renewable Energy Consumption bv the Business and Industrial Sector, 

Sheffield 2000

SIC Description UK Sheffield

ttoe TJ
No

employed
TJ per 
person

No
employed Total TJ

A, B

Agriculture, 
fishing and 
forestry 72 3014.64 320000 0.00942075 70 1

DJ,
DK

Manufacturing 
of metals 0 0 885000 0 22440 0

D,
E

Other
manufacturing 364 15240.68 3179000 0.004794174 17890 86

F Construction 0 0 1171000 0 9040 0
G,
H,
J, K Commerce 0 0 10764000 0 95120 0
L,
M,
N

Public
administration 81 3391.47 6101000 0.000555888 58120 32

O-Q Miscellaneous 12 502.44 1272000 0.000395 10920 4
Total 529 22149.23 23692000 0.015165812 213600 123
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Table B7 Electricity Consumption bv the Business and Industrial Sector,

Sheffield 2000

SIC Description UK Sheffield

ttoe TJ
No

employed
TJ per 
person

No
employed Total TJ

A, B

Agriculture, 
fishing and 
forestry 325 13607.75 320000 0.042524219 70 3

DJ,
DK

Manufacturing 
of metals 2137 89476.19 885000' 0.10110304 22440 2269

D,
E

Other
manufacturing 6848 286725.8 3179000 0.090193696 17890 1613

F Construction 136 5694.32 1171000 0.004862784 9040 44
G,
H,
J, K Commerce 5875 245986.3 10764000 0.02285268 95120 2174
L,
M,
N

Public
administration 1948 81562.76 6101000 0.013368753 58120 777

O-Q Miscellaneous 0 0 1272000 0 10920 0
Total 17269 723053 23692000 0.274905171 213600 6880

B3 Domestic Energy Use

To derive estimates of domestic energy use in Sheffield, the total domestic energy 

consumption within the UK (DTI, 2001a) was divided by the number of dwellings in the 

UK (ODPM, 2001). This calculation produced a national dwelling energy consumption 

ratio which was then applied to the number of dwellings in Sheffield (Sheffield First, 

1999). Within DUKES, domestic energy consumption by fuel type is provided. By 

adopting a pro rata approach based on the number of dwellings, a breakdown of 

domestic energy consumption by fuel type for Sheffield was compiled. The results of 

this calculation are shown in Table B8.

Table B8 Energy Consumption of Dwellings in the UK and Sheffield. 2000

UK Sheffield
Number of Dwellings 25,217,000 224,992

Total Energy Consumption (TJ) 1,960,898 17,496

Fuel Breakdown (TJ):

Solid Fuel 80,977 723
Natural Gas 1,331,759 11,882
Oil Products 135,617 1,210
Electricity 402,664 3,593
Renewable energy (electricity) 9,881 88
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This methodology was based on dwellings rather than households due to information 

availability. A dwelling can be defined as a unit of accommodation, for example, a 

house. A household relates to the number of people living at the same address, which 

can range from one person to a group of people (ODPM, 2002). Whilst household 

numbers are available for England, figures for the rest of the UK are limited (Harrison,

2002). It is important to note that this approach does not pick up local variations in 

energy consumption patterns. For example, Sheffield, once part of a large mining 

region, is likely to have higher than average levels of coal consumption, which will not 

be identified by this methodology.

B4 Transport Energy Use

B4.1 Transport Energy Demand

There are three main transport modes available within Sheffield: road, rail and air.

Road transport comprises of private cars and taxis, motorcycles, scooters and mopeds, 

buses and coaches, heavy goods vehicles and light goods vehicles. Rail transport 

consists of the national rail network and Supertram, Sheffield's light rail system. The 

main transport fuels are petroleum derivatives, comprising of diesel, leaded and 

unleaded petrol. Although there are other fuels available, such as liquid petroleum gas 

and electricity for powering vehicles, there is limited available information on the use of 

these energy sources for transportation purposes. There are a number of common 

issues facing the calculation of energy consumption by transport modes within any 

defined area. The issues include the availability of national, regional and local 

transport statistics, variations in the way information is presented and the use of 

different definitions, boundaries and methodologies. Defining boundaries is particularly 

important to the allocation of energy consumption. Each mode of transport available in 

Sheffield can travel within, through, from and/or to the district. Without defining the 

boundary, it is difficult to define travel patterns and calculate the energy consumed by 

such movements. There are many ways to allocate transport energy consumption 

within an area including allocating transport energy consumption per person in 

residence in a defined area or to collectively allocate energy consumption to each 

transport mode starting its journey in Sheffield. With such issues in mind, there is a 

need within this study to allocate energy use and carbon emissions of transport to 

Sheffield. In order to derive estimations of energy consumption by transport modes in 

Sheffield, a pro rata approach based on national and local data, where available, was 

adopted for road, rail and air transport as summarised below.
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B4.2 Road Transport

In order to estimate energy consumption of road transport in Sheffield, it was 

necessary to produce estimations on the number of vehicles within Sheffield. In the 

absence of 2001 Census data, vehicle projections were largely based on a pro rata 

approach using national and local data. Private car estimations were produced using 

local car ownership projections (SYPTE, 2000), 1991 car ownership multipliers (OPCS, 

1991) and the number of households in Sheffield (ODPM, 2001). In 2000, there were 

228,000 households in Sheffield (ODPM, 2001). Local car ownership projections were 

used to estimate the average number of households in Sheffield with no car, one car 

and two or more cars, as shown in Tables B9 and B10. In order to calculate how many 

households had two cars and three or more cars, 1991 census data was used to 

produce multipliers of car ownership as shown in Table B11 (OPCS, 1991). By using 

the 1991 multipliers, the number of households with two cars and three or more cars 

were calculated, as shown by Tables B12a and B12b.

Table B9 Local Household Car Ownership and Projections in Sheffield 

(National Statistics, 2000b)

Car Ownership Projections for 2001 Mo. of cars (%)
0 1 2+

Low 40 42 18
High 37 43 20
Average 38.5 42.5 19

Table B10 Number of Households with and without Cars in Sheffield. 2000

2001 Projections No car 1 car 2+ cars Total
Low (%) 91200 (40%) 95760 (42%) 41040 (18%) 228000(100%)
High (%) 84360 (37%) 98040 (43%) 45600 (20%) 228000 (100%)
Average (%) 87780 (38.5%) 96900 (42.5%) 43320 (19%) 228000 (100%)

Table B11 Car Ownership in Sheffield in 1991 (OPCS, 1991)

Car ownership Number 
of cars

% Households with 2+ 
cars (%)

No car 94740 44.9
1 car 83853 39.7
2 cars 27552 13.1 85.1
3+ cars 4828 2.3 14.9
Total cars 153441 100 100
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Table B12a Number of Households with Two or More Cars in Sheffield, 2000

Number of 
cars

Households 
with 2+ cars 

(%)

Projected number of households with 2+ cars Total 
number of 

cars
Low High Average

2 cars 85 34925.04 38805.6 36865.32 73731
3+ cars 15 6114.96 6497.4 6454.68 19364
Total 100 41040 45600 43320 93095

Table B12b Car Ownership in Sheffield in 2000

Car Ownership Number of Cars
1 car 96900
2 cars 73731
3+ cars 19364
Total cars 189995

Taxis numbers for Sheffield were obtained from the Taxi Licensing Section of Sheffield 

City Council as shown by Table B13 (Boyd, 2002). Taxi numbers for the year 2002  

were used as figures for 2000 were unavailable.

Table B13 Number of Taxis in Sheffield (Boyd, 2002)

Type of Vehicle Number of Taxis
Hackney carriages 402
Private hire 905
Total 1307

The number of motorcycles, mopeds and scooters vehicles licensed in the UK (CSRB, 

2001 and National Statistics, 2000a) and population estimates were used to calculate 

the number of motorcycles, mopeds and scooters per person in the UK. This figure 

was then applied to the population of Sheffield as shown by Table B14.

Table B14 Number of Motorcycles. Mopeds and Scooters in Sheffield. 2000  

(National Statistics, 2001 and CSRB, 2001)

Great
Britain

Northern
Ireland

UK

Vehicles currently licensed in: 759292 14116 773408
UK population 59755700
Vehicles per person 0.012942832
Sheffield population 530103
No. of vehicles in Sheffield 6861
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Although there are figures available on the number of buses, coaches, light goods 

vehicles and heavy goods vehicles licensed in Great Britain and Northern Ireland, 

differences with the way the information is presented make it difficult and complicated 

to estimate the number of such vehicles in the UK. As such, vehicle estimations for 

buses, coaches, light goods vehicles and heavy goods vehicles were not produced. 

Instead, energy consumption estimations for these modes of transport were produced 

using national transport petroleum consumption statistics (DFT, 2001), road transport 

petroleum consumption ratios (DFT, 2001) and population estimates.

Using national transport petroleum consumption statistics (see Table B15), national 

breakdowns of petroleum consumption by mode of road transport (see Table B16) and 

road transport motor spirit and petroleum derivatives (DERV) consumption ratios (see 

Tables B17 and B18), fuel consumption figures were produced for private cars and 

taxis, motorcycles, mopeds and scooters, buses and coaches, light goods vehicles, 

heavy goods vehicles, national rail and air transport. For private cars and taxis, the 

national petroleum consumption figure for private cars and taxis was divided by the 

number of such vehicles in the UK. This ratio was then applied to the number of 

private cars and taxis in Sheffield as shown by Table B19. This methodology was also 

adopted for calculating energy consumption by motorcycles, mopeds and scooters (see 

Table B20). For buses and coaches, the national fuel consumption figure for buses 

and coaches was divided by the UK population and then applied to the population of 

Sheffield. This was repeated for the calculation of energy consumption of light goods 

vehicles and heavy goods vehicles within Sheffield (see Table B21).

251



Table B15 National Transport Petroleum Consumption. 2000 (DFT. 20011

Transport Mode/ Fuel Type Million tonnes %
Road Transport:
Motor spirit (leaded) 1.51 4.1
Motor spirit (unleaded) 19.9 53.7
DERV 15.63 42.2
Total Road Transport Fuel Consumption 37.04 100
Rail Transport:
Gas/diesel oil/fuel oil 0.43 97.7
Burning oil 0.01 2.3
Total Rail Transport Fuel Consumption 0.44 100
Air Transport:
All aviation fuels 10.75 100
Water Transport:
Gas/diesel oil 0.91 95.8
Fuel oil 0.04 4.2
Total Water Transport Fuel Consumption 0.95 100
Total Fuel Consumption for all Transport Modes 49.18

Table B16 Petroleum Consumption bv Road Transport. 2000 (DFT. 2001)

Transport Mode Motor spirit (%) Transport Mode DERV(%)
Cars & taxis 95 Goods vehicles 68
Light goods vehicles 4 Buses & coaches 7
Other including 
motorbikes 1

Other including diesel cars 
& taxis 25

Total 100 100

Table B17 Road Transport Motor Spirit Consumption in the UK.

Transport
Mode

Motor spirit - Un eaded Motor spirit - Leaded Total
Million tonnes % Million tonnes % Million tonnes

Cars & taxis 18.905 95 1.4345 95 20.3395
Light goods 
vehicles 0.796 4 0.0604 4 0.8564
Other including 
motorbikes 0.199 1 0.0151 1 0.2141
Total 19.9 100 1.51 100 21.41

Table B18 Road Transport Petroleum Derivatives (DERV) Consumption in the UK

Transport Mode Million tonnes %
Goods vehicles 10.6284 68
Buses & coaches 1.0941 7
Other including diesel cars & taxis 3.9075 25
Total 15.63 100
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Table B19 Energy Consumption bv Private Cars and Taxis in the UK and Sheffield,

2000

Number of cars & taxis Million tonnes TJ
UK 24,964,442 24 1017441
Sheffield 191302 0.186210393 7797

Table B20 Energy Consumption bv Motorcycles. Mopeds and Scooters. 2000 

(National Statistics, 2001 and CSRB, 2001)

Motorcycles, mopeds and scooters currently licensed in: 
Great Britain 
Northern Ireland 
UK

759292
14116

773408
UK population 59755700
Vehicles per person 0.012942832
Sheffield population 530103
Number of vehicles in Sheffield 6861.034195
Motor spirit consumed by vehicles in UK (tonnes) 214100
Motor spirit per vehicle in UK (tonnes) 0.27682672
Motor spirit consumed by vehicles in Sheffield (tonnes) 1899.317593
Motor spirit consumed by vehicles in Sheffield (TJ) 80

Table B21 Energy Consumption bv Buses. Coaches. Light Goods Vehicles and 

Heavy Goods Vehicles. 2000

Heavy goods vehicles:

UK DERV consumption (million tonnes) 
UK DERV consumption (tonnes)
UK population
Sheffield population
DERV per person in the UK (tonnes)
DERV consumed in Sheffield (tonnes)
DERV consumed in Sheffield (TJ)

10.6284
10628400
59755700

530103
0.183060223
97040.77314

4061
Light goods vehicles:

UK Motor spirit (leaded and unleaded) consumption (million tonnes) 
UK Motor spirit consumption (tonnes)
Motor spirit per person in the UK (tonnes)
Motor spirit consumed in Sheffield (tonnes)
Motor spirit consumed in Sheffield (TJ)

0.8564
856400

0.014750365
7819.212498

327
Bus and coach travel:

UK bus and coach DERV consumption (million tonnes) 
UK bus and coach DERV consumption (tonnes)
DERV per person in the UK (tonnes)
DERV consumed in Sheffield (tonnes)
DERV consumed in Sheffield (TJ)

1.0941
1094100

0.018844435
9989.491352

418
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B4.3 Rail Transport

To derive estimations of energy consumption by rail transport in Sheffield, a pro rata 

approach based on track length was adopted. The national rail petroleum consumption 

figure was divided by the length of rail track in the UK (CSRB, 2001 and Williams, 

2002). This figure was then applied to the total length of track in the district of 

Sheffield. Although there are some general statistics available on Sheffield's 

Supertram, including length of track and passenger numbers, energy consumption 

figures are unavailable. In the absence of local and national data, energy consumption 

statistics for Greater Manchester's Metrolink have been used (Barry et al, 1998). Both 

the Metrolink and Supertram systems both operate on 750 volt direct current from 

overhead contact wires (Barry et al, 1998 and DFT, 2001). Based on the assumption 

that the energy consumption of Metrolink is typical of a light rail system, estimations of 

energy consumption for Supertram in Sheffield were calculated based on passenger 

kilometres. Passenger kilometres are estimates made from ticket sales (DFT, 2001). 

The energy consumption figure per passenger kilometre (Barry et al, 1998) was 

multiplied by the number of passenger kilometres travelled on the Supertram system 

for the year 2000/01 as shown by Table B22 (DFT, 2001).

Table B22 Energy Consumption of Rail Transport. 2000

Rail Transport:
Total UK track length (km) 16929
Total Sheffield track length (km) 91
Petroleum consumed by rail transport in the UK (tonnes) 440000
Petroleum consumed by rail transport in Sheffield (tonnes) 2365.1722
Petroleum consumed by rail transport in Sheffield (TJ) 99

Light Rail:
Passenger kilometres (2000/2001) 38000000
Load factor 30.1
Energy (MJ/pkm) 0.98
Energy used by Supertram (MJ) 37240000
Energy used by Supertram (TJ) 37

Total Energy Consumption by all Rail Transport in Sheffield (TJ) 136

B4.4 Air Transport

In order to produce estimations of the energy consumption of air travel in Sheffield, an 

approach was adopted based on domestic flights from Sheffield City Airport. Although
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the information available was for the year 2002 as opposed to the baseline year, the 

calculations provide an indication of the energy consumption of aviation by Sheffield. 

At the time of the study, the Airport operated scheduled flights to Belfast, Northern 

Ireland and Jersey, Channel Islands. Using flight schedules (Anon, 2002b) and an air 

distance calculator (Anon, 2002c), the total length (kilometres) of outbound flights was 

calculated. Estimations of energy consumption were based on outbound flights only. 

Return flights were not included in the calculations as it was assumed that the 

refuelling of the aeroplanes formed part of the energy consumption of the destination 

airport rather than Sheffield City Airport. The British Airways Jet Stream 41 aeroplane 

was used for scheduled flights at Sheffield City Airport. Using fuel consumption 

statistics for the Jet Stream 41 (EMEP/CORINAIR, 2001), fuel consumption figures for 

the airport were calculated. The total outbound kilometres travelled was multiplied by 

the average fuel consumption per kilometre as shown by Table B23. Although private 

flights and helicopter flights are available at Sheffield City Airport on demand, the 

necessary information required to carry out estimations of energy consumption of such 

flights was unavailable. As such, these activities are not included in the assessment.

Table B23 Energy Consumption of Air Travel in Sheffield. 2000

Jet Stream 41:
Average fuel consumption (kg/km) 0.922155917

Outbound Flights to Belfast:
Sheffield to Belfast (air km) 320
No. of flights per year 624
Fuel consumption (kg) 184136

Outbound Flights to Jersey:
Sheffield to Jersey (air km) 481
No. of flights per year 22
Fuel Consumption (kg) 9758

Air Travel in Sheffield:
Total Fuel Consumption (kg) 193894
Total Fuel Consumption (TJ) 8

B5 Carbon Emissions

Carbon emissions were calculated using carbon emission coefficients compiled by the 

BRE Energy Technology Centre (Pout, Mackenzie and Bettle, 2002). Table B24 lists 

the carbon emission coefficients for delivered energy by fuel type for 2000. The 

coefficients are presented in terms of tonnes of carbon (tC) per terajoule (TJ). Carbon
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emissions are directly related to the type and amount of fuel used within an area. As 

the fuel mix of electricity production changes over time, associated carbon emissions 

also change. In addition, the amount of total delivered energy consumed by a sector 

affects the amount of carbon emissions released. Using simple arithmetic, the carbon 

emissions for different fuels were calculated by multiplying the total fuel consumption 

within each sector by the relevant carbon coefficient as shown by Tables B25, B26 and 

B27. The fuel breakdown used in the baseline study comprises of solid fuels which 

includes coal and manufactured fuels such as coal and breeze, oil products, natural 

gas, electricity and renewable energy sources which includes solar energy, wind 

power, hydro and biomass energy sources and waste. For the purposes of this study, 

renewable energy sources, including waste, are classified as carbon neutral.

Table B24 Carbon Emission Coefficients for Delivered Energy by Fuel Type

Fuel Type Carbon emission coefficient (tC/TJ)
Coal 22.5
Coke 28.2
Coke Oven Gas 16.7
Other Solid Fuel 26.7
Oil Products 20.0
Natural Gas 14.6
Electricity 37.4

Table B25 Carbon Emissions of the Business and Industrial Sector. Sheffield 2000

Fuel Type TJ % tc %
Solid fuels 1691 7.8 43635 8.6
Oil products 2511 11.5 50227 9.9
Natural gas 10565 48.5 154246 30.5
Renewable energy 
(electricity) 123 0.6 0 0
Electricity 6880 31.6 257312 51
Total 21770 100 505420 100

Table B26 Carbon Emissions of Domestic Dwellings. Sheffield 2000

Fuel Type TJ % tc %
Solid fuels 723 4.2 17060 5.3
Oil products 1210 6.9 24200 6.9
Natural gas 11882 67.9 173477 49.5
Renewable energy 
(electricity) 88 0.5 0 0
Electricity 3593 20.5 134378 38.3
Total 17496 100 349115 100
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Table B27 Carbon Emissions of the Transport Sector, Sheffield 2000

Fuel Type TJ % tc %
Solid fuels 0 0 0 0
Oil products 12790 99.7 255800 99.5
Natural pas 0 0 0 0
Renewable energy 
(electricity) 0 0 0 0
Electricity 37 0.3 1384 0.5
Total 12827 100 257184 100

B6. Energy Use and Carbon Emissions in Sheffield in 1992 

B6.1 Energy Assessment

In 1994, the Resources Research Unit of Sheffield Hallam University produced 

preliminary estimations of energy use in Sheffield for the year 1992 as part of the MIRE 

study. Using a hybrid energy assessment methodology, published energy statistics 

and local data on population and employment figures were used to estimate energy 

consumption for the Local Authority district of Sheffield. Overall energy consumption 

was sub-divided into three key sectors, namely the business and industry, domestic 

and transport sub-sectors. In order to compare and contrast energy use and carbon 

emissions in Sheffield between 1992 and 2000, the earlier work was updated. A  

detailed breakdown of energy use in the business and industrial sector by SIC category 

and fuel type was produced. In the absence of a breakdown of carbon emissions by 

sector and fuel type, new carbon estimations for each sector in 1992 were produced. 

The following sections summarise the original and revised methodologies used and 

results for energy use in Sheffield's business and industrial sector (Section B6.2), the 

domestic sector (Section B6.3) and the transport sector (Section B6.4) in 1992.

Section B6.5 summarises the approach used to estimate carbon emissions for 

Sheffield in 1992 and presents the results of the calculations.

B6.2 Business and Industrial Energy Use

Preliminary estimations of energy consumption by the business and industrial sector in 

1992 were produced by economic activity only. In order to compare energy 

consumption in this sector between 1992 and 2000, it was necessary to produce new 

estimations of energy use by economic activity and fuel type. Using the methodology 

adopted for the assessment of energy use in this sector in 2000, as detailed in Section
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B2, breakdowns of energy use by fuel type and economic activity for 1992 were 

produced. The following tables contain the results of this assessment for coal (Table 

B28), coke and breeze (Table B29), coke oven gas (Table B30), oil products (Table 

B31), natural gas (Table B32), renewable energy (Table B33) and electricity (Table 

B34).

Table B28 Coal Consumption by the Business and Industrial Sector. Sheffield 1992

SIC Description

UK She[field

ttoe TJ
No

employed
No

employed Total TJ

A, B

Agriculture, 
fishing and 
forestry 8 334.96 279000 70 0

DJ,
DK

Manufacturing 
of metals 170 7117.9 269000 5575 148

D, E
Other
manufacturing 1494 62553.78 3594000 39089 680

F Construction 0 0 911000 9700 0
G, H, 
J, K Commerce 124 5191.88 7184000 92100 275
L, M, 
N

Public
administration 489 20474.43 1420000 0 0

O-Q Miscellaneous 431 18045.97 5718000 12961 41
Total 2716 113718.9 19375000 159495 1144

Table B29 Coke and Breeze Consumption by the Business and Industrial Sector. 

Sheffield 1992

SIC Description

UK Shelfield

ttoe TJ
No

employed
No

employed Total TJ

A, B

Agriculture, 
fishing and 
forestry 0 0 279000 70 0

DJ,
DK

Manufacturing 
of metals 3515 147173.1 269000 5575 3050

D, E
Other
manufacturing 14 586.18 3594000 39089 6

F Construction 0 0 911000 9700 0
G, H, 
J, K Commerce 0 0 7184000 92100 0
L, M, 
N

Public
administration 88 3684.56 1420000 0 0

O-Q Miscellaneous 14 586.18 5718000 12961 1
Total 3631 152030 19375000 159495 3057
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Table B30 Coke oven gas Consumption by the Business and Industrial Sector,

Sheffield 1992

UK Shel'field

SIC Description ttoe TJ
No

employed
No

employed Total TJ

A, B

Agriculture, 
fishing and 
forestry 0 0 279000 70 0

DJ,
DK

Manufacturing 
of metals 500 20935 269000 5575 434

D, E
Other
manufacturing 0 0 3594000 39089 0

F Construction 0 0 911000 9700 0
G, H, 
J, K Commerce 0 0 7184000 92100 0
L, M, 
N

Public
administration 0 0 1420000 0 0

O-Q Miscellaneous 34 1423.58 5718000 12961 3
Total 534 22358.58 19375000 159495 437

Table B31 Consumption of Oil Products by the Business and Industrial Sector. 

Sheffield 1992

SIC Description

UK Shetfield

ttoe TJ
No

employed
No

employed Total TJ

A, B

Agriculture, 
fishing and 
forestry 857 35882.59 279000 70 9

DJ,
DK

Manufacturing 
of metals 812 33998.44 269000 5575 705

D, E
Other
manufacturing 2836 118743.3 3594000 39089 1291

F Construction 897 37557.39 911000 9700 400
G, H, 
J,K Commerce 1206 50495.22 7184000 92100 1641
L, M, 
N

Public
administration 2455 102790.9 1420000 0 0

O-Q Miscellaneous 0 0 5718000 12961 0
Total 9063 379467.8 19375000 159495 4046
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Table B32 Natural Gas Consumption by the Business and Industrial Sector.

Sheffield 1992

SIC Description

UK Sheffield

ttoe TJ
No

employed
No

employed Total TJ

A, B

Agriculture, 
fishing and 
forestry 111 4647.57 279000 70 1

DJ, DK
Manufacturing 
of metals 1521 63684.27 269000 5575 1320

D, E
Other
manufacturing 5343 223711.4 3594000 39089 2433

F Construction 103 4312.61 911000 9700 46
G, H, J, 
K Commerce 4603 192727.6 7184000 92100 3752

L, M, N
Public
administration 3768 157766.2 1420000 0 0

O-Q Miscellaneous 32 1339.84 5718000 12961 3
Total 15481 648189.5 19375000 159495 7555

Table B33 Renewable Energy Consumption by the Business and Industrial Sector, 

Sheffield 1992

SIC Description

UK Sheffield

ttoe TJ
No

employed
No

employed
Total
TJ

A, B

Agriculture, 
fishing and 
forestry 72 3014.64 279000 70 1

DJ,
DK

Manufacturing 
of metals 0 0 269000 5575 0

D,E
Other
manufacturing 0 0 3594000 39089 0

F Construction 0 0 911000 9700 0
G, H, 
J, K Commerce 14 586.18 7184000 92100 35
L, M, 
N

Public
administration 64 2679.68 1420000 0 0

O-Q Miscellaneous 103 4312.61 5718000 12961 10
Total 253 10593.11 19375000 159495 46
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Table B34 Electricity Consumption of the Business and Industrial Sector,

Sheffield 1992

SIC Description

UK Sheffield

ttoe TJ
No

employed
No

employed Total TJ

A, B

Agriculture, 
fishing and 
forestry 331 13858.97 279000 70 3

DJ, DK
Manufacturing 
of metals 1297 54305.39 269000 5575 1125

D, E
Other
manufacturing 3483 145833.2 3594000 39089 1586

F Construction 150 6280.5 911000 9700 67
G, H, J, 
K Commerce 4473 187284.5 7184000 92100 2988

L, M, N
Public
administration 2193 91820.91 1420000 0 0

O-Q Miscellaneous 0 0 5718000 12961 0
Total 11927 499383.5 19375000 159495 5769

B6.3 Domestic Energy Use

Estimations of domestic energy use were produced by dividing the total domestic 

energy consumption for the UK by the number of dwellings in the UK. This ratio was 

then applied to the number of dwellings in Sheffield in 1992 as shown by Table B35. 

No revisions to these data were necessary as a breakdown of the different fuels 

consumed by the sector was already provided.

Table B35 Comparison of Energy Consumption of Dwellings in the UK and 

Sheffield. 1992 (Grant, 1994a)

UK Sheffield
Number of Dwellings: 23,557,365 220,970

Total Energy Consumption: 1,893,523 17,761

Fuel Breakdown:

Solid Fuel 222,935 2,091
Natural Gas 1,202,245 11,277
Oil Products 115,213 1,081
Electricity 353,130 3,312
Renewable energy 0 0
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B6.4 Transport Energy Use

Due to the time-consuming nature of producing estimations of transport energy use, no 

revisions were undertaken for this sector. In 1992, preliminary estimations of transport 

energy use were based on national ratios of transport energy use and the number of 

vehicles in use in Sheffield (Grant, 1994a). Three groups of transport mode were 

identified as cars and taxis, public road transport and private road haulage. For cars 

and taxis, the national average private fuel consumption per car in UK was multiplied 

by number of cars owned by Sheffield's resident population. Local taxi numbers were 

assumed to be the same as the national ratio of private cars to taxis. Fuel 

consumption estimates for public road transport were based on the number of public 

transport vehicles owned in the UK, national diesel fuel consumption by public road 

transport and national and local population statistics. Using national fuel consumption 

data for goods vehicles and national and local population figures, energy consumption 

by private road haulage vehicles was calculated. The results of this preliminary 

estimation of transport energy use are shown in Table B36.

Table B36 Transport Energy Consumption in Sheffield 1992 (Grant. 1994a)

Transport Mode Total Oil Products (TJ)
Private Cars and Taxis 7,983
Public Transport 432
Light and Heavy Goods Vehicles 4,470
Total 12,885

B6.5 Carbon Emissions

Carbon emissions were calculated using carbon coefficients for the year 1992 for coal, 

oil products, natural gas and electricity as shown in Table B37. In the absence of 

carbon coefficients for other solid fuels, such as coke and breeze, carbon coefficients 

for the year 2000 were used as shown in Table B38. All carbon coefficients are 

presented in terms of tonnes of carbon (tC) perterajoule (TJ). Using simple arithmetic, 

the carbon emissions for different fuels were calculated by multiplying total energy 

consumption by each sector and fuel type by the relevant coefficient.
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Table B37 Carbon Emission Coefficients for Delivered Energy by Fuel Type for

1992 (Grant et al, 1994c)

Fuel Type Carbon emission coefficient (tC/TJ)
Coal 24.2
Oil Products 27.2
Natural Gas 15.1
Electricity 60.0

Table B38 Carbon Emission Coefficients for Coke and Breeze and Other Solid 

Fuels. 2000 (Pout et al., 2002)

Fuel Type Carbon emission coefficient (tC/TJ)
Coke and breeze 28.2
Other solid fuels 26.7

As a breakdown of solid fuel consumption within the domestic sector was unavailable, 

national domestic solid fuel consumption figures (DTI, 1993) were used to produce 

consumption ratios of coal, coke and breeze and other solid fuels as illustrated by 

Table B39. By applying these ratios to the domestic solid fuel consumption figures for 

Sheffield in 1992, estimates of associated carbon emissions were produced as shown 

by Table B40. Table B41 summarises total estimated carbon emissions for the 

domestic sector in Sheffield in 1992. The carbon emissions of the business and 

industrial sector and the transport sector are provided in Tables B42 and B43, 

respectively.

Table B39 Domestic Solid Fuel Use in the UK in 1992 (DTI. 1993)

Type of Solid Fuel Million tonnes %
Coal 4.18 65
Coke and breeze 0.26 4
Other solid fuels 1.99 31
Total 6.43 100

Table B40 Carbon Emissions of Solid Fuel Consumption. Sheffield 1992

Type of Solid Fuel TJ % tc
Coal 1359 65 32893
Coke and breeze 84 4 2357
Other solid fuels 648 31 17307
Total 2,091 100 52557
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Table B41 Carbon Emissions of Domestic Dwellings, Sheffield 1992

UK Sheffield
TJ tc TJ tc

Total Energy Consumption/ 
Carbon Emissions: 1,893,523 48,078,964 17,761 450,963

Fuel Breakdown: 
Solid Fuel 
Natural Gas 
Oil Products 
Electricity 
Renewable energy

222,935
1,202,245

115,213
353,130

0

5,603,471
18,153,900
3,133,793

21,187,800
0

2,091
11,277

1,081
3,312

0

52.557.1 
170,282.7
29.403.2 
198,720

0

Table B42 Carbon Emissions of the Business and Industrial Sector. Sheffield 

1992

Fuel Type TJ tc
Coal 1143.594 27675
Coke and breeze 3057.852 86231
Coke oven gas 437.1028 11671
Renewable energy 45.49058 0
Natural gas 7554.898 114079
Electricity 5769.567 346174
Oil Products 4045.813 110046
Total 22054.32 695876

Table B43 Transport Carbon Emissions. Sheffield 1992

Transport Mode Energy Consumption (TJ) Carbon Emissions (tC)
Private Cars and Taxis 7,983 217,133
Public Transport 432 11,759
Light and Heavy Goods Vehicles 4,470 121,571
Total 12,885 350,463
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APPENDIX C ENERGY EFFICIENCY ASSESSMENT

C1 Approximate Energy Assessment

This appendix evaluates the potential reduction of energy demand through energy 

efficiency measures. Following the examination of current energy use and associated 

carbon emissions in Sheffield in the year 2000, buildings were identified as the main 

consumers of energy and carbon emissions (Appendix B). Approximately two-thirds of 

total delivered energy consumption and carbon emissions are attributed to buildings. 

The remaining third is attributed to transportation. As such, buildings offer a significant 

opportunity to reduce energy demand and carbon emissions in the district. Using 

generalisations and extrapolated energy efficiency data from national statistics 

(DEFRA, 2002; EA, 2002 and EST, 2002), an approximate estimation of potential 

energy and carbon savings in buildings was produced. Any potential savings were 

compared against the baseline energy and carbon emission assessment of Sheffield 

for the year 2000. It is important to note that although this approach is relatively quick 

to use and requires less data, it cannot produce a comprehensive, detailed and wholly 

accurate energy efficiency assessment. Using an approximate approach provides a 

general indication of potential savings across the sector as a whole. Due to the 

approximate nature of the approach, it does not highlight variations in energy efficiency 

potential which differ from building to building.

In order to maintain consistency with the other appendices, the same definition of the 

study area, the year of the study, main energy sectors, main fuel types and units of 

measurement have been used. These terms are defined in Section B1 of Appendix B. 

The following sections summarise the methods and results of energy efficiency 

assessments for the business and industrial sector (Section C2) and the domestic 

sector (Section C3). In Section C4, overall energy consumption and carbon emissions 

with energy efficiency improvements are presented.

C2 Business and Industrial Sector

There are many problems facing the analysis of potential energy efficiency savings in 

the business and industrial sector due to the many different types of buildings which 

are used for a wide range of economic activities such as retail, education and 

manufacturing. As such, potential energy efficiency savings can vary considerably.
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This has been demonstrated by work on the Conisbrough and Denaby Renewable 

Energy (CADRE) Scheme project carried out by the Resources Research Unit of 

Sheffield Hallam University in 2001. It emerged that potential energy efficiency savings 

of between 10% and 18% were found to be possible within the commercial sector and 

5% to 16% in public sector buildings and infrastructure (Grant and Kellett, 2002a). In 

order to provide an indication of potential energy and carbon savings within the 

business and industrial sector in Sheffield in 2000, national energy efficiency targets for 

industry were used (EA, 2002). Since 2000, the industrial sub-sector has experienced 

a trend of 10% improvement in energy efficiency overall (EA, 2002). This trend is 

forecast to continue up to 2020. Based on this trend, it has been assumed that energy 

savings of 10% can be achieved within the industrial sub-sector in Sheffield. In the 

absence of energy efficiency estimations for business activities, this ratio was also 

applied to the business sub-sector. Carbon emissions for each fuel type have been 

calculated by multiplying the total fuel figure by the relevant carbon coefficient as 

shown in Table C1. Tables C2 and C3 show the energy and carbon savings by fuel 

type for the industrial and the business sub-sectors, respectively.

Table C1 Carbon Emission Coefficients for Delivered Energy by Fuel Type. 2000

Fuel type Carbon emission coefficient (tC/TJ)
Coal 22.5
Coke 28.2
Coke oven gas 16.7
Other solid fuel 26.7
Oil products 20.0
Natural gas 14.6
Electricity 37.4

Table C2 Energy Efficiency Assessment for the Industrial Sub-sector

Fuel Type
Energy Consumption Carbon Emissions

Before energy 
efficiency

After energy 
efficiency

Before energy 
efficiency

After energy 
efficiency

TJ TJ tc tc
Solid fuels 1610 1449 41550 37395
Oil products 1662 1496 33239 29915
Natural gas 6409 5768 93568 84211
Renewable
energy 86 77 0 0
Electricity 3882 3494 145199 130679
Total 13649 12284 313556 282200
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Table C3 Energy Efficiency Assessment of the Business Sub-sector

Energy Consumption Carbon Emissions
Fuel Type Before energy After energy Before energy After energy

efficiency efficiency efficiency efficiency
TJ TJ tc tc

Solid fuels 81 73. 2084 1876
Oil products 849 764 16989 15290
Natural qas 4156 3740 60678 54610
Renewable
energy 37 34 0 0
Electricity 2998 2698 112113 100902
Total 8121 7309 191864 172678

C3 Domestic Sector

Unlike the business and industrial sector, it is possible to allocate domestic energy use 

by end use and fuel type (DEFRA, 2002). Additionally, national estimations on 

household energy efficiency savings have been produced (EST, 2002). However, the 

analysis of potential energy efficiency savings in the domestic sector is problematic. It 

is difficult to estimate the percentage of dwellings which are energy efficient, and to 

what extent, and those which are not. In order to be consistent with the analysis of 

energy efficiency in the business and industrial sector whilst providing a general 

indication of potential domestic energy savings, national energy efficiency targets for 

the domestic sector were used (PIU, 2002). Trends have shown that there have been 

improvements in domestic energy efficiency in recent years and that there are 

significantly more opportunities for energy efficiency in this sector (EST, 2002). In a 

recent report it was suggested that domestic energy efficiency could be improved by 

20% by 2020 (PIU, 2002). This ratio has been applied to the baseline domestic energy 

consumption and carbon emission data for Sheffield in 2000. Table C4 shows the 

energy and carbon savings by fuel type which could be achieved in the domestic 

sector. Carbon emissions have been calculated using the carbon coefficients 

presented in Table C1.
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Table C4 Energy Efficiency Assessment for the Domestic Sector

Fuel Type
Energy Consumption Carbon Emissions

Before energy 
efficiency

After energy 
efficiency

Before energy 
efficiency

After energy 
efficiency

TJ TJ tc tc
Solid fuels 723 578 17060 14923
Oil products 1210 968 24200 19360
Natural gas 11882 9506 173477.2 138782
Renewable
energy 88 70 0 0
Electricity 3593 2874 134378.2 107503
Total 17496 13996 349115.4 280568

C4 Overall Energy Consumption and Carbon Emissions

In Table C5, the results of the energy efficiency assessments of the business and 

industrial and domestic sector are collated. Energy consumption and carbon emissions 

are subdivided by fuel type. Table C5 shows that after energy efficiency 

improvements, the domestic sector is the largest consumer of energy within Sheffield, 

followed by the industrial sub-sector and the business sub-sector. The domestic sector 

and the industry sub-sector are jointly responsible for the largest share of carbon 

emissions, followed by the business sub-sector.

C5 Energy Consumption and Carbon Emissions of Buildings with Energy Efficiency

Sheffield 2000

Fuel Type

Sector (TJ and tC)
TotalBusiness Industry Domestic

TJ tc TJ tc TJ tc TJ tc
Solid fuels 73 1876 1449 37395 578 14923 2100 54194
Oil products 764 15290 1496 29915 968 19360 3228 64565
Natural gas 3740 54610 5768 84211 9506 138782 19014 277604
Renewable energy 34 0 77 0 70 0 181 0
Electricity 2698 100902 3494 130679 2874 107503 9067 3390834
Total 7309 172678 12284 282200 13996 280568 33590 735447
Sector share of 
total (%) 22 24 36 38 42 38 100 100
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APPENDIX D RENEWABLE ENERGY ASSESSMENT OF SHEFFIELD

D1 Approximate Energy Assessment

Following the examination of current energy use and associated carbon emissions in 

Sheffield in 2000 (Appendix B) and ways of reducing energy demand in buildings 

through energy efficiency measures (Appendix C), it is necessary to look at the 

prospects for utilising local renewable energy resources in Sheffield to lower carbon 

emissions. At present, buildings consume approximately two-thirds of total delivered 

energy in Sheffield and are responsible for two-thirds of associated carbon emissions.

It has been estimated that the vast majority of delivered energy consumed by buildings 

comes from fossil fuel sources (Appendix B and C). Introducing energy efficiency 

measures can lower energy consumption within buildings and associated carbon 

emissions (Appendix C). By substituting the remaining energy supply with energy 

produced from local renewable energy sources, carbon emissions could be 

substantially lowered across Sheffield. Data on local renewable energy supply, 

produced for the MIRE study, and the outcomes of the energy efficiency assessment of 

Sheffield in 2000 forms the basis of this assessment. An approximate approach was 

adopted in order to compare potential renewable energy supply with current energy 

demands. This approach provides a general indication of available renewable energy 

supply and potential carbon savings that could be achieved in Sheffield. However, due 

to the approximate nature of this approach, a comprehensive and detailed analysis 

cannot be produced.

The terms and definitions and units of measurement used here consistent with the 

Appendices B and C. Details on the definition of the study area and other terminology 

can be found in Section B1 of Appendix B. In order to identify the available renewable 

energy supply in Sheffield, Section D2 summarises the approach and results of the 

MIRE study. Detailed discussion of the methodology and outcomes of the MIRE  

assessment are discussed eisewhere (Grant, Kellett and Mortimer, 1994b, Grant, 

Kellett and Mortimer et al, 1994 and Grant, Kellett and Mortimer, 1995). Based on the 

findings of the MIRE study, Section D3 summarises the methods and results of the 

renewable energy assessment of Sheffield in 2000. In Section D4, overall energy and 

carbon savings for buildings in Sheffield are presented.
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D2 M IRE Study

The Resources Research Unit of Sheffield Hallam University produced the MIRE study 

in 1992. National and local data and modelling techniques were used to identify local 

renewable energy sources, predict resource availability, estimate economic feasibility 

and identify potential sites for development in Sheffield and the surrounding area.

Using standard resource assessment techniques, four available renewable energy 

sources were identified as available for exploitation in Sheffield, namely solar energy, 

wind power, small-scale hydro power and biomass energy (Grant, Kellett and Mortimer, 

1994b and Grant, Kellett and Mortimer et al, 1994c). The results of the MIRE  

renewable energy assessment are summarised in Table D1.

Table D1 Renewable Energy Resources in Sheffield

Renewable Energy 
Source

Resource Base 
(TJ / year)

Resources
(TJ/year)

Reserves
(TJ/year)

Solar energy 2,200,000 8,262 400
Wind power 6,100 2,808 60
Biomass energy 5,000 2,291 0
Small-scale hydro 1,200 90 20
Total 2,212,300 13,451 480

Using standard resource techniques, the available resource in a given area can be 

subdivided into three categories; the resource base, resources and reserves. The 

resource base is the total amount of energy available from a given source. Under most 

circumstances, it is impossible to exploit the entire resource base. Technological 

issues, in particular the efficiency of renewable energy technologies to collect and 

convert energy into useful forms of energy such as heat and light, affect the utilisation 

of the resource base (Elsayed and Mortimer, 2001). Resources can be defined as "the 

part of the resource base which could be developed under present or future economic 

circumstances using existing or modified current technology" (Grant, Kellett and 

Mortimer, 1994b). Under such circumstances, the renewable energy resources, which 

could be exploited now or in the future, are significantly less than the resource base, as 

illustrated by Table D1. In addition to technological and economic issues, the MIRE  

examination of renewable energy resources also addressed physical constraints. For 

example, when looking at the available wind power resource, the proximity of housing 

to the siting of wind turbines was examined (Grant, Kellett and Mortimer, 1994b). 

Technological advances and changing energy prices affect the availability of resources 

and reserves. Reserves can be defined as "that part of the resources which have been
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proved to exist and which could be exploited under present economic circumstances" 

(Grant, Kellett and Mortimer, 1994b). As such, reserves are essentially dynamic in 

nature due to fluctuating prices. As prices change and resource use becomes 

financially feasible, the size of resources changes very quickly (Grant, Kellett and 

Mortimer, 1994b). A schematic illustration of this situation is provided in Section A5.4 

of Appendix A. In addition to economic issues, commercial considerations also affect 

the availability of reserves. For example, environmental considerations such as land 

designations and the ability to gain planning permission affect the feasibility of 

renewable energy developments (Grant, Kellett and Mortimer, 1994b).

D3 Renewable Energy Assessment of Sheffield, 2000

D3.1 Renewable Energy Resources

As illustrated by the MIRE study, the two most important classifications of renewable 

energy sources are resources and reserves. These terms indicate the practical 

potential of utilising the resources base and the economic feasibility of utilising 

renewable energy in the current energy market. Although the commercial exploitation 

of renewable energy reserves is important, it is only relevant when considering 

exploitation of renewable energy at the present time (Grant and Kellett, 2002b). Since 

ways of increasing the utilisation of renewable energy supply over the longer term are 

being investigated here, the calculation of renewable energy resources forms the basis 

of this analysis. The following sections summarise the methods used to apply the 

results of the MIRE renewable energy assessment to current energy demands in 

Sheffield. Estimations of energy demand in Sheffield after energy efficiency reductions 

are used as the basis of this assessment (Appendix C). It is important to note that 

although the MIRE study was conducted in 1992, the available renewable energy 

resources at that time have been applied to energy estimations of Sheffield in 2000.

D3.2 Renewable Energy Supply

In order to estimate carbon savings that couia be achieved by utilising iocal renewable 

energy resources, it was necessary to establish how renewable energy could be 

utilised by buildings in Sheffield. As illustrated by Table D1, solar energy is the largest 

renewable energy resource available within Sheffield. The MIRE study illustrated that 

solar energy could provide buildings with heat or electricity. The roof space and 

fal ades of buildings could be installed with either active solar hot water heating
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systems or PV cells for electricity generation (Grant, Kellett and Mortimer, 1994b). By 

taking data from the MIRE study, it was possible to breakdown the solar resource into 

solar application, suitable buildings, type of useful energy (output), energy supply (TJ/ 

year) and share of solar resource as shown in Table D2.

Table D2 Solar Energy Supply in Sheffield

Solar Application Suitable Buildings Type of Useful 
Energy

Energy
Supply

(TJ/year)

Share of 
Solar 

Resource (%)
PV panels Roofs of industrial 

buildings
Electricity 2643.8 32

PV panels Roofs and facades 
of business 
buildings

Electricity 2478.6 30

Active solar (hot 
water) systems

Roofs of domestic 
buildings

Heat 2313.3 28

PV panels Motorway
earthworks

Electricity 862.2 10

Total 8262 100

In addition to solar energy, wind power, biomass energy and small-scale hydro power 

are also available for exploitation in Sheffield. As summarised in Table D3, these 

resources could be utilised to supply energy consumers with electricity or heat.

Table D3 Wind Power. Biomass Energy and Small-scale Hydro Power Supply in 

Sheffield

Renewable Energy Resource Type of Useful Energy Energy Supply (TJ/year)
Wind power Electricity 2808
Biomass energy Heat 2291
Small-scale hydro power Electricity 90
Total 5189

Although it is difficult to foresee the extent to which sector would utilise energy from 

renewable energy resources, it was necessary to allocate this potential energy supply 

to each sector. In the case of electricity, it was assumed that renewable electricity from 

wind power and small-scale hydro power resources would be allocated where needed. 

Electricity generated from solar applications would be applied as set out in Tabie D2. 

Space and water heating are important requirements of all buildings. As such, biomass 

energy supply was subdivided equally amongst the business sub-sector, industrial sub

sector and domestic sector. Table D4 summarises the total renewable energy heat 

and electricity supply which could be utilised in Sheffield. As the updated energy study
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of Sheffield for 2000 focusses on buildings, the use of PV for motorway earthworks has 

been excluded from this assessment.

Table D4 Breakdown of Renewable Energy Resources by Sector. Sheffield 2000

Renewable Energy Resource Sector (TJ) Total
(TJ)Business Industrial Domestic

Solar energy:

Solar energy breakdown:
Electricity
Heat

2478.6 2643.84
2313.36

7436

Wind power (electricity) - - - 2808
Small-scale hydro (electricity) - - - 90
Biomass energy (heat) 763.6 763.6 763.6 2291
Total (TJ) 12625

Using the outcomes of the energy efficiency assessment of buildings in Sheffield, it has 

been estimated that natural gas and electricity are the two main fuels and sources of 

carbon emissions in Sheffield (Appendix C). Whilst electricity will be used for a wide 

range of electrical-based services, the majority of natural gas is likely to be used for 

space and water heating within buildings. In order to try and reduce the consumption 

of natural gas and non-renewable electricity in Sheffield, this assessment has focused 

on substituting natural gas and conventional electricity supply with heat and electricity, 

respectively, from renewable energy resources. The methods and results of this 

assessment are provided in the following sections. The business and industrial sector 

and the domestic sector are addressed in turn.

D3.3 Business and Industrial Sector

By looking at Tables D3 and D4, it is clear that renewable energy could supply the 

business sub-sector with 763.6 TJ of heat (biomass energy) and 2478.6 TJ of 

electricity (PV) a year. For industrial energy use, 763.6 TJ of heat (biomass energy) 

could be utilised together with 2643.84 TJ of electricity (PV). In order to estimate 

carbon savings from utilising this renewable energy supply, it was necessary to offset 

the available renewable energy supply against the energy demand of energy efficient 

buildings in the business and industrial sector in Sheffield (see Table D5). Firstly, the 

biomass energy contribution was deducted from natural gas consumption. As solar 

energy is the largest available resource in Sheffield, it was assumed that all of this 

potential should be utilised. Renewable electricity, generated from PV panels, was 

deducted from current electricity demand. Any remaining electricity demand was offset
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using electricity produced from small-scale hydro power and wind power resources. 

The outcome of this renewable energy assessment is provided in Table D6.

Table D5 Energy Consumption and Carbon Emissions of Buildings with Energy 

Efficiency in the Business and Industrial Sector

Fuel Type

Sector (TJ and tC) Total
Business Industry

TJ tc TJ tc TJ tc
Solid fuels 73 1876 1449 37395 1522 39271
Oil products 764 15290 1496 29915 2259 45205
Natural gas 3740 54610 5768 84211 9508 138821
Renewable energy 34 0 77 0 111 0
Electricity 2698 100902 3494 130679 6192 231581
Total 7309 172678 12284 282200 19593 454878

Table D6 Energy Consumption and Carbon Emissions of Buildings with Energy 

Efficiency and Renewable Energy Supply in the Business and Industrial 

Sector

Fuel Type Business Industry Total
TJ tc TJ tc TJ tc

Solid fuels 73 1876 1449 37395 1522 39271
Oil products 764 15290 1495 29915 2259 45205
Natural gas 2977 43460 5005 73062 7982 116522
Renewable energy 3495 0 4335 0 7830 0
Electricity 0 0 0 0 0 0
Total 7309 60626 12284 140372 19593 200998

D3.4 Domestic Sector

Within domestic buildings, the majority of natural gas consumption is used for space 

and water heating purposes (DEFRA, 2002). Utilising active solar hot water systems 

and biomass energy could displace 2313.3 TJ and 736.6 TJ respectively of natural gas 

consumption. In order to estimate carbon savings from utilising this renewable energy 

supply, it was necessary to offset this supply against the energy demand of energy 

efficient buildings in the d^nnpstir. sprtfnr in ShpffiplH PR Rhnwn in Tahlp D7 Firstly thew  w  '  ’ * *  — • » *  *    '  ̂  — ........ ...........

energy supply from active solar systems was deducted from natural gas consumption, 

followed by the contribution from biomass energy. Renewable electricity from small- 

scale hydro power and wind power resources were then offset against current domestic 

electricity demands. Table D8 shows the carbon savings by fuel type for the domestic 

sector following this renewable energy assessment.
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Table D7 Energy Consumption and Carbon Emissions of Buildings with Energy

Efficiency in the Domestic Sector

Fuel Type Domestic
TJ tc

Solid fuels 578 14923
Oil products 968 19360
Natural gas 9506 138782
Renewable energy 70 0
Electricity 2874 107503
Total 13996 280568

Table D8 Energy Consumption and Carbon Emissions of Buildings with Energy 

Efficiency and Renewable Energy Supply in the Domestic Sector

Fuel Type Domestic
TJ tc

Solid fuels 578 14923
Oil products 968 19360
Natural gas 6429 93863
Renewable energy 4975 0
Electricity 1046 39104
Total 13996 167250

D4 Overall Carbon Savings in the Built Environment

In Table D9, the results of the renewable energy assessments of the business and 

industrial sector and the domestic sector are provided. Energy consumption and 

carbon emissions are subdivided by fuel type. Table D9 shows that renewable energy 

could make a significant contribution to lowering carbon emissions in Sheffield. In 

particular, renewable electricity could meet all the electrical demands of the business 

and industrial sector. However, the greatest contribution lies within the domestic 

sector, whereby a combination of renewable heat and electricity could significantly 

reduce emissions from this sector.
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Table D9 Energy Consumption and Carbon Emissions of Buildings utilising Local

Renewable Energy Resources. Sheffield 2000

Fuel Type Business Industry Domestic Total
TJ tc TJ tc TJ tc TJ tc

Solid fuels 73 1876 1449 37395 578 14923 2100.138 54194.15
Oil products 764 15290 1496 29915 968 19360 3228.236 64564.71
Natural gas 2977 43460 5005 73062 6429 93863 14409.97 210385.6
Renewable energy 3495 0 4335 . 0 4975 0 12805.54 0
Electricity 0 0 0 0 1046 39104 1045.553 39103.69
Total 7309 60626 12284 140372 13996 167250 33589.44 368248.1

276



REFERENCES

Alsema, E A and Nieuwlaar, E. 2000. Energy viability of photovoltaic systems. Energy 

Policy, 28, 999-1010.

AMEC. 2004a. Approval for Another Major Wind Farm Project. Visited: 15th June 

2004. URL: http://www.amec.com

AMEC. 2004b. Tees Wind North. Visited: 15th June 2004. URL: 

http://www.amec.com

Anon. 1998. Integration of Solar Energy Components in Buildings. Thermie 

Programme Action. European Commission Directorate General for Energy.

Anon. 1999a. Silence is golden. Sustainable Energy Developments, 

August/September 1999, 29.

Anon. 1999b. District Energy in Sweden. Visited: 16th March 1999. URL: 

http://www.enerqy.rochester.edu/se/

Anon. 1999c. Hydrogen and Fuel Cell Letter: Singapore Physicists Report High 

Hydrogen Storage Capacities in Alkali-Doped Carbon Nanotubes. Visited: 17th August 

2001. URL: http://www.hfcletter.com/

Anon. 2000a. Sourcebook: Passive Solar Design. Visited: 11th October 2000. URL: 

http://www.qreenbuilder.com/sourcebook/

Anon. 2000b. Fair pay for solar sees light of day. ENDS Report, 303, 35. April 2000.

Anon. 2000c. Wind's new challenge: Predictable Power. Wind Directions, November 

2000, 23-37.

Anon. 2000d. Blythe set for the opening. Sustainable Energy Developments, 

August/September 2000, 28.

277

http://www.amec.com
http://www.amec.com
http://www.enerqy.rochester.edu/se/
http://www.hfcletter.com/
http://www.qreenbuilder.com/sourcebook/


Anon. 2000e. Some field experiments of growing miscanthus. Biomass Farmer & 

User, June 2000, 26, 11.

Anon. 2001a. The Compost Resource Page. Composting - The Basics. Visited: 27th 

April 2001. URL: http://www.oldqrowth.org/compost/

Anon. 2001b. Belfast and Jersey Flight Schedules. Visited: 10th July 2002. URL: 

http://www.sheffieldcitvairport.com

Anon. 2001c. Distance Calculator. Visited: 23rd September 2002. URL: 

http://www.indo.com

Anon. 2001 d. The Competitive Gas Market. Visited: 4th October 2001. URL: 

http://www.powercheck.demon.co.uk/qas

Anon. 2002a. Stagecoach Supertram. Visited: 10th July 2002. URL: 

http://www.supertram.com

Anon. 2002b. Peterborough Energy Audit. Visited: 27th March 2002. URL: 

http://pect.peterborouqh.qov.uk/

Anon. 2003. Resistance to Change. Visited: 21st November 2003. URL: 

http://www.mindtools.com/

Anon. 2004a. Advertisement of the Titanic Mill, Laithwaite, Near Huddersfield. 

Yorkshire Post, Saturday May 22 2004, D3.

Anon. 2004b. Definitions of FUEL CELL. Visited: 20th July 2004. URL: 

http://www.sol.crest.org/

Ashley, A., Grant, J F and Kellett, J E. 1996. Renewabie Energy Feasibiiity Studies: 

Soiar Energy Retrofitting. Report No. SCP 10/6. Resources Research Unit, Sheffield 

Hallam University, United Kingdom. June 1996.

Baldwin, D J. 1993a. Anaerobic Digestion in the UK: A Review of Current Practice. 

Report No. ETSU B/FW/00239/REP.

278

http://www.oldqrowth.org/compost/
http://www.sheffieldcitvairport.com
http://www.indo.com
http://www.powercheck.demon.co.uk/qas
http://www.supertram.com
http://pect.peterborouqh.qov.uk/
http://www.mindtools.com/
http://www.sol.crest.org/


Baldwin, D J. 1993b. Appraisal of Farm Waste Management Options. Report No. 

ETSU B/FW/00224. Prepared by ADAS Silsoe for the Energy Technology Support 

Unit, Harwell, United Kingdom.

Barry, R, Jenkins, T, Jones, E, King, C and Wiltshire, V. 1998. Green Job Creation in 

the UK. Harmsworth Printers. National Report submitted as part of the "Awareness 

Campaign for Green Job Creation in the European Union". Supported by European 

Commission DGXI Unit A2 Project no. 306/68/24.4.96. June 1998.

Bell, S. 1997. Environmental Law. Fourth Edition. London, United Kingdom. 

Blackstone Press Limited.

Bennett, M and Newborough, M. 2001. Auditing energy use in cities. Energy Policy 

29, 125-143.

Berger, I E and Corbin, R M. 1992. Perceived Consumer Effectiveness and Faith in 

Others as Moderators of Environmentally Responsible Behaviours. Journal of Public 

Policy & Marketing, 11 (2), 79-88.

Best Foot Forward. 2002. City Limits A resource flow and ecological footprint analysis 

of Greater London. Best Foot Forward Ltd.

Boyd, P. 2002. Private communication with the Taxi Licensing section, Sheffield City 

Council. 5th August 2002.

Bridgwater, A V  and Evans, G D. 1993. An Assessment of Thermochemical 

Conversion Systems for Processing Biomass and Refuse. Report No. ETSU 

B/T1/00207/REP. Prepared by Aston University and DK Teknik (Denmark) for the 

Energy Technology Support Unit, Harwell, United Kingdom.

Bridgwater, A V, Czernik, S, Diebold, J, Meier, D, Oasmaa, A, Peacooke, C, Piskorz, J 

and Radlein, D. 1999. Fast Pyrolysis of Biomass: A Handbook. Newbury, Berkshire, 

United Kingdom. CPL Press.

Brown, M, Atkinson, R, Parker, P and Harrison, I. 2001. England The Photographic 

Atlas. London, United Kingdom. Harper Collins Illustrated.

279



Brown, M A. 2001. Market failures and barriers as a basis for clean energy policies. 

Energy Policy, 29, 1197-1207.

BWEA. 1994. Best Practice Guidelines for Wind Energy Developments. London, 

United Kingdom. The British Wind Energy Association.

BWEA. 2000. British Wind Energy Association. Visited: 5th June 2004. URL: 

http://www.bwea.com

BWEA. 2003. PPS22 guides the wav for wind. Visited: 23rd October 2003. URL: 

http://www. bwea. com

CADDET. 2001. Upgrading of Biogas to Natural Gas Quality. Technical Brochure No. 

154. Didcot, Oxfordshire, United Kingdom. CADDET Centre for Renewable Energy. 

March 2001.

Cassedy, E S and Grossman, P Z. 1998. Introduction to Energy: Resources 

Technology and Society. Cambridge, United Kingdom. Cambridge University Press.

CAT. 1995. Tapping the Sun: A Solar Water Heating Guide. Powys, Wales. Centre 

for Alternative Technology.

CHPA. 1998. District Heating Statistics for the UK. Visited: 24th October 2004. URL: 

http://www.chpa.co.uk/dheatuk.html

CHPA. 2004. Applications of CHP. Visited: 20th March 2004. URL: 

http://www.chpa.co.uk

Christin, B, Frey, P, Grant, J F, Kelly, M D and Mortimer, N D. 1996. Renewable 

Energy Feasibility Studies: Load Management of Biomass District Heating Networks. 

Report No. SCP 10/8. Resources Research Unit, Sheffield Hallam University, United 

Kingdom. November 1996.

ClearSkies. 2004. Renewable Energy Grants. Visited: 10th May 2004. URL: 

http://www.clear-skies.org/

280

http://www.bwea.com
http://www
http://www.chpa.co.uk/dheatuk.html
http://www.chpa.co.uk
http://www.clear-skies.org/


Clemitshaw, L. 2002. Conisbrough and Denaby Energy Service Company Business 

Plan. Report No. 19/5. Resources Research Unit, Sheffield Hallam University, United 

Kingdom.

CO-OP. 2002. Ethical Purchasing Index 2002. Manchester, United Kingdom. The 

Co-operative Bank.

Cooper, J, Ryley, T, Smyth, A and Granzow, E. 2001. Energy use and transport 

correlation linking personal and travel related energy uses to the urban structure. 

Environmental Science & Policy, 4, 307-318.

Corrado, M and Hines, C. 2001. Business Ethics Making the World a Better Place. 

MRS Conference 2001. Brighton. UK. March 2001. Visited: 13th February 2003. URL: 

http://www.mori.com/pubinfo/pdf/business ethics.htm

Cosmi, C, Macchiato, M, Mangiamele, L, Marmo, G, Pertrapertosa, F and Salvia, M.

2003. Environmental and economic effects of renewable energy sources on a local 

case study. Energy Policy, 31, 443-457.

CSO. 1992. Standard Industrial Classifications of economic activities 1992. London, 

United Kingdom. HMSO. Central Statistical Office.

CSRB. 2001. Northern Ireland Transport Statistics 2000-2001. Belfast, Northern 

Ireland. Central Statistics Research Branch, Department for Regional Development in 

Northern Ireland.

Customer Champions. 2003. Price? Reliability? Trust? Value? Which of these really 

matters to consumers in the competitive energy, markets? Visited: 23rd January 2003. 

URL: http://www.customerchampions.co.uk

DEFRA. 2002. Economic instruments to improve household energy efficiency. 

Consultation Document. HM Treasury and the Department for Environment, Food and 

Rural Affairs. July 2002.

DETR. 1998. Development of an Overall Indicator of Air Pollution Concentrations. 

London, United Kingdom. Department of the Environment, Transport and the Regions.

281

http://www.mori.com/pubinfo/pdf/business
http://www.customerchampions.co.uk


DFT. 2001. Transport Statistics Great Britain: 2001 Edition. London, United Kingdom. 

Department for Transport.

DFT. 2002. Transport Statistics Great Britain: 2002 Edition. London, United 

Kingdom. The Stationary Office. Department of Transport.

DFT. 2003. The environmental impacts of road vehicles in use. Department of 

Transport. Visited: 21st July 2003. URL:

http://www.dft.gov.uk/stellent/qroups/dft roads/documents/paqe/dft roads 506888- 

Q4.hcsp

D G XVII. 1996. Sun In Action. Luxembourg. Office for Official Publications of the 

European Communities. Directorate-General for Energy (DG XVII).

Dineley, D, Hawkes, D, Hancock, P and Williams, B. 1976. Earth Resources: A 

Dictionary of Terms and Concepts. London, United Kingdom. Arrow Books Limited.

DoE. 2004. Solar Hot Water and Space Heating and Cooling. Visited: 1st July 2004. 

URL: http://www.eere.enerqv.gov US Department of Energy.

DTI .  1993. Digest of United Kingdom Energy Statistics. London, United Kingdom. 

HMSO. Department of Trade and Industry.

DTI. 1994. Large-scale Wood Conversion (Advanced Conversion). Agriculture and 

Forestry Conversion Fact Sheet No.4. May 1994.

DTI. 1995. Energy Projections for the UK: Energy Paper 65. London, United 

Kingdom. HMSO.

DTI. 1998. Conclusions of the Review of Energy Sources for Power Generation and 

Government Response to Fourth and Fifth Report of the Trade and Industry 

Committee.

DTI. 2000a. UK Energy in Brief: July 2000. London, United Kingdom. HMSO.

DTI. 2000b. Energy Paper 68: Energy Projections for the UK. London, United 

Kingdom. The Stationary Office. Department of Trade and Industry.

282

http://www.dft.gov.uk/stellent/qroups/dft
http://www.eere.enerqv.gov


DTI. 2001 a. Digest of United Kingdom Energy Statistics 2000. Department of Trade 

and Industry. London, United Kingdom. The Stationary Office.

DTI. 2001b. The UK Fuel Poverty Strategy. Visited: 10th March 2003. URL: 

http://www.dti.qov.uk/enerqy/consumers/fuel povertv/strateav.shtml

DTI. 2001c. Report of the Working Group on Extending the Gas Network. Visited: 

10th March 2003. URL:

http://www.dti.qov.uk/enerqy/qas and electricity/trading networks/qasnetreport.pdf

DTI. 2001 d. Passive Solar Design. Visited: 3rd January 2001. URL: 

http://www.dti.gov.uk/

DTI. 2001 e. The Quarterly Newsletter for the UK New & Renewable Energy Industry. 

Issue 41. August 1999. Visited: 10th February 2001. URL: 

http://www.dti.gov.uk/NewReview/

DTI. 2001f. Hydro Power. Visited: 26th February 2001. URL: 

http://www.dti.gov.uk/renewable/hvdro.htm

DTI. 2002a. Renewables Funding. Aberdeen, United Kingdom. Renewables UK, 

Department of Trade and Industry.

DTI. 2002b. Energy Consumption in the United Kingdom. London, United Kingdom. 

DTI Energy Publications.

DTI. 2002c. Energy Trends. London, United Kingdom. DTI Energy Publications.

DTI. 2002d. Sainsbury's Growing Basket of Renewables. NewReview, 47, 3.

DTI. 2003a. Energy White Paper: Our energy future - creating a low carbon 

economy. Department of Trade and Industry. Norwich, United Kingdom. The 

Stationary Office.

DTI. 2003b. Digest of United Kingdom Energy Statistics 2003. Department of Trade 

and Industry. London, United Kingdom. The Stationary Office.

283

http://www.dti.qov.uk/enerqy/consumers/fuel
http://www.dti.qov.uk/enerqy/qas
http://www.dti.gov.uk/
http://www.dti.gov.uk/NewReview/
http://www.dti.gov.uk/renewable/hvdro.htm


DTI. 2004a. Recycling and Waste: Waste in England: An Introduction. Visited: 21st 

April 2004. URL: http://www.defra.gov.uk/environment/waste/intro.htm

DTI. 2004b. Sustainable Energy Technology Route Maps: Energy from Biofuels. 

Visited: 21st April 2004. URL:

http://www.dti.gov.uk/energy/renewables/publications/pdfs/technologies/tech7.pdf

Dunn, S. 2001. Routes to a hydrogen economy. Renewable Energy World, 18-19. 

July-August 2001.

Dutton, A G, Bleijis, J A M ,  Dienhart, H, Falchetta, M, Hug, W, Prischich, D and 

Ruddell, A J. 2000. Experience in the design, sizing, economics and implementation 

of autonomous wind-powered hydrogen production systems. International Journal of 

Hydrogen Energy, 25, 705-722.

EA. 1995. Environmental Briefing - Combined Heat and Power. Visited: 4th October

2001. URL: http://www.electricitv.org.uk/ Electricity Association.

EA. 1999. Environmental Briefing - Transporting Electricity. Number 13. February

1999. Visited: 31st July 2001. URL: http://www.electricitv.org.uk/ Electricity 

Association.

EA. 2002. Industry could cut energy use by one fifth. Visited: 4th December 2003. 

URL: http://www.environment-agencv.gov.uk/news/400820

EA. 2004. New report shows power companies setting record service standards. 

Visited: 27th January 2004. URL: http://www.electricitv.org.uk/

Ecofys BV. 2001. Greenprices. Visited: 3rd January 2001. URL: 

http://www.greenprices.com/uk

EDCL. 2000. Energy Development Co-operative Limited. Visited: 11th December

2000. URL: http://www.unlimited-power.co.uk/.

Eden, R and Evans, N. 1986. Electricity Supply In the UK. Energy Papers No. 20. 

Joint Energy Programme. Policy Studies Institute and Royal Institute of International 

Affairs. Aldershot, Hants, United Kingdom. Gower Publishing Company Limited.

284

http://www.defra.gov.uk/environment/waste/intro.htm
http://www.dti.gov.uk/energy/renewables/publications/pdfs/technologies/tech7.pdf
http://www.electricitv.org.uk/
http://www.electricitv.org.uk/
http://www.environment-agencv.gov.uk/news/400820
http://www.electricitv.org.uk/
http://www.greenprices.com/uk
http://www.unlimited-power.co.uk/


EEF. 2004. Rising electricity prices. Visited: 10th January 2004. URL: 

http://www.eef.co.uk

Elsayed, M, Grant, J F and Mortimer, N D. 1996. Renewable Energy Feasibility 

Studies: Wind Power in the Urban Environment Report No. SCP 10/7. Resources 

Research Unit, Sheffield Hallam University. November 1996.

Elsayed, M. and Mortimer, N D. 2001. Energy and Carbon Modelling of Biomass 

Systems: Conversion Plant and Data Updates, Final Report. Report No. 17/2. 

Resources Research Unit, Sheffield Hallam University, United Kingdom. July 2001. 

Report produced for ETSU.

Elsayed, M, Matthew, R and Mortimer, N D. 2003. Carbon and Energy Balances fora 

Range of Biofuels Options. Report No. B/B6/00784/REP URN 03/836. Produced 

under contract to the DTI Sustainable Energy Programmes.

EMEP/CORINAIR. 2001. Atmospheric Emission Inventory Guidebook. Third Edition. 

Copenhagen, Denmark. European Environment Agency.

ENDS. 2004. RCEP calls for renewable heat 'obligation'. The ENDS Report, 352, 11- 

12.

EDCL. 2000. Visited: 11th December 2000. URL: http://www.unlimited-power.co.uk/ 

Energy Development Co-operative Limited.

ESRU. 2000. Energy Systems Research Unit Department of Mechanical 

Engineering. University of Strathclyde. Grid Connected Photovoltaics. Visited: 11th 

December 2000. URL: http://www.unlimited-power.co.uk/

EST. 2002. Putting Climate Change at the Heart of Energy Policy. London, United 

Kingdom. The Energy Savings Trust. September 2002.

EST. 2003. Small Scale Hydroelectricity Factsheet 7. London, United Kingdom. 

Energy Savings Trust.

EST. 2004. The Major Photovoltaic Demonstration Programme. Visited: 22nd January 

2004. URL: http://www.est.org.uk

285

http://www.eef.co.uk
http://www.unlimited-power.co.uk/
http://www.unlimited-power.co.uk/
http://www.est.org.uk


ETSU. 1993. Wind Speed Data Software Package. Renewable Energy Marketing 

Department, Energy Technology Support Unit (ETSU), Harwell, Oxfordshire, 0X11  

ORA.

ETSU. 1994. An Assessment of Renewable Energy for the UK. London, United 

Kingdom. HMSO.

ETSU. 1996. Small-scale hydro schemes: Notes for developers (England & Wales). 

Prepared for ETSU for the DTI and produced with The National Association of W ater 

Power Users. March 1996.

ETSU. 1999. New and Renewable Energy: Prospects in the UK for the 21st Century: 

Supporting Analysis. London. United Kingdom. Energy Technology Support Unit.

EUROPA. 2000. European Framework Network of Energy Agencies. Visited: 14th 

December 2000. URL: http://www.europa.eu.int/

EUROPA. 2001a. European Framework Network for Energy Agencies. Visited: 30th 

March 2001. URL: http://www.europa.eu/int

EUROPA. 2001b. Fuel Cells. European Framework Network for Energy Agencies. 

Visited: 30th March 2001. URL: http://www.europa.eu/int

ExternE. 2003. External Costs of Energy. Visited: 6th February 2003. URL: 

http://externe.irc.es/

Fisch, M N, Guigas, M and Dalenback, J O. 1998. A Review of Large-scale Solar 

Heating Systems in Europe. Solar Energy, 63(6), 355-366.

FoE. 2003. Press release: Government boost for renewable energy. Visited: 19th July 

2004. URL: http://www.foe.co.uk

Gan, G. 1998. A parametric study of Trombe walls for passive cooling of buildings. 

Energy and Buildings, 27, 37-43.

286

http://www.europa.eu.int/
http://www.europa.eu/int
http://www.europa.eu/int
http://externe.irc.es/
http://www.foe.co.uk


Geng, M, Han, J, Feng, F and Northwood, D O. 1998. Hydrogen-absorbing alloys for 

the nickel-metal hydride battery. International Journal of Hydrogen Energy, 23 (11), 

1055-1060. November 1998.

Gill, T. 2004. Consultation on the Draft Planning Policy Statement 22: Renewable 

Energy. North York Moors National Park Authority Planning Committee. 15th January 

2004. Visited: 21st January 2004. URL: http://www.moors.uk.net/

Gow, D. Drax goes green with willow. The Guardian. Friday March 19, 2004.

Grant, J F. 1993. A Description of the Physical and Social Environment of Sheffield 

and the Surrounding Region. Report No. SCP 8/2. Resources Research Unit,

Sheffield Hallam University, United Kingdom. November 1993.

Grant, J F. 1994a. A Preliminary Estimate of Total Energy Use in Sheffield. Report 

No. SCP 8/4. Resources Research Unit, Sheffield Hallam University, United Kingdom. 

February 1994.

Grant, J F. 1994b. Land Designations from a Planning Perspective. Report No. SCP  

8/6. Resources Research Unit, Sheffield Hallam University, United Kingdom. August

1994.

Grant, J F and Kellett, J E. 2001. Baseline Assessment of Energy Use in Conisbrough 

and Denaby. Report No. 19/1. Resources Research Unit, Sheffield Hallam University, 

United Kingdom.

Grant, J F and Kellett, J E. 2002a. Energy Efficiency Assessment for Conisbrough 

and Denaby. Report No. 19/2. Resources Research Unit, Sheffield Hallam University, 

United Kingdom.

Grant, J F and Kellett, J E. 2002b. Renewable Energy Assessment for Conisbrough 

and Denaby. Report No. 19/3. Resources Research Unit, Sheffield Haliam University, 

United Kingdom.

Grant, J F and Kellett, J E. 2002c. Carbon Dioxide Emission Reduction 

Implementation Strategy for Conisbrough and Denaby. Report No. 19/4. Resources 

Research Unit, Sheffield Hallam University, United Kingdom.

287

http://www.moors.uk.net/


Grant, J F, Kellett, J E and Mortimer, N D. 1994a. Second Progress Report: 

Responses to Work Plan Tasks 1 to 4. Report No. SCP 8/7. Resources Research 

Unit, Sheffield Hallam University, United Kingdom.

Grant, J F, Kellett, J E and Mortimer, N D. 1994b. Methodologies for Assessing 

Renewable Energy Resources. Report No. SCP 8/8. Resources Research Unit, 

Sheffield Hallam University, United Kingdom.

Grant, J F, Kellett, J E and Mortimer, N D. 1995a. Municipal Integration of Renewable 

Energies: Fourth Progress Report: Responses to Task 7 and 8. Report No. 8/11. April

1995. Resources Research Unit, Sheffield Hallam University, United Kingdom.

Grant, J F, Kellett, J E and Mortimer, N D. 1995b. Municipal Integration of Renewable 

Energies: Fifth Progress Report: Response to Task 9. May 1995. Resources 

Research Unit, Sheffield Hallam University, United Kingdom.

Grant, J F, Kellett, J E, Mortimer, N D, Rumahi, J and Wenzel, H. 1994c. Municipal 

Integration of Renewable Energies. Third Progress Report: Responses to Tasks 5 and 

6. Report No. SCP 8/9. Resources Research Unit, Sheffield Hallam University, United 

Kingdom.

Greenprices. 2001. Large users of green energy: Those companies that switch to 

green. September 2001. URL: http://www.qreenprices.co.uk

Greenprices. 2004a. Green energy: Policy on renewable energy in the United 

Kingdom. Visited: 12th March 2004. URL: http://www.qreenprices.co.uk

Greenprices. 2004b. British Telecom is realising own green electricity production 

capacity. Visited: 12th March 2004. URL: http://www.qreenprices.co.uk

Halcrow Gilbert Associates Ltd. 1993. Grid Connection of Photovoltaic Systems. 

Report No. ETSU S 1394-P2. Managed by ETSU on behalf of the DTI.

Harland, E. 1998. Eco-Renovation. United Kingdom. Green Books.

288

http://www.qreenprices.co.uk
http://www.qreenprices.co.uk
http://www.qreenprices.co.uk


Harrison, I. 2002. Private communication with the Housing Statistics section within the 

Office of the Deputy Prime Minister and the Department of Transport (ODPM-DFT) (on

line). 25 June 2002. HOUSING. STATISTICS@odpm-dft.qsi.gov.uk

Hart, D. 2001. 141 Inside Science: Fuelling the Future. NewScientist, 2295 (16), 1-4. 

June 2001.

Heller, A. 2000. 15 Years of R&D in Central Solar Heating in Denmark. Solar Energy, 

69 (6), 437-447.

Hey, D. 1998. A History of Sheffield. Lancaster, United Kingdom. Carnegie 

Publishing Ltd.

Hill, R, O'Keefe, P and Snape, C. 1995. The Future of Energy Use. London, United 

Kingdom. Earthscan.

Hobson, K. 2001. Sustainable Lifestyles: Rethinking Barriers and Behaviour Change. 

In: Cohen, M J and Murphy, J (eds) 2001. Exploring Sustainable Consumption 

Environmental Policy and the Social Sciences. Oxford, United Kingdom. Elsevier 

Science Ltd. pp. 191-209.

Home Power. 2004. Cleaning the Air Home Power Dispels the Top RE Myths. Issue 

100. URL: http://www.homepower.com

HMSO. 1980. Standard Industrial Classification: Revised 1980. HMSO, London, 

United Kingdom.

HMSO. 1990. Town and Country Planning Act 1990. Visited: 1st March 2004. URL: 

http://www.hmso.gov.uk

ICLEI. 2000a. International Council for Local Environmental Initiatives. Energy Fact 

Sheet: Passive Solar Energy. Visited: 10th August 2000. URL: http://www.iclei.org/

ICLEI. 2000b. International Council for Local Environmental Initiatives. Energy Facts: 

Photovoltaic Cells. Visited: 10th August 2000. URL: http://www.iclei.org/

289

mailto:STATISTICS@odpm-dft.qsi.gov.uk
http://www.homepower.com
http://www.hmso.gov.uk
http://www.iclei.org/
http://www.iclei.org/


ICLEI. 2000c. International Council for Local Environmental Initiatives. Energy Facts: 

Wind Energy. Visited: 10th August 2000. URL: http://www.iclei.org/

ICLEI. 2001a. International Council for Local Environmental Initiatives. Energy Facts: 

Passive Solar Energy. Visited: 15th January 2001. URL: http://www.iclei.org/

ICLEI. 2001b. International Council for Local Environmental Initiatives. Energy Facts: 

Hydro-Electric Power. Visited: 23rd February 2001. URL: http://www.iclei.org/

IEA. 1991. Guidelines for the Economic Analysis of Renewable Energy Technology 

Applications. Paris, France. Organisation for Economic Co-operation and 

Development (OECD)/lnternational Energy Agency.

IEA. 1997. Enhancing the Market Deployment of Energy Technology: A Survey of 

Eight Technologies. France. OECD.

IEA. 2000. Hydropower and the Environment: Present Context and Guidelines for 

Future Action, Subtask 5 Report, Volume II: Main Report. Annex III. May 2000.

IEA. 2001. District Heating and Cooling: An Implementation Technology for the 21st 

Century. Visited: 17th October 2001. URL: http://www.iea-dhc.org

IEE. 1994. The Environmental Effects of Electricity Generation. London, United 

Kingdom. The Public Affairs Board/Institute of Electrical Engineers.

Jackson, T and Lofstedt, R. 1998. Renewable Energy Sources. Centre for 

Environmental Strategy, University of Guildford, United Kingdom.

Kellett, J E. 1990. The environmental impacts of wind energy developments. Town 

Planning Review, 61 (2), 1990.

Kellett, J E. 1993. The Definition of Municipality and Surrounding Region. Report No. 

SCP 8/3. Resources Research Unit, Sheffield Hallam University, United Kingdom. 

December 1993.

290

http://www.iclei.org/
http://www.iclei.org/
http://www.iclei.org/
http://www.iea-dhc.org


Kellett, J E. 1994a. The Organisation of the Land Use Planning System in England 

and Wales and its Implications for Renewable Energy Developments. Report No. SCP 

8/5. Resources Research Unit, Sheffield Hallam University. January 1994.

Kellett, J E. 1994b. The Role of the Municipality in the Integration of Renewable 

Energy Schemes in the United Kingdom. Report No. SCP 8/10. Resources Research 

Unit, Sheffield Hallam University. September 1994.

Kellett, J E. 2004. Private communication with Jon Kellett, Sheffield Hallam University 

on 12th July 2004.

Kelly, B and Evans, M. 2004. Consultation Response to Proposed New Planning 

Policy Statement 22 (PPS22): Renewable Energy. Visited: 21st January 2004. URL: 

http://www.odpm.qov.uk

Kelly, M D and Mortimer, N D. 1996. Urban Planning Maximising the Use of 

Renewable Energies: Energy Plans. Report No. SCP 10/5. Resources Research Unit, 

Sheffield Hallam University, United Kingdom.

Laughton, M A. 1990. Renewable Energy Sources. Report No. 22. Barking, Essex, 

United Kingdom. Published on behalf of the Watt Committee on Energy by Elsevier 

Science Publishers Ltd.

LBST. 2001. The acceptance of hydrogen technologies. Visited: 17th August 2001. 

URL: http://www.hvdrogen.org/ Ludwig-Bolkow-Systemtechnik GmbH in co-operation 

with the Ludwig-Maxmilians, University of Munich.

Leeman, J. 2004. Private communication with Jacques Leeman, REMU, Amsterdam 

on 6th January 2004.

Leicester City Council. 2004. Leicester's Community Plan. Visited: 19th July 2004. 

URL: http://www.leicester.gov.uk

Littlefair, P. 1998. Passive solar urban design: ensuring the penetration of solar 

energy into the city. Renewable & Sustainable Energy Reviews, 2, 303-326.

291

http://www.odpm.qov.uk
http://www.hvdrogen.org/
http://www.leicester.gov.uk


Lottner, V, Schulz, M E and Hahne, E. 2000. Solar-assisted District Heating Plants: 

Status of the German Programme Solarthermie-2000. Solar Energy, 69(6), 449-459.

Macpherson, G (ed). 1998. Biomass Farmer & User, Issue No. 17. Launceston, 

Cornwall. Home Grown Energy. December 1998.

Mather, A S and Chapman, K. 1995. Environmental Resources. Harlow, Essex. 

Longman Group Ltd.

Max Fordham and Partners. 1999. Photovoltaics in Buildings: A Design Guide.

Report No. ETSU S/P2/00282/REP. Produced in Association with Feilden Clegg 

Architects and managed by ETSU on behalf of the DTI.

McGrath. A J. 1992. Marketin' of the Green. Sales & Marketing Management, 

October 1992, 31-32.

Meeks. 2001. Combined Heat and Power Systems. Presentation at the Integration of 

Renewable Energy Sources and Distributed Generation in Energy Systems 

Conference. Brussels, Belgium. September 2001.

MORI. 2001. Experience of the competitive domestic electricity and gas markets. 

November 2001. Research study conducted for Ofgem by MORI. URL: 

http://www.ofqem.qov.Uk/temp/ofqem/cache/cmsattach/165 26nov011 .pdf

MORI. 2002. Water Industry. The 2004 Periodic Review: Research into Customers' 

Views. Visited: 13th February 2003. URL: http://www.mori.com/polls/pdf/iisq.pdf

Mortimer, N D. 1993. Municipal Integration of Renewable Energies: Checklist to 

Conduct Work Plan Tasks 1 to 4. Report No. SCP 8/1. Resources Research Unit, 

Sheffield Hallam University. June 1993.

Mortimer, N D. 1995. Renewable Energy for Susiainabie Cities. The Watt Committee 

on Energy Seminar Series on "Energy Forecasting and the Dissemination of Energy 

Technologies". Seminar No. 1: Aspects of Future Energy Technologies, Sheffield, 1st 

November 1995. Sheffield, United Kingdom.

292

http://www.ofqem.qov.Uk/temp/ofqem/cache/cmsattach/165
http://www.mori.com/polls/pdf/iisq.pdf


Mortimer, N. D, Ashley, A, Moody, C A C, Rix, J H R and Moss, S A. 1998. Carbon 

dioxide savings in the commercial building sector. Energy Policy 26(8), 615-624.

Mortimer, N D, Cormack, P, Elsayed, M A and Horne, R E. 2003. Evaluation of the 

Comparative Energy, Global Warning and Socio-Economic Costs and Benefits of 

Biodiesel. Final Report produced for DEFRA. Report No. 20/1. Contract Ref. No. 

CSA 5982/NF0422.

Mortimer, N D, Grant, J F and Kellett, J E. 1997. Municipal Initiatives for Promoting 

the Use of Renewable Energy. In: Roseland, M (ed) Eco-City Dimensions: Healthy 

Communities, Healthy Planet. Gabriola Island, Canada. New Society Publishers, pp. 

138-149.

Mortimer, N D, Kellett, J E and Grant, J F. 1994. Regional Renewable Energy 

Resources: The Potential Contribution to Energy Demand: Paper presented at the 

Regional Science Association International British and Irish Section held in Dublin. 

Dubin, Ireland.

Mortimer, N D, Kellett, J E and Grant, J F. 1995. Rural renewable energy use for 

urban sustainability. Pacific and Asian Journal of Energy, 5 (1), 67-78.

Mourato, S, Saynor, B and Hart, D. Greening London's black cabs: a study of driver's 

preferences for fuel cell taxis. Energy Policy, 32, 685-695.

National Statistics. 2000a. Transport Statistics Bulletin: Vehicle Licensing Statistics: 

2000 Data. London, United Kingdom. Transport Statistics, Department of 

Environment, Transport and the Regions.

National Statistics. 2000b. Transport Statistics for Metropolitan Areas 2000 Edition. 

London, United Kingdom. Transport Statistics, Department of Environment, Transport 

and the Regions.

National Statistics. 2001a. Transport Statistics Bulletin: Vehicle Licensing Statistics: 

2000 Data. London, United Kingdom. Transport Statistics, Department of 

Environment, Transport and the Regions.

293



National Statistics. 2001b. Transport Statistics Great Britain 2001. London, United 

Kingdom. Transport Statistics, Department of Environment, Transport and the 

Regions.

National Statistics. 2002a. National Statistics Statbase. Visited: 5th February 2002. 

http://www.statistics.qov.uk/

National Statistics. 2002b. Annual Abstract of Statistics. UK No. 138. London, United 

Kingdom. The Stationary Office.

NEA. 1995. Final Report County Durham Woodfuel Supply-Chain and Utilisation 

Project. November 1995. .

NEF Renewables. 2000. Active Solar Systems. Visited: 10th November 2000. URL: 

http://www.natenerqy.orq.uk/

NEF Renewables. 2001a. Passive Solar Design. Visited: 1st February 2001. URL: 

http://www.natenerqv.orq.uk/

NEF Renewables. 2001b. Hydro Power. Visited: 1st February 2001. URL: 

http://www.natenerqy.org.uk/

Newcastle City Council. 1992. Energy and the Urban Environment: Strategy for a 

Major Urban Centre, Volumes 1 and 2. Newcastle-upon-Tyne, United Kingdom.

Nikolaisen, L (ed). 1992. Straw for Energy Production. Aarhus, Denmark. The Centre 

of Biomass Technology.

NOMIS. 1993. Nomis Internet Interface. Visited: 1993. URL: 

http://www.nomisweb.co.uk/

NOMIS. 1994. Nomis internet interface. Visited: 1994. URL: 

http.y/www.nomisweb.co.uk/

NOMIS. 2002. Nomis Internet Interface. Visited: February 2002. URL: 

http://www.nomisweb.co.uk/

294

http://www.statistics.qov.uk/
http://www.natenerqy.orq.uk/
http://www.natenerqv.orq.uk/
http://www.natenerqy.org.uk/
http://www.nomisweb.co.uk/
http://http.y/www.nomisweb.co.uk/
http://www.nomisweb.co.uk/


ODPM. 1995. Town and Country Planning (General Permitted Development) Order. 

London, United Kingdom. The Stationary Office. Office of the Deputy Prime Minister.

ODPM. 2001. Housing Statistics Annual 2001. Visited: 25th June 2002. URL: 

htto://www. housing, odpm.qov.uk/statistics/publicat/housestats/annual/2001/index.html 

Office of the Deputy Prime Minister.

ODPM. 2002. Housing Statistics Definitions of Housing Terms Used. Visited: 19th 

August 2002. URL: http://www.housinq.odpm.gov.uk/statistics/help/glossarv.htm 

Office of the Deputy Prime Minister.

ODPM. 2003a. Consultation on Draft New Planning Policy Statement 22 (PPS22): 

Renewable Energy. Visited: 10th January 2004. URL: http://www.odpm.gov.uk

ODPM. 2003b. English House Condition Survey 2001. London, United Kingdom.

The Office of the Deputy Prime Minister.

ODPM. 2004a. Planning Policy Guidance Note 3: Housing - Consultation Draft. 

Visited: 12th March 2004. URL: http://www.odpm.qov.uk

ODPM. 2004b. Strategic sustainability assessment of the Nottingham-Derbv green 

belt. Visited: 11th March 2004. URL: http://www.odpm.qov.uk

OECD. 1995. Urban Energy Handbook: Good Local Practice. Paris, France. OECD.

Ofgem. 2003. 2001/2 Electricity Distribution Quality of Supply Report. Ofgem. June

2003.

Ofgem. 2004a. The Renewables Obligation. Ofgem's first annual report. February

2004.

Ofgem. 2004b. Ofgem Press Notice - Renewabies Obiiqation Buy-out Price 

Published. Received on 11th March 2004 from Ofgem Press Office, 

Ofqempressoffice@ofqem.qov.uk

Ofgem. 2004c. Security of supply April to September 2003 Six month retrospective 

report. February 2004.

295

http://www.housinq.odpm.gov.uk/statistics/help/glossarv.htm
http://www.odpm.gov.uk
http://www.odpm.qov.uk
http://www.odpm.qov.uk
mailto:Ofqempressoffice@ofqem.qov.uk


O'Hara, M. 2003. Poor service may cost utilities £3bn. Visited: 17th March 2004. The 

Guardian. Thursday May 1 2003. URL: http://www.monev.quardian.co.uk/

ONS. 2000. Key population and vital statistics: Local and health authority areas. 

National Statistics, Series VS no. 26, PP1 no. 22. London, United Kingdom. The 

Stationary Office. Office of National Statistics.

Onyx. 2004. ONYX. Visited: 17th March 2004. URL: http://www.onvxqroup.co.uk

OPCS. 1991. Census 1991: County Report: South Yorkshire & Derbyshire. London, 

United Kingdom. HMSO. Office of Population and Census Statistics.

Open University. 1994. Renewable Energy: A Resource Pack for Tertiary Education. 

Milton Keynes, United Kingdom. The Open University.

Oreszczyn, T. 1993. The Energy Duality of Conservatories: A Survey of Conservatory 

Use: Paper presented at the Third European Conference on Architecture in May 1993, 

p. 522-5.

Ottman, J A. 1994. Green Marketing. Chicago, USA. NTC Business Books.

Owen, G. 1992. Community Heating - A UK Action Plan. On: Anon. 2001. District 

Heating. Visited: 16th October 2001. URL: 

http://www.enerqy.rochester.edu/uk/chpa/commheat/

Papakonstantinou, K, Klitsikas, N, Santamouris, M, Gomez-Heras, A, Rasmussen, P 

and Gomez-Gil, N. 2000. Advanced Passive and Active Solar Cooling for the Urban 

Environment of European Cities Project. Briefing Note from the Altener 2000 

Conference and Exhibition on Renewable Energy for Europe: Campaign for Take-Off 

held in Toulouse. Toulouse, France. October 2000.

Pearce, F. 1990. Greening of Industry - The Consumers Are Not So Green. New 

Scientist, 126 (1721), 16 June 1990, 13-14.

Pehr, K, Sauermann, P, Traeger, O and Bracha, M. 2001. Liquid hydrogen for motor 

vehicles - the world's first public LH2 filling station. International Journal of Hydrogen 

Energy, 26, 777-782.

296

http://www.monev.quardian.co.uk/
http://www.onvxqroup.co.uk
http://www.enerqy.rochester.edu/uk/chpa/commheat/


PIU. 2002. The Energy Review. A Performance and Innovation Unit Report. February

2002. Visited: 7th February 2003. URL: http://www.cabinet- 

office.qov.uk/innovation/2002/enerqy/report/

POST. 2001. Postnote: UK Electricity Networks. London, United Kingdom. The 

Parliamentary Office of Science and Technology. October 2001, 3.

Pout, C H, Moss, S A and Davidson, P J. 1998. Non-Domestic Building Energy Fact 

File. Watford, United Kingdom. Construction Research Communications Ltd. BRE.

Pout, C. H, MacKenzie, F and Bettle, R. 2002. Carbon dioxide emissions from non

domestic buildings: 2000 and beyond. BRE Energy Technology Centre, London, 

United Kingdom.

Powergen Renewables Ltd. 2001. Visited: 10th February 2001. URL: 

http://www.powerqenrenewables.com/

Powergen. 2004. Private communication with Powergen on 15th June 2004.

RCEP. 2000. Energy - The Changing Climate. Norwich, United Kingdom. The 

Stationary Office.

Renzi, S and Crawford, R. 2000. Powering the Next Generation Automobile: 

DailmlerChrysler's Venture into Fuel Cell Technology. Corporate Environmental 

Strategy, 7 (1), 38-50.

RES. 2004. RES erects wind turbine on London's south bank. Visited: 7th June 2004. 

URL: http://www.res-ltd.com

Roberts, J A. 1996. Green Consumers in the 1990s: Profile and Implications for 

Advertising. Journal of Business Research, 36, 217-231.

Roberts, J, Elliott, D and Houghton, T. 1991. Privatising Electricity: The Politics of 

Power. London, United Kingdom. Belhaven Press.

Rosenbaum, J. (ed) 2002. Revealing the hidden costs of energy. RTD info Magazine 

for European Research, October 2002, 35, p. 16-19.

297

http://www.cabinet-
http://www.powerqenrenewables.com/
http://www.res-ltd.com


RPA. 2004. Proposal for a Renewable Heat Obligation. Visited: 19th July 2004. URL: 

http://www.r-p-a.org.uk

Sadler, R. 1993. Public Perceptions of Short Rotation Coppice. Report No. ETSU 

B/W5/00340/REP. Prepared by St. Ronans Research for the Energy Technology 

Support Unit, Harlow, United Kingdom.

Sadler, R, Spencer, L, Digby, G and Battye, L. 1996. A Review of Health, Planning, 

Insurance and Property Value Issues Related to Active Solar Heating Systems. Report 

No. ETSU S/P3/00246/REP. Prepared by New Perspectives Ltd for the Energy 

Technology Support Unit, Harlow, United Kingdom.

Santamouris, M and Asimakopolous, D. (eds) 1996. Passive Cooling of Buildings. 

London, United Kingdom. James & James (Science Publishers) Ltd.

Saveenergy. 2004. Energy Efficiency Recommended. Visited: 5th December 2003. 

URL: http://www.saveenergy.co.uk

SCC. 1998. Sheffield: A City for People, Unitary Development Plan. Adopted March 

1998. Sheffield City Council, United Kingdom.

SDC. 2004. deCarb-uk. Visited: 15th June 2004. URL: http://www.dcarb-uk.org 

Sustainable Development Commission.

Shaw, V  L. 1999. Non-Technical Issues Facing the Expansion of the Wood Chip 

Market in the United Kingdom. Unpublished MSc Thesis, Resources Research Unit, 

Sheffield Hallam University. May 1999.

Shaw, V  L. 2001. A Review of Renewable Energy Technologies in the Urban 

Environment. Working Paper No. 24. Resources Research Unit, Sheffield Hallam 

University. July 2001.

Shaw, V  L, Mortimer, N D and Kellett, J E. 2004. Discussions held with supervisory 

team in January 2004.

Sheffield First. 1999. Sheffield Trends 1999. Sheffield First Partnership, Sheffield City 

Council, United Kingdom.

298

http://www.r-p-a.org.uk
http://www.saveenergy.co.uk
http://www.dcarb-uk.org


Sick, F and Erge, T (eds) 1996. Photovoltaics in Buildings: A Design Handbook for 

Architects and Engineers. London, United Kingdom. James and James Science 

Publishers Ltd.

Smith, S. 1999. Linking Fuel Cell Technology with Environmental Strategy: The Plus 

Power Story. Corporate Environmental Strategy, 6 (3), 270-277.

Solar Design Company. 2000. Solar Design Company. Visited: 3rd November 2000. 

URL: http://www.solar-desiqn.demon.co.uk/

SSEU. 1993. Swedish Ethanol Development Foundation. Ornskoldsvik, Sweden.

Stohr, M. 2001. Biofeed: Implementation of a series of pilot projects for biogas feeding 

into natural gas grids. Outline of a proposal for the EU Fifth Framework Programme for 

RTD Thematic programme: Energy, Environment and Sustainable Development Key- 

action 5.3: Integration of new and renewable energy sources into the energy system. 

February 2001. Biogas Feeding Network. Munchen, Germany.

Swain, I. 2002. Private communication from the South Yorkshire Learning and Skills 

Council (LSC) (On-line). 24 July 2002. lan.Swain@lsc.gov.uk

SYPTE. 2000. Level of car ownership in South Yorkshire. Statistical Handbook 2000. 

Visited: August 2002. URL: http://www.sypte.co.uk/more/handbook/index.html

Terence O'Rourke pic. 1998. Eastern Region Renewable Energy Planning Study. 

ETUS Report No. ETSU PR 007. Prepared for the Energy Technology Support Unit, 

Harwell, United Kingdom.

Thompson, D. (ed) 1995. The Concise Oxford Dictionary, Ninth Edition. Oxford, 

United Kingdom. Clarendon Press.

US DOE. 2001a. Energy Efficiency and Renewable Energy network. US Department 

of Energy. Visited: 17th July 2001. URL: http://www.eren.doe.gov/

US DOE. 2001b. Hydrogen. Energy Efficiency and Renewable Energy network. US 

Department of Energy. Visited: 14th August 2001. URL: http://www.eren.doe.gov/

299

http://www.solar-desiqn.demon.co.uk/
mailto:lan.Swain@lsc.gov.uk
http://www.sypte.co.uk/more/handbook/index.html
http://www.eren.doe.gov/
http://www.eren.doe.gov/


Voss, K. 2000. Solar Energy in Building Renovation - Results and Experience of 

International Demonstration Buildings. Energy and Buildings, 32, 291-302.

Warburton, D, Robinson, R and Smith, C (eds). 1996. Good Practice Guidelines: 

Short Rotation Coppice for Energy Production. Funded by the DTI through ETSU. 

November 1996.

Warburton, D (ed). 1997. Good Practice Guidelines: Anaerobic Digestion of Farm and 

Food Processing Residues. Funded by DTI through ETSU. May 1998.

Warburton, D (ed). 1998. Good Practice Guidelines: Wood Fuel from Forestry and 

Arboriculture. Project funded by DTI through ETSU. May 1998.

Warde, A, Shove, E and Southerton, D. 1998. Convenience, schedules and 

sustainability, Draft paper for ESF workshop on sustainable consumption, Lancaster 

University, March 27-29 1998. Lancaster, United Kingdom.

WCED. 1987. Our Common Future. Oxford, United Kingdom. Oxford University 

Press. World Commission on Environment and Development.

WEC. 1994. New and Renewable Energy Resources: A Guide to the Future. London, 

United Kingdom. Kogan Press Ltd. World Energy Council.

Williams, K. 2002. Private Communication with Derbyshire County Council on 1st 

August 2002.

Worldwatch. 2001. Hydrogen rising in energy policy debate: global race for 

"tomorrow's petroleum" heats up. Visited: 6th August 2001. URL: 

http://www.worldwatch.org/alerts/

Yes2Wind. 2004. Community ownership of wind power sites in Wales. Visited: 12th 

May 2004. URL: http://www.ves2wind.co.uk

Zacarias-Farah, A and Geyer-Allely, E. 2003. Household consumption patterns in 

OECD countries: trends and figures. Journal of Cleaner Production, 11 (8), 819-827.

300

http://www.worldwatch.org/alerts/
http://www.ves2wind.co.uk


Zittel, W  and Wurster, R. 1996. Hvdroaen in the Energy Sector. Visited: 17th August

2001. IJRL: http://www.hvdrogen.org/

*

301

http://www.hvdrogen.org/

