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Nomenclature

Icorr Corrosion current
lanode Anodic current
Icathode Cathodic current
Aanode Area of the anode
Acathode Area of the cathode
S i , S2 Different species of metallic atoms in Al alloy system
A a  Surface tension
l~si, I”S2 Gibbs excess concentration per unit area in moles
A pSi, ApS2 Change in chemical potentials of species
Xsi, Xs2 Mole fraction of the atoms of the species at the surface
Nsi, NS2 Mole fraction of the atoms of the species at the bulk
Ys, Yb Activity coefficient of species at surface and bulk
Msi. HS2° Chemical potentials when asi= a S2=1
AG ° Gibbs excess surface energy
Asi,As2 Surface area of one mole of metal for S i and S 2
AH Partial Enthalpies
H a i-a i ,H a i-b Enthalpies of formation of similar and cross-interaction of Al

and B atoms 
R Gas constant
0  Atomic interaction parameters
Lm Latent heat of melting
T m Melting temperature
D Diffusivity
h Depth
t Tim e of sputtering
Nv(s) Concentration of vacancies formed on the surface
Dv Diffusivity due to formation of vacancies
Yip Interfacial surface energy of liquid-particle interaction
Ysp Interfacial surface energy of solid-particle interaction
Yis Interfacial surface energy of liquid-solid interaction
w Frequency
V (w ), l(u>) AC  potential and current
0 Phase difference between applied A C  potential and AC  

current response.
Z(co) Im pedance
1 Com plex number V --1
b D iam eter of the w ear crater
R Radius of the rotating ball
Z p Im pedance of the semi-infinite cylindrical pore
Rp Resistance per unit depth of the pore
(D Phase angle of the defined impedance function Z p
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corrosion process from  impedance data [241,244].

Diagrammatic representation o f Vickers Indenter [249].

Schematic o f a micro-scale abrasive wear tester [259].

Secondary electron micrograph showing S i0 2 powder 
morphology.

Photographs o f Al-Zn-ln coating w ith artific ia lly induced 
defect exposed to  5% w/v NaCI in ASTM B117 salt spray 
test, taken (a) before the experiment, after (b) 24 hours, 
(c) 48 hours, (d) 168 hours, (e) 500 hours and (f) 1008 
hours.

Photographs o f pure Al coating w ith artific ia lly  induced 
defect exposed to  5% w/v NaCI in ASTM B117 salt spray 
test, taken (a) before the experiment, a fter (b) 24 hours, 
(c) 48 hours, (d) 168 hours, (e) 500 hours and (f) 1008 
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Photographs o f Zn-AI coating w ith artific ia lly  induced 
defect exposed to  5% w/v NaCI in ASTM B117 salt spray 
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(c) 48 hours, (d) 168 hours, (e) 500 hours and (f) 1008 
hours.
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Bragg-Brentano XRD trace o f Al coating after 24 hours of 
exposure in 5% w/v NaCI. The scan was conducted from  
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Bragg-Brentano XRD trace o f Al-Zn-ln coating after 24 
hours o f exposure in 5% w/v NaCI. The scan was conducted 
from  2 0 ° ranging from  1 0 ° to  80°.
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Bragg-Brentano XRD trace o f Al coating after 48 hours of 185
exposure in 5% w/v NaCI. The scan was conducted from  
2 0 ° ranging from  1 0 ° to  80°.

Bragg-Brentano XRD trace o f Al-Zn-ln coating a fte r 48 186
hours of exposure in 5% w/v NaCI. The scan was conducted 
from  2 0 ° ranging from  1 0 ° to 80°.

XRD trace o f corrosion product o f Al coating after (a) 500 191
hours and (b) 1 0 0 0  hours in salt spray neutral test.

XRD trace o f corrosion product o f Al-Zn-ln coating a fte r (a) 192
500 hours and (b) 1000 hours in salt spray neutral test.
High contrast backscattered electron micrograph o f a 193
cross-section of as sprayed Al coating. The enclosed area 
was used fo r EDX analysis.

EDX spectrum o f as sprayed Al coating from  the enclosed 194
region shown in Figure 4.12.

Secondary electron micrograph of as sprayed Al coating 195
surface.

EDX map o f the entire area o f Al coating shown in Figure 195
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High contrast backscattered electron micrograph o f a 196
cross-section o f as sprayed 300 pm thick as sprayed Al-Zn- 
ln coating. The enclosed area was used fo r EDX analysis.

EDX spectrum o f as sprayed Al-Zn-ln coating from  the 197
enclosed region shown in Figure 4.16.

Backscattered electron micrograph o f (a) Al coating after 198
1 0 0 0  hours o f neutral salt spray test (b) cross-section of 
the masked area showing exposed mild steel substrate

(a1), (b') and (c') shows the EDX spectrum o f the cross- 199
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Backscattered electron micrograph o f (a) Al-Zn-ln coating 201
after 1 0 0 0  hours of neutral salt spray test (b) cross-section 
o f the masked area showing the exposed mild steel 
substrate
(a1), (b1) and (c1) shows the EDX spectrum of the cross- 202
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Pure Al feedstock rods after (a) 48 hours (b) 336 hours (c) 
672 hours and (d) 1008 hours o f exposure in neutral salt 
spray test.

Al-Zn feedstock rods after (a) 48 hours (b) 336 hours (c) 
672 hours and (d) 1008 hours o f exposure in neutral salt 
spray test.

Al-Zn-ln feedstock rods after (a) 48 hours (b) 336 hours (c) 
672 hours and (d) 1008 hours o f exposure in neutral salt 
spray test.

Al-Ti-C feedstock rods after (a) 48 hours (b) 336 hours (c) 
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Pure Al coating after (a) 48 hours (b) 336 hours (c) 672 
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test.

Al-Zn coating after (a) 48 hours (b) 336 hours (c) 672 hours 
and (d) 1008 hours of exposure in neutral salt spray test.

Al-Zn-ln coating after (a) 48 hours (b) 336 hours (c) 672 
hours and (d) 1008 hours of exposure in neutral salt spray 
test.

Al-Ti-C coating after (a) 48 hours (b) 336 hours (c) 672 
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test.
Change in weight per unit area vs. tim e of exposure fo r (a) 
Pure Al, (b) Al-Zn, (c) Al-Zn-ln and (d) Al-Ti-C feedstock 
alloys.

Change in weight per unit area vs. tim e o f exposure fo r (a) 
Pure Al, (b) Al-Zn, (c) Al-Zn-ln and (d) Al-Ti-C coatings.

Open circuit potentia l vs. tim e plot fo r Al coating 
subjected to 3.5%w/v, 1.0%w/v, 0.1%w/v and 0.01%w/v 
NaCI solution.

Open circuit potentia l vs. tim e p lo t fo r Al-Zn coating 
subjected to 3.5%w/v, 1.0%w/v, 0.1% w/v and 0.01%w/v 
NaCI solution.
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Open circuit potentia l vs. tim e plot fo r Al-Zn-ln coating 
subjected to  3.5%w/v, 1.0%w/v, 0.1%w/v and 0.01%w/v 
NaCI solution.

Open circuit potentia l vs. tim e plot fo r Al-Ti-C coating 
subjected to 3.5%w/v, 1.0%w/v, 0.1%w/v and 0.01%w/v 
NaCI solution.

Open circuit potentia l p lot fo r Al coating during 24 hours 
o f immersion in 3.5%w/v, 1.0%w/v, 0.1%w/v, 0.01% w/v 
NaCI solution.

Open circuit potentia l p lo t fo r Al-Zn coating during 24 
hours o f immersion in 3.5%w/v, 1.0%w/v, 0.1%w/v,
0.01%w/v NaCI solution.

Open circuit potentia l p lot fo r Al-Zn-ln coating during 24
hours o f immersion in 3.5%w/v, 1.0%w/v, 0.1%w/v,
0.01%w/v NaCI solution.

Open circuit potentia l p lot fo r Al-Ti-C coating during 24 
hours of immersion in 3.5%w/v, 1.0%w/v, 0.1%w/v,
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Current vs. tim e plot fo r Al coating subjected to  3.5%w/v 
NaCI solution. The anode to  cathode area ratios used was 
1 :1 ,1 :1 /2  and 1:1/4 respectively.

Current vs. tim e plot fo r Al-Zn coating subjected to  
3.5%w/v NaCI solution. The anode to  cathode area ratios 
used was 1 :1 ,1 :1 /2  and 1:1/4 respectively.

Current vs. tim e plot fo r Al-Zn-ln coating subjected to 
3.5%w/v NaCI solution. The anode to  cathode area ratios 
used was 1 :1 ,1 :1 /2  and 1:1/4 respectively.

Current vs. tim e plot fo r Al-Ti-C coating subjected to  
3.5%w/v NaCI solution. The anode to  cathode area ratios 
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Current vs. tim e plot fo r Al-Zn-ln coating subjected to 
1.0%w/v NaCI solution. The anode to  cathode area ratios 
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Current vs. tim e plot fo r Al-Zn-ln coating subjected to  239
0.01%w/v NaCI solution. The anode to  cathode area ratios 
used was 1:1/2 and 1:1/4 respectively.

CCP vs. tim e p lo t fo r Al coating subjected to 3.5% w/v NaCI 240
solution. The anode to  cathode area ratios used was 
1:1,1:1/2 and 1:1/4 respectively.

CCP vs. tim e plot fo r Al-Zn coating subjected to  3.5% w/v 241
NaCI solution. The anode to  cathode area ratios used was 
1:1,1:1/2 and 1:1/4 respectively.

CCP vs. tim e plot fo r Al-Zn-ln coating subjected to  242
3.5%w/v NaCI solution. The anode to  cathode area ratios 
used was 1:1,1:1/2 and 1:1/4 respectively.

CCP vs. tim e plot fo r Al-Ti-C coating subjected to  3.5%w/v 242
NaCI solution. The anode to  cathode area ratios used was 
1:1,1:1/2 and 1:1/4 respectively.

CCP vs. tim e plot fo r Al-Zn-ln coating subjected to  241
1.0%w/v NaCI solution. The anode to  cathode area ratios 
used was 1:1/2 and 1:1/4 respectively.

CCP vs. tim e plot fo r Al-Zn-ln coating subjected to  243
0.1% w/v NaCI solution. The anode to cathode area ratios 
used was 1:1/2 and 1:1/4 respectively.

CCP vs. tim e plot fo r Al-Zn-ln coating subjected to  243
0.01%w/v NaCI solution. The anode to  cathode area ratios 
used was 1:1/2 and 1:1/4 respectively.

Logarithmic plots showing relationship between galvanic 244
corrosion current and cathode to  anode area ratio fo r (a)
Al, (b) Al-Zn, (c) Al-Zn-ln and (d) Al-Ti-C coatings exposed 
to  3.5% w /v  NaCI solution fo r 168 hours.

Logarithmic plots showing relationship between galvanic 245
corrosion current and cathode to  anode area ratio fo r Al- 
Zn-ln coating exposed to (a) 1.0% w /v, (b) 0.1% w /v, and
(c) 0.01% w /v  NaCI solution fo r 168 hours

Log plots showing the variation in galvanic corrosion 246
current vs chloride concentration fo r Al-Zn-ln coating 
coupled w ith  mild steel w ith  cathode to  anode area ratio 
o f 1:1, 2:1 and 4:1 respectively.
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Nyquist plots fo r Al coating exposed to  (a) 3.5%w/v , (b) 
1.0%w/v, (c) 0.1%w/v and (d) 0.01%w/v NaCI solution fo r 
1, 24, 48 and 168 hours.

Nyquist plots fo r Al-Zn coating exposed to (a) 3.5%w/v , 
(b) 1.0%w/v, (c) 0.1% w/v and (d) 0.01%w/v NaCI solution 
fo r 1, 24, 48 and 168 hours.

Nyquist plots fo r Al-Zn-ln coating exposed to (a) 3.5%w/v , 
(b) 1.0%w/v, (c) 0.1%w/v and (d) 0.01%w/v NaCI solution 
fo r 1, 24, 48 and 168 hours.

Nyquist plots fo r Al-Ti-C coating exposed to  (a) 3.5%w/v , 
(b) 1.0%w/v, (c) 0.1%w/v and (d) 0.01%w/v NaCI solution 
fo r 1, 24, 48 and 168 hours.

Diagrammatic representation o f (a) R(Q(R(QR))) or
R(C(R(QR))), (b) R(QR)(QR), (c) R(Q(R(LR))), (d)
R(Q(R(RW))),the equivalent circuit models used during the 
in terpretation o f impedance data shown in Table 4.10 and 
Table 4.13.

Backscattered electron micrograph o f transverse section 
of (a) Al and (b) Al-Ti-C feedstock material.

EDX analysis o f the enclosed area shown in figure 1(b) 
showing d iffe rent phases observed in the Al-Ti-C feedstock 
alloy (a) large blocky phase (A) w ith  large aspect ratio and 
(b) smaller equiaxed particle (B).

XRD trace of Al-Ti-C feedstock alloy confirm ing the 
presence of AI3Ti and TiC phase. The unmarked peak at 
20° « 58° is the Cu Kp.

Backscattered electron micrograph showing the cross- 
section o f (a) pure Al and (b) Al-Ti-C coating.

Backscattered electron micrograph o f Al-Ti-C coating 
showing (a) speckled region and (b) dark and light grey 
regions.

XRD trace o f as sprayed Al-Ti-C coating showing form ation  
o f d iffe rent phases (see appendix fo r more details). The 
unmarked peaks at 20° ~ 40°, 58°, 69° are CuKp.

Frequency distribution histogram o f micro-hardness 
(HVo.gg) fo r pure Al and Al-Ti-C feedstock alloy material.
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Frequency d istribution histogram o f variation in m icro­
hardness o f pure Al and Al-Ti-C coating.

Graphs showing wear crater volume vs. Sliding distance x 
load fo r (a) pure Al and (b) Al-Ti-C feedstock material.

Graphs showing wear crater volume vs. sliding distance x 
Load fo r (a) Pure Al and (b) Al-Ti-C coatings.

Backscattered micrographs showing the d irectionality o f 
the wear tracks fo r (a) Al and (b) Al-Ti-C feedstock.

Backscattered micrographs showing directionality o f the 
wear tracks fo r (a) Al and (b) Al-Ti-C coating.

Comparison o f coefficient o f wear and hardness of pure Al 
and Al-Ti-C alloy feedstock material and coatings w ith  13% 
Cr steel coating and mild steel substrate.

Backscattered electron micrograph o f Al-Ti-C coating 
exposed to 150°C fo r (a) 1 hour and (b) 3 hours, fo llowed 
by rapid quenching.

A higher magnification, @ x 5000, Backscattered electron 
micrographs of Al-Ti-C coating exposed to 150°C fo r 1 hour 
showing (a) small and large speckled spots (b) light and 
dark grey regions and (c) higher atom ic number contrast 
light grey region. The coating was rapidly quenched post 
exposure.

A higher magnification (a) and (b) @ x 5000 and (c) @ x
10,000, backscattered electron micrograph of Al-Ti-C 
coating exposed to  150°C fo r 3 hours showing (a) 
distinctive grow th o f large speckled spots, (b) high atom ic 
number contrast region and (c) spherical equiaxed phase. 
The coatings were rapidly quenched post exposure.

XRD trace o f Al-Ti-C coating post 150°C exposure fo r (a) 1 
hour and (b) 3 hours fo llowed by rapid quenching. The 
unmarked peaks at 20° ~ 40°, 58° and 69° are CuKp.

Backscattered electron micrograph o f Al-Ti-C coating 
exposed to 350°C fo r (a) 1 hour and (b) 3 hours, fo llowed 
by rapid quenching. (The linear features are caused due to  
polishing).
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Figure 4.80

Figure 4.81

Figure 4.82

Figure 4.83

Figure 4.84

Figure 4.85

Figure 4.86

Figure 4.87

Figure 4.88

A higher magnification, (a) @ x 5000, (b) and (c) @ x 306
10.000, backscattered electron micrograph of Al-Ti-C 
coating exposed to  350°C fo r 1 hour showing (a) small and 
large speckled spots (b) a higher aspect ratio phase and (c) 
spherical equiaxed phase. The coating was rapidly 
quenched post exposure.

A higher magnification, (a), (b) @ x 5000 and (c) @ x 307
10.000, backscattered electron micrograph o f Al-Ti-C 
coating exposed to 350°C fo r 3 hours showing (a) small 
and large speckled spots, (b) dark and light grey regions 
and (c) spherical equiaxed phase. The coating was rapidly 
quenched post exposure.

XRD trace o f Al-Ti-C coating post 350°C exposure fo r (a) 1 311
hour and (b) 3 hours followed by rapid quenching. The 
unmarked peaks at 20° » 40°, 58° are CuKp.

Backscattered electron micrograph o f Al-Ti-C coating 313
exposed to  550°C fo r (a) 1 hour and (b) 3 hours, fo llowed 
by rapid quenching.

A higher magnification @ x 10,000, Backscattered electron 314
micrograph of Al-Ti-C coating exposed to  550°C fo r 1 hour 
showing (a) form ation of b rittle  phase, w ith  high atomic 
number contrast, (b) phase w ith  rectangular geom etry 
w ith in  the speckled region and (c) spherical equiaxed 
phase. The coating was rapidly quenched post exposure.

A higher magnification @ x 10,000, Backscattered electron 315
micrograph of Al-Ti-C coating exposed to  550°C fo r 3 hour 
showing (a) form ation o f speckled region,(b) and (c) 
fo rm ation of b rittle  phase w ith  high atom ic number 
contrast w ith  uniform  distribution of speckled region.

XRD trace o f Al-Ti-C coating post 550°C exposure fo r (a) 1 319
hour and (b) 3 hours fo llowed by rapid quenching. The 
unmarked peaks at 20° = 40°, 58° are CuKp.

Frequency d istribution histogram o f micro-hardness 321
(HVo.gs) fo r Al-Ti-C coating exposed to  150°C fo r 1  hour
(violet shade) and 3 hours (Dark red shade).

Frequency distribution histogram o f micro-hardness 321
(H V o .g s ) fo r Al-Ti-C coating exposed to  350°C fo r 1  hour
(violet shade) and 3 hours (Dark red shade).



Figure 4.89

Figure 4.90

Figure 4.91

Figure 4.92

Figure 4.93

Figure 4.94

Figure 4.95

Figure 4.96

Figure 4.97

Frequency distribution histogram of micro-hardness 
(HVo.gg) fo r Al-Ti-C coating exposed to  550° C fo r 1 hour 
(violet shade) and 3 hours (Dark red shade).

Comparison o f micro-hardness values obtained fo r as 
sprayed Al-Ti-C coating and Al-Ti-C coating exposed to 
150°C, 350°C and 550°C fo r 1 hour and 3 hours followed 
by rapid quenching.

Graphs showing wear crater volume vs. sliding distance x 
load fo r Al-Ti-C coating subjected to  150°C fo r (a) 1 hour 
and (b) 3 hours fo llowed by rapid quenching.

Graphs showing wear crater volume vs. sliding distance x 
load fo r Al-Ti-C coating exposed to  350°C fo r (a) 1 hour 
and (b) 3 hours fo llowed by rapid quenching.

Graphs showing wear crater volume vs. sliding distance x 
load fo r Al-Ti-C coating exposed to  550°C fo r (a) 1 hour 
and (b) 3 hours followed by rapid quenching.

Backscattered electron micrograph showing directionality 
o f the wear tracks and precipitation of various phases in 
Al-Ti-C coating @150°C fo r 1 hour. (a),(b) and (c) are 
backscattered electron micrographs at d iffe rent 
magnifications.

Backscattered electron micrograph showing d irectionality 
o f the wear tracks and precipitation of various phases in 
Al-Ti-C coating @ 150°C fo r 3 hour. (a),(b) and (c) are 
backscattered electron micrographs at d iffe ren t
magnifications.

Backscattered electron m icrograph showing d irectionality 
o f the wear tracks and precipitation of various phases in 
Al-Ti-C coating @ 350°C fo r 1 hour, (a), (b) and (c) are 
backscattered electron micrographs at d iffe rent
magnifications.

Backscattered electron m icrograph showing d irectionality 
o f the wear tracks and precipitation of various phases in 
Al-Ti-C coating @ 350°C fo r 3 hour, (a), (b) and (c) are 
backscattered electron micrographs at d iffe rent
magnifications.



Figure 4.98

Figure 4.99

Figure 4.100

Figure 4.101

Figure 4.102

Figure 4.103

Figure 4.104

Figure 4.105

Backscattered electron micrograph showing d irectiona lity  335
o f the wear tracks and precipitation of various phases in 
Al-Ti-C coating @ 550°C fo r 1 hour, (a), (b) and (c) are 
backscattered electron micrographs at d iffe ren t 
magnifications.

Backscattered electron micrograph showing d irectionality 336
of the wear tracks and precipitation of various phases in 
Al-Ti-C coating @ 550°C fo r 3 hour, (a), (b) and (c) are 
backscattered electron micrographs at d iffe rent 
magnifications.

Comparison of wear coefficient values obtained fo r as 337
sprayed Al-Ti-C coating and Al-Ti-C coating exposed to 
150°C/ 350°C and 550°C fo r 1 hour and 3 hours fo llowed 
by rapid quenching.

Backscattered electron micrograph o f Al-Ti-C coating 338
exposed to  150°C fo r (a) 1 hour and (b) 3 hours, fo llowed 
by normal room tem perature exposure (25°C) fo r 5 hours.

A higher magnification, @ (a) x 2000, (b) x 5000 and (c) x 339
10,000, (d) x 30,000 backscattered electron micrograph of 
Al-Ti-C coating exposed to  150°C fo r 1 hour showing (a) 
speckled region, (b) high contrast region, (c) triangular 
shaped b rittle  phase and (d) a b rittle  spherical equiaxed 
phase. The coatings were exposed to  room tem perature 
fo r 5 hours after 150°C exposure.

A higher magnification, @ (a) x 2000, (b) x 5000 ,(c) and 340
(d) x 20,000,backscattered electron micrograph o f Al-Ti-C 
coating exposed to  1500C fo r 3 hours showing (a) speckled 
region w ith  observable grow th in size (form ation of a 
crater observed in (a), could be a result o f coating removal 
during mechanical polishing), (b) high contrast region, (c) 
and (d) b rittle  spherical equiaxed phase. Notice the 
difference in the size o f phases shown in (c) and (d). The 
coatings were exposed to room tem perature fo r 5 hours 
a fter 1500C exposure.

XRD trace o f Al-Ti-C coating post 150°C exposure fo r (a) 1 344
hour and (b) 3 hours fo llowed by normal room 
tem perature exposure fo r 5 hours.

Backscattered electron micrograph o f Al-Ti-C coating 346
exposed to 350°C fo r (a) 1 hour and (b) 3 hours, fo llowed 
by normal room tem perature exposure (25°C) fo r 5 hours.
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Figure 4.106

Figure 4.107

Figure 4.108

Figure 4.109

Figure 4.110

Figure 4.111

Figure 4.112

A higher magnification, @ (a) x 2000, (b) x 5000 and (c) 347
20,000,backscattered electron micrograph of Al-Ti-C 
coating exposed to  350°C fo r 1 hour showing (a) speckled 
region w ith  observable grow th in size, (b) high contrast 
region and (c) b rittle  spherical equiaxed phase. The 
coatings were then exposed to  normal room tem perature 
fo r 5 hours.

A higher magnification, @ (a) x 2000, (b) x 4000 and (c) 348
12,000 and (d) 30,000 backscattered electron micrograph 
o f Al-Ti-C coating exposed to  350°C fo r 3 hours showing (a) 
speckled region w ith  observable growth in size, (b) high 
contrast region and (c) b rittle  spherical equiaxed phase.
The coatings were then exposed to  normal room
tem perature fo r 5 hours.

XRD trace o f Al-Ti-C coating post 350°C exposure fo r (a) 1 349
hour and (b) 3 hours fo llowed by normal room
tem perature exposure fo r 5 hours.

Backscattered electron micrograph o f Al-Ti-C coating 353
exposed to 550°C fo r (a) 1 hour and (b) 3 hours, fo llowed 
by normal room tem perature exposure (25°C) fo r 5 hours.

A higher magnification, @ (a) and (b) x 20,000 354
backscattered electron micrograph o f Al-Ti-C coating
exposed to  550°C fo r 1 hour showing (a) speckled region 
w ith  feather shaped regions and (b) showing b rittle  
spherical equiaxed phase along w ith  large speckled spots.
The coatings were then exposed to  normal room
tem perature fo r 5 hours.

A higher magnification, @ (a) x 3000, (b) and (c) x 30,000 355
backscattered electron micrograph o f Al-Ti-C coating
exposed to  550°C fo r 1 hour showing (a) speckled region
(b) Speckled region w ith  observable growth and feather 
shaped region and (c) b rittle  phase along w ith  speckled 
spots. The coatings were then exposed to normal room 
tem perature fo r 5 hours.

XRD trace o f Al-Ti-C coating post 550°C exposure fo r (a) 1 358
hour and (b) 3 hours fo llowed by normal room
tem perature exposure fo r 5 hours.
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Figure 4.113

Figure 4.114

Figure 4.115

Figure 4.116

Figure 4.117

Figure 4.118

Figure 4.119

Figure 4.120

Figure 4.121

Frequency distribution histogram of micro-hardness 361
(HVo.98) for Al-Ti-C coating exposed to 150°C for 1 hour 
(violet shade) and 3 hours (Dark red shade). The coatings 
were room temperature cooled (5 hours) after exposure.

Frequency distribution histogram of micro-hardness 362
(HVo.gg) for Al-Ti-C coating exposed to 350°C for 1 hour 
(violet shade) and 3 hours (Dark red shade). The coatings 
were room temperature cooled (5 hours) after exposure.

Frequency distribution histogram of micro-hardness 362
(HVo.98) for Al-Ti-C coating exposed to 550°C for 1 hour 
(violet shade) and 3 hours (Dark red shade). The coatings 
were room temperature cooled (5 hours) after exposure.

Comparison of micro-hardness values obtained for as 363
sprayed Al-Ti-C coating and Al-Ti-C coating exposed to 
150°C, 350°C and 550°C for 1 hour and 3 hours followed 
by room temperature cooling for 5 hours.

Graphs showing wear crater volume vs. sliding distance x 365
load for Al-Ti-C coating subjected to 150°C for (a) 1 hour 
and (b) 3 hours followed by room temperature cooling for 
5 hours.
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Abstract

Extensive research on alloying aluminium (Al) with zinc (Zn), indium (In) and 
titanium (Ti) to improve corrosion and w ear resistance has been conducted 
since 1950’s to m eet the increased demand of Al in construction, automotive, 
aerospace and food industries in the form of coatings deposited using 
thermal spraying, hot dipping and cladding. This research has investigated 
the performance of arc sprayed A I-5w t% Zn-(0 .02-0 .05w t% )ln  and A I-3w t% Ti- 
0.15w t% C  coatings to protect steel structures from corrosion and wear.

The accelerated and electrochemical tests conducted on A l-5wt%  Z n -(0 .02 -
0.05w t% ) In showed that its superior corrosion performance was attributed to 
the synergetic interaction of Zn and In. Cyclic formation and rupturing of 
passive Al oxide layer was found to be the underlying mechanism of 
activation produced by combination of both Zn and In. The presence of In in 
the corrosion product or on the surface of the coating In w as not detected, 
hence validation of surface enrichment theory was improbable.

The micro-scale abrasive w ear test showed that the w ear coefficient of an 
arc sprayed A I-3w t% Ti-0.15w t%  C coating was found to be very close to that 
of an arc sprayed 13w t% Cr steel coating with a much higher hardness. This 
was attributed to the formation of AI3Ti and (Ti,AI)C particles due to rapid 
cooling that takes place in arc spraying . This resulted in precipitation 
strengthening, explaining the increase in the hardness of the sprayed Al- 
3w t% Ti-0.15w t% C  coating compared to its feedstock alloy. To establish a 
mechanism by which the identified phases in the microstructure of arc 
sprayed A I-3w t% Ti-0.15w t% C  alloy coating showed improved hardness and 
w ear resistance than the bulk alloy, growth of identified phases in the coating 
was promoted by two different heat treatm ent cycles. The coated samples 
were held at three chosen temperatures of 150°C, 350°C  and 550°C  
separately for 1 hour and 3 hours, followed by two different cooling regimens; 
the first involved rapid quenching of samples and the other was room 
tem perature exposure for 5 hours.

After both heat treatment cycles

•  Precipitations of Ti rich high contrast and near spherical brittle phases 
were observed in the microstructure of A I-3wt% Ti coatings.

•  A  reduction in the spread of micro-hardness value with increase in 
exposure tem perature from 150°C  to 550°C  was also observed.

An overall increase in the w ear coefficient value of rapidly quenched coatings 
in comparison to as-sprayed A I-3w t% Ti-0.15w t% C  coating was seen. A  
similar increase in the w ear coefficient value was also observed after room 
tem perature cooled coatings. However, an exceptional 15 % reduction in 
w ear coefficient value was seen in the room tem perature cooled coating after 
3 hours of exposure at 550°C . The role of precipitated phases and possible 
mechanism of their effect on micro-hardness and w ear resistance of Al- 
3w t% Ti-0.15w t% C  alloy coating has also been discussed.
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Chapter 1: Introduction

1.1 Motivation

Corrosion and w ear of materials are universal problems, which cause the 

majority of catastrophic failures of metallic structures and have implications 

in terms of both safety and economic losses. Generally, corrosion can be 

defined as the degradation of materials by chemical or electrochemical 

reaction with the environment causing the material to lose m echanical 

strength and ductility1 whereas w ear is related to the loss of material by the 

action of friction on two interacting materials having sam e or different 

hardness which are constantly subjected to rubbing action. To understand  

the methods to mitigate the effects from various forms of both corrosion and 

wear, it is imperative to understand the underlying principle for both 

phenomena, which encompasses elements of physics, chemistry and 

metallurgy.

Numerous surface protection methods such as use of metallic and non- 

metallic coatings which not only provide adequate corrosion resistance, but 

also impart high w ear resistance and provide lubrication between the 

interacting materials have been deployed by various industries in order to 

protect metallic structures from ubiquitous phenomena of corrosion and 

wear. The application of metallic coatings is the most widely used technique  

in the industrial sector to protect metallic structures during their service life.
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The current project focuses on the application of Al based metallic coatings 

to the steel substrate by thermal spraying.

The thermal spray coating process originated in early 1900's, w here it was  

initially used for depositing zinc. The process was originally constrained by 

the availability of a satisfactory heat source, typically an oxyacetylene flame, 

until the development of other techniques such as arc and plasma spraying. 

The thermal spraying process is very adaptable, being capable of depositing 

a wide variety of materials, including ceramics in addition to metals. 

Furthermore, a range of precursors can be used, including powder, rods and 

wires. The main advantage of thermal spraying in comparison to other 

deposition processes such as electro-deposition, physical and chemical 

vapour deposition, is that thermal spraying can be used to deposit coatings 

on large metallic structures at high deposition rates.

The thermally sprayed aluminium alloy coatings have been mostly used to 

protect underlying steel structures exposed to aggressive environments 

(such as marine or industrial) from corrosion. In order to increase the use of 

aluminium alloy coatings in industrial environments, addition of various 

alloying elements have been studied to improve the corrosion and w ear 

resistance of the coatings. The current project has focused on spraying 

aluminium alloyed with zinc (Zn) indium (In), titanium (Ti) and carbon (C) to 

produce coatings which are used for corrosion and w ear protection of 

metallic substrates. During the project, A l-Zn-ln and A l-T i-C  alloys w ere  

sprayed on mild steel substrates using arc spraying technique. The coatings 

were subjected to various experimental tests which included accelerated and 

electrochemical corrosion tests for A l-Zn-ln and Al-Ti-C  coatings and w ear



test for A l-Ti-C  coating in conjunction with analytical characterisation 

techniques to understand coatings corrosion and w ear performance. The  

project has not only immensely contributed to the existing literature on A l-Zn- 

ln alloys which are used as sacrificial anodes but has also created an in- 

depth understanding of the mechanism of corrosion resistance provided by 

Al-Zn-ln alloy in form of arc sprayed coatings. The current project has also 

established a quantitative evidence of the use of Al alloyed with Ti and C as 

a w ear resistant coating on to mild steel structures which can perform equally 

as other commercially available widely used w ear resistant coatings, in 

addition to w ear resistance can also provide optimum corrosion protection.

1.1 Aim of the project

The aim of the research was to understand the corrosion and w ear  

resistance properties of Al-Zn-ln and Al-Ti-C  alloy coatings which have been  

sprayed on to metallic substrates. The research has developed a profound 

understanding of the microstructure and composition of A l-Zn-ln and A l-Ti-C  

alloy coatings, related this to the performance of the coatings in different 

environments by conducting various experimental investigations and in turn 

used the knowledge obtained from various experiments to understand the 

underlying mechanism of corrosion and w ear protection offered by these  

coatings, when sprayed using industrial spraying parameters.
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1.2 Objectives

The objectives of the study have been:

•  To identify the role of Zn, In, Ti and C as alloying elem ents on the 

corrosion and w ear resistance of aluminium.

•  Characterisation of the coatings using analytical techniques such as 

scanning electron microscopy (SEM ) with energy dispersive X -ray  

analysis (ED S) and X -ray diffraction (XRD) to analyse the 

microstructure of arc sprayed A l-Zn-ln and Al-Ti-C  alloy coatings.

•  Using accelerated and electrochemical corrosion tests on A l-Zn-ln  

and Al-Ti-C  alloy coatings to analyse coating lifetime and sacrificial 

behaviour.

•  By conducting micro-scale abrasive w ear test, the w ear resistance 

capabilities of A l-Ti-C  was identified. Further heat treatm ent tests were  

conducted to pin down the role of different phases present in the A l-T i- 

C alloy coatings which played a significant role in enhanced w ear  

resistance performance of the coatings.
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Chapter 2: Literature Review

2.1 Introduction, background and use of coatings

The use of coatings either to protect surfaces from deterioration or for 

decoration is an ancient technique. The first evidence of coatings being used 

for protection against corrosion dates to 4000  B.C, where Egyptians used 

varnishes, while Chinese artists used coatings for the purpose of decoration 

[1-3]. Even today, the main tasks of a coating system are the protection of 

the substrate from degradation and to provide a decorative finish to the 

surface [2,3].

The application of coatings requires an understanding of the use of specific 

materials used for coating, design or geometry of substrate and application 

process. The process for application of coating is usually dependent on 

energy consumption, raw material and cost of labour during the coating 

process [4]. The use of coatings is an effective and economical method of 

corrosion control, increasing the service life of a component and reducing the 

long term maintenance cost [4]. The cost of coatings is typically 5%  to 21%  

of total cost which does not include the cost of preparing the surface [5].

W hen selecting a coating, it is also important to analyse the combination of 

substrate and coating. The coating-substrate combination should work 

efficiently without impairing the properties of the substrate, e.g. mechanical 

and thermal properties [6].
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Selection of coatings is further complicated by the variety of mechanisms by 

which coatings protect substrates from corrosion [6]. Coatings can physically 

separate the metal from the environment or another metal, they can act as a 

source of corrosion inhibition, provide cathodic protection or can protect the 

metallic structure by a combination of all these mechanisms [6]. This 

combined protection can also be provided by using multilayer coating. 

Coatings can be broadly classified as organic, inorganic or metallic [5-7].

•  M eta llic  coatings act as a barrier between the substrate material and 

environment, providing the mechanical properties of the substrate but 

with the ability to perform in the necessary working environment. The  

metallic coatings generally provide good corrosion resistance to the 

substrate even if the coating is dam aged. The various processes for 

applying metallic coating include electroplating, hot dipping, thermal 

spraying, cladding and diffusion coating.

•  Ino rg an ic  coatings , such as enam el coatings, are mainly used as 

w ater resistant coatings used for plumbing applications, while 

conversion coatings are formed by reacting the surface of the 

substrate metal in a controlled environment. These coatings provide 

corrosion resistance in a moderate environment but are usually less 

effective in aggressive environment.

•  O rg an ic  coatings  are typically paints, varnishes and lacquers. The  

essential features of a paint system include a vehicle that provides the
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fluidity to the system, a pigment controlling the corrosion reaction and 

additives which promote drying of the coating.

2.2 Thermal spraying: A brief history and current status

During the early 1900's, Dr M ax Ulrich Schoop , of the Swiss Republic, 

proposed that, when gas is projected from a nozzle at high velocity it causes  

the fluids to pulverise, similarly, a stream of molten metallic or non-metallic 

material can be projected towards a surface to produce coating, see Figure

2.1 [8].

Figure 2.1: Diagrammatic representation of initial concept of thermal 

spraying based on pulverising of fluids by high velocity gas ejecting from a 

nozzle [8,10].

During the early stages of development, Dr Schoop and co-workers focused  

on pouring molten metal, such as zinc and lead, into a je t of gas at high 

pressure to deposit coatings [8]. The equipment designed for molten metal 

spraying was termed as Mellozing gun, which was rather challenging  

equipment in terms of obtaining a hot gas stream [8]. This lead Dr Schoop  

and co-workers to introduce a new Schori metallising process, which used



combustion of a fuel gas in presence of oxygen in order to heat the molten 

powder material along with a je t of high velocity hot gas [8].

Later in 1915, Dr Schoop submitted a patent to the United States Patent 

office [9], which was an initial design of spraying equipment that used electric 

arc to melt the metal wires and compressed air to project the molten metal 

on to the surface to be coated, laid the foundations of modern thermal 

spraying process [10]. During the period of First World War, the commercial 

use of thermal spraying started in Germany and was followed by France [8]. 

In the year 1922, the establishment of Metallisation Ltd in Dudley, formed the 

roots of commercial application of thermal spraying in United Kingdom [8,11], 

Figure 2.2 shows a famous image of Dr Schoop holding a sample in front of 

a thermal spraying gun which inspired the formation of Metallisation Ltd [11],

Figure 2.2: The famous postcard with Latin inscription "Mucius Scaevola 

redivivus" (meaning Mucius Scaevola returns) showing Dr Schoop and co­

worker with thermal spraying gun or pistol [11],
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With over a hundred years, since the initial development of thermal spraying, 

improvements in the process and better understanding of materials, has led 

to a wide variety of materials, including metals and ceramics, to be sprayed  

on to a prepared substrate [8,11,12]. Now, thermal spraying is a widely used 

technique in different engineering fields such as construction, oil, gas and 

petrochemical, where corrosion and w ear resistant coatings are required 

[12]. The main advantages of using thermal spraying include [3,4,8,11,12]:

•  Coating can be done in-situ meaning that large structural works can 

be coated.

•  A  wide range of coating thicknesses can be achieved by thermal 

spraying.

•  Materials with a higher melting point can be sprayed on the surface, 

due to a high heat output of the energy sources used in thermal 

spraying.

•  Therm al spraying is a lifetime economic process, which produces 

coating with long service life and less maintenance cost.

•  Materials in form of powders, rods and wires can be sprayed using 

thermal spraying techniques.

During early 2013, a quarterly report submitted by S P R A Y T IM E  [13] 

suggested that by 2020, the thermal spraying equipment and consumables 

market in the United States of Am erica will value approximately $275 million 

as compared to $130 million in 2013, see Figure 2.3.
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Figure 2.3: Graph showing predictive growth in the thermal spray market in 

USA [13].

A similar statistical report published by the United States Energy Information 

Administration (EIA) [14] and Exxon Mobil Corporation [15] also predicted 

that with almost 40% of global energy consumption will contribute towards 

power generation, thermal spraying will be widely adopted in the industry 

sectors such as coal petroleum, natural gas, biofuel, wind and solar power 

stations to protect the structures from corrosion and wear. In 2011, the 

annual turnover of thermal spray industry in Europe union was approximately 

€ 2.066 billion, see Figure 2.4, with maximum thermal spray applications in 

automotive sector (21%), Mechanical engineering sector (19%), Aerospace 

(17%), Paper printing (15%) [16]. The highest market contribution of 30.2% 

was reported by Germany followed by United Kingdom, France and Italy at 

19.2%, 18.5% and 11% respectively [16].
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F igure 2.4: Graph showing contributions of different countries in European 

Union in generating € 2.066 billion annual turnover from thermal spraying 

applications [16].

A comprehensive report presented by ‘Fukomoto’ [17] stated that China's 

gross output from thermal spray industry increased from U.S $0.14 billion to 

U.S $ 0.24 during the period of 2002 to 2005. Figure 2.5 (a), (b) and (c) 

shows the use to thermal spraying applications, feedstock materials and 

various spraying process which have contributed in growing the thermal 

spray market in China [17].

397 Mio.

99 Mio.
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Figure 2.5: Graphs showing contribution of thermal spraying in (a) various 

industrial sectors (b) application of thermal spraying based on various 

feedstock materials and (c) application based on different thermal spraying 

processes [17].

Since 1970's considerable investment has also been done in exploring the 

use of thermal spraying in electronic industries to produce thick film electrical 

conductors, bioactive materials and solid oxide fuel cells [18]
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2.3 Im portant thermal spraying processes

Various application techniques for thermal spraying exists, the most 

commonly used industrial spraying techniques include:

•  F lam e S pray ing  [19-21]: Flame spraying, also known as combustion 

flame spraying. According to the choice of material, flam e spraying 

can be categorised as powder flame spraying and wire flame  

spraying. In the wire flame spraying gun the material in form of wire, 

typically 3-5 mm in diameter, is fed into the spraying gun. Ceram ic or 

metal rods or wires can be used in spraying, with an average feed rate 

of 80 to 650 g/min. The flame generated by the combustion of fuel gas 

and oxygen, melts the end of the wire or rod, the melted wires or rod 

are atomised by a compressed gas and propelled towards the 

substrate.

The principles of powder flame spraying are similar except that the 

material fed in the gun is into the form of powder. The average powder 

particle size used in a flam e spraying is in the range of 5 -100  pm and  

is usually kept spherical in shape to maintain ease in handling and 

reducing the spraying spots. In flam e spraying, the oxygen to fuel ratio 

is in range of 1:1 to 1.1:1 which produces a carburising to oxidising 

flame, the flame temperatures lies in the range of 3000 -33 50  K with a 

velocity of 80-100  m/s. Other process parameters, such as flow rate 

and pressure depend upon the flam e torch type 

A  spraying distance from 120 to 250 mm is typically maintained, 

usually with a 90° spraying angle, but this may vary due to geom etry
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of the substrate. Typically, thick coatings ranging from 100-2500  pm 

and with porosity of 10-20 % can be produced by flame spraying.

• High Velocity Oxy-fuel (HVOF) spraying [19-21]: In high velocity 

oxy-fuel spraying (H VO F), the fuel (gases such as acetylene, 

kerosene, propane or hydrogen) is burnt with oxygen under high 

pressure to produce a high velocity exhaust jet. The powdered  

material to be sprayed is injected into the exhaust jet by carrier gas, 

which is burned in the combustion chamber. The flow rate of the gas 

is usually in the range of 40 -60  Nl/min (6-8 l/min). The powder size in 

the range of 5-45 pm is typically used, with a feed rate of 20 -80  g/min. 

Carbides, for the purpose of producing w ear resistant coatings, are 

the most commonly sprayed powders using HVO F. The carbide 

coatings sprayed using H V O F can have a very high bond strength 

(approximately 90 M Pa), with less than 1% porosity with thickness 

ranging from 100-300 pm.

• Arc Spraying [22-36]: In an arc spraying process, two wires, which

act as consumable electrodes are used as shown in Figure 2.6. The

tips of the electrically conductive wires come into contact producing an

arc, the heat generated by arc melts the wire and the molten metal

atomised by compressed gas is then propelled towards the substrate.

Typically, a conductive metal wire of diam eter ranging from 2 -5  mm is

used. Cored wires, which are used to give particular alloy or

composites, are also used in the arc spraying. The molten metal
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particles formed can attain a velocity up to 150 m/sec. The  

characteristic property of an arc includes temperature, which during 

the process may reach 6000  K, the arc voltage, in the range of 20 -40  

V  and arc current of 280 A, depending upon the material to be 

sprayed. These parameters can be altered during spraying to tailor 

the properties of the coatings, such as varying the oxide content in the 

coatings. The bond strength of the coating deposited by arc spraying 

varies in the range 10-30 M Pa (typically for Al and Zn, can be higher 

for other alloys). Coating thickness can be controlled during the 

process. Arc spraying has also been used to produce moulds for 

plastic product applications and also for self-lubricating coatings. 

During the current project, arc spraying was used to produce Al- 

Zn-ln and Al-Ti-C coatings on to mild steel coupons in order to 

study the corrosion and wear resistance properties of the 

mentioned coatings.
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Figure 2.6: Schematic diagram of wire arc spraying gun [37],

2.4 Formation and Microstructure of thermal spray coating

The schematic of coating deposited using a thermal spraying process, where 

the metal or ceramic to be sprayed is melted and then projected towards a 

prepared substrate is shown in Figure 2.7 [38]. The molten metal particles 

solidify rapidly to form a lenticular shape [38,39]. The formation of the 

sprayed layer is dependent on the spraying parameters such as, feed rate of 

powder or wires, working distance and linear speed of deposition [40]. Hence 

these spraying parameters play a significant role in formation of porosity and 

micro-cracks and the presence of oxides in the sprayed coating [40], The 

formation of oxides in thermally sprayed metallic coating is attributed to 

oxidation of molten particles in-flight and oxidation of molten particles after 

impact on the substrate [41-45].
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Figure 2.7: Schematic of coating deposition by thermal spraying process

The coating adheres to the substrate by mechanical keying i.e. mechanically 

bonding to the substrate, hence for this reason the substrate has to have a 

sufficient degree of roughness [38-41],

The preparation of the surface of the substrate prior to deposition plays a 

major role in producing an optimum coating by achieving good bond strength 

between coating and substrate. The substrate is degreased, using organic 

solvents such as methanol or acetone to remove surface contamination, as 

traces of any contamination, such as oil or dirt on the surface is detrimental 

to the adhesion of the coating.

Occasionally, the substrate can be preheated to prevent any condensation 

on the surface [38,42], The next step in surface preparation involves 

increasing surface roughness, which can be achieved by abrasive blasting. 

The blasting medium must be clean and the sharp edges of the grit particles

[38].
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must be maintained. The blasting of the substrate leaves the surface more 

susceptible to oxidation; hence coating should be done as soon as the 

surface is blasted [21,38].

2.5 Thermally sprayed aluminium (Al) coatings

Aluminium (Al), unalloyed, provides a high degree of corrosion resistance 

due to formation of a thin tenacious oxide layer when exposed to the 

atmosphere. This natural protective mechanism of aluminium against 

corrosion is beneficial in many industrial applications. However aluminium is 

alloyed with elements such as Sn, Bi, In, Hg and Zn, which are used to 

increase the corrosion resistance of aluminium, while other elem ents such as 

Cr, Ti, Zr, Li and Ni increase the mechanical properties of aluminium [46].

Due to the inherent properties and effect of various alloying elem ents on the 

corrosion and w ear resistance of aluminium, it has been used extensively as 

corrosion and w ear resistant thermally sprayed coating to protect structural 

steel exposed to high tem perature and marine environment [47].

Therm ally sprayed aluminium coatings typically contain 1 to 3%  of oxide and 

have a density of about 2 .3 -2 .4  g/cm 3 , and when alloyed with elem ents such 

as Ti, Zr, Ni, it can also be used for high temperature (823 K -1173 K) 

application [47].As an active metal, the rate of corrosion of aluminium under 

immersion conditions depends on the dissolved oxygen content of water, the 

concentration of chloride and percentage of other heavy metal present 

,hence aluminium combined with zinc is used for extended lifetime during
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service of the coating by providing it good galvanic protection ability [47-50]. 

The protective mechanism of the thermally sprayed aluminium alloy coating 

[46-50] is illustrated in F igure  2.8, which shows:

•  During thermal spraying, increasing the level of oxide in the coating 

(varied by changing the spray parameters) or using Al alloyed with 

elements such as Ti,N i,C  to produce coatings which significantly 

reduces the number of active corrosion sites and increases the w ear 

resistance, acts as a physical barrier between the substrate and  

environment.

•  The corrosion products formed act to block porosity in the coating, 

thus further improving the barrier properties of the coating.

•  Aluminium, when alloyed with zinc and other elements such as In, Sn, 

Hg, are sprayed to steel structures, the alloys sprayed increase the 

galvanic protection ability, which results in, enhanced protection ability 

of the coating, in which the coating when dam aged, corrodes 

preferentially and in doing so protects the substrate [14,30].
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Figure 2.8: Schematic of corrosion and wear protection mechanism offered 

by aluminium alloy coatings to steel structures.

The focus o f th is p ro ject w as  to  investigate  the tw o  Al based coating  

system ; the A l-Zn -ln  coating  w as prim arily  investigated  fo r co rro s io n  

res is tance  and A l-T i-C  coating  prim arily  fo r w e a r res istance , h o w ever  

corrosion  res is tance o f A l-T i-C  coating  w as also  eva luated . The  next 

few  sectio n s  o f th is ch ap ter conta ins  a co m p reh en s ive  lite ra tu re  w h ich  

luc id ly  exp la ins  the nature o f both te rn ary  a lloy  system s in te rm s o f 

alloy ing  effects  and m echan ism  o f co rros ion  and w e a r fo r the a lloys .
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2.6 Sacrificial anodes

2.6.1 A brief introduction to Galvanic corrosion

The effect of coupling dissimilar metals in an aqueous electrolytic solution 

resulting in an electrochemical potential difference between the metals was  

observed by Luigi Galvani in 1791 [51].

Figure 2.9 shows the galvanic series of various metals and alloys exposed  

to sea w ater at 25°C . It can be seen that the free corrosion potential or open 

circuit potential (O C P) varies from a negative values (active) to a positive 

potential (noble) values measured with respect to saturated calomel 

electrode (SCE).

W henever two dissimilar metals are coupled together in presence of an 

electrolyte, consider zinc coupled with steel, the metal which has more 

negative open circuit potential, in this case Zinc, acts as an anode and 

corrodes preferentially. The other metal which has a more positive open 

circuit potential, steel with respect to zinc, acts as a cathode. In doing so, 

zinc sacrificially protects the steel. This coupling action forms the basis of 

cathodic protection system by using sacrificial anodes [52-54].
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Figure 2.9: Galvanic series of metals and alloys in sea water at 25°C  [55],

2.6.2 Factors affecting galvanic corrosion

It is important to note that the galvanic coupling of metals and alloys which 

can be potentially used as sacrificial anodes in cathodic protection system  

must be chosen with careful consideration [60-61],
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Som e key factors that significantly affect the performance of metals and 

alloys used as sacrificial anodes and are discussed in following points:

1. The values of open circuit potential (O C P) shown in the galvanic series, 

see Figure 2.9 are used as guidelines for considering the optimum galvanic 

couple. The variation of composition of electrolyte, motion of the electrolyte 

and the exposure temperature considerably affect the values of O C P  of the 

metals and hence the performance of metals chosen as sacrificial anodes 

[52,53].

For exam ple, as mentioned in the earlier paragraph, zinc and steel form a 

galvanic couple with zinc (the anode) being more electronegative than steel 

(the cathode) and corroding preferentially, protecting the steel. However, 

when the zinc-steel couple is exposed to an electrolyte containing nitrates, 

carbonates and bicarbonates above 60°C , the anodic nature of zinc reduces 

[53,56,57]. It was also demonstrated in the previous research that addition of 

chlorides to a specific ratio regained the anodic nature of zinc [58].

2. In the formation of a galvanic couple, the ratio of the area of the anode  

and cathode must be chosen correctly. Mathematically, in a galvanic 

corrosion process [59]

Ic o r r  =  la n o d e  =  "  Ic a th o d e  E q u a t i o n  1

If the areas of anode and cathode in galvanic cell are sam e then Equation 1 

can be rewritten in terms of corrosion current densities as [2 ]

I anode - I  cathode nEquation 2
A anode A cathode
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From Equation  2, it can be stated that a larger anodic area with respect to 

cathodic area will prove to be detrimental as the anode will have a larger 

current density for a smaller anode, which will accelerate corrosion at anode 

[2,7], For this reason, anodes are preferred to have a larger area as 

compared to cathodes.

2 .6 .3  R eq u irem en ts  o f sacrific ia l anode

The outlines of the sacrificial anode have been discussed in the previous 

section. From Figure 2.9, it can be seen from their position in galvanic series 

that aluminium, zinc and magnesium are the suitable commercially available 

candidates for forming potential sacrificial anodes for steel structures [52]. 

The performance of materials used as sacrificial anodes are usually 

measured in terms of current discharged continuously by a unit mass of 

anode during the process and is expressed as Ahkg'1 and is termed as 

anode capacity [52,60], In reality, the anode capacity which can be 

calculated from Faraday's law or the theoretical value of anode capacity is 

less than the actual capacity of the anode material when used in cathodic 

protection systems and is expressed mathematically as anode efficiency, 

given as [60],

(%) Anode efficiency = --■* —1de c*pacity x 100 Equation  3
Theoretical capacity

24



The consumption rate of anode is also an important param eter which is a 

m easure of anode material which will be consumed if it operates at a certain 

anode capacity and is expressed in kgA‘1Year ‘ 1 [60].

In order to choose anodic materials to cater the requirements of cathodic 

protection the two most important factors that must be taken into 

consideration [52,60,61]:

1. The primary requirement of a material to be effective for cathodic 

protection is that the open circuit potential of the anodic material should be 

more electronegative than the structure to be protected in a given corrosive 

environment.

2. The anodic material should have a high anode capacity, i.e the material 

should corrode uniformly and provide a higher current per unit mass 

consumed without passivation from the corrosive environment of exposure. 

Cathodic protection using sacrificial anodes has successfully been used in 

protecting pipelines both subsea, underground and concrete structures and 

other wide areas on industries where components are exposed to corrosive 

environment. In order to achieve the desired protection, most of the metals 

which are commonly used as sacrificial anodes are alloyed [60].

A  sacrificial cathodic protection system is a preferred choice for structures 

exposed to a marine environment [62]. Structures exposed to marine  

environment encounter degradation caused due to sea water, which has high 

levels of dissolved oxygen and high chloride content [63]. The highly 

corrosive nature of the sea w ater adds to another requirem ent of 

understanding the interaction of the anodic material with the sea w ater in
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terms of both corrosion and its operational capability for optimum service life 

[63].

Various commercially available alloys of aluminium, zinc and magnesium  

have been successfully used in sacrificial cathodic protection systems, but 

only aluminium alloys will be discussed further as this project focuses on 

thermally sprayed novel aluminium alloys for protecting steel structures.

2.6.4 A brief history of cathodic protection

The written evidences on corrosion have been reported since the time of 

Plato in early 400  B.C. Ever since then, other ancient philosophers tried to 

explain corrosion as naturally occurring phenom ena and worked on methods 

to protect the metals from the detrimental effects of corrosion by applying 

coatings of red or white lead and t a r .

In 1936, some sealed copper cylinders with iron cores were excavated near 

Baghdad which were believed to have been used as a battery source for 

jewellery decoration by electrolysis. These findings supported the fact that 

people of that era knew about the effects of dissimilar metal contact even  

before galvanic coupling effect was recognised [61]. Many more such 

historical evidences have been logged (such as India’s iron pillar) that affirm  

the fact that methods of protecting metallic structures from corrosion have 

been studied for centuries [59].

It was in the year 1824 that Sir Humphry Davy, who accepted a commission 

from the British admiralty for protection of copper clad vessels from  

corrosion, due to the marine environment. He reported the use of zinc or iron
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coupled with copper will reduce the effect of corrosion. However his 

endeavour was partially successful as coupling of copper with zinc or iron did 

cathodically protect copper, but m ade the copper susceptible to marine 

fouling.

It was then in 1950's that it was realised that the use of fouling resistant 

paints would make cathodic protection of sea freighting vessels feasible. For 

over a century now cathodic protection has been a major corrosion mitigation 

method being used onto metallic structures buried in soil and exposed to a 

marine environment [61,64].

2.6.5 The basics of cathodic protection

The metallic structures buried in soil or exposed to marine environment 

under unprotected conditions will favour formation of a localised corrosion 

cell as shown in Figure 2.10. This formation of anodes and cathodes 

(formation of local anodes and cathodes on sam e metallic structure depends  

on exposure of the metallic surface to operations such as machining, forming 

etc.) on the metallic structure causes a potential difference to exist between  

the localised areas. Due to this potential difference a circuit is formed in 

which the ionic current from the anode with corrosive environment as a 

conductive medium flows to local cathodic region and the conductivity of the 

metallic structures allows the flow of electrons to the anode. This completes 

the corrosion cell and causes metal loss at anodic sites [55].
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F igure  2.10: Schematic of formation of a corrosion cell in a metallic structure 

when exposed to corrosive environment [55].

In order to avoid the formation of localised corrosion cell either the metallic 

structure is connected to an external power supply and anode which makes 

the structure cathode by continuous supply of current (known as impressed 

current protection) or by attaching a less noble metal which acts as an anode 

with respect to the metallic structure and corrodes preferentially and protects 

the structure from the adverse effects of corrosion (sacrificial anodes). These 

two methods form the basis of cathodic protection system [51,55], The 

impressed current cathodic protection method will not be discussed further 

as the major emphasis of the project will be on sacrificial anodes.
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2 .7  A b r ie f in tro d u c tio n  to  ap p lica tio n  and lim ita tio n  o f Al as 
sacrific ia l anod e m a te r ia l

Aluminium (Al) is mostly abundant in earth's crust in form of silicates, oxides 

(Al20 3), bauxite ore (AI20 3.nH20 ) and in form of complex AI(H20 )63+ ion in 

water [62], When extracted from its ores, due to its inherent mechanical, 

electrical and thermal properties, see Tab le  2.1, aluminium is most suited for 

wide range of engineering applications [65].

Tab le  2.1: Important properties of unalloyed aluminium [66].
Properties of unalloyed Al (atomic no. 13)

Density (gem'3) 2.70
Melting Point (°C) 660.32
Boiling point (°C)
Thermal conductivity (W m'1K'1), temperature range
°C

2520

0-100 238
200 238
400
Coefficient of expansion 10'6K'1, temperature range
°C

238

0-100 23.5
100 23.9
200 24.3
300 25.3
400
Electrical resistivity pQ"1, temperature range °C

26.49

20 2.67
100 3.55
200 4.78
300 5.99
400 7.30

Temperature coefficient of resistivity 0-100 °C, 10'3K 4.5

Considering the properties of unalloyed aluminium listed in Tab le  2.1 and the 

electronegative potential with respect to steel as shown in galvanic series in 

Figure 2.9, Al is used as a sacrificial anode to steel structures used in 

marine and oil and gas industry [67,68].
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One of the major limitations of using pure Al as a sacrificial anode is that 

when Al is exposed to air or a marine environment, the rapid formation of an 

adherent passive oxide layer (Al20 3) takes place which prevents the uniform 

corrosion and lowers the anode capacity of Al [69,70]. Thus Al is alloyed with 

various other metals to mitigate the formation of this passive oxide layer and 

maintain a constant electronegative potential when coupled as a galvanic 

anode [6 8 ]. Al alloys have been a preferred choice as sacrificial anodes in 

marine environment in comparison to magnesium (Mg) and zinc (Zn) due to 

following reasons:

1. The average life of Mg sacrificial anodes is in the range of 6  to 12 months 

as it is highly reactive and is generally used in a electrolyte medium which 

has a higher resistivity (such as river water) [71].

2. Zn is also a favourable anodic material with high anode capacity, but a 

major limitations is that when Zn is exposed to temperature above 60°C  it 

loses its anodic nature (discussed under section 2 .6 .2 ) therefore limits its 

usage [57,71].

3. Al and its alloys in comparison with Zn and Mg has a higher anode 

capacity (anode capacities in decreasing order: Al (2700 Ah/kg) >M g (1230  

Ah/kg)>Zn (780 Ah/kg)) [71,72]. The other properties such as lower cost, 

longer service life and light weight of aluminium broadens the use of Al not 

only as sacrificial anode in light weight structures but also structures exposed  

to marine environment [72].
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2.8 Alloying of Al: Enhancement of sacrificial properties

The main purpose of alloying the metals used as sacrificial anodes is to 

improve the performance of the anodes by driving the operating potential to a 

more electronegative region, avoid passivation and make the surface of the 

anode corrode uniformly [60].

Considering aluminium (Al), which is well known for its application as 

sacrificial anodes to protect metallic structures exposed to marine 

environment (especially sea water) , when it comes in contact with a high 

chloride content of the sea water, forms a passive oxide layer at O C P  « -0 .8 0  

V  vs.SCE [73]. The formation of this oxide layer hinders the use of unalloyed  

Al as sacrificial anode for steel structures as it significantly reduces its anode  

capacity [74].

In order to maintain the electronegativity of Al anode by reducing the 

formation of tenacious passive oxide layer, elements such as zinc (Zn), 

magnesium (Mg), cadmium (Cd), barium (Ba) known as modifiers and indium  

(In), mercury (Hg), tin (Sn), gallium (G a), titanium (Ti), thallium (TI) known as 

depassivators are used [75].
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2 .8 .1  B ackground on a llo y in g  Al fo r  im p ro v in g  th e  
e lec tro ch em ica l p ro p ertie s

The understanding of the electrochemical properties of both binary and 

ternary Al alloys formed by combination of modifiers and depassivators had 

started almost fifty years ago [75-81]. Reding and Newport published a paper 

in 1966 which discussed the effects of various alloying elements at various 

alloying concentrations (modifiers and depassivators) on the electrochemical 

properties of Al sacrificial anodes [82].

The significance of alloying composition (%mass) on the OCP of Al was 

evaluated in sea water, as shown in Figure 2.11 [82]. As it can be seen from 

Figure 2.11, the elements shaded with light grey reportedly had no effect on 

the OCP of Al, while Mn and Cu (shaded light green) produced a positive 

shift in the OCP of Al [82], The elements shaded with light red (Mg, Ba, Zn 

and Cd), also termed as modifiers lowered the OCP of Al alloy by 0.1 V to 

0.3 V (vs.SCE) in comparison with pure Al [76,82],
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Figure 2.12: Graphs showing the effect of alloying of (a) depassivators (b) 

modifiers on the OCP of Al (vs. SCE) [82,83].
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The authors reported that the addition of modifiers such as Zn and Mg up to 

10wt%, similarly Ba and Cd up to 0.6wt%  and 3wt%  respectively, were  

effective in reducing(shifting in more electronegative direction) the O C P (vs. 

S C E ) Al, as shown in F igure  2.12(b) [82]. Comparing F igure  2 .12  (a) and 

(b), the addition of depassivators to a much lower concentration such as Hg 

up to 0.01wt% , Sn up to 0.3w t% , In up to 0.2wt%  (however the graph 

indicated that addition of In further from ~ 0.05w t%  to 0.2w t%  did not 

significantly affect the O C P  of Al) and G a up to 0.6wt%  produced a greater 

electronegative shift in the O C P of Al (vs.SCE) than larger additions of 

modifiers [82].

During this study, it was reported that alloying elem ents including 

depassivators and moderators, which produce the highest electronegative  

shift in the O C P of Al showed similar properties [82]:

•  It was observed that the elements which produced the maximum  

electronegative shift in the O C P  of Al have lower melting points than 

Al (exception being Ba), see Tab le  2.2.

T ab le  2.2: Elements (depassivators and modifiers) and their melting
__________ temperatures which significantly lower the O C P of Al [82,83].
Elements Melting temperature (°C)

Hg
Ga
In
Sn
Bi

Cd
Zn
Mg
Ba

-39
Lowering OCP by 0.3 V  2 9  6

to 0.9 v  156

232
271

Lowering OCP by 0.1 V  
to 0.3 V

650
727
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•  The elements producing maximum negative shift of the Al O CP, 

the solubility of these elements such as In, G a,Sn,H g, Cd, Ba, 

exception being Zn and Mg in Al and vice-versa was found low.

•  The authors also reported that depassivators do not form  

intermetallic compounds with Al.

In addition to the deductions by Reding  and Newport on the alloying 

elements which make Al more electronegative, Reboul at al. [84] added that 

there existed no co-relation between the working potentials of the Al alloys 

and individual theoretical potentials of the alloying elements. It can be seen  

from T ab le  2.3, considering Hg which is cathodic to Al, when alloyed with Al 

produces maximum electronegative shift in the working potential (proposing 

that depassivating elements are cathodic to Al) [84].

T ab le  2.3: The thermodynamic potential of various elements (at pH 8 ) that
have been alloyed with Al to form sacrificial anodes and 
working potential of Al alloys measured (at 6 .2  A /m 2) in A S TM  D 
1141-52 (left) [83,84].___________________________________________

Al binary and 
ternary alloys

Working potential 
(V vs. SCE)

Individual
elements

Thermodynamic potential 
(V vs. SCE)

Al ■"I Hg +0.15
Al-Li I -0.73
Al-Mg J Fe

Sn > -0.85

Al-ln -0.85
In -0.95

Al-Zn -0.95 Zn - 1 .2
Al-Zn-Hg -1.05 Al -2.3

Mg -2 .8

Al-Zn-ln > - 1.1 Li -3.3
Al-Zn-Sn

Al-Sn -1.35
Al-Hg - 1 .6
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T ab le  2.4: Composition of Al alloys tested by K ie re t al., coupled with mild 
steel in 0.1 M NaCI solution exposed for 48 hours[85]. The  

__________ experiments were conducted in duplicates and triplicates.______
Alloying elements with Fe and Si as major 
impurities

Corrosion current (A)

(w t% )elem ent (w t% )Fe (wt%) Si

0 .12  Sn 0.004 0.003 4 .55  X  10"3, 5 .12  X  10'3, 5 .69  X  
1 0 ‘3

0.10 G e 0.004 0.003 4 .0 5 X 1 0 '° ,  4 .0 5 X 1 0 '°

0 .20 Si 0 .004 - 5 .2 0 X 1 0 '° ,  2 .5 4 X 1 0 '°
0 .10 Ti 0 .004 0.003 1.45 X  10-*, 6 .36  X  10'°
0 .17 Zr 0.008 0.003 2.31 X  10'°, 3 .47  X  10'°

99 .997  Al 0 .0 0 1 0 .0 0 1 1.16 X  10", 1.22 X 10^

At.%Sn
20 50.

14001000

Liq.

1000800

Llq. + Al
Liq.+Si

600 600
99.510.06 S01°K

SnAl + Sn

Sn806 04020

W t.% S n

Figure  2.13: A l-Sn phase diagram [70].
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Figure  2.14: Graph showing the effect of Sn concentration (wt%) on the 

closed circuit potential (C C P) of Al-Sn alloy, coupled with mild steel in 0 .1M  

NaCI solution for 48 hours[85].

The work conducted by K ier et al. [85] on Al alloys with composition as 

shown in T ab le  2 .4  was also in accordance with findings by Reding  and 

Newport, that elements (depassivators, see F igure  2 .11) that m ake Al more 

electronegative have low melting points.

The authors observed that out of all the alloying elem ents mentioned in

Tab le  2.4, only Al-Sn alloy (with 0.12w t% Sn) showed increase in galvanic

current significantly when coupled with mild steel in 0.1 M NaCI solution [85].

The investigations were conducted on Al-Sn binary alloys containing

0.02w t%  to 0.3w t% Sn, b u t«  0.1w t% Sn was found to be effective in lowering

the closed circuit potential (C C P) (see F igure  2 .14) of Al-Sn alloy by -1 .0  V

(vs.NHE) in galvanic coupling experiment with mild steel in 0.1 M NaCI [85].
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As seen from F igure  2.14, It is important to note that in order to produce 

consistency in results, the Al-Sn alloy was homogenised at «  900 K for 16 

hours, as at this tem perature Sn has been reported to have maximum solid 

solubility (0.10w t% ) in Al which decreases to ~ 0.05w t%  to 0.07w t%  at 

eutectic tem perature of 500 K, see F igure 2 .13 [60,84-86].

2.8.2 Mechanism of activation of Al alloys: Lattice 
expansion

Song et al. [87] employed a probabilistic computer simulation model to 

understand the phenomena of passivation and activation of metallic alloys, 

and analysed binary Al alloys formed by modifiers and depassivators to 

study activation of Al alloys.

The authors considered addition of Zn (< 5wt% ) in Al lattice exposed in 

alkaline environment. The authors proposed that activation of Al is caused by 

diffusion of Zn atom on Al lattice surface causing the breakdown of A I2O 3 

passive layer (AI-O-AI bond). This produces end points of A I-O -AI chain of 

the form A I(O H )O A I(O H )2 , which increases the probability of dissolution of Al 

atoms neighbouring Zn atom surface [87].

However, not producing any quantitative results but the model generated by 

the authors showed that the activation of Al is not just dependent on the 

kinetics of dissolution caused by modifiers and depassivators but also on the  

rate of diffusivity of activator elements in the Al alloys [87].

A  similar study to understand the effects of depassivators and modifiers on 

the lattice of the Al when alloyed with depassivators and modifiers was
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performed by Sharm a et al. [8 8 ] by using ab-initio and thermodynamic 

modelling methods.

The authors conducted a study on Al-Sn alloy system by adding  

depassivators and modifiers such as Ga, In, Bi and Mg (in addition, the 

authors also used Zr as an alloying element, which has been previously 

reported to show no effect on sacrificial performance of Al alloy anodes) at 

varying molar concentrations of 0 .93% , 1.85% , 3 .13%  and 6 .25%  

respectively.

It is important to note that the work conducted by Sharm a et al. is in 

accordance with the lattice expander theory which was used by K ier et al.

[89] in explaining that how ternary alloying of Al-Sn system in form of A l-Sn-X  

alloys (where X  can be Bi, Mg, Zr, Ag, Co, Fe, As, Ni, Zn, Cu & Mn) can 

either enhance or reduce the sacrificial anode properties of A l- Sn alloys. As 

shown in T ab le  2.5, the addition of 0.16wt% Bi (note that the authors choose 

all the alloying concentrations in the range of 0 .0 1 2 wt% to 1 .0 wt% as per the 

solubility of each elem ent in Al)in A l-0.2w t%  Sn alloy significantly increased  

the corrosion current when coupled with mild steel in 0.1 M NaCI solution 

[88].

Following their previous work [84], the authors proposed that presence of Sn  

in Al as a solid solution not only depassivates the oxide film formed on Al 

alloy by reducing the oxide film resistivity by creating cation vacancy by 

replacing Al3+ ions by Sn4+ ions but also expands the Face Centred Cubic 

lattice of Al [8 8 ].

The authors showed (see T ab le  2.6) in addition with Sn, elements such as 

Bi, Mg, Zr and Ag show a similar expansion in the lattice of Al and in doing
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so support further addition of Sn, while elements such as Zn, Cu, Mn and Si 

(which is commonly found impurity in Al alloys) contracts the Al lattice [8 8 ]. 

The authors suggest that this mechanism of lattice expansion underpins the 

evidence that how ternary addition to A I-0.2w t% Sn alloy increases or 

decreases the corrosion current, as shown in Tab le  2.5.

Further explanation by Sharm a et al.[8 8 ], as shown in T ab le  2.6 and F igure  

2.15  by ab-initio calculations to obtain the effective atomic radii of each of the 

alloying elem ent in FCC Al lattice proves to be the major contributing factor 

in Al lattice expansion. T ab le  2.6 shows that in FCC Al lattice Bi and In 

produce the largest change in the alloy volum e(see F igure 2 .15) due to 

increases in the effective atomic radii of each elem ent in Al lattice followed 

by Zr and Mg (approximately similar effective atomic radii for Mg and Zr) and  

least being G a [8 8 ].

T ab le  2.5: The effect of ternary alloying addition on the corrosion current of 
alloys when coupled with mild steel in 0.1 M NaCI solution for 48  

____________hours [89].___________________ _________________________________
Addition of elements to A I-0.2w t% Sn  
alloy

Corrosion current (A)

No addition to AI-0.2wt% Sn 4 .9 2 X  10 '3 , 5 .3 8 X  10 ' 3

+ 0.16wt% Bi 7 .00  X  10 '3 , 9 .14 X  10 ' 3

+1.10w t% M g 4 .5 7 X  10 '3 , 5 .8 4 X  10 ' 3

+0.094w t% Zr 4 .5 7 X 1 0 '3 , 4 .6 9 X 1  O' 3

+0.013 wt%Ag 5.61 X  10 '3 , 6 .02  X  10 ' 3

+ 0.021w t% C o 3.65  X  10 '3 , 5.21 X  10 ' 3

+0.076w t% Fe 4 .6 3 X  10 '3 , 4 .8 6 X  10 ' 3

+ 0.012w t% As 3 .9 9 X  10 '3 , 3 .9 9 X  10 ' 3

+0.096w t% N i 1.79 X  10'3 , 2 .14  X  10 -3

+1.05w t% Zn 2 .03  X  10 ' 3

+0.10w t% C u 1.74 X  10 ' 3

+ 0.84w t% M n 1.45 X  10 ' 3
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T ab le  2.6: Data on effect of alloying per unit wt% on Al lattice [8 8 ].
Alloying elements Effect of alloying elem ent on the Al 

Lattice (+ expansion, - contraction) in 
A/wt% addition

Sn +0.0045

Bi
Mg

Zr
Ag
Co
Fe
As
Ni
Zn
Cu
Mn
Si

Lattice expanders

No effect

> Lattice contractors

■0.0052

0.00002

-0 .0003
- 0.0022
-0 .0033
-0 .0017

Tab le  2.7: The effect of alloying elem ent on the Al latttice [8 8 ].
Elements Crystal structure Experimental 

value of atomic 
radii in crystal 
structure (A)

Effective atomic 
radii of alloying 
elem ent in FC C  
Al lattice by ab 
initio calculations
(A)

Al Face Centred Cubic 
(FCC)

1.43 1.43

Ga Orthorhombic 1.35 1.49
Mg Hexagonal 1.60 1.60
Zr Hexagonal 1.60 1.60
In Tetragonal 1.67 1.70
Bi Rhombohedral 1.50(covalent

radius)
1.78
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F igure 2.15: Graph showing the effect of alloying concentration of 

depassivators and modifiers on the ratio of volume expansion of Al alloys 

lattice to that of pure Al lattice [88].

Sharma et al. [88] investigated the ternary alloying of Mg in Al-0.034mol% Sn 

(AI-0.15wt%Sn) by varying the concentration of alloying as 1.11mol%, 2.22 

mol%, 3.32mol% and 4.43mol% Sn (=1.00wt%Sn, 2.23wt%Sn, 3.00wt%Sn 

and 4.00wt%Sn) respectively.

As seen from Figure 2.16, the authors demonstrated that increasing Mg 

addition proves detrimental to the solubility of Sn in Al due to formation of 

Mg2Sn intermetallic compound [88]. However, authors performed 

experimental investigation on heat treated Al-Sn-Mg anodes by heating the 

anodes (to ~ 900 K for 20 hours followed by rapid quenching in water) and 

found that the sacrificial performance of Al-Sn-Mg anodes was not affected, 

proposing that heat treatment restricts the formation of Mg2Sn intermetallic 

compound [88].
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According to the authors, even though the thermodynamic calculations 

shows that higher concentration of Mg enables forming Mg2Sn intermetallic 

compound, restricting Sn solubility in Al lattice. But experiments showed no 

effect in the sacrificial performance of Al-Sn-Mg ternary alloy after performing 

heat treatment which restricts the formation of intermetallic Mg2Sn and 

thereby maintain the effect of Sn in Al lattice [88].

700 

600 

0  500
a

|  400 

§_ 300 

®  200 

100 

0

0.000 0.003 0.006 0.009 0.012 0.015 0.018 
mol% Sn solubility in Al

Figure 2.16: Graph showing the effect of Mg concentration at 1.11mol%, 

2.22mol%, 3.32mol% and 4.43mol% (1.00wt%, 2.23wt%, 3.00wt% and 

4.00wt%) on solubility of Sn in FCC Al lattice [ 88],

1 11 mol% Mg 
2.22mol% Mg 
3.32mol% Mg 
4 43mol% Mg
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2 .8 .3 : T h erm o d yn am ics  o f a c tiv a tio n  o f Al a lloys: S urface  
e n ric h m e n t

Andreev et al. [90] also studied the effects of alloying Al with Zn, In and Sn 

(in form of binary Al-B alloys, where B can be Zn, In or Sn) on sacrificial 

performance of the Al anodes by using thermodynamic calculations and 

experimental methods. Considering the thermodynamics of the Al alloy 

systems, the authors emphasised on the fact that firstly, the activation of 

alloys is possibly due to increase in the conductivity of the oxide film owing to 

complex oxide formation (of the form AI20 3(Ba0y)) by the alloying elements. 

This in turn induces the uniform dissolution of the alloy and secondly by 

segregation of alloying elements at the interface of oxide layer and alloy 

surface [90].

The work conducted by Andreev et al. primarily focused on understanding 

the phenomena of surface segregation (or enrichment) of In, Sn and Zn on 

the oxide and surface of Al alloys [90].

The authors while explaining the thermodynamics of binary Al alloys with Zn, 

Sn and In, have used equations, which have previously been used by 

Hondros [91] to study the surface enrichment phenomena of other metallic 

binary alloy systems (in this study, Hondros have considered 31 binary alloy 

systems, majorly consisting of elements such as Fe, Cu, Ge, Au, Ni as 

solvents alloyed with both high and low concentrations of elements such as 

Ag, Tl, Pb, La, As, S, In, Te). The surface enrichment data was gathered 

either from already published surface tension isotherms or from previously 

conducted surface spectroscopy experiments on alloy systems.
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It is important to note that all the thermodynamic analysis of binary Al-B  

alloys performed by A ndreev et al. was done at normal room tem perature (« 

298 K) assuming that equilibrium exists between the bulk and the surface of 

Al alloys [40]. However, it has been reported in previous researches that,

during alloying process, the elements with lower melting points or lower

values of surface tension enrich the surface of the alloys [91].

During the thermodynamic analysis, A ndreev et at considered, adsorption of 

two different species of atoms from the bulk to the surface [90]. According to 

the Gibb's adsorption equation for binary alloying systems [90], showing the 

equilibrium between the bulk(b) and surface(s), considering the low index 

face of the surface layer, usually (111), (100) and (110) for Face Centred  

Cubic (FCC) Al [92]:

Act = -£ |= \ TSi ApS i Equation 4

The atoms of species S i and S2 , during surface adsorption causes the 

change in the chemical potentials as shown in Equation 4, mathematically 

Apsi and ApSi2 can be represented as [90]:

A|jSi = A|jSi (s) - Apsi (b) Equation 5

Aps2 = A|jS2 (s) - Apsi (b) Equation 6

If the species S i is considered to be adsorbed by the surface causing surface 

enrichment, then Equation 4 in terms of individual effects of species Si and 

S 2 can be written as [90]

Act = Actsi + ActS2 Equation 7
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In a metallic crystal, due spontaneous transfer of atoms from the bulk to the 

surface as a self-adsorption process, this causes formation of vacancies and 

makes the crystal thermodynamically unstable [93]. Now if the species S i is 

adsorbed by the surface and atoms of species S 2 transferred from the 

surface to the bulk, then from Equation 7 it can be stated as [90]:

Aa = - r Si A |jSi + I"s2 Aps2 Equation 8

W here negative and positive signs indicate the decrease and increase in the 

Acjsi and Acts2 due to adsorption and desorption of species S i and S 2 [90]. 

However considering this binary alloy system, in order to attain 

thermodynamic stability, the decrease in the Aasi due to adsorption of atoms 

of species S i should be equal to desorption of atoms of species S 2, which 

mathematically can be represented as [90]:

- AaSi = ActS2 Equation 9 

Now from Equations 7, 8 and 9 it can be stated that [90]:

Actsi + A<jS2 = - l~si ApSi + rS2 A|Js2 = 0 Equation 10

Substituting the values of Apsi, Apsi2 from Equations 5 and 6 in Equation 

10 to be re-written as [90]
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Tsi A|JS1 = rS2 A|Js2 

Or

rsi (MS1 (S ) - MS1 (b)) = r S2 (MS2 (S ) - MS1 (b)) Equation 11

The change in the chemical potentials for S i and S 2 (for bulk material) using 

Equation 11 can be written as (case of non-ideal solutions) [90]:

Msi (b )  = Msi0 ( b )  + RT In aSi (b) Equation 12

And

M s2-(b ) =  ps2 ° ( b )  + RT In aS2(b) Equation 13

W here aj(b) (i can be S i and S 2 or other species i in the bulk) is defined as 

the product of activity coefficient and the mole fraction of the atoms of the 

species, where NSi + N S2 = 1, R and T  are the gas constant and tem perature  

in Kelvin [90]:

ai(b) = Yi(b) Ni(b) Equation 14

As shown in Equations 12 and 13, similarly the change in chemical 

potentials at the surface for S i and S 2 can be written as [90]:

Msi (s) = Msi0 (s) + RT In aSi (S) Equation 15

And

M s2-(s) = Ms2 ° (s) + RT In as2 (s) Equation 16
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Similarly where aj(S) , is defined as the product of activity coefficient of 

species S i and S 2 at the surface and mole fraction of the atoms of the 

species at the surface, in this case Xsi + Xs2 =1 and like Equation 14 , it can 

be written as [90]:

ai(S) = Yi(s) X|(S) Equation 17 

Now substituting Equations 12,13,14 and 16 in Equation 11 [40]:

I"si (Msi0 (s) + RT In asi (S) - ( M s i0 (b) + RT In asi (b)) = 

rS2 (Ms2 0 (s) + RT In aS2 (s) - (Ms2 0 (b) + RT In aS2 (b)) Equation 18

Rearranging Equation 18,

l~si(Msi0 (s) - Msi0 (b)) + Tsi RT(ln asi (S) - In asi (b)) =

I"S2 (Ms2 0 (s) - |Js2 0 (b)) + Ts2 RT(ln as2 (s) - In as2 (b))

Or

r Si(Msi0 (S) - MS1 0 (b)) + r si RT In (fflg ) = 

r S2 (MS2 ° (S) - MS2 ° (b)) + r S2 RT In Equation 19

Considering the case of self-adsorption (as in this case for species S i and 

S 2)) the Gibb's excess concentration is related to the surface area of one  

mole of metal as [90,94]:
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And

Tsi'1 = ASi Equation 20 (a) 

rS2'1 = As2 Equation 20 (b)

Now from Equation 19, the terms (pSi 0 (s) - |jSi 0 (b)) and (pS2 0 (s) - Ps2 0 

(b)) are equal to the AGSi° and AGs2° [90,92]. Further, if Gibb's excess free  

surface energy terms are divided by the respective molar surface area of one 

mole of species S i and S 2, this gives the specific Gibb's excess free surface 

energy as [90]:

Substituting the values of Tsi”1, Ts2 '1 from Equations 20 a, b , a s i0, cjs2° from  

Equation 21 a, b and ai(b), ai(S) from Equation 14 and 17 into Equation 19

[90,94]:

Multiplying the left and right hand side of the Equation 22 by the respective 

molar surface areas of species S i and S 2 to give [90]:

Osi° = AGsi°/ Asi Equation 21 (a)

oS2° = AGs2°/ AS2 Equation 21 (b)

ysl(s) Xsl 
ysl(b ) Nsl

\ — 0 ^  RT . .
> =  f f “  + ^ l n <

ys2(s)Xs2
ys2(b)Ns2

) Equation 22

CTS1° Asi+ RT In ( ysl(s) Xsl 
ysl(b ) Nsl ) = <Js2° As2 + RT In (

ys2(s)Xs2
ys2(b)Ns2

) Equation 22a

Or
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* s i° A s i  + R T I n ( ^ )  +  R T I n @  =

<Ts2° AS2 + RT In ) + RT In (£ |)  Equation 22b

Or

AGslo + RT In ( H ^ )  + RT In @  = AGS2° + RT In ) + RT In ( i f )

Equation 22 (c)

The left and right hand side of Equation 22c, represents the energy 

characteristics of two different species of atoms S i and S 2 implying that the 

left and right hand side of Equation 22c represents the partial specific free 

energy of formation of alloy with species S i and S 2 [90,95]. Considering that 

the thermodynamic analysis was being conducted on binary Al-B alloys 

(where B can be Sn, In, Zn), in order to calculate molar surface areas of low 

index faces of species S i and S 2r which can be either of Sn, In, both of which 

have a Body centred tetragonal (BCT) structure or Zn, which is hexagonal 

closed packed (H C P) structure (see Table 2.8) [90,92].

Table 2.8: Table showing the lattice parameters of Al, Sn, In and Zn with the 
__________ two dimensional area of a low index face for each elem ent [92],
Elements Crystal

structure
Low index 
faces

Lattice
Param eters
(A)

Area (in two dimensions, A z)

Al FCC (1 1 1 )

(1 0 0 )

( 1 1 0 )

a = 4 .049 —  a2 = 7 .098
4

-  a2 = 8 .197
2

4 - a2 = 11 .592V2
Sn BCT (0 0 1 )

( 1 1 0 )

( 1 0 0 )

a = 3.187, 
c/a = 1.83

a2 = 10.157  

4 - ac = 13.142
V2
ac = 18.586

In BCT (0 0 1 )
( 1 1 0 )

( 1 0 0 )

a = 3.352, 
c/a = 1.52

a2 = 11.235  

^ a c =  12.076  

ac = 17.079
Zn HCP (0 0 0 1 ) a = 2 .684  , 

c/a= 1 .8 6
—  a2 = 6 .238
2
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As Equation 22 c represents the partial specific free energies of formation of 

alloy with species S i and S 2 in this case Al alloyed with In, Sn and Zn, the 

molar surface area of low index faces of alloying elements in FCC  Al lattice 

will be considered *  to molar surface of low index face Al (implying, A |n , Asn , 

Azn ~ AAi) [40]. Hence left hand side of the Equation 22 c represents [90]:

A G S1° + RT In ( 2 ^ )  + RT In ( g i )  = aAl.B A si Equation 22(d) 

Similarly right hand side of Equation 22 c [40]:

AGs2°+ RT In ) + RT In @  = ctai.b AS2 Equation 22 (e)

During the alloy formation, not only Gibbs free energy of surface formation 

plays a major role (AGsi°, AGs2°) but also the interaction energy of the 

alloying elements, in terms of partial enthalpies of formation of alloys in the 

bulk (AH(b)) and surface (AH(S)) which can be represented as [90, 95]:

Now it is important to note that interaction of the elements in binary Al-B alloy 

is due to interaction between the similar atoms of Al matrix along with similar

AH(b) = RT In Yi(b) Equation23(a)

AH(S) = RT In Yi(s) Equation 23 (b)
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atoms of alloying elements B and cross-interaction of Al and B atoms which 

can be mathematically represented as [90,96]:

Hai-b = Hai-aiHai-ai + iia i-bHai-b + Hb-bH b-b Equation 24

But considering the fact that the alloying elem ents B (Zn,Sn,ln) are in FC C  Al 

lattice, so the enthalpy of breaking of each bond in the bulk Al-B lattice with 

effective coordination number Z 0=12 and 6 bond pairs (Z0/2) will be A H (b)/6

[90,93,96]. Now, for adsorption of the atoms from the bulk Al-B alloy to the 

surface of alloy with a particular face index, which has a coordination number 

Zb, the excess enthalpy of formation of bond at the surface can be written as 

[90]:

AH(s) = (Zb -12) ^  Equation 25

If at the surface, the bond formation happens on (111) face, which has a 

coordination number Z b = 9, then Equation 25 changes to [90]:

AH(S) = ^ AH(b) Equation 26

For Al-B alloy surface with low index value (111), Equations 22 c changes to

[90]:
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AGai0 + RT In O ^ L ) + RT In ( ^ )  = AGB° + RT In ( ^ )  + RT In ( ^ )
YAI(b) NA1 VB(b) NB

Equation 27

Substituting the values of YAi(b). YB(b), Yai(s), Yb(s) from Equations 23 a and b 

into Equation 27 [90]:

AGai0 + (AHAi,s)-AHAi,b,)+ RT In ( ^ )  = AGB° + (AHB(S)-AHB(b))+ RT In (^ )

Equation28

For (111) orientation, substituting the values of AHAi(s), AH B(S), in terms of

AHAi(b) and AHB(b) in Equation 28 [90]:

AGai0 )+ RT In ( ^ )  =  AGB° + R T |n (ia.) Equation 29

Solving further, the Equation 29 leads to:

x B xAi (■ agAI ~ agBn ( AHBJLAGAh— = —  e rt J 2rt j Equation 30
n b NAi

Equation 30 represents the enrichment factor of Al-B alloying system which 

is defined as ratio of molar concentration of alloying elem ents (ln ,Sn,Zn) on

the surface to the bulk ( ~ ) ,  in terms of molar Al concentration on the surface
n b

to the bulk, excess Gibbs free energy for Al ( A G a i) and B (AGB) and enthalpy 

of formation of Al (AHAi) and B(AHb) bonds on (111) orientation of the surface 

of the alloy [90,91].
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Considering the binary Al-B solid solution close to be an ideal solution (or 

regular solution), the values of AHai and AHB in terms of molar concentrations 

can be written as [90,96]:

AHAi = (1 - NAi)2Ci Equation 31 (a)

AHb = (1 - Nb)2 Cl Equation 31 (b )

W here O is a function of coordination number and partial enthalpies of the 

alloying elements in the binary Al-B solution [90,96], From Equation 30, the 

term (AHb - AHAi) can be rewritten as [90,96]:

(AHb - AHai) = (1 - NB)2 Cl - (1 - NAi)2 Q = (1 - 2NB) Cl Equation 32

Now substituting the value of (AHB - AHAi) from Equation 32 into Equation 

30:

X r  XA, r AGA l~A G B.  ( l ~ 2 N B) n
~ r = e RT e 2RT Equation 33
n b n ai

For binary Al-B alloys, the solubility of Sn (= 0.10w t%  at 900 K), In 

(~0.07w t%  In at 800 K) except for Zn (from «  2.5w t%  to 70.0w t%  at the 

tem perature range of 350 K to 716 K) in Al is low, which leads to the value of 

atomic interaction parameter, D >0 (or positive deviation from Raoult law)

[70,90,96],
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In order to calculate the surface enrichment factor for Al-B alloys, the solid 

solution was considered to be ideal, implying 0  = 0 (A H ai = A H B = 0), which 

converts E quation  33 to [90]:

e ( A,rt B) E quation  34
Nb 1—Nb

Since the alloying elements such as Sn, In have a body centred tetragonal 

and Zn with hexagonal close packed structure are in Al lattice. The value of 

molar surface area of lower index of each of the alloying elem ent was  

considered similar to the face centred cubic low index Al face. Hence  

substituting the values of A G ai and A G B from E quations 21a and  b into 

Equation  34  to obtain [90]:

Up- =  e ( °AIRT "B Aai) E quation  35  
Nb 1 —Nb

Tab le  2.9 shows the calculated values of the enrichment factor for binary A l- 

B alloys (the enrichment factor was calculated for FC C  (111) face) using 

E quation  35. It is important to note that the enrichment factor shown in 

Tab le  2.9 were calculated for 0.1 wt% and 1.0wt% B (ln,Sn,Zn) addition with 

AGA!and A G B calculated at 0 K and 298 using the relation [90,97]:

AG°(Ai-b) (T) = AH(ai-b) - TAS(ai-b) E quation  36
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W here AS(Ai,sn,in,zn) and AH(Ai,sn,in,zn) are the entropy and enthalpy of binary 

Al-B alloy at (111) face of the alloy. W hen the temperature is considered to 

be close to the melting point of each element, the value of A S ( a i-b ) ~ Lm/R T m 

[97]. For (111) face of binary Al-B alloy, the relation between the tem perature  

and Gibb's free surface energy as shown by Equation 36 can be rewritten as 

[90,97]:

AG°,ai-b) (T) = AH(A':B)(b) - Lm f  Equation 37
 ̂ 1m

Now to infer the value of A G ° ( a i-b ) at T=  298 K , A G ° ( a i-b ) at T =  0 K was  

calculated by substituting T  = 0 K into Equation 37 [90,97]:

A G ° ( a i . b )  (T= 298 k )  =  A G ° ( a i . b )  (T = o k )  - Lm Equation 38
1m

Table 2.9: Table showing the values of enrichment factor for Al alloyed with
Zn ,Sn and In atQ .1w t%  and 1.0wt%  alloying concentration [90].

Al Zn Sn In
Tm, in 0C 660 420 232 156
Lm, in J/mol 10470 7200 7080 3270
AGO(AI-B) (T= 0 K), in J/mol 51233 37146 37339 32998
AGO(AI-B) (T= 298 K) in 
J/mol

47890 34049 33162 30729

at 1.0wt% B
Nb

, at 0 .1w t% B
Nr

- 126.3 203.2 298 .6

- 239.7 350.0 819.9

The values of the enrichment factor (^ -) for binary Al-B (In, Sn, Zn) alloys at
Nb

0.1wt%  and 1.0wt%  concentration, which were calculated using Equation 35 

and thermodynamic data for each of the elem ent at 0 K, showed an increase  

in the ( ^ )  values as the melting point of alloying elem ent decreased, F-r-Win
Nb Nb

> (Tr-)Ai-sn>(^)Ai-zn (see Table 2.9), hence concurring the initial findings byNb Nb
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Reding and Newport that low melting point elements, depassivators, activate 

the Al alloys [90,92].

2.8.4 Experimental validation of Surface enrichment theory for Al 
alloys

The thermodynamic approach to understand the phenomena of activation of 

various binary Al alloys by surface enrichment of elements such as In and Sn 

[90-97] was also underpinned by experimental investigations [90,98-103].

Andreev  produced binary Al alloys with Zn (1wt%  and 5wt%), Sn (0.1wt%  

and 1.0wt% ) and In (1wt% ln) by flux melting (the flux contains 50w t% NaCI, 

20wt% KCI and 30wt% LiCI) of high purity Al with Zn, In and Sn. In addition, 

Al-1wt%ln alloy was also prepared by vacuum melting to compare the effect 

on electrochemical performance of the alloys prepared by both processes 

[90].

Som e of alloy samples were rapidly quenched by w ater immersion ( S h to ) 

and others were subjected to annealing [90]:

•  At 600°C  for 8 hours and then rapidly quenched using w ater (S h t i) .

•  At 600°C  followed by furnace cooling (S HT2).

•  At 600°C  for 8 hours followed by another annealing at 400°C  for 16

hours and then rapidly quenched by w ater immersion (Sm -3).
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To validate the thermodynamic theory of surface enrichment by low melting 

points elements such as Sn and In, polished cross section of the alloys were  

subjected to 0 .5M  N a2S 0 4  electrolytic solution (reagent grade with 

< 0.0005w t% C r ions) [90].

The authors used Secondary Ion Mass Spectroscopy (S IM S) to m easure the 

change in surface concentration of Sn in the binary Al alloy after 24 hours of 

exposure in 0.5M  Na2S 0 4. Followed by the depth concentration profile, 

Auger Electron Spectroscopy (AES) was also used to analyse the surface 

concentration profile for Al-Sn alloys which were subjected to heat treatm ent 

processes as discussed earlier. The oxide film formation on the surface of 

the binary Al-Sn alloy after 24 hours of exposure in 0 .5M  N a2S 0 4 was also 

examined using Electron Spectroscopy for Chemical analysis (ESC A ) [90].
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Figure 2.17: Anodic polarisation curves for (1) A I-1wt% Sn, (2) and (2 ) Al- 

1wt%ln, A l-1wt% ln (prepared by vacuum melting), (3) A I-1wt% Zn, (4) Al- 

5wt% Zn, (5) high purity Al in 0 .5M  N a2S 0 4 [90].
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Figure 2.18: Anodic polarisation curves for A I-1wt% Sn alloy subjected to 

various heat treatm ent as shown, in 0 .5M  N a2S 0 4 (high purity Al for 

comparison) [90].
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Table 2.10: S IM S  analysis of A I-1wt% Sn alloy ( S hto ) before and after 24
hours of exposure in 0.5M  Na2S Q 4 solution [90].

State of exposition Counts/s of 
spectral lines

Intensity ratio of Sn+ to
a i2+

AI2+ Sn+
Before exposure 179500 3000 0.017
After 24 hours of 4280  9860 2 .304
exposure

Table 2.11: AES concentration depth profile of A I-1wt% Sn alloy post
anodic polarisation in 0 .5M  Na2S 0 4 solution (after 24 hours of

__________ exposure) [90].______________________________________________
Depth (nm) Al (at% ) Sn (at% ) O (at% )

S hto S hT3 S hto S hT3 S hto S hT3

0.6 68.9 71.8 1.3 0.5 29.3 27.7

2.4 75.5 79.5 1.8 0.5 21.2 20 .0

5.1 80.8 83.9 0 .74 0.3 17.5 15.9

7.5 81.8 85.0 0.98 0.4 16.1 14.6

22.5 88.8 84.8 0.9 0.4 9.3 14.9

37.5 92.9 88.3 0.43 0.2 6.3 11.5

67.5 95.2 91.1 0.42 0.2 3.9 8.7

157.5 96.1 94.6 0.51 0.4 2.8 5.0

277.5 97.1 96.1 0.31 0.3 2.2 3.6

The anodic polarisation curves, see Figure 2.17, showed that Sn and In 

(1wt% addition) had an enhanced activating effect than 1wt% and 5w t% Zn  

when alloyed with Al in binary form (all the alloying followed S h to ) .  However it 

was shown that alloying process, which was flux and vacuum melting did not 

had significant effect on activation of Al alloy by 1wt%ln (see curve 2 and 2  

from Figure 2.17) [90].
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Figure 2.18 shows that S hto  process profoundly increased the activation 

caused by 1wt%Sn in Al than the other heat treatm ent processes and the 

order of activation was S hto  >  S Ht i  > S h t 2 > S Ht 3 [90]. This decreasing order 

of activation caused by 1wt% Sn was attributed to the fact, that at *  900 K, a 

maximum of 0 .10w t% Sn is retained in the solid solution of Al matrix which 

decreases to 0 .05w t% -0.07w t%  as the tem perature lowers to ~ 500 K (see 

Figure 2.13) [90,70].

The chemical analysis at nominal surface depth of 300 -400  nm of A I-1wt% Sn  

alloy after 24 hours of exposure in 0.5 M N a2S 0 4 revealed the formation of Al 

and Sn oxides or hydroxides at the surface, which diminished in intensity 

with increasing depth (> 400  nm).[90]. The authors reported presence of 

Stannous (Sn2+) and Stannic (Sn4+) oxides on the corroded surface of the Al- 

1wt%Sn alloy in 0 .5M  N a2S 0 4 for 24 hours [90]. This result was in 

agreem ent with previous research conducted by Venugopal et a l.[98], who 

examined the oxide layer formed on the surface of A I-3wt% Sn alloy exposed  

to 3.5% w /w  NaCI solution for 1 hour, using X -R ay  Photoelectron 

Spectroscopy (XPS) technique, see Figure 2.19 (a),(b), (c) and (d).

However, the results obtained by A ndreev et al. [90] and Venugopal e t al. [98] 

by exposing alloyed Al with 1wt% and 3w t% Sn were in different electrolytic 

media containing S 0 42' and CP1 ions, both reflected the sam e fact that S n2+ 

and Sn4+ ions co-existed on the corroded surface of Al alloy. These  

experimental results were an additional support to the proposed theory that 

activator elements tends to form complex oxide layer with high ionic
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conductivity during the oxidation of the alloy , therefore avoiding the 

passivation of Al [84,85, 87-89].

l}M n

Binding Energy (eV) Binding Energy {eV)

Binding Energy (eV) Binding Energy (eV)

Figure 2.19: The XPS spectra with various sputter times f o r : (a) Al , (b) Sn, 

(c) O and (d) Cl, where 1 and 2 represents pure Al and Al-Sn alloys exposed 

in 3.5%w/v NaCI solution for 1 hour [98].
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It is important to note that, under the condition of pH 1-12, the equilibrium for 

oxide formation of Sn can either be [99]:

SnO + 2H+ + 2e' «■ Sn + H20  , E° = -0.104 - 0.059pH vs. NHE

Equation 39 (a)

Or

S n02 + 4H++ 4e'<-> Sn + 2H20 , E° = -0.106 - 0.059pH vs. NHE

Equation 39 (b)

With a difference of -0 .002  V  (vs. N HE) in the equilibrium potentials under 

the given pH range, co-existence of Sn2+ and Sn4+ ions is favourable [99]. 

During the formation of complex oxide layer, A l3+ can be replaced by either 

Sn2+ or Sn4+, it was proposed that however Sn2+ ions are thermodynamically 

more stable than Sn4+, but the atomic radii of Sn4+ (= 0.71 A) is close to A l3+ 

(« 0.51 A) than Sn2+ (« 0.93 A), substitution of stannic (Sn4+) ions is 

preferable [99].

It was also proposed that if the Sn concentration was higher than 1wt% and 

higher potential was required to form oxide then Stannous (Sn2+) ions could 

replace Al3+ ions to form spinel structure SnAI20 4 oxide, while under vice 

versa condition formation of Al20 3 will be favoured [99]. A  similar study on Al, 

alloyed with 0.09w t% , 0.2wt%  and 0.4w t%  of Sn was conducted by Kliskic et 

a/.[ 100] showed that under cathodic polarisation condition, Sn favours 

formation of hydride (gaseous state)

Sn + 4H+ + 4e"<-> SnH4 , E° = -1.074 - 0.059pH - 0.0148 log PS„H4 v s  NHE
Equation 40
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According to the authors, the formation of SnH4 was thermodynamically 

favoured due to developm ent of local hyperactive regions in the alloy, when  

subjected to cathodic polarisation condition in 2M  NaCI solution. This effect 

was found to be more pronounced in the alloy with lower Sn concentration  

leading to high yield of H2 [100].

The S IM S analysis on A I-1w t% Sn ( S Hto ) alloy after 24 hours of exposure in 

0.5M  Na2S 0 4 solution by Andreev et al. [40], see Tab le  2 .10 , showed a 

significant increase in the relative concentration of Sn ions ,0 .017  to 2.304, 

before and after exposure. Comparing with thermodynamically calculated  

values of enrichment factor from table 9 which was (— ) = 203 .2  to S IM S
N Sn

calculated value of ( ^ - )  = (H £ i)  = 1 3 6  from Tab le  2.10, for 1wt%Sn addition,
N sn  0 .0 1 7  ’

it was clear that, the former value represented the uppermost limit of 

enrichment factor which could be achieved during the activation of Al by 

1wt%Sn [90].

In conjunction with the S IM S  analysis, the AES analysis of A I-1w t% Sn alloy 

(for both S hto and S h t 3), see T ab le  2.11, also showed an increase in the Sn 

concentration from 0.31at%  to 1.3at% ) nearing the surface (at 0.6 nm) than  

towards the bulk (at a depth o f «  278 nm) for S h t o  heat treated alloys [90]. An 

increase in the a t% 0  (from 2.2at%  to 29 .3at% ) and decrease in the at%AI 

(from 97.1at%  to 68 .9at% ) was also observed for S hto  heat treated alloy from  

near the surface moving towards the bulk (0.6nm  to 277.5nm ), a similar 

effect was found in S ht3 heat treated alloy but with lower scale [90].
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The S IM S  and A ES analysis of A I-1wt% Sn, for both S hto  and Sht3 heat 

treated samples, revealed that the dissolution of the alloy w asn’t independent 

of the scale in which the atoms of the lattice (Al) and the alloying species  

(Sn) were distributed on the surface. Instead were showing evidence of 

preferential dissolution of Al from Al-Sn binary alloy [90,101,102].

These results showed similarity with the work conducted by Pickering and  

W agner [101], who explored the preferential dissolution mechanism of binary 

Au-Cu alloy. According to Pickering and W agner [101], the mechanism  

underpinning preferential dissolution for binary alloys could include:

•  Ionisation and subsequent re-deposition of a more noble 

elem ent in the binary alloy, or

•  Ionisation of only the active elem ent in the alloy which enters  

the electrolytic solution leaving behind the noble metal to 

aggregate via surface diffusion, or

•  Ionisation of only the active elem ent in the alloying which 

enters the electrolytic solution and both active and noble metal 

ions are adsorbed to the bulk by volume diffusion.

The results presented by Andreev et a l.[90], see T ab le  2.10 and T ab le  2.11, 

relied on a similar explanation of preferential dissolution mechanism  

suggested by Pickering and W agner [101]. They suggested that during the 

exposure, the A l3+ ions leaves the alloy surface to form oxide layer while S n 2+ 

and Sn4+ ions aggregate on the surface (see the values of enrichment factor 

calculated experimentally ,136, after the exposure of A I-1w t% Sn alloy in
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0.5M  Na2S 0 4 solution), see F igure  2.20. The diagrammatic representation of 

this preferential dissolution mechanism represents that the A l3+ ions migrate 

the surface of the alloy, as shown in F igure 2 .20(1). The removal of the top 

layer Al atoms causes the exposure of the closely packed lower layer atoms 

to participate in the dissolution, leaving the Sn2+and Sn4+ions on the surface, 

see figure 12(2-6) [51,52].

F igure  2.20: Diagrammatic representation of preferential dissolution 

mechanism (1-6 represents different stages of dissolution), w here O  

represents Al3+ ions and •  are Sn2+ and Sn4+ ions [51,52].

A  mathematical explanation to the diagrammatic representation of 

preferential dissolution mechanism of A I-1wt% Sn alloy given by Andreev et 

al. [90] was based on Pickering and W agner's [91] calculation of the diffusion 

depth for Au-Cu binary alloy.
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Considering the S IM S results, see Tab le  2.10, with sputter time of 1.25 

minutes, a depth profile of 1.33 nm/sec was analysed, which yielded in 

diffusivity (D) «  h2/2t, where t was of the order 10"13 cm2/sec. This was a 

sam e order of magnitude for A ES analysis, which was conducted at 0 .52  

nm /sec to the maximum depth «  280 nm, see Tab le  2.11 [90,101].The value 

of diffusivity calculated was strongly dependent on the concentration of 

vacancies formed on the surface due to migration of A l3+ ions, as shown in 

Figure  2.20, mathematically written as [101,102]:

D = Dv NV(s) E quation  41

The experimental evidence showed that for FCC metals, the value of N v was 

«  of the order 10'2 [90,101,102]. The value of D from Equation  41 was found 

to be 5.3 x 10"14 cm2/sec, at near room temperature 298 K, which was  

comparable with the S IM S  and A ES  data [90,101,102].

The thermodynamic calculations in conjunction with the experimental work 

showed that activation of Al by Sn, In (depassivators) and Zn (modifier) in 

presence of an electrolytic solution proceeded by formation of complex oxide 

layer with high ionic conductivity. In addition, also showed that phenom ena of 

surface enrichment by depassivators (experimental work focused on Sn  

addition) with higher diffusion rates (=10 '13 cm2/sec) from the bulk to surface  

aided the alloy to maintain an active surface throughout the electrochemical 

interaction with solution containing C l'1 and S 0 4 '2 ions [90-102].
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A  significant experimental study was also conducted by Gundersen et al. 

[103,104] on the electrochemical effects of alloying Al with ln,Sn,Bi, Pb, Mg, 

Zn along with a separate study on the effects of trace elements on Al- 

0.42w t% Fe, 0 .21w t% M n, 0.07w t%  alloy (AA3102 alloy). T ab le  2 .12  shows 

the composition of the alloys which were examined by the authors [103].

T ab le  2.12: The composition (in wt% ) of binary Al alloys with Fe and Si as 
major impurities which were used for experimental investigation
by Gundersen et a/.[53].

Al alloys Bi In Sn Mg Zn Pb Fe Si

Al-Bi

All the additions are in wt%  

0.2 - _ _ 0.05 0.03

Al-ln - 0.1 - - - - 0.006 0 .003

Al-Sn - 0.01 - - - 0.004 0 .004

Al-Mg - - 0.005 - - - 0.01

Al-Zn - - - 0 .06 - - 0.01

Al-Pbi - - - 0 .002 0.002 - 0 .004

Al-Pb2 - - - - 0.003 - 0 .004

A l-Pb3 - - - - 0.006 - 0 .004

The alloys containing Mg, Zn and Pb were produced by casting (99 .98%  

purity Al was used) which was subsequently scalped. Pb containing alloy 

was excluded from scalping, while alloys containing In, Sn and Bi w ere  

produced by direct chill (DC) casting (using 99 .998%  and 99 .88%  pure Al) 

which were then scalped and exposed to 738 K for 16 hours for 

homogenisation followed by exposure at 903 K for another 16 hours as a 

heat treatment of solid solution [103].
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Prior to examination using electrochemical and analytical surface 

characterisation techniques, the authors subjected the samples to a cyclic 

heat treatment and mechanical polishing stages. The samples were  

subjected to heat treatm ent at 873 K for an hour in a furnace with air 

circulating facility, followed by rapid quenching (using deionised w ater at 

near room temperature). Then alloy samples were subjected to various 

stages of mechanical grinding using SiC  paper and polishing to 1 pm surface 

finish, followed by the sam e heat treatment and immersion in 10% w /v N aO H  

solution for 10 seconds and in concentrated H N 0 3 for a minute for 

desmutting, finally followed by the sam e heat treatm ent [103].

Gundersen et al. [103], choose this cyclic sample preparation method in 

order to investigate whether or not the activation of Al by these alloying 

elements was just due to surface enrichment phenomena or inter diffusion of 

ions from the bulk of the alloy, as studied by various authors [87 ,88 ,90-95 , 

97-99]. All the electrochemical experiments by Gundersen et al. [103] were  

conducted in artificial sea water, with a maintained pH value in the range of 

2 .8 -3 .0  with an addition of anhydrous acetic acid at 298 K.

In order to understand the effect of alloying elem ents as shown in T ab le  

2.12, upon exposure and after electrochemical measurements, G low  

Discharge Optical Emission Spectroscopy (G D -O E S ) was used to investigate 

the composition of surface and Transmission Electron Microscopy (TE M ) 

was used to analyse the microstructure of the alloys [103].
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The polished cross section of the alloy showed formation of oxide on the 

surface, as seen from G D -O E S  profile in Figure 2.21 (a). W ith a uniform 

distribution of Pb which has a maximum solubility of 0 .012wt% in Al at =  

938K  [105] (the authors have reported that using G D -O E S , Pb < 20 ppm 

could not be detected) [103]. The effect of heat treatment was evident from  

Figure 2.21 (b) which showed increase in the Pb concentration on the 

surface of the alloy, a broad peak o f «  0.9w t% Pb was observed, which after 

10 seconds of exposure in 10% w/v N aO H was narrowed, as shown in 

Figure 2.21 (c), indicating reduction in Pb surface enrichment [103].

100100

80

co
E

h  40 -c<D
L>C

8

02O.OJ o.w 0 O.I0.020.010
Sputtered depth (pm) Sputtered depth (pm)

100

o *'

oou0.02001o
Sputtered depth (pm)

Figure 2.21: G D -O E S  profile of A l-Pbi alloy subjected to (a) polishing, (b) 

polishing and heat treatment, (c) polished, heat treated and immersed in 

10% w /v NaO H solution for 10 seconds [103].
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On further investigation using TEM (coupled with EDX facility), the authors 

underpinned the results from GD-OES profile by analysing the cross-section 

of the heat treated Al-Pbi alloy as shown in Figure 2 .22 (a) and (b) [103].

Al matrixAl Oxide

Energy |Kev)

Figure 2.22: TEM analysis of (a) cross-section of heat treated Al-Pbi alloy 

and (b) cross-section analysis of metal- oxide interface of heat treated Al-Pbi 

alloy (marked A) with corresponding EDX spectra (point analysis) [103].
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A  formation of Al oxide layer was observed as shown in F igure  2 .22(a), 

having a closer look at the metal oxide interface as shown in F igure  2.22(b), 

marked by A, revealed Pb at the interface. However, the authors did not 

report any lead inclusions in the area of the analysed sample owing to the 

fact that Pb has a low solubility in Al [103,105].

The presence of Pb was reported at the interface of metal and oxide as 

shown in the ED X spectra in F igure  2 .22  (b). The Cu peaks were due to the 

Cu grid in which the samples were analysed [103]. The combination of TE M  

and G D -O E S  results presented by the authors affirmed that heat treatm ent of 

Al-Pbi alloy did cause Pb segregation but treatm ent with alkaline N aO H  

solution (10% w /v N aO H solution for 10 seconds) proved detrimental. As it 

caused removal of segregated Pb from the surface of the alloy (the authors 

did not show the TE M  cross-section after NaO H exposure, but relied on G D - 

O ES result as shown in F igure  2.21 (c)).
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Figure 2.23 Graphs showing the effect of variation in Pb concentration on: 

(a) potential vs. time curve for binary Al-Pb alloy in synthetic sea w ater 

(ASTM  D1141, which was acidified),(b) anodic polarisation behaviour in 

5% w /v NaCI solution and (c) the effect of cyclic sam ple preparation on A l-P b 3 

alloy in 5% w /v NaCI solution [103].

The potential vs. time curve, see F igure  2 .23 (a), for polished and heat 

treated sections of Al-Pb alloys exposed to artificial sea w ater showed that 

with an increase in Pb concentration from 0.002w t%  in A l-Pbi to 0 .006w t%  in 

Al-Pb3 alloy, over time did not show a significant shift in the potential.
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The graph showed that A l-Pbi alloy started with «  -0 .89  V (vs .S C E ) during 

initial period of immersion and just over 24 hours of immersion time the 

potential recorded was «  -0 .80  V  (vs.SCE), whereas A l-Pbi and A l-Pb2 

started with a potential between - 0 .92 to -0 .93  V  (vs.SCE) and over sam e  

exposure period stabilised a t « -0 .8 2  V  (vs.SCE) [103].

It is important to note that the graphs showed wavy patterns after = 3 hours 

of immersion, which w ere similar in nature to the potential vs time graph for 

A A 3102 alloys reported by Gundersen et al. [104]. However the authors did 

not suggest that these wavy patterns were a result of impurities such as Fe 

and Si, see T ab le  2.12. The polarisation curve as shown in F igure  2 .23 (b ) 

clearly showed the activation effect of Pb on high purity Al. The graph 

indicated a more pronounced effect of Pb in A l-Pbi alloy, which showed a 

significant negative shift in the potential of A l-Pbi alloy than A l-Pb2 and A l-Pb3 

alloys [103].

In an attempt to understand the effect of cyclic sample preparation on Pb 

activation, A l-Pb3 alloy which was subjected to combination of three 

procedures such as simple mechanical polishing, heat treatm ent and etching 

was subjected to potentiodynamic polarisation experiment in 5% w /v NaCI 

solution, as shown in F igure  2 .23 (c). The polished A l-Pb3 alloy section 

showed a region of passivity (wavy pattern) from «  -0 .86  to -0 .70  V  (vs. 

S C E), whereas a significant increase in the anodic activity of A l-P b3 alloy 

was seen post heat treatment, however when the alloy was subjected to 10%  

w/v N aO H  for etching, a decrease in the anodic activity, with a clear passive 

region from -0 .99  to -0 .84  V  (vs. SC E) was observed [103].
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The increase in current density for both polished and polished + heat treated  

+ etched alloy indicated formation of pits [103]. A  further heat treatm ent of 

polished + heat treated + etched alloy showed restoration of anodic activity 

of A l-Pb3 alloy.
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Figure  2.24: Graphs showing (a) Potential vs. time curve for Al alloyed with 

Bi, In and Sn in acidified artificial sea water (ASTM  D 1141) and anodic 

polarisation curves for (b) polished and heat treatm ent section of Al alloyed 

with Pb, ln,Sn, Bi, (c) polished and heat treated Al-Bi alloy and (d) polished 

and heat treated Al-ln alloys. All the polarisation experiments were  

conducted in 5% w /v NaCI solution [103].
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Comparing the potential vs. time behaviour of polished and heat treated Al 

alloyed with Pb, Sn, In and Bi over a period of 24 hours, the order in which 

the elements shifted the Potential more negative was Sn (-1 .36  V  vs.SC E) < 

In (-1 .08 V  vs.SC E) < Bi (-0 .8 V  vs.SCE). Except Sn, In and Bi showed a 

similar wavy pattern after few  hours of immersion [103].

The anodic polarisation behaviour of polished and heat treated Al-Bi, Al-Sn, 

Al-ln and A l-Pb2 also showed Sn, In and Bi had a significant effect in 

lowering the potential than Pb when alloyed with Al, see F igure 2.24(b). Few  

sharp anodic peaks were observed for Al-Bi alloy (at ~ -1.1 V , -0 .90  and -0.8  

V  vs. SC E), Al-Sn alloy showed a smoother curve with Al-ln showing some 

wavy patterns as the potential shifted from -1 .05  V  vs. S C E  towards positive 

direction [103].

F igure  2 .24  (c) and (d) shows the comparison of anodic behaviour of the A l- 

Bi and Al-ln alloys subjected to mechanical polishing. It was clear from the 

graphs that Al-ln alloy showed almost no change in the anodic behaviour 

however polishing caused a significant reduction in the anodic activity for A l- 

Bi alloy [103].
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Figure 2.25: Graphs showing (a) potential vs. time for heat treated Al alloyed 

with Zn and Mg in acidified artificial sea water (ASTM D1141) and (b) heat 

treated potentiodynamic polarisation of Al alloyed with Zn and Mg in 

comparison with Pb in 5%w/v NaCI solution [103].

The effect of Zn and Mg on Al activation in comparison with Sn, In, Pb and Bi 

was found to be lower in acidified artificial sea water (ASTM D1141)

condition, as seen in Figure 2 .25 (a). The OCP of Al-Zn and Al-Mg started at 

« -0.72 V and -0.82 V  vs. SCE but almost after 2 hours of immersion the 

OCP stabilised at *  -0.74 V vs. SCE for both the alloys, which was

significantly lower than what was observed for Sn, In, Bi and Pb [103].

The polarisation curve (F igure  2.25 (b)) showed increase in the current 

density of Al-Mg and Al-Zn alloy between potentials -0.78 V to -0.74 V  vs. 

SCE indicating pitting of the alloy. However Al-Pb2 alloy showed superior 

activation at potential more negative than pitting potential reported for Al-Zn 

and Al-Mg alloy [103], The work conducted by Gundersen et al. [103,104] 

clearly showed that activation of Al by Sn and In was found far more superior 

and unaffected by the cyclic sample preparation method as Al alloyed with Bi
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and Pb. Even though Pb and Bi provided the electrochemical properties to 

the alloy needed for being a sacrificial anode but were significantly subdued  

when the surface removal operations were performed on the alloy. The  

research also showed that addition of Zn and Mg did not show significant 

change in the electrochemical behaviour of Al when alloys were subjected to 

the heat treatm ent [103].

2.8.5 The effect of Zn addition on electrochemical properties of Al alloys

Zn has been primarily used as an alloying addition to Al along with other 

elements such as Sn, In, Hg, G a and has been widely investigated 

experimentally by many researchers on how it affects the electrochemistry of 

Al on its own and in combination with other alloying addition.

Salinas et al. [106] studied the effect of various concentrations of Zn addition, 

1, 3, 5, 20, 40, 60 and 80wt% , on the electrochemical performance of Al 

sacrificial anodes. The alloys were prepared by casting under specified  

cooling rates to obtain equiaxed, chill and columnar macro-structure. As 

seen from the Al-Zn phase diagram, see F igure 2.26, two distinct phases 

were present in the alloy, with Zn concentration less than 5w t% a phase, for 

Zn higher than 5wt%|3 phase, however a' was seen in the transition of Zn  

from lower to higher concentration [106].
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Figure  2.26: Al-Zn phase diagram [70].

It is important to note that a, [3 phases studied by the Salinas et al. [106] 

were a result of equilibrium casting condition, however Zn forms precipitates 

with Al when subjected to non-equilibrium condition. For instance, Birblis and  

Buchheit [107] conducted an experimental investigation on the localised 

electrochemical properties of intermetallic compounds formed by Zn, Mg, Ti, 

Mn, Cu, Fe, Cr, Zr with Al (all the elements either in form of precipitates, 

constituent particles and dispersoids), showed that the open circuit potentials 

of AI32Zn49 (stoichiometric ratio) were -1009  mV, -1004  m V and -1063  m V vs. 

S C E  in 0.01 M, 0.1 M and 0 .6M  NaCI solution respectively. The active 

behaviour of A I32Zn49 was also confirmed by the polarisation curve which was  

obtained by exposing the intermetallic to 0 .1M  NaCI solution, see F igure  

2.27.
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Figure 2.27: Potentiodynamic polarisation curve obtained for A l32Zn49 in 

0.1M  NaCI solution [107].

Salinas et al. [106] observed that under galvanostatic test condition for 30  

days at 1 m A/cm 2 in 0.5M  NaCI solution, the operating potential of the alloy 

shifted from -720  m V for unalloyed Al to -955  m V (vs. SC E) for Al alloyed 

with 5wt% Zn. This change in the operating potential was observed for all the 

three macro-structures. The authors stressed that at lower Zn content, the 

loss in the operating potential was due local galvanic action within the alloy 

due to presence of Fe and Cu as impurities, which eventually reduced by 

increasing the Zn content [106].

The authors also reported that the columnar structure did show evidence of 

variation in performance for AI-1wt% Zn alloy than other two structures. This 

was due to the fact that the corrosion morphology observed for A I-1w t% Zn  

was concentric band like, which caused non uniform dissolution of the alloy 

leading to fluctuation in operating potential, which w asn’t the case for Al 

alloyed with 5wt%  alloy [106].
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X -R ay Diffraction (XRD) analysis was also conducted on Al alloyed with both 

lower (< 5w t% ) and higher (> 5wt% ) Zn concentration to understand the 

effects of phases present in the alloy, see Figure 2.28 (a), (b), (c) and (d) 

[106].
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Figure 2.28: X R D  analysis of Al alloyed with (a), (b) 1wt% and 5w t% Zn in 

comparison with pure Al and Zn (c), (d) 20wt%  to 80wt% Zn [106].

The diffraction pattern shown in Figure 2.28 (a) revealed that in Al alloyed  

1wt%Zn, Al rich a was the dominant phase. The higher 20° angle diffraction 

observed for 5wt% Zn addition, showed slight shift in the peaks indicating Zn  

in the solid solution of Al matrix. This was confirmed by the change in lattice 

parameters, see Figure 2.28(b), at 20 «  78° and 82°, lattice param eters for 

Al, A I-1wt% Zn and AI-5wt% Zn were 4 .053  A, 4 .056  A and 4 .062  A) [106].
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A clear increase in the Zn rich (3 phase was observed for Al alloyed with > 

5wt% Zn, see Figure 2.28 (c) and (d), with no recorded peak shift [106]. The  

authors, by applying semi-quantitative analysis reported 3 .08% , 24 .83% , 

54.62%  and 67 .43%  [3 phase when Zn concentrations of (wt%) 20, 40, 60, 80  

respectively [106].
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Figure 2.29: Galvanostatic Polarisation curve for Al alloyed with (a) 1wt%, 

3wt% and 5wt% Zn (chill and equiaxed macrostructure) and (b) 20w t %, 40w t 

%, 60w t%  and 80wt% Zn in 0 .5M  NaCI [106].

In conjunction with the X R D  analysis, the galvanostatic polarisation curve 

clearly showed that the operating potential of the Al alloyed with Zn < 3wt% , 

was dependent on the macrostructure (which was either chill, equiaxed or 

columnar), see Figure 2.29 (a). This becomes independent as the  

concentration of Zn increases from 3wt% [106]. However in the range 5wt%  

<  Zn concentration <  40wt% , the operating potential at 5wt% Zn showed no 

changes with the microstructure, see Figure 2.29 (a). But as the 

concentration of Zn increases to 40wt% , the build-up of localised corrosion 

areas takes place at (3 rich phase areas keeping the operating potential 

similar to that of A I-5wt% Zn alloy [106].
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A further negative shift in the operating potential was observed for Al alloyed  

with Zn concentration > 40w t%  due to increase in the [3 rich phase areas. 

The authors clearly showed that with zinc content >  5wt%, the operating 

potential and anode performance significantly increased with increase in (3 

phase [106].

2.8.6 The effects of ternary addition on Al-Zn alloys

The combination of Zn (modifier) with depassivators such as In, Sn, Hg and 

Ga to form ternary Al sacrificial anode of the form AI-Zn-(ln, Sn, Hg, G a) has 

been an area of focus to many researchers in the field of Al activation and 

has been extensively studied using experimental techniques.

In the early 1960's, Sakano et al. [108,109] investigated the performance Al 

alloyed with «  1wt% to 30wt% Zn ,« 0.001 wt% to 0.1wt% ln and «  upto 

0.50w t% C d. Comparing the potential vs. time characteristics by exposing the  

alloys to artificial sea w ater (not specified by the authors as A S TM  D 1141), 

see F igure  2.30, indicated that binary addition of Zn upto 3wt% and In upto 

0.12w t%  maintained the potential of the alloy at -0 .95  V  and -1 .05  V  (vs. 

SC E) over the sam e period of exposure. However the ternary combination of 

Al with «  0.02w t% ln and «  3wt% Zn shifted the potential to a constant value of 

-1.1 V  (vs. SC E ) after 100 hours of exposure in sea water [108]. The alloy 

containing 0.018w t% ln and 2.8w t% Zn had a similar effect, but fluctuations in 

the potential values were observed [108].
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Figure 2.30: Potential vs. time graph comparing the performance of binary

Al-Zn and Al-ln alloys with ternary A l-Zn-ln with different Zn and In 

concentration in artificial sea w ater [108].

2.8.6.1 The effects of Si and Cu on the electrochemical performance ofAl-Zn- 
(In,Sn,Hg,Ga) alloys

Sakano et al. [108] also investigated the effect of commonly found impurities 

such as Fe, Si and Cu on the performance of the sacrificial anodes. The  

authors showed that even trace amount of Cu (~ 0 .019wt% ) significantly 

lowered the galvanic efficiency of the alloy by formation of corrosion pits and 

causing a strong adhesion of corrosion product to the surface of the alloy 

[108].

The presence of Si in the concentration ranging from 0.041 wt%  to 0 .2 1 2wt%  

increased the galvanic efficiency of the alloy, however the authors observed  

non uniform corrosion pattern on the alloys causing fluctuation in the 

potentials, no significant effect of Fe was reported by the authors [108].
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Sakano et al. [108,109] also reported that the quaternary addition of Cd (upto 

0.05w t% ) to Al alloyed with 2.5w t% Zn and 0.02w t% ln showed uniform 

corrosion patterns leading to an increase in the galvanic efficiency of the 

alloy. T ab le  2 .13, T ab le  2 .14  and Tab le  2.15 shows the effect of alloying Al 

with Zn and In on galvanic efficiency of the anodes, the effect of impurities 

such as Fe, Cu and Si and addition of Cd on the galvanic efficiency of Al 

anodes.

A  similar study was conducted by Hejian and Shizhong  [110] in order to 

understand the effect of impurities on electrochemical behaviour of Al alloyed 

with Zn and In. After examining various Al alloys with different concentrations 

of Zn and In along with impurities such as Si and Fe, the authors highlighted 

that Al alloys containing a ratio of In to Fe and Si o f «  1:8 produced galvanic 

efficiency up to 85%  with « -1 1 1 0  m V vs. S C E  working potential, see F igure  

23 [110].
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T ab le  2.13: Effect of alloying 99 .99%  and 99 .85%  Al with various 
concentrations of Zn and In on galvanic efficiency (tests 

____________conducted in sea water) [108]._________________________
Composition of the alloy Tim e of exposure Galvanic efficiency

(%)
Al(wt%) Zn(wt% ) In (wt%)

97.14 2.82 0 .004 400 81
96.99 3.00 0.010 400 84.4
99.99 2.80 0.019 400 70
97.18 2.85 0.046 400 40.2
99.48 0.5 0 .02 190 86
94.98 5.0 0 .02 190 85
89.98 10.0 0 .02 190 87
84.98 15.0 0 .02 190 90
69.98 30.0 0 .02 190 < 7 5

T ab le  2.14: Effect of impurities (Fe, Si and Cu) on the galvanic efficiency of
__________ Al anodes [108]._____________________________________________________
Composition of the alloy Tim e of Galvanic
_________________________________________________________ exposure efficiency
Al Zn In Fe Si Cu (%)
(wt%) (wt%) (wt%) (wt%) (wt%) (wt%)
97.17 2.77 0.018 0.042 - - 410 84
96.99 2.89 0.022 0.092 - - 410 84
96 .92 2.87 0.022 0.185 - - 410 86
97.08 2.86 0.018 - 0.041 - 410 92
97.00 2.88 0.020 - 0.094 - 410 92
96.87 2.89 0.020 - 0.212 - 410 92
97.07 2.89 0.020 - - 0.019 400 <78
97.24 2.69 0.021 - - 0.048 400 <72
96.96 2 .84 0.021 - - 0.117 400 <81

T ab le  2.15: Effect of Cd addition on galvanic efficiency of Al anodes [109].
Composition of the alloy O C P after 500 hours of Galvanic

exposure in sea w ater efficiency (% ) 
__________________________________ (V  vs. SC E)______________________________
Al(wt%) Zn(wt% ) In (wt%) Cd(wt% )

97.47 2.5 0.02 0.005 -1 .12 85
97.47 2.5 0.02 0.01 -1 .125 85
97.43 2.5 0.02 0.05 -1 .12 84
97.38 2.5 0.02 0.1 -1 .115 84
99.47 0.5 0.02 0.01 -1 .115 83
79.97 20 0.02 0.01 -1.11 80
97.48 2.5 0.005 0.01 -1.11 84
99.85 2.5 0.09 0.01 -1 .115 80
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(a)

F igure 2.31: Graph showing the effect of In in combination with Fe and Si on 

the (a) OCP and (b) galvanic efficiency of Al anodes (the experiment was 

performed in sea water, not specified to ASTM D1141 by the authors, at 1 

mA/cm2) [110].

In order to study the elemental distribution of Zn and In along with other 

impurities, Hejian and Shizhong [110] also conducted a quantitative 

electroprobe (electron probe analysis) analysis on Al anodes with different 

Zn and In concentrations, see Tab le  2.16, before and after potentiostatic 

polarisation (at -1000 mV vs. SCE for 25 minutes in 0.5M NaCI solution). The 

results obtained from electroprobe analysis (pre and post polarisation scan) 

clearly showed evidence of increase in concentration of In, Si and Cu
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(present as an impurity) in the segregated phases than in the matrix of the 

alloy. Uniform Zn distribution was observed in both segregated phases and 

matrix (no trace of In was reported by the authors in the alloy matrix). From  

the results obtained, the authors theorised that In with presence of impurities 

such as Fe and Si segregate to form local anodes with Al20 3 layer which in 

turn actively dissolves till the Al matrix is exposed to the electrolyte. The  

exposed Al matrix then forms a galvanic cell with the Al20 3 oxide and starts 

actively dissolving, while the segregated In rich phase separates from the Al 

matrix and dissolves in the electrolytic solution, see figure 24 [110].

T ab le  2.16: Quantitative electroprobe analysis of A I-6w t% Zn-0.05w t% ln  
0.01w t% Si and segregated phases after potentiostatic 
polarisation at -1000 m V vs. S C E  for 25 minutes in 0 .5M  NaCI

__________ solution [110].____________________________________________________
Quantitative analysis of individual
elements (in at% ) _____________________
Al Zn In Si Cu

A I-6w t% Zn-0.05w t% ln0.10wt% Si 93 .62  6 .28  0 0 .09  0 .007
(pre-polarisation)

Segregate phase 1 75 .34  7 .18  16.70 0 .75  0 .03
(post polarisation)

Segregate phase 2 77 .35  5 .18 16.91 0 .47  0 .09
(post polarisation)__________________________________________________________
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Figure 2.32: Diagrammatic representation of proposed activation mechanism 

of Al sacrificial anode (a) in presence of In rich phase acting as an anode 

with Al20 3 leading to (b) exposure of Al matrix and (c) subsequent 

detachment of In rich phase after exposure of Al matrix, suggested by Hejian 

and Shizhong [110].

2.8.6.2 Understanding the mechanism of activation ofAl-Zn alloys by 
depassivators

Similar to the activation of Al-Zn anodes by In, Reboul and Delatte [111] also 

focused on understanding the effective mechanism of activation of Al-Zn 

anode by Hg ions, using alloy containing 2.0 to 2.5wt%Zn, 0.04wt%Hg and 

impurities (such as Fe and Si) <0.2wt%.

After exposing the alloy to ASTM D1141-52 sea water for 480 hours, the 

authors found non uniform corrosion morphology. The quantitative 

microprobe (electron probe microanalysis) analysis conducted prior to 

exposure confirmed heterogeneous distribution of Hg rich phase in the alloy 

but the analysis after exposure indicated no correlation between the Hg rich 

phase and corrosion morphology [111].
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The authors proposed that in presence of electrolytic solution, Hg ions get 

deposited on the AI2O3 oxide layer, with following reaction step:

3Hg2+ + 2AI -» 2AI3+ + 6Hg

this causes the removal of oxide layer from the surface of the bare alloy 

causing formation of localised pits which in turns shifts the potential of the A l- 

Zn-Hg alloy to a more electronegative region (-710  m V to 1050 mv vs. SCE, 

reported by the authors). The deposited Hg on the oxide layer takes no part 

in further activation or dissolves in the electrolytic solution, was not described 

by the authors [111].

Many researchers conducted electrochemical experiments to further 

understand this proposed activation mechanism of Al by elements such as 

Zn,Hg, In and G a in binary and ternary alloy form [62-72]. Bessone [112] and 

Al-Shaffer [113] investigated the effect of Hg addition to Al sacrificial anodes 

in Hg(ll) acetate and artificial sea w ater (ASTM  D 1141) solution. Bessone 

[112] identified the activation of Al by Hg2+ ions as a process of crack and 

healing of AI2O3 oxide film formed on the surface of the Al alloy. Figure 2.33 

shows three distinct regions of the potential vs. time response of Al subjected 

to Hg(ll) acetate (H g(C 20 2H3)2) solution at maintained pH of 4 .2  [112].
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F igure 2.33: Potential vs. time curve for Al in 0.001 M Hg(C20 2 H 3)2 solution at 

pH= 4 .2  [112].

The authors reported the formation of Hg droplets on Al surface after initial 

10 minutes of exposure of Al in 0.001 M Hg(C20 2 H 3)2. This was attributed to 

the redox couple between the A I/AI3+ ions (-1901 m V vs. SC E) to Hg/Hg2+ 

ions (+560 m V vs. SC E) causing the oxidation of Al to Al3+ while reducing 

Hg2+ from the electrolytic solution to cathodic sites on the alloys (sites rich in 

impurities such as Fe and Cu) [112].

The SEM  examination of Al sample exposed to Hg(ll) acetate solution for 10 

minutes also revealed formation of tail like structure to the Hg droplets which 

suggested cracking of the Al20 3 layer causing Hg2+ ions to reduce on 

localised cathodic sites [112].

W ith just over 10 minutes of exposure in 0.001 M Hg(ll) acetate solution, the 

authors observed a profound shift in the potential of Al to a more 

electronegative region (from « -  0.8 V  vs.SC E to « -1 .5  V  vs.SCE), as shown
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in Figure 2.33, which was referred as activation state of the alloy [112]. The 

authors suggested that the cause of activation was due to the wetting of Hg 

droplets formed on the Al surface with oxide free Al surface, which is shown 

in Figure 2 .34  [62].

Hg droplet

Al surface

Figure 2.34: Diagrammatic representation of activation of Al by Hg2+ ions 

showing (a) re-formation of A l20 3 oxide layer and (b) surface wetting of Al by 

Hg when contact angle (3<a [112].

The authors reported that wetting of Al by Hg2+ ions causes formation of Al 

amalgam which shifts the potential of Al to more electronegative region as 

shown in Figure 2.33 (activation region) [112]. Al-Saffar et a/.[113] 

investigated the effect of Hg implantation on Al-Hg alloy, and found similar 

effects as described by Bessone [112].
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However, A l-Saffer et al [113] reported that the Hg implanted Al alloy showed 

uniform dissolution when exposed to artificial sea water (ASTM  D 1141) and 

no evidence of preferential dissolution along the grain boundary was  

observed as in cast A l-Zn-Hg alloys reported by Reboul eta l. [111,113].

Carroll and Breslin [114] conducted a comparative study on activation of Al 

by Hg, In, Zn and Ga in form of ions (5 x 10'3M of ln3+, Hg2+, Zn2+ and G a 3+ 

were used during experiments) in the electrolytic solution with ternary A l-Zn- 

In (3.0w t% Zn and 0.02w t% ln) and Al-Zn-Hg (0.4w t% Zn and 0 .04w t% H g) and 

binary A l-G a (the authors varied the Ga concentration of alloys as 0 .026w t% , 

0.1 wt%  and 2.6wt% )alloys.
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Figure  2.35: (a) Potentiodynamic polarisation and (b) potential vs. tim e  

graphs of Al exposed to 0 .5M  NaCI solution in addition with 0 .005M  of Zn2+, 

G a3*, In3* and Hg2* ions [114].
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The potentiodynamic polarisation curve as shown in Figure 2.35 (a) clearly 

showed the reduction in passivation caused by Hg2+, ln3+ and G a 3+ ions with 

Zn2+ showing the least effect. The potential vs. time curve, see Figure 2.35 

(b) also showed the sam e effect however, the addition of 0 .005M  ln3+ and 

Hg2+ shifted the potential to «  -1.1 V  (vs. SC E) and «  -1 .5  V  (vs. SC E) 

respectively. However the authors emphasised on the time taken to shift the 

potential more negative upon addition of ln3+ and Hg2+ ions to 0 .5M  Cl' 

solution, referred as induction period [114].

The authors also reported that for ln3+ ions to produce a similar activation 

effect with decreasing Cl' concentration (at 0.01 M Cl'), the induction period 

increased to few  hours rather than few  minutes as shown in Figure 2.35 (b), 

which was not observed for Hg2+ ions [114]. The authors also reported the 

effect of Hg, In, Zn and Ga in cast Al binary and ternary alloys as shown in 

Figure 2.36 (a), with almost similar effects of Hg and In as seen from  

Figure2.35 (a) [114]. Carroll and Breslin's [114] results were in agreem ent 

with Breslin et al. [65] who investigated the effect of ternary alloying of Al and 

Zn with In and Hg, as shown in Figure 2.36(b).

Both the authors observed that the activation caused by Hg2+ and ln3+ ions is 

similar in nature but only in the chloride environment. The effect of activation 

of ln3+ decreases considerably when exposed to solution containing S 0 42', 

NO3' and CIO42' ions [114,115]. The previous research conducted had 

showed that Hg had pronounced effects on activation of Al, but one of the 

major concerns over the use of Hg in Al sacrificial anode has been due to its 

toxicity. Due to which the major focus of the research had shifted to the use 

of other activator elements such as In [116,117].
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F igure  2.36: Potentiodynamic polarisation curves for (a) Al alloyed with Zn, 

In and Hg in binary and ternary form [114] and (b) ternary Al-Zn-ln and A l-Zn- 

Hg alloy [115]. Both exposed to 0.5M  NaCI solution.

2.8.6.3 Understanding the activation ofAl  by Zn and In:

(a) D.C Electrochemical methods

From early 1970's, In has been widely used as a replacem ent of Hg in the Al 

sacrificial anodes and electrochemical properties of In were investigated by 

many researchers [118-121]. Piercy and Hampson [118] were among the 

early researchers who investigated the electrochemical mechanism of 

formation of complex In ions when exposed to aqueous environments 

containing halide and perchlorate ions. The authors reported, that In 

favoured formation of chloro-complex ion, lnCI2+, when exposed to aqueous  

solution containing CP ions [68]. This suggested that the oxidation state of In 

with standard redox potentials [118,119]:
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In3+ + 3e" ~  In, -0.574 V vs. SCE

lnCI2+ + 3e' «-> In +2CI", -0.649 V vs. SCE

lnCI3 + 3e" ~  In + 3CI", -0.656 V vs. SCE

Formation of ln3+ was favoured during the reaction owing to fact that ln3+ 

cation forms a more stable complex with Cl" ion than ln+ cation, which was  

vice-versa for In exposed to perchlorate (C I0 4‘) ion [118].

The authors also suggested that this equilibrium reaction of ln+ to ln3+ was  

the rate determining step during the anodic dissolution of In when exposed to 

Cl" and C I04" environment [118].

Munoz and Bessone  [119,120] conducted further work on investigating the 

effects of Cl", S 0 42' , F 'and  C I0 4" ions in aqueous and non-aqueous solutions 

on ln+/ln 3+ equilibrium. The authors concluded that under the aqueous 

conditions, the presence of hydroxide ion (OH") creates active sites on In 

surface which then causes adsorption of present anion, especially Cl" ions, 

forming of complex lnCI2" species at a potential «  -1 .2  V  vs. SCE, which 

allows further diffusion of Cl" ion to the surface of indium and mitigates 

formation of any surface passive oxide layer [119,120].

Similar mechanism was proposed for In in the non-aqueous media, however 

the complex InCfe'was suggested to be less stable than aqueous media for 

similar concentrations of anions [119,120]. The authors attributed the 

difference in the stability of the complex chloride ion film on the surface due 

to the different diffusivity rates observed for aqueous and non- aqueous Cl", 

C I0 4" and S 0 42" anions. However in both cases the chloride ion complex was
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found to be less stable than C I0 4'a n d  S 0 42'ion  complex, see F igure  2 .37  (a) 

and (b), explaining the enhanced activity of In in chloride media [119,120].
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F igure  2 .37  Graphs showing the effect of Cl', C I0 4' and S 0 42' anions on the 

rate of diffusion calculated for different scan rates of polarisation in (a) 

aqueous and (b) non aqueous media (Dimethylformamide with 0 .03w t%  

w ater was used as a non-aqueous media by the authors) [119].

This phenomenon of In forming complex ions in presence of chloride media 

was used by authors to explain the mechanism of activation of Al induced by 

In [114,115119,120].

This explanation was also supported by Breslin and Carroll [121] who  

investigated the mechanism of Al activation by In in presence of aqueous  

solution containing Cl", Br" and I' ions. In addition to the formation of halide 

complex's on the surface of Al in presence of In was reported previously 

[69,70]. Breslin and Carroll [121] also suggested that these halide complex's 

contribute in formation of a-A I(O H ) 3 or a stable Y-AI2O 3.3 H2O species, 

however prolonged exposure to chloride environment favours formation of
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stable Y-AI2O 3 .3 H2O which causes fluctuations in potential vs time transients 

as observed in Figure 2.35 (b). Aqueous solution contain CP and Br' showed 

similar mechanism, however presence of I" to form complex iodide salts 

followed a rather complex mechanism. With initial formation of I3' species, 

which disintegrated further to form hypoiodous acid (H IO ), due to instability 

of HIO, further disintegration to l2 and IO 3' causes the pH of the solution to 

shift to acidic region causing further attack on Al surface [121]. The liberated 

l2 then combines with Al to form A ll3 complex, but due to the acidic pH level 

AII3 disintegrates allowing the fresh surface to Al to form a -A I(O H ) 3 or y- 

AI2O 3 .3 H2O [121].

The formation of In complex with chlorides (or halide ions in general) was 

shown to depend on the adsorption of CP on the surface of the alloys with in 

turn affected the ln3+/ln+ equilibrium during the active dissolution of Al in 

aqueous chloride media [122-124]. It was also shown that with =  0 .005M  

concentration of ln3+ ion in the solution, In complex such as (ln (H 20 ) 50 H )2+ 

and (ln(H 20 )4 (0 H)2)+ co-existed in the initial hydrolysis stage of In before 

contributing to form hydroxide and hydrated oxide of Al as reported Breslin 

and Carroll [121,122-124]. As it was reported before that the formation of 

initial In complex ions takes place at potential = -1 .2  V  vs. SC E , it was also 

found that, as the potential was lowered to about -1 .5  V  vs. SC E , the 

formation of initial In complex occurred via galvanic coupling of Al and In 0 2' 

ion, which can be represented as [122-124]:

Al + In02' + 4H+ -► Al3+ + In + 2H20
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However, the complex In ion formation took place via Al and ln3+ 

displacement reaction as follows [72-74]:

A l + ln3+ In + A l3+

Apart from the research conducted on understanding the mechanism of 

activation of Al induced by In in the aqueous electrolytic solution, many 

researchers also focused on mechanism of activation of binary and ternary  

Al, alloyed with Zn and In [125-130],

Munoz et a l.[125] investigated the effect of In addition to Zn in order to 

understand the synergetic electrochemical interaction of Zn and In by 

analysing commercially pure Zn (99.999w t% Zn) and Zn alloyed with 5wt% ln  

in aqueous solution containing Cl" and C I0 4' ions. The authors demonstrated  

that in aqueous condition, the activation of Zn with 5wt% ln was also 

dependent on chloride adsorption to form chloro complex as suggested  

previously [119 ,120 ,122-124] and occurred at «  -1.1 V  vs. SCE, see F igure  

2.38 [125].

The authors also suggested that, in aqueous C l' solution for both Zn and Zn- 

5wt% ln, the intermediate ZnC ln2'n complex was formed which participated in 

active dissolution of the alloy. W hereas in presence of aqueous C I0 4' , ZnO H  

intermediate was reported to be formed and with addition of 5wt% ln, this 

ZnO H  intermediate was further oxidised to Z n O H + before active dissolution 

of Zn [125]. Breslin and Friery  [126] studied the effect of Zn and In 

combination on activation of Al by exposing commercially pure Al (99.99w t% ) 

to 0 .5M  NaCI solution added with sulphate salts of Zn2+ and ln3+ of ln3+ to 

Zn2+ ratio of 1:2, see F igure 2.39.
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F igure 2.38: Potentiostatic curve for Zn and Zn-5wt% ln in 0 .5M  NaCI 

solution, pH maintained at 3 (the authors have corrected for cathodic current, 

shown in black) [125].
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Figure  2.39: Potential vs. time graph for Al exposed to 0 .5M  NaCI solution 

with addition of Zn2+ and ln3+ sulphate salt of concentration 0.01 M Z n S 0 4, , 

0.005M  ln2(S 0 4)3 or 0 .005M  Z n S 0 4 .0 .0025M  ln2(S 0 4)3 [126].
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Addition of Zn2+ and ln3+ sulphate salts were m ade after «  25 mins of Al 

exposure in 0 .5M  NaCI solution as shown in Figure 2.39 [126]. The potential 

vs. time transient clearly showed that addition of Zn2+ alone did not alter the 

potential of Al in C l' ion environment, however Zn2+ with ln3+ lowered the 

potential of Al to «  -1 .02  V  vs. S C E  with a much lesser induction time as 

compared to ln3+ addition (however ln3+ addition caused the potential to shift 

to = -1.1 V  vs. SCE).

These results were in accordance with the research conducted by other 

authors [114 ,115 ,121-124] that activation of Al caused by ln3+ ions was found 

more effective in halide solution with order of activation as C I> B r > r  but also 

the potential fluctuations, see Figure 2.39 and 2.35 (b) were indicative of the 

formation and rupture of oxide induced by In [126]. Burri et al. [127] and 

Equey et al. [128] analyse Al exposed to 2M  NaCI solution with addition of

0.0005M  ln3+ and 0 .08 M Zn2+ ions and showed that even at this lower 

concentration of ln3+ ion, Al reported a potential as reported by Breslin and 

Friery [126],o f «  -1 .02  V  vs. SCE. Using S IM S, see Figure 2.40, the authors 

also reported a much deeper profile of ln3+ ions in the Al than Zn2+ ions 

indicating enhanced activation effect of In in halide environment which was  

investigated by researchers [118-120 ,127,128].
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F igure  2.40: S IM S  depth profile of Al exposed after exposure to 2M  NaCI 

with 0 .0005M  ln3+ and 0 .08M  Zn2t ions [127],

According to various researches conducted on Al alloyed with «5w t% Zn and 

=0.02w t% ln in electrolytic media containing 0 .5M  Cl' ions [129-131] showed 

that the synergetic mechanism of Zn and In which produced activation of Al 

included:

•  Formation of initial chloride complex induced by In which in turn 

increases the chloride adsorption.

•  The presence of Zn rich regions in the alloys promote the formation of 

these In chloro complexes and in doing so increases the rate of 

chloride adsorption which shifts the potential of the alloys to «  -1 .2  V  

vs. SCE.

•  These In chloro complexes (lnCI2') further transform to produce Al 

oxides, either a-A I(O H ) 3 or a stable Y-AI2O 3 .3 H2O, which produces 

fluctuations in the potentials upon long term exposure.

•  Due to presence of Zn rich regions favouring chloride adsorption 

induced by In to form lnCI2‘ species, continuous adsorption of C l' ions 

from the electrolytic media maintains an active Al surface.



(b) A.C Electrochemical methods

Many researchers undertook studies to obtain mechanistic information on Al 

activation by Zn and In using Electrochemical Im pedance Spectroscopy 

(E IS) technique [132-134], Prior to understanding the mechanism of 

activation of Al, many researchers focused on understanding the mechanism  

of dissolution and passive film formation on Al in various electrolytic solutions 

by conducting EIS [135-137], Macdonald [135,136] studied the impedance 

spectra (Nyquist plots) obtained for Al exposed to 4M  KOH solution in steps 

of 30 to 80m V  in the range of -1 .96  V  to -1 .35  V  vs Hg/HgO , see F igure  

2.41, and proposed mechanism of dissolution of Al under alkaline conditions.
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Figure 2.41: Experimental Nyquist plots of Al in 4M  KOH solution at (a) -1 .95  
V, (b) -1 .88  V  ,(c) -1 .74  V , (d) -1 .70  V, (e) -1 .68  V, (f) -1 .64  V, (g) -1 .60  V , (h) 
-1 .50, (i) -1 .46  V, (j) -1-38 V, (k )-1 .3 5 V v s . Hg/HgO [135,136].

The author emphasised that under strong alkaline conditions (4M  KOH), 

formation of capacitive loops towards lower frequencies as the potential was  

shifted towards electropositive direction were observed, see F igure  2.41 (a)- 

(k). This suggested anodic dissolution of Al at the electrolyte surface 

interface, which was explained further by using one of the reaction 

mechanism suggested by author and represented in following reaction steps 

[135,136]:
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A I b a s  +  O H '  - >  A I ( O H ) a d s  +  e "»  k i

A I ( O H ) a d s  +  O H '  —  A I ( O H ) 2 a d s  + e', k2

A I ( O H ) 2 a d s  +  O H -  -  A I ( O H ) 3 a d s  + e-, k3

AI(OH)3 a d s  + OH' AI(OH)4', k4

BAS + H20  +e' —► H + OH', k5

H + H20  + e' — H2 + OH' + BAS, k6

W here BAS is bare aluminium surface, ads are adsorbed species and ki to 

k6 are rate of each reaction. The above mentioned reaction steps suggest 

that under the influence of strong alkaline solution, the Al atoms are initially 

removed from the surface of the metal forming intermediate A I(O H )ads 

species which further reacts with O H ' ions to form stable A I(O H )3.

However due to large concentration of O H ” ions, stable A I(O H )3 forms 

aluminate (A I(O H)4‘) ions exposing the bare aluminium surface and in doing 

so, maintains constant dissolution of Al [135,136]. Wit and Lenderink [137] 

studied the formation of passive oxide layer on Al surface exposed to 

solution containing S 0 42' and Cl' ions. The Nyquist plot for Al exposed to 1M  

solution of H2S 0 4, see Figure 2.42, showed formation of two capacitive 

loops at a higher frequency (1kHz) and lower frequency (1m H z) with 

formation of an inductive loop at intermediate frequency [137].
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Figure  2.42: Nyquist plot for Al exposed to 1M H2S 0 4 under potential control 

condition in order to draw mechanistic information on formation of passive 

layer [137].

The authors suggested that the first capacitive loop (at higher frequency) 

was evidence of oxidation of Al at the metal solution interface, the 

intermediate inductive loop showed formation of passive oxide layer [137].

However the capacitive loop observed in the lower frequency region was  

attributed to formation of defects in the solution oxide interface layer which 

caused further dissolution of Al to fill the vacancies. But as the vacancies  

were filled by A I(O H )3 ions as indicated previously by M acdonald  [132,133] 

no further dissolution of Al was observed [137]. Venugopal and Raja  [138] 

and Gudic et a l.[139] studied the effect of In and Zn using EIS on activation  

of Al in chloride media. Venugopal and Raja [138] analysed the binary Al- 

5wt% Zn and A l-0.05w t% ln alloys using EIS within frequency, range of 

100kH z to 1mHz, by exposing the alloys to 3.5w t%  NaCI solution with 

various concentration of Zn2+ and ln3+ ions, as shown in F igure  2 .43 (a)-(g) 

and F igure 2 .46 (a)-(d) and proposed the mechanism of activation of the Al 

by Zn and In.
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F igure  2.43: Nyquist plot for A I-5wt% Zn alloys in 3 .5% N aC I solution with ln3+ 

addition at concentrations (a) no addition (b) 0.001 M (c) 0 .002M  (d) 0 .003M  

(e) 0 .004M  (f) 0 .005M  and (g) 0 .006M  [138].
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Figure  2.44: Nyquist plot for A l-0.005w t% ln alloy in 3 .5% N aC I solution with 
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The authors stressed on significant difference found in the Nyquist plots for 

AI-5wt% Zn and A l-0.05w t% ln alloys in 3 .5%  NaCI solution without addition of 

ln3+ and Zn2+ ions, see Figure 2.43 (a) and Figure 2.36 (a) [138]. For Al- 

5wt% Zn system, prior to In addition, two capacitive loops were observed, see  

Figure 2.43 (a), the capacitive loop at higher frequency was oxidation of Al, 

while the second suggested initial formation of Z n (O H )2 on the surface of the 

alloy [138].

For A I-5wt% Zn alloy, the authors observed formation of inductive loops with 

the increased addition of ln3+ ions in the chloride solution, see Figure 2.43

(b)-(g) [138]. The authors attributed the formation of these inductive loops 

due to presence of intermediate ln+ and ln2+ species which on further 

exposure enhances the Cl' adsorption onto the surface of the alloy promoting 

dissolution as stated previously by many researchers [120-124].

However, for A l-0.05w t% ln alloy, the inductive behaviour was subdued by 

addition of Zn2+ ions in chloride ion solution, see Figure 2.44 (b)-(e) [138]. 

The observed depression in the inductive nature was reported to be caused  

by adsorption of Zn2+ ions on Al20 3 to form spinel ZnAI20 4 structure reported 

previously [87-89], which in turn increases the Zn2+ ion mobility causing 

dissolution of Al only on Zn2+ ion adsorbed sites [138]. A  similar Nyquist plot 

with inductive loop was obtained by Gudic et a l.[139] and Breslin and Rudd 

[140] by exposing Al alloyed with 0.1w t% ln to 2M  NaCI solution which 

supported the evidence of formation of intermediate ln3+ chloro-complexes 

which increased the Cl' adsorption on the surface of the alloy making the Al 

alloy active in the chloride media.
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2.9 The addition of Ti to produce wear resistant Al alloys

This section will focus on the understanding of microstructural and 

mechanical properties of Al alloyed with Ti, which has been thermally 

sprayed (arc sprayed) onto steel structure to provide adequate wear 

resistance under abrasive condition.

2.9.1 Background on wear of materials

The existing literature reveals that the understanding of the ubiquitous 

phenomena of wear of materials dates back to approximately 2400 B.C. 

Where people of ancient Egyptian civilization used some form of lubrication 

to prevent the wearing of surfaces in relative motion as shown in Figure  2 .45

F igure 2.45: Engraving found on the walls at Saqqara, Egypt showing the 

use of some kind of lubrication in order to move a heavy metallic statue 

[141].
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Over the years, knowledge of w ear as phenomena of loss of material from 

the surfaces in relative motion enabled the researchers to build various 

models to understand the interaction of surfaces and devise methods to 

mitigate the detrimental effects of w ear [142]. Figure 2.46 shows the 

diagrammatic representation of various forms of w ear mechanisms which 

attribute to loss of materials either acting individually or in combination 

depending on the environment to which materials are exposed.

Rolling
(3-Body)

Wear

Abrasive

Grooving
(2-Body)

Liquid
dropletCavitation

Solid
particle

Biological
systems Fretting Erosion

Adhesive Corrosive Surface
Fatigue Others

Figure 2.46: Diagrammatic representation of various forms of w ear

mechanisms [143].

The four main forms of w ear mechanisms can be described as [144]:

1. Abrasive wear: This is caused by the interaction (sliding) of two

surfaces (2 body interactions) with different hardness values

causing the removal of softer material by ploughing action caused

by hard material. A  similar possibility arises when the interaction of

two surfaces takes place in presence of a third body (mainly grit

particles, slurry etc.), commonly referred as 3-body interaction,

causing abrasion of softer material or in some cases both

111



materials by ploughing action caused by the third body. Abrasion 

by 3 body mechanism causes maximum loss of material in an 

industrial environment (e.g. automotive industries).

2. Adhesive wear: often referred as galling w ear is primarily caused  

when the adhesive force at the interacting points (due to presence  

of surface asperities) between the two surfaces causes removal of 

material from either surface forming w ear debris. The formation of 

w ear debris between the surfaces causes further removal of 

material by abrasive action, hence w ear of materials purely under 

adhesive mechanism is only possible under controlled 

environment.

3. Corrosive wear: the combination of sliding condition and corrosive 

industrial environment such as high temperature, humidity or 

vapours, chlorides and C 0 2 causes formation of loosely adherent 

chemical product on metallic surfaces, also referred as tribofilm. 

The formation of these tribofilm either improves or deteriorates the 

w ear resistance of the metallic systems.

4. Surface fatigue wear: w henever the surfaces of material are  

exposed to continuous sliding or rolling action, a sudden removal 

of large material from the surfaces can take place causing 

localised loss of materials on the interacting surfaces. The loss of 

material due to fatigue on the interacting surfaces is more 

pronounced than abrasive, adhesive and corrosive w ear causing 

drastic reduction in operating life of such a system.
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Since the industrial revolution, various machines and structures have been  

designed to perform complex operations under challenging working 

environments. This causes loss of material from the surfaces caused by 

mechanisms such as abrasion, corrosion and fatigue and in turn reduces the 

nominal working life of structures and machine components.

Due to increasing complexities in the design of modern machines, apart from  

lubrication, various common industrial methods such as surface hardening, 

application of soft and hard coatings (both metallic and non-metallic) have 

also been developed to protect the parent material from detrimental effects of 

w ear [145].

Aluminium, mostly in alloyed form has been an attractive material for thermal 

spraying (electric arc spraying) on to steel structures used in diverse 

industrial applications for protection against w ear and corrosion [146]. 

Aluminium-titanium-carbon alloy coatings have been commercially used as 

w ear resistance coatings on offshore bridge decks, loading and unloading 

ramps for containers carried by forklift trucks [147]. In order to understand  

the performance of arc sprayed A l-Ti-C  coatings, tribological properties of the 

Al-Ti and A l-Ti-C  alloy systems in relation with microstructure and phase  

formation in the alloys has been investigated by researchers.
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2.9.2 Aluminium-Titanium (Ti) alloy system

Aluminium (Al) alloyed with titanium (Ti) (which constitute approximately 

0 .63%  of the earth's crust) has been widely used engineering alloy finding 

their application in various industries such as, aerospace, naval, automobile 

and even medical applications [148]. To fully exploit the industrial 

applications of Al-Ti alloys, properties such as micro-structure and formation 

of different phases due to variation in composition of either of its 

constituents, or even the addition of a third alloying elem ent such as carbon 

has been investigated by many researchers.

2.9.2.1 Properties of Al-Ti alloys

The focus of the literature for Al alloyed with group 4  transition metals such 

as Ti, Hf, Zr has been on the study of formation of intermetallic compounds 

at various transformation stages of alloying which imparts the alloys 

properties such as thermal stability and creep resistance [148,149]. As many  

as twelve forms of intermetallic Al-Ti compounds of varying composition have 

been reported during the alloying stages. However properties of few  of these  

intermetallic compounds such as AITi, A I3Ti, AI2Ti and AITi3 have been of 

considerable interest to the researchers [148].

Batalu et al [148] critically reviewed variants of Ti-AI phase diagram studied 

previously by researchers and attributed the formation of intermetallic phases  

(by varying at%  Al) due to following transformations during alloying process:
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• Peritectic transformations

L  49.4 at% Al +  (p T i)  44.80 at% Al < - * ■  (OlTi) 47.30 at% Al at 1763 K 

L  55.10 at% Al +  ( a n )  51.40 at% Al ( A I T i )  55.0 at% Al at 1735.8 K

L  55.10 at% Al +  ( A I T i )  55.0 at% Al ( A l n T i s )  63.70 at% Al at 1688 K

L  77.46 at% Al +  ( A l n T i s )  72.2 at% Al <-► ( A ^ T i )  74.39 at% Al at 1688 K

L  99.90 at% Al +  ( A ^ T i )  75.0 at% Al ( A l )  99.30 at% Al at 938 K

• Eutectoid transformations

(On) 39.60 at% Al ( A IT is )  38.20 at% Al +  ( A I T i )  46.70 at% Al at 1391.5 K 

( A l n T i s )  69.76 at% AI ( A l z T i )  66.70 at% Al +  ( A I 3T O  74.6O at% Al at 1263 K

• Peritectoid transformation

( A I T i )  63.81 at% a i +  ( A l n T i s )  68.31 at% a i * - >  ( A ^ T i )  66.50 at% a i at 1448 K

• Order-disorder transformation

( a n )  30.90 at% a i ( A IT is )  30.90 at% Al at 1 4 3 7  K

• Polymorphic transformation

(an) <-> (P t i) at 1155 K
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(a)Tri-aluminide (AhTi) intermetallic compounds 
formation by Ti

The formation of tri-aluminide, when Al is alloyed with group 4 transition 

metal Ti, has attracted many researchers to study the properties of these  

compounds for nearly 40  years. The primary importance being, that addition 

of Ti promotes formation of AI3Ti which acts as a nucleation point for the 

alloys during the solidification process, fostering the growth of equiaxed  

macrostructure rather than conventional columnar macrostructure [149,150]. 

This property of macrostructure enhancem ent by tri-aluminide formation 

caused by Ti addition has been exploited to form Al alloys with capabilities of 

operating under high tem perature and high creep conditions [150-152]. The  

next few  sections of this chapter will focus on microstructure and mechanical 

properties of AI3Ti intermetallic compound.

(b) Formation and microstructural properties of AhTi 
intermetallic compound.

The tri-aluminide intermetallic compound AI3Ti under equilibrium exhibits 

either body centred tetragonal (a = 5 .45 A, c = 8 .60  A) or face centred  

tetragonal (a = 3 .849  A, c = 8 .60 A) D O 22 or D O 23 type crystal structure which 

are precipitated initially as cubic L12 type structure, see Figure 2.47 

[149,153,154].
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Due to lower symmetry of tetragonal D O 22 or D O 23 type crystal structure, the 

AI3Ti intermetallic is brittle at room temperature, hence L12 crystal structure 

of AI3Ti, which shows ductility under compression, is preferred during the 

alloy formation [155,156].

Due to lower diffusivity of Ti in Al, the formation of coarse plate-like A I3Ti 

intermetallic with high aspect ratio readily occurs during the normal casting 

process. However at lower Ti addition of up to 1.2wt%, petal-shaped AI3Ti 

intermetallic compound is formed [149,156]. The formation of either coarse 

plate-like structure or petal-shaped structure of A I3Ti intermetallic is governed 

by concentration of Ti and cooling rate of the alloy. It has been observed that 

with Ti addition up to 3.5w t%  and cooling rate of 400°/cm , coarse plate-like 

AI3Ti intermetallic is formed, as shown in Figure 2.48(a), with Ti 

concentration up to 1.15wt%  and cooling rate of 205°C /cm , fine petal-shaped  

AI3Ti is formed , as shown in Figure 2.48 (b) [153-155].
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Figure 2.47: Crystal structure of AI3Ti intermetallic showing (a) l_12 , (b) D 0 22 

and (c) D 0 23type structure, where O represents Al atoms and #  Ti atoms 

[154].

Figure 2.48: Optical micrographs showing directionally solidified (a) Al- 

3.5wt%Ti alloy with coarse plate like AI3Ti intermetallic growth at cooling rate 

of 400°/cm and (b) AI-1.15wt%Ti showing fine petal shape growth of AI3Ti 

intermetallic at cooling rate of 205°C/cm. Magnification X 40 [153].



Even with a low solubility limit of Ti in Al. which is «  1.06wt%  at 938 K, the 

formation of stable A I3Ti intermetallic is also achieved by controlled rapid 

solidification of the alloys, depending upon the concentration of Ti and 

cooling rates, the following microstructural features of A I3Ti intermetallic 

compound (post etching) is observed [153,157]:

•  In alloys containing 1.15wt% Ti to 2wt% Ti, formed at cooling rates 

in the range of 200°C /cm  to 550°C /cm , dendritic microstructure 

with single plane growth of AI3Ti intermetallic.

•  Fine petal shaped AI3Ti intermetallic growth in alloys containing

1.15wt% Ti formed at cooling rate in the range of 200°C /cm  to 

280°C /cm .

•  Dendritic AI3Ti intermetallic growth in random direction for alloys 

containing 3.5w t% Ti to 5wt% Ti, formed at cooling rates in the 

range of 200°C /cm  to 255°C /cm .

(c) Mechanical properties of AhTi tri-aluminide 
intermetallic compound.

AI3Ti intermetallic possesses exceptional characteristics such as low density 

~ 3.3 g/cm 3, higher melting tem perature »  1673 K, see Table 2.17 for other 

mechanical properties, which as exploited in the grain refinement of 

commercial Al alloys used for high tem perature applications [158,159].

As stated in the earlier section, upon formation, the tri-aluminide A I3Ti, 

exhibits non-symmetrical tetragonal D O 22 type structure, this reduces ductility 

and makes the alloy brittle at low temperatures.
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In order to achieve ductility, symmetrical L12 type structure of AI3Ti 

intermetallic is preferred and is effectively obtained by addition of elements 

such as Cr and Mn to the alloy [158].

Table 2.17: Properties of AI3Ti intermetallic compound [158].
Mechanical properties of A I3Ti intermetallic
Young's Modulus (G Pa) 156
Fracture stress (M Pa) 162 (under bending)

354 (under compression)
Yield stress (M Pa) 980
Plasticity characteristic (5h) 0.68
Strain hardening param eter N (G Pa) 2.4
(obtained by indentation method)
Liquidus tem perature (°C) 1420
Solidus temperature (°C) 1395

The investigation conducted by previous researchers, comparing the 

mechanical properties of DO 22 type AI3Ti with AI3Ti alloyed with Cr and Mn to 

form L12 type AI6iC r12Ti27 and AI66M nnTi23 intermetallic compound revealed  

that [157 -160 ]:

•  The change in the crystalline structure of A I3Ti intermetallic from  

tetragonal D O 22 type to cubic L12 type AI6iC r i2Ti27 and AI66M n n T i23 

intermetallic compound showed decrease in the micro-hardness with 

increase in the exposure tem perature from 25°C  to 900°C , as shown 

in Figure 2.49.

•  The yield stress decreases when D O 22 type AI3Ti intermetallic is 

alloyed with Cr and Mn to form cubic L12 AI6iC r i2Ti27 and A I66M n n T i23 

intermetallic, as shown in the stress vs. strain curve in Figure 2.50.

120



The plasticity characteristic value (5 H) of the intermetallic compounds 

increases in the order AI3Ti < AI6iC r i2Ti2 7 < AI66M n n T i23 with respect to 

exposure temperature, see Figure 2.51.

AljTl 
- a^AA, 

At«Mn„TU

1000
TemperaturefC

Figure 2.49: Variation in the micro-hardness of the intermetallics with 

respect to exposure tem perature [158].

c, GPa 2 0

•  A /Ti
■ D Â tCrtjTlj7
A a Aywin.Jt,

Figure 2.50: Stress vs. strain graph showing decrease in yield stress value 

of AI3Ti intermetallic when alloyed with Cr and Mn. The test was performed  

using indentation method (shown with black legends) and under 

compression (hollow legends) [158].
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Figure 2.51: Graph showing increase in plasticity characteristic when A I3Ti 

intermetallic is alloyed with Cr and Mn with respect to temperature [158].

(c) Microstructure and mechanical properties of AhTi 
intermetallic compound

Apart from the formation of tetragonal D 0 22 or D 0 23 type AI3Ti intermetallic 

tri-aluminide, formation of another titanium aluminide A I2Ti has also been  

reported in the literature [160-163]. The AI2Ti intermetallic also exhibits a 

tetragonal structure with lattice parameters a = 3 .976  A  and c = 24 .36  A  , see  

Figure 2.52 [161].

Figure 2.52: Tetragonal crystal structure of A I2Ti intermetallic, w here O 

represents Al atoms and #  represents Ti atoms [161].
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Researchers reported the precipitation of AI2Ti intermetallic as thin platelets 

in ternary A l-Ti-Cu alloy with two different forms of crystal structure

[162.163]. The first AI2Ti intermetallic showed orthorhombic structure similar 

to G a2Zr and was referred as AI2Ti' type, while the second was tetragonal 

AI2Ti" type, similar to G a2Hf crystal structure [162,163].

Further investigation showed that AI2Ti" type structure was stable up to 1473  

K, with tem perature > 1473 K, the probability of either A I2Ti" type structure 

changing to AI2T i‘ type or decomposition of AI2Ti" to AITi and A I2T i5 existed

[162.163]. The evidence that AI2Ti exists as a reentrant phase (exhibiting 

sam e crystal structure at highest and lowest temperatures, 289 K and 1473  

K, with different crystal structure in mid tem perature ranges) or only as a 

polymorphic intermetallic compound, remained conflicting [162,163].

In comparison with tri-aluminide AI3Ti intermetallic, AI2Ti possesses 

properties which make the intermetallic attractive for alloying with Al for high 

temperature application [162-164]:

•  The low density cast AI2Ti intermetallic (= 3 .53 g/cm3 to 3 .54  g/cm 3) 

has a compressive yield strength value of =  700 M Pa at 298  K (=75% ) 

larger than yield strength of cast A I3Ti intermetallic) which decreases  

linearly with increase in tem perature to = 400  M Pa at 1073 K.

•  Under as cast condition, AI2Ti intermetallic is reported to have 0 .3%  

strain to failure ratio at 298 K which increases to =  4%  at 1123 K.
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•  AI2Ti and AI3Ti intermetallic compounds prepared by powered  

processing were exposed in air for 100 hours at 1073 K in order to 

compare oxidation resistance. A I2Ti was reported to show 20 % less 

weight gain than AI3Ti providing evidence of higher oxidation 

resistance at elevated tem perature condition.

Som e literature also exists on potential industrial applications of Ti rich AITi 

(or y A IT i , in most Ti-AI phase diagrams) intermetallic compound which also 

shows high oxidation and high creep resistance[165,166]. The AITi 

intermetallic has been under series of experimental evaluations to find its 

application in aircraft industry (such as in gas turbine shafts, blades, vanes) 

as a replacem ent of ferrous alloys, however major disadvantages such as 

requirement of variation in mechanical properties, inherent brittle nature 

making the intermetallic susceptible to external dam ages and cost of 

manufacturing hinders its application [165,166].

2.9.3 Aluminium-Titanium-Carbon alloy system

The formation of titanium aluminide intermetallic compounds in binary Al-Ti 

alloy system has fostered its use in various high tem perature engineering  

applications due to attractive properties such as high tem perature and 

oxidation resistance [167-170]. Even though Ti acts as a grain refiner to cast 

Al alloys, addition of elements such as boron and carbon during casting also 

aids in the grain refining process, which produces Al alloys with improved 

ductility [171].
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2.9.3.1 A brief introduction to ternary grain refiner

The use of ternary addition of B to Al-Ti alloys as a grain refiner dates back 

to 1950's, where formation of T iB2 , which acts as a nucleation point during 

solidification of the alloy, was achieved by addition of KBF4 and K2TiF6 during 

melting of Al [172]. This in situ addition of KBF4 and K2T iF6 caused salt 

segregation and uneven distribution of TiB2 particles in the alloys, minimising 

the effects of grain refinement [172].

The introduction of grain refiners such as TiB2 and AI3Ti in form of rods 

before the casting stage of the alloys started in 1970's, which not only 

resulted in even distribution of grain refiners in the alloys producing fine 

grained macro-structure but also proved to be efficient and economical 

process for aluminium grain refining industries [171]. Since then this method 

has been widely adopted for direct Chill (DC) cast aluminium alloys, with 

various alloying compositions of Ti and B [172,173].

Like Ti and B, the combination of Ti and C as a grain refiner started in the 

mid 1990's and was found to have advantages such as lesser particle 

agglomeration than Ti-B addition, resistance to poisoning against Zr 

containing alloy and showed enhanced surface finish, when alloyed with Al 

alloys containing M g[172,173].
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2.9.3.2 Understanding of various phases in Al-Ti-C alloys.

In A l-Ti-C  system, the role of grain refiners is achieved by A I3Ti and TiC  

particles [174], hence it becomes imperative to understand the formation and 

microstructural characteristics of these phases during ternary alloying. The  

focus of many researchers have been on the understanding the 

microstructural properties of carbides formed in the ternary A l-T i-C  alloys 

system [35], which mainly includes forms such as [176]:

•  A ITi3Ci-x , which has a cubic crystal structure,

•  AITi2C i.xand AITi3C 2.x, having hexagonal crystal structure.

W here x is the stoichiometric ratio of C in the alloy. Out of all the above 

mentioned intermediate carbides, which are formed during the alloying, with 

varying stoichiometric ratios of AI.Ti and C, the formation and stability of 

T iC i.x (titanium carbide) has been widely investigated by the researchers  

due to its application as grain refiner [176].

Zang et al. [177] and Birol [178] primarily focused on the microstructural 

characterisation of A l-T i-C  alloys by altering the stoichiometric ratios of Ti 

and C present in the alloy. Zang et al. [177] investigated microstructure of 

rapidly solidified (rate of solidification of the melt =  104 K/s to 108 K/s) A l- 

3.5w t% Ti-0.15w t% C , A I-5w t% -0.3w t% C  and A I-10w t% Ti-1w t% C alloys, as 

shown in Figure 2.53 (a), (b) and (c), while Birol [178] investigated the 

microstructure of A I-3w t% Ti-0.75w t% C  alloy (prepared by dispersing TiC  

particles in the Al melt), see Figure 2.54.
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Figure 2.53: Backscattered electron micrographs showing distribution of 

blocky AI3Ti and spherical equiaxed TiC phases in (a) AI-3.5wt%Ti- 

0.15wt%C, (b) AI-5wt%-0.3wt%C and (c) AI-10wt%Ti-1wt% C alloys [177].
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Figure  2.54: Optical micrograph of AI-3wt%Ti-0.75wt%C alloy [178].

The dominant phases which were observed in the alloys included:

• Large blocky or slab-like structure (== 50 pm to 100 pm in size), shown 

in Figure 2.53 (a), (b) and (c), which was confirmed as AI3Ti phase by 

the X-ray diffraction (XRD) analysis as shown in Figure 2.55. The 

formation of such blocky aluminium tri-aluminide was also reported by 

Mayes et al. [179] while analysing the microstructure of commercially 

available AI-6wt%Ti-0.02wt%C alloy with V as an impurity, see Figure  

2.56.

• Small nearly spherical or equiaxed particles recognised as TiC 

particles by XRD analysis see Figure 2.57. The TiC were found 

evenly distributed in the Al matrix, however a significant increase in 

the formation and distribution of TiC phase was observed with 

increasing concentration of Ti and C in the alloy, see Figure  2.53 (a),

(b), (c) and Figure 2.54.
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Figure 2.55: XRD pattern of rapidly solidified Al-Ti-C alloy with varying Ti 

and C composition [177].

Figure  2.56: Optical micrograph of AI-6wt%Ti-0.02wt%C, showing the 

presence of large block like AI3Ti particles [179],

a-AI a-A I
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Figure  2.57: XRD pattern of AI-3wt%Ti-0.75wt%C alloy [179].
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2.9.3.3 The effect of AhTi and TiC phases on the grain  
refinement mechanism in Al-Ti-C alloys

The microstructural investigation conducted by researchers showed the 

presence of blocky A I3Ti and equiaxed TiC  particles in the A l-T i-C  alloys 

[176-180], however the presence of these phases on the mechanism of grain 

refinement in Al alloys has been debatable [178,179].

The primary condition of grain refining includes formation of large number of 

active potential nucleation sites, in the case of A l-T i-C  alloys, tri-aluminide 

AI3Ti and TiC  which form those sites, have been subjected to various 

experimental investigations to understand their role in nucleation of Al matrix 

to produce refine microstructure [180,181].

Most of the researchers focused their study on commercially available Al- 

3w t% Ti-0.15w t% C  alloys(prepared by either direct chill casting method or 

rapid solidification method) [176-183] with an intention to reveal the effect of 

formation processes on the microstructure of the grain refining particles 

formed in the Al matrix of the alloys.

The investigations showed that the A I3Ti phase which was present in both 

slow cooled direct chill casting method or fast cooled rapid solidification 

method was not essentially required for formation of nucleation site [179- 

181]. It was also shown that A I-5w t% Ti-1.2w t% C  alloy , prepared by adding  

K2T iF6 and graphite as Ti and C source in molten Al, had almost restrictive 

growth of blocky A I3Ti phase [182,183], but was effective in grain refining, 

owing to the presence of T iC  particles.
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Since the use to C, as ternary addition to Al-Ti system, which had an 

advantage of alloying with Al (that alloys which contained Zr, V  and Cr) over 

B to form evenly populated TiC  particles unlike agglomerated T iB 2 particles, 

the stability of T iC  particle at elevated temperatures during alloying has been 

extensively investigated [183-186].

Initially, during the transition from using Ti-B to Ti-C  in obtaining equiaxed  

grain structure to produce Al alloys with high strength and enhanced  

machinability, a unifying theory which underlined the requirement of T iB 2, 

AI3Ti and TiC  particles to act as sites of nucleation during the solidification of 

alloys was proposed [187,188].

The theory was based on the interfacial surface energies of liquid - particle 

(Yip), solid - particle (ysp) and liquid - solid (yis) interactions during alloying 

and stated that any of the particles (inoculants) which possesses a tendency 

of wetting the solidifying melt (in this case Al) acts as grain refiners 

[188,189]. This is achieved when the crystal structure of the grain refining 

particle matches with the nucleating solid or have a close atomic 

arrangem ent as nucleating solid to obtain minimum contact angle, as shown 

in F igure  2 .58 [188,189].
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Figure  2.58: Diagrammatic representation of particles interaction with 

nucleating solid in terms of interfacial energies and contact angles [187].

For both C and B containing Al-Ti system, the TiB2, AI3Ti and TiC  particles 

have satisfied the above mentioned theory of nucleating sites in the alloy. 

Higher melting tem perature than Al, solidification at even low cooling rates 

and even distribution of A I3Ti and TiC  particles except T iB2 also aids in the 

effective nucleation of the alloys.

The researchers have shown that T iB2, AI3Ti and TiC  particles acts as 

nucleation sites during solidification of alloys, however the following theories 

have been proposed to understand the grain refinement caused by the  

presence of these particles [188-194]:

(a)The carbide/boride theory:

This was one of the initial theories which suggested that addition of C to Al-Ti 

system was not mandatory to form TiC  particles, even trace amounts of C  (to 

hundreds of ppm) was sufficient to promote formation of T iC  particles 

(nucleation sites), which was essential in the grain refining for Al and external
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addition of TiC  particles would decrease the effects of grain refining in binary 

Al-Ti alloys.

However, many researchers who were working on understanding the ternary 

Al-Ti-C  phase diagram showed by thermodynamic modelling and 

experimental data that the Ti:C ratio was non-stoichiometric and the particle 

existed in form of T iC x (where x «  0 .48 to 0 .98) and significantly affected the 

stability of the carbide.

The octahedral T iC x was reported to show stability within the tem perature  

range of 1028 K to 1450 K, but beyond the mentioned tem perature range, 

formation of stable AI4C 3 degraded the grain refining efficiency of TiC  

particles. It was also noted that formation of AI4C 3 was possible if the TiC  

particles were held in the Al melt at 1450 K for almost a 100 h exposure time, 

which is not a regular practice in the Al grain refining industry. The maximum  

operating temperatures during grain refining of Al are mostly under 1028 K 

which inhibits the growth of stable AI4C 3, hence the effects of fading are 

practically removed.

(b)The peritectic theory:

The peritectic theory or the phase diagram theory suggested that, the 

formation of titanium tri-aluminide (AI3Ti) during alloying of Al, nucleates Al 

via the peritectic reaction as mentioned in section 2 .9 .2 .1 , to produce fine 

microstructure of the alloy. However, the concentration of Ti in molten Al 

should be = 0 .15 wt % to have peritectic reaction, but during ternary alloying
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the Ti concentration remains as low as 0.01 wt %, which poses major 

problems while adopting this theory to explain formation of A I3Ti to act as a 

nucleant.

(c)The peritectic hulk theory:

According to the peritectic hulk theory, which was an extension of peritectic 

theory, for Al-Ti-B alloy system, the formation of T iB2 resulted in the slower 

dissolution of A I3Ti particles as the borides form a shell around A I3Ti 

particles. The theory also suggested that when dissolution occurs within the 

boride shell, the Ti concentration reaches the peritectic requirement for grain 

refining by the tri-aluminide as stated in peritectic theory.

This theory could not explain the presence of borides within the A I3Ti 

particles, which were reported by other researchers. Som e researchers even  

showed that exposing the alloy system to repeat heating and cooling cycles 

did not affect the grain refinement properties of aluminides, which according 

to this theory was not possible.

(d) The hyper-nucleation theory:

This theory suggested segregation of Ti to T iB 2 particles, which results in 

solidification of Al from this Ti rich TiB2 particle (hyper-nucleation) [187]. The  

theory suggested the hyper-nucleation effect of Ti with Al as a result of
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similar atomic sizes of both elements, however there has been no 

experimental validation of this theory on grain refining of Al alloys.

(e) The duplex nucleation theory:

This theory suggested that addition of T iB2 particles with different Ti 

concentration (» 5wt% and 6wt% Ti) to the Al melts does not produce grain 

refinement because TiB2 does not form nucleating sites, but is precipitated at 

the grain boundaries of Al. With Ti addition, just over peritectic composition, 

the TiB2 particles precipitate at the centre of Al grains with A I3Ti layers above 

the boride particles, however the reason of formation of such type of tri- 

aluminide layer was not explained by this theory.

(f) The solute theory:

This theory stated that there exists a critical value of number of nucleating 

particles per unit vo lu m e(<102/m m 3) such as AI3Ti, TiC, TiB2 above which, 

any further addition of these particles does not contribute in grain refining of 

Al alloys. This was due to the fact that the particles do not increase the 

number of grains per unit volume of solidifying Al. The researchers had 

shown that at peritectic composition, Ti exhibited the highest critical value  

which explained why Ti had the highest grain refining capability than Zr and 

Cr.
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Chapter 3: Experimental Methodology

3.1 Introduction

This chapter provides detailed information on the materials used, coating 

process and characterisation of the coatings in terms of corrosion and w ear 

resistance.

The aim of this study was to investigate the corrosion and w ear resistance of 

thermally sprayed Al-Zn-ln and Al-Ti-C  coatings sprayed on to mild steel 

substrates. All the coatings were prepared by arc spraying, the relevant 

information on the process parameters will be discussed in the following 

section in this chapter.

The chapter 2, has provided a lucid review on the electrochemical properties 

of Al-Zn-ln alloy along with mechanical and microstructural properties of A l- 

Ti-C  alloy to understand the tribology of A l-T i-C  alloy, which has been used 

as a benchmark to conduct experimental investigation for this project, as this 

project has focused primarily on investigating sacrificial protection 

performance of arc sprayed Al-Zn-ln coating and w ear resistance 

performance of A l-Ti-C  coating.

This chapter covers the experiments undertaken, relevant parameters and a 

brief review of the theory behind each.
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3.2 Sample Preparation

3.2.1 Materials used

T ab le  3.1 shows the nominal composition [195-200] of the commercially 

available pure Al, Al-Zn, A l-Zn-ln, Zn-AI, A l-Ti-C  and 13%  chrome steel alloys 

which were used during the study. The Al, Al-Zn, Zn-AI and 13% C r steel 

coatings, which were chosen as relevant commercially available alternatives, 

were used as a benchmark to evaluate the corrosion and w ear resistance 

performance of A l-Zn-ln and A l-T i-C  coatings. The alloys were obtained from 

London and Scandinavian Metallurgical (now A M G  Al) Ltd and were  

deposited on commercially available 150 mm X  100 mm X  0.8 mm mild steel 

coupons. According to the manufacturers specification, these have a nominal 

composition of 0.60w t% M n, 0.15w t% C, 0.03w t% P, 0 .035w t% S and «  

99w t% Fe) and surface roughness Ra ~ 0 .50  pm -1.14 pm (ground finish) 

[201].

3.2.2 Substrate preparation - Grit blasting

The mild steel coupons were solvent degreased (commercially available) to 

remove surface contamination, and then abrasive blasted using chilled iron 

grit to increase roughness and remove surface oxides. The blasting of the 

surface was done to an SA3 finish according to ISO 8501-1 [202].
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3.2.3 Coating preparation - Arc Spraying

The coatings were applied at Metallisation Ltd or Celcoat Ltd (two different 

facilities at different locations were chosen based on availability of the arc 

spray gun) using a Metallisation Arc140/S250-C losed Loop (CL) system. The  

A rc140/S 250-C L  consists of a Metallisation Arc140 spray gun coupled with 

an electric wire drive system, see F igure  3.1, and can operate at a maximum  

of 250 A  [203].

The system uses wire diam eter ranging from 1.6 mm to 2.5 mm, and at 250  

A, the maximum deposition rate (kg/hr) and area coverage (m 2/kg) per 100  

pm for AI/AI alloys is 6 and 2.88, Zn-AI alloy is 22 and 1.00 and for steels is

11.3 and 1.02 respectively [203].

The procedure outlined in section 3 .2 .2  was followed prior arc spraying The  

mild steel coupons were then attached vertically on a magnetic disc and the 

spray gun was mounted on an automated vertical traversing unit, so as to 

keep the spray gun perpendicular to the coupon and maintain a constant 

traversing speed. Each vertical pass of the spray gun deposited «  50 pm  

thickness of coating. A  nominal coating thickness of 300 pm was therefore  

produced during spraying using six passes. The coating thickness was  

measured after every pass using a micrometer. T ab le  3 .2  shows the 

spraying parameters, which were used during spraying and which were  

chosen following discussion with staff from Metallisation Ltd prior to coating 

preparation [204].
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Figure 3.1: The Metallisation Arc140/S250-CL spray system [147]
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3.3 Sample preparation of arc sprayed coatings for 
metallographic analysis

3.3.1 Background

Metallographic investigation is one of the most important experimental 

investigations used to characterise thermally sprayed coatings. The complex 

lamellar microstructure or "splat" morphology of thermally sprayed coatings 

is primarily responsible for imparting properties such as corrosion resistance, 

wear resistance and hardness, to the coatings [205-207].

Even a single layer metallic coated system may contain hard and soft 

phases, oxides, porosities, which create intense challenges in sectioning, 

mounting, grinding and polishing of the coatings [205-207], The next section 

will describe in details the sample preparation techniques which were 

adopted to study the microstructure of the coatings.

In order to compare the microstructure of the Al-Ti-C coatings with the parent 

feedstock material, pure Al and Al-Ti-C alloys were also examined. The 

details of alloys microstructure preparation are also mentioned under next 

separate subsection of this chapter.
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3.3.2Sample preparation for microstructural 
investigations -  Alloys

Transverse sections, see F igure  3 .2  (a), of the pure Al and A l-T i-C  alloys 

which were in form of rods with diam eter 9 .79 ±  0 .07 mm were taken for 

microstructural evaluation. A  series of steps were followed during preparation 

of the sections, which were as follows:

1. The transverse sections of the alloys were mounted in conductive 

Bakelite to produce mounted specimens approximately - 3 0  mm  

diam eter see F igure 3 .2  (b).

2. After mounting, the samples were subjected to manual grinding using 

SiC abrasive paper, starting with grade 120 (180 grit) and finishing 

with 1200 (800 grit). A  minimum grinding time of 60 seconds was 

used. Sam ples were rinsed with deionised w ater after each grinding 

stage.

3. The samples were then polished, using a 6 pm and then 1 pm 

diamond suspension liquid to give the samples a mirror-like surface 

finish.

4. Ultrasonic cleaning in methyl alcohol solution, of the sectioned  

samples was carried out after polishing to remove em bedded silicon 

and polishing suspension from the surface.

5. The samples were dried and were kept in vacuum desiccators to 

avoid atmospheric contact.
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Figure 3.2: Photographs of (a) transverse section and (b) Bakelite mounted 

Al-Ti-C alloy.

3.3.3 Sample preparation for microstructural 
investigations -  Coatings

The cross-section of the coatings for metallographic examination was 

prepared in accordance with the technical notes published by Buehler Ltd. on 

preparation of thermally sprayed coatings [208]. The procedure followed 

included following sequential steps:

1. The cross-section of the coating was done using an ISOMET 4000 

precision saw using a diamond 15HC blade. The rotational speed of 

4500 rpm to 5000 rpm with sample feed rate of 3.5 mm/min to 4.5 

mm/min was used.

2. The cross-section was then cleaned using soap solution followed by 

deionised water rinsing and finally drying using an electric hand dryer.

3. The cleaned cross-section was then cold mounted using epoxy resin 

(100 parts,wt% of Buehler Epothin resin no. 20-8140 mixed with 39 

wt% parts of Buehler Epothin hardener), see Figure 3.3 (a) and (b). 

Bakelite hot mounting was not used for coatings as the pressure



required for curing could cause false assessment of the 

microstructure.

Figure 3.3: Photographs of (a) prepared sample and (b) epoxy mounted 

coating for metallographic examination.

4. After mounting, the samples were subjected to manual grinding using 

SiC abrasive paper. Starting with 180 grit, a minimum 60 seconds 

grinding time was used, followed by 240 grit to 800 grit with minimum 

grinding time of 30-50 seconds during each stage. The rotational 

speed of the grinding base was kept constant at 300 rpm throughout 

the grinding stages.

5. The coated samples were then polished, using a 6 pm and 1 pm 

diamond suspension liquid to give the samples a mirror-like surface 

finish. Once again, a minimum grinding time of 30-50 seconds was 

used.

6. The prepared samples were dried and were kept in vacuum 

desiccators to avoid atmospheric contact.
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3.4 Electron Microscopy

In order to analyse the microstructure of the coatings and feedstock alloys, 

an FEI Nova Nano 200 Scanning Electron Microscope (SEM ) equipped with 

Energy Dispersive X -R ay  Spectroscopy (ED S) was used. An accelerating  

voltage of 20 kV and working distance between 5.0 mm and 5.5 mm was 

chosen for acquisition of images in both secondary electron and 

backscattered electron mode (atomic number contrast).

3.4.1 A brief introduction to operating principles of SEM

SEM  is a widely used technique, which scans the surface with higher 

resolution and depth of the field with enhanced magnification [209-213]. An 

SEM  equipped with EDS also allows chemical analysis of the material [209]. 

Figure  3 .4  shows the arrangem ent of the scanning electron microscope, 

which consists of an electron gun, electromagnetic lenses and apertures  

[209].

The electron gun used to generate electrons is either thermionic or field 

emission type guns. Field emission guns are used to produce high beam  

brightness for producing high quality images [210]. The accelerating voltage  

used for generation of electrons is usually of the order 1-40 kV [209,210]. 

The electromagnetic lenses including condenser and objective lenses helps 

in formation of electron probe reduce the cross over diam eter of the electron  

beam and focus the electron beam to a nanometre scale [209,210].

The scanning of the electron probe over the surface is operated by a 

deflection system, as the deflection system moves the electron probe of the
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surface and displaces it to next scan point on the surface [210], The emitted 

electrons from the surface are then collected by the detector which amplifies 

the signal to reconstruct the image of the surface by one to one correlation 

between the scan points and picture points on the screen which can be 

either cathode ray tube or liquid crystal display [210].

Electron Gun

1st Condenser

2nd condenser

Objective Lens

Detector
Specimen

a

Spray Aperture 

Scan Coils

Magnification
control

Scan
Generator

4

To
Vacuum

Pump

I

— > Amp
-

Display
Screen

Final Lens Aperture

Figure  3.4: Schematic of the structure of the Scanning electron microscope 

[209],
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3.4.2 Back scattered electron imaging, Secondary electron 
imaging and EDS analysis.

The electron signal that is detected can be either secondary electron (SE) or 

backscattered electrons (BSE), depending on the electron beams striking the 

surface either scatters elastically or inelastically [211-213]. W hen the 

electrons are scattered by the atoms in the specimen, the elastic scattering 

produces backscattered electrons, whereas when electrons are released  

from the surface of the specimen, the inelastic scattering produces 

secondary electrons [211,212].

The secondary and backscattered electrons which are collected by detector 

are basically from different location in the specimen as shown in F igure  3.5, 

which is usually described as a pear shaped and shows increase in size with 

the energy of incident electrons [212,213]. The main importance of using 

secondary electron (SE) as a signal is to generate a topographic scan, while 

backscattered electrons provide compositional contrast [213].

Electron
Probe

Secondary electrons (SE)

*  50 nm - 300 nm Backscattered electron (BSE)

Characteristic X-ray

BSE spatial resolution

Figure  3.5: Schem atic of electron interaction zone under the surface of the 

specimen [209].
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The energy dispersive x-ray spectrometer (EDS) coupled with SEM  allows 

elem ental analysis along with microstructure examination. The EDS system  

uses the sam e beam energy as SEM  for elemental analysis, making it 

suitable for analysing small area of the samples [210-213]. The spectrum  

obtained from EDS is characteristic intensity of the x-ray over the energy  

range of the x-ray [210-213].

As backscattered electron imaging (BSE) for compositional contrast along 

with energy dispersive x-ray (ED S) elem ental analysis has been used to 

exam ine Al-Zn-ln and Al-Ti-C  coatings, the following limitations of the 

techniques must be considered [209,211,213]:

•  The ratio of elastically scattered BSE electrons from the specimen to 

number of incident electrons (or backscattered coefficient, q) 

increases with increase in atomic number of the elements present in 

the specimen. Hence the relative difference in the compositional 

contrast of elements such as Al, Zn, Ti was more evident that C and O  

(pm (~0.42)> qzn (~0.33)> qTi (~0.27)> qA, (~0.17)> q0 = He (~0.07) at 20 

KV accelerating voltage).

•  Commercially available EDS analysis system (INCA, supplied by 

Oxford Instruments) installed on FEI Nova Nano 200 SEM  was used. 

The default x-ray spectra of elements were used to collect the data  

(which was averaged over three to five regions with similar 

microstructural features). Due to this, the EDS data presented in 

results and discussion is treated as ‘semi-quantitative’ results (limited 

accuracy and precision).
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•  Even though the backscattered coefficient of In was higher than Zn,Ti 

and Al, detection of In in the Al-Zn-ln coating was not possible as 

concentration of In in Al-Zn-ln coating (0.02w t% -0.05w t%  or 200ppm - 

500ppm ) was below the detection limit of the ED S technique 

(1000ppm -3000 ppm).

•  For light elements such as C and O, the valance electrons take part in 

both production of characteristic x-rays and bonding, hence 

quantification of light elements using EDS technique is not 

appropriate. Stoichiometric ratios of other elements with C and O is 

commonly used during analysis (XR D  data along with EDS  

quantification is used the analysis of A l-Zn-ln and A l-Ti-C  coatings).

3.5 X-Ray Diffraction (XRD)

To analyse the crystalline phases present in the coatings and feedstock 

alloys, X -ray diffraction was employed. The X R D  was also used to study the 

coatings exposed to salt spray corrosion test (discussed in next section) and 

in the analysis of corrosion products.

A  Philips X 'Pert Pro X -ray diffraction instrument with Cu anode capable of 

operating at 2.2 kW  was used during the analysis [214]. The Cu anode was  

operated at 40  kV and 40  mA to produce CuKa radiation (1 .54184  A) with Ni 

as (3 filter material. A  (1/4°) divergence slit, 20 mm soller slit and (1/2°) anti­

scatter slit was used in the Bragg-Brentano geometry arrangem ent, 0 -20  

range from 10° to 110° with 0 .0167° step size to obtain diffraction spectrum  

for analysis, with PW 3071 flat sample stage.
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Figure  3.6: Schem atic of the operating principle of an X -ray tube [209].

3.5.1 A brief introduction to operating principles of XRD.

X-ray diffraction is a technique that can be used to identify the materials from  

their crystal structures. The X-rays (which have short wavelength and are  

high energy electromagnetic radiation) are produced by the X-ray tube which 

consists of two electrodes and an electron source under vacuum conditions, 

see F igure  3.6. Maintaining a high voltage across the electrodes, the 

electrons are drawn towards the target, the X - rays are produced, which 

consists of a minimum wavelength continuous X-ray and a maximum  

intensity characteristic X-ray, when the electrons impact the target surface

[209,215].

3.5.2 X-ray Diffractometer and Bragg-Brentano geometry 
arrangement.

The X -ray diffraction instrument (Diffractometer) m easures the intensity of 

the diffracted X-rays as a function of diffraction angle. The arrangem ent of X -  

ray source, specimen and detector are shown in F igure  3.7.
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The X -ray radiation passes through soller slit and divergence slit to strike the 

specimen. The X-rays which are diffracted by the specimen pass through a 

monochromatic filter that reduces the background radiation from the 

specimen except the characteristic Ka radiation. In order to obtain X -ray  data 

from the material, various geometrical arrangements are being used by 

diffractometers and the commonly used arrangem ent is called as Bragg- 

Brentano arrangem ent in which the incident beam is fixed while the sam ple  

stage and detector can rotate in a plane perpendicular to the plane of figure

[209,215]. To maintain 0 -20  angular correlation between detector and 

specimen, the angular speed of detector is maintained at twice that of the 

sample stage.

F igure  3.7: Schem atic diagram showing arrangem ent of X -ray diffractometer 

[209].
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The x-ray diffraction trace obtained using Bragg-Brentano geometry was 

analysed using X ’Pert Highscore plus v3.0 software. The following procedure 

was followed during X R D  data analysis [209,214,215]:

•  The peak positions were determined by choosing the minimum  

significance value between 2 and 5 (large values were avoided to 

record small peaks) followed by curve fitting to the data obtained  

(Gaussian fitting was used). The identified peaks were then checked 

for Kp peaks, which were excluded from further data analysis.

•  For further improvement in the phase identification, the Kai-Ka2 split 

was compensated by removing the Ka2 signals from the peak list.

•  ‘Stick’ patterns or ‘reference’ patterns published by International 

Centre for Diffraction Data (IC D D ) were used to identify the crystalline 

phases.

•  The ratio of the maximum intensity peaks of the identified phases, for 

exam ple maximum intensity peaks of pure Al and A I(O H )3, w ere used 

as ‘direct comparison’ for semi-quantitative analysis (for high accuracy 

and precision quantitative data, the comparison of peak intensities of 

identified phases should have been done with those phases in pure 

form).
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3.6 Determination of corrosion resistance of Al-Zn-ln and Al-Ti- 
C coatings

O ne of the primary aspects of the project was to evaluate the corrosion 

resistance of A l-Zn-ln and A l-Ti-C  alloy coating in a chloride media or 

environment and benchmarking the performance of these coatings against 

commonly used commercially available pure Al, Al-Zn and Zn-AI coating 

systems.

In order to evaluate the corrosion resistance of the coatings, the coatings 

were subjected to long term exposure tests [207,216] and a series of direct 

current (DC) and alternating current (AC) electrochemical tests [217,218] at 

various chloride concentrations. All the experiments were conducted to 

reproduce real life exposure scenario of the Al-Zn-ln and A l-T i-C  coatings 

during their service life. The relevant details of the experiments conducted  

will be given in the following sections of the chapter.
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3.6.1 Neutral Salt Spray Corrosion Tests

The neutral salt spray fog test was conducted according to A STM  B 117 [219] 

standard. The fog cham ber of the salt spray cabinet was maintained a t «  35° 

C throughout the test and 5 % w/v NaCI solution (prepared using deionised  

water) was used to produce the salt fog. Two sets of A STM  B117 salt spray 

test were conducted to evaluate the corrosion resistance performance of A l- 

Zn-ln alloy coating (primarily) and A l-T i-C  alloy coating. The details of the two 

sets of experiments are as follows:

3.6.1.1 Set 1: Neutral Salt Spray Corrosion Tests fo r Al, Zn- 
Al and Al-Zn-ln coating with artificially induced 
defect and corrosion product analysis

The Al, Zn-AI and Al-Zn-ln sprayed mild steel coupons were prepared by 

masking a 50 mm X  3 mm area with masking tape prior to coating, to induce 

an artificial defect as shown in F igure  3.8 for the purpose of assessing the 

sacrificial corrosion resistance of the coatings.

The coatings were subjected to 5%  w /v NaCI for 1000 hours in a salt spray 

cabinet and examined at approximately 250  hours intervals. The sam ples  

with induced defects were tested in triplicate. Additional unmasked sam ples  

were tested for corrosion product analysis, this type of tests has been  

carried out previously by researchers in order to study the phases present in 

the corrosion product [220-222].
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The corrosion product was mechanically scraped off using soft bristle brush 

[223] after 500 and 1000 hours exposure in the salt spray cabinet. Analysis 

of the corrosion product was performed using the Philips X'pert Pro XRD 

instrument.

50 mm

3 m m

Figure 3.8: Photograph of sprayed mild steel coupon with artificially induced 

defect (dimensioning not to the scale).

3.6.1.1 Set 2: Neutral Salt Spray Corrosion Tests fo r Al, Al- 
Zn, Al-Zn-ln, Al-Ti-C alloy coatings and alloy feedstock 
for oxidative weight change analysis.

The pure Al, Al-Zn, Al-Zn-ln and Al-Ti-C alloy material and coatings, see 

Figure 3.9 (a) and (b) were subjected to 5 % w/v NaCI for 1000 hours in 

ASTM B117 neutral salt spray test to obtain information on the weight 

change upon exposure.
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Both alloys and coatings were initially weighed and then the first change in 

weight was recorded after 48  hours of exposure followed by weight 

measurem ents after every 168 hours till the exposure time reached 1008  

hours. A  Precisa series 360 precision weighing balance (with least count of 

0.0001 g) with draft shield was used to weigh the samples.

The corrosion product was mechanically scraped off using soft bristle brush 

[223] and then samples were finally weighed. Oxidative weight change per 

unit area for both alloys and coatings was plotted against exposure time. To  

account for coating roughness in the dimensional measurem ent, Alicona 

Infinite focus microscope was used to m easure the actual dimension 

(including surface roughness) of the sprayed coupons to compute the area of 

exposure. In order to produce comprehensive weight change results with 

minimum scattering in the data [224], the experiments w ere done in 

triplicates.
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Figure 3.9:Photographs of arc sprayed Al mild steel coupon and (b) Al 

feedstock in form of rod used for set 2 ASTM B117 salt spray test.

3.6.2 Open-circuit potential (OCP) measurements

The open circuit potential measurements of Al-Zn-ln and Al-Ti-C alloy 

coatings were made in a sodium chloride electrolyte at concentrations of 

3.5%w/v, 1.0%w/v, 0.1%w/v and 0.01 %w/v respectively. An Ag/AgCI/4M KCI 

reference electrode with porous liquid junction was used, the area of the 

working electrodes (coatings) used was 16± 0.1 cm2.

To minimise the resistance offered by the solution during the test (or the IR 

drop), the reference electrode was placed within 10 mm of the working 

electrode. The experiments, performed in duplicate, were run for 168 hours 

for each of the coating systems. For the purpose of comparison, pure Al and 

Al-Zn coatings were also exposed to the similar test conditions. It is 

important to note that the OCP measurement was performed by closely
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following A S TM  G 69 [225] standard, however H20 2 was not used while 

preparing the electrolytic solution.

3.6.3 Galvanic corrosion test- Zero resistance Ammetry 
(ZRA)

The galvanic corrosion tests were conducted using EG and G multichannel 

potentiostat, on A l-Zn-ln and Al-Ti-C  alloy coatings in accordance with A S TM  

G71 [226] standard, see F igure  3.10. The main aim of the experiment was to 

investigate the protective power of the A l-Zn-ln (primarily) and A l-T i-C  alloy 

coatings when sprayed on to mild steel with different anode to cathode area  

ratio. Pure Al and Al-Zn coatings were used for benchmarking.

The experiment was conducted in 3.5 % w/v, 1.0 % w/v, 0.1 w /v and 0.01 %  

w/v NaCI solutions. During the experim ent , the geometric area of anode, 

coatings, (Aa) was kept constant at 16 ±  0.1 cm2, while the geometric area of 

cathode, mild steel coupons, (Ac) chosen were 16 ± 0.1 cm2, 32 ± 0.1 cm2 

and 64 ± 0.1 cm2 to have A c to A a ratio of 1:1, 2:1 and 4:1 respectively. All 

the samples were exposed for 168 hours and covered with parafilm to 

reduce the evaporation losses during experim ent [227,228].

Prior to the com m encem ent of experiment, the coated samples w ere masked

using a paraffin wax and colophony (rosin) mix (1:1 wt% ratio) to cover the

edges and extra area from electrical connection. The mild steel coupons

were masked in the sam e m anner and then were pickled for 30 seconds

using mixture of 4M  HCI and deionised w ater (1:1 by vol%) to remove any

surface contamination. A  distance of 6 cm to 8 cm was maintained between
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the anode and cathode while a Ag/AgCI/4M KCI reference electrode with 

porous liquid junction was placed between the electrodes. A minimum of two 

experiments were conducted for each set of test condition.

Reference 
Electrode (RE)

Multi-Channel
Potentiostat

Masking

Cathode
Anode Counter Electrode

Working Electrode (CE)
(WE)

Figure 3.10: Diagrammatic representation of galvanic corrosion test (ZRA) 

setup.
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3.6.4 Electrochemical Impedance Spectroscopy (EIS)

Electrochemical Im pedance Spectroscopy (E IS) is a widely used AC  

electrochemical technique with applications in the field of batteries, 

semiconductors, fuel cells and has been extensively used to study corrosion 

and inhibitors [229,230]. The EIS technique has been extensively reviewed  

by researchers for its advantages and disadvantages in comparison with DC  

electrochemical techniques of corrosion monitoring [229,230] and has been  

used to investigate corrosion mechanisms in organic coatings and on steel 

substrates [231-234], galvanised steels [235,236], uncoated bare metals and 

sacrificial anodes [237,238]. A  vast amount of literature exists on EIS, hence 

basic underlying principle and only a few  selected references encompassing  

the scope of the technique relevant to the project have been discussed and 

which were used in data analysis and interpretation.

W hen an AC perturbation or potential is applied using a potentiostat across a 

linear system (which obeys Ohm's law), it produces a resultant AC  current 

response with some phase difference (lag or lead). The ratio of the A C  

potential to AC  current is the transfer function Z(co) or Z  known as im pedance 

(which is derived using Fourier transformation similar to DC Ohm's law) 

[237,239].

Due to the presence of this phase difference (6) between applied A C  voltage 

and current, the impedance is often represented as combination of both real 

and imaginary component of the impedance. The diagram m atic  

representation of the principle of EIS is shown in F igure  3.11 and governing 

equations include [240,241].
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Linear System *

V(ioj) = V m Sin (wt) l(ico) = lm Sin (cot + 0)

Figure 3.11: Diagrammatic representation of principles of EIS [242].

The results obtained from EIS are commonly represented in form of Nyquist 

plots, see Figure 3.12, which are representation of real and imaginary 

components of the impedance Z plotted in Argand or complex plane, or, 

Bode plots, which are modulus of impedance vs. frequency or phase angle 

vs. frequency graphs, as shown in Figure 3.13 (a), (b) [237,239-241].

V(iio ) = V m Sin (w t) Equation  3.1

l(iw ) = lm S in (cat + 0) Equation  3.2

Z(ioj) = V(iiAj) / l(iaj) Equation 3.3

Z (iw ) o r Z  = Z ' + i Z" Equation  3.4
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Figure  3.12: Nyquist plot shown from A STM  G3, showing Real vs. Imaginary  

component of Z  starting from highest frequency (left) to lower frequency 

(right) [240].
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Figure  2.13: Blode plot shown from A S TM  G 3 representing (a) modulus of 

impedance vs. frequency and (b) phase angle vs. frequency [240].
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Apart from the graphical representation of impedance data in form of Nyquist 

and Bode plots, the data is subjected to Kramer-Kronig (K-K) transformation  

[243] for data relaxation and then modelled using equivalent circuits. 

E quation  3.4, which graphically presents Nyquist plot, during modelling of 

EIS data is split into components such as resistance (R,Z', real part), which 

usually is resistance offered by electrolytes and in case of coated system, 

the charge transfer resistance [239,244]. The Nyquist plot shown in F igure  

3 .12  shows the resistance offered by electrolytic solution (R s) and the 

combination of Rs and charge transfer resistance (R ct).

The imaginary part of E quation  3.4, Z" can be modelled as either a capacitor 

(C), which represents accumulation of charge at the coating electrolyte 

interface (in the case of coated system), known as double layer capacitance  

(Cdi),however during modelling a constant phase elem ent (CPE) may be 

used to represent a non ideal capacitor, or, an Inductor (L), which represents 

formation of passive layer on the system [239,244]. Another important 

component during modelling of EIS data also includes the effects of diffusion 

on the electrochemical behaviour of the corroding system, represented by 

Warburg im pedance  (W ) [244]. In order to select and fit the EIS data, which 

on its own is a complex process, electrochemical software packages which 

are mostly commercially available are used.

The simplest equivalent circuit model which can be used to represent

corrosion is Randle's  circuit, as shown in F igure 2.14, which presents a

simple corrosion reaction in the presence of electrolyte offering resistance

Rs, a double layer capacitance created at surface-electrolyte interface (C di)

and polarisation resistance Rp when measured at free corrosion potential
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[241,244]. However a more complex equivalent circuit models are required to 

represent corrosion processes [244].

Cdi

Rp

Figure 3.14: Simple Randle's equivalent circuit representing simple corrosion 

process from impedance data [241,244].

The EIS was performed on A l-Zn-ln and Al-Ti-C alloy coatings using both a 

Basic Electrochemical System (BES) and Parstat potentiostats supplied by 

Princeton Applied Research and controlled using PowerSuit electrochemical 

software. It is important to note that although BES, a lock-in-amplifier and 

Parstat, a frequency response analyser both required considerable amount 

of data acquisition time at lower frequencies, but as an FRA Parstat was able 

to collect low frequency data faster than BES the lock-in amplifier. The  

similar tests were also conducted on pure Al and Al-Zn coatings for 

benchmarking the performance of A l-Zn-ln and Al-Ti-C  coatings. The working 

electrode (coatings) were prepared by mounting open ended acrylic tube  

cylinders using silicone adhesive sealant followed by application of paraffin 

wax and colophony mixture (1:1). The EIS was a three-electrode cell with «
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865.16  mm2 area of working electrodes, Pt wire mesh as auxiliary working 

electrode and Ag/AgCI/4M  KCI reference electrode. The tests were  

conducted by exposing the coatings to 3.5% w /v, 1.0% w/v, 0 .1% w /v  and 

0.01 % w/v NaCI solution for maximum of 200 hours. The tests were  

performed by applying a potential perturbation of 10 m V (rms value) with 

frequency ranging from 100kHz to 1m Hz at 10 points per decade after 1, 24, 

48, 72, 168 and 200 hours. ZsimpW in software package was used in order to 

model the data with an appropriate equivalent circuit [245,246]. All the tests 

were conducted in duplicates or triplicates.

3.7 Assessment of mechanical properties of coatings

In order to access the mechanical properties of the arc sprayed A l-T i-C  alloy 

coating, standard tests such as hardness m easurem ent were conducted. 

Once again, for the purpose of comparison, similar tests w ere also 

conducted on pure Al coatings. Owing to the fact that thermally sprayed  

coatings have a heterogeneous microstructure, the properties of the coatings 

are profoundly dependent on the lamellar or splat microstructure of the 

coatings [247,248], therefore the selection of test parameters was critical in 

order to gather correct information. The details of the tests are given under 

section 3.7.1.
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3.7.1 Micro-hardness measurement

Vickers micro-hardness m easurem ents using a Mitutoyo MVK-H1 hardness 

testing machine in accordance with BS EN ISO  4516  [249] were performed 

on a polished cross-section of the coatings. The Vickers micro-hardness 

indenter is a diamond shaped pyramidal structure, see F igure 3.15, with an 

angle of 136 0 ±  0 .5° between two faces of the pyramid and has a square 

base [249]. The ratio of the diagonals di and d2 to depth of penetration is «  

7:1 [249].

F igure  3.15: Diagrammatic representation of Vickers Indenter [249].

A  load of 0 .98 N (100 g) was applied for 10 s to obtain a single m easurem ent 

of the hardness. Thirty indentations on the polished cross-sections of A l-T i-C  

and Al-Zn-ln coatings along with pure Al coating were carried out in order to 

determine the range of hardness values caused by the complex  

microstructure of the coatings.
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The micro-hardness of A l-T i-C  and pure Al feedstock alloys was also carried 

out in order to determine the influence of the spraying process on the 

hardness of the coating. A  frequency distribution histogram was plotted to 

represent the spread of hardness values in the coatings [250].Macro­

hardness m easurem ents using a 9.8 N (1 kg) load were also carried out on 

the polished surface of the coatings. The depths of the indentations were  

always 25%  less than the thickness of the coating.

In making micro-hardness measurem ents care was taken to avoid obvious 

porosity within the coating. As such the micro-hardness m easurem ents will 

be higher than a higher load macroscopic m easurem ent that will be 

influenced by the porosity of the coatings.
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3.8 Wear Resistance performance of Al-Ti-C coating

In order to understand the w ear behaviour and performance of arc sprayed  

Al-Ti-C  coating, the coating's microstructure was characterised in conjunction 

with w ear tests. A  large range of w ear tests can be applied but guidance as 

to the most appropriate test can be found, for example, in A STM  G 190  [254] 

which lists tests which to some extent replicate the actual conditions of 

exposure during the service life of a coating designed for the purpose of 

w ear resistance [255-257].

In the present study, to evaluate the w ear resistance performance of the Al- 

Ti-C  coating, a three body micro-scale abrasive w ear test was used [258]. 

The three body micro-scale abrasive w ear test, also referred as the ball- 

crater w ear test was initially used as a method to induce a w ear crater in 

thick films, coatings and other forms of surface treatments for composition 

depth profiling using Auger electron spectroscopy [259,260].

Based on the principle that, when a rotating spherical ball (metallic or non- 

metallic) is m ade to contact the surface of a sam ple to be examined, under 

influence of an external force, in presence of abrasive media, produces a 

w ear crater or scar which is used as a m easure of w ear induced on the 

sample [259,260]. Over the years researchers have worked towards 

identifying the effects of variation of test param eters such as hardness of the 

ball, role of abrasive media, altering the applied load on the micro-scale 

abrasive w ear test to determine the mechanism of w ear under specific 

exposure conditions of material [261-270].
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The micro-scale abrasive w ear test has been used to analyse soft materials 

[271], various polymeric materials [272] and coated systems [273,275]. After 

having reviewed the literature from the previous work on different types of 

materials, the test parameters were chosen during the present study.

A  Commercially available Phoenix Tribology Ltd. model PLIN T T E -6 6  micro­

scale abrasive w ear tester was used and is shown schematically in Figure 

3.16. The sample to be tested was vertically mounted on a lever that rotates 

about the pivot and is pressed against the rotating ball under the application 

of the applied load. A  constant feed of abrasive slurry of specific 

concentration is maintained between rotating ball and the sample.

abrasive
slurry

sample • ball

Figure 3.16: Schematic of a micro-scale abrasive w ear tester [259].

A  constant load of 0.2  N was applied and the abrasive slurry had a

concentration of 20vol%  (0.66 g/cm3) of crystalline silicon dioxide in

deionised w ater (nominal particle size D50=2.5  pm Silicon (IV) oxide,

crystalline quartz, Alfa Aesar).
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During the experiment the slurry was constantly stirred using a magnetic 

stirrer to avoid settling of the silicon dioxide. In a steel ball on a flat 

aluminium sample configuration the Hertizian contact pressure at 0.2  N is in 

theory 0 .04  G Pa. However, in the w ear test the two materials are separated  

by a layer of liquid containing the abrasive slurry and thus it is unlikely that 

this contact pressure is ever experienced. Figure 3.17 shows the 

morphology of the silica particles. A  particle shape with rounded edges was 

observed with the average particle of the silicon dioxide in the range of 2 .0  

p m -3 .0  pm but with some larger agglomerates. Table 3.3 shows the test 

parameters used in the experiment.

Figure 3.17: Secondary electron micrograph showing S i0 2 powder 

morphology.
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T ab le  3.3: Micro-scale abrasive w ear test parameters.

Test parameters

Diam eter of the steel ball 25 .4  mm

Ball material Tool steel, H V  «  800

Ball sliding speed 0.13 m/s

Sliding distance 50 m, 100 m, 150 m

All test samples were ground and polished to a final stage of 1 pm diamond 

suspension. The w ear test was repeated three times at each sliding distance 

to ensure the reproducibility of the results. The diam eter of the circular w ear 

craters was measured using an optical microscope and the volume loss was 

calculated assuming the spherical cap geometry of the w ear crater given by

V  = TTb4 1 64 R Equation  3.5

where b is the diam eter of the w ear crater and R  is the radius of the rotating 

ball, the above equation is used when b « R .  The graph of the volume of the 

w ear crater vs. sliding distance multiplied by the load was plotted to calculate 

the coefficient of w ear (m m 3 N“1 m"1) from the gradient of the graph. During 

the micro-scale abrasion test the w ear crater did not penetrate to the 

substrate. For comparision purpose, the Al-Ti-C  alloy along with pure Al alloy 

and their respective coatings, 13% C r steel coating was also subjected to the 

w ear test under similar condirtions.

171



Based on the preliminary SEM  and X R D  analysis conducted on A l-T i-C  

coating, further effects of various phases present in the Al-Ti-C  alloy 

coatings, micro-scale abrasive w ear test was performed on the heat treated  

Al-Ti-C  coating samples. The coated samples were exposed to 150°C , 350°C  

and 550°C  for 1 and 3 hours respectively.

Two different cooling strategies were adopted during the test, the first set of 

coatings were rapidly quenched (RQ) by immersing the samples into 

deionised w ater when removed from the furnace, while the other set of 

samples were slow air cooled (AC) by leaving the samples f o r «  5 hours at 

the ambient room temperature.

Hardness measurem ents, as described in section 3.7.1 were taken on both 

RQ and AC coated samples and micro-scale abrasive w ear tests were  

repeated with the sam e parameters mentioned in T ab le  3.3. Once again, the 

w ear test was repeated three times at each sliding distance to ensure the 

reproducibility of the results.
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Chapter 4: Results and Discussion-Part 1

The project focused on two Al alloy coatings, which were:

•  A l-Zn-ln alloy coating, primarily tested for corrosion resistance

•  Al-Ti-C  alloy coating, primarily tested for w ear resistance 

performance, in addition, corrosion evaluation of the coating was also 

conducted.

This chapter will be sub-divided into two major sections, one of which will 

focus on corrosion evaluation using both accelerated and electrochemical 

techniques (part 1) while the other sub-section will focus on the mechanical 

properties of coatings along with micro-scale abrasion test (part 2). All the 

corrosion and w ear tests were conducted in conjunction with microstructural 

characterisation of the coatings, hence the results obtained from the 

analytical characterisation of the coatings have been incorporated within the 

results and discussion of the corrosion and w ear tests.
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4.1 Neutral salt spray corrosion testing

Primarily focusing on corrosion resistance performance of A l-Zn-ln coating, 

neutral salt spray corrosion test was performed according to A S TM  B117  

standard. The detailed procedure of the experiment was given under section 

3.6 of chapter 3. As mentioned in section 3 .6 .1 , two sets of A S TM  B117  

neutral salt spray tests were conducted. The results of the two sets have 

been discussed separately in the following sections.

4.1.1 Sacrificial corrosion protection analysis of Al-Zn-ln coating in 
comparison with Zn-Al and pure Al coating.

Triplicate samples of A l-Zn-ln, Zn-Al and pure Al coatings with artificially 

induced defects were used to perform neutral salt spray corrosion tests. The  

intention was to analyse the sacrificial corrosion protection ability and study 

the corrosion products obtained after 500 hours and 1000 hours of exposure 

of Al-Zn-ln coating and compare the results obtained with pure Al and Zn-Al 

coating. Figure 4.1 (a-f), Figure 4.2 (a-f) and Figure 4.3 (a-f) shows the 

photographs of the arc sprayed Al-Zn-ln, pure Al and Zn-Al coatings exposed  

to 5%  w/v NaCI during the salt spray corrosion test.
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Figure 4.1: Photographs of Al-Zn-ln coating with artificially induced defect 

exposed to 5 % w/v NaCI in ASTM B117 salt spray test, taken (a) before the 

experiment, after (b) 24 hours, (c) 48 hours, (d) 168 hours, (e) 500 hours and 

(f) 1008 hours. The dimensions are shown below (scale not to exact size).
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Figure 4.2: Photographs of pure Al coating with artificially induced defect 

exposed to 5 % w/v NaCI in ASTM B117 salt spray test, taken (a) before the 

experiment, after (b) 24 hours, (c) 48 hours, (d) 168 hours, (e) 500 hours and 

(f) 1008 hours. The dimensions are shown below (scale not to exact size).
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Figure 4.3: Photographs of Zn-Al coating with artificially induced defect 

exposed to 5 % w/v NaCI in ASTM B117 salt spray test, taken (a) before the 

experiment, after (b) 24 hours, (c) 48 hours, (d) 168 hours, (e) 500 hours and 

(f) 1008 hours. The dimensions are shown on the following page (scale not 

to exact size).
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W hen visual inspection of the coatings with artificial defects, which were  

tested in triplicates, was carried out after 24 hours of exposure, surface  

staining  of Al and Al-Zn-ln coatings was apparent. The surface staining of the 

samples could have been due the initiation of oxide layer formation, which 

was also reported previously by Rodriguez et al.[146]. The X R D  analysis of 

the as sprayed Al and Al-Zn-ln confirmed the presence of hydrated Al oxide, 

in form of monoclinic Bayerite phase (A I(O H )3).
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Figure 4.4: Bragg-Brentano XRD trace of as sprayed Al coating. The scan 

was conducted from 20 0 ranging from 10° to 80°.

Figure 4 .4  and Figure 4 .5  shows the Bragg-Brentano XRD trace of as 

sprayed Al and Al-Zn-ln coating. The dominant peaks of cubic Al phase in Al 

coating at 38.20°, 44.80°, 65.10° and 78.20° were identified using 

crystallographic data from X'Pert High Score XRD data analysis software. 

Similar peak positions of cubic Al in Al-Zn-ln coatings were also identified. It 

is important to note that at ~ 34.20° a visible peak in both Al and Al-Zn-ln
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XRD traces can be seen from Figure 4 .4  and Figure 4.5, which was 

identified as Cu Kp and was not considered during the data analysis.
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Figure 4.5: Bragg-Brentano XRD trace of as sprayed Al-Zn-ln coating. The 

scan was conducted from 20 0 ranging from 10° to 80°.

Sharp peaks of AI(OH)3 at 36.80°, 42.70° and 62.10° were seen in both Al 

and Al-Zn-ln coating, with additional sharp peak at 74.20° in Al-Zn-ln. Small 

observable peaks of AI(OH)3 were also evident at 35.10°, 43.10°, 58.20° and 

62.30° in Al coating. Al-Zn-ln also showed small peaks of AI(OH)3 similar to 

Al but additional small peaks at 69.20° and 75.10° were also seen . Majority 

of the AI(OH)3 peaks were within the 0.05° to 0.1° expected 20° range,
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however slight shift in the peaks were observed due to some change in the 

unit cell parameters of monoclinic AI(OH)3 phase.
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Figure 4.6: Bragg-Brentano XRD trace of Al coating after 24 hours of 

exposure in 5 % w/v NaCI. The scan was conducted from 20 0 ranging from 

10° to 80°.
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Figure 4.7: Bragg-Brentano XRD trace of Al-Zn-ln coating after 24 hours of 

exposure in 5 % w/v NaCI. The scan was conducted from 20 0 ranging from 
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Figure 4.8: Bragg-Brentano XRD trace of Al coating after 48 hours of 

exposure in 5 % w/v NaCI. The scan was conducted from 20 0 ranging from 

10° to 80°.
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Figure 4.6 and Figure 4.7 shows the X R D  traces of Al and Al-Zn-ln coating 

after 24 hours of exposure in the salt spray cabinet. A  smaller but broader 

peak of A I(O H )3 at «  18.50° was observed for Al coating in addition to the 

peaks recorded for Al under as sprayed condition.

Similarly for Al-Zn-ln coating, two distinct peaks of A I(O H )3 at lower 20  

values of 18.7° and 20.1°, in addition, peaks at 40 .5 ° , 45.5°, 53.2°, 56 .5°  

were also observed. Due to deposition of NaCI on the surface of the exposed  

coatings, additional peaks of halite were also recorded in the X R D  trace of 

both Al and Al-Zn-ln coating. With increase in the exposure time of the Al 

and Al-Zn-ln coating in the salt spray cabinet to 48 hours, a sharp peak of 

complex sodium aluminium oxide (N a i7AI50 i 6) a t = 42 .3 ° was observed, see  

Figure 4.8 and Figure 4.9. Broad peaks of A I(O H )3 at = 4 0 .2 ° was also 

reported for both Al and Al-Zn-ln after 48  hours of exposure.

A  semi-quantitative analysis was conducted using X R D  traces to compares 

the ratio of monoclinic Bayerite A I(O H )3 to cubic Al phase, as shown in 

Table 4.1.

Table 4.1: Semi-quantitative analysis showing the ratio of A I(O H )3 to Al
phase present in Al and Al-Zn-ln coating when as sprayed and 
after 24 and 48  hours in neutral salt spray test condition.________

A I(O H )3/AI, 
Al coating

A I(O H )3/AI, 
Al-Zn-ln coating

As sprayed 0.18 0.04

After 24 hours 0.08 0.07

After 48 hours 0.06 0.17
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It can be seen from T ab le  4.1 that with increasing exposure time in the salt 

spray cabinet, Al coating showed reduction in formation of A I(O H )3 while Al- 

Zn-ln showed increased formation of A I(O H )3 elucidating that Al-Zn-ln  

coating was more actively corroding than Al coating, producing more A I(O H )3 

phase on the surface of the coating than Al coating. It is important to note 

that slight shift in the peak positions of A I(O H )3 for Al and Al-Zn-ln coating, 

while calculating the phase ratio may have been caused due to misalignment 

of the samples during the experiment.

After 500 hours of exposure, the Al coating showed the formation of white 

corrosion products around the area of artificial defects, see F igure  4 .2  (e). A  

Similar observation was m ade for A l-Zn-ln coating, with a greater degree of 

corrosion product formation along the artificial defect area, see F igure  4.1 

(e), confirming the deductions based from semi-quantitative phase ratio data 

from Tab le  4.1. The X R D  trace of Al and Al-Zn-ln coating showed formation 

of Bayerite phase of hydrated aluminium oxide (A I(O H )3) after 500  hours of 

exposure, but after 1000 hours of exposure the hydrated aluminium oxide 

primarily was anorthic Nordstrandite phase.

T ab le  4 .2  shows the semi-quantitative phase ratio of A I(O H )3 to Al for A l-Zn- 

ln and Al coating, which once again follows a similar trend observed from  

T ab le  4.1 indicating that Al-Zn-ln exhibited 10%  increase in the A I(O H )3 to Al 

ratio from 500 hours to 1000 hours of exposure, while for sam e exposure  

period, Al coating showed 40%  decrease in the ratio. This suggested that 

even after 500 hours and 1000 hours of exposure period A l-Zn-ln coating 

was more actively corroding than Al coating.
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T ab le  4.2: Semi-quantitative analysis showing the ratio of A I(O H )3 to Al 
phase present in Al and Al-Zn-ln coating after 500 and 1000  
hours in neutral salt spray test condition.___________________

A I(O H )3/AI, A I(O H )3/AI,
Al coating Al-Zn-ln coating

After 500 hours 0.14 0.09

After 48 hours 0.10 0.10

For the Zn-Al coating, the formation of white corrosion product was uniform, 

i.e. the corrosion product was formed all over the coating surface. The  

degree of corrosion observed on the exposed mild steel substrate in the 

artificial defect region was found to be greater in the Zn-Al coating in 

comparison to Al and Al-Zn-ln coatings. This suggested that Al and A l-Zn-ln  

coatings showed evidence of superior sacrificial corrosion protection ability, 

with qualitative assessm ent suggesting that Al-Zn-ln coating performed 

better in this respect than the Al coating.

F igure 4 .3  (e) showed that after 500 hours, the Zn-Al coating displayed a 

change in colouration to dark blue appearance. The Al and Al-Zn-ln coating 

displayed the sam e coloration after 500 hours of exposure in the corrosion 

test, see F igure  4.1 (e) and F igure  4 .2  (e). After 1000 hours of exposure, 

appearance of the red-brown corrosion product along the corners of Al 

coating was observed, see F igure 4 .2  (f). The formation of red-brown 

corrosion product is indicative of corrosion of the mild steel substrate. Loss of 

coating thickness over time has been reported when Al is deposited using 

arc spray technique [146]. A l-Zn-ln coating showed good corrosion 

resistance, with formation of corrosion product near the defect area and no 

evidence of corrosion of mild steel suggested the coating was satisfactorily
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protecting the mild steel substrate. An increase in the formation of white 

corrosion product on the Zn-AI coating surface was observed after 1000  

hours of exposure, see Figure 4.3 (f). The neutral salt spray corrosion test 

conducted indicated little evidence of sacrificial corrosion protection of mild 

steel substrate by Zn-AI coating.

Figure 4.10 (a), (b) and Figure 4.11 (a), (b) shows the X -R ay diffraction 

traces of the corrosion product formed on Al and Al-Zn-ln coating after 500  

and 1000 hours of exposure. The major peaks of Dawsonite 

(N a A I(C 0 3) (0 H )2) a t «  15.50 0 20 was identified for Al and Al-Zn-ln corrosion 

product formed after 500 and 1000 hours of exposure (see appendix). The  

other phase identified was Bayerite for both Al and Al-Zn-ln coating. These  

phases were present in the corrosion product analysed after 500 and 1000  

hour of exposure. Formation of Bayerite in the corrosion product was due to 

the fact that the surface of Al and Al-Zn-ln were subjected to a humid 

environment, favouring the formation of adherent aluminium hydrated oxides. 

The X-ray diffraction analysis indicated that although Al and A l-Zn-ln coating 

have different alloy composition as mentioned in Table 3.1, similar phases 

were identified in the corrosion product after 500 and 1000 hours exposure in 

salt spray corrosion test.

Zinc aluminium carbonate hydroxide hydrate

(Zno.6iAlo.39(O H )2(C 0 3 )o.i95-xH20 ) was identified as the major phase present

in the corrosion product of Zn-AI coating. The other phases present w ere

Zinc carbonate hydroxide hydrate (Z n 4 (C 03)(0 H )6.H20 )  and zinc oxide

(ZnO), corresponding with the findings of other researchers [146]. No

significant changes in the corrosion product of Zn-AI coating were reported
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after 500 and 1000 hours of exposure. However, the researchers have 

reported that (Zn0.6iAlo.39(OH)2(C 03)o.i95-xH20) phase present in the 

corrosion product shows increases with increasing aluminium content in such 

coatings [146].
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Figure 4.10: XRD trace of corrosion product of Al coating after (a) 500 hours 

and (b) 1000 hours in salt spray neutral test.
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hours and (b) 1000 hours in salt spray neutral test.
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4.1.1.1 Microstructural analysis of Al and Al-Zn-ln coating before 
and after neutral salt spray corrosion test

Figure  4 .12 and Figure 4 .16 shows a high contrast backscatter electron 

SEM micrographs of the cross-sectioned 300 pm thick Al, Al-Zn-ln coatings 

before exposure to the neutral salt spray testing.

spot mode W D I mag HV det Lens Mode
4 0 A+B 5.3 mm |1 OCO x 20 00 kV BSED Fielc-Free

Figure  4.12: High contrast backscattered electron micrograph of a cross- 

section of as sprayed 300 pm thick Al coating. The enclosed area was used 

for EDX analysis.

The arc sprayed Al coating showed presence of porosity distributed along 

the cross section of the coating (dark patches, the dark patch on the top left 

corner of the micrograph is portion of epoxy mount) apparent in Figure  4 .12 .
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The average of the semi-quantitative EDX analysis data from three different 

areas of the cross-section of the coating showed in Tab le  4.3 revealed that 

the majority of the as-sprayed coating was predominantly Al with trace 

amount of oxygen.

Tab le  4.3: Average composition analysis of as sprayed Al coating using EDX
semi-quantitative data.

Average composition

Al (at %) 0  (at %)

As sprayed Al coating 81 ±  9 8 ±  3

/ 1

■n T ' 1-f l r ' l T T f f V n  I V i-r-T—f -1  1-1 T |*IT I*I | i rri'T iT  f t - [' I I i ■ I | I I I I | I
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Full Scale 705 c ts  Cursor -0 019 (372 c ts)_____________________ keV

Figure  4.13: EDX spectrum of as sprayed Al coating from the enclosed 

region shown in Figure 4.12.

The EDX spectrum of the enclosed region shown in Figure 4.12, showed a 

large Al peak with a relatively small but visible O peak. This complemented 

with the fact that Al was present in much higher concentration with formation 

of oxide. However, the XRD trace of as sprayed Al coating shown in Figure  

4 .4  suggested the formation of hydrated Al oxide in form of Bayerite.
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This can be attributed to the fact that the penetration depth of X-rays during 

XRD analysis of Al coating was calculated to be *  23 pm to 25 pm and the 

EDX elemental map generated from the as sprayed surface of the Al coating 

shown in Figure 4 .14  revealed areas on the surface of the coating rich in 

oxygen, see Figure 4.15.

F igure  4.14: Secondary electron micrograph of as sprayed Al coating 

surface.

Al Ka1 O K a 1

Figure 4.15: EDX map of the entire area of Al coating shown in F igure  4 .14  

a tX  1000 magnification.
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The analysis from the EDX composition data showed concentration of 

oxygen as 22 +  0.3at%, which is significantly higher than what was reported 

in T ab le  4.3. The higher concentration of oxygen is indicative of formation of 

oxide on the surface of the as sprayed Al coating, which was detected by the 

XRD analysis. Note that the dark regions in the EDX map shown in Figure  

4.15, it is evident that these dark regions correspond to the surface 

topography of the coating shown in Figure 4.14.

F igure 4.16: High contrast backscattered electron micrograph of a cross- 

section of as sprayed 300 pm thick as sprayed Al-Zn-ln coating. The 

enclosed area was used for EDX analysis.

The microstructure of the as sprayed 300 pm thick Al-Zn-ln coating is shown 

in Figure  4.16. Two distinct phases, that appears to be dark and light grey in 

colour, were clearly evident from the backscattered micrograph shown in 

Figure 4.16. The average composition of the two distinct phases is given in 

Tab le  4.4.

spol mcxM* W D  mag HV d*»t , Lon* Mtxia 
4 0 A *6  A 3 mm ! 1 OOP k j2Q OQ kV BSED | Fa?ld Pree
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Table 4.4: Average composition analysis of as sprayed Al-Zn-ln coating 
_________ using EDX semi-quantitative data.________________________

Average composition

As sprayed Al-Zn-ln coating Al (at %) Zn (at %) 0  (at %)

Light grey region 91 ± 4 . 1 ±  0 8 ±  5

Dark grey region 93 ±  2 - 7 ±  2

O Zn ^
I i i i i^ i i i I 'p '  i* i i i f  i ■ i | i i ' i i I- ' ' ' ; i ' ' ' . i i '---------------------------------------------- ----------------- >— ■ ’ M ! 1 1 l ' i ' ' l i i ' i l i i i M i 1 ' i l ' i r i - |4

0 1 2 3 4 5 6 7 8 9  10
Full Scale 14179 cts Cursor 10 114 (7 cts)________________________________________________________ keV

Figure 4.17: EDX spectrum of as sprayed Al-Zn-ln coating from the enclosed 

region shown in Figure 4.16.

The EDX spectrum of the enclosed area shown in Figure  4.16, which covers 

both dark and light grey regions, affirms presence of higher concentration of 

Al in those phases than Zn and 0 . The presence of indium was not traced 

using EDX as the concentration of indium in the coating, as shown in T ab le  

3.1, was below the detection limit of the technique.

Figure 4.18 (a) and (b) shows the backscattered electron micrographs of the 

Al coating and underlying masked mild steel substrate after 1000 hours in 

neutral salt spray test.
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Figure 4.18: Backscattered electron micrograph of (a) Al coating after 1000 

hours of neutral salt spray test (b) cross-section of the masked area showing 

exposed mild steel substrate. The thickness of the coating was 50 pm.

It is evident from Figure 4 .18 (a) that Al coating showed discontinuities, 

marked by red arrow after the salt spray test, delamination of the coating was 

also observed which is shown by the white arrow in both Figure 4 .18  (a) and

(b).
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Figure 4 .19 (a'), (b') and (c') shows the EDX spectrum obtained from 

different regions of the cross-section of the exposed Al coatings shown in 

Figure 4 .18 (a).

■ il s m «  W -- -,n C m *  Ml 1M n  IU 1____________________________________________________ k*V

Figure 4.19: (a1), (b') and (c') shows the EDX spectrum of the cross-section

of the exposed Al coating shown in (a), (b) and (c).
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The ED X analysis at different areas of the cross-section of the Al coating, as 

shown in Figure 4.19 (a'), (b1) and (c') indicated the presence of oxygen in 

higher concentrations than in the as-sprayed coating, shown in Figure 4.13, 

suggesting aluminium oxides after exposure. This was confirmed by the X -  

ray diffraction analysis of Al coating corrosion product formed after 500  and 

1000 hours, shown in Figure 4.10 (a) and (b), which indicated the presence 

of bayerite and dawsonite as the dominant phases. The cross-section of the 

masked area of the underlying mild steel substrate, see Figure 4.18 (b) 

marked by black arrow showed no significant signs of corrosion confirming 

the fact that Al coating was mostly consumed, see lower part of Figure 4.18 

(b).

The cross-section of A l-Zn-ln, as shown in Figure 4 .20  (a) revealed the 

presence of different phases, one marked with red arrow is the light grey 

appearing phase and the phase marked with white arrow appears dark grey, 

possibly indicating oxidised and metallic regions of the coating. Unlike the Al 

coating after 1000 hours of exposure in the neutral salt spray test, no 

convincing evidence of coating discontinuity or delamination was observed, 

see Figure 4 .20  (a). Figure 4 .20  (b) showed no conclusive evidence of 

underlying mild steel substrate corrosion, however the formation of two 

distinct phases can be clearly seen from Figure 4.20(b).

The ED X analysis of different regions of the cross-section of A l-Zn-ln  

coating, shown in Figure 4.21 (a'), (b') and (c1) confirmed that the light grey 

regions were rich in oxygen, indicating formation of oxides, while the dark 

grey regions still showed the presence of un-oxidised Al, suggesting the
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presence of metallic aluminium in the Al-Zn-ln coating in comparison to Al 

coating, as shown in Figure 4 .1 9  (a1), (b') and (c1).

I
Mild steel substrate

H B I m i l
( I

\ i
Mount

Mild steel substrate

Al-Zn-ln coating

Figure 4.20: Backscattered electron micrograph of (a) Al-Zn-ln coating after 

1000 hours of neutral salt spray test (b) cross-section of the masked area 

showing the exposed mild steel substrate. The thickness of the coating was 

50 pm.
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Figure 4.21: (a'), (b') and (c') shows the EDX spectrum of the cross-section 

of the exposed Al-Zn-ln coating shown in (a), (b) and (c).

The Zn-AI coating showed formation of cracks, suggestive of a cohesive 

failure of the coating. The EDX analysis of the Zn-AI coating showed 

variation in oxide content throughout different regions of the coating 

suggesting uniform corrosion throughout the cross-section of the coating, 

which was also reported by other researchers [146].
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4.1.2 Oxidative weight change measurement of Al-Zn-ln and Al-Ti-C 
coatings

The neutral salt spray corrosion test to A S TM  B 117 was conducted on A l-Zn- 

ln and A l-Ti-C  alloy coatings in order to understand the weight change per 

unit area of the coatings in comparison to their feedstock alloys. Pure Al and 

Al-Zn in form of feedstock and coatings were used for comparison purposes. 

Figure 4.22 (a-d), Figure 4.23 (a-d) .Figure 4.24 (a-d) and Figure 4.25 (a-d) 

shows the photographs of pure Al, Al-Zn, A l-Zn-ln and Al-Ti feedstock alloys 

exposed to neutral salt spray test. Table 4.5 shows the measured weights of 

the feedstock alloys during specified durations of the tests. Figure 4.26 (a-d), 

Figure 4.27 (a-d), Figure 4.28 (a-d) and Figure 4.29 (a-d) shows the 

photographs of pure Al, Al-Zn, A l-Zn-ln and Al-Ti coatings exposed to neutral 

salt spray test. Table 4.6 shows the measured weights of the coatings during 

specified durations of the tests.
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(a) (b)

(c) (d)

Figure 4.22: Pure Al feedstock rods after (a) 48 hours (b) 336 hours (c) 672

hours and (d) 1008 hours of exposure in neutral salt spray test.
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(a) (b)

(c) (d)

Figure 4.23: Al-Zn feedstock rods after (a) 48 hours (b) 336 hours (c) 672

hours and (d) 1008 hours of exposure in neutral salt spray test.
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(C) (d )

Figure 4.24: Al-Zn-ln feedstock rods after (a) 48 hours (b) 336 hours (c) 672

hours and (d) 1008 hours of exposure in neutral salt spray test.

206



Figure 4.25: Al-Ti-C feedstock rods after (a) 48 hours (b) 336 hours (c) 672 

hours and (d) 1008 hours of exposure in neutral salt spray test.
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Figure 4.26: Pure Al coating after (a) 48 hours (b) 336 hours (c) 672 hours 

and (d) 1008 hours of exposure in neutral salt spray test.



(a) (b)

Figure 4.27: Al-Zn coating after (a) 48 hours (b) 336 hours (c) 672 hours and

(d) 1008 hours of exposure in neutral salt spray test.
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(a) (b)

Figure 4.28: Al-Zn-ln coating after (a) 48 hours (b) 336 hours (c) 672 hours

and (d) 1008 hours of exposure in neutral salt spray test.
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Figure 4.29: Al-Ti-C coating after (a) 48 hours (b) 336 hours (c) 672 hours 

and (d) 1008 hours of exposure in neutral salt spray test.
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It is important to note that the photographs of the feedstock alloys and the 

coatings shown in Figure 4.22 to Figure 4.25 (a-d) and Figure 27 to Figure 

30 (a-d) were just before measuring the weights of the samples after 

specified exposure period. The samples were manually cleaned, without 

using any chemical reagents, by using a soft bristle brush until the loose 

corrosion product was removed from the surface. Any manual cleaning 

procedure which could have resulted in distorting the surface, such as 

scrubbing using hard bristle brush or excessive rubbing of surface, of either 

alloy or coating while removal of corrosion product was avoided. However, 

overzealous cleaning may result in underestimated rate of corrosion.

After 48 hours of exposure, Al feedstock alloy shown in Figure 4.22 (a) 

showed no significant changes, however the Al-Zn alloy, see Figure 4.23 (a) 

and Al-Zn-ln alloy, see Figure 4.24 (a) showed formation of adherent 

corrosion product on the surface. Similar observation was made for A l-T i-C  

alloy feedstock after 48 hours, see Figure 4.25 (a), but was less than the Al- 

Zn and Al-Zn-ln alloys. With an increase in the exposure time to 336 hours, 

the A l-Zn and Al-Zn-ln feedstock alloys see Figure 4.23 (b) and Figure 4.24

(b), confirmed that the alloys were actively corroding in comparison to Al and 

Al-Ti-C  feedstock alloys, see Figure 4.22 (b) and Figure 4.25 (b).

Similar observation for Al-Zn and Al-Zn-ln feedstock alloys was also m ade  

after 672 hours of exposure, see Figure 4.23 (c) and Figure 4.24 (c) in 

comparison to Al and Al-Ti-C  feedstock alloy, see Figure 4.22 (c) and Figure 

4.25 (c). After 1000 hours of exposure, the formation of corrosion product on 

the surface of the Al-Zn and Al-Zn-ln feedstock alloys, see Figure 4.23 (d)
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and Figure 4.24 (d) was more pronounced than Al and A l-Ti-C  feedstock 

alloys, see Figure 4.22 (d) and Figure 4.25 (d).

This illustrated that even after 1000 hours of exposure, the A l-Zn and A l-Zn- 

In alloys were actively corroding, confirming that Zn and In were key alloying 

elements responsible for maintaining the surface of Al alloy active [115,220].

Surface staining of Al coatings after 48 hours of exposure in the neutral salt 

spray test was evident from Figure 4.26 (a), similar to what was observed  

during the salt spray test of Al coatings with artificial defect, see Figure 4.2

(c). Comparing the Al-Zn and Al-Zn-ln coatings after 48 hours of exposure  

revealed that Al-Zn coating showed formation of spots of adherent corrosion 

product on the surface of the coating, see Figure 4.27 (a) while A l-Zn-ln  also 

showed some dark regions on the surface, but not as pronounced as Al 

coating.

After 336 hours of exposure, Al coating exhibited formation of adherent 

corrosion product on the edge of the coating, see Figure 4.26 (b), while the 

Al-Zn coating showed initiation of dark area near the edges of the coating. 

Appearance of a similar dark area formation on the edges of the A l-Zn-ln  

coating surface, see Figure 4.28 (b) was also reported, which was more 

pronounced in Al-Zn coating. With increase in the exposure period to 672  

and 1008 hours, the appearance of the dark area at the edges of the A l-Zn  

coating, see Figure 4.27 (c-d), increased, however for A l-Zn-ln coating, no 

significant change in the dark area along the edge of the coating, see Figure 

4.28 (c-d) was observed. For Al coating after 672 and 1008 hours of
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exposure, increase in the formation of corrosion product on the edge of the 

coating was observed, see Figure 4.26 (c-d).

For A l-T i-C  coating, with the increase in the exposure period from 48 hours to 

1008 hours, increase in the formation of adherent corrosion product was 

observed, see Figure 4.29 (a-d). The visual observation clearly showed that 

the corrosion product formed near the edges of the A l-T i-C  coating, with 

increase in the exposure period, increased over the surface of the coating. It 

is important to note that for all the coatings, no sign of substrate corrosion 

was observed.

The weights of pure Al, A l-Zn-ln, Al-Zn and Al-Ti-C  in form of feedstock alloys 

and coatings at various intervals till 840 hours were recorded in Table 4.5 

and Table 4.6 respectively. In order to analyse and compare the change in 

weights after exposure of the coated and feedstock alloy samples during 

neutral salt spray corrosion test, oxidative change in weight per unit area for 

both alloys and coatings were calculated, which is reported in Table 4.7 and 

Table 4.8 respectively.

Table 4.7: Change in weight per unit area of the feedstock alloys at specified 
intervals. The measurem ents are the average value from three  
different samples.

Change in weight per unit area ( X  10 ~/fg/mnVd)
Tim e Al Al-Zn Al-Zn-ln Al-Ti-C
(hours)
48 2 .84  ±  0 .77 3 .60 ±  0.95 2 .67  +  0 .17 4 .72  ±  0 .30
168 4 .03  ±  0.86 2.91 ±  0 .98 4 .09  +  1.25 4 .7 2 + 1 .3 0
336 4 .40  +  1.20 4 .9 7 +  1.30 5 .68  ±  0 .39 2 .6 4 +  1.04
504 5 .2 2 + 1 .3 0 3.59 +  1.92 3 .84  +  1.03 4 .44  ±  0 .56
672 7 .23 +  1.60 8.13 +  2 .17 2 .5 9 +  1.01 5.41 ±  0.91
840 7 .7 0 + 1 .9 0 11.22 +  1.60 1.75 +  0 .80 8.61 ±  0 .76
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T ab le  4.8: Change in weight per unit area of the coatings at specified
intervals. The m easurem ents are the average value from three 

___________ different samples.____________________________________________
Change in weight per unit area ( X  10 ~7g/m m 2)

Tim e Al Al-Zn Al-Zn-ln A l-Ti-C
(hours)
48 96.75 ±  1.74 92.35  ±  7 .92 79 .52  ±  8 .74 47 .57  ±  4 .94
168 150.93 ± 2 .4 8 150.82 ±  13.68 127.12 ±  11.28 1 0 2 .1 4 ±  13.13
336 149.14 ±  8.49 159.58 ±  19.85 128.47 ± 9 .8 4 110.55 ± 2 0 .0 3
504 155.95 ±  14.80 175.99 ± 2 1 .8 7 142.41 ± 9 .1 9 1 2 9 .5 8 ±  21 .77
672 154.46 ±  19.69 182.17 ± 2 2 .3 6 181.62 ± 2 8 .7 4 134.79 ± 2 0 .7 6
840 155.53 ± 2 4 .4 5 188.32 ± 2 3 .2 7 154.13 ± 8 . 3 7 140.89 ±  19.72

The plots shown in F igure 4 .30 (a-d) and F igure  4.31 (a-d) was an attempt 

to understand the relation of change in weight per unit area of alloys and 

coatings with respect to time of exposure in the neutral salt spray test.
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Figure 4.30: Change in weight per unit area vs. time of exposure for (a) Pure 

Al, (b) Al-Zn, (c) Al-Zn-ln and (d) Al-Ti-C feedstock alloys.

A linear increase in the weight change per unit area vs. time of exposure, 

with an excellent linear regression fit, R2 = 0.98, was reported for Al 

feedstock alloy, see Figure 4 .30 (a). A similar linear relation of change in 

weight per unit area vs. exposure time with R2 value *  0.90 was seen for Al- 

Zn feedstock alloy, see Figure 4 .30 (b). Comparing the behaviour of Al-Zn 

and Al feedstock's after 48 hours in neutral salt spray test, the Al-Zn 

feedstock alloy exhibited 27% more increase in the weight per unit area than 

pure Al feedstock. With over a week of exposure, the Al-Zn feedstock alloy
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showed 27 % less increase in the weight per unit area in comparison to pure 

Al feedstock. These results were supported by the photographs of the pure Al 

and Al-Zn after 48 hours of exposure, see Figure 4.22 (a) and Figure 4.23 

(a) which as mentioned earlier, clearly indicated that A l-Zn showed initiation 

of corrosion while pure Al surface was unaffected. The photographs of pure 

Al and Al-Zn, see Figure 4.22 (b) and Figure 4.23 (b) taken after 168 hours 

of exposure revealed a uniform corrosion of A l-Zn alloy feedstock. The 27 % 

difference in the weight change per unit area between pure Al and A l-Zn  

feedstock can be attributed to the removal of loose corrosion product from  

the surface of Al-Zn feedstock alloy, during the cleaning of the alloys prior to 

weight measurem ent.

After 2 and 4 weeks of exposure in the neutral salt spray test, the A l-Zn  

feedstock alloy displayed ~ 11%  increase in the weight per unit area than  

pure Al feedstock, see Figure 4.30 (a) and (b) indicating that Al-Zn alloy was  

actively corroding even after 4  weeks of exposure. However, at the end of 

840 hours of exposure, the difference between the weight increased per unit 

area of Al-Zn feedstock and pure Al increased to «  31%

The Al-Zn-ln, showed an unusual behaviour pattern in the change in weight 

per unit area vs. time of exposure, a polynomial fit with R2 «  0.9 was  

observed, see Figure 4.30 (c). During the first 48 hours, the increase in 

weight per unit area of A l-Zn-ln feedstock was reported to be ~ 26%  and 6%  

less than what was reported for Al-Zn and pure Al feedstock's respectively. 

With increase in the exposure time to 1 week, the Al-Zn-ln feedstock reported 

an increase in weight per unit area which was ~ 28%  greater than w hat was  

reported for Al-Zn feedstock and marginally sam e (« 1% ) as reported for Al
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feedstock. Among the weight gain per unit area recorded for Al, A l-Zn and Al- 

Zn-ln feedstock's after 2 weeks of exposure in the neutral salt spray test, A l- 

Zn-ln feedstock showed the highest weight gained per unit area ( «  13%  > 

than Al-Zn and 22%  > Al feedstock's).

However from the third w eek to fifth w eek of exposure, the change in weight 

per unit area for Al-Zn-ln feedstock showed decrease in the value as 

compared with Al and Al-Zn feedstock. A  difference in the weight gained per 

unit area of A l-Zn-ln and Al-Zn coating after 504 hours was reduced to 6% , 

and was found to be =  26%  less than Al feedstock. With exposure time 

increasing to 672 and 840 hours, the weight change per unit area recorded 

for Al-Zn-ln feedstock was almost 70%  less than what was recorded for Al-Zn  

and pure Al feedstock's. The possible explanation for such behaviour 

exhibited by Al-Zn-ln could be attributed to:

•  A  large degree of variation in the weight change recorded for A l-Zn-ln  

feedstock. As seen from Tab le  4.5, the variation in the average value 

of the change in weight showed reduction from the initial weight of the 

feedstock. This could either be a possible source of experimental error 

while cleaning the feedstock samples before measuring the weight at 

each specified intervals or could be that the corrosion product formed  

on the surface of A l-Zn-ln feedstock, with increase in exposure time 

were not adhering to the surface and were removed during the manual 

cleaning process. However, the latter is in completed contradiction 

with Bessone et al. [227] who tested Al-Zn, A l-Zn-ln and A l-Zn-Sn  

anodes in sea w ater and reported that corrosion products formed on
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Al-Zn-ln were adherent and required long exposure of the alloy in the 

chemical to clean the surface of the alloy.

As observed from F igure 4 .30  (d), the Al-Ti-C  feedstock also showed non­

linear (3 rd degree polynomial) relation between weight change per unit area  

vs. time (R2 = 0 .80). During the first 48 hours of exposure, the increase in the 

weight per unit area of A l-Ti-C  feedstock was found «  40%  greater than Al, 

Al-Zn and Al-Zn-ln feedstock's. W ith 1 w eek of exposure, no change in the 

weight per unit area was recorded for Al-Ti-C  feedstock. However after 

completion of 2 weeks of exposure time, «  40  %  and 53 % decrease in the 

weight change per unit area in comparison with Al ,A l-Zn and Al-Zn-ln  

feedstock's was recorded for A l-T i-C  feedstock.

After 672 hours, the increase in weight per unit area for A l-Ti-C  was found to 

significantly higher than Al-Zn-ln feedstock (> 50% ) but was «  25%  lower 

than pure Al and Al-Zn feedstock's. With completion of 840 hours of 

exposure time, the increase in weight per unit area for A l-T i-C  feedstock was  

comparable with the value recorded for pure Al coating b u t «  30 % less than 

Al-Zn coating. This indicated that after 840 hours of exposure, the corrosion 

performance of Al-Ti-C  was similar to that of pure Al feedstock.

Due to non-linear relation between the weight change per unit area vs. time 

for Al-Zn-ln and Al-Ti-C  feedstock alloys, rate of corrosion of the alloys could 

not be estimated from F igure  4 .30  (c)-(d).
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Figure 4.31: Change in weight per unit area vs. time of exposure for (a) Pure 

Al, (b) Al-Zn, (c) Al-Zn-ln and (d) Al-Ti-C coatings.

A non-linear (polynomial function with degree>3) relation of change in weight 

per unit area vs. time of exposure for pure Al, Al-Zn, Al-Zn-ln and Al-Ti-C 

coatings was observed, see Figure 4.31 (a), (b), (c) and (d). A fast increase 

in the weight change per unit area during initial 168 hours of exposure was 

seen for all coatings. This fast increase in weight change can be attributed to:

• Due to inherent porosity (non-unique surface of coatings as compared 

to alloys) the formation of initial corrosion product within the pores 

could result in ‘densification’ of coating.
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•  Higher surface roughness, see Table 4.9, causing the oxides 

entrapment on the surface of the coatings (also changing the surface 

roughness with respect to time).

During the initial 48 hours of exposure, the weight gain per unit area for A l-Zn  

coating was found to almost similar to the Al coating, with only a difference of 

4%  the weight gained per unit area of Al-Zn coating was more than Al 

coating. After 1 week of exposure period, both Al and Al-Zn coating reported 

similar increase in the weight per unit area, see Figure 4.31 (a) and (b).

Now after 2 weeks of immersion time, comparing the graphs of Al and A l-Zn  

coating, almost a plateau region in weight change per unit area was  

observed for Al coating, see Figure 4.31 (a), while a steady increase in the 

weight change per unit area with increase in exposure time for A l-Zn coating 

was observed. At the end of 840 hours of exposure, the weight gain per unit 

area for Al-Zn coating was = 17%  > than the value of the weight gain per unit 

area reported for Al coating. Figure 4.31 (a) and (b) illustrated that with 

increase in the exposure period, the Al coating reported a minimal weight 

gain between each exposure period, however, A l-Zn coating showed = 10%  

increase in weight per unit area between each exposure period.

From Figure 4.31 (c), which showed change in weight per unit area vs. time 

for A l-Zn-ln coating, the value of weight gained per unit area was found to be 

= 17 % less than the value reported for Al and A l-Zn coating. W ith the 

increase in the exposure time from 48 hours to 1 week, the gain in weight per 

unit area observed for Al-Zn-ln coating was also found to be = 16 %  less than  

both Al and Al-Zn coatings. Notice the similarity in the trends of the weight
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change per unit area for A l-Zn-ln and Al-Zn coatings after 336 hours of 

exposure, see Figure 4.31 (b) and (c), unlike Al coating which forms a 

plateau, see Figure 4.31 (a), the Al-Zn-ln coating like Al-Zn coating showed 

increase in the weight per unit area between each exposure period till 840  

hours. However, after 504  hours, the A l-Zn coating exhibited the value of 

weight gained per unit area, which was = 19%  > than the value reported for 

Al-Zn-ln coating, but after 672 hours this difference was reduced to < 0 .5% , 

this was evident from the data point in the plot shown in Figure 4.31 (c) at 

672 hours. This can be attributed to a greater variation in the weight change 

within the triplicate Al-Zn-ln samples, see table 6 under 672  hours. However, 

after 840 hours of exposure, the value of the weight gained by A l-Zn-ln was  

reported to be 19%  < than the value reported by A l-Zn coating, see Figure 

4.31 (b) and (c), but was similar to the value reported for Al coating

Like the trend in curve obtained for weight change per unit area vs. time for 

Al-Zn and Al-Zn-ln coating, similar trend was obtained for A l-T i-C  coating, 

see figure 32 (d), except that during the initial 48  hours of exposure, the Al 

and Al-Zn and Al-Zn-ln coatings showed ~ 40%  > increase in the weight per 

unit area than reported for A l-Ti-C  coating. As seen from Figure 4.31 (d), 

throughout the various time periods of exposure, the values of the weight 

gained per unit area for Al, Al-Zn and Al-Zn-ln coatings have been a 

minimum of 25 %  > than the values observed for A l-T i-C  coating. It is also 

evident from Figure 4.31 (d), that A l-Ti-C  coating exhibited a minimum of 7 %  

increase in weight per unit area between each of the exposure period unlike 

Al coating, see Figure 4.31 (a) and (d).
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4.2 Open circuit potential vs. time

Figure 4 .32  to F igure 4 .35  represents the open circuit potential (O C P) vs. 

time plots for Al, Al-Zn, A l-Zn-ln and A l-Ti-C  coatings respectively. All the 

measurements were conducted in aerated aqueous media with varying 

concentrations of 3.5% w/v, 1.0% w/v, 0 .1% w /v and 0.01 % w/v NaCI solution 

(O C P was measured for 168 hours, where the potentiostat was set to record 

potential value in every 100 seconds during all the experiments).
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Figure 4.32: Open circuit potential vs. time plot for Al coating subjected to

3.5 % w/v, 1.0% w/v, 0.1%w/v and 0.01 %w/v NaCI solution.
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Figure 4.33: Open circuit potential vs. time plot for Al-Zn coating subjected to

3.5 % w/v, 1.0% w/v, 0.1%w/v and 0.01 %w/v NaCI solution.
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Figure 4.34: Open circuit potential vs. time plot for Al-Zn-ln coating subjected 

to 3.5 % w/v, 1.0% w/v, 0.1%w/v and 0.01 %w/v NaCI solution.
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F igure 4.35: Open circuit potential vs. time plot for Al-Ti-C coating subjected 

to 3.5 % w/v, 1.0% w/v, 0.1%w/v and 0.01 %w/v NaCI solution.
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The OCP behaviour of Al,Al-Zn, Al-Zn-ln and Al-Ti-C coatings in the first 24 

hours are shown in Figure 4 .36 to Figure 4 .39 (these plots are the magnified 

view of the graphs shown in Figure 4 .32 to Figure 4.35).
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Figure 4.36: Open circuit potential plot for Al coating during 24 hours of 

immersion in 3.5%w/v, 1.0%w/v, 0.1%w/v, 0.01 %w/v NaCI solution.
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Figure 4.37: Open circuit potential plot for Al-Zn coating during 24 hours of 

immersion in 3.5%w/v, 1.0%w/v, 0.1%w/v, 0.01 %w/v NaCI solution.
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Figure 4.38: Open circuit potential plot for Al-Zn-ln coating during 24 hours of 

immersion in 3.5%w/v, 1.0%w/v, 0.1%w/v, 0.01 %w/v NaCI solution.
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Figure 4.39: Open circuit potential plot for Al-Ti-C coating during 24 hours of 

immersion in 3.5%w/v, 1.0%w/v, 0.1%w/v, 0.01 %w/v NaCI solution.



Al-Zn, A l-Zn-ln and A l-T i-C  coating during the first hour of immersion showed 

similar potential values at 3 .5% w /v NaCI (« -0 .9 4  V ), 1.0%  w /v NaCI ( » -  

0.9V ), 0 .1% w /v NaCI (-0 .85V ) and 0.01 % w/v NaCI ( «  -0 .8V ), see Figure 

4.37, Figure 4.38 and Figure 4.39. The Al coating reported potential values 

«  - 0 .04V  lower than the potential values which were recorded for A l-Zn and 

Al-Zn-ln coatings, see Figure 4.36.

During the first hour of immersion, Al-Zn, A l-Zn-ln and A l-Ti-C  coating 

showed smooth O C P  traces, however small abrupt potential fluctuations 

were observed for Al coating, see Figure 4.36. This could be attributed to the 

increased solution resistance offered by 0 .01%  w/v NaCI solution, which 

could have resulted in these abrupt potential oscillations.

The evidence of existence of time required for activation of Al, A l-Zn, A l-Zn-ln  

and Al-Ti-C coatings was evident from the O C P  vs. time plots shown in 

Figure 4.36 to Figure 4.39. This time period has been referred as induction 

time by Breslin and Friery  [126] while studying the activation of Al by Zn and 

In ions, see Figure 2.39. Note that the authors used external addition of Z n 2+ 

and ln3+ ions to Al in 3 .5% w /v NaCI solution in order to study the synergetic 

interaction of Zn and In on activation of Al surface.

A  similar observation, in terms of induction time, was observed from the O C P  

vs. time plots within the first 24 hours of exposure for Al, Al-Zn, A l-Zn-ln and 

Al-Ti-C coatings, see Figure 4.36 to Figure 4.39. Comparing Al and A l-Zn  

coatings, a sharp shift in the O C P  towards more electronegative values for all 

the chloride concentrations (3.5% , 1 .0% ,0.1%  and 0 .01% ) was seen for Al 

and Al-Zn coatings, see Figure 4.36 and Figure 4.37.
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For 3.5 % w /v NaCI, after 4  hours Al coating showed shift in the O C P  from - 

0 .87 V  to -1.1 V , which then reverted to -1 .06 V  nearing 24 hours of exposure 

time. Similar transitions in the O C P values from -0 .87  V  to -1 .08, -0 .85  V  to -

1.06 V  and -0 .83  V  to -1 .02  V  for 1.0 %, 0.1 % and 0.01 % w /v NaCI was 

reported for Al coatings, see Figure 4.36. Note that just before the sharp shift 

in the O C P  values for Al coating, a drop in the O C P vs time plots (before 4 

hours of exposure) was also recorded for all concentrations of NaCI solution.

The Al-Zn coating exposed to 3 .5  %, 1.0%, 0 .1%  w/v NaCI solution showed  

shift in O C P values from -0 .93V , -0 .87 V  , -0 .83  V  to «  - 1.1 V  nearing 24  

hours of exposure period, see Figure 4.37. However for Al-Zn coating 

exposed to 0.01 % w /v NaCI solution, the shift in the O C P value was 

recorded from -0 .75  V  to -1 .03  V . However, Al-Zn coating showed no 

evidence of drop in the O C P values for all concentrations of NaCI solution, 

which were observed for Al coatings, see Figure 4.36 and Figure 4.37.

The Al-Zn-ln coating showed different induction time period for different 

chloride concentration, see Figure 4.38. It can be seen from Figure 4.38, 

that for NaCI concentrations of 3.5 %  w /v and 1.0 % w/v, the shift in the 

potential to more electronegative regions was observed post 4  hours of 

exposure, however at lower NaCI concentrations of 0.1 % w /v and 0 .01%  w /v  

this shift was observed after 6 hours of exposure. It is worthy to be noted that 

for Al-Zn-ln coating exposed to 3.5 % w/v , 0.1 % w/v and 0.01 % w /v NaCI 

solutions, the shift in the O C P  values from -0 .94  V, -0 .84  V  and -0 .80  V  to « -

1.06 V  was recorded, however for A l-Zn-ln coating exposed to 1.0%  w /v  

NaCI solution, the shift in the O C P  was «  8%  more electronegative than the 

values recorded for 3.5 %, 0 .1%  and 0.01 % NaCI
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For A l-Ti-C  coating exposed to 3.5%  w/v and 1.0%  w/v NaCI solution, the 

shift in the O C P  values from «  -0 .9  V  to -0 .92  V  was observed, with Al-Ti-C  

coating exposed to 0.1 %  w/v NaCI solution the shift in the O C P from -0 .80  V  

to -0 .86  V  was recorded. It is important to note that for the above mentioned 

chloride concentrations (3.5% , 1.0% and 0 .1%  w /v NaCI), the shift in the 

O C P towards more electronegative regions was observed after 2 hours of 

exposure. However, for A l-Ti-C  coating exposed to 0 .01%  w/v NaCI solution, 

no significant shift in the O C P  was observed (from -0 .75  V  to -0 .78  V).

After 24 hours of exposure, Al and Al-Ti-C  coating exposed to 3 .5%  w/v, 

1.0%w/v, 0 .1%  w/v and 0 .01%  w/v NaCI solutions exhibited a smooth O C P  

trace with values ranging from -1 .0  V  to -1 .05  V  for Al coatings and -0 .8  V  to - 

0.9 V  for A l-Ti-C  coatings till 168 hours, see F igure  4 .32  and F igure  4 .35 . 

This smooth O C P  trace could have been a result of formation of tenacious Al 

oxide film on the surface of both Al and Al-Ti-C  coatings exposed to different 

NaCI concentrations.

For Al coatings exposed to 3.5% w/v, 1.0% w/v, 0 .1%  and 0.01 % w /v NaCI 

solution, the formation of this passivating oxide film was evident from the fact 

that the smooth trace showed gradual shift in O C P value from « -1 .0 8  V  at 24  

hours to < -1 .05  V  after completion of 168 hours, see F igure  4 .32  (note that 

the Al coating exposed to 3 .5% w /v NaCI solution recorded the lowest 

potential value of -1.1 V  during the 24 hours of exposure, however for coating 

exposed to 0 .01%  w/v NaCI solution, no significant change in the O C P  after 

24 hours was observed, the value remained in the region of -1.01 V  to -1 .02  

V).
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Similar observations have been recorded in the earlier research conducted 

on Al exposed to halide and sulphate solutions [114,276]. The researchers  

showed that that the penetration power or the ability of the halide ions to 

detach or penetrate the Al oxide film formed on the surface decreases in the 

following order F<CI<Br<l [276].

In the present study, only various concentrations of NaCI were used, it has 

been shown that even though Cl" ions were reported to have better 

penetration effect (following F" ions in the above mentioned series) on the Al 

oxide films, this effect was only seen on formation of y-AI20 3 layer on Al 

surface [276]. However, in the present study, X R D  analysis of the Al coatings 

post 24 hours and 48 hours of exposure in salt spray cabinet revealed  

formation of hydrated Al oxide film on the surface of the coating, see Figure

4.4 and Figure 4.8, confirming lesser effectivity of Cl" ions to cause activation 

of Al coating resulting in smooth trace with gradual shift in O C P value < -1 .05  

V, see Figure 4.32.

The A l-Ti-C  coating exposed to 3.5%  w/v and 1.0%  w/v NaCI solution 

showed shift in the O C P values from ~ -0 .93  V  at 24 hours to =  -0 .87  V  after 

168 hours of exposure, see Figure 4.35. For A l-Ti-C  coating exposed to 

0.1 %  w /v and 0.01 %  w /v NaCI solution, no significant shift in the O C P  

values were observed after 24 hours of exposure, see Figure 4.35. Although, 

both A l-Ti-C  and Al coating showed smooth potential traces till 168 hours of 

exposure for all concentrations of NaCI, it is important to note that for A l-T i-C  

the O C P recorded for all concentrations of NaCI was < -0 .9  V , the lowest of - 

0.8 V  w as recorded for A l-Ti-C  coating exposed to 0 .01%  w/v NaCI solution.
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The O C P vs. time plot for A l-Ti-C  coating was similar to one obtained during 

previous research [107,276], where addition of various concentrations of Ti 

were chosen to study their effect on the electrochemical properties of Al 

alloys (the alloys were tested using standard 0 .5M  NaCI solution). The earlier 

research showed that Ti addition > 0.2wt%  promoted non-uniform dissolution 

of the alloy causing to O C P of the Al alloys to shift to a more electropositive 

region. During the present study, the evidence of non-uniform corrosion was 

seen for A l-T i-C  coating exposed to salt spray corrosion test, see Figure 

4.29, w here formation of corrosion products on specific regions of the 

coatings were observed in comparison to Al coating, see Figure 4.26. Ti in 

combination with C has been proven to show grain refinement effect on Al 

alloys [177,178], however, addition of Ti > 0.2wt%  has also been reported to 

reduce the uniform dissolution of the Al alloys [107,276].

The Al-Zn and Al-Zn-ln coatings showed fluctuation in the O C P values after 

48  hours of exposure for all concentrations of NaCI solution, see Figure 4.33 

and Figure 4.34, however these effects were seen more pronounced for Al- 

Zn-ln coating exposed to 3 .5% w /v and 1.0% w /v NaCI solution, see Figure 

4.34. Similar fluctuation in the O C P values have been observed during earlier 

research conducted on understanding the mechanism of Zn and In on 

activation of Al [114 ,115 ,121 ,122 ,129 ,130].

It has been shown in the earlier researches that when Al alloys containing Zn 

as an alloying elem ent are exposed to C l' media, the dissolution of Zn occurs 

from the surface at a higher rate than it diffuses in the bulk Al matrix, which 

drives the O C P  of the alloy to more electronegative region [126].
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This phenomenon causes the fluctuations in the O C P values, similar to the 

ones observed in Figure 4.33 in the O C P values of the Al when alloyed with 

Zn. However, when Al is alloyed with Zn and In, a higher degree of O C P  

fluctuations have been reported, when the alloys have been exposed to Cl" 

media [122,124]. This has been attributed to the fact that thermodynamically 

diffusion of In in Al matrix is significantly higher than Zn [90,96] during 

chloride exposure favouring adsorption of Cl' on the Zn rich regions. The  

adsorbed Cl' species forms In chloro complex’s which initiates and breaks 

the formation of Al oxides during long term exposure period causing the 

significant fluctuations in the O C P values. Hence these deductions can 

potentially explain a higher degree of O C P fluctuations seen for A l-Zn-ln  

coating, see Figure 4.34 than Al-Zn coating. Reduction in the induction 

period was also reported for Al in contact with Zn and In together than Zn 

alone, see Figure 2.39, however this behaviour was not observed in the 

present study.

4.3 Galvanic corrosion test

Table 4.9 shows the measured and actual values of the areas including the 

Ra values for Al, Al-Zn, A l-Zn-ln and A l-Ti-C  coatings. Figure 4.40 to Figure 

4.43 shows the corrosion current vs. time plot for Al, Al-Zn, A l-Zn-ln and A l- 

Ti-C  coatings with anode to cathode area ratios of 1:1, 1:1/2, 1:1/4 subjected  

to 3 .5% w /v NaCI solution. Note that the current values have been normalised  

to area of the anode to aid direct comparison for coatings with varying 

surface roughness values mentioned in Table 4.9.
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Table 4.9: The measured, actual and Ra values of Al, Al-Zn, Al-Zn-ln and Al-
Ti-C coating.

Coatings Measured 
area (mm2)

Actual area
(mm2)

Ra (pm)

Al 1600 4480 24 + 2
Al-Zn 1600 3575 18 ±  1
Al-Zn-ln 1600 5208 20 + 2
Al-Ti-C 1600 6048 48 ± 4
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Figure 4.40: Current density vs. time plot for Al coating subjected to 3.5 % 

w/v NaCI solution. The anode to cathode area ratios used was 1:1, 1:1/2 and 

1:1/4 respectively.

Al-Zn-ln coatings were also exposed to lower concentrations of NaCI solution 

of 1.0% w/v, 0.1% w/v and 0.01% w/v with anode to cathode ratios of 1:1/2 

and 1:1/4 respectively, see Figure 4 .44  to Figure  4.46.
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Figure 4.41: Current density vs. time plot for Al-Zn coating subjected to 

3.5 % w/v NaCI solution. The anode to cathode area ratios used was 1:1, 

1:1/2 and 1:1/4 respectively.
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Figure 4.42: Current density vs. time plot for Al-Zn-ln coating subjected to

3.5 % w/v NaCI solution. The anode to cathode area ratios used was 1:1, 

1:1/2 and 1:1/4 respectively.
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Figure 4.43: Current density vs. time plot for Al-Ti-C coating subjected to 

3.5 % w/v NaCI solution. The anode to cathode area ratios used was 1:1, 

1:1/2 and 1:1/4 respectively.
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Figure 4.44: Current density vs. time plot for Al-Zn-ln coating subjected to 

1.0 % w/v NaCI solution. The anode to cathode area ratios used was 1:1/2 

and 1:1/4 respectively.
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Figure 4.45: Current density vs. time plot for Al-Zn-ln coating subjected to 

0.1 % w/v NaCI solution. The anode to cathode area ratios used was 1:1/2 

and 1:1/4 respectively.
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Figure 4.46: Current density vs. time plot for Al-Zn-ln coating subjected to 

0.01 % w/v NaCI solution. The anode to cathode area ratios used was 1:1/2 

and 1:1/4 respectively.
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Figure 4 .47 to Figure 4 .50  shows the closed circuit potential (CCP) vs. time 

plots for Al, Al-Zn, Al-Zn-ln and Al-Ti-C coatings exposed to 3.5% w/v NaCI 

solution with anode to cathode area ratio of 1:1, 1:1/2 and 1:1/4. The CCP 

vs. time plot was also recorded for Al-Zn-ln coating exposed to 1.0% w/v, 

0.1% w/v and 0.01% w/v NaCI solution with anode to cathode area ratio of 

1:1/2 and 1:1/4, see Figure 4.51 to Figure 4.53.
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Figure 4.47: CCP vs. time plot for Al coating subjected to 3.5 % w/v NaCI 

solution. The anode to cathode area ratios used was 1:1,1:1/2 and 1:1/4 

respectively.
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Figure 4.48: CCP vs. time plot for Al-Zn coating subjected to 3.5 % w/v NaCI 

solution. The anode to cathode area ratios used was 1:1,1:1/2 and 1:1/4 

respectively.
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Figure 4.49: CCP vs. time plot for Al-Zn-ln coating subjected to 3.5 % w/v 

NaCI solution. The anode to cathode area ratios used was 1:1,1:1/2 and 

1:1/4 respectively.
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Figure 4.50: CCP vs. time plot for Al-Ti-C coating subjected to 3.5 % w/v 

NaCI solution. The anode to cathode area ratios used was 1:1,1:1/2 and 

1:1/4 respectively.
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Figure 4.51: CCP vs. time plot for Al-Zn-ln coating subjected to 1.0 % w/v 

NaCI solution. The anode to cathode area ratios used was 1:1/2 and 1:1/4 

respectively.
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Figure 4.52: CCP vs. time plot for Al-Zn-ln coating subjected to 0.1 % w/v 

NaCI solution. The anode to cathode area ratios used was 1:1/2 and 1:1/4 

respectively.
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Figure 4.53: CCP vs. time plot for Al-Zn-ln coating subjected to 0.01 % w/v 

NaCI solution. The anode to cathode area ratios used was 1:1/2 and 1:1/4 

respectively.
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In an attempt to formulate an empirical relation between the galvanic 

corrosion current density (A/mm2) and the area ratio of cathode to anode 

used during the study, the results shown in Figure 4 .40 to Figure 4 .43 were 

re-plotted on a log scale vs area ratio, see Figure 4.54. Note that the graph 

shown in Figure 4.54, shows relation between corrosion current and area 

ratio for Al, Al-Zn, Al-Zn-ln and Al-Ti-C coatings exposed to 3.5% w/v NaCI 

solution for 168 hours.

1 c n r c *

•  lv* rim

*  ? iv. i n ip

- - PlMW'l ( ■  II I 

1 IXJl ( it  Hrwpr Uni* run I

V - JJtlfc OB»‘1
II1 /.ibt-01 ,

r  1*T -rw»-
6 9 1 f0 1

(a)

|T  1,001 07
Ce■a
co
3O i nor 08

/ J jJ  V *

• Wnin vz ; a?**'*111
. Audium 

-  -  - flower (I* *  rtm |

 Pnwrr Ur>drun|

Area ratio (cathode to anode)
lO 40

Area ratio (cathode to anode)

(c)
v <j f,qf •:«. -  •

Hi* « IVK-01

lXW f 07 r    -  -  —-------

• HI tun
f 'i 4S| >"

81 -

*  i n i  run 

- - Poiyrt 11 vt rurv|

Pownt |J n o  i -.ju)

2.0
Area ratio (cathode to anode)

EI
5
6
g 1 n» or

■ til run
•  ,ifx! fun

• -  Ptiwei 11st run) 

 Pniwrr |7nn r dr |

(d)

y S l i t  i.r8ii
4’ - h 4>1

y I 9lh el
R1

2.D 4.0

Area ratio (cathode to anode)

Figure 4.54: Logarithmic plots showing relationship between galvanic 

corrosion current density and cathode to anode area ratio for (a) Al, (b) Al-Zn, 

(c) Al-Zn-ln and (d) Al-Ti-C coatings exposed to 3.5% w/v NaCI solution for 

168 hours. Duplicate experimental data plotted on the graph (shown as 1st 

and 2nd run).
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For Al-Zn-ln coatings subjected to 1.0% w/v, 0.1% w/v and 0.01% w/v NaCI 

solution, similar log plots to establish relation between galvanic current and 

area ratio are shown in Figure 4.55.
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Figure 4.55: Logarithmic plots showing relationship between galvanic 

corrosion current and cathode to anode area ratio for Al-Zn-ln coating 

exposed to (a) 1.0% w/v, (b) 0.1% w/v, and (c) 0.01% w/v NaCI solution for 

168 hours. Duplicate experimental data plotted on the graph (shown as 1st 

and 2nd run).

The plot in Figure 4.56 also shows the effect of changing chloride 

concentration on the galvanic current for Al-Zn-ln coatings coupled with mild 

steel with cathode to anode ratio of 1:1, 2:1 and 4:1 respectively.
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F igure 4.56: Log plots showing the variation in galvanic corrosion current vs

chloride concentration for Al-Zn-ln coating coupled with mild steel with

cathode to anode area ratio of 1:1, 2:1 and 4:1 respectively.

The galvanic corrosion tests conducted for 168 hours in the study were to 

gain comprehensive understanding of the effectiveness of sacrificial 

protection offered by Al-Zn-ln coatings to the underlying steel structures 

when exposed to chloride media (3.5% w/v NaCI). The different cathode to 

anode area ratios were chosen during the study in order to understand the 

sacrificial behaviour of the Al-Zn-ln coating in a condition in which the defect 

or removal of coatings subjected the underlying substrate exposed to 

corrosive media. Al, Al-Zn and Al-Ti-C coatings were examined for the sake 

of comparison and benchmarking the performance of Al-Zn-ln coating. The 

effect of Cl" ion concentration on sacrificial performance of Al-Zn-ln coating 

was also established by varying the NaCI concentration (1.0% w/v, 0.1% w/v 

and 0.01% w/v) during the galvanic corrosion test.
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A  sharp rise in the corrosion current was observed for Al-Zn-ln coatings 

exposed to 3 .5%  w/v NaCI solution with cathode to anode ratio of 1 to 1 and 

4 to 1 within the first 24 hours of exposure, see Figure 4.42. However no 

significant change in the corrosion current was seen for A l-Zn-ln coating with 

cathode to anode ratio of 2:1 at 3 .5%  w/v NaCI solution, see Figure 4.42.

A similar rise in the corrosion current values was also observed for A l-Zn  

coatings exposed to 3 .5%  w/v NaCI solution, however this time this sharp 

rise was seen for cathode to anode ratios of 1:1 and 2:1, see Figure 4.41. 

For Al-Zn coating coupled with mild steel with the ratio of 4  to 1 showed  

decay in the current values within the first 24 hours of exposure, see Figure 

4.41.

Unlike Al-Zn-ln and Al-Zn coating, the A l-Ti-C  coating after a sharp rise in the 

corrosion current values showed formation of a plateau region in the current 

vs. time plot during first 24 hours of exposure in 3 .5%  w/v NaCI solution for 

cathode to anode ratio of 1 to 1, see Figure 4 .43 . After a continuous decay of 

current values till 48  hours, once again formation of a plateau was seen in 

current vs. time plot for A l-Ti-C  coating coupled with mild steel with area ratio 

1:1 in 3 .5%  w/v NaCI solution see Figure 4 .43 . However, after rise in the 

current values after the formation of plateau, steady current values were  

observed for A l-Ti-C  coating coupled with mild steel in 3 .5%  w /v NaCI 

solution till 168 hours of exposure. Note that no significant change in the 

current values were seen for A l-T i-C  coatings in 3 .5%  w/v NaCI solution with 

cathode to anode area ratio of 2 to 1 and 4  to 1, except for the higher values 

of corrosion current which were seen for area ratio of 2 to 1, see Figure 4.43.
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Note the fluctuations observed in the current vs. time plots for Al, Al-Zn, Al- 

Zn-ln and A l-Ti-C  coatings exposed to 3 .5%  w /v NaCI solution for cathode to 

anode area ratios of 1to1, 2 to la n d  4  to 1, see Figure 4.40 to Figure 4.43. 

These fluctuations were more profound for Al-Zn coatings, see Figure 4.41. 

The fluctuations similar to the ones observed during the present study have 

also been reported previously by researchers working on Al anodes alloyed 

with both Zn and In [114 ,115 ,121-130,280].

The fluctuations in the current vs. time plots observed for both A l-Zn-ln and 

Al-Zn coatings suggested the instability of passive Al oxide layer during 

formation. It has been shown in the previous researches that the synergetic 

interaction of Zn and In produces the activation of Al alloys in chloride 

containing media by rupturing the passive Al oxide layer and increasing the 

Cl' adsorption on the surface [114,115]. This cyclic formation and rupturing of 

Al oxide layer could have resulted in fluctuations of the corrosion current 

observed for Al-Zn and Al-Zn-ln coating, see Figure 4.41 and Figure 4.42.

The fluctuations in the corrosion current values of A l-Zn coatings w ere  

recorded to be higher than A l-Zn-ln coatings exposed to 3 .5%  NaCI solution. 

This can be explained stating that Zn favours formation of ZnAI20 4 spinel 

with Al oxide which in turn ruptures the Al oxide layer due to increase in 

stress values in oxide [126]. However, the molar volume of ZnAI20 4 has been  

reported «  51%  higher than Al oxide [91,92,126]. This suggested that the 

volume of the corrosion product formed on the surface of A l-Zn coating would 

be higher than Al-Zn-ln coating resulting in a higher degree of current 

fluctuations observed in Figure 4.41.
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The decay in the current values observed for Al-Zn-ln coating coupled with 

mild steel with area ratio of 1 to 1 and 4  to 1 after 24 hours of exposure in 

3.5%  w /v NaCI solution could be attributed either due to the formation of Al 

oxide on the surface of the coating or due to deposition of corrosion product 

on the surface of mild steel. The steady current values observed for A l-Zn-ln  

coating coupled with mild steel with area ratio of 2 to 1 indicated the 

likelihood of latter to occur more probable. Similar behaviour was also 

recorded for Al-Zn coating coupled with mild steel with area ratios of 1 to 1 

and 2 to 1 and A l-Ti-C  coating with area ratio 1 to 1 in 3 .5%  w /v NaCI 

solution.

In addition to the corrosion current values, the C C P values recorded for A l- 

Zn-ln coating coupled with mild steel with the area ratio 1 to 1 and 4  to 1 

exposed to 3 .5%  w/v NaCI solution, see Figure 4.49 were found to be «  1.06  

V  vs. Ag/AgCI electrode, similar to the O C P values of Al-Zn-ln coatings 

exposed to 3 .5%  w/v NaCI solution, see Figure 4.34 (However for A l-Zn-ln  

coating coupled with mild steel with area ratio of 2 to 1 reported C C P value ~  

-1 .0  V  vs. Ag/AgCI electrode). The Al-Zn coating for area ratios 1:1, 2:1 and 

4:1 showed a stable C C P  values close to .-1 .0V  vs. Ag/AgCI electrode. This 

showed that for Al-Zn-ln coating coupled with mild steel, the C C P  values  

were found more electronegative than A l-Zn coating in 3 .5%  w /v NaCI 

solution. Compared with Al-Zn and Al-Zn-ln coating, a C C P  value ~ -0 .83  V  

vs. Ag/AgCI electrode for A l-Ti-C  coating coupled with mild steel with area  

ratios 1:1, 2:1 and 4:1 in 3 .5%  w/v NaCI solution was recorded (this value  

was found to be in a more electropositive region even compared to Al coating 

under similar condition, see Figure 4.47).
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The previous researchers showed that O C P  of mild steel in chloride media 

was -  0 .72  V  vs. S C E  (-0 .68  V  vs. Ag/AgCI electrode) which theoretically is 

between equilibrium potential of Fe /F e2+ and 0 2/0 H ‘ [278,279]. This 

suggested that Al, Al-Zn, A l-Zn-ln and Al-Ti-C  coatings which exhibited O C P  

values more electronegative than mild steel in chloride solution, see Figure 

4.32 to Figure 4.35, even after coupling with mild steel with varying cathode 

to anode ratio, the C C P values were found to be more active in the order A l- 

Zn-ln>AI-Zn>AI>AI-Ti-C .

Further investigation of Al-Zn-ln coating at lower chloride concentration of 

1.0%  w/v NaCI solution also showed a sharp rise in the corrosion current 

value within the first 24  hours of exposure when coupled with mild steel with 

area ratio of 2 to 1 and 4  to 1 respectively, see Figure 4.44. A steady current 

values of the magnitude «  1.7x1 O'7 A /m m 2 were recorded for cathode to 

anode area ratio 2 to 1 while «  1.5x10‘7 A .m m 2 for cathode to anode area  

ratio of 4 to lo v e r  a period of 168 hours. With further decrease in the NaCI 

concentration to 0 .1%  w /v for both the area ratios, the current values 

obtained over a period of 168 hours were reported to be «  30%  lower than  

the values observed for A l-Zn-ln coating exposed to 1.0%  w/v NaCI solution, 

see Figure 4.45. A  further reduction of «  64%  in the current values were  

observed for A l-Zn-ln coating exposed to 0 .01%  w/v NaCI solution as 

compared to 1.0%  w /v NaCI solution exposure condition, see Figure 4.46. 

Note the fluctuations observed in the current vs. time plot for A l-Zn-ln coating 

exposed to 0 .01%  w /v NaCI solution, see Figure 4.46, apart from cyclic 

formation and breakdown of the Al oxide layer, a higher solution resistance 

could also have caused these fluctuations.
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The closed circuit potential values for Al-Zn-ln coating coupled with mild steel 

with area ratios 2 to 1 and 4 to 1 also showed shift in the C C P  values 

towards less electronegative region, see Figure 4.51 to Figure 4.53, with 

decrease in the NaCI concentration from 1.0%  w/v to 0 .01%  w/v over the 

period of 168 hours. The C C P values of the order ~ -1 .08V  vs. Ag/AgCI 

electrode at 1.0%  w /v NaCI, « -1 .0  V  vs. Ag/AgCI electrode at 0 .1%  w /v NaCI 

and «  -0 .9  V  vs. Ag/AgCI electrode at 0 .01%  w/v NaCI for A l-Zn-ln coatings 

w ere recorded (for both the area ratios used in the experiment), see Figure 

4.51 to Figure 4.53.

These results strongly suggested the dependency of activation of A l-Zn-ln  

coating with chloride ion concentration. It can be stated that these results 

were in line with the previous research conducted [121,122,127] on A l-Zn-ln  

anodes which showed that activation of Al by Zn and In in halide solution was 

strongly dependent on the halide anion in the following order F>CI>Br>l. 

Even though in the present study only NaCI solution with varying 

concentrations was used, the activation of A l-Zn-ln coating with increase in 

chloride concentration was evident from the results.

The logarithmic plots shown in Figure 4.54 aided in establishing an empirical 

relationship between the galvanic corrosion current and the area ratio of 

anode to cathode used during the experiment. Very satisfactory R 2 values of 

0.98 and 1 were obtained for Al-Zn and Al-Zn-ln coating, see Figure 4.54 (b) 

and (c), however for Al and A l-Ti-C  coating R2 values of 0 .69 and 0 .54  were  

obtained. From the plots shown in Figure 4.54 (a) and (b), the following 

empirical relation for Al-Zn-ln and Al-Zn coating were found:
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IAi-zn-in = 9 .28x10"7(Area of Cathode/Area of A n o d e )0,30

And

lAi-zn = 2 .67x10'7(Area of Cathode/Area of Anode) '°-24

It is important to note that the above relation has been formulated using the 

measured area of anodes (see T ab le  4 .9) used during the experimentation. 

Increase in the corrosion current values per unit area with increase in the 

area ratio was observed for Al-Zn-ln coatings in 3 .5%  w/v NaCI solution for 

168 hours. This relation was similar to the one observed by Lin and Shih 

[278] who investigated the performance of Al-Zn-ln anodes subjected to heat 

treatment. A  negative correlation was seen for A l-Zn coating subjected to 

3.5%  w/v NaCI solution for 168 hours.

It was apparent from the above results that even though both A l-Zn-ln and Al- 

Zn coating consisted of similar concentration of Zn (4.5wt%  to 5.1w t% ), the 

presence of 0.02w t%  to 0.05w t%  In governed the enhanced performance of 

Al-Zn-ln coating.

As investigated in the previous electrochemical studies of A l-Zn-ln alloys in 

halide solution, it has been showed that rate of Zn dissolution on the surface 

of the alloy exceeds the rate of Zn diffusion in Al matrix resulting in electro­

oxidation of Zn providing active alloy surface [129]. This has shown to 

produce a ZnAI20 4 spinel with a higher molar volume than corresponding Al 

oxide [126] which results in rupturing of Al oxide layer due to developm ent of 

internal stresses.
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In the present study, this fact has not been established as the corrosion 

products obtained from electrochemical testing were not analysed, the 

precipitation of this spinel on the surface of A l-Zn coating could have resulted 

in decrease in corrosion current with increase in the area ratio as seen from  

Figure 4 .54  (b). The adsorption of Cl" ions at In rich regions of A l-Zn-ln  

coating producing activation of the alloy could have resulted in increased 

galvanic corrosion current with increase in the area ratio shown for A l-Zn-ln  

coating, see Figure 4 .54  (c).

A  similar relation between the galvanic corrosion current and area ratio was  

also established by M ansfeld and Kenkel [281] who investigated coupling Al 

series 2024  and 7075 with different cathode area ratio (the cathode used 

w ere Cu, stainless steel, Ti 6AI 4V). The relation stated by authors [281] was  

applicable for cathodic reaction governed by reduction of oxygen, which 

could also be applicable in the present study as both Zn and In has been  

shown to interact with the Al oxide layer on the anode surface [126,278].

Similar galvanic corrosion current vs area ratio relations were also 

established for Al-Zn-ln coatings exposed to lower NaCI concentrations of 

1.0%  w/v , 0 .1%  w /v and 0 .01%  w /v , see Figure 4 .55  (a), (b), (c), however 

the R2 value of 0.9 was only observed for A l-Zn-ln coating exposed to 0 .1%  

NaCI solution. This indicated that CP ion concentration played a crucial role in 

the performance of Al-Zn-ln coating coupled with mild steel reinstating the 

fact that higher chloride concentrations (>  3 .5%  w/v NaCI) was favourable for 

getting the increased galvanic current with increase in area ratio, see Figure 

4 .5 4  (c).

253



Figure 4.56 showed a very interesting relation between galvanic corrosion 

current per unit area vs NaCI concentration plotted on a log scale. 

Theoretically, the graph shown in Figure 4.56 should have shown a linear 

increase in the corrosion current per unit area values for A l-Zn-ln coating as 

the NaCI concentration increased from 0.01%  w/v to 3 .5%  w/v, based on 

previous deductions [121]. However, both negative and positive slopes in the 

graphs were observed, see Figure 4.56. In order to explain this behaviour, 

relation between galvanic corrosion current per unit area and area ratio of 

cathode to anode can be used. The following relations were observed for Al- 

Zn-ln coating exposed to various NaCI concentrations:

Ul-Zn-ln OC (Ac/A a)0-30 for 3 .5%  w/v NaCI

Ul-Zn-ln oc (Ac/A a)0-60 for 1.0%  w/v NaCI

Ul-Zn-ln OC (Ac/A a)‘184 for 0 .1%  w/v NaCI

Ul-Zn-ln OC (Ac/Aa)°-11 for 0 .01%  w/v NaCI

W here A c is the area of cathode and A a is the Area of anode. The above  

mentioned relations were established using the measured or geometric areas  

of anode and cathode during the experiment. However, as stated in Table 

4.9, the actual area of the coating used was significantly higher than the 

geometric area. Hence for this reason, the A a» A c for A c to A a area ratio of 

1:1 and 2:1. Using the above mentioned fact, it can be seen from Figure 

4.56, that with increase in the NaCI concentration from 0 .01%  w /v to 0 .1%  

w/v, the galvanic corrosion current values per unit area for A l-Zn-ln coating



coupled with mild steel with area ratio of 1:1 and 2:1 showed increased value 

while for 4:1 decrease in the current value was observed. Similar explanation 

can also be used in understanding the behaviour of galvanic current of Al-Zn- 

ln coating at higher chloride concentrations used during the study, see 

Figure 4.56. However, another important factor affecting the galvanic 

corrosion current values in the present study could be deposition of loose 

corrosion product on the surface of the coatings due to higher surface 

roughness values (the earlier electrochemical studies were conducted on 

polished Al-Zn-ln alloy surfaces).

4.4 Electrochemical Impedance Spectroscopy (EIS) analysis

Figure 4.57 (a), (b), (c ), (d) to Figure 4.60 (a), (b), (c),(d) shows the Nyquist 

plots for Al, Al-Zn, Al-Zn-ln and Al-Ti-C coatings exposed to 3.5% w /v , 1.0% 

w/v, 0.1% w/v and 0.01% w/v NaCI solution for 1, 24, 48 and 168 hours. The 

corresponding electrochemical parameters were obtained from fitting the 

impedance data using Zsimpwin 3.10 software and were recorded in Table

4.10 to Table 4.13. The impedance data used for analysis was corrected 

from the measured value of the working electrode area (which was 8.65 cm2 

for all the coatings) to the actual value (including the surface roughness as 

shown in Table 4.9).
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The Nyquist plots shown in Figure 4.57 (a)-(d) to Figure 4.60 (a)-(d) 

were plotted from the data which was validated using Kramers- 

Kronig (K-K) transformation (to validate the compliance of 

experimental impedance data according to the linear system theory 

for linearity, causality, stability and finiteness) [133-136,243]. The 

electrochemical parameters shown in Table 4.10 to Table 4.13 were 

also obtained post K-K transformation of the experimental impedance 

data plotted in the Nyquist plots (Figure 4.57 (a)-(d) to Figure 4.60

(a)-(d)) and were interpreted using the equivalent circuit models 

explained in Table 4.14.

Table 4.14: Symbols and operational impedance functions of the 
elements used in equivalent circuit models shown in

____________ Table 4.10 to Table 4.13.________________________
Circuit Circuit Operational Diagrammatic
Element element impedance representation
symbol_______ meaning_____________________________________
R Resistor R

C Capacitor 1/sC

Q Constant 1/Q(joj)n
phase element

L Inductor sL

W Warburg a (1 -j) /w 1/2
impedance

- \ w v —

CPE

- r m ^ ~

- w

From Table 4.14, s represents Laplace transformation of frequency 

response (w), j represents complex number (-1)1/2 and cr represents 

diffusion constant of species involved in corrosion reaction and is 

inversely proportional to the area of the working electrode [135],
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The arrangement of the elements used in the equivalent circuit model 

presented in the Table 4.10 to Table 4.13 were obtained from a 

series of existing models available in the Zsimpwin 3.10 software 

[245]. The circuit elements within the brackets represent circuit 

elements in parallel combination, while the circuit element outside the 

bracket shows combination in series. The diagrammatic 

representations of the equivalent circuit models mentioned in Table

4.10 to Table 4.13 are shown in Figure 4.61.

<a)

—'WvV-
R,

T-jcP E f-t
l l i

_u>J c
<b>

L 2 _

lc)

-WvV-
R<

-AWV-
' C P E

Qi

Rj

CPE

a.

AAAV-
Ri

L

—ww-
Ri

-AWr-
H

M

------C P E -------- ------CPE |--------

Q< Q?

— VvVv— — W A -
Rj R,

->vVvV~
R.

Qi

■AWsr
R,

- W i
w

L—W r  
R,

Figure 4.61: Diagrammatic representation of (a) R(Q(R(QR))) or 

R(C(R(QR))), (b) R(QR)(QR), (c) R(Q(R(LR))), (d) R(Q(R(RW))),the 

equivalent circuit models used during the interpretation of impedance 

data shown in Table 4.10 and Table 4.13.
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It is important to note that during the fitting of the equivalent circuit 

model to analyse the experimental impedance data, following 

assumptions were made [99,135,136,245]:

• As the coating-electrolyte system was examined for a finite

frequency range, from 1 kHz to 1 mHz, for different NaCI 

concentrations (3.5% w/v, 1.0% w/v, 0.1% w/v and 0.01% w/v) 

and the data obtained was K-K transformable, the deviation of 

the experimental impedance data from the analysed 

impedance data was negligible. This was also confirmed from 

the X2 (chi-squared) values, which were reported to be

<0.005, that showed no significant difference between the 

experimental and analysed impedance values.

• During previous investigations conducted on Al anodes

containing In, Sn and Zn, a non-ideal capacitor or constant 

phase element (CPE), was used to compensate for the 

inhomogeneties of the working electrode-electrolyte. The 

impedance of the CPE is given by the relation shown in Table 

4.14. Due to the inherent surface roughness of the coatings, 

see Table 4.9 which could cause inhomogeneties in the 

coating-electrolyte interface on a microscopic level, CPE was 

incorporated in the equivalent circuit model as shown in 

Figure 4.61. The behaviour of CPE is determined by the 

values of the exponential parameter n, which are mentioned in 

Table 4.15.
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Table 4.15: Behaviour of CPE according to n values.
n values CPE behaviour
-1
0
0.5
+1

Warburg impedance 
Capacitor________

Inductor
Resistor

From the Nyquist plots for Al coating at various chloride 

concentrations, shown in Figure 4.57 (a)-(d), two time constants, 

were deduced with equivalent circuit model shown in Figure 4.61 (a) 

from which the impedance parameters were derived, see Table 4.10. 

The equivalent circuit model for Al coating subjected to 3.5% w/v 

NaCI solution for 1 hour reported an ideal capacitive behaviour, see 

Table 4.10, this was also noticed from the complex Nyquist plot 

shown in Figure 4.57 (a), which records formation of a vertical line 

starting from mid frequency range of 10 kHz and continues to 1 mHz, 

confirming that the imaginary component was inversely proportional 

to the frequency. However, this behaviour was not observed with the 

increase in the exposure period, nor was observed for Al coating 

exposed to 1.0% w/v, 0.1% w/v and 0.01% w/v NaCI solution for all 

exposure period used during experiment.

During the earlier work conducted on understanding the activation 

and passivation mechanism of Al in both chloride and alkaline media, 

formation of similar Nyquist plots as shown in Figure 4.57 have been 

reported, see Figure 2.41 [135]. However the Nyquist plots shown in 

Figure 2.41, did not show such a high capacitive behaviour which 

was observed for Al coating after 1 hour in 3.5% w/v NaCI solution.
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In an earlier work reported by MacDonald [136] on impedance 

analysis of porous electrodes, complex Nyquist plots with sharp rise 

in the capacitance, similar to the one shown in Figure 4.57, was 

observed. The authors suggested that the operational impedance 

function of the semi-infinite cylindrical pore (Zp) was directly 

proportional to modulus of Z and phase angle <£, given by the 

following relationship [136]:

Zp = (Rplzl)1/2ei‘W2

Where, Rp represents the resistance per unit depth of the pore. Using 

the above relation, the authors suggested that the locus with slope > 

7t /4  observed in the complex Nyquist plot indicated formation of pore 

on the electrode, which was found to be further dependent on the 

shape of the pore.

According to the authors [136], the shape of the Nyquist plot shown 

in Figure 4.57 (a) could have shown formation of a pore either with a 

right circular cylindrical geometry or semi-spherical geometry. The 

present work seemed to be very similar to the deductions made by 

MacDonald [136] on EIS of porous electrodes, but this capacitive 

behaviour was not observed further during the EIS investigation of 

either AI,AI-Zn, Al-Zn-ln or Al-Ti-C coating at any exposure time and 

NaCI concentration.
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The equivalent circuit model shown in Figure 4.61 (a) which aided in 

obtaining impedance parameters for Al coating exposed to various 

NaCI concentrations recorded in Table 4.10 showed formation of two 

time dependent constants. The first CPE (Qi) at higher frequency 

range between 100 kHz to 10 kHz, could be associated with the 

initial formation of Al oxide layer on the surface of the working 

electrode.

Similarly at higher frequency range, Ri is associated with the 

resistance offered by the electrolyte solution. Increase in the value of 

Ri with reduction in NaCI concentration was reported in Table 4.10, 

indicating increase in the electrolyte resistance with decrease in Cl" 

ion concentration.

At lower frequencies (<10 kHz), the presence of R2, Q2 and R3 

indicated complex interactions at Al coating surface-AI oxide- 

electrolyte interface. The fitting results showed that the n values for 

Q1 were recorded to be mostly in the range of 0.7 to 1, except for Al 

coating exposed to 1.0% w/v NaCI for 1 hour, 0.1% w/v NaCI for 168 

hours and 0.01% w/v NaCI for 48 hours, which reported n values of 

0.5, see Table 4.10.

The Nyquist plots for Al obtained in the present study were similar to 

the results reported by other researchers [133-137,232,238] who
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investigated the corrosion mechanism of Al and Al alloys using 

similar equivalent circuit model.

The dominant mechanism explaining the formation of higher 

frequency time constant (Qi) was attributed to the dielectric 

properties of Al oxide layer [135,139]. It was shown that the 

capacitance of the Al oxide layer holds an inverse relation with the 

thickness of the film [139] (C or Q »£0£/d, where £0 and £ represents 

relative permittivity of vacuum and Al oxide film and d is the 

thickness)

Thus, the reduction in the Qi values as seen from Table 4.10, with 

increase in the exposure period suggested increase in the thickness 

of the passive Al oxide layer formed on the Al coating exposed to 

different NaCI concentrations (notice the OCP values recorded prior 

to impedance data collection were in a more electronegative region 

with increase in the period of exposure in NaCI solution, see Table 

4.10.)

Further to the formation of Al oxide layer, a complex mechanism 

involving diffusion of Al3+ ions across the AI(OH)3 film was used to 

explain the behaviour at Al coating-oxide-electrolyte interface 

[135,136], which was represented by the time constant, observed at 

lower frequencies, see Figure 4.61 (a).This complex mechanism of 

diffusion of metal cation through the oxide film was referred to as a 

point defect model [136,137], and was used in understanding the
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passive oxide layer formed on metals like Ni, Al, Ti, Cr, Zn and Zr. 

This model was also used in understanding the activation 

mechanism of Al by Zn and In in the chloride media [138-140].

During the present study of Al coatings at various chloride 

concentrations and exposure time period, the following observations 

made were in accordance with the point defect model theory of 

passive oxide film [136,137]:

• The formation of Al oxide layer, which increased in thickness 

with longer exposure periods, was evident from the values of 

Qi recorded in Table 4.10.

• It was envisaged that the passive oxide film contained a large 

density of vacancies of Al3+ ions (V a i3+) which diffused from 

from the surface of Al beneath the passive layer and 

vacancies of oxygen atoms (V0 2 ) resulting in a p-n type 

junction causing development of electric field across the oxide 

film which is independent of the thickness of the oxide film. As 

seen from Table 4.10, that lower Q2 values at 3.5% w/v NaCI 

solution were recorded than 1.0% w/v, 0.1% w/v and 0.01% 

w/v NaCI solution, this indicated the formation of a stable Al 

oxide layer with maximum thickness at 3.5% NaCI 

concentration. Thus suggesting that, even though diffusion of 

Al3+ ions from the underlying surface took place, shown in 

Figure 4.61 (a) by the equivalent circuit model with R2, Q2 and
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R3, the process could not produce uniform dissolution of the 

oxide layer for activation of Al (see section 2.8.6.3 (b), chapter 

2).

The equivalent circuit model shown in Figure 4.61 (a) was 

also used in analysing the impedance data obtained for Al-Ti- 

C coating exposed to various NaCI concentrations and 

exposure periods, see Figure 4.60 (a)-(d).Table 4.13 also 

indicated the formation of passive oxide layer on the surface 

of Al-Ti-C coating during first hour of exposure, however in 

comparison to Al coating, the Qi values were recorded 

minimum for 0.01% w/v NaCI exposure followed by 3.5% w/v 

NaCI exposure.

However, for Al-Ti-C coating exposed to various NaCI 

concentration and exposure period, the decrease in the 

thickness of oxide film was evident from the Q2 values, see 

Table 4.13, which were recorded at lower frequencies. These 

results indicated that unlike Al, the passive oxide layer formed 

on Al-Ti-C coating is unstable possibly due to the presence of 

Ti and C as alloying elements which tends to increase the 

cation vacancy in the Al oxide layer which in turn promotes 

further diffusion of Al3+ ions from the surface of Al-Ti-C 

coating. However the OCP measurements of Al-Ti-C coatings 

were also similar to the ones recorded for Al coating, see 

Table 4.13.
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For Al-Zn and Al-Zn-ln coating, the equivalent circuit models 

shown in Figure 4.61 (b)-(d) were used to obtain the 

impedance parameters mentioned in Table 4.11 and Table

4.12. Similar to Al and Al-Ti-C coating analysis, two time 

constants which also included an Inductor and Warburg 

diffusion impedance were observed at lower frequencies, see 

Figure 4.58 and Figure 4.54.

The complex Nyquist plot for Al-Zn coating, Figure 4.58 (a) 

revealed formation of an inductive loop during the first hour of 

immersion in 3.5% w/v NaCI solution, whereas the Nyquist 

plot for Al-Zn-ln coating exhibited what appears to be single 

time constant over the frequency range of 100 kHz to 1 mHz. 

However with increase in the time period of exposure in 3.5% 

w/v NaCI solution, the Al-Zn coating showed formation of two 

semi-circles at 24 and 48 hours, which were not seen for Al- 

Zn-ln coating, see Figure 4.58 and Figure 4.59.

It is important to note that at lower NaCI concentrations of 

1.0% w/v, 0.1% w/v and 0.01% w/v, only Al-Zn-ln coating 

exhibited inductive loops (at 1.0% w/v and 0.01% w/v NaCI 

concentration), see Figure 4.59, while Al-Zn coating exhibited 

capacitive loops (CPE’s) along with diffusion constants at 

lower frequencies, see Figure 4. 58.
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The Nyquist plots along with the impedance parameters 

obtained for Al-Zn and Al-Zn-ln coating at various chloride 

concentrations suggested the mechanism of activation of Al as 

suggested by previous investigators using EIS technique 

[137-140].

After careful examination of the impedance parameters 

obtained for Al-Zn and Al-Zn-ln, see Table 4.11 and Table 

4.12 coating using the circuit models shown in Figure 4.61

(b)-(d), it was shown that Al-Zn-ln coating showed an 

enhanced inductive behaviour than Al-Zn coating and both 

coatings showed formation of Warbug impedance at lower 

frequencies, even for lower chloride concentrations, this 

behaviour has been reported during the previous investigation 

conducted by Venugopal and Raja [138], who investigated 

addition of Zn and In ions to Al exposed in 3.5% w/v NaCI 

solution.

As indicated in the earlier discussion that the formation of the 

first constant phase element is attributed to the dielectric 

properties of Al oxide film and depends upon the thickness of 

the oxide film [135,137]. In order to explain the interaction of 

Zn and In with the initially formed oxide layer, the time
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constant observed at lower frequencies were explained using 

point defect model [135,135] in the present study.

As seen from Table 4.12, the n values of the second time 

constant, CPE were mostly in the range of 0.7 to 0.9, at lower 

frequencies. This can be attributed to the formation of spinel 

ZnAI20 4 phase in the Al-oxide layer, which has been reported 

in previous investigations [91,92,96].

However Warburg diffusion impedance was also observed at 

lower frequencies, see Table 4.12. This can be attributed due 

to diffusion of Zn2+ ions from the surface to the oxide layer to 

form the spinel structure. As shown previously that dissolution 

of Zn from the surface of Al is higher than its diffusion into the 

Al matrix [126], which favours formation of ZnAI20 4 spinel 

causing the oxide layer to behave like an n- type junction 

which in turn increases the diffusion of Zn2+ ion in Al oxide 

layer [126,138].

This phenomenon supports the formation of low frequency 

CPE along with Warbug diffusion observed for Al-Zn coating, 

see Table 4.11 and suggested that presence of Zn in Al 

causes the formation of electron rich regions on the initial Al 

oxide layer due to formation of Zn spinel, hence producing 

active sites on Al-Zn coatings.
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For Al-Zn-ln coating, the values of n closer to 0.5, See Table

4.12, suggested the inductive nature of the time constant 

which was observed at lower frequencies. This has been 

attributed due to formation of intermediate In-chloro complex, 

see section 2.8.6.3 (a) of chapter 2, at the active sites 

produced by Zn [126,138,139].

As it has been shown from the previous investigations that 

thermodynamically In exhibits three oxidation states, out of 

which ln3+ has been shown to be the most stable state [118- 

121]. In presence of Cl" ions, the formation of lnCI2+ due to 

adsorption of Cl" ion produces an inductive behaviour [138], 

which is also seen in the present study. However during 

formation of lnCI2+, formation of an intermediate ln+ has also 

been reported [118-121].

This thermodynamically unstable ln+ formed within the Al 

oxide layer lowers the electron excess regions in Al oxide 

layer which were produced by Zn causing vacancies in the 

oxide film to be filled up by anions. These anionic vacancies 

are filled up by Cl" ions leading to rupturing of oxide layer.
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This phenomena also validates the impedance results 

obtained for Al-Zn-ln coating, see Table 4.12 suggesting that 

presence of In in Al-Zn coating increases the inductive 

behaviour due to adsorption of Cl" ion, even at lower chloride *

concentrations, see Figure 4.59.
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Chapter 4: Results and Discussion-Part 2

This part of the current study includes:

• Included to understand the influence of the sprayed coating’s 

microstructure and hardness on the wear resistance of the Al-Ti-C 

alloy coating.

• The Al-Ti-C coating’s wear performance has been compared with that 

of a pure Al sprayed coating, a widely used wear resistant 13%Cr 

Steel sprayed coating and the mild steel substrate. A comparison of 

wear rates has also been made between the pre-sprayed aluminium 

alloys which were used to form the wires for arc spraying, and the 

sprayed coatings.

• The second objective was to understand the effect of identified 

phases in the microstructure of Al-Ti-C coating on the wear 

performance of the coatings, when exposed to elevated temperature. 

The wear resistance and the hardness of Al-Ti-C coating exposed to 

two heat treatment regimens was evaluated in conjunction with 

microstructural analysis in order to comprehend the effect of change 

in microstructure on the wear resistance performance of Al-Ti-C 

coating.
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4.5 Evaluation of coefficient of wear for Al-Ti-C coatings.

4.5.1 Microstructure of Al-Ti-C and pure Al feedstock

Figure 4.62 (a) and (b) shows the backscattered electron micrographs of the 

transverse section of pure Al and Al-Ti-C alloy feedstock alloy rod.

Figure 4.62: Backscattered electron micrograph of transverse section of (a) 

Al and (b) Al-Ti-C feedstock material.
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For pure Al feedstock no microstructural features were observed (the linear 

features observed in Figure 4.62 (a) are artefacts of polishing and the 

extrusion direction of the rod). It was apparent from the micrographs of the 

Al-Ti-C material that two distinct phases existed in the structure

• A large blocky phase with a large aspect ratio and

• A smaller equiaxed phase, both of which were evenly distributed in 

the aluminium matrix as shown in Figure 4. 62 (b).

Figure 4.63 (a) and (b) shows a higher magnification image of the 

enclosed area shown in figure 1(b) where the two phases are clearly 

discernible. The Energy dispersive X-ray analysis on each phase 

highlighted in Figure 4.63 (a) and (b) was used to quantify the average 

composition of each phase as shown in Table 4.16. The analysis 

suggests that the larger blocky phase has an Al to Ti ratio = 2.8:1 while 

the small equiaxed phase has a metal (Ti+AI) to C ratio of =1:1. Note that 

carbon is often found to be present on the surface of samples being 

analysed using EDX and as such any figure for C may not be entirely due 

to the material itself and some of the Al signal may have been from the 

surround Al matrix due to the EDX interaction volume.

Table 4.16: Average composition analysis of different phases observed in
Al-Ti-C feedstock alloy.

Phase Average Composition
Al (at%) Ti (at%) C (at%)

A. Blocky phase with high aspect ratio 67 + 1 24 ±  1 8 ± 1
B. Smaller equiaxed phase 28 ± 4 2 1 + 4 51 ± 4
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Figure 4.63: EDX analysis of the enclosed area shown in figure 1(b) showing 

different phases observed in the Al-Ti-C feedstock alloy (a) large 

blocky phase (A) with large aspect ratio and (b) smaller equiaxed 

particle (B).
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As the production of the alloys involves the slow cooling of the alloy from the 

melt the phase expected to be present is the equilibrium structure tetragonal 

AI3Ti [155], The smaller equiaxed phase appeared to contain both Ti and Al 

along with equal atomic amounts of C and was thus probably a phase with 

the structure of the ceramic titanium carbide (TiC) but with possible Al 

substitution for some of the Ti. The XRD of the polished transverse section of 

the alloy confirmed the presence of tetragonal AI3Ti phase, see Figure 4.64, 

along with presence of a cubic TiC phase in the feedstock alloy concurring 

the observation of the EDX analysis.

Al Ti Al Al

c
3

30?
C3O
O

Al Ti

Al Ti
T iC

A IT i
T iC

T iC

40 SO GO 70 80

20*

Figure4.64: XRD trace of Al-Ti-C feedstock alloy confirming the presence of 

AI3Ti and TiC phase. The unmarked peak at 20° » 58° is the Cu Kp.
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4.5.2 Microstructure of Al-Ti-C alloy and pure Al coatings.

Figure 4.65 shows the backscattered electron micrographs of the cross- 

sections of (a) the arc sprayed pure Al coating and (b) the arc sprayed Al-Ti- 

C alloy coating.

Figure 4.65: Backscattered electron micrograph showing the cross-section 

of (a) pure Al and (b) AI-TI-C coating.
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In contrast to the bulk feedstock (F igure  4 .63) an inhomogeneous layered 

structure was observed with dark regions which were inter-splat porosity or 

oxides. The A l-Ti-C  sprayed coating showed regions of varying contrast in 

the backscattered electron images indicating the inhomogeneous distribution 

of the Ti in the Al matrix.

However, the microstructure was significantly different from that observed in 

the feedstock of A l-Ti-C  as shown in F igure 4.63. Higher magnification 

images of the A l-Ti-C  coating, see F igure 4 .66  (a) and (b) revealed  

“speckled” regions, dark grey and light grey regions. EDX analysis of each of 

these regions was conducted and the average composition of a num ber of 

measurem ents is shown in T ab le  4 .17. High titanium or high carbon content 

phases, as observed in the A l-T i-C  alloy feedstock alloy (Tab le  4 .16), were  

not observed in the sprayed coating. The overall Ti level was slightly below  

the expected level suggesting that the distribution of Ti was heterogeneous  

with some small regions having a much higher Ti content than others. A  

general increase in the detected oxygen levels was noted although this was  

not high enough to indicate the presence oxygen content.

T ab le  4.17: Average composition analysis of different phases observed in
A l-Ti-C  coating.

Phase Average Composition
Al (at% ) Ti (at% ) O (at% )

Speckled region 91 + 0 . 5 1 ± 0 7 ± 0 . 5
Dark grey region 91 ±  0.4 1 ± 0 . 2 8 ± 0 . 2
Light grey region 92 ±  0.2 2 +  1 6 ± 0 . 3
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Figure 4.66: Backscattered electron micrograph of Al-Ti-C coating showing 

(a) speckled region and (b) dark and light grey regions.
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The X R D  analysis of the as sprayed Al-Ti-C  alloy, see Figure 4.64, revealed  

the formation of tri-aluminide AI3Ti intermetallic phase, however unlike the 

feedstock A l-Ti-C  alloy, which showed formation of A I3Ti which exhibited 

tetragonal structure of D O 22 or D O 23 type, see Figure 4.67, the sprayed form  

of the alloy showed formation of cubic A I3Ti (L12), which due to symmetry of 

the crystal structure is significantly less brittle than its equilibrium tetragonal 

structure [156-159]. Similarly an intermediate ceramic titanium carbide phase  

of the form T i8C 5 with rhombohedral crystal structure was detected by the 

X R D  analysis.

It is probable that the melting and rapid cooling which is characteristic of the 

arc spraying process has taken the Ti in the alloy in to solution during melting 

and subsequently the rapid cooling which occurs during splat formation, has 

produced the m etastable cubic phase of A I3Ti [156]. Possible evidence for 

this is seen in the presence of the speckled regions in the structure where  

precipitates of sub-micron scale (the magnification of the image not high 

enough to accurately predict the size of these precipitates) with an atomic 

number > Al are observed in Figure 4.66 (a).
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Figure 4.67: XRD trace of as sprayed Al-Ti-C coating showing formation of 

different phases (see appendix for more details). The unmarked 

peaks at 20° ~ 40°, 58°, 69° are CuKp.

4.5.3 Micro-hardness of Al-Ti-C alloy and pure Al feedstock and 
coatings.

Tab le  4 .18 shows the micro-hardness values measured on the feedstock 

alloys of the pure Al and the Al-Ti-C materials. A larger range of m icro­

hardness values were recorded for Al-Ti-C alloy than for pure Al as is 

indicated by the coefficient of variation and as demonstrated in Figure  4 .68. 

There were a small number of regions in the Al-Ti-C alloy which exhibited 

hardness as high as HVo.gs = 0.78 GPa (80 kgf/mm2).

Tab le  4.18: Vickers micro-hardness of the pure Al and Al-Ti-C feedstock.
HVq,98 GPa (kgf/mm2) Coefficient of variation (%)

Pure Al feedstock 0.32 (33 +  1) 3
Al-Ti-C feedstock 0.43 (44 +  8)_______________ 18_______________________
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Figure4.68: Frequency distribution histogram of micro-hardness (HVo.98) for

pure Al and Al-Ti-C feedstock alloy material.

The hardness results from the cross-section of the coating are shown in 

Tab le  4.18. A significant increase of = 70% in the micro-hardness of the Al- 

Ti-C coating when compared to its feedstock was observed. The pure Al 

coating showed similar hardness to its feedstock material. The Al-Ti-C 

coating was significantly harder (117%) than the pure Al coating. The 13 % 

Cr coating which was used as a reference in the wear testing was also 

measured for reference. In terms of the spread in the hardness values, the 

Al-Ti-C exhibited the largest coefficient of variation (35%) with some regions 

exhibiting a hardness of upto HV0 .98 = 1.37 GPa (140 kgf/mm2), as shown in 

Figure 4.69.

Tab le  4.19: Vickers micro-hardness of the pure Al, Al-Ti-C and 13 % Cr steel
coatings.

HVo.gs GPa 
(kgf/mm2)

Coefficient of variation (%)

Pure Al coating 0.34 (35 ±  8) 22
Al-Ti-C coating 0.74 (75 ±  26) 35
13 % Cr steel coating 3.97 (405 ±  82) 20
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Figure 4.69: Frequency distribution histogram of variation in micro-hardness 

of pure Al and Al-Ti-C coating.

The influence of the intermetallic tri aluminide AI3Ti and ceramic titanium 

carbide (with probable Al substitution in the ceramic phase) phases was 

observed in the micro-hardness of the Al-Ti-C feedstock alloy which was 

33% higher than that of the pure Al feedstock alloy. Pure TiC is known to 

have a micro-hardness of HV0.g8 = 28-33 GPa(2850-3390 kgf/mm2) 

[158,159] while the micro-hardness of AI3Ti has been measured by others to 

be HV2.o = 5.0 GPa (510 kgf/mm2) [158]. Despite the absence of the two 

hard phases, the micro-hardness of the sprayed Al-Ti-C coating was more 

than twice (114%) that of the sprayed aluminium alloy and 71% higher than 

its own feedstock alloy, with some regions exhibiting upto HVo.gs = 1-18 

GPa(120 kgf/mm2). This could have been possible due to formation of L12 

type cubic AI3Ti and Ti8C5 intermediate ceramic carbide due to spraying 

process, as shown by XRD analysis, see Figure 4 .67  and are evident from 

Figure 4 .66 (a) in form of sub-micron structure.
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4.5.4 Coefficient of wear for Al-Ti-C and pure A1 feedstock material and
coatings.

The coefficient of wear for pure Al and Al-Ti-C feedstock and coatings were 

calculated from the gradient of the graphs shown in Figure 4 .70 and Figure  

4.71, where the volume of the wear crater (in mm3) formed during the micro­

scale abrasive wear test is plotted against sliding distance (in m) multiplied 

by the applied load (in N). Excellent linear regression fits were observed with 

R 2 >  0 .9 7 .
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Figure 4.70: Graphs showing wear crater volume vs. Sliding distance x load 

for (a) pure Al and (b) Al-Ti-C feedstock material.
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Figure 4.71: Graphs showing wear crater volume vs. sliding distance x Load 

for (a) Pure Al and (b) Al-Ti-C coatings.

It was observed, as shown in Tab le  4.20, that the coefficient of wear for Al- 

Ti-C feedstock was 18% less than that of the pure Al feedstock. The 

coefficient of wear for Al-Ti-C coatings was 33% lower than for pure Al 

coating as reported in Tab le  4.21. The difference between the feedstock 

alloy and the sprayed coating was not significant for the pure Al alloy but 

there was a difference between the feedstock alloy and sprayed coating of 

Al-Ti-C with the sprayed coating exhibiting marginally better wear resistance.
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Similar w ear resistance was exhibited by the A l-T i-C  feedstock and the 

sprayed coating despite the significantly different microstructure, hardness 

and porosity in the coating. The w ear tracks shown in F igure  4 .72  and 

Figure 4 .73 show two body grooving w ear mechanism in both feedstock’s 

and coatings, caused by the ploughing of the surface by the 2 .5  mm S i0 2 

particles in the abrasive slurry, a mechanism that has been reported by other 

researchers [271].

T a ble 4.20: Coefficient of w ear for Al and A l-T i-C  feedstock alloys.
Coefficient of w ear (mm N 'W 7) 

Al feedstock alloy 4 .5E -04  ±  0 .5E -04
Al-Ti-C  feedstock alloy____________ 3 .7E -04  ±  0 .1E -04_____________

T ab le  4.21: Coefficient of w ear for Al and A l-Ti-C  coatings.--------------------------------------------------:---------------------------- s--------- ----- ,— r—
___________________________________ Coefficient of w ear (mm N m )

Al coating 4 .8E -04  ±  0 .03E -04
Al-Ti-C  coating___________________ 3 .2E -04  ±  0 .5E -04______________
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Figure  4.72: Backscattered micrographs showing the directionality of the 

w ear tracks for (a) Al and (b) A l-Ti-C  feedstock.

F igure  4.73: Backscattered micrographs showing directionality of the w ear  

tracks for (a) Al and (b) A l-Ti-C  coating.
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The w ear coefficient of A l-T i-C  feedstock alloy was 18%  lower (thus better) 

than that of the pure Al feedstock alloy, which can be attributed primarily to 

the harder intermetallic AI3Ti tri-aluminide phases in the alloy as these  

appear to be resisting indentation by the abrasive particles more than the 

surrounding Al matrix, see F igure  4 .72  (b). The hard ceramic (Ti,AI)C phase 

(which was detected using ED X analysis and X R D  confirmed it to be cubic 

titanium carbide with possible Al substitution) which is known to be present, 

was too small to be observed on the w ear scar and as such its contribution to 

the w ear resistance cannot be verified.

The arc sprayed Al-Ti-C  coating exhibited a 33%  lower w ear coefficient than 

the arc sprayed pure Al coating, with the lower w ear coefficient being 

attributed to the overall higher micro-hardness (114%  harder) and the 

presence of regions with hardness upto H V 0.98 = 1-37 G Pa (120 kgf/mm2). 

W hile AI3Ti and (Ti,A I)C phases were not observed in the coating structure 

the high hardness regions may have contained the nano-scale precipitates of 

cubic AI3Ti, observed by the X R D  analysis of the as sprayed A l-T i-C  coating, 

which may have influenced the hardness and w ear resistance through 

precipitation strengthening [157].

It was noted that even though the arc sprayed 13 wt % Cr steel coating had a 

significantly higher hardness the difference in the coefficient of w ear between  

13 wt% Cr steel coating and A l-Ti-C  was negligible (= 2% ). The mild steel 

substrate material had the lowest w ear coefficient which most probably can 

be attributed to the fact that it has a fully dense steel structure rather than a 

porous sprayed coating.
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A graph illustrating the comparison of the wear coefficients and hardness 

(HV9.8 and HV0.98) of all the materials tested is shown in Figure 4.74.
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Figure 4.74: Comparison of coefficient of wear and hardness of pure Al and 

Al-Ti-C alloy feedstock material and coatings with 13 % Cr steel coating and 

mild steel substrate.
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4.6 The effect of exposure tem perature on the microstructure and 
wear resistance performance of Al-Ti-C coating.

The backscattered electron micrographs of Al-Ti-C coating revealed 

presence of sub-micron precipitates of cubic AI3Ti, the speckled regions, 

along with dark and light grey regions which were identified using atomic 

number contrast. Unlike the feedstock Al-Ti-C alloy, which contained 

tetragonal AI3Ti intermetallic tri-aluminide and cubic titanium carbide phase 

with some Al substitution, the difference in the phases of the corresponding 

coating was attributed to the precipitation strengthening caused by rapid 

melting and solidification during arc spraying of the alloy, which resulted in 

an increased hardness (= 114%) and lower coefficient of wear (« 10%) of 

coating, see Figure 4.74.

In an attempt to understand the role of identified constituent phases on the 

wear resistance performance of Al-Ti-C coating, the Al-Ti-C coatings were 

subjected to two different heat treatment cycles which were as follows:

• The coatings were exposed to pre-heated furnace at 150°C, 350°C

and 550°C for one and three hours followed by rapid quenching (RQ)

using deionised water at 25°C.

• The second cycle involved heating the coatings with the same

temperature and exposure period but followed by normal room

temperature cooling (AC) by keeping the coatings out of furnace at

normal room temperature for 5 hours.
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This heat treatm ent cycle was followed by conducting the micro-scale 

abrasive w ear test, hardness measurem ents and microstructural evaluation 

of coating with exactly sam e parameters used earlier in the work. A  series of 

backscattered electron micrographs of Al-Ti-C  coatings exposed to two heat 

treatment cycles have been presented in the further sections to identify the 

precipitated phases. As the backscattered coefficient of light elem ents such 

as O and C is significantly lower than Al and Ti, the compositional contrast 

was not evident for oxygen or carbon rich phases (limitations as discussed in 

section 3.4.2).
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4.6.1 Microstructure of Al-Ti-C coating subjected to 150°C for 1 hour 
and 3 hours followed by rapid quenching.

Figure 4 .75 (a) and (b) shows the backscattered electron micrograph of Al- 

Ti-C coating exposed to 1 hour and 3 hours at 150°C followed by rapid 

quenching.

S u b s tra te

F igure 4.75: Backscattered electron micrograph of Al-Ti-C coating exposed 

to 150°C for (a) 1 hour and (b) 3 hours, followed by rapid quenching.

The backscattered atomic number contrast reveals formation of similar 

phases in the Al-Ti-C coating exposed to 150°C for 1 hour and 3 hours 

followed by rapid quenching as seen in the as sprayed coatings, see Figure  

4 .66 (a) and (b). However a closer examination of the microstructure of Al-Ti- 

C coating exposed to 150°C for 1 hour and 3 hours, revealed formation of 

regions containing larger speckled spots, see Figure 4 .76 (a) and Figure  

4 .77  (a).
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F igure 4.76: A higher magnification, @ x 5000, Backscattered electron 

micrographs of Al-Ti-C coating exposed to 150°C for 1 hour showing (a) 

small and large speckled spots (b) light and dark grey regions and (c) higher 

atomic number contrast light grey region. The coating was rapidly quenched 

post exposure.
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Figure 4.77: A higher magnification (a) and (b) @ x 5000 and (c) @ x 

10,000, backscattered electron micrograph of Al-Ti-C coating exposed to 

150°C for 3 hours showing (a) distinctive growth of large speckled spots, (b) 

high atomic number contrast region and (c) spherical equiaxed phase. The 

coatings were rapidly quenched post exposure.

After 1 hour of exposure @ 150°C followed by rapid quenching, a distinctive 

increase in the size of speckled spots was observed, see F igure  4 .76  (a) 

along with existing speckled spots of similar size as observed in the as 

sprayed coating, see Figure 4 .66 (a).
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With increase in the exposure time to 3 hours, two discernable regions of 

different speckled spot size, see Figure 4.77 (a) and (c) were observed, 

which were not seen in the cross-section of A l-Ti-C  coating @ 150°C  after 1 

hour of exposure.

A  bright region with higher atomic number contrast, see Figure 4.76 (c) and 

Figure 4.77 (b), was also seen in A l-Ti-C  coating @  150°C  after 1 hour and 3 

hour of exposure. An additional spherical equiaxed phase, similar to the one 

observed in Al-Ti-C  feedstock alloy, was also seen in the microstructure of 

A l-Ti-C  coating @  150°C  for 3 hours, see Figure 4.77 (c), which was not 

observable in the A l-T i-C  coating @  150°C  for 1 hour. The ED X analysis, see  

Table 4.22 and Table 4.23, of each phase shown in Figure 4.76 (a), (b), (c) 

and Figure 4.77 (a), (b), (c) was used to quantify the average composition of 

each phase present in A l-Ti-C  coating @  150°C  for 1 hour and 3 hours 

followed by rapid quenching.

Table 4.22: Average composition analysis of different phases observed in 
Al-Ti-C  coating @  150°C for 1 hour followed by rapid 

_____________ quenching._________________________________________________
Phase Average composition

Al (at%) Ti (at% ) C (at%) O (at% )
Speckled region 80 +  2 2 +  0.2 14 ± 2 5 ± 0 . 6
Dark grey region 80 ± 0 . 1 2 ± 0 . 2 14 ± 0 5 ±  0
Light grey region 79 ± 2 2 ± 0 . 7 15 ±  2 5 ±  1
High atomic number 75 +  2 8 ± 0 . 1 11 ± 2 6 ± 0 . 2
Contrast region
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Table 4.23: Average composition analysis of different phases observed in 
Al-Ti-C  coating @  150°C  for 3 hours followed by rapid

quenching.
Phase Average composition

Al (at% ) Ti (at%) C (at%) 0  (at% )
Speckled region 81 ±  1.3 2 ± 0 . 2 12 ±  1.2 5 ± 0 . 5
Dark grey region 82 ±  2.5 2 ± 0 . 1 12 ±  2 5 ± 0 . 5
Light grey region 72 +  6 2 ± 0 . 3 21 ± 7 6 ±  1
High atomic number 75 +  2 8 ± 0 . 4 1 1 + 2 7 +  1
Contrast region
Spherical equiaxed 41 ±  12 13 ±  4 11 ± 3 35 ±  10
phase

A  similar average composition of the speckled and the dark grey region for 

both A l-Ti-C  coating @  150°C  for 1 hour and 3 hours followed by rapid 

quenching was seen from ED X selected area analysis. However comparing 

the composition of light grey region, a higher C content in A l-T i-C  coating @  

150°C  for 3 hours was recorded in comparison to 1 hour exposure @  150°C ,. 

A  higher C content detected from EDX analysis could be attributed to the  

polishing of the cross-section of the coating during metallographic sam ple  

preparation prior to analysis.

A  heterogeneous distribution of Ti as seen in the as sprayed A l-T i-C  coating, 

see Table 4.17, was evident even after 150°C  exposure for 1 hour and 3 

hours by varying Ti concentration in the Al-Ti-C  coating's identified phases, 

see Table 4.22 and Table 4.23.

The bright high contrast region observed in A l-T i-C  coating @  150°C  for 1 

hour and 3 hours exhibited a higher Ti concentration with respect to the other 

identified phases. Comparing the Ti to C ratio for this bright high contrast 

phase obtained from ED X analysis of A l-T i-C  coating @  150° C for 1 hour
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and 3 hours and the X R D  trace shown in F igure  4 .78  (a), (b), formation of an 

intermediate form of titanium carbide phase, T i8C 5 with rhombohedral crystal 

structure was clearly evident. A  higher Al content during the selected area  

analysis of a phase could be a result of ED X volume interaction detecting the 

background Al matrix.

The precipitation of intermetallic tri-aluminide AI3Ti in the Al-Ti alloy 

containing Ti <  5 wt%, upon rapid solidification has been reported previously 

by researchers [176-180]. For Al alloys containing = 3.5 wt% Ti and = 0 .15  

wt % C, Zang et  a/.[177,180] showed that upon rapid solidification, formation 

of cubic titanium carbide phase along with A I3Ti phase was not evident. The  

X R D  trace of the Al-Ti-C  coating subjected to exposure of 150°C  for 1 hour 

and 3 hours followed by rapid quenching also showed formation of cubic 

AI3Ti phase, which was observed by Zang et al.[177,180], but also showed  

formation of intermediate titanium carbide phase. Bearing in mind that this 

could be attributed to the fact that the observation made by Zang et al. 

[177,180] was on rapidly solidified A l-Ti-C  alloys, which constitute a different 

formation process in comparison with arc sprayed A l-Ti-C  coating, however 

stability of such intermediate titanium carbide phases up to tem peratures as 

high as 1450 K has also been observed [181-184].
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Figure 4.78: XRD trace of Al-Ti-C coating post 150°C exposure for (a) 1 hour 

and (b) 3 hours followed by rapid quenching. The unmarked peaks 

at 26° « 40°, 58° and 69° are CuK3.
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4.6.2Microstructure of Al-Ti-C coating subjected to 350°C for 1 hour and 3 
hours followed by rapid quenching.

Figure 4 .79 (a) and (b), shows the backscattered electron micrographs of 

Al-Ti-C coating subjected to 350°C for 1 hour and 3 hours followed by rapid 

quenching.

Figure 4.79: Backscattered electron micrograph of Al-Ti-C coating exposed 

to 350°C for (a) 1 hour and (b) 3 hours, followed by rapid quenching. (The 

linear features are caused due to polishing).
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Figure 4.80(a), (b), (c) and Figure 4.81 (a), (b), (c) shows a higher 

magnification backscattered electron micrographs of Al-Ti-C coating @ 

350°C for 1 hour and 3 hours followed by rapid quenching along with the 

average composition of each of the identified phases in T ab le  4.24 and 

Tab le  4.25 respectively.

At matrix
matrix **

Al/Ti carbide

Al/Ti oxide

Figure 4.80: A higher magnification, (a) @ x 5000, (b) and (c) @ x 10,000, 

backscattered electron micrograph of Al-Ti-C coating exposed to 350°C for 1 

hour showing (a) small and large speckled spots (b) a higher aspect ratio 

phase and (c) spherical equiaxed phase. The coating was rapidly quenched 

post exposure.
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Figure 4.81: A higher magnification, (a), (b) @ x 5000 and (c) @ x 10,000, 

backscattered electron micrograph of Al-Ti-C coating exposed to 350°C for 3 

hours showing (a) small and large speckled spots, (b) dark and light grey 

regions and (c) spherical equiaxed phase. The coating was rapidly 

quenched post exposure.
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Table 4.24: Average composition analysis of different phases observed in 
 A l-Ti-C  coating @  350°C  for 1 hour followed by rapid quenching.
Phase Average composition

Al (at% ) Ti (at% ) C (at%) 0  (at%)
Speckled region 80 ± 4 2 ± 0 . 1 13 ±  4 6 ± 0 . 6
Dark grey region 84 ±  0.8 2 +  0.3 1 0 ± 0 4 ± 0 . 5
Light grey region 82 ±  1.8 2 ± 0 . 3 10 ± 0 . 3 5 ±  1
High contrast high 74 ±  0.6 14 ± 3 9 ±  1 3 ±  1
aspect ratio phase
Spherical equiaxed 40 ±  2.4 10 ±  1.7 7 ± 2 . 3 43 ± 7
phase

Table 4.25: Average composition analysis of different phases observed in Al- 
 T i-C  coating @  350°C  for 3 hours followed by rapid quenching.________
Phase__________________Average composition

Al (at% ) Ti (at%) C (at% ) 0  (at%)
Speckled region 77 ±  1 2 ± 0 . 4 14 ±  1 7 ± 0 . 3
Dark grey region 80 ± 3 2 ±  0 12 ±  1 6 ±  2
Light grey region 82 ±  1 2 ± 0 . 7 11 ± 0 . 4 5 ±  1.1
Spherical equiaxed 26 ±  14 15 ±  4 7 ±  2 53 ±  13
phase

A  growth in the speckled region for A l-Ti-C  coating exposed to 350°C  for 1 

hour and 3 hours was observed, which was similar to A l-T i-C  coating 

subjected to 150°C  for 1 hour and 3 hours. Note that @  150°C  for 1 hour, 

mixed speckled region containing both small and relatively large speckled  

regions was observed, but with increase in tem perature and exposure period 

two separate regions containing small and relatively large speckled spots 

was discernable. The average composition of the speckled region observed  

in Al-Ti-C  coating after 1 hour and 3 hours of exposure @  350°C  rapidly 

quenched A l-Ti-C  coating, see Table 4.24 and Table 4.25 was also similar 

to that for A l-T i-C  coating @ 150°C  followed by rapid quenching, see Table 

4.22 and Table 4.23.
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With an increased exposure temperature, @  350°C , appearance of the 

atomic number contrast regions, see F igure 4 .80(b ) and F igure  4.81(b ), the 

dark and the light grey regions with average composition, see T ab le  4 .24  

and T ab le  4 .25, similar to Al-Ti-C  coating @  150°C  was seen, however, the 

dark and light grey regions were seen more pronounced in the A l-T i-C  

coating @  350°C  for 1 hour.

Precipitation of a high contrast and high aspect ratio phase was also seen in 

Al-Ti-C  coating @  350°C  for 1 hour. The EDX compositional analysis 

revealed that this phase showed a higher Ti (at% ) concentration than the 

high atomic number contrast phase which was observed in A l-T i-C  coating @  

150°C  for 1 hour and 3 hours. The stoichiometric C at%  for this phase as 

shown in Tab le  4 .24  reveals formation of intermediate titanium carbide 

phase (Ti8C 5, possibly with Al substitution from matrix) which was also 

confirmed by XR D , see F igure  4 .82  (a) Note that this high contrast high 

aspect ratio phase was not seen in A l-Ti-C  coating @  350°C  for 3 hours.

This could have been an indication of precipitation of an intermediate Al-Ti 

intermetallic compound which dissolved with increase in the exposure 

temperature. As mentioned earlier, precipitation of approximately twelve 

forms of Al-Ti intermetallic compounds during alloy formation has been  

reported by researchers [149].

Appearance of a spherical equiaxed phase, which was seen in A l-T i-C  

coating @  150°C  for 3 hours, was also evident in A l-T i-C  coating @  350°C  

for 1 hours and 3 hours, see
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Figure  4 .80  (c) and F igure  4 .81(c). The increased amount of O (at %) in the 

spherical equiaxed phase detected by EDX analysis, see T ab le  4 .23  to 

T ab le  4.25, indicated formation of oxides of Al with possible Ti oxidation.

As the coatings were exposed to elevated tem perature in a pre-heated  

furnace, the formation of oxides which appear to be brittle in nature, was 

possible due to lack of moisture.

The X R D  analysis confirmed the presence of cubic A I3Ti tri-aluminide 

intermetallic phase in A l-Ti-C  coating @  350°C  for both 1 hour and 3 hours of 

exposure period, see F igure  4.81 (a) and (b). Intermediate titanium carbide, 

Ti8C 5, of rhombohedral crystal structure was detected for A l-Ti-C  coating @  

350°C  for 1 hour, which was also seen in A l-T i-C  coating @  150°C  for 1 hour 

and 3 hours.

With an increase in the exposure period to 3 hours, formation of cubic T iC  

phase was reported by X R D  analysis, however the stoichiometric ratio of 

AI:(Ti+C) from ED X results suggested the formation of aluminium substituted 

titanium carbide phase, see F igure  4.81(b ) A  higher aluminium concentration 

could be attributed due to the fact that initial precipitation of intermediate 

titanium carbide phase could have resulted in Al substitution to the carbide 

phase from the matrix.
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Figure 4.82: XRD trace of Al-Ti-C coating post 350°C exposure for (a) 1 hour 

and (b) 3 hours followed by rapid quenching. The unmarked peaks at 20° = 

40°, 58° are CuKp.
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The X R D  analysis of the A l-Ti-C  coating @  350°C  for 1 hour and 3 hours 

also showed formation of A l20 3. This was also indicated by higher 

concentration of O (at %) by the EDX analysis of the equiaxed spherical 

phase, see T ab le  4 .25. It is important to note that higher Ti concentration in 

spherical equiaxed phase, see F igure  4 .81(c) and the stoichiometric ratio of 

(A l+T i):0  obtained from EDX analysis could be attributed to Ti substitution in 

the Al oxide (Al20 3)phase.
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4.6.3 Microstructure of Al-Ti-C coating subjected to 550°C for 1 hour
and 3 hours followed by rapid quenching.

Figure 4 .83 (a) and (b) shows the backscattered electron micrograph of Al- 

Ti-C coating exposed to 550°C for 1 hour and 3 hours respectively followed 

by rapid quenching.

Substrate

Figure 4.83: Backscattered electron micrograph of Al-Ti-C coating exposed 

to 550°C for (a) 1 hour and (b) 3 hours, followed by rapid quenching.

313



A higher magnification backscattered electron micrographs of Al-Ti-C coating 

@ 550°C for 1 hour and 3 hours along with average composition of each of 

the identified phases is shown in Figure 4 .84  (a), (b), (c) , Figure 4 .85 (a), 

(b), (c), Tab le  4 .26 and Tab le  4 .27  respectively.

Increased £  
content

Al/Ti ox|de
■- r~  ■

F igure 4.84: A higher magnification @ x 10,000, Backscattered electron 

micrograph of Al-Ti-C coating exposed to 550°C for 1 hour showing (a) 

formation of brittle phase, with high atomic number contrast, (b) phase with 

rectangular geometry within the speckled region and (c) spherical equiaxed 

phase. The coating was rapidly quenched post exposure.
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Figure 4.85: A higher magnification @ x 10,000, Backscattered electron 

micrograph of Al-Ti-C coating exposed to 550°C for 3 hour showing (a) 

formation of speckled region,(b) and (c) formation of brittle phase with high 

atomic number contrast with uniform distribution of speckled region.



Table 4.26: Average composition analysis of different phases observed in Al- 
_____________ Ti-C  coating @  550°C  for 1 hour followed by rapid quenching.
Phase Average composition

Al (at%) Ti (at% ) C (at%) 0  (at% )
Speckled region 81 ± 0 . 7 2 ± 0 . 3 13 ± 0 . 5 4  ± 0 . 3
Phase with 55 ±  10 1 ± 0 . 1 25 ±  4 .0 12 ±  5
rectangular geometry
Spherical equiaxed 30 ±  6.0 15 ± 3 . 0 7 ± 2 . 3 48  ± 8

phase
Brittle phase 20 +  9 33 ±  10 7 ±  3 40  ±  13

Table 4.27: Average composition analysis of different phases observed in Al-
Ti-C  coating @  550°C  for 3 hours followed by rapid quenching.

Phase Average composition
Al (at%) Ti (at% ) C (at%) 0  (at% )

Speckled region 83 ±  1 2  ± 0 . 1 11  ± 2 4  ± 0 . 3
Brittle phase 53 ±  10 20 ± 7 24 ± 8 3 ±  0

Precipitation of a Ti rich brittle oxide phase, see Figure 4.84 (a), was 

observed in the A l-Ti-C  coating @  550°C  for 1 hour followed by rapid 

quenching. The presence of the speckled region was also seen in the A l-T i-C  

coating after 1 hour of exposure at 550°C  followed by rapid quenching, 

however the distribution of the speckled region was found to be significantly 

increased, see Figure 4.84 (a), (b) and (c), in comparison to the speckled  

region observed in the previous exposure temperatures.

From Figure 4.84 (b), precipitation of a phase with rectangular geom etry  

within the speckled regions was observed. The formation of this phase could 

have been due to the increase in the exposure tem perature allowing the sub­

micron size speckled phases to grow.

However the ED X analysis of this phase compared with the speckled region, 

see showed an increased C (at %) and reduced Al (at %) than the speckled
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region. The appearance of this phase (with rectangular geometry) was not 

very evident @  550°C  for 3 hours. This could also be attributed to the 

formation of intermediate Al/Ti carbide phase.

The Al to C ratio of the rectangular phase which precipitated within the 

speckled region, see Figure 4.84 (b), obtained by ED X analysis, see Table

4.26, was «  2 .2  :1, which could have been an indication of formation of A I4C 3 

(AI.C ratio «  1.3:1). Note the higher Al concentration could have been due to 

the interaction volume of ED X  detecting Al from the background Al matrix of 

the coating. The formation of AI4C 3 in Al matrix containing A I-3w t% Ti- 

0.15w t% C  grain refiner as inoculant has been reported earlier by researchers 

[189].

The mechanism of formation of AI4C3 was proposed either by slow  

dissolution of TiC  particles when the Al melt was kept at «  700°C  or by 

formation of AI4C3 separately [189]. The authors emphasised that either way  

the formation of AI4C3 was too slow to be controlled by diffusion of C in the Al 

melt therefore the impairment of the grain refinement properties w as  

expected to be time dependent [189].

The X R D  analysis of the A l-T i-C  coating @  550°C  for 1 hour, see Figure 

4.86 (a), did not show the formation of AI4C 3, however confirmed the 

formation of Al and Ti oxides, which can be seen in the form of spherical 

equiaxed phase, see Figure 4.84 (c) and confirmed by the E D X  

compositional analysis of the phase.

A  uniform distribution of the speckled region throughout the cross-section of 

the A l-Ti-C  coating @  550°C  for 3 hours was seen from Figure 4.85 (a), (b)
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and (c), with similar average composition of the phase as observed after 1 

hour of exposure @  550°C .Spherical equiaxed oxide phase formation in the 

cross-section of A l-Ti-C  coating @  550°C  for 3 hours was not seen. Instead, 

appearance of a high contrast brittle oxide phase was more dominant 

throughout the cross-section of the A l-Ti-C  coating subjected to 550°C  for 3 

hours, see Figure 4.85 (b) and (c).

The brittle phase observed in A l-Ti-C  coating @  550°C  for both 1 hour and 3 

hours of exposure showed an increased Ti (at% ) concentration but the 

variation in levels of C (at %) was also noticeable, see Table 4.26 and Table

4.27. Such an increase in the Ti concentration upon holding the Al melt 

containing A l-3wt % Ti-0 .15w t% C  at «  700°C  was also reported previously 

[189]. The authors also reported that due to similar diffusivity of Ti and C in 

the Al melt, the formation of TiC  and AI4C3 in the alloy was possible, as 

mentioned earlier, the mechanism of formation of A I4C 3 was proposed to be 

nucleation of AI4C 3 particles in separate sites rather than conversion of T iC  to 

AI4C 3 [2.48]. However the X R D  analysis of the A l-T i-C  coating @  550°C  for 3 

hours did not show the formation of either Ti or Al carbide, see Figure 4.86 

(b), but similar to what was seen in A l-T i-C  coating @  550°C  for 1 hour did 

show formation of Al and Ti oxide.

The intermetallic A I3Ti phase with tetragonal crystal structure, similar to the 

one in Al-Ti-C  feedstock alloy, was also revealed from the X R D  analysis of 

Al-Ti-C  coating @  550°C  for both 1 hour and 3 hours of exposure followed by 

rapid quenching, see Figure 4.86 (a) and (b).
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F igure  4.86: XRD trace of Al-Ti-C coating post 550°C exposure for (a) 1 hour 

and (b) 3 hours followed by rapid quenching. The unmarked peaks at 20° 

40°, 58° are CuKp.
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4.6.4 Micro-hardness of Al-Ti-C coating subjected to 150°C, 350°C,
550°C for 1 hour and 3 hours followed by rapid quenching.

Tab le  4 .28 shows the average Vickers micro-hardness values measured for 

Al-Ti-C coating subjected to 150°C, 350°C and 550°C for 1 hour and 3 hours 

respectively followed by rapid quenching.

Tab le  4 .28: Vickers micro-hardness of Al-Ti-C coating subjected to 150°C, 
350°C and 550°C for 1 hour and 3 hours followed by rapid 
quenching.

Temperature Time of exposure HV o.98 Coefficient of
(°C) (hours) GPa(kgf/mm2) variation (%)

1 0.72 (74 ±  24) 31
@ 150 3 0.83 (85 ±  29) 35

1 0.76 (78 ±  25) 32
@ 350 3 0.73 (74 ±  18) 24

1 0.56 (57 ±  13) 23
@ 550 3 0.51 (52 ±  13) 25

A large range of micro-hardness values were recorded for Al-Ti-C coating 

exposed to 150°C for 1 hour and 3 hours respectively, as indicated by the 

coefficient of variation as shown in Tab le  4.28. A reduction in the values of 

coefficient of variation was observed with the increase in temperature of 

exposure with lowest value obtained for Al-Ti-C coating @ 550°C for 1 hour. 

The range of micro-hardness values for Al-Ti-C coating subjected to 150°C, 

350°C and 550°C was also shown by the frequency distribution histograms 

shown in Figure 4 .87  to Figure 4.89.
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Figure 4.87: Frequency distribution histogram of micro-hardness (HV0.gs) for 

Al-Ti-C coating exposed to 150°C for 1 hour (violet shade) and 3 hours 

(Dark red shade).
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Figure 4.88: Frequency distribution histogram of micro-hardness (HVo.gs) for 

Al-Ti-C coating exposed to 350°C for 1 hour (violet shade) and 3 hours (Dark 

red shade).
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Figure 4.89: Frequency distribution histogram of micro-hardness (HVo.gs) for 

Al-Ti-C coating exposed to 550° C for 1 hour (violet shade) and 3 hours 

(Dark red shade).

The influence of the precipitation of various phases after 150°C, 350°C and 

550°C of exposure for 1 hour and 3 hours on the micro-hardness of the Al-Ti- 

C coating was clearly evident, see and Figure 4.87 to Figure 4.89 . The Al- 

Ti-C coatings @ 150°C for 1 hour showed similar distribution of hardness 

values as as-sprayed Al-Ti-C coating, with highest hardness value HVo.gs ~ 

1.18-1.37 GPa. An overall increase of 13 % in the HV0.g8 value was seen with 

increase in the exposure period from 1 to 3 hours @ 150°C with some values 

of HVo.gs as high as 1.47 GPa. This could have been due to precipitation of a 

higher Ti concentration (at %) phase which was seen after 150°C for 1 hour 

and 3 hours followed by rapid quenching.The formation of large speckled 

region, which were observed after 3 hours of exposure @ 150°C along with 

brittle oxide phase could have also resulted in formation of high hardness 

regions (HV0.g8 ~ 1.47 GPa), in Al-Ti-C coating, see Figure 4.87.
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A  reduction in the spread of micro-hardness values with the increase in the 

exposure tem perature to 350°C  was seen from the frequency distribution 

histogram , F igure  4.88, and coefficient of variation shown in T ab le  4.28. 

Regions of HVo.gs value in the range of 0 .79 G Pa to 0 .98 G Pa were mostly 

observed in the A l-Ti-C  coating @  350°C  for 1 hour and 3 hours followed by 

rapid quenching, see F igure  4 .88 . Only small regions of HVo.gs value  

between 1.18 G Pa to 1.37 G Pa was seen in A l-Ti-C  coating @  350°C  for 1 

hour with overall 4 % decrease in the micro-hardness value with increase in 

the exposure period to 3 hours. This could have been due to the formation of 

Ti rich high aspect ratio phase which was seen in A l-T i-C  coating after 1 hour 

of exposure at 350°C , which was not observed after 3 hours of exposure  

period at sam e tem perature of exposure.

The frequency distribution histogram obtained for the micro-hardness of Al- 

Ti-C  coating after 550°C  for 1 hour and 3 hours showed overall reduction in 

the hardness value regions with HVo.gs value between 0 .39 G Pa to 0 .59 G Pa, 

see F igure  4.89, in comparison to previous exposure tem peratures. An 

overall reduction in the coefficient of variation of micro-hardness values  

(lowest of 23 % obtained for A l-Ti-C  coating @  550°C  for 1 hour and 25 % @  

550°C  for 3 hours) was also seen after 550°C  for 1 hour and 3 hours. This 

could have been due to the Precipitation of the Ti rich (at %, from E D X  

analysis) brittle phase resulting from slow dissolution of intermediate TisC5 

(as reported in the previous research [189]),which was detected using X R D  

analysis of A l-Ti-C  coating at 150°C  and 350°C  for 1 hour and 3 hours, 

causing reduction in the overall Ti distribution throughout the A l-T i-C  coating, 

which in turn resulted in increase in the lower hardness value regions.
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The XRD analysis of the Al-Ti-C coating after 550°C of exposure (both after 

1 hour and 3 hours), confirmed no presence of carbides which could have 

led to higher hardness regions.

The XRD analysis of the Al-Ti-C coating post 550°C exposure (both 1 hour 

and 3 hours of exposure period) also showed that the formation of tetragonal 

AI3Ti, which has been reported to be inherently brittle by researchers [162]. 

The tetragonal AI3Ti intermetallic has also been reported to show reduction in 

the micro-hardness value with increase in temperature of exposure [162]. 

Tab le  4.28, showed that with increase in the period of exposure to 3 hours 

@ 550°C, ~ 9 % reduction in the HVo.gs value was recorded. The effect of 

precipitation of different phases at various exposure temperatures on the 

micro-hardness of Al-Ti-C coating is shown in Figure 4.90.
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Figure 4.90: Comparison of micro-hardness values obtained for as sprayed 

Al-Ti-C coating and Al-Ti-C coating exposed to 150°C, 350°C and 550°C for 

1 hour and 3 hours followed by rapid quenching.
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4.6.5 Coefficient of wear for Al-Ti-C coating subjected to 150°C, 350°C, 
550°C for 1 hour and 3 hours followed by rapid quenching.

Tab le  4 .29 shows the values of coefficient of w ear for A l-T i-C  coating 

exposed to 150°C, 350°C  and 550°C  followed by rapid quenching.

Tab le  4.29: Coefficient of w ear for A l-T i-C  coating exposed to 150°C , 350°C  
and 550°C  for 1 hour and 3 hours followed by rapid quenching.

Tem perature (UC) Tim e of exposure 
(hours)

Coefficient of w ear 
(m m 3 N '1m '1)

1 5 .77E -04  ±  1 .66E -04
@  150 3 5 .34E -04  ±  0 .80E -04

1 4 .28E -04  ±  0.01 E -04
@ 3 5 0 3 4 .88E -04  ±  2 .02E -04

1 3 .62E -04  +  0 .48E -04
@ 5 5 0 3 4 .62E -04  ±  0 .20E -04

The values of coefficient of w ear for A l-Ti-C  coating at a given exposure 

temperature and period of exposure were obtained from the gradient of the 

graphs shown in F igure  4.91 to F igure 4.93, where w ear crater volume (in 

m m 3) obtained during micro-scale abrasion test was plotted against the 

sliding distance (in m) multiplied with the applied load (in N).
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Figure  4.91: Graphs showing wear crater volume vs. sliding distance x load 

for Al-Ti-C coating subjected to 150°C for (a) 1 hour and (b) 3 hours followed 

by rapid quenching.
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Figure 4.92: Graphs showing wear crater volume vs. sliding distance x load 

for Al-Ti-C coating exposed to 350°C for (a) 1 hour and (b) 3 hours followed 

by rapid quenching.
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F igure 4.93: Graphs showing wear crater volume vs. sliding distance x load

for Al-Ti-C coating exposed to 550°C for (a) 1 hour and (b) 3 hours followed

by rapid quenching.

Comparing the wear coefficient values obtained for Al-Ti-C @ 150°C for 1 

hour and 3 hours to the as sprayed Al-Ti-C coating, ~ 44 % and 40 % 

increase in the wear coefficient values were reported, implying lowering of 

wear resistance of the Al-Ti-C coating. A difference of = 7 % in the wear 

coefficient of Al-Ti-C coating @ 150°C for 1 hour and 3 hours was also
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reported. Figure 4 .94  and Figure 4 .95  shows the wear track, notice the 

directionality of the wear tracks.

A l/T i
oxide

Precip itated  

Ti carbide

F igure 4.94: Backscattered electron micrograph showing directionality of the 

wear tracks and precipitation of Al and Ti containing oxide and carbide 

phases in Al-Ti-C coating @150°C for 1 hour, (a), (b) and (c) are 

backscattered electron micrographs at different magnifications.
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Figure 4.95: Backscattered electron micrograph showing directionality of the 

wear tracks and precipitation of Al and Ti containing oxide and carbide 

phases in Al-Ti-C coating @ 150°C for 3 hour, (a), (b) and (c) are 

backscattered electron micrographs at different magnifications.

Even though @ 150°C for 1 hour and 3 hours, presence of Ti rich (detected 

from EDX) regions were observed in Al-Ti-C coating, the overall micro­

hardness value obtained for Al-Ti-C coating @ 150°C for 1 hour followed by 

rapid quenching was similar to that of as sprayed Al-Ti-C coating,

At same exposure temperature but with increased time of exposure to 3

hours, higher hardness regions (HVo.gs between 1.37 GPa to 1.57 GPa) were

observed in the Al-Ti-C coating. These Ti rich precipitates in Al-Ti-C coating

@ 150°C for 3 hours could have contributed in providing greater resistance

against abrasive action of the S i0 2 particles during micro-scale abrasive
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w ear test. Figure 4.95 (a) and (b) showed that the Ti rich carbide regions 

were providing resistance against abrasive particles, which in turn resulted in 

obtaining lower volume loss at each sliding distance at 0 .2  N load, in 

comparison to A l-Ti-C  coating @  150°C  for 1 hour. A  similar observation for 

Ti rich regions resisting w ear was also seen in A l-Ti-C  coating @  150°C  for 1 

hour, see Figure 4.94 (b) and (c), but an additional spherical equiaxed phase 

(which also showed higher Ti concentration),which was seen in A l-T i-C  

coating @  150°C  for 3 hours also provided additional resistance against 

abrasive particles, aiding towards obtaining lower w ear loss.

With an increase in the exposure temperature to 350°C  for 1 hour and 3 

hours, «  25 % and 34 % increase in the w ear coefficient value in comparison 

with as sprayed A l-T i-C  coating was observed. The w ear coefficient of A l-T i- 

C coating @  350°C  for 1 hour was found to be ~ 12 % lower than A l-T i-C  

coating @  350°C  for 3 hours. This could be attributed to formation of higher 

hardness regions, which were recorded for A l-Ti-C  coating @  350°C  for 1 

hour (with HVo.gs value between 1.18 G Pa to 1.37 G Pa), resulting in overall 

higher micro-hardness value in comparison with A l-Ti-C  coating @  350°C  for 

3 hours. Figure 4.96 (a), (b), (c) and Figure 4.97 (a), (b), (c) shows the 

effect of different phases on the w ear track morphology of A l-T i-C  coating @  

350°C  for 1 hour and 3 hours respectively.
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Figure 4.96: Backscattered electron micrograph showing directionality of the 

wear tracks and precipitation of Al and Ti containing oxide and carbide 

phases in Al-Ti-C coating @ 350°C for 1 hour, (a), (b) and (c) are 

backscattered electron micrographs at different magnifications.

The wear track morphology for Al-Ti-C coating @ 350°C for 1 hour and 3 

hours from backscattered electron micrographs shown in Figure 4 .96  and 

Figure 4 .97 (a), (b) and (c) clearly showed that the precipitated high Ti 

concentration oxide and carbide phases resisted the abrasion caused by 

S i0 2 particles (hindrance in the wear track around high Ti concentration 

phases).
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Figure 4.97: Backscattered electron micrograph showing directionality of the 

wear tracks and precipitation of Al and Ti containing oxide and carbide 

phases in Al-Ti-C coating @ 350°C for 3 hour, (a), (b) and (c) are 

backscattered electron micrographs at different magnifications.

Due to presence of a higher hardness regions observed in Al-Ti-C coating @ 

350°C for 1 hour, the volume of the wear crater formed at each sliding 

distance was found lower than Al-Ti-C coating @ 350°C for 3 hours, thus 

lowering the wear coefficient value.

A difference in the wear coefficient of = 11% was observed between Al-Ti-C 

coatings @ 550°C for 1 hour (higher) compared with as sprayed Al-Ti-C 

coating. With increase in the holding time @ 550°C to 3 hours, ~ 24 % higher 

value of wear coefficient for Al-Ti-C coating was observed in comparison with 

as sprayed coating.
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It is important to note that a significant reduction in the micro-hardness 

values of A l-Ti-C  @  550°C  for 1 hour and 3 hours in comparison with 

previous exposure tem peratures (@  150°C  and 350°C  for 1 hour and 3 

hours) was also reported, suggesting that even with lower micro-hardness 

values, the least value of w ear coefficient (or value of w ear coefficient closer 

to as sprayed value) was recorded for Al-Ti-C  coating @  550°C  for 1 hour 

followed by 3 hours of exposure at sam e temperature. The w ear track 

morphologies for A l-T i-C  coating @  550°C  for 1 hour and 3 hours are shown 

in Figure 4.98 (a), (b), (c) and Figure 4.99 (a), (b), (c).

The Ti rich brittle phase seen in A l-Ti-C  coating @  550°C  for 1 hour (which 

was considered to be a result of dissolution of TisCs intermediate carbide 

causing increase in the Ti concentration in some regions of the coating), can 

also be seen in Figure 4.98 (a), (b) and (c) resisting the wearing action 

caused by S i0 2 abrasive particles. Sam e can be seen from Figure 4.99 (a), 

(b) and (c), however it is important to note that some regions with higher 

HVo.98 value (0 .78 G Pa to 0 .98 G Pa) for A l-T i-C  coating @  550°C  for 1 hour 

was seen which may have resulted in lower w ear crater volume in A l-T i-C  

coating @  550°C  for 1 hour than what was seen after 3 hours of exposure.
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Figure  4.98: Backscattered electron micrograph showing directionality of the 

wear tracks and precipitation of Al and Ti containing oxide and carbide 

phases in Al-Ti-C coating @ 550°C for 1 hour, (a), (b) and (c) are 

backscattered electron micrographs at different magnifications.
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Figure  4.99: Backscattered electron micrograph showing directionality of the 

wear tracks and precipitation of Al and Ti containing oxide and carbide 

phases in Al-Ti-C coating @ 550°C for 3 hour, (a), (b) and (c) are 

backscattered electron micrographs at different magnifications.
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Figure 4.100: Comparison of wear coefficient values obtained for as sprayed 

Al-Ti-C coating and Al-Ti-C coating exposed to 150°C, 350°C and 550°C 

for 1 hour and 3 hours followed by rapid quenching.

A graph comparing the wear coefficient value of as sprayed Al-Ti-C coating 

with coating exposed to 150°C, 350°C and 550°C for 1 hour and 3 hours 

followed by rapid quenching is shown in Figure 4.100.
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4.6.6 Microstructure of Al-Ti-C coating subjected to 150°C for 1 hour and 3 
hours followed by exposure to normal room temperature (25°C) 
for 5 hours.

F igure  4.101 (a) and (b) shows the backscattered electron micrograph of Al- 

Ti-C coating exposed to 150°C for 1 hour and 3 hours followed by normal 

room temperature exposure for 5 hours period.
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Figure  4.101: Backscattered electron micrograph of Al-Ti-C coating exposed 

to 150°C for (a) 1 hour and (b) 3 hours, followed by normal room temperature 

exposure (25°C) for 5 hours.
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Figure 4 .102  (a-d) and Figure 4 .103 (a-d) shows a higher magnification 

electron micrographs of Al-Ti-C coating @ 150°C for 1 hour and 3 hours 

followed by exposure to normal room temperature for 5 hours along with the 

average composition of each of the identified phases in T ab le  4 .30  and 

Tab le  4.31.
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Figure  4.102: A higher magnification, @ (a) x 2000, (b) x 5000 and (c) x 

10,000, (d) x 30,000 backscattered electron micrograph of Al-Ti-C coating 

exposed to 150°C for 1 hour showing (a) speckled region, (b) high contrast 

region, (c) triangular shaped brittle phase and (d) a brittle spherical equiaxed 

phase. The coatings were exposed to room temperature for 5 hours after 

150°C exposure.
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Figure 4.103: A higher magnification, @ (a) x 2000, (b) x 5000 ,(c) and (d) x 

20,000,backscattered electron micrograph of Al-Ti-C coating exposed to 

150°C for 3 hours showing (a) speckled region with observable growth in 

size (formation of a crater observed in (a), could be a result of coating 

removal during mechanical polishing), (b) high contrast region, (c) and (d) 

brittle spherical equiaxed phase. Notice the difference in the size of phases 

shown in (c) and (d). The coatings were exposed to room temperature for 5 

hours after 150°C exposure.
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Table 4.30: Average composition analysis of different phases observed in A l- 
Ti-C  coating @  150°C for 1 hour followed by normal room 
tem perature exposure for 5 hours.

Phase Average composition
Al (at% ) Ti (at% ) C (at%) 0  (at% )

Speckled region 35 ±  1 1 ± 0 . 1 3 ± 0 . 7 61 ± 0 . 1
High atomic number contrast 33 +  1.2 3 ± 0 . 7 3 ± 0 . 4 6 1 ±  0.2
region
Dark and light grey regions 35 +  0.1 1 ± 0 . 1 3 ± 0 61 ± 0
Triangular brittle phase 26 ±  0.5 7 ± 0 . 1 4 ± 0 . 5 62 ± 0 . 1
Spherical equiaxed brittle 17 ± 7 14 ± 5 5 ± 0 . 5 64  ±  1.1
phase

Table 4.31: Average composition analysis of different phases observed in A l- 
Ti-C  coating @  150°C  for 3 hours followed by normal room 
temperature exposure for 5 hours.

Phase__________________________ Average composition
Al (at% ) Ti (at% ) C (at% ) O  (at% )

Speckled region 36 ±  1 1 ± 0 . 1 3 ±  1 61 ±  0.2
High atomic number contrast 27 ± 2 8 ±  2 3 ± 0 . 5 6 2 ±  0.2
region
Dark and light grey regions 37 ± 0 . 1 1 ± 0 . 1 3 ± 0 61 ± 0 . 1
Spherical equiaxed brittle 7 ±  1 24 ±  1.2 4 ± 0 . 5 65 ±  0.2
phase

Formation of speckled region in A l-Ti-C  coating, shown in Figure 4.102 (a) 

and Figure 4.103 (a) after 150°C  for 1 hour and 3 hours followed by room  

tem perature exposure for 5 hours was seen. Similar to A l-T i-C  coating 

subjected to same exposure tem perature followed by rapid quenching, 

growth in the size of the speckled spots was observable after 3 hours of 

exposure @  150°C  followed by normal room tem perature exposure, see  

Figure 4.103 (a). A  similar average composition of the speckled region was  

seen after 1 hour and 3 hours of exposure detected from EDX analysis , see  

Table 4.30 and Table 4.31.
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Figure 4.102 (b) and Figure 4.103 (b) also revealed formation of a high 

atomic number contrast regions similar to the regions which were observed 

in Al-Ti-C coating @ 150°C followed by rapid quenching (for both 1 hour and 

3 hours). As seen from Table 4.30 and Table 4.31, an increase in the Ti 

concentration (at %) « 167% after 3 hours of exposure was seen in 

comparison to 1 hour of exposure @ 150°C followed by normal room 

temperature exposure for 5 hours. The dark and light grey regions after 1 

hour and 3 hours of exposure, were also observed with similar average 

composition (detected using EDX analysis) after both 1 hour and 3 hours of 

exposure.

Precipitation of two brittle phases, see in Figure 4.102 (c) and (d), was also 

observed in Al-Ti-C coating after 1 hour of exposure at 150°C followed by 

normal room temperature exposure for 5 hours. However, the brittle 

spherical equiaxed phase shown in Figure 4.103 (d) was reported to contain 

twice the amount of Ti concentration (detected using EDX) than the 

triangular brittle phase (Figure 4.103 (c)), see Table 4.30.

The triangular shaped brittle phase was not observed in Al-Ti-C coating after 

3 hours of exposure under similar exposure, however formation of brittle 

spherical equiaxed phase was reported. A « 71 % increase in the Ti 

concentration (at%) was detected in the brittle spherical equiaxed phase 

after 3 hours, in comparison to the brittle spherical equiaxed phase observed 

after 1 hour of exposure of Al-Ti-C coating at 150°C followed by normal room 

temperature exposure for 5 hours.
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The XRD analysis of Al-Ti-C coating after 150°C exposure for 1 hour and 3 

hours followed by room temperature exposure for 5 hours clearly showed 

formation of both Al and Ti oxides, see Figure 4.104 (a) and (b), which can 

also be seen from the higher O concentration (at%) detected from EDX 

analysis of identified phases. Formation of cubic AI3Ti intermetallic which 

was also detected in as-sprayed Al-Ti-C coating ,Al-Ti-C coating exposed to 

150°C and 350°C for 1 hour and 3 hours followed by rapid quenching ,was 

also seen in Al-Ti-C coating cooled under normal room temperature 

condition.

The phases such as high contrast regions, dark or light grey regions and 

speckled regions which were identified using backscattered electron 

micrographs for Al-Ti-C coating exposed to 150°C for both 1 hour and 3 

hours (cooled under normal room temperature conditions), the Al (at%) to O 

(at%) ratio « 0.4-0.5 :1 indicated the formation of AI2O3 which was confirmed 

by the XRD analysis, see Figure 4.104 (a), (b).
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Figure 4.104: XRD trace of Al-Ti-C coating post 150°C exposure for (a) 1 

hour and (b) 3 hours followed by normal room temperature exposure for 5 

hours.
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The (Al+Ti) : O ratio for all the brittle phases observed in Al-Ti-C coating 

@150°C (for both 1 hour and 3 hours followed by room temperature cooling), 

detected using average EDX compositional analysis showed a similar ratio of 

0.5 :1. However this stoichiometric ratio of 0.5:1 was close to Al: O ratio for 

Al20 3 (0.67:1) detected using XRD analysis, this could have been possible 

due to Ti substitution during formation of Al oxide.

The XRD analysis also indicated formation of titanium oxide (Ti3.76O2.6922), 

however the stoichiometric ratio of Ti: O for this oxide was = 1.4:1, which was 

not detected using EDX compositional analysis of each of the identified 

phase.
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4.6.7 Microstructure of Al-Ti-C coating subjected to 350°C for 1 hour and 3 
hours followed by exposure to normal room temperature (25°C) for 
5 hours.

Figure 4.105 (a) and (b) shows the backscattered electron micrograph of Al- 

Ti-C coating exposed to 150°C for 1 hour and 3 hours followed by normal 

room temperature exposure for 5 hours period.

Figure 4.105: Backscattered electron micrograph of Al-Ti-C coating exposed 

to 350°C for (a) 1 hour and (b) 3 hours, followed by normal room temperature 

exposure (25°C) for 5 hours.
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Figure 4.106 (a-d) and Figure 4.107 (a-d) shows a higher magnification 

electron micrographs of Al-Ti-C coating @ 350°C for 1 hour and 3 hours 

followed by exposure to normal room temperature for 5 hours along with the 

average composition of each of the identified phases in Table 4.32 and 

Table 4.33.
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Figure 4.106: A higher magnification, @ (a) x 2000, (b) x 5000 and (c) 

20,000,backscattered electron micrograph of Al-Ti-C coating exposed to 

350°C for 1 hour showing (a) speckled region with observable growth in size, 

(b) high contrast region and (c) brittle spherical equiaxed phase. The 

coatings were then exposed to normal room temperature for 5 hours.
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Figure 4.107: A higher magnification, @ (a) x 2000, (b) x 4000 and (c) 

12,000 and (d) 30,000 backscattered electron micrograph of Al-Ti-C coating 

exposed to 350°C for 3 hours showing (a) speckled region with observable 

growth in size, (b) high contrast region and (c) brittle spherical equiaxed 

phase. The coatings were then exposed to normal room temperature for 5 

hours.
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Table 4.32: Average composition analysis of different phases observed in Al- 
Ti-C coating @ 350°C for 1 hour followed by normal room 

___________ temperature exposure for 5 hours.________________________
Phase______________________Average composition

Al (at%) Ti (at%) C (at%) 0  (at%)
Speckled region 34 ± 3 1 ±0.1 5 ±0 .7 61 ±0.1
High atomic number contrast 29 ± 1.5 7 ±  1.5 3 ±0 .2 61± 0.2
region
Dark and light grey regions 36 ±0.2 1 ±0.1 3 ± 0 60 ±  0
Spherical equiaxed brittle 10 ± 2 13 ± 7 12 ± 4 65 ±1.1
phase

Table 4.33: Average composition analysis of different phases observed in Al- 
Ti-C coating @ 350°C for 3 hours followed by normal room 
temperature exposure for 5 hours.

Phase______________________Average composition
Al (at%) Ti (at%) C (at%) 0  (at%)

Speckled region 35 ± 3 1 ±0.1 3 ±0.5 61 ±0.1
High atomic number contrast 32 ± 0.1 4 ±  1.5 3 ±0.1 61± 0.2
region
Dark and light grey regions 34 ± 1.4 1 ±0.1 4 ± 1.3 60 ± 0
Brittle phase 25 ± 3 8 ± 1 5 ± 2 63 ±  0.4
Spherical equiaxed brittle 15 ± 3 12 ±0.5 9 ± 2 64 ±  0.4
phase

Speckled region similar to the one seen in Al-Ti-C coating @ 150°C for 1 

hour and 3 hours followed by normal room temperature exposure for 5 hours 

with similar average composition, detected using EDX analysis, was also 

seen after 350°C for similar exposure periods, see Figure 4.106 (a) and 

Figure 4.107 (a). The dark and the light grey contrast regions were also 

seen in Al-Ti-C coating after 350°C exposure for 1 hour and 3 hours followed 

by normal room temperature exposure, however they were more pronounced 

in Al-Ti-C coating @ 350°C for 1 hour in comparison to 3 hours of exposure 

at same temperature (with similar average composition).
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The high contrast regions (which were also seen @ 150°C of exposure, see 

Figure 4.104 (b) and Figure 4.105 (b)) were also seen in Al-Ti-C coating @ 

350°C for 1 hour and 3 hours followed by normal room temperature cooling 

for 5 hours, see Figure 4.106 (b) and Figure 4.107 (b), with (Al+Ti):0 ratio = 

0.6:1 for both 1 hour and 3 hours (from EDX compositional analysis) of 

exposure at same temperature.

The backscattered electron micrographs of Al-Ti-C coating @ 350°C followed 

by room temperature cooling for 5 hours also revealed formation of brittle 

spherical equiaxed phase for both 1 hour and 3 hours of exposure with 

similar average Ti concentration (at%). However formation of another distinct 

brittle phase was also seen after 3 hours of exposure with ~ 33 % less Ti 

concentration than spherical phase observed in Al-Ti-C coating after 3 hours 

at 350°C followed by room temperature cooling, see Figure 4.107 (c).
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Figure 4.108: XRD trace of Al-Ti-C coating post 350°C exposure for (a) 1 

hour and (b) 3 hours followed by normal room temperature exposure for 5 

hours.
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The XRD analysis of the Al-Ti-C coating @ 350°C for both 1 hour and 3 

hours followed by normal room temperature cooling, see Figure 4.108 (a) 

and (b), also showed formation of cubic AI3Ti intermetallic which was also 

seen in Al-Ti-C @ 150°C for 1 hour and 3 hours followed by normal room 

temperature cooling. The formation of both Al and Ti oxide in form of cubic 

Al20 3 and Ti3.76O2.9622 were also seen in Al-Ti-C coating @ 350°C for both 1 

hour and 3 hours followed by normal room temperature cooling. The 

stoichiometric Al to O ratio obtained from EDX analysis of speckled region, 

high contrast region, dark and light grey region seen in Al-Ti-C coating after 1 

hour and 3 hours of exposure @ 350°C clearly indicated the formation of Al 

oxide, which was detected using XRD analysis.

The XRD analysis did not reveal the formation of TiC phase. The Al to Ti 

ratio for brittle phase seen in Al-Ti-C coating after 3 hours, was « 3.1:1 

(using EDX analysis), suggesting precipitation of intermetallic tri-aluminide 

AI3Ti, which was also seen from XRD analysis, Figure 4.108 (b). The 

possibility of formation of intermediate titanium carbide (for the same brittle 

phase), with Ti to C ratio of 8:5 (see Table 4.33), which has also been 

reported earlier in as sprayed coating, Al-Ti-C coating @ 150°C,350°C 

followed by rapid quenching, was not detected in the XRD analysis of Al-Ti-C 

coating @ 350°C for 3 hours followed by room temperature cooling for 5 

hours, see Figure 4.108 (b).
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4.6.8 Microstructure of Al-Ti-C coating subjected to 550°C for 1 hour and 3 
hours followed by exposure to normal room temperature (25°C) for 
5 hours.

Figure 4.109 (a) and (b) shows the backscattered electron micrograph of Al- 

Ti-C coating exposed to 550°C for 1 hour and 3 hours followed by normal 

room temperature exposure for 5 hours period.

Figure 4.109: Backscattered electron micrograph of Al-Ti-C coating exposed 

to 550°C for (a) 1 hour and (b) 3 hours, followed by normal room temperature 

exposure (25°C) for 5 hours.

353



Figure 4.110 (a-b) and Figure 4.111 (a-c) shows a higher magnification 

electron micrographs of Al-Ti-C coating @ 350°C for 1 hour and 3 hours 

followed by exposure to normal room temperature for 5 hours along with the 

average composition of each of the identified phases in Table 4.34 and 

Table 4.35.
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Figure 4.110: A higher magnification, @ (a) and (b) x 20,000 backscattered 

electron micrograph of Al-Ti-C coating exposed to 550°C for 1 hour showing 

(a) speckled region with feather shaped regions and (b) showing brittle 

spherical equiaxed phase along with large speckled spots. The coatings 

were then exposed to normal room temperature for 5 hours.
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Figure 4.111: A higher magnification, @ (a) x 3000, (b) and (c) x 30,000 

backscattered electron micrograph of Al-Ti-C coating exposed to 550°C for 1 

hour showing (a) speckled region (b) Speckled region with observable

growth and feather shaped region and (c) brittle phase along with speckled 

spots. The coatings were then exposed to normal room temperature for 5 

hours.
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Table 4.34: Average composition analysis of different phases observed in Al- 
Ti-C coating @ 550°C for 1 hour followed by normal room 

___________ temperature exposure for 5 hours.________________________
Phase______________________Average composition

Al (at%) Ti (at%) C (at%) 0  (at%)
Speckled region 36 ± 0.4 1 + 0 2 ±0 .3 61 ±0.1
Region showing growth in the 3 1 + 3 1 ±0 .2 7 ±  2 61± 0.5
size of speckled spots
Feather shaped regions 34 ± 0.6 1 +0.1 5 ±  4 60 ± 0
Spherical equiaxed brittle 18 + 2 14 + 0.2 6 ±  1.1 62 ±  0.3
phase

Table 4.35: Average composition analysis of different phases observed in Al- 
Ti-C coating @ 550°C for 3 hours followed by normal room 

___________ temperature exposure for 5 hours.________________________
Phase Average composition

Al (at%) Ti (at%) C (at%) 0  (at%)
Speckled region 32 ± 3 1 ±0 .2 6 ± 3 61 ±0 .5
Feather shaped region 24 ± 1.1 1 ± 0 12 ±  1 63± 0.2
High contrast regions 30 ± 1 6 ± 0 4 ± 1 60 ±  0.3
Brittle phase 8 ± 4 11 ±0 .2 16 ± 1 65 ±  0.6

Apart from the speckled region, the AI-Ti-iC coating @ 550°C for both 1 hour

and 3 hours showed formation of distinct feather shaped regions after 1 hour 

@ 550°C, see Figure 4.110 (a). These feather shaped oxide regions were 

also seen after 3 hours of exposure @ 550°C, see Figure 4.111 (b), but 

were more profound after 1 hour of exposure at same temperature. The 

average EDX compositional analysis revealed that speckled region and 

feather shaped regions had similar concentrations of Al (at%), Ti (at%) and O 

(at%), however the C levels varied (also due to metallographic sample 

preparation), see Table 4.34 and Table 4.35. A growth in the size of the 

speckled region was also observed in Al-Ti-C coating @ 550°C for 1 hour, 

with similar average composition as speckled phase.
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Note that for Al-Ti-C coating @ 550°C for 3 hours, a similar growth was also 

seen, see Figure 4.110 (b) but the EDX analysis showed that the average 

composition of these large speckled phases was similar to the ones seen 

after 1 hour of exposure at same temperature. Some high contrast phases in 

Al-Ti-C coating @ 550°C for 3 hours were found to be similar in composition 

to the ones seen after 150°C and 350°C for same exposure period.

A spherical equiaxed oxide phase, with similar Ti concentration (at%) to the 

spherical phase observed in Al-Ti-C coating after 350°C for 1 hour and 3 

hours, was also seen in Al-Ti-C coating @ 550°C for 1 hour followed by room 

temperature cooling for 5 hours. However this spherical equiaxed phase was 

not seen after 3 hours of exposure at same temperature.
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Figure 4.112: XRD trace of Al-Ti-C coating post 550°C exposure for (a) 1 

hour and (b) 3 hours followed by normal room temperature exposure for 5 

hours.
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Precipitation of a brittle oxide phase was observed in Al-Ti-C coating after 3 

hours of exposure @ 550°C followed by room temperature cooling for 5 

hours, see Figure 4.111 (c). A similar brittle oxide phase formation was also 

seen in Al-Ti-C coating exposed to 150°C for 1 hour and 350°C for 3 hours 

(room temperature cooled for 5 hours), however after 550°C of exposure for 

3 hours, the Ti concentration (at%) was found to be « 27 % more than the 

value obtained in the previous exposure temperatures.

The XRD trace in Figure 4.112 (a) and (b) showed formation of tetragonal 

AI3Ti intermetallic which was also seen in the rapid quenched Al-Ti-C coating 

exposed at same temperature and period. Formation of cubic Al20 3 was also 

detected using XRD analysis of Al-Ti-C coating @ 550°C for both 1 hour and 

3 hours followed by room temperature cooling for 5 hours. This was also in 

accordance with the stoichiometric ratio of Al:0 obtained using average EDX 

compositional analysis (« 0.6:1) of identified phases in Al-Ti-C coating @ 

550°C for both 1 hour and 3 hours, except for spherical equiaxed phase after 

1 hour and brittle phase after 3 hours of exposure at 550°C followed by room 

temperature cooling for 5 hours.

Formation of cubic Ti oxide was also confirmed using XRD analysis, however 

a difference in the stoichiometric Ti:0 ratio of oxide phases was observed 

after 1 hour (Ti3.76C>2.6922) and 3 hours (TiO) of exposure @ 550°C followed 

by room temperature cooling for 5 hours. It is important to note that these 

stoichiometric Ti:0 ratios were not deduced from average compositional EDX 

analysis of identified phases.
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4.6.9 Micro-hardness of Al-Ti-C coating subjected to 150°C, 350°C,
550°C for 1 hour and 3 hours followed by normal room 
temperature cooling for 5 hours.

Table 4.36 shows the average Vickers micro-hardness values measured for 

Al-Ti-C coating subjected to 150°C, 350°C and 550°C for 1 hour and 3 hours 

respectively followed by room temperature cooling for 5 hours.

Table 4.36: Vickers micro-hardness of Al-Ti-C coating subjected to 150°C, 
350°C and 550°C for 1 hour and 3 hours followed by room 

___________ temperature cooling for 5 hours._______________________
Temperature
(°C)

Time of exposure 
(hours)

H V o .98

GPa(kgf/mm2)
Coefficient of 
variation (%)

1 0.67 (68 ± 23) 33
@ 150 3 0.83 (85 ± 28) 33

1 0.70 (71 ± 21) 30
@ 350 3 0.77 (78 ± 19) 25

1 0.60 (61 ± 17) 28
@ 550 3 0.52 (53 ± 14) 25

The range of micro-hardness values for Al-Ti-C coating subjected to 150°C, 

350°C and 550°C followed by room temperature cooling was also shown by 

the frequency distribution histograms in Figure 4.113 to Figure 4.115. The 

effect of precipitation of different phases at various exposure temperatures 

followed by normal room temperature cooling for 5 hours on the micro­

hardness of Al-Ti-C coating is shown in Figure 4.116.
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Figure 4.113: Frequency distribution histogram of micro-hardness (HVo.gs) 

for Al-Ti-C coating exposed to 150°C for 1 hour (violet shade) and 3 hours 

(Dark red shade). The coatings were room temperature cooled (5 hours) 

after exposure.

14

17

a m £■
E■i
5 ■
IT 
I t
E  

° 6
4>D

^  4

2 

0
0 0-20 20-40 40-60 60-80 80-100 100-120 120-140 140-160 {kgf/mm i
0 0-0 2 0 2-0 39 0 39 0 59 0 59-0 78 0 7B-0 98 0 98-1 18 1 18-1 37 1 37-1 57 (GPa)

HV0*  range

Figure 4.114: Frequency distribution histogram of micro-hardness (HVo.98) 

for Al-Ti-C coating exposed to 350°C for 1 hour (violet shade) and 3 hours 

(Dark red shade). The coatings were room temperature cooled (5 hours) 

after exposure.
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Figure 4.115: Frequency distribution histogram of micro-hardness (HVo.gs) 

for Al-Ti-C coating exposed to 550°C for 1 hour (violet shade) and 3 hours 

(Dark red shade). The coatings were room temperature cooled (5 hours) 

after exposure.

For the Al-Ti-C coating @ 150°C for 1 hour, followed by room temperature 

cooling, regions with micro-hardness value in the as high as 0.98 GPa to 

1.18 GPa were observed, however with an increase in the exposure period 

to 3 hours for same exposure temperature, regions of much higher micro­

hardness values (1.37GPa-1.57 GPa) were also recorded, see Figure 4.113. 

This could have been due to the formation of Ti rich brittle oxide phase which 

was seen in Al-Ti-C coating after 3 hours of exposure @ 150°C (followed by 

room temperature cooling for 5 hours), resulting in an overall 13% increase 

in the micro-hardness value of Al-Ti-C coating subjected to 150°C of 

exposure for 3 hours (followed by room temperature cooling) in comparison 

to as sprayed coating, see Figure 4.116.
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Even though Al-Ti-C coating exposed to 150°C for 3 hours showed regions 

with higher micro-hardness values than what was observed after 1 hour 

same coefficient of variation value of 33% was observed for both exposure 

period (1 hour and 3 hours at 150°C). This could be attributed to the 

detection of large number of regions with micro-hardness values in the range 

of 0.59 GPa to 0.98 GPa which were seen in Al-Ti-C coating @ 150°C for 1 

hour than after 3 hours of exposure (even though higher micro-hardness 

regions were observed).

With an increase in the exposure temperature to 350°C, a reduction in the 

spread of micro-hardness value and coefficient of variation values were 

observed, see Figure 4.114. The regions of micro-hardness value in the 

range 0.59 GPa to 0.78 GPa were significantly higher after 3 hours of 

exposure than 1 hour of exposure @ 350°C, see Figure 4.115. With regions 

having micro-hardness value in the range of 1.18 GPa to 1.37 GPa observed 

in Al-Ti-C coating @ 350°C for 1 hour (these micro-hardness range were not 

seen after 3 hours of exposure @ 350°C) an overall 5 % decrease in the 

micro-hardness value in comparison with as sprayed coating was recorded. 

Precipitation of brittle Ti rich oxide phases which were seen Al-Ti-C coating 

@ 350°C for 1 hour and 3 hours, could have resulted in formation of regions 

with similar hardness (0.59 GPa to 0.78 GPa), however formation of 

additional Ti rich brittle phase in Al-Ti-C coating @ 350°C for 3 hours, could 

have resulted in overall increase in the micro-hardness value in comparison 

with as sprayed Al-Ti-C coating.
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The Al-Ti-C coating @ 550°C for both 1 hour and 3 hours of exposure 

showed ~ 19 % and 21 % reduction in the micro-hardness values 

respectively in comparison with as sprayed Al-Ti-C coating, see Figure 

4.116. This reduction in the overall micro-hardness can be explained by the 

fact that maximum regions of micro-hardness in the range of 0.39 GPa to 

0.78 GPa were seen during this exposure temperature and exposure. 

However regions with micro-hardness value in the range of 0.78 GPa to 0.98 

GPa were also seen in the Al-Ti-C coating @ 550°C for both 1 hour and 3 

hours followed by room temperature cooling, see Figure 4.115. Precipitation 

of Ti rich brittle oxide phases observed in Al-Ti-C coating @ 550°C for 1 hour 

and 3 hours which would have led to the decrease in the overall Ti 

distribution in the coating could have resulted in the overall decrease in the 

micro-hardness of the Al-Ti-C coating see Figure 4.116.
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Figure 4.116: Comparison of micro-hardness values obtained for as sprayed 

Al-Ti-C coating and Al-Ti-C coating exposed to 150°C, 350°C and 550°C for 

1 hour and 3 hours followed by room temperature cooling for 5 hours.
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4.6.10 Coefficient of wear for Al-Ti-C coating subjected to 150°C, 350°C, 
550°C for 1 hour and 3 hours followed by room temperature 
cooling for 5 hours.

Table 4.37 shows the values of coefficient of wear for Al-Ti-C coating 

exposed to 150°C, 350°C and 550°C followed by room temperature cooling 

for 5 hours.

Table 4.37: Coefficient of wear for Al-Ti-C coating exposed to 150°C, 350°C 
and 550°C for 1 hour and 3 hours followed by room 
temperature cooling for 5 hours.

Temperature (UC) Time of exposure 
(hours)

Coefficient of wear 
(mm3 N'1m'1)

1 5.79E-04 ± 1.44E-04
@ 150 3 4.64E-04 ± 0.04E-04

1 6.03E-04 ±  0.4E-04
@ 350 3 4.00E-04 ± 0.2E-04

1 3.90E-04 ± 0.08E-04
@ 550 3 2.75E-04 ± 1.40E-04

The values of coefficient of wear for Al-Ti-C coating at a given exposure 

temperature and period of exposure were obtained from the gradient of the 

graphs shown in where wear crater volume (in mm3) obtained during micro­

scale abrasion test was plotted against the sliding distance (in m) multiplied 

with the applied load (in N). A graph comparing the wear coefficient values of 

as sprayed Al-Ti-C coating with coating exposed to 150°C, 350°C and 550°C 

for 1 hour and 3 hours followed by room temperature cooling is shown in 

Figure 4.125.
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Figure 4.117: Graphs showing wear crater volume vs. sliding distance x load 

for Al-Ti-C coating subjected to 150°C for (a) 1 hour and (b) 3 hours followed 

by room temperature cooling for 5 hours.
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Figure 4.118: Graphs showing wear crater volume vs. sliding distance x load 

for Al-Ti-C coating subjected to 350°C for (a) 1 hour and (b) 3 hours followed 

by room temperature cooling for 5 hours.
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Figure 4.119: Graphs showing wear crater volume vs. sliding distance x load 

for Al-Ti-C coating subjected to 550°C for (a) 1 hour and (b) 3 hours followed 

by room temperature cooling for 5 hours.

A significant increment of ~ 80% and 44% in the values of the wear 

coefficient for Al-Ti-C coating subjected to 150°C for 1 hour and 3 hours 

followed by room temperature cooling (for 5 hours) in comparison with as 

sprayed Al-Ti-C coating was recorded, implying lowering of wear resistance
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performance of Al-Ti-C coating @ 150°C followed by room temperature 

cooling (for both 1 hour and 3 hours).Figure 4.120 (a), (b), (c) and Figure 

4.121 (a), (b), (c) shows the wear track morphology (notice the directionality 

of the wear track) of Al-Ti-C coating @ 150°C for 1 hour and 3 hours followed 

by room temperature cooling for 5 hours.

Al M atrix

Ti/Al oxide

l/Ti oxide

Figure 4.120: Backscattered electron micrograph showing directionality of 

the wear tracks and precipitation of Al and Ti containing oxide phases in Al- 

Ti-C coating @150°C for 1 hour followed by room temperature cooling for 5 

hours (a), (b) and (c) are backscattered electron micrographs at different 

magnifications.
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Figure 4.121: Backscattered electron micrograph showing directionality of 

the wear tracks and precipitation of Al and Ti containing phases in Al-Ti-C 

coating @150°C for 3 hour followed by room temperature cooling for 5 hours 

(a), (b) and (c) are backscattered electron micrographs at different 

magnifications.

A ~ 20% reduction in the value of wear coefficient was recorded for Al-Ti-C 

coating @ 150°C for 3 hours than the value obtained after 1 hour at same 

exposure temperature followed by room temperature cooling, see Figure 

4.126. Even though Ti rich oxide phases which were identified in Al-Ti-C 

coating @ 150°C for both 1 hour and 3 hours, could have resisted the 

abrasion caused by SiC>2 particles during the micro-scale abrasive wear test,
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the graph in Figure 4.117 (a) showed that the volume of the wear crater 

formed at each sliding distance after 1 hour @ 150°C was higher than the 

volume of the wear crater obtained after 3 hours of exposure at same sliding 

distances, see Figure 4.117 (b) under constant load of 0.2 N.

This can be attributed to the 25 % increase in the micro-hardness value 

which was reported for Al-Ti-C coating @ 150° for 3 hours in comparison 

with the value obtained after 1 hour of exposure. It is important to note that a 

higher volume loss in Al-Ti-C coating @ 150° C for 1 hour during abrasive 

wear test could have also been due to loss of coating itself during abrasion 

testing, which can be seen from Figure 4.120 (a).

An increase o f « 87 % and 24% in the value of wear coefficient for Al-Ti-C 

coating @ 350°C for 1 hour and 3 hours respectively (followed by room 

temperature cooling) in comparison with as sprayed Al-Ti-C coating was 

observed. Figure 4.122 (a), (b), (c) and Figure 4.123 (a), (b), (c) shows the 

morphology and effect of identified phases on the wear tracks obtained for 

Al-Ti-C coating @ 350°C for both 1 hour and 3 hours during micro-scale 

abrasive test. A reduction of *  34 % in the value of the wear coefficient of Al- 

Ti-C coating @ 350°C for 3 hours in comparison to 1 hour of exposure was 

also observed, see Figure 4.126.
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Figure 4.122: Backscattered electron micrograph showing directionality of 

the wear tracks and precipitation of various phases in Al-Ti-C coating 

@350°C for 1 hour followed by room temperature cooling for 5 hours (a), (b) 

and (c) are backscattered electron micrographs at different magnifications.
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Figure 4.123: Backscattered electron micrograph showing directionality of 

the wear tracks and precipitation of various phases in Al-Ti-C coating 

@350°C for 3 hours followed by room temperature cooling for 5 hours (a), (b) 

and (c) are backscattered electron micrographs at different magnifications.

As seen from Figure 4.122 (a) and (b), no evidence of resistance against 

abrading Si02 particles was observed except for the Ti rich brittle spherical 

oxide phase which was observed in Al-Ti-C coating @ 350°C for 1 hour, 

appeared to be resisting the ploughing action by the abrasive S i0 2 particles.

Precipitation of another Ti rich brittle oxide phase (apart from spherical 

equiaxed phase) which was seen in Al-Ti-C coating after 350°C for 3 hours, 

could have been responsible for providing lower volume of the wear craters 

formed at each sliding distance in Al-Ti-C coating @ 350°C for 3 hours in
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comparison with 1 hour of exposure, see Figure 4.118 (a), (b), at constant 

load of 0.2 N (note that the wear crater formed after 50 m sliding distance for 

Al-Ti-C coating after 3 hours @ 350°C showed a higher volume value than 

wear crater volume after 1 hour at 50 m sliding distance). The evidence of Ti 

rich brittle phase aiding wear can also be seen from Figure 4.123 (b), (c).

With an increase in the exposure temperature to 550°C, ~ 21% increase in 

the wear coefficient value in Al-Ti-C coating after 1 hour of exposure 

(followed by room temperature cooling) was observed in comparison to as 

sprayed coating, see Figure 4.126. However after 3 hours of exposure at 

550°C, the value of wear coefficient was found to be » 15 % less than that of 

as sprayed coating. Figure 4.124 (a), (b), (c) and Figure 4.125 (a), (b), (c) 

shows the morphology and effect of identified phases on the wear tracks 

obtained for Al-Ti-C coating @ 350°C for both 1 hour and 3 hours during 

micro-scale abrasive test. A reduction of « 30 % in the value of the wear 

coefficient after 3 hours of exposure in comparison to 1 hour of exposure of 

Al-Ti-C coating @ 550°C was also deduced. It is important to note that the 

wear coefficient obtained for Al-Ti-C coating subjected to 550°C for both 1 

hour and 3 hours (followed by room temperature cooling) showed minimum 

difference in comparison with as sprayed Al-Ti-C coating (15% reduction in 

wear coefficient value for Al-Ti-C coating @ 550°C for 3 hours), that the 

previous exposure temperatures, see Figure 4.126.
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Figure 4.124: Backscattered electron micrograph showing directionality of 

the wear tracks and precipitation of various phases in Al-Ti-C coating 

@550°C for 1 hour followed by room temperature cooling for 5 hours (a), (b) 

and (c) are backscattered electron micrographs at different magnifications.
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Figure 4.125: Backscattered electron micrograph showing directionality of 

the wear tracks and precipitation of various phases in Al-Ti-C coating 

@550°C for 3 hours followed by room temperature cooling for 5 hours (a), (b) 

and (c) are backscattered electron micrographs at different magnifications.

Despite the fact that Ti rich brittle oxide phases, which were identified in Al- 

Ti-C coating @ 550°C for both 1 hour and 3 hours of exposure, the least 

values of the micro-hardness, 0.60 GPa and 0.52 GPa were obtained after 1 

hour and 3 hours of exposure respectively.
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The wear track micrographs shown in Figure 4.124 and Figure 4.125 (a, b 

and c) illustrates that presence of Ti rich brittle oxide phase appear to hinder 

the indentation caused by S i02 particles during micro-scale abrasive wear 

test in Al-Ti-C coating @ 550°C equally for both 1 hour and 3 hours of 

exposure. However the graphs shown in Figure 4.119 (a) and (b) indicated 

that the volume of the wear crater formed in Al-Ti-C coating @ 550°C after 

50 m and 150 m of sliding distance (during micro-scale abrasive wear test) 

had similar values for both 1 hour and 3 hours.

With the increase in the sliding distance to 200 m during wear test, the 

volume of the wear crater formed in Al-Ti-C coating @ 550° for 1 hour was 

found to be « 23 % higher than the value observed in Al-Ti-C coating after 3 

hours of exposure (note that after 150 m and 200 m the wear crater volume 

in Al-Ti-C coating @ 550°C for 3 hours had almost similar values, see Figure 

4.119 (b) resulting in lowering of the coefficient of wear value of Al-Ti-C 

coating after 3 hours of exposure @ 550°C in comparison to 1 hour of 

exposure.
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Figure 4.126: Comparison of wear coefficient values obtained for as sprayed 

Al-Ti-C coating and Al-Ti-C coating exposed to 150°C, 350°C and 550°C for 

1 hour and 3 hours followed by room temperature cooling for 5 hours.
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Chapter 5: Conclusion

The two main objectives of this research were:

• To investigate the sacrificial corrosion protection ability of newly 

developed arc sprayed Al-Zn-ln coating deposited on mild steel 

substrates. Using accelerated and electrochemical corrosion tests, 

establish an understanding of the key properties of Zn and In that 

plays the major role in activation of arc sprayed Al-Zn-ln coating.

• To investigate the wear resistance performance of arc sprayed Al-Ti-C 

coating deposited on mild steel substrate by three body micro-scale 

abrasive wear test and establish the role of identified tri aluminide 

AI3Ti and carbide (AI,Ti)C particles in increasing the wear resistance 

performance of the coating.

The critical assessment of the arc sprayed Al-Zn-ln and Al-Ti-C was 

achieved by these objectives
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Arc Sprayed Al-Zn-ln coating

The salt spray corrosion test conducted on Al, Zn-AI and Al-Zn-ln coating 

indicated that when the coatings were exposed to 5%w/v NaCI, the Al-Zn-ln 

coating showed evidence of superior sacrificial corrosion protection than Al 

coating. The Zn-AI coating was less effective in sacrificially protecting mild 

steel substrate and showed greater overall corrosion in comparison to Al and 

Al-Zn-ln coating.

The Backscattered SEM micrograph of Al coating after 1000 hours showed 

evidence of delamination, whereas Al-Zn-ln showed less evidence of oxide 

formation than Al coating. The cross section analysis of Zn-AI coating after 

1000 hours showed formation of cracks which indicated cohesive failure of 

the coating.

The X-ray diffraction analysis of the corrosion products after 500 and 1000 

hours indicated the formation of Bayerite (AI(OH)3) and Dawsonite 

(NaAI(C03)(0H )2) as dominant phases present in the corrosion product 

obtained from the Al and Al-Zn-ln coatings. Although the composition of the 

Al and Al-Zn-ln coatings was different, similar corrosion phases were 

identified in the corrosion product. Zinc aluminium carbonate hydroxide 

hydrate (Zno.6iAlo.39(OH)2(C03)o.i95.xH20 ) was identified as a dominant 

phase present in corrosion product of Zn-AI coating after 500 and 1000 hours 

of corrosion testing.
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In an attempt to understand the effects of long term exposure tests on Al, Al- 

Zn, Al-Zn-ln and Al-Ti-C feedstock alloys and coatings, the weight change for 

both feedstock materials and coatings after specified exposure period in the 

neutral salt spray test was recorded.

Over a period of 840 hours in the neutral salt spray test, the pure Al and Al- 

Zn feedstock material showed almost linear increase in the weight change 

per unit area, except for Al-Zn-ln and Al-Ti-C. This behaviour of weight 

change per unit area for Al-Zn-ln feedstock material was attributed to either 

large variation of weight change within the triplicate samples or by removal of 

loose corrosion product. However for the Al, Al-Zn, Al-Zn-ln and Al-Ti-C 

coatings, non-linear (polynomial function with degree>3) increase in the 

weight change per unit area with time was observed.

The weight change per unit area revealed that Al-Zn and Al-Zn-ln in form of 

feedstock material were uniformly corroding in comparison to pure Al 

feedstock material. These results supported the fact that Al-Zn alloy and Al- 

Zn-ln alloy, containing Zn from 3.5wt% to 5wt% and In up to maximum of 

0.05wt% were effective in making the surface of the Al alloy corrode 

uniformly when exposed to ASTM D1141 artificial sea water, which was 

established in the earlier researches [227].
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However, Bessone et al. [227] stated that the anode performance of Al 

alloyed with either Zn or In remains unaltered with adhesion of corrosion 

product, is in contradiction with the present weight change per unit area 

obtained for Al-Zn-ln feedstock material.

Similar observations were made for Al-Zn and Al-Zn-ln coatings in 

comparison with Al coatings, which showed that even after 840 hours of 

exposure in the neutral salt spray test, the Al-Zn and Al-Zn-ln coatings were 

actively showing increase in weigh per unit area, while Al coating showed 

formation of a plateau, indicating that Al-Zn and Al-Zn-ln coating were 

actively corroding in the 5%w/v NaCI fog environment. These finding were 

also in accordance with previous researches conducted on arc and flame 

sprayed Al-Zn and Al-Zn-ln coatings in marine environment [220,227], which 

showed

• That even after 2 to 15 years of exposure, Al-Zn and Al-Zn-ln coatings 

showed superior corrosion protection than Al coatings, which were 

sprayed on to steel reinforced concrete structures and exposed to 

both dry and wet marine environment at La Guardia airport, north New 

York, USA.
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Complementing the findings of salt spray corrosion test, were the results 

obtained from electrochemical tests conducted on arc sprayed Al-Zn-ln and 

Al-Ti-C coatings at various NaCI concentrations.

The fluctuations in the OCP of Al-Zn-ln coating at various chloride 

concentrations was attributed to the synergetic interaction of Zn and In in 

cyclic formation and rupturing of passive Al oxide layer. It was shown in the 

earlier researches that the effectiveness of activation of Al by Zn and In 

increases in the presence of halide ions in the order F>CI>Br>l and higher 

concentrations of Cl' ions favours the activation. The OCP measurements 

showed that even at lower concentration of NaCI (0.01 %w/v) the synergetic 

interaction of Zn and In was effectively able to maintain the OCP of Al-Zn-ln 

coating electronegative.

The OCP results were also complemented by the CCP measurements, 

which showed that for coupling of coatings with mild steel substrate at 3.5%, 

1.0%, 0.1% and 0.01 %w/v NaCI solution, the active CCP values were found 

to follow the order AI-Zn-ln>AI-Zn>AI>AI-Ti-C. An empirical relationship 

between corrosion current per unit area values and area of cathode to anode 

was also established, which was found to vary with varying NaCI 

concentration.
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The EIS results indicated formation of capacitive time constants for Al-Zn 

coating, while Al-Zn-ln coating showed formation of inductive time constants 

at lower frequencies (<10kHz). This was reported for all NaCI concentrations 

used during experiment. The capacitive time constant observed for Al-Zn 

coating was attributed to the formation of ZnAl204 spinel causing the Al oxide 

layer to create vacancies of cations, while the inductive loop observed for Al- 

Zn-ln coating suggested adsorption of CP ions due to formation of a In chloro 

complex due to anionic vacancy. This Cl" ions adsorption was suggested to 

be the cause of rupturing of passive Al oxide layer.

Arc Sprayed Al-Ti-C coating

The work conducted on Al-Ti-C coating showed that:

• The Al-Ti-C feedstock alloy produced using slow cooling showed the 

presence of evenly distributed intermetallic tetragonal AI3Ti and 

carbide (Ti,AI)C phases which, because of their inherent higher 

hardness results in a 33% higher micro-hardness of Al-Ti-C feedstock 

alloy in comparison with pure Al feedstock.

• The 18% lower coefficient of wear of the Al-Ti-C feedstock compared 

to that of the pure Al feedstock can also be explained by the presence 

of the hard intermetallic tetragonal AI3Ti tri-aluminide and (Ti,AI)C 

phases present in the structure.
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• The microstructure of the arc sprayed Al-Ti-C coating did not contain 

AI3Ti and (Ti,AI)C particles but did show regions of varying atomic 

number contrast suggesting the formation of the metastable cubic 

phase of AI3Ti (confirmed by XRD analysis) formed from the rapid 

cooling that takes place in arc spraying . The resulting precipitation 

strengthening may explain the 114% increase in the hardness of the 

sprayed Al-Ti-C coating compared to its feedstock alloy and also the 

regions with a high hardness up to HVo.98 = 1.18 GPa (120kgf/mm2).

• The arc sprayed Al-Ti-C coating showed a 33% lower coefficient of 

wear than the pure Al coating which was attributed to precipitation 

strengthening resulting in an overall higher micro-hardness and the 

presence of regions of high micro-hardness (HV0.98 >1 .18  GPa) in the 

Al-Ti-C coating.

• In the micro-scale abrasive wear test using 2.5 mm S i0 2 abrasive in 

deionised water, the wear coefficient of an arc sprayed Al-Ti-C coating 

was found to be very close to that of an arc sprayed 13wt%Cr steel 

coating with a much higher hardness.

• The study of the microstructure of Al-Ti-C coating, subjected to both 

heat treatment cycles, by SEM revealed precipitation of sub-micron 

sized speckled region which showed a relative growth (still sub- 

micron) with increase in exposure temperature from 150°C to 350°C 

and 550°C (followed by rapid cooling and room temperature cooling).
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• The other varying atomic number contrast regions were also 

identified along with speckled regions. The average compositional 

analysis using EDX showed a high Ti concentration (at%) in the high 

atomic number contrast phases which suggested precipitation of 

cubic AI3Ti phase. This was confirmed by the XRD analysis of the 

heat treated coating, however @ 550°C the AI3Ti phase was found to 

be tetragonal as observed in the Al-Ti-C feedstock alloy.

• Precipitation of brittle phases having near spherical and rectangular 

morphology were also seen in Al-Ti-C coating subjected to both heat 

treatment regimens. The EDX analysis of brittle phases in both heat 

treatment regimens showed higher Ti (at%) concentration than other 

high atomic number contrast regions.

• The XRD of the rapidly quenched heat treated Al-Ti-C coating at 

150°C and 350°C showed presence of intermediate Ti8C5 carbide, 

while the presence of this carbide was not detected at 550°C. The 

formation of carbide phase was not detected by XRD in the room 

temperature cooled Al-Ti-C coating instead presence of Al and Ti 

oxides were observed.
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• The variation in micro-hardness values of Al-Ti-C coating which was 

subjected to rapidly quenched heat treatment cycle was attributed to 

the precipitation of Ti to form Ti rich phases in the coatings lowering 

the heterogeneous distribution of Ti in the coating causing lowering of 

wear resistance performance of the coating.

• A similar effect of Ti precipitation on the micro-hardness variation was 

also seen in the room temperature cooled Al-Ti-C coating heat 

treatment. However higher values of coefficient of wear were 

recorded for Al-Ti-C coating subjected to 150°C, 350°C followed by 

room temperature cooling, but a 15% reduction in the coefficient of 

wear value (in comparison with as sprayed coating) after 3 hours of 

exposure at 550°C (room temperature cooled) suggested evidence of 

higher degree of resistance against abrasive particles provided by Ti 

rich phases.
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R ecom m endation for future W ork

The results presented in the thesis have shown the effectiveness of the use 

of arc sprayed Al-Zn-ln and Al-Ti-C coating on the basis of corrosion and 

wear resistance performance. However, the investigations can be furthered 

in the following ways:

• The enhanced sacrificial properties of arc sprayed Al-Zn-ln coating 

was shown to be governed by the presence of In in the alloy. The 

results obtained from both accelerated and electrochemical tests were 

complemented by the literature [108-131]. However, the surface 

enrichment theory which was discussed in chapter 2 was not validated 

for arc sprayed Al-Zn-ln coating. By incorporating Secondary Ion 

Mass Spectroscopy (SIMS) analysis for as sprayed Al-Zn-ln coating 

before and after exposure in the chloride media could provide 

satisfactory results for the validation of the theory.

• The use of localised electrochemical technique such as Scanning 

Vibrating Electrode Technique (SVET) could also be involved in better 

understanding of the sacrificial performance of the Al-Zn-ln coating at 

the coating substrate interface.

• Transmission Electron Microscopy (TEM) could also be used to 

support the evidence that AI3Ti and (AI,Ti)C phases imparted superior 

wear resistance characteristic of arc sprayed Al-Ti-C coating
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There is clearly much work to be done on arc sprayed Al-Zn-ln and Al-Ti-C 

coatings, the most direct of which has been mentioned above, will provide 

sufficient knowledge to cover some obscurities in understanding the 

behaviour of the coatings.
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Appendix

The formation of Dawsonite (N a A I(C 0 3) (0 H )2) was also reported by Bozec et 

a l.1 who investigated the mechanism of filiform corrosion on commercially 

available T i-Zr coated aluminium alloy (AA6016).

The coated aluminium alloys with 0.5 mm wide artificially induced defects (to 

act as a site of corrosion, which was similar to the approach followed in the 

present study) were exposed to various corrosive environments such as 

16wt% HCI, saturated A ICI3 solution, A S TM  B117 salt fog and various 

concentrations of NaCI solution (not specified by authors). After the 

exposure, the samples were further subjected to 85%  relative humidity at 

25°C  for 1008 hours to propagate filiform corrosion and then followed by 

drying cycle (drying period not specified by authors).

The potential distribution on the artificially induced defect area was 

investigated using Scanning Kelvin Probe (SKP) technique and corrosion 

products on the surface of the defect was analysed using FTIR  micro­

spectroscopy.

Different composition of the Al corrosion products such as hydrolysed 

aluminium chlorides (AICI3 .6H 20 ) ,  aluminium hydroxide gel containing 

carbonates (A I(0 H )3.2x(C 0 3)x) and Dawsonite (N a A I(C 0 3) (0 H )2), along the 

length of the defect was reported by the authors.

1 N.Le Bozec, D. Persson, A. Nazarov and D. Thierry, Investigation of filiform corrosion on coated 
aluminium alloys by FTIR Microspectroscopy and Scanning Kelvin Probe, Journal of the 
electrochemical society, 2002,149(9), B403-B408.
This work has not been cited in the present study as the materials and techniques used by the 
authors were beyond the scope o f the present study.
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The formation of Dawsonite in the corrosion product on the surface of the 

defect was explained as follows:

1. In presence of aqueous media containing Cl' ions, the artificially 

induced defect site acts as localised corrosion cell, where O H ' ions 

are formed on cathodic sites and dissolution of aluminium occurs at 

anodic sites. Both anodic and cathodic reactions can be represented  

as:

Al + 3C I' - » AICI3 + 3e ' (anodic reaction)

(1 /2 ) 0 2  + H2O + 2e ' -> 2 0 H ' (cathodic reaction)

However in case of aluminium, a secondary cathodic reaction of 

hydrogen emission is also possible, which can be represented as:

2 H + + 2e ' -► H 2(g)

2 . The C 0 2 present in a high relative humidity environment further 

interacts with O H ' ions formed at the cathodic sites to form C 0 32' ions. 

This can be represented as:

C 0 2 (g) <-» C 0 2 (a q . )  

C 0 2 ( a q . )  O H  — > H C O 3 

H C 0 3‘  +  O H '  C 0 32'



3. The aluminium chloride (AICI3) formed as a result of aluminium  

dissolution reaction at local anode, in presence of O H ' containing 

environment is fully hydrolysed to form A I(O H ) 3 gel and intermediate 

A IO H 2+, A I(O H ) +2 and A b O ^ O H ^ H z O ) ^ 7* colloidal species.

These intermediate colloidal species further react with C 0 32' ions to 

form crystallites of carbonate containing aluminium hydroxide 

compounds and release Cl* ions. This can be represented as follows:

A ICI3 + (3 -2x)O H ' + XCO32' -> A I(0 H )3-2x(C0 3)x + 3C I'

4. This release of C l' ions again initiates further dissolution of Al at 

anodic sites and process mentioned in steps 1 to 3 are repeated to 

form a catalytic reaction under high relative humidity conditions. The  

presence of N a+ ions from NaCI solution also interacts with A I(O H )3. 

2x(C0 3)x crystallites to form mineral Dawsonite (N a A I(C 0 3) (0 H )2).

414



W ear 302 (2013) 9 7 2 -9 8 0

ELSEVIER

Contents lists available at SciVerse ScienceDirect

Wear

jo u rn a l hom epage: w w w .e lse v ie r.co m /lo ca te /w e a r

Wear resistance performance of thermally sprayed Al-Ti alloy 
measured by three body micro-scale abrasive wear test
S. Seth* A.H. Jones, O.D. Lewis
M aterials and Engineering Research Institu te  (MERI), N orfo lk Building, City Campus, Sheffield Hallam  University, H ow ard Street, S I 1WB, Sheffield, UK

A R T I C L E  I N F O A B S T R A C T

Artic le  h istory:
Received 14 September 2012  
Received in revised form  
19 January 2013  
Accepted 26 January 2013  
Available online 8 February 2013

Keywords:
Thermal spraying 
Arc-spraying
Micro-scale abrasive wear test 
W ear rate

Thermally sprayed aluminium alloys are often used as coatings to protect steel structures from 
corrosion. However, in many applications the alloys also need to be sufficiently wear resistant to 
prevent premature removal of the coatings. The addition of titan ium  to sprayed aluminium coatings is 
one approach to enhance the wear resistance. In this study the wear performance of a newly developed 
and commercially available aluminium coating w ith  3 wt% Ti was studied in terms of its m icro­
structure, hardness and wear resistance. Micro-scale abrasive wear tests were conducted on the pre­
sprayed alloys, and the arc sprayed coatings produced from these alloys in order to determine the 
influence the spraying process has on the structure and wear properties of the coatings. The wear 
performance of the coatings w ith  Ti was compared w ith  a 99.5 wt% A1 coating, a thermally sprayed 13% 
Cr steel coating and w ith  the mild steel substrate.

Significant changes were observed in the microstructure of the sprayed coatings when compared 
w ith  pre-sprayed alloys. The aluminium w ith  3 wt% Ti coating exhibited a large increase in its hardness 
value compared w ith  the pre-sprayed alloy and it  was significantly harder than the 99.5 wt% A1 coating. 
It was observed that under micro-scale abrasive wear test conditions, the coefficient of wear of the 
coating w ith  3 wt% Ti was 33% lower than that of the 99.5 wt% A1 coating and it was approximately the 
same as that of the 13 wt% Cr steel coatings.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Surface degradation of steel structures by mechanisms such as 
abrasion, corrosion and fatigue is common in industrial sectors [1 ]. 
Many of the structures in industry are exposed to both corrosive 
and abrasive environment which can cause surface deterioration 
[1,2]. Coatings are widely used to protect the steel and in 
particular thermal spraying has been used to effectively mitigate 
the effects of wear and corrosion by depositing various alloys and 
ceramics on to engineering structures [3-5],

Aluminium (Al) in pure and alloyed form has been an attrac­
tive material for thermal spraying on to steel structures for 
protection against corrosion and wear [6]. The effect of Al 
deposited by various thermal spraying techniques such as electric 
arc spraying, flame spraying and High Velocity Oxy-Fuel (HVOF) 
has been studied previously [6-8], Electric wire arc spraying has 
been widely used as an economical process to deposit Al and Al 
alloys due to its high deposition rates [6,9].

The operating principle of wire arc spraying involves the 
melting of the feedstock material by the formation of an arc

*  Corresponding author. Tel.: + 4 4  771451 5907; fax: + 4 4 1 1 4  225 3501. 
E-m ail addresses: s.seth@shu.ac.uk, sampanseth@gmail.com (S. Seth).

0 0 4 3 -1 6 4 8 /$ -see front m atter © 2013 Elsevier B.V. All rights reserved. 
http://dx.doi.org/10.! 016 /j.w ear,2013.01.075

between two continuously fed wires acting as consumable elec­
trodes and projecting the molten particles towards a roughened 
substrate by an atomising gas [10-12], as shown in Fig. 1.

The molten particles impact the surface of the substrate form­
ing layers of “splats” . The rapid solidification and overlaying of the 
splats results in the formation of some oxides and inter-splat 
porosity [13,14], This microstructure of the coating, often referred 
as a lamellar structure, is often significantly different from that of 
the bulk material of the same composition and this can have an 
effect on coating properties such as wear resistance [2,15],

In order to understand the behaviour and performance of 
thermally sprayed coatings, evaluation of the coating’s microstruc­
ture needs to be characterised and considered in conjunction w ith 
wear tests to evaluate its performance. There are a large range 
of wear tests that can be applied but guidance as to the most 
appropriate test can be found, for example, in ASTM G190 which 
lists tests which to some extent replicate the actual conditions of 
exposure during the service life of the coating [16,17],

The micro-scale abrasive wear test (sometimes referred to as 
the ball-crater wear test) has been used by many researchers to 
evaluate the wear resistance of coatings in abrasive condition 
[18-22], This test has been used to study the wear behaviour of 
an aluminium alloy containing 3 weight% titanium (AI-3 wt% Ti) 
produced as an arc sprayed coating on to a mild steel substrate.

http://www.elsevier.com/locate/wear
mailto:s.seth@shu.ac.uk
mailto:sampanseth@gmail.com
http://dx.doi.org/10
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Fig. 1. Schematic diagram of w ire  arc spraying.

Table 1
Feedstock alloy w ire composition.

Table 2
Arc spraying parameters.

Coating Composition W ire diam eter (m m ) Coating parameters A l-3  wt% Ti 99.5 wt%Al 13% Cr steel

A l-T i 97 wt% Al,3 wt.% Ti 2.0 Spray current (A) 30 30 30
Al 99.5 wt% Al 1.6 Spray voltage (V) 200 200 200
13% Cr steel Fe 13 wt% Cr 1.6 Spray distance (m m ) 150 150 150

Air pressure (MPa) 0.5 0.5 0.5
Number of passes(~50 pm/pass) 6 6 6

The primary objective of the study was to understand the influence 
of the sprayed coating’s microstructure and hardness on the wear 
resistance of the Al-3 wt% Ti alloy coating. The Al-3wt% Ti contain­
ing coating’s wear performance has been compared w ith that of 
a 99.5% Al sprayed coating, a 13%Cr Steel sprayed coating and the 
mild steel substrate. A comparison of wear rates has also been 
made between the pre-sprayed aluminium alloys which were used 
to form the wires for arc spraying, and the sprayed coatings.

2. Experimental procedure

2.7. Coating preparation

The alloys identified as “Al-3 wt%Ti” , “ 99.5 wt%Al” and “ 13% 
Cr steel” were deposited by arc spraying on to mild steel coupons. 
The composition of the alloy wires used and the wire diameter of 
the alloys are shown in Table 1.

The coatings were prepared at Celcoat Ltd using an Energiser 
S250 arc spray gun from Metallisation Ltd. The mild steel coupons 
were solvent degreased to remove surface contamination, and 
then grit blasted using chilled iron grit to increase surface 
roughness and remove surface oxides. The mild steel coupons 
were vertically attached on magnetic disc and the spray gun was 
mounted on a vertical traversing unit, so as to keep the spray gun 
perpendicular to the coupon and maintain a constant traversing 
speed. Each vertical pass of the spray gun deposited ~50 pm of 
coating. A nominal coating thickness of 300 pm was produced 
during spraying using six passes. The coating thickness was 
measured after every pass using a commercially available 
micrometre.

weight

>■ .  abrasive 
tc slurry

sam ple '  ball

Fig. 2. Schematic diagram of a three body micro-scale abrasive w ear tester [20],

Table 2 shows the spraying parameters, which were used 
during spraying and which were chosen following discussion 
w ith staff from Celcoat Ltd during coating preparation.

2.2. Coating characterisation

The metallographic preparation of the coatings for microstruc­
ture evaluation was done in accordance w ith  the technical notes 
for preparing thermal spray coatings published by Buehler [23]. 
The cross-section of the coating was done using ISOMET 4000 
precision saw using a diamond 15 HC blade. The samples cut were 
then mounted using epoxy resin followed by grinding using SiC 
abrasive paper, starting w ith grade 120 and finishing w ith  1200. 
The samples were then polished, using a 6 pm and then 1 pm 
diamond suspension.
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An FEI Nova Nano 200 Scanning Electron Microscope (SEM) 
equipped with Energy Dispersive X-Ray Spectroscopy (EDS) was 
used to analyse the microstructure and composition of the feed­
stock alloy and the coatings. An accelerating voltage of 20 kV and 
working distance between 5.0 mm and 5.5 mm was chosen for 
acquisition of images in backscattered electron mode (atomic 
number contrast).

Vickers micro-hardness measurements using a Mitutoyo MVK- 
H1 hardness testing machine in accordance with BS EN ISO 4516 
were done on the polished cross-section of the coatings [24]. 
A load of 0.98 N (100 g) was applied for 10 s to obtain a single 
measurement of the hardness. Thirty indentations on the polished 
cross-sections of both Al-3 wt%Ti and 99.5 wt% Al coatings were 
carried out in order to determine the range of hardness values

Fig. 3 . Secondary electron micrograph showing S i02 powder morphology.

Table 3
M icro-scale abrasive w ear test parameters.

Test parameters

Diam eter o f the steel ball 25.4 m m
Ball material Tool steel H V ~ 8 0 0
Ball sliding speed 0.13 m s " 1
Sliding distance 50 m. 100 m, 150 m

caused by the complex microstructure of the coatings. The micro­
hardness of Al-3 wt%Ti and 99.5 wt%Al feedstock alloys was also 
carried out in order to determine the influence of the spraying 
process on the alloy’s hardness.

Macro-hardness measurements using a 9.8 N (1 kg) load were 
also carried out on the polished surface of the coatings. The 
depths of the indentations were always 25% less than the 
thickness of the coating.

In making micro-hardness measurements care was taken to 
avoid obvious porosity within the coating. As such the micro­
hardness measurements will be higher than a higher load macro­
scopic measurement that will be influenced by the porosity of the 
coatings.

2.3. Micro-scale abrasive wear test

A three body micro-scale abrasive wear test [25,26] was 
conducted to evaluate the abrasive wear resistance. Commercially 
available Phoenix Tribology Ltd. model PLINT TE-66 micro-scale 
abrasive wear tester was used [18] and is shown schematically in 
Fig. 2. The sample to be tested was vertically mounted on a lever 
that rotates about the pivot and is pressed against rotating ball 
under the application of the applied load. A constant feed of 
abrasive slurry of specific concentration is maintained between 
rotating ball and the sample.

A constant load of 0.2 N was applied and the abrasive slurry 
had a concentration of 20 vol% (0.66 g/cm3) of crystalline silicon 
dioxide in deionised water (nominal particle size D50=2.5 pm 
Silicon (IV) oxide, crystalline quartz, Alfa Aesar). During the 
experiment slurry was constantly stirred using a magnetic stirrer 
to avoid settling of the silicon dioxide. In a steel ball on a flat 
aluminium sample configuration the Hertizian contact pressure at 
0.2 N is in theory 0.04 GPa. However, in the wear test the two 
materials are separated by a layer of liquid containing the 
abrasive slurry and thus it is unlikely that this contact pressure 
is ever experienced. Fig. 3 shows the morphology of the silica 
particles. A particle shape with rounded edges was observed with 
the average particle of the silicon dioxide in the range of 2.0 pm- 
3.0 pm but with some larger agglomerates. Table 3 shows the test 
parameters used in the experiment.

All test samples were ground and polished to a final stage of 
1 pm diamond suspension. The wear test was repeated three 
times at each sliding distance to ensure the reproducibility of the 
results. The diameter of the circular wear craters was measured 
using an optical microscope and the volume loss was calculated 
assuming the spherical cap geometry of the wear crater [27], 
given by

V  =  nb /64R (1)

Fig. 4. Backscattered electron micrograph of transverse section of (a) 99 wt% Al and (b) A l-3 wt% Ti feedstock materials.
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where b is the diameter of the wear crater and R is the radius of 
the rotating ball, Eq. (1) is used when b < R .  The graph of the 
volume of the wear crater vs. sliding distance multiplied by the 
load was plotted to calculate the coefficient of wear 
(mm3 N-1 m-1 ) from the gradient of the graph [21,28]. During

Fig. 5. EDX analysis o f (region indicated in Fig. 4b) showing the different phases 
observed in the A l-3  wt% Ti feedstock alloy; large blocky phases (A) w ith  large 
aspect ratios and smaller equiaxed particles (B).

Table 4
Average composition analysis o f different phases observed in Al- 
feedstock alloy.

-3 wt% Ti

Phase Average composition

Al (at%) Ti (at%) C(at%)

A  Blocky phase w ith  high aspect ratio 67 +  1 24 +  1 8 +  1
B. Smaller equiaxed phase 28 +  4  2 1 + 4 51 ± 4

Table 5
Vickers micro-hardness o f the 99.5 wt% Al and A l-3  wt% Ti feedstock.

HVq.98 GPa (kg f/m m 2) Coefficient o f variation (%)

99.5 wt% Al feedstock 0.32 (33 ±  1) 3
A l-3  wt%Ti feedstock 0.43 (44  +  8 ) 18

the micro-scale abrasion test the wear crater did not penetrate to 
the substrate.

3. Results

3.1. Microstructure and micro-hardness of A l-3  wt% Ti and 99.5 wt% 
Al feedstock

Fig. 4(a) and (b) shows the backscattered electron micrographs 
of the transverse section of 99wt% Al and Al-3wt%Ti alloy 
feedstock alloy rod. For 99% aluminium no microstructural 
features were observed (the linear features observed in 
Fig. 4(a) are artefacts of polishing and the extrusion direction of 
the rod). It was apparent from the micrographs of the Al-3 wt% Ti 
material that two distinct phases existed in the structure (i) a 
large blocky phase with a large aspect ratio and (ii) a smaller 
equiaxed phase, both of which were evenly distributed in the 
aluminium matrix as shown in Fig. 4(b). Fig. 5 shows a higher 
magnification image where the two phases are clearly discernible. 
The larger particle is cracked, probably as a result of sample 
preparation, indicating it is inherently brittle.

The Energy dispersive X-ray analysis on each phase high­
lighted in Fig. 5 was used to quantify the average composition 
of each phase as shown in Table 4. The analysis suggests that the 
larger blocky phase has an Al to Ti ratio ~  2.8:1 while the small 
equiaxed phase has a metal (Ti+Al) to C ratio of ~1:1. Note that 
carbon is often found to be present on the surface of samples 
being analysed using EDX and as such any figure for C may not be 
entirely due to the material itself and some of the Al signal may 
have been from the surround Al matrix due to the EDX interaction 
volume.

Table 5 shows the micro-hardness values measured on the feed­
stock alloys of the 99.5 wt% Al and the Al-3 wt% Ti materials. A larger 
range of micro-hardness values were recorded for Al-3 wt% Ti alloy 
than for 99.5 wt% Al as is indicated by the coefficient of variation 
and as demonstrated in Fig. 6. There were a small number of regions 
in the Al-3wt%Ti alloy which exhibited hardness as high as 
HVo.98=0.78 GPa (80 kgf/mm2).

3.2. Microstructure and micro-hardness of A l-3  wt% Ti and 99.5 wt% 
Al coatings

Fig. 7 shows the backscattered electron micrographs of the 
cross-sections of (a) the arc sprayed 99.5 wt% Al coating and 
(b) the arc sprayed Al-3 wt% Ti alloy coating. In contrast to the 
bulk feedstock (Fig. 4) an inhomogeneous layered structure was 
observed with dark regions which were inter-splat porosity or 
oxides. The Al-3 wt% Ti sprayed coating showed regions of 
varying contrast in the backscattered electron images indicating 
the inhomogeneous distribution of the Ti in the Al matrix.
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Fig. 6. Frequency distribution histogram of micro-hardness (HVogs) for 99.5 wt% Al and Al-3 wt% Ti feedstock material.
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However, the microstructure was significantly different from that 
observed in the feedstock of A l-3 wt% Ti as shown in Fig. 4. 
Higher magnification images of the Al-3 wt% Ti coating (Fig. 8) 
revealed “ speckled” regions, dark grey and light grey regions. EDX 
analysis of each of these regions was conducted and the average 
composition of a number of measurements is shown in Table 6. 
High titanium or high carbon content phases, as observed in the 
Al-3 wt% Ti alloy feedstock alloy (Table 4), were not observed in 
the sprayed coating. The overall Ti level was slightly below the 
expected level suggesting that the distribution of Ti was hetero­
geneous w ith some small regions having a much higher Ti content 
than others. A general increase in the detected oxygen levels was 
noted although this was not high enough to indicate the presence 
of oxides.

The hardness results from the cross-section of the coating 
are shown in Table 7. A significant increase of ~70% in the 
micro-hardness of the A l-3 wt% Ti coating when compared 
to its feedstock was observed. The 99.5 wt% Al coating showed 
similar hardness to its feedstock material. The A l-3 wt% Ti coating 
was significantly harder (117%) than the 99.5 wt% Al coating. 
The Fe-13wt% Cr coating which was used as a reference in 
the wear testing was also measured for reference. In terms of 
the spread in the hardness values, the Al-3 wt% Ti exhibited the 
largest coefficient of variation (35%) w ith some regions exhibiting 
a hardness of upto HV0.98 = 1.37 GPa (140 kgf/mm2), as shown 
in Fig. 9.

Fig. 7. Backscattered electron micrograph showing the cross-section of 
(a) 99.5 wt% Al and (b) A l-3  wt% Ti coatings.

Fig. 8. Backscattered electron micrograph of A l-3  wt% Ti showing (a) speckled 
region and (b) dark and light grey regions.

Table 6
Average composition analysis of different phases observed in A l-3  wt% Ti coating.

Phase Average composition

A l(at% ) Ti (at%) O (at%)

Speckled region 91 + 0 .5 1 ± 0 7 ± 0 .5
Dark grey region 91 ± 0 .4 1 ± 0 .2 8 ± 0 .2
Light grey region 92 ± 0 .2 2 ±  1 6 ± 0 .3

Table 7
Vickers micro-hardness of the A l-3  wt% Ti, 99.5 wt% Al and F e -1 3 wt% Cr coatings.

FI.Vo.98 GPa (kg f/m m 2) Coefficient of variation (%)

99.5 wt% Al coating 0.34(35 ± 8 ) 22
A l-3  wt% Ti coating 0.74(75 ± 2 6 ) 35
F e-13 wt% Cr coating 3.97(405 ± 8 2 ) 20
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3.3. Coefficient o f wear fo r A l-3  wt% Ti and 99.5 wt% Al feedstock 
material and coatings

The coefficient of wear for 99.5 wt% Al and Al-3 wt% Ti feed­
stock and coatings were calculated from the gradient of the graphs 
shown in Figs. 10 and 11, where the volume of the wear crater (in 
mm3) formed during the micro-scale abrasive wear test is plotted 
against sliding distance (in m) multiplied by the applied load (in 
N). Excellent linear regression fits were observed with R2 > 0.97

It was observed, as shown in Table 8, that the coefficient of 
wear for Al-3wt% Ti feedstock was 18% less than that of the
99.5 wt% Al feedstock. The coefficient of wear for Al-3 wt% Ti 
coatings was 33% lower than for 99.5 wt% Al coating as reported 
in Table 9. The difference between the feedstock alloy and the 
sprayed coating was not significant for the 99.5% Al alloy but 
there was a difference between the feedstock alloy and sprayed 
coating of Al-3wt%Ti with the sprayed coating exhibiting margin­
ally better wear resistance. A point worthy of note is that the 
broadly similar wear resistance was exhibited by the Al-3wt%Ti 
feedstock and the sprayed coating despite the significantly 
different microstructure, hardness and porosity in the coating. 
The wear tracks shown in Figs. 12 and 13 show two body 
grooving wear mechanism in both feedstock’s’ and coatings, 
caused by the ploughing of the surface by the 2.5 pm Si02 
particles in the abrasive slurry, a mechanism that has been 
reported by other researchers [29].

A graph comparing the wear coefficients and hardness (HV9 8 
and HV0.9 s) of all the materials tested is shown in Fig. 14. When 
comparing the Al-3 wt% Ti coating with the Fe-13 wt% Cr coating 
a small difference of only 2% in the wear coefficient was observed 
despite a significant difference in the hardness value. Compared 
to the Al-3 wt% Ti coating the mild steel had 41% lower (and thus 
better) wear coefficient.

4. Discussion

The microstructure of the Al-3 wt% Ti feedstock alloy 
(Fig. 4(b)) showed the presence of two distinct phases. The larger 
blocky phase with a high aspect ratio in which the Al:Ti ratio was 
close to 3:1, suggested it was the intermetallic phase A13Ti. As the 
production of the alloys involves the slow cooling of the alloy 
from the melt the phase expected to be present is the equilibrium 
structure tetragonal Al3Ti [32]. The smaller equiaxed phase 
appeared to contain both Ti and Al along with equal atomic 
amounts of C and was thus probably a phase with the structure of 
the ceramic titanium carbide (TiC) but with possible Al substitu­
tion for some of the Ti. The influence of the intermetallic Al3Ti and 
ceramic (Ti,Al)C phases was observed in the micro-hardness of

the Al-3 wt% Ti feedstock alloy which was 33% higher than that of 
the 99.5 wt% Al feedstock alloy. Pure TiC is known to have a 
micro-hardness of HV0.9 8 = 28-33 GPa (2850-3390 kgf/mm2) [30] 
while the micro-hardness of Al3Ti has been measured by others to 
be HV2.o~5.0 GPa (510 kgf/mm2) [31].

In contrast to the feedstock alloys the Al-3 wt% Ti and
99.5 wt% Al arc sprayed coatings exhibited a layered microstruc­
ture with some inter-splat porosity and oxides. It is evident from 
Fig. 7(b) that Al-3 wt% Ti coating has a microstructure which is 
completely different from that observed in the feedstock material. 
The large blocky tetragonal Al3Ti or the small (Ti,Al)C phases were 
not detected in the cross-section of the coating. There was some 
back scattered electron contrast difference noted in the material 
at a sub-micron scale which was suggestive of a sub-micron
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structure in some regions. Despite the absence of the two hard 
phases the micro-hardness of the sprayed Al-3wt%Ti coating was 
more than twice (114%) that of the sprayed aluminium alloy and 
71% higher than its own feedstock alloy, with some regions 
exhibiting upto HV0.9 s =  l-18 GPa (120 kgf/mm2). It is probable 
that the melting and rapid cooling which is characteristic of the 
arc spraying process has taken the Ti in the alloy into solution 
during melting and subsequently the rapid cooling which occurs 
during splat formation, has produced the metastable cubic phase 
of Al3Ti [32]. Possible evidence for this is seen in the presence of 
the speckled regions in the structure where nano-scale precipi­
tates with an atomic number > Al are observed in Fig. 8(a).
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Fig. 11. Graphs showing w ear crater volum e vs. Sliding distance x Load for 
(a) 99.5 wt% Al and (b ) A l-3  wt% Ti coatings.

The wear coefficient of Al-3 wt% Ti feedstock alloy was 18% 
lower (thus better) than that of the 99.5 wt% Al feedstock alloy, 
which can be attributed primarily to the harder intermetallic 
Al3Ti phases in the alloy as these appear to be resisting indenta­
tion by the abrasive particles more than the surrounding Al 
matrix (Fig. lib ). The hard ceramic (Ti,Al) C phase, which is 
known to be present, was too small to be observed on the wear 
scar and as such its contribution to the wear resistance cannot be 
verified.

The arc sprayed Al-3 wt% Ti coating exhibited a 33% lower 
wear coefficient than the arc sprayed 99.5% Al coating, with the 
lower wear coefficient being attributed to the overall higher 
micro-hardness (114% harder) and the presence of regions with 
hardness up to HV0.98=1.37 GPa (120 kgf/mm2). While Al3Ti and 
(Ti,Al)C phases were not directly observed in the coating structure 
the high hardness regions may have contained the nano-scale 
precipitates of cubic Al3Ti, which may have influenced the hardness 
and wear resistance through precipitation strengthening [32].

It was noted that even though the arc sprayed 13 wt% Cr steel 
coating had a significantly higher hardness the difference in the 
coefficient of wear between it and Al-3 wt% Ti was negligible 
(~2%). The mild steel substrate material had the lowest wear 
coefficient which most probably can be attributed to the fact that 
it has a fully dense steel structure rather than a porous sprayed 
coating.

5. Conclusions

(1) The Al-3wt% Ti feedstock alloy produced using slow cooling 
showed the presence of evenly distributed intermetallic 
tetragonal Al3Ti and ceramic (Ti,Al)C phases which, because

Tab le  8
Coefficient of w ear for 99.5 w t%  Al and A l-3  wt% Ti feedstock alloys.

Coefficient o f w ear (m m 3 N 1 m  ' )

99.5 wt% Al feedstock 4.5 x  1 0 -04 +  0.5 x  1 0 -04
A l-3  wt% Ti feedstock 3.7 x 1 0 _M  ±  0.1 x 1 0 -04

Table 9
Coefficient o f w ear for 99.5 wt% Al and A l-3  wt% Ti coating.

Coefficient o f w ear (m m 3 N -1  m - 1 )

99.5 wt% Al coating 4.8 x 1 0 -04 +  0.03 x 1 0 -04
A l-3  wt% Ti coating 3.2 x 1 0 -04 +  0.5 x 1 0 -04

Fig. 12. Backscattered micrographs showing the directionality of the wear tracks for (a) 99.5 wt% Al and (b) A l-3 wt% Ti feedstock.
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MUSI

Fig. 13. Backscattered micrographs showing the directionality o f the w ear tracks for (a) 99.5 wt% Al and (b) A l-3  wt% Ti coatings.

500
429 405Coefficient of w ear

□  HV9.I

- 300 *
H  HV0.!

149

-  100
45,35 33 30 35

6

4.82
4.51

3.7
4 -3.-22

£  E

OT
2o X  o ^

0
Al-Feedstock Al-Ti feedstock Al Coating Al-Ti coating 13%  Cr Steel Mild steel

Coating

Fig. 14. Comparison of coefficient o f w ear and hardness o f 99.5 wt% Al. A l-3  wt% Ti alloy feedstock and coatings w ith  13% Cr Steel coating and M ild  steel substrate.

of their inherent higher hardness results in a 33% higher 
micro-hardness of Al-3 wt% Ti feedstock alloy in comparison 
with 99.5 wt% Al feedstock.

(2) The 18% lower coefficient of wear of the Al-3 wt% Ti feedstock 
compared to that of the 99.5 wt% Al feedstock can also be 
explained by the presence of the hard intermetallic tetragonal 
Al3Ti and (Ti^Al)C phases present in the structure.

(3) The microstructure of the arc sprayed Al-3 wt% Ti coating did 
not contain Al3Ti and (Ti^Al)C particles but did show regions of 
varying atomic number contrast suggesting the formation 
of the metastable cubic phase of Al3Ti formed from the rapid 
cooling that takes place in arc spraying. The resulting pre­
cipitation strengthening may explain the 114% increase in the 
hardness of the sprayed Al-3 wt% Ti coating compared to its 
feedstock alloy and also the regions with a high hardness up 
to HV0.98=1.18 GPa (120 kgf/mm2).

(4) The arc sprayed Al-3 wt% Ti coating showed a 33% lower 
coefficient of wear than the 99.5 wt% Al coating which was 
attributed to precipitation strengthening resulting in an over­
all higher micro-hardness and the presence of regions of high 
micro-hardness (HV0.98 > 1.18 GPa) in the Al-3wt% Ti 
coating.

(5) In the micro-scale abrasive wear test using 2.5 pm Si02 
abrasive in deionised water, the wear coefficient of an arc 
sprayed aluminium containing 3 wt% Ti was found to be very 
close to that of an arc sprayed 13%Cr steel coating with a 
much higher hardness.
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