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Abstract

Hierarchical Clustering-based Segmentation (HCS) Aided 
Diagnostic Image Interpretation and Monitoring

Machines are good at operations which require precision and computing objective 
measures. In contrast, humans are good at generalisation and making decisions based on 
their past experience and heuristics. Hence, to solve any problem with a solution 
involving human-machine interaction, it is imperative that the tasks are shared 
appropriately. However, the boundary which divides these two different set of tasks is 
not well defined in domains such as medical image interpretation. Therefore, one needs 
a versatile tool which is flexible enough to accommodate the varied requirements of the 
user. The aim of this study is to design and implement such a software tool to aid the 
radiologists in the interpretation of diagnostic images.

Tissue abnormality in a medical image is usually related to a dissimilar part of an 
otherwise homogeneous image. The dissimilarity may be subtle or strong depending on 
the medical modality and the type of abnormal tissue. Hierarchical Clustering-based 
Segmentation (HCS) process is a dissimilarity highlighting process that yields a 
hierarchy of segmentation results. In this study, the HCS process was investigated for 
offering the user a versatile and flexible environment to perceive the varied 
dissimilarities that might be present in diagnostic images. Consequently, the user 
derives the maximum benefit from the computational capability (perception) of the 
machine and at the same time incorporate their own decision process (interpretation) at 
the appropriate places.

As a result of the above investigation, this study demonstrates how HCS process can be 
used to aid radiologists in their interpretive tasks. Specifically this study has designed 
the following HCS process aided diagnostic image interpretation applications :

• interpretation of computed tomography (CT) images of the lungs to 
quantitatively measure the dimensions of the airways and the accompanying 
blood vessels.
interpretation of X-ray mammograms to quantitatively differentiate benign from 
malignant abnormalities.

One of the major contribution of this study is to demonstrate how the above HCS 
process aided interpretation of diagnostic images can be used to monitor disease 
conditions. This thesis details the development and evaluation of the novel computer 
aided monitoring (CAM) system. The designed CAM system is used to objectively 
measure the properties of suspected abnormal areas in the CT images of the lungs and in 
X-ray mammogram. Thus, the CAM system can be used to assist the clinician to 
objectively monitor the abnormality. For instance, its response to treatment and 
consequently its prognosis. The implemented CAM system to monitor abnormalities in 
X-ray mammograms is briefly described below.

Using the approximate location and size of the abnormality, obtained from the user, the 
HCS process automatically identifies the more appropriate boundaries of the different 
regions within a region of interest (ROI), centred at the approximate location. From the 
set of, HCS process segmented, regions the user identifies the regions which most likely 
represent the abnormality and the healthy areas. Subsequently, the CAM system 
compares the characteristics of the user identified abnormal region with that of the 
healthy region; to differentiate malignant from benign abnormality. In processing 
sixteen mammograms, the designed CAM system demonstrated the possibility of 
successfully differentiating malignant from benign abnormalities.
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Chapter 1 Introduction and Objectives of the Research

1.1. Aim

The aim of this study is to explore the possibility of adopting image processing 

techniques to assist medical imaging professionals in perceiving diagnostic images 

and thus improve diagnostic capability. Specifically, the Hierarchical Clustering 

based Segmentation (HCS) process [Selvan 2007] is investigated for its ability to 

augment the diagnostic information present in Computed Tomography (CT) images 

for cystic fibrosis (CF) diagnosis and digitised X-ray mammograms, to differentiate 

malignant from benign abnormalities.

1.2.Background

Radiologists' expertise in reading diagnostic images calls for a combination of 

perceptual skills to find what may be faint and small features in a complex visual 

environment, and interpretive skills to rate their (the features') significance [Tabar 

and Dean, 1985]. Computing systems are more consistent in their perceiving ability 

but they cannot match human interpretive skills. Drawing a line so as to limit the 

system's interpretive function has the virtue of achieving a complementary synthesis 

of system and radiologists' strengths [Claridge 1997]. However, in practice the 

question of where to draw the line in computer aided detection/diagnostic systems 

between perception and interpretation is problematic [Hartswood et al. 1997]. Hence, 

one needs a versatile tool which is flexible enough to accommodate the varied 

requirements of the user.

1.3. Objective and Purpose of this Study

The objective of this study is to investigate the effectiveness of two paradigm 

shifting approaches in the usage of computers to assist and/or aid medical image 

processing and subsequent interpretation. This paradigm shift is based on two 

methods which will be tested for validity and effectiveness :

• User decision based medical image processing and HCS process aided Image 

Interpretation

Computer aided (disease) monitoring 

The above two new approaches use the decision making skills of the users (medical 

imaging professional) and thus maximise the effectiveness and efficiencies of the 

image processing techniques. These two new approaches are discussed in detail in 
the following two sections.



1.3.1. User Decision based Medical Image Processing and HCS Process Aided 
Image Interpretation

In the area of medical image processing it has so far been a normal practice to offer a 

solution for the user under a ’take it or leave it' condition. Moreover, it is usual that 

the process is treated as a “black box” by the user who has minimal knowledge of 

what happens within the process and how and why it came to a particular solution. 

Hence, the user does not have a full understanding of the logic the process made use 

of to arrive upon the solution. This lack of knowledge on the part of the user has led 

to situations where the software tools have been used inappropriately by the user. For 

example, Alberdi et al [Alberdi et al 2005] have suggested that X-ray mammogram 

readers were using computer aided detection (CAD) software as a decision making 

tool instead of a prompting aid. They conclude that "incorrect CAD can have a 

detrimental effect on human decisions" [Alberdi et al 2005].

Current prompting based Computer aided diagnosis (CADx) software makes their 

own decision regarding the existence of some abnormality at a location and places a 

prompt at that location [Alberdi et al 2005]. The user is left with the choice of either 

accepting the prompting software decision or rejecting it. The prompting software 

does not indicate how and why that location was prompted. Hartwood et al. [1997] 

in their study note that radiologists tried to make sense of the system’s behaviour 

from the evidence of the features it had prompted. In their study they had observed 

the following responses of the radiologists towards the prompting software's 

behaviour [Hartwood 1997]:

• the radiologists had misunderstood the extent of the system's capabilities and 

were confused because of apparent inconsistencies in its behaviour.

• the radiologists were unable to accurately place the system's operational 

scope: i.e., the types of feature it is capable of detecting.

• the radiologists had problems with understanding how the system interprets 

micro- calcification clusters

• the radiologists indicated that they had not seen anything of significance in 

the areas prompted.

In the application developed to improve users' perception, HCS process highlights 

the dissimilar regions. Unlike the prompting, the highlighting process aids the user to 

evaluate the significance of the differences highlighted by the HCS process. Hence
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the HCS process is more suitable for drawing the attention of the user and thus aiding 

in the process of the diagnosis.

Moreover, in the developed solutions in this study, the user makes decisions at key 

stages in the process. Such that in the medical image processing solutions developed 

in this study, while the computer does its work the user still has full control of the 

process and makes key decisions at crucial stages. Thus the solution pathway is 

traversed by both the man and machine hand in hand. Hence the user is well aware of 

how and why the process arrived upon a solution.

Thus, a new paradigm of “user-decision based image processing” is introduced. It 

should be noted that this solution pathway is subtly different from currently existing 

closely related supervised (i.e. user-guided) methods.

The following two applications developed in this study will explain this new and 

novel user-decision based image processing approach.

I.3.I.I. User-Decision based CT Image Processing

An application area to demonstrate the developed image processing scheme is to 

segment blood vessel, airway wall and lumen, in the CT images of the lungs. One of 

the developed methods is fully automated i.e. unsupervised and completely data 

driven. Specifying a region of interest by the user, the method does not need any 

further assistance from the user to do the initial segmentation. However, the method 

yields a set of solutions and the role of the user is to decide and choose the best 

segmentation. Subsequently, making use of the user decided segmentation output, the 

developed method automatically fits the best fitting ellipse and estimates the 

dimensions of blood vessels, airway walls and corresponding lumen.

The above outlined method, cannot be categorised as supervised because the method 

carries out the initial segmentation fully automatically without any kind of 

intervention from the user. This means that the entire segmentation process is totally 

unsupervised.

However, the process as a whole cannot be termed as automatic or unsupervised, that 

is, the method as a whole is not fully automatic. This is because once the
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unsupervised segmentation stage is performed; the user makes the decision of 

choosing the best segmentation most suitable for their use. As per the users' decision, 

the method proceeds to the next stage and carries it out without any further 

intervention from the user.

I.3.I.2. User Decision based Mammogram Image Processing

Another image processing application, developed in this study, is to differentiate 

benign from malignant abnormalities, by processing X-ray mammograms. The 

developed method first does an automatic unsupervised segmentation of the 

boundary of the abnormality. But, since the method yields a set of segmentation 

solutions, it is left for the user to decide and choose the best segmentation which 

defines the boundary of the abnormality most appropriately.

It is practically impossible for the user to precisely delineate the complex boundaries 

of the different regions in the image. However, the user is the best judge to choose 

the most appropriate segmentation from a set of segmentations (yielded by the HCS 

process) such that the segmented abnormality and the healthy parts of the image are 

isolated as unique regions. This decision making process includes the user rather than 

designing an automated procedure that removes the user from the solution pathway. 

Once the correct segmentation which captures the best shape and size of the 

abnormality has been decided by the user, subsequent objective measure to 

differentiate benign from malignant abnormalities is performed by the machine.

In a similar manner to the CT segmentation method, the mammogram segmentation 

developed in this study is not supervised because the method does the segmentation 

fully automatically without any type of intervention or parameters tuning by the user. 

Thus, the whole segmentation process is fully unsupervised, that is, purely data 

driven. The process still needs the decision of the user to decide which segmentation 

is best suited for the subsequent objective measure, i.e. the method as a whole is not 

fully automatic. This is because once the unsupervised segmentation stage is 

performed, the user makes the decision of choosing the best segmentation most 

suitable for their use. As per their decision, the method proceeds to the next stage and 

carries on without any further intervention from the user. Thus, this method can 

neither be categorised as supervised (i.e. user guided) nor unsupervised but rather as 

“user-decision” driven based.
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1.3.2. Computer Aided (disease) Monitoring (CAM)

In the domain of computers aiding medical image interpretation, so far computers 

have been used for Computer Aided Detection (CAD) and/or Computer Aided 

Diagnosis (CADx). Computer aided detection (CADe) systems address the problem 

that radiologists often miss signs of cancers that are retrospectively visible in 

mammograms. Furthermore, computer aided diagnosis (CADx) systems assist the 

radiologist in the classification of mammographic lesions as benign or malignant 

[Elter and Horsch 2009].

In contrast to the above listed current practices, making use of the developed 

methods in this study, computers can aid users to "monitor" the progress and/or 

prognosis of disease. Thus, we introduce a new process named Computer Aided 

disease Monitoring (CAM) a new paradigm for solution pathway.

The following two applications, for which CAM methods have been developed in 

this study, will explain this new and novel approach :

Computer aided Monitoring of Cystic Fibrosis 

• Computer aided Monitoring of breast abnormalities

1.3.2.1. Computer Aided (disease) Monitoring of Cystic Fibrosis

Cystic Fibrosis is normally diagnosed through gene detection. CT images of the 

lungs can give visual indications or clue of the presence of the disease. Hence, 

strictly speaking medical image processing techniques are neither needed for CAD 

nor are they needed for CADx. However, the morphological changes like variation of 

the dimensions of the blood vessels and airways over time cannot be easily 

visualised. Hence, the method developed in the current study helps the radiologists to 

"monitor" the CF condition's progress and/or prognosis.

1.3.2.2. Computer Aided (disease) Monitoring of Breast Abnormalities

Yet another application which was developed in this study is to differentiate benign 

from malignant abnormalities by processing X-ray mammograms. In the method 

hereby developed, the approximate location of the abnormality is given by the user. 

Hence, the developed method is not a CAD solution. The severity of the abnormality 

(i.e. whether the abnormality is benign or malignant) will also be subsequently 

confirmed by other means such as taking an Ultrasound guided needle biopsy
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[Osanai et al. 2000]. Hence the developed method in this study is not a CADx 

method either. However, the developed method delineates the boundary of the 

abnormality and also differentiates whether that part of the abnormality is benign or 

malignant. This is useful to subsequently monitor the size of the abnormality as well 

as the response of the abnormality to treatment. Thus, the developed method can be 

used as an aid for monitoring the abnormality. Hence, the developed method is 

neither CAD nor CADx but rather “CAM”.

1.3.3.Uniqueness and Novelty of the Developed Medical Image Processing Methods

The following are other aspects in which the medical image processing methods, 

developed for this study, are unique and novel when compared to current existing 

methods:

the methods developed in this study need no prior training. The developed 

methods find the dissimilarity within the same image. Hence, the input data 

can be made use of without any kind of data pre-processing like 

normalization.

• the unsupervised, that is, the autonomous components of the method can be 

applied to any medical modality image data without any modifications 

whatsoever.

For instance, the same HCS process which was made use of to find the 

boundaries of the natural scenes (please see Chapter 3 Section 3.4) was used, 

.without any modifications or parameter tuning, to find the boundaries of the 

abnormalities in X-ray mammograms (please see Chapter 5 Section 5.2). For 

the segmentation of blood vessels and airway in CT images (please see 

Chapter 4 Section 4.3) the only additional parameter considered was the 

spatial distance between the cluster (please see Chapter 4 Section 4.3.4.1).

1.4. Contribution of the Study

Machines are good at operations which require precision and computing objective 

measures. In contrast, humans are good at generalisation and making decisions based 

on their past experience and heuristics. So, to solve any problem with a solution 

involving human-machine interaction, it is imperative that the tasks are shared 

appropriately. However the boundary which divides these two different set of tasks is 

not well defined in medical image interpretation. Hence one needs a versatile tool 

which is flexible enough to accommodate the varied requirements of the user. In this
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study, the HCS process is investigated for offering the user such a versatile and 

flexible environment.

Tissue abnormality in a medical image is usually related to a dissimilar part of an 

otherwise homogeneous image. The dissimilarity may be subtle or strong depending 

on the medical modality and the type of abnormal tissue. HCS is a dissimilarity 

highlighting process that yields a hierarchy of segmentation results. In this study, the 

HCS process was investigated for offering the user a versatile and flexible 

environment to perceive the varied dissimilarities that might be present in diagnostic 

images. Consequently, the user derives the maximum benefit from the computational 

capability (perception) of the machine and at the same time incorporate their own 

decision process (interpretation) at the appropriate places.

As a result of the above investigation this study demonstrates how HCS process can 

be used to aid radiologists in their interpretive tasks. Specifically, this study has 

designed the following HCS aided diagnostic image interpretation applications :

• interpretation of CT images of the lungs to quantitatively measure the 

dimensions of the airways and the accompanying blood vessels.

• interpretation of X-ray mammograms to quantitatively differentiate benign 

from malignant abnormalities.

One of the major contribution of this study is to demonstrate how the above HCS 

aided interpretation of diagnostic images can be used to monitor disease conditions. 

This thesis details the development and evaluation of the novel computer aided 

monitoring (CAM) system. The designed CAM system is used to objectively 

measure the properties of suspected abnormal areas in the CT images of the lungs 

and in X-ray mammogram. Thus, the CAM system can be used to assist the clinician 

to objectively monitor the abnormality. For instance its response to treatment and 

consequently its prognosis. The implemented CAM system to monitor abnormalities 

in X-ray mammograms is briefly described below.

Using the approximate location and size of the abnormality, obtained from the user, 

the HCS process automatically identifies the more appropriate boundaries of the 

different regions within a region of interest (ROI), centred at the approximate 

location. From the set of, HCS process segmented, regions the user identifies the
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regions which most likely represent the abnormality and the healthy areas. 

Subsequently the CAM system compares the characteristics of the user identified 

abnormal region with that of the healthy region; to differentiate malignant from 

benign abnormality. In processing sixteen mammograms, the designed CAM system 

demonstrated the possibility of successfully differentiating malignant from benign 

abnormalities.

1.5.Thesis Structure

The rest of this thesis is structured as follows :

• Chapter 2 : Background and Literature review

Background information related to the following areas of investigation will 

be discussed:

• Image segmentation and clustering.

Diagnostic image perception and interpretation.

• Computer aided detection and computer aided diagnosis.

Cystic fibrosis.

• Breast cancer detection and diagnosis.

Chapter 3 : Hierarchical Clustering based Segmentation (HCS)

A brief but complete discussion about the functioning, performance and 

suitability of Hierarchical Clustering based Segmentation process.

• Chapter 4 : HCS Process Aided Interpretation of CT Images of the Lungs to 

Monitor Cystic Fibrosis

Chapter 4 discusses how the HCS process can be used to aid users in the 

interpretation of diagnostic images. Specifically, details are given about how 

the HCS process can be used to aid users to interpret CT images of the lungs 

to quantitatively measure the dimensions of the airways and the 

accompanying blood vessels.

• Chapter 5 : HCS Process Aided Interpretation of X-ray Mammograms

This chapter discusses how the HCS process can be used to aid users in the 

interpretation of diagnostic images. Specifically, details are given about how 

the HCS process can be used to aid users to interpret X-ray mammograms to 

quantitatively differentiate benign from malignant abnormalities.

Chapter 6.: HCS process aided disease monitoring

This chapter discusses how the HCS process can be used to aid the user in the 

monitoring of the following diseases :
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• to monitor cystic fibrosis by processing CT images of the lungs.

• to monitor abnormalities of the breast by processing X-ray 

mammograms.

Chapter 7 :HCS process possibilities and proposals

This chapter discusses how the capabilities of the HCS process developed in 

this study can be further explored in the following areas of diagnostic 

imaging perception and interpretation :

• diagnostic image interpretation of the CT images of the lungs to 

monitor cystic fibrosis.

• diagnostic image interpretation of the X-ray mammograms to 

monitor breast abnormalities.
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Chapter 2 Background and Relevant Studies Review

2.1. Introduction

The main focus of the current study is to explore the possibility of incorporating the 

experts' decision process within a diagnostic image processing environment to elicit 

objective measures for monitoring diseases. The following are the specific diagnostic 

applications for which the above possibility was explored :

• Quantitative measure of the airways and the accompanying blood vessels' 

dimensions, by processing CT images of the lungs.

Quantitative differentiation of malignant from benign abnormalities, by 

processing X-ray mammograms.

In this chapter background information from published literature related to the 

following relevant topics is discussed :

• Digital image processing, specifically, segmentation of regions in digital 

images.

Diagnosis of Cystic Fibrosis

• Computer Aided Detection and Diagnosis in the context of the abnormalities 

of the breast.

Many of the references discussed in this chapter are referred to in the main body of 

the thesis in the relevant chapters. The purpose of this chapter is to collate the 

literature which informs the study and present it in a unified form.

2.2. Digital Image Segmentation

Image segmentation is an essential processing step for many image analysis 

applications. There are indications that there is no general method suitable for all 

image analysis applications [Yang and Jiang, 2002].

In one of their publications Yang and Jiang [2002] list the different types of 

segmentation techniques. Available segmentation techniques include thresholding 

[Sahoo et al., 1988], region growing [Udupa and Samarasekera, 1996], clustering 

[Coleman and Andrews, 1979], classifier [Bezdek et al, 1993], neural network-based 

approaches [Vilarino et al., 1998], deformable models [Caselles et a l , 1997], and 

Markov random field (MRF) model based approaches [Andrey and Tarroux, 1998]. 

Appendix 1 gives a synopsis of the above listed different types of segmentation 

techniques.
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Thresholding does not take into account the spatial aspects of an image. This makes 

it sensitive to noise. The primary disadvantage of region growing is that it requires 

manual interaction to obtain the seed point. Clustering algorithms do not require 

training data, but they do require an initial segmentation. Classifier methods are 

pattern recognition techniques to partition a feature space derived from the image 

using data with known labels. Neural network represents a paradigm for machine 

learning and can be used in a variety of ways for image segmentation. Deformable 

models are physically motivated, model-based techniques for delineating region 

boundaries using closed parametric curves or surfaces that deform under the 

influence of internal and external forces [Yang and Jiang, 2002].

MRF modelling itself is not a segmentation method but a statistical model which can 

be used within segmentation methods. MRFs model spatial interactions between 

neighbouring or nearby pixels. These local correlations provide a mechanism for 

modelling a variety of image properties [Li, 1985]. In medical imaging, they are 

typically used to take into account the fact that most pixels belong to the same class 

as their neighbouring pixels. In physical terms, this implies that any anatomical 

structure that consists of only one pixel has a very low probability of occurring under 

a MRF assumption [Pham et a l , 2000].

The methodology of using MRF models to the problem of segmentation has emerged 

later and has created a lot of interest. Markov random fields have been, and are 

increasingly being used to model a prior beliefs about the continuity of image 

features such as region labels, textures, edges and so on [Lu and Jiang, 2001]. The 

main disadvantage of MRF-based methods is that the objective function associated 

with most nontrivial MRF problems is extremely non-convex and as such the 

minimization problem is computationally very taxing. To reduce the computational 

burden, some approaches based on multiresolution techniques have been reported 

[Sarkar et al., 2000], [Kim and Yang et al., 1994]. The essence of the MRF 

framework on multi-resolution is that it starts processing images at a coarse 

resolution, and then progressively refine them to finer resolution [Yang and Jiang, 

2002].

11



Hierarchical organization is one of the main characteristics of human segmentation. 

A human subject segments a natural image by identifying physical objects and 

marking their boundaries up to a certain level of detail. If we suppose that different 

subjects segmenting a single image perceive the same objects then, up to variations 

in the exact localization of boundaries, the intersection of their segments determines 

the finest level of detail considered [Arbelaez, 2006].

Segmentation can be thought of as a process of grouping visual information, where 

the details are grouped into objects, objects into classes of objects, etc. Thus, starting 

from the composite segmentation, the perceptual organization of the image can be 

represented by a tree of regions, ordered by inclusion. The root of the tree is the 

entire scene, the leaves are the finest details and each region represents an object at a 

certain scale of observation [Arbelaez, 2006].

Since the early days of computer vision, the hierarchical structure of visual 

perception has motivated clustering techniques to segmentation [Ohlander et a l , 

1978], where connected regions of the image domain are classified according to an 

inter-region dissimilarity measure. The traditional approach for clustering is a 

bottom-up approach, also called agglomerative clustering, where the regions of an 

initial partition are iteratively merged [Nadler and Smith, 1993].

In one of his publication, Arbelaez [2006] studied the segmentation problem in the 

framework of data classification, where the notions of tree of regions and scale are 

formalized by the structure of indexed hierarchy or, equivalently, by the definition of 

an ultrametric distance on the image domain. He presents a formulation of the 

problem in terms of contours that allows to represent an indexed hierarchy of regions 

as a soft boundary image called ultrametric contour map.

From a theoretical point of view, topological feature clustering is a precise and 

powerful partitioning technique. However, designing efficient algorithms is a non­

trivial task, primarily with respect to the processing sequence of the neighbouring 

pixels. An implemented algorithm can process pixel vectors only sequentially. 

Initializing a merge process means selecting one pixel at a time and computing the 

Euclidean distance to its neighbours. Consequently, there is always a preference for 

the first neighbour. This fundamental problem underlies all clustering algorithms.
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Two effects occur depending on the counter strategy. Either some large regions 

consume all the others without visual significance or restrictive rules leave too many 

small regions leading to an over-segmentation. Both problems can be dampened 

using heuristic convergence criteria [Tilton, 2000] but the dependency on initial 

processing direction remains. A brute force approach, where only those regions with 

the smallest overall distance are merged in each step is the only solution to overcome 

this effect. This is necessary to achieve independence with respect to rotation and 

translation of the image objects [Thies et al., 2003].

The spectral clustering algorithm is based on the concept of similarity between 

locations in an image [Shi and Malik, 1997] [Kannan et al., 2000], [Ng et al., 2001]. 

Weiss [1999] presents a comparative analysis of various clustering algorithms based 

on spectral methods in his publication.

Nearly three quarters of a century ago, Wertheimer [1938] pointed out the 

importance of perceptual grouping and organization in vision and listed several key 

factors, such as similarity, proximity, and good continuation, which lead to visual 

grouping. However, even to this day, many of the computational issues of perceptual 

grouping remain unresolved [Shi and Malik, 1997] [Han, et al. 2006].

Since there are many possible partitions of the domain of an image into subsets, how 

do we pick the “right” one? Following are two aspects to be considered here :

• The first is that there may not be a single correct answer. A Bayesian view is 

appropriate as there are several possible interpretations in the context of prior 

world knowledge. Bayesian techniques use prior knowledge regarding the 

statistical distribution of pixel values from known samples to estimate the 

probabilities that an individual pixel value belongs to each of the component 

objects in the image.

The difficulty, of course, is in specifying the prior world knowledge. Some of 

it is low level, such as coherence of brightness, colour, texture, or motion, but 

equally important is mid- or high-level knowledge about symmetries of 

objects or object models. [Shi and Malik, 1997].

• The second aspect is that the partitioning is inherently hierarchical. 

Therefore, it is more appropriate to think of returning a tree structure 

corresponding to a hierarchical partition instead of a single “flat” partition 

[Shi and Malik, 1997].



This suggests that image segmentation based on low-level cues cannot and should 

not aim to produce a complete final “correct” segmentation. The objective should 

instead be to use the low-level coherence of brightness, colour, texture, or motion 

attributes to sequentially come up with hierarchical partitions. Mid- and high-level. 

knowledge can be used to either confirm these groups or select some for further 

attention. This attention could result in further repartitioning or grouping. Prior 

literature on the related problems of clustering, grouping and image segmentation is 

huge. The clustering community [Jain and Dubes, 1988] has offered agglomerative 

and divisive algorithms; in image segmentation, there are region-based merge and 

split algorithms [Shi and Malik, 1997].

Hierarchical Clustering-based Segmentation (HCS) [Selvan 2007] implements the 

traditional agglomerative clustering. The HCS procedure automatically generates a 

hierarchy of segmented images. The hierarchy of segmented images is generated by 

partitioning an image into its constituent regions at hierarchical levels of allowable 

dissimilarity between its different regions. At any particular level in the hierarchy, the 

segmentation process cluster the pixels and/or regions which have dissimilarity 

among them less than or equal to the dissimilarity allowed for that level. Thus 

Hierarchical clustering based segmentation (HCS) process mimics the capability of 

human vision [Selvan 2007].

The hierarchy of segmented images generated by the HCS process represents the 

continuous merging of similar, spatially adjacent or disjoint, regions as the allowable 

threshold value of dissimilarity between regions, for merging, is gradually increased. 

Other similar Agglomerative hierarchical clustering or bottom-up methods suffer 

from a distorting phenomena, in which the cluster structures depend on the order in 

which the regions are considered for merging [Nadler, 1993]. The brute force 

approach, followed by the HCS process, where only those regions with the smallest 

overall dissimilarity are merged in each step, is the only solution to overcome this 

effect [Thies, 2003].

HCS process is unsupervised and is completely data driven. This ensures that the 

segmentation process can be applied to any image, without any prior information 

about the image data and without any need for prior training of the segmentation 

process with the relevant image data [Selvan 2007].
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Unsupervised image segmentation is an important component in many image 

understanding algorithms and practical vision systems. However, evaluation of 

segmentation algorithms thus far has been largely subjective, leaving a system 

designer to judge the effectiveness of a technique based only on intuition and results 

in the form of a few example segmented images. This is largely due to image 

segmentation being an ill-defined problem-there is no unique ground-truth 

segmentation of an image against which the output of an algorithm may be 

compared. Unnikrishnan et al. [2007] in their paper demonstrate how a recently 

proposed measure of similarity, the Normalized Probabilistic Rand (NPR) index, can 

be used to perform a quantitative comparison between image segmentation 

algorithms using a hand-labelled set of ground-truth segmentations. They showed 

that the measure allows principled comparisons between segmentations created by 

different algorithms, as well as segmentations on different images. They outline a 

procedure for algorithm evaluation through an example evaluation of some familiar 

algorithms. Results are presented on the 300 images in the publicly available 

Berkeley Segmentation Data Set [Unnikrishnan et al 2007].

Martin et al. [2002] [2004] designed the Berkeley segmentation dataset and 

benchmark system. The goal of their work is to provide an empirical basis for 

research on image segmentation and boundary detection. To this end, they have 

collected 12,000 hand-labelled segmentations of 1,000 Corel dataset images from 30 

human subjects. Half of the segmentations were obtained from presenting the 

subject with a colour image; the other half from presenting a grayscale image. The 

public benchmark based on this data consists of all of the grayscale and color 

segmentations for 300 images. The images are divided into a training set of 200 

images, and a test set of 100 images. The goal of the benchmark is to produce a score 
for an algorithm's boundaries for the following two reasons:

• so that different algorithms can be compared to each other

• so that progress toward human-level performance can be tracked over time.

Any boundary marked by a human subject is considered to be valid. Thus the human 

segmented images provide the ground truth boundaries. Since they have multiple 

segmentations of each image by different subjects, it is the collection of these 

human-marked boundaries that constitutes the ground truth. Presented the
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segmentation (boundary) output of some algorithm for an image. The boundary map 

of the algorithm is compared with the ground truth boundaries at many levels. At 

each level, two quantities ~  precision and recall -  are computed and in this manner a 

precision-recall curve for the algorithm is produced. Precision and recall are similar 

to, but different from the axes of ROC curves. Precision is the probability that a 

machine-generated boundary pixel is a true boundary (ground truth) pixel (Equation 

2.1). Recall is the probability that a true boundary (ground truth) pixel is detected 

(Equation 2.2). Martin et al. [2002] [2004] consider these axes to be sensible and 

intuitive. Precision is a measure of how much noise is in the output of the detector. 

Recall is a measure of how much of the ground truth is detected. The curve shows 

the inherent trade-off between these two quantities — the trade-off between misses 

and false positives -- as the detector threshold changes. The performance of the 

algorithm is found by the following summary statistic : The F-measure is found at all 

points on the precision-recall curve (Equation 2.3). The maximum F-measure value 

across an algorithm's precision-recall curve is its summary statistic. 

t p
Precision = ---- -— [2.1]

t + fp j p

Recall = — -
t h  [2-2]

_  (PrecisionX Recall)_____
((1 — a )x  Precision+a X Recall) [2.3]

Where:

tp is True positive

f  is False positive

f n is False negative

Value of a  is set to 0.5 [Martin et al. 2002]

The above detailed benchmarking process was used to evaluate the performance of 

the HCS process [Selvan, 2007], which is made use of in this study (For further 

details please see Chapter. 3 Section 3.4).
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2.2.1. Medical Image Segmentation

Diagnostic imaging is an invaluable tool in medicine today. Magnetic resonance 

imaging (MRI), CT, digital X-ray mammography, and other imaging modalities (like 

Ultrasound etc.) provide an effective means for non-invasively mapping the anatomy 

of a subject. These technologies have greatly increased knowledge of normal and 

diseased anatomy for medical research and are a critical component in diagnosis and 

treatment planning [Pham et al., 2000].

With the increasing resolution and number of medical images, the use of computers 

in facilitating their processing and analysis has become necessary. In particular, 

computer algorithms for the delineation of anatomical structures and other regions of 

interest are a key component in assisting and automating specific radiological tasks. 

These algorithms, called image segmentation algorithms, play a vital role in 

numerous biomedical imaging applications such as the quantification of tissue 

volumes [Larie and Abukmeil, 1999], diagnosis [Taylor, 1995], localization of 

pathology [Zijdenbos and Dawant, 1994], study of anatomical structure [Worth et al.,

1997], treatment planning[Khoo et al., 1997], partial volume correction of functional 

imaging data [Muller-Gartner et al., 1992], and computer integrated surgery [Ayache 

et al., 1996] [Grimson et al., 1997]. Additional surveys on image segmentation 

specifically for medical images have also appeared [Chaney and Pizer, 1992] 

[Bezdek et al., 1993] [Suetens et al., 1993] [Zijdenbos and Dawant, 1994] [Clarke et 

al., 1995] [Ayache et al., 1996] [Pham et a l , 2000].

The methods employed for medical image segmentation can be divided into the 

following different categories, viz. thresholding approaches, region growing 

approaches, classifiers, clustering approaches, Markov random field models, 

artificial neural networks, deformable models, atlas-guided approaches, model-fitting 

and watershed algorithm [Pham et al., 2000].

A short critical synopsis of each of the above different segmentation methods and 

their corresponding advantages and disadvantages, as outlined by Pham et al [2000], 

in their survey on the methods in medical image segmentation can be found in 

Appendix 1.
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2.3. Cystic Fibrosis

Cystic Fibrosis (CF) is a recessive genetic condition. It is the most common 

autosomal recessive genetic disorder among the Caucasian population. CF is caused 

by one or more mutations involving the CF transmembrane conductance regulator 

(CFTR) gene located on chromosome 7. These mutations generally affect ion 

transport within epithelia-primarily chloride and sodium transport. As a result, there 

is dehydration and production of thick secretions in many affected organs, most 

notably the lungs. In the lung, the presence of highly viscous secretions from chronic 

infection and inflammation causes airway obstruction and subsequent 

vasoconstriction of the vessels in the microcirculation. This, in turn, causes perfusion 

defects, altering lung function and ultimately leads to a poor prognosis [NIH 

Publication-No.-95-3650]

The first step towards improving both life expectancy and the quality of life for 

patients with CF is to diagnose and monitor the condition. Radiologic technology 

plays a key role in these processes. Computed tomography, especially the high- 

resolution CT (HRCT) scan, has become the preferred imaging test to detect early 

pulmonary disease, before symptoms develop.

CF results in inflammation, hence thickening of airway (AW) walls. It has been 

demonstrated that AW inflammation begins early in life producing structural AW 

damage. Because this damage can be present in patients who are relatively 

asymptomatic, lung disease can progress insidiously. High-resolution computed 

tomographic imaging has also shown that the AWs of infants and young children 

with CF have thicker walls and are more dilated than those of normal children. 

[Mumcuoglu, et al., 2009]

Long et al., [2004] conducted a study to determine whether the airway structure of 

infants and young children with CF differs from that of normal children by using 

HRCT imaging. Full-inflation, controlled ventilation HRCT images of the lungs 

were obtained at four anatomic levels in 34 infants with CF (age, 2.4+/-1.4 years) 

and 20 control infants (age, 1.8+/-1.4 years). Short axis diameters of all clearly 

identifiable, round airway/vessel pairs were measured to obtain airway wall thickness 

(AWT), airway lumen diameter (ALD), and vessel diameter (VD). They found that 

in infants with CF, mean AWT (+/-SD) was 0.58+/-0.13 mm, ALD was 1.31+/-0.56
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mm, and VD was 1.62+/-0.58 mm. In control infants, mean AWT was 0.49+/-0.13 

mm, ALD was 1.07+/-0.42 mm, and VD was 1.86+/-0.64 mm. Mean AWT and ALD 

were greater in children with CF than in normal subjects (P<.001). ALD:VD ratios 

increased with age in patients with CF compared with control subjects (P=.026). 

They concluded that the airways of infants and young children with CF have thicker 

walls and are more dilated than those of normal infants [Long et al., 2004].

de Jong et al [2005 (July)] carried out a study to quantify airway wall thickening and 

lumen dilatation in children with CF over a 2-year interval. Children with CF (n = 

23) who had two CT scans (CTcfl and CTcf2) combined with pulmonary function 

tests (PFTs), with a 2-year interval between measurements, were compared with 

control subjects (n = 21) who had one CT (CTcontrols). On cross-sectional cut 

airway-artery pairs, airway wall area (WA), airway lumen area (LA) and perimeter, 

and arterial area (AA) were quantified. LA/AA (= marker of bronchiectasis), airway 

wall thickness (AWT), and WA/AA (= markers of wall thickness) were calculated. 

CT scans were scored using four different scoring systems. PFTs were expressed as 

percent predicted. They found that Airway WA-to-AA ratio was 1.45 (P < 0.001) and 

airway LA-to-AA ratio was 1.92 times higher (P < 0.001) in children with CF 

compared with age-matched control subjects. LA/AA and WA/AA remained 

unchanged from CTcfl to CTcf2 and did not increase with age. AWT as a function 

of airway size increased from CTcfl to CTcf2 by 2% (0.03 mm; P = 0.02). The 

change in AWT was inversely related to the change in forced expiratory flow 

between 25 and 75% of expiratory VC (P = 0.002). They concluded that in CF, 

quantitative measurements of airways on CT scans show an increased ratio between 

airway LA and AA and progressive airway wall thickening. Scoring systems show 

progression of bronchiectasis but unchanged AWT. PFTs remained stable.

In the above discussion P value is the probability that the observation occurred by 

chance. Lower the P value higher the confidence one will have about the observation.

In a study involving 22 male and female patients by Dodd et a l [2006], the 

correlation between exercise limitation and HRCT was stronger than it was between 

pulmonary function testing or body mass index. Zavalett et al [2007] performed a 

study which demonstrated that computer aided analysis of CT images can be used 

towards quantification of various pathologies present in lungs with UIP/IPF. (UIP - 

Usual Interstitial Pneumonitis) (IPF - Idiopathic Pulmonary Fibrosis).



2.3.1. Measurement of Airways and Blood Vessel Dimensions in CT Images

Ever since the site and nature of airflow obstruction in chronic obstructive 

pulmonary disease was described by Hogg, Thurlbeck, and Macklem, investigators 

have been looking for methods to noninvasively measure the airway wall 

dimensions. Recent advances in CT technology and new computer algorithms have 

made it possible to visualize and measure the airway wall and lumen [Coxson and 

Lam, 2009].

In general, CT has been found to be more sensitive to early changes in CF lung 

disease, often preceding any change in lung function [de Jong, 2004], [Brody, 2004], 

[Helbich, 1999]. Accurate segmentation is essential for making measurements that 

can be made on CT images of airways and the blood vessels. The advantages to use 

computer methodologies to quantify peripheral airway disease include reproducible 

visualization methods to display the location, severity, and the extent of airway 

dilatation, bronchial wall thickening, and the presence of mucoid impacted airways. 

[Kiraly, 2008].

de Jong et al. [2005] have carried out a detailed review of the earlier studies which 

had attempted to quantitatively assess the dimensions of airways through CT images 

of the lungs. In that review they have mentioned that Saba et al.[2003] have 

developed an alternate technique for measuring airways that are not cut in cross- 

section. This method involves fitting an ellipse to the airway lumen and wall, and 

shows great promise in correcting the errors in measurement of obliquely cut 

airways. They also note that these techniques claim to be more accurate than the 

more commonly used techniques, but have not been generally applied, presumably 

because of the limited availability of the complex algorithms involved. An excerpt 

from de Jong et al. [2005] review can be found in Appendix 2.

The HCS process based method of segmentation of airways and the accompanying 

blood vessels, developed in the present study, approximates their boundary by fitting 

an ellipse (please refer Chapter 4 Section 4.3.7).

Coxson and Lam [2009] in their publication have critically reviewed the progression 

of computer techniques to qualitatively assess the Airway wall using CT. Relevant 

material extracted from their publication can be found in Appendix 3.
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From Coxson and Lam [2009] publication the following chronology of publications, 

related to computer techniques developed to qualitatively assess the Airway wall 
.using CT, can be seen :

1992 -  1994 : publications on how to best trace the airway wall to produce 

the best images [McNamara et al. 1992], [Seneterre et al., 1994], [Okazawa 
etal., 1996].

1996 : realisation that quantitative measurements of airway structure were 

very dependent on the display parameters of the image [Bankier et al., 1996].

1997 -  2002 : early very simple approaches using threshold techniques to 

find the lumen [McNitt-Gray et al., 1997] and simple algorithms like the full- 

width at half maximum to assess the wall area [Nakano et al., 2002], [Nakano 

etal., 2002].

1997 -  2003 : More complex algorithms using model-based approaches to 

provide more reliable measurements were developed [Reinhardt et al., 1997], 

[King et al., 2000], [Saba et al., 2003], [Leader et al., 2003], [San et al.,
2008].

• 2005 -  2008 : Correlation between airway wall measurements obtained using

CT and those obtained using histology [Nakano et al., 2005] and subjects 

with symptoms of chronic bronchitis have more airway wall thickening than 

those with airflow limitation but no symptoms [Orlandi et al., 2005], [Patel 

etal., 2008].

Most of the studies listed above were performed using traditional HRCT scans. 

During this time period, CT imaging took a leap forward in complexity with the 

introduction of the multi-detector row CT (MDCT) scanner. MDCT scanners have 

allowed the acquisition of sub-millimeter thickness images of the entire chest within 

a single breath-hold of 5 to 15 seconds. These new images can have the same 

resolution in the X, Y, and Z dimensions (isometric voxels), allowing images to be 

reconstructed in any orientation without loss of spatial resolution. This has greatly 

facilitated the visualization of airways and vessels that are oriented in a radial pattern 

around pulmonary hila (Figure 2.1) [Coxson and Lam 2009].
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Figure 2.1 -  Image acquired using MDCT.
This figure shows a thin slice (1-mm slice thickness) computed tomography (CT) scan 
acquired using a multi-detector CT scanner (A) in the traditional transverse plane and 
reformatted into (B) the coronal plane (Image and caption courtesy Coxson and Lam,

2009).

In a more recent study Mumcuoglu, et a l, [2009] have developed a computerized 

method which allows rapid, efficient and accurate assessment of computed 

tomographic airway wall (AW) and vessel (V) dimensions from axial CT lung 

images. Here they developed a full-width-half-max [Reinhardt et al, 1997] based 

automatic AW and V size measurement method. In their method the only user input 

required was the approximate centre marking of AW and V by an expert. They 

evaluated their method on a patient population of 4 infants and 4 children with 

different stages of mild CF related lung disease. Their automated method for
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assessing early AW disease in infants and children with CF represents a potentially 

useful outcome measure for future intervention trials [Mumcuoglu et a l , 2009].

Following are the limitations, identified by Coxson and Lam [Coxson and Lam,

2009], in the use of CT scanning to measure airways : (The material extracted from 

their publication can be found in Appendix 4)

limitation in the resolution of the CT scanner. In the usual clinical CT 

scanning, the field of view limits the pixel size to approximately 0.5 mm in 

the X and Y dimension. This means that the airways that are responsible for 

airflow limitation are below the resolution of the CT scanner.

• there is no definitive data on the best algorithm to measure the airway wall. 

Whilst a great deal of research has gone into airway wall algorithms 

[Reinhardt et al., 1997], [Saba et al., 2003], [Nakano et al., 2000], [Hasegawa 

et al., 2006], [Brown et al., 2000], [King et al., 1999], [Montaudon et al., 

2007], [Aykac et al., 2003], [Tschirren et al., 2005], there is no clear 

indication that one algorithm provides more useful data than another one.

• the analysis of airways using three-dimensional algorithms is still in its 

infancy, these analyses have a long way to go before they become practical in 

the clinical setting. As such they remain in the research domain and are 

limited in their applicability

2.4. Computer Aided Detection and Diagnosis of Breast Abnormalities in X-ray 

Mammograms

Breast cancer is one of the leading causes of death in women. Studies have indicated 

that cure rates dramatically increase if the breast lesion can be detected at a size less 

than 1 centimetre, which is too small for the lesion to be palpable. The only way a 

lesion this small can be detected is through screening mammography.

Mammographic interpretation is one of the most difficult tasks in all of radiology. 

Reading mammograms can be more of an art than a science. Breast parenchymal 

patterns are not stable between patients, between left and right breasts, and even 

within the same breast from year to year in the same patient. Positioning, particularly 

in the mediolateral oblique projection, and the amount of compression applied are 

variable from examination to examination. Breast cancer has a varied appearance on 

mammograms, from the obvious spiculated masses, to very subtle asymmetries noted
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Figure 2.2 - Radiologist scrutinizing mammograms using a magnifying glass. (Stock Image).

on only one view, to faint calcifications seen only with full digital resolution or a 

magnifying glass (Figure 2.2). Task repetition and fatigue combine to make missing 

the subtle signs o f breast cancer a very real possibility, but one that can have serious 

consequences [Liane E.and Philpotts, MD, 2009].

Given these difficulties, it is not surprising that approximately 20% of cancers are 

known to be missed at mammography [Warren Burhenne et a l , 2002] [Brem et al., 

2003] [Birdwell et al., 2001]. Some of these are because of the reduced sensitivity of 

mammography in the detection o f lesions in dense breast tissues. But even if a lesion 

is visible on the images, the combination of the variable presentation o f breast cancer 

on mammograms, as stated above, as well as the interpreting radiologist's threshold 

for both detecting and deciding to act on (i.e., recall) such lesions, affects the 

reading. Accuracy in mammographic interpretation depends on many factors, of 

which experience and volume of studies read play a large role. Having a good tool to 

help the radiologist in the difficult task of mammographic interpretation would be an 

advantage [Liane and Philpotts, 2009].

Having a good tool to help the radiologist in the difficult task of mammographic 

interpretation would be an advantage. CAD has been developed for that very 

purpose. It seems obvious that this difficult task could likely be made less error prone 

with the help of computer programs. However, how much is art and how much is 

science? How can a computer be expected to operate in a very imperfect system (i.e.,
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variable mammograms and differing breast cancer patterns) at a level that would be 

clinically relevant (i.e., not missing any or many cancers)without causing more 

problems (eg, many false-positive results)? It is a lot to ask, even of a computer. 

[Liane E.and Philpotts, MD, 2009]

CAD tools use software to analyse digital or digitized images to find features 

associated with the target disease. The objective of CAD is to mark suspicious 

findings on the monitor and/or on a print of the image to help radiologists detect 

lesions (Figure 2.3). CAD algorithms work by identifying areas of signal in images 

that may contain a cancer. The standard approach is to use thresholding algorithms to 

identify as many true signals and as few false signals as possible. Signal data are 

separated from the background in a process known as segmentation. The signals are 

then subjected to a probabilistic analysis to assess the likelihood that the structure on 

the image contains malignancy-induced abnormalities [Nishikawa and Vybomy, 

2007]. The final result is a CAD prompt if the probability of cancer being present is 

sufficiently high. All CAD systems must also be trained on a database of real cases 

before they are used in clinical practice. These cases should ideally be proven by 

biopsy or, if not, by follow-up of at least two years. The incidence and type of 

disease should mirror that expected in the target population [Bazzocchi et al., 2007]. 

A basic method for assessing CAD performance during the training period is to plot 

the ffee-response receiver operating characteristic (FROC). This represents the 

sensitivity of the system in detecting cancer as a function of the averaged number of 

false-positive marks on each image. The best performing CAD systems will have a 

low false-positive rate as well as high sensitivity [Nishikawa and Vybomy, 2007].

[
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Figure 2.3 - CAD marking of micro-calcification.
Digital mammogram (cranlocaudal view) of 57-year-old woman. CAD correctly marked cluster 
of micro-calcification (square mark) and mass (round mark). Percutaneous biopsy targeted on 
mass revealed invasive ductal carcinoma. (Image and caption courtesy Bazzocchi et al. 2007).

The concept of computer-aided detection (CADe) was introduced more than 50 years 

ago; however, only in the last 20 years there have been serious and successful 

attempts at developing CADe for mammography [Nishikawa and Vybomy, 2007]. 

The introduction of systems for automated reading in mammography has been 

proposed to improve the sensitivity [computer-aided detection (CADe) systems] and, 

more recently, the specificity [computer-aided diagnosis (CADi) systems] of the test. 

Only CADe systems have been approved by the U.S. Food and Drug Administration 

(FDA) and are used in current practice [Bazzocchi et al., 2007]. The first CAD tools 

were approved by the U.S. FDA for clinical use in 1998. Several commercial and 

non-commercial CAD systems have since become available [Girometti et al., 2010].

These systems are still under investigation. Several studies have demonstrated that 

they are beneficial to inexperienced readers and that, through comparison with the 

computer, radiologists see an improvement in their performance. There is still
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considerable variation among different studies in the level of benefit deriving from 

CAD. Therefore, the role of these systems in clinical practice is still debated, and 

their real contribution to the overall management of the diagnostic process is not yet 

clear [Bazzocchi, et al, 2007].

Ciatto et al. [2006] evaluated the role of CAD in cancers undergoing double reading 

and detected by one reader only. A series of 33 cancers, originally missed by the first 

reader and detected by the second reader, and 75 negative controls were processed to 

assess CAD sensitivity, and were read with the help of CAD printouts by the six 

radiologists who originally missed the cancers. Their findings were, CAD case-based 

sensitivity, specificity and positive predictive value were 51.5%, 18.6% and 21.7%, 

respectively. Average sensitivity of all radiologists in all cancers in the series was 

74.7%, being higher for CAD+ (86.2%) than for CAD- (62.5%) cancers (P<0.01). 

When reading cancer cases that they had originally missed, radiologists had a 

sensitivity of 75.8%, which was higher for CAD+ (100.0%) than for CAD- (58.3%) 

cancers. They also found that the average recall rate was 14.2%, the majority of 

recalls (45 out of 64) occurring for lesions marked by CAD. Their conclusion was 

CAD may help in detecting at most half of cancers missed at a single reading but 

detected by a second reader.

Onega et al. [2010] examined radiologists' use and perceptions of CAD and double 

reading for screening mammography interpretation. They did a mailed survey of 257 

community radiologists participating in the national Breast Cancer Surveillance 

Consortium (USA) to assess perceptions and practices related to CAD and double 

reading. They classified radiologists' overall perceptions of CAD and double reading 

on the basis of their agreement or disagreement with specific statements about CAD 

and double reading. The results of their survey were that most radiologists (64%) 

reported using CAD for more than half the screening mammograms they interpreted, 

but only <5% reported double reading that much. More radiologists perceived that 

double reading improved cancer detection rates compared to CAD (74% vs 55% 

reported), whereas fewer radiologists thought that double reading decreased recall 

rates compared to CAD (50% vs 65% reported). Radiologists with the most 

favourable perceptions of CAD were more likely to think that CAD improved cancer 

detection rates without taking too much time compared to radiologists with the most 

unfavourable overall perceptions. In latent class analysis, an overall favourable
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perception of CAD was significantly associated with the use of CAD (81%), a higher 

percentage of workload in screening mammography (80%), academic affiliation 

(71%), and fellowship training (58%). Perceptions of double reading that were most 

favourable were associated with academic affiliation (98%). They concluded 

radiologists' perceptions were more favourable toward double reading by a second 

clinician than by a computer, although fewer used double reading in their own 

practice. The majority of radiologists perceived both CAD and double reading at 

least somewhat favourably, although for largely different reasons [Onega et al 

2010].

One method of helping radiologists screen mammograms for signs of cancer is 

prompting, in which computer based algorithms are used to detect potential 

abnormalities in digital images and to draw attention to the corresponding regions in 

the original films. Prompting aims to improve radiologists' performance by reducing 

the number of false negative errors, i.e. cases in which a mammogram containing a 

significant abnormality is classified as normal. Alberdi et al. [2005] examined the 

effects of CAD prompts on performance, comparing the negative effect of no prompt 

on a cancer case with prompts on a normal case. They showed that no prompt on a 

cancer case can have a detrimental effect on reader sensitivity and that the reader 

performs worse than if the reader was not using CAD. This became particularly 

apparent when difficult cases were being read. They suggested that the readers were 

using CAD as a decision making tool instead of a prompting aid. They conclude that 

"incorrect CAD can have a detrimental effect on human decisions" [Alberdi et a l , 

2005]. The goal of a CAD system is to reduce errors by drawing radiologists' 

attention to possible abnormalities. CAD is not intended to be used as a computer- 

aided diagnosis tool, i.e. the decision as to whether a feature is of clinical 

significance remains with the radiologist. In practice, however, the distinction 

between detection and diagnosis may be blurred. One study has indicated that, for 

subtle microcalcification clusters, subjects' confidence that a cluster was present was 

increased if the cluster was prompted, and decreased if the cluster was unprompted 

[Chan et al., 1990]. Another study reported that prompting can entail an increase in 

false positive decisions without necessarily having an overall effect on confidence 

levels [Mugglestone et al, 1996]. The first study would seem to indicate that 

radiologists' confidence with respect to the detection task is affected by prompting, 

but that their diagnostic decision making remains largely unaffected. The second
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study, however, raises doubts regarding the latter conclusion [Hartswood et al.,
1998].

The gold standard of symptomatic breast diagnosis for more than a decade has been 

triple assessment by clinical examination, needle biopsy and X-ray mammography 

[The Breast Surgeons Group of the British Association of Surgical Oncology, 1995]. 

Recently, Ultrasound is used increasingly for symptomatic cases. Moss et a l [1999] 

analysed the role of ultrasound, freely used, to supplement X-ray mammography, and 

showed that the resultant sensitivity is extremely high, but that it must be used in 

conjunction with needle biopsy to achieve satisfactory specificity and avoid 

unnecessary benign surgical biopsies. Their study of 559 biopsied symptomatic cases 

showed that targeted ultrasound, used liberally as an adjunct to X-ray 

mammography, increased their cancer detection rate by almost 15%. but at the 

expense of reduced specificity. Their study illustrated the limitations of X-ray 

mammography in a symptomatic population, but showed that ultrasound covers the 

shortfall in most cases, with only one cancer near the nipple not detected by either 

imaging test (0.4% of cancers). They therefore recommended performing ultrasound 

in all women in whom there is a clinical suspicion of malignancy even if the X-ray 

mammogram is normal. Importantly, there were 11 cancers (4.3% of cancers in the 

study) in patients in whom an abnormality was seen in the area of clinical concern on 

one or both investigations but categorized as benign. This underlines the necessity 

that any focal X-ray mammographic or ultrasound abnormality should undergo 

needle biopsy [Moss et al. 1999].

Rahbar et al [1996] in their study of one hundred and sixty-two consecutive solid 

masses with a tissue diagnosis found that the US features that most reliably 

characterize masses as benign were a round or oval shape (67 of 71 [94%] were 

benign), circumscribed margins (95 of 104 [91%] were benign), and a width-to- 

anteroposterior (AP) dimension ratio greater than 1.4 (82 of 92 [89%] were benign). 

Features that characterize masses as malignant included irregular shape (19 of 31 

[61%] were malignant), microlobulated (four of six [67%] were malignant) or 

spiculated (two of three [67%] were malignant) margins, and width-to-AP dimension 

ratio of 1.4 or less (28 of 70 [40%] were malignant).They also investigated the 

general applicability and interobserver variability of US features in differentiating 

benign from malignant solid breast masses. They found that if the three most reliable
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criteria had been strictly applied by each radiologist, the overall cancer biopsy yield 

would have increased (from 23% to 39%) by 16%. When US images and 

mammograms were available, the increase in biopsy yield contributed by US was not 

statistically significant (2%, P = .73). They concluded that certain US features can 

help differentiate benign from malignant masses. However, practice and interpreter 

variability require further exploration before these criteria are generally applied to 

defer biopsy of solid masses.

Surgeons are frequently faced with the question of whether to biopsy those palpable 

abnormalities in the setting of normal radiographic studies. One might propose that 

such lesions could be safely observed rather than immediately biopsied. Bayer and 

Moonka [2002] investigated the relationship of non biopsy to how many cancers 

would escape detection? To address this issue, a population of patients with known, 

palpable breast cancer was retrospectively examined to determine the frequency of 

normal or benign findings on both mammography and ultrasonography. The results 

of their study indicated that nearly 4% of women with breast cancer who present 

with palpable lumps will have normal or benign findings on both mammography and 

ultrasonography. Their data supported prior studies of similar false negative rates.

2.4.1. Segmentation and Detection of Abnormalities in X-ray Mammographic 

Images

Pham et al. [2000] in their survey, on methods employed for medical image 

segmentation, have identified the following processes and procedures (For an extract 

from their publication please refer Appendix 5)

In delineating suspicious masses for mammography, segmentation methods are 

typically employed in one of two ways.

• In the first approach, the mammogram is initially segmented into candidate 

regions which are then labelled as being suspicious or normal [Polakowski et 

al., 1997], [Li etal., 1995], [Ibrahim etal., 1997], [Karssemeijer, 1997].

• In the second approach, the image is first processed to detect for the presence 

of pathology and a segmentation is performed as a final step to determine its 

precise location [Cheng et a/., 1998], [Kupinski and Giger, 1998] [Gupta and 

Undrill, 1995], [Chen and Lee, 1995].
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Thresholding and its variations are the most often used segmentation technique in X- 

ray mammography [Polakowski et al., 1997], [Strickland and Hahn, 1996], [Cheng 

et al., 1998], [Gupta and Undrill, 1995], [Ibrahim et Mon Jan 30 21:36:26 GMT 

2012al., 1997], although extensions of region growing methods have also been 

proposed [Kupinski and Giger, 1998], [Pohlman et a l , 1996]. A comparison of 

thresholding and region growing was presented in [Kallergi et al., 1992].

Because pathological areas often possess different textural properties in 

mammograms, Markov random field methods have also been successfully employed 

[Li et a l , 1995], [Chen and Lee, 1995].

It is widely accepted in the medical community that breast tissue density is an 

important risk factor for the development of breast cancer [Oliver et al 2006]. Thus, 

the development of reliable automatic methods for classification of breast tissue is 

justified and necessary. Although different approaches in this area have been 

proposed in recent years, only a few are based on the Breast Imaging Reporting and 

Data System (BIRADS) classification standard. Oliver et a l [2006] reviewed 

different strategies for extracting features in tissue classification systems, and 

demonstrated, not only the feasibility of estimating breast density using automatic 

computer vision techniques, but also the benefits of segmentation of the breast based 

on internal tissue information. Their evaluation was based on the full Mammographic 

Image Analysis Society (MIAS) [Suckling et al, 1994].digital mammogram database 

classified according to BIRADS categories, and agreement between automatic and 

manual classification of 82% was obtained. Adel et a l [2007] in their study explored 

the possibility of the segmentation of breast anatomical regions, pectoral muscle, 

fatty and fibroglandular regions, using a Bayesian approach. The developed method 

was tested on 50 digitized mammograms of the mini-MIAS database [Suckling et al., 
1994]. Computer segmentation was compared to manual one made by a radiologist. 

They report that a good agreement was obtained on 68% of the mini-MIAS X-ray 

mammographic image database used in their study [Adel et al., 2007].

CADe systems address the problem that radiologists may miss signs of cancers that 

are retrospectively visible in mammograms. Furthermore, computer-aided diagnosis 

(CADx) systems have been proposed that assist the radiologist in the classification of 

mammographic lesions as benign or malignant. Elter and Horsch [2009] present a
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review of the state of the art of CADx approaches. Their survey is restricted to the 

two most important types of mammographic lesions: masses and clustered 

microcalcifications. Furthermore, it focuses on articles published in international 
journals.

Oliver et al, [2010] reviewed the performance of methods designed to automatically 

detect and diagnose masses in X-ray mammographic images.

The important sign for the breast cancer detection is the presence of lesions such as 

microcalcification clusters (MCCs). For MCCs, the interpretations of their presence 

are very difficult because of their morphological features. For example, the sizes of 

MCCs are typically in the range of 0.1 mm-1.0mm and the average is about 0.3mm, 

implying it can easily be overlooked by a radiologist. While in some dense tissues, 

and/ or skin thickening, MCCs areas are almost invisible to be seen by examining 

radiologist. The dense tissues especially in younger women may easily be 

misinterpreted as MCCs due to film emulsion error, digitization artifacts or 

anatomical structures such as fibrous strands, breast borders or hypertrophied lobules 

that are almost similar to MCCs. Other factors that contribute to the difficulty of 

MCCs detection are due to their fuzzy nature, low contrast and low distinguishability 

from their surroundings [Chang and Cui, 2004]. Yusof et al. [2007] in their 

publications have reviewed the computer-aided detection and diagnosis systems for 

microcalcifications.

Liu et a l [2001] discussed their multiresolution scheme for the detection of 

spiculated lesions in digital mammograms. In their first approach first, a 

multiresolution representation of the original mammogram was obtained using a 

linear phase nonseparable two-dimensional (2-D) wavelet transform. A set of 

featureswas extracted at each resolution in the wavelet pyramid for every pixel. Their 

approach addresses the difficulty of predetermining the neighborhood size for feature 

extraction to characterize objects that may appear in different sizes. Detection was 

performed from the coarsest resolution to the finest resolution using a binary tree 

classifier. Their top-down approach required less computation by starting with the 

least amount of data and propagating detection results to finer resolutions. To 

evaluate the computer diagnosis results, they adopted the criteria suggested by 

Kegelmeyer et al [1994] by which a computer finding is considered as a true
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positive detection if its area is overlapped by at least 50% of a true lesion as 

indicated by an expert radiologist; a computer finding that does not so overlap a true 

lesion is considered as false positive; and a true lesion that is not overlapped by any 

computer finding is considered as false negative. By these criteria, the diagnostic 

accuracy performance of their algorithm on the MIAS [Suckling et al. 1994] 

database was 84.2% true positive detection at less than 1 false positive per image and 

100% true positive detection at 2.2 false positive per image.

2.5. Studies Most Relevant to the Current Study

In the following chapters it will be detailed how the author's Hierarchical Clustering- 

based Segmentation process was used :

• to segment regions in digital images (specifically medical images Chapter 3)

• to combine machines' power of perceiving details, in images, with the human 

interpretive skills to design quantitative measures to monitor abnormalities in 

diagnostic images (specifically CF Chapter 4 and breast abnormalities 

Chapter 5)

To successfully implement the above applications the current study made use of the 

following methodologies:

• Hierarchical clustering-based process to segment images

• Incorporating users' interpretive knowledge within a computer aided 

diagnoses process.

Given below are the studies which are of relevance to the above methodologies 

adopted by the current study.

In relevance to hierarchical segmentation of images :

Shi and Malik are one of the- very few researchers who insist that a single 

segmentation solution is not appropriate and that only hierarchical segmentation 

output should be produced. Their strong recommendation "..image segmentation 

based on low-level cues cannot and should not aim to produce a complete final 

"correct" segmentation. The objective should instead be to use the low-level 
coherence o f brightness, colour, texture, or motion attributes to sequentially 

come up with hierarchical partitions” [Shi and Malik, 1997]. They also 

recommend that higher level knowledge (user knowledge ?) should be used to 

finalize the most appropriate segmentation. Their recommendation is “Mid- and
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high-level knowledge can be used to either confirm these groups or select some 

for further attention. This attention could result in further repartitioning or 

grouping” [Shi and Malik, 1997].

Researchers Martin et al, [Martin et al, 2002] [Martin et al, 2004] have 

specifically designed a benchmarking process to objectively evaluate the 

performance of methods which yields multiple segmentation output. In their 

discussion of their benchmarking algorithm they specifically advocate against 

thresholding of boundary maps, as follows : “Traditionally, one would 

"binarize" the boundary map by choosing some threshold. There are two 

problems with thresholding a boundary map: (1) The optimal threshold depends 

on the application, and (2) Thresholding a low-level feature like boundaries is 

likely to be a bad idea for most applications, since it destroys much information. 

For these reasons, our benchmark operates on a non-thresholded boundary 

map” [Arbelaez etal., 2007].

The following researchers are one of the very few who have specifically made use of

hierarchical segmentation output as a tool for medical image related applications : 

Thies et al. [Thies et al., 2003] have used the information for retrieving images 

from a image database. Their description of the retrieval process “Due to 

varying medical context and questions, data structures for image description 

must provide all visually perceivable regions and their topological 
relationships, which poses one o f the major problems for content extraction. In 

medical applications main criteria for segmenting images are local features 

such as texture, shape, intensity extrema, or gray values. For this new approach, 
these features are computed pixel-based and neighbouring pixels are merged if  

the Euclidean distance o f corresponding feature vectors is below a threshold. 

Thus, the planar adjacency o f clusters representing connected image partitions 

is preserved. A cluster hierarchy is obtained by iterating and recording the 

adjacency merging. The resulting inclusion and neighbourhood relations o f the 

regions form a hierarchical region adjacency graph. This graph represents a 

multiscale image decomposition and therefore an extensive content description. 

It is examined with respect to application in daily routine by testing invariance 

against transformation, run time behaviour, and visual quality For retrieval 

purposes, a graph can be matched with graphs of other images, where the
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quality o f the matching describes the similarity of the images.” [Thies et al., 

2003]

The Hierarchical Segmentation Software (HSEG) — developed by NASA's 

Goddard Space Flight Center Computer Engineer James C. Tilton, [Tilton, 

2000], [Tilton, 2003] forms the core of a commercial medical segmentation 

program MED-SEG. MED-SEG is developed by Barton Medical Imaging Inc. a 

USA based company [http://www.bartron.ws/]. The FDA recently cleared the 

system to be used by trained professionals to process images. These images can 

be used in radiologist's reports and communications as well as other uses, but the 

processed images should not be used for primary image diagnosis. In the future, 

Dr. Molly Brewer, a professor with the Division of Gynecologic Oncology, 

University o f Connecticut Health Center, would like to do clinical trials with the 

MED-SEG system. The goal, she said, would be improving mammography as a 

diagnostic tool for detecting breast cancer. "The MED-SEG processes the image 

allowing a doctor to see a lot more detail in a more quantitative way." (Figure 

2.4). [http://www.nasa.gov/topics/nasalife/features/medical-imagerv.html]

In segmenting medical images the performance of HSEG has been compared with 

that of HCS (Chapter 3 Section 3.2.1).

The following study is relevant in making use of the radiologists' interpretive skills 

to approximately locate the abnormality to aid the computer for its subsequent 

objective evaluation of the abnormality :

Researchers at the University of Chicago have developed a computer technique 

that "learns" how benign and malignant breast calcifications appear on digital 

mammograms. Radiologists read the mammograms and electronically put a box 

around the suspicious calcifications. The computer then automatically detected 

the calcifications within the box, analysed them and calculated the probability of 

cancer. The system proved to consistently achieve performance comparable to 

the radiologists in classifying malignant and benign calcifications, regardless of 

who was using it. One technique for rating the computer's effectiveness is to 

give it one malignant case and one benign case and then test its ability to 

determine which is which. Using this technique, the radiologist had a 72% 

chance of making the correct diagnosis, and the computer had a 79% chance.
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Figure 2.4 - MED-SEG processing of mammograms.
The left image shows an original mammogram before MED-SEG processing. The image on the 
right, with region of interest (white) labeled, shows a mammogram after MED-SEG processing. 

(Image and caption credit: Bartron Medical Imaging)

The computer aided monitoring process designed in the current study follows a very 

similar approach as above to differentiate malignant from benign abnormalities (See 

Chapter 5 Section 5.2.4).

2.6.Summary

This chapter outlined the studies by researchers related to the following areas of 

investigation:

Segmentation of regions in digital images specifically medical images. 

Computer aided diagnosis and monitoring of CF by measuring airway 

dimensions in the CT images of the lungs

Computer aided Detection and Diagnosis of abnormalities in mammograms 

After studying the existing research it can be inferred that only a few studies have 

used hierarchical segmentation for processing medical images.
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Chapter 3. Hierarchical Clustering Based Segmentation (HCS)

3.1. Introduction

The main aim of this study is to design and and implement image processing 

techniques to assist medical professionals in perceiving diagnostic images and thus 

improve their diagnostic capabilities. To achieve the above objective the Hierarchical 

Clustering based Segmentation (HCS) based process [Selvan 2007] was investigated. 

Specifically, HCS was investigated for its ability to augment the diagnostic 

information present in CT images for CF diagnosis and X-ray mammograms to 

differentiate malignant from benign abnormalities.

This chapter discusses the HCS process in detail and is covered under the following 

headings:

• overview of the HCS process

• reasons for choosing the HCS process to augment diagnostic information 

present in medical images.

• objective evaluation of the performance of the HCS process.

• use of the HCS process output as a perceptional aid.

3.2. Overview of the HCS Process

Hierarchical organization is one of the main characteristics of human segmentation. A 

human subject segments a natural image by identifying physical objects and marking 

their boundaries up to a certain level of detail [Arbelaez, 2006]. For example, given 

an anatomical image of the cross-section of a skull, at a coarse level a radiologist can 

classify the image as regions belonging to soft tissues and the skull bone. At a fine 

level different types of soft tissues are also identified. At a still finer level, the 

radiologist will also be able to distinguish the regions Which might be dissimilar, due 

to some pathological condition, within the same tissue type.

Segmentation can be thought as a process of grouping visual information, where the 

details are grouped into objects, objects into classes of objects and classes of objects 

as scenes. Thus, starting from the composite segmentation, the perceptual 

organization of the image can be represented by a tree of regions, ordered by 

inclusion. The root of the tree is the entire scene, the leaves are the finest details and 

each region represents an object at a certain scale of observation [Arbelaez, 2006].
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Since the early days of computer vision, the hierarchical structure of visual perception 

has motivated clustering techniques to segmentation [Ohlander et al 1978], where 

connected regions of the image domain are classified according to an inter-region 

dissimilarity measure. Hierarchical Clustering-based Segmentation (HCS) implements 

the traditional bottom-up approach, also called agglomerative clustering [Nadler and 

Smith 1993], where the regions of an initial partition are iteratively merged. HCS 

procedure automatically generates a hierarchy of segmented images. The hierarchy of 

segmented images is generated by partitioning an image into its constituent regions at 

hierarchical levels of allowable dissimilarity between its different regions. At any 

particular level in the hierarchy, the segmentation process will cluster together all the 

pixels and/or regions which have dissimilarity among them less than or equal to the 

dissimilarity allowed for that level. Thus, the HCS process mimics the capability of 

human vision.

The HCS process automatically generates a hierarchy of segmented images. The 

hierarchy represents the continuous merging of similar, spatially adjacent or disjoint, 

regions as the allowable threshold value of dissimilarity between regions, for 

merging, is gradually increased. HCS process is unsupervised and is completely data 

driven. This ensures that the segmentation process can be applied to any image, 

without any prior information about the image data and without any need for prior 

training of the segmentation process with the relevant image data.

The following is a high-level description of the HCS process [Selvan 2007] (See 

Figure 3.1-A for a flow chart representation):

i. Give each pixel in the image a region label as follows.

If an initial segmentation of the image is available, label each pixel according 

to this pre-segmentation. The initial segmentation can be obtained by prior 

class information for e.g. based on the user information.

If no initial segmentation is available, label each pixel as a separate region.

Set the current dissimilarity allowed between regions, dissimilarity allowed, 
equal to zero.

ii. Calculate the dissimilarity value, {dissimilarity value), between all pairs of 

regions in the image.

Set thresholdjyalue equal to the smallest dissimilarity_value.
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iii. If the threshold_yalue found, in step (ii), is less than or equal to the current 

dissimilarity_allowed value, then merge all those regions having 

dissimilarity_value, between them, less than or equal to the thresholdjyalue. 

Otherwise go to step (vi).

iv. If the number of regions merged in Step iii is greater than 0, then reclassify 

the pixels on the border of the merged regions with the rest of the regions 

until no more reclassification is possible. After all the possible border pixels 

are reclassified, among the merged regions, store the region information for 

this iteration as an intermediate segmentation and go to step (ii).

Otherwise, if the number of regions merged in step (iii) is equal to 0 then, go 

to step (v).

v. If the current number of regions in the image is less than the pre-set value, 

check no regions, then go to step (vii). Otherwise, go to step (vi).

Normally the value of check_no_regions is set as 1.

vi. If the current value of dissimilarity allowed is less than the maximum 

possible value then increase the dissimilarity allowed value by an 

incremental value,

dissimilarityallowed = dissimilarityjallowed + dissimilarity increment,and 

go to step (ii).

Otherwise go to step (vii).

vii. Save the region information from the current iteration as the coarsest instance 

of the final hierarchical segmentation result and stop.

The above steps ensure that the segmentation of the image into its constituent regions 

is always unique irrespective of the order in which the image regions are processed. 

Other similar Agglomerative hierarchical clustering or bottom-up methods suffer 

from a distorting phenomena, in which the cluster structures depend on the order in 

which the regions are considered for merging [Nadler, 1993]. The brute force 

approach, followed by the HCS process, where only those regions with the smallest 

overall dissimilarity are merged in each step, is the only solution to overcome this 

effect [Thies, 2003].

Merging only those regions with the smallest overall dissimilarity requires the 

comparison of all the possible combinations of the locations or regions present in a 

image. This is a combinatorial problem and the complexity of the solution
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exponentially increases with the number of locations (regions) in the image as given 

by the expression in equation 3.1.

Number o f combinations =  —Li [3.1]

Where N is the number of locations or regions in the image

The feature measure used by the HCS process, to estimate the similarity between 

locations within a image, is the actual distribution of the pixel values in a region 

surrounding the locations. This technique may be considered to work in a way similar 

to the human visual system where features for texture (region) segmentation are not 

consciously computed [Bhattacharya, 1997].
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Figure 3.1-A - Flow chart illustrating the different operations o f the HCS process (Image
courtesy Selvan 2007).

The pixel-values distribution feature was found as follows. A small mask of fixed 

size is placed around the pixel of interest. The pixel-values within the mask, moving 

from the top left comer of the mask to the bottom right comer of the mask, were 

taken as the distribution of the pixel-values feature for the pixel. Figure 3.1-B 

illustrates the method.
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Figure 3.1-B - Pixel-values distribution feature representation for a grey tone image
(Image courtesy Selvan 2007)

Given the observations of the pixel-values from two different locations in the image 

and a certain level of significance, the aim was to determine whether they belonged 

to the same distribution. The commonly used test for difference between binned 

distributions is the Chi-Squared test [Press et al, 2002]. To compare the two binned 

data sets the chi-square statistic is found as given by the expression 3.2 

, ^  ( R . - S f

1321

Where

the sum is over all the bins i
D

‘ is the number of events in bin i for the first data set

^  is the number of events in the same bin bin i for the second data set 

A large value of x 2 (Equation 3.2) indicates that the null hypothesis (that the two 

distributions belonged to the same distribution) is rather unlikely [Press et al, 2002].
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Q(X2\v ) is the probability that the observed chi-square will exceed the value by 

chance even for a correct model, v is an integer, the number of degrees of 

freedom. The chi-square probability function <2(X2|v) has the limiting values

<2(0|v)=l and Q( oo|v)=0 and is estimated as an incomplete gamma function 

as expressed in the equation 3.3 [Press et al, 2002].

Q(X2\v )= Q { ^ ,^ )= 8ammq ( ^ ,^ - )  [3.3]

A range of images were processed, using HCS, including the diagnostic images of 

different modalities MRI, CT, X-ray and Ultrasound and images of natural scenes. 

They were all processed using the same feature mentioned above and with the same 

set of parameters without any prior training. The HCS process is not aware of the 

source of the digital image data. The digital data could be of the brain (MRI Section 

3.3.1.1) (CT Section 3.3.1.2) or abdomen (US Section 3.3.1.3) or of a breast (X-ray 

Mammograms Section 3.3.1.4 ) or of a bird (natural scene Section 3.4.1). For the 

HCS process it is the same, and treats them all as an array of two byte numbers and 

are all processed in the same manner without any prior training on that data set.

It should also be noted that the HCS process is different from the Hierarchical image 

segmentation methods discussed, for example, by Schroeter and Bigun [1995]. The 

term hierarchy in the study by Schroeter and Bigun [1995] refers to the multi­

resolution hierarchy in scale space. Also, the HCS process, unlike other segmentation 

methods, such as those by Cheng and Ying [2000] Jeon et al. [2005] and Zhou et al 

[2009], is not an iterative optimization process. Instead at each level the HCS process 

yields an optimized segmentation output related to the dissimilarity allowed for that 

level.

The HCS process yields a merge tree. Based on the merge tree, a graphical user 

interface (GUI) can display the hierarchy of merges. The algorithmic diagram, shown 

in Figure 3.1-A [Selvan, 2007], illustrates the overall operation of HCS.
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3.2.1.Border Pixel Re-Classification

One of the unique features of the HCS process is the border pixel re-classification 

(Figure 3.1-A). Border pixel re-classification is one of the main reasons behind HCS 

process's ability to attain smooth segmentation of the regions in the image. This 

section will discuss in detail HCS's process border pixel re-classification feature.

After the merging of similar regions, the border pixels of the regions that had merged 

and their bordering regions were further evaluated to allocate them to the most 

suitable region (Figure 3.1-A). Border pixel reclassification is necessary because the 

merging process starts with individual pixels which are merged to form regions and 

subsequently regions are merged to form bigger regions and so on. During the initial 

merging of neighbouring pixels and neighbouring small regions, pixels belonging to 

different regions may be merged. This could happen, for example, when comparing 

pixels over a small neighbourhood, where the dissimilarity between pixels belonging 

to different regions might be smaller than the dissimilarity between pixels belonging 

to the same region because of the local in-homogeneity (arising due to inadequate 

scaling factor in measuring the repetitive pattern constituting the texture). However 

as the regions grow those pixels which have been merged as a result of comparison 

with neighbouring pixels may subsequently be reclassified by adequately comparing 

them with the rest of the pixels from a larger neighbourhood.

Border pixel reclassification was considered only for those pixels on the boundary of 

the clusters which had been merged with other clusters. These boundary pixels were 

removed one at a time from their original clusters. The pixel removed was 

considered as a region of its own and the similarity between the one pixel region and 

the regions bordering it (which included the original cluster to which it belonged) 

were found and the single pixel region was merged with the most similar bordering 

region. During this process the pixel could possibly be re-classified to one of the 

neighbouring regions rather than the region to which it originally belonged [Selvan 

2007].

Figure 3.2 (a) shows a CT image of a section of the brain. The image area within the 

region of interest (rectangular area outlined in black) is made up of three different 

types of regions viz. Grey matter, White matter and the stroke affected area. The 

approximate boundary of the stroke affected area has been outlined in white by an
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expert. The purpose of the segmentation process is to estimate more appropriate 

boundary of the stroke affected region.

Figure 3.2 (b) shows the segmentation result obtained by Hierarchical Segmentation 

(HSEG) [Tilton 2003]. Figure 3.2 (b) illustrates the difficulties faced by the 

segmentation process to segment medical images. Although the image pixels within 

the region of interest (ROI), have been segmented into three classes colour coded as 

Red (the diseased area), Green (white matter) and blue (Grey matter) it has 

misclassified some of the pixels not belonging to the diseased area as being diseased 

as well. This can be seen by the presence of red coloured pixels at the other end of 

the ROI i.e. outside the area outlined by the expert.

CT image showing the suspected area outlined in white by a neuroradiologist (a). 
Segmentation of the Grey matter, White matter and Stroke affected regions and their 

boundaries by HSEG [Tilton 2003] (b) (Image courtesy Selvan 2007).

Figure 3.2

m. %

-  Processing of a CT image by HSEG [Tilton 2003].

The HCS process does not have a stopping criteria and hence it iterates until there are 

no more regions yet to be merged. Figure 3.3 (a) shows an intermediate segmentation 

of the CT image (Figure 3.2 (a)) by the HCS process, when there are three regions 

yet to be merged. It can be seen that the HCS process has successfully delineated the 

three different types of regions viz. Grey matter, White matter and the stroke affected 

area. Comparing the segmentation results of HCS Figure 3.3 (a) and that of HSEG
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Figure 3.2 (b), it can be seen that the HSEG process segmentation (Figure 3.2 (b)) is 

suboptimal while the HCS process is able to achieve a smooth segmentation as can 

be seen in Figure 3.3 (a).

Figure 3.3 (b) shows the intermediate segmentation results of the HCS process, 

performed without border pixels reclassification. In Figure 3.3 (b) the pixels 

belonging to the larger clusters of the major classes White Matter and the infarct are 

coloured as Green and Red. Pixels clustered as belonging to the Grey matter class are 

not coloured.

From Figure 3.3 (b) it can be seen that the cluster belonging to the major class infarct 

has misclassified pixels on the other part o f the image. Comparing the segmentation 

output of the HSEG (Figure 3.2 (b)) with that obtained by HCS without border pixel 

reclassification (Figure 3.3 (b)), it can be seen that they are almost the same. Since 

the similarity measures adopted by the HCS and the HSEG processes may or may 

not be the same it can be safely assumed that border pixel reclassification plays a 

crucial role in obtaining a smooth segmentation.

a

Figure 3.3 -  Segmentation of a CT image by HCS with and without border pixel
reclassification.

Segmentation of the Grey matter, White matter and Stroke affected regions and their 
boundaries by HCS with border pixel reclassification (a).

Segmentation of the Grey matter, White matter and Stroke affected regions by HCS 
without border pixels reclassification, where misclassification had occurred (b).(Image

courtesy Selvan, 2007)

Although only one example was shown to compare the performance o f the HSEG 

with that of HCS. It is also shown how HCS process output is very similar to that of 

HSEG when HCS process does not perform border-pixel reclassification. From this it 

can be inferred that the HCS process with border-pixel-reclassification will always 

give a better segmentation output when compared to HSEG.
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3.3. HCS Process Performance

The following section outlines the main reasons why the HCS process was adopted to 

augment the diagnostic information present in medical images.

Hierarchical clustering based segmentation process is unsupervised and is 

completely data driven. This ensures that the segmentation process can be 

applied to any medical image modality, with equal success, without any prior 

information about the image data and without any need to train the 

segmentation process with the relevant image data.

The above mentioned claim had been successfully verified earlier by the 

successful processing of images of different modalities with the same set of 

parameters and with the same set of procedural steps [Selvan 2007].

• Hierarchical clustering based segmentation process can automatically 

generate a hierarchy of segmentation results.

• Hierarchical clustering based merging (i.e. clustering) of the most similar 

regions does not depend on the order in which the regions are evaluated for 

merging [Selvan 2007].

• Hierarchical clustering based segmentation process is a modular framework 

and any similarity measure can be used. The operation of the HCS process is 

independent of the type of similarity measure used to compare the different 

regions in the image.

• Hierarchical clustering based merging process is capable of merging spatially 

adjacent or disjoint similar regions.

• Hierarchical clustering based segmentation process yields smooth border 

delineation between the regions.

3.3.1. Performance of the HCS Process in Processing Diagnostic Images of 

Different Modalities

The performance of the HCS process can be gauged by its ability to process medical 

images of different modalities. The following examples demonstrate how the HCS 

process has been used successfully to process Magnetic Resonance Images (MRI), CT 

images, X-ray images (Mammogram) and Ultrasound images. It should be noted that 

the processing of the images from different modalities is carried out unsupervised 

with the same set of parameters. That is, the HCS process was neither modified nor 

had its parameters tuned in anyway to handle any specific modality.
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In each of the following examples the HCS process was applied within a ROI. The 

ROI was chosen in such a way as to encompass that part of the image which has been 

identified by an expert as having some pathological condition. The HCS process 

performance was evaluated based upon its ability to delineate a more appropriate 
boundary of the pathological condition.

3.3.I.I. Performance of the HCS Process in Highlighting Infarct in Magnetic 

Resonance Imaging (MRI) T2 Weighted Images

HCS process dissimilarity-highlighting feature was successfully used for highlighting 

infarct in MRI T2-weighted images that are hard to visualise. Figures 3.4 (a) and 3.4 

(b) are the Diffusion weighted and T2 weighted MR images of a stroke patient, 

respectively. The Diffusion-weighted image clearly shows the area in the brain, 

affected by the stroke, in white (pointed by a black arrow). Figure 3.4 (c) displays the 

different dissimilar regions, segmented by the HCS process, in the T2 weighted 

image, for a specific dissimilarity level. Figure 3.4 (d) shows a region, that was 

dissimilar from the rest of the image, which has been isolated and highlighted. The 

isolated dissimilar region corresponds to the stroke affected area that is clearly visible 

in the diffusion-weighted MRI image (Shown in Figure 3.4 (a)) [Selvan 2007].

The results shown in Figure 3.4 were presented to a neuroradiologist for evaluation. 

His opinion regarding the effectiveness of the HCS process is reproduced below : 

Quote “/  have been going through all the processed images. My preliminary 

assessment is that the programme is able to pick up the abnormal area correctly on 

the T2 weighted scan (confirmed by the diffusion weighted scans). I  would also like to 

mention that the signal changes seen on the T2 weighted scan, would be missed by 

most physicians and possibly neuroradiologists” End Quote [Selvan 2007].
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Figure 3.4 -  HCS process Segmentation o f a MRI image.
Diffusion weighted MRI, arrow pointing to an infarct (a).

T2 weighted MRI with a ROI placed around the suspected area (b)
Different dissimilar regions, segmented by the HCS process, for a specific

dissimilarity level (c).
One of the dissimilar regions, isolated by the HCS process, for a specific dissimilarity

level (d). (Image courtesy Selvan 2007).
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3.3.I.2. Performance of the HCS Process in Segmenting Different Regions in CT 

Images

Figure 3.5 (a) shows a CT image of a section of the brain. The image area within the 

region of interest (rectangular area outlined in black) is made up of three different 

types of regions viz. Grey matter, White matter and the stroke affected area. The 

stroke affected area has been outlined in white by an expert. Figure 3.5 (b) shows the 

segmentation result given by the HCS process. It can be seen from the output that the 

HCS process has successfully delineated the three different types of anatomical 

regions viz. Grey matter, White matter and the stroke affected area. It can also be seen 

that the HCS process delineation o f the stroke affected area is much more precise than 

that marked by an expert through visual inspection [Selvan 2007].

jsik  a r  w M r t e ?

b

Figure 3.5 - HCS process Segmentation of a CT image.
CT image showing the suspected area outlined in white by an expert(a). 

Segmentation of the Grey matter, White matter and Stroke affected regions and their 
boundaries by the HCS process (b). (Image courtesy Selvan 2007).
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3.3.I.3. Performance of the HCS Process in Segmenting Different Regions in 

Ultrasound (US) Images

Figure 3.6 (a) shows an Ultrasound longitudinal section of the uterus. The image 

shows the diseased area outlined in white by the sonologist. As shown in the image a 

ROI was marked to enclose the diseased area and the HCS process was applied within 

the ROI. Figure 3.6 (b) shows the clusters identified by the HCS process during an 

intermediate stage. There are three clusters coloured as Green, Blue and Yellow as 

shown in the Figure 3.6 (b). The cluster coloured as Blue contains the pixels from the 

area outlined as diseased by the sonologist. The Figure 3.6 (b) also shows the 

boundaries of the three clusters and the diseased area outlined in Red. The 

segmentation results, shown in Figures 3.6 (b) were sent to the sonologist for critical 

comments. A synopsis of the sonologist's observation follows : [Selvan 2007]

• Looking at the original image only an expert sonologist would be able to 

identify this abnormality.

• The program had delineated the diseased area very clearly as a separate 

region coloured Blue. As for the pixels outside the diseased area coloured 

Blue it could be differentiated by the physician as non diseased area as they 

were in the border of the Uterus. Therefore, the program will be useful to 

differentiate diseased area in the case of border line pathology, where the 
sonologist will not be very sure of the diseased area.

• The region marked as Yellow within the diseased area gave the additional 

information that the area has got the core of the disease, and it was spreading 

out from that location.
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Figure 3.6 - HCS process Segmentation of a US image.
An Ultrasound image section. Diseased area outlined in white and the ROI marked in

black (a).
Regions segmented (and their Boundaries) by the HCS process during an intermediate

stage (b) (Image courtesy Selvan 2007).

3.3.1.4. Performance of the HCS Process in Segmenting Different Regions in X-ray 

Mammogram Images

Figure 3.7 (a) shows a X-ray mammogram image (Image ID mdbl02) from the mini- 

MIAS database [Suckling 1994]. The mammogram image data mdbl02 (Figure 3.7 a) 

has a dense-glandular background tissue with an abnormality of malignant 

asymmetric density. The approximate boundary of the abnormality, based on the 

suggestion by the mini-MIAS database, is shown as a circle in Red (Figure 3.7 a).
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Figure 3.7 - HCS process Segmentation o f a X-ray mammogram image.
A X-ray mammogram from mini-MIAS database (Image ID mdbl02) the approximate 

boundary of the abnormality outlined in Red (a).
HCS process segmentation output, regions (b), region boundaries (c). 

Boundary of one of the regions (Red) superimposed on top of the approximate 
boundary of the abnormality (Green) (d). (Image courtesy Selvan et a l , 2011).

The HCS process was applied within a ROI, shown as a rectangle in Green (Figure 

3.7 a). Figure 3.7 (b) and (c) illustrates the results of HCS applied to the mammogram 

image data, within the ROI. Figure 3.7 (d) shows the boundary of a region which is 

dissimilar from the rest superimposed on the approximate boundary given by the 

mini-MIAS database.
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3.4. Objective evaluation of the performance of the HCS process

The HCS process, developed by Selvan [Selvan, 2007] was developed in an ad hoc 

manner and was validated subjectively by segmenting medical images of different 

modalities. Hence, before being adapted as a probable Computer Aided Disease 

Monitoring (CAM) tool, HCS need to be evaluated objectively for its performance.

HCS yields a segmentation of regions and their boundaries at different levels o f 

allowable dissimilarity between the constituent regions. To evaluate the performance 

of segmentation methods like HCS, which yields a hierarchy of boundaries, 

precision-recall curves, an alternative to Receiver Operating Characteristic (ROC) 

curve, is more suited. Precision-recall curve was suggested by at the university of 

Berkley to benchmark boundary detecting algorithms against their database o f 

human segmented natural images [Martin et. a l  2001].

The procedure to benchmark the performance of any boundary detecting algorithm, 

like HCS, is described as follows [Arbelaez, 2007]: 

[http://www.eecs.berkelev.edu/Research/Projects/CS/vision/bsds/]

For each image a collection of human-marked boundaries, marked by different 

human subjects, constitutes the ground truth. The output of the boundary detecting 

algorithm, will be a boundary map with one pixel wide boundaries. The objective is 

to find out how well the algorithm's boundary map matches with that of the human 

subjects'. Traditionally, one would "binarize" the boundary map by choosing some 

threshold. Following are the two problems with thresholding a boundary map:

The optimal threshold depends on the application, and

Thresholding a low-level feature like boundaries is likely to be a bad idea for

most applications, since it destroys much information.

For these reasons, the Berkley benchmark operates on a non-thresholded boundary 

map. Nevertheless, one needs to threshold the boundary map in order to compare it 

to the ground truth boundaries, but this is done at many levels. At each level, the two 

quantities precision (Chapter 2 Equation 2.1) and recall (Chapter 2 Equation 2.2) -  

are computed. In this manner the precision-recall curve for the boundary detecting 

algorithm is produced.

53

http://www.eecs.berkelev.edu/Research/Projects/CS/vision/bsds/


To distill the performance of an algorithm into a single number is possible to do in a 

meaningful way for algorithms whose curves do not intersect and are roughly 

parallel. When two precision-recall curves do not intersect, then the curve furthest 

from the origin dominates the other. The summary statistic that is used is a measure 

of this distance. It is the F-measure, which is the harmonic mean of precision and 

recall. The F-measure, combines precision and recall as given by the expression in 

the equation 3.4.

P _  (Precision X Recall)
((1 — 0() X Precision+ a  X Recall) [3 4 ]

Where a  is set to 0.5 [Martin et al. 2002]

The F-measure is defined at all points on the precision-recall curve. The maximum 

F-measure value across an algorithm's precision-recall curve is its summary statistic 

[Martin et. al. 2001].

3.4.1. HCS Process Evaluation and Benchmarking Experimental Results

Figure 3.8 shows an image (of size 481x321) of a natural scene from the Berkley 

database [Martin et. al. 2001] (Image ID 42049) and the boundaries as outlined by 

one of the human subjects.

The subset of the natural scene of the Berkley database [Martin et. al. 2001] (Image 

ID 42049) was used to evaluate the performance of the HCS process, using the 

process outlined above (Section 3.4). Figure 3.9 (a) shows the subset (of size 

111x191) of the whole scene (Figure 3.8). Figure 3.9 (b) and (c) show the HCS 

process output clusters and their respective boundaries when there were twenty two 

regions yet to be merged.
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Figure 3.8 - A natural scene from the Berkley database (Image ID 42049) and the 
corresponding hand segmented boundary by one o f the human subjects.

Since HCS process is a region segmentation process, the borders of the regions will 

be two pixels wide by design. This could be seen from the zoomed up part of the 

region and border images (3.9 (b) and (c)). Before the HCS process boundaries are 

compared with the human drawn boundaries the HCS process boundaries output 

need to be thinned to one pixel wide boundaries.
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Figure 3.9 -  HCS process Segmentation of a natural scene.
A subset of the natural scene from the Berkley database (Image ID 42049) (a). HCS 
process segmentation output when there were 22 regions yet to be merged (b). The 
regions’ two pixel wide boundaries (c). The corresponding one pixel wide thinned

boundaries (d).

Thinning can be defined heuristically as a set of successive erosions of the outermost 

layers of a shape (border of a region), until a connected unit-width set of lines 

(skeleton) is obtained [Davies and Plummer, 1981]. Thus, thinning algorithms are 

iterative algorithms that 'peel off border pixels. Connectivity is an important 

property that must be preserved in the thinned object. Therefore, border pixels are 

deleted in such a way that object connectivity is maintained. Thinning algorithms 

satisfy the following two constraints [Pitas, 2000] :

They maintain connectivity at each iteration. They do not remove border 

pixels that may cause discontinuities.

They do not shorten the end of thinned shape limbs.

An iterative algorithm [Zhang and Suen 1984] [Gonzalez and Wintz 1987] which
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satisfies the above two constraints adopted from Pitas [Pitas 2000] was used to thin 

the borders output by the HCS process.

To flag border pixels for deletion the thinning algorithm applies locally in a 3x3 

window the following two operations [Pitas 2000].

Step : 1 the logical rule Pi is applied in a 3x3 neighbourhood and flags the border 

pixels that can be deleted 

Step 2: the logical rule P2 is applied in a 3x3 neighborhood and flags the border 

pixels that will be deleted.

The logical rules Pi, P2 used in the above the two steps have the forms given by the 

expressions 3.5 and 3.6

Pi (2<N(p0)<6) && (r(/?0)= l)  && ( /v /V P 5=0) && ( / y / v / ^ 0) [3.5] 

P2 (2<N(p0)<6) && ( r ( p 0)= l)  && (Pi'P3'P7=0) && (p1‘P5'P7=0) [3.6] 

Where

N (p0)= X  Pi denotes the number of object pixels (pi = 0,1 i = 1,...., 8) in the 3x3 

window (excluding the central pixel)

T (p 0) denote the number of 0 1 transitions in the pixel sequence P1P2P3—P8P1.

The products of the form (/VP/P*=0) denote logical conjunctions of the 

corresponding pixels.

The first condition of both logical predicates states that the central pixel can be 

deleted if it possesses at least one and at most six 8-connected neighbours in a 3x3 

window. If the central pixel has only one neighbour, it cannot be deleted, because the 

skeleton limb will be shortened. If the central pixel has more than six neighbours, 

central pixel deletion is not permitted because it will cause object erosion.

The second predicate (T(p0)= 1) checks if the pixels of the perimeter of the 3x3 

neighbourhood form only one connected component.

The third and fourth predicates (/V /V P5=0) and (/V /V P7=0) in Pi are 

satisfied if p3= 0 or p5= 0 ,o r i f  (/?j=0and/?7=0)

When the entire image has been scanned, the flagged pixels are deleted. This 

procedure is applied iteratively, until no more image thinning can be performed.
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Figure 3.9 (d) shows the thinned boundaries of the HCS output when there were 

twenty two regions (Figure 3.9 (c)).

Figure 3.10 (b) shows the hand drawn boundaries by four of the human subjects' 

(Top row). Figure 3.10 (c) shows some of the HCS process intermediate 

segmentation thinned boundaries output (Bottom row) when there were twenty-two, 

fifteen, ten and six regions.

c

Figure 3.10 - HCS process segmented boundaries of a natural scene.
A natural scene from the Berkley database (subset of Image ID 42049) (a). Top row of 

images are boundaries, marked by four different human subjects (b).
Bottom row of thinned boundary images are the HCS process segmentation output 
when there were 22,15,10 and 6 regions (c). (Image courtesy Selvan Sept. 2011)

The segmentation output when there are fifteen, ten and six regions looks very 

similar. This is the case because of the following reason :

As the HCS process iterates the allowable dissimilarity between regions to be 

merged is increased. Hence, at later stages of the merging process the HCS 

process will merge regions which will be highly dissimilar. In images which are
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more or less homogeneous the highly dissimilar regions will be a very small part 

of the image. In the scene depicted in the Figure 3.10 (a) the three main objects 

namely the sky, the bird and the branch are more or less homogeneous within 

themselves. Hence, once these three objects' boundaries have been delineated 

(when there were 15 regions Figure 3.10 c) subsequent merging o f regions 

within the homogeneous areas are very small part of the image which are not 

very obvious in the later segmentation.

Given the list o f segmentation output generated by the HCS process for the image of 

the Berkeley Segmentation Database (BSD) (Figure 3.10 (a)), the code by Estrada 

and Jepson [Estrada and Jepson 2009], was used to compute the precision and recall 

with regard to the human segmentations from the BSD (Figure 3.10 (b))

Figure 3.11 shows the precision and recall plot for two-hundred-and-twenty-eight 

segmentation levels of the HCS process. The maximum F-measure value across the 

precision-recall curve was found to be 0.82. which is the summary statistic [Martin 

et. al. 2001].

It should be noted that for this specific example the F-measure increased as the 

number of iterations of the HCS process increased until it reached the maximum 

value and there onwards it decreased. But this might not be the case for other 

examples because the way the HCS process segments the image might not exactly 

correlate with the way the humans segment the images. That is the reason why the F- 

measure values is found by making use of the precision-recall curve.
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Figure - 3.11 Precision and Recall plot for 228 levels of HCS process. (Image courtesy
Selvan Sept. 2011)

3.4.2. Critical Evaluation of the HCS Process's Experimental Results

The F measure (0.82) obtained by the HCS process (Figure 3.11) is among the top 

scores for this image. The corresponding scores for other segmentation algorithms 

ranges from 0.92 (Figure 3.12) [Dollar et al., 2006] to 0.76 (Figure 3.13) [Yu, 2005], 

(See Arbelaez 2007). The “Boosted Edge Learning” algorithm which has got the 

highest score of 0.92 (Figure 3.12) is supervised [Dollar et al., 2006] and was trained 

with training images before it was applied to the test images. In contrast the HCS 

process is unsupervised and needed no prior training to do the segmentation. The 

HCS process which is unsupervised has got a better score 0.82 (Figure 3.11) when 

compared with the score 0.76 (Figure 3.13) obtained by the unsupervised method 

“Segmentation induced by Scale Invariance” [Yu, 2005].



42049 F=0.92

0 0,1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

Figure 3.12 - Boundary output and the P-R curve for the segmentation method 
“Boosted Edge Learning” [Dollar, 2006] (Image courtecy Arbelaez 2007).

Moreover the human subjects' boundaries (Figure 3.10 b), with which the algorithms' 

output are compared, outline only the major structures in the scene. For example, 

none of the human subjects has outlined the border of the bird's legs. In contrast, the 

HCS process has not only outlined the legs of the bird but has also outlined the subtle 

difference in the chest plumage of the bird (Figure 3.14).

The subtle differences in the shades of grey in the chest plumage of the bird could be 

clearly observed once HCS process has outlined the borders (Figure 3.14). This 

outlining of subtle differences within an otherwise a homogeneous region is found to 

be very useful in highlighting dissimilarities in diagnostic images which aids the 

image perception. This due to the fact that tissue abnormalities in medical images are 

indicated by parts of the image being dissimilar from otherwise homogeneous areas 

representing healthy parts.
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Figure 3.13 - Boundary output and the P-R curve for the segmentation method 
“Segmentation induced by Scale Invariance” [Yu, 2005] (Image courtecy Arbelaez

2007).

Figure 3.14 - HCS process segmentation output highlighting the subtle 
dissimilarities in the natural scene (Image courtesy Selvan Sept. 2011)

Hence, the performance of the HCS process based on correlating its segmentation 

output with human drawn boundaries serves only the purpose of an academic 

exercise [Selvan, Sept. 2011] with limited practical value.
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3.5. HCS as a Perceptional Aid for Radiologists

Radiologists' expertise in reading diagnostic images calls for a combination of 

perceptual skills to find what may be faint and small features in a complex visual 

environment, and interpretive skills to rate their (the features') significance [Tabar 

and Dean 1985]. Computing systems are more consistent in their perceiving ability 

but they cannot match human interpretive skills. Drawing a line so as to limit the 

system's interpretive function has the virtue of achieving a complementary synthesis 

of system and radiologists' strengths [Claridge 1997]. However, in practice the 

question of where to draw the line in computer aided detection/diagnostic systems 

between perception and interpretation is problematic [Hartswood et al 1997].

The HCS process may be able to address the above problem as follows :

• given a diagnostic image the HCS process can output a hierarchy of 

segmentation output which is the perception part of the overall solution, 

from the set of HCS process segmentation output, an experienced user can 

choose the most appropriate segmentation best suited for a specific 

application. This is the interpretation part of the overall solution.

The following example, from [Selvan, 2007], illustrates the above.

Figure 3.15 shows the infarct affected area (right side of the Pons) of the brain 

outlined in white by the expert. The image was processed within a ROI which 

enclosed the part of the image affected by the stroke. Figure 3.16 shows the location 

and size of the ROI chosen.

Figure 3.17 shows the four major clusters segmented within the ROI by the HCS 

process during an intermediate stage. Figure 3.18 shows the borders of the clusters. 

The cluster which includes the pixels from the area outlined by the expert is coloured 

red and the rest of the clusters are given other unique colours.

It can be seen from Figures 3.17 and 3.18 the red coloured cluster includes other 

pixels which were not within the expert outlined area. From the boundary outlined 

image shown in Figure 3.18 it can be seen that the area of the image within the red 

boundary has got visually very similar pixels.
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Figure 3.15 - CT image of a section o f the 
brain showing the infarct affected area 
marked in white by the expert. (Image 

courtesy Selvan 2007)

Figure 3.16 - The location and the size of 
the ROI enclosing the infarct affected 

area. (Image courtesy Selvan 2007)

When the segmentation, shown in the Figures 3.17 and 3.18, were given to the expert 

for their evaluation, the expert's response was that the segmentation had misclassified 

areas not belonging to the infarct as belonging to the infarct. This is indicated in 

Figure 3.19 where the expert has marked the true area o f the infarct. Figure 3.20 

shows the boundaries of the regions segmented by the HCS process superimposed on 

the image subsequently marked by the expert. The boundary o f the cluster, which 

includes the pixels from the area outlined by the expert, is coloured red and the rest 

of the clusters' boundaries are given other unique colours.
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Figure 3.17 - The regions during an 
intermediate stage of the HCS process 

(Image courtesy Selvan 2007)

Figure 3.18 - Borders o f the regions 
during an intermediate stage o f the HCS 
process (Image courtesy Selvan 2007)

On inspecting Figure 3.20, the following two observations were made :

HCS process did aid the expert in delineating the boundary of the infarct 

much more appropriately. This could be inferred when one compares the 

earlier outline of the infarct by the expert, shown in Figure 3.15, with the one 

outlined by the expert (see Figure 3.19) after inspecting the HCS process 

segmented regions. Thus HCS aids perception.

• When one compares the actual pixel values of some o f the pixel locations 

within the infarct and the one outside the infarct, but identified as belonging 

to the infarct by the HCS process, it could be seen that they have exactly the 

same values.

Table 3.1 lists the some of the pixel locations and their values. In Figure 3.21 

the pixel locations listed in Table 3.1 are marked. In Figure 3.21 the correctly 

classified pixel locations are in Green and misclassified pixel locations are in 

Yellow.

Thus, where the HCS process has failed the expert making use o f his 

anatomical knowledge can do the interpretation better than HCS.
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Figure 3.19 - Infarct outlined by the expert Figure 3.20 - Borders o f the regions 
after evaluating the HCS process results, during an intermediate stage of the HCS 

(Image courtesy Selvan 2007) process superimposed on the expert
newly outlined image. (Image courtesy 

Selvan 2007)

Table 3.1 - Coordinates o f three o f the pixels located inside and outside the expert 
marked boundary of the infarct and their pixel values. (See Figure 3.21) [Selvan 2007]

Pixel Location Pixel Coordinates Pixel value
Within the expert marked 

boundary of the infarct 

(Pixels coloured in Green)

250, 284 1033

249, 278 1036

251,278 1038

Outside the expert marked 

boundary of the infarct 

(Pixels coloured Yellow)

296, 297 1033

289,313 1036

283,268 1038
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Figure 3.21 - Three o f the pixel locations which were correctly classified, by the HCS 
process (marked in Green) and three of the pixel locations which were misclassified 

(marked in Yellow). Refer Table 3.1 for details.(Image courtesy Selvan 2007)

3.5.1.HCS as a Perceptual Aid by Augmenting the Information Provided by CAD 

Prompts in Mammograms

Dense breasts contain more glandular and connective tissue. Less dense breasts are 

mainly made up of fat tissue. Breast cancer itself is made up of dense tissue. This 

means that on a mammogram, a tumour is harder to spot in dense tissue than in fatty 

tissue, because the tumour looks a lot like the tissue around it. An analogy is often 

used to describe the way cancer tissue looks on film, "It’s like looking for a polar 

bear in a snow storm”. Breast cancers are readily seen in fatty tissue with up to 98% 

sensitivity in film mammography. Breast density is one o f the strongest—if not the 

strongest-predictors of mammography screening failure [Moon, 2000]. In a study of 

breast cancers that are missed by radiologists, Georgen et al. [1997] found that 

missed cancers were significantly lower in density than detected cancers, and missed 

cancers were more often seen on only one of the two views.

One method of helping radiologists screen mammograms for signs o f cancer is 

prompting, in which computer based algorithms are used to detect potential 

abnormalities in digital images and to draw attention to the corresponding regions in 

the original films (Figure 3.22-A). Prompting aims to improve radiologists' 

performance by reducing the number o f false negative errors, i.e. cases in which a 

mammogram containing a significant abnormality is classified as normal.

The goal of the prompting based CAD system is to reduce errors by drawing 

radiologists' attention to possible abnormalities. CAD is not intended to be used as a
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Figure 3.22-A - Computer Aided Detection (CAD) through prompting. (Stock Image)

computer-aided diagnosis tool: the decision as to whether a feature is o f clinical 

significance remains with the radiologist. In practice, however, the distinction 

between detection and diagnosis may be blurred. One study has indicated that, for 

subtle microcalcification clusters, subjects' confidence that a cluster was present was 

increased if the cluster was prompted, and decreased if the cluster was unprompted 

[Chan et a l  1990]. Another study reported that prompting can entail an increase in 

false positive decisions without necessarily having an overall effect on confidence 

levels [Mugglestone et a l  1996]. The first study would seem to indicate that 

radiologists’ confidence with respect to the detection task is affected by prompting, 

but that their diagnostic decision making remains largely unaffected. The second 

study, however, raises doubts regarding the latter conclusion [Hartswood et a l  

1998]. Alberdi et al. [2005] in their study have argued that CAD had both beneficial 

and detrimental effects on readers' performance (Figure 3.22-B).

Gale et a l [2006] have wondered whether there are better ways to present the CAD 

prompts and are there other image inputs that we can use than those simply visible to 

the human observer? Alberdi et a l [2005] propose to explore how the CAD tool 

could provide explanations of its behaviour on demand. They anticipate that the 

challenge would be to produce the sorts of accounts that would be useful to a reader, 

which calls for an understanding of the sorts of explanations where confusion may 

arise. They have also questioned whether such exacting specifications could be
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implemented reliably enough not to make the explanation facility a source of further 

problems.

Performance of less 
skilled readers is 
improved by CAD 

for easy cases

highly skilled

Reader skills

CAD does not 
significantly affect 
the highly skilled 
readers for easy 

cases

less skilled

easy difficult
Difficulty of input case

Figure 3.22-B -  Effect of Prompting based CAD on Human Decision. [Image
courtesy Alberdi, 2004]

CAD does not 
significantly affect 

the less skilled 
readers for 

difficult cases

Hierarchical Clustering-based Segmentation (HCS) process's segmentation output 

around the prompted area, could possibly serve as additional information which 

might augment the information provided by the prompts. This could be the case 

because HCS process output could possibly aid the reader to perceive the area around 

the prompt “better” and could possibly reduce the detrimental effects o f the prompts 

[Selvan et al., 2009]. This possibility is discussed below.

A computer monitor can display only 256 different shades of grey, at any one time. 

The technique of windowing is an electronic manipulation of the data to enable these 

256 shades of grey to be used to represent a limited range, or window, of 16 bit 

medical image data. Until the last half-decade interpreting medical images was based 

solely on hard copies of the images. With the recent availability o f powerful 

graphical workstations soft copy (electronic) evaluation of the images is replacing 

the role o f hard copy interpretation [Johnson, 2003]. The possibility of directly 

interacting with the original 16 bit data gives the radiologists the freedom to set the 

window settings interactively. Studies have assessed the clinical significance o f using 

variable window settings in soft copy interpretation [Fayad et a l, 2002].
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In the medical imaging community the windowing parameters are referred to as 

'window centre' (C) and the 'window width' (W) of an image. Narrowing the window 

or compressing the grey scale increases contrast for the purpose of visual perception. 

Conversely, widening the window will increase the range of pixel values displayed in 

a single shade of grey [Albertyn, 1996]. Lev et al [1999] conducted a study to 

evaluate the advantage of viewing electronic copies of the CT image using variable 

window settings. They concluded that in non-enhanced CT of the head, detection of 

ischemic brain parenchyma is facilitated by soft-copy (electronic copy) review with 

variable window width and centre level settings to accentuate the contrast between 

normal and edematous tissue.

There had been previous studies to design an appropriate non-linear mapping 

function to optimally display a range of pixel values using the same window settings. 

For example, the pilot study by Fayad et al [2002]. To fit a wide range of pixel 

values into 256 shades of gray, our study uses a technique known as equal- 

probability quantizing [Haralick, 1973]. Equal-probability quantising is an 

alternative technique that is particularly attractive for distributing the pixel values. 

The equal-probability quantising technique consists of computing the frequency of 

occurrence of all allowed pixel values (within a windowing parameter range). If pixel 

values in a certain range occur frequently, while others occur rarely, the quantisation 

levels are finely spaced in frequently occurring range and coarsely spaced outside it. 

In some literature equal-probability quantising method is sometimes referred as 

tapered quantisation [Gonsalez, 1992] or histogram equalisation [Yu et a l , 2001]. 

Advantages of making use of equal probability quantising method to optimally 

display medical images is demonstrated with an example.

Figure 3.23 shows a T2 weighted MRI image. Table 3.2 lists the properties of the 

pixels in the image. Although the image could possibly have 1349 different values 

there are actually only 1046 unique values within the image. Figure 3.24 shows the 

distribution of the different pixel values within the image.
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Figure 3.23 -  T2 weighted MRI Image (Image courtesy Selvan 2007)

Table 3.2 - Details of the pixel values in the MRI image shown in Figure 3.23
Pixel Value

Minimum Maximum Average Standard Deviation
0 1348 241.3 172.6

Figure 3.25 shows the linear mapping of the whole range of pixel values present in 

the MRI image (Figure 3.24) to the available 256 levels for display. Figure 3.23 is 

the resulting image displayed using the linearly mapped 256 gray levels.
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Figure 3.24 -  The distribution of the pixel values in the T2 weighted MRI Image
shown in Figure 3.23
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Figure 3.25 -  The linear mapping of the actual pixel values in the T2 weighted MRI
Image (Figure 3.24), to 256 gray levels.
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Figure 3.26 shows the equal-probability quantizing [Haralick et al., 1973] based 

mapping of the range of pixel values, shown in Figure 3.24, to 256 gray levels. 

Figure 3.27 is the resulting image displayed using the non-linearly mapped to 256 

gray levels. In some literature equal-probability quantising method is sometimes 

referred as tapered quantisation [Gonzalez, 1992] or histogram equalisation [Yu et 

a l , 2001].
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of Original Pixel Value to 256 Gray Levels

260

240

220

200

h  180

S  160

140

120

a  100

60

40

20

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300  
O r ig in a l  P ix e l  V alue

Figure 3.26 -  Equal-probability quantizing [Haralick et al., 1973] mapping of the
actual pixel values in the T2 weighted MRI Image (Figure 3.24), to 256 gray levels.

Unlike CT Hounsfield values MRI images do not have specific ranges of values for 

the different anatomy. So choosing windowing parameters varies from image to 

image. Hence it will be very useful for the user if the image is displayed in the most 

optimised manner. For example Figure 3.28 shows the diffusion weighted image for 

the same patient where the location of the abnormality is quite obvious (arrow head). 

In the T2 weighted MRI image displayed making use of linear mapping (Figure 3.23) 

the corresponding location of the abnormality is not visible. But in the equal 

probability quantisation based mapped image (Figure 3.27) the corresponding 

location of the abnormality is clearly visible. When the original image data was 

processed by the HCS process this abnormal part of the image was confirmed to be 

dissimilar from the rest of the similar anatomy (Figure 3.4 d).
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Figure 3.27 -  T2 weighted MRI Image data (Figure 3.24) mapped to 256 levels 
making use of the equal-probability quantizing [Haralick et a l,  1973] method (Figure

3.26).

Figure 3.28 -  Diffusion weighted MRI Image showing the location o f the 
abnormality (arrow head). (Image courtesy Selvan 2007)
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From the foregoing discussion it can be gathered that knowing the right set of 

windowing parameters to display a specific image will greatly aid the visual 

perception of the diagnostic image and thus aid in the interpretation of the same. It 

will be shown with an example how HCS process can aid the estimation of these 

parameters.

Figure 3.29 (a) shows a mammogram (Image ID mdb028) from the mini-MIAS 

mammogram database [Suckling et a l , 1994]. The malignant abnormality, shown 

circled in Black, is of circumscribed mass class. The user has outlined the 

approximate location and boundary of an abnormality as perceived by him (Figure 

3.29 a). When HCS process was applied within a ROI, around and centred at the 

abnormality, it produces a hierarchy of segmentations. Inspecting the HCS process 

produced hierarchy of segmentations the user can choose the segmentation which 

gives the most appropriate boundary of the abnormality (Figure 3.29 b).

Figure 3.29 (b) and (c) show the intermediate segmentation output of the HCS 

process when there were four regions yet to be merged. Table 3.3 tabulates the pixel 

properties within each of the four regions shown in the Figure 3.29 (b).

Once the pixel values range within different segmented regions is known it can be 

used as the windowing parameters to optimally view that part of the medical image.

Figure 3.29 (g) shows the quantised image, quantised (using equal probability 

quantising technique) within the narrow grey scale range of 185 to 218. The 

quantised image Figure 3.29 (g) shows the structure within the part of the image 

coloured red which is not visible in the normal scaled image Figures 3.29 (a) and (c).
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Figure 3.29 -  Quantised images o f X-ray mammograms. 
mini-MIAS Mammogram image (Image-ID mdb028) showing the approximate 

location of the circumscribed mass (a). HCS process segmented regions (b) and their 
boundaries (c) when there were 4 regions yet to be merged.

Quantised images :
Quantised within the narrow range of 111 to 139 (d), 129 to 164 (e), 156 to 191 (f)

and 185 to 218 (g)

r7'-
*

Table 3.3 - Details of the four regions in the intermediate HCS process segmentation
output shown in Figure 3.29

Region 
(shown in colour)

Density Value
Minimum Maximum Average Standard Deviation

Red 185 218 203 6.9
Yellow 156 191 173 8.2
Green 129 164 146 6.9
Blue 111 139 127 5.3
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Figure 3.30 - Composite quantised image of X-ray mammograms. 
mini-MIAS Mammogram image (Image-ID mdbl02) showing the approximate 

location of the circumscribed mass (a). HCS process segmented regions (b) and their 
boundaries (c) when there were 4 regions yet to be merged.

The four regions, coloured Red, Green, Blue and Black (Table 3.4) are quantised 
within the narrow range of 200 to 224,183 to 207, 162 to 194, and 133 to 171 

respectively and the composite image is produced (d)

Table 3.4 - Details of the four regions in the intermediate HCS process segmentation
output shown in Figure 3.30

Region 
(shown in colour)

Density Value
Minimum Maximum Average Standard Deviation

Red 200 224 212 5.1
Green 183 207 194 5.1

162 194 177 5.9
133 171 156 7.0

Figure 3.30 (d) shows the composite image generated by quantising the four regions, 

coloured Red, Green, Blue and Black (Table 3.4) quantised within the narrow range 

of 200 to 224, 183 to 207, 162 to 194, and 133 to 171 respectively and combining 

them in one image to generate the composite image (Figure 3.30 d).
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The above described process o f making use of the HCS process segmentation output 

to quantise the image for the purpose of better visualisation of the diagnostic image 

can be done interactively making use o f the graphical user interface (GUI) [Selvan, 

2007] designed to display the HCS process output (Figure 3.31).

* Or tpnal Image ( I r a s  image Hcgwn Image llounrtary Image

Gri<?nai Image Re Quantised From ZOO To Z Z A 4 R edons Wth Dissinniianty From TOO % To 100 % Betw een them

Slider to adjust 
the Quantising 
pixel value range

Slider to adjust the 
allowable Dissimilarity 
between Regions

Region Index 
at Cursor 
Location

Region
Image

Figure 3.31 - GUI display o f the HCS process output (right canvas) and the quantised 
image quantised to the narrow grey scale range o f 200 to 224 (left canvas).

^similarity Highlighter Or D isease Highlighter • Even things that art true can be proved • Oscar Wilde
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Figure 3.32 = GUI display o f the properties of the region coloured red in the right
canvas of the GUI in Figure 3.31
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Figure 3.31 (right canvas) shows the HCS process output o f the mini-MIAS 

mammogram Image-ID mdbl02. Figure 3.32 shows the GUI display of the 

properties of the region coloured red in Figure 3.31. The information of the grey 

value range got from the region properties display (Figure 3.32) was used to set the 

values for the quantising slider scale (Figure 3.31). The quantised image for the 

narrow grey scale value range of 200 to 224 is displayed on the left canvas (Figure 

3.31).

Segmentation of the major structures in images can be to some extent done by the 

process o f identifying the peaks and troughs in the histogram distribution o f the pixel 

values in the image [Worth et al., 1997] [Zhao et al. 2003].

Figures 3.33 and 3.34 illustrate how the histograms of the pixel values within the 

four different regions, segmented by the HCS process, correlates with the peaks and 

troughs of the overall histogram of the pixel values within the ROI, for the 

mammograms mdb028 (Figure 3.29) and mdbl02 (Figure 3.30) respectively.

Pixel Values Distribution
Mini MIAS mdb0028

— KOI
— Abnormality 

Healthy
Surrounding - Healthy

— Surrounding
3 .5

1 . 5

110 120 130  140 150 160 170 180 190 200  210  220
Pixel Value

Figure 3.33 - Histogram (black) of the pixel values within the ROI of the 
mammogram shown in Figure 3.29 (a). The coloured plots show the histograms o f the 

pixel values within the four regions identified by the HCS process (Figure 3.29 b).
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Figure 3.34 - Histogram (Brown) of the pixel values within the ROI of the 
mammogram shown in Figure 3.30 (a).

The Red, Green and Blue and Black coloured plots show the histograms o f the pixel 
values within the four regions identified by the HCS process (Figure 3.30 b).

It should be noted that the histograms of the pixel values within the, HCS process 

segmented, different regions overlap. The reason being HCS process estimates the 

similarity between the different locations, in a image, by comparing the distribution 

of the pixel values within a small neighbourhood rather than compare just the 

individual pixel values [Selvan 2007].

Although the major regions within an image can possibly be segmented by 

identifying the corresponding peaks and troughs of the histogram plot of the pixel 

values in the image. Thresholding does not take into account the spatial 

characteristics o f an image. This makes the method sensitive to noise [Yang and 

Jiang, 2002]. The difficulties faced by the method can be inferred from the Figures 

3.35 and 3.36. Even for the histogram shown in Figure 3.33 it is not trivial to identify 

the threshold to segment the healthy region coloured Yellow (Figure 3.29).
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Figure 3.35 - mini-MIAS Mammogram image (Image-ID mdb005) showing the 
approximate location of the circumscribed mass (a, b). HCS process segmented 

regions (c) and their boundaries (d) when there were 10 regions yet to be merged.
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Figure 3.36 - Histogram (black) of the pixel values within the ROI o f the 
mammogram shown in Figure 3.35 (a). Coloured plots shows the histograms o f the 

pixel values within the four major regions identified by the HCS process (Fig 3.35 b).
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From the above discussion it can be inferred that the HCS process can be used by the 

user to perceive diagnostic images more appropriately and subsequently interpret 

them. This process of making use of the HCS process to aid perceiving and 

subsequently interpret diagnostic images is discussed in more detail in the next two 

chapters titled HCS process aided interpretation of CT images of the lungs for Cystic 

Fibrosis (Chapter 4) and HCS process aided interpretation of X-ray mammogram 
(Chapter 5).

3.6. Summary

The Hierarchical Clustering based Segmentation (HCS) was introduced. An 

objective performance measure was obtained by evaluating the performance of the 

HCS process in segmenting natural scenes correlated with human subjects'. The 

suitability of the HCS process to aid medical image interpretation was investigated.

The suitability of the HCS process to aid in perceiving and subsequently interpreting 

diagnostic images was further investigated by developing the following two HCS 

process based diagnostic image interpretation applications :

• processing CT images of the lungs to segment the boundaries of the airway 

and the adjoining blood vessels (See Chapters 4 and 6).

Computer Aided Monitoring (CAM) of breast abnormalities by processing X- 

ray mammograms [Selvan et al. 2011] (See Chapters 5 and 6).
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Chapter 4 HCS Process Aided Interpretation of CT Images of the 
Lungs to Monitor Cystic Fibrosis

4.1. Introduction

One of the objectives of this study is to demonstrate how user decision incorporated 

image processing techniques can be used for processing diagnostic images and 

augment the information present in those images to aid the diagnosis process. In this 

chapter the implementation details of user decision incorporated CT image 

interpretation techniques for Cystic Fibrosis are discussed.

As discussed in Chapter 3, HCS is the process adopted in this study to augment 

diagnostic information in medical images. Hence, initially the use of HCS process to 

incorporate the users' decision, in the interpretation of diagnostic images, is 

discussed. Subsequently, the following application in which user decisions were 

incorporated during the processing of the CT image data, and thus augment their 

diagnostic information, is discussed in detail:

• user decision incorporated processing of CT images of the lungs.

4.2. User Decision Incorporated Processing of Diagnostic Images for Highlighting 

Dissimilarities in Medical Images

Tissue abnormalities in medical images are indicated by that part of the image being 

dissimilar from otherwise homogeneous areas representing healthy parts. The 

dissimilarity may be subtle or strong depending on the medical modality and the type 

of tissue abnormality. The goal of medical image segmentation is to separate the 

image into regions that are meaningful for a specific task. Medical image 

segmentation is a difficult task because of issues such as spatial resolution, poor 

contrast, ill-defined boundaries, noise, or acquisition artefacts [Sonka and 

Fitzpatrick, 2000].

Traditionally, segmentation algorithms highlight the boundaries between the 

different regions in an image by using some threshold. The two problems associated 

with the approach of thresholding to highlight boundaries are [Martin et al. 2001] 

are:

• the optimal threshold depends on the image data and the application.

• thresholding a low-level feature like boundaries is likely to be a bad idea for 

most applications, since it destroys much information.
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For these reasons, the HCS process was adopted in this study to generate non- 

thresholded boundaries. The HCS process automatically generates a hierarchy of 

segmented images. The hierarchy represents the continuous merging of similar, 

spatially adjacent or disjoint, regions as the allowable threshold value of dissimilarity 

between the regions to be merged is gradually increased [Selvan et al 2005] [Selvan 

2007] [Selvan et al 2009] [Selvan et al 2011].

Nevertheless, we do need to identify the most relevant boundary map (segmentation) 

for subsequent processing. One of the capabilities of the human vision process when 

visualising images is its ability to visualise them at different levels of details. Since 

the HCS process mimics this capability of human vision, the user decision process is 

used of to choose the most appropriate segmentation.

4.2.1. The Use of HCS Output to Incorporate User Decision in Processing 

Diagnostic Images

The details of how users can make use of HCS output to identify the most 

appropriate segmentation relevant to an application is application specific. Hence, 

the usage of HCS, for choosing the most appropriate segmentation, is discussed in 

detail, later in this chapter and the next, in relevance to the following applications :

• processing CT images of the lungs to segment the boundaries of the airway 

and the adjoining blood vessels (Section 4.3.5.1).

• processing X-ray mammograms to delineate the most appropriate boundaries 

of the abnormality (Section 5.2.4.1) and the healthy part of the image 

(Section 5.2.4.2.2).

4.2.2. Graphical User Interface (GUI) Facility for Displaying HCS Process Output

The HCS process generates a hierarchy of segmentation results, associated with a set 

of dissimilarity values. The segmentation results are stored at the end of the HCS 

processing. Subsequently, the GUI can be used to reproduce the resulting 

segmentation images associated with a dissimilarity value instantaneously. Making 

use of the GUI, the user can inspect how the merging process evolves. The user can 

interactively choose the dissimilarity level at which (s)he wants to view the 

segmentation results. At a low value of dissimilarity, the segmented image shows 

many varied regions similar to the original image. When choosing a high value of 

dissimilarity the image only shows regions which are significantly different. The
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original image may be displayed alongside the processed image showing regions of 

dissimilarity. And a dual cursor facility provided by the GUI will allow the user to 

correlate the segmentation results with the original image data. This enables the 

clinician to improve their ability to identify regions having subtle differences or 

dissimilarities. The GUI also helps the user to differentiate dissimilarities in the 

image down to a single pixel level by providing the facility to highlight pixels 

belonging to the same region which might occur across the image. The GUI is 

designed in such a way as to make it easy for the user to view all the different 

solutions and select the most suitable. The easy viewing and scrutinization of 

segmentation results is achieved by the GUI by having the following facilities 
[Selvan 2007]:

• The different segmentation results can be viewed by using a slider bar giving 

the dissimilarity index.

• Individual region properties like the number of pixels, the lowest, highest and 

average pixel value and the distribution of the pixel values within the region 

can be scrutinized.

The original image or another segmented image at a different level of 

dissimilarity can be compared with the segmented image by displaying them 

alongside each other and a dual cursor moves simultaneously on both the 

images.

• In order to allow the user to quickly display the segmented image the GUI 

provides a gallery of the set of segmented images. The user can click on any 

one of the thumb nail images to have it displayed on the main window.

The image of Figure 4.1 shows a screen captured image of the GUI and the user 

controls provided for the above listed facilities. The GUI facility will be useful for 

the user to choose the most appropriate segmentation for subsequent processing. For 

example, the GUI can be used to choose the most appropriate segmentation to 

identify the regions which correspond to the healthy and diseased part of the breast 

tissue in X-ray mammograms for subsequent processing to differentiate malignant 

from benign abnormalities (Please see Section 5.2.4.1).
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Figure 4.1 - Annotated screen captured image of the GUI, to visualize the HCS
process output.
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4.3. User Decision Incorporated Processing of CT Images of the Lungs

In this application, an investigation into the segmentation of airways and the 

accompanying blood vessels, in CT images, using the HCS process [Selvan 2007] 

was carried out.

Additional new methods such as ellipse fitting were also incorporated to the HCS 

process to quantify the dimensions of the segmented airways and blood vessels in the 

CT images. The developed methods were evaluated for their accuracy by segmenting 

and estimating the measurements of Blood Vessel and Airway in CT images of the 

lungs.

4.3.1. Motivation Behind the Study

Technical advances in CT allow an assessment of airway wall thickness and cross-

sectional area in vivo that is comparable to histological examination. Quantitative

assessments of airway dimensions have shown that there is an increase in airway wall

thickness and lumen area (bronchitises) in Cystic Fibrosis (CF) infants and children 

compared with control subjects [de Jong 2005]. To date, there have been no studies in

which quantitative CT estimates of airway disease have been compared with

pathological measures in CF patients. The majority of High Resolution CT (HRCT)

studies in CF were carried out using semi-quantitative scoring systems. Aside from

the inherent intra- and inter-observer variations, the major limitations of these scoring

systems relate to the lack of consensus on which system to use and to the failure to 

use definitions of CT abnormalities consistently [de Jong 2005].

In this current study, it is intended to evaluate the advantages of using computer 

methodologies to quantify peripheral airway disease. The quantification process will 

display the location, severity, extent of airway dilatation, bronchial wall thickening, 

and the presence of mucous impacted airways.

4.3.2. CT Image of the Airway

The schematic in Figure 4.2 shows the various measurements that can be made on 

CT images of airways and the vessels, which frequently accompany them. Linear 

measurements include the following [de Jong 2005]:
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The airway perimeter (Pi)
The long and short axes of the outer airway area (Ao)

• The lumen area (Ai)
• Wall thickness (Awt)

Airway lumen diameter (ALD)
• Airway outer diameter (AoD = ALD+Awt)
• Arterial diameter (AD).

Ratios of various linear dimensions include: ALD/AD; Awt/AD; Awt/ALD; as well 

as long to short axis ratios, which are a measure of the obliquity of the section [de 

Jong 2005].

The area dimensions include the following :

Ai; airway wall area (Aaw)
• Outer airway area (Ao = Aaw+Ai)
• Arterial area (AA).

Ratios of various areas include: Ai/AA; Aaw/AA; and percentage wall area (WA% = 

Aaw/Aoxl00%). The square root of Aaw is often derived, since it is relatively

linearly related to Pi. Finally, airway dimensions can be referenced to body surface

area (e.g. Aaw/BSA and Awt/BSA) [de Jong 2005].

Short axis of Ao

Short axis 
of Ai

Long 
axis 

of Ao

Figure 4.2 - Dimensions of the airway lumen, airway wall,and accompanying pulmonary
artery (Image courtesy de Jong 2005).
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However, the information that can be obtained from CT is essentially less detailed 

than those obtained from histological examinations. For example, CT cannot 

distinguish which components of the airway wall are thickened. Despite this 

limitation, the ability of CT to measure multiple airways relatively, non-invasive and 

repeatedly offers major potential advantages [de Jong 2005]

4.3.3.CT Image Data

CT imaging is based on X-ray attenuation of various tissues. Pixels in an image 

obtained by CT scanning are displayed in terms of relative radio-density. The digital 

value assigned to each pixel is according to the mean attenuation of the tissue that it 

corresponds to on a scale from -1000 to +1000. This scale is known as the 

Hounsfield Unit (HU) [Albertyn 1996]. The Hounsfield scale was invented in 1972 

by Godfrey Newbold Hounsfield and is a quantitative measure of radio-density used 

to evaluate CT scans. In this scale, water has an attenuation of 0 Hounsfield Units 

(HU) while air has (-)1000 HU, bone has a value of the order of (+)1000 HU and 

metal objects beyond (+) 1000 HU [Albertyn 1996]. Thus, a CT image can 

potentially have more than 2000 different Hounsfield values stored as 16 bit data.

The Digital Imaging and Communications in Medicine (DICOM) standard was 

created by the National Electrical Manufacturers Association (NEMA) to aid the 

distribution and viewing of diagnostic image data, such as CT, MRI, and US scans. A 

single DICOM file contains both a header (which stores information about the 

patient's name, the type of scan, image dimensions, etc.), as well as all the image 

data. In a CT image, written in DICOM image format, the image data is not written 

in Hounsfield Units but rather in normal units. To convert from the normal units 

found in CT data (a typical data set ranges from 0 to 4000 or so) one has to apply the 

following linear transformation of the data. The linear transformation is:

HU = mx + b [4.1]

Where

HU is Hounsfield Unit 

x is PixelValue 

m is Slope 

b is Intercept
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The values of the Slope and Intercept used in the above conversion can be found in 

the header of the DICOM image file . The tags, which are used in the header, to 

identify the values, are generally called the Rescale Slope and Rescale Intercept. 

Rescale Slope and Rescale Intercept typically have values of 1 and (-)1024, 

respectively. For example following tag information, corresponding to Rescale Slope 

and Rescale Intercept, are read from the header of the DICOM image shown in 

Figure 4.3.

[Ln 144] Rescale Intercept (0028,1052) [sbcIndexRange 1...1] DS [-1024]

[Ln 145] Rescale Slope (0028,1053) [sbcIndexRange 1...1] DS [1]

Making use of the above values for the Slope and Intercept, the original units, found 

in the CT image data, are converted to the corresponding Hounsfield units. For a set 

of sample locations, Figure 4.3 shows the pixel values, in their original units, read 

from the image data, and their corresponding values in Hounsfield units.

DFOV 252 
Tilt : 0
45.75

1.25mm

Figure 4.3 - Annotated CT Image showing two locations o f airway and accompanying
pulmonary artery
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As discussed above a CT image can potentially have more than 2000 different 

Hounsfield values, but a computer monitor can display only 256 different shades of 

grey, at any one time. The technique of windowing is an electronic manipulation of 

the data to enable these 256 shades of grey to represent a limited range, or window, 

of Hounsfield values. In the medical imaging community the windowing parameters 

are referred to as 'window centre' (C) and the 'window width' (W) of an image. 

Narrowing the window or compressing the grey scale increases contrast for the 

purpose of visual perception [Albertyn 1996]

For this study the facilities of a graphical user interface [Selvan, 2007] were used to 

visualize the CT image data and choose the appropriate windowing parameters. 

Figure 4.4 shows the DICOM image viewing facility that was used to view the CT 

images and choose the appropriate windowing parameters.

The sample annotated CT image in Figure 4.3 shows two locations of airway and 

close by pulmonary artery marked with the corresponding pixel values. Figure 4.5 

shows the Region 1 part of the CT image (Figure 4.3) displayed using appropriate 

windowing parameters to highlight either only the blood vessel or the blood vessel 
and the airway.

Figure 4.6 shows the location of the rectangular region of interest (ROI) of size 

24x16, enclosing Region 1 of Figure 4.3. The Hounsfield values within the ROI 

ranges from minimum (-)1024 to maximum (+)528. Although the range of the values 

is 1552, there are only 256 unique values. Hence, the images shown in Figures 4.3 

and 4.5 were obtained by optimally mapping the 1552 range of values to the 

available 256 gray level values, for display purpose.
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Figure 4.4 - Graphical user interface facility [Selvan, 2007] to view DICOM images and to 
choose the appropriate windowing parameters.

Figure 4.6 also shows the colour coded four different classes of regions, namely 

blood-vessel (Red), airway wall (Green), lumen (Blue) and lung parenchyma (Black) 

as perceived by a radiologist. The colour coding was carried out manually. The 

manually segmented region can be seen superimposed on the original image to show 

the appropriateness of the manual segmentation.

a b

Figure 4.5 - Region 1 part of the CT image (Figure 4.3) displayed using appropriate 
windowing parameters to highlight either only the blood vessel (a) or the blood vessel and the

airway (b).
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Figure 4.6 - Manually segmented and colour coded four different classes of regions, namely 
Blood-Vessel (Red), airway-wall (Green), Lumen (Blue) and Lung Parenchyma at the 

background (Black) as perceived by a radiologist.
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Figure 4.7 - Distribution of the Pixel Values based on the Ground Truth

Graph in Figure 4.7 shows the distribution of the pixel values in Hounsfield units 

within the different regions. It could be seen from the graph in Figure 4.7 that there is 

considerable overlap of the distribution of the pixel values amongst the different

93



constituent regions. Especially, the artery has similar X-ray attenuation values as the 

airway wall. Table-4.1 lists the pixel properties within the different regions.

Table-4.1 Hounsfield values of the pixel locations within the different anatomical regions

Region Count Minimum 
Value HU

Maximum 
Value HU

Average Value 
HU

Standard
Deviation

Within ROI 384 -1024 528 -707 385
Artery 16 -270 485 250 208

Airway wall 60 -659 528 -167 264

Airway Lumen 50 -1024 -501 101 168

Lung
Parenchyma

258 -1024 36 -851 205

4.3.4. Unsupervised Segmentation of the CT Image Data of the Lungs Using HCS

Based on the earlier success of HCS, in precisely outlining regions within CT images 

(Figure 4.8) [Selvan, 2007], it was envisaged that it would be a straightforward usage 

of HCS to outline the borders of the blood vessel and airway in the CT images of the 

lungs. Hence to start with, HCS which was earlier used to achieve such robust 

segmentation as shown in Figure 4.8, was applied within the region of interest shown 

in Figure 4.6.

Figure 4.9 (a) shows the output of the unsupervised segmentation using HCS when 

there are still one hundred clusters yet to be merged. Some of the major clusters 

could be associated with their respective underlying anatomy. Figure 4.9 (b) shows 

the cluster associated with lumen (Blue) and part of the lung parenchyma miss- 

classified as lumen (coloured Yellow). (Note : It should be noted HCS as such does 

not have a stopping criteria it is left for the user to choose the segmentation most 

appropriate. See Figure 4.13 for details).
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Figure 4.8 -  Segmentation o f a CT image using HCS.
CT image showing a suspected area outlined in white by a neuroradiologist (a).

HCS unsupervised segmentation of the Grey matter region (Blue), White matter region 
(Green) and stroke affected region (Red) and the regions' boundaries (b) (Image courtesy

Selvan, 2007).

Figure 4.9 -  The HCS process unsupervised segmentation output. 
Segmentation output when there are one hundred clusters or regions (a).

Cluster corresponding to lumen (coloured Blue) and part o f the lung parenchyma miss- 
classified as airway lumen (coloured Yellow) (b).

Table 4.2 lists the pixel values (in HU) within the cluster corresponding to airway 

lumen (coloured Blue) and part of the lung parenchyma mis-classified as lumen
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(coloured Yellow) (Figure 4.9 (b)). Inspecting the pixel values listed in Table 4.2, it 

is no surprise that the HCS process has clustered part of the lung parenchyma with 

airway lumen, since both constitute of pixels having the same X-ray attenuation of 
(-)1024 HU.

Table-4.2 - X-ray attenuation of the pixels within the airway lumen region (Blue) and lung 
parenchyma region (Yellow), mis-classified as airway lumen (Figure 4.9 b).

Pixel Values 
Hounsfield 

Units

(->1024
HU

(-)1014
HU

(-)844
HU

(-)788
HU

(“)731
HU

(-)723
HU

(-)687
HU

(->425
HU

Airway lumen
Pixel count 

(Total count 32)

32 0 0 0 0 0 0 0

Lung
parenchyma
Pixel count 

(Total count 34)

27 1 1 1 1 1 1 1

4.3.4.I. Additional criteria incorporated, within the HCS process, to improve 

segmentation

The HCS process was specifically designed to merge regions in medical images. In 

medical images anatomically similar regions could occur across an image. Hence, the 

HCS process compares and merges regions even if the regions are not adjacent to 

each other. Also, while evaluating the suitability of adjacent or non-adjacent regions, 

for merging, the HCS process considers only the image properties of the regions, 

under consideration.

The following observations could be made by inspecting the segmentation results of 

Figure 4.9:

• Pixel locations belonging to the airway lumen region (Blue), which are 

contiguous, have been clustered as a single region.

The misclassified pixel locations (Yellow) belonging to the lung parenchyma 

are not contiguous with the airway lumen part of the image.

Making use of the above observations, in order to minimise the above 

misclassification, the following two additional criteria were considered to be 

incorporated into the HCS process :
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• While evaluating the suitability of regions for merging, along with the 

regions' image properties, the HCS process should also consider the spacial 

distance between the constituent pixels of the regions. Hence, physically 

nearer regions will be favoured to be clustered together than those regions 

spatially further away.

Hence the dissimilarity between the regions can be estimated using the 

expression given in equation 4.2. Lower the value more probable the regions 

will be merged.

Region_Dissimilarity_Measure = Pixel_Dissimilarity_Measure +

Pixel_Spatial_Distance [4.2]

• Avoid clustering regions which are not adjacent and only evaluate regions 

which are contiguous for possible merging.

To start with the HCS process was modified to incorporate the following additional 

criteria, for evaluating regions for merging :

• Along with the image properties of the regions the euclidean distance 

between the regions was also taken into consideration to evaluate the 

suitability of the regions for merging.

Taking into account the euclidean distance between regions, to decide which of the 

regions are to be merged, did reduce the amount of misclassification at the 

corresponding merging stage (Figure 4.10) (Table 4.3).

Looking at how the misclassification has occurred (Figure 4.10) it was hypothesized 

that if the second additional criteria was considered then the misclassification could 

be further reduced. That is the criteria of considering only clusters which are adjacent 

to one another, for merging. Hence, in the HCS a relevant flag was set to trigger 

merging of only adjacent clusters [Selvan, 2007].
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Figure 4.10 - HCS unsupervised segmentation, when the additional criteria of pixel euclidean 
distance factor is taken into account for merging.

The segmentation output when there are ninety nine clusters or regions (a). Major clusters 
associated with their respective underlying anatomy are coloured as, blood-vessel (Red), 

airway wall (Green), airway lumen (Blue) and lung parenchyma at the background (Black) (a). 
Cluster corresponding to airway lumen (coloured Blue) and part o f the lung parenchyma miss- 

classified as airway lumen (coloured Yellow) (b).

Table-4.3 - X-ray attenuation of the pixels within the airway lumen region (Blue) and lung 
parenchyma region (Yellow), miss-classified as airway lumen (Figure 4.10 b).

Pixel Values Hounsfield (-)1024 (-)788
Units H U H U

Airway lumen 
Pixel count 

(Total count 32)

32 0

Lung parenchyma 
Pixel count 

(Total count 19)

18 1

Figure 4.11 is the result o f merging when only adjacent clusters were considered for 

merging. The segmentation output, shown in Figure 4.11, is when there were ninety 

nine clusters yet to be merged. From the Figure 4.11 it can be seen that the regions 

belonging to the lung parenchyma are not being merged with the region belonging to 

the airway lumen as was the case earlier.

However part of the airway wall has merged with the adjacent lung parenchyma. 

This has happened because the similar clusters within the airway wall are not 

contiguous. This was not an issue when HCS was merging clusters even when they 

were not adjacent to one another. But when HCS was made to merge only adjacent 

clusters the non-contiguous similar clusters in the airway wall could not merge with 

one another. Consequently those clusters within the airway wall merged with the 

next more similar regions which were the adjacent lung parenchyma clusters.
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Figure 4.11 -  The HCS process unsupervised segmentation, when only 
adjacent clusters were merged.

The segmentation output when there are ninety nine clusters or regions.

Hence, among the two additional criteria considered to improve the results of 

segmentation of the airway; the criteria of merging only adjacent regions was found 

to be detrimental. Taking into account the spatial distance of the regions, for 

evaluating their suitability for merging, was found beneficial.

4.3.4.2. Unsupervised segmentation of the remapped CT image grey scale data

As discussed earlier, in Section 4.3.3, to display the potential 2000 different 

Hounsfield values making use of 256 different shades of grey, it is customary to 

enable the 256 grey levels to represent a limited range, or window, o f Hounsfield 

values. Narrowing the window or compressing the grey scale increases contrast for 

the purpose of visual perception Figure 4.12 (a) displays a range o f Hounsfield 

values from (-) 1024 to 508 mapped to 256 level of grey levels.

Since the remapping increases the contrast (Figure 4.12 (a)) it was hypothesized that 

the remapped CT image data might aid the segmentation process. To verify whether 

this was the case, the HCS process was applied on the remapped Gray scale image 

data. Figure 4.12 (b) shows the output of the unsupervised segmentation using HCS 

when there are still fifty clusters yet to be merged. Inspecting the segmentation 

output it could be seen that some of the major clusters could be associated with their 

respective underlying anatomy namely blood-vessel (Red), airway wall (Green), 

airway lumen (Blue) and lung parenchyma at the background (Black). Cluster 

corresponding to airway lumen has part of the lung parenchyma (coloured Yellow) 

miss-classified as lumen as well (Figure 4.12(b)).
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a b c

Figure 4.12 -  Remapped CT image data and its segmentation by the HCS process.
CT image data, ranging from (-) 1024 to 508 Hounsfield values, mapped to 256 level o f grey

levels (a).
Intermediate segmentation output o f fifty regions when HCS process was applied on the 

remapped grey scale image data (b). Major clusters, associated with their respective underlying 
anatomy, are coloured as blood-vessel (red), airway wall (Green), airway lumen (Blue) and 

lung parenchyma at the background (Black) (b). Cluster corresponding to airway lumen 
(coloured Blue) and part of the lung parenchyma that had been miss-classified as airway lumen

(coloured Yellow) (c).

Comparing the segmentation output in Figure 4.10, when the HCS process was 

applied on the original CT image data with the current segmentation output in Figure 

4.12 (b), when the HCS process was applied on the remapped image data, the 

following similarities could be observed :

in both the resulting segmentation, the major clusters are associated with their 

respective underlying anatomy, namely blood vessel, airway wall, airway 

lumen and lung parenchyma (Figures 4.10(a) and 4.12(b)). 

in both the resulting segmentation, part of the lung parenchyma has been 

misclassified as airway lumen (Figures 4.10(b) and 4.12(c)).

The major difference between the segmentation based on the original CT image data 

(Figure 4.10) and the segmentation based on the remapped data (Figure 4.12) is as 

follow s:

• the segmentation achieved by making use of the remapped data includes only 

fifty clusters, while the segmentation by making use of the original CT image 

data includes ninety nine clusters that need yet to be clustered.

The significance of the above difference is discussed below :

The HCS process as such does not have a stopping criteria. The merging process will 

continue until only the minimal number of clusters are remaining, which in this case 

is a single cluster. When the HCS process made use of the original CT image data the 

major clusters were associated with the underlying anatomy when there were still 

ninety nine clusters yet to be merged (Figure 4.13 (b)). But when the HCS process
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continued merging the clusters and when there were only fifty clusters yet to be 

merged, the clusters, in the segmentation output, could no more be associated with 

the underlying anatomy (Figure 4.13 (c)).

Based upon the above discussion one may come to the conclusion that making use of 

remapped data, instead of the original CT image data, may lead to better 

segmentation results. But it was subsequently found that the feature measure based 

on remapped data does not have as much discriminatory power as that based on the 

original CT image data. Hence, it was decided that it was better to carry out the 

segmentation, of the boundaries of the blood vessel and airway, making use of the 

original CT image data rather than the remapped data. For further, discussions on this 

observation, refer to Section 4.3.5.3 (Section 4.3.5.3 Segmentation, of the remapped 

CT image grey scale data, making use of initial user tagged information).

4.3.5.Incorporating user knowledge to aid segmentation

In an earlier study [Selvan, 2007] the HCS process was successfully used in precisely 

outlining regions within medical images of varied modalities such as MRI, CT 

(Figure 4.8) and Ultrasound. But in the current application it was found that the 

following typical characteristics of the CT image sections, of the lungs, precluded the 

successful application of the HCS process to segment the airway and the adjoining 

blood vessel:

• The images were of very low resolution.

For example, the number of pixels that constitute the blood vessel is hardly 

sixteen (Table 4.1) (Figure 4.6).

• The properties (X-ray attenuation values) of the components are very similar. 

For example, airway wall has got very similar Hounsfield values as that of 

the blood vessel. Similarly, the airway lumen has got very similar Hounsfield 

values as that of the lung parenchyma (in the background) (Table 4.2 and 

Table 4.3).

Section 4.3.4 gave the details of the unsupervised segmentation of the CT image data 

of the lungs using HCS. It was shown that the unsupervised segmentation of the CT 

image data of the lungs using HCS was not very successful in segmenting the blood 

vessel and the airway. It was also shown how varied measures were tried to improve 

the results. The adopted measures did improve the results. But the final segmentation
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of the ROI into its four constituent regions namely the airway lumen, airway wall, 

and the adjoining blood vessel was not achieved.

At this juncture it was realised that two possible routes could be taken to design a 

methodology to achieve a satisfactory segmentation result. The first possibility 

includes designing more involved heuristic rules. The second possibility consists of 

incorporating some manual input from the user to aid the segmentation process. The 

first option was rejected for the following reasons :

• This approach had already been tried in prior studies [de Jong et a l 2005] 

with limited success.

• It was demonstrated by others that even after adopting some heuristics, 

human intervention cannot be avoided altogether [de Jong et al. 2005].
Hence, it was decided to adopt the second approach of incorporating users' 

preference into the segmentation process.

From the earlier discussion it could be inferred that somehow the HCS process needs 

to be informed which are the pixel locations that need to be considered for merging, 

to form a region of particular type. This is necessary because the image properties, 

that is the X-ray attenuation, information alone is not sufficient enough to 

differentiate the different regions of the anatomy. For example, part of the lung 

parenchyma is mis-classified as airway lumen (Figure 4.9(b) and Figure 4.10(b)) 

because both of them have exactly the same X-ray attenuation value of (-)1024 

(Table 4.2 and Table 4.3).

To pass on the information to the HCS process, regarding the association of certain 

pixels to certain anatomical region, either of the following methods could be used :

• An initial unsupervised segmentation could be performed using the HCS 

process. From the segmentation output a suitable intermediate segmentation 

could be used to pass on the information regarding certain pixel locations 

belonging to certain anatomy.

• Right at the start of the segmentation process the user tags (marks) certain 

pixel locations as belonging to certain corresponding anatomical region. This 

information could be subsequently passed on to the HCS process to assist the 

process during the actual segmentation process.

Both of the above methods were explored to identify the best possible option.
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4.3.5.1. Passing user knowledge, based on the HCS process initial unsupervised 

segmentation output

The steps involved in making use of the HCS process initial unsupervised 

segmentation output, to pass on user knowledge, to subsequently segment the blood 

vessel, airway and lung parenchyma are as follows :

• The process is initiated by applying the HCS process within a region of 

interest.

For example, when the HCS process was applied within the region of interest 

shown in Figure 4.6, a sample set of the segmentation output obtained at 

different stages of merging is shown in Figure 4.13.

Since the HCS process will finally result in a single region, encompassing the 

whole ROI, it is left for the user to choose the most appropriate segmentation 

output to be made use of as the input for the subsequent segmentation.

The criteria for choosing the most appropriate segmentation output are; firstly 

in the segmentation output it should be possible to associate the major 

clusters with their respective underlying anatomy, and secondly, the 

misclassification at that stage should be minimal.

For example, after visually inspecting the segmentation's output, in Figure 

4.13, at different stages of the unsupervised merging process it could be seen 

that Figure 4.13 (b) is the most appropriate output of the HCS process. 

Because in the segmentation output of Figure 4.13 (b) some of the major 

clusters, amongst the ninety nine clusters, could be associated with their 

respective underlying anatomy. The misclassification of part of the lung 

parenchyma as airway lumen is minimal (Figure 4.10) when compared to the 

misclassification on subsequent segmentation output (Figure 4.13 c).

• Making use of the chosen most appropriate segmentation output the user tags 

some of the cluster of pixels (regions) as belonging to the specific anatomy. It 

is not necessary that the user needs to associate all the clusters of pixels.

Figure 4.14 (b) shows the clusters tagged by the user as associated with 

blood-vessel (Red) airway wall (Green), airway lumen (Blue) and 

background lung parenchyma (Black). Those pixel locations which are not 

tagged by the user are shown in white.

Note that the cluster of pixels belonging to part of the lung parenchyma 

which was missclassifed as airway lumen (Figure 4.10 b) is tagged by the
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user as belonging to the lung parenchyma. This information is used of by the 

subsequent segmentation to ensure that those collection of pixels are 

classified as lung parenchyma even though the image data of those pixels are 

the same as that of the airway lumen (Table 4.3)

The user tagged information is passed on to the HCS process for subsequent 

segmentation. During this subsequent segmentation process. The HCS 

process makes use of the user tagged information and clusters those pixel 

locations which were not tagged by the user. At the end of this merging 

process there will be four regions or cluster of pixel locations.

Figure 4.14 (c) shows the four clusters at the end o f the subsequent 

segmentation process which made use of the user knowledge. The clusters 

associated with the underlying anatomy are coloured as blood-vessel (Red) 

airway wall (Green), airway lumen (Blue), background lung parenchyma 

(Black).

a b c

Figure 4.13 - The segmentation output o f the HCS process based unsupervised segmentation
o f the ROI shown in Figure 4.6 

The segmentation output shown are at different stages o f the merging process when there are, 
one hundred and ninety nine clusters or regions (a),, ninety nine regions (b) and fifty regions

(c).
The most appropriate segmentation output's major clusters, associated with their respective 
underlying anatomy, are coloured as blood-vessel (red), airway wall (Green), airway lumen 
(Blue) and lung parenchyma at the background (Black) (b).

Figures 4.14 (a) and (b) illustrate the above detailed process of making use of the 

initial unsupervised segmentation to pass on the user knowledge for subsequent 

segmentation. Figure 4.17 (c) gives the final segmentation o f the blood vessel, 

airway wall, airway lumen and lung parenchyma. Table 4.4 gives the properties of 

the regions corresponding to the blood vessel, airway wall and airway lumen. The 

very high values of the standard deviation demonstrate the inhomogeneity o f the 

regions.
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a b c

Figure 4.14 -  Passing user knowledge based on the HCS process initial segmentation.
The most appropriate segmentation output o f the initial HCS process chosen to pass on the 
user knowledge for the subsequent process (a). The segmentation output shows ninety nine 
clusters (regions) (a). The major clusters, associated with their respective underlying anatomy, 
are coloured as blood-vessel (Red), airway wall (Green), airway lumen (Blue) and lung 
parenchyma at the background (Black) (a). User tagged locations (clusters), making use o f the 
initial unsupervised intermediate segmentation, blood-vessel (Red) airway wall (Green), 
airway lumen (Blue), background lung parenchyma (Black) and untagged pixel locations 
(White) (b). Final segmentation of four regions, making use o f user tagged information; 
blood-vessel (Red) airway wall (Green), airway (Blue), lung parenchyma (Black) (c)

Table-4.4 Properties o f the different anatomical regions (Figure 4.14 c)

Region Area 
(pixel count)

Minimum 
value HU

Maximum 
value HU

Average 
value HU

Standard
Deviation

Blood vessel 43 -1012 485 -262 468

Airway Wall 75 -999 528 -305 344

Airway Lumen 39 -1024 13 -955 218

The advantage of making use of the HCS process initial segmentation, to pass on the 

user knowledge to the HCS process for subsequent segmentation is as follows :

The major advantage o f making use of the HCS process initial segmentation 

is that the user needs to tag a minimal number of pixel locations as belonging 

to the different anatomical regions. This is the case because the other pixel 

locations belonging to the same cluster, as the user chosen pixel, will be 

automatically tagged as belonging to the same anatomical region as the user 

tagged location.

The disadvantages of making use of the HCS process initial segmentation output to 

pass on the tagged information to the HCS process subsequent segmentation are as 

follow s:
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Firstly, the user needs to choose the most appropriate partial segmentation 

from the earlier unsupervised segmentation. The user is at a disadvantage if 

the initial segmentation is too trivial in which case the user is forced to 

choose many locations. Also, if the initial segmentation already includes 

clusters which have pixels from different anatomical regions then right at the 

start the subsequent segmentation will have erroneous information based on 

which the resulting final segmentation will be suboptimal.

• Another disadvantage of making use of the output of the initial unsupervised 

segmentation of HCS is that HCS need to be applied more than once to obtain 

the final segmentation output.

4.3.5.2. Passing user knowledge, by making use of the initial user tagged 
information

To avoid the disadvantages associated with making use of the HCS initial 

segmentation output, to pass on the user knowledge to the subsequent segmentation 

process, it was decided not to carry-out the initial HCS segmentation but to pass the 

user knowledge to the HCS process. The user could tag (mark) certain pixel 

locations, in the unsegmented image, as belonging to the corresponding anatomical 

region. The tagged information is used by the HCS segmentation process to arrive 

upon the final segmentation.

Figures 4.15 (a) and 4.15 (b) illustrate the process of passing on the tagged 

information to the HCS process. Table 4.5 gives the details of the locations tagged by 

the user. Figure 4.15 (c) gives the final segmentation of the blood vessel, airway 

wall, airway lumen and lung parenchyma. Table 4.6 gives the properties of the 

regions corresponding to the blood vessel, airway wall and airway lumen.

Table-4.5 -  Details of the user tagged locations in Figure 4.15 b.

Tagged Anatomy Blood
vessel

Airway
wall

Airway
lumen

Lung
parenchyma

Total Tagged 
Locations

Tagged locations 
count

18
(9.091%)

61
(30.81%)

19
(9.596%)

100
(50.51%)

198
(100%)

ROI (24x16) Total 384 51.56% of ROI
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Figure 4.15 -  Passing user knowledge, by tagging locations within the major anatomies. 
CT image data, within the ROI (24x16) shown in Figure 4.6 (a)

User tagged locations, blood-vessel (Red) airway wall (Green), airway lumen (Blue), 
background lung parenchyma (Yellow) and untagged pixel locations (white) (b).

Final segmentation of four regions, making use o f user tagged locations as prior knowledge, 
blood-vessel (red) airway wall (Green), airway (Blue), lung parenchyma (Black) (c).

Table-4.6 Properties of the different anatomical regions (Figure 4.15 c)

Region Area 
(pixel count)

Minimum 
value HU

Maximum 
value HU

Average value 
HU

Standard
Deviation

Blood vessel 29 -882 485 -31 383

Airway wall 91 -1024 528 349 352

Airway lumen 41 -1024 -604 -981 102

Inspecting the final segmentation (Figure 4.15 (c)) one could see that one of the pixel 

locations within the airway wall was classified as belonging to the lung parenchyma 

(Black). This is the case because HCS at its core is a data-driven process and 

associates those locations the user had tagged with the corresponding anatomy. But 

to cluster the rest of the untagged locations, the HCS process complies with what the 

data dictates. Hence when the user gives the initial locations associated with the 

specific anatomy, care should be taken that those locations which are ambiguous are 

associated with the specific anatomy. Ambiguous locations are those locations which 

have the same image properties but belong to different anatomy. If the user does not 

tag the ambiguous locations the final segmentation will not be satisfactory.

Figure 4.16 illustrates how the segmentation process is influenced by the initial 

tagged information provided by the user. Table 4.7 gives the details o f the locations 

tagged by the user. Inspecting the final segmentation (Figure 4.16 (c)) one could see 

a part of the lung parenchyma had been segmented as the airway lumen. The reason 

for this is that those pixel locations in the lung parenchyma had exactly the same 

image properties as those of the airway lumen (Table 4.3). Hence it is imperative that 

the user tags ambiguous locations or at least tag those close by.



a b c

Figure 4.16 - Images illustrating how the user initial tagging information influences the final
segmentation.

CT image data, within the ROI (24x16) shown in Figure 4.6 (a)
User tagged locations, blood-vessel (red) airway wall (Green), airway lumen (Blue), 

background lung parenchyma (Yellow) and untagged pixel locations (white) (b).
Final segmentation of four regions, making use o f user tagged locations as prior knowledge, 

blood-vessel (red) airway-wall (Green), airway (Blue), lung parenchyma (Black) (c).

Table-4.7 - Details of the user tagged locations in Figure 4.16 b.

Tagged Blood Airway Airway Lung Total Tagged
Anatomy vessel wall lumen parenchyma Locations

Tagged 18 36 19 61 134
locations (13.433%) (26.87%) (14.179%) (45.52%) (100%)

count

ROI (24x16) Total 384 34.90% o f ROI

4.3.5.3. Segmentation, of the remapped CT image grey scale data, making use of 

initial user tagged information

As discussed earlier, in Section 4.3.3, to display the potential 2000 different 

Hounsfield values making use of 256 different shades of grey, it is customary to 

enable the 256 grey levels to represent a limited range, or window, o f Hounsfield 

values. Narrowing the window or compressing the grey scale increases contrast for 

the purpose of visual perception Figure 4.17 (a) displays a range of Hounsfield 

values from (-) 1024 to 508 mapped to 256 level o f grey levels.

Since the remapping increases the contrast (Figure 4.17 (a)) it was hypothesized that 

the remapped CT image data might aid the segmentation process. In Section 4.3.4.2 

it was found that the unsupervised segmentation of the remapped CT image grey 

scale data, resulted in fewer number of major clusters (fifty) which could be 

associated with the underlying anatomy (Figure 4.12(b)). While the unsupervised 

segmentation done on the original CT image data had a higher number of major 

clusters (ninety nine) which could be associated with the underlying anatomy (Figure 

4.13(b)).
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Based on the above observations one may conclude that in the user aided 

segmentation making use of the remapped data instead of the original CT image data 

may lead to better segmentation results. To verify whether this was the case, the HCS 

process was applied on the remapped grey scale image data.

Figure 4.17(a) shows the CT image data, ranging from (-) 1024 to 508 Hounsfield 

values, mapped to 256 level of grey levels. Figure 4.17(b) shows the locations tagged 

by the user associated with the corresponding anatomy. Table 4.8 gives the details of 

the locations tagged by the user.

Table-4.8 -  Details of the user tagged locations in Figure 4.17 b.

Tagged
Anatomy

Blood
vessel

Airway
wall

Airway
lumen

Lung
parenchyma

Total Tagged 
Locations

Tagged
locations

count

19
(11.66%)

50
(30.67%)

23
(14.11%)

71
(43.56%)

163
(100%)

ROI (23x15) Total 345 47.25% o f ROI

a b

Figure 4.17 -  User tagged locations on the remapped CT image data.
CT image data, ranging from (-) 1024 to 508 Hounsfield values, mapped to 256 level o f grey 

levels (a). User tagged locations, blood-vessel (red) airway wall (Green), airway lumen 
(Blue), background lung parenchyma (Yellow) and untagged pixel locations (white) (b).

Figure 4.18 (a) shows the output o f the final segmentation when there are four 

clusters associated with their respective underlying anatomy namely blood-vessel 

(Red), airway wall (Green), airway lumen (Blue) and lung parenchyma at the 

background (Black). Cluster corresponding to airway lumen has part o f the lung 

parenchyma (coloured Yellow) miss-classified as lumen (Figure 4.18(b)). The 

reasons for this misclassification could be either or both of the following reasons :
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• the user tagged information was not sufficient enough.

• remapping the original CT image data ranging from (-) 1024 to 508 

Hounsfield values, to 256 level of grey levels has affected the discriminating 

ability o f the feature measure.

a b

Figure 4.18 - Segmentation of the remapped CT image grey scale data making 
use o f user tagged information of Figure 4.17 (b).

Segmentation output when there are four regions, associated with the 
underlying anatomy, namely, blood-vessel (red) airway wall (Green), airway 

(Blue), lung parenchyma (Black) (a)
Cluster corresponding to airway lumen (coloured Blue) and part o f the lung 

parenchyma miss-classified as airway lumen (coloured Yellow) (b).

To establish the reason(s) behind the misclassification of part o f the lung parenchema 

as airway lumen, the same user tagged information was used and the HCS process 

was applied on the original CT image data. Figure 4.19 (a) shows the output o f the 

final segmentation when there are four clusters associated with their respective 

underlying anatomy namely blood-vessel (Red),airway wall (Green), airway lumen 

(Blue) and lung parenchyma at the background (Black).

Even after using the original CT image data the cluster corresponding to the airway 

lumen has part o f the lung parenchyma (coloured Yellow) mis-classified as lumen 

(Figure 4.18(b)). But the misclassification is less than that when using the remapped 

CT image gray scale data. This minor misclassification is because the user tagged 

information was not sufficient enough. This establishes the fact that the remapping of 

the original CT image data to 256 gray scale data destroys the discriminating ability 

of the feature measure.

110



Figure 4.19 - Segmentation of the original CT image data making use o f user 
tagged information of Figure 4.17 (b).

Segmentation output when there are four regions, associated with the 
underlying anatomy, namely, blood-vessel (red) airway wall (Green), airway 

(Blue), lung parenchyma (Black) (a)
Cluster corresponding to airway lumen (coloured Blue) and part o f the lung 

parenchyma miss-classified as airway lumen (coloured Yellow) (b).

4.3.6. Synopsis of the Different Approaches Adopted to Segment the Boundaries of 

the Air-Way and the Accompanying Blood Vessel

Once it was found that no amount o f image data based manipulation could achieve 

unsupervised segmentation (Section 4.3.4) it was decided that user knowledge will 

be passed on to the HCS process to aid the subsequent final segmentation process 

(Section 4.3.5). To pass on the user knowledge to aid the segmentation process 

various possibilities were explored. The pros and cons of the different possible ways 

of passing on the user knowledge, to aid the final segmentation process, are 

discussed below :

Passing on the user knowledge by making use of the initial unsupervised 

segmentation was not found to be suitable (Section 4.3.5.1)

Passing on the user knowledge right at the very start o f the segmentation 

process addressed all the disadvantages of the initial segmentation based 

tagging, because unlike as in the initial segmentation based tagging, the user 

had complete control on which locations need to be associated with the 

related anatomy (Section 4.3.5.2).

The only issue with this method of passing the users' knowledge at the very 

start o f the segmentation, is that the final segmentation depends on the initial 

tagging information provided by the user (Figure 4.16). But this restriction is 

not a big limitation provided the user makes a conscious effort to associate 

ambiguous locations with the corresponding anatomy.

Making use of the remapped CT image data was found to be detrimental as 

demonstrated in Section 4.3.5.3.
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Considering the above listed pros and cons of all the possible routes explored to 

attain the final segmentation one can arrive upon the following requirements to attain 

the best possible solution :

For segmentation processing the original CT image data should be used.

The user knowledge regarding the anatomical structure present in the image 

should be given through tagging the relevant locations and associating those 

locations with their corresponding anatomy in the image. This user 

information should be passed on to the segmentation process right at the 

starting of the process.

• Care should be taken, such that those locations with conflicting image 

properties should be associated with their corresponding anatomy.

The final segmentation attained through the different segmentation processes are not 

similar. But the overall segmentation output reasonably captures the difference 

between the size of the blood vessel and the airway. That is, based upon the 

segmentation output it could be decided whether the airway is dilated or not. For 

example, comparing the outputs of the following two segmentation processes, both 

of which make use of the passed on user knowledge:
• segmentation using the passed on user knowledge which (the user 

knowledge) is based on the output of initial unsupervised segmentation 

(Figure 4.14 c)

• segmentation making use of initial user tagged information (Figure 4.15 c)

, The shape of the regions segmented by the above two processes are different. But 

looking at the properties of the segmented regions (Table 4.4 and Table 4.6) one can 

arrive upon the conclusion that the size of the blood vessel is smaller than the 

combined size of airway wall and airway lumen.

Since the results of the segmentation processes are not exact it needs to be further 

refined. Taking the obtained solution as an approximation the identified boundaries 

of the blood vessel, airway wall and airway lumen are further refined in the 

subsequent boundary fitting process (Section 4.3.7).
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4.3.7. Improving the output of the user guided HCS process and the estimation of 

the properties of airways and the accompanying blood vessels (Boundary 
approximation)

Making use of the HCS process output, that is the segmentation of the boundaries of 

the airways and the accompanying blood vessels, measurements such as the cross- 

sectional area of the airway and the accompanying blood vessel could be made 

(Table 4.4 and Table 4.6). But for detailed measurements of the airways and the 

accompanying blood vessel, as illustrated in the schematic shown in Figure 4.2, the 

HCS process output alone is not enough as the user guided segmentation process 

output varies depending upon the user input of the tagged locations (Figure 4.14 c 

and Figure 4.15 c ) .

Apart from the above limitation, the HCS process output is not perfect. For example, 

inspecting the segmentation output it could be seen that the boundaries of the 

segmented region are jagged and irregular (Figure 4.15 c). Hence, the HCS process's 

output cannot be taken to represent the underlying anatomy. The reason for these 

limitations, of the HCS output, is because of the sparseness of the CT image data 

(Table 4.1) and the associated ambiguity of the CT image data (Table 4.2 and Table 

4.3).

To address the above issues subsequent processing needs to be applied on the HCS 

process output. The details of this additional processing and how it could be used, to 

make measurements of the airways and accompanying vessels, is discussed 

(expanded) in this section.

de Jong et al. [2005] made the following observation.

Start Quote..
Saba et al [Saba 2003] have developed an alternate technique for measuring 
airways that are not cut in cross-section. This method involves fitting an ellipse to 
the airway lumen and wall, and shows great promise in correcting the errors in 
measurement o f obliquely cut airways. These techniques claim to be more 
accurate than the more commonly used techniques, but have not been generally 
applied, presumably because o f the limited availability o f the complex algorithms 
involved.

End Quote..

In our study an approach very similar to that mentioned by de Jong et al. [2005] 

above was designed and implemented. The steps involved are as follows :
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• firstly, make use of the user guided HCS process to approximately outline the 

boundaries of the underlying anatomy

• make use of the above segmentation output, as an approximation, and best fit 

an elliptical boundary around the blood vessel and the airway

4.3.7.I. Fitting an ellipse to the boundaries of the airway and the accompanying 

blood vessel

Some of the boundary points extracted from the user guided HCS process output 

could be erroneous. Hence, the method that will be used to fit an ellipse, to those 

boundary points, should have the following properties :

• the ellipse fitting method should be extremely robust

it should always return an ellipse even if some of the input are bad data 

Over and above the above listed basic requirements the chosen ellipse fitting method 

should be easy to implement and the results (ellipse) should be verifiable.

Fitzgibbon et al [1996] presented a least squares fitting of ellipse. They claim that 

their work was efficient for fitting ellipses to scattered data. Also their method 

incorporates the ellipticity constraint into the normalization factor. Hence, they claim 

that their method has the following advantages :

• It is ellipse-specific so that even bad data will always return an ellipse

• It can be solved naturally by a generalized Eigen system 

it is extremely robust, efficient and easy to implement.

To estimate the boundaries, of the airway and the accompanying blood vessel, the 

ellipse fitting method formulated by Fitzgibbon et al [1996] was used as follows :

• firstly, the user aided HCS process was applied within the region of interest 

around the identified airway and the accompanying blood vessel (Section 

4.3.5.2)

• if the segmentation of the airway and the accompanying blood vessel was 

found reasonable (Figure 4.20(b)) then the boundary points on the constituent 

regions were found (Figure 4.20(c))

• the estimated boundary locations of the regions are passed on to the ellipse 

fitting process to fit the corresponding ellipses.

• Finally, the major axis and the minor axis of the fitted ellipses are estimated 

(Table 4.9) (Figures 4.21 and 4.22).
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Table-4.9 -  Minor and Major axis (Figure 4.22) dimensions (in pixels) o f the fitted ellipse to 
the boundary of the Blood vessel, Airway wall and Airway lumen shown in Figure 4.20 a

Blood vessel Airway wall Airway lumen

Minor Axis 4.06 9.80 5.01

Major Axis 5.45 13.79 6.70

f 3 J
(C>J

a b c

Figure 4.20 -  Boundary locations of the segmented anatomies.
CT image data, ranging from (-) 1024 to 508 Hounsfield values, mapped to 256 level of grey 

levels (a). Segmentation of the four regions, Blood-Vessel (red) Airway Wall (Green), Airway 
(Blue), lung parenchyma (Black) (b). Boundary locations around the three regions, namely 

Blood Vessel (red), Airway Wall (Green) and Airway Lumen (Blue) (c)

A mm L a

c

Figure 4.21 Minor and Major axis o f the fitted ellipse to the boundary of the Blood Vessel (a),
Airway-Wall (b) and Airway Lumen(c).

Figure 4.22 Minor and Major axis of the fitted ellipse to the Blood Vessel (a), Airway-Wall (b)
and Airway Lumen(c).
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4.3.7.2. Quantitative Measurements of the Airways and the Accompanying Blood 

Vessels

Making use of the estimated short axis and long axis, through the ellipse fitting 

process various detailed measurements of the airway and the accompanying blood 

vessel could be made (Figure 4.2) [de Jong et al. 2005].

For the airway and the accompanying blood vessel of Figure 4.22, the linear 

measurements are listed in Table 4.10, the ratios of the various linear dimensions are 

listed in Table 4.11, the area related dimensions are listed in Table 4.12 and the ratios 

of the various areas are listed in Table 4.13. The square root of Aaw is often derived, 

since it is relatively linearly related to Pi. Finally, airway dimensions can be 

referenced to body surface area (e.g. (airway wall area)/BSA and (airway wall 

thickness)/BSA)

Table-4.10 - Linear measurements of the airway and the accompanying blood vessel of Figure
4.22.

Linear Measurements Value in pixels

airway perimeter (Pi)

long and short axes of the outer airway area 
(Ao)

13.79 and 9.80

long and short axes of the lumen area (Ai) 6.70 and 5.01

long and short axes of the artery 5.40 and 4.06

airway wall thickness (Awt) (9 .80-5 .01)=  4.79

airway lumen diameter (ALD) 5.01

airway outer diameter (AoD = ALD+Awt) (5.01+4.79) = 9.80

arterial diameter (AD) 4.06

Table-4.11 -  Ratios of the various linear dimensions of the airway and the accompanying blood
vessel of Figure 4.22.

Ratios o f  the various linear dimensions Value in pixels

long and short axes ratio of the outer airway area (13.79/9.80)= 1.41

long and short axes ratio of the lumen area (6.70/5.01) =1.34

long and short axes ratio of the artery (5.40/4.06) = 1.33

(airway lumen diameter)/(arterial diameter) (ALD/ 
AD)

(5.01/4.06)= 1.23

(airway wall thickness)/(arterial diameter) 
(Awt/AD)

(4.79/4.06) = 1.78

(airway wall thickness)/(airway lumen diameter) 
(Awt/ALD)

(4.79/5.01) = 0.96
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Table-4.12 -  Area related dimensions of the airway and the accompanying blood vessel of
Figure 4.22.

Area related dimensions Value in pixels
outer airway area (Ao = Aaw+Ai) (pi x 13.79/2x9.8/2) = 106.18

lumen area (Ai) (pi x 6.7/2x5.01/2) = 26.37

airway wall area (Aaw = Ao - Ai) (106.18-26.37) = 79.81

arterial area (AA) (pi x 5.4/2x4.06/2) =17.23

Table-4.13 -  Ratios of Area related dimensions of the airway and the accompanying blood
vessel of Figure 4.22.

Ratios o f  Areas related dimensions Value in pixels

lumen area/arterial area (Ai/AA) (26.37/17.23) = 1.53

airway wall area/arterial area (Aaw/AA) (79.81/17.23) = 4.63

Percentage wall area = (airway wall area/outer airway area) x 100 
(Aaw/Aox 100)

(79.81/106.18) x 100 = 
75%

4.3.8. Synopsis of the User Guided HCS process Based Estimation of the 

Properties of the Airways and the Accompanying Blood Vessels

Given the CT image of the cross-section of the lungs (Figure 4.3), the following are 

the major steps involved to estimate quantitatively the dimensions of the airway 

lumen and wall, and the accompanying pulmonary artery (Figure 4.2):

Obtain the user tagged input at the start of the HCS process based segmentation. 

(Section 4.3.5.2) (Figure 4.15 b)

• Perform the HCS process based segmentation (Section 4.3.5.2) (Figure 4.15 c).

• Estimate the boundary locations between the different anatomical sections 

(Figure 4.20 c).

• Perform a least-square fitting of ellipses making use of the estimated boundary 

locations (Section 4.3.7.1) (Figure 4.22).

• Estimate the quantitative measurements of the airway lumen, airway wall and the 

blood vessel (Section 4.3.7.2).

4.3.9. Critical Evaluation of the Implemented User Guided HCS Process Based 

Procedure to Estimate the Dimensions of the Air-Way and Artery

In the following aspects the implemented user guided HCS process based method 

differs from the earlier attempts, to measure airways dimensions :

• The HCS process based method makes use of region based measure
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(distribution of the pixel values) to measure the properties of the different 

components (airway and artery) in an image. This is much more robust than 

making use of individual pixel values (X-ray attenuation) alone. Because 

individual pixel values may be similar (e.g. between airway wall and artery) 

but the distribution (or arrangement) of those values will differ between 

different components in an image e.g. airway and artery. This is illustrated by 

the success of HCS in differentiating airway wall from artery even though 

both airway wall and artery have very similar X-ray attenuation values.

• No heuristics are being used to obtain the segmentation of the blood vessel 

and the airway.

• Once the HCS process based segmentation has been initiated the process is 

unsupervised and no subsequent human intervention is needed.

• The HCS process based method segments and outlines both the airway as 

well as the adjoining blood vessel.

• The final step, in the designed solution, fits the best possible ellipses to the 

boundaries of the segmented anatomical regions. The ellipse fitting operation 

is robust enough to accommodate extraneous boundary locations.

• The operation of fitting the best possible ellipse, yields an objective measure 

of the dimensions, of the airway and the accompanying blood vessel.

The manual estimation of the dimensions of the airway and the accompanying blood 

vessel is time consuming, subjective and non-repetitive. Although the currently 

designed computer assisted process needs some user input, it neither needs to be very 

precise nor consistent. Because the HCS process and the subsequent ellipse boundary 

fitting process are robust and it presents a reproducible and an acceptable solution.

Fully automatic segmentation is not possible because of the following inherent issues 

with the source data

• The image is of very low resolution e.g. the dimensions of the blood vessels 

is hardly five pixels across (Table 4.9).

• The properties (X-ray attenuation values) of the components are very similar 

(Table 4.3).
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4.3.9.I.Critical Discussion on Making Use of the User Input

The currently designed user guided segmentation process might not be a perfect 

alternative to a wholly manual process. Because the process needs user guidance to 

start the process. Expecting the user to guide the process has got an advantage as 

well as a disadvantage.

The advantage i s :

The user has got some control over the segmentation process.

The disadvantage i s :

• expecting too much of manual intervention is neither an elegant software 

solution nor a comfortable one for the user.

So to improve the currently implemented user guided segmentation process one 

allows the user to retain control but at the same time reduce the amount of user input 

to the minimum. The way this can be achieved is explored below.

The main reason for the need and necessity of the user guidance is to differentiate 

ambiguous locations. That is to differentiate those locations which are different 

anatomically but have the same image properties. For example, locations in the 

airway lumen and locations in the lung parenchyma have exactly the same HU value 

(Tables 4.2 and 4.3). Similarly, some of the locations within the blood vessel have 

very similar HU values as that of the airway wall. To address this issue currently the 

segmentation process expects that the user associates (tags) those ambiguous 

locations with the underlying anatomy. This is done by tagging different locations 

within the different anatomical regions.

If one inspects the tagging information passed on by the user it could be seen that 

almost half of the total tagged locations are given to differentiate ambiguous 

locations within the lung parenchyma, from the airway (Table 4.5). Also the 

locations tagged within the lung parenchyma affects the final segmentation (Figure 

4.16).

From the above discussion it can be concluded that if one isolates and segments only 

the airway wall and lumen one need not get much input from the user. Similarly, if 

one isolates and segments only the blood vessel on its own then the user need not 

give any tagging information to differentiate locations which are ambiguous between 

the blood vessel and the airway wall.
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The anatomical regions, namely the airway (wall and lumen) and the blood vessel, 
can be segmented in isolation as follows :

• Prior to the HCS process based segmentation process the user draws a hand 

drawn boundary around the airway and the blood vessel. This will isolate 

those anatomical regions from each other as well from most of the lung 

parenchyma.

• Applying the HCS process based segmentation within the hand drawn 

boundary will aid the segmentation process by isolating almost all of the 

ambiguous locations, prior to the segmentation process.

The above possibility was further tested experimentally and validated as will be 

discussed in the next section (Section 4.3.10). The details of the operation of making 

the user input isolate the individual anatomical regions, viz. Blood-Vessel and Air- 

Way will be discussed in detail in Section 4.3.10.

4.3.10. Segmentation of Airway and the accompanying Blood Vessel making use of 

the user tagged boundary locations around the individual anatomy

From the discussion so far one can conclude that the segmentation of the boundaries 

of the blood vessel, airway-wall and airway (lumen) need some type of user input to 

aid the segmentation process. So far we have discussed how the user input can be 

attained through the following different ways :

• obtaining the user input through the output of an initial unsupervised 

segmentation (Section 4,3.5.1)

• obtaining the user input through user tagged location labelling key pixel 

locations as belonging to the respective anatomy (Section 4.3.5.2).

Both of the above approaches expect the user to consciously tag locations belonging 

to the different anatomy. Because of the precision and accuracy expected of the 

operation, the user may find the tagging of the locations, within the respective 

anatomy, tedious and time consuming. Hence, it was decided to explore the 

possibility of reducing the precision or accuracy required of the user while providing 

the tagged locations.

One of the ways of obtaining the user input without too much of precision or 

accuracy involved is to obtain the approximate locations around the boundaries of 

the two major anatomies namely the blood vessel and the air-way. In this operation
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the user need not precisely tag the locations within the different anatomies, but rather 

only the approximate boundaries within which the two major anatomies viz. blood 

vessel and the air-way are located.

The reason for obtaining the locations, from the user, near the boundaries of the two 

major anatomies viz. blood vessel and the air-way is as follows :

• the major issue faced by the segmentation process is that the pixel locations 

within the airway-lumen have exactly the same Hounsfield values as the pixel 

locations within the lung parenchyma just outside the air-wall (Section 4.3.4, 

Table 4.2)..

Outlining the boundary of the airway (air-wall along with the lumen) and applying 

the segmentation process only within the boundary will eliminate most of the 

conflicting information if not all.

Obtaining from the user only the approximate locations, just outside the boundary of 

the air-way, will result in some of the locations belonging to the lung parenchema 

included within the boundary. This inclusion of a very small part of the parenchema 

will still affect the segmentation process. But this was handled by incorporating 

additional condition for merging. The details of what and how of the additional 

condition will be discussed in detail later in this section while discussing the 

implementation of the process.

In brief, the following are the major steps which are involved in the segmentation of 

the blood-vessel, the airway-wall and the lumen by just getting the approximate 

locations around the major anatomies viz. blood-vessel and the air-way :

• obtain the approximate locations just outside the boundaries of the blood 

vessel and the airway.

• connect the discrete locations given by the user, to form closed curves, by 

fitting cubic splines to the two set of locations.

• apply the HCS process within the two areas of the image bounded by the 

cubic spline curves.

• based on the segmentation yielded by the HCS process estimate the 

boundaries of the blood vessel, airway-wall and the airway (lumen).

• estimate the most appropriate boundaries of the anatomies by fitting the best 

fitting ellipses to the estimated boundary locations.

The above steps are discussed in detail in the following sections.
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4.3.10.1. Marking the approximate boundaries around the Blood Vessel and the 

Airway-wall

The user tags (marks) locations just outside the boundaries o f the blood vessel and 

the air-wall. This is the only input obtained from the user. The rest of the operations, 

to segment the boundaries o f the blood vessel, airway-wall and airway lumen, are 

made without further intervention from the user.

Figure 4.23 shows the locations tagged by the user around the blood vessel and the 

air-way found in the CT image of the lungs shown in Figure 4.6. The boundary 

locations around the blood vessel are coloured Red and those around and just outside 

the airway-wall are coloured Green (Figure 4.23). The reason for assigning different 

colours for the different anatomies is that from here onwards the rest of the 

operations to segment the boundaries of the blood vessel, airway-wall and airway- 

lumen will be automatic.

Figure 4.23 - Locations marked by the user just outside and around the Blood Vessel 
(Red) and the Airway-Wall of the CT image of Figure 4.6.

4.3.10.2. Fitting cubic splines to connect the user given discrete locations and form 

a continuous closed curve

To reduce the manual input from the user the user is asked to mark only discrete 

locations around and just outside of the borders of the two major anatomies viz. 

blood vessel and the airway. Before the HCS process could be applied within the 

user tagged locations one need to identify the part o f the image contained within the 

user tagged locations. To identify the relevant part of the image within the user 

tagged locations one need to first connect all the discrete user tagged locations into a 

contiguous curve. This is done by interpolating the discrete locations into a 

contiguous set of locations by a cubic spline interpolation.
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The cubic spline interpolation needs to be provided with a set of three ordered 

adjacent locations. Hence, before one could apply the cubic spline interpolation to 

the set of discrete locations one needs to order the set o f locations into clockwise or 

anti-clockwise order.

The ordering of the set of discrete user tagged locations, into an ordered set of 

clockwise or counter-clockwise points, is done through an algorithm known as the 

Graham scan. The algorithm is named after Ronald Graham, who published the 

original algorithm in 1972 [Graham, 1972]. Graham's algorithm finds all the vertices 

of a convex hull ordered along its boundary. The convex hull of n points in the plane 

can be found by Graham's algorithm in 0 (n  log n) time [O'Rourkke, 1998].

After ordering, the discrete set o f user tagged locations, clockwise or counter­

clockwise the ordered set is made contiguous by interpolating additional locations 

through cubic spline interpolation. Figure 4.24 shows the cubic spline interpolated 

locations of the non-contiguous set of points shown in Figure 4.23.

13
Figure 4.24 - Cubic spline interpolated locations of the locations marked by the user 

just outside and around the Blood Vessel (Red) and the Airway-Wall o f the CT image
of Figure 4.6.

4.3.10.3. HCS process based segmentation of the part of the image enclosed by the 

continuous curves

The HCS process is applied within the two regions bounded by the two contiguous 

curves. The output of the segmentation when there are still 20 regions yet to be 

merged is shown in Figure 4.25.

From the segmentation output shown in Figure 4.25 it could be seen that the major 

anatomies namely blood vessel (R ed), airway-wall (Green) and airway-lumen (Blue) 

have been delineated. But some locations within the lung parenchyma have been 

misclassified as airway-lumen (Figure 4.25 Black).
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Figure 4.25 - HCS process based segmentation o f the Blood Vessel (Red), Airway-
Wall and Airway-Lumen 

The misclassified part of the Lumen as lung parenchyma is coloured dark (Black)

The misclassification, of some locations of lung parenchyma as airway-lumen, is due 

to the following reasons :

the user tagged boundary locations, around the airway, enclose part of the 

lung parenchyma.

the Hounsfield values (-1024) of the locations in the lung parenchyma, which 

got classified as airway-lumen, are exactly the same as that of the airway- 

lumen (Table 4.2).

the HCS process compares and merges even those locations which do not 

border to each other (Section 4.3.4.1).

Of the three reasons listed above one do not have much control on the first two. 

Firstly, one cannot expect the user to precisely give the boundary locations such that 

the lung parenchyma is excluded. Secondly, it is either the nature of the anatomy or 

the limitation of the acquisition device or both that the given value of the X-ray 

attenuation of the lung parenchyma is very similar to that of the airway lumen.

To address the third reason, which will prevent the misclassification from occurring, 

one can restrict the HCS process from merging locations which are not bordering to 

each other. Since the airway wall lies between the lung parenchyma and the airway 

lumen; by restricting the HCS process to merge only bordering regions one can 

prevent the locations in lung parenchyma from merging with the locations in the 

airway lumen even if they are found similar. But restricting the HCS process to 

merge only bordering regions will be detrimental to the merging of the regions 

within the airway-wall Figure 4.11 (Section 4.3.4.1). Hence, one cannot arbitrarily 

disallow the HCS process from merging regions not bordering to each other. But 

knowing in theory what should be the Hounsfield values of the airway-lumen (-1024)



one can restrict those regions whose average pixel value is around -1024 from 

merging with non-bordering regions.

4.3.10.4. Reducing the misclassification by specifying pixel value range to restrict 
merging of regions across the Airway-Wall

As discussed above to restrict the misclassification of locations from lung 

parenchyma as belonging to the airway-lumen one need to disallow the regions, to 

which those locations belong to, from merging with the non-bordering regions of the 

airway-lumen.

To restrict similar regions of the lung parenchyma from merging with the similar 

non-bordering regions of the airway-lumen, but still allow other non bordering 

similar regions (e.g. within the airway-wall) to merge with one another following 

additional steps were incorporated :

• the user provides a range of Hounsfiled values as parameters for the HCS 

process.

• during the merging process the HCS process will check the average pixel 

value of similar non-bordering regions.

• if the average pixel values of the non-bordering similar regions falls within 

the user provided Hounsfield value range then those non-bordering regions 

are not merged even if they are found similar.

Figure 4.26 shows the segmentation output when the pixel value range is given from 

-1024 to -974. As it can be seen from the output there are still misclassified lung 

parenchyma. The reason behind this misclassification is because when regions which 

were restricted from merging merge with adjacent regions the average value of the 

region get altered and thus fall out of the restricted range. The misclassification could 

be possibly eliminated by choosing the right pixel value range. But this will be a hit 

and miss process and hence not found suitable. Hence, to eliminate the 

misclassification altogether alternative method is proposed. The alternative proposed 

method will be discussed in Section 4.3.11.
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Figure 4.26 - HCS process based segmentation of the Blood Vessel (Red), Airway-
Wall and Airway-Lumen 

The misclassified part o f the Lumen as lung parenchyma is coloured dark (Black)

4.3.10.5. Estimating the dimensions of the Blood vessel, Airway-wall and Airway- 

lumen

As it can be seen from Figure 4.26 most of the pixel locations belonging to the blood 

vessel, airway wall and airway lumen have been properly segmented as their 

respective anatomical regions. Making use of the bordering pixel locations belonging 

to the respective segmented regions ellipses were fitted to approximate the 

boundaries of the respective anatomies (Section 4.3.7). Figure 4.27 shows the major 

and minor axis of the fitted ellipses to the respective anatomies. Table 4.14 lists the 

values of the major and minor axis o f the fitted ellipses to the respective anatomies.

Table-4.14 -  Minor and Major axis dimensions (in pixels) o f the fitted ellipse to the boundary 
of the Blood vessel, Airway wall and Airway lumen (Figure 4.27)

Blood vessel Airway wall Airway lumen

Minor Axis 3.50 9.21 4.52

Major Axis 4.05 12.65 7.02

•/TT V r j r o  .       _ —   .             _
a b c

Figure 4.27 - Minor and Major axis of the fitted ellipse to the Blood Vessel (a), Airway-Wall
(b) and Airway-Lumen (c).
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Comparing the values listed in Table 4.14 and those listed in Table 4.9 there are 

minor variations (Table 4.15). But the earlier values in the Table 4.9 were obtained 

with the user tagging the relevant locations corresponding to the different anatomy 

(Section 4.3.5.2). Thus, in the earlier approach the user involvement is much more 

higher than the present approach.

Table-4.15 -  The difference between the Minor and Major axis dimensions (in pixels) of the 
fitted ellipse to the boundary of the Blood vessel, Airway wall and Airway lumen (Figure 4.22)

(Table 4.9) and (Figure 4.27) (Table 4.14)

Blood vessel Airway wall Airway lumen
Minor Axis (3 .5-4 .06) = -0.56 (9.21-9.80) = -0.59 (4.52-5.01) = -0.49
Major Axis (4.05-5.45) = -1.4 (12.65- 13.79) = -1.14 (7.02-6.70) = 0.32

4.4. Summary

In this chapter we discussed how the user can exploit the HCS process segmentation 

output to incorporate his/her decision process for the objective measurements of the 

dimensions of the Air-Way and the accompanying Blood Vessel present in CT 

images of the lungs. This process of interleaving user decision seamlessly with the 

HCS processing of the diagnostic images augments the diagnostic information 

present within the image data.

Chapter Six will discuss how the above HCS aided interpretation can be 

subsequently used for the monitoring of physiological conditions. Specifically, the 

following HCS aided monitoring will be discussed in detail:

• HCS process aided monitoring of Cystic Fibrosis.
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Chapter 5 HCS Process Aided Interpretation of X-ray Mammograms

5.1. Introduction

In Chapter 4 user decision incorporated processing of CT images of the lungs 

demonstrated one of the objectives of this study, that is user decision incorporated 

image processing techniques can be used for processing diagnostic images and 

augment the information present in those images to aid the diagnosis process.

In this chapter the following application in which user decisions were incorporated 

during the processing of the X-ray image data, and thus augment their diagnostic 

information, is discussed in detail:

• user decision incorporated processing of X-ray mammograms.

5.2. User Decision Incorporated Processing of X-ray Mammograms

The processing of X-ray mammograms was yet another application in which HCS 

process was used to investigate the incorporation of users' decision during the 

processing of the diagnostic image data. In this application the HCS process was 

used to incorporate the user decisions during the processing of X-ray Mammograms 

to design and implement an objective measure to differentiate benign from malignant 

abnormalities.

In this application the HCS process was applied in two stages. Each of the two stages 

need to be initialised by the user decision process. The user decision process 

involved, prior to each of the two stages, is briefly described below :

• before applying the HCS process, in the first stage, the user decides the 

approximate location of the abnormality. Around the approximate location, 

decided by the user, the HCS process was applied. This is the first stage of 

applying the HCS process.

• before the second stage application of the HCS process the user decides 

which of the different segmentations output, yielded by the first stage HCS 

process, defines the appropriate boundaries of the abnormality and the 

healthy regions. Making use of the user decided segmentation output, of the 

fist stage HCS, the more appropriate boundaries of the abnormality and the 

healthy regions are delineated.

Subsequently, the second stage HCS process estimates the dissimilarity
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measure between the abnormality and the healthy regions. The objective 

measure, to differentiate benign from malignant abnormality, is based on this 

dissimilarity measure estimated by the HCS process during the second stage.

In the following sections details of the above outlined methodology, which was 

designed and implemented to quantitatively differentiate benign from malignant 

abnormality, will be discussed.

5.2.1. Mammogram Image Data

The Mammographic Image Analysis Society (MIAS) is an organisation of UK 

research groups interested in the understanding of mammograms and has generated a 

database of digital mammograms. Films taken from the UK National Breast 

Screening Programme have been digitised to 50 micron pixel edge with a Joyce- 

Loebl scanning microdensitometer, a device linear in the optical density range 0-3.2 

and representing each pixel with an 8-bit word. The database contains 322 digitised 

films. It also includes radiologist's "truth"-markings on the locations o f any 

abnormalities that may be present.

The original MIAS Database (digitised at 50 micron pixel edge) has been reduced to 

a 200 micron pixel edge and padded/clipped so that all the images are 1024x1024 

pixels. The reduced size Mammographic images are available via the Pilot European 

Image Processing Archive (PEIPA) at the University of Essex, as mini-MIAS 

database of mammograms. The mammogram images are available for download 

from the web-link http://peipa.essex.ac.uk/info/mias.html], (visited on August 2011)

To quantitatively evaluate the performance of HCS process, in quantitatively 

differentiating benign from malignant abnormalities, mammogram images from the 

mini-MIAS database of mammograms [Suckling et. al. 1994], were used.
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5.2.1.1. mini-MIAS Database of Mammograms

The mini-MIAS database provides a list which gives appropriate details about the

mammograms. The details are provided in a format as follows

1st column:
MIAS database reference number

2nd column:
Characteristics of the breast tissue :

F Fatty
G Fatty-glandular 
D Dense-glandular

3rd column:
Class of abnormality present:

CALC Calcification
CIRC Well-defined/circumscribed masses 
SPIC Spiculated masses 
MISC Other, ill-defined masses
ARCH Architectural distortion • .
ASYM Asymmetry 
NORM Normal

4th column:
Severity of abnormality:

B Benign 
M Malignant

5th, 6th columns:
x,y image-coordinates of the centre of the abnormality.

7th column:
Approximate radius (in pixels) of a circle enclosing the abnormality.

As an example following is an entry in the mini-MIAS list: 

mdbOOl G CIRC B 535 425 197

The above entry gives the following information about the corresponding

: mdbOOl 
: Fatty-glandular
: Well-defined/circumscribed mass 
: Benign 
:533,425

Approximate radius (in pixels) of the circle enclosing the abnormality : 197.

The mammograms image data are stored as 8 bit Gray-scale data in the Netpbm 

Gray-scale image format PGM (Portable Gray Map).

mammogram:

Mammogram image id 
Breast tissue type (G)
Class of abnormality (CIRC)
Severity of the abnormality (B)
Centre of the abnormality location (x,y)



5.2.2. Preliminary Investigation of the HCS Process Based Analysis of the X-ray 

Mammograms

As a preliminary test run, the HCS process was applied on two of the mini-MIAS 

database mammograms. The mammograms that were chosen namely Image ID 

mdb097 and Image-ID mdbl02 had benign and malignant abnormality respectively. 

The following sections will discuss the result of applying the HCS process to analyse 

these two mammogram image data.

5.2.2.1. HCS Process Analysis of a Benign Abnormality

Mammogram image data mdb097 (Figure 5.1) has a fatty background tissue with a 

abnormality of benign asymmetric density (circled in white).

To reduce the processing time, a region of interest (ROI) o f size 140 xl40  (shown in 

white) was chosen as enclosing the abnormality. The HCS process was applied 

within the ROI. Figures 5.2 to 5.5 illustrate the segmentation output of the HCS 

process when applied to the mdb097 mammogram image data, within the ROI.

Figure 5.1 -  Digitised X-ray Mammogram image data, mini-MIAS mdb097.
Of fatty background tissue with benign asymmetric abnormality, (abnormality circled, 

in white, based on mini-MIAS information)
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During the HCS process the number of regions will decrease as the allowable 

dissimilarity level between the merging regions is increased (Table 5.1). Because, as 

the allowable dissimilarity between the merging regions is increased more and more 

regions having higher dissimilarity, than the earlier merged regions, will merge. 

Figures 5.2 to 5.5 show the hierarchy of different regions and their boundaries found 

during the HCS process. These segmentations are chosen by the user because in 

these segmentations one of the segmented region could be identified as part of the 

abnormality.

Table 5.1 - Details of the intermediate segmented results shown in Figures 5.2 to 5.5

Regions and Boundary 
Images

Number of Regions Dissimilarity between the 
Regions

Figure 5.2 5 > 10%
Figure 5.3 4 > 20%
Figure 5.4 3 >21%
Figure 5.5 2 >25%

In the intermediate segmented image shown in Figure 5.2 it could be seen that most 

of the pixels of the regions having average density values between 181 to 190 

(coloured in Fuschia and Red) are well within the border of the lesion (circled in 

white) marked by the expert. But there are also pixels belonging to the two regions 

(coloured in Fuschia and Red) outside the lesion border as well.

To evaluate the above results, if we adopt the criteria by Kegelmeyer et. al 
[Kegelmeyer et. al. 1994] which states :

• a computer finding is considered as a true positive detection if its area is 

overlapped by at least 50% of a true lesion as indicated by an expert 

radiologist;

• a computer finding that does not so overlap a true lesion is considered as false 

positive; and

• a true lesion that is not overlapped by any computer finding is considered as 

false negative.

By the above criteria, the diagnostic accuracy performance of HCS process at this 

stage is 100% true positive.
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Region 
(shown in colour)

Minimum 
Density value

Maximum
Density
value

Average
Density
value

Standard Deviation 
of the Density 

values
Red 182 199 190 2.8

Fuschia 172 191 181 3.2

Yellow 165 182 174 2.5

Green

160 177 168 2.5

145 170 162 2.7

Table 5.2 - Details of the five regions in the intermediate segmentation result shown in
Figure 5.2

Figure 5.2 - Intermediate segmented image showing the live regions and their boundaries

From the intermediate segmented image shown in Figure 5.3 it could be seen that 

still most of the pixels of the regions having average density values between 180 to 

190 (coloured in Red and Fuschia) are well within the border of the lesion (circled in 

white) marked by the expert. But there still are pixels belonging to the two regions 

(coloured in Red and Fuschia) outside the lesion border as well.
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To evaluate the above results, if we adopt the criteria by Kegelmeyer et. a l 

[Kegelmeyer et. al. 1994], as mentioned earlier, the diagnostic accuracy performance 

of HCS process at this stage is still 100% true positive.

Table 5.3 - Details of the four regions in the intermediate segmentation result shown in
Figure 5.3

Region 
(shown in colour)

Minimum 
Density value

Maximum
Density
value

Average
Density
value

Standard Deviation 
of the Density 

values
Red 182 199 190 2.8

Fuschia 171 191 180 3.3

Blue 160 182 171 3.5

Green 145 171 162 2.8

Figure 5.3 - Intermediate segmented image showing the four regions and their
boundaries
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In the intermediate segmented image shown in Figure 5.4 it could be seen that still 

most of the pixels of the region having average density value 185 (coloured in 

Fuschia) are well within the border of the lesion (circled in white) marked by the 

expert. But still there are also pixels belonging to the region (coloured in Fuschia) 

outside the lesion border as well.

To evaluate the segmentation output in Figure 5.4, if we adopt the criteria by 

Kegelmeyer e t al. [Kegelmeyer et. a l 1994], as mentioned earlier, the diagnostic 

accuracy performance of HCS process at this stage is still 100% true positive.

Table 5.4 - Details of the three regions in the intermediate segmentation result shown in
Figure 5.4

Region 
(shown in colour)

Minimum 
Density value

Maximum
Density
value

Average
Density
value

Standard Deviation 
of the Density 

values
Fuschia 174 199 185 4.6

160 184 172 4.0

Green 145 171 162 2.9

Figure 5.4 - Intermediate segmented image showing the three regions and their
boundaries
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In the intermediate segmented image shown in Figure 5.5 it could be seen that most 

of the pixels of the region, which has an average density value of 181 (coloured in 

Fuschia), are still well within the border of the lesion (circled in white) marked by 

the expert. But still there are also pixels belonging to the region (coloured in Fuschia) 

outside the lesion border as well.

To evaluate the above results, if we adopt the criteria by Kegelmeyer e t al. 

[Kegelmeyer e t a l 1994], as mentioned earlier, the diagnostic accuracy performance 

of HCS process at this stage is still 100% true positive.

Table 5.5 - Details of the two regions in the intermediate segmentation result shown in
Figure 5.5

Region 
(shown in colour)

Minimum 
Density value

Maximum
Density
value

Average
Density
value

Standard Deviation 
of the Density 

values

Fuschia 169 199 181 5.6
Green 145 184 167 5.1

Figure 5.5 - Intermediate segmented image showing the two regions and their boundaries
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5.2.2.2. HCS process analysis of a malignant abnormality

Mammogram image data mdbl02 (Figure 5.6) has a dense-glandular background 

tissue with a abnormality of malignant asymmetric density (circled in white).

To reduce the processing time, a region of interest (ROI) of size 100 xl74 (shown in 

white) was chosen enclosing the abnormality. The HCS process was done within the 

ROI. Figure 5.7 to Figure 5.10 illustrate the segmentation output of the HCS process 

applied to mdb!02 mammogram image data, within the ROI.

Figure 5.6 -  Digitised X-ray Mammogram image data, mini-MIAS mdbl02. 
Of dense-glandular background tissue with malignant asymmetric abnormality, 

(abnormality circled, in white, based on an expert findings)

Figures 5.7 to 5.10 show the hierarchy of different regions and their boundaries 

found during the HCS process.
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The number of regions will decrease as the allowable dissimilarity level between the 

merging regions is increased (Table 5.6). This is because, the allowable dissimilarity 

between the merging regions is increased more, and more regions having higher 

dissimilarity, than the earlier merged regions, will merge.

Table 5.6 - Details of the intermediate segmented results shown in Figure 5.7 to 5.10

Regions and Boundary 
Images

Number of Regions Dissimilarity between the 
Regions

Figure 5.7 6 > 24%
Figure 5.8 4 >31%
Figure 5.9 3 >40%

Figure 5.10 2 > 46%

In the intermediate segmented image shown in Figure 5.7 it could be seen that most 

of the pixels of the region having average density value of 212 (coloured in Red) is 

well within the border of the lesion (circled in white) marked by the expert.
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Table 5.7 - Details of the six regions in the intermediate segmentation result shown in
_________________________________ Figure 5.7______________

Region 
(shown in colour)

Minimum 
Density value

Maximum
Density
value

Average
Density
value

Standard Deviation 
of the Density 

values

Red 200 224 212 5.1

Fuschia 184 206 196 4.3

Yellow 171 192 182 4.2

Blue 154 178 169 4.4

Aqua 143 166 153 4.5

Green 132 150 141 3.3

Figure 5.7 - Intermediate segmented image showing the six regions and their boundaries

To evaluate the segmentation output in Figure 5.7, if we adopt the criteria by 

Kegelmeyer et. a l  [Kegelmeyer et. al. 1994], as mentioned earlier, the diagnostic 

accuracy performance of HCS process at this stage is still 100% true positive.
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Table 5.8 - Details of the four regions in the intermediate segmentation result shown in
Figure 5.8

Region 
(shown in colour)

Minimum 
Density value

Maximum
Density
value

Average
Density
value

.............“ ' ---- i|

Standard Deviation 
of the Density 

values
Red 200 224 211 5.4

Fuschia 178 206 194 5.5
Blue 154 190 174 6.1

Green 132 166 147 7.5

Figure 5.8 - Intermediate segmented image showing the four regions and their
boundaries

From the intermediate segmented image shown in Figure 5.8 it could be seen that 

most of the pixels of the region having average density value 211 (coloured in Red) 

are well within the border of the lesion (circled in white) marked by the expert.

To evaluate the above results, if we adopt the criteria by Kegelmeyer et. al. 

[Kegelmeyer et. al. 1994], as mentioned earlier, the diagnostic accuracy performance 

of HCS process at this stage is still 100% true positive.
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Table 5.9 - Details of the three regions in the intermediate segmentation result shown in
Figure 5.9

Standard DeviationRegion 
(shown in colour)

Minimum 
Density value

Maximum
Density
value

Average
Density
value

of the Density 
values

Fuschia

Green

Figure 5.9 - Intermediate segmented image showing the three regions and their
boundaries

From the intermediate segmented image Figure 5.9 it could be seen that most o f the 

pixels of the region having average density value 203 (coloured in Fuschia) 

reasonably overlap the border o f the lesion (circled in white) marked by the expert.

To evaluate the above results, if we adopt the criteria by Kegelmeyer et. al. 

[Kegelmeyer et. al. 1994], as mentioned earlier, the diagnostic accuracy performance 

of HCS process at this stage is still 100% true positive.
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Table 5.10 - Details of the two regions in the intermediate segmentation result shown in
Figure 5.10

Region 
(shown in colour)

Minimum 
Density value

Maximum
Density
value

Average
Density
value

Standard Deviation 
of the Density 

values
Fuschia 159 224 198 12.3
Green 132 178 154 11.8

Figure 5.10 - Intermediate segmented image showing the two regions and their
boundaries

From the intermediate segmented image shown in Figure 5.10 it could be seen that a 

major part of the pixels of the region having average density value 198 (coloured in 

Fuschia) lies outside the border of the lesion (circled in white) marked by the expert.

To evaluate the above results, if we adopt the criteria by Kegelmeyer et. al. 

[Kegelmeyer et. al. 1994], as mentioned earlier, the diagnostic accuracy performance 

of HCS process at this stage has a very low true positive. But since the standard 

deviation of the density values within the region (coloured Fuschia) is very high 

(greater than 12.0) it could be inferred that the region is highly inhomogeneous. 

Hence this segmentation of regions could be rejected.
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The above segmentation is obtained because HCS process has got no stopping 

criteria and the process goes about merging regions as the allowable dissimilarity 

between the regions is increased. Eventually combining all the regions as one single 

region.

5.2.2.3. Overall Discussion of the HCS Process Analysis of the Benign and 

Malignant Abnormalities

From the results of segmentation of the two mammogram image data (mdb097 and 

mdbl02) illustrated in the Figures 5.2 to 5.5 and Figure 5.7 to 5.10, respectively, the 

following general observations could be made :

The number of regions decrease as the allowable dissimilarity level between 

the merging regions is increased.

As the allowable dissimilarity between the merging regions is increased more 

and more regions having higher dissimilarity, than the earlier merged regions, 

merge and the homogeneity within the regions decrease. This can be 

observed by the increase in the standard deviation of the density values 

within the merged regions.

• The proposed HCS based CAD system, unlike the currently existing CAD 

systems, does not try to detect and prompt the abnormal regions. Instead, the 

designed HCS process strives to highlight the subtle differences within the 

same image by outlining those parts of the image having similar properties, 

for a given allowable dissimilarity level between the regions.

The outlining of the similar part of the regions within the image might be able 

to draw the attention of the expert to parts of the image which are dissimilar 

and hence having the possibility of diseased.

5.2.3. Differentiating Benign from Malignant Abnormalities ; a Possibility

The following quantitative comparisons of the segmentation results of mammogram 

image data of mdb097 (Figures 5.2 to 5.5) having benign asymmetric density and of 

the segmentation results of mammogram image data of mdbl02 (Figures 5.7 to 5.10) 

having malignant asymmetric density can be made :
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Comparing the dissimilarities between the different regions, during the 

merging process, for the mammogram image data of mdb097 (Table 5.1) and 

that of mammogram image data of mdbl02 (Table 5.6). It could be seen that 

the dissimilarity between regions for the benign asymmetric density is 

markedly lower (10% to 25%) (Table 5.1) when compared to that of the 

malignant asymmetric density (24% to 46%) (Table 5.6).

Will these differences in dissimilarities between the regions for benign (Table 

5.1) and malignant (Table 5.6) type of lesions provide clues to the benign or 

malignant nature of the lesion ?

• Comparing the average density of the regions having the highest density, 

during the merging process, for the mammogram image data of mdb097 

(Table 5.2 to Table 5.5) and that of mammogram image data of mdbl02 

(Table 5.7 and Table 5.8). It could be seen that the average density of the 

regions having the highest density for the benign asymmetric density is 

markedly lower (181 to 190) (Table 5.2 to Table 5.5) when compared to that 

of the malignant asymmetric density (~212) (Table 5.7 and Table 5.8).

Will this marked difference in the average density values within the regions 

having the highest density, of benign (Table 5.2 to Table 5.5) and that of 

malignant (Table 5.7 and Table 5.8) type of lesions provide clues to the 

benign or malignant nature of the lesion ?

To explore the above raised possibilities additional routines were incorporated within 

HCS and additional mammograms were processed. The details of the developed 

programs and how the validity of the possibilities were tested will be given in 

Section 5.2.4.

5.2.3.I. Differentiating Benign from Malignant Abnormalities; a Hypothesis

The two mini-MIAS mammograms, mdb097 having benign asymmetry and mdbl02 

having malignant asymmetry, were processed by the HCS process (Sections 5.2.2.1 

and 5.2.2.2). Inspecting the resulting output the following observations were made :

• comparing the dissimilarities between the different regions, as the merging 

process progressed; it could be seen that the dissimilarity among the regions
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for the benign case (mdb097) is markedly lower (10% to 25%) (Table 5.1) 

when compared to that of the malignant case (mdbl02) (24% to 46%) (Table 

5.6).

• comparing the average density of the regions having the highest density, 

during the merging process, it could be seen that the average density value, of 

the region having the highest density, for the benign case (mdb097) is 

markedly lower (181 to 190) (Table 5.2 to Table 5.5) when compared to that 

of the malignant case (mdbl02) (~212) (Table 5.7 and Table 5.8).

From the above observations it can be hypothesised that benign abnormalities have 

properties much closer to the healthy tissue and malignant abnormalities are 

markedly different from the surrounding healthy tissue.

The above hypothesis was objectively evaluated. The objective evaluation was done 

by the following process :

• measure the dissimilarity between the regions enclosing the abnormality and 

the regions enclosing the healthy tissue.

• plot the distribution of the dissimilarity measure between the abnormality 

regions and the healthy regions during the merging process.

It was hypothesised that the above measured and plotted dissimilarity measure will 

be markedly different for benign abnormalities when compared to that of malignant 

abnormalities, thus providing an objective measure to differentiate benign from 

malignant abnormalities.

5.2.4. Design and Implementation of an Objective Measure to Differentiate Benign 

from Malignant Abnormalities

As detailed in the earlier section the proposed objective measure is to measure the 

dissimilarity between the regions containing the abnormality and the regions 

containing healthy tissue. The measuring of the dissimilarity between the 

abnormality and the healthy region involves the following three steps :

• appropriate delineation of the boundary of the abnormality (Section 5.2.4.1).

• identifying the region of the image comprising the healthy part (Section 

5.2.4.2).

• measuring the dissimilarity between the abnormality and the healthy region 

(Section 5.2.4.3)
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The details of how the above three listed steps were implemented are discussed in 

Sections 5.2.4.1, 5.2.4.2 and 5.2.4.3.

5.2.4.I. More Appropriate Delineation of the Boundary of the Abnormalities

The success of the proposed method, to differentiate benign from malignant 

abnormality, squarely depends on the precision with which the boundaries, of the 

abnormality and the healthy part of the image, are known. Hence, the very first 

requirement is to know which part of the image contains the abnormality and which 

part of the image contains healthy tissue.

For each of the mammogram the mini-MIAS database provides an approximate 

radius (in pixels) of a circle enclosing the abnormality. The boundaries marked by 

human experts are only approximations. Hence, for the same image the abnormality 

marked by different experts will be of different size even though the location might 

be the same. This is the case because different experts generate different levels of 

approximations.

Figure 5.11 illustrates this fact, how a radiologist’s outlining the boundary of the 

abnormality (Black curve) varies with that marked (red circle) by using the radius 

information provided by the mini-MIAS database. Comparing the approximate 

boundary of the abnormality as suggested by the mini-MIAS (Image ID mdb095) 

with the boundary drawn by another radiologist, it could be seen that there is a 

considerable amount of variation between the boundaries marked by the two 

different radiologists.

From Figure 5.11 it could be seen that even though the boundaries marked by 

different experts differ, in the area enclosed, they concur reasonably well with the 

central location of the abnormality. Hence, it could be reasonably assumed that the 

centre of the abnormality lies somewhere near the centre of the marked boundary. 

The only unknown quantity is the actual extent (i.e. the area) of the abnormality.

Since the human drawn boundaries could be taken only as approximate areas, which 

encloses the abnormality, one need to delineate a more appropriate boundary of an 

abnormality before proceeding any further. The process of delineating more 

appropriate boundaries of the abnormalities is discussed below.
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To find a more appropriate boundary of an abnormality the following steps are 

followed:

the user defines a region of interest (ROI) enclosing the approximately 

marked boundary of the abnormality.

• the HCS process is applied within the user defined ROI.

the user inspects the segmentation output generated, by the HCS process, for 

different levels of allowable dissimilarity.

• making use of his/her expert knowledge the user chooses the segmentation 

where the abnormality is most appropriately defined. That is the abnormality 

should neither be too fragmented nor should it have merged with the healthy 

part within the ROI.

Figure 5.12 illustrates the above steps for the mini-MIAS mammogram (image ID 

mdb005). Figure 5.12 (a) shows a ROI superimposed around the lesion. The ROI is 

not centred to the lesion, because by doing so one will include the background rather 

than the breast tissue. Hence, the ROI is offset to the centre of the circle. Figure 5.12 

(b and c) shows the different regions and their respective boundaries when there are 

still fourteen regions yet to be merged. Figure 5.12 (d and e) shows the regions and 

their boundaries when there are still thirteen regions yet to be merged. Figure 5.12 (f) 

shows the boundary of the abnormality based on the segmentation when there were 

still 14 regions are yet to be merged (Figure 5.12 (b and c)).
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Figure 5.11 - For the mini-MIAS mammogram (Image ID mdb095) of asymmetry 
class of malignant abnormality in a fatty tissue, images showing the difference 

between the boundary of the abnormality as suggested by mini-MIAS (Red circle) and 
by another different radiologist (Black curve).
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Figure 5.12 -  HCS processing of the mammogram, mini-MIAS mdb095.
Of asymmetry class of malignant abnormality in a fatty tissue. 

Mammogram mdb095 with the abnormality's approximate location circled in Red and 
the ROI marked in Green(a). HCS process intermediate output 14 regions (b) and 13 
regions (d) and the respective region borders (c) and (e). Border of the abnormality 

based on user decided segmentation of 14 regions (f).
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HCS will continue the merging process until there are no more regions yet to be 

merged, that is the whole ROI will be merged into one single region. Hence, it is left 

for the user to decide the most appropriate segmentation where a specific region 

within the segmented image will adequately represent the abnormality. The user, 

with his expert knowledge, will be able to make the decision of choosing the most 

appropriate segmentation which will have the abnormality adequately outlined. The 

user will be assisted, in making this crucial decision, by the boundaries, marked by 

the HCS process, outlining the various similar parts of the image.

In Figure 5.12 the segmented region at the centre, of the user marked location, is 

marked in Red. When there are fourteen regions still left to be merged (Figure 5.12 

b) the regions at the centre of the user marked area has got minimal number of pixels 

from other part of the image. But where the number of regions, still left to be 

merged, have reduced to thirteen regions (Figure 5.12 d) the regions at the centre of 

the user marked area has got substantial number of pixels from other parts of the 

image. Hence, it could be seen that the region at the centre of the user marked area 

when there are still fourteen regions still left to be merged (Figure 5.12 b) is the most 

appropriate representation of the abnormality.

Figure 5.12 f shows the chosen region within the user marked area as the more 

appropriately delineated boundary of the abnormality. This identification of the more 

relevant boundary of the abnormality is done as detailed below :

Once the user has identified the segmentation that has delineated the boundary of the 

abnormality appropriately, the boundary of the abnormality is identified as follows :

• the part of the identified region which falls within the approximate boundary 

circled by the user, is considered as part of the abnormality.

• the part of the region which falls outside the user given approximate 

boundary and does not border (i.e not contiguous with) the part of the region 

within the user given approximate boundary is not considered as part of the 

abnormality.

• the part of the region which extends beyond the user given boundary but is 

contiguous with the region, within the user given approximate boundary, is 

considered as part of the abnormality.

• the parts of the region, which is identified as the abnormality, which are not
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contiguous but are within the user given approximate boundary, are 

considered as part of the abnormality.

The above points are illustrated in the Figure 5.12 (mini-MIAS Image ID mdb095), 

Figure 5.13 (mini-MIAS Image ID mdbl02) and Figure 5.14 (mini-MIAS Image ID 

mdb090) as described below:

• Figures 5.12 (e) and (f) illustrate how the part of the region (Red) which falls 

within the approximate boundary circled by the user, is considered as part of 

the abnormality.

• Figures 5.12 (d), (e) and (f) illustrate how the part of the region (Red) which 

falls outside the user given approximate boundary and does not border (i.e not 

contiguous with) the part of the region within the user given approximate 

boundary is not considered as part of the abnormality.

• Figures 5.13 (b) and (c) show where the region (Red) comprising the 

abnormality extends beyond the user given approximate boundary. But the 

region is contiguous with the part of the region, within the user given 

approximate boundary. Hence, that part of the region, outside the user given 

approximate boundary, is also considered as part of the abnormality (Figure 

5.13 c).

• Figures 5.14 (b) and (c) show where the regions (Red) comprising the 

abnormality are not contiguous. However some of the non-contiguous regions 

are well within the user given approximate boundary. Hence those regions, 

even though they are not contiguous, are all considered as part of the 

abnormality (Figure 5.14 c and Figure 5.14 d).
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Figure 5.13 - For the mini-MIAS image ID mdbl02 of asymmetry class of malignant 
abnormality in a Dense-Glandular tissue (a). Figure showing the region chosen as the 

abnormality region (b) extending beyond the user given approximate boundary (c) (d).

152



b c d

Figure 5.14 -  HCS processing of the mini-MIAS mdb090.
Mammogram of asymmetry class o f malignant abnormality in a fatty-glandular tissue 

For the mini-MIAS image ID mdb090 of asymmetry class of malignant abnormality in 
a Fatty-Glandular tissue (a). When there are 11 regions yet to be merged, figure 

showing the regions (Red) chosen as the abnormality region (b) are not contiguous. 
But since most of the chosen regions (Red) are will within the user defined 
approximate boundary they are chosen as part of the abnormality (c) (d).

5.2.4.2. Identifying the Region of the Image Comprising of the Healthy Part

The next step before proceeding to design a process to estimate the quantitative 

measure to measure the dissimilarity between the abnormality and the healthy region, 

is to identify which part of the image comprises o f the healthy tissue.
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Physiologically, a healthy tissue is all that part of the tissue which is not abnormal. 

But the image representation of the underlying physiology may not be exact and one 

need to take into account the limitation of the data acquisition mechanism.

For example, in Figures 5.12 (b) and (c), regions similar to the abnormality region 

(marked Red), can be found to be the present far away from the approximate 

boundary marked by the user. This could be because of the misrepresentation of the 

underlying physiology by the data acquisition system. To take into consideration the 

above concern, it was decided not to include the part of the image which is further 

from the location of the abnormality while composing the area of the healthy tissue.

The following two ways were adopted to identify the part of the image which will 

comprise of the healthy tissue :

• to make use of the user provided approximate boundary of the abnormality

• to make use of the HCS process output.

any one of the above two methods was used depending upon the location of the 

abnormality. This process is detailed in the following sections (Section 5.2.4.2.1 and 
Section 5.2.4.2.2).

5.2.4.2.I. Using the User Provided Approximate Boundary of the Abnormality To 

Identify the Healthy Part of the Image

One of the ways to ensure that only the most appropriate parts of the image are 

compared is to include only that part of the image, within the boundary marked by 

the expert. Hence, once the more appropriate boundary of the abnormality has been 

delineated then the rest of the image, within the user provided approximate border, is 

considered as the healthy region.

Figure 5.15 illustrates the above process for the mini-MIAS mammogram mdb095. 

Based on the HCS segmentation (Figures 5.12 b and c) the Red coloured region is 

considered as the more appropriately delineated abnormality and the Green coloured 

region is considered as the healthy part and the rest of the region (Blue coloured) 

within the ROI was not considered (Figure 5.15).
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Figure 5.15 -  Abnormal and Healthy regions considered for the mini-MIAS mdb095 
Mammogram of asymmetry class of malignant abnormality in a fatty tissue. 

Based on the HCS segmentation (Figure 5.12) figure showing the regions considered 
as Abnormality (Red) and Healthy (Green). The part of the image which was 

considered as comprising the abnormality is shown in Red. The rest o f the area, 
within the boundary marked by the user, which wass considered as healthy is shown 
in Green. The part of the image within the ROI which was not considered is shown

in Blue.

5.2.4.2.2. Making use of the HCS Process Output

The above detailed process, of making use o f the user provided approximate 

boundary of the abnormality, to identity the healthy part, may not be appropriate in 

all conditions. For example, if the user provided approximate boundary is very close 

to the border of the breast tissue then that part of the image, which is closer to the 

border, will be influenced by the background. Hence, that part of the image may not 

be the exact representation of the underlying tissue type. So, to consider blindly 

everything within the user given approximate boundary, excluding the appropriately 

delineated abnormality region, as part of the healthy region will not give the required 

results (Refer Section 5.2.6). The inappropriateness of making use o f the user given 

approximate boundary, to identify the healthy region, is illustrated through Figures 

5.16 and 5.17 as detailed below.

Figure 5.16 (a) shows one of the mammogram images (Image ID mdb090) from the 

mini-MIAS database, showing the location of the abnormality circled in Red/Green. 

It can be seen, from Figure 5.16 (a), that the circle includes part o f the image which 

forms part of the background at the top right hand comer.
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Figure 5.16 - Abnormal and Healthy regions considered 
for the mini-MIAS mdb090.

Mammogram of asymmetry class of malignant 
abnormality in a fatty-glandular tissue.

Image showing the approximate location o f the 
asymmetry class malignant abnormality (a). The region 

chosen as the abnormality area (Red) (b) and (c). Area of 
the image considered as healthy (Green) (d) (e).

Figures 5.16 (b) and (c) depict the intermediate segmentation output of the HCS 

process. The figures show the regions and their boundaries, when there are ten
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regions yet to be merged. Making use of this segmentation the user selects the 

contiguous region (Red) as the abnormality. The healthy part is represented by the 

rest of the image within the user given approximate boundary (Green). The part of 

the image representing the abnormality (Red) and the part of the image representing 

the healthy area (Green) are shown in Figures 5.16 (d) and (e).

Inclusion of the rest of the image, other than the abnormality, within the approximate 

boundary given by the user (Figures 5.16 (d) and (e)) might include area of the image 

which might not be a proper representation of the healthy part. This fact is 

highlighted in the segmentation output in Figures 5.17 (a) to (f).

Figures 5.17 (a, b), (c, d) and (e, f) show the HCS process segmented regions and 

their boundaries when there were ten regions, five regions and three regions, 

respectively, yet to be merged. It can be seen from these segmentation output that the 

part of the image, coloured Yellow, is quite dissimilar from the rest of the image. 

This is evident from the fact that that part of the image remains as a separate region 

even when the rest of the regions have merged together 5.17 (e, f).

If the healthy part is considered as the rest of the image, other than the abnormality, 

within the approximate boundary given by the user (Figures 5.16 (d) and (e)), then 

that part of the, highly dissimilar area of the, image will be considered as part of the 

healthy region. This will result in the healthy region being inhomogeneous. Thus, the 

highly dissimilar part of the healthy region will give a false measure when one 

calculates the dissimilarity between the abnormality and the healthy region. This will 

result in benign abnormality being falsely categorised as malignant (Refer Section 

5.2.6.1). Hence, it is crucial that one need to avoid the inclusion of the highly 

dissimilar region as part of the healthy region.

To address the above issue it was decided to make use of the HCS output to identify 

the healthy region similar to identifying the abnormality region. This process is done 

as follows:

• the user, via his/her expert knowledge, identifies the segmentation output 

which adequately represents the border of the abnormality, 

in the segmentation output identified above the user identifies the region or 

regions which adequately represents the healthy part, as well.
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Figure 5.17 - HCS process intermediate output for mammogram image mdb090. 
Of asymmetry class of malignant abnormality in a fatty-glandular tissue when there 
were ten regions (a, b), five regions (c, d) and three regions (e, f), yet to be merged.

Figures 5.18 (a), (b) and (c) illustrate the above process o f identifying the healthy 

region. Figure 5.18 (a) shows the intermediate segmentation output, o f HCS process, 

when there were ten regions yet to be merged. Making use o f this segmentation the 

user first selects the contiguous region (Red) which will represent the abnormality 

(Figures 5.18 (a) and (b)). Then the user selects the region (Green), which surrounds 

the abnormality, as the healthy part (Figures 5.18 (a) and (b)).
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The above described process of selecting a specific region to represent the healthy 

part ensures that only relevant part of the image is considered. Consequently, the 

most dissimilar part of the image (Yellow) (Figure 5.18 (c)) is automatically 

excluded from the subsequent process to estimate the objective measure to 

differentiate malignant abnormality from benign abnormality.

Figure 5.18 - Abnormal and Healthy regions considered for mini-MIAS mdb090. 
Mammogram of asymmetry class of malignant abnormality in a fatty-glandular tissue. 
HCS process segmentation output when there were ten regions (a) and the border of 

the regions considered for being abnormality (Red) and healthy (Green) (b).
The part o f the image which is considered as the abnormality is shown in Red and the 
part of the image which is considered as the healthy region is shown in Green. Parts of 

the image not considered are coloured Yellow and Blue (c).

5.2.4.3. Measuring Dissimilarity Between Regions Containing the Abnormality 
and the Healthy Tissue

Once the more appropriate boundaries of the abnormality and the healthy parts of the 

image have been delineated the next step, in the implementation o f the proposed 

objective measure, to differentiate benign from malignant abnormalities, is the 

measuring of the dissimilarity between the abnormality and the healthy region. The 

objective of this step is to quantitatively measure the dissimilarity between the 

regions comprising the more appropriately delineated abnormality and the regions 

comprising the healthy tissue. This process is carried out as detailed below.

The pixel locations, which make up the healthy and abnormality regions, are passed 

on to the HCS process and the merging of only those pixel locations is initiated. As 

the merging process proceeds the following dissimilarity measures are estimated 

after each merge:

Dissimilarity between clusters within the abnormality and the healthy regions 

(Section 5.2.4.3.1).
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• Dissimilarity between the primary clusters within the abnormality region and 

all the clusters within the healthy region (Section 5.2.4.3.2).

• Dissimilarity between the cluster containing the user tagged location within 

the abnormality region and all the clusters within the healthy region (Section 

5.2 4.3.3).

The details of estimating the above dissimilarity measures will be discussed in detail 

in Sections 5.2.4.3.1, 5.2.4.3.2 and 5.2.4.3.3.

5.2.4.3.1. Dissimilarity Between Clusters within the Abnormality and the Healthy 

Regions

The estimation of this measure, at the end of each merging operation, is carried out 

as follows:

find the clusters within the abnormality region and the healthy region.

• estimate the dissimilarity between each of the cluster within the abnormality 

region and all the clusters within the healthy region.

find the maximum, minimum and average value of the dissimilarities 

calculated above.

5.2.4.3.2. Dissimilarity Between the Primary Clusters within the Abnormality 

Region and the Clusters Within the Healthy Region

In this measure at the end of each merge first the primary cluster amongst the clusters 

within the abnormality region are identified. The criteria for deciding on a primary 

cluster are the following :

• cluster or clusters having the maximum number of pixels for that merge.

• cluster or clusters having the pixel which has got the maximum density value 

within it.

The process of estimating the dissimilarity between the primary cluster, within the 

abnormality region, and all the clusters within the healthy region is done as follows :

• identify all the primary clusters within the abnormality region

• estimate the dissimilarity between each of the primary cluster within the 

abnormality region and all the clusters within the healthy region.

for each of the primary cluster find the maximum, minimum and average 

value of the dissimilarities calculated above.
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5.2.4.3.3. Dissimilarity Between the Cluster Containing the User Tagged Location 

Within the Abnormality Region and the Clusters Within the Healthy Region

In estimating this measure the user's decision is made use of as follows :

• after the initial merging process within the ROI, enclosing the approximate 

abnormality boundary, the user identifies the relevant merge and the relevant 

region to delineate a more appropriate boundary of the abnormality.

• subsequently, the user inspects the clusters which eventually merged to form 

the more appropriately delineated abnormality and identifies the cluster 

which according to his/her expert opinion is the core of the abnormality.

• within the above identified core cluster the user chooses the pixel location 

which eventually grows to form the core of the abnormality.

The pixel location chosen by the user, as detailed above, is termed the user tagged 

location. It should be noted that the user could tag more than one location.

The above process of the user deciding upon a tagged location is illustrated in the 

Figure 5.19 (mini-MIAS Image ID mdbl02), as described below :

• Figures 5.19 (a) to (h) show the intermediate segmentation output during the 

HCS process. The intermediate segmentation output are when there were fifty 

regions (a, b), twenty-six regions (c, d), ten regions (e, f) and four regions (g,

h).

• When one inspects the merging process by looking at the intermediate 

segmentation output one can observe that the region coloured Red is the core 

region which eventually forms the abnormality.

• A location within the identified region at the earliest merging process is 

chosen as the user tagged location.

During the merging process, of the abnormality and the healthy regions, at the end of 

each merge the clusters to which each of the tagged pixel location belongs to is 

identified. These clusters are termed as user tagged clusters. The dissimilarity 

measure, for each of the tagged cluster, is estimated as follows :

• estimate the dissimilarity between each of the tagged cluster within the 

abnormality region and all the clusters within the healthy region.

• for each of the tagged cluster find the maximum, minimum and average value 

of the dissimilarities calculated above.

• also, for each of the tagged cluster find the maximum, minimum, average and 

standard deviation of the pixel values within each of the tagged cluster.
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Figure 5.19 - Segmentation o f mini-MIAS mammogram image mdbl02.

Of asymmetry class of malignant abnormality in a dense-glandular tissue. HCS 
process intermediate output when there were 50 regions (a, b), 26 regions (c, d), 10 

regions (e, f) and 4 regions (g, h) yet to be merged.
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5.2.4.3.4. The Choice of the Dissimilarity Measure Between Regions Containing 

the Abnormality and the Healthy Tissue

Of the above discussed different ways of measuring the dissimilarity between the 

abnormality region and the healthy region only the following two measures, were 

found to be of practical use :

• Dissimilarity between the clusters within the abnormality and the healthy 

regions.

• Dissimilarity between the cluster containing the user tagged location within

the abnormality region and all the clusters within the healthy region.

The following measure was not found to be practical:

Dissimilarity between the primary clusters within the abnormality region and 

all the clusters within the healthy region.

The reasons for the above measure being not practical are as follows :

• the way the primary cluster is identified might result in more than one cluster.

• the method might yield clusters/region that may not be the actual

representation of the underlying abnormality.

For example, identifying the primary cluster based on the criteria as the

cluster/region having the maximum count may not be the location of the

actual core of the abnormality. The reason for this is because abnormalities 

might have unusual characteristics from the rest of the tissue and hence that 

part of the image might not have too many pixel locations to start with.

Moreover, the first two measures involve the participation of the user. Where the 

user chooses the regions representing the abnormality and the healthy part of the 

image and also chooses the part of the image which may be the core of the 

abnormality. In choosing the location which may form the core of the abnormality 

the user may make use of his/her expert knowledge may take into account other 

features in the image other than just the higher density values.

5.2.5. Differentiating Benign from Malignant Abnormalities by Making Use of the 

Objective Measure

mini-MIAS database mammograms may have any one of the following different 
classes of abnormality :

Architectural distortion 
Asymmetry

• Calcification 
Spiculated masses

163



Well-defined/circumscribed masses 
Other, ill-defined masses

Of the above classes of abnormalities only the asymmetry and circumscribed masses

classes of abnormalities were considered to evaluate the performance of the objective

measure. The reason for preferring asymmetry and circumscribed masses classes of

abnormalities is discussed below.

The HCS process is a clustering process which clusters similar collections of pixels 

into regions of similar characteristics. The objective measure to differentiate 

malignant from benign abnormalities make use of HCS process's ability to collate 

pixels of similar properties. This is done by comparing the regions within the more 

appropriately delineated abnormality with the regions present within the healthy area 

and estimating how dissimilar are they. The higher the dissimilarity, between the 

regions belonging to the abnormality and the regions belonging to the healthy part, 

the higher the probability be that the abnormality is malignant. Hence, for a 

successful estimation of the objective measure the key requirement is that the 

abnormality and the healthy parts of the image should be made up of regions.

Only the asymmetry (Figure 5.13 and 5.16) and circumscribed masses (Figure 5.20) 

classes of abnormalities are spatially large enough to be able to be segmented into 

regions. Other classes of abnormalities like calcification are so localized that they 

comprise of hardly couple of pixels (Figure 5.21) and hence they cannot be 

segmented into regions. Moreover, without having component regions there is no 

way one can estimate the dissimilarity, between the regions belonging to the 

abnormality and the regions belonging to the healthy part.

The above issues regarding the choice of specific classes of abnormalities, for 

evaluating the performance of the objective measure, are demonstrated by suitable 
examples below.

Figure 5.19 illustrates the intermediate segmentation output of the HCS process for 

the mini-MIAS mammogram (Image ID mdbl02). The abnormality, shown circled in 

Black, is of asymmetry class. The segmentation output shown in the figure illustrates 

how the HCS process is able to segment the abnormality into well defined regions.
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Figure 5.20 illustrates the intermediate segmentation output of the HCS process for 

the mini-MIAS mammogram (Image ID mdb028). The abnormality, shown circled in 

Black, is of circumscribed mass class. The segmentation output shown in the Figure 

5.20 illustrates how the HCS process is able to segment the abnormality into well 

defined regions.

Figure 5.21 illustrates the intermediate segmentation output of the HCS process for 

the mini-MIAS mammogram (Image ID mdb213). The abnormality, shown circled in 

Black, is of calcification class. The HCS process output shows that the precise 

location of the abnormality is well delineated at the early stages of the segmentation 

process (Figure 5.21 b and c). But the delineated area of the image is very small. 

Furthermore, as the merging process continues the region defining the abnormality is 

no more unique. Because the region comprising the abnormality has combined with 

the rest of the similar regions in the image (Figure 5.21 d, e, f  and g).
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Figure 5.20 -  Segmentation of mini-MIAS Mammogram image mdb028.
Of circumscribed class of malignant abnormality in a fatty tissue showing the 

approximate location of the circumscribed mass (a). HCS process segmented regions 
and their boundaries when there were 25 (b,c), 10 (d,e) and 4 (f,g) regions.
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Figure 5.21 -  Segmentation o f mini-MIAS Mammogram image mdb213.
O f calcification class of malignant abnormality in a fatty-glandular tissue showing the 

approximate location of calcification (a). HCS process segmented regions and their 
boundaries when there were 39 (b,c), 8 (d,e) and 4 (f,g) regions.
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In the following sections the operation of the designed objective measure, to 

differentiate benign from malignant abnormalities, will be discussed in detail for the 

breast tissue type and classes of abnormalities listed in Table 5.11.

Table 5.11 - Details of the breast tissue type, classes of abnormalities and severity of 
abnormality considered, for evaluating the objective measure.

Breast Tissue Types Classes of Abnormality Severity of Abnormality
Fatty 

Fatty Glandular 

Dense Glandular

Asymmetry 

Well-defined/circumscribed masses

Benign

Malignant

5.2.5.I. Classifying Malignant Abnormality Using the Objective Measure

This section will discuss in detail a sample implementation of the objective measure 

to classify a malignant abnormality. Figure 5.22 shows one of the mini-MIAS 

mammogram (Image ID mdbl02). According to the information provided by the 

database, the mammogram is of the dense glandular breast and the abnormality 

belongs to an asymmetric class and is malignant.

Making use of the information provided by the database the approximate boundary 

of the abnormality was found which is marked as a Red circle (Figure 5.22 a). A 

region of interest (ROI) is centred on the abnormality, marked as a Red square 

(Figure 5.22 a). The HCS process was applied within the ROI. Making use of the 

HCS process output the user selected the region corresponding to the abnormality 

which is shown in Red (Figure 5.22 b, c and d). The area within the approximate 

circular boundary other than the abnormality was considered as healthy, which is 

shown Green in colour (Figure 5.22 d). Inspecting the HCS process output (Figure 

5.19) the user also tagged a location which was considered as the core of the 

abnormality, which is shown Yellow in colour (Figure 5.22 d and e). The rest of the 

area within the ROI is rejected, which is shown Blue in colour (Figure 5.22 d and e).
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Figure 5.22 - HCS processing of mini-MIAS mammogram (Image-ID mdbl02).
O f asymmetry class of malignant abnormality in a dense-glandular tissue. 

Location of the abnormality circled in Red (a). The breast tissue type is dense 
glandular having an asymmetric class abnormality which is malignant.

HCS process delineated four regions and their boundaries (b and c). Regions, and their 
boundaries, identified by the user as healthy (Green) and abnormal (Red) (d and e).
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The HCS process was applied only to the pixel locations within the abnormality (Red 

Figure 5.22 d and e) and the healthy (Green Figure 5.22 d and e) areas of the image. 

As the HCS process merged similar regions within the abnormality and the healthy 

areas, the following measures were estimated :

average dissimilarity amongst the regions within the abnormality area.

• average dissimilarity amongst the regions within the healthy area.

• average dissimilarity between the regions across the abnormality area and the 

healthy area.

• average dissimilarity between the region having the user tagged location and 

the rest of the regions within the abnormality area.

• average dissimilarity between the region having the user tagged location and 

the regions within the healthy area.

The graphs of Figures 5.23 and 5.24 show the above measures.

Making use of the above objective measures the following criteria was used to 

differentiate malignant from benign abnormality :

find the maximum average dissimilarity, measured between the cluster 

having the user tagged location (within the abnormality) and the clusters 

within the healthy region.

• the criteria for differentiating malignant from benign abnormality is as 

follows:

if the value of the above estimated measure is less than fifty percent then the 

abnormality is benign.

if the value of the above estimated measure is greater than fifty percent then 
the abnormality is malignant.

The graph shown in Figure 5.24 demonstrates how the above measure and the 

criteria is able to correctly classify the abnormality, under consideration, as 

malignant.
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Figure 5.23 - For mini-MIAS Mammogram image (Image-ID mdbl02) graph 
showing the dissimilarity amongst the clusters within the abnormality area and the 

healthy area and between the clusters within the abnormality and healthy areas.
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Figure 5.24 - For mini-MIAS Mammogram image (Image-ID mdbl02) graph 
showing the dissimilarity between the cluster having the user tagged location and 

other clusters belonging to the abnormality area and the healthy area.
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5.2 .5 .2 . Classifying Benign Abnormality Using the Objective Measure

This section will discuss in detail a sample implementation of the objective measure 

to classify a benign abnormality. Figure 5.25 shows one of the mini-MIAS 

mammogram (Image ID mdb097). According to the information provided by the 

database the mammogram is of the dense fatty and the abnormality belongs to 

asymmetric class and was benign.

Making use of the information provided by the database the approximate boundary 

of the abnormality was found which is marked as a Red circle (Figure 5.25 a). A 

region of interest (ROI) was centred on the abnormality (marked Green in Figure

5.25 a) and HCS process was applied within the ROI. Figure 5.26 shows the regions 

and their boundaries of HCS process intermediate output. The intermediate 

segmentation output are when there were three-hundred-and-three regions (a, b), 

one-hundred-and-eighty regions Figure 5.26 (c, d), fifty regions Figure 5.26 (e, f) and 

five regions Figure 5.26 (g, h).

Making use of the HCS process output the user selected the region corresponding to 

the abnormality which is shown in Red (Figure 5.25 b, c and d). The area within the 

approximate circular boundary other than the abnormality was considered as healthy, 

which is shown Green in colour(Figure 5.25 d). Inspecting the HCS process output 

(Figure 5.26) the user also tagged a location which was considered as the core of the 

abnormality, which is shown Yellow in colour(Figure 5.25 d and e). Rest of the area 

within the ROI is not considered for further processing, shown Blue in colour (Figure

5.25 d and e).
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Figure 5.25 - HCS processing of mini-MIAS mammogram (Image-ID mdb097).
Of asymmetry class of benign abnormality in a fatty tissue.

The breast tissue type is fatty having an asymmetric class benign abnormality 
Location of the abnormality circled in Red (a).

HCS process delineated two regions and their boundaries (b and c). Regions, and their 
boundaries, identified by the user as healthy (Green) and abnormal (Red) (d and e).
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g n

Figure 5.26 - HCS processing of mini-MIAS mammogram mdb097.
Of asymmetry class of benign abnormality in a fatty tissue. 

Intermediate output when there were 303 regions (a, b), 180 regions (c, d), 50 
regions (e, f) and 5 regions (g, h) yet to be merged.
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The HCS process was applied only to the pixel locations within the abnormality (Red 

Figure 5.25 d and e) and the healthy (Green Figure 5.25 d and e) areas of the image. 

As the HCS process merged similar regions within the abnormality and the healthy 

areas, following measures were estimated :

• average dissimilarity amongst the regions within the abnormality area.

• average dissimilarity amongst the regions within the healthy area.

• average dissimilarity between the regions across the abnormality area and the 

healthy area.

• average dissimilarity between the region having the user tagged location and 

the rest of the regions within the abnormality area.

• average dissimilarity between the region having the user tagged location and 

the regions within the healthy area.

The graphs of Figures 5.27 and 5.28 show the above measures.

Making use of the above objective measures following criteria was used to 

differentiate benign from malignant abnormality :

find the maximum average dissimilarity, measured between the cluster 

having the user tagged location (within the abnormality) and the clusters 

within the healthy region.

• the criteria for differentiating benign from malignant abnormality is as 

follows:

if the value of the above estimated measure is less than fifty percent then the 

abnormality is benign.

if the value of the above estimated measure is greater than fifty percent then 

the abnormality is malignant.

The graph shown in Figure 5.28 demonstrates how the above measure and the 

criteria is able to correctly classify the abnormality, under consideration, as benign.
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Figure 5.27 - For mini-MIAS Mammogram image (Image-ID mdb097) graph 
showing the dissimilarity amongst the clusters within the abnormality area and the 

healthy area and between the clusters within the abnormality and healthy areas.
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Figure 5.28 - For mini-MIAS Mammogram image (Image-ID mdb097) graph 
showing the dissimilarity between the cluster having the user tagged location and 

other clusters belonging to the abnormality area and the healthy area.
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5.2.6. Necessity for the User Identified Healthy Region for the Correct Estimate of 

the Objective Measure

This section will discuss in detail the need and necessity for the user to select the 

region which will represent the healthy area around the abnormality. By means of 

the sample mammograms from mini-MIAS database (Image ID mdb083 and 

mdb090) it will be discussed how and why the performance of the objective measure, 

to differentiate malignant from benign abnormality, is affected by the choice of the 

healthy region by the user.

As it had been mentioned earlier the criteria to differentiate malignant from benign 

abnormalities is that the malignant abnormality will have markedly different 

characteristics from the surrounding healthy tissue. This difference may be due to the 

difference between their respective morphology. It is assumed that the image 

acquisition system is able to capture this difference in tissue characteristics as 

difference in image characteristics (image density values). Based on this assumption 

an objective measure was designed to measure the dissimilarity between the image 

characteristics of the abnormality with respect to the healthy region. This objective 

measure to estimate the difference in image characteristics of the abnormality from 

the surrounding healthy tissue was estimated as follows :

• estimate the average dissimilarity of the cluster, containing the user tagged 

location, within the abnormality with the clusters within the healthy region as 

the HCS process iterates to merge similar regions.

The above measure for a malignant case (mdbl02) is plotted in Figure 5.24 and for a 

benign case (mdb097) is plotted in Figure 5.28. Comparing the two plots it can be 

seen that for the malignant case the estimated, maximum average, dissimilarity is 

markedly higher (above 65%). However, it should be ensured that this increase in 

dissimilarity is due to the abnormality being more dissimilar from the healthy tissue 

and not due to some extraneous data within the healthy area. One way to make sure 

that this is the case is to inspect the dissimilarity amongst the clusters within the 

healthy region. This, i.e. the dissimilarity amongst the clusters within the healthy 

region, should be found low. This is the case for the malignant case analysed in 

Section 5.2.5.1 as it can be seen from the plot in Figure 5.23. Hence, it can be 

inferred that the higher dissimilarity between the clusters within the abnormality and 

the healthy region is due to the inherent difference in characteristics of the 

abnormality and the healthy tissue.
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In Sections 5.2.6.1 and 5.2.6.2 it will be shown that if the healthy region is not 

chosen adequately then the dissimilarity between the healthy region and the 

abnormality will not be estimated correctly.

5.2.6.I. Benign Case Getting Misclassified as Malignant

This section will discuss in detail how the inadequate choice of the healthy region of 

the image misclassified a benign abnormality as malignant. Further, it will be 

discussed how the misclassification was rectified by choosing a more appropriate 

healthy region to compare the abnormality region with.

Figure 5.29 (a) shows one of the mini-MIAS mammogram (Image ID mdb083). 

According to the information provided by the database the breast tissue type is of the 

fatty-glandular type and the abnormality belongs to asymmetric class and was 

benign. Based on the information provided the approximate boundary of the 

abnormality was found which is marked as a Red circle (Figure 5.29 a). A region of 

interest (marked Green in Figure 5.29 a) was marked circumscribing the abnormality 

and HCS process was applied within the ROI.

Based on the HCS process output the user selected the region corresponding to the 

abnormality which is shown in Red (Figure 5.29 b, c and d). The area within the 

approximate circular boundary other than the abnormality was considered as healthy, 

which is shown Green in colour (Figure 5.29 d). Rest of the area within the ROI is 

rejected , which is shown Blue in colour (Figure 5.29 d and e). Inspecting the HCS 

process output the user also tagged a location which was considered as the core of 

the abnormality.
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Figure 5.29 -  HCS processing of mini-MIAS mammogram mdb083.
The breast tissue type is fatty-glandular having an asymmetric class benign 

abnormality. Location of the abnormality circled in Green (a). HCS process delineated 
regions and their boundaries (b and c). Regions, and their boundaries, identified by the 

user as healthy (Green) and abnormal (Red) (d and e).
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The HCS process was applied only to the pixel locations within the abnormality (Red 

Figure 5.29 d and e) and the healthy (Green Figure 5.29 d and e) areas of the image. 

As the HCS process proceeded to merge similar regions within the abnormality and 

the healthy areas, following measures were estimated :

• average dissimilarity amongst the regions within the abnormality area.

• average dissimilarity amongst the regions within the healthy area.

• average dissimilarity between the regions across the abnormality area and the 

healthy area.

• average dissimilarity between the region having the user tagged location and 

the rest of the regions within the abnormality area.

• average dissimilarity between the region having the user tagged location 

(within the abnormality) and the regions within the healthy area.

The graph plots of Figures 5.30 and 5.31 show the above measures.

Making use of the above objective measures following measure was used to identify 

whether the abnormality was malignant or benign :

• the maximum average dissimilarity, measured between the cluster having the 

user tagged location (within the abnormality) and the clusters within the 

healthy region was found.

Making use of the above measure following heuristic criteria was used to establish 

whether the abnormality was malignant or benign :

• if the value of the above estimated measure is less than fifty percent then the 

abnormality is benign.

• if the value of the above estimated measure is greater than fifty percent then 

the abnormality is malignant.

The above criteria established that the abnormality was malignant. Graph shown in 

Figure 5.31 demonstrates how the above measure and the criteria classified the 

abnormality, under consideration, as malignant.

But the abnormality was in fact benign. Thus in this case making use of the 

approximate boundary of the abnormality, to identity the healthy part, was not 

appropriate. This was the case because the approximate boundary is very close to the 

border of the breast tissue (Figure 5.29 a) and that part of the image, which is closer 

to the breast border, will be influenced by the background. One way to find out 

whether this is the case is to inspect the dissimilarity amongst the clusters within the
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healthy region. This, i.e. the dissimilarity amongst the clusters within the healthy 

region, will be found high. This is the case as it can be seen from the plot in Figure 

5.30. Hence it can be inferred that the higher dissimilarity between the clusters 

within the abnormality and the healthy region is due to the influence of the 

extraneous data from the background.. That is why, considering the part of the image 

within the approximate boundary, excluding the appropriately delineated abnormality 

region, as part of the healthy region (Green coloured Figure 5.29 d and e) did not 

give the required results.
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Figure 5.30 - For mini-MIAS Mammogram image (Image-ID mdb083) graph 
showing the dissimilarity amongst the clusters within the abnormality area and the 

healthy area and between the clusters within the abnormality and healthy areas.
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Figure 5.31 - For mini-MIAS Mammogram image (Image-ID mdb083) graph 
showing the dissimilarity between the cluster having the user tagged location and 

other clusters belonging to the abnormality area and the healthy area.



The inappropriateness of making use of the approximate boundary, to identify the 

healthy region, is illustrated in Figures 5.32 as detailed below.

Inclusion of the rest of the image, other than the abnormality, within the approximate 

boundary (Green coloured Figures 5.29 (d) and (e)) might include area of the image 

which might not be a proper representation of the healthy part. This fact is 

highlighted in the segmentation output in Figures 5.32 (a) to (f).

Figure 5.32 -  HCS processing of mini-MIAS mammogram mdb083.
Of asymmetry class of benign abnormality in a fatty-glandular tissue. 

HCS process intermediate output when there were 5 regions (a, b), 3 regions 
(c, d) and 2 regions (e, f) yet to be merged.
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Figures 5.32 (a, b), (c, d) and (e, f) show the HCS process segmented regions and 

their boundary when there were five regions, three regions and two regions, 

respectively all yet to be merged. It can be seen from the segmentation output that 

the part of the image, coloured Yellow, is quite dissimilar from the rest of the image. 

This is evident from the fact that that part of the image remains as a separate region 

even when the rest of the regions have merged together Figure 5.32 (e, f).

Since the healthy part was considered as the rest of the image, other than the 

abnormality, within the approximate boundary (Green coloured Figures 5.29 (d) and 

(e)), the part of the highly dissimilar area of the image (Yellow coloured Figure 5.32 

(e) and (f)) was also considered as part of the healthy region. This resulted in the 

healthy region being inhomogeneous. Thus the highly dissimilar part of the healthy 

region gave a false measure when the dissimilarity between the abnormality and the 

healthy region was calculated. This resulted in the benign abnormality being 

erroneously categorised as malignant.

To address the above issue it was decided to make use of the HCS output to identify 

the healthy region similar to identifying the abnormality region. This process is done 

as follows:

• the user, making use of their expert knowledge, identifies the segmentation 

output which adequately represents the border of the abnormality

• in the segmentation output identified above the user identifies the region or 

regions which adequately represent(s) the healthy part, as well.

Figures 5.33 (a), (b) and (c) illustrate the above process of identifying the healthy 

region. Figure 5.33 (a) shows the intermediate segmentation output, of HCS process, 

when there were fifteen regions yet to be merged. Making use of this segmentation 

the user first selects the contiguous region (Red) which will represent the 

abnormality (Figures 5.33 (a) and (b)). The user then selects the regions (Yellow and 

Green), which surround the abnormality, as the healthy part (Figures 5.33 (a) and

(b))-

The above described process of selecting specific regions to represent the healthy 

part ensures that only relevant part of the image is considered. Consequently, the 

most dissimilar part of the image (Yellow) (Figure 5.32 (e) (f)) is automatically
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excluded from the subsequent process to estimate the objective measure to 

differentiate malignant abnormality from benign abnormality.

a b c

Figure 5.33 -  HCS processing of mini-MIAS mammogram mdb083.
O f asymmetry class of benign abnormality in a fatty-glandular tissue.

HCS Segmentation output when there were fifteen regions (a) and the border of the 
regions considered as abnormal (Red) and healthy (Yellow) (b).

The part of the image which is considered as the abnormality is shown in Red and the 
part of the image which is considered as the healthy region is shown in Yellow. Parts 

of the image not considered are coloured Green and Blue (c).

The homogeneity of the user selected healthy region could be established by 

inspecting the graph plotting the dissimilarity amongst the clusters within the healthy 

region. This, i.e. the dissimilarity amongst the clusters within the healthy region, will 

be found low. This is the case as it can be seen from the plot in Figure 5.34.

The graph of Figure 5.35 shows the the average dissimilarity o f the cluster, 

containing the user tagged location, within the abnormality with the clusters within 

the user identified healthy region as the HCS process iterates to merge similar 

regions. From the plot it could be seen that the maximum average, dissimilarity is 

less than 50% thus correctly categorising the class of abnormality as benign.
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Figure 5.34 - For Image-ID mdb083 graph showing the dissimilarity amongst the 
clusters within the abnormality area, within the user identified healthy area and 

between the clusters within the abnormality and the user identified healthy areas.
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abnormality area and the user identified healthy area.



5.2.6.2.Malignant Case Being Correctly Classified for All Wrong Reasons
As was discussed earlier, the criteria to differentiate malignant from benign 

abnormalities is that the malignant abnormality will have markedly different 

morphological characteristics from the surrounding healthy tissue. The image 

acquisition system should be able to represent this difference as difference in image 

characteristics (image density values). An objective measure was designed to make 

use of this dissimilarity, between the image characteristics of the abnormality with 

respect to the healthy region, to differentiate malignant from benign abnormalities. 

However, it should be ensured (made sure of) that this increase in dissimilarity is due 

to the abnormality being more dissimilar from the healthy tissue and not due to some 

extraneous data within the healthy area.

This section will discuss in detail how an inadequate choice of the healthy region of 

the image biased the measurement of the dissimilarity to be higher than it was 

actually. Furthermore, it will be discussed how the improper measurement was 

rectified by choosing a more appropriate healthy region to compare the abnormality 

region with.

Figure 5.36 (a) shows one of the mini-MIAS mammogram (Image ID mdb090). 

According to the information provided by the database the breast tissue type is of the 

fatty-glandular and the abnormality belongs to asymmetric class and was malignant. 

Based on the information provided the approximate boundary of the abnormality was 

found which is marked as a Red circle (Figure 5.36 a). A region of interest (marked 

Green in Figure 5.36 a) was marked circumscribing the abnormality and the HCS 

process was applied within the ROI.

Based on the HCS process output the user selected the region corresponding to the 

abnormality which is shown in Red (Figure 5.36 b, c and d). The area within the 

approximate circular boundary other than the abnormality was considered as healthy, 

which is shown Green in colour (Figure 5.36 d). The rest of the area within the ROI 

was rejected, which is shown Blue in colour (Figure 5.36 d and e). Inspecting the 

HCS process output the user also tagged a location which was considered as the core 

of the abnormality.
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a

Figure 5.36 - HCS processing of mini-MIAS mammogram mdb090.
O f breast tissue type fatty-glandular having an asymmetric class malignant 

abnormality. Location of the abnormality circled in Green (a).
HCS process delineated regions and their boundaries (b and c). Regions, and their 

boundaries, identified by the user as healthy (Green) and abnormal (Red) (d and e).
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The HCS process was applied only to the pixel locations within the abnormality (Red 

Figure 5.36 d and e) and the healthy (Green Figure 5.36 d and e) areas of the image. 

As the HCS process merged similar regions within the abnormality and the healthy 

areas, following measures were estimated :

• average dissimilarity amongst the regions within the abnormality area.

• average dissimilarity amongst the regions within the healthy area.

• average dissimilarity between the regions across the abnormality area and the 
healthy area.

• average dissimilarity between the region having the user tagged location 

(within the abnormality region) and the rest of the regions within the 

abnormality area.

• average dissimilarity between the region having the user tagged location and 

the regions within the healthy area.

The graphs of Figures 5.37 and 5.38 show the above measures.

Making use of the measure of the maximum average dissimilarity, measured between 

the cluster having the user tagged location (within the abnormality) and the clusters 

within the healthy region and the criteria that if the value of the measure is greater 

than fifty percent then the abnormality is malignant it can be established that the 

abnormality was malignant. The graph shown in Figure 5.38 demonstrates how the 

above measure and the criteria classified the abnormality, under consideration, as 

malignant.

But the issue with the above classification irrespective of the fact that the 

abnormality was correctly classified was that that part of the image which was 

identified as healthy with which the tagged location was compared was not 

homogeneous. This could be seen from the graph in Figure 5.37 where the average 

dissimilarities among the clusters within that part of the image which was considered 

as healthy, is above fifty percent.

Thus, in this case making use of the approximate boundary of the abnormality, to 

identity the healthy part, was not appropriate. This was the case because the 

approximate boundary is very close to the border of the breast tissue (Figure 5.36 a) 

and that part of the image, which is closer to the breast border, will be influenced by 

the background.
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Figure 5.37 - For Image-ID mdb090 graph showing the dissimilarity amongst the 
clusters within the abnormality area and the user identified healthy area and 

between the clusters within the abnormality and the healthy areas.
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Figure 5.38 - For Image-ID mdb090 graph showing the dissimilarity between the 
cluster having the user tagged location and other clusters belonging to the 

abnormality area and the healthy area.
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The inappropriateness of making use of the approximate boundary, to identify the 

healthy region, is illustrated in Figures 5.39. Inclusion of the rest of the image, other 

than the abnormality, within the approximate boundary (Figures 5.36 (d) and (e)) 

might include area of the image which might not be a proper representation of the 

healthy part. This fact is highlighted in the segmentation output in Figures 5.39 (a) to

(f).

e f

Figure 5.39 - HCS processing of mini-MIAS mammogram image mdb090. 
Of asymmetry class of malignant abnormality in a fatty-glandular tissue. 

Intermediate output when there were ten regions (a, b), five regions (c, d) and 
three regions (e, f)> yet to be merged.
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Figures 5.39 (a, b), (c, d) and (e, f) show the HCS process segmented regions and 

their boundaries when there were ten regions, five regions and three regions 

respectively, yet to be merged. It can be seen from these segmentation output that the 

part of the image, coloured Yellow, is dissimilar from the rest of the image. This is 

evident from the fact that that part of the image remains as a separate region even 

when the rest of the regions have merged together (e, f).

Since the healthy part was considered as the rest of the image, other than the 

abnormality, within the approximate boundary (Figures 5.36 (d) and (e)), that part of 

the, highly dissimilar area of the, image was considered as part of the healthy region 

This resulted in the healthy region being inhomogeneous. Thus, the highly dissimilar 

part of the healthy region gave a false (higher) measure, than the actual, when the 

dissimilarity between the abnormality and the healthy region was calculated.

To address the above issue it was decided to make use of the HCS output to identify 

the healthy region similar to identifying abnormality region. This process is done as 

follows:

• the user, via his/her expert knowledge, identifies the segmentation output 

which adequately represented the border of the abnormality 

in the segmentation output identified above the user identifies the region or 

regions which adequately represent(s) the healthy part, as well.

Figures 5.40 (a), (b) and (c) illustrate the above process of identifying the healthy 

region. Figure 5.40 (a) shows the intermediate segmentation output, of HCS process, 

when there were ten regions yet to be merged. Making use of this segmentation the 

user first selects the contiguous region (Red) which will represent the abnormality 

(Figures 5.40 (a) and (b)). The user then selects the region (Green), which surround 

the abnormality, as the healthy part (Figures 5.40 (a) and (b)).

The above described process of selecting specific regions to represent the healthy 

part ensures that only relevant part of the image is considered. Consequently the 

most dissimilar part of the image (Yellow) (Figure 5.39 (e) (f)) is automatically 

excluded from the subsequent process to estimate the objective measure to 

differentiate malignant abnormality from benign abnormality.
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a b c

Figure 5.40 - Abnormal and healthy region for mini-MIAS mammogram mdb090.
Of asymmetry class o f malignant abnormality in a fatty-glandular tissue.

HCS process segmentation output when there were ten regions (a) and the border of 
the regions considered for being abnormality (Red) and healthy (Green) (b).

The part of the image which is considered as the abnormality is shown in Red and the 
part of the image which is considered as the healthy region is shown in Green. Parts of 

the image not considered are coloured Yellow and Blue (c).

The homogeneity of the user selected healthy region could be established by 

inspecting graphs that show the dissimilarity amongst the clusters within the healthy 

region. The dissimilarity amongst the clusters within the healthy region, will be 

found to be low. This is the case as it can be seen from the plot in Figure 5.41.

The graph of Figure 5.42 shows the the average dissimilarity o f the cluster, 

containing the user tagged location, within the abnormality with the clusters within 

the user identified healthy region as the HCS process iterates to merge similar 

regions. From the plot it can be seen that the maximum average, dissimilarity is still 

greater than 50% thus correctly categorising the class of abnormality as malignant.
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Figure 5.41 - For Image-ID mdb090 graph showing the dissimilarity amongst the 
clusters within the abnormality area and the user identified healthy area and 

between the clusters within the abnormality and the user identified healthy areas.
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Figure 5.42 - For Image-ID mdb090 graph showing the dissimilarity between the 

cluster having the user tagged location and other clusters belonging to the 
abnormality area and the user identified healthy area.
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5.3. Summary

In this chapter we discussed how the user can exploit the HCS process segmentation 

output to incorporate his/her decision process for the objective interpretation of the 

relevant information present in diagnostic images. This process of interleaving user 

decision seamlessly with the HCS processing of the diagnostic images to augment 

the diagnostic information present within the image data was demonstrated with the 

following application:

• HCS process aided interpretation of X-ray mammograms

Chapter Six will discuss how the above HCS aided interpretation can be 

subsequently used for the monitoring of physiological conditions. Specifically, the 
following HCS aided monitoring will be discussed in detail:

• HCS process aided monitoring of breast abnormalities.
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Chapter 6 HCS Process Aided Disease Monitoring

6.1. Background

Diagnostic imaging is an invaluable tool in medicine today. Magnetic resonance 

imaging (MRI), computed tomography (CT), digital mammography, and other 

imaging modalities provide an effective means for non-invasively mapping the 

anatomy of a subject. These technologies have greatly increased knowledge of 

normal and diseased anatomy for medical research and are a critical component in 

diagnosis and treatment planning [Pham et a l 2000].

For example High-resolution computed tomography (HRCT) is the main diagnostic 

tool for small airways lesions. In the expiratory HRCT, there are four HRCT signs of 

small airways disease including limitations of air-trapping, intraluminal bronchial 

tree-in-bud, mosaic sign and bronchiolar lumen expansion [Vikgren et al 2004]. 

Currently, doctors diagnose small airway disease by observing the signs and 

professional experience. But the lack of quantitative analysis of images made it 

difficult to observe objectively the signs changes of small airway disease [Xie et al. 
2010].

But with the increasing size and number of medical images, the use of computers in 

facilitating their processing and analysis has become necessary [Pham et al 2000]. 

For instance, in X-ray mammography Computer aided detection (CADe) systems 

address the problem that radiologists often miss signs of cancers that are 

retrospectively visible in mammograms. Furthermore, computer aided diagnosis 

(CADx) systems assist the radiologist in the classification of mammographic lesions 

as benign or malignant [Elter and Horsch 2009].

However, although CAD has some potential advantages it has also some important 

and potentially serious limitations. Philpotts based on his very recent investigation 

made the following suggestions to protect oneself from experiencing detrimental 

effects from the use of CAD in screening (mammographic) interpretation [Philpotts, 

2009]:

Never use CAD as a prescreener. The present sensitivity of CAD is not 

sufficient, and many cancers will be missed with this approach.

Never use CAD as an initial step in mammogram interpretation. Again, for
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the same reasons, if one concentrates primarily on areas that CAD has 

marked, many important findings may be missed.

• Interpret mammograms as usual, and only use CAD as a last step in a reading 

protocol. Do not decide not to recall a patient for a finding just because it is 

not marked by CAD.

• It may be worth considering that if one finds that CAD is consistently 

marking findings that the reader had not recognized initially and that appear 

important (i.e., potentially worthy of recall) that the reader should maybe step 

away from reading for a rest until his or her acuity has resumed.

The above discussion highlights the following observation, which has been 

mentioned earlier (in this Thesis report). That is, computing systems are more 

consistent in their perceiving (i.e. processing, outlining the image components and 

objectively measuring the image properties) ability but they cannot match human 

interpretive skills. Drawing a line so as to limit the system's interpretive function has 

the virtue of achieving a complementary synthesis of system and radiologists' 
strengths [Claridge 1997].

Hence, in this study a novel alternative system (in relevance to monitoring Cystic 

Fibrosis and breast abnormalities), namely computer aided monitoring (CAM) 

system is designed and implemented. The designed CAM system leverages the 

perceiving ability of the computing systems to augment the human interpretive skills.

The applicability and the performance of the designed CAM system were evaluated 

by using the designed CAM process in the following two medical diagnostic 

environment:

• Making use of the computing system to quantitatively measure the 

dimensions of the airway and the adjoining blood vessel, by processing the 

CT images of the lungs (Chapter 4 Section 4.3.10).

This is to assist the radiologists in their interpretation, of the CT images, for 

the presence or absence of conditions for CSF by monitoring the dilation of 

the airway lumen and the thickening of airway wall (Chapter 6 Section 6.2).

• Making use of the computing system to perceive the more appropriate 

boundaries of the abnormal and healthy regions, by processing digital X-ray 

mammograms (Chapter 5 Section 5.2.4.1) and to quantitatively measure the
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dissimilarity between the abnormal region and the healthy region (Chapter 5 

Section 5.2.5).

This is to assist the radiologists in their interpretation, of the X-ray 

mammograms, to differentiate malignant from benign type of breast 

abnormalities by monitoring suspicious locations in X-ray mammograms 

[Selvan et al 2011] (Chapter 6 Section 6.3).

The rest of this chapter will provide the details of how the applicability and the 

performance of the designed CAM system were evaluated with the respect to the 

above listed applications, that are :

Computer aided monitoring of the dilation of the airway lumen and the 

thickening of airway wall in the CT images of the lungs.

• Computer aided monitoring of the abnormalities in X-ray mammograms to 

differentiate malignant from benign types.

6.2. Computer Aided Monitoring of the Dimensions of the Airway and the 
Accompanying Blood Vessel

In Chapter 4 (Section 4.3) it was discussed in detail how HCS may be used to 

quantitatively measure the dimensions of the airway and the accompanying blood 

vessel. The performance and the probable use of that HCS based measuring process 

was evaluated by means of the following two approaches :

• applying the method on cases of known diagnosis

• correlating the HCS process based measure with that of an expert's.

The rest of this section will discuss in detail the above two approaches of validation 

of the HCS process's performance. .

In Chapter 4 (Section 4.3) the different “user guided” methods developed to measure 

the dimensions of the airway and the accompanying blood vessel were discussed in 

detail. Of the different methods developed, the following are the methods which 

were used for each of the above two validation processes :

for the validation method based on cases of known diagnostic

the user guided segmentation method, which made use of initial user tagged

information of pixel locations as belonging to the corresponding anatomical

locations (Chapter 4 Section 4.3.5.2.) was used

for the validation method based on expert's measurement
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the user guided segmentation method, which made use of user tagged 

boundary locations around the individual anatomy (Chapter 4 Section 4.3.10.) 
was the one which was used.

6.2.1. HCS Process Based Quantitative Measure of the Airway and the 

Accompanying Blood Vessel Dimensions for Cases of Known Diagnosis

For this validation approach the CT image data of the same patient, for whom CT 

images were taken during the year 2007 and subsequently during the year 2009, were 

used. Based on clinical findings the patient was diagnosed healthy during the year 

2007, but was diagnosed with the CF condition during the year 2009. The validation 

of the HCS process based measurement was carried out on the basis how the 

measured dimensions were in consensus with the clinically known diagnosis.

6.2.1.1. HCS Process Based Quantitative Measure of the Airway and the 

Accompanying Blood Vessel Dimensions for a Healthy Case

Figure 6.1 shows the CT image of the healthy case. The image is displayed by 

mapping Hounsfield values from (-) 1024 to 676 to 256 levels of grey scale values. 

Region of interests (ROI) around two locations having a airway and an 

accompanying blood vessel were marked. The ROI on the left lung (Figure 6.1 a) is 

bound with regular boundaries. The location on the right side lung (Figure 6.1 b) has 

two blood vessels adjoining to the airway. Hence a hand drawn boundary was drawn 

around to include only one of the blood vessel and exclude the other (Figure 6.1 b ) .

Figure 6.2 shows the details of the processing of the ROI on the left side lungs. 

Figure 6.2 (a) shows the CT image data within the ROI. The user tagged (marked) 

certain pixel locations, within the ROI, as belonging to the corresponding anatomical 

regions (Figure 6.2 b). The Red coloured pixels are the ones tagged by the user as 

belonging to the Blood-Vessel. Similarly, the Green ones are that of the Airway- 

Wall, Blue ones belong to Airway-Lumen and Yellow ones belong to lung 

parenchyma (tissue). The locations, within the ROI, which were left untagged by the 

user can be seen as White coloured (Figure 6.2 b).

Making use of the user tagged locations the HCS process segmented the part of the 

image within the ROI as belonging to the four different regions, namely Blood- 

Vessel, Airway-Wall, Airway-Lumen and lung parenchyma (Figure 6.2 c).
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Figure 6.1 - CT Image data for the healthy case.
The image is displayed by mapping Hounsfield values from (-) 1024 to 676 to 256 levels of

grey scale values.
Two locations having airway and adjoining blood vessel are marked.

The ROI (10x14) on the left lung (a) has regular boundaries while the ROI on the right lung (b)
has a hand drawn boundary.

&
Figure 6.2 - Processing details of the ROI on the left lung (Figure 6.1 a).

CT image data (ROI 10x14), ranging from (-) 1024 to 676 Hounsfield values, mapped to 256
level of grey levels (a).

User tagged locations, Blood-Vessel (Red) Airway-Wall (Green), Airway-Lumen (Blue), Lung 
parenchyma (Yellow) and Untagged pixel location (White) (b)

Segmentation of the four regions, Blood-Vessel (Red) Airway Wall (Green), Airway-Lumen
(Blue), lung parenchyma (Black) (c)

Making use of the initial segmentation (Figure 6.2 c) as an approximation, the best 

fitting elliptical boundaries were fitted around the Blood-Vessel, the Airway-Wall 

and the Airway-Lumen(Chapter 4 Section 4.3.7). Figure 6.3 and Table 6.1 show the 

quantitative measures of the major axis and the minor axis of the fitted ellipses for 

the three major anatomies, namely Blood-Vessel, Airway-Wall and Airway-Lumen, 

present within the regular ROI in the left lung (Figure 6.1. a).
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Figure 6.3 - Minor and Major axis of the fitted ellipses to the Blood-Vessel (a), Airway-Wall
(b) and Airway-Lumen (c).

Table-6.1 -  Minor and Major axis dimensions (in pixels) o f the fitted ellipse to the boundary of  
the Blood-Vessel, Airway-Wall and Airway-Lumen (Figure 6.3)

Blood-Vessel
(VD)

Airway-
Wall

Airway-
Lumen
(ALD)

Airway-Wall
Thickness

(AWT)

ALD:VD

Minor Axis 5.45 6.49 2.86 3.63 0.52

Major Axis 7.64 6.99 3.58 3.41 0.47

Average 6.55 6.74 3.22 3.52 0.50

A very similar process to what was discussed above was applied to the location 

identified on the right lung (Figure 6.1 b). The only difference was that the boundary 

o f the ROI, instead of being a regular shaped ROI, was a hand drawn boundary 

drawn around the Airway and the accompanying Blood-Vessel (Figure 6.1 b). The 

necessity for the hand drawn boundary was to avoid an adjoining Blood-Vessel and 

to isolate only one pair of Airway and the accompanying Blood-Vessel.

Figure 6.4 illustrates the details o f the HCS process based segmentation processing 

done to objectively measure the dimensions of the Airway and the Blood-Vessel 

within the hand drawn boundary on the right side lungs.

Figure 6.5 and Table 6.2 show the quantitative measures of the major axis and the 

minor axis of the fitted ellipses for the three major anatomies, namely Blood-Vessel, 

Airway-Wall and Airway-Lumen, present within the hand drawn ROI in the right 

lung (Figure 6.1 b).
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a b c

Figure 6.4 -  HCS process based segmentation details within the hand drawn boundary on the
right lung (Figure 6.1 b).

CT image data (ROI 20x21), ranging from (-) 1024 to 676 Hounsfield values, mapped to 256
level of grey levels (a).

User tagged locations, Blood-Vessel (Red) Airway-Wall (Green), Airway-Lumen (Blue), lung 
parenchyma (Yellow) and Untagged pixel location (White) (b)

Segmentation of the four regions, Blood-Vessel (Red) Airway-Wall (Green), Airway-Lumen
(Blue) and lung parenchyma (black) (c)

a b c

Figure 6.5 - Minor and Major axis o f the fitted ellipse to the Blood-Vessel (a), Airway-Wall (b)
and Airway-Lumen (c).

Table-6.2 -  Minor and Major axis dimensions (in pixels) o f the fitted ellipse to the boundary of  
the Blood-Vessel, Airway-Wall and Airway-Lumen (Figure 6.4)

Blood-Vessel
(VD)

Airway-
Wall

Airway-
Lumen
(ALD)

Airway-Wall
Thickness

(AWT)

ALD:VD

Minor Axis 5.87 6.11 3.45 2.66 0.59

Major Axis 8.71 7.10 5.22 1.88 0.60

Average 7.29 6.61 4.34 2.27 0.60

6.2.I.2. HCS Process Based Quantitative Measure of the Airway and the 

Accompanying Blood Vessel Dimensions for a CF Case

Figure 6.6 shows the CT image of the the same patient when he/she was diagnosed, 

after two years, as having CF. The image is displayed by mapping Hounsfield values 

from (-) 1024 to 77 to 256 levels of grey scale values. One region of interests (ROI)

202



around a location having a airway and an accompanying blood vessel was marked in 

the left lungs.

Figure 6.6 - CT Image data for the Cystic Fibrosis diagnosed case.
The image is displayed by mapping Hounsfield values from (-) 1024 to 77 to 256 levels of

grey scale values.
One location having Airway and and accompanying Blood-Vessel is shown marked with a

ROI (18x12) having regular borders.

A very similar process to what was discussed in the earlier section (Section 6.2.1.1) 

was applied to the location identified on the left lung (Figure 6.6). Figure 6.7 

illustrates the details of the HCS process based segmentation processing done to 

objectively measure the dimensions of the Airway and the Blood-Vessel within the 

ROI on the left side lungs (Figure 6.6).

Figure 6.7 -  CT image data within the ROI (18x12) marked in the left lungs o f Figure 6.6. 
(a) The original pixel values range from (-) 1024 to 77 Hounsfield, which are mapped to 256

level o f grey levels.
(b) User tagged locations, marking Blood-Vessel (Red), Airway-Wall (Green), Airway-Lumen 

(Blue), lung parenchyma (Yellow) and Untagged pixel location (White).
(c) HCS process segmentation of the four regions, namely Blood-Vessel (Red) Airway-Wall 

(Green), Airway-Lumen (Blue), lung parenchyma (Black).
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Figure 6.8 and Table 6.3 show show the quantitative measures of the major axis and 

the minor axis of the fitted ellipses for the three major anatomies, namely Blood- 

Vessel, Airway-Wall and Airway-Lumen, present within the ROI in the left lung 

(Figure 6.6).

a b c

Figure 6.8 - Minor and Major axis of the fitted ellipse to the Blood-Vessel (a), Airway-Wall (b)
and Airway-Lumen (c).

Table-6.3 -  Minor and Major axis dimensions (in pixels) o f the fitted ellipse to the boundary of 
the Blood-Vessel, Airway-Wall and Airway-Lumen (Figure 6.8)

Blood Vessel 
(VD)

Airway-
Wall

Airway-
Lumen
(ALD)

Airway-Wall
Thickness

(AWT)

ALD:VD

Minor Axis 4.58 6.52 2.17 4.35 0.47

Major Axis 5.92 8.88 3.33 5.55 0.56

Average 5.25 7.7 2.75 4.95 0.52

6.2.I.3. Critical Evaluation of the Processing of the CT image data for the Healthy 

Case and that Diagnosed Cystic Fibrosis

One of the observation made while processing the above discussed set of (two) CT 

image data, for both the healthy as well as the CF diagnosed one, the locations are 

such that that the Blood-Vessel and the Airway shares some part of their border. That 

is the Blood-Vessel and the Airway are next to each other with overlapping borders. 

Subsequently, while processing the CT image data, to correlate the algorithm's 

measure with that of the expert's it was found that this is the norm rather than the 

exception.

To arrive upon the dimensions of the Airway and the Blood-Vessel the average 

measures of the measures based on the major axis and the minor axis were used. 

Also, for the healthy case the average of the two sets of values found in the two of 

the locations was used.
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To evaluate the performance of the HCS process based measurement of the Blood- 

Vessel and the Airway to differentiate the healthy and the CF case one of the 

measures from the following set of criteria, based on the study by Long et al. [Long 

et al., 2004] was made use of.

In infants with CF the mean AWT (+/-SD) was 0.58+/-0.13 mm, the ALD was 

1.31+/-0.56 mm, and the VD was 1.62+/-0.58 mm. In control infants, the mean AWT 

was 0.49+/-0.13 mm, the ALD was 1.07+/-0.42 mm, and the VD was 1.86+/-0.64 

mm. The mean AWT and ALD were greater in children with CF than in normal 

subjects (P<.001). The ALD:VD ratios increased with age in patients with CF 

compared with control subjects (P=.026). Where AWT is the Airway-Wall thickness, 
ALD is the Airway-Lumen diameter and VD is the Blood-Vessel diameter.

Of the above set of criteria following relative measures were considered

• Mean AWT and ALD were greater in children with CF than in normal 

subjects (P<.001).

• the ALD:VD ratios increased with age in patients with CF compared with 

control subjects.

The reason for choosing the above two criteria is as follows :

• the chosen criteria are not absolute measures rather they are relative measures 

hence one can avoid the issue of variability and standardisation and limited 

sample size.

Table-6.4 -  The relative measures for the two cases

Case Type Airway-Wall Thickness 
(AWT)

Airway-Lumen
(ALD)

ALD.VD

Healthy 2.90 3.78 0.55

CF 4.95 2.75 0.52

Table 6.4 lists the measures for the healthy and the CF cases. Making use of the 

above two relative criteria following observations can be deduced :

• the Airway-Wall thickness is the only measure which has shown marked 

increase between the time when the patient was healthy to the time when 

he/she developed CF.

• the Airway-Lumen has decreased while the ratio between the Airway-Lumen 

and the Blood-Vessel dimensions has remained almost the same.
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The above detailed process of correlating the HCS process based objective 

measurement, of the dimensions of the Airway and the accompanying Blood-Vessel, 

with that of the clinical findings was severely hampered by the lack of suitable test 

cases. Hence, it was decided to expand the study by comparing the HCS process 

based objective measurements with that of an expert's for a larger number of cases. 

In the next section (Section 6.22) it will be described in detail how the HCS process 

based objective measurements were compared with that of an expert's.

6.2.2.Correlating the HCS Process Based Objective Measurements with that of an 

Expert

For this validation approach CT image data of eleven patients, were used. The 

validation of the HCS process based measurement was done on the basis how the 

HCS process's objectively measured dimensions were in consensus with that of an 

expert's.

The following is the protocol which was followed for this part of the study :

• the radiologist chose eleven test cases for whom a High Resolution Computed 

Tomographic (HRCT) study had been done.

• the HRCT image data, in DICOM format, of each of the patient was written 

onto individual optical discs (CD) after removing the personal details which 

might identify the patient. That is the image data was anonymised.

for each of the patient the location of a Airway with the accompanying 

Blood-Vessel in a suitable section was identified by the radiologist and 

conveyed to the investigator.

• the radiologist, in private, measured the dimensions of the Airway and the 

Blood-Vessel making use of the measuring tool (electronic calliper) provided 

by the CT image viewer program provided in the PACS (Picture Archiving 

and Communication System) workstation (Figure 6.9).

• independently the HCS process based measurement was carried out on the 

locations identified by the radiologist.

• the measurements carried out both by the radiologist and the HCS process 

were then compared.
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Figure 6.9 -  Screen capture of the GUI similar to one used by the radiologist to manually 
measure the dimensions of the Airway and the accompanying Blood-Vessel

6.2.2.I. HCS Process Based Objective Measure of the Dimensions of the Airway 

and the Accompanying Blood-Vessel for the Test Cases

Figures 6.10 A and B (first column) show the part of the image having an airway 

with the accompanying blood vessel. It can be seen that for all the eleven cases the 

accompanying blood vessel is attached to the airway. Also, it can be seen that for 

most of the cases the dimensions of the blood vessel is around five pixels. For these 

reasons it was found that segmentation of airway and the accompanying blood vessel 

making use of the tagged boundary locations just around the individual anatomy (viz. 

blood vessel and the airway wall) (Please see Chapter 4 Section 4.3.10) was found to 

be not feasible. Hence, the alternative method of making use of initial user tagged 

information (Please see Chapter 4 Section 4.3.5.2) was followed. Figures 6.10 A and 

B (second column) show the user tagged locations for each of the eleven cases. It 

should be noted that the tagged locations was provided by the author.

207



Case ID Part o f the Image within the ROI User Tagged Locations
Case 01

Case 03

Case 04 IV
(

Case 05

Case 06

Case 07

Figure 6.10 (A) - Images showing the part of the image within the ROI surrounding an 
Airway and the adjoining Blood Vessel and the user tagged locations identifying background 

(Yellow) Airway Lumen (Blue), Airway Wall (Green) and Blood Vessel (Red).
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Case ID Part o f the Image within the ROI User Tagged Locations
Case 08 m

* • « *
. i . 9

Case 09

Case 11

Case 12

Case 13

i t I
Figure 6.10 (B) - Images showing the part of the image within the ROI surrounding an 

Airway and the adjoining Blood Vessel and the user tagged locations identifying background 
(Yellow) Airway Lumen (Blue), Airway Wall (Green) and Blood Vessel (Red).

Making use of the user tagged information the HCS process extracted the boundaries 

of the blood vessel, airway wall and the airway lumen. The boundaries o f the 

anatomies were approximated by Fitting ellipses to the respective boundary locations 

(Please see Chapter 4 Section 4.3.7.1). Figures 6.11 (A) and (B) show the major and 

minor axes of the fitted ellipses for the three anatomies for the eleven cases.
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Case
ID

Dimensions o f the
Blood Vessel

Dimensions o f the
Airway Lumen

Dimensions o f the
Airway Wall

Case
01

*
Minor = 3.6, Major = 5.2 Minor = 6.0, Major = 6.9

Case
03

Minor = 4.2, Major = 6.8 Minor = 1.9, Major = 2.4 Minor = 7.4, Major = 9.8

Case
04

! i f
Minor = 4.2, Major = 5.3 Minor = 1.0, Major =1 .6 Minor = 6.1, Major = 6.6

Case
05

Minor = 3.6, Major = 5.4 Minor = 3.9, Major = 6.6 Minor = 8.5, Major = 13.0

Case
06

Minor = 3.6, Major = 5.3 Minor = 4.8, Major = 6.3

Case
07

Minor = 5.5, Major = 6.6

J *

Minor = 3.0, Major = 3.

I

Minor = 6.3, Major = 8.

Figure 6.11 (A) - Images showing the major and minor axes of the ellipses fitted around 
Blood Vessel (Red), Airway Lumen (Blue) and Airway Wall (Green).
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Case
ID

Dimensions o f the
Blood Vessel

Dimensions o f the
Airway Lumen

Dimensions o f the
Airway Wall

Case
08 r •- r

*  * l i t
.  • . •

Minor = 3.6, Major = 5.2 Minor = 0, Major =1 .3 Minor = 6.0, Major = 7.9

Case
09

Minor = 4.3, Major = 5 .0 Minor = 2.1 Minor = 6.5, Major = 7.7

Case
11

Minor = 6.3, Major = 7.2 Minor = 2.2, Major = 4.4 Minor = 7.2, Major = 12.0

Case
12

Minor = 2.3, Major = 3.5 Minor = 6.0, Major = 7.6

Case
13

v
\

Minor = 4.4, Major = 6.2 Minor = 3.7, Major = 5.0 Minor = 6.1, Major = 13.6

Figure 6.11 (B) - Images showing the major and minor axes of the ellipses fitted around 
Blood Vessel (Red), Airway Lumen (Blue) and Airway Wall (Green).

For some of the cases the axes for lumen cannot be estimated (Figure 6.11 A and B). 

since the region comprising the lumen had less than five pixel locations.
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6.2.2.2. Comparing HCS Process Based Objective Measure with that of the 

Radiologist's Manual Measure

Similar to what was carried out for the earlier cases the dimensions of the major and 

minor axes were averaged. The cases for which the major and minor axes of the 

lumen were not estimated were left out. Table 6.5 lists the estimated dimensions of 

the anatomies in pixels. Table 6.6 lists the manual measurements, in millimetre, 

carried out by the expert.

Table-6.5 -  HCS process based objective measure of the dimensions of the anatomies in pixels

Case
ID

Airway Wall 
Outer 

Diameter

Airway-
Lumen
(ALD)

Airway-Wall
Thickness
(AWT)

Blood Vessel 
Diameter 

(VD)

ALD:VD

3 8.6 2.15 6.45 5.5 0.39
4 6.35 1.3 5.05 4.75 0.27
5 10.75 5.25 5.5 4.5 1.17
7 7.2 3.05 4.15 6.05 0.5
9 7.1 2.1 5 4.65 0.45
11 9.6 3.3 6.3 6.75 0.49
13 9.85 4.35 5.5 5.3 0.82

Table-6.6 -  Measurements by the expert in millimetre

Case
ID

Airway Wall 
Outer 

Diameter

Airway-
Lumen
(ALD)

Airway-Wall
Thickness
(AWT)

Blood Vessel 
Diameter 

(VD)

ALD:VD

3 4.3 2.2 2.1 2.9 0.76
4 4.0 1.8 2.2 3.1 0.58
5 . 5.3 2.9 2.4 2.6 1.12
7 3.6 1.8 1.8 3.2 0.56
9 3.3 2.1 2.1 2.4 0.88
11 3.5 1.6 1.6 1.6 1.0
13 4.5 2.6 2.6 3.2 0.81

For the following reasons one cannot compare directly the measurements attained 

through the software with that of the expert's manual measurements.

measurements attained through the SW is in pixels, while the measurements 

attained by the expert in millimetre.

• one is not very sure that the locations, where the measurements are done, are 

exactly the same.



But since the measurements are done by both the SW and the expert for the same 

patient at the same image slice (section) and approximately at the same location one 

can compare the relative measurements.

Based on the study by Long et a l [Long et al., 2004] Airway Wall Thickness (AWT) 

and Airway Lumen Diameter (ALD) were greater in children with Cystic Fibrosis 

(CF) than in normal subjects (P<.001). If VD is the Blood Vessel diameter then 

ALD:VD ratios increased with age in patients with CF compared with control 

subjects (P=.026). Hence one can compare the ratio ALDrVD.

Comparing the ratio ALD:VD obtained through the HCS process with that of the 

expert's manual measurement it can be seen that for three cases (out of seven) the 

measurements almost corresponds to each other.

6.2.2.3. Critical evaluation of the Results

The original plan for the study was not to compare the estimated measurements of 

the HCS process with those of the expert's. The original plan was to find out how 

well the HCS process based measures could be used to monitor the presence or 

absence of CF. With that as the intention originally twenty cases of known diagnosis 

were identified. But unfortunately the CT equipment was upgraded and those cases 

were no more available in anonymised form. Hence, the current set of cases of 

patients for whom CT images were acquired for any medical condition were 

collected. Since for these cases the medical conditions could be anything the study 

was reformulated to compare the measurements obtained by the HCS process with 

that of the expert.

Once again for these cases it was found that the image data had conflicting 

Hounsfield values which surprised the expert as well. Hence, one cannot attribute too 

much to these results. The only conclusion that could be confidently made was that 

the HCS process was robust enough to handle even noisy data.

Since three cases of known diagnosis were processed it was decided to plot the 

values of Airway Wall Thickness (AWT), Airway Lumen Diameter (ALD) and the 

ratio ALD:VD where VD is the blood vessel diameter for the earlier three cases 

along with the seven cases of unknown diagnosis.
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Table 6.7 lists the measures for the three cases of known diagnosis estimated in the 

earlier sections. Table 6.8 lists the measures for the seven cases of unknown medical 

conditions.

Table-6.7 -  The measures for the three cases of known diagnosis

Diagnosis Airway-Wall
Thickness

(AWT)

Airway-Lumen
(ALD)

Blood Vessel 
Diameter (VD)

ALD:VD

Healthy 2.90 3.78 6.92 0.55
CF 4.95 2.75 5.25 0.52
CF 5.18 5.77 3.8 1.52

Table-6.8 -  The measures for the seven cases of unknown diagnosis

Case ID Airway-Wall
Thickness

(AWT)

Airway-Lumen
(ALD)

Blood Vessel 
Diameter (VD)

ALDrVD

3 6.45 2.15 5.5 0.39
4 5.05 1.3 4.75 0.27
5 5.5 5.25 4.5 1.17
7 4.15 3.05 6.05 0.5
9 5 2.1 4.65 0.45
11 6.3 3.3 6.75 0.49
13 5.5 4.35 5.3 0.82

Figure 6.12 shows the relevant plot. Inspecting the plot it can be seen that the healthy 

case is clearly separate from the rest. The CF cases are close to each other. The other 

cases are closer to CF cases but spread all over indicating that they may have some 
problems with their lungs.

From the above discussion it could be inferred that HCS process based CAM system 

has the potential to monitor the presence or absence of CF. But it is impertinent that 

the image data provided does not have conflicting values. With the advent of multi­

detector row CT (MDCT) scanner, and given the higher resolution of the MDCT 

images and it’s possible better sensitivity, when compared to the HRCT images used 

for this study, the performance of the designed CAM system in segmenting the 

airways and the accompanying blood vessels will improve.
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6.3. Computer Aided Monitoring of Abnormalities in X-ray Mammograms

X-ray mammography is regarded as the most effective tool for the detection and 

diagnosis of breast cancer, but the interpretation of mammograms is a difficult and 

error prone task. Computer aided detection (CADe) systems address the problem that 

radiologists often miss signs of cancers that are retrospectively visible in 

mammograms. Furthermore, computer aided diagnosis (CADx) systems assist the 

radiologist in the classification of mammographic lesions as benign or malignant 

[Elter and Horsch 2009].

This study implements and evaluates a novel alternative system namely Computer 

Aided Monitoring (CAM) system. The medical professional can use the designed 

CAM system to objectively measure the properties of a suspected abnormal area in a 

mammogram. Thus it can be used to assist the medical professional to objectively 

monitor the abnormality. For instance, its response to treatment and consequently its 

prognosis.

The major limitations of the current CAD(e/x) systems are two fold, firstly the way 

the systems are trained and secondly the way the systems are used. The limitation of 

the training process is that the training samples might have had features associated 

with symptomatic lesions. In the actual usage environment the abnormalities might 

have less obvious mammographic features than symptomatic lesions. Consequently, 

this might lead to false negative rate of up to 25% [Bazzocchi et al., 2007]. The 

limitation during the usage is that the thresholding, learnt by the CADe system 

during the training, may not be appropriate for the actual image data under 

consideration. Consequently, most of the CAD prompts are false positive calls which 

leads to needless breast biopsies [Rossand et al., 2010].

In the HCS based CAM system, designed in this study, the above issues were 

addressed as follows:

The designed CAM system does not need any prior training. Since the HCS 

process, on which it is based, is an unsupervised segmentation process.

The designed system does not use a fixed thresholding to differentiate the 

abnormalities from the healthy tissue, rather it uses an adaptive measure 

adapted to the actual mammogram data being analysed.
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A brief description of the implementation of this CAM system is as follows : Using 

the approximate location and size of the abnormality, obtained from the user, the 

HCS process automatically identifies the more appropriate boundaries of the 

different regions within a region of interest (ROI), centred at the approximate 

location. From the set of, HCS process segmented, regions the user identifies the 

regions which most likely represent the abnormality and the healthy areas. 

Subsequently, the CAM system compares the characteristics of the user identified 

abnormal region with that of the healthy region; to differentiate malignant from 

benign abnormality.

The measuring of the dissimilarity between the abnormality and the healthy region 

involves the following three steps :

• appropriate delineation of the boundary of the abnormality (Chapter 5 Section 

5.2.4.1).

identifying the region of the image comprising the healthy part (Chapter 5 

Section 5.2.4.2).

• measuring the dissimilarity between the abnormality and the healthy region 

(Chapter 5 Section 5.2.4.3)

The details of how the above three listed steps were implemented is discussed in 

detail in the Chapter 5 in Sections 5.2.4.1, 5.2.4.2 and 5.2.4.3, respectively. In this 

section the performance of the implemented CAM process, to differentiate the 

malignant from benign type of abnormalities, will be compared with that of a human 

expert.

For this validation process X-ray mammogram data of sixteen patients, from the 

mini-MIAS mammographic database [Suckling et al., 1994], were used. The findings 

provided by the mammographic database for each of the case is taken as the correct 

one (gold standard). The evaluation of the CAM process performance was done on 

the following two basis

• on the basis how the CAM’s diagnosis were in consensus with that of the 

findings given for each of the case in the mammographic database.

• comparing the CAM’s performance with that of the expert in correlating with 

the diagnosis given by the mammographic database.
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The following is the protocol which was followed to evaluate the performance of the 

designed CAM process when compared to a human expert:

The designed CAM process was applied on sixteen cases from the mini- 

MIAS mammographic database. For each of the case the severity of the 

abnormality was diagnosed by, the CAM process, as described in detail in 

Chapter 5 (Section 5.2.4).

Each of the sixteen cases, with the location of the abnormality marked, was 

shown to an expert and her diagnosis was obtained.

• For each of the case the diagnosis arrived upon by the CAM process and that 

by the expert was compared with that given in the mini-MIAS database.

6.3.1. Details of the Computer Aided Monitoring of the Abnormalities in X-ray 

Mammograms for Sixteen Test Cases

The test cases (Sixteen of them) were chosen such that, that they belong to either of 

the two classes of abnormality, namely Asymmetry or Well-defined/Circumscribed 

masses. The reason for choosing only the above mentioned two classes of 

abnormalities is explained in detail in Chapter 5 (Section 5.2.5).

While choosing the test cases there was no restriction on the breast tissue type. The 

breast tissue type could be Fatty, Fatty-Glandular or Dense-Glandular. Similarly 

there was no restriction on the severity of the abnormalities chosen. The severity of 

the abnormality could be Benign or Malignant. But the size of the abnormality was 

restricted such that it can be enclosed within a region of interest (ROI) of size 

151x151.

The design of the CAM system is based on the premises (hypothesis) that in the X- 

ray mammograms, the benign abnormalities will have image properties closer to the 

healthy tissue and malignant abnormalities will be markedly dissimilar from the 

surrounding healthy tissue. Thus, it was inferred that the measured dissimilarity 

between the region comprising the abnormality and the region comprising the 

healthy tissue, will indicate whether the abnormality is benign or not. Hence if one 

can measure the dissimilarity between the abnormal region and the surrounding 

healthy region, based on that measure one should be able to decide whether the 

abnormality is malignant or benign.
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To measure the dissimilarity between the abnormal region and the surrounding 

healthy region the basic requirements are as follows :

• appropriate delineation of the boundary of the abnormality 

identifying the region of the image comprising the healthy part.

In implementing the above two steps, in the designed CAM system, the human 

intervention (input) was used where it was found appropriate.

Based on the above discussion following were the steps which were followed to 

diagnose the sixteen cases using the designed CAM system.

For each of the sixteen cases :

• the approximate location and the size of the abnormality was found using the 

information provided by the mini-MIAS database. (Expert input) (Figures 

6.13 A to D)

• the HCS process was applied within a ROI of size 151x151, encompassing 

the abnormality. This yields a set of segmentation output.

• from the above set of HCS process segmentation output, the user identifies 

the most appropriate segmentation which he/she perceives as has delineated 

the abnormality from the surrounding healthy tissue, (user input) (Figures

. 6.14 A to D)

• from the above chosen specific segmentation output the user identifies the 

regions which he/she feels as most appropriately represent the abnormality 

and the healthy tissue, (user input). (Figures 6.15 A to D)

• the HCS process estimates the dissimilarity between the user chosen regions 

representing the abnormality and the healthy tissue.

It should be noted that in the above described process the user input was provided by 

a user (the author of the study) who was neither a clinician nor a radiologist but knew 

the severity of the abnormality (from the mini-MIAS database) for each of the cases.

For the sixteen cases, Figure 6.13 (A to D) lists the mini-MIAS image Ids, the 

corresponding images, and the details of the abnormalities for each of them. Figures 

6.14 and 6.15 show the images corresponding to each of the steps followed for the 

CAM process based diagnosis, discussed above.
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mdb002 - Fatty Glandular, Circumscribed 
and Benign

mdb005 -  Fatty, Circumscribed and Benign

mdb012 -  Fatty, Circumscribed and Benign mdb028 -  Fatty, Circumscribed and 
Malignant

Figure 6.13 (A) -  Images showing the approximate size and location of the abnormality and the
ROI surrounding it
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mdb075 -  Fatty, Asymmetry and Malignant. mdb083 - Fatty Glandular, Asymmetry and 
Benign.

mdb090 - Fatty Glandular, Asymmetry and 
Malignant

mdb092 -  Fatty, Asymmetry and M alignant

Figure 6.13 (B) -  Images showing the approximate size and location o f  the abnormality and the
ROI surrounding it
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mdb095 -  Fatty, Asymmetry and Malignant.

mdb099 - Dense Glandular, Asymmetry and 
Benign

mdb097 - Fatty , Asymmetry and Benign.

m dbl02 -  Dense Glandular, Asymmetry and 
Malignant

Figure 6.13 (C) -  Images showing the approximate size and location o f  the abnormality and the
ROI surrounding it
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m dbl04  -  Dense Glandular, Asymmetry and 
Benign.

m d b llO  - Dense Glandular, Asymmetry and 
Malignant.

m dbl41 - Fatty, Circumscribed and 
Malignant mdb270 -  Fatty Glandular, Circumscribed 

and Malignant

Figure 6.13 (D ) -  Images showing the approximate size and location o f the abnormality and the
ROI surrounding it
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mdb012

Number o f  Clusters - 5

Image Part o f the image
ID surrounding the

abnormality within the 
ROI

For the user chosen Segmentation

HCS process delineated 
Regions

HCS process delineated 
Region Boundaries

mdb005

Number o f  Clusters -1 0

Number o f  Clusters - 34

mdb028

mdb002

Number o f  Clusters - 4

Figure 6.14 (A) -  Im ages show ing the abnorm ality  and the ROI surrounding it (C olum n 2). For
the HCS process segm entation, chosen by the user, the regions (C olum n 3) and the ir

boundaries (C olum n 4)
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Image
ID

mdb075

mdb083

mdb090

mdb092

P art o f  the im age 
surrounding the 

abnorm ality w ithin the 
R O I

For the user chosen

H CS process delineated  
Regions

Number of Clusters - 7

Segmentation

H C S process delineated  
R egion B oundaries

Number of Clusters -10

Number of Clusters - 5

Number of Clusters -15

Figure 6.14 (B) -  Im ages show ing the abnorm ality  and the ROI surrounding it (C olum n 2).
For the HCS process segm entation, chosen by the user, the regions (C olum n 3) and their

boundaries (Colum n 4)
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Im age
ID

P art o f  the im age 
surrounding the 

abnorm ality w ithin the 
R O I

F or the user chosen Segm entation

H CS process delineated  
Regions

H C S process delineated  
R egion B oundaries

mdb095 .............. - -........... ■U l
Number of Clusters -14

mdb097

—JpPHp ;g|
Number of Clusters - 2

mdb099 gUju|hb> &

n
Number of Clusters - 6

mdbl02

O JK m f  . . \

V V/>
Number o f Clusters - 4

•

Figure 6.14 (C) -  Images showing the abnormality and the ROI surrounding it (Column 2). 
For the HCS process segmentation, chosen by the user, the regions (Column 3) and their

boundaries (Column 4)
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Image
ID

mdbl04

Part o f the image 
surrounding the 

abnormality within the 
ROI

For the user chosen Segmentation

HCS process delineated 
Regions

HCS process delineated 
Region Boundaries

I

Figure 6.14 (D ) -  Im ages show ing the abnorm ality  and the ROI surrounding it (C olum n 2).
For the HCS process segm entation, chosen by the user, the regions (C olum n 3) and the ir

boundaries (C olum n 4)

mdbllO

Number of Clusters - 7

mdb!41

mdb270

Number of Clusters - 7

Number of Clusters - 8

Number of Clusters - 7
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For each of the sixteen cases Figure 6.14 (A to D) shows the approximate size and 

the ROI surrounding the abnormality. Figure 6.14 also shows the user chosen 

segmentation which has delineated the abnormality from the surrounding healthy 

tissue as perceived by the user.

From Figure 6.14 it can be seen that the level of segmentation at which the user 

perceives that the most appropriate boundaries of the abnormality and the healthy 

regions have been delineated, varies from case to case. For some cases the number of 

regions that need yet to be merged are higher (for example, fifteen for the case 

mdb002) when compared to others (for example two for the case mdb097).

Since the user is a lay person, to choose the most appropriate segmentation the user 

made use of the approximate boundary given by the mini-MIAS database and 

followed the criteria by Kegelmeyer et a l [Kegelmeyer et a l 1994] which states : 

a computer finding is considered as a true positive detection if its area is 

overlapped by at least 50% of a true lesion as indicated by an expert 

radiologist;

• a computer finding that does not so overlap a true lesion is considered as false 

positive; and

• a true lesion that is not overlapped by any computer finding is considered as 

false negative.

Based upon the above, the heuristics followed by the user (lay person) for choosing 

the segmentation which might most appropriately delineate the abnormality and the 

healthy regions are as follows :

• the level of segmentation should be such that the regions should be neither 

fragmented nor too coarse.

• the segmentation should have a region which could be visualised as 

belonging to the abnormality. The major part of this region should be within 

the approximate boundary of the abnormality given by the mini-MIAS 

database.

• the core of the abnormality is a location within the abnormal region, chosen 

above, and whose density is the highest among the pixels within the region 

chosen as the abnormality.
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It should be noted that the location having the maximum pixel value within 

the Abnormality could be more than one. The additional criteria used by the 

user (lay person) to choose the core of the abnormality was that by inspecting 

the segmentation process the user (lay person) identifies that location around 

which the Abnormality grows as the segmentation process proceeds. For 

details please refer Chapter 5 (Section 5.2.4.3.3) and Figure 5.19 (Chapter 5). 

the healthy region is chosen as the region which surrounds the region which 

was chosen earlier as the abnormality.

For each of the sixteen cases Figure 6.15 (A to D) shows the user (lay person) 

identified regions and their boundaries which might most appropriately represent the 

abnormality and the healthy tissue as perceived by the user (lay person).
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mini-MIAS
Image ID

mdb002

mdb005

mdb012

mdb028

User identified regions 
representing the abnorm ality 

(Red) and the healthy (Yellow) 
tissue.

B oundaries o f  the user identified  
regions representing the 

abnorm ality and the healthy 
tissue.

Figure 6.15 (A) -  Images showing the Region (Column 1) and Boundaries (Column 2) of the 
abnormality and the healthy region surrounding it chosen by the user.
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Boundaries o f  the user identified  
regions representing the 

abnorm ality and the healthy 
tissue.

m ini-M IAS User identified regions
Im age ID  representing the abnorm ality 

(Red) and the healthy (Yellow) 
tissue.

mdb075

mdb083

mdb090

mdb092

Figure 6.15 (B) -  Images showing the Region (Column 1) and Boundaries (Column 2) o f the 
abnormality and the healthy region surrounding it chosen by the user.

231



User identified regions 
representing the abnorm ality 

(Red) and the healthy (Yellow) 
tissue.

mini-MIAS
Image ID

mdb095

mdb097

mdb099

mdbl02

B oundaries o f  the user identified  
regions representing the  

abnorm ality and the healthy 
tissue.

Figure 6.15 (C) -  Images showing the Region (Column 1) and Boundaries (Column 2) o f the 
abnormality and the healthy region surrounding it chosen by the user.
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m ini-M IAS User identified regions
Im age ID  representing the abnorm ality 

(Red) and the healthy (Yellow) 
tissue.

B oundaries o f  the user identified  
regions representing the  

abnorm ality and the healthy
tissue.

mdbl41

Figure 6.15 (D) -  Images showing the Region (Column 1) and Boundaries (Column 2) o f the 
abnormality and the healthy region surrounding it chosen by the user.

mdb!04

mdbllO

mdb270
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6.3.2. Overall Results Obtained through the CAM Process

The objective measure and the classification rule adopted by the CAM process, to 

differentiate benign from malignant abnormality, is defined as follows :

find the maximum average dissimilarity, measured between the cluster 

having the user tagged location (within the abnormality) and the clusters 

within the healthy region.

if the value of the above estimated measure is less than fifty percent then the 

abnormality is benign.

if the value of the above estimated measure is greater than fifty percent then 

the abnormality is malignant.

Table 6.9 lists the overall performance of the above defined objective measure and 

the corresponding classification rule, to differentiate benign (B) from malignant (M) 

abnormalities. The last column states "True +ve" if the classification based on the 

objective measure is malignant and the severity of the abnormality given, for that 

mammogram, by the mini-MIAS database is also malignant. Similarly the last 

column states "True -ve" if the classification based on the objective measure is 

benign and the severity of the abnormality given, for that mammogram, by the mini- 

MIAS database is also benign.
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Table 6.9 -  Performance o f the CAM process in differentiating malignant from benign
abnormalities

mini- 
MIAS 

Image ID

Breast Tissue 
Type 

(As per mini- 
MIAS)

Class of 
Abnormality 
(As per mini- 

MIAS)

Severity of 
Abnormality 
(As per mini- 

MIAS)

Maximum
Average

Dissimilarity
Measure

(Dis)

Objective 
Measure 

Based 
Classification 
B (Dis < 50%) 
M (Dis > 50%)

mdb002 Fatty Glandular Circumscribed Benign (B) 16.1% B (True -ve)

mdb005 Fatty Circumscribed Benign (B) 30.5% B (True -ve)

mdb012 Fatty Circumscribed Benign (B) 40.5% B (True -ve)

mdb028 Fatty Circumscribed Malignant (M) 82.0% M (True +ve)

mdb075 Fatty Asymmetry Malignant (M) 52.8% M (True +ve)

mdb083 Fatty Glandular Asymmetry Benign (B) 43.8% B (True -ve)

mdb090 Fatty Glandular Asymmetry Malignant (M) 67.4% M (True +ve)

mdb092 Fatty Asymmetry Malignant (M) 53.9% M (True +ve)

mdb095 Fatty Asymmetry Malignant (M) 61.5% M (True +ve)

mdb097 Fatty Asymmetry Benign (B) 48.8% B (True -ve)

mdb099 Dense Glandular Asymmetry Benign (B) 48.2% B (True -ve)

mdbl02 Dense Glandular Asymmetry Malignant (M) 65.7% M (True +ve)

mdbl04 Dense Glandular Asymmetry Benign (B) 32.4% B (True -ve)

m dbl10 Dense Glandular Asymmetry Malignant (M) 77.9% M (True +ve)

mdbl41 Fatty Circumscribed Malignant (M) 82.6% M (True +ve)

mdb270 Fatty Glandular Circumscribed Malignant (M) 53.2% M (True +ve)

6.3.3. Diagnosis of an Expert Radiologist

The opinion of an expert radiologist was got for each of the sixteen cases. The

protocol followed to obtain the expert's opinion was as follows :

for each of the sixteen cases the expert was provided with the details o f the 

location of the abnormality (as provided by the mini-MIAS), the breast tissue 

type and the class of the abnormalities

the expert was requested to categorise the abnormality as benign or

malignant.

The following are the observations which were made on the expert's diagnosis 

process:

the expert found the resolution of both the image and as well as the display 

unit too low when compared to what she uses in her professional work.
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For cases in which the expert felt that she had been handicapped by the 

resolution of the image she mentioned so.

• the expert used the Breast Imaging Reporting and Data System (BIRADS) 

score (Table 6.10) for categorising the severity of an abnormality. If the 

expert is not sure of the severity she categorised it as R3. 

over and above the diagnosis of the severity of the abnormalities the expert 

also noted other structural properties found in and around the abnormalities 

pertaining to her diagnosis.

for some o f the cases the expert wondered why another location in the image 

has not been marked as abnormal.

Table 6.10 -  Breast Imaging Reporting and Data System (BIRADS) score. 

_  (http://breastcancer.about.eom/od/diagnosis/a/birads.htm) _______
Category Diagnosis Number of Criteria

0 Incomplete Mammogram or ultrasound didn't give the radiologist 
enough information to make a clear diagnosis; follow-up 
imaging is necessary

1 Negative There is nothing to comment on; routine screening 
recommended

2 Benign A definite benign finding; routine screening recommended

3 Probably Benign Findings that have a high probability o f being benign 
(>98%); six-month short interval follow-up

4 Suspicious
Abnormality

Not characteristic of breast cancer, but reasonable 
probability o f being malignant (3 to 94%); biopsy should 
be considered.

5 Highly Suspicious of 
Malignancy

Lesion that has a high probability o f being malignant (>= 
95%); take appropriate action.

6 Known Biopsy 
Proven Malignancy

•

Lesions known to be malignant that are being imaged 
prior to definitive treatment; assure that treatment is 
completed.

Table 6.11 lists the expert’s diagnosis and the corresponding comments, if any, for 

the sixteen cases. (Please see Appendix 6 for the scanned image of the expert's hand 

written diagnosis and comments)
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Table 6.11 -  Performance of the expert in differentiating malignant from benign abnormalities

mini- 
MIAS 

Image ID

Breast Tissue 
Type 

(As per mini- 
MIAS)

Class of 
Abnormality 
(As per mini- 

MIAS)

Expert's diagnosis and pertaining 
comments 
B -  Benign 

M - Malignant
mdb002 Fatty Glandular Circumscribed R3 Expert was not sure what to decide

mdb005 Fatty Circumscribed B (True -ve)
mdb012 Fatty Circumscribed Well defined superior, 111 defined inferior. 

R3, Maybe M (False +ve)

mdb028 Fatty Circumscribed M (True +ve)

mdb075 Fatty Asymmetry M (True +ve)

mdb083 Fatty Glandular Asymmetry M (False +ve)
mdb090 Fatty Glandular Asymmetry M (True +ve)

mdb092 Fatty Asymmetry M (True +ve)
mdb095 Fatty Asymmetry M (True +ve)
mdb097 Fatty Asymmetry R3 Expert was not sure what to decide

mdb099 Dense Glandular Asymmetry M (False +ve)

mdbl02 Dense Glandular Asymmetry Low image resolution. May be M (True +ve)

mdbl04 Dense Glandular Asymmetry R3 Probably B (True -ve)

mdbllO Dense Glandular Asymmetry Low image resolution M (True +ve)
mdbl41 Fatty Circumscribed M (True +ve)

mdb270 Fatty Glandular Circumscribed M (True +ve)

6.3.4. Comparing HCS Process based Objective Measure with that of the 

Radiologist's Manual Measure

Of the sixteen cases processed the CAM process has obtained one hundred percent 

success rate in classifying the malignant from the benign cases. The expert had 

misdiagnosed two of them (False +ve) and was not sure of her diagnosis for four 

other cases (R3). Hence, out of sixteen cases the expert had correctly classified with 
confidence ten cases (63%).

However the expert was handicapped by the low resolution of the image and the 

display unit. The mammogram images, originally digitised at 50 microns pixel edge, 

had been reduced to a 200 microns pixel edge for the mini-MIAS database [Suckling 

et al., 1994]. The display unit used to view the mammogram images was one mega­

pixel resolution. In normal practice full-field digital mammograms are 70 microns 

resolution viewed in a display of three mega-pixels resolution.
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It should also be noted that the expert did not make use of any objective measures 

(e.g. the pixel density values) rather she had taken into account other criteria like the 

structural properties of the abnormalities. For example whether the border of the 

abnormalities is well defined or ill defined, the presence or absence o f calcification 

around the site etc.. Since malignant masses are often characterized by irregular 

tented boundaries with retraction of other fibrous structures and may be accompanied 

by local skin thickening or microcalcifications (Figure 6.16). Also it has been shown 

that isolated clusters of microcalcifications are one of the most frequent radiological 

features of asymptomatic breast cancer [Chan et al., 1994]. A careful search for the 

clustered microcalcifications that may herald an early-stage cancer should be carried 

out on all mammograms[Kopanes, 1999]. Thus the expert had employed her expert 

knowledge and past experience heuristically in arriving upon a diagnosis.

Invasive Carcinoma of the Right Breast

The i r re g u la r  mass with 
stellate borders is  a 
strong indicator of 
malignancy.

Figure 6.16 - Invasive carcinoma o f the right breast. The irregular mass with 
stellate borders is a strong indicator of malignancy. (Image courtesy 

http://www.med.yale.edu/)
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6.3.5. Possible Usage of the CAM Process of Abnormalities in X-ray 

Mammograms

From the preceding discussion it is seen that while human experts make use of 

heuristic measures the designed CAM process makes use of objective measure. From 

this observation one of the possible usage, that can be envisaged, for the 

implemented CAM process is the incorporation of the CAM's objective measure 

along with the expert's heuristic measure. For instance Hashimoto and Bauermeister 

have made the following observation about circumscribed masses :

Circumscribed masses are commonly benign. Only 1.4% o f well-defined 

circumscribed masses are malignant As there are many benign lesions in this 

category, diagnostic evaluation should be directed to excluding many o f these 

benign lesions from being biopsied [Hashimoto and Bauermeisterhas, 2003]. 

They recommend the following objective measure to identify benign circumscribed 

masses:

(The first step is to) analyse the density o f the mass. I f  the mass contains fat, 

then the abnormality is benign and does not require biopsy. I f  the mass has a 

density equal or greater than parenchyma, then further examination is 

necessary [Hashimoto and Bauermeisterhas, 2003]

To incorporate the above objective measure within the diagnosis pathway the CAM 

process designed in this study can be used. For example the HCS process can 

objectively measure the pixel density distribution within the more appropriately 

delineated abnormality (See Chapter 3 Section 3.5.1). This might assist the user to 

objectively evaluate whether the abnormality has fat within itself and hence benign 

or not.

Moreover there are problems with the subjective analysis of mammographic images 

by radiologist. Subjective analysis depends mainly on the experience of the human 

operator, but it is also affected by fatigue and other human-related factors. In 

addition, the interpretation is a repetitive task that requires lot of attention to minute 

details. Hence, it requires lot of staff time and effort, which results in slowing the 

diagnosis time. On the other hand, the objective analysis of mammograms, which is 

carried out by automated systems, provides consistent performance but its accuracy 

is usually lower. Due to the sensitivity of this problem, it is believed that radiologists 

should be involved and computers should not replace them completely [AbuBaker, 

2006]. Hence the designed CAM process will be more appropriate since it 

incorporates the radiologists1 knowledge within its objective analysis pathway.
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Hartswood et al. [Hartswood et al., 1997] in their study evaluating automated 

Computer Aided Mammography systems made the following observations regarding 

how the users of the prompting software tried to figure out the placements of the 

prompts:

Making sense o f the (Computer Aided Mammography) system (prompts)

The following extracts o f session verbal protocols illustrate how radiologists 

tried to make sense o f the Computer Aided Mammography system's behaviour 

from the evidence o f the features it had prompted. In a number o f instances, the 

transcripts show examples o f misunderstanding o f the extent o f the system's 

capabilities, and confusion because o f apparent inconsistencies in its behaviour. 

In this first set o f extracts, the comments suggest radiologists were unable to 

accurately place the CAM system's operational scope: i.e., the types o f feature 

it is capable o f detecting. The next set o f extracts focuses on radiologists' 

problems with understanding how the system interprets microcalcification 

clusters. In the final set o f extracts, the radiologists indicated that they had not 

see (sic) anything o f significance in the areas prompted. [Hartswood et al., 1997] 

The above issues arise, in the usage of the existing prompting software, because of 

the following reasons:

• the prompting software does not give any kind of feedback to the user how 

and why it arrived upon the decision.

• the user is not involved in the decision process.

The user of the Computer Aided Monitoring process, developed in this study, will 

not face any of the above issues. The user will be quite sure how and why the CAM 

system classified an abnormality into either malignant or benign because the user is 

involved in the decision process.

6.4. Summary

In this chapter the details of the performance of the Computer Aided Monitoring 

(CAM) process, designed for this study, was compared with the expert's performance 

for the following two clinical applications

Quantitative measure of the airway and the accompanying blood vessel 

dimensions

• Quantitative differentiation of malignancy from benign abnormalities.
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The conclusion which could be drawn from the performance analysis done is that the 

designed CAM process could be used by the experts. Moreover, the designed CAM 

process has inbuilt provision to make use of the experts' knowledge to finalize its 

objective measure. Hence, the designed CAM process need not be considered as an 

alternative for the existing diagnostic processes in practice but rather it might be used 

to augment the existing processes. But to establish this possibility the CAM process 

need to be tried by an expert. The current evaluation of the CAM process was carried 

out by the observation made on how the process was used by a lay person (the author 

of the study). Hence, it cannot be conclusively established, at the present stage of the 

investigation, the exact impact of the process on the experts' performance in 

interpreting diagnostic images.
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Chapter 7 Study Contribution, Possibilities and Further Work

7.1. Introduction

Tasks such as describing a picture, for example, is simple for humans but difficult for 

computers. Commercial online services, such as Amazon's Mechanical Turk service 

[Amazon], has long facilitated access to readily available human labour, when the 

job is simple for humans but difficult for computers. Of late, programmers have 

developed toolkits, like TurKit [TurKit], that lets software engineers write algorithms 

to coordinate these online human workers.

One such word-processing application, which has made use of TurKit, is Soylent 

[Bernstein et al., 2010] [Soylent]. Soylent embed on-demand human computation 

within interactive systems like Microsoft Word. Microsoft Word is good at laying 

out a document, but poor at understanding writing and suggesting edits to it. Soylent 

is a word processor with a crowd inside: an add-in to Microsoft Word that uses 

crowd contributions to perform interactive document shortening, proofreading, and 

human-language macros.

Latest in this line of software tools is the MobileWorks [MobileWorks]. 

MobileWorks incorporates human decision process within a software, through 

Application Programming Interface (API). The API enables the software to delegate 

its toughest tasks to humans. Through the API mechanism the software program can 

treat humans like another piece of software with the intelligence of a human.

In the diagnostic image processing environment, Claridge contends that computing 

systems are more consistent in their perceiving ability but they cannot match human 

interpretive skills. Drawing a line so as to limit the system's interpretive function has 

the virtue of achieving a complementary synthesis of system and radiologists' 

strengths [Claridge 1997].

This thesis has presented the details of a study that has designed a diagnostic image 

processing process which incorporates human interpretive skill within its framework, 

thus, striving to achieve the synthesis of system and radiologists' strengths.
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This chapter will discuss the contribution of the current study and the possible 

applications of the designed processes. It will also discuss the proposals to progress 

the work, carried out for this thesis, to the next level of making use of it in the real 

world environment.

The above discussion will be based on the HCS based CAM process for the 

following applications, which were investigated in this thesis :

Objective measurement of the airway and the accompanying blood vessel in 

the CT images of the lungs.

• Objectively differentiating malignant from benign abnormalities in X-ray 

mammograms.

7.2. Contribution and Possible Application of the Current Study

One of the major contribution of the current study is that it has designed a CAM 

system which makes use of the machine's perceptional facility along with expert's 

interpretative skills to objectively estimate the severity of the abnormal conditions. 

The designed CAM system has been tested for its performance in monitoring the 

following medical conditions:

• monitoring of CF in children

• monitoring of breast abnormalities in women

This section will discuss the possible applications of the above CAM systems.

7.2.1. Possible Application of the Computer Aided Monitoring of CF
With the advent of multi-detector row CT (MDCT) scanner, it is possible to acquire 

sub-millimeter thickness images of the entire chest within a single breath-hold of 5 to 

15 seconds. These new images can have the same resolution in the X, Y, and Z 

dimensions (isometric voxels), allowing images to be reconstructed in any 

orientation without loss of spatial resolution [Coxson and Lam, 2009].

Given the higher resolution of the MDCT images and its possible better sensitivity, 

when compared to the HRCT's images used for this study, the performance of the 

designed CAM system in segmenting the airways and the accompanying blood 

vessels will improve. Making use of the better image data the designed segmentation 

method can be further improved by requiring from the expert only the approximate 

centre marking of the airways and the blood vessels. This proposed improved method 

is discussed below.
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To design an improvement, to the currently implemented method (Chapter 4 Section 

4.3.10) the following typical anatomical properties of airway and the adjoining blood 

vessel could be leveraged :

• the airway lumen is always contained within the airway-wall and do not have 

a common boundary with the lung parenchyma..

• the airway wall Hounsfield values are markedly different from the airway 

lumen and its surrounding lung parenchyma.

• the blood vessel Hounsfield values are markedly different from the 

surrounding lung parenchyma.

Making use of the above typical anatomical properties one can improve upon the, 

just described, method of segmenting the blood vessel, airway wall and airway 

lumen which makes use of the user marked boundary locations.

The process starts, as before, by the user marking some discrete locations just outside 

the boundaries of the two major anatomies viz. the blood vessel and the airway wall. 

The discrete locations are connected together as one contiguous curve by connecting 

them with a cubic spline. The above two steps are the same as followed in the earlier 

discussed process.

The centres of the two resulting cubic spline curves will be almost at the centre of the 

two major anatomies viz. the blood vessel and the airway lumen (Chapter 4 Figure 

4.24). Making use of these two locations, which are well within their corresponding 

anatomies viz. the blood vessel and the airway lumen, these two anatomies are 

segmented first as described below :

• first the HCS process identifies the two regions to which the central locations 

of the cubic splines belong to.

• as the segmentation process proceeds, the HCS process merges only those 

similar regions bordering the regions to which the central locations belong to. 

for additional control of the merging of the regions belonging only to the 

blood vessel and the airway lumen the Hounsfield value ranges of the airway 

lumen and the blood vessel can be made use of.

The result of the above segmentation process will be the airway lumen and the blood 

vessel segmented as two well defined regions.
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This improvement will eliminate the requirement to give a pixel value range to 

restrict the pixels from lung parenchyma from merging with the airway lumen 

(Chapter4 Section 4.3.10.4).

Making use of the above proposed method, which requires only minimal input from 

the user, will allow much more rapid and efficient estimation of the dimensions of 

the airways and the accompanying blood vessels.

The issue of heterogeneity in airway dimensions is important both for between and 

within-subject comparisons [de Jong et al., 2005]. King et al [2004] measured 

heterogeneity in airway narrowing by comparing the variation within a scan to that 

between scans. However, this study did not address the issue of heterogeneity in 

baseline airway dimensions, which is important to estimate before the quantitative 

assessment of airway dimensions is established as an outcome measure in clinical 

studies [de Jong et al., 2005]. Matsuoka et al. [2005] measured airway wall 

dimensions from central to peripheral airways, using contiguous 2-mm sections 

obtained with a MDCT scanner in normal subjects. They reported the variation in 

various measures of airway lumen and wall dimensions within an individual scan, 

and as a function of distance from the hilum to the periphery [de Jong et al., 2005]. 

These data will prove valuable for assessing whether an observed difference or 

change is real or simply within the variation of the measurement [Matsuoka et al., 

2005].

Thus, the issue of heterogeneity in airway dimensions is important both for between 

and within-subject comparisons. But with the use of the currently available 

automated airway detection, it is only possible to make a limited number of 

measurements in any individual at any time [de Jong et al., 2005].

Making use of the improved version of the CAM system designed in this study it 

may be possible to design an appropriate study methodology to measure the variation 

of the measurements within the same scan made at different locations
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7.2.2. Possible Application of Computer Aided Monitoring of Breast 

Abnormalities

The designed CAM system, to monitor the abnormal regions in X-ray mammograms, 

has the following facilities :

• delineate and outline more appropriate boundaries of the abnormal regions.

• objectively measure the dissimilarity between the user identified abnormal 

and healthy regions.

The designed CAM system having the above facilities will be most useful in 

application domains where more appropriate delineation of the boundaries of the 

abnormalities is crucial and in application domains where the dissimilarity between 

the abnormal regions and healthy regions need to be objectively estimated.

The following is one of the application domains where more appropriate delineation 

of the boundaries of the abnormalities is crucial:

Radiologists have known for years that tumour volume can indicate patient 

response to therapy. Until now, however, it has not been a central component in 

a major research design. Last year a multi-centre trial, begun at the University of 

California, San Francisco and slated to expand to about 20 cancer centres in the 

U.S., will use medical images to assess patient response to experimental drugs 

being tested against breast cancer. The cancer trial will gauge how well drugs 

work in patients before their tumours have been surgically removed so that the 

effect of the drug can be quantified with medical imaging [Freiherr, 2010].

"By measuring tumour volume with imaging and validating that with 

pathological response, we will learn more about the use o f images as a marker 

for drug effects," said Dr. Janet Woodcock, director of the FDA centre for drug 
evaluation and research.

In application domains similar to the above the initial location of the abnormalities 

are known which is essential for the CAM system designed in this study. But what is 

required is the most appropriate delineation of the boundaries of the abnormalities 

which the designed CAM system can do far better than the human experts.

The following is one of the application domains where the dissimilarity between the 

abnormal regions and the healthy regions need to be objectively estimated :

To aid radiologists in earlier detection of breast cancer, Sameti [1998] conducted
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a retrospective study of mammograms. In that pioneer study, screening 

mammograms taken prior to the detection of a malignant mass was analysed, 

The aim was to determine if there exists any signs of cancer development in the 

screening mammograms prior to the detection of a mass by the radiologist.

The conclusion of that study was that the system can be used by a radiologist to 

examine suspicious patterns in a mammogram. The regions which were flagged 

by the system have a 72% chance of developing a malignant mass by the time 

of next screening [Sameti, 1998].

In the application domain similar to the above the possible location which will 

subsequently develop into an abnormal region is known. But what is required is an 

objective measure which will differentiate regions which will subsequently develop 

into malignancy from those regions which will remain benign. The objective 

measure designed for the CAM system in this study will be able provide such a 

measure.

7.3. Further Work

The following is the synopsis of the current study :

HCS process was made use of to design CAM systems to monitor CF, by 

processing CT images of the lungs and monitor breast abnormalities by 

processing X-ray mammograms.

Based on the above synopsis one can identify the following core components of the 

current study:

• HCS

• CAM process to monitor CF

• CAM process to monitor breast abnormalities

This section will discuss further work that could possibly be done in future to 

improve or enhance the capabilities of the above components of the current study.

7.3.1. Proposed Further Work on HCS Process

The current study is more application oriented hence, much of the discussion was

focused on how an operation was done rather than why it was done. The choice of a

specific operation was validated if the process yielded the required or anticipated 

results. That is there is no theoretical validation performed on the choice of 

operations.
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The HCS process is the core operation which was used to design the CAM process. 

In this study the performance of the HCS process, when compared to other 

segmentation algorithms, was objectively evaluated making use of the Berkeley 

segmentation dataset and benchmark [Arbelaez, 2007] (Please see Chapter 3 Section 

3.4). Other than the above attempt to objectively measure the performance of the 

HCS process no other detailed analysis of the HCS process was done.

It is proposed that the theoretical analysis and validation are done for the HCS 

process. The HCS process is very similar to other existing clustering based 

segmentation algorithms like Normalized cuts [Shi and Malik, 1997] and Spectral 

clustering [Ng et al., 2001]. Hence, the existing analytical work done on those 

similar methods could be taken as a guide.

Yet another aspect in which the HCS process need to be studied more closely is the 

process's operational optimization. By design the HCS process is processing 

intensive. This is because the HCS process adopts the brute force approach, where 

only those regions with the smallest overall dissimilarity are merged in each step. 

This ensures that the HCS process does not face the problem, that the resulting 

segmentation depends on the order in which the regions are evaluated to be merged 

[Thies et al., 2003].

Merging only those regions with the smallest overall dissimilarity requires the 

comparison of all the possible combinations of the locations or regions present in a 

image. This is a combinatorial problem which can easily overwhelm even very 

powerful computing systems. But the comparison of the different pairs of regions can 

be done in parallel. The current parallelised implementation of the HCS process takes 

advantage of the availability of multi-core CPUs. But the number of CPU cores 

available in a reasonably priced computing systems is limited.

Recently General Purpose Graphical Processing Units (GP-GPU) with hundreds of 

cores are available for a very reasonable price. High performance computing can be 

now be achieved using a hybrid computing model where GPUs are added to a x86 

CPU system. It is proposed that the HCS process software, is ported to such a system 

so that it can take leverage GP-GPU's powerful parallel computing architecture and 

programming model.
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7.3.2. Proposed Further Work on the CAM process to monitor CF

The CAM process designed to monitor CF was developed for and tested on HRCT 

data. HRCT data because of the lower resolution and lower sensitivity suffers from 

the partial volume effect whereby the HU values of the surrounding lung 

parenchyma is same as that of lumen (Please see Chapter 4 Section 4.3.4 ). It is 

proposed that the designed CAM system be evaluated and tested on the higher 

resolution MDCT image data.

7.3.3. Proposed Further Work on CAM process to monitor Breast Abnormalities
The HCS process based CAM system designed to monitor breast abnormalities 

involves the following crucial steps (Chapter 5 Section 5.2.4)

identifying the most appropriate segmentation, amongst the HCS process 

output

• in the above identified segmentation,

• marking the region which represents the abnormal tissue 

marking the region which represents the healthy tissue

• choosing a part of the abnormality which forms the core of the

abnormality

In the current study, for validating the performance of the designed process, the 

above steps were performed by the author who is a lay person (Chapter 6 Section 

6.3.1). It is proposed to find out whether the current results obtained by the designed 

CAM process can be repeated if an expert performs the above steps.

The following could be the protocol for the proposed validation process

• perform the HCS segmentation process within the ROI around the

approximate location of the abnormality.

• display the segmentation output to the expert user making use of the designed 

GUI facility for displaying the HCS process output (Chapter 4 Section 4.2.2) 

inspecting the HCS process output the expert user does the following

• chooses the most appropriate segmentation

in the above identified segmentation, the user:

identifies the region which represents the abnormal tissue 

identifies the region which represents the healthy tissue 

• chooses a part of the abnormality which forms the core of the 

abnormality
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• Making use of the above choices, made by the expert user, the designed CAM 

process classifies the abnormality as malignant or benign using the designed 

objective measure (Chapter 5 Section 5.2.5.1)

For each of the sixteen cases the choices made by the expert user and the 

corresponding classification of the abnormality obtained by the CAM process are 

compared with the one done by the lay user and the corresponding results obtained in 

the current study (Chapter 6 Section 6.3.1).

7.4. Conclusion

This study has developed and evaluated a novel CAM process which seamlessly 

combines the perceptional ability of the computer with the interpretative skill of 

humans. The designed CAM system can be used to monitor any conditions which 

require perceptional skill to interpret medical image data.

The application domains on which the designed CAM system was evaluated, viz. 

monitoring CF by processing CT images of the lungs and monitoring abnormalities 

of the breast by processing the X-ray mammograms, can be easily extended to be 

tested for possible clinical applications (Please see Chapter 7 Section 7.2.1 and 

Section 7.2.2).

It should be noted that the current results, in differentiating benign from malignant 

abnormalities, were obtained by processing images which are almost four times 

lower resolution (200 microns per pixel) when compared to the actual resolution of 

the digital mammogram (70 micron per pixel). Hence it is anticipated that the HCS 

process based CAM method will benefit from the higher resolution of the actual 

digital mammograms.

Also the current HCS process can handle 3-D data set by considering a 

neighbourhood of 3x3x3 cube around a voxel location.
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Appendix 1
Following is a short critical synopsis of different medical image segmentation methods 

and their corresponding advantages and disadvantages, as outlined by Pham et al 

[2000], in their survey on the methods in medical image segmentation.

Thresholding approaches segment scalar images by creating a binary 

partitioning of the image intensities. A thresholding procedure attempts to 

determine an intensity value, called the threshold, which separates the desired 

classes. The segmentation is then achieved by grouping all pixels with intensity 

greater than the threshold into one class, and all other pixels into another class. 

Thresholding operation can be expressed mathematically as given by the 

expressions A 1.1 and A 1.2.

I 0={l{m,n):I{m,n)>T}  [A 1.1]

I b={l(m,n):I(m,n)<T]  [A 1.2]

Where:

10: Object pixels 

Ib: Bacground pixels

I (m,n): The value ofthe image pixel located in the mth column nth row 

T : Threshold value

Determination of more than one threshold value is a process called 

multithresholding [Sahoo et al., 1988]. Its main limitations are that in its 

simplest form only two classes are generated and it can not be applied to multi­

channel images. In addition, thresholding typically does not take into account the 

spatial characteristics of an image. This causes it to be sensitive to noise and 

intensity inhomogeneities, which can occur in magnetic resonance images. Both 

these artefacts essentially corrupt the histogram of the image, making separation 

more difficult. For these reasons, variations on classical thresholding have been 

proposed for medical image segmentation that incorporate information based on 

local intensities [Li et al., 1995] and connectivity [Lee et al., 1998]. A survey on 

thresholding techniques is provided in [Sahoo et al., 1988].
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Region growing is a technique for extracting a region of the image that is 

connected based on some predefined criteria. This criteria can be based on 

intensity information and/or edges in the image [Haralick and Shapiro, 1985]. 

Region growing can also be sensitive to noise, causing extracted regions to have 

holes or even become disconnected. Conversely, partial volume effects can 

cause separate regions to become connected. To help alleviate these problems, a 

homotopic region growing algorithm has been proposed that preserves the 

topology between an initial region and an extracted region [Mangin et al., 1995]. 

Fuzzy analogies to region growing have also been developed [Udupa and 

Samarasekera, 1996].

Classifier methods are pattern recognition techniques that seek to partition a 

feature space derived from the image using data with known labels [Schalkoff., 

1992], [Bezdek et al., 1993]. Classifiers are known as supervised methods since 

they require training data that are manually segmented and then used as 

references for automatically segmenting new data. There are a number of ways 

in which training data can be applied in classifier methods. A simple classifier is 

the nearest-neighbor classifier, where each pixel or voxel is classified in the 

same class as the training datum with the closest intensity. Additional parametric 

and nonparametric classifiers are described in [Zijdenbos and Dawant, 1994]. A 

disadvantage of classifiers is that they generally do not perform any spatial 

modelling. This weakness has been addressed in recent work extending classifier 

methods to segmenting images that are corrupted by intensity inhomogeneities 

[Wells et al., 1996]. Neighborhood and geometric information were also 

incorporated into a classifier approach in [Kapur et al., 1998]. Another 

disadvantage is the requirement of manual interaction for obtaining training data. 

Training sets can be acquired for each image that requires segmenting, but this 

can be time consuming and laborious. On the other hand, use of the same 

training set for a large number of scans can lead to biased results which do not 

take into account anatomical and physiological variability between different 

subjects.
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Clustering algorithms essentially perform the same function as classifier 

methods without the use of training data. Thus, they are termed unsupervised 

methods. In order to compensate for the lack of training data, clustering methods 

iterate between segmenting the image and characterizing the properties of the 

each class. In a sense, clustering methods train themselves using the available 

data. Three commonly used clustering algorithms are the K-means or ISODATA 

algorithm [Coleman and Andrews, 1979], the fuzzy c-means algorithm [Dunn, 

1973], [Bezdek et al., 1993], and the expectation-maximization (EM) algorithm 

[Lei and Sewchand, 1992], [Liang et al., 1994]. Although clustering algorithms 

do not require training data, they do require an initial segmentation (or 

equivalently, initial parameters). The EM algorithm has demonstrated greater 

sensitivity to initialization than the K-means or fuzzy c-means algorithms 

[Davenport et al., 1988]. Like classifier methods, clustering algorithms do not 

directly incorporate spatial modelling and can therefore be sensitive to noise 

and intensity inhomogeneities. This lack of spatial modelling, however, can 

provide significant advantages for fast computation [Hebert, 1994]. Work on 

improving the robustness of clustering algorithms to intensity inhomogeneities 

in MR images has demonstrated excellent success [Goldszal et al., 1998], [Pham 

and Prince, 1999].

Markov Random Fields (MRFs) are often incorporated into clustering 

segmentation algorithms such as the K-means algorithm under a Bayesian prior 

model [Pappas, 1992], [Rajapakse et.al, 1997], [Held et al., 1997], [Goldszal et 

al., 1998]. The segmentation is then obtained by maximizing the a posteriori 

probability of the segmentation given the image data using iterative methods 

such as iterated conditional modes [Besagal, 1986] or simulated annealing 

[Geman and Geman, 1984]. A difficulty associated with MRF models is proper 

selection of the parameters controlling the strength of spatial interactions [Li, 

1995]. Too high a setting can result in an excessively smooth segmentation and a 

loss of important structural details. In addition, MRF methods usually require 

computationally intensive algorithms. Despite these disadvantages, MRFs are 

widely used not only to model segmentation classes, but also to model intensity 

inhomogeneities that can occur in MR images [Held et a l , 1997] and texture 

properties [Reed and Hans Du Buf, 1993].
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Artificial Neural Networks (ANNs) are massively parallel networks of 

processing elements or nodes that simulate biological learning. Each node in an 

ANN is capable of performing elementary computations. Learning is achieved 

through the adaptation of weights assigned to the connections between nodes. A 

thorough treatment on neural networks can be found in [Clark, 1991], [Haykin, 

1994]. Because of the many interconnections used in a neural network, spatial 

information can easily be incorporated into its classification procedures. The 

most widely applied use in medical imaging is as a classifier [Hall et al., 1992], 

[Gelenbe et al., 1996], where the weights are determined using training data, and 

the ANN is then used to segment new data. ANNs can also be used in an 

unsupervised fashion as a clustering method [Bezdek et al., 1993], [Reddick et 

al., 1997], as well as for deformable models[Vilarino et al., 1998].

Deformable models are physically motivated, model-based techniques for 

delineating region boundaries using closed parametric curves or surfaces that 

deform under the influence of internal and external forces. To delineate an object 

boundary in an image, a closed curve or surface must first be placed near the 

desired boundary and then allowed to undergo an iterative relaxation process. 

Internal forces are computed from within the curve or surface to keep it smooth 

throughout the deformation. External forces are usually derived from the image 

to drive the curve or surface towards the desired feature of interest. 

Mathematically, a deformable model moves according to its dynamic equations 

and seeks the minimum of a given energy functional [Kass et al., 1988], 

[Terzopoulos and Szeliski, 1992]. The main advantages of deformable models 

are their ability to directly generate closed parametric curves or surfaces from 

images and their incorporation of a smoothness constraint that provides 

robustness to noise and spurious edges. A disadvantage is that they require 

manual interaction to place an initial model and choose appropriate parameters. 

Reducing sensitivity to initialization has been a topic of research that has 

demonstrated excellent success [Cohen, 1991] [Caselles et al., 1993], [Malladi et 

al., 1995], [Xu and Prince, 1998]. Standard deformable models can also exhibit 

poor convergence to concave boundaries. This difficulty can be alleviated 

somewhat through the use of pressure forces [Cohen, 1991] and other modified 

external force models [Xu and Prince, 1998]. Another important extension of 

deformable models is the adaptivity of model topology using an implicit
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representation rather than an explicit parameterization [Caselles et al., 1993] 

[Malladi et al., 1995], [Mclnemey and Terzopoulos, 1995]. A general review on 

deformable models in medical image analysis can be found in [Mclnerney and 

Terzopoulos, 1996].

Atlas-guided approaches are a powerful tool for medical image segmentation 

when a standard atlas or template is available. The atlas is generated by 

compiling information on the anatomy that requires segmenting. This atlas is 

then used as a reference frame for segmenting new images. Conceptually, atlas- 

guided approaches are similar to classifiers except they are implemented in the 

spatial domain of the image rather than in a feature space.The standard atlas- 

guided approach treats segmentation as a registration problem (see [Maintz and 

Viergever, 1998] for a detailed survey on registration techniques). It first finds a 

one-to-one transformation that maps a pre-segmented atlas image to the target 

image that requires segmenting. This process is often referred to as atlas 

warping. The warping can be performed using linear [Talairach and Toumoux, 

1988], [Lancaster et al., 1997], [Andreasen et al., 1996] transformations but 

because of anatomical variability, a sequential application of linear and non­

linear [Collins et al., 1995], [Davatzikos, 1996], [Christensen et al., 1997], 

[Sandor and Leahy, 1997] transformations is often used. Because the atlas is 

already segmented, all structural information is transferred to the target image. 

Atlas-guided approaches have been applied mainly in MR brain imaging. An 

advantage of atlas-guided approaches is that labels are transferred as well as the 

segmentation. They also provide a standard system for studying morphometric 

properties [Davatzikos et al., 1996], [Thompson and Toga, 1997], [Joshi et al., 

1997].Thus, atlas-guided approaches are generally better-suited for segmentation 

of structures that are stable over the population of study. One method that helps 

model anatomical variability is the use of probabilistic atlases [Thompson and 

Toga, 1997] but these require additional time and interaction to accumulate data.

Model-fitting is a segmentation method that typically fits a simple geometric 

shape such as an ellipse or parabola to the locations of extracted image features 

in an image [Pathak et al., 1998]. It is a technique which is specialized to the 

structure being segmented but is easily implemented and can provide good 

results when the model is appropriate. A more general approach is to fit spline
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curves or surfaces [Bae et al., 1993] to the features. The main difficulty with 

model-fitting is that image features must first be extracted before the fitting can 

take place.

The watershed algorithm uses concepts from mathematical morphology 

[Gonzalez and Woods, 1992] to partition images into homogeneous regions 

[Vincent and Soille, 1991]. This method can suffer from over-segmentation, 

which occurs when the image is segmented into an unnecessarily large number 

of regions. Thus, watershed algorithms in medical imaging are usually followed 

by a post-processing step to merge separate regions that belong to the same 

structure [Sijbers et al., 1997]. 

monitor breast abnormalities.
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Appendix 2

de Jong et al. in their publication titled "Computed tomographic imaging of the airways: 

relationship to structure and function" [de Jong et al, 2005] have carried out a detailed 

review of the earlier studies which had attempted to quantitatively assess the dimensions 

of airways through CT images of the lungs. Following excerpt is from that publication : 

Start Quote..
In the initial studies in which airway dimensions were measured using CT, the 
investigators relied on manual tracing of the airway images [Webb et al. 1984] 
[Seneterre et al, 1994] [McNamara et al., 1992] [Okazawa et al., 1996] [Bankier, et 
al, 1996]. These techniques are extremely time consuming and prone to error. 
Therefore, computer-aided and automated techniques have since been developed to 
measure airway lumen and wall dimensions. The first such method for measuring 
airway lumen used a Hounsfield unit (HU) threshold cut-off value. This technique 
involves identifying the airway, and measuring the X-ray attenuation values within the 
lumen. McNitt-Gray et al. [McNitt-Gray et al., 1997] reported that the airway lumen 
area could be accurately measured by including all pixels beyond a threshold cut-off of 
-500 HU, and King et al. [King et al., 2000] reported that a threshold of -577 HU 
produced the least error. However, the most commonly reported method for measuring 
the airway lumen and wall areas relies on the "full-width-at-half-maximum" (or "half­
max") technique. This method requires that a seed point be placed in the lumen and the 
X-ray attenuation values measured along rays cast from this point outward toward the 
airway wall in all directions. A s  a ray enters the wall, the attenuation will increase and 
then decrease as it passes into the lung parenchyma. The distance between the point at 
which the attenuation is halfway to the maximum on the lumen side and halfway to the 
local minimum on the parenchymal side is considered to be the wall thickness (Figure 
A2.1) [Nakano et al., 2000] [Nakano et al. 2002]. Although this method provides a 
standardised and unbiased measurement, it has limitations. When CT scan 
measurements using this method are compared with phantoms and anatomical 
specimens [Nakano et al. 2002], the CT scans consistently overestimate airway wall 
area and underestimate lumen area. These systematic errors are due to a combination 
of factors including: the limited spatial resolution of the CT scanner; the angle of 
orientation of the airway within the CT slice; the ability of the scanner to detect edges 
(the point-spread function); the reconstruction algorithm used; the analysis technique 
used; and inability to visualise the folding of the epithelium. Nakano et al. [Nakano et 
al. 2002] have shown that the half-maxmethod results in very large fractional errors in 
the measurements of small bronchi. For this reason, techniques such as the maximum 
likelihood method [Reinhardt et al., 1997] and score-guided erosion [King et al., 2000] 
have been developed. The errors due to volume averaging are particularly important
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when airways are sectioned tangentially, as is the case with the majority of airways. 
King et al [King et al., 2000] attempted to compensate for the obliquity of the section, 
by defining the angle of deviation of each airway from the perpendicular using the 
centroid of the same airway on the two sections on each side of the section on which the 
measurements are made. Saba et al. [Saba at al., 2003] have developed an alternate 
technique for measuring airways that are not cut in cross-section. This method involves 
fitting an ellipse to the airway lumen and wall, and shows great promise in correcting 
the errors in measurement of obliquely cut airways. These techniques claim to be more 
accurate than the more commonly used techniques, but have not been generally 
applied, presumably because of the limited availability of the complex algorithms 
involved.

End Quote..
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Figure A2.1 - Airway wall measurement using the full-width at half-maximum algorithm.
A representative computed tomography image (a) and a magnified view of an airway (b) A 
representative X-ray attenuation curve for a ray that passes from the lumen through the airway 
wall and into the parenchyma (c) (Image courtesy de Jong et al., 2005).
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Appendix 3

Coxson and Lam [2009] in their publication have critically reviewed the progression of 

computer techniques to qualitatively assess the Airway wall using CT. Following 

material is extracted from their publication :

The initial high-resolution computed tomography (HRCT) images used 1 mm 

slice thickness and an edge-enhancing algorithm that made it possible to 

visualize the airway in a manner that was similar to gross pathology. This made 

the technique immediately popular with investigators, and there was a flurry of 

publications on how to best trace the airway wall to produce the best images 

[McNamara et a l 1992], [Okazawa et al., 1996], [Seneterre et a l , 1994]. It was 

quickly realized that quantitative measurements of airway structure were very 

dependent on the display parameters of the image [Bankier et a l , 1996], [Webb 

et a l , 1984], and that an automated computer approach that used the density 

attenuation values of the CT image was the correct method for analysis. 

Therefore, investigators turned their attention to developing algorithms that 

could measure the airway lumen and wall area on these CT scans. Some of the 

early approaches were very simple, using threshold techniques to find the lumen 

[McNitt-Gray et al., 1997] and simple algorithms like the full-width at half 

maximum to assess the wall area [Nakano et al., 2002], [Nakano et al., 2002]. It 

was quickly decided that while these simple approaches had merit, they were not 

always the most accurate at determining airway dimensions. More complex 

algorithms using model-based approaches to provide more reliable 

measurements were developed [King et al., 2000], [Reinhardt et a l, 1997], 

[Saba et al, 2003], [San et al, 2008], [Leader et al, 2003]. Even though there is 

no consensus on the most appropriate method to measure airways, investigators 

have been using them to assess lung structure and function relationships in 

chronic obstructive pulmonary disease (COPD).

Early on, Nakano and coworkers used the full-width at half maximum method to 

measure the airway wall of the right apical segmental bronchus in a group of 

asymptomatic smokers and smokers with COPD [Nakano et al, 2000]. This was 

an important study, even though it is well known that the major site of airflow 

limitation is the small airway, which a segmental bronchus clearly is not. 

However, these investigators were still able to show that there was a correlation 

between the percent of the total airway (lumen plus wall) that was airway wall
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area (wall area percent [WA%]) and FEV1, FVC, and the residual volume (RV)/ 

total lung capacity (TLC) [Nakano et al., 2000]. Other investigators have shown 

similar findings [Berger et a l , 2005], [Niimi et al., 2000], [Orlandi et al., 2005], 

[Patel et al., 2008], and further work from Nakano and colleagues showed that 

there was a correlation between airway wall measurements obtained using CT 

and those obtained using histology [Nakano et a l , 2005]. This is further backed 

up by other histologic data that show that in subjects with COPD, there is a 

thickening of the airway wall in the larger airways as well as the small airways 

[Tiddens et al., 1995]. Other studies of large airways have shown that subjects 

with symptoms of chronic bronchitis have more airway wall thickening than 

those with airflow limitation but no symptoms [Orlandi et 'al., 2005], [Patel et 

al, 2008].

Because COPD is thought to be caused by airway wall remodeling, emphysema, 

or some combination of the two, it was hoped that CT could be used to 

differentiate the different COPD phenotypes. Since these phenotypes are likely 

to have a genetic component, Patel and coworkers used CT to quantify airway 

wall dimensions and emphysema in a cohort of subjects with COPD and their 

siblings [Patel et al., 2008]. This study showed that there was a significant 

familial concordance of airway wall thickening such that if a subject with COPD 

has thickened airway walls, there is an increased odds ratio that their sibling 

would also have airway wall thickening [Patel et al, 2008]. It has long been 

hypothesized that sex is responsible for differences in the airway wall 

dimensions. Using the NETT study, Martinez and colleagues showed that 

women had a higher airway wall area compared with lumen perimeter than men 

[Martinez et al., 2007]. However, this cohort is a highly selected group of 

subjects chosen to be candidates for lung volume reduction surgery. Recently, 

using a community sample of smoking control subjects and subjects with COPD, 

Grydeland and coworkers showed that the airway wall area was higher in 

subjects with COPD and higher in men regardless of disease status [Grydeland 

et al., 2009]. These authors also showed that airway wall thickness decreased 

slightly with increasing age in subjects with and without COPD, and that it 

increased with smoking history only in the control group. These studies indicate 

that there are differences in the structure of the airway wall that are very likely 

under some form of genetic control.
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Appendix 4

Coxson and Lam [2009] in their publication have listed the limitations to the use of CT

scanning to measure airways. Following material is extracted from their publication :

The first and obvious limitation is the resolution of the CT scanner. In usual 

clinical CT scanning, the field of view limits the pixel size to approximately 0.5 

mm in the X and Y dimension. Furthermore, until the recent advent of multi­

slice CT scanners that can acquire images with 0.5-mm slice thickness; the CT 

slice thickness has limited the Z dimension to 1 mm. This means that the airways 

that are responsible for airflow limitation are below the resolution of the CT 

scanner. A CT method that is becoming quite popular to assess small airway 

disease is gas trapping using expiratory CT scans (Figure A4.1). One of the first 

studies to look at expiratory CT was performed by Gevenois and colleagues, 

who reported that expiratory CT scans did not accurately quantify emphysema 

but probably reflect air trapping [Gevenois et al., 1996]. Expiratory CT scans 

have been used to quantify air trapping in post-lung transplant bronchiolitis [de 

Jong et al., 2006], [Dod et al., 2008] and asthma [Busacker et al., 2009], [Lee et 

al., 2008],-[Zeidler et al., 2006], but have not been used extensively in COPD 

research. Lee and colleagues have shown that expiratory lung density correlates 

the BODE index and that the CT measurement of air trapping correlates with 

physiologic measurements of air trapping [Lee et al., 2008]. Akira and 

coworkers also used expiratory CT scans in subjects with COPD and found that 

expiratory CT scans are associated with pulmonary function in subjects with 

severe obstruction, but not in subjects with less severe obstruction [Akira et al., 

2009]. One of the drawbacks of expiratory CT scans is that they expose the 

subject to the extra radiation associated with a second CT scan. However, it is 

becoming recognized that expiratory CT scans do provide very useful 

information, and it is very likely that more studies using this approach will be 

performed in the near future [Coxson and Lam, 2009].

A second limitation to the measurement of airways using CT scans is that there 

is no definitive data on the best algorithm to measure the airway wall. While a 

great deal of research has gone into airway wall algorithms [Reinhardt et al., 

1997], [Saba et al., 2003], [Nakano et al., 2000], [Hasegawa et al., 2006], 

[Brown et al., 2000], [King et al., 1999], [Montaudon et al., 2007], [Aykac et 

al., 2003], [Tschirren et al, 2005], there is no clear indication that one algorithm 

provides more useful data than another one [Coxson and Lam, 2009].
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Figure A4.1 -  Thin slice CT scan showing regions of gas trapping.
This figure shows a thin slice (1 mm slice thickness) CT scan acquired after 

expiration. Most of the lung has increased density (less dark), but parts of the lung are 
exhibiting signs of gas trapping (arrows) and appear darker on the image. It is thought 
that these regions of gas trapping are caused by small airway narrowing.(Image and 

caption courtesy Coxson and Lam, 2009).

Third, the analysis of airways using three-dimensional algorithms is still in its 

infancy, and while there is great hope that these data will provide more 

meaningful data than the simple sample of two-dimensional airways, the data are 

clearly lacking in this area. An obvious problem of the three-dimensional 

approach is that there are now many airways that can be "named" and measured, 

and because these data have never existed before, investigators do not know how 

many airways or how many airway paths to measure. It should also be noted that 

there are very few longitudinal studies of airways. Longitudinal analysis of 

airways is very problematic because the effect of CT image acquisition 

parameters such as X-ray dose, subject position, and volume of inspiration (to 

name a few) is completely unknown. It is very likely that the size of breath the 

subject takes will produce very different CT images of the airway tree, thereby 

affecting all of the data derived from the images. Finally, because airway 

measurements are still in their infancy and require specialized computer
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hardware and software, these analyses have a long way to go before they 

become practical in the clinical setting. As such they remain in the research 

domain and are limited in their applicability [Coxson and Lam, 2009].
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Appendix 5

Pham et al. [2000] in their survey on the current methods in medical image 

segmentation have got the following to say regarding segmentations in digital X-ray 

mammograms:

Segmentation in digital mammography is typically performed for localization of 

tumours [Pohlman et al.t 1996], [Li et al., 1995], micro-calcification clusters 

[Cheng et al., 1998], [Ibrahim et al., 1997], [Strickland and Hahn, 1996], or 

other indicators of pathology [Kallergi et al., 1992]. In delineating suspicious 

masses for mammography, segmentation methods are typically employed in one 

of two ways. In the first approach, the mammogram is initially segmented into 

candidate regions which are then labelled as being suspicious or normal 

[Polakowski et al., 1997], [Li et al., 1995], [Ibrahim et al., 1997], [Karssemeijer, 

1997]. In the second approach, the image is first processed to detect for the. 

presence of pathology and a segmentation is performed as a final step to 

determine its precise location [Cheng et al, 1998], [Kupinski and Giger, 1998] 

[Gupta and Undrill, 1995], [Chen and Lee, 1995]. Thresholding and its 

Variations are the most often used segmentation technique in X-ray 

mammography [Polakowski et al, 1997], [Strickland and Hahn, 1996], [Cheng 

et al., 1998], [Gupta and Undrill, 1995], [Ibrahim et al, 1997], although 

extensions of region growing methods have also been proposed [Kupinski and 

Giger, 1998], [Pohlman et al., 1996]. A comparison of thresholding and region 

growing was presented in [Kallergi et al., 1992]. Because pathological areas 

often possess different textural properties in mammograms, Markov random 

field methods have also been successfully employed [Li et al., 1995], [Chen and 

Lee, 1995].
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Appendix 6

Figure A6.1 shows the hand written notes of the radiologist while she did the diagnosis 

of the sixteen cases. The first column has got the mini-MIAS case ID and the 

corresponding actual severity of the abnormality (noted after the diagnosis process).
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Figure A6.1 -  Radiologist's diagnosis of the sixteen mini-MIAS cases.
This figure shows the handwritten notes of the Radiologist, made during diagnosing of

the sixteen mini-MIAS cases.
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