Pitting and stress corrosion cracking of stainless steel.

SAITHALA, Janardhan R. (2007). Pitting and stress corrosion cracking of stainless steel. Doctoral, Sheffield Hallam University (United Kingdom)..

[img]
Preview
PDF (Version of Record)
10700957.pdf - Accepted Version
All rights reserved.

Download (22MB) | Preview

Abstract

An investigation has been performed to determine the pitting resistance of stainless steels and stress corrosion cracking of super duplex stainless steels in water containing chloride ions from 25 - 170°C. The steels studied are 12% Cr, FV520B, FV566, 304L, Uranus65, 2205, Ferallium Alloy 255, and Zeron 100. All these commercial materials used in very significant industrial applications and suffer from pitting and stress corrosion failures. The design of a new experimental setup using an autoclave enabled potentiodynamic polarisation experiments and slow strain rate tests in dilute environments to be conducted at elevated temperatures. The corrosion potentials were controlled using a three electrode cell with computer controlled potentiostat.The experimental programme to determine pitting potentials was designed to simulate the service conditions experienced in most industrial plants and develop mathematical model equations to help a design engineer in material selection decision. Stress corrosion resistance of recently developed Zeron100 was evaluated in dilute environments to propose a mechanism in chloride solutions at high' temperatures useful for the nuclear and power generation industry. Results have shown the significance of the composition of alloying elements across a wide range of stainless steels and its influence on pitting. Nitrogen and molybdenum added to modern duplex stainless steels was found to be unstable at higher temperatures. The fractographic results obtained using the scanning electron microscope (SEM) has given insight in the initiation of pitting in modem duplex and super duplex stainless steels. A mathematical model has been proposed to predict pitting in stainless steels based on the effect of environmental factors (temperature, chloride concentration, and chemical composition). An attempt has been made to identify the mechanism of SCC in Zeron100 super duplex stainless steel.The proposed empirical models have shown good correlation between predicted pitting potential values with experimental results. It has been shown that the SCC mechanism in Zeron100 supports the slip assisted anodic dissolution model of SCC. The relationship between pitting and stress corrosion in dilute environments is established and empirical equations have been proposed to determine the damage region for wide range of stainless steels.

Item Type: Thesis (Doctoral)
Contributors:
Thesis advisor - Atkinson, John
Additional Information: Thesis (Ph.D.)--Sheffield Hallam University (United Kingdom), 2007.
Research Institute, Centre or Group - Does NOT include content added after October 2018: Sheffield Hallam Doctoral Theses
Depositing User: EPrints Services
Date Deposited: 10 Apr 2018 17:21
Last Modified: 26 Apr 2021 12:22
URI: https://shura.shu.ac.uk/id/eprint/20311

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics