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ABSTRACT

Digital anisochronous pulse time modulation (PTM) techniques are alternative schemes for 

transmission of signals over optical fibre communication links. Modulation is simple and 

low cost and has the ability to trade performance with bandwidth overhead. Pulse interval 

width code modulation (PIWCM) and pulse interval code modulation (PICM) belong to the 

category of schemes where the former offers built in frame synchronisation capability and 

the latter offers improved receiver sensitivity.

This thesis is concerned with analysis, design, simulation and physical implementation of 

PIWCM and PICM for a single channel system. Original mathematical expressions are 

given for code characteristics, transmission capacity and power spectral density for both 

schemes, which explain the the anisochronous nature of the code formats. A simulation 

model based upon Matlab has been developed for both schemes to assist the development 

of the implementation process. Analytical and simulated results are presented along with 

the evaluation of error sources and their impact upon the system performance.

The PIWCM and PICM modulators/demodulators are formulated around analogue-to-digital 

converters and purpose designed Moore state machines, in order to generate the code 

formats and timing information needed to synchronise transmitter and receiver modules. 

Depending on source connection, the system is capable of transmitting PCM coded parallel 

binary information or directly sampled analogue message signals.

A complete system operating at 1 Mb/s has been designed, constructed and analysed. The 

results obtained are in close agreement with predicted and simulated data, indicating the 

potential of such schemes for wide-band transmission.
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GLOSSARY OF ABBREVIATIONS

Abbreviation Description

APD Avalanche photo diode

APWM Analogue pulse width modulation

ATM Asynchronous transfer mode

DPPM Digital pulse position modulation

DPWM Digital pulse width modulation

EDI Electronic data interchange

FDM Frequency division multiplexing

FM Frequency modulation

HDTV High definition television

ISDN Integrated services digital network

LAN Local area network

LED Light emitting diode

NRZ Nonreturn-to-zero

PCM Pulse code modulation

PFM Pulse frequency modulation

PICM Digital pulse interval modulation

PIM Pulse interval modulation

PIN P-N photodiode

PIWCM Digital pulse interval width modulation

PIWM Pulse interval width modulation

PPM Pulse position modulation

PTM Pulse time modulation

PWM Pulse width modulation

SWFM Square wave frequency modulation



TDM

VCO

WDM

Time division multiplexing 

Voltage controlled oscillator 

Wavelength division multiplexing



GLOSSARY OF SYMBOLS

Symbol Definition

p0 shift of sampling frequency

5j, 82, 8b sidetones in frequency spectrum

8a random time delay

Kĝ  constant depending on the pulse shape

x pulse width

v time constant

coc, f c clock frequency

com, f m modulating frequency

a, b, c, i variables

A amplitude, magnitude

B, Bn, Bv bandwidth occupancy, N-naturally sampled, u-uniformly sampled

C capacity of transmission channel

C/N, C/Nn, C/Nv  carrier-to-noise ratio, N-naturally sampled, u-uniformly sampled

D duty cycle

/  fibre bandwidth

F(t) frequency spectrum

f g guard band

f s sampling frequency

g\t) slope of rising pulse edge

Gif) pulse shape transform

g(t) pulse shape

J0(x), Ja(x), Jb{x) Bessel function

k length of high or low-word

v



L frame length

Lavg average frame length

^ max maximum frame length

^mitt minimum frame length

m mark

M modulation index

n number of quantisation levels

N length of truncated sequence

P bit-resolution

Q error function

r Nyquist rate

R transmission rate

s space

S/N, S/Nn, S/Nv signal-to-noise ratio, N-naturally sampled, u-uniformly sampled

S{t) power spectral density

T sampling period

fo maximum pulse width change or peak-to-peak deviation

<a stochastic pulse position

T n frame duration

<r rise time

T s time slot duration

W channel bandwidth

X decimal equivalent value

x{t) pulse train

X Tif) Fourier transform of truncated pulse train x(t)
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INTRODUCTION



1. INTRODUCTION

Currently, communication authorities provide a number of voice and data services 

(telephone, facsimile, teletex, etc.) over various public or private networks. These networks 

are specialised to provide one type of service only, and have therefore different 

transmission rates and characteristics. Some of the data services are provided in two or 

more networks, but the terminal equipment is not the same, nor is the modulation or 

coding of data. Internetworking can only be achieved using specialised gateway 

exchanges that convert from one form of transmission to the other [1].

The need to provide higher speed data rates results from the ever increasing processing 

power, storage capacity and transfer rate capability of modern data processing equipment. 

New communication services such as electronic data interchange (EDI), on-line airline 

travel and reservations, etc. are already integrated in private networks and w ill soon be 

available for a wide range of users. In the future, users w ill be faced with the 

interconnection of telecommunication networks and data networks through ISDN. The 

ultimate target for network operators is the integration of digital broadband services into 

the public networks. To fulfil this objective, much work has been done in defining new 

protocols such as asynchronous transfer mode (ATM) to capitalise on broadband-ISDN [21.

Market factors point towards an increase in telecommunication needs for both video and 

data as well as other novel applications. Services which are rapidly gaining importance 

are the multimedia services which include the basic components of the future broadband 

service: voice, data, video. However, such services require substantially more bandwidth 

capability in the access network than the existing copper pairs can provide. Consequently,
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telecom operators are replacing large parts of their access networks at present with optical 

fibre, thus reducing the network operating costs and improving the quality of services to 

the end user [3]. Furthermore, the network operators need the services of other telecom 

operators or long distance carriers to support the growing number of interactive services 

beyond the boundaries of their cable franchise territory.

Originally, voice was carried as analogue information but, with the advent of digital 

transmission media, voice is now more often digitised — the analogue voice signal is 

sampled 8000 times per second and digitised with 8-bits, thus giving a data rate of 64 kb/s. 

The advantages of digital modulation techniques, in particular pulse code modulation 

(PCM) have been well defined. The most important advantages of digital transmission are 

its good signal-to-noise performance and system linearity which, to a great extent, is 

independent of transmission channel quality. Video signals have generally been carried 

in analogue form over wireless or cable TV systems, requiring only a few mega Hertz of 

bandwidth. However, when digitised the bandwidth requirement of an uncompressed 

video signal increases to 270 Mb/s [4]. To avoid the bandwidth overhead, video 

compression techniques are used to bring down the data rate to 3 Mb/s [4]. Data files 

such as computer files, graphic files or other application program data files, are usually 

transferred through purpose designed local area networks (LANs) at rates of between 10 

Mb/s and 156 Mb/s [4].

At the physical level modulation techniques are employed to convey the original signal. 

The modulation formats fully utilise the given practical channel characteristics and provide 

relevant performance to a specific end user or network operator. Here, two digital 

modulation techniques will be investigated for transmission of voice or data over an 

electrical or optical link.
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1.1. Objectives and Plan of Text

In this study the digital transmission of a single voice or data channel is presented. 

Theoretical characterisation and practical evaluation of the effectiveness of the digital pulse 

interval width code modulation (PIWCM) and digital pulse interval code modulation (PICM) 

system are described, along with the design and development of the system.

PICM and PIWCM are closely related to each other and can be easily transformed from 

one form to the other. They exhibit different characteristics and are therefore intended for 

different applications. The main advantage of PICM is its narrow pulse width, providing 

a high peak optical power level and low average optical power, ideal for optical sources. 

The use of PICM is intended for fibre-based long-haul transmission links. On the other 

hand, PIWCM has higher average power, but its average bandwidth occupancy is much 

lower than PICM. It is also self synchronised, since each frame is initiated with a rising 

edge, unlike PICM where frame synchronisation is essential. PICM and PIWCM code 

properties with their associated system requirements are examined and the system 

performances are compared with existing digital modulation methods. Software simulation 

of both modulation techniques was also carried out. A practical system, operating at a 

data rate of 1 Mb/s was designed, constructed and tested.

Digital modulation under the constraints of disturbances in the optical channel are the 

subject of Chapter 2. The characterisation and performance of existing continuous and 

discrete pulse time modulation techniques may be assessed in terms of spectral analysis 

and signal-to-noise performance. Furthermore, principal methods of modulation and 

demodulation of these techniques are explained with their advantages and disadvantages 

in Chapter 3.
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Chapter 4 describes the code properties of PIWCM and PICM, together with mathematical 

models which are used to represent the codes in the time as well as in the frequency 

domain. Furthermore, error sources inherent to these modulation techniques are also 

given.

Chapter 5 looks at the system design which is based on conventional analogue-to-digital 

data conversion techniques and a synchronous modulator and demodulator. Either the 

PIWCM or PICM outputs can be transmitted via the optical or electrical link. By 

employing synchronous circuit design through state machines — implemented in 

programmable macro logic (PML) devices — the resulting process of modulation and 

demodulation could be kept compact.

A comprehensive software simulation package for the whole system has been developed 

in order to predict the system performance; it is described in Chapter 6. Finally, theoretical 

and practical results are given in Chapter 7 and conclusions are drawn in Chapters 8 

and 9.

1.2. Published Papers

1) U. SCHILLER, R.U. REYHER, Z. G HASS EM LOO Y, A.J. SIMMONDS and J.M. 

HOLDING: 'Modelling of baseband data transmission system in hardware and 

software', IEEE Transactions on Education, submitted: July 1993, reviewed: Feb. 1994, 

scheduled for publication: autumn 1996.

2) R.U. REYHER, U. SCHILLER and Z. GHASSEMLOOY: 'Modelling of baseband data 

transmission system in hardware and software', Matlab User Group Meeting: 1994 

Annual Meeting, 12. October 1994, Hilton International Hotel Milton Keynes.



3) Z. GHASSEMLOOY, E.D. KALUARACHCHI, R.U. REYHER and A.J. SIMMONDS: 'A 

new modulation technique based on digital pulse interval modulation (DPIM) for 

optical-fiber communication', Microwave and Optical Technology Letters, Vol. 10, No. 

1, Sep. 1995, pp. 1-4.

4) Z. GHASSEMLOOY, R.U. REYHER, A.J. SIMMONDS and E.D KALUARACHCHI: 

'Digital pulse interval width modulation', Microwave and Electronic Letters, submitted: 

August 1995, accepted for publication: Vol. 11, No. 4, March 1996.

5) Z. GHASSEMLOOY, R.U. REYHER, A.J. SIMMONDS and R. SAATCHI: 'A novel digital 

modulation system using pulse interval code modulation (PICM) and pulse interval 

width code modulation (PIWCM)', 3rd International Symposium on Communication 

Theory and Applications: 10-14 July 1995 Charlotte Mason College Lake District UK, 

pp 403-404.

6) R. U. REYHER, Z. GHASSEMLOOY, A.J. SIMMONDS and E.D. KALUARACHCHI: 

'Digital pulse interval width code modulation (PIWCM) for optical fibre 

communication', SPIE Photonics East: 1st International Symposium on Photonics 

Technologies and Systems for Voice, Video and Data Communications, 23-26 Oct 

1995 Pennsylvania Convention Center, Philadelphia USA, SPIE 2641-08.
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CHAPTER 2 

TRANSMISSION AND MODULATION



2. TRANSMISSION AND MODULATION

Communications refers to the electronic transmission of any type of information. The 

information may be encoded and then modulated before it is transmitted over the 

transmission channel, which may be a coaxial cable, a microwave link or an optical fibre 

cable. The primary factors to be considered when selecting a particular modulation 

technique are transmission bandwidth, signal-to-noise performance, bit-error rate, cost and 

complexity.

Modulation

Analogue

AM

FM
PM

Pulse Analogue

- Pulse Time 
-  Isochronous 

-PPM

LpwM

L Anisochronous 

-P IM  

-P IW M  
L PFM, SWFM 

Pulse Shape 

-PAM  
PSM

Digital

PCM
Pulse Time 

-  DPPM

M
PIWCM

Figure 2.1 Modulation tree.

Figure 2.1 illustrates a modulation tree. The advantages and disadvantages of some of the 

wide range of modulation techniques will be discussed in the following sections.
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2.1. Binary Transmission Channel

For a type of channel over which communication is desired, physical limitations determine 

the principal factors that affect the transmission of the message signal. These factors refer 

to sampling, channel capacity, signal power and noise distortion and consequently the bit­

error rate [5].

The main objective when transmitting information over any communication channel is 

reliability, which is measured by the probability of errors in the recovered information. 

Fundamentally, reliable transmission is possible even over noisy channels as long as the 

transmission rate R is less than or equal to a maximum data rate, called the channel 

capacity C. This remarkable result, first shown by C.E. Shannon (1948), is known as the 

'noisy channel coding theorem' which states that 'the basic limitation that noise causes in 

a communication channel is not on the reliability of communication but on the speed of 

communication'.

The capacity of an additive white Gaussian noise channel is given by Shannon's [6] 

formula as:

C=W  log2 (1+SIN) (2.1)

where W is the channel bandwidth and S/N is the signal-to-noise ratio. There exists a 

trade-off between W and S in the sense that one can compensate for the other. Increasing 

the input signal power obviously increases the channel capacity C. However, the increase 

in C as a function of S is logarithmic and slow. Increasing W has two contrasting effects: 

on one hand, with a higher value of W one can transmit more samples per second and 

therefore increase the transmission rate R; on the other hand, a higher channel bandwidth 

means higher input noise to the receiver and this degrades the system performance. In all



practical systems one must have a transmission rate R < C in order to achieve fewer errors 

during transmission in the presence of noise.

The minimum message rate r is equal to the Nyquist sampling rate r -  2f m and the 

information rate R can be measured in terms of bandwidth of the message signal f m and 

independent levels n:

*=2/mlog2« (2 -2 )

2.2. Optical Fibre Communications

Optical fibre communications is a transmission system employing a light source, turned on 

and off very rapidly by electrical pulses, whose emissions are sent through an optical fibre 

to a light sensitive receiver in order to convert the changing light intensity back into 

electrical pulses. While electrical transmission has limited application for high data rates 

as it suffers from attenuation and electromagnetic interference, optical transmission has 

advantages in high data rate and long-haul transmission, as it decreases the number of 

cables and reduces the number of repeaters needed for transmission. Optical fibres also 

offer increased security of communication due to very low fibre-to-fibre cross talk. 

Furthermore, optical fibres have smaller dimensions and are cheaper to produce, since the 

primary material of optical fibres is sand [7].

Although the intrinsic transmission capacity of optical fibres has been seen as virtually 

unlimited, with the increase of bit rates and progress in electronic circuits and 

optoelectronic components the span of ultra-high bit rates is now limited by fibre 

properties: dispersion and attenuation of standard optical fibres in terrestrial networks, 

optical fibre non-linearity especially for transoceanic transmission, optical noise or

8



bandwidth in optical amplifiers [3].

Dispersion limits the maximum rate at which information can be transmitted through a 

form of signal degradation that causes light pulses to spread in time. The relationship 

between bandwidth and dispersion is determined by the characteristics of the optical fibre 

cable. This relation depends principally on the numerical aperture (ability of the cable to 

collect light), the core diameter and the wavelength. Multimode fibre cores have the 

ability to gather more power but induce more reflections that reduce the data rate — single 

mode fibres have a lower efficiency of collecting light by small numerical aperture and 

smaller core but allow higher data rates due to fewer reflections in the core and little 

material dispersion.

The attenuation limitation of a point-to-point optical transmission system is determined by 

the available output power of the transmitter, the attenuation of the fibre and the receiver 

sensitivity. In order to achieve the maximum transmission span, most optical fibres operate 

at a wavelength of either 1300 nm (typically 0.35 dB/km) or 1550 nm (typically 0.2 dB/km) 

where single mode fibres have lowest loss at these wavelengths [8]. In practical systems, 

splice and connector losses lead to further power losses.

Considerable improvement in S/N performance can be obtained by fully exploiting the 

wide bandwidth of fibres [9], thus allowing much narrower pulses to be transmitted [10]. 

However, when reducing the pulse width, the choice of optical sources w ill be limited to 

devices that can provide more concentrated light beams, ie. lasers [11]. Optical sources 

and fibres limit the quality of the received pulses in that the received pulse may be time 

spread or light coloured (a pulse of light that includes many wavelengths) or both. The 

optical power emitted from a laser diode or a light emitting diode (LED) contains a range
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of wavelengths (the wavelength range emitted by an LED is much greater than for a laser 

diode). These various colours travel at different speeds when propagating through a fibre. 

Consequently, a range of wavelengths will therefore produce pulses arriving over a range 

of times. The receivers performance depends on the optical detector. Higher sensitivities 

can be produced with avalanche photo diodes (APDs) in comparison to PIN diodes.

Current intercity optical trunk links, installed in the mid-eighties, operate at data rates of 

140 Mb/s [3] and are being upgraded to provide data rates of 2.5 Gb/s [12]. The first 

transoceanic optical system installed in 1988 was capable of transmitting data at a rate of 

280 Mb/s. By using erbium doped amplifiers, the fibre optic span is increased 

dramatically. The new generation transoceanic 'first erbium doped amplified' fibre system 

appearing in 1995 will provide a high speed data link of 5 Gb/s [3]. Recent results have 

shown that total bit rates of up to 340 Gb/s can be successfully transmitted over a distance 

of 150 km by sharing seventeen wavelength division multiplexing (WDM) channels at 20 

Gb/s [13]. One single channel could therefore accommodate a minimum of 1000 high 

definition TV (HDTV) channels at a bit rate of 20 Mb/s each [14].

2.3. Digital Modulation

Digital signal transmission is popular and is becoming even more popular due to the low 

cost of digital circuits. They are less subject to distortion and interference than analogue 

circuits. With their binary nature, digital waveforms are ideal for transmission over noisy 

channels or environments. However, digital transmission requires synchronisation in 

which the receiver must know the timing of each discrete instance with relevant accuracy 

and must be able to determine the signal state under noisy conditions correctly. The 

combination of digital signals using time division multiplexing (TDM) results in 

multichannel transmission over one line, thus utilising the channel bandwidth more
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efficiently. The performance of a digital system is often a trade-off between bandwidth 

occupancy and complexity.

2.3.1. Pulse code modulation

In pulse code modulation (PCM) the analogue input signal is sampled, quantised and 

encoded in groups of pulses of a fixed frame length. For optical fibre systems, the pulse 

streams are used to intensity modulate an optical source [15, 16]. At the receiver, the 

optical pulse groups are converted back into electrical signals, amplified, filtered and then 

further processed by the demodulator. This results in a train of individual amplitude 

modulated pulses. After passing the pulse train through a low-pass filter, the original 

analogue signal is recovered, as illustrated in Figure 2.2.

Analogue Analogue
OutputInput Fibre

FilterMod. Demod.

Figure 2.2 Block diagram of an optical PCM transmission system.

The analogue signal to be transmitted is sampled and quantised to the nearest of n 

quantisation levels; then each quantised sample is modulated into a p = Iog2« long pulse 

group. The difference between the analogue signal and the quantised signal levels — the 

uncertainty — is largely dependent on the resolution n = 2P or on the number of 

quantisation levels (uniform spacing). With a non-uniform spacing, quantisation noise can 

be made to be dependent on the signal size by providing fine quantisation of the weak 

signals and coarse quantisation of the strong signals. The effect is to improve the overall 

signal-to-noise ratio by reducing the noise for the predominant weak signals, at expense 

of the rarely occurring strong signals. With a greater number of levels, quantisation noise 

will be reduced, but at the cost of increased bandwidth.
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The output signal-to-noise ratio of unipolar PCM with uniform quantisation can be 

expressed [17] as:

S/AN- 2^-1 (2.3)
1 +4(22'-1)i>,

where p  is the number of codeword bits and Pe is the error rate as:

P '=Q (JC H W ) (Z4)

Q is an error function of the carrier-to-noise ratio C/N at the input of the PCM 

demodulator. Where:

(2.5)

0 1 21 1 1 3 1 51 4 1 6
C a r r i e r - t o - N o i s e  R a t i o  [ d B )

Figure 2.3 Performance of PCM in the presence of noise.
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- The performance of a PCM system as used for transmitting analogue signals is measured 

in terms of peak signal-to-noise ratio power at the receiver output. Carrier-to-noise ratio 

at the receiver input versus the signal-to-noise ratio at the demodulator output is plotted

which S/N deteriorates rapidly. Above the threshold level, the dominant noise source is 

quantisation noise.

Figure 2.4.a. illustrates a nonreturn-to-zero (NRZ) PCM data with its spectral components 

shown in Figure 2.4.b. As can be seen from Figure 2.4.b, most of the signal energy is 

concentrated below 1 /Ts, thus the channel bandwidth required is equal to the bit-rate. The 

main limitations of NRZ signals are the presence of the dc component and the lack of 

synchronisation capability [18].

Figure 2.4 Example of an 8-bit NRZ PCM (a) waveform; (b) frequency spectrum.

in Figure 2.3. This clearly shows that a PCM system exhibits a threshold effect beyond

clock rU TJTJT JlJT JlJ lJ lJ lJ lJTJ
8 -bits y  45 hex Z

NRZ

(a)
A t

v-»
32

(b)
Normalised Frequency
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2.3.2. Digital modulation in optical fibre communications

Currently, voice, data and video services are offered to customers through different network 

architectures [4]. In future these services will be provided to the end user by one single 

optical network [19]. A critical factor which will ensure reliable transmission of such 

diverse services is the S/N and error rate performance.

The error performance of a classical PCM system depends only on the signal-to-noise ratio, 

whereas in optical systems the equivalent signal-to-noise ratio will be a function of the 

pulse width. Using short optical pulses suits the optical source, since it has essentially a 

longer time period to prepare for the following pulse and, furthermore, it has been shown 

that the error probability decreases for pulses with fixed energy as the pulse width reduces 

[20]. The traditional approach of increasing the optical launch power in order to 

compensate for limited receiver sensitivity may be overcome by adapting alternative 

modulation formats to PCM. An increase of receiver sensitivity and increase of repeater 

spacing may be achieved by converting PCM into digital pulse position modulation 

(DPPM) before transmission [21-23], [57-70].

In DPPM the receiver sensitivity improves with increasing n = 2P because more bits are 

being conveyed by a single pulse. The improvement continues until the rise time of the 

pulse is comparable to the time slot duration. For this reason the optimum receiver 

sensitivity increases with the fibre bandwidth. Garrett [22, 23] has shown that digital PPM 

can offer a 10-12 dB improvement of receiver sensitivity over PCM. This represents an 

increase of regenerator spacing of 50-60 km [21]. If digital PPM is to be used in 

telecommunication links, it is essential that the slot rate is increased. The ultimate 

improvement offered by DPPM, however, depends on the optical source mean-to-peak 

power ratio — since the mean power of an optical PPM system must not exceed the mean
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power of a PCM system — and the pulse width must not become smaller than the pulse 

rise time in the optical channel. A comprehensive description of DPPM is given in 

Section 3.3.1.

2.4. Summary

Practical reasons for modulation come from the necessity of preparing a message for 

transmission over a communications channel. Present trends in communications favour 

optical transmission systems due to the high information transfer rates and immunity to 

external disturbances. Optical links become more transparent through optical technology 

all along the transmission path. Future prospects indicate an all-optical communications 

network by the year 2005 [24]. PCM and PCM -related coding techniques represent a 

major contribution in digital communications but they have efficiency problems in optical 

communications. Alternative modulation techniques such as DPPM seek to capitalise upon 

the strengths of optical transmission.
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CHAPTER 3 

PULSE TIME MODULATION



3. PULSE TIME MODULATION

Pulse time modulation (PTM) [25] occupies an intermediate position between purely 

analogue and digital techniques, enabling beneficial trade-offs between fidelity and cost 

for specific applications. Modulation is simple, requiring no digital coding, while the pulse 

format of the modulated carrier renders the scheme largely immune to the channel non- 

linearity. Moreover, PTM is unique in its ability to trade signal-to-noise performance for 

bandwidth which is a particular exploitable feature in optical fibre systems. It is of 

particular interest where short pulses, such as solitons, may be employed which can yield 

further improvement in signal-to-noise ratio and bit-error-rate over PCM systems [26].

3.1. Continuous Pulse Time Modulation

Continuous PTM techniques represent an alternative approach to digital modulation and 

have been proposed for the economic short haul point-to-point distribution of video [27, 

28], audio, data, or control and instrumentation signals over optical fibre [29, 30]. All 

PTM methods use a constant amplitude binary pulse carrier, where a range of time 

dependent features is used to convey the information [31, 32] as shown in Table 3.1.

PTM Type Variable Category

PPM Position Isochronous
PWM Width (duration) Isochronous
PIM Interval (space) Anisochronous
PIWM Interval and width Anisochronous
PFM Frequency Anisochronous
SWFM Frequency Anisochronous

Table 3.1 Continuous PTM schemes.
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PTM may be classified in two categories: isochronous and anisochronous. Depending on 

the sampling nature. In the isochronous category the sampling takes place within a fixed 

time-frame, as shown in Figure 3.1.

Input

I l I l l
Time- 

(—  frame — )

Figure 3.1 Isochronous PTM techniques.

In anisochronous systems each successive time frame commences immediately after the 

preceding pulse, thus resulting in a variable frame, shown in Figure 3.2.

Input

PIM

PIWM

PFM

SWFM

L J U
1

fi y n i

Time- 
£— frame— *

Figure 3.2 Anisochronous PTM techniques.

All PTM techniques produce modulation spectra that share a common set of features. In 

each case, modulation gives rise to diminishing sets of sidetones centred around the carrier
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(sampling) frequency and its harmonics. Sidetones are separated in frequency by an 

amount equal to the modulating frequency [25], as illustrated in Figure 3.3. The sidetone 

profile is characteristic and unique to each PTM technique. In addition, a baseband 

component is also present for some PTM methods along with its harmonics depending 

upon the form of sampling employed in the modulator.

A

Baseband Sampling
Clusters

Sidetones

Frequency

Figure 3.3 Typical PTM frequency spectrum.

Either natural or uniform sampling of the modulating signal may be adopted for PTM. The 

choice between natural sampling and uniform sampling is essentially a performance-cost 

trade-off. Naturally sampled modulators operate on the principle of direct comparison of 

modulating signal and sampling instances. Uniformly sampled modulators route the 

modulating signal through a sample and hold circuit and then compare the flat-topped 

amplitude modulated pulses with constant amplitude and frequency carrier signals. 

Uniformly sampled PTM schemes allow the transmitter to operate at much higher 

modulation indices than natural sampling, resulting in a greater modulating power to be 

transmitted and hence a better signal-to-noise performance.

In all PTM techniques noise affects the leading/trailing or both edges of the received pulses 

and manifests itself as timing jitter {dt, see Figure 3.4) in the regenerated pulse train, and
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Figure 3.4 Noise contribution to PTM pulses.

hence as amplitude noise at the output of the demodulator. The slope of the received PTM

therefore the quality of the recovered signal. This phenomenon results in the demodulated 

S/N being |34]:

This is a very useful characteristic of all PTM techniques, enabling them to trade-off 

channel bandwidth against signal-to-noise ratio.

3.1.1. Pulse width modulation

In pulse width modulation (PWM) [29], the width (or duration) of the pulsed carrier is 

changed according to the sample value of the modulating signal. Single edge modulated 

PWM may be generated by comparison of the modulating signal with a constant amplitude 

linear ramp waveform. The frequency of the ramp signal must be constant and equal to 

or greater than twice the modulating signal, see Figure 3.5.a. Double-edge modulated

pulse determines the period in which noise is able to influence the decoding [17, 33] and

(3.1)
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PWM may be generated with a triangular waveform instead of a ramp. For a naturally 

sampled waveform this comparison is directly carried out at the comparator, whereas in 

uniformly sampled PWM the dc shifted input signal is routed first through a sample and 

hold circuit where samples are equally spaced in time irrespective of the input signal 

amplitude as shown in Figure 3.5.b. Single edge modulated PWM is self synchronised 

since the carrier (or clock) information is carried in the leading or trailing edge, unlike 

double edge modulated PWM where both edges are modulated by the input signal.

S&H-
Ramp

PWM

PPM

Time
(o)

Analogue
Input Output

Clock

S&H

Ramp

Comparator

(b)

Analogue
OutputInput

Clock Ramp

S&HDetectorAmp.

(c)

Figure 3.5 Uniformly sampled PWM: (a) modulator; (b) demodulator.

The spectrum of naturally sampled PWM shows an isolated baseband component at the 

frequency of the modulated signal f m and rapidly diminishing series of sidetones spaced
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on either side of the sampling frequency f c and its harmonics. Additional harmonic 

components in the baseband are encountered in uniformly sampled PWM [35, 36]. A 

comprehensive treatment of the Fourier structure applicable to PWM has been given by 

Black [37] and Stuart [38]. The trailing edge modulated naturally sampled PWM pulse 

train may be expressed as [25]:

T7t.\ 1 V ' S|n(a<ocf) J0(anM)
F ( t )  =  o ~ - Z s m ( (* m t )  +  £ -------------------- 1 2 ----------------  S i n f a c o  * - a 7 t )

2 2 an ^  an

- t  E0=1 6=±1 ^ ̂

(3.2)

The modulating wave is M  sin(co/H0, M  is the modulation index (0 < M  < 1) and cow and 

coc are the modulating and carrier frequency respectively. Jb(x) is the Bessel function of 

the first kind of order b. The combination of the third and fourth term from Eq. (3.2) 

creates the components around the carrier frequency and its harmonics. Term five 

represents the series of diminishing sidetones around the carrier and its harmonic

A

4 Frequency

A

fm Frequency

Figure 3.6 Power spectral density: (a) naturally sampled; (b) uniformly sampled PWM.
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components, characteristic of PTM. When uniform sampling is employed, the resulting 

PWM spectrum is very similar to naturally sampled PWM [37], except that the baseband 

region also shows harmonics of the modulating frequency. The principal spectra for 

naturally sampled and uniformly sampled PWM are displayed in Figure 3.6.

At the receiving end, demodulation of naturally sampled PWM is accomplished by 

threshold detection and simple low-pass filtering to recover the baseband component 

directly. When transmitting uniformly sampled PWM, the baseband component and its 

harmonics require conversion into pulse amplitude modulation before low-pass filtering, 

see Figure 3.5.c. Because of the reconstruction process , uniformly sampled PWM can 

operate at higher modulation indices than naturally sampled PWM and it also gives lower 

harmonic distortion.

In analogue PWM the ramp linearity is usually found to limit the modulation index. 

Matching of both modulator and demodulator ramp profiles is desirable for lowest 

harmonic distortion at the system output. As a result of this, analogue PWM may be best 

operated with a modulation index lower than 50%. Digitally generated PWM will 

inherently improve the system linearity by allowing an increase of the modulation index 

to as high as 90%, but at an increased circuit complexity and cost [39]. For analogue 

PWM the modulation index is given by:

Af=2—100 % (3-3)
T

where t0 is the maximum pulse width change. The unmodulated pulse width is assumed 

to be 7/2, i.e. a square wave. T = \/ fc and f c is the carrier frequency. For the short 

distance fibre link, the channel bandwidth BN required for naturally sampled PWM can be 

expressed as:
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and the bandwidth Bv  for uniformly sampled PWM is:

J f+ 3 ) -2 / ,  (3-5)

where f m is the baseband signal and f  is the guardband i f  is often equal to f m).

The signal-to-noise ratio for naturally sampled PWM is given by [29]:

and the signal-to-noise ratio for uniformly sampled PWM is given by:

(3.6)

MxB„'I
CIN <3-7>

I  2/ r  J

Equations (3.6) and (3.7) show that S/N of naturally sampled PWM is solely dependent 

upon the modulation index, whereas uniformly Sampled PWM takes the bandwidth 

expansion as well as the sampling frequency f c into account. For both cases of PWM the 

signal-to-noise ratio is proportional to M 2 [40]. For the same C/N, the enhancement for 

uniformly sampled PWM over naturally sampled PWM is as follows:

m N (3.8)

3.1.2. Pulse position modulation

Pulse position modulation (PPM) [41, 42] may be considered as differentiated PWM which 

carries information by virtue of the position of a narrow pulse within a given fixed time 

frame. The narrow pulse represents a power saving element that results in improved 

receiver sensitivity in optical communication systems [43]. This power saving represents



the fundamental advantage of PPM over PWM. PPM is generated by differentiating and 

rectifying the PWM waveform, see Figure 3.5.a. and Figure 3.7.a.

Optical
Output

Analogue
PPMPWMInput

Clock

S&HShift

Ramp

Comparator

(a)

Analogue
Output

Optical PWMPPM PPM to PWMAmp.

(b)

Figure 3.7 Uniformly sampled PPM: (a) modulator; (b) demodulator.

A method to evaluate the frequency spectrum of naturally sampled PPM was given by 

Stuart [38] and may be represented as [44]:

F( t)= “ ^ “ +^ M c o s K ' ) sinK ' c/ 2)
(3.9)

rr q=~oo

where x represents the pulse width of PPM pulses with amplitude A. The first term in 

Eq. (3.9) is the dc component of the unmodulated pulse carrier wave, while the last term 

is the phase modulated carrier signal producing the spectral components at the carrier 

frequency cô  and all its harmonic frequencies, plus a cluster of sidetones separated by an 

amount equal to the modulating frequency com. The second term of Eq. (3.9) represents 

the baseband component. This component is a differential version of the input signal. 

Because of this, PPM is usually converted into PWM after threshold detection. The 

baseband component depends on the duration of the PPM pulse. In the ideal case, when 

the PPM pulse is an impulse or a delta function, the PPM spectrum will have no baseband
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component, see Figure 3.8. However, in real systems, the pulse width w ill be of finite 

length, thus resulting in a baseband component being present in the PPM spectrum [45].

A

Frequency

Figure 3.8 Frequency spectrum of PPM.

Demodulation of PPM at the receiving end is analogous to demodulation of PWM. 

Conversion from PPM to PWM is achieved with a combination of a bistable and a 

monostable, to obtain the PWM waveform as shown in Figure 3.7.b. Timing 

synchronisation between transmitter and receiver may be accomplished by transmitting the 

clock signal with the PPM waveform or by generating it at the receiver by using a clock 

recovery technique.

The modulation index M  for PPM is similar to PWM and can be defined as:

I f .  2^5 0.10)
T

where t0 is the maximum pulse position deviation and T = 1 / f  The optical system 

bandwidth should be wide enough to preserve pulse position information. The required 

bandwidth can thus be estimated by the reciprocal of the pulse width t :

B = !  (3.11)
T

The choice of B decides the maximum modulation index that might be used. The signal- 

to-noise ratio in PPM systems is largely dependent on the time displacement t0. Noise
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. affects the time displacement by a fraction of the time displacement of the modulated pulse 

and is given by [46]:

A comparison between the signal-to-noise ratios of PPM and of PWM shows that S/N for 

PPM is double that of PWM. The difference is that the noise error pulse train has only one 

edge pulse modulated, but the noise error pulse train for PWM contains a double edge. 

The enhancement for uniformly sampled PPM over naturally sampled PPM in terms of 

signal-to-noise ratio is as follows:

3.1.3. Pulse interval modulation

This modulation format falls into the category of anisochronous PTM techniques. In pulse 

interval modulation (PIM) [47], the interval between adjacent pulses is determined by the 

amplitude of the modulating signal. Moreover, PIM may be considered as conventional 

PPM except that it has a self generated carrier.

The PIM pulse train is generated by comparing the dc shifted modulating signal with a 

constant slope ramp. When amplitude equivalence is detected between the input signal 

and the ramp a short pulse is issued which constitutes a PIM version of the input signal, 

see Figure 3.9.a and Figure 3.11. On generation of the pulse the ramp is reset to its initial

(3.12)

and for uniformly sampled PPM it can be shown to be [39]:

MxB (3.13)

(3.14)



zero value without being permitted to reach the ramp's final value. A sample and hold 

circuit for uniform sampling may be inserted at the modulator input.

Input

Romp

PIM

PIWM

Time
(a)

Analogue

Output
Comp.

Ramp

(b)

Optical
U/fc Amp Ramp LPF

Analogue
Input Output

(c)

Figure 3.9 Naturally sampled PIM: (a) modulator; (b) demodulator.

Spectral measurements for PIM have been obtained by Tripathi [48] and an expression for 

the spectrum of PIM impulses was derived by Fyath [49] assuming a single tone 

modulating frequency signal. It can be written as follows:

1 + £  2M°C0S(awmt) 
0=1

1+2Z I I  Y , Jc(a&b)C0S(auct+ b c u mt)
a=1 b=1 c=-<=

(3.15)

in which the second term is the baseband component that represents the modulating signal 

along with its harmonics. The strength of these harmonics is a decaying function of the 

counting variable a since 0 <  M < 1 .  At low modulation indices these harmonic 

components become negligible, compared to the fundamental component and may be 

ignored. The fourth term in Eq. (3.15) referes to the spectral components generated slightly
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asymmetrically around the sampling frequency f c with harmonics and diminishing 

sidetones, see Figure 3.10.

Figure 3.10 Frequency spectrum of PIM.

The receiver synchronises on every received pulse by initiating a ramp waveform, that is 

then reset immediately after a succeeding pulse is received. The maximum values of the 

ramp constitute the sampled points on the reconstructed waveform. Final filtering takes 

place by a low-pass filter or a combination of sample and hold and low-pass filter if 

uniform sampling is adopted, see Figure 3.9.b. When a low modulation index is used for 

the PIM generation, the low-pass filter at the demodulator may be of low order. However, 

at higher modulation indices spectral overlap may take place in the baseband region, 

therefore a higher order low-pass filter is required to reduce the effects of spectral overlap. 

In contrast to isochronous PTM, the modulation index of anisochronous PTM depends on 

the input signal-to-ramp ratio, rather than on the time deviation-to-frame ratio. This may 

be seen from Figure 3.11 in which the signal amplitude deviates between Vmin and Vmax. 

The maximum variation is t0 and the average variation is around the dc level, hence T.

Figure 3.11 Modulation index for PIM and PIWM.
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The modulation index for PIM can be defined as follows:

(3.16)

where t0 is the maximum pulse interval deviation and T is the non-modulated pulse 

interval. The system bandwidth B occupied by PIM is substantially dependent on the 

constant pulse width t  s o  that:

Both the channel and receiver must provide the required bandwidth W > B to preserve the 

pulse information. Also, the sampling interval should be large enough so that the 

minimum pulse interval between two pulses is large enough to avoid inter-symbol 

interference (where energy from one pulse is transferred to the adjacent pulses). In PIM 

the noise in the demodulator output shows different characteristics than from those of PPM.

Ueno [50, 51] has developed a signal-to-noise analysis for a PIM system transmitting a 

colour TV signal f m and a system bandwidth B for the PIM system. This approach 

assumes, that PIM pulses (of width x) are spaced widely apart, neglecting inter-symbol 

interference, and also the limitation of noise to bandwidth f m. The shape of the PIM pulse 

may be expressed as git), and at time of threshold detection this pulse may be differentiated 

which expresses the slope of the rising edge at threshold detection g'(t) = dg(t)/dt. This 

effectively expresses the gradient of the angle of carrier amplitudes and the pulse rise time 

t^ so that g\t) = A/tr and the rise time can be substituted with tr = 2/(nPF) [37]. After 

modifications of [50] the expression for the signal-to-noise ratio becomes:

(3.17)
x

fJc 1 -sinc(Z%fJfc)
(3.18)
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where k^  = (A W)lg\t) is a constant which depends on the pulse shape g{t) and 

substitution gives = 2In. The second term in Eq. (3.18) displays the relation between 

the bandlimited noise signal of bandwidth f m and the sampling signal. Assuming wide­

band noise, ie ./m » f c, Eq. (3.18) may be written as:

(3-19)
2 f j c

3.1.4. Pulse interval width modulation

Pulse interval width modulation (PIWM) [27] is derived from its counterpart PIM by passing 

a train of PIM pulses through a bistable (Figure 3.12.a.) to produce a waveform in which 

both mark and space convey the information. As with PIM, the anisochronous nature of 

PIWM arises because the modulator ramp is reset at the point when equivalence of ramp 

and input signal is detected and not by a predetermined interval controlled by the choice 

of the carrier (sampling) frequency, see Figure 3.9.a. Demodulation is achieved by 

converting PIWM into PIM pulses and then employing the standard PIM demodulation 

technique, see Figure 3.12.b.

Analogue PIWM

OutputstableComp.

Ramp

(a)

Analogue
OutputInput

RampPIWM to PIM

(b)

Figure 3.12 Naturally sampled PIWM: (a) modulator; (b) demodulator;
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The modulation index for PIWM is analogous to PIM and is given by:

(3.20)

Employing the same general approach as Fyath [49] for PIM, the expression for PIWM 

spectrum has been given by Wilson [52]:

CO OP CO

1+£  £  £  Sinc{anl2) Jb(a6J Jc(ab^ cos([aP0Qc + (& + 2c)a>m]r)
a =1 £ = - «  £=-eo

(3.21)

where A is the amplitude of the PIWM waveform. The PIWM spectral profile shown in 

Figure 3.13, resulting from Eq. (3.21) is slightly asymmetrical, unlike PWM, and contains 

no baseband components whatsoever, in contrast to PIM. Strong spectral components are 

generated around the sampling frequency coc and all its odd harmonics, surrounded by a 

diminishing series of sidetones, separated from each other by the modulating frequency coA;;. 

The profile of the sidetone structure changes considerably as a function of both the 

modulation index M  and the sampling ratio co0/coWJ. The Bessel functions, Jb and Jc 

decrease rapidly for sidetones occurrences 5j and 52. The coefficient p0 accounts for the 

shift of the sampling frequency and can be approximated for a modulation index M  < 0.5 

with p0 = \+M2/2.

A

Frequency

Figure 3.13 PIWM frequency spectrum.
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For PIM the minimum permitted sampling ratio co0/a>m is 2:1 in order to satisfy the sampling 

theory requirements. To generate PIWM, the PIM pulses are divided by two, reducing the 

minimum sampling ratio coq/cô  to unity for PIWM. This does not violate the sampling 

theorem however, since the PIWM wave train carries information on both the rising and 

the falling edges, effectively taking two samples per cycle. The bandwidth occupancy B 

for PIWM may be approximated with reference to the average sampling frequency l/T  of 

the unmodulated signal, the dc shift, and the modulation index M:

 5___ (3.22)
(1 -M )T

For low modulation indices M  < 0.1 this approximation may become B -  \/T  since the 

variation of the pulse width is relatively small, ie. the modulating signal swings around the 

dc shift with very low peak-to-peak amplitude. With larger pulse width variations 

however, the average transmission bandwidth of PIWM may be expressed as B = 1 ITmm, 

see Figure 3.14.
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Figure 3.14 Change of pulse width in PIWM.

Signal-to-noise ratio analysis for PIWM is very similar to that of PIM since PIWM is 

converted into PIM in the demodulator, except that the noise affects both the leading edge 

and the trailing edge. Following a similar approach as in the previous section, the signal- 

to-noise ratio for PIWM at a sampling ratio of co0/com is 2:1 can be expressed as [53]:
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SIN A ' lM B f  J _  CIN
4 f j c

(3.23)

As expected, the signal-to-noise ratio for PIWM from Eq. (3.23) is very similar to PIM from 

Eq. (3.19).

3.1.5. Square wave frequency modulation

Square wave frequency modulation (SWFM) [54] and pulse frequency modulation (PFM) 

are of anisochronous nature and are very closely related., see Figure 3.15 In PFM the 

modulating signal modifies the pulse repetition rate according to the amplitude of the 

modulating signal. It is usually produced by directly modulating a voltage controlled 

oscillator (VCO). PFM is a differentiated version of SWFM, indicating every transition with 

a short pulse, see Figure 3.2. SWFM and PFM compare favourably with PCM performance.

Analogue
Input

Optical LinkSWFM PFMVCO Mono
stable

(a)

Optical Link AnalogueS W F M - PFM

Output
Mono
stable

(b)

Figure 3.15 SWFM and PFM: (a) modulator; (b) demodulator.

The modulation index can be defined as follows:

m = M
fm

(3.24)

where A/is the pulse frequency deviation and f m is the modulating signal bandwidth. The 

spectrum of a single tone modulated PFM pulse train is given next [25]:
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Neglecting the dc term, an unmodulated pulse carrier consists of the fundamental and 

harmonic components whose amplitudes follow a sinOc)/* envelope determined by the 

pulse width t .  Under modulation conditions, the PFM spectrum consists of a baseband 

component along with the sidetone structures set around the carrier frequency and all its 

harmonics. This sidetone pattern is slightly asymmetrical, with the upper sidetones being 

stronger than their lower sidetone counterparts, Figure 3.16.a. Unlike PWM and PPM, the 

number of sidetones appearing around any particular carrier harmonic is not determined 

solely by the amplitude of the input signal but also by its frequency.

A

Frequency
(a)

A

Frequencyfc

Figure 3.16 Frequency spectrum of (a) PFM; (b) SWFM.

In the case of SWFM, the frequency spectrum for a single tone modulated signal is [54]:

F{t)=AD £  sinc{anD) Ja(aM) exp[y'(c wc+/?oJr]
<J = -00 £ = —«0

(3.26)
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where D is the duty cycle. When the carrier is a perfect square wave, D = 0.5, the 

spectrum is made up of odd components and there is no baseband component, 

Figure 3.16.b. Deviation from 50% duty cycle will result in generation of a baseband 

component together with even harmonics. With a duty cycle of perhaps 5% to 10%, the 

SWFM spectrum becomes more and more that of PFM with baseband and all harmonics 

around coc. With narrower pulses, PFM occupies a larger bandwidth in the transmission 

channel:

at a modulation index of M  = 1 and ignoring the guard band, PFM needs 1V4 more 

transmission bandwidth then SWFM. The associated signal-to-noise ratio for the PFM 

modulation format may be expressed as:

The improvement in S/N for SWFM over PFM and for the same transmission, ie. 

b pfm = b swfm> M  = 1 of the modulating signal and ignoring f  follows from Eqs. (3.29) 

and (3.30):

(3.27)

than SWFM:

&SWFM = 2 ( f m +Mfn +fg) (3.28)

(3.29)

and for SWFM:

SWFM
'SWFM

(3.30)

($1 t y  SWFM = ̂  (S iN ) PFM (3.31)
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3.2. Performance of Continuous PTM

PIWM is suited for video and instrumentation signals over moderate length point-to-point 

optical fibre links without occurring the greater expense of PCM equipment. PIM has 

advantages in optical fibre transmission over PIWM due to its shorter pulses. The pulses 

may contain a higher optical peak level that allows an increase in the distance of 

transmission. With PIM and PIWM, weak signals are sampled at finer resolution and strong 

signals are sampled fewer times, hence providing non-linear sampling. PPM occupies the 

largest bandwidth of the discussed PTM schemes, which is traded for signal-to-noise 

performance. Its counterpart PWM is the most bandwidth efficient scheme among the 

discussed PTM techniques, but shows relatively poor signal to noise performance. PFM 

and SWFM modulating and demodulating circuits are simpler than the circuits of PIM and 

PIWM. Moreover, they offer a better signal-to-noise performance.

Table 3.2 compares PTM schemes with 8-■bit PCM in terms of the bandwidth for a

baseband frequency of 30 MHz [55, 56]:

PCM PWM PPM PIM PIWM PFM SWFM

Used modulation Index 0.5 0.5 0.5 0.5 1.5 1.5
Sampling ratio 2.5 2.5 2.5 2.5 2.5 2.5 2.5
Carrier frequency (MHz) 600 75 75 75 75 75 75
Bandwidth occupancy (MHz) 600 197 400 200 150 240 210

Table 3.2 Comparison of various PTM to an 8-bit PCM at a sampling ratio of 2.5.

Using the parameters in Table 3.2 and Table 3.3, the signal-to-noise ratio versus the 

carrier-to-noise ratio characteristics of various PTM systems are illustrated in Figure 3.17 

and Figure 3.18 respectively. The curves show that PCM has clear operating advantages 

over PTM techniques at low carrier-to-noise ratio. Among the PTM family SWFM, PPM
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and PIM offer the best overall signal-to-noise performance at low sampling ratios, but 

the bandwidth occupancy for PPM is twice as large as the transmission bandwidth of PIM 

or SWFM.

PCM PWM PPM PIM PIWM PFM SWFM

Used modulation index 0.5 0.5 0.5 0.5 1.5 1.5
Sampling ratio 5 5 5 5 5 5 5
Carrier frequency (MHz) 1200 150 150 150 150 150 150
Bandwidth occupancy (MHz) 1200 197 800 400 300 240 210

Table 3.3 Comparison of various PTM methods with 8-bit PCM at a sampling ratio of 5.

With the change of the sampling ratio, PPM maintains its position, displaying the best 

overall signal-to-noise performance, whereas PWM, PFM, SWFM deteriorate slightly at high 

sampling ratios, see Figure 3.18. The performance of each modulation scheme may be 

optimised for particular applications by selecting an appropriate sampling ratio and 

modulation index.

PCM PWM PPM PIM PIWM PFM SWFM

Bandwidth occupancy 5 1 4 3 3 2 2
Signal-to-noise performance 4 1 5 3 2 3 5
Signal power consumption 3 5 1 2 5 2 3
Complexity 5 3 3 3 4 2 1
Time multiplexing Yes Yes Yes Yes No Yes No
Baseband signal Yes Yes (Yes) Yes No Yes No

Table 3.4 PTM system comparison.

Table 3.4, summarises some important system parameters of various modulation 

techniques, ranging from 1 to 5, indicating very low or very simple to extremely high or 

extremely complex. The PCM format is NRZ, the PPM and PWM formats belong to the
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Figure 3.17 S/N vs C/N for various PTM at a sampling ratio of 2.5 and with 8-bit PCM.
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Figure 3.18 S/N vs C/N for various PTM at a sampling ratio of 5 and with 8-bit PCM.
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category of uniform sampling whereas all other formats belong to the category of natural 

sampling.

3.3. Discrete Pulse Time Modulation

The previous sections indicate that present trends in transmission technology favour low- 

power optical systems. Advanced technology can improve the transmission system's 

performance, but the choice of the modulation format represents the fundamental factor 

for improvement. The ability to share a common medium for transmission of multiplexed 

signals, the bandwidth occupancy, the power necessary for transmission and the system 

complexity result in a number of widely used modulation methods.

3.3.1. Digital pulse position modulation

The digital pulse position modulation scheme has been suggested for long-haul data links 

over single-mode fibres [57]. Garrett [22, 23] has shown that bandwidth can be traded for 

signal-to-noise ratio. Martin and Hausien [58] applied DPPM to LANs and examined a 

broad number of PPM characteristics. Various other studies of digital PPM systems 

investigated the significance of the optical detector choice [59] and the influence of a 

dispersive optical channel with Gaussian shaped pulses [60, 61]. As indicated in Section

2.3.2, digital PPM can offer up to 12 dB [22] improvement of receiver sensitivity over 

PCM. This represents an increase of regenerator spacing of 60 km compared to PCM [21 ]. 

It would be nice to know this increase as a percentage.

Results obtained by Calvert [62] show an improvement of receiver sensitivity of 4.2 dB for 

DPPM instead of PCM. Further improvement in S/N of up to 7 dB in bandlimited systems 

employing pre-detection filtering has been demonstrated by Cryan [63, 64]. A block
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diagram of a digital PPM system is shown in Figure 3.19 and the digital PPM signal is 

illustrated in Figure 3.20.

PCM PCM
Input Fibre Output

FilterDPPM
Coder

DPPM
Decoder

4-bit
PCM 

PPM

Figure 3.19 Simple DPPM system.

LSB

Ts

DPPM Information Content in Ts )■ 
- - - - - - - - - - - - - - - - - -  DPPM Frome -

1 ' '

Guard Interval

Figure 3.20 Digital PPM signal.

P-bits (termed the coding level) of binary PCM format are converted to DPPM, having a 

time frame of length Tn and transmitted by sending a single pulse in one of n = 2P time 

slots. According to Elmirghany [65] the mathematical expression for the digital PPM frame 

can be represented by:

s i.t -a l 'n -h )
(3.32)

where g(t) is the DPPM pulse shape, Tn is the frame duration and ta is the stochastic wide- 

sense stationary sequence representing the data encoded into DPPM. The expression for 

the time slot duration T in DPPM in terms of sampling frequency f s , modulation index 

M  and number of time slots n can be written as:
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TS(DPPM) = —  (3.33)
/» "

Thus the clock frequency for DPPM will be higher than that of PCM by the ratio of «/log2«. 

The associated bandwidth occupancy is just the reciprocal of the duration of one time slot, 

B = 1 !TS.

Optimum pre-detection filtering though a matched filter could be used to recover a signal 

contaminated with additional Gaussian noise [21 j. DPPM decision errors w ill occur due 

to receiver noise and will be of three types [23].

1) Erasures: failure to detect the pulse in the signalling slot.

2) False alarm errors: violation by noise that causes the receiver to detect a pulse.

3) Wrong slot errors: noise on the leading pulse edge produces a detection immediately 

preceding or following the containing pulse.

With reference to Cryan [21] the receiver sensitivity for DPPM is relatively poor for low 

fibre bandwidth. For a fixed value oin  there is an optimum fibre bandwidth/ ,  normalised 

to the pulse width, where no further improvement is obtained beyond this optimum, see 

Figure 3.21.a. The effect of improved receiver sensitivity arises due to the fact that with 

increasing n the mean-to-peak power increases, since the average optical power is 

maintained constant. With an increase of the number of time slots n, the probability of 

erasures and false alarm errors decreases. Eventually, a point is reached when the slot 

duration is comparable to the rise time of the pulse and wrong slot errors predominate [21, 

66]. Optimum receiver sensitivity occurs when all three error categories contribute an 

equal amount of errors [57], see Figure 3.21.b (for/  = 10).
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Figure 3.21 (a) DPPM receiver sensitivity for various fibre bandwidths; (b) trade-off 
between DPPM error sources as a function of time slots.

A numerical spectral model for DPPM composed of the sum of contributions from a set of

delayed pulses has been obtained by Elmirghany [65]. The given spectral characterisation

of a DPPM is given as:

1
NTAnjM)

N
O W E  exp ( - /2 jtf r s [a(n/M)+n<1 ] )

fl=0
(3.34)

where Gif) is the DPPM pulse shape transform and na = tJTs is a random number between 

0 and (/7-1) that gives the pulse position in the a-th frame. N  gives the discrete length of 

the truncated sequence and must be such that NTfn/M) is much greater than Tn. The 

DPPM spectrum displays distinctive frequency components at odd harmonics of the slot 

frequency that can be used for synchronisation at the receiving end, as shown in ?.

A

2 3

Figure 3.22 Analytical DPPM spectrum.



Digital PPM has been shown to offer better performance in terms of receiver sensitivity 

than PCM but at the cost of bandwidth expansion. Furthermore, several difficulties are 

associated with the transmission of high-speed digital PPM: the laser transmitter must be 

fast, the receiver must have a wide bandwidth and the digital coder/decoder must operate 

at the digital PPM clock rate, resulting in bandwidth expansion [67]. While PCM suffers 

from intersymbol and interframe interference, DPPM has very little intersymbol interference 

since there is only one pulse per frame. Interframe interference is minimised through a 

guard interval of relevant length. Synchronisation of DPPM systems, however, becomes 

more critical with a relatively large number of time slots per frame. It may be possible, as 

the position of the pulses may be significantly displaced from the centre, that the DPPM 

system may then fail to deliver reliable timing information at the receiver. To ease the task 

of the synchronisation circuits, line coding [68] or block synchronisation [69] may be 

employed for DPPM. Another method is the estimation of the optical DPPM frame phase 

by using naturally occurring sequences and avoiding sensitivity and bit rate penalties [70] 

associated with the previous methods.

3.3.2. Digital pulse width modulation

In the case of analogue PWM, the linearity of the analogue ramp has a significant influence 

on the overall system performance, since any non-linearity w ill result in harmonic 

distortion being generated at the output of the receiver. The problems associated with 

analogue PWM can be overcome by employing a digital technique to generate a PWM 

signal [71 ]. Here, the ramp generator, see Figure 3.5, is replaced with ap -bit counter, that 

counts from zero to 2£-l, resetting to zero at every sampling interval.

This approach displays exceptional linearity since, except for the quantisation error, the 

system does not suffer from any harmonic distortion at higher values of the modulation
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index. Digital PWM [72] systems are inherently superior to analogue PWM systems in 

terms of accuracy, linearity and stability. However, there is a disadvantage as an increase 

of clock speed for ramp generation by a factor 2P over the sampling frequency is required, 

analogous to PPM. The overall DPWM sampling constraints are of course identical to 

analogue PWM, since the transmitted pulses are identical.

Results presented by Ghassemlooy [71] show, that digital PWM outperforms analogue 

PWM when operated at a modulation index of 50%, by up to 6-10 dB.

3.3.3. Digital pulse interval width modulation

A new optical communication system based on digital PIWM was proposed by Sato [73] 

where both mark and space of the signal are used to carry information. The overall aim 

was to provide good approximation of the amplitude probability of speech with an 

effective coder so that low level signals are sampled more often than the high amplitude 

signals.

The potential of digital PIWM lies in its transmission capacity and synchronisation ability. 

Because the PIWM code conveys the information in both mark and space, the overall 

transmission capacity is increased compared to DPPM. Simultaneously, receiver 

synchronisation is achieved with the PIWM code itself in which every PIWM frame is 

uniquely identified with a low-high transition.

The work described in the following chapters seeks to identify the potential of digital 

PIWM. This embraces solutions for code construction and their impact on the signalling 

format and is the subject of Chapter 4. System considerations and performance verification 

are the subject of Chapters 5, 6 and 7.

44



3.4. Summary

A review of principles of continuous and discrete optical pulse time modulation formats 

has been presented. Equations presented, describe the power spectral density of each 

method being proposed. Original signal-to-noise equations for various PTM techniques 

were presented.

Continuous PTM techniques are ideal for low bandwidth communication systems since 

they can operate at reduced sampling ratios. They are also suitable for high speed fibre 

communications. Overall, the compromise between bandwidth efficiency, signal-to-noise 

performance and cost is best traded with SWFM while PPM displays the best overall signal- 

to-noise performance.

In the digital PPM coding format, bandwidth may be traded for signal-to-noise performance 

due to an increase of optical peak power gaining high receiver sensitivity when compared 

to PCM. DPPM has been suggested for long-haul transmission.
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4. SYSTEM MODEL

Digital pulse interval width code modulation (PIWCM) is a variation of Sato's 

anisochronous digital PIWM [73] that carries the information by varying both mark and 

space. Digital pulse interval code modulation (PICM) is the differentiated form of PIWCM 

and carries the information by varying the width of the space. The two codes can be 

easily converted from one form to the other. But they have different code characteristics 

and are therefore suitable for different applications. With PICM and PIWCM the modulated 

waveform is a discrete signal, consisting of time slots, unlike PIWM and PIM where the 

modulated waveform is continuous.

Code properties of PIWCM and PICM vary according to the frame length, resulting from 

non-perodic sampling intervals of the message signal. Mathematical models representing 

the codes both in time as well as in frequency domains are derived. Error sources inherent 

to these modulation techniques are also discussed.

4.1. Overall System Description

A block diagram of the digital PIWCM/PICM system is shown in Figure 4.1. An analogue 

signal is input to the analogue-to-digital converter (ADC) with/?-bit resolution of which the

Analogue
Input

ADC p-bits
rV

Digital Input

Mod. E/0
Fibre

0/E

Coax Coble

PICM
Demod.

/7-bits DAC LPF Analogue
Output

Figure 4.1 PIWCM and PICM system model.
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output is fed into the PIWCM/PICM modulator; alternatively, a parallel bit stream of/7-bits 

may be fed directly into the PIWCM/PICM modulator. Depending on source connection, 

PIWCM/PICM can carry encoded PCM signals or directly sampled signals. In either case 

/7-bits of data are converted into frames of different frame length as shown in Figure 4.2.

ciock

8-bits x 32hex X 04hex K  • FFhex

PIWCM 

PICM ,

i i t Ts t \ \ t

n I I I L

m * -

L l-  L 2 - - - - - - - - - - -

Figure 4.2 Digital PIWCM and PICM codes.

Figure 4.3 shows the particular mark-space combinations and frame length for given 

decimal equivalent values of /7-bits binary data, whilst the resulting frame lengths is the 

sum of mark and space.

An optical source converts either of the electrical pulse trains into an optical signal which 

is then transmitted down an optical fibre cable. At the receiver, the optical signal is 

converted back into an electrical signal by an optical receiver. The regenerated 

PIWCM/PICM codes are then decoded into a parallel bit-stream using the PIWCM/PICM 

demodulator.

The DAC is followed by a low-pass filter that is employed to recover the original analogue 

signal and to filter out unwanted clock frequencies. Synchronisation is achieved by 

employing the same clock signal both at the transmitter and receiver.
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Figure 4.3 Decimal equivalent value with resulting mark-space combination
and frame length.

The code generation principle of an 8-bit PIWCM/PICM system can be best described with 

reference to Figure 4.3. For example, taking the mark-space combination 4-3 as 

highlighted:

1) An analogue input signal may be divided into 256 discrete levels, eg. the 50th 

(decimal) level is equivalent to the /?-bit binary set 0011 0010.

2) The digital information obtained is then divided into a high-word (0011) and a low- 

word (0010), corresponding to mark and space respectively. In this example, the 

number of time slots for mark and space would be 4 and 3 respectively. An additional 

time slot is introduced for mark and space to cater for zero level.

3) Finally, mark and space are combined together, resulting in a frame length of 7 time 

slots.
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4.2. PIWCM Code Properties

Digital PIWCM is closely related to pulse analogue PIWM in that it employs a waveform 

in which both mark and space represent the sampled data [30]. Each successive frame 

length is different, being determined only by the sampled value of the modulating signal 

and not by the choice of the predetermined clock (sampling) period. As a consequence, 

receiver design problems are substantially reduced since there would be no requirement 

to introduce frame synchronisation bits in order to interpret the encoded sampled value 

correctly.

A p -bit digital signal is divided into two sets of A-bits (here A is chosen to be equal to half 

the /7-bits), where the decimal equivalent of the binary combination in a given set 

determines the number of time slots for each frame, see Figure 4.3.

At time t = 0, conversion first takes place for mark followed by conversion for space. 

Finally, time slots for mark and space are combined together to produce the desired digital 

PIWCM signal. This new scheme offers higher transmission capacity by fully utilising the 

time slots for a given frame and eliminating unused time slots. Synchronisation is simple 

as each frame is initiated by a mark followed by space. The PIWCM frame length results 

from L = m+s, and is given by:

necessary to make sure that a zero level still has mark and space. The maximum frame 

length Lmax for a /7-bit system is therefore:
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(4.1)

where X  is the decimal equivalent of an /7-bit binary data and k = p/2 bits. The first term 

represents the pulse width (mark) by taking the modulus of X/2k and the second term 

represents the pulse interval (space) by taking the remainder ofX/2k. Extra time slots are



Lm<w = 2*+1 time slots (4.2)

The average frame length L expresses the average number of time slots to be issued and 

can be computed through:

Lavg~2*+1 time slots

and the minimum frame length Lmin is 2 time slots (for a decimal equivalent value of zero).

The expression for the duration of time slot Ts in PIWCM (corresponding to one clock 

interval) in terms of sampling frequency and maximum frame length is:

TJPJWCM) = — (4.4)
f-L t # ' 'Js ^ m a x  Js £■

ie. a PIWCM frame consisting of Lmax time slots must be generated within the time of a 

time frame of a /?-bit PCM data. Defining the transmission capacity as:

c  ̂ -maximum frame lengthy ^  (number ofpossible combinations) (4-5) 
average frame length

For PIWCM, the transmission capacity is:

CPIWcM-f j^ P J j ^ - P  bitsls (4-6)
L ayg 2‘ +1

For comparison, the transmission capacity for PCM is CpCM = p fs. For large values of/? the 

transmission capacity of PIWCM is twice that for PCM. This is as expected, since on 

average a PIWCM frame will be only half the length of a PCM frame, thus enabling twice 

the sampling frequency rate to be employed and permitting a signal of twice the bandwidth 

to be adequately sampled. In conjunction with increased bit-resolution, the clock 

frequency of PIWCM is increased with respect to PCM in the following manner:
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4.3. PIWCM Power Spectral Density

A random process x(t) can be written in terms of a waveform g(t) of constant duration Tn 

and of amplitude A to form the random pulse train [74]:

g{t~aTn-ba) (4.9)

where 5a is the random time delay valid within the interval 0 < 8a < Tn.■ With reference 

to Figure 4.5, an infinite PIWCM pulse train xPJWCM(t) consisting of frames with different 

mark-space patterns can be mathematically represented as:

t -T :
( M

£  K +J«)
\a—~

(4.10)

where ĝ m sy represents the z-th PIWCM sample with time-slots of mark and sf time slots 

of space, ma and sa are the number of time-slots for mark and space at the a-th sample 

respectively, Ts is the duration of one time-slot is given by Eq. (4.4). Equation (4.10) 

indicates that PIWCM does not display a fixed periodic frame structure in the manner of 

PCM and DPPM, except in the absence of any incoming data where the result is an 

alternating mark and space pattern.

w (0

—00 I I I i

Li

oo

Figure 4.5 PIWCM time representation.

To be able to characterise the process practically it is beneficial to evaluate the power 

spectral density of a truncated realisation. Following the process similar to that obtained 

by Elmirghany [65], the power spectral density (PSD) function of the PIWCM process 

xpiwcm(0 truncated over a limited interval is given by:
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in which X jif )  is the Fourier transform of the finite energy pulse train xPIWCM{t) of 

length Tn. The length of the time window should be sufficiently large enough, so that the 

fluctuations due to the end effects of integration become small. For a />-bit system, 2P 

possible frames may be generated. For an 8-bit system 256 frames, all with equal 

probability of occurrence, are generated, thus forming a long PIWCM pulse train xpnvCM(t). 

The Fourier transform of a given single frame with pulse width Tjn is given by the Fourier

In Eq. (4.12) it is assumed that only a time shift of t-Tjn is performed whilst the phase shift 

is neglected, since the function under the integral describes the distribution of the power 

with frequency:

Equation (4.13) fits into the spectral characterisation and the PSD for PIWCM becomes:

/=o

where the variables mi and s;- in the first term are the total number of time slots for mark 

and space accounted up to the /-th sample and N  gives the length of the truncated data

Mh and all preceding samples with the individual length ma + sa of the /-th sample.

integral:

U m J 2 )

(4.12)

(4.13)

2

(4.14)

frame sequence. The second term, Ĝ m sy(f) is the PIWCM pulse shape transform of the



A typical PIWCM spectrum evaluated using Eq. (4.14) for random data taken over 4000 

frames evaluated at 320 frequency points for 8-bit resolution is shown in Figure 4.6, with 

the frequency axis normalised to the slot frequency and power level over the frequency 

span to 0 dBm. The Matlab algorithm for evaluation of the PIWCM power spectral density 

is listed in Chapter 10.1.
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Figure 4.6 Predicted PIWCM power spectral density with p = 8.

4.4. PICM Code Properties

PICM is a differentiated version of PIWCM, where the transitions of each PIWCM frame are 

indicated with a short duration pulse (see Figure 4.2). Since PICM is generated from the 

PIWCM modulator, the frame length and slot rate are the same in both cases; hence the 

transmission capacity of PICM matches that of PIWCM. On the other hand the system 

bandwidth B is directly proportional to the pulse width r. In the case of PICM, t  is 

assigned to be half the length of a time slot, x = 0.5 Ts. The system bandwidth of PICM in
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terms of time slots is therefore:

d  _2
PICM

5

(4.15)

whilst for PIWCM the worst case system bandwidth is BP1WCM = \/Ts and for comparison 

the worst case system bandwidth for PCM is BpCM = p/{2k+l Ts).

4.5. PICM Power Spectral Density

Following a similar approach used for derivation of the mathematical model of the PIWCM 

pulse train xplwCM{t), as in Section 4.3, the individual PICM frames xplCM(t) should now 

be considered as a construction of two mark-space sequences, gx{t) and g2(0, as illustrated 

in Figure 4.7. Here, only the space between constant duration pulses is modulated. The 

random process for PICM in terms of waveform gj(t) and g2(t) can be written as:

''PICM
I  = -00

f f i -1 >\ I ( M  \ \ "

Si(<) t - T , E  m a * sc + S2W * - T , E  m c * Sa - Tsm i
\ \ \a=—

(4.16)

where g ] ( t )  and g 2(t) represent the pulse shapes, placed at the beginning of mark and space 

respectively which compares closely to Eq. (4.9) and to the result given by 

Elmirghany [65].
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Figure 4.7 PICM pulse representation.

The spectral characterisation of a realisation of the PICM pulse train xp]CM(t), given in 

Eq. (4.16), w ill be:
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S(f) = 1

T. E ( mi+si)
i=0

1

Ts L ( mi +si)
i=0

N i-1
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where the pulse shape transform Gff) for either of the mark or space sequences is:

Off) =—  S\n (nfTsD)
71J

(4.18)

where D is the duty cycle and Ts is the sampling period. With a duty cycle of 0.5, the 

odd harmonics of the slot frequency give inphase values to the PSD. The power spectral 

density obtained from Eq. (4.17) is illustrated in Figure 4.8, showing distinctive frequency 

components at odd harmonics of the slot frequency. Thus at the receiver, the slot rate can 

be extracted from the incoming data stream. The evaluated PSD of PICM using Eq. (4.17) 

was obtained by using random data taken over 4000 frames evaluated at 320 frequency

- 1 D 0
0 . 5 I 1 . 5  2 2 . 5

N o r m a l i s e d  f r e q u e n c y

Figure 4.8 Predicted PICM power spectral density with p =  8.
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points for 8-bit resolution, with the frequency axis normalised to the slot frequency and 

power level over the frequency span to 0 dBm. The Matlab algorithm for evaluation of the 

PIWCM power spectral density is listed in Chapter 10.1.

4.6. Error Sources

At the receiver errors occur when additive noise changes the level of the information data 

in the transmission channel, so that a wrong threshold decision is made at the sampling 

instant. The PIWCM code is recovered by determining the position of the pulse in each 

time frame relative to the clock interval. There are three sources of error for PIWCM:

1) Erasures: this occurs whenever noise destroys the pulse thus preventing detection. In 

PIWCM, this may result in change of mark and/or space, see Figure 4.9.a.

2) False alarm errors: in the interval between the start and arrival of the next rising or 

falling edge, the received output voltage may cross the threshold due to noise, see 

Figure 4.9.b.

3) Wrong slot errors: noise on the leading pulse or trailing by one time slot changes the 

width of mark, see Figure 4.9.c.

The effect of noise on the rising and falling edge (also known as wrong slot error) may be 

best explained in Figure 4.10.a where a frame may change by one or two time slots. A 

frame of combination (4,3), affected by wrong slot error, may be received as (4,4) or (4,5) 

etc., as shown in Figure 4.10.b, whilst false alarm and erasure errors may lead to a very 

different detected combination. For wrong slot errors the effect on the rising edge changes 

the length of the frame and may therefore extend or shorten the width of mark or the width 

of space. On the other hand, the falling edge does not influence the frame length but 

changes the mark-space ratio.
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Figure 4.9 Error sources for PIWCM.

Combinations eg. (3,2) and (5,4) and those placed further away from the original frame due 

to very high noise levels, may not be considered, since they require errors on two edges 

and possibly an erasure or false alarm error in the same frame. The effect of the wrong slot 

changes for the code pattern (4, 3) may be summarised in Table 4.1.
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(b)

Figure 4.10 Changes in the mark-space (4,3) ratio due to noise: 
(a) frame; (b) coding scheme).



detected change change high- low- decimal level
m, s of m, s of L word word value difference

3, 3 1 , 0 -1 0010 0010 34 -16
3 , 4 1 ,1 0 0010 0011 35 -15
4 , 2 0 ,1 -1 0011 0001 49 -1
4 , 3 0 , 0 0 0011 00 10 50 0
4 , 4 0 ,1 +1 0011 0011 51 +1
5 , 2 1 ,1 0 0100 0001 65 + 1 5
5 , 3 1 , 0 +1 0100 0010 66 + 1 6

Table 4.1 Effect of noise on the mark-space combination.

A change of mark by one time slot results in a level difference of ±16 quantisation levels, 

whereas a change of space by one time slot results in a level difference of only ±1 

quantisation level. Again, this phenomenon is according to the coding rules, ie. the 

division into high-word and low-word where the difference of bit changes in the high-word 

is obviously more significant.

Error sources for PICM are similar to those of DPPM, see Page 41. Differences between 

PICM and DPPM error occurrences are that the PICM pulse train has two pulses per frame 

and these pulses are also longer than the DPPM pulses assuming the same data rate. In 

other words, the error rate for PICM may be twice as much as for DPPM. Furthermore, 

when transmitting PICM over a sufficiently long period, a point is reached where due to 

occurrence of erasure or a false alarm error the pulses are eventually swapped around. As 

a consequence, the detection of PICM forces the demodulator to convert first the low-word 

and then the high-word which inevitably leads to an indistinguishable recovered message 

signal. The error sources of PICM are of three kinds and can be described as follows:

1) Erasures: failure to detect the pulse in the signalling slot, see Figure 4.11.a
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2) False alarm errors: violation by noise that causes the receiver to detect a pulse, see 

Figure 4.11.b.

3) Wrong slot errors: noise on the leading pulse edge produces a detection immediately 

preceding or following the containing pulse, see Figure 4.11.c.
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Figure 4.11 Error sources for PICM.

4.7. Summary

Theoretical properties of PIWCM and PICM techniques have been introduced in this 

chapter. It has been shown that the frame length varies according to the amplitude value 

of the modulating signal and consequently the sampling frequency varies according to the 

frame length. The average transmission capacity of PIWCM/PICM may be doubled 

compared to the fixed transmission capacity of PCM, but at the expense of increased clock
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frequency and transmission bandwidth. Mathematical representations for both the PIWCM 

and PICM codes have been derived both in time and frequency domains. The frequency 

spectrum of PICM shows very distinctive peaks at the slot frequency, whereas these peaks 

are cancelled out in the PIWCM spectrum. Hence optimum timing extraction can be 

accomplished with PICM (compared to PIWCM and PCM).

Three different error sources, namely erasure, false alarm and wrong slot errors, that might 

affect the performance of PIWCM and PICM were introduced. Although PICM is better 

suited for optical transmission than PIWCM and PCM, only a single erasure or wrong slot 

error may have a hazardous effect on the recovered message signal. This indicates the 

need for a high-power drive for the optical source and/or highly sophisticated detection 

and filtering devices in conjunction with error correction schemes at the receiver. With 

PIWCM, the problem of errors is substantially less, since the receiver always synchronises 

on the rising edge and a frame containing an error may then be regarded as worthless. On 

arrival of the next correct frame, the PIWCM receiver is ready to receive the next correct 

sequence. Thus requiring less advanced equipment for transmission and detection 

compared to PICM and PCM.
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5. SYSTEM HARDWARE IMPLEMENTATION

In Chapter 4, the coding rules of the PIWCM/PICM modulator were presented in which the 

digital input of/?-bits was divided into two sets of k = p/2 bits. These two sets correspond 

to high-word (generating mark) and low-word (generating space). The design of transmitter 

and receiver is based upon 8-bit data converting circuits and the modulator and 

demodulator are implemented in programmable logic devices (PLDs).

5.1. Transmitter

Figure 5.1 shows the block diagram of the transmitter. Essentially, the analogue input 

signal is first buffered by an amplifier, used as an ADC driver. The ADC converts the 

analogue input signal into digital data at every clock interval and delivers the data to the 

input of the modulator. The modulator input is fitted with a D-latch. Its purpose is to take 

the data from the ADC one time slot before a new frame is started and to store this 

information until the arrival of the next instruction. Data from the output of the D-latch 

is fed into an 8 to 4-bit multiplexer (previously referred to the code splitter in Chapter 4) 

which issues first the high-word and then the low-word into the state machine. The state 

machine is a 4-bit counter and is based on the Moore algorithm [75]. It converts the 

binary information first into mark and then space producing the PIWCM frame. It is also 

capable of providing a short pulse at every transition within a PIWCM frame, thus 

generating the PICM pulse train. Furthermore, the start of frame (SOF) instruction enables 

the D-latch to take the next sample from the ADC just one time slot before end of frame. 

The transmitter circuit was implemented using a half flash ADC and an ADC driver 

amplifier circuit to provide low-impedance drive and capacitive load for the ADC [76].
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Figure 5.1 Digital PTM transmitter block diagram.
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The 1 MHz clock input to the ADC and modulator is derived from an on board master 

clock generator, or alternatively, from an external frequency generator. To avoid clock or 

data edge crosstalk into the analogue input, or onto the ADC references, a single ground 

plane was used and the supply lines were heavily decoupled with good quality capacitors. 

All external inputs were terminated with 50 Ohm resistors.

5.1.1. Clock circuit

The master clock is used to provide overall synchronisation within the transmitter, and it 

also provides timing information to the receiver (clock recovery through phase locked 

loops may be used in future development). A 1 MHz clock is generated using a crystal 

controlled oscillator composed of 74LS04 [77] inverting gates, see Figure 5.2. To provide 

timing information for ADC, PLD and receiver, the clock signal is passed through separate 

buffers to supply a clean clock signal to the devices.

111Hz Receiver 
50 Ohm

470

+5V

741504!

y— 0— °D '  741500 !
A07621
pint

♦5V

Figure 5.2 1 MHz clock generator circuit diagram.

The ADC requires a clock signal with a pulse width of greater than 530 ns, obtained 

through the low-pass filter 74LS00 [78] NAND gate combination. In order to connect the
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receiver clock input to the transmitter, the SL560 [79] low noise amplifier is used to 

provide 50 Ohm impedance drive for the clock line. Figure 5.3 shows the output of the 

clock generator running at 1 MHz at TTL levels.
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Figure 5.3 Output clock waveform.

5.1.2. ADC data conversion circuit

The requirement for a fast ADC is given by the minimum frame length of two time slots, 

as in the fastest case the ADC needs to sample the analogue signal every two time slots. 

For this task, a half flash ADC operating at half the clock frequency is required.

For the data conversion circuit in this study, the Analog Devices AD7821 [80] 8-bit half 

flash ADC with TTIVCMOS outputs has been used. The AD7821 is an analogue-to-digital 

converter that utilises two 4-bit flash ADCs. The device contains a track and hold circuit 

that requires no external sampling devices, along with low power consumption and 

minimum package size. Figure 5.4 shows the configuration for the AD7821 in unipolar
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conversion mode between zero and five volts maximum conversion range. The ADC is 

fed with the analogue signal at pin 1 through an amplifier circuit MAX492 and its 

conversion range is adjusted with the top reference to +5 V at pin 12 and the bottom 

reference voltage to ground at pin 11.

AD7821 vdd Q $ <>+5V
0.1u

PML2552 pin 10 OFl OB,

07 Q7J

PML2552 pin 12 PML2552 pin 16

74LS00 pin 6 -o PML2552 pin 15

+5Y » ■o PML2552 pin 1404 0C

9 )  INT +W (g -° +5V

Jo ) Cod 4af

Figure 5.4 ADC circuit diagram.

The device operates in the stand alone mode, by which faster conversion times can be 

accomplished, since internal delay times through read-write (RD-WR) instructions are 

shortened. A TTL clock signal is passed into pin 6 while pin 7 is tied to high and pins 8 

and 13 are tied to low. All data outputs (pins 2-5, 14-17) are fed directly into the 

modulating circuit PML2552. The output data are valid when pin 9 is held low. Although 

pin 9 is not connected to the PLD, Figure 5.5 shows the output at pin 9 (upper trace) and 

the PLDs inverted clock input (lower trace). This is to make sure that the modulator takes 

samples, at the rising clock edge, within that valid time interval. The ground layout is not 

separated into analogue and digital ground, thus the ADC's ground (pin 10) is connected 

to the solid ground plane. However, the ADC needs excellent and thorough supply
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Figure 5.5 ADC and modulator clock synchronisation.

decoupling — electrolytic capacitors on the supply rail and smaller capacitors close to the 

device pins. Figure 5.6 illustrates the operation of the ADC for a 1 kHz sine wave of 

maximum conversion range at pin 1 (upper trace) and the output D3, pin 5 (lower trace) 

for a 1 MHz slot rate.
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Figure 5.6 ADC operation for 1 kHz sine input and digital output D3.
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5.1.3. ADC driver circuit

The analogue input of the AD7821 is connected to comparators and hence it has an input 

capacitance of a maximum of 55 pF. This capacitance is slightly voltage dependent and 

varies the ADCs input current; therefore it is important to provide a low impedance drive 

for the AD7821, which can be achieved with the MAX492 [81] ADC driver amplifier. The 

MAX492 is an op-amp that can drive capacitive loads in excess of 1000 pF by altering the 

output current. The input signal is 5 Vp_p and is fed into a unity gain non-inverting buffer 

operated from a single +5 V supply, the input signal is centred at +2.5 V. Figure 5.7 shows 

the circuit diagram for the MAX492. The external input is terminated with 50 Ohms before 

being input to pin 3. Supply line decoupling is achieved with a 0.1 pF ceramic capacitor 

at pin 8 in conjunction with the on board decoupling electrolytic capacitors at the power 

supply.

MAX492AD7821 pin 1 *

Analogue
Input

Figure 5.7 ADC driver circuit diagram.

5.1.4. Modulator

The modulator consists of four modules, see Figure 5.1. First, a D-latch, at the input of the 

modulator which samples the digital output of the ADC and stores it for the time duration 

that is required for generating the PIWCM/PICM frame. Second, an 8 to 4-bit multiplexer 

splits the 8-bit information sequentially into high-word and low-word. Third, a Moore state 

machine counts the number of time slots according to the binary information of either the 

low-word or the high-word issuing a pulse at the start of either word — thus forming the
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PICM sequence. And, finally, the pulses from the Moore state machine are converted by 

a D-type flip-flop into the PIWCM sequence.

AD7821 pin 2 o---- ----- ( 9 )  1)0 PML2552 Vcc ( T )
AD7821 pin 3 o---- ----- @  D1 Reset ( 8 )
AD7821 pin 4 o---- — ®  w Vcc (2])
AD7821 pin 5 o- - - - . . . . . . @  03 Vcc (?t)

AD7821 pin 14 o-- - - ----- ®  M Vcc
AD7821 pin 15 o-- - - - ---- ®  D5 Vcc @ -
AD7821 pin 16 o-- - - ®  06 T
AD7821 pin 17 o---- ©  07 Gnd d s)-

74LS00 pin 6 o---- - - - - - @  Ooc,! Gnd
-- - - - ® )  OtspO Gnd (3?)-
>- - - - - ®  IfcP1 Gnd ( f t l -
■- - - - - (2p) Disp2 Gnd
>- - - - - (T j) Disp3 1
i- - - - - ®  0tsp4 SOF
,- - - - - ®  Disp5 PICM (4 b
- - - - - ( ®  Disp6 PIWCM
i- - - - - (4$) Disp7 Init ( 5 }

'777;

Transmission ) 
channel 50 Ohm

Figure 5.8 Modulator circuit diagram.

Figure 5.8 shows the pin layout of the modulator device PML2552 [82]. The digital inputs 

from the AD7821 are fed directly into the PML2552 pins 9-14, 16-17. The TTL clock is 

input to pin 20. Displacement inputs Disp7..0, pins 22-23, 40-45 are connected to digital 

ground. Pin 8 is the designated reset input and is connected to the power supply Vcc. 

The reset function will be performed when power is switched off, so that a network of flip- 

flops w ill be reset to its initial states.

With reference to Figure 5.1 the process of enabling the D-latch is best illustrated in 

Figure 5.9. The D-latch samples the valid ADC outputs (D7..0) on receiving the start-of- 

frame (SOF) instruction (upper trace) from the modulator pin 46 and when AD7821 pin 9 

is low (lower trace).
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Figure 5.9 Modulator and ADC synchronisation.

The data input D7..0 is XORed with displacement data Disp7..0 which may be used for 

the input of an offset or coded data, so that the D7..0 could be manipulated at every time 

slot. For modulator PLD programming please refer to Section 5.4.
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Figure 5.10 Modulator output.
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The PIWCM (pin 48) or PICM (pin 47) outputs may be selected through a switch and 

directed into the 50 Ohm transmission channel. SOF, pin 46, and Init, pin 50, are used 

for reference only and are not connected. Figure 5.10 shows the observed output of the 

transmitter for a constant dc voltage level with a mark-space combination of 6,5; PIWCM 

(upper trace) and PICM (lower trace).

5.2. Transmission Channel

Either electrical or optical transmission of the PIWCM and PICM wave trains can be 

chosen. The electrical link is a coax cable of one meter length, connecting transmitter and 

receiver. In order to simulate the transmission channel, a noise signal is added to the 

transmitted signal. For measurements of the BER, a circuit for error detection has been 

implemented, see Figure 5.11.

Adder

Tx o ■o RxComp.

■o Error
Noise o -

Sampling SequenceClock Tx •>

Error Detector

Figure 5.11 Transmission channel and error detector block diagram.

5.2.1. Signal and noise adder

Figure 5.12 shows the circuit diagram of the signal and noise adding circuit. Where 

necessary 50 Ohm termination impedance has been used. Both the modulated signal and
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Figure 5.12 Signal and noise adding circuit.
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Figure 5.13 PIWCM waveform: (a) input and (b) output comparator.

t*p  s t o p p e d

1 2 . 0 0  V / d i v
p o s :  0 . 0 0 0  V

1 0 . 0 0 : 1  IMS* d c

p o s :  2 . 0 0 0  V
i o . o o : i  i n s  d c

0 . 0 0 0  s- 5 . 0 0 0 0  u s 5 . 0 0 0 0  u s
1 . 0 0  u s / d i v  r e a l t i m e  T r i g q e r  ( l o d e :

E d g e

2 _F 1 . 2 5 0  V

Figure 5.14 PICM waveform: (a) input and (b) output comparator.
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the noise are buffered before being added with an AND gate 74LS08 [83] and with an 

amplifier MAX423 [84]. A wide bandwidth amplifier MAX424 [84] has been used, that 

basically determines the transmission bandwidth of the transmission channel.

The noise contaminated signal is then passed through a threshold detector, constructed of 

a fast comparator MAX913 [85] with the threshold level set to half the peak amplitude of 

the received PIWCM/PICM pulse train. This eliminates the amplitude related noise of the 

pulse train and reproduces the PIWCM/PICM waveform. Pin 5 is connected to ground in 

order to make the comparator latch transparent. To minimise unwanted parasitic 

capacitances, the supply lines +Vcc and -Vcc were decoupled to the digital ground plane 

with 10 pF tantalum capacitors and with electrolytic 0.1 pF capacitors very close to the 

pins. Figure 5.13, illustrates the input and PIWCM output waveforms of the comparator, 

whilst Figure 5.14 shows the PICM input and output waveforms of the comparator.

5.2.2. Sampling instants and error detection

Having regenerated the digital PTM signal, it is then compared with the transmitted PTM 

signal. The resulting signal is then sampled at the optimum points in order to detect any 

error that might have resulted due to the presence of noise. In both cases (PIWCM/PICM), 

the sampling points were set at the middle of each bit, see Figure 5.15.

Sampling
Instance
I

PIWCM I"

^
m  _ n ^  n

J, .J, J,_rLn_n
Figure 5.15 Sampling points for digital PTM.
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Two monostable multivibrators with Schmitt-trigger inputs SN74121 [86] were used to 

generate the sampling pulses. The first monostable shifts the sampling point along the time 

axis and the second monostable adjusts the duration of the sampling pulses. In order to 

detect fewer errors, the duration of the sampling pulses is kept very small, ie. 100 ns. 

Since the sampling pulse width may accommodate more than one error pulse, this pulse 

width should be small, eg. 100 ns. Figure 5.16 shows the circuit diagram of the sampling 

and error detection circuit.

l ±
-O  Error

~TZT
SN74121 -0 + 5 V 0 + 5 V

Clock Tx O -

Figure 5.16 Sampling and error detection circuit.

5.2.3. Optical transmission

The optical transmission system being used was based upon the Hewlett Packard 

transmitter HFBR-14X2 [87] and receiver HFBR-24X4 [88], operating at a wavelength of 

820 nm. The fibre being used was a two meter 50/123 pm graded index. Figure 5.17 

shows the optical receiver output for PIWCM (upper trace) and PICM (lower trace).

5.3. Receiver

At the receiver, after electrical to optical conversion and threshold detection, once again 

a Moore state machine is employed to convert the PIWCM/PICM pulse trains into an 8-bit 

parallel word by counting ones and zeros. Two sets of D-latches were connected to the
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Figure 5.17 Optical receiver output waveforms.

output of the demodulator state machine; one for the high-word and one for the low-word, 

see Figure 5.18. Together they provide the recovered 8-bit word for the DAC. The DAC 

is clocked with a VALID pulse indicating the end of conversion which is issued by the state 

machine. The output stage of the transmitter is a 2nd order active Butterworth filter with 

cut-off frequency of 5 kHz. In this prototype system, synchronisation is simply achieved 

by deriving the master clock from the transmitter and delaying its pulses with a 

monostable. The demodulator is triggered with the rising edge of the delayed clock.

5.3.1. Demodulator

The operation of the demodulator is very similar to that of the modulator. Figure 5.19 

shows the pin layout of the demodulator. It is capable of demodulating both PIWCM and 

PICM signals. However, the PICM pulse train is converted into PIWCM using a D-type flip- 

flop before being fed into the state machine see Figure 5.18. The clock is derived from the 

clock line driver circuit SL560 pin 3 (see also Figure 5.2) and is fed into the demodulating 

circuit PML2552 pin 20. The displacement inputs Disp7..0 between pins 9-14 and 16-17
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Figure 5.18 Digital PTM receiver block diagram 
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were directly connected to digital ground. The digital outputs D7..0, pins 54-50, 48-46 

were directly input to the digital-to-analogue converter. A VALID pulse (pin 67) is issued 

when the frame sequence has been converted. Its negative complement (pin 68) initiates 

the conversion process of the DAC with its falling edge. If an error occurs (ie. mark or 

space is longer than 16 time slots) during transmission the output at pin 1 goes high and 

stays high until a correct frame pattern has been received. The demodulator PLD 

programming algorithm is further described in Section 5.4.
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Figure 5.19 Demodulator circuit diagram

5.3.2. DAC data converting circuit

For digital-to-analogue conversion, the Plessey ZN428E8 [89] monolithic 8-bit D-A 

converter with input latches in unipolar operation mode has been used. The ZN428E8 has 

a settling time of 800 ns which is less than the period of one time slot (Ts = 1 ps).
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Figure 5.20 shows the circuit diagram for the data conversion circuit at the receiver. The 

input latches are controlled by the inverted Enable input at pin 4. Data from the 

demodulator are taken when the N_Valid (pin 68 PML2552) goes low and are held 

throughout the process of conversion until arrival of the next N_Valid instruction. The 

reference voltages between Vref In (pin 6) and analogue ground (pin 8) for the ZN428E8 

are set by the 390 Ohm resistor placed between pins 6 and 10. A stabilising capacitor 

between pins 7 and 8 is required for the internal reference option/ Vref Out being 

connected to Vref In. The analogue output (pin 5) is connected to the input of the low-

PML2552 pin 5 4 °-  
PML2552 pin 5 3 ° -  
PML2552 pin 5 2 ° -  
PML2552 pin 51 ° -  
PML2552 pin 5 0 ° -  
PML2552 pin 4 8 ° -  
PML2552 pin 4 7 °  
PML2552 pin 4 6 °

PML2552 pin 68a
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D4 (L 5)07 

D N C  
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TAB1043 pin 1°— — ■— ( £ )  Aout 
+5V ° - l  T ? — ( j )  Vref In 

lu  I — ( 7 )  Vref Oul 
AGnd

Figure 5.20 DAC circuit diagram 

pass filter TAB1043 pin 1. Figure 5.21 compares the analogue input at the ADC with the 

output of the DAC, for a 1 kHz triangular waveform with an amplitude of 2 Vp_p, showing 

that the signal has been faithfully recovered.

5.3.3. Output low-pass filter and amplifier

A simple 2nd-order active Butterworth low-pass filter has been used. With a 2nd-order low- 

pass filter a roll-off of 40 dB per decade can be achieved, giving sufficient attenuation 

between the desired analogue signal of under 5 kHz and the 1 MHz clock signal.
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Figure 5.21 1 kHz triangular wave: (a) analogue input; (b) DAC output.

Figure 5.22 shows the circuit implementation of the receiver output stage using the Plessey 

TAB1043 [90] operational amplifier. This device has an operating frequency range under 

1 MHz, so the clock waveform is partly attenuated by the device itself and further 

attenuation for the analogue signal is accomplished with the filter design. The input bias 

for pin 16 is set by the 100 kOhm variable resistor which also determines the frequency 

response of TAB1043. The component values for the low-pass filter were calculated using 

a GW Basic based program given by Middlehurst [91].
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Figure 5.22 2nd-order active Butterworth filter circuit diagram
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5.4. Modulator and Demodulator PLD Programming

Design details for modulator and demodulator were presented in the preceding sections. 

Here, the author wishes to give further details about in the PLD programming and the 

algorithms used to implement the design. Programmable logic devices (PLDs) were used 

to accommodate all logic circuits of the modulator in a single chip according to the 

specification given in Section 4.2., thus making the system layout simpler. Advantages of 

PLDs are [92]:

1) Simplified design because of large number of available gates.

2) Substitution of layout with an enhanced version without the need for changing the 

chips pin-layout.

3) Implementation of state machines in PLD devices.

The most important advantage is that digital circuits can be designed with state machines, 

rather than designing an equivalent circuit for the state machine at gate level and having 

to balance the timing with buffers as with asynchronous digital networks [75].

The modulator and demodulator are programmed in a Philips programmable macro logic 

PML2552 [82] that provides gate arrays capabilities for general purpose logic integration. 

The PML2552 incorporates the PML folded NAND array architecture and flip-flop building 

blocks which provide 100% connectivity to eliminate routing restrictions. The devices 

have been programmed with the Snap [93] development software which gives easy access 

to the density and flexibility of the PML2552 through a variety of design entry formats, 

including schematic, logic equations and state equations in any combination. The PLD 

programming followed the approaches specified in Philips application notes [94, 95].
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5.4.1. Modulator state algorithm

Figure 5.23 illustrates the circuit equivalent schematic for the modulator which has been 

translated into the Snap compatible equation (see Chapter 10.3) format suitable for 

programming the Philips PML2552. The heart of the modulator is a Moore state machine 

performing the transformation of parallel code into a sequence of pulses. Its design can 

be described in 18 states. After resetting all flip-flops to state zero (INI), the state machine 

performs the transformation of 4-bits parallel into sequential pulses. It converts first the 

high-word then the low-word.

Figure 5.24 represents the modulator state diagram where state zero (MO) and state sixteen 

(M16) are associated with the start of the high-word and start of the low-word respectively. 

The states in between represent the number of time slots to be counted. Having received 

the binary data (e.g. 1111) the state machine jumps from its present state (MO) to its new 

state S15 and sets a network of flip-flops in the state machine and performs the counting 

operation. Conversion of the high-word is completed when S1 is reached. On arrival of 

the low-word the state machine once again changes its state from present state to M16 and 

starts counting down to state SI. Whenever the states MO and M16 are passed, the state 

machine issues a pulse which is then converted by a D-type flip-flop into the PIWCM 

sequence. Looking at the output of the flip flop, state MO indicates the rising edge and 

state M16 indicates the falling edge of the PIWCM pulse train.

5.4.2. Demodulator state algorithm

A complementary Philips PML2552 is also used as a demodulator and it has been 

programmed with the Snap development software, as listed in Chapter 10.5. The 

demodulators circuit equivalent schematic is shown in Figure 5.25
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Figure 5.23 Modulator circuit equivalent schematics.
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The receiver Moore state machine is illustrated in Figure 5.26. It converts the received 

sequential information of the PIWCM pulse train into an 8-bit parallel word by counting 

ones and zeros. The initial state of the state machine is M l 6 and it counts down at every 

clock cycle. Receiving a PIWCM frame of one mark and one space w ill result in jumps 

between the states MO and M16. If a different code word is detected, for example sixteen 

marks and three spaces, the state machine counts upwards until state SI 5 is reached, 

returns back to M16 and counts to the new state of SI 8. Any sequence longer than sixteen 

time slots w ill result in an error until a transition in the opposite level is received. Two sets 

of D-latches are connected to the output of the demodulator state machine; one for the 

high-word and one for the low-word. Together they provide the recovered 8-bit word for 

the DAC. The DAC is clocked with a pulse indicating the end of conversion which is 

issued by the state machine.

5.5. Summary

In this Chapter, the design and implementation of the digital PTM systems have been 

discussed. Both the modulator and demodulator have been carried out using single chip 

programmable logic devices. Appropriate captured waveforms were also shown in order 

to confirm the operation of the system. The PLD implementation proved to be successful 

as the design was improved by reprogramming the devices and not changing the hardware 

layout. State machine algorithms for code generation and detection were presented 

through state diagrams. The hardware performance will be further discussed in Chapter 7.
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Figure 5.26 Demodulator state algorithm
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CHAPTER 6 

MATLAB SIMULATION PACKAGE



6. MATLAB SIMULATION PACKAGE

In conjunction with the hardware implementation of the digital PTM system, described in 

Chapter 5, a software simulation package based on Matlab has been developed.

Software simulation is a tool which may be used to help designers to analyse the system 

performance well in advance. Advantages of software simulation are:

1) Design changes can be made easily and results readily obtained which otherwise may 

take a significant amount of time in the real hardware system.

2) Several case studies could be carried out without the risk of destruction or damage to 

the hardware.

3) Has the possibility to vary all parameters of interest, thus allowing the designer to 

optimise the system prior to hardware realisation.

Although simulation adds another step in the developing process of the product, the overall 

task is speeded up and optimised [96].

The complete digital PTM system can be conveniently modeled with the Matlab software 

package, version 4.2 for MS-Windows [97]. Matlab stands for matrix laboratory and is a 

multipurpose scientific software package for numeric calculations. It allows expressions 

of a programming algorithm as in any other programming language. Macros and 

instructions can easily be written and tailored for specific needs. This makes Matlab 

applicable to many engineering problems [98]. Therefore, Matlab is the appropriate 

package to carry out the entire software simulation of the digital PTM system.
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6.1. Overall Software Approach

In developing the software attention was paid to making the resulting software user friendly 

and easy to handle. Simulation is carried out in a number of consecutive steps. The 

software is divided into three basic sections (transmitter, channel, receiver) and their sub­

sections. The simulation package can be accessed via graphical user interface (GUI) 

routines which provides the link between processes through commonly defined matrices. 

These matrices reside in Matlab's memory and their elements can be called on demand. 

This provides an efficient and clearly structured intercommunication process between the 

Matlab command window and the dialogue boxes.

Four menus are available in the Matlab based graphical user interface. They provide easy 

access to relevant dialogue boxes that enable the user to emulate the process of 

modulation and demodulation. The GUI is based upon a top-to-bottom and left-to-right 

pull-down menu structure.

6.2. Organisation of the Software

The software package is designed to model accurately the behaviour of the existent 

hardware system and includes the following features.

1) Input: analogue signal, digital code pattern or text string.

2) Sampling, analogue-to-digital convertor and modulator.

3) Channel bandwidth and noise.

4) Threshold and pre-detection filters.

5) Demodulator, digital-to-analogue convertor and filtering.

6) Time and frequency representation and error analysis.
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The software package is organised in the command window which gives simple access 

to the system modules by providing hierarchally structured pull-down menus as shown 

in Figure 6.1. They prompt the user to the relevant dialogue boxes or to the Matlab 

prompt and hence to let the user to interact with the simulation package.

File Transmitter 
Input ,M

DIGITAL PTM SYSTEM

Analogue...
Channel Receiver

A/D Converter ... 
Modulator...

> Digital
> Text

Convert to ►

Figure 6.1 Command window menus.

File menu: allows the user to apply system functions during the Matlab session such as 

load and save workspace and frame construct.

Transmitter menu: allows the user to set-up the input format for transmission before

being encoded and modulated. The structure of the transmitter menu is based upon the 

data exchange between the analogue input, the A/D conversion, the modulator dialogue 

boxes and the data entry through an 8-bit binary matrix or a text string. Figure 6.2 shows 

that the analogue input may be accessed through the ADC and the modulator dialogue 

boxes or, alternatively, it may be directly converted into binary format before being 

converted with the convert to digital menu option into the PIWCM/PICM pulse trains. 

When choosing digital or text string entry, the input data does not need to be processed 

since the binary matrix is already generated. The user may then return to the transmitter 

dialogue box in order to prepare the codes for transmission in different modes. The 

transmitter dialogue boxes allow the user to generate a particular code pattern of a given 

mark-space combination, for a specific amplitude. The number of frames generated is a 

function of bits used.
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Analogue

Digital Text

Modulator

A /D  Conversion

Analogue

Convert to Digital

Convert to Pulse Train

Input

Figure 6.2 Transmitter input options.

In this study, the maximum number of frames generated is 256. This is independent of the 

shape and the number of oscillations of the input signal.

Channel menu: allows the user to select the appropriate code to be transmitted (PIWCM

or PICM). It also defines the electrical channel bandwidth and sets the noise parameters. 

The limitation on the channel bandwidth will affect both the transmitted signal and the 

noise. Its influence on the overall code behaviour can be shown graphically in time or 

frequency domain as shown in Figure 6.3.

Receiver menu: incorporates signal slicing, pre-detection filtering, demodulation and 

final filtering along with the display of the recovered waveform. System performance
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Time
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Set Channel Bandwidth & Order

Power Spectral Density

Set Noise Bandwidth & Amplitude

Channel Input

Figure 6.3 Transmission channel setup and display options.

indicators, such as probability of errors versus carrier-to-noise ratio are also carried out in 

this menu. Figure 6.4 shows the receiver menu structure.

6.3. Procedures of Simulation Routines

Most of the written m-files are functions used to automate long sequences of commands. 

The advantage of using functions in Matlab is that variables within the body of the function 

are all local variables and only occupy workspace memory when this particular function 

is called. Upon releasing the function from its computational process, memory space 

allocated for local variables is cleared and provided for other processes. Global variables 

are system variables that reside permanently in Matlab's memory.

Dialogue boxes have a number of check boxes, text edit fields, sliders and push buttons. 

The values of elements in dialogue boxes are stored in globally assigned variables, which 

represent the dialogue box in Matlab's workspace. Each of the variable's elements is 

called on demand, ie. when the corresponding (or a function related) dialogue box is
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RC-Filter

System Performance
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Display
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Figure 6.4 Receiver menu structure.

invoked via the command window. For example, the system variable PLOTPAR is 

generated by the chplot.m function, representing the channel display dialogue box. 

Within the simulation package, the global variables are written with capital letters thus: 

GLOBAL_VARIABLE and local variables are written with upper and lower case letters, 

thus: Local Variable.

6.3.1. Frame construct

The function frame.m takes the user to the Matlab prompt and it generates a frame 

combination when a decimal value has been entered. It utilises the dec2bin .m function 

as illustrated for an 8-bit frame length code.

93



function [M, S, F]=frame(val,res)
%FRAME returns the system's code construction according to the 
% decimal input value.
% [M, S, F] =FRAME (VAL, RES) ;
% M: mark, S: space, F: frame length
% VAL: decimal value for 8 bit val is valid for within the 
% interval 0 <= VAL <= 255
% RES: resolution of ADC, 8 for 8 bits, 12 for 12 bits 
res=8;
if rem(res, 2)==0 

n=2A (res/2); 
if val <= 2Ares-l 

M=floor(val/n)+1;
S=rem(val,n)+1;
F=M+S;
Mbin=dec2bin(M-l, res/2);
Sbin=dec2bin(S-l, res/2);
disp(['I/P value: 1,num2str(val)])
disp(['(M,S)=F: (',num2str(M), ', ',num2str(S),') = ',.. .

num2str(F),' TS']) 
disp(['Binary: ',num2str(Mbin),' ',num2str(Sbin)])

end
end

6.3.2. Decimal to binary conversion

This converts decimal values into binary by using the dec2bin.m function. The default 

resolution is 8-bits, hence the decimal values will range between zero and 28-1. 

function bin=dec2bin(dec, res);
%DEC2BIN is the decimal to binary conversion of a given decimal 
% value DEC that returns the corresponding binary value BIN.
% The resolution of the conversion can be specified with RES.
% Default usage 8-bit BIN=DEC2BIN(DEC);
% assigning another resolution, eg. BIN=DEC2BIN(DEC, 12);
%check if i/p is integer 
if any(dec ~= round(dec)) 

dec=round(dec);
disp('Requires integer argument. Use nearest value instead.') 

end
%check for if input fits resolution 
if 2Ares-l < dec 

dec=2Ares-1;
disp('Input exceeds resolution. Use maximum value instead.') 

end
%start conversion 
bin=[]; x=dec; i=0;
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for i=l:res
bin=[bin rem(x, 2)]; 
x=floor(x/2); 

end
bin=fliplr(bin);

6.3.3. Load initial screen

To load the initial screen, the file co d e p ic .m a t in the code directory is loaded,

containing the variables picture and map and deletes these variables after loading into

the command window in order to free some workspace memory while storing picture

and map in the figure handle.

%LOADSCR loads the initial screen 
if exist('codepic.mat') 

load codepic 
else

disp ('*. mat file not existent, check with ,Iwhat,,,) 
end
colormap(map)
set(gca, 'position',[0 O i l ] )  
image(picture) 
axis off
clear map picture

6.3.4. Text string input

The input for the digital PTM system can be chosen according to the user specification. 

One option is to select the text string input on the Matlab prompt. The t t e x t . m function 

generates the binary equivalent of the text input string in the BINARY variable. Further 

processing is necessary in order to generate the variable BINVAL that w ill be used by the 

modulator.

function [BINARY, TSTRING]=ttext 
%TTEXT enter text and convert digitally 
% [BINARY, TSTRING]=TTEXT;
disp('Enter string to be transmitted') 
disp('for example: ''Hello World''') 
binary=input('String= ') ;
TSTRING=binary; 
binary=(binary-0); 
if length (binary) >= 256

disp('Data not valid. String is reduced to 256 elements') 
binary=binary(1:256)';
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else
[a, b]=size (binary); 
binary=[binary zeros(a, 256-b)]'; 

end
%assign output parameter 
BINARY=[]; 
for i=l:256

BINARY=[BINARY dec2bin(binary(i))']; 
end
BINVAL=binary;
BINARY=BINARY’;

6.3.5. Sampling

Sampling of the analogue input signal is accomplished through equally spaced samples. 

The anisochronous nature of PIWCM and PICM is not taken into account. The function 

bin256 .m generates a maximum of 256 samples independent of the number of cycles of 

the input signal.

function [BINVAL,SAMPLE]=bin256
%BIN256 samples the analogue waveform at equally spaced 
% intervals for an 8-bit resolution, eg. 256 values. If the
I number of oscillations is large, the whole wave form is still
% divided into 256 samples, but the space between them is wider
% than for one oscillation. [BINVAL, SAMPLE]=BIN256;
spoint=(length(WAVE_FORM)-1)/256; 
spointfspoint:spoint:256*spoint;
time=l:length(WAVE_FORM); Igenerate reference vector
Vq=(Vmax-Vmin)/255; %voltage of each level
%divide analogue signal into 256 equally spaced points 
sample=interpl (time, WAVE_FORM, spoint); %interpolate signal
%generate samples 
for i=l:256

if Vmin > sample(i), sample(i)=Vmin; end 
if Vmax < sample(i), sample(i)=Vmax; end 

end
sample=round( (sample-Vmin)/Vq);
BINVAL=dec2bin(sample);
SAMPLE=sample;

6.3.6. Analogue to digital conversion

Before modulation can take place, the input signal (analogue or text string) must be 

converted into binary format. The adc8.m routine divides the analogue waveform
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WAVE_FORM into 256 equally spaced quantisation levels representing the full amplitude

range. The algorithm for conversion utilises the dec2b in .m  routine.

function [BINVAL, HEXVAL]=adc8 (mode, n, Nmin, Nmax, display) 
%ADC8 8-bit analogue-digital converter at clock speed 
% Conversion within 256 levels equally spaced in the specified 
% range or fixed automatically.
% MODE: conversion mode 'A1 best fit, ’N'1 for normal fit 
% N: decimal counter variable specified for real amplitude
% range of ADC
% NMIN: minimum amplitude value (must be greater than zero)
% NMAX: maximum amplitude value
% DISPLAY: include if display is desired
%sampled waveform must have 256 values 
sig=WAVE_FORM(1:(length(TIME)-1)/255:length(TIME));
%best amplitude fit 
if strcmp(fA', mode)

Nmax=max(WAVE_FORM) ; Nmin=min(WAVE_FORM);
%make analogue signal positive 
sig=abs(Nmin)+sig;
%fix extrema
Nmax=max(sig); Nmin=min(sig) ; 

end
%specified ADC amplitude range 
if strcmp(’N ', mode)

%fix amplitude range 
for j=l:length(sig)

if sig(j) < Nmin, sig(j)=Nmin; 
elseif sig(j) > Nmax, sig(j)=Nmax; end 

end 
end
%fit quantisation to amplitude range 
q=(Nmax-Nmin)/255;
%find value of sig(n)th element 
elseif (n >= 0) & (n <= 255) 

n=n+l;
val=round((sig(n)-Nmin)/q);
HEXVAL=dec2hex(val) ; 

end
%perform A/D conversion 
BINVAL=dec2bin(val) ;

6.3.7. Modulator

Modulation of the globally assigned binary matrix BINVAL is performed by the mod.m 

function which generates the desired PIWCM and PICM pulse trains. The variable POINTS 

is to the length of the fundamental time slot and the variable MODPAR is the system 

variable of the modulator dialogue box.
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function [PICM, PIWCM, DTIME]=mod
%MOD returns PICM & PIWCM modulated code
% [PICM, PIWCM, DTIME]=MOD;
% PICM: pulse interval code modulated signal 
% PIWCM: pulse interval code width modulated signal 
% DTIME: returns PICM's associated time vector
%get resolution 
if ADCPAR(6)==1

res=4; %8-bits
end
%get pulsewidth for PICM 
pw=POINTS*MODPAR(ll) ;
%get r,c of BINVAL 
[r, c]=size(BINVAL);
%get decimal value and assign high and low word
bin=BINVAL;
high=bin{:,1:res);
low=bin(:,res+1:2*res);
%.count discrete states for word 
mark=0; M=0; 
space=0; S=0; 
for i=l:r

mark(i)=bin2dec(high(i,:))+1;
M=linspace(1,l,mark(i)*POINTS); 
space(i)=bin2dec(low(i, :))+1;
S=linspace(0,0,space(i)^POINTS); 
piwcm=[M S];
PIWCM=[PIWCM piwcm]; 
picm_m=zeros(1, mark(i)*POINTS); 
picm_m(1:pw)=linspace(1,1,pw); 
picm_s=zeros(1, space(i)*POINTS) ; 
picm_s(1:pw)=linspace(1,1,pw); 
picm=[picm_m picm_s];
PICM=[PICM picm];

end
%generate associated time vector 
DTIME=0:length(PIWCM)-1;
DTIME=DTIME./POINTS;

6.3.8. Channel properties

A Butterworth low-pass filter is employed to simulate the transmission channel. This is 

carried out by using the channe l .m function for a frequency range of 1 MHz to 10 MHz 

and filter order of 1 to 7.

[c, d]=butter(filt_ord,Wchannel); 
piwcm=filter(c,d,PIWCM); 
picm=filter(c,d,PICM);
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It is assumed that noise will affect the transmitted signal during transmission. Matlab 

provides various routines to generate noise. Here, white and Gaussian noise is used, 

generated with the Matlab function: noise=namp*randn (size (PIWCM) ) ; .  Further 

filtering may be used in order to bandlimit the noise before it is added to the signal. A 

simple function of CODE=piwcm+noise; is used to simulate signal plus noise. The carrier 

and noise power are measured separately, and the signal-to-noise ratio is obtained 

accordingly by utilising the signr .m function:

%SIGNR signal-to-noise ratio of 'Signal' and 'Noise'
% [SigRMS, NoiseRMS, SNRdB]=SIGNR(S, N); 
noisems=mean (N. A2); NoiseRMS=sqrt (noisems),; 
sigms=mean(S.A2); SigRMS=sqrt(sigms);
SNR=sigms/noisems;
SNRdB=10*logl0(SNR);

6.3.9. X-V scope

The time domain display of the signals at any point in the transmission system is catered 

for by the function scope .m. It has self-adjusting amplitude range capabilities and the it 

can sweep through the entire discrete time range, at a specified interval, read from the 

global system variable PLOTPAR and is being initiated through chplot .m. 

function scope(X, Y)
%SCOPE continuous display of a specified signal in time domain. 
% SCOPE(X, Y); displays the self-adjusting signal 
% X: x-vector, eg. time 
% Y: y-vector, eg. amplitude
if strcmp(action, 'start') 

figure
set(gcf,'C o l o r [0 .7 0], ’MenuBar’,'none','Name',...

'X-Y Scope','NumberTitle', 'off'); 
set(gca, 'Position', [.1 .2 .85 .7]); 
axis off 
axes (gca)
plot(X, Y, 'y', 'EraseMode', 'none') 
set(gca,'XGrid','on','YGrid','on'); 
axis([0 PLOTPAR(17) ymin ymax]);
%push button OK
uicontrol('Style','PushButton', 'String','OK',...

'Position',[.1 .05 .12 .08], 'Units', 'normalized',...
'CallBack','close(gcf)');

%define slider
uicontrol(gcf,'Style','text', ...

'Position',[.4 .09 .25 .04],...
'Units','normalized', . . .
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'Backgroundcolor',[0 .7 0],...
'String','Sweep Time Slots');

PLOTPAR(20)=uicontrol(gcf,'Style','slider',...
' Position',[. 3.5 .05 .35 .04],...
'Units','normalized',...
'Min', 0, 'Max', max(X), 'Value', 0,...
* C 3 .1 lb cl c Ic * [

'PLOTPAR(19)=round(get(PLOTPAR(20),''Value''));',... 
'set(gca,''Xlim'',[PLOTPAR(19) PLOTPAR(19)

+PLOTPAR(17)]),']); 
uicontrol(gcf,'Style','text', ...

'Position',[.3 .05 .05 .04],...
'Units','normalized',...
'Backgroundcolor',BG_COLOUR,...
'String',num2str(get(PLOTPAR(20),'Min'))); 

uicontrol(gcf,'Style','text',...
'Position',[.7 .05 .1 .04],...
'Units','normalized',...
'Backgroundcolor',BG COLOUR,...
'String',num2str(getlPLOTPAR(20),'Max')));

%set scale
uicontrol(gcf,'Style','text', ...

'Position',[.85 .09 .1 .04],...
'Units','normalized',...
'Backgroundcolor',[0 .7 0],...
'String','Scale');

PLOTPAR(18)=uicontrol(gcf,'Style', 'edit',...
'Position',[.85 .05 .1 .04],...
'Units','normalized',...
'Backgroundcolor',BG_COLOUR, ...
'String',num2str(PLOTPAR(17)),...
'Callback',[...

'set(gca,''Xlim'',[PL0TPAR(19) PLOTPAR(19)
+PLOTPAR(17)]),',...

'PLOTPAR(17)=str2num(get(PLOTPAR(18),''String' '));']);
end

6.3.10. Power spectral density

This displays the spectral behaviour of the transmitted PIWCM and PICM using the 

chplot.m function. It utilises the psd.m signal processing toolbox function according 

to the user specified or self-adjusting PSD resolution nf f t. Furthermore, it allows the user 

to zoom in to the spectrum.

%include NFFT 
if PLOTPAR(11)==1

pow=str2num(get(PLOTPAR(14),'String')); 
nfft=2Apow; 

else
nfft=2Around (log2 (length (CODE) ) ) ; 

end
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. i f  PLOTPAR(9 )==1

[Pxx, F ]= p s d (C O D E ,n f f t , f re q , ' none 1) ;
P x x = 1 0 * lo g l0  ( P x x / n f f t ) ;

p l o t ( F ,  Pxx)

u i c o n t r o l ( ' S t y l e ' ,  'P u s h B u t to n ' ,  ' S t r i n g 1, 'Zoom I n ' , . . .
'Position',[0.3 0.05 0.12 0.07], 'Units', 'nprmalized',... 
'CallBack','zoom on, set(gcf,''pointer'',''crosshair'')'); 

uicontrol('Style', 'PushButton', 'String', 'Zoom Out',...
' P o s i t i o n ' , [ 0 . 5  0.05 0.13 0 .0 7 ] ,  ' U n i t s ' ,  ' n o r m a l i z e d ' , . . .  
' C a l l B a c k ' , ' zoom o u t ;  s e t ( g c f , ' ' p o i n t e r a r r o w ;

6.3.11. Pre-detection filter

The receiver performance (in the sence of absence of errors) can be improved by

incorporating a pre-detection filter instead of a simple threshold detector or slicer:

code=CODE-slicer_level; The simulation package is capable of simulating both

types of filters: RC-filter (of a specified order and cut-off frequency) and matched filter. For

the RC-filter, the filter function from the Matlab signal processing toolbox is used within

the recgen.m function.

[ a , b ] = b u t t e r ( o r d e r , f c o ) ; 
c o d e = f i l t e r ( a , b , c o d e ) ;

In contrast to the RC-filter, a matched filter is independent of any bandwidth, since it 

operates on the basis of integration. The data are changed from unipolar to bipolar before 

being integrated. Ideally, any positive or negative code level would result in a positive or 

negative slope ramp by which the noise level should be averaged to zero by the end of 

each bit period. However, in a real system, the integrator is reset to its initial value zero 

at the end of each bit period. The resetting times of PIWCM and 50% duty cycle of PICM 

are one and V2 time slot respectively. Therefore, the matched filter function m a tc h . m must 

be able to select between the integration time for PIWCM or PICM, represented by the 

local variable p o in ts :

fu n c t io n  m atched=m atch(Y);
%MATCH gene ra tes  o u tp u t o f  matched f i l t e r  
% MATCHED=MATCH(Y) ;
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% Y: signal to be filtered
begin=l; 
matched=[]; 
n=length(Y); 
if CHPAR(13)==1

points=P0INTS/2; %PICM
else

points=POINTS; IPIWCM
end
stop=points; 
while stop <= n,

matched=[matched cumsum(Y(begin:stop))]; 
matched(begin)=0; 
begin=begin+points; 
stop=stop+points;

end
%consider last sample
matched=[matched cumsum(Y(begin:n))] ;

6.3.12. Error detection

The quality of any digital transmission link is best judged by counting the number of errors 

it may produce under noisy conditions. This simulation compares the original transmitted 

pulse train with the recovered pulse train at the output of the regenerator device and 

generates error pulses. These pulses are accumulated in err_pre (1) and the bit-error 

rate is obtained from err_pre (2). 

function err_pre=errorl(X, Y)
%ERR0R1 error detection for pre-detection method 
% ERR_PRE=ERR0R1(X, Y) ;
% X: original signal 
% Y: noise polluted signal
%find level
slicer_level=RECPAR(10); 
n=length (Y);
X=X-slicer_level;
Y=Y-slicer_level;
%define sampling points 
if CHPAR(13)==1

points=POINTS/2; %PICM
else

points=POINTS; %PIWCM
end
spoint=points:points:n;
%sample signals 
sampleX=X(spoint);
preX=(sign(sampleX)); preX=sign(preX-0.1)+1; 
sampleY=Y(spoint);
preY=(sign(sampleY)); preY=sign(preY-0.1)+1;
%count errors
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err_pre(1)=sum(xor(ceil(preY),ceil(preX))); 
err_pre(2)=err_pre/(length(preY));

6.3.13. Demodulator

The demodulator function demod. m is more complex than its counterpart mod. m. If PICM 

is transmitted, it is first converted into PIWCM. The decision is taken, when 

CHPAR(13)==1 for PICM or CHPAR(14)==1 for PIWCM. In the case of PICM, the 

demodulator synchronises upon the first pair of pulses in order to identify a mark-space 

sequence. Due to high noise levels, however, the first pair of pulses may be swapped 

around so that the first pulse would correspond to space and the second pulse would 

correspond to space. In any case, the first frame of the PICM sequence w ill be lost — this 

is common in real-world applications as well. For a 50% duty cycle PICM, the pulse width 

is half the slot duration. Mark and space durations are obtained by counting the number 

of ones and zeros which are then assigned to the DEC output matrix, 

function [BIN, DEC, F]=demod
%DEMOD PICM & PIWCM demodulator, only one code can be 
% transmitted at one time.
% [B, D, F]=DEMOD;
% B: binary return value of demodulator
% D: decimal return value
% F: decimal description of successive frames
res=8; %8-bit resolution
i v i= 5 ;  %TTL

pw=MODPAR(11); %get PICM pulse width 
n=length(PRECODE); 
precode=PRECODE;
if RECPAR(6) ~= 1, precode=precode-lvl/2; end 
precode=sign(precode); 
precode=sign (precode-0.1);
%Assign variables needed for demodulation 
M=0; S=0; F=[];
Mbin=[]; Sbin=[]; BIN=[]; DEC=[]; 
if CHPAR(13)==1 %PICM is transmitted

disp('Converting PICM into PIWCM');
%define sampling instances 
spoint=POINTS*pw:P0INTS*pw:n; 
sample=precode(spoint);
index=l; start=2; stop=64; count=0; run=0;
piwcm=[];
i=2;
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%synchronise; lose first frame 
for j=l:stop+l

if sample(j)==l & run~=3 
count=count+l; 
run=run+l; 

elseif sample(j)==l & run==3 
start=count+l; 
break 

else
count=count+l;

end
end
%count marks and spaces 
for i=2:length(sample)

%first pulse
if sample(i—1)==-1 & sample(i)==l & index==l 

index=0;
piwcm=[piwcm 1];

%second pulse
elseif sample(i-1)==-1 & sample(i)==l & index==0 

index=l;
piwcm=[piwcm -1];

%count mark
elseif sample(i)==-1 & index==l & 

rem(spoint(i)/ (POINTS/2), 2)==1 
piwcm=[piwcm 1];

%count space
elseif sample(i)==-1 & index==0 & 

rem(spoint(i)/ (POINTS/2), 2)==1 
piwcm=[piwcm -1]; 

end
if rem(i,counter)==0

disp([num2str(percent),' % done'])
percent=percent+25;
end

end
sample=piwcm(1:length(piwcm)); 

elseif CHPAR(14)==1 %PIWCM is transmitted
%define sampling instances 
spoint=POINTS:POINTS:n; 
sample=precode(spoint);

end
disp('Now demodulating PIWCM1)
%count marks and spaces 
for i=2:length(sample)

if sample(i)==l %count mark
M=M+1;

elseif sample(i)==-1 %count space
S=S+1; 

end
if sample(i-1)==-1 & sample(i)==l %new frame

F=[F [M S]'];
Mbin=dec2bin(M-l, res/2);
Sbin=dec2bin(S-l, res/2);
BIN=[BIN [Mbin Sbin]'];
M=0;
S=0;

end
end
F=F'-1;
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BIN=BIN1;
[r# c]=size (BIN); 
for j=l:r

D=bin2dec([BIN(j,:)]); 
DEC=[DEC D]; 

end

6.4. Summary

A software simulation package based on Matlab has been developed for the digital PTM 

system. Its structure and capabilities were discussed. Its aim is to give designers a tool for 

analysing and implementing the system before carrying out the hardware work. Limitations 

of the simulation package are basically determined by the available memory and the 

processor speed of the computer. Results obtained through software simulation are 

discussed and compared to the hardware results in Chapter 7.
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CHAPTER 7 

RESULTS AND ANALYSIS



7. RESULTS AND ANALYSIS

Previous Chapters have discussed the methods employed and the specific implementation 

of the digital PTM system. This Chapter deals with the results and analysis obtained for 

the complete system by means of theoretical comparisons and validation tests. Both 

practical and simulation results were taken for the electrical link.

7.1. Power Spectral Density

Spectral measurements were carried out for both PIWCM and PICM modulated waveforms 

under ideal-noiseless conditions to judge the system performance. A test signal of 1 kHz 

was used for this particular measurement in order to clearly show the characteristics of the 

signals, since it is a convenient sub-multiple of the clock frequency.

The point chosen for comparison of the theoretical spectral prediction, practical spectral 

measurement and spectral software simulation is the output of the transmitter. The digital 

PTM spectra are composed of the sum of contributions from a set of delayed pulses, 

describing the distribution of power versus frequency. This approach is equally valid for 

PIWCM (Section 4.3) and PICM (Section 4.5).

In the case of PIWCM, Eq. (4.14) characterises the associated PIWCM random pulse train 

given in Eq. (4.10). Its pulse train is composed of time slots of mark and space, with the 

signal energy stored in the mark only. From Eqs. (4.13) and (4.14) it can be seen that the 

Fourier transform depends on the pulse width and the preceding frame lengths.

106



The measured, calculated and simulated spectral behaviour of the PIWCM waveform for 

a slot rate of 1 MHz and an input frequency of 1 kHz is illustrated in Figure 7.1, showing 

close agreement in all cases. Due to the fundamental pulse width of one clock interval, 

the PIWCM PSD provides distinctive spectral components at the slot frequency. The 

spectral lines in between show the variation of mark and the frame length. As can be 

seen, the power spectral distribution is mainly concentrated at frequencies lower than the 

slot rate, decaying rapidly at frequencies above the slot frequency. This indicates that the 

PIWCM signal may be transmitted over channels having a bandwidth of less than the slot 

rate [99].

On the other hand, the PSD for PICM comprises a constant pulse width and a variable 

frame length. Equation (4.16) shows that the pulse train is constructed of two mark-space 

sequences. Again, the PSD from Eqs. (4.17) and (4.18) produces distinctive frequency 

components at odd harmonics of the slot frequency, as shown in Figure 7.2.b. Variation 

of this component with respect to the duty cycle has been analysed and it was observed 

that a 50% duty cycle is suitable for optimum timing extraction [100]. As a result of this 

component, at the receiver there is no requirement to extract frame frequency and phase 

from the received pulse train for synchronisation. It is sufficient to employ a PLL to extract 

the slot information directly from the received data stream. Its harmonics are placed 

between even multiples of the slot frequency, decaying with an increase of frequency. In 

comparison to the theoretical prediction Figures 7.2.a and 7.2.c show the measured and 

simulated PICM spectra respectively. In contrast to PIWCM, the bandwidth needed for 

PICM is at least twice as large and hence this scheme is only suitable for systems where 

the bandwidth is twice the slot rate.
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7.2. Analogue Input versus Analogue Output

To demonstrate the functionality of the digital PTM system, the analogue input may be 

compared with the analogue output. This evidence has been obtained through hardware 

measurements and simulation using PIWCM and PICM. The analogue input signal was of 

sinusoidal or triangular shape. In the case of a sinusoidal signal, the recovered waveform 

w ill reflect on the purity of the transmitted information, whereas the triangular signal will 

display the linearity of the recovered waveform.

Using a sinusoidal signal input under noise free environment, the measured and simulated 

input and output waveforms are shown in Figures 7.3 and 7.4 respectively. In both cases 

the recovered signal faithfully resembles the original transmitted waveform. To test the 

overall linearity of the PIWCM and PICM systems, a low frequency ramp signal of 500 Hz 

is used. Figures 7.5 and 7.6 illustrate the measured and simulated waveforms respectively, 

showing very good linearity in both cases.

7.3. Harmonic Distortion

Another method of evaluating the system performance is to measure the harmonic 

distortion of a single tone sine wave at the output of the receiver. In this measurement, 

the frequency response of the recovered analogue signal, as shown in Figure 7.7, is 

evaluated. Ideally, the spectrum of a single tone sine wave should have only one 

frequency component — the fundamental frequency. However, the function generator 

used in this experiment produces harmonic components as shown in Figure 7.8 where the 

2nd and 3rd harmonic components are 47 dB and 43 dB below the fundamental 

component. Using a single tone sinusoidal input signal of a frequency of 500 Hz, the 

spectrum of the output signal is shown in Figure 7.7. The 2nd and 3rd harmonic 

differences are measured
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Input Modulation Fundamental 2nd Harm. 1st - 2nd 3rd Harm. 1st - 3rd

(Vp-p) Index (%) (dB) (dB) (dB) (dB) (dB)

4.8 96 14.0 -17.6 31.6 -24.1 38.1
4.5 90 13.4 -19.2 32.6 -24.3 37.7
4.0 80 12.5 -22.9 35.4 -24 .5 37.0
3.5 70 11.2 -22.8 34.0 -24.6 35.8
3.0 60 9.7 -24.5 34.2 -24.8 34 .5
2.5 50 8.1 -24.5 32.6 -25.0 33.1
2.0 40 6.0 -24.8 30.8 -25.0 31.0

Table 7.1 Harmonic components relative to the signal amplitude

at the output of the PIWCM system, are tabulated in Table 7.1 and graphically shown in 

Figure 7.9 This graph shows, that the system is best operated at higher amplitudes, i.e. at 

modulation indices greater than 50%.

3 8

e 2 8

2 6 -

2 0
M o d u l a t i o n  I n d e x

Figure 7.9 Harmonic difference of the output waveform relative to the signal amplitude.
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7.4. Error Rate versus Carrier-to-Noise Ratio

In a binary transmission system, the probability of errors is a measure of the quality of the 

modulated waveforms in the transmission channel under noisy conditions. The error rate 

(for the three types of error: false alarm, erasure and wrong slot) is a function of carrier-to- 

noise ratio.

The regenerated wave trains were sampled at the centre (PIWCM), or the first quarter 

(PICM), of the bit period (see also Section 5.2.2). The period of the sampling pulse was 

selected as 100 ns and a time counter was used to account the number of errors. Along 

with the number of errors, the transmitted bits were counted and the error rate is defined 

as:

p _ number of errors (7 j)
e transmitted bits

The channel bandwidth also contributes significantly to the quality of the signal. 

Figure 7.10 illustrates the frequency response of the electrical transmission channel, in
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Figure 7.10 Frequency response of the electrical channel.
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which the error rate is being measured. From the graph the channel has a bandwidth of 

5.6 MHz and displays the behaviour of a 3rd order low-pass filter.

With this characteristic, the channel acts as a pre-detection device, such as a 3rd-order 

Butterworth low-pass filter with cut-off frequency of 5.6 MHz, filtering both signal and 

noise and hence distorting the frequency spectrum. However, the bandwidth limitation 

upon the noise rms value is not significant and the bandwidth equivalent noise margin may 

be neglected.

Using a single tone sine wave at amplitude of 4 Vp_p and a frequency of 1 kHz, the 

measured rms noise voltage, carrier-to-noise (C/N) and error rate (Pe) for both PIWCM and 

PICM are tabulated in Table 7.2. On average, the PIWCM C/N is 3.5 times that of PICM, 

hence the C./N margin between PIWCM and PICM is approx 10.7 dB. On the other hand, 

for the same noise level PICM has a larger Pe than PIWCM which is due to its pulse nature.

Noise level 
(Vrms)

C/N (PIWCM) 
(dB)

Pe (PIWCM) C/N (PICM) 
(dB)

Pe (Pll

0.25 19.1 0 8.3 0
0.26 18.5 3.2e-9 7.8 6.4e-9
0.27 18.2 2.0e-8 7.5 4.0e-8
0.3 17.3 3.2e*7 6.6 4.7e-7
0 .33 16.5 8.9e-6 5.7 1.7e-5
0 .38 15.3 1.4e-4 4.5 2.6e-4
0.43 14.2 8.1 e-4 3.4 1.6e-3
0.48 13.2 2.6e-3 2.5 5.6e-3
0.57 11.7 1.3e-2 1.0 2.6e-2

Table 7.2 Error rate for PIWCM and PICM.

Figures 7.11 and 7.12 illustrate the measured and simulated error rate performance as a 

function of carrier-to-noise ratio for uncoded PIWCM and PICM respectively, showing
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Figure 7.11 PIWCM: error rate versus carrier-to-noise ratio.
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Figure 7.12 PICM: error rate versus carrier-to-noise ratio.
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excellent agreement with the theoretical prediction based on Eq. (2.4). The discrepancy 

between the curves is probably due to uncertainties in actual values of noise voltages. At 

an error rate of 10e-9 the uncoded PIWCM offers a C/N o f« 18 dB whereas PICM offers 

a C/N o f« 8 dB. Thus the improvement is » 10 dB in received C/N which can be used 

to increase the span in long-haul transmission links.

The error rate can be further reduced by employing a pre-detection filter prior to the 

demodulator. This is only carried out in the simulation and the results obtained indicate 

the validity of the idea. The two filter types being investigated are:

1) 3rd-order Butterworth low-pass filter and

2) matched filter.

The optimum cut-off frequency for a 1st-order low-pass filter with inter-symbol interference 

is equally applicable for a 3rd-order filter and can be obtained as follows [101]:

prQ clNAr \ - e-'T.e
\

2

N l w , T ' / 2 J >

where v=  MRC, T is the bit period of 1 ps and 0.5 ps for PIWCM and PICM respectively 

and Q is the complementary error function. Plotting Pe against the cut-off frequency 

f co = v / 2 7 u; shows that a minimum Pe appears at a cut-off frequency of 700 kHz and

1.4 MHz for PIWCM and PICM respectively, see Figure 7.13.

Figures 7.14 and 7.15 illustrate the simulated error rate as a function of C/N for PIWCM 

and PICM respectively. It can be seenthat for the same C./N the Pe for a matched filter is 

much lower than that for the 3rd-order Butterworth filter and the basic slicer with
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Figure 7.13 Error rate versus RC pre-detection filter cut-off frequency.
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Figure 7.14 PIWCM: error rate versus carrier-to-noise ratio with pre-detection filter.
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- Figure 7.15 PICM: error rate versus carrier-to-noise ratio with pre-detection filter.

no pre-detection filter. These results indicate that the system performance can be further 

improved and the saving gained in the received C./N can be used to increase the length of 

the transmission link.

7.5. Signal-to-noise Ratio versus Carrier-to-Noise Ratio

Figure 7.16 illustrates the measured signal-to-noise ratio performance at the output of the 

system as a function of the carrier-to-noise ratio with simulated results, it is seen to be 

good [102], because it approches PCM. The results display a threshold effect below which 

the signal pulses become indistinguishable from the noise pulses. For PIWCM, the 

measured threshold point for C/N is 16.5 dB corresponding to the lowest S/N margin of 40 

dB which is slightly worse than 8-bit PCM, see Figure 7.16.
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Figure 7.16 Signal-to-noise ratio versus carrier-to-noise ratio.

In the case of PICM, the threshold point for C/N is at 7.4 dB corresponding to S/N of 

46 dB — an improvement of 6 dB to PIWCM. Thus measured and simulated results have 

indicated that high quality analogue outputs can be developed with PICM.

7.6. Summary

The theoretical spectral prediction obtained for both PIWCM and PICM waveforms showed 

close agreement with the measured and simulated results. The spectral components at the 

slot rate can be used for receiver synchronisation. Measured error rate performances 

match reasonably well the predicted and simulated results. For the same C/N, PICM has 

a lower Pe than PIWCM. Furthermore, it was shown that the error rate can be reduced by 

employing pre-detection filtering. Finally, S/N measurements indicated the good quality 

transmission capability of the system.
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8. CONCLUSIONS

This thesis has presented the design, analysis, simulation, implementation and results of an 

investigation into digital PTM systems, namely PIWCM and PICM. The primary objective 

of this study was to investigate the potential of two new digital modulation methods for 

use in electrical and/or optical fibre transmission systems.

In both PIWCM and PICM the message signal is digitally encoded and the generated frame 

lengths are different and determined only by the sampled value of the message signal. In 

PIWCM information is represented by the number of time slots associated with mark and 

space in a given frame, whereas in PICM it is represented by the number of time slots 

between two successive constant width pulses.

The main advantage of PICM is its narrow pulse width, providing high peak power levels 

and reduced average power, ideal for optical sources. On the other hand the average 

power content of PIWCM is higher. In general PICM will require much larger transmission 

bandwidth compared to PIWCM. However, this bandwidth expansion may be well traded 

for signal-to-noise performance in wide bandwidth channels (such as optical fibre). 

PIWCM, has frame synchronisation capability, since each frame is initiated with a mark 

followed by a space, whereas in PICM frame synchronisation is essential. PIWCM and 

PICM have a higher transmission capacity compared to PCM and PPM and on average, this 

capacity is increased by a factor of two.

To simulate the complete system, the Matlab engineering software package has been 

utilised to produce a complex software tool which was found to be very useful in
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implementing the system in hardware. The simulation package incorporates a graphical 

user interface through which the user can look at all aspect-functions of the digital PTM 

system. Furthermore, simulation results indicate that the system measurements were 

carried out effectively and accurately.

Programmable logic devices have been used to implement the modulator and demodulator 

where the PTM pulse train and associated control signals are being generated in one 

device. With this approach, the complete system is implemented with just three transmitter 

and receiver modules: input/output buffer, data converter, modulator/ demodulator. Thus 

resulting in compact and more reliable system layout.

Original expressions were given for channel capacity, code characteristics and power 

spectral density. The predicted results for the power spectral density are in good 

agreement with the simulated and measured data, thus indicating the validity of the 

expressions.

At the optimum modulation index of 70% the second and third harmonic distortion levels 

measured at the output of the receiver are 34 dB and 36 dB respectively for PIWCM. This 

shows that the signal can be reproduced faithfully by the system.

For an error rate of 10*7, the measured carrier-to-noise ratios for PIWCM and PICM are

17.4 dB and 7.4 dB respectively, agreeing well with the predicted and simulated values 

within ± 1 dB. This improvement of 10 dB (for PICM) can be used to increase the overall 

span of the transmission link.

The simulation results indicate that the error rate can be further reduced by employing pre­
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detection filters. For a carrier-to-noise ratio of 5 dB, the error rate is reduced from 0.1 for 

a slicer to 10*2 and 10*4 for RC and matched filter respectively. However, this needs to 

be investigated in future.

Like all PTMs, the signal-to-noise ratio performance exhibits a threshold level beyond 

which the signal-to-noise ratio deteriorates rapidly. For PIWCM and PICM these threshold 

values are at 40 dB and 46 dB respectively (compared with 48 dB for PCM). The extra 

6 dB gain in PICM can be used to extend the distance of transmission.

Both systems are suitable for high quality signal transmission over coaxial or fibre cables. 

Results indicate that PICM has further potential in long distance wide bandwidth 

transmission systems.
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9. FUTURE WORK

Inclusion of an anti aliasing filter at the input and the output of the system may be made 

to be of high order to reduce the sampling ratio and to remove unwanted high frequency 

components at the output.

For more efficient coding, a companding scheme may be adapted which maps the small 

signal amplitudes to short frame combinations and refers large amplitudes to long frame 

combinations. In other words, the aim is to add higher resolution and to increase the 

quality of information without increasing the transmission bandwidth or the sampling ratio. 

A companding input/output has already been implemented in the digital PTM system 

which is catered for by the displacement (Disp7..0) input/output in the PLD devices. 

Companding may be accomplished either with a static device, such as a look up table or 

with an intelligent device such as a micro controller. The look up table may be 

programmed according to the distribution of data whereas the micro controller adds a 

higher degree of freedom, thus providing additional flexibility for variable data distribution 

changes.

One area that needs further development is the system synchronisation. This may be best 

achieved by employing phase locked loops at the receiver in order to lock onto the 

incoming pulse train and to extract the frequency component. Up to this point it is not 

clear if any line coding needs to be implemented. Due to the strong frequency 

components in the PICM spectrum, the PLL might still be able to regenerate reliable timing 

information even with rare pulse occurrences under noisy conditions. In the PIWCM case, 

this cannot be foreseen.
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Error detection and correction techniques may be implemented using neural networks.

Soliton optical fibre communication is intended for ultra high speed data transmission, 

relying on transmission of short pulses. Thus PICM, because of its pulse nature, may be 

used for this application.
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10. APPENDIX

10.1. Listing of PIWCM and PICM PSD Calculation with Matlab

%codepsd.m generates the PSD of PIWCM/PICM for random data 
fm=5; %normalised mod. frequency
sr=2; %min. sampling rate
p=8; %bit resolution
mors= 2A (p/2); %maximum length for mark or space
Lmax=2* (mors); %maximum frame length
comb =2A (p); %total combinations
f=l:5*fm*(Lmax)*sr; %frequency
slotrate=(Lmax)*fm*sr; %slot rate
Ts=l/(slotrate); %time slot
totalframes=l:4000; %total number of frames
%random data
data=rand(1,length(totalframes)); 
pl0=10A (ceil(loglO(comb))); 
data=ceil((data*comb/plO)*pl0);
%account all generated frames 
displacement=zeros(1,length(data)) ;
pulsewidth=fix(data./mors)+1; %convert data into pulse width
pulseinterval=rem(data,mors)+l; %conv data into pulse interval
exponent=zeros(1,length(data)); %hexponent of PIWCM pulse width 
highexponent=zeros (1,length(data));%high-word exponent 
lowexponent=zeros (1,length(data)); %low-word exponent 
finalpiwcm=zeros(1,length(f)); %final PIWCM spectrum
finalpicm=zeros(1,length(f)); %final PICM spectrum
dutycycle=0.5; %duty cycle for PICM
%prepare first frame 
exponent(1)=0; 
highexponent(1)=0 ;
lowexponent(1)=pulsewidth(1)*(-j*2)*pi*Ts; 
displacement(1)=pulsewidth(1)+pulseinterval(1); 
totalperiod=pulsewidth(1)+pulseinterval(1);
%take single frequency components and multiply each element in 
%the exponent matrix to obtain exp, find displacement of every 
%component
for sample=2:length(totalframes)

exponent (sample)=displacement(sample-1)* (-j*2)*pi*Ts; 
highexponent (sample)=displacement(sample-1)* (-j*2)^pi^Ts; 
lowexponent(sample)= (displacement(sample-1)+...

pulsewidth(sample))*(—j *2)*pi*Ts; 
displacement(sample)=displacement(sample-1)+...

pulsewidth(sample)+pulseinterval(sample); 
totalperiod=totalperiod+pulsewidth(sample)+... 

pulseinterval(sample) ;
end
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%generate spectrum
fcountpiwcm=0; %componets at particular frequency
fcountpicm=0;
angle=pi*Ts; 9ophase angle
fpicm=sin(Ts*dutycycle*pi*f); %PICM frequency components 
de np i cm=p i * f; 
fden=0;
c=length(f); 
for a=l:c

fcountpiwcm=0; 
fcountpicm=0; 
spec=0; 
den=a*pi;
fden(a)=fpicm(a)/denpicm(a); 
for b=l:length(data)

spec= (1/den)*sin(angle*a*pulsewidth(b)); 
fcountpiwcm=fcountpiwcm+spec*(exp(a*exponent(b))); 
fcountpicm=fcountpicm+exp(a*highexponent(b))+... 

exp (a*lowexponent(b));
end
finalpiwcm(a)=fcountpiwcm; 
finalpicm(a)=fcountpicm; 

end
finalpicm=fden.*finalpicm;
finalpiwcm=abs(finalpiwcm).A2; %remove complex parts
finalpicm=abs(finalpicm).A2;
finalpiwcm=finalpiwcm/(Ts*totalperiod); %perform truncation 
finalpicm=finalpicm/(Ts^totalperiod);
plot(f^Ts,10*logl0 (finalpiwcm)); 
xlabel(1 Normalised frequency'); 
ylabel('level dB1); 
axis ( [0 4 -100 0])
figure
plot(f*Ts,10*logl0 (finalpicm)); 
xlabel('Normalised frequency'); 
ylabel('level dB'); 
axis ([0 4 -100 0])

10.2. Listing of Matlab File Content

Digital PTM System
code initialises Digital PTM System and opens initial

screen and initial menu 
codegen initialises Digital PTM System and opens initial

menu
codemenu initial menu for the Digital PTM System

Data Conversion
adcl2 12-bit analogue digital converter
adc8 analogue digital converter
bin256 samples the analogue wave form at 256 equally

spaced intervals 
bin2dec convert binary code to decimal number
dec256 recovers original waveform at 256 equally spaced

intervals
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dec2bin
GUI Items 

adcgen 
channel 
demgen
fungen
recgen

Transmitter
amp
bininput
dcshift
time
wave
demod
demtext
mod
errbwn
errcnr
errcomp
errtest
match
receive
signr
sncn

Display
about
chplot
eyecode
loadscr
modplot
plots
scope

Other
bmp256
cmenu
contents
frame
lddeflt
loadwsp
savewsp

is the decimal to binary conversion of a given 
decimal value
adc GUI
introduction of channel properties via GUI
GUI for demodulator, recovers the original analogue
signal.
function generator, GUI 
receiver user inteface

and Receiver Items 
set amplitude of wave form
input of various digital bit pattern combinations 
set DC off-set 
generate time vector 
generate analogue wave form
demodulator reconstituting the pulse train into 
8-bit parrallel
displays transmitted and demodulated text string 
modulator generating PICM and PIWCM 
test routine to run measurements for Pe vs CNR at 
variable bandwidth
test routine to run measurements for Pe vs CNR at 
constant bandwidth
error detection for pre-detection method
demonstration of Pe vs SNR
matched filter simulation
error detection through comparator
signal-to-noise ratio
SNR vs CNR

about the simulation and programmer 
plots channel traces in time and frequency domain 
plots the eye pattern of the transmitted code 
load initial screen 
plot of PICM & PIWCM
opens new figure and assigns ’ok' push button 
continious time simulation

convert 256-colour bitmap into *.mat-file
generate a menu of choices for user input
content of Digital PTM simulation package
code construction according to dec.-equiv. value
loads default workspace
loads specified workspace variables
saves default/specified workspace variables

10.3. Listing of Modulator PLD Programming with Snap

0PINLIST
datain[7..0] i;
disp[7..0] i;
clock i;
reset i;
picm o;
piwcm o;
sof o;
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init o;
©LOGIC EQUATIONS 
data [7..0] 
mux[3..0]
dlatch [7..0], 
dlatch [7..0], 
dlatch[7..0], 
ff[4..0].elk 
ff[3..0].rst 
ff4.set 
outbuf.d 
outbuf.rst 
outbuf.elk 
pi cm 
piwcm 
sof 
init

d
elk
rst

datain[7..0] :+: disp[7 
(outbuf^dlatch[3..0]) + 
dlatch[7..4]); 
data [7..0]; 
sof; 
reset; 
clock; 
reset; 
reset;
/outbuf; 
reset + init;

/clock;
/clock;

. 0 ];
(/outbuf

tpicm * 
tpicm * 
outbuf; 
clock * /outbuf

= (ff[4..0] == lOh)
ff[4..0] 
* reset;

== 08h;

©INPUT VECTORS 
[outbuf, mux[3..0]]

hO = OOh; hi = Olh;
h4 = 04h; h5 = 05h;
h8 = 08h; h9 = 09h;
he = Och; hd = Odh;
10 = lOh; 11 = llh;
14 = 14h; 15 = 15h;
18 = 18h; 19 = 19h;
lc = lch; Id = ldh;

h2 = 02h; h3 = 03h
h6 = 06h; h7 = 07h
ha = Oah; hb = Obh
he = Oeh; hf = Of h
12 = 12h; 13 = 13h
16 = 16h; 17 = 17h
la = lah; lb = lbh
le = leh; If = lfh

©OUTPUT VECTORS 
[tpicm]

picmO = 0b; picml = lb;
©STATE VECTORS 
[ff[4..0]] jkffsr

sO = 08h; si = OOh; s2 = Olh; s3 = 03h
s4 = 02h; s5 = 06h; s6 = 07h; s i = 05h
s8 = 04h; s9 = Och; slO = Odh; s 11 = Ofh
sl2 = Oeh; sl3 = Oah; sl4 = Obh; sl5 = 09h
sl6 = 18h; ini = lOh;

©TRANSITIONS 
while [ini] with [picmO] if [] then [sO]
while [s0] with [picml] if [10] then [sl6]
while [s0] with [picml] if [11] then [si]
while [s0] with [picml] if [12] then [s2]
while [s0] with [picml] if [13] then [s3]
while [s0] with [picml] if [14] then [s4]
while [s0] with [picml] if [15] then [s5]
while [s0] with [picml] if [16] then [s6]
while [s0] with [picml] if [17] then [s7]
while [s0] with [picml] if [18] then [ s 8 ]
while [s0] with [picml] if [19] then [s9]
while [sO] with [picml] if [la] then [slO]
while [sO] with [picml] if [lb] then [sll]
while [sO] with [picml] if [lc] then [sl2]
while [sO] with [picml] if [Id] then [sl3]
while [sO] with [picml] if [le] then [sl4]
while [sO] with [picml] if [If] then [ s 15 ]
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while [sl6] with [picml] if [hO] then [sO]
while [ s 16 ] with [picml] if [hi] then [si]
while [sl6] with [picml] if [h2 ] then [s2]
while [ s 16 ] with [picml] if [h3 ] then [s3]
while [sl6] with [picml] if [ h 4 ] then [s4]
while [sl6] with [picml] if [h5] then [s5]
while [sl6] with [picml] if [ h 6 ] then [s6]
while [sl6] with [picml] if [h7 ] then [s7 ]
while [sl6] with [picml] if [ h 8 ] then [ s8 ]
while [sl6] with [picml] if [ h 9 ] then [s9]
while [ s 16 ] with [picml] if [ha] then [slO]
while [ s 16 ] with [picml] if [hb] then [sll]
while [sl6] with [picml] if [he] then [sl2 ]
while [sl6] with [picml] if [hd] then [sl3]
while [ s 16 ] with [picml] if [he] then [sl4 ]
while [sl6] with [picml] if [hf] then [sl5]
while [si] with [picmO] if [10+11+12+13+14+15+16+17+

18+19+la+lb+lc+ld+le+lf] then
while [si] with [picmO] if [h0+hl+h2+h3+h4+h5+h6+h7+

h8+h9+ha+hb+hc+hd+he+hf] then
while [s2] with [picmO] if [] then [si]
while [s3] with [picmO] if [] then [s2]
while [s4 ] with [picmO] if [] then [s3]
while [s5] with [picmO] if [] then [s4 ]
while [s6] with [picmO] if [] then [s5]
while [s7] with [picmO] if [] then [s6]
while [s8 ] with [picmO] if [] then [s7]
while [s9] with [picmO] if [] then [s8]
while [slO] with [picmO] if [] then [s9]
while [sll] with [picmO] if [] then [slO]
while [sl2] with [picmO] if [] then [sll]
while [sl3] with [picmO] if [] then [ sl2 ]
while [ si 4 ] with [picmO] if [] then [sl3]
while [sl5] with [picmO] if [] then [ sl4 ]
while [sl6] with [picmO] if [] then [sO]

10.4. Listing of Modi

Device = PML2552-35
Pin8 = RESET
Pin9 = DATAINO
PinlO = DATAIN1
Pinll = DATAIN2
Pinl2 = DATAIN3
Pinl3 = DATAIN4
Pinl4 = DATAIN5
Pinl6 = DATAIN6
Pinl7 = DATAIN7
Pin20 = CLOCK
Pin22 = DISPO
Pin23 = DISP1
Pin40 = DISP7
Pin41 = DISP6
Pin42 = DISP5
Pin43 = DISP4
Pin44 = DISP3
Pin45 = DISP2
Pin46 = SOF
Pin47 = PICM

131



Pin48 = PIWCM 
Pin50 = INIT

10.5. Listing of Demodulator PLD Programming with Snap

0PINLIST 
piwcm in 
picm_Tn 
disp[7..0] 
reset 
clock
dataout[7..0] 
error 
valid 
n valid

i;
i;
i;
i;o;
o;
o;
o;

0LOGIC EQUATIONS 
ff[5.. 0 ] .elk 
ff[4..0 ] .set 
ff5.rst 
inbuf.rst 
inbuf.elk 
inbuf.d 
piwcm
dataout[7..0] 
outbuf[7..0 ] .rst 
outbuf[7..4].d 
outbuf[3..0 ] .d 
outbuf[3..0 ] .elk 
outbuf[7..4].elk 
error 
valid 
n valid

clock;
reset;
reset;
reset;
picm_in;
/inbuf;
piwcm_in + inbuf;
outbuf[7..0] :+: disp[7..0];
reset;
ff[3..0];
ff[3..0];
/(piwcm * clock);
/(/piwcm * clock); 
f f 5;
piwcm * ff4;
/(piwcm * ff4);

0INPUT VECTORS 
[piwcm ]

piwcmO = 0b; piwcml = lb;
@STATE VECTORS
[ff[5.. 0]] jkffsr

dsO = OOh; dsl = Olh; ds2 = 02h; ds3 = 03h; ds4 = 04h
ds5 = 05h; ds6 = 06h; ds7 = 07h; ds8 = 08h; ds9 = 09h
dslO = Oah; dsll = Obh; dsl2 = Och; dsl3 = Odh; dsl4 = Oeh
dsl5 = Ofh; dsl6 = lOh; dsl7 = llh; dsl8 = 12h; dsl9 = 13h
ds20 = 14h; ds21 = 15h; ds22 = 16h; ds23 = 17h; ds24 = 18h
ds25 = 19h; ds26 = lah; ds27 = lbh; ds28 = lch; ds29 = ldh
ds30 = leh; ds31 = lfh; ds32 = 20h;

©TRANSITIONS 
while [dsO] if [piwcml] then [dsl] else [dsl6J
while [dsl] if [piwcml] then [ds2] else [dsl6]
while [ds2] if [piwcml] then [ds3] else [dsl6]
while [ds3] if [piwcml] then [ds4] else [dsl6]
while [ds4 ] if [piwcml] then [ds5] else [dsl6]
while [ds5] if [piwcml] then [ ds 6 ] else [dsl6]
while [ds6] if [piwcml] then [ds7] else [dsl6]
while [ds7 ] if [piwcml] then [ ds 8 ] else [dsl6]
while [ds8] if [piwcml] then [ds9] else [dsl6]
while [ds9] if [piwcml] then [dslO] else [dsl6]
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while [dslO] if [piwcml]
while [dsll] if [piwcml]
while [dsl2] if [piwcml]
while [dsl3] if [piwcml]
while [dsl4] if [piwcml]
while [dsl5] if [piwcml]
while [dsl6] if [piwcmO]
while [dsl7] if [piwcmO]
while [dsl8] if [piwcmO]
while [dsl9] if [piwcmO]
while [ds20] if [piwcmO]
while [ds21] if [piwcmO]
while [ds22] if [piwcmO]
while [ds23] if [piwcmO]
while [ds24] if [piwcmO]
while [ds25] if [piwcmO]
while [ds26] if [piwcmO]
while [ds27] if [piwcmO]
while [ds28] if [piwcmO]
while [ds29] if [piwcmO]
while [ds30] if [piwcmO]
while [ds31] if [piwcmO]

then [dsll] else [dsl6]
then [dsl2] else [dsl6]
then [dsl3] else [dsl6]
then [dsl4] else [dsl6]
then [dsl5] else [dsl6]
then [ds32] else [dsl6]
then [dsl7] else [dsO]
then [dsl8] else [dsO]
then [dsl9] else [dsO]
then [ds20] else [dsO]
then [ds21] else [dsO]
then [ds22] else [dsO]
then [ds23] else [dsO]
then [ds24] else [dsO]
then [ds25] else [dsO]
then [ds26] else [dsO]
then [ds27] else [dsO]
then [ds28] else [dsO]
then [ds29] else [dsO]
then [ds30] else [dsO]
then [ds31] else [dsO]
then [ds32] else [dsO]

10.6. Listing of Demodulator Pin Assignment

Device = PML2552-35
Pinl = ERROR
Pin8 = RESET
Pin9 = DISPO
PinlO = DISP1
Pinll = DISP2
Pinl2 = DISP3
Pinl3 = DISP4
Pinl4 = DISP5
Pinl6 = DISP6
Pinl7 = DISP7
Pin20 = CLOCK
Pin22 = PIWCM IN
Pin23 = PICM IN
Pin46 = DATAOUT0
Pin47 = DATAOUT1
Pin48 = DATAOUT2
Pin50 = DATAOUT3
Pin51 = DATAOUT4
Pin52 = DATAOUT5
Pin53 = DATAOUT6
Pin54 = DATAOUT7
Pin67 = N VALID
Pin68 = VALID

1 3 3
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Abstract

This paper investigates both theoretical and practical aspects of implementation of a new 

digital pulse time modulation technique based on pulse interval and width code modulation 

(PIWCM) scheme for transmission of analogue/digital signal. Original expression is presented 

for power spectral density and the results obtained closely match with simulated and practiacl 

results. The developed system will have applications in point-to-point fibre optic transmission 

links and fibre optic broaband networks.

Introduction

Pulse time modulation (PTM) techniques have been proposed for transmission of analogue 

signals over short to medium haul point-to-point optical fibre communication links. In this 

type of modulation the transmitted carrier is a binary pulse amplitude, where the pulse width, 

pulse position, pulse interval, pulse frequency is modulated by an incoming modulating signal. 

PTM schemes have the advantage that the information can be transmitted at a reduced 

bandwidth than that required by pule code modulation (PCM) at much reduced cost and 

complexity. They also have the ability to trade bandwidth overhead for signal-to-noise ratio 

performance[l-4]

Recently, a digital PTM scheme, known as digital pulse position modulation (DPPM) has been 

suggested for long-haul point-to-point links over mono-mode fibre, showing substantial 

improvement in receiver sensitivity compared to PCM under conditions that the fibre 

bandwidth is not limited. The scheme under consideration utilises the pulse position

3rd International Symposium on Communication Theory and Applications 
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modulation (PPM) [5-7] format where the time interval of Ambits of PCM is subdivided into n 

-  2M  time slots and the information is conveyed by positioning a single pulse in one of the n 

time slots. In contrast to its analogue equivalent, digital PPM actually consumes more 

bandwidth than that required by PCM. It has been shown that digital PPM can offer 

improvements of between 5-11 dB [8-10] (depending on the coding level , bandwidth and 

detection technique) in receiver sensitivity when compared to PCM. This represents an 

increase in point-to-point transmission of between 25-55 km. However, DPPM timing 

requirements are exceptionally critical to the system performance and far exceed the 

equivalent PCM timing requirements[ll]. This paper proposes a new digital PTM scheme 

known as pulse interval and width code modulation (PIWCM) (also known as digital PIWM) 

offering simplicity and ease of frame synchronisation.

Theoretical

PIWCM is closely related to PIWM in that it employs a waveform in which both mark and 

space represent the sampled data [3], but with PIWCM these mark and space time interval 

slots are made discrete. PIWCM is anisochronous PTM technique in which each successive 

frame length is different and determined only by the sampled value of the modulating signal, 

not by the choice of the predetermined clock (sampling) period. As a consequence, receiver 

design complexity is substantially reduced since there is no requirement to extract frame 

frequency and phase for synchronisation in order to correctly interpret the encoded sampled 

value. Depending on source connection, PIWCM can carry encoded PCM data or directly 

sampled signals.

The digital signal converted from analogue signal is coded into PIWCM code by an M  bit

coder and applied to the modulator, Fig. 1. An Mbits digital signal is divided into two sets of

k bits (here, k is chosen to be equal to half the M  bits). The decimal equivalent of binary

combination in a given set determines the number of time slots for mark (m) and space (s). At

time t equal to zero conversion first takes place for mark followed by conversion for space. To

represent zero one is added to each code words. Finally, time slots for mark and space are

combined together to produce the desired PIWCM signal. Differentiating the PIWCM
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waveform will result in a constant width narrow pulse train known as pulse interval code 

modulation (PICM), see Fig. 2. This modulation scheme is suitable for long-haul fibre optic 

communication system where high peak optical power and low average optical power is 

required. At the demodulator the process is reversed, where the transmitted frame length is 

determined by simply counting the number of time slots for mark and space, a process which 

requires frame synchronisation, and converting them to binary digit. PIWCM modulator and 

demodulator designs can be formulated around state machines. This new scheme offers higher 

transmission capacity by virtue of fully utilising the time slots for a given frame and 

illuminating unused time slots. Synchronisation is simply achieved by initiating each frame with 

marks followed by spaces.

PIWCM frame length will be given by:

0 )
• r \v* ( \  v*

'
L = Mod

X

9  k\ 2  J
+ 1 + Rem

X

9  k\2
+ 1

where the first and second term represent the number of time slot for mark and space 

respectively, x is the decimal equivalent of each k bit binary set. The longest and shortest 

PIWCM frame lengths will be are 2**1 and 2 time slots resulting in average frame length 

of 2*4-1 time slots. The maximum total time occupied by a PIWCM frame is Tj which is 

therefore 2k+1 Ts seconds. The expression for time slot duration in PIWCM and PCM in terms 

of sampling frequency f s can be written as:

T p iw C M  = ¥ + T7s

t PCM  =

(2)

M /s

PIWCM displays shorter time slot duration compared to PCM (and wider time slot duration

compared to DPPM) and hence higher channel bandwidth requirement for values of M  greater

than 2. For a signal of bandwidth f m Hertz sampled at the minimum Nyquist rate the maximum
k+ 1 ^  •slot rate will reduce to f r - 2 f m2 . Owing to its amsochronous nature resulting m
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different frame lengths, the instantaneous sampling frequency (slot rate) of PIWCM changes 

according to the amplitude of the modulating signal.

The transmission capacity for PCM and PIWCM systems are:

£  _ Maximum code length 
A verage code length

2 fmL°g2 (Possible number of valid codes)

Thus: CpcM = lMfm and CpjwCM =  ~z 2fmM
2 +1

2 k+1
( 3 )

For large values of M  the transmission capacity of PIWCM (and PICM) is twice that of the 

PCM, see Fig 3. This is as we expected, since on average a PIWCM frame will be only half 

the length of a PCM frame, enabling two-times the sampling frequency rate to be employed, 

thus permitting a signal of two-times the bandwidth to be adequately sampled.

In DPPM guard space is required at the end of each frame to cater for pulse dispersion and 

hence to avoid interframe interference. However, in PIWCM this guard space is redundant, 

since each frame is started off with a mark followed by a space.

Mathematically PIWCM wave train consisting of frames of different lengths and mark-space 

patterns could be represented as:

where P(miS)j represents the ith PIWCM sample with mt time-slots of mark and s{ time-slots of 

space and ma and sa are the number of time-slots for mark and space at the a th sample 

respectively and Ts is the slot duration.

The Equation (4) indicates that PIWCM does not display a regular periodic frame structure in 

the manner of PCM and DPPM, except in the absence of any incoming data where the results 

is an alternating mark and space pattern.

( 4 )
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To be able to characterise the process practically it is beneficial to evaluate the power spectral 

density of a truncated realisation. Following a process similar to that obtained in Reference 11, 

we have obtained a numeric spectral model for digital PIWCM given by

S(f)= 1N
Ts +sr i
i=0

i-1
N  - jlr fT s  Y , ( ma +Sb)
I < W ) .  (f)e a ~ 0

i=0
( 5 )

where: G(ms).(f) is the PIWCM pulse shape transform of the ith sample, m, and are the 

number of time slots for mark and space in the ith sample respectively, a random number 1, 2 

...2k for M  bit resolution. N  gives the length of the truncated data frame sequence

A typical PIWCM spectrum evaluated using Equation (5) for a random data taken over 1000 

frames evaluated at 320 frequency points for 8 bit resolution is shown in Fig. 4.a with the 

frequency axis normalised to the slot frequency and power level over the frequency span to 0 

dBm. Confirmation of the Equation (5) is provided by the close match obtained with the 

results from the simulated spectral analysis and practical system, Fig.4.b & c. In all cases the 

digital PIW CM provides distinctive spectral components at the slot frequency and its 

harmonics.

Conclusions

In this paper a new digital PTM scheme know as PIWCM has been presented examined as a 

possible alternative to conventional PCM. It has shown to have a much higher transmission 

capacity and requires no complex frame synchronisation in the receiver in contrast to PCM 

and DPPM. These features have been obtained at the expense of increased transmission 

bandwidth. Original expressions have been presented to characterise the scheme in the 

frequency and time domains, showing excellent agreement with results obtained from software 

simulation. The signal format appears to be, at this time, an attractive possibility for medium 

to high speed point-to-point optical communication links.
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A Novel Digital Modulation System using Pulse Interval Code Modulation 
(PICM) and Pulse Interval Width Code Modulation (PIWCM)

R.U. Reyher, Z. Ghassemiooy, A.]. Simmonds and R. Saatchi 
Sheffield Hallam University, School of EIT, Pond Street, Sheffield S i IWB

There are two types of pulse modulation methods, digital and pulse analogue modulation. 
Digital modulation (e.g. Pulse Code Modulation PCM) is widely accepted and is suitable for 
switching and routing through communications networks. The main advantages of digital 
networking are efficiency, flexibility, reliability and multiple application orientated services. 
Pulse analogue modulation techniques (in particular Pulse Time Modulation. PTM) are 
predominantly used for optical point-to-point transmission and are also employed in Local Area 
Networks (LANs).

Models of digital Pulse Position Modulation (PPM) have been disc ussed by a number of authors. 
It is shown that digital PPM has a clear operating advantage over PCM for conventional data 
rates due to its high peak optical power which is substantially greater than its mean power;-this 
leads to an increase of receiver sensitivity, a greater signal-to-noise ratio and consequently to 
a smaller bit-error-rate compared to PCM. Discrete code generation with the Pulse Interval 
Width format was presented in 1979. This code shows advantages in synchronisation and 
bandwidth requirement over the PPM and PCM codes.

Two new modulation schemes, Pulse Interval Code Modulation and Pulse Interval Code Width 
Modulation are proposed. Both codes vary the pulse and frame length according to the 
modulating signal and can accommodate more information than similar schemes with a fixed 
frame length (PPM, PWM). PICM and PIWCM are closely related and can be converted easily 
from one form to the other, but they exhibit different characteristics and are therefore suitable 
for different applications. Attention is drawn to PIWCM because of its self synchronising code 
recognition. Code properties of PICM and PIWCM are presented to gain high resource utilisation 
and the coding scheme is described, suitable for digital communication over wire or optical 
fibre links.

PICM and PIWCM are derivatives of anisochronous PTM techniques where the pulse duration 
and the frame length varies with the amplitude of the modulating signal. However with PICM 
and PIWCM the output is a digital signal, consisting of time slots within a variable frame, not 
a continuous signal as is the case with existing Pulse Interval Modulation (PIM) and Pulse 
Interval Width Modulation (PIWM). The transmission capacity is found to be higher than in PPM 
or PWM, but less than in PCM.

In PIWCM each frame consists of two transitions with the low-high transition indicating the start 
of frame, and the high-low transition associated with the end of mark. Therefore, with a single 
channel system, there is no requirement for the transmission of an additional frame 
synchronisation pulse, which is necessary when using PCM. The average pulse period (mark) 
of a PIWCM pattern is greater than that of a corresponding PGM pulse pattern assuming the 
same data rate, thus requiring less average transmission bandwidth.

Every transition in PIWCM is indicated with a short pulse in PIWCM. The pulses, with fixed 
duration, and the low duty cycle compared to PIWCM and PCM will require higher transmission 
bandwidth. But the gain is that high peak optical power output is provided compared to a low 
average optical power budged. This allows a very high signal-to-noise ratio to be achieved, 
therefore reducing the bit-error rate and increasing the reliability of the system.
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A practical 8-bit word system is designed and built. Analogue to digital conversion provides 
a parallel 8-bit stream that is transformed by the modulator into PICM and PIWCM at the 
modulator output simultaneously. The receiver uses the demodulator to transform either of the 
transmitted pulse trains back into a parallel bit stream which is then converted by the digital-to- 
analogue converter in order to recover the original message.

Basic elements in modulator and demodulator are state machines that guarantee synchronous 
code generation and recognition. Their task is to count out the provided discrete information. 
It is assumed that the ADC converts data at every clock interval. Sampling in the modulator is 
achieved with an internal D-latch that only takes data from the ADC when the last time slot of 
a frame is issued. The modulator is then fed with a multiplexed split code, consisting of low- 
word and high-word, four bits each. Using the parallel bit stream of each word, translates their 
value into the relevant number of time slots for mark and space, triggered at every clock interval. 
With the received frame, the demodulator state machine translates marks and spaces, at every 
clock interval, into low-word and high-word respectively which are than stored in buffers to 
built up the discrete 8-bit code. The DAC is then ready to sample that information.

Transmitter-receiver synchronisation is achieved by locking the demodulator onto the rising 
edges of the received PIWCM frames, assuming the same clock speed for both devices. No 
guard band is required, as in PCM or PPM. Synchronisation is more critical with PICM because 
having two pulses per frame may lead to the inversion of mark and space. At this stage of 
implementation it is assumed that the first received PICM pulse is also the start of frame. 
Additional time slots are introduced for mark and space, one each, to make sure that a zero 
level has still marks and spaces. To increase the signal-to-noise performance of the system a 
matched filter at the receiver input is proposed to maximise the peak pulse signal in the 
presence of additive noise. Multiplexing potential of the modulation system is also identified.

The process of code generation and detection is examined along with coding rules, and the 
associated system requirements. Simulation and experimental results are compared with the 
theoretical prediction and placed along with equivalent PCM and PPM systems.
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ABSTRACT
A novel digital pulse time modulation (PTM) technique called digital 
pulse interval modulation (DPIM) is presented, in which the input signal 
information is transmitted by the time intervals between two succeeding 
pulses. DPIM has simplicity of circuit configumtion combined with other 
attractive features of digital pulse position modulation (DPPM) for 
optical-fiber communications. This article derives theoretical expressions 
for transmission capacity, code characteristics, and power spectral den­
sity (PSD), and the analytical results are compared with experimental 
data. © 1995 John Wiley & Sons, Inc.

1. INTRODUCTION
Today, commonly available optical fiber links have band- 
widths an order of magnitude greater than required for the 
data rates transmitted over them. The availability of this 
wider bandwidth may be used to achieve a high information 
capacity with low system complexity by using suitable modula­
tion techniques. It is well known that PTM techniques may 
be used to trade bandwidth for signal-to-noise ratio; such 
systems have been explored for video transmission over opti­
cal fibers [1-7]. Recently, a discrete PTM scheme called 
digital pulse position modulation (DPPM) has been suggested 
for long-haul point-to-point links over single-mode fiber 
[9-13]. Garrett [9] and Calvert, Sibley, and Unwin [10] have 
shown substantial improvements of receiver sensitivity for 
DPPM over an equivalent binary pulse code modulation 
(PCM) system when the fiber bandwidth was several times 
that required by PCM. Martin and Hausien [11] show DPPM 
as a possible alternative to conventional signaling in local 
area networks. However Cryar and Elmirghani [12] point out 
the necessity of introducing special circuitry for synchroniza­
tion. Thus, DPPM does need special provision to ensure 
synchronization at the receiver end.

This article introduces a new asynchronous digital PTM 
system called digital pulse interval modulation DPIM. In this 
modulation technique each frame starts with a pulse of one 
time slot duration and the information to be transmitted is 
represented by the number of time slots between two succes­
sive pulses; thus the name pulse interval modulation. No 
synchronization is required at the demodulator, unlike DPPM, 
as this modulating technique has synchronization imbedded. 
Due to the average code length o f DPIM being less than that 
of PCM and DPPM, DPIM has a higher transmission capac­
ity. In this article analytical results for transmission capacity, 
time slot duration, and power spectral density are presented, 
and, where appropriate, compared with DPPM and PCM.

2. SYSTEM DESCRIPTION
In DPIM, the sampled input is transmitted by a mark of one 
time slot followed by a space of n + 1 time slots, where n is 
the modulating signal amplitude (instead of displacement of 
pulse position from equally spaced reference time positions 
as utilized in DPPM). An A/-bit PCM word with magnitude n 
is input to the DPIM coder. In order to transmit zero, 1 is 
added to ensure there is always an interval. The DPIM coder 
thus generates one time slot of mark followed by n +  1 time 
slots of space, hence the DPIM signal frame length is depen­
dent on the magnitude of the PCM code word; see Figures 1 
and 2. This means the sampling frequency of the system will 
vary accordingly.

At the receiver, the occurrence of a short pulse (mark) 
indicates the start of a new frame. The demodulator then 
determines the transmitted frame length by counting the 
number of time slots between two pulses. Hence no synchro­
nization of reference time positions between the transmitter 
and receiver is required. The slot clock can be simply ex­
tracted from the incoming data stream; see the spectral 
model. The spectral component of the slot clock can be 
optimized by varying the duty cycle of the DPIM pulse. 
Therefore, this scheme has a simplicity of circuit configura­
tion together with the well-known attractive features of DPPM 
for optical communications systems [12].

With M  slot PCM let the interval between samples (i.e., 
the frame length in seconds) be Tf . The frame length of 
DPPM with 2M slots is also Tf . When DPIM transmits the 
highest magnitude signal (all M  bits high) the DPIM frame 
length is also 7}. The time slots for PCM, DPPM, and DPIM 
can be given as

1
PCM Mft '

m
p p m  ”

2" / /

TsDPIM "

where

/ / " f  “
V

(2" + 1)/,

the minimum sampling frequency.

(1)

M  is the PCM word length and m is the modulation index 
(0 £  m £  1) of DPPM. From Eq. 1 DPIM has a longer time 
slot duration than DPPM at m <  1. This results in a reduced 
worst-case transmission bandwidth for DPIM compared to 
DPPM (m <  1).

Due to the asynchronous nature of the DPIM code the 
sampling frequency / f varies; that is,

(2M +  \ ) f j  r r  
 2---- (2)

where Af is the PCM word length.
To show that DPIM code has a higher transmission capac­

ity than with DPPM and PCM assume the modulating signal 
occupies the full range of the A /D , in another words 100% 
modulation. For Af-bit PCM the possible code combinations 
for DPIM may be given as 2M and the shortest and longest 
duration of DPIM codes arc 2Ts and (2M +  l)7 r, respec­
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tively. Thus with 100% modulation the average code length 
of DPIM, assuming a ramp signal, can be given by

2 +1
£  /

1 - 2 2M +  3
2“  2 

The transmission capacity is given by [8] as 

longest code length

(3)

average code length
log2(vaiid code combinations).

Thus for Af-bit PCM and for DPPM Cap — M, while for 
DPIM,

2M(2 m +  1) 
2m + 3

(4)

Transmission capacity of DPIM is compared with PCM in 
Figure 3. where transmission capacity is normalized to the 
PCM sampling frequency.

3. CODE CHARACTERISTICS
When all M  bits in the PCM word are high the DPIM code 
has its frame duration (7^) equal to the PCM frame duration

Figure 1 DPIM code generation
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(7}). Time slot duration is evaluated taking the maximum 
modulating signal amplitude and the sampling frequency into 
account, as given in Eq. (1). Due to the nature of DPIM 
frames, as the modulating signal amplitude increases the 
pulse displacement between two samples increases, and as 
the amplitude decreases the pulse displacement reduces. Thus 
the higher the signal amplitude, the lower the sampling 
frequency and vice versa. The DPIM pulse stream can be 
represented by

x i t ) E  P
k -  - o e

t -T ,  * +
k — 1

E (5)

where P it ) is the DPIM pulse wave form, Sm is the number 
of time slots for space for the mth sample and Ts is the 
DPIM time slot. The k th  sample includes the pulse P it)  and 
Sk time slots of spaces.

where L  is the number of frames, G if )  is the DPIM pulse 
transform. Sk is the number of time slots of spaces in the fcth 
sample, and Ts is the DPIM time slot.

Using Eq. (6), a digital spectrum was evaluated for a 
random data sample of 4000 frames (L) and 9000 frequency 
points. Results are given in Figure 4. The frequency’ axis is 
normalized to the slot frequency, and the power levels of the 
above frequency span are normalized to 1 dB. Compare this 
with the prototype system spectrum Figure 5 and clearly the 
theory is accurate. '

From Figures 4 and 5 it can be seen that DPIM gives 
distinctive frequency components at odd harmonics of the 
slot frequency. Thus, with this modulating technique, the slot 
rate can be extracted from the incoming data stream at the 
receiver. Variation of this component with respect to the duty

4. SPECTRAL MODEL
The power spectral density function (PSD) •Sopim^ )  de- 
scribes the distribution of power versus frequency and hence 
is an important measurement of the system. Elmirghani and 
Cry an [13] consider the DPPM spectrum as being composed 
of the sum of contributions from a set of delayed pulses. 
Considering a random number of DPIM samples, this ap­
proach is equally valid with DPIM. The PSD function for 
DPIM has been modeled and compared with the DPIM 
spectrum obtained from the prototype. Equation (6) gives the 
PSD model of the DPIM system:

1

r,|L +  £  5,
k - 0

G i f )  £  e~>2wf T‘l k + s ->)
k -0

, (6)
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cycle of the DPIM  pulse has been analyzed, and it was 
observed that a 50%  duty cycle of the pulse at the start of a 
DPIM  frame is suitable for optimum timing extraction.

5. CONCLUSIONS
We have presented a novel digital pulse time modulation 
technique for optical fiber transmission called digital pulse 
interval modulation (D P IM ). Original analytical and experi­
mental results for power spectral density and information 
capacity are presented and compared with the predicted 
performance. The technique is simple to implement, requires 
no special synchronization techniques, and offers bandwidth 
savings over DPPM.
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Digital pulse interval and width modulation for optical fibre communications
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Pond Street, Sheffield SI 1WB, UK

ABSTRACT

This paper investigates the implementation of a new digital pulse time modulation (PTM) 
technique based on digital pulse interval and width modulation (DPIWM) scheme. Original 
expressions are presented for power spectral density, code characterisation and channel 
capacity, illustrating the advantages of this technique compared with conventional pulse code 
modulation (PCM). Both theoretical and practical results are given showing close agreement.

Keywords: optical fibre communications, digital pulse time modulation, self synchronised 
code

1. INTRODUCTION

Fibre optic communication networks have the potential of providing wide-band 
telecommunication services that utilise multiplexes of video, audio and data channels. The 
choice of the modulation scheme on the optical carrier is therefore a major factor in realising a 
bandwidth efficient and high-performance system at an acceptable cost. In this context, PTM 
techniques offer simplicity and performance comparable to existing digital techniques and can 
be employed to trade signal-to-noise performance with bandwidth overhead (a particularly 
exploitable feature in fibre optic systems, in particular high-speed communication networks). 
Continuous PTM techniques have been widely used for transmission of video, data and audio 
signals over optical fibre1"4.

In recent literature a discrete PTM scheme has been shown to be an effective modulation 
format for transmission of high bit data rate over monomode fibre. This modulation scheme 
utilises the pulse position modulation (PPM)5'7 format where the time interval of M  bits of 
PCM frame is divided into n = l M time slots, plus a guard interval of a few time slot duration. 
The information is conveyed by positioning a single pulse in one of the n time slots, lug. 1. It 
has reported that digital PPM can offer improvements of between 5-11 dB®*9 (depending on 
the coding level, bandwidth and detection technique) in receiver sensitivity when compared to 
PCM. This corresponds to an increase in point-to-point transmission distance of between 25- 
55 km. However, DPPM timing requirements are exceptionally critical to the system 
performance and far exceed the equivalent PCM timing requirements10. This paper introduces

SPIE Photonics East: 1st International Symposium on Photonics Technologies and
Systems for Voice, Video and Data Communications 
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a new digital PTM scheme known as digital pulse interval and width modulation (also known 
as pulse interval and width modulated code) offering simplicity and ease of frame 
synchronisation. It is constructed as a combination of pulse width and pulse interval that have 
discrete time length forming a frame. The frame length, which is a sum of a pulse width and 
pulse interval, depends on the amplitude of the information signal. Original expressions are 
presented for code characterisation, channel capacity and power spectral density together with 
results obtained from hardware implementation of the DPIW M system.

2. THEORY

DPIWM is closely related to PIWM in that it employs a waveform in which both mark and 
space represent the sampled data3, but with DPIW M this mark and space time slots are made 
discrete. DPIWM is an anisochronous PTM technique in which each successive frame length 
is different, see Fig. 1, being determined only by the sampled
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Figure 1 Example o f a DPIWM wave train
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value of the modulating signal not by the choice of the predetermined clock (sampling) period. 
As a consequence, receiver design problems are substantially reduced since there is no 
requirement to extract frame frequency and phase for synchronisation in order to correctly 
interpret the encoded sampled value. PIWM code has varying frame length. In this new 
scheme more combinations of pulse width and interval are possible than those of the other 
systems such as DPPM. This means that DPIWM has higher transmission capacity by fully 
utilising the time slots for a given frame and eliminating unused time slots. Frame 
synchronisation is simply achieved by detecting the rising edge of each frame, where each 
frame is initiated by a mark followed by space, see Fig. 1. Depending on source connection, 
the DPIWM code can carry encoded PCM data or directly sampled signals.

Mbits digital data (PCM data or converted analogue signal) is split into two sets o f k bits (k is 
chosen to be equal to half the Mbits), where the decimal equivalent of the binary combination 
in a given set determines the number of time slots for mark (m) and space (s) in a given frame. 
To represent zero, one time slot is added to each k set. At time t -  0 conversion first takes 
place for mark followed by conversion for space. Finally, time slots for mark and space are 
combined together to produce the desired digital PIWM signal, Fig. 2. At the demodulator 
after threshold detection the number of time slots for mark and space is counted and their 
corresponding equivalent binary numbers are generated, and added together to reproduce an 
M  bit binary data. Digital to analogue converter followed by a low pass filter recovers the 
information signal, Fig. 2.

DPIWM modulator and demodulator designs may be formulated around analogue to digital 
(ADC) and digital to analogue (DAC) converters and state machine structures.

Analogue
Input

ADC m DPIWM
Mod. E /0 a

Optical link  
DPIWM

0 /E DPIWM
Demod.

Mbits DAC LPF Analogue
Output

Digital Output *)

Figure 2 DPIWM system block diagram



2.1. Code properties

DPIWM (or PIW M code) frame length, L  = m + s, may be given as:

L =
> • (  \

Mod
X

T + 1 + Rem
X
1 + 1

< 2 k ) < 2 k j
( i )

where x is the decimal equivalent of an M  bit binary data and k =  M!2 bits. The longest and 
shortest DPIW M frame lengths are 2Arfl and 2 time slots Ts respectively, resulting in an 
average frame length of 2^1 time slots. The maximum total time occupied by a DPIWM  
frame is 7y = 2k+J Ts seconds. The expression for time slot duration in DPIW M and PCM in 
terms sampling frequency f s can be written as:

T p iW M = - u l j—
2 k + l fs

and Tp c m  =
Aifs

(2)

DPIWM displays shorter time slot duration compared to PCM (and wider time slot duration 
compared to digital PPM and digital pulse interval modulation) and hence higher channel 
bandwidth requirement. Owing to its anisochronous nature resulting in different frame lengths, 
the instantaneous frame rate of DPIWM signal changes according to the amplitude of the 
input signal. DPIW M also display a higher transmission capacity compared to PCM and 
DPPM by virtue of its anisochronous nature as the frame length is variable. For a modulating 
signal of bandwidth f m Hertz sampled at the minimum Nyquist rate the transmission capacity 
for PCM and DPIW M are:

c r  =
Maximum code length 
Average code length

2 fm ^ogl {Possible number o f valid codes)

Thus: C pC M =2fm M (3.a)

and
O + i  

2 2
CDPIWM = —J j---2fm M

2~1 +1

(3-b)

For large values of M  the transmission capacity of DPIWM is twice that of the PCM, see Fig.
3. This is as expected, since on average a DPIWM frame will be only half the length of a PCM 
frame, enabling twice the sampling frequency rate to be employed and thus permitting a signal 
of two times the bandwidth to be adequately sampled.
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In DPPM a guard interval, a few time slots long, is included at the end of each frame to cater 
for pulse dispersion and hence to avoid interframe interference. However, in DPIWM this 
guard interval is redundant, since each frame is started with a mark followed bv a space, see 
Fig. 1.
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Figure 3 Resolution vs. transmission capacity

2.2. Power spectral density

Mathematically, a DPIWM wave train consisting of frame of different lengths and mark-space 
patterns could be represented as:

* ( /)=  z  p.
|=-CO

(»M)|
f i - l  )

t - T s
\ a = 0  j

(4)

where P(m,s)i represents the /-th DPIWM sample with ntf time-slots of mark and time-slots 
of space ana ma and sa are the number of time-slots for mark and space at the a-th sample 
respectively and Ts is the slot duration. The equation indicates that DPIW M does not display a 
fixed periodic frame structure in the manner of PCM and DPPM, except in the absence of any 
incoming data where the result is an alternating mark and space pattern.
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To be able to characterise the process practically it is beneficial to evaluate the power spectral 
density of a truncated realisation. Following a process similar to that obtained in Reference 
10, we have obtained a numeric spectral model for DPIWM given by:

S ( f ) = — - - - - - - - - - -
Ts £(m , +5, )

1=0

where: G(m sy(f) = is the DPIWM pulse transform of the z-th sample, mh and sf are the number 
of time slots for mark and space in the z-th sample respectively (random numbers* 1, 2 ...2k for 
M bit resolution) and N  gives the length of the truncated data frame sequence.

3. RESULTS

A typical digital PIW M spectrum evaluated using Equation (5) for random data taken over 
4000 frames evaluated at 320 frequency points for 8 bit resolution is shown in Fig. 4.a, with 
the frequency axis normalised to the slot frequency and power level over the frequency span 
to 0 dBm. To confirm our predicted results a practical model was developed for DPIW M  
system. The measured spectrum of the DPIWM waveform for slot rate and input frequency 
of 1 MHz and 1 kHz respectively is illustrated in Fig. 4.b showing close agreement with the 
predicted results. In both cases the DPIWM provides distinctive spectral components at the 
slot frequency and its harmonics. As can be seen from Fig. 4 the power spectral distribution is 
mainly concentrated at frequencies lower than the slot rate, decaying rapidly at frequencies 
above the slot rate indicating that DPIWM signal may be transmitted over a channel having 
bandwidth less than the slot rate.

In order to quantify the detected baseband signal-to-noise ratio (SNR) performance of the 
DPIWM system, simulation of the complete system was carried out for a single tone input 
signal of 5 kHz bandwidth, average sampling frequency of 15 kHz and with additive white 
Gaussian noise introduced at the channel, see Fig. 5. Simulation result obtained for 10000 
time slots clearly indicate that the DPIWM exhibits a noise threshold, as in accordance with all 
PTM schemes beyond which signal pulses become indistinguishable from the noise pulses. At 
the threshold for camer-to-noise ratio of 14.2 dB_ihe baseband SNR is at 44 dB clearly 
showing the inherent improvement that such a system has.

Finally, Fig. 6 illustrates low distortion behaviour in the time domain by comparing input and 
output signals.

N
Cf)e

/=0

1-1
-J'2x/rs 'L(ma+sa)

a= 0
( 5 )
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4. CONCLUSIONS

In this paper a new digital PTM scheme knows as DPIWM has been presented. It is shown to 
have a much higher transmission capacity and requires no complex frame synchronisation in 
the receiver in contrast to PCM and DPPM. These advantages have been obtained at the 
expense of increased transmission bandwidth. Original expressions have been presented to 
characterise the scheme in the frequency and time domains, showing excellent agreement with 
results obtained from a practical system. The baseband SNR performance obtained from 
simulation shows characteristic distinctive to all PTM schemes. The signal format appears to 
be, at this time, an attractive possibility for medium to high speed point-to-point optical 
communication links.
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