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Abstract

This thesis concerns the investigation of the Earth’s upper atmosphere, ionosphere 

and magnetosphere. In particular, it involves a study of the F region, using EISCAT 

Svalbard Radar data.

Anomalous ion line spectra have been identified in many of the radar experiments 

which have been conducted at that site. Such spectra are defined as deviations from 

the standard symmetric “double-humped” spectra derived from incoherent scatter 

radar echoes from the upper atmosphere. Some anomalous spectra —  where there are 

sharp enhancements of power over restricted height ranges —  have been attributed to 

satellite contamination in the beam path. Here we outline a method for detecting such 

contamination, and review in detail a few cases where the method enables the 

identification of anomalous spectra as satellite echoes, subsequently ascribed to 

specific orbital objects. The methods used here to identify such satellites pro vide.a 

useful way of distinguishing anomalous spectra due to satellites from those of 

geophysical origin. Analysis of EISCAT Svalbard Radar data reveals that an average 

of 8 satellites per hour are found to cross the beam. Based on a relatively small sample 

of the data set, it appears that at least half of the occurrences of anomalous spectra are 

caused by satellite contamination rather than being of geophysical origin.

Those anomalous spectra which cannot be explained by satellite contamination appear 

to occur most frequently during or immediately before magnetic storms, as can be 

seen when compared with the Dst index and magnetometer data. A model of the 

chemical structure of the ionosphere is proposed; This gives predictions for the 

intensity ratios of the 6300A and 5577 A emission lines and these are compared with 

readings from the meridian scanning photometer at Adventdalen.
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Chapter 1

Introduction

This thesis concerns the investigation of the upper atmosphere, so we begin with a 

brief description of the Earth’s atmosphere, the ionosphere and the magnetosphere. 

We will later look at radar, magnetometer and photometer data.

1.1 The Earth’s Atmosphere

Near the Earth’s surface the relatively dense atmosphere mainly consists o f molecular 

nitrogen (-80%) and oxygen (-20%), and a small amount (less than 1%) of carbon 

dioxide, water vapour and other trace gases. As the height above the Earth’s surface 

increases so the pressure and density decrease. At 5.5 km above the Earth’s surface 

the air pressure is of that at sea level (i.e. normal pressure). At 50 km it is 

~ X o o o x  normal pressure (Bugoslavskya, 1962).
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In addition to its composition, it is clear that a most important feature o f the 

atmosphere is the decrease of pressure and density with increasing altitude. Many 

properties of the atmosphere can be derived from this information. One of these is the 

barometric equation, sometimes called the hydrostatic equation. This gives:

P  = P0 exp
mgh
~ W

where P  = pressure at height h,

P0 = pressure at height h -  0,

m -  molecular (or atomic) mass, 

g  = acceleration due to gravity, 

h = height above the Earth’s surface, 

k -  Boltzmann’s constant, and 

T  = temperature.

The above equation can be written as:

P = P0 exp
H )

kT
where H  = —  = scale height. 

mg

We can show that the scale height is equivalent to the height above the Earth’s surface 

to which the atmosphere would extend if  it had a constant density. If  this were truly 

the case the atmosphere would only extend to a height o f -8.3 km.

If in the equation for H , both k and g  are considered to be constants, we can see that, 

for a constant mass, H  is proportional to T. This means that, for an isothermal

2



atmosphere, if  the temperature, T, increases then the scale height, H, o f the 

atmosphere increases and vice versa. So the atmosphere can expand and contract. 

Although in reality the value of g  does vary with height we can still find a local value 

for the scale height, //.

In the lower part of the atmosphere the gas molecules are well mixed and the mean 

molecular mass (28.8) is used to determine the scale height. However, the temperature 

between the ground and 100 km altitude varies quite markedly and so the scale height 

varies between 5.0 and 8.3 km (Brekke, 1997).

At heights above 100 km, the temperature increases and the molecules dissociate so 

that the molecular mass decreases. This results in each component taking up its 

individual scale height depending upon its mass. These masses vary considerably 

(H  = 1, He = 4 ,0  = 16, N 2 = 28 ,0 2 = 32). So the lighter gases (helium and hydrogen) 

which are only trace elements in the lower regions become relatively more abundant 

as the height increases. This explains why different gas molecules are dominant in 

different regions, with helium and hydrogen being dominant in the highest region and 

oxygen atoms being the dominant species from 400 km to 1000 km. However, it must 

be remembered that the precise detail o f the composition is not only dependent upon 

the scale height but it also depends upon the temperature.

It is possible for individual atoms to escape from the Earth’s gravitational attraction.

In fact this loss is only significant for hydrogen. However at the same time hydrogen 

is being replenished in the form of protons and electrons carried by the solar wind.
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1.2 The Ionosphere

It is the Sun’s ultra-violet rays and the solar wind penetrating the upper atmosphere 

which ionise the gases. Since the pressure is low in this region, recombination does 

not happen quickly so there is a permanent population o f ions and free electrons 

(usually in approximately equal numbers). In the region above 400 km from the 

Earth’s surface approximately 0.1% of the gases in this region are ionised (Brekke, 

1997). This ionised part of the Earth’s atmosphere is known as the ionosphere. It is 

said to be in a state o f dynamic equilibrium. This means that although when looked at 

in totality it is in a state o f equilibrium (i.e. the percentage o f ionised particles is 

remaining constant), in contrast, the particles of which it consists are in a perpetual 

state of change. So, for example, whilst some oxygen atoms may be being ionised to 

form oxygen ions and free electrons, at the same time, there will be some oxygen ions 

combining with an electron to form oxygen atoms. This is shown chemically as:

0 ^ 0 + +e "

In general, many different reactions are occurring at the same time within the 

ionosphere but the overall effect is to keep the composition constant.

The density o f the ionisation in the ionosphere is normally lower at night than it is in 

the daytime. This density also varies with the time of year, the solar cycle, the latitude 

and the level o f magnetospheric, or solar wind, disturbance.

The existence o f an ionised conducting layer in the upper atmosphere was fully 

proved in 1924. This was achieved by Appleton and Barnett (1925) in England as well 

as Breit and Tuve (1926) in the U.S.A. studying the reflections of radio waves from 

the atmosphere. Appleton and Barnett used a continuous wave transmitter, whilst 

Breit and Tuve used pulsed radio signals (Beynon and Williams, 1978). By noting the
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time which elapsed before the reflected signal was returned and knowing the speed at 

which the signal was travelling, the height of the reflecting layer could be estimated.

These early experiments showed that there was a region in the upper atmosphere 

where the ionisation of the gases provided a reflecting layer. The refractive index of 

such a medium depends upon its electron density. For a radio frequency,/ and a 

medium of electron density, N e, the refractive index, n, is given by the equation:

n =
Ak  e0mcf

where e = electron charge,

mt = rest mass o f an electron, and

Gq = permitivity o f free space.

If n is equal to 1 the signal will pass through the medium without being refracted. For 

smaller values of n the signal will be refracted away from the normal. The signal will 

be reflected as the value of n approaches zero. This means that for a medium of 

electron density N t a signal of frequency / p will be reflected if:

/ P = 9 A ^  Hz.

This value o f / p is referred to as the plasma frequency.

Initially the experiments used fixed radio frequencies, but within a few years the 

experiments were carried out using different frequencies. As a result, different layers 

were found in the ionosphere. These layers are referred to as regions.

The D region is the closest to the Earth’s surface (altitude 60-90 km). It is 

very variable and has a low electron density (~109 m-3).
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The E region (altitude 90-160 km) was historically the first region to be 

detected, and thus named because o f its ability to reflect electromagnetic waves.

10 ^
The F region typically has a maximum electron density (~10 m ' ) around 

300 km above the Earth’s surface though this can vary between 200 and 600 km. A 

peak sometimes occurs below this maximum, for example during auroral events. In 

this case the region o f the lower peak is referred to as the FI region and that o f the 

upper peak is called the F2 region.

The maximum plasma frequency of a given layer is the critical frequency o f that 

layer. As we move further from the surface of the Earth the electron density of the 

ionosphere increases (until a peak is reached in the F region), so the critical frequency 

increases for each region as we move from the D region outwards to the F2 region. 

The maximum critical frequency is referred to as the penetration frequency. A signal 

of any higher frequency than the penetration frequency, which is vertically incident, 

will pass straight through the whole of the ionosphere without reflection and will be 

lost into space.

The ionosphere can be treated as a partially ionised plasma in which the electron 

density is almost equal to the ion density. It can support strong electric currents and, 

as a plasma, it both supports and generates a variety o f waves, interactions and 

instabilities which are not present in a neutral gas. There are six key processes which 

describe the reactions which occur between the electron and ion populations:

1. Ionisation

2. Recombination

3. Chemical Reactions

4. Photodissociation

5. Excitation

6. Radiative decay

6



The ionosphere is formed by the ionisation o f atmospheric gases such as N 2, 0 2 and 

O. At low and middle latitudes the energy required comes from solar radiation (hv) in 

the X-ray and extreme ultra-violet (EUV) regions of the spectrum. Another source of 

ionisation, which is also present at low latitudes but has greater importance at high 

latitudes, is energetic particles. The sources of such particles at high latitudes are 

auroral electrons, energetic photoelectrons, and protons which may be emitted from 

the Sun during solar flares.

Generally, the solar radiation can be expected to be the primary source o f ionisation 

during the daytime when it will enhance the electron and ion populations. However, 

some background ionisation will occur throughout the whole 24 hours because o f the 

auroral effects.

During dissociative recombination the electron and ion populations will recombine 

causing depletions during the night. The rate of recombination depends critically on 

the availability o f particular molecular ions. Although the ionisation process produces 

a supply o f charged particles, there are also chemical reactions taking place, which 

will rearrange the ion population and so affect the recombination rates.

The following sub-sections consider each of the five key processes which occur 

between the electron and ion populations in the ionosphere in greater detail.

1.2.1 Ionisation

This is the process in which the radiation combined with the atoms or molecules 

produces ions and electrons. The most important reactions involve nitrogen and 

oxygen:

The photoionisation reactions are:

7



hv{< 1026A) + O2 - > 0 2* + e '  (1.1)

/;v(<910A) + 0 - > 0 + + e~ (1.2)

hv(< 796A) + N 2 -> N 2+ + e “ (1.3)

The dissociative ionisation reactions are:

hv(< 662A) + 0 2 -> 0 + + O + e" (1.4)

hv{< 510A) + N 2 -> N + + N + e" (1.5)

The ultraviolet (UV) radiation wavelengths (A) shown in these equations correspond 

to the ionisation thresholds required for the production of ions in their ground state. 

Because h v  < 1026A includes more of the solar spectrum than the other wavelengths 

shown, we expect reaction (1.1) to be the dominant source o f electrons. The energy of 

a photon is inversely proportional to the wavelength, i.e.

12400Energy(eV) ~ _ _ _ _ _ _ .

The photons in the equations above may be replaced with energetic electrons having 

equivalent kinetic energy. Some of the photoelectrons and auroral electrons can have 

sufficient energy to enable them io ionise the atoms and molecules in the ionosphere.

12400
For example, the ionisation energy of 0 2 is 1026A («  »12 eV ), so if  a 500A

(« 25 eV ) photon hits an 0 2 molecule as in equation (1.1) then the resulting 

photoelectron can carry away up to 13 eV.

h v(« 25 eV) + 0 2 0 2+ + e" (» 13 eV)

Since the resulting photoelectron still has more than 12 eV of energy it will be able to 

perform another ionisation:

8



e (> 12 eV) + O 2 —̂ O 2 + 6 + e

So, an auroral electron, with approximately 6 keV, say, could ionise up to 500 times 

in this way.

Although the solar radiation in the upper atmosphere approximates to that o f a black 

body distribution, the electrons produced by the equations (1.1) to (1.5), which carry 

excess energy with them, can have a range o f energies depending upon the final states 

of the reactants. The distribution of these energies cannot be said to be thermal in the 

sense o f having a definite temperature. However, the electron population will tend 

towards thermal equilibrium as a result of inelastic collisions with neutrals and ions. 

The energy o f the electron population will be reduced, and some atoms and molecules 

will be promoted to their exited states. The ions are heavier than the electrons and 

interact more strongly with the neutrals. Since the ions and neutrals have similar 

masses, much of the excess energy of the ions is transferred to the neutral gas. These 

collisions will eventually cause the electron temperature, Te, to approach the same

value as the ion temperature, 7], or the neutral temperature, Tn, though, in general the 

relation

Tt >7] >Tn » 9 0 0 K  

is typical o f the F region.

1.2.2 Recombination

The dominant cause o f the reduction in the electron and ion population is dissociative 

recombination o f molecular ions as shown in the following equations, where 

indicates the excited state.

9



e- + 0 2+ - > 0  + 0* +5eV [ r ; 05]

e- + N 2+ ->N * +N* +1.04eV I T ;" 9]

( 1.6)

(1.7)

e~ + N 0 + -> N + O + 2.75 eV |T ;085 ] (1.8)

In general the dissociative recombination rates are inversely proportional to the 

electron temperature, as shown in brackets. Hence as the gas cools overnight then 

recombination will occur.

Radiative recombination may cause a minor depletion in the electron and ion 

population. This produces oxygen atoms by the following reaction:

However this process is rather slow relative to the other reactions.

The process o f recombination is controlled by the concentration of the molecular ions. 

In practice the processes described above cannot be the only recombination 

mechanisms, since they would result in the atmosphere becoming entirely atomic. 

There are other mechanisms, such as those involving three body reactions to 

molecules, but these are mainly important below 100 km.

The 0 2+ and N 2+ required for the reactions in equations (1.6) and (1.7) are produced 

by the primary reactions in equations (1.1) and (1.3). In contrast, the N O + in equation 

(1.8) requires a chemical source. In fact, NO+ is considered to be the dominant ion in 

the E region.

e + 0 + - » 0  + /zv (1.9)
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1.2.3 Chemical Reactions

The most important chemical sources for molecular ions are:

N + + 0 2 -> N + 0 2+ + 2.46 eV [constant]

0 + + 0 2 - > 0  + 0 2+ +1.55eV [ r ^ 4]

(O4)* + N 2 - » 0  + N 2*+1.33eV  [constant] (1.12)

(1.13)

(1.10)

(1.11)

N + + 0 2 -»  O + NO+ + 6.67 eV [constant]

0 + + N 2 - » N  + NO+ +1.10eV
TR above1000K 

constant below 1000K
(1.14)

where the dependence on the temperature of the rates of the chemical reactions are as 

shown in the brackets and TR = (7] + Tn) /2 .

• Equations (1.10) and (1.11) are chemical sources o f O 2 +, which can recombine 

with electrons as in equation (1.6).

• Equations (1.12) is a chemical source of N 2+, which can recombine with 

electrons as in equation (1.7).

• Equations (1.13) and (1.14) are chemical sources o f NO+, which can recombine 

with electrons as in equation (1.8).

• Equations (1.11) to (1.13) are chemical sources o f O.

The ionisation processes explained earlier in 1.2.1 also produce 0 2+ and N 2+, but

(1.14) is the principal source of NO+.

Notes:
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1.2.4 Photodissociation

The main source o f atomic O is photodissociation of 0 2.

hv(<  2422A) + 0 2 -> 0  + 0  (1.15)

Since shorter wavelengths equate to greater energy levels, when the wavelength of h v  

is less than 1749A then the *D excited state o f O is energetically accessible. This is a 

copious source of excited O.

At 300 km, 99% of the oxygen is atomic rather than molecular, but only about 15% of 

the nitrogen is atomic because of the lower dissociation of 0 2 relative to N 2.

1.2.5 Excitation

This does not change the ionisation balance or chemistry, but it is an important 

cooling mechanism, for example

e '  + N 2 (v  = 0) -»  e" + N 2 (v  > 0)

and

e '  + O -> e ’ + O *

1.2.6 Radiative Decay

In this process the free electrons are not involved. The radiative decay o f excited 

states leads to a loss via radiation, for example
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O* 0  + Av(6300A)

1.2.7 Reaction Rates

The rate at which a reaction occurs in the Earth’s atmosphere depends upon the 

product of the rate coefficient and the concentration of the reactants. The latter tends 

to change considerably with altitude, temperature and other physical and chemical 

parameters.

As noted in 1.2.2 the dissociative recombination rate coefficients tend to be inversely 

proportional to the temperature, i.e. the cooler the electrons, the faster they recombine. 

Similarly the chemical reaction rates noted in 1.2.3 tend not to increase with 

increasing temperature. However, the production o f the excited states does increase 

with temperature, and, in the reactions (1.10) to (1.14), the excited state species have 

far higher rate coefficients than the ground state species. It is the relative slowness o f 

these chemical reactions that prevent the F region ionisation decaying rapidly after 

sunset as happens in the E region. On the other hand, an increase in the N O + 

concentration by the chemical reaction (1.14) can increase the ion and electron 

depletion through recombination as in equation (1.8). The reaction given in (1.14) is 

strongly dependent on the vibrational state o f the N 2. In particular, the rate for v  = 2 

vibrational state of N 2 is 40 times faster than for v  = 0 (Hierl et aL, 1997). The 

population o f excited states depends upon the temperature o f the neutrals.
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1.3 The Magnetosphere

Within a few Earth radii the Earth’s magnetic field is similar to that which would be 

produced if  an enormous magnet were placed close to the Earth’s centre. The 

magnetic axis would make an angle o f 11.2° with the Earth’s axis and it would 

penetrate the Earth at the geomagnetic poles 78.8°N, 289.1°E and 78.8°S, 109.1°E 

(Brekke, 1977). These poles are not the same as the magnetic poles to which a 

magnetic needle points. They are imaginary points that help to provide a model to 

describe the Earth’s magnetic field. This magnetic field is referred to as the 

geomagnetic field.

Sometimes the geomagnetic field is used as the reference system rather than the 

Earth’s geographical system. Using geographic spherical polar coordinates with origin 

at the Earth’s centre, the north geomagnetic pole, P, is described using the coordinates 

X p = 78.8°N and (pp = 289.1°E. The geographic coordinates, { X , tp), used to

describe the latitude and longitude for a place on the Earth can be related to the 

geomagnetic coordinates, ( Xm, <pm ).

Using spherical trigonometry and with reference to Figure 1.1: 

sin Xm = sin Xp sin X + cos Xp cos X cos(<pp -  (p) , and

So at Svalbard, with geographical coordinates (78.15°N, 16.05°E) we have:

sin Xm = sin 78.8° sin 78.15° + cos 78.8° cos 78.15° cos(289.1 ° -16.05°) 

= 0.9622
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9 0 -2

P (Geomagnetic North Pole)/4 80° (p]
(^p^ p )

Z (Geographic North Pole)

9 0 -/1

S (XI,<p)

Figure 1.1: To show the relation between the Earth’s geographical

coordinate system and the geomagnetic coordinate system.

hence,

; =74.19°

and,

hence,

sin ̂ 7 = C—S 7— — sin(l 6.05° -289.1  °) 
cos 74.19° V ’

= 0.7527

cpm = 180°-48.82° = 131.18'

So Svalbard has geomagnetic coordinates (74.19°, 131.18°).

The magnetic dipole declination, y/ , is the angle between the direction of the two 

poles and is measured in the positive eastward direction from the geographic north. 

From the spherical triangle,
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cos X (
smy/ = --------^ s i n[(p-<p

cos2m

So at Svalbard,

sin 11/  = C° S78,70 sin(l6.05° -  289.1°) = 0.7119 
cos 74.19° v 7

y/ = 45.39°

Hence the magnetic dipole declination is -  45.39°, which is in the westward direction.

Geomagnetic time is sometimes used in auroral studies. Geomagnetic noon is when 

the Sun is on the geomagnetic meridian of the station, and geomagnetic midnight 

occurs when the Sun is on the opposite meridian. At the observing site, Svalbard, the 

noon and midnight times therefore occur when the Sun reaches an azimuth of 

180° + y/ and y/ (since y/ is negative) respectively. In 1 hour the Earth will rotate 

through 15°, so at Svalbard, the geomagnetic midnight will be

2400 -  = 2400 -  0302 = 2058 hours.
15

The magnetic field, B, can be measured at ground stations using magnetometers. It is 

usually given in terms of cylindrical coordinates (H, D , Z). These can be related to the 

Cartesian coordinate system (X , Y, Z), where the x- andy-axes points towards 

geographic north and east respectively and the z-axis points towards the Earth’s 

centre. As Svalbard is in the northern hemisphere the z-axis will point downwards as 

shown in Figure 1.2.
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x  (north)

y  (east)

z

Figure 1.2: To show the relationship between the Cartesian coordinate

system, (X, Y, Z), and the cylindrical polar coordinate system, (H, D, Z), 

used at ground stations to measure the magnetic field, B.

In the cylindrical system, H is  the component of B in the horizontal plane, D  is the 

declination, the deviation with respect to true north and Z is the component o f the 

field along the z-axis as in the Cartesian system. The cylindrical coordinate system is 

related to the Cartesian coordinate system as follows:

h  = J x 2 + y 2

Y
tan D = —

X

Z = Z

The Earth’s magnetic field can affect the motion of the ionised particles so changing 

the electric currents and the movement of the plasma in the ionosphere. In the high 

regions where the atmosphere is more sparse and the degree of concentration o f ions 

greater the behaviour is dominated by the geomagnetic field. This region is referred to 

as the magnetosphere. There is no clear distinction between the area where the 

ionosphere stops and the magnetosphere starts.
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As we move further away from the Earth’s surface, there is a clearly identifiable 

boundary between the magnetosphere and the solar wind. This boundary is called the 

magnetopause. Any activity at the magnetopause determines much o f the behaviour of 

the magnetosphere and the ionosphere at high latitudes. The magnetopause occurs at 

about 10 Earth-radii from the Earth in the direction o f the sun.

The solar wind is mainly due to the solar coronal plasma expanding into 

interplanetary space. It consists of energetic particles and the ‘frozen-in’ 

interplanetary magnetic field. Typically, at a distance of 1 astronomical unit from the 

sun, the solar wind travels at approximately 400km/sec, though this can increase to 

about 1000 km/sec during disturbed periods (Davis, 1990). When the solar wind 

reaches the Earth, travelling at supersonic speeds it distorts the Earth’s magnetic field. 

On the dayside it compresses the Earth’s magnetic field, whilst on the nightside it 

pulls the Earth’s geomagnetic field out in a long tail. This tail is called the magnetotail 

and can extend to approximately 100 Earth radii.
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Chapter 2

Techniques and Instruments

2.1 Scatter Techniques

Several types o f scatter radar are used to probe the ionosphere. Many use 

electromagnetic waves which propagate at the speed of light, c = 3 x 108 m s“l in 

vacuo. ‘Coherent’ and ‘incoherent’ are terms used to describe the types o f scatter 

involved.

2.1.1 Coherent scatter

Coherent scatter occurs when the transmitted wave reaches a layer in the atmosphere 

for which its frequency is the critical frequency and, although the medium is stable, 

there are large-scale changes in conditions, such as a significant wave travelling in the 

direction of observation. The transmitted wave will then be reflected. This situation is
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analogous to that in which a plane wave travels across a ripple tank and on reaching 

the opposite side is reflected back along the same direction. The scattered signal will 

then be enhanced in a manner which corresponds to constructive interference, where 

the amplitudes of the waves may be added coherently.

2.1.2 Incoherent scatter

Incoherent scatter occurs when the electrons are free to move independently. This is 

analogous to a plane wave travelling across a ripple tank in which there are many 

randomly positioned minute pins. The main wave will travel across the tank 

unaffected, but at each pin a tiny circular ripple will be produced. The overall effect 

on the surface of the tank will hardly be noticeable, but a very small wave will result 

at the observer end. In this case the observing wavelength needs to be shorter than the 

smallest irregularities in the electron density in the ionosphere. If  the scatter is really 

incoherent then the random motion of the electrons will scatter signals with unrelated 

phases and amplitudes so that at the receiver it is the signal powers that must be 

added.

Results obtained in the early 60’s (Dougherty and Farley, 1960; Fejer, 1960; Salpeter, 

1960; Hagfors, 1961; Rosenbluth and Rostoker, 1962) showed that it was not 

appropriate to consider ‘free’ electrons in the ionosphere because of the electrostatic 

forces between the electrons and the ions. The ions are attracted to each of the 

electrons since they are oppositely charged. Meanwhile the ions are dispersed because 

of their thermal velocities and mutual repulsion. As a result the ions form a mutual 

shield around each electron. The motion o f the electron is hence controlled by the 

ions. The extent to which the ions control the electron motion depends on the radar 

wavelength and the Debye length, , where
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Xq varies from -0.3 cm at the F region peak (-250 km) to -6  cm in the lower E 

region (-90 km)or at much greater heights (-2000 km) (Beynon and Williams, 1978).

If the radar wavelength is « X D, then we have scattering by ‘free’ electrons.

However, when the radar wavelength is »  XD, then the motion is controlled by the 

ions. Waves are set up in the ionosphere as a result o f the electrostatic coupling and 

the thermal motion of the electrons. These waves are known as ‘ion-acoustic’ and 

‘electron-acoustic’ waves or ‘plasma’ waves. When the ion or electron density 

increases locally, as a result o f these waves, a net electric charge occurs and 

electrostatic forces must be taken into account in addition to the forces due to the 

pressure gradients. The observed scattered signal is a result o f these changes in the 

electron density. Since it is usual for the radar wavelength to be »  XD, then the 

process used is not really that of incoherent scatter at all, but rather ‘quasi-coherent’ 

scattering by thermally induced electron-ion acoustic waves. The process, however, is 

still universally referred to as ‘incoherent scatter’.

2.2 Incoherent Scatter Radars

Bowles (1958) made the first observations o f coherently scattered signals in 1958, 

using a transmitted power o f 6 MW at 41 MHz (Rishbeth and Williams, 1985). It 

became clear that using such a technique enabled scientists to measure the electron 

density well above the F2 region peak.
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The first incoherent scatter radars:—

Jicamara, Peru 

Arecibo, Puerto Rico, and 

Millstone Hill

were constructed in 1960-61. By 1989 there were only five such radars (Hargreaves, 

1995)

The European Incoherent Scatter radar (EISCAT) in Northern Scandinavia had 

intended to start its operations in 1978, but its UHF transmitter actually commenced 

operation in 1981, whilst the VHF transmitter was installed in 1984 and started to give 

results in 1985 (Rishbeth and Williams, 1985). At this time, EISCAT was supported 

by the science research councils of Finland, France, Germany, Norway, Sweden and 

Britain (Williams, 1985). In 1996, Japan joined the EISCAT Scientific Association.

Incoherent scatter radars are of two types:

1. M onostatic, where the transmitter and receiver are at the same site and usually 

use the same antenna. These radars must use pulsed signals which are ‘gated’ 

to select the ranges at which measurements are made.

2. M ultistatic, which has separate transmitter and receivers. These radars can use 

continuous waves.

These are capable o f observing both sides o f the F region peak simultaneously. They 

also produce a narrow beam, because the antenna has to be large relative to the radio 

wavelength, and so achieve better spatial resolution.

Their main disadvantage is that they have to receive a very weak signal which in turn 

requires a high power transmitter, a large antenna, the most sensitive of receivers and

22



sophisticated data processing techniques. This adds up to a major facility and a 

considerable expense. Also, as we will see later, the return signals can be disrupted 

frequently by metal objects such as satellites and their debris.

2.2.1 EISCAT Mainland Radars

EISCAT incorporates both the monostatic and multistatic types of radar. There are 

two monostatic radars (one UHF and one VHF) located at Tromso in Northern 

Norway. The signal returned from the UHF signal can also be received at the sites in 

Kiruna, Sweden and Sodankyla, Finland. Precise timing between the three sites 

enables the ion velocity vector to be determined at points in the ionosphere which are 

accessible to all three antennae. Common Programmes (CPs) and Special Programmes 

(SPs) are run from the mainland site. CP data is available to all members o f the 

community, whereas SP data is normally only available to those members who 

requested the experiment unless special permissions are granted.

2.2.2 EISCAT Svalbard Radar (ESR)

A new radar near Longyearbyen on Svalbard (EISCAT Svalbard Radar —  ESR) was 

officially inaugurated on 22nd August 1996. Unlike the previous incoherent scatter 

radars the system design was changed so as to make use of commercially produced 

TV transmitter hardware. This reduced the design risk, lead times and cost to a 

minimum. It has extended the area being observed to higher latitudes and provides 

information on the cusp region.
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The site is at the geographical location 78° 09 'N, 16° 03 'E. This corresponds to a 

geomagnetic inclination of 82° 06'N and an invariant latitude of 75° 18'N. It has a 

UHF transmitter with an operating frequency of 500 MHz. Wannberg et al. (1997) 

give much of the technical detail of the design of this radar system.

tVi
The radar’s first experiment, GUP0, was attempted on 16 March 1996. The radar 

was not used much during this year, however, its usage has gradually increased and 

many hours worth of data now exist.

There were some problems with clutter, i.e. data which did not analyse properly, 

which could not be removed from the data. This was a particular problem in the early 

gates of the background signal. There were also some hardware problems. A new dish 

and the implementation of a pulse-to-pulse subtraction technique have been successful 

in reducing the clutter from the data. As a result the early experiments (GUP0 and 

GUP1) have now been replaced with GUP3 experiments.

The raw ESR data sets were approximately 42 times larger than the corresponding 

CP-1 data sets from the mainland site. This is due to the ESR data being recorded in 

more detail even though most of it is not used.

2.3 GUP3 Experiment

The earliest GUP3, Common Programme data which is available is from 25th August 

1998.

A description of the GUP3 experiment can be found on the website:
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http://www.eiscat.rl.ac.uk/~ian/gup3desc.htm

A brief summary follows.

The GUP3 experiment uses a 640 psec long pulse (LP) followed by a 16x40 psec (i.e. 

640 psec) alternating code (AC) from the strong condition code set of 32 randomised 

codes. The backgrounds are measured in the same frequencies and receiver channels 

as the signals on alternating inter-pulse periods, IPPs, (on average 1IPP = 6510 psec ). 

This requires four frequencies, FI, F2, F3 and F4. At the 7.5 MHz input frequency 

level these frequencies correspond to the values

FI = 7.031250 MHz 

F2 = 7.265625 MHz 

F3 = 7.500000 MHz 

F4 = 7.734375 MHz

These rather unusual fixed values are used as they can be represented exactly, without 

rounding errors, in the internal binary arithmetic o f both the transmitter and the 

receiver side numeric oscillators.

During the first IPP, the first long pulse (LP1) is transmitted at FI, then the first 

alternating code (AC1) is transmitted at F2, followed by a period in which the signal 

is received at FI and F2 whilst the background is received at F3 and F4. Similarly, 

during the second IPP, the second long pulse (LP2) is transmitted and received at F3, 

the second alternating code (AC2) is transmitted and received at F4 and the 

background is received at FI and F2.

Clutter cancellation is performed on the alternating code data. Since this requires that 

all 32 codes are sent twice on both frequencies then the full transmission cycle
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contains 2 x (2 x 32) = 128 IPPs.

The data is integrated over 10 sec intervals. This requires 12 cycles (9999360 psec) 

along with 640 psec idle time at the end o f each interval.

2.4 Theory of Spectra

Originally it was believed that the radar beam would be scattered by the individual 

electrons. Such electrons would have thermal velocities whose component parallel to 

the beam would have a Gaussian distribution. The resulting Doppler shifts in the 

return signal would cause a wide spread in the frequencies observed as shown in 

Figure 2.1.

It is normal, with the frequency o f signal used by ESR, for the radar wavelength to be 

much greater than the Debye length. As a result we should not consider the scattering 

to be from ‘free’ electrons since their movement is strongly controlled by the 

surrounding ions. Any random thermal motion of the electrons will cause waves to be 

created in the plasma. The changes in the electron density, which result from these 

waves, give rise to the observed scattered signals. The theory tells us that these waves 

have a wide range o f wavelengths and are propagated in all directions. However, it is 

those which are o f wavelength equal to V2X, where X is the wavelength o f the original 

signal, and are travelling upwards and downwards along the direction o f the beam 

which will lead to the strong ‘quasi-coherent’ scattered signal that is received at the 

ground. A wave travelling upwards with velocity V will experience a negative 

2V
Doppler shift o f  and a wave travelling downwards with a velocity V  will

X

2V
experience a positive Doppler shift o f — .
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Figure 2.1: Diagram to show the expected spread in the returned

frequencies, due to Doppler shifts, if  the radar beam were scattered by 

the individual electrons.

Power

Upward
travelling
wave

Downward 
travelling wave

Frequency

Figure 2.2: Diagram to show the expected spread in the returned

frequencies, due to Doppler shifts, if  the radar beam were scattered not 

by "free" electrons, but by the ions surrounding the electrons.

27



The frequency shift caused by the Doppler effect, F(A), can therefore be expressed as

2V
F (  A ) - ± t .

where V  = the velocity of the ion-acoustic wave, and

A = =the wavelength of the ion-acoustic wave.

In the direction o f the radar beam we have:

energy = j m V 2 = \k {T { +Te)

But, m = mi + mc » mi , since mi »  mc,

where mi = the rest mass of the ion, and

k , I x,Te,m c andm are as previously defined.

So, V =
H t, + tc)

m.

Hence, F(A ) = ± |  —  {Ti+ Tc) = ± \
A v m ; a

kT f  1
1H——

m{ T\  )

The spectral lines have little resemblance to those shown in Figure 

greatly broadened as a result o f Landau damping (Ratcliffe, 1972). 

thermal velocity of the charged particles in the plasma is similar to 

of the wave. Those particles with a slightly lower velocity than the phase velocity o f 

the wave will be accelerated by the wave and so they will take energy from the wave. 

As a result the wave will be damped. If  the particles are travelling at the same velocity 

as the phase velocity o f the wave, they will simply travel along with the wave with no 

energy exchange occurring. If, on the other hand, the particles have a slightly higher

2.2 since they are 

This is when the 

the phase velocity
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Figure 2.3 Diagram of theoretical spectrum obtained using the 

‘iaspec’ program with radio frequency = 500 MHz, electron 

temperature = 2500 K, electron density = 1.5el 1 m-3, ion temperature = 

1500 K.

velocity than the phase velocity of the wave then they will lose some o f their energy 

and the wave would gain energy. Typically, there are more ions travelling slightly 

slower rather than slightly faster than the wave. Hence the ion-acoustic wave is 

attenuated and the spectral lines are broadened. This gives rise to the characteristic 

‘double-humped’ ion spectrum. A typical theoretical spectrum obtained using the 

‘iaspec’ program (Sedgemore-Schulthess and St-Maurice, 2001; Sedgemore- 

Schulthess, 2002), see Appendix A, is shown in Figure 2.3.

The electron-acoustic or plasma waves are generally travelling much faster than the 

thermal velocities of the majority o f the electrons. There will therefore be very little 

attenuation. They lead to positive and negative frequency shifts which are almost 

equal to the plasma frequency. This can be as large as 10 MHz. There is almost no 

broadening o f the plasma lines because the electron speeds are too small.
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The typical incoherent-scatter spectrum will therefore consist o f a double-humped ion 

spectrum and the plasma lines distributed either side of the transmitted frequency with 

the ion spectrum close to the transmitted frequency and the two plasma lines at a 

much greater distance from it.

2.5 Measurements Obtained

Provided the scattered signal is measured with adequate signal-to-noise ratio the 

following parameters can be determined directly:

the electron density, N e,

T /the electron and ion temperature ratio, y T  ,
/  i

the ion temperature and ion mass ratio,

the ion mass, mi , and 

the plasma velocity, V .

From these measured quantities it is possible to estimate many other parameters 

indirectly:

the electric field, E,

the ionospheric (Hall and Pedersen) conductivities, crx and <j 2 ,

the neutral wind velocity,

the neutral air temperature, Tn, and

the downward flux of heat from the exosphere.

Some o f these parameters are dependent upon others whilst in some cases values o f 

the parameters can only be determined by making assumptions.
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2.5.1 Electron Density

The electron density can be determined using a knowledge of the total power returned 

from the scattering region. This total scattered power, PR, corresponds to the area 

under the curve of the spectrum.

\ + a 2 + Te//^ j{[ + a 2) l + TpT. V1™  J /T ,

where cre = the scattering cross section of an electron, and

a  = D,

Alternatively, it may be obtained from the frequency offset of the plasma lines, or 

from the Faraday Effect if  the polarisation can be measured. This latter method allows 

a value to be obtained for the electron density as a result of noticing the distance 

travelled through the ionosphere for complete rotations o f the circularly polarised 

wave (Ratcliffe, 1972). This method is not used often as it is not exact and the derived 

values of the electron content can be as much as 10 -  20% in error.

2.5.2 Electron and Ion Temperature Ratio

T /The ratio of the electron and ion temperatures, , is obtained from the ratio o f the 

peaks to the dip in the spectrum.

The width of the spectrum is proportional to the temperature of the ions.
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2.5.3 The Ion Temperature and Ion Mass Ratio

The ratio o f the ion temperature to the ion mass, , can be obtained from the

separation o f the two peaks of the spectrum. If a value for mi can be assumed, it is 

then possible to determine the values of Te and 7].

2.5.4 The Ion Mass

Although the value of m{ can be reliably estimated for certain heights, this is not the 

case for all heights. Fortunately the spectrum of the scattered signal from a plasma 

containing two different ion species is not the same as that corresponding to the mean 

ion mass. When there are two ion species present a new family of spectra can be 

derived. It is thus possible to observe the transition between different ion species.

2.5.5 The Plasma Velocity

If the plasma is moving then the spectrum will receive a Doppler shift. A measure of 

this shift will give the component of the plasma velocity in the ‘mirror’ direction. In 

the lower regions of the ionosphere this drift will be the same as the motion o f the 

neutral air. In the F region, the horizontal plasma drift is due to an electric field.
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Chapter 3

Background Theory

3.1 Background

The theory indicates that the spectra obtained should be double-humped where the 

peaks are approximately equally shifted in opposite directions as for a near- 

Maxwellian plasma for which the electron temperature is greater than the ion 

temperature. However this is not true for the lower altitudes (below about 110 km) 

which have a high ion-neutral collision frequency and where intense high latitude 

electric fields tend not to give Maxwellian velocity distributions. Both these situations 

result in the spectra having a prominent central peak. In practice many other 

variations are obtained. In particular, there are identified times when one or both of 

the peaks are enhanced. Such occurrences are referred to as enhanced spectra.

A copy of the program ‘iaspec’, was obtained from Francis Sedgemore-Schulthess 

(2002). This program can be used to compute theoretical ion-acoustic spectra for
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drifting electrons and two types of non-drifting ions. A typical output giving a 

standard 2-humped spectrum was shown in Chapter 2.

Examples are given in Figures 3.1 and 3.2 of the output from the ‘iaspec’ program 

when different values o f the parallel drift velocity were input. Figure 3.1 shows the 

left shoulder is enhanced when the parallel drift velocity is negative, and Figure 3.2 

shows it is the right shoulder which is enhanced when the parallel drift velocity is 

positive. Further examples are given in Sedgemore-Schulthess and St-Maurice [2001].

When the electron temperature is increased, but the ion temperature kept constant (so 

increases) the ‘iaspec’ program shows that a situation occurs in which both 

shoulders o f the spectra are enhanced as shown in Figure 3.3.

A study o f the ‘iaspec’ program shows that these are the only situations which will 

cause the spectra to become anomalous using this model. In Rietveld et al. (1991), it 

is noted that this program illustrates how the enhancement o f one of the ion acoustic 

peaks can only be produced by a displacement in the thermal electron distribution 

function and not with large fluxes of a small number o f energetic electrons. In this 

same paper the following three points are made:

1. If the enhancement is in the positive Doppler shifted frequencies then the 

thermal electrons are travelling toward the observer, i.e. there is a downward 

field-aligned motion of thermal electrons.

2. The larger the electron temperature, the easier it is to destabilise the ion 

acoustic peaks.
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Figure 3.1: Theoretical spectra obtained using the ‘iaspec’ program

with radio frequency = 500 MHz, electron temperature = 2500 K, 

electron density = 1.5el 1 m-3, ion temperature = 1500 K and parallel 

drift = -10, -50  and -100 km/sec, respectively.
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3. Counterstreams of thermal electrons do not lead to ion line spectra having both

the upshifted and the downshifted ion acoustic peaks simultaneously. Hence 

when both peaks are enhanced simultaneously there is either a temporal 

feature (a short period o f upward moving electrons followed or preceded by 

another short period of downward moving electrons) or an occurrence of 

spatial structures which are very narrow in latitude.

3.2 Millstone Hill Radar

Many strong enhancements have been reported in high-latitude radar data since the 

late 1980’s. The first reported instances of naturally enhanced ion acoustic spectra 

occurring in the topside ionosphere were observed by Foster et al. (1988), using the 

Millstone Hill radar. The Millstone Hill radar (latitude 42.5° N, longitude 75° W) is 

ideally positioned for observing the ionospheric trough and any related phenomena. 

The ionospheric trough is the region in which the electron density is reduced 

compared to that at higher and lower latitudes.

It had been observed that in the region of the ionospheric trough an unusually large 

number o f echoes were returned from the topside F region. These returns had 

previously been discarded as echoes resulting from satellites and space debris.

In the cases investigated by Foster et al. (1988) the observed spectra were a result of 

integration o f the received signal over 30-second time intervals.

In the first instance, on 23rd July 1983, when the antenna was pointing towards the 

zenith, there was a clear growth of the downshifted ion-acoustic line as the altitude 

increased above 800 km.
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In the second case, on 9th November 1987 at 05:15 UT, the antenna scanned across an 

ionospheric trough. The trough was between 50° and 55° latitude (62° to 67° 

magnetic). On the equatorward edge of the trough, near 48° latitude (61.5° magnetic), 

an enhanced, downshifted ion acoustic line was observed. On the poleward edge, near 

58° latitude (69.5° magnetic), spectral enhancement at the ion acoustic frequency was 

seen at 495 km and intense backscatter was seen at the ion plasma frequency above 

600 km.

It was decided that these observations were unlikely to be caused by satellites since:

1. the enhanced returns continued in a given region with varying intensity for up 

to 1 hour,.

2. the strong backscatter was noted to last for a fraction of the time it would take 

a satellite to cross the radar beam, and

3. there was no record in the catalogue of space objects (maintained and updated 

by the M.I.T. Lincoln Laboratory Millstone satellite tracking facility) which 

could be associated with these strong returns.

Although these topside ionospheric radar observations did not observe the earthward 

directed current directly they are shown to be consistent with backscatter from a field- 

aligned current.

Foster et al. (1988) suggested that these observations o f spectral enhancements at the 

ion acoustic frequency were indicative o f the ion acoustic mode tending towards 

instability as the altitude increased. The ion acoustic wave is a sound wave which 

becomes unstable in the presence o f field-aligned currents similar to those which are 

expected in the region of the aurora (Kindel and Kennel, 1971). Foster et al. (1988)
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observed enhanced backscatter at the plasma frequency in the higher altitudes which

T
was consistent with the unstable growth of the ion acoustic mode when —  » 1 .

It was thus realised that radar observations clearly provide a powerful diagnostic 

technique with which to study the occurrence and characteristics of high latitude field- 

aligned current filaments and the processes associated with them.

3.3 EISCAT VHF (933 MHz) and UHF (224 MHz) Radars

Rietveld et al. (1991) reported observations obtained with good altitude resolution 

from the EISCAT incoherent scatter radar using the UHF (933 MHz) radar at Tromso. 

They showed intense, short-lived enhancements of the ion acoustic shoulders in the 

incoherent scatter spectrum from 138 to 586 km in altitude. These occurred both 

along the magnetic field-aligned direction and at angles within 15° of this direction. 

The echoes appeared to be similar to those at 440 MHz reported by Foster et al. 

(1988), but they were seen simultaneously over a height range of at least 400 km with 

better time (10 sec data intervals) and height resolution.

iL
On 14 February 1990 at 05:16:00 UT a large peak on the upshifted ion acoustic 

shoulder was clearly visible from 146 km to about 500 km, and an enhanced 

downshifted peak was visible from 300 to 587 km in the long pulse spectra. The 

frequency of these enhanced spectra increased smoothly with height. This suggested 

that the ion temperature was increasing with height. The enhanced spectra were often 

much weaker and were seen over a more limited region than was the case in this 

particular example.
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Five other data intervals were found on 25th October 1989, from 02:49:30 to 02:50:10 

UT, in which a different antenna-scanning pattern was used. Two occurred when the 

antenna was field-aligned, one when the antenna was vertical (12.5° magnetic) and 

two when the antenna was at an elevation of 62.9° (14.6° magnetic). When the echoes 

were along the field line the range extent was small (about three gates) and the 

enhanced spectra were narrower than for the off-field echoes. If the excitation were 

being caused by spatially localised field-aligned currents this would explain the 

smaller range extent.

A statistical survey of the occurrence o f these unusual echoes as a function o f height 

showed that they appeared in two preferred regions, below 200 km and above about 

300 km. They could vary on a time scale of less than 10 sec, with the longest 

continuous sequence to be found being 50 sec followed by 10 sec o f normal spectra 

then another 10 sec of enhanced spectra.

Satellites were excluded as an explanation of the data discussed by Rietveld et al. 

(1991) since the enhancement occurred at the ion acoustic frequency and this 

frequency varied slowly with altitude. Neither the large height range over which the 

echoes occurred, nor the occasional enhancement of both shoulders could be 

explained by satellite echoes. Similarly, plasma line contamination could be 

eliminated.

Though these observations showed some similarities to those o f Foster et al. (1988):

• intermittency, and

• enhanced ion acoustic shoulders

there were some important differences:

• observations over a greater range of angles,
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• some echoes were identified below 300 km altitude,

• change from upshifted to downshifted enhancement at higher altitudes were 

identified,

•  occasionally both shoulders were equally enhanced, and

• the observations were not associated with the ionospheric trough.

Although enhanced spectra are generally considered to be rare, they are more 

common above 300 km than they are below 200 km. Rietveld et al. (1991) suggested 

that they are associated with disturbed magnetic conditions, auroral electron 

precipitation, red aurora in the F region and high electron temperatures. Before the 

occurrence of the echoes the electron to ion temperature ratio was seen to be about 2 

to 3.

Because of the excessively high thermal electron fluxes (>1000 pAm ) over very 

short time periods, which theoretically seem to be implied by these conditions, it is 

tempting to draw an analogy with lightening. It is however suggested that parallel 

electric fields are created in the ionosphere by field-aligned flows of soft electrons 

which deposit their energy in the horizontally poor conducting F region. It is these 

fields which are thought to be responsible for the production of the thermal flows 

which cause the observations o f the enhanced spectra.

Rietveld et al. (1991) indicated that more cases needed to be found to see if  the 

characteristic features found in this study were generally true. An increase in data 

would provide a strong stimulus to further experimental and theoretical work on the 

instabilities and physics of auroral processes.

On the evening o f 11th January 1989 (1525-2128 UT), Collis et al. (1991) reported 

that about 40 intervals of 10 sec averaged spectra with enhanced ion acoustic peaks 

were observed with the UHF (933 MHz) field-aligned radar. On this same evening a
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display of red aurora was seen in Scandinavia. The earliest all-sky image from Kiruna, 

at 15:00:00 UT (16:00:00 LT), showed a red auroral arc near the northern horizon.

The arc moved south and broke up in the region of the radar beam at 15:38:00 UT. 

This coincided with the time of the most intense anomalous radar returns. A scanning 

photometer was used to measure the intensity of the 6300A (red oxygen) emissions. 

This instrument can only be used during typical night-time conditions, i.e. during the 

winter months when the sun does not rise in Scandinavia, and the use o f the 

photometer gives no indications of the height at which the emissions occur. Further 

details o f the photometer data are explained later in Chapter 6. Any errors which were 

introduced as a result o f having to assume the altitude of the emissions were reduced 

by considering the 6300A emission intensity when the arc passed through the zenith 

of the photometer data. Using both the all-sky TV and the scanning photometer data it 

was possible to track the motion of optical features with time. A comparison was then 

made with the radar data. This showed that active, red aurora were always present 

when enhanced spectra were detected. In particular, in the time interval from 17:14:10 

to 17:14:20 UT the radar spectra showed an enhanced upshifted peak, whilst from 

17:15:00 to 17:15:10 UT it showed an enhanced downshifted peak. These 

enhancements occurred just before and after the time when the arc crossed the field 

line along which the radar was pointing. This would seem to imply downward 

streaming electrons equatorward of the maximum luminosity and upward streaming 

electrons on the poleward side.

In the same paper, Collis et al. (1991) also reported that on the evening of 20th 

February 1990 several periods of enhanced echoes were observed by both the 933 

MHz and the 224 MHz radars. The all-sky camera images showed active auroral 

forms with red upper borders present at around 18:00:00 UT. At the same time the 

scanning photometer measurements detected a single feature in each scan which 

allowed the location of the red arc to be tracked. This same time interval, just after 

18:00:00 UT coincided with the observation of a 4 min sequence of VHF radar 

spectra with enhanced ion acoustic shoulders. These enhanced spectra initially 

appeared at 1350 km altitude and gradually descended to 675 km altitude. Since the 

radar beam was vertical, this suggested an equatorward motion of a field-aligned
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structure. Throughout this period the downshifted peak was always the stronger, 

although there were occasions when the upshifted peak was simultaneously enhanced. 

An asymmetry between the ion acoustic peaks has been predicted to occur in the 

presence o f relatively strong differential flows between thermal ions and thermal 

electrons (Evans, 1969). The side of the spectrum which is enhanced gives an 

indication o f the direction in which the thermal electrons are moving (relative to the 

ions). An enhancement of the downshifted peak would indicate that the electrons are 

moving away from the observer, i.e. an upward field-aligned motion o f thermal 

electrons. This means that within a 10-second data dump, upward moving electrons 

may have been observed for a small part of the time whilst this was either preceded or 

followed by a short time of downward moving electrons. Alternatively, it may have 

been that two regions, which were in close proximity, carrying intense currents in 

opposite directions were being observed. Simultaneous enhancements o f both 

shoulders of the spectra cannot be the result o f counterstreams of thermal electrons. 

When both shoulders were enhanced simultaneously then either a temporal feature or 

a narrow spatial structure in latitude was being observed as indicated by Rietveld et 

al. (1991).

An analysis of the spectra, carried out by Collis et al. (1991), gave estimates o f the 

field-aligned current densities causing the enhancements to be in the range o f several 

mAm . However fitting techniques failed for severely distorted spectra when it was 

presumed that an unstable growth of ion acoustic waves occurred (possibly when the 

electron drift speed exceeded 0.3 x the electron thermal speed).

Collis et al. (1991) indicated that all cases o f enhanced spectra that had been found, 

for which optical data exists, were accompanied by red aurora. This is not so 

surprising since intense fluxes of electrons are known to cause both effects, though 

the occurrences o f enhanced spectra appear to be rare. Field-aligned measurements 

allow the simultaneous detection o f spectra over a large altitude range, so dismissing 

the possibility o f satellite echoes.
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Wahlund et al. (1992b) identified two different types o f ion outflows. A specially 

designed EISCAT experiment was run for 8 days in September 1989 and February 

1990. It used both the UHF radar pointing along the magnetic field and the VHF radar 

pointing vertically. Large field-aligned ion outflows from the topside ionosphere were 

observed during auroral activity.

The first type (Type 1) of ion outflow occurred with enhanced and anisotropic ion 

temperatures, strong perpendicular electric fields and hardly any auroral precipitation 

(as indicated by the low electron densities below 300 km altitude).

The second type (Type 2) o f ion outflow occurred with an extreme enhancement of 

electron temperature and only a slight increase in ion temperature (the ion temperature 

perpendicular to the magnetic field line was equal to the ion temperature parallel to 

it). It was associated with auroral arcs and weak to moderate perpendicular electric 

field strengths. Unlike the Type 1 outflow the F region did not seem to be displaced 

upwards in altitude.

Both these types o f ion outflow occurred above 500 km altitude. However Type 2 

events were more frequent and resulted in larger values o f ion fluxes than Type 1 

events. It was also noticed that not all auroral arcs were accompanied by ion outflows. 

An analysis o f the ion composition showed it to be mainly 0 +, with less than 10% H+ 

below 900 km altitude.

Jones et al. (1988) found it was possible to explain Type 1 events as bulk plasma 

outflows with both ions and electrons moving upward. Jones et al. (1988, 1990) 

pointed out that four factors determined the value of the ionospheric plasma velocity 

parallel to the magnetic field lines in the auroral zone:

1. the meridional component of the neutral wind,

2. the vertical upwelling o f the neutral wind,
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3. the gradient of the plasma pressure in the topside ionosphere, and

4. gravity.

According to Jones et al. (1988), under quiet conditions 1 ,2 and 4 combine to drive a
19 9 1low flux (~ 10 m' s ' ) o f light ions from the top of the ionosphere. A large electric 

field can cause strong Joule heating o f the neutral atmosphere in the upper E region. 

As a result the plasma is driven upwards with velocity 50-100 m s'1, but this does not 

explain velocities o f 500 m s'1.

Jones et al. (1990) indicated that large upward flows of plasma had been observed 

under trough conditions where large electric fields, strong Joule heating and enhanced 

ion temperature gradients occurred. The Joule heating is a local phenomenon, due to 

the enhanced collisions between the neutrals and the ions. This occurs whenever there 

is a relative velocity between the ion and neutral gases. Such a situation arises at high 

latitudes where the magnetospheric electric field can rapidly produce ion velocities 

that greatly exceed the neutral gas velocity (Kelley, 1989). Jones et al. (1990) shows 

that correlation between the strong perpendicular plasma flows, which cause the 

trough, and the large upward field-aligned velocities were clearly seen on 19^/20^ 

May 1987.

With sufficiently strong electric fields the plasma is driven perpendicular to the 

magnetic field line at a speed which is greater than the ion acoustic speed. Then the 

resonant charge exchange between oxygen atoms and oxygen ions, and to a lesser 

extent other collisions, transfer energy to the ion population by frictional heating 

Buonsanto et al. (1997). Thus the ion velocity distribution is changed from a 

Maxwellian distribution, which is isotropic, to a bi-Maxwellian distribution (Jones et 

al., 1990) in which there is a temperature anisotropy, or even a toroidal form (Jones et 

al., 1988,1990), which is 3-dimensional and also indicates anisotropy. A review of 

such distributions is recorded by St-Maurice and Schunk (1979). Once the ion 

velocity distribution is anisotropic the plasma becomes subject to both a force 

resulting from the divergence of the magnetic field lines with increasing height and
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the enhancement in the upward pressure gradient from the increase in the ion 

temperature parallel to the magnetic field line.

Jones et al. (1988) concluded that in addition to a strong electric field, a soft particle 

precipitation (<1 keV) was needed to create enough conductivity in the upper E 

region for intense Joule heating. This was indicated by an increased ionisation (~150 

km) at 21:00:00 UT on 6th May 1987 and an equally sharp cut-off at 21:48:00 UT. 

Frictional heating is much greater if  the neutral velocity is in the opposite direction to 

the plasma velocity. These conditions occur in the region o f the Harang discontinuity, 

which is that part o f the auroral oval around the midnight sector where an upward 

field-aligned current is sandwiched between two downward ones.

The Type 2 events observed by Wahlund et al. (1993), however, seemed to be related 

to field-aligned currents with the bulk ion population moving upward and the bulk 

electron population moving downward.

During short intervals of auroral precipitation and Type 2 ion outflows naturally 

enhanced ion acoustic spectral lines similar to those observed by Foster et al. (1988) 

and Rietveld et al. (1991) were observed. These were not included in the analysis 

carried out by Wahlund et al. (1992b) which was over 60 sec time intervals.

According to Wahlund et al. (1992b), further analysis o f naturally enhanced ion lines, 

with shorter integration periods than 60 sec was needed in order to reveal the 

importance o f plasma turbulence with respect to the causes o f observed ion outflows. 

It was stated that the exact mechanism causing the ion outflow was not yet 

understood, but more than thermal expansion was certainly required.

Wahlund et al. (1993), using EISCAT data, presented some observations o f high
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latitude topside ionospheric electron temperature enhancements during auroral active 

conditions. At an altitude of about 200 km they showed the enhancement of the 

electron temperature to be associated with the electron density enhancement which 

could be produced by soft energy electron precipitation o f a few hundred eV. In 

addition they presented simultaneous observations o f ion acoustic turbulence in the 

form of enhanced spectral ion-line shoulders o f the otherwise incoherent scatter radar 

return signal. It is suggested that these observations are unlikely to be a result o f the 

current-driven instability model previously proposed by Collis et al. (1991) and other 

authors, who unlike Wahlund et al. (1992a, 1993), were forced to infer unrealistically 

high field-aligned current densities (~1 m A nf2). Instead it is indicated that such 

observations could be interpreted as being produced by an ion-ion two-stream 

instability, which arises as the result o f a relative drift between two ion populations.

Wahlund et al. (1993) concluded that the energy dissipation into the background 

plasma largely occurred through Joule heating as a result o f the simultaneous presence 

of ion acoustic turbulence and field-aligned currents. This was a major contributor for 

the large electron temperature enhancements observed in the auroral active topside 

ionosphere.

Wahlund et al. (1992a) concluded an ion-ion two-stream instability could explain the 

observed enhanced ion acoustic lines. However some caution was needed, since:

• the fit was not unique, and

• non linear terms may become increasingly important and a turbulence 

description was needed.

Forme (1993) suggested that the enhanced ion acoustic fluctuations observed in the 

upper ionosphere could be due to the Langmuir wave decay. A possible theory for the 

production o f Langmuir waves is given by Cairns (1987). Forme (1993) indicates that 

a high energy electron precipitation is not able to destabilise the ion-acoustic waves
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directly, as the energetic electrons are too few in number to affect the velocity 

distributions of the ions and electrons near the ion thermal speeds. However, 

streaming electrons with energies of 10-500 eV can stimulate large amplitude 

Langmuir oscillations near the electron plasma frequency. As these Langmuir waves 

decay they produce a backscattered Langmuir wave and an ion acoustic wave. A 

quantitative explanation of this process is given in Chen (1984). However the 

mechanism explained by Forme (1993) can only excite downgoing ion waves.

A further study by Forme (1999) which modelled the decay of the beam-generated 

Langmuir waves into ion acoustic waves using the wave kinetic equations within the 

framework o f weak turbulence approximation showed that the parametric decay of 

such Langmuir waves could lead to up-going ion acoustic waves, propagating 

separately or simultaneously.

Forme et al. (1995) indicated that two types of mechanisms may exist for the origin of 

the enhanced ion acoustic lines in the upper ionosphere since ion outflows were not 

always observed when the instability occurred. Whilst Forme and Fontaine (1999) 

indicated that the spectral asymmetry and intensity o f the received signal in a region 

of ion acoustic turbulence could not be resolved by the standard analysis procedure 

and indeed often caused its failure.

One case has been reported by Cabrit and Opgenoorth (1996) where the UHF and 

VHF radars were looking in the same direction. At the two frequencies observed there 

was a large difference between the backscattered powers. As a result the authors ruled 

out the possibility o f large relative drifts between different ion populations. They 

suggest that the volume covered by the radar beam may not be completely filled by 

the scattering irregularities, i.e. the width o f these discrete scattering structures may be 

smaller than that o f the radar beam. The small perpendicular electric field magnitudes 

which had been reported earlier may be the result o f time and spatial averaging.
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3.4 EISCAT Svalbard Radar

More recently, examples of naturally enhanced ion acoustic lines have been reported 

using the data from the EISCAT Svalbard Radar (ESR).

Buchert et al. (1999) discussed such an event which showed naturally enhanced ion
th

acoustic lines in the GUPO experiment on 15 July 1997. During this event, when the 

received power reached a maximum, a significant difference was noted in the 

scattered power received in two channels which were separated by only 2 MHz. 

Physical explanations for the observed frequency-dependence of the power led the 

authors to the conclusion that the ion acoustic level was strongly dependent upon the 

wave number, k. This in turn led them to conclude that of the previously suggested 

models the only one which agrees with these observations is that of the parametric 

decay of the Langmuir wave suggested by Forme (1993).

The second report of observed enhanced incoherent scatter spectra was by 

Sedgemore-Schulthess et al. (1999). In this paper the enhanced spectra which 

occurred were seen in the GUPO data on 24th January 1998 between 07:00:30 and 

07:00:50 UT. They are from the dayside cusp/cleft region and are shown to have been 

observed around the time at which the meridian scanning photometer data showed a 

series of poleward moving auroral transients. It was also noticed that at this time a 

narrow-angle TV imager designed for high-resolution optical measurements of auroral 

phenomena showed there to be considerable change in the aurora on timescales 

shorter than the 10-second radar integration period. This latter point could explain the 

observation of spectra with both ion lines enhanced simultaneously. The bright 

patches of luminosity, showing small-scale auroral forms of order 100 m and less in 

width, which are seen in the narrow-angle images indicate that there was precipitation 

both on the field lines probed by the radar and on those adjacent to the beam. 

Sedgemore-Schulthess et al. (1999) assumed a current-driven instability model, with
—9plasma turbulence due to current densities of the order of 1 mAm . They explain that
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they were able to show that large-magnitude filamentary field-aligned currents can 

exist in the ionosphere in response to plasma velocity shears associated with magnetic 

reconnection. Additionally, they indicate that the energetic auroral precipitation can 

further constrain the width of these current layers.

Forme et al. (2001) conclude that the events of naturally enhanced ion acoustic lines 

which they considered on 6th July 1998 between 07:00:00 and 11:00:00 UT show 

similar features to those studied previously. Their study confirmed the initial findings 

that:

1. the naturally enhanced ion acoustic lines sometimes show asymmetric power 

profiles, and

2. the amplitude enhancement of upgoing and downgoing ion acoustic waves 

occurs at different altitudes and different power levels.

The observed facts were modelled using the parametric decay o f beam driven 

Langmuir waves, as proposed by Forme (1993), in an inhomogeneous medium. The 

underlying theory for this process can be found in Fejer (1979). The model shows that 

the power radiated by enhanced spectra does vary with the wavelength and the power 

difference between two wavelengths received by the ESR varies with the altitude, 

typically being a few kilometres apart.

However, the study also indicates that most of the time the power differences are 

within the noise level and that a study of the wavelength dependence o f the naturally 

enhanced ion acoustic lines will require a large statistical database as well as 

experimental modes using a wider frequency spacing between channels.

In a more recent study Grydeland et al. (2003) shows evidence o f filamented 

structures in the auroral ionosphere observed through enhanced radar echoes produced 

by plasma instabilities in the filaments. Using an interferometric technique has 

enabled the confirmation of the existence of filamentary structures. These structures
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have been found to be of the order o f 100 km long, aligned with the Earth’s magnetic 

field and having scale sizes in the perpendicular direction of a few hundred metres or 

less.
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Chapter 4

Program Techniques

4.1 Searching for Enhanced Spectra in the Data

Many o f the reported cases o f enhanced spectra have been found in the EISCAT UHF 

and VHF mainland radar data, whilst more recent cases have been reported upon in 

the Svalbard (ESR) data. ESR started to run GUPO experiments in 1996. The data 

collected from these experiments were all field-aligned. The number o f experiment 

modes was gradually increased to include GUP1, which included alternating codes, 

and GUP2, which was optimised for the topside. The first reported observations o f 

enhanced ion acoustic spectra seen in the ESR data were made by Sedgemore- 

Schulthess et a l  (1999) using the GUPO experiment.

When the reported results of the GUPO experiment were first checked using the real 

time graphics program, rtg, it was found that the images of the spectra obtained were 

mirror images o f those which appeared in the paper by Sedgemore-Schulthess et a l  

(1999). This aspect o f the program was checked and found to be due to an error
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relating to the direction of the ion velocity being measured in the opposite sense to 

that of the radar beam. A correction was made to the program being used so that the 

spectra obtained were correct. It was then possible to proceed with further 

investigation of the data.

By August 1998 the GUP3 experiment was being used at the ESR site on Svalbard. 

This experiment makes use of both plain, long pulses (LP) and alternating codes 

(AC), which are binary codes based on phase-coded long pulses. The use of two 

different modulations with overlapping range coverage is important, as it allows the 

presence of anomalies to be confirmed by comparing the data from the two pulse 

schemes.The experiment makes use of two long pulse channels, LP1 and LP2, and 

two channels for alternating code data, AC1 and AC2. In this study, we discuss results 

from the comparison of the data from LP2 and AC2, although LP1 and AC1 were also 

checked to ensure that the results are consistent. Much of what follows in this chapter 

and chapter 5 is my own work, recorded in our paper, Porteous et al. (2003). The 

range covered by the LP2 data is 229.5-859.5 km, whilst that covered by the AC2 

data is 228-732 km.

Initially, the data from one of the long pulse channels, LP2, was examined. It soon 

became clear that checking each file manually was going to be extremely time- 

consuming. The reported cases when enhanced spectra occurred in the EISCAT UHF 

and VHF mainland experiments were somewhat infrequent and rarely in two or more 

consecutive ten-second dumps. Looking at a sample of the data was therefore going to 

be inadequate since it would be too easy to miss the very cases which we were 

looking for. It was clearly going to mean checking every ten-second dump of data 

available. This required an automated search method similar to that used by Rietveld 

et al. (1996) to search the mainland data. In these mainland experiments most o f the 

echoes found by Rietveld's automated search were, in order of frequency, caused by:

1 noisy spectra,

2 satellites,

3 enhanced ion acoustic shoulders, and
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4 interference.

Having identified the times of such events a manual search could then be performed 

on the smaller set of data to identify the enhanced ion acoustic shoulders which 

occurred as a result o f geophysical events.

4.2 The Software

The ESR GUP3 data is studied using a real time graphics program, rtg. The rtg 

program is a Matlab program which uses the raw ESR GUP3 data as input. A typical 

rtg plot window output from the program is shown in Figure 4.1.

The left hand panel shows a contour plot of the normalised spectra, whilst the right 

hand panel shows the same spectra as a stacked plot. The spectra shown in Figure 4.1 

are the typical two-humped spectra we would expect to obtain according to the theory 

of incoherent scatter. The horizontal axis shows the Doppler shift from the transmitted 

frequency and the vertical axis shows the altitude above the Earth’s surface from 

which the data is received.
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Figure 4.1: Typical rtg program output showing, on the left, a contour

plot o f the normalised spectra and, on the right, the same spectra shown as a 

stacked plot for the LP2 channel at 10:53:59 UT on 1st December 1999.
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Figure 4.2: A typical spectrum from the right hand panel o f the rtg plot

window with an indication of the region which was omitted from the search 

for the secondary peak.
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By highlighting one of the spectra shown in the right hand panel of the rtg plot 

window shown in Figure 4.1 it is possible to view that particular spectrum 

individually as in Figure 4.2. In this latter figure the horizontal axis again shows the 

Doppler shift from the transmitted frequency. However, the numbers shown on the 

vertical axis are related to the position of the spectrum in the stacked plot, i.e. the 

lower the spectrum in the stack the lower the values of the numbers on the vertical
• tin

axis. The spectrum shown in Figure 4.2 is the 17 from the bottom of the stack in 

Figure 4.1.

Although it is possible to obtain an insight into the size of any enhancement of the 

shoulders by observing the spectra in this manner it would be a tedious process 

especially as these spectra are normalised within each ten-second dump of data.

As previously stated, the process of checking the data manually for each individual 

spectrum would be too time consuming, so initially a subroutine, which made use of 

similar techniques to those used by Rietveld et al. (1996), was added to the rtg 

program.

This additional subroutine was called ‘test_asymm’, since it involved testing each 

spectrum for asymmetric shoulders. For each individual spectrum the subroutine first 

finds the height of the primary peak, P, and its position. It then looks for a secondary 

peak, S. This is done by finding the maximum height of the spectrum in the region a

specified frequency, kHz, from the main peak as shown by the unshaded area in

Figure 4.2. The ratio of the heights of the two peaks is then calculated. This ratio is 

then used to determine whether there is an asymmetry.

Two parameters need to be input at the commencement of the program. The first o f 

these is the required peak width (w kHz). This ensures the two peaks o f the spectrum
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are — kHz apart. After some trial and error testing, the value 5 was used for w so that

the two peaks would be separated by at least 2.5 kHz. This was intended to ensure that 

in the cases when a standard double-humped spectrum was considered the secondary 

peak identified by the program would indeed be the secondary peak and not just the 

shoulder o f the primary peak. However, when the secondary peak is much lower than 

the primary one, the program will not identify the secondary peak. Instead, it 

identifies a point on a shoulder of the primary peak.

The second parameter is the limiting ratio between the peaks. This is the ratio of the 

height o f the lower peak to the higher peak and is therefore a value between 0.0 and 

1.0. If the program finds the calculated peak ratio to be less than or equal to the input 

value the details for that spectrum are output to a text file for later examination. The 

choice o f the value of this second parameter was based on the fact that it needed to be 

sufficiently smaller than 1.0 to avoid identifying minor variations between the heights 

o f the two peaks, but not so small as to miss any interesting cases.

After some trial runs o f the program, it was clear that a suitable value to use for the 

peak ratio was going to be close to 0.8. A manual inspection o f the data did appear to 

identify the same times as the program on a number o f test runs. The cases when a 

peak ratio o f over 0.8 was found in the data were considered at this stage and the 

spectra found in such situations did not look sufficiently different from the standard 

spectra to be o f interest. It was therefore decided that at this stage the value o f 0.82 

should be used as the second input parameter. This would ensure that, although some 

identified spectra would not appear to be significantly enhanced, we would definitely 

identify all the times at which any anomalous spectra did occur in the data being 

checked.

After using the program to check for anomalous spectra in several hours o f data an 

up-dated version of the rtg graphics program became available. The up-dated version, 

rtg3, could be used to observe the data from a more recent experiment, TAU0, as well
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as the GUP3 data. Appropriate changes were made to the rtg3 program so that the 

‘test_asymnT subroutine could be run within this version. However, as the TAUO 

experiment uses only AC channels and we have been mainly working with the LP 

data then we have continued to use only the GUP3 data. On comparing the results 

from the two versions of the program within the same range interval, then we found 

that, although the asymmetric spectra appeared at the same times (i.e. in the same ten- 

second data dumps) in both versions, the ranges at which the most asymmetric spectra 

occurred were consistently higher in the rtg3 version than they had been in the earlier 

rtg version. There was an apparent difference in range o f about 40 km. Since the data 

were being averaged over 7 gates each of width 3 km then the spectra were given for 

ranges which were 21 km apart. As a result a difference in the region o f 40 km was 

not that great. The rtg3 version o f the program gave better agreement between the AC 

and LP data in that the most asymmetric spectra were seen to be at similar ranges 

within a ten-second data dump for this version, whereas they were seen to be lower 

for the LP data but similar for the AC data in the rtg version. The rtg3 version of the 

program was now used to check the data.

The critical value o f 0.82 used to identify the asymmetric spectra has been challenged 

in some quarters. A study was therefore carried out to analyse the full set o f peak 

ratios obtained over a period of four days in December 1999. A total o f 10078 ten- 

second data dumps were included in the study. The distribution o f peak ratios is 

shown in Figure 4.3. Note that the vertical scale is logarithmic. The number o f 

occurrences drops rapidly as the peak ratio decreases from 1.0 to 0.85. It then levels 

off until 0.75 is reached. At this stage there appears to be another slight drop. The 

numbers then remain fairly constant until a peak ratio of 0.2 is reached. This suggests 

that the interesting data corresponds to a peak ratio o f between 0.2 and 0.75 and the 

inclusion o f the range from 0.75 to 0.82 has confirmed this view.
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4.3 Identification of Enhanced Spectra

During the 10th EISCAT Workshop held in Tokyo in 2001, we presented a poster 

showing some typical spectra obtained in the July and December 1999 data. As a 

result, we followed up the suggestion, which was made whilst at this event, that it 

might be worthwhile looking at the power profiles as well as the spectra.

The situations when the rtg3 program identified anomalous spectra in the data for 1st 

December 1999 were studied manually. The data set consists of 1011 ten-second 

dumps recorded between 10:11:30 UT and 13:00:00 UT. The automated routine 

described above is used to examine the data from the LP2 long-pulse channel. The 

times at which anomalous spectra are identified by the program are recorded for 

subsequent manual examination. In some cases, it transpires that the spectra identified 

as being anomalous contain essentially no backscattered signal and any such noisy 

spectra are eliminated. This leaves a number o f spectra where the program suggests 

the presence o f a satellite. Typical enhanced spectra from such a case are shown in 

Figure 4.4(a).

In this set o f over 2 hours o f data there were 40 occurrences of enhanced spectra. The 

power profiles of each of these situations were considered as a means of 

distinguishing between cases o f naturally enhanced spectra and probable satellites.

When the returned signal was thought to be the result o f a reflection from a satellite or 

item of space debris the power profile measured on the LP2 channel shows a sudden 

sharp increase followed by a similarly sudden sharp decrease approximately 100 km 

further along the beam, as shown in Figure 4.4(b). The spacing between these steps in 

the power is related to the range ambiguity of the sounding pulse, so a satellite large 

enough to cause a significant change in the returned power is detected in several range 

gates. This explains why the power increase is visible over 100 km range.
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Figure 4.4: Results showing (a) spectra and (b) power profile for LP2

data at 10:31:19 UT, 1st December 1999, using EISCAT rtg3 program when a 

probable satellite was seen in the beam.
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Sometimes the object detected is at a sufficiently high altitude for only the increase in 

power, but not the subsequent decrease, to be within the range coverage o f the 

recorded data. These situations are classified as possible satellites.

In contrast to these examples, there are times when enhanced spectra are present in the 

data but the power profile shows no significant change, as shown in Figure 4.5. The 

spectra obtained at these times can, therefore, be the result o f a geophysical 

phenomenon. In a situation where the enhancements in one ion line switch to the other 

(Sedgemore-Schulthess et a/., 1999), the enhancements are thought to be short-lived as 

are those for satellites. However any increase in power which occurs is likely to be 

gradual rather than sudden, so it takes several range gates for the full increase to show 

in such geophysical situations. The example shown in Figure 4.5 needs further 

consideration if  it is to be identified definitely, either as a geophysical phenomenon or 

as one or more satellites passing through the beam.

As a result o f this study it was decided that a modification could be made to the 

subroutine used in the rtg3 program so that at each range the power could be 

calculated from the spectrum values. The power is given by calculating the area under 

the spectrum. Since the program finds points on the spectrum at discrete frequency 

intervals it was possible to obtain values which would be representative o f the power 

profile by summing the spectral values.

Initially the subroutine was modified to:

1. find the difference between adjacent pairs o f powers,

2. divide this difference by the smaller of the two power values, and

3. send an indication of the size of the resulting ratio to the output text file.

63



GUP3 1.3 1-D ec-1999 11:55:49 10s 42m:181.0/81.6 956I^W 
LP2 SP H 500-857 <5> bH

(b).

GUP3 1.3 1-D ec-1999 11:55:49 10s 42m:181.0/81.6 956k 
LP2 sO 7.734 MHz

x 10'

3.5

2.5

o
mre

0.5

600 700 900300 400 500 800100 200

Altitude [km]

Figure 4.5. Results showing (a) spectra and (b) power profile for LP2 

data at 11:55:49 UT, 1st December 1999, using EISCAT rtg3 program when 

enhanced spectra probably due to geophysical causes were seen in the beam.
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At the start o f the program a third parameter, the critical ratio, needed to be input. 

Three cases were then identified:

1. The output file would return 0 at the times when the absolute values o f the

ratio were smaller than the critical ratio for all ranges. These were cases which 

may be of some geophysical interest, though the possibility o f them arising as 

a result o f the radar beam detecting a small item of space debris could not be 

neglected.

2. The output file would return 1 if  there were ranges for which either the ratio

exceeded the critical ratio or if  it were less than minus the critical ratio, but not 

both. In particular, this would locate those cases where the radar beam had 

apparently identified a hard target, but so near to the extreme limit of its range 

that the power was not seen to fall off.

3. The output file would return 2 if  there were ranges where the ratio exceeded

the critical ratio in addition to some where it was less than minus the critical 

ratio within the same ten-second dump. These were the cases where the power 

clearly showed a sudden increase followed by a sudden decrease. They were 

the cases when the radar beam could be considered to have definitely detected 

a hard target such as a satellite or item of space debris.

This version o f the subroutine was tested using the data for 1st December 1999 by 

comparing the results obtained using the program with those expected as a result o f 

doing a manual check. After running the program with several different ratios it was 

decided that further modifications needed to be made as explained in the following 

paragraphs.

The values o f the powers used by the program to calculate the ratios were exported 

into an EXCEL file. Some examples of the results for 1st December 1999 are shown in 

Figure 4.6.

65



(a ) .

10 30 40
250000000 T

200000000

150000000 -

100000000 -

50000000 -

190 290 390 490 590 690 790
Range (km)

(b).

11 27 40
200000000

150000000

100000000 -

50000000 -

490 590 690 790
Range (km)

(c).

10 50 50
250000000

200000000

150000000

100000000 -

50000000 -

Range (km)

Figure 4.6: EXCEL charts showing the rtg3 subroutine’s calculated

values for the power using the LP2 data of 1st December 1999. The charts 

shown were considered to be typical of (a) a probable satellite, (b) a possible 

satellite and (c) a possible enhancement due to a geophysical phenomenon.
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These charts vary slightly from those obtained for the power profile using the rtg3 

plot window. This is a result o f summing over discrete points o f the spectrum. 

However, the overall shape is sufficiently similar to that obtained by using the raw 

data as in the rtg3 plots. This can be seen by comparing the charts in Figure 4.6 with 

those obtained in rtg3 for the same time periods as shown in Figure 4.7. Hence they 

could be used to give an indication of the behaviour o f the power profile.

As a result o f plotting the calculated powers for each ten-second dump showing 

asymmetric spectra in the 1st December 1999 data, it can be seen, from the charts in 

Figure 4.6, that to obtain the maximum size of the power increase and decrease when 

a probable satellite was detected, would mean considering the values o f the power 

which were three apart. Hence the program was altered to use powers obtained from 

spectra which were three apart rather than adjacent ones when calculating the power 

ratio. It was also realised that it was only necessary to check for the sudden decrease 

in power if  there had already been a sudden increase at a smaller range within the ten- 

second data dump. Using the results obtained earlier, the required calculations were 

performed in the spreadsheet for the test data. Since this was seen to be successful, the 

subroutine was altered accordingly. Using the results from the EXCEL file it was 

decided that a suitable value to enter for the critical ratio in order to test for a satellite 

was in the region o f 0.2.

A detailed study o f the power profiles using the data from 1st and 2nd December 1999 

reveals that a few very large power variations are seen, which are clearly attributable 

to satellites. Excluding these, the remaining variations show a continuous distribution, 

rather than being sharply divided between large and small changes. The distribution is 

shown in the histogram in Figure 4.8. In order to accommodate the full range o f 

power variations on the same graph, the natural logarithm of the power variation has 

been plotted.
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Figure 4.7: Power profiles obtained using rtg3 for (a) a probable

satellite, (b) a possible satellite and (c) a possible enhancement due to a 

geophysical phenomenon.
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Figure 4.8: Histogram showing frequency of occurrence o f In o f power

ratios obtained when enhanced spectra occurred in the 1st and 2nd December 

1999 ESR, GUP3 data.

Considering the histogram in Figure 4.8, the cases at the left-hand extreme o f the x- 

axis are highly likely to be due to geophysical conditions, whilst those at the right- 

hand extreme are highly likely to be due to satellites. This leaves a large number o f 

intermediate points, many of which could also be due to satellites, either o f varying 

cross-section, or passing through the side lobes rather than the main beam.

4.4 Long Pulse and Alternating Code Comparisons

To progress further a comparison was made between the long pulse (LP2) results and 

those from the alternating code (AC2) data. The LP1 and AC1 results were also 

checked to ensure that they were consistent. The range extent o f the LP2 long pulse 

data is 229.5-859.5 km whilst for the AC2 alternating code data it is only 228-732 

km. Hence the LP and AC data overlap within a region whose range extent is about 

500 km. Within this region, full measurements of the shape o f the backscattered 

spectrum can be obtained from both schemes, along with “power profiles”, 

representing the variation in the backscattered power as a function o f range. As a
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consequence, only a subset o f the anomalous spectra identified in the LP2 data could 

be checked using the AC2 data.

By examining the power profile from the AC2 data at the relevant times it soon 

became clear that similar characteristics could be seen, as are shown in the Figure 4.9. 

When the enhanced spectra are probably due to a satellite passing through the beam 

the AC2 power profile shows a steep pointed peak; otherwise there is no significant 

change. The smaller extent of the peak in the power profile response arises because 

the range resolution is better for the alternating code data than it is for the long pulse 

data. At these times the peak of the AC power is confined to a very narrow range and 

is within the region in which the step occurs in the LP data. Thus good agreement is 

shown between the two pulse schemes. In addition, the use o f the AC data helps to 

clarify a number o f cases where the LP data alone does not provide an unambiguous 

identification o f a satellite.

In order to classify the data the threshold ratio of 0.2 for the LP power increases 

between range gates, as described earlier in this chapter, was considered. Above this 

ratio, it is possible to be reasonably sure that a satellite has been detected, rather than 

anomalous spectra due to geophysical conditions. Below this ratio geophysical causes 

are more likely but there is a possibility that the anomaly is caused by very small 

items o f space debris or a satellite being detected in the far side lobes o f the radar 

beam. For the data considered here the threshold value of 0.2 was seen to be 

acceptable for this ratio when the power profiles could be checked in both the AC and 

the LP data. This represents a 20% increase in the returned power. Since the output 

from the program only records the value of the greatest ratio found in a 10 second 

dump, any examples which are close to this threshold need to be checked manually.

In order to verify that satellites or their debris did indeed passed through the beam at 

the identified times another source o f independent evidence needed to be considered.
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Figure 4.9: Results showing (a) spectra and (b) power profile for AC2

data at 10:31:19 UT, 1st December 1999, using EISCAT rtg3 program when 

a probable satellite was seen in the beam.
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Chapter 5

Satellites

5.1 Satellite Contamination

Although the purpose of this research is to study the naturally enhanced anomalous 

spectra, it is now clear that it will be necessary to be extremely careful since some o f 

the anomalous spectra caused by satellite contamination may easily be mistaken as 

being o f geophysical origin. In order to avoid this happening some further work needs 

to be done with regard to the satellite contamination.

This work continues to use the GUP3 data, from 1st December 1999 as was used in 

Chapter 4. The data set consists o f 1011 ten-second dumps recorded between 10:11:30 

UT and 13:00:00 UT. The radar beam was set at an elevation o f 81.6° and an azimuth 

of 181.0°. Hence it was aligned with the Earth's geomagnetic field. The automated 

subroutine, “test_asymm”, described in Chapter 4 is used to examine the data from the 

LP2 long pulse channel.
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The times at which anomalous spectra in the LP2 data are identified by the program 

are recorded for subsequent manual examination. After eliminating the noise we are 

left with a number of spectra where the program suggests the presence of a satellite. 

Typical enhanced spectra from such a case were shown in Chapter 4, Figure 4.4.

We now consider ways of calibrating such identifications to verify that satellites or 

their debris have indeed passed through the beam.

5.2 Orbital Elements

The monitoring of satellites and space debris, and the determination of their orbital 

parameters is an important activity for the space industry. Many such objects are 

routinely monitored and their positions can subsequently be reconstructed. Data files 

are available from which it is possible to determine the position of a satellite at any 

time. The rules which govern the orbits of satellites were first studied by J. Kepler 

(1571-1630). In order to specify the particular orbit we need to know the values of six 

key elements. These are known as the Keplerian orbital elements. They are:

1 Inclination, i,

2 Right Ascension of Ascending Node, Q ,

3 Argument of Perigee, co,

4 Eccentricity, e,

5 Mean Motion, T0,

6 Mean Anomaly at epoch, y/r .
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Figure 5.1: Diagrams to show the orbital elements used to describe the

motion of a satellite (a) with respect to the Earth and (b) within an orbit. 

(http://spaceflight.nasa.gov/realdata/elements/graphs.html).
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In Figure 5.1(a), the plane o f the Earth’s equator is shown as the XY plane. The 

satellite travels around the Earth in an elliptical orbit. (In reality, the motion is more 

complex than this and small corrections need to be made for perturbations which add 

extra parameters). The centre of the Earth is positioned at one of the focal points o f 

the ellipse.

5.2.1 Inclination

The inclination, i, is the angle between the plane o f the equator and the plane o f the 

elliptical orbit. So satellites in equatorial orbits will have inclinations around 0° whilst 

those in polar orbits will have inclinations around 90°. By convention, if  the satellite 

rotates in the same direction as the Earth, i.e. anti-clockwise when viewed from 

above, then it has an inclination of 0° -  90° whereas if  it rotates in the opposite sense 

to that o f the Earth then it has an inclination over 90°. A satellite which is likely to 

pass over the ESR site is therefore in a near polar orbit and may have an inclination in 

the region between 75° and 105°.

5.2.2 Right Ascension of Ascending Node

The line along which the satellite’s orbital plane intersects the Earth’s equatorial plane 

is called the line o f nodes as shown in Figure 5.1. The point at which the satellite 

crosses this line when travelling from the Southern Hemisphere to the Northern 

Hemisphere is called the ascending node, whilst the corresponding point on the 

opposite side o f the line of nodes where the satellite is travelling from the Northern 

Hemisphere to the Southern Hemisphere is called the descending node.
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As the orbit o f a satellite is fixed relative to the stars and not the Earth’s surface, an 

astronomical co-ordinate system is needed to measure the position o f the ascending 

node. Such a system uses the first point o f Aries as its reference point. This point is 

the same as the vernal equinox, which is where the Sun crosses the Earth’s equator in 

the spring. The right ascension of the ascending node, Q, is thus the angle, measured 

in the equatorial plane, from the first point of Aries (the X -axis in Figure 5.1) to the 

line of nodes. This describes the position o f the orbital plane in space.

5.2.3 Argument of Perigee

Next it is necessary to determine the position of the orbital ellipse within the orbital 

plane. To do this we use the argument of perigee. The perigee is the point on the 

ellipse which is closest to the Earth. Similarly the apogee is the point on the opposite 

side of the ellipse which is furthest away from the Earth. The line joining the perigee 

and the apogee is called the major axis o f the ellipse. It has a length o f 2a in Figure 

5.1(b). The angle, measured in the plane o f the orbit, between the major axis and the 

line of nodes is referred to as the argument o f perigee, co. The angle can take values 

ranging from 0° to 360°. It is 0° when the perigee and the ascending node coincide 

and 180° when the apogee and the ascending node coincide. It is between 0° and 180° 

when the perigee is North o f the equator.

5.2.4 Eccentricity

The eccentricity, e, determines the shape of the ellipse. It is defined as the ratio o f the 

distance from the centre of the ellipse to the focus and half the length o f the major 

axis, otherwise known as the semi-major axis, which has length a. If  the eccentricity 

were 0 then the distance from the centre of the ellipse to the focus would be 0, so the
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shape would in fact be a circle. As the eccentricity increases the ellipse becomes 

longer and thinner.

5.2.5 Mean Motion

We have already mentioned the semi-major axis, a, which determines the size o f the 

elliptical orbit. However, it is common practice when giving the elements of the orbit 

to use a different but related parameter called the mean motion. This is the mean 

angular rotation of the satellite. The speed of the satellite is related to the semi-major 

axis by Kepler’s Third Law which gives the square of the period of the orbit, T0, as

being proportional to the cube of the semi-major axis, a , i.e. T 2 oc a 3, or KT02 = a 3,

where K  is a constant of proportionality. This result shows that a satellite which is 

further from the Earth will move slower than one which is closer to the Earth.

Since a satellite in an elliptical orbit, according to Kepler’s Second Law, will sweep 

out the same area in the same time interval no matter where in the orbit it is, then it 

will move faster at perigee and slower at apogee. The mean motion is the average rate 

of the satellite motion and is usually given as the number o f revolutions per day. The 

period is the reciprocal o f the mean motion. So, for example, a satellite with a mean

24
motion of 16 revolutions per day will have a period of —  = 1.5 hours.

5.2.6 Mean Anomaly at Epoch

The final element required to define the position of a satellite relative to the Earth is 

where in its orbit the satellite is at some specific time. To specify this we choose a
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time, close to the required time, at which the satellite passes its ascending node. This 

time will be referred to as the epoch, r  . The position of the satellite in the orbit is 

specified by giving the angle between its position and its perigee. This is called the 

true anomaly, v0. However, since the satellite does not travel in a circular orbit this is

complicated to calculate. Therefore it is usual to use instead the mean anomaly which 

is the position that a satellite travelling in a circular orbit would have if  it had the 

same period (and therefore mean motion) as that o f the satellite travelling in an 

elliptical orbit. This is easily calculated as

the time since epoch x the mean motion + mean anomaly at epoch.

5.3 Two-Line Element Files

It is possible to obtain files containing the key elements for many satellites and items 

of space debris. They are usually described as two-line element sets (TLEs) and are 

updated approximately weekly. For the purpose o f tracking the satellites or their 

debris it is best to obtain such a file which has been updated as close as possible to the 

day o f interest in order to minimise the errors in calculating the satellite positions. A 

two-line element file which had been updated on 2nd December 1999 was obtained 

from the web site

ftp://seds.lpl.arizona.edu/pub/sat/satelem/el-1999

The file contains the details for 8132 items. The details for each item are recorded on 

three lines o f the file, contrary to what the file name suggests. However, the initial 

line simply provides the NORAD (North American Air Defense) Catalogue number 

and/or other information such as the common name assigned to the satellite. The 

following two lines are the standard Two-Line Orbital Element Set Format identical 

to that used by NORAD and NASA (National Aeronautics and Space 

Administration). In particular the first o f these two lines contains details o f the epoch
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and drag terms, whilst the second line has details of the inclination, right ascension of 

the ascending node, eccentricity, argument of perigee, mean anomaly at epoch and 

mean motion. Used along with the satellite tracking programme “Element Manager 

for Windows” by Rick von Glahn, which was downloaded from the web site

http://www.elementmanager.com/

it is possible to select a particular satellite and find its position relative to the ESR site 

at some particular time.

5.4 Tracking Satellites

A satellite can gain an advantage during launch if  it is to traverse its orbit in the same 

sense as the Earth’s rotation. The advantage will be greater the closer the plane o f the 

satellite orbit is to the Earth’s equatorial plane. As a result many o f the satellites are 

travelling in near equatorial orbits. However, if  a satellite is likely to pass through the 

ESR beam it must be travelling in a near polar orbit. It is reasonable, therefore, to 

restrict the set o f items being considered to those whose inclination is between 75° 

and 105°. Additionally, the range o f the ESR beam is limited, so a further restriction 

to the set o f items being considered is to restrict the value of the perigee to a 

maximum of 900 km. The effect of these restrictions is to reduce the number o f items 

to be checked from 8132 to 1695.

The “Element Manager” program used to track the satellites is capable o f finding the 

position o f a given satellite or item of space debris at a particular time, but does not 

allow a search to be made to identify which items in the set are in a specific region at 

a given time. So it is necessary to find some other means to restrict the number of 

items which need to be checked. To achieve this, the details of the orbital elements for
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Column Description Units

A Satellite number

B Inclination, i degrees

C Eccentricity xlO 7

D Epoch date, t

E Right ascension of ascending node, Q degrees

F Eccentricity, e [=C4*10A(-7)]

G Argument of perigee, co degrees

H Mean anomaly at epoch, y/x degrees

I Mean motion, T0 revolutions per day

Table 5.1: The satellite parameters as entered in the fourth and

following rows o f the EXCEL spreadsheet used to identify the items whose 

positions needed to be checked at a specified time.

the 1695 identified items were loaded from the two-line element set into an EXCEL 

spreadsheet as shown in Table 5.1. An excerpt from the spreadsheet is reproduced as 

Appendix B,

The satellite number in column A is needed to help identify the items. The orbital 

parameters are recorded in columns B-I. The two-line element file does not record the 

position o f the decimal point in the value for the eccentricity. This is taken into 

account in column F where the actual value of the eccentricity is calculated by 

multiplying the value in column C by 10-7. The formula for e which is entered into 

row four o f the spreadsheet is shown in Table 5.1.
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Cell Contents Units

B1 Radius o f the Earth, RE [=6.379* 10A6] m

G1 Mass of the Earth, M E [=5.975* 10A24] kg

J1 Gravitational constant, G [=6.673 * 10A(-11)] N m 2 k g '2

M l
1̂ 1 Cj

Constant of proportionality, K  = —
4 n

[=G1 * J1/(4*(PI()A2))]

N m 2 kg-1

SI Time [=62840+Tl+Ul]

T1 Date dd/mm/yy

U1 Time hh:mm:ss

Z1 Longitude o f the first point o f Aries 
[=MOD(-(Sl-99081.5)*366.25*360/365.25,360)1

degrees

Table 5.2: The entries in the first row of the EXCEL spreadsheet used

to identify the items whose positions needed to be checked at a specified time.

In order to calculate an approximate position for a satellite some additional constants 

are required. These are entered in the first row o f the spreadsheet as shown in Table 

5.2. Where formulae are given in square brackets in Tables 5.1 and 5.2 they are the 

actual formulae as they appear in the spreadsheet.

The remaining entries in the spreadsheet are shown in Table 5.3. The formulae in 

square brackets are those which actually appear in the fourth row o f the spreadsheet. 

This is the first row of the data. These formulae were then copied down the rest o f the 

rows o f data.
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Column Contents

J a 3 [=$M$1 *(3600A2)*((24/I4)A2)]

K Semi-major axis, a [=J4A(l/3)]

L Perigee [=(K4-K4*F4-$B$1)/1000]

M Apogee [=(K4+K4*F4-$B$ 1 )/l 000]

N Altitude [=(K4*(1 -F4*COS(RADIANS(Q4)))-$B$ 1 )/l 000]

0 Mean anomaly [=MOD(MOD(I4*($S$1-D4),1)*360+H4,360)]

P Mean anomaly (radians) [=RADIANS(MOD(O4,360))]

Q True anomaly

[=DEGREES(P4+((24*F4-3*F4A3)*SIN(P4)

+15 *F4A2* SIN(2*P4)+13 *F4A3 * SIN(3 *P4))/12)]

R Semi-minor axis, b [=K4*SQRT(1-F4A2)]

S Distance from line of nodes to satellite, d  [=MOD(Q4+G4,360)]

T Latitude

[=DEGREES(ASIN(SIN(RADIANS(S4))*SIN(RADIANS(B4))))]

U cos r\ [=COS(RADIANS(S4))/COS(RADIANS(T4))]

V sin tj

[=SIN(RADIANS(S4))*COS(RADIANS(B4))/COS(RADIANS(T4))]

w tj [=IF(U4>0,DEGREES(ASIN(V4)), 180-DEGREES(ASIN(V4)))]

X Right ascension of satellite [=W4+E4]

Y Longitude [=MOD(X4+$Z$ 1,360)]

z Test[=IF(AND(N4<900,AND(T4>65,AND(Y4>-10,Y4<40))),l,"")]

AA Test eccentricity [=IF(F4>0.2,1,"")]

AB Test epoch date [=IF($S$1-D4>6,1,"")]

Table 5.3: The entries, containing formulae to estimate the positions of

the items needed to be checked at a specified time, taken from the fourth row 

of the EXCEL spreadsheet.
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The motion of a satellite about the Earth obeys Kepler’s three laws, which were 

originally deduced to describe the motion of the planets about the Sun. However these 

laws do not take account of any external perturbations, e.g. air resistance, 

asymmetrical gravitational field, the gravitational attraction of the moon, etc. They 

were later shown by Sir Isaac Newton (1642-1727) to be deducible from the law of 

universal gravitation.

The law of universal gravitation states that every particle of matter attracts every other 

particle of matter with a force which is proportional to the product of the masses of 

the two particles and inversely proportional to the square of the distance between 

them.

In the case of a satellite orbiting the Earth, the Earth can be considered to be a particle 

whose mass is concentrated at its centre. The mass of the satellite is negligible 

compared with the mass of the Earth.

According to Kepler’s third law, we have:

for a body moving in a circular orbit o f radius a.

So,

a
g m e

4 n 1
(calculated in column J)

Hence,

(calculated in column K)
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A

Figure 5.2: Geometric showing the elliptical orbit o f a satellite, S, and

its encircling circular orbit.

Although the value a  just calculated is the radius o f a circular orbit it will be equal to 

the semi-major axis o f the elliptical orbit o f the satellite as shown in Figure 5.2, 

(Smart, 1960).

Kepler’s first law states that the path, or orbit, o f the planet around the Sun is an 

ellipse, with the Sun being positioned at a focus of the ellipse. Using the standard 

properties o f an ellipse and applying the law to a satellite, S , moving around the Earth, 

E , gives:

OE = ae 

EP = a -  ae 

AE = a + ae
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Since EP  and AE  are measured from the centre of the Earth then the distance from the 

Earth’s surface to perigee is given by:

a - a e - R E (calculated in column L)

Similarly the distance from the Earth’s surface to apogee is:

a + a e - R E (calculated in column M)

Now it is also possible to obtain the length o f the semi-major axis using the 

relationship:

Semi-minor axis = OB = b = a ^ ( l - e 2) (calculated in column R)

To calculate the altitude of a satellite at some specific time it is necessary to find the 

distance ES  when the satellite is in the position S  on its elliptical path. To help achieve 

this, once again the circle with diameter equal to the major axis of the elliptical orbit 

is considered. The perpendicular, SN, is drawn from S  to the major axis, AP. The line 

NS  is produced to meet the circle at Q as in Figure 5.2.

Then QN  = QO sin9 - a sin6

Using the well-known relationship for an ellipse:

SN  _ b  
QN ~ a

b bgives SN  = — x QN  = — x a  sin # = 6 sin #
a a

Since, EN = O N - O E

= a cos 6 -  ae 

-  a {co s6 -e )
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By Pythagoras,

E S 2 = E N 2 + S N 2

= a 2 (cos2 0 - 2 e c o s 6  + e2) + b2 sin2 0 

= a 2(cos2 # -2 e c o s #  + e2) + tf2( l - e 2)s in 2 0 

= a 2 (cos2 6 -2eco>s6 + e 2 + s in 2 0 - e 2 sin2 6)

= r/2((cos2 # + sin2 # ) -2 e c o s #  + e2( l - s i n 2 0))

= a 2 (1 -  2ecos6 + e2 cos2 6)

= a 2( l - e c o s ^ ) 2 

So ES = a(l -  e cos 6)

This is the distance of the satellite from the centre of the Earth. Therefore the altitude 

of the satellite is given by:

a( 1 -  e cos 6) -  RE (calculated in column N)

It now remains to find the true anomaly. To do this we must first find the mean 

anomaly. This involves adding the product of the mean motion, T0, and the time after 

the epoch to the mean anomaly at epoch.

Let the time we are interested in finding a satellite be t. This is entered in cell SI of 

the EXCEL spreadsheet. The epoch, r , and the mean anomaly at epoch, y/ x, for each 

satellite are given in columns D and H respectively of the spreadsheet. So the mean 

anomaly, y/ t , is given by:

y/t =T(t - t) + i//t (calculated in column O in degrees, and

converted to radians in column P)
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In order to calculate the true anomaly we need to make use o f Kepler’s second law 

which states that the vector from the centre of the Earth to the satellite sweeps out 

equal areas in equal time intervals as the satellite moves around the Earth.

Unfortunately there is no simple formula which relates the two anomalies for all 

values o f the eccentricity. However for small values of the eccentricity the following 

power series expansion is valid:

v 0 = y/t + ((2 4 e -6 e 3)sin y/t +15e2sin2^, + 13e3 s in 3 ^ ) /1 2

(Smart, 1960) 

(calculated in column Q)

We now have sufficient information to be able to calculate the latitude o f the satellite 

at a specific time. To find the latitude we use the spherical triangle NSLn shown in 

Figure 5.3, in which the position of the satellite has been projected up onto the 

celestial sphere. Here N  is the North Pole and Z,N is the point at which the line of 

nodes intersects the Earth’s equator. Now,

SLn = argument o f perigee + true anomaly 

i.e. d  = 0 ) + v Q (calculated in column S)

Using spherical trigonometry, the cosine rule gives:

cos(90° -  /ls) = cos 90° cos d  + sin 90° sin d  cos(90° -  i)

Hence,

sin/ls = sm d s in i
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Figure 5.3: Geometric showing the measurements required to calculate

the geographical latitude of a satellite, S.

50 the latitude o f the satellite is given by:

Xs = sin-1 (sin d  sin i) (calculated in column T)

To calculate the longitude of the satellite we need to know the longitude o f the first 

point of Aries. This will depend upon the time in which we are interested. The date is 

entered in cell T1 and the time in cell U1 of the spreadsheet. This is converted in cell

51 to a format which is compatible with that used for the epoch date in the two-line 

element file. The longitude of the first point of Aries is 0° at noon on the Vernal 

Equinox and moves in a Westerly direction around the Earth’s equator once in every 

stellar day. Therefore its longitude at D  solar days after the Vernal Equinox is given 

by:



r u

Figure 5.4 Geometric showing the measurements required to calculate 

the geographical latitude of a satellite, S.

It can be seen using Figure 5.4 that the longitude o f the satellite is given by:

0 S = 0 r  + Q  + 7 7  (calculated in column X)

where t] is the angle L^NS.

Since rj can take any value between 0° and 360° we need to calculate both its sine and 

cosine.

Using the spherical triangle NSL^

cos d  = cos 90° cos(90° -  X) + sin 90° sin(90° -  X) cos rj
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So,

cos rj =
cosc/ 
cos X

(calculated in column U)

Using the sine rule,

sin 7 7 _  sin(90°-z) 
sin d  sin(90° -  X)

So,

sin rj =
sin dcosi  

cosZ
(calculated in column V)

If cos t] is positive, then

tj-  sin ^ s in //) ,

otherwise,

rj = \ 80° -  sin - 1  (sin rj) (calculated in column W)

It now remains to apply some tests to identify satellites which are worth checking 

using the tracking program. The first test determines whether the satellite is 

somewhere near the beam, using the calculated values for the altitude, latitude and 

longitude. This is carried out in column Z of the spreadsheet. The second test picks 

out eccentricities which are greater than 0 . 2  as the power series expansion above is 

unreliable in that case. This is in column AA. The third test checks whether the epoch 

date is too long ago for the calculations to be unaffected by perturbations in the orbit. 

This is shown in column AB. When these tests were carried out the number of 

satellites identified which needed to be checked was of the order of 150.
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5.5 Checking for Satellites

The spreadsheet can now be used as a filter to identify those items in the two-line 

element file whose position it is reasonable to consider checking at a particular time 

using the “Element Manager” program. This program gives a more accurate position 

for the satellite than the spreadsheet since it accounts for small perturbations in the 

orbit and makes use o f the first and second time derivatives o f the Mean Motion as 

well as a drag term or radiation pressure coefficient.

As a result it was reported by Porteous et al. (2003), that at 10:31:13 UT an object 

with catalogue number 24134-94029GH is found to have an azimuth o f 179.88°, an 

elevation o f 81.63° and a range of 652 km relative to the EISCAT Svalbard Radar, as 

shown in the following Figure 5.5.

The radar data indicates that at 10:31:19 UT (i.e. the ten-second dump starting at 

10:31:10 UT) there is a probable satellite visible in the beam. The range o f the 

observed anomalous echo is in good agreement with the predicted position o f the 

object.

Using spherical trigonometry, the distance o f the object from the centre o f the radar 

beam can be calculated. In Figure 5.6:

Z is the position o f the zenith as seen from the ground station (ESR),

R is the position o f the radar beam, and 

S  is the position o f the satellite.

The radar beam has an elevation of 81.6°, so is 8.4° from the zenith.

Similarly, the satellite has an elevation o f 81.63°, so is 8.37° from the zenith.
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01 /1 2/99 10:31 Local 24134 34029GH 01/12/9910:31 UTC

Figure 5.5: Path of space debris, NORAD number 24134-94029GH,

showing its position relative to the radar at ESR at 10:31:13 UT on 1st 

December 1999.

Z
1. 12°

8.37°
8.4°

Figure 5.6: Geometrical construct to find z, the distance between the

centre of the radar beam (.R) and the object (S) from the angles given relative 

to the zenith (Z).
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The radar has an azimuth of 181.0°, whilst the satellite has an azimuth o f 179.88°, so, 

at the zenith, the angle between the radar and the object is 1.12° (=  181.0° -179.88°).

Using the cosine rule,

cosz = cos8.4°cos8.370 + sin8.40sin8.370cosl.l2°

So,

cos z = 0.98927 x 0.98935 + 0.14608 x 0.14556 x 0.99981 

= 0.97873 + 0.02126 

= 0.99999

Therefore,

z = cos-1 0.99999 = 0.1660° = 0.002898 radians,

At an altitude o f 652 km, this is equivalent to a distance o f 0.002898 x 652 = 1.9 km. 

Hence the object was less than 2 km from the centre o f the beam.

This is well within the limits of the expected lateral extent (-6.5 km) of the main 

beam at a range o f -650 km.

This example, together with five other times at which the prediction software 

successfully confirms the presence of a satellite or item of space debris within the 

range of the beam, are shown in Table 5.4. The examples identified at 10:31:13 UT 

and 12:04:10 UT are likely to have been detected within the main beam, whilst the 

rest are more likely to have been detected in the side lobes. At each of these times the 

power profiles for both the LP2 and the AC2 returned signal show the typical 

characteristics described earlier, suggesting that the sounding pulses were being 

reflected from a hard target. The object detected at 11:36:35 UT is likely to have been 

quite large, hence, the high value obtained for the power ratio.
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Time (UT) on 

1st Dec 1999

NORAD Cat. No. Angle from centre 

of radar beam (°)

Range

(km)

Power

Ratio

10:30:36 24149-94029GY 1.400 629 1.796

10:31:13 24134-94029GH 0.166 652 4.788

11:36:35 25919-99051A 0.310 706 733.497

12:04:10 12760-81053DD 0.195 762 4.467

12:06:32 25941-99057B 0.278 771 0.462

12:16:27 20466-90010B 1.394 641 2.906

Table 5.4: A sample o f times at which a satellite or item of space

debris appeared within the ESR beam on 1st December 1999.

At 12:07:32 UT a satellite is noticed to be 3.210° from the centre of the radar beam 

and at 834 km along its range. This is too great a range to enable it to be visible in the 

AC2 data. However, the LP2 data does show enhanced spectra around this range as 

well as the expected increase in power. The increase in power, though significant, is 

not as great as in the earlier examples. This is possibly a result o f the larger distance 

from the beam centre, suggesting that the satellite passed through the side lobes rather 

than the main beam. A further satellite at 12:08:21 UT is identified to be 2.849° from 

the centre o f the beam, but at a range of 871 km. This is not detected in either the AC2 

or the LP2 data. Additionally, at 11:55:30 UT a satellite 6.319° from the centre o f the 

radar beam and at a range of 815 km is not detected in the LP2 data.

The satellite tracking program gives the position of the satellite at one second 

intervals. In Table 5.4 the second when the satellite was closest to the radar beam is 

used. A more accurate result is obtained by considering the two seconds when the 

satellite passes from one side of the radar beam, S l , to the other, S 2, as shown in 

Figure 5.7. We can now calculate the distance RN  perpendicular to the path *S'1iS'2 as 

follows:
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R

Figure 5.7: Geometric to find the closest distance between the radar

beam (R) and the orbital object as it travels from position S x to position S 2.

Using the cosine rule,

ARZSX gives

cos(Zj) = cos (ZR) cos(ZS'1) + sin (ZR) si n(ZS'1) cos(RZSl)

ARZS2 gives

cos(z2) = cos (ZR) cos(ZS2) + sin(Zfl) sin(ZS'2) cos (RZS2) 

whilst ASxZS2 gives

cosO^S,) = co s(ZSx) cos (ZS2) + su^ZS,) sinCZS^) cos(iS, ZS2)

Hence the values o f z {, z 2 and S lS 2 can be obtained.
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Using AS]S 2R , we see that

P m _ co s(z2)-cos(z ,)cos(S ,S 2)
C 0 S t O 2O , A j -  .

sin^ZjjsintiSj^)

Hence the angle can be found. The arc of the great circle perpendicular to

£ , £ 2  and passing through Z and R can be constructed. Let this arc cross at tV. 

Then using ARNS and the sin rule gives

RN  = — ^ —  x sin (NS, R) 
sin(90°)

Hence the distance RN = z, sin(»S,25'17?) can be calculated.

These calculations were carried out in an EXCEL spreadsheet for satellites found 

close to the beai 

in Appendix C.

close to the beam on 1st and 2nd December 1999. A sample of the results is reproduced

5.6 Comparison with Known Events

It would seem that we now have a method for determining the presence of satellite 

contamination in the GUP3 data. This shows that many of the cases identified by the 

automated rtg3 program are actually satellites, with a smaller number being of 

possible geophysical interest. Of the latter cases, some may still be caused by small 

items of space debris, or even satellites passing through the side lobes of the radar 

beam. Further work is still needed to identify those cases which are most likely to be 

of geophysical interest within this later group.
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To help to refine the method for identifying those anomalous spectra o f geophysical 

interest further, the cases which had been recorded in the paper by Sedgemore- 

Schulthess et al. (1999) were considered. There are two cases identified in this paper 

which are found to coincide with inferred field-aligned current bursts and energetic 

auroral precipitation. They are present in the GUPO data of 24th January 1998 and 

occur around 07:00:40 UT and 07:06:40 UT. The two relevant times are observed 

using the rtg program, paying particular attention to the power profiles at these times. 

They do not show the sudden increase or decrease in the returned power as would be 

expected when there is contamination due to a satellite as at 05:35:00 UT, the time 

shown in Figure 5.8(a). Instead they show a slight, gentle increase and decrease (a 

smooth curve rather than a square pulse). The power profile observed at 07:06:40 UT, 

during the one o f the reported geophysical events is as shown in Figure 5.8(b). That o f 

the other reported event shows similar characteristics.

In order to compare the results found at the two noted times in the GUPO data with the 

results which have been obtained in the GUP3 data appropriate changes are made to 

the rtg program used to observe the GUPO data. The changes involved enabling the 

automated subroutine to be used in the same way as it is when observing the GUP3 

data using the rtg3 program. The result o f checking the two events in the GUPO data 

showed that these enhancements occurred at frequencies which were at least as large 

as the ion acoustic frequency. Most of the satellite contamination (though not all) 

causes an enhanced shoulder near to the zero frequency value i.e. there is little 

Doppler shift. A manual check of the text files which had been output for the GUP3 

data was performed and this did appear to be true for the majority of the cases when a 

satellite was observed.
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(a).

GUPO 103 24-Jan-199805:3500 tft» 180.6816 416WV 
C h l S  IF 7.875

x 10

I

£00200 300 400 700 800 1000
r a n £ 3  fkm )

(b)

GUPO 103 24-Jan-1998 07:06:4010s 180.6:818 441KW 
Ch1 S IF 7.875

3.5

1a

■ 200 300 400 500 €00 700 800
tzngo (km)

Figure 5.8: (a) Power profile for a probable satellite passing through

the beam in the GUPO data and (b) for a geophysical incident in the GUPO 

data o f 28th January 1998.
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5.7 Further Modifications to the Subroutine

In order to help identify the events most likely to be of geophysical interest using an

automated program it would appear that not only using the power profile is useful, but 

also the frequency at which the highest peak occurs can provide further filtering o f the 

data. It is noted that the satellites are the most common cause of the enhanced spectra 

and many of these spectra have enhancements close to the normalised mean value of 

zero. However, some satellite contamination does result in an enhanced shoulder 

which is Doppler shifted by more than the ion acoustic frequency. In order to 

eliminate the majority of the satellite contamination it is reasonable to remove those 

cases of enhanced spectra in which the enhanced shoulders occur within the ion 

acoustic frequencies. So it is necessary to consider what the most likely values are for 

the Doppler shifts of the two shoulders of the spectra. Observation of the naturally 

enhanced spectra obtained in the GUP3 data sets suggest that the shoulders usually 

occur somewhere outside ± 4.5 kHz.

From the theory, the peaks of the spectra will receive a Doppler shift of

as was noted in Chapter 2.

For the ESR beam, the frequency of the w av e ,/ is 500 MHz, so the wavelength is 

given by

c _  3 x 10 
~ _  500xlO 6

= 0.6 metres,
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whilst k  is Boltzmann’s constant, so

£ = 1.380xl(T23 J/°K.

Assuming an 0 + ionosphere

ml = 16a.m.u. = 1 6 x l.6 6 0 x l0 '27 kg.

Reasonable values o f the ion and electron temperatures are 

T{ = 1000°K, and Te = 2500°K

Hence,

, 2 1.380x l0 ‘23 x (1000 + 2500)
F (  A) = ± — J ----------------------------=-------

0.6 V 16x1.660x10
= ±4495.089 Hz 

« ±4.5 kHz

As the altitude increases, the values o f T\ and Tt increase. So the Doppler shift o f the 

shoulders o f the spectra will be greater at greater altitudes. In order to reduce the 

number o f situations in which the program identifies enhanced spectra caused by 

satellite contamination, the program is altered in such a way that only those cases 

where the frequency o f the highest peak is outside the region from -4.5 to +4.5 kHz 

are identified. This final version of the subroutine is reproduced in Appendix D. A 

manual check is still required to eliminate the events which were now identified as 

containing enhanced spectra but which are adjacent to a 10-second dump in which a 

satellite has probably passed through the beam at the appropriate altitude. Such 

enhancements may still be due to the satellite contamination in the side lobes. 

However this results in far fewer cases being identified by the program and a manual 

check o f the events is therefore more feasible. Typical results showing a geophysical 

event and a satellite found by this search method are shown in Figure 5.9.
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(a)

GUP3 1.3 3-Dec-1999 09:46:49 10s 42m: 181.0/81.6 553k|W 
LP2 SP H 402-860 <7> bH

1—1 650

h  600

M
--y

yX_
_̂ ,r\

_

(b)

GUP3 1.3 7-Dec-199912:20:39 1 Os 42m:181.0/81.6 730k|W 
LP2 SP H 352-679 <5> bH

Figure 5.9: Examples of (a) a geophysical event and (b) a satellite

contamination event found in the GUP3 December 1999 data using the 

automated subroutine.
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Chapter 6

Research Outcomes: Space Storms

6.1 Classification of Data

The common programme GUP3 data available on the catalogue at RAL (Rutherford 

Appleton Laboratory) is now examined using the modified rtg3 program. For 

consistency only the situations in which the radar beam is pointing at an azimuth of 

181° and an elevation of 81.6° are considered. This is when the beam is essentially 

field-aligned. As a consequence 404 hours o f data between August 1998 and March 

2000 are observed.

A record is made o f each of the anomalous spectra identified by the program. These 

cases are then checked manually to ensure that all four channels are showing the same 

features.
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There are only 33 ten-second dumps where the results varied in the different channels, 

of which 30 occurred in the December 1999 data. These cases may have been the 

result o f technical problems within the relevant channel, or a satellite just being 

visible in the side lobes in one channel but not in the other channels as a result o f the 

slight difference in the time at which the pulses are transmitted. Since there are so few 

of these cases they were not considered further.

There are clearly events where satellites or small items of space debris are not 

identified by the program since they have not caused enhanced spectra with a Doppler 

shift o f more than 4.5 kHz.

Some of the data dumps identified by the program could clearly be classified as being 

due to noise in the system. Figure 6.1 shows a typical example of such a situation.

This usually occurs when the radar power is being reduced or increased. These cases 

are not considered further.

In addition there are some instances when a satellite or item of space debris is 

detected in the background signal, but not in the LP2 pulse. The lower two panels of 

Figure 6.2 show the power profile, on the left, which has become negative as a result 

of the contamination seen in the background signal shown on the right. This situation 

is recorded as being due to noise in the background signal and therefore is not 

considered further.

The program helps to eliminate other situations from consideration by identifying 

them as probable or possible satellites or items of space debris. In such instances, a 

manual check o f the power profile confirms the elimination.
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lag
 

0

t r e  a  j | s p a  |
GUP3 1.2 9-Feb-1999 08:01:39 10s 180.6/81.6 823kW 
LP2 SP H 227-851 <7> bH

qjPMsnK

Figure 6.1: Example of data dump classified as being due to noise

when spectra in adjacent ten-second data dumps appear to be normal.

in  a  j s p a  I
GUP3 1.2 21-D ec-1998 02:05:29 10s 180.6/81.6 962kW 
LP2SP H 248-729 bH

250-
-10-15 -5 0 5 10 15

-T- \

[kHz]

in
GUP3 1.2 21-D e c -1998 02:05:29 10s 180.6/81.6 962kW 
LP2 sO 7.600 MHz

GUP3 1.2 21-D ec-1998 02:05:29 10s 180.6/81.6 962kW 
LP2 b 7.500 MHz

930
Altituca [km]

Figure 6.2: Example o f ten-second data dump classified as being noise

in the background signal.
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The remaining occurrences o f enhanced spectra are divided into two groups. They are 

classified as being of geophysical origin if they extend over an altitude of more than 

100 km in the LP2 data and the power profile does not show a sudden increase, though 

a gradual increase and decrease in power is possible. Figure 6.3 shows the observed 

spectra and the associated power profile for such a situation. It is clear that this is not 

showing the same characteristics as a hard target.

The remaining group contains those which have not been clearly identified as satellites 

or as being o f geophysical origin. A typical example is shown in Figure 6.4. Here we 

see no significant change in the power profile and there is only a slight suggestion o f 

enhancement over a restricted altitude between 700 and 800 km. Although such cases 

may be attributable to satellite contamination the methods employed here do not 

clearly classify them as such. Further work would therefore be needed to identify 

whether these are due to satellite contamination or are caused by geophysical 

phenomena. As they appear to be fairly randomly spread throughout the data dumps, 

with no bunching at any specific times, they are not considered further here.

At this stage our interest is focused on those times at which spectra are found which 

can be considered to be the result of some geophysical phenomenon, i.e. the data 

remaining after all cases due to noise or any possible satellite contamination and any 

for which a cause is not clearly distinguishable at this stage have been excluded.
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GUP3 1.3 3-D ec-1999 09:45:49 10s 42m:181.C/81.6 937kW 
LP2 SP H 355-854 <7> bH

(b)
GUP3 1.3 3-D ec-1999 09:45:49 10s 42m:181.0/81.6 937kW 
LP2 sO 7.734 MHz

x 10
2.5

0.5

10C 500 
Altitude [km]

200 300 700 800 900

Figure 6.3: (a) Typical spectra identified as being o f geophysical origin in the

GUP3 data and (b) the corresponding power profile.
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GUP3 1.3 9 -D ec-1 999 16:00:29 10s 42m: 181.0/81.6 938kW 
LP2SP H 500-857 <5> bH

(b)
GUP3 1.3 9 -D e c -1999 16:00:29 10s 42m:181.0/81.6 938kW 
LP2 sO 7.734 MHz

x10
2.5

1.5

0 5

iOO 50010C 200 300 600 700 soo 900
Altitude [kin]

Figure 6.4: Typical example (a) showing spectra with similar features

as those o f a satellite with a Doppler shift greater than 4.5 and (b) the 

corresponding power profile which does not show any evidence of a 

significant change.
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Year No. of ten- 

sec. dumps

NEIAS NEIAS/ 

Space debris

1998 53290 133 78

1999 82912 56 86

2000 9369 0 4

Total 145571 189 168

Table 6.1: Details o f naturally enhanced ion-acoustic spectra (NEIAS)

identified in the Common Program GUP3 data between August 1998 and 

March 2000.

The results in Table 6.1 clarify that only a small proportion of the ESR spectra are 

actually identified as being naturally enhanced spectra. This is in close agreement 

with the results reported by Rietveld et al. (1996) using data for the years 1987-1993 

from the mainland site, Tromso. The table shows that in the test data set of 145,571 

data dumps 189 are identified as containing anomalous echoes (of the order o f 1 in 

770). A further 168 data dumps are not clearly identified as containing either satellites 

or anomalous echoes and require further study to clarify which category they should 

be placed in. It is highly likely that the majority of these 168 data dumps are due to 

small space debris passing through the beam or the side lobes since they appear to be 

randomly scattered throughout the data.

It must be noted that the data included in this study is not evenly spread over the time 

period, August 1998 to March 2000, so it is not advisable to place too much weight on 

the statistics so obtained. However, with respect to the 189 events identified as being 

of geophysical origin, it is clear that:

• the number of ten-second dumps in which naturally enhanced ion acoustic 

spectra occur is rare, as can be seen in Table 6.1,
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No. of consecutive ten-sec dumps 1 2 3 4 5

No. of occurrences 54 39 13 2 2

Table 6.2 Details of lifetimes of occurrences of naturally enhanced

ion-acoustic spectra.

• any geophysical cause is short-lived within the narrow beam of the radar. 

This explains that the reason they are not persistent could be because they 

move fast within a radar beam. They tend to occur in isolated ten-second 

dumps, as shown in Table 6.2,

• most occurrences of enhanced spectra are above 400 km altitude.

On examination of the data it is clear that the majority of the 189 events identified as 

being of geophysical interest are concentrated on eight days. There are three easily 

identifiable days in the 1998 data when there are a large number of naturally enhanced 

anomalous spectra compared with the other times. In the 1999 data there are five days 

when there are a significant number of occurrences of naturally enhanced anomalous 

spectra. At all other times any occurrences of such anomalous spectra are extremely 

rare i.e. no more than 2 occurrences in any day's data set which contains more than 2 

hours of data. In the 2000 data there were only a few days in January when the radar 

beam was pointing in the field-aligned direction and none of these days showed a 

significant number of anomalous spectra which could clearly be assigned to be o f 

geophysical interest at this stage.

The three times of interest in the 1998 data occur on 26th August and 24th and 25th 

September, whilst the five times in the 1999 data occur on 11th and 12th February, 2nd 

September and 3rd and 4th December. We now look at some of these in more detail.
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6.2 Case Studies

6.2.1 Magnetic Storm of 26th August 1998

The Disturbance Storm-Time (Dst) Index is a useful means o f observing magnetic 

storm behaviour. It is constructed by averaging the horizontal North/South (H) 

component o f the geomagnetic field from mid-latitude and equatorial magnetograms. 

At these latitudes the magnetometer stations are not so close to the equator that the 

magnetic perturbations observed on the ground are dominated by the E-region 

equatorial electrojet. Hence the H component is dominated by the intensity o f the 

magnetospheric ring current, which is directed westward and so produces a negative 

H perturbation at low latitude magnetometer stations (Kelley, 1989). The onset (or 

initial phase) of a storm is usually indicated by a sudden increase in the Dst index 

which is caused by the compression of the magnetosphere as a result o f the arrival of 

a burst o f solar plasma. This stage is followed by the main phase indicated by a large 

decrease in the Dst index due to the ring current. This phase may last up to a 

maximum of a day. It is then followed by the recovery stage in which the Dst index 

gradually returns to its normal level. This may last a few days.

♦hWe note the storm type behaviour of the Dst index in Figure 6.5 for 26 August 1998. 

This indicates that the storm started after 05:00:00 UT. On this day the anomalous 

echoes mainly occur from 03:40:00 to 03:53:00 UT, from 05:38:00 to 06:09:00 UT, 

from 07:10:00 to 08:03:00 UT and just before 10:00:00 UT which is before and 

during the onset and just before the main phase of the storm. We can see from the 

magnetogram data shown in Figure 6.6 that this coincides with an active period at 

Longyearbyen.

♦Vi
Figure 6.7 shows some typical spectra which were obtained on the morning of 26 

August 1998. Where it was thought to be helpful, the power profile is also shown.
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Figure 6.5: Dst indices for 26th and 27th August 1998.
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GUPS 1.2 26-A ug-1998 03:43:09 10s 180.5/81,6 757kW
LP2 SP H 352-723 <5> bH

GUP3 1.2 26-Aug-1998 03:43:49 10s 180.6/81.6 757kW
LP2 SP H 352-723 <5> bH

GUP3 1.2 26-Aug-1998 03:43:19 10s 180.6/81.6 757kW 
LP2 SP H 352-723 <5> bH

GUP3 1.2 2€-Aug-1998 0343:49 10s 180.6/81.6 757kW 
LP2 sO 7.500 MHz

500 
Altitude [kir]

GUP3 1.2 26-Aug-1998 03:43:29 10s 180.6/81.6 757kVV 
LP2 SP H 352-723 <5> bH

GUP3 1.2 26-Aug-1998 03:43:19 10s 180.6/81.6 757kW 
LP2 SO 7.500 MHz

•100 500 600
Altitude [km]

GUP31.2 26-Aug-1998 03:43:59 10s 180.5/81.6 757kW 
LP2 SP H 352-723 <5> bH

GUP3 1.2 26-Aug-1998 03:43:59 10s 180.6/81.6 757kW 
LP2 sO 7.500 MHz

ZOO 500 600
Altitude [Km]

Figure 6.7: Two sequences o f spectra which include examples of

anomalous spectra which occur in the data of 26 August 1998.
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We see quite dramatic changes in the appearance of the spectra over a period o f less 

than one minute. Unfortunately, the simultaneous data from other instruments is 

limited for this event, so it is difficult to understand why the anomalous spectra 

should occur before the onset o f the storm.

6.2.2 Magnetic Storm of 24th-25th September 1998

The September 25th 1998 event is a well-known storm about which a number of 

papers have already been published (Russell et a l , 1999; Moore et a l , 1999; Chi et 

al., 2000; Strangeway et a l , 2000). However the papers concentrate on the 

measurements obtained by satellites and ground based magnetometers. They do not 

consider the effects, if  any, that show in the radar spectra. The GUP3 ESR data shows 

there to be an unusually high number o f asymmetric spectra between 18:24:00 and 

19:17:00 UT on the 24th September and again between 00:00:00 and 00:10:00 on the
tVi

25 September. Some examples are shown in the Figures 6.8 and 6.9. We notice that 

most of the time it is the downshifted shoulder which is enhanced. Additionally the 

whole spectra tend to be displaced negatively from the mean, which indicates an ion 

outflow from the ionosphere.

The Dst index data is shown in Figure 6.10. Here we see evidence of the 

commencement of the magnetic storm as the Dst index increases just before midnight
th

on the 24 September followed by the main phase o f the storm during the early hours 

of 25 September. It is slightly surprising that many o f the anomalous spectra occur in 

the data a few hours before the onset of the storm. However when we consider the H 

component of the magnetic field as shown in the two stack-plots in Figure 6.11 we see 

that there is some activity at Longyearbyen after 18:00:00 UT and again around 

midnight.
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GUP3 1.2 24-Sep-1998 1821:59 10s 180.6/81.6 737kW
LP2 SP H 399-786 <5> bH

GUP3 1.2 24-Sep-1998 18:22:19 10s 180.6/81.6 737kW 
LP2 SP H 399-786 <5> bH

GUP3 1.2 24-Sep-1998 18:22:09 10s 180.6/81.6 737kW 
LP2SP H 399-786 <5> bH

GUP3 1.2 2 4 -S ep -1998 18:22:19 10s 180.6/81.6 737kW 
LP2 sO 7.500 MHz

ZOO 500 600
Altitude [km]

GUP3 1.2 24-Sep-1998 18:22:09 10s 180.6/81.6 737kW 
LP2 sO 7.500 MHz

s1 0 '

3

Altitude [km]

GUP3 1.2 2 4 -S ep -l998  18:22:29 10s 180.6/81.6 737kW 
LP2SP H 399-786 <5> bH

<  560

___ ----
___ - _

_

(W-W

Figure 6.8: Examples of typical anomalous spectra which occur in the

data dumps of 24th September 1998.
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GUP31.2 25-Sep-1998 00:04:39 10s 180.6/81.6 750kW
LP2 SP H 303-677 <6> bH

-15 -10 -5
[kHr]

GUP3 1.2 25-S ep -1998 00:04:39 10s 180.6/81.6 750kW 
LP2 sO 7.500 MHz

Altitude [krr]

GUP3 1.2 25-Sep-1998 00:04:49 10s 180.6/81.6 750kW
LP2 SP H 303-677 <6> bH

GUP3 1.2 25-Sep-1998 00:04:49 10s 180.6/81.6 750kW 
LP2 sO 7.500 MHz

Altitude [krn]

Figure 6.9: Examples of typical anomalous spectra which occur in the

data dumps of 25th September 1998.
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Figure 6.10: Dst indices for 24th and 25th September 1998.
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The K-indices for 3-hour intervals, measured at Longyearbyen, are observed to be 

increasing from 5 to 7 for both of these events in August and September 1998. The 

anomalous spectra occur before the K-indices reach the peak average o f 7, though 

care must be taken in using this information as the K-indices are averaged over 3 

hourly intervals. Hence there may clearly be times within an interval when the value 

is significantly higher than the average value recorded.

The fact that the anomalous echoes occur at times o f high magnetic activity is in 

agreement with the report by Rietveld et a l (1991).

We are now going to concentrate on three o f the events from the 1999 data for which 

good simultaneous data exists from the meridian scanning photometer in 

Adventdalen. These are 11th and 12th February and 3rd December.

6.2.3 11th February 1999

Figure 6.12 shows examples of anomalous spectra found in two consecutive ten-
t f isecond dumps on 11 February 1999. In these spectra we notice that although both 

shoulders are enhanced, the downshifted one is more prominent. The corresponding 

power profiles obtained show a lack of a sudden increase and decrease in power over 

a restricted 100 km range, making it clear that these events could not be due to 

satellites.
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GUP3 1.2 11-Feb-1999 22:15:19 10s 180.6/81.6 952kW
LP2SP H 251-637 <S> bH

GUP3 1.2 11-Feb-1999 22:15:29 10s 180.6/81.5 952kW
LP2SP H 251-637 <5> bH

GUP3 1.2 11-Feb-1999 22:15:19 10s 180.6/81.6 952kW 
LP2 sO 7.500 MHz

Altitude [kir]

GUP3 1.2 11-Feb-1999 22:15:29 10s 180.6/81.6 952kW 
LP2 sO 7.500 MHz

Figure 6.12: Examples of typical anomalous spectra which occur in the

data dumps of 11th February 1999.
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tf lThe meridian scanning photometer data for the day, 11 February 1999, is shown in 

the Figure 6.13. The panels show five different wavelengths of auroral emission. The 

top one is that of the red line (6300A) oxygen emission arising primarily from 

precipitation of soft particles with energies around 500 eV. The second panel shows 

the blue line (4278A) nitrogen emission, corresponding to energetic precipitation of at 

least 5 keV. The third panel shows the green line (5577A) oxygen emission, again 

arising from relatively energetic precipitation of at least 2 keV. The fourth panel 

shows the emission at 4861 A, arising from proton precipitation. The bottom panel 

shows the 7320A oxygen emission, which arises from soft particles with energies 

around 200 eV. Time runs along the x-axis. For each of the five panels, the y-axis is 

the elevation running from the southern to the northern horizon. As the ESR beam is 

pointing southward at an elevation of 81.6° during this experiment, the horizontal 

white lines shown in each of the panels represent a time history of the emission in the 

ESR field-of-view. The times at which the anomalous echoes appear correspond to 

the region indicated by the vertical white line around 22:15:00 UT.

We look at the detailed interpretation of the photometer data, in terms of the physics 

involved, later in section 6.3. Other anomalous spectra occur between 09:00:00 and 

10:00:00 UT and between 11:30:00 and 11:35:00 UT, but unfortunately there is no 

meridian scanning photometer data available from Longyearbyen at this time.

During the event shown the echoes coincide with a particularly striking event, 

characterised by auroral emission at all o f the wavelengths represented. We notice, 

however, that the emissions from the lower energy precipitation are much the 

strongest, while the emissions from the high energy precipitations are relatively weak.

The magnetometer data is shown in Figure 6.14. Here we notice that once again the 

anomalous spectra occur at times which are magnetically active at Longyearbyen.
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6.2.4 12th February 19 99

tVi
The next example is from the following day, 12 February 1999. Figure 6.15 shows 

typical anomalous spectra measured in consecutive ten-second dumps which were 

seen in this set o f data. Here we notice that the initial data dump shows the upshifted 

shoulder enhanced more strongly whilst the following data dump shows the 

downshifted shoulder to be the more prominent. The results in the two data dumps 

being so different from each other may be due to there being more than one event 

causing the anomalous spectra. These events may last for a shorter time period than 

the ten seconds and only occur in part of the radar beam’s cross-section as suggested 

by Grydeland et al. (2003).

In the meridian scanning photometer data for this day shown in Figure 6.16 we notice 

the series o f poleward-moving events. Once again the horizontal white lines represent 

a time history o f the emission in the ESR field-of view. The first set of anomalous 

spectra are seen during the interval of time between the first two vertical white lines 

on the left, i.e. between 04:02:00 and 04:30:00 UT. Other times at which similar 

spectra are seen to occur are around the periods shown by the next two vertical white 

lines, i.e. 05:00:00 and 06:30:00 UT. Interestingly the anomalous spectra seem not to 

occur at the peaks of emission in these events. Other times at which anomalous 

spectra occur in this day’s data set are 07:46:20 and 08:35:40 UT. Unfortunately the 

photometer data is not available at these times.

The magnetometer data shown in Figure 6.17 indicates that these are again 

magnetically active times at Longyearbyen. However, the Dst indices are plotted for 

both 11th and 12th February 1999 in Figure 6.18. The anomalous spectra for 11th 

February 1999 occur during the first significant rise in the Dst index and at the peak
iL

of the second rise in its value. On 12 February 1999 the anomalous spectra occur 

during the two occasions when the Dst index is changing from decreasing to 

increasing before the steady return to its normal value.
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Figure 6.15: Examples o f typical anomalous spectra which occur in the

data dumps of 12th February 1999.
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Figure 6.18: Dst indices for 11th and 12th February 1999.
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6.2.5 3rd December 1999

The anomalous spectra on 3rd December 1999 occur during the time intervals 

09:42:00 to 10:03:00 UT and 10:55:00 to 11:00:00 UT. Some typical examples, which 

are not taken from consecutive data dumps, are shown in Figure 6.19. This time we 

notice that although both examples show spectra which have both shoulders enhanced 

it is the upshifted shoulder which is the more prominent in both cases. In addition the 

spectra are displaced negatively from the mean, as is the case with the spectra from 

the 25th September 1998 data, indicating an ion outflow.

The meridian scanning photometer data is shown in Figure 6.20. The anomalous 

echoes occur at times between the first two vertical white lines on the left and during 

the time period around the vertical white line on the right. These seem to be periods o f 

enhanced 6300A emission, but there is no strong association with periods o f enhanced 

5571A  emission, for example, even though this corresponds to more energetic 

precipitation.

The magnetometer data shown in Figure 6.21 again shows the relevant periods to be 

magnetically active, though there are other magnetically active periods when no 

anomalous spectra occur.

The Dst indices for this period are somewhat unusual in that they maintain a positive 

value throughout the previous day, 2nd December 1999, in spite of there being a 

tendency for the values to decrease from 13:00:00 UT onwards as seen in Figure 6.22. 

The anomalous spectra o f 3rd December occur at the same time as the decrease in the 

Dst value.
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December 1999 obtained from http://geo.phys.uit.no/geomag.html
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Figure 6.23: Schematic diagram of excitation levels of oxygen.

6.3 Proposed Atomic Model

Once we-have identified the times at which the anomalous spectra occur in the data 

some attempt has been made to consider the geophysical conditions at these times. In 

particular the Dst indices, the H component of the magnetic field and, if  available, the 

photometer data have been observed. The anomalous spectra seem to coincide with 

times of magnetic activity. They are most abundant in the hours before and during the 

onset of a magnetic storm.

Apart from the interest of matching up the anomalous echoes with the emission 

signatures in the photometer data, we have tried to use the photometer data in a 

quantitative way to tell us something about the ionospheric conditions under which 

these events occur. We look at the simplest possible model, that o f excitation and 

decay of oxygen assuming thermal excitation. This gives a predicted “thermal” line 

intensity ratio which we can use as a benchmark for interpreting the observation. The 

model is therefore going to involve using the excitation levels of oxygen. These are

shown as 3i )2,i,o’ lj^  an<̂  ^  in Figure 6.23.

134



We concentrate on the levels of oxygen emissions at 5511k. and 6300A. The 6300A 

emission arises from the decay of an oxygen electron excited onto the ]D  shell. The 

5511k  emission arises from the decay of an electron from the more excited lS  state. 

Information about the mechanisms involved can be found in Rees (1989). The 

emission intensity from each of these lines is proportional to the populations, n x and 

n 2 , o f electrons in these two excited states.

Let A tJ be the radiative decay rates from state i  to state j .  We are assuming that we 

only need to consider the values of AtJ for i  >  j , thus we are ignoring all photo­

absorption processes such as sunlight, since the cases in which we are interested occur 

during the winter months at Longyearbyen. The values of Atj used in our model are

those from Galavis et al. (1997).

We also let C (j ( T c )  be the collisional excitation or de-excitation rates from state i  to 

state j .  Here we also assume a linear combination of temperatures, so we have:

C j j  —  ( ^ th e r m a l  )  +  0  —  ij  C ^ h u g e  )

where r = the fraction of the electron population, vVe, which is thermal,

7]iUge = temperature representing the energy of incoming energetic particles.

The values of C(/ are calculated using the R-matrix method from Thomas et al.

(1997).

Then,

the rate of change of population in each of the excited states = production -  loss

This can be expressed in terms of a few important production/loss mechanisms for a 

collisionally dominated plasma as
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d«j
dt — W0^eQ )l ^  P  l^*-^2l)  ^ li^ e ^ lO  ^12 ) “*“ -̂ 10 ] (6 *1)

and

dn2 
d t

-  noNeCQ2 + nlN cCn + P 11 -  n2 [.Afe (C20 + C21)+  A2l + A20 + L11 ] (6.2)

where P 1, P u, I)  and IP are other production and loss rates such as dissociative 

recombination and quenching as mentioned in Witasse et al. (1999).

For the lD  level we have

and

P l = N ck 3 [OJ ] + ^6[N *][02] + A:7 [N+ ] [0 2 ]

^ = / , [ N 2] + /2[ 0 2] + /3[0]

where

k3 arises from the reaction

k6 arises from the reaction

k7 arises from the reaction 

/j arises from the reaction

l2 arises from the reaction 

/3 arises from the reaction

0 +2 +Qth - > 0  + 0 CD) 

N (2£>) + 0 2 -> N 0 .+  0 ( 1D) 

N + + 0 2 -> 'N 0 + + 0 ( 1D) 

0(\D ) + N 2 - + o  + n 2 

0(\D) + 02 ->0 + 02

o (\d ) + o - » o + o

For the lS  level we have

and

Pn =iVe/:3,[On + ^ [N 2][0]

IP = lv [ 0 2] + /2, [O]
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where

ky arises from the reaction 0 2 + Qth -> O + 0 ( lS)

k2, arises from the reaction N 2(;432)*) + 0 - » N 2 + 0 ( lS)

lY arises from the reaction O^S) + 0 2 - > 0  + 0 2

l2, arises from the reaction + O -> O + O

We now assume that there are no populations in higher states which could cascade 

downwards, so

n0 = 1 -  h, -  n2 

We also assume that it is a steady state situation, so

=  0

Hence equation (6.1) becomes

“ wi[Ne(C01 + Qo + Cn) + Ao + Ll] + n2[Ne(C2] - C 0l) + A2l] + N eC0l + P l = 0 

which can be written as

- n xLx +n2Qx + Px = 0  (6.3)

where

A = (Qi + Qo + Q2)+ Ao + £

P\ ~ N f iox + P 1

and

Q\ — -̂ e (p21 — C01) + 2̂1
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Similarly equation (6.2) becomes

n\N*(Pn -C o 2 )~ n2[Ne(C20 + C 21 +C02) + A2l + A20 + Lll] + N eC02 + P n = 0  

which can be written as

n\Q2 ~ n2L2 +P2 =0  (6.4)

where

L2 — N e (C20 + C2 j + C02)+  -̂ 21 ^ 2 0  **"

and

P2 =jVeC02+ P n

e2=#e(c,2-c„2)

Eliminating yi2 from equations (6.3) and (6.4) we have 

— n\ {LxL2 — Q\Q2) + L2P\ + P2Qi = 0

From which we obtain

n, = LlP' +PlQ' and n i = h E l ± M L .
A-^2 ~Q\Q i A-^2 ~Q\Q i

Hence

_ L2P\ + P2Q\

n2 LA  ^  P\Q2

Now the emission intensity of the 6300A line, 7630 0 = A6300 \o \ i x

and the emission intensity of the 5511k  line, 15577 = A557 7 \o\i2
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So the intensity ratio ^  L2P, +P2Qt
■^557.7 ^ 5 5 7 .7  W2 ^ 5 5 7 .7  A ^ 2  +  - ^ 1 ^ 2

The model has been set up in an EXCEL spreadsheet (see Appendix E). Using 

parameters ( N e,Te,Ti ) from the analysed data for 3rd December 1999 about 20

minutes before the occurrence o f the anomalous spectra the value for the intensity 

ratio obtained is 30.3. The digital photometer data was also obtained (Deehr, 2003) in 

the form of line intensities as a function o f wavelength, time and angle from which we 

calculated the intensity ratio for the 98° scan. This is in approximately the same 

direction as that o f the radar beam during the GUP3 experiment on the same day. The 

graph o f these results is plotted in Figure 6.24. This suggests that the anomalous 

spectra have occurred in this set o f data at the time when the intensity ratio has 

increased significantly. It can be seen that during most o f the day the ratio was in the 

region of 1 or less but around 09:45:00 UT it increased to almost 6.

We predicted an intensity ratio of about 30 from the model, but the observations show 

a much lower figure. This suggests that either 0 ( 1S ) is over-populated or 0 ( 1D ) is 

under-populated according to our simple model. We cannot easily choose between 

these: our atomic model can predict the absolute intensity of each line as photons 

m “3 s"1, but the photometer data comes from a ground-based vertical slice, so cannot 

compare absolute intensity as it would vary with height. Most likely the highest state 

0 ( ! S ) is being excited by non-thermal high energy electrons or ions not accounted for 

in our simple model. However, during an event the observed ratio rises an order of 

magnitude due to I630 0 rising more than I557 7 . Curiously this enhanced ratio tends

towards our modelled prediction, indicating perhaps that thermal collisional processes 

may start to play a greater role in the oxygen excited state population.
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3rd December 1999

Time (UT)

Figure 6.24: EXCEL chart showing the intensity ratio, ( /6300 / / 5577), for

3rd December 1999 as calculated from the 98° photometer scan.
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iL
So the model could not be tested against this data. The data for 12 February shows 

the intensity ratio has increased at the times of the anomalous spectra, but not as much 

as is the case with the 3rd December data.

The data for 11th and 12th February 1999 have also been obtained. The EXCEL charts 

showing the intensity ratios are shown in Figures 6.25 and 6.26. Unfortunately the 

data obtained for 11th February 1999 did not cover the period of interest when a 

particularly striking event appears to have occurred in the colour plots in Figure 6.13.

At present this is a simplified model containing many assumptions. It is still in its 

early stages, and more work needs to be done to improve its reliability before we are 

able to state any conclusions with confidence.
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11th February 1999
60 T

Time (UT)

Figure 6.25: EXCEL chart showing the intensity ratio, ( /630 0 / 1557 7), for

11th February 1999 as calculated from the 98° photometer scan.

12th February 1999

Time (UT)

Figure 6.26: EXCEL chart showing the intensity ratio, ( /630 0 / / 557 7), for
th12 February 1999 as calculated from the 98° photometer scan.
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Chapter 7

Conclusions

7.1 Satellites

As reported in Porteous et al. 2003, a substantial amount of raw data from the 

EISCAT Svalbard Radar has been studied in order to find a method for identifying 

likely causes o f enhanced spectra. It was suspected that many o f the cases found were 

due to satellites or space debris passing through the main beam or the side lobes. An 

automated routine was therefore developed and used to identify those times at which 

enhanced spectra occurred.

It has been shown that examining the variation of power with range can give a good 

indication o f whether the spectra are caused by satellites or are possibly o f a 

geophysical nature. In the ESR GUP3 experiment, which contains both long pulse and 

alternating code data, enhancements in the power profiles o f both modulations are 

noted when satellites appear. A threshold increase of 20% in the returned power was 

used to help divide the cases into two classes. Situations in which the returned power
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Range

(km)

Number

of

satellites

Number of possibly 

naturally enhanced 

spectra

<600 2 1

600-750 7 5

>750 15 10

Table 7.1: The number of satellites and possibly naturally enhanced

spectra found in the region covered by the ESR beam for 10:11:30 to 

13:00:00 UT on 1st December 1999.

showed an increase of 20% or more were classed as being due to satellites or space 

debris whilst those which showed a smaller increase in power could be considered as 

possible cases for further investigation relating to a possible geophysical cause. On 

this basis, it is possible to use an automated program to distinguish between such 

cases. A small number o f noisy spectra are identified by the program and have to be 

eliminated.

In the period 10:11:30 to 13:00:00 UT on 1st December 1999 it was found that the 

numbers o f satellites and possibly naturally enhanced spectra occurring in the region 

covered by the ESR radar beam were as given in Table 7.1. It can be seen from these 

results that there were on average about eight satellites per hour passing through the 

radar beam.

The routine was tested using further data from 2nd and 3rd December 1999 and similar 

results were obtained. It was simple to verify that satellites at too great a distance, 

such as that predicted at 12:08:21 UT with a range o f 871 km, were not detected by 

the radar. Similarly, those at too large an angle from the beam centre, such as that
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predicted at 11:55:30 UT at an angular distance o f 6.319°, were not detected. This 

gives some insight into the area within which the beam at Svalbard could detect 

satellite contamination. Further work needs to be carried out to provide greater 

refinement.

Since there were a small number of times when probable satellites were detected by 

the automated program, but when no satellites were found using the tracking program, 

there is scope for further studies in this area. This may, for example, mean checking 

the positions o f a larger number of satellites or items o f space debris by including 

those which have a greater perigee than 900 km. Although the returned signal is 

interpreted as coming from a specific altitude, it is possible for the signal to be 

returned as a result o f reflection from a hard target at a much greater range and the 

hardware to have interpreted it as having come for a much closer region.

Following on from the work done in identifying satellites in the radar beam, we have 

identified times when the anomalous spectra appear to be caused by geophysical 

phenomena by eliminating the enhanced spectra where the peaks occur with a 

Doppler shift between -  4.5 and + 4.5 kHz. This resulted in considerably fewer 

situations having to be manually checked. Further work could be carried out to enable 

some o f the remaining cases to be eliminated automatically by checking the distance 

between the increase and decrease in power. Since only those cases where this 

distance is greater than 100 km need to be examined further.

Since there are a large number of satellites, or items of space debris, orbiting the earth 

and therefore likely to pass through the beams of incoherent scatter radars, care must 

be made to distinguish between the spectra caused by such objects and those arising 

from geophysical conditions. This applies not only to the ESR data, but for any radar 

data.
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Further studies still need to be performed at the times of those anomalous echoes not 

automatically rejected as being due to satellite contamination, to determine whether or 

not these are genuinely o f a geophysical nature. Since the occurrence o f enhanced 

spectra due to geophysical conditions is not necessarily frequent, automated search 

routines o f the type described here provide the scope for extracting such data from 

very large extended data sets and hence assisting in the investigation o f naturally 

enhanced spectra and their causes.

It would be interesting to make appropriate changes to the automated program so that 

the actual frequencies at which both peaks occur are noted in all situations. This 

would involve using the idea of the change in sign o f the gradient of the spectra when 

proceeding from left to right along the curve.

Further work is needed if an automated method is to be found for filtering 

contamination due to satellites and small items of space debris from the AC data, 

which is more noisy in nature, but which has a greater height resolution.

7.2 Naturally Enhanced Ion Acoustic Spectra

Using the automated program, the CP data for the GUP3 experiment during 1998— 

2000 has been searched for incidents of naturally enhanced ion acoustic spectra. It has 

been possible to identify a number of days when anomalous spectra occur. The most 

intense periods were two events in the 1998 data, 26th August and 24th-2 5 th 

September. Both of these events occurred during and preceding the onset o f a 

particularly impressive magnetic storm resulting from a coronal mass ejection. There 

were no events in the remainder of the data in which the frequency of occurrence of 

naturally enhanced ion acoustic spectra came close to matching that of these two 

events. However, there were some time periods in which these rare occurrences did
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happen with increased frequency. These were all recorded in the 1999 data sets on 

11th and 12th February, 2nd September, and 3rd and 4th December. Of these the 

graphical photometer data is available at the web site

http://haldde.unis.no/msp.htm

for 11th and 12th February and 3 rd December. The enhanced spectra on these days 

always occurred during periods of increased magnetic activity at Longyearbyen as is 

shown by the magnetometer data recorded at Adventdalen close to the ESR site.

A tentative model has been used to consider the thermal energies required to generate 

the intensity ratio o f 6300A/5577A emission. The spectra seem to occur when the 

intensity ratio is over 3. To date a ratio of 30.3 has been obtained using the model, 

whereas less than 6 is obtained in practice. Many of the parameters used in the model 

are estimates and this is clearly an area which needs further attention.

This research does seem to suggest that the anomalous spectra are not necessarily a 

result o f collisional or Joule heating as was indicated by Jones et al. (1990). It is more 

likely that they are a response to a sudden influx of solar particles

It is important that in the future the radars provide as great a coverage o f the time as 

possible as it is necessary to obtain simultaneous data from a range o f different 

sources in order to obtain the required variety of parameters for a complete 

physical/chemical model.
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Appendix A

‘iaspec’ program obtained from Francis Sedgemore-

Schulthess
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program iaspec

c Program to compute ion-acoustic spectra for drifting electrons and 
two
c non-drifting ions with arbitrary ratios of Te/Ti. Uses Maxwellian 
c descriptions only. Main inputs are: Ne, Te, Ti, Ve, and radio 
frequency
c density. Based on an algorithm of Jean-Pierre St-Maurice (1987).
c This program conforms to at least ANSI Fortran 77 standards, and
contains
c no calls to compiler-specific functions or external libraries. It 
can
c therefore be compiled simply with the following command:

c $ ill -o iaspec iaspec.f

c where $ is the operating system prompt. The devlopment system was a 
c Pentium class processor running GNU/Linux 2.2-2.4 and the G77 
compiler.

c The program prompts for, and then reads, a number of numeric input 
c parameters from STDIN. When run repetively, these may be better 
placed
c into a plain ASCII file, with one parameter per line. The program 
would
c then be run in the following manner: 

c $ iaspec < INPUT.DAT

c where INPUT.DAT is the input parameter file.

c This program is free software; you can redistribute it and/or 
c modify it under the terms of the GNU General Public License 
c as published by the Free Software Foundation; either version 2 
c of the License, or (at your option) any later version.

c-This program is distributed in the hope that it will be useful, 
c but WITHOUT ANY WARRANTY; without even the implied warranty of 
c MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 
c GNU General Public License for more details.

c You should have received a copy of the GNU General Public License 
c along with this program; if not, write to the Free Software 
c Foundation, Inc., 59 Temple Place - Suite 330, Boston, 
c MA 02111-1307, USA.

c Copyright (c) Jean-Pierre St-Maurice, 1987; Francis Sedgemore, 
1999-2001

c Contact: Dr Francis Sedgemore
c Danish Space Research Institute
c Juliane Maries Vej 30
c DK-2100 Kobenhavn 0
c Denmark
c Tel: +45 35 32 57 81 / 35 32 58 30
c Fax: +45 35 36 24 75 (DSRI)
c Email: ffransis@dsri.dk

c Initial edit: Francis Sedgemore, 10/8-99
c Last revision: kjfs 13/12-01
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c Parameter and array declarations.

parameter (isiz=260)- 
dimension

al(isiz), a2 (isiz),a3 (isiz),bl(isiz),b2(isiz),b3(isiz) ,
@ el (isiz),e2 (isiz),e3(isiz)

c Define the constants used. The calculation is done in CGS units, 
for want of
c the effort required to re-work the algorithm in MKS.

c ELCH = electron charge (stat Coulombs) 
c AMASE = electron mass (g) 
c AMASP = proton mass (g) 
c BOLTZ = Boltzmann constant (ergs/K) 
c VLIGHT = light speed in vacuo (cm/s)

data elch,amase,amasp,boltz,vlight,pi/4.810e-10,9.109e-28,
0 1.673e-24,1.38Oe-16,2.998el0,3.1415927/

c Read the input parameters from STDIN. These are:

c NTOT = number of points in positive frequency range (max=isiz)
c NLIM = number of points for computation (max=isiz)
c ENDF = end frequency of spectrum (kHz)
c PHI = angle between wave vector and B field (deg)
c AMAGF = magnetic field (Gauss)
c WINC = incident radio frequency (MHz)
c TE = electron temperature (K)
c ANOMN = electron density (mA-3)
c VDPAR = parallel drift (kmsA-l)
c AIMASA = normalised mass of ion species A
c AIMASB = normalised mass of ion species B
c TEMIA = temperature of ion species A (K)
c TEMIB = temperature of ion species B (K)
c FRA = fraction of ion species A

write (*,*)
write (*,*) 'Number of points in positive frequency range?' 
read(*, *) ntot
write (*,*) 'Number of points for computation?' 
read(*,*) nlim
write (*,*) 'End frequency of spectrum (kHz)?' 
read(*,*) endf
write(*,*) 'Angle between wave vector and B field (deg)?' 
read(*, *) phi
write (*,*) 'Magnetic field (Gauss)?' 
read(*,*) amagf
write (*,*) 'Incident radio frequency (MHz)?' 
read(*, *) wine
write (*,*) 'Electron temperature (K)?' 
read(*,*) te
write (*,*) 'Electron density (mA-3)?' 
read(*,*) anomn
write(*,*) 'Parallel drift (kmsA-l)?' 
read(*,*) vdpar
write(*,*) 'Normalised mass of ion species A?' 
read(*,*) aimasa
write(*,*) 'Normalised mass of ion species B?'
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read(*,*) aimasb
write(*,*) 'Temperature of ion species A (K)?' 
read(*, * ) temia
write(*,*) 'Temperature of ion species B (K)?' 
read(*, *) temib
write (*,*) 'Fraction of ion species A (0-1)?' 
read(*,*) fra

c Convert the input parameters to archaic units for the calculation: 
radio
c frequency to Hz, electron density to cmA-3, and electron drift 
speed 
c to cm/s.

winc-winc*1.e6 
anomn=anomn*l.e-6 
vdpar=vdpar* 1.e5

c Calculated parameters:

c PHI = angle PHI in radians 
c AMASIA = mass of ion species A 
c AMASIB = mass of ion species B 
c VTHIA = thermal speed of species A 
c VTHIB = thermal speed of species B 
c WMAG = magnitude of wavenumber 
c WPP = perpendicular wavenumber 
c WPL = parallel wavenumber

phi=phi*pi/180. 
amasia=aimasa*amasp 
amasib=aimasb*amasp 
vthia=sqrt(2*boltz*temia/amasia) 
vthib=sqrt(2*boltz*temib/amasib) 
wmag=4 *pi*winc/vlight 
wpp=wmag*sin(phi) 
wpl=wmag*cos(phi)

c Initialise the frequency loop variables.

fstep=endf/ (ntot-1) 
nmax=2*nlim-l

c Calculate the ion functions.

ya=l./(wmag*vthia) 
yb=l./(wmag*vthib) 
an=2000*pi*ya 
bn=2000*pi*yb

do 10,n=l,nmax 
ff=(n-1)*fstep-endf 
wia=ff*an 
wib=ff*bn
al(n)^displ(wia)+1. 
a2 (n)=-disp2(wia) 
a3(n)=exp(-wia*wia)*1.772454 
bl(n)=displ(wib)+1. 
b2(n)=-disp2(wib) 
b3(n)=exp(-wib*wib)*1.772454 

10 continue
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c Calculate the temperature ratios.

tra=te/temia
trb=te/temib

c Calculate the electron parameters:

c VTHE = thermal speed 
c OM = gyrofrequency 
c WPE = plasma frequency 
c DBLH = Debye length

vthe=sqrt(2*boltz*te/amase)
om=elch*amagf/ (amase*vlight)
wpe=sqrt(anomn*elch*elch/amase/pi)
dblh=sqrt(boltz*te/4/pi/anomn/elch/elch)
alpha=l./wmag/dblh
alpha2=alpha*alpha
ae=wpl*vthe
xe=wpp*wpp*vthe*vthe/2/om/om

c Calculate the electron functions.

do 20,n=l,nmax 
we=n*fstep*pi*2000-wpl*vdpar-endf*2000*pi 
el(n)=dielecl(we,ae,xe)*alpha2 
e2(n)=dielec2(we,ae,xe)*alpha2 
e3(n)=dielec3(we,ae,xe)

20 continue

c Calculate the plasma frequencies:

c WPIA = plasma frequency of species A (Hz) 
c WPIB = plasma frequency of species B

if (fra.le.l.) then 
wpia^sqrt (anomn*fra*elch*e'lch/amasia/pi) 
wpib=sqrt(anomn*(1-fra)*elch*elch/amasib/pi) 
aw2a=alpha2*fra*tra 
aw2b=alpha2*(1-fra)*trb 
else 
write(*,*)
write(*,*) 'Improper ion composition fraction (FRA > l)!1 - 

write (*,*) 
call exit (1) 
endif

c Calculate the zero frequency power (for normalisation).

freqO=nlim-l 
her=el(freqO) 
hei=e2(freqO) 
ame=e3(freqO)
hir=al(freqO)*aw2a+bl(freqO)*aw2b 
hii=0.
ami=a3(freqO)*ya*fra+b3(freqO)*yb*(1-fra) 
snorm=spec(her,hei,hir,hii,ame,ami)

c Open the output file, calculate the spectrum and write the results 
to file.
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open(unit=10,file='iaspec.out') 
do 30,n=l,nmax 
freq=n*fstep-endf 
her=el(n) 
hei=e2(n) 
ame=e3(n)
hir=al(n)*aw2a+bl(n)*aw2b 
hii=a2 (n) *aw2a+b2 (n) *aw2b 
ami=a3(n)*ya*fra+b3(n)*yb*(1-fra) 
skw=spec(her,hei,hir,hii,ame,ami)/snorm 
write(10,*) freq,hir,hii,ami, skw 

30 continue

stop
end

c Here ends the main program. There follow a few functions called by 
the main 
c program above.

c Function to evaluate the zeroth order modified Bessel function of 
x*exp(x).
c The method uses a polynomial approximation and the results apply 
only for
c positive arguments x (see, e.g., Stegun & Abramowitz).

function beso(x)

if (abs(x).le.3.75) then 
z— (x/3.75)* *2
beso=exp(-x)*((((((4.5813e-3*z+3.607 68e-2)*z+2.6597 32e-l)

0 *z+l.2067492)*z+3.0899424)*z+3.5156229)*z+l.)
return 
else 
z=abs(3.75/x)

beso=l./sqrt(3.75/z)*((((((((3.92377e-3*z-l.647633e-2)*z+
0 2.635537e-2)* z-2.057706e-2)* z+9.16281e-3)*z-l.57565e-3)
0 *z+2.25319e-3)*z+l.328592e-2)*z+3.98 9422e-l)

return 
endif 
end

c Function to evaluate the spectral density function given the 
electron and
c ion contributions to the longitudinal dielectric function, and the 
c respective multiplying factors.

c XE = real part of the electron contribution
c YE = imaginary part
c XI = real part of ion contribution
c YI = imaginary part of ion contribution
c ZE = electron multiplying factor
c ZI = ion factor
c SE = electron contribution to spectral density function
c SI = ion contribution to spectral density function */

function spec(xe,ye,xi,yi,ze,zi)

xr=xe+xi
er=l+xr
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ei=ye+yi
ea=er*er+ei*ei
be=((1+xi)**2+yi*yi)/ea
bi=(xe*xe+ye*ye)/ea
se=2*ze*be
si=2*zi*bi
spec=se+si
return
end

c Functions to evaluate Y times the Fried & Conte plasma dispersion 
function
c of Y. These functions are valid only for real values of the 
argument.
c DISP1 is the real part and DISP2 the imaginary.

function displ(y)

nmax=4 *abs(y)+4 
if (abs(y).le.4.) then 
if (abs(y).le.1.) nmax=10 
b=y/2.
do 4 0,n=l,nmax 
b=b+sinh(n*y)*exp(-n*n/4.)/n 

40 continue
display*(-2/1.772454)*exp(-y*y)*b
return
else
if (y*y.le.175.) then 

b=0.
do 50,n=l,nmax 
e=n*y-n*n/4.-y*y 
if (-e.gt.175.) then 
el=exp(e) 
else

el-0.
endif
f=-n*y-n*n/4.~y*y 
if (-f.gt.175.) then 

fl-exp(f) 
else

fl=0.
endif

b=b+(el-fl)/ (2*n)
50 CONTINUE

displ=-2/l.772454*y*(b+exp(-y*y)*y/2.) 
return 

else 
yy-i/(2*y*y)
displ—  ( ( (15*yy+3) *yy+l) *yy+l) 
return 
endif 

endif 
end

function disp2(y)

if (abs(y).le.4.) then 
disp2=-y*l.772454*exp(-y*y) 
return
elseif (y*y.le.175.) then
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disp2=l.772454*y*exp(-y*y) 
return 
else 
disp2=0. 
return 

endif 
end

C Functions to evaluate the contribution to the longitudinal 
dielectric
c function. DIELEC1 evaluates the real part, DIELEC2 the imaginary 
part, and
c DIELEC3 the multiplying factor in the spectral density function, 

c W = frequency
c A = parallel wave number * thermal speed 
c X — argument of Bessel function

c To obtain the actual contribution to the longitudinal dielectric 
function,
c appropriate multiplying factors must be used in the calling 
program.

function dielecl(w,a, x)

'ri=beso(x) 
b=w/a
dielecl=l+ri*displ(b)
return
end

function dielec2(w,a,x)

ri=beso(x)
b=w/a
dielec2=-ri*disp2(b)
return
end

■ function dielec3(w,a, x)

ri=beso(x) 
b=w/a
dielec3=1.772454*ri*exp(-b*b)/a
return
end
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Appendix B

Sample from the EXCEL spreadsheet used to identify 

which satellites need to be checked
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Appendix C

Sample output from the EXCEL spreadsheet used to 

identify the position of a satellite relative to the radar

beam
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«0 O' CNC \ o' F-d00 d̂ d̂ Os Os cd o’ <d cd so so NCN Os CNO' Os wdcd oo’ CNOsiN00 00 oo 00 00 oo N oo oo oo 00 r-- r~ oo 00 oo so so r- oo o o O' OOOO< 111—1 ' 11—11—1’—l ' ~ l1 ,—l ’~ l 1 1—1 < 1—1 ’~l 1—1CN 1 1—1

<D SC Pi D X s W 0) < > Pd
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Appendix D

Final version of ‘test_asymm’ subroutine used to help 

identify anomalous spectra
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function test_asymm(spe,freq,range)
% {

global peak_width crit_ratio DMPT out_fid gflag 
global sat_ratio ELEV 

% work out the time from the last parameter block of the 
% integration period

yyyy = round(DMPT(1)); 
mm = round(DMPT(2)); 
dd = round(DMPT(3)); 
hh = round(DMPT(4)); 
mi = round(DMPT(5)); 
ss = round(DMPT(6));

% find the frequency separation

frel = freq(2)-freq(l);

% fprintf('Testing asymmetry')
% to work out exclusion zone, divide peak_width by width
% of one frequency bin (frel = 0.763 kHz in gup3) and then divide
% by two

nexclude = peak_width/frel; 
nexclude = round(nexclude/2); 
if crit_ratio > 1  

rati = crit_ratio; 
rat2 = 1.0/crit_ratio; 

elseif crit_ratio <= 1 
rati = 1.0/crit_ratio; 
rat2 = crit_ratio; 

end
[nfreq,nrange]=size(spe); 
satprob = 0;

for i = 1:nrange 
i 1 (i) = i ; 
power(i) = 0.0; 
for j = l:nfreq

% fprintf(out_fid,1%9.2f %9.2f %e\n',range(i),freq(j),spe(j,i))
power(i) = power(i) + spe(j,i); 

end
% fprintf(out_fid,'%e\n',power(i))

end
sflagl = 0; 
sflag2 = 0; 
srange=0.0; 
erange=0.0;

% this section added by Joyce Porteous 07/01/02 to test for
satellites
% using the information based on increase and decrease in power

maxjump=-l.0; 
for i = 7:nrange-3 
diff(i) = power(i+3)-power(i); 
if power(i+3) < power(i) 

denom = power(i+3); 
elseif power(i) < power(i+3) 

denom = power(i); 
end
ratio(i) = diff(i)/denom;
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if maxjump < ratio(i) 
maxjump = ratio(i); 

end
if ratio(i) > sat_ratio 
srange = range(i); 
sflagl = 1; 

end
. if sflagl - : 1

if ratio(i)<-sat_ratio 
erange = range (i); 
sflag2 = 1; 

end 
end 

end
if sflagl == 1 
figure
plot (il,power) 
if sflag2 -- 1 
fprintf('Probable evidence of satellite!\n1) 
satprob=2; 

end
if sflag2 - 0
fprintf('Possible evidence of satellite!\n1) 
satprob=l; 

end 
end
if sflag2 == 1 
figure
plot (il,power) 
if sflagl == 0 
fprintf('Possible evidence of satellite!\n1) 
satprob=l; 

end 
end
spread = 0.0; 
if srange > 0 . 0  
if erange > 0 . 0

spread = abs(erange-srange); 
end 

end 
sflagl 
sflag2 
srange 
erange 
spread

for i = 1:nrange
[pmax,ppos] = max(spe(:,i)); 
spe(1:ppos-nexclude, i)
[p2max,p2pos] = max(spe(1:ppos-nexclude,i));
[p3max,p3pos] = max(spe(ppos+nexclude:nfreq,i));
The next line changed by Ian McCrea 23/04/01 to stop possible 
overflow in array, note that {ppos+nexclude} returns 1 for

os
above, so need to subtract 1 from p3pos in the sum below.
p3pos = p3pos+ppos+nexclude;
p3pos = p3pos+ppos+nexclude-l;
ppos
p2pos
p3pos
down = 0;
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up = 0; 
unshift = 0; 
if freq(ppos) < 0 

down = 1; 
elseif freq(ppos) > 0 

up = 1; 
elseif freq(ppos) = = 0  

unshift = 1; 
end
if p2max <= p3max 

smax = p3max; 
lpos = p3pos; 

else
smax = p2max; 
lpos = p2pos; 

end
maxrat = smax/pmax; 

s the next line added by Joyce Porteous 28/05/02 to eliminate
i anomalous spectra with Doppler shifts close to zero

if abs(freq(ppos)) >=4 5 
if maxrat <= rat2 
gflag = 1;
fprintf ('Range: 1,'%6.2f',range(i))
if up == 1

fprintf('Asymmetric spectrum - upshifted\n') 
elseif down == 1

fprintf('Asymmetric spectrum - downshifted\n') 
elseif unshift == 1

fprintf('Asymmetric spectrum - unshifted\n') 
end
fprintf (out_fid, ...
' %i %i %i %i %i %i %9.2f %9.2f %9.2f %9.2f %9.2f %i 

> 9.4 f\n', ...
yyyy,mm,dd,hh,mi,ss,range(i),maxrat,freq(ppos),freq(lpos),

ELEV,satprob,maxjump); 
end
if maxrat >= rati 
gflag = 1 ;  
if up == 1

fprintf('Asymmetric spectrum - upshifted\n') 
elseif down == 1

fprintf('Asymmetric spectrum - downshifted\n') 
elseif unshift == 1

fprintf('Asymmetric spectrum - unshifted\n') 
end
fprintf (out_fid, ...
' %i %i %i %i %i %i %9.2f %9.2f %9.2f %9.2f %9.2f %i 

; 9.4 f\n', ...
yyyy,mm,dd,hh,mi,ss,range(i),maxrat, freq(ppos) , freq(lpos),

ELEV,satprob,maxjump); 
end 

end 
end

;} test asyrmn
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Appendix E

EXCEL spreadsheet used for modelling the oxygen 

emission ratios using analysed data
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To Calculate intensity Ratio
Ne 1.00E+05 A630/A558 5.82E-03 aN2 3.10E+06
Ti 1.60E+03 aO 8.70E+07
Te 2.00E+03 Numerl 1.2612E-05 a02 9.20E+04
Tn 1.30E+03 Numer2 2.42E-09 aN 3.80E+06

Denom 0.01229891 aNO 0
aN2+ 3.10E+03

Ttherm 2.00E+03 nl 1.03E-03 aO+ 8.70E+04
Thuge 5.00E+03 n2 1.97E-07 a02+ 9.20E+01

Tave 2.50E+03 nl/n2 5.20E+03 aN+ 3.80E+03
aNO+ 0

Nemin 1.00E+05 IntRatio 3.03E+01 aN* 0
Nemax 1.20E+05

r 8.33E-01 pn 0
Pt 0

COltherm 8.36E-15 C01 2.49369E-12
C02therm 1.606E-21 C02 1.32645E-15

A630 6.54E-03 C12therm 1.11E-20 C12 8.38166E-15
A636 2.11E-03 ClOtherm 1.36E-09 CIO 1.5675E-09
A558 1.124 C20therm 4.850E-10 C20 5.97868E-10

C21therm 1.867E-09 C21 2.2355E-09

A10 8.65E-03 CO1huge 1.492E-11 PI 9.50E-06
A20 0.079 C02huge 7.959E-15 P2 2.55E-07
A21 1.215 C12huge 5.029E-14 Q i 1.215223301

ClOhuge 2.583E-09 Q2 9.70811E-10
C20huge 1.162E-09 LI 9.50E-03
C21huge 4.080E-09 L2 1.294285266

k3 9.23E-08 P3 8.50E-06
k6 5.00E-12 P6 0.00E+00

Pi 9.26E-06 k7 2.00E-10 P7 7.60E-07

k3' 1.83E-09 P3' 1.68E-07
Pii 2.55E-07 k2' 2.80E-11 P2' 8.68E-08

kN2 2.17E-11 rN2 6.74E-05
k02 3.05E-11 r02 2.81E-06

Li 6.95E-04 kO 7.19E-12 rO 6.25E-04

k02' 2.06E-12 r02' 1.89E-07
Lii 1.93E-06 kO' 2.00E-14 rO' 1.74E-06
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1/kb 157890
qconst 8.62933E-06

enatl 0 delt2 1.142E+01
enat2 0.1446 delt3 2.424E+01
enat3 0.307

iwl 9
iw2 5 hdelt2 4.566E+00
iw3 1 hdelt3 9.694E+00

up 2.000E+03 Q 1 2 '3
upOl 3.536E-02 1 0 8.356E-15 1.606E-21
up02 2.513E-03 2 1.364E-09 0 1.113E-20
upl2 9.673E-03 3 4.850E-10 1.867E-09 0

hup 5.000E+03 hq 1 2 3
hupOl 1.058E-01 1 0 1.492E-11 7.959E-15
hup02 9.524E-03 2 2.583E-09 0 5.029E-14
hup 12 3.344E-02 3 1.162E-09 4.080E-09 0
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R-Matrix

T U12 U13 U23
0 0 0 0 2.00E+03

2.00 1.00E+02 9.44E-03 6.29E-04 1.49E-03 14
2.10 1.26E+02 1.00E-02 6.74E-04 1.60E-03 1995 0.03529 0.002507 0.009637
2.20 1.59E+02 1.07E-02 7.28E-04 1.73E-03 2512 0.04203 0.003167 0.01339
2.30 2.00E+02 1.16E-02 7.93E-04 1.90E-03 2000 0.0353552 0.0025134 0.0096733
2.40 2.51E+02 1.27E-02 8.72E-04 2.10E-03
2.50 3.16E+02 1.40E-02 9.65E-04 2.34E-03
2.60 3.98E+02 1.55E-02 1.07E-03 2.63E-03 5.00E+03
2.70 5.01E+02 1.73E-02 1.20E-03 2.99E-03 17
2.80 6.31E+02 1.94E-02 1.35E-03 3.42E-03 3981 0.07414 0.006412 0.02538
2.90 7.94E+02 2.18E-02 1.51E-03 3.96E-03 5012 0.1062 0.009561 0.03353
3.00 1.00E+03 2.46E-02 1.70E-03 4.65E-03 5000 0.1058268 0.0095243 0.0334351
3.10 1.26E+03 2.76E-02 1.90E-03 5.63E-03
3.20 1.59E+03 3.10E-02 2.14E-03 7.17E-03
3.30 2.00E+03 3.53E-02 2.51E-03 9.64E-03
3.40 2.51E+03 4.20E-02 3.17E-03 1.34E-02
3.50 3.16E+03 5.39E-02 4.37E-03 1.86E-02
3.60 3.98E+03 7.41E-02 6.41E-03 2.54E-02
3.70 5.01E+03 1.06E-01 9.56E-03 3.35E-02 >
3.80 6.31E+03 1.53E-01 1.41E-02 4.30E-02
3.90 7.94E+03 2.15E-01 2.01E-02 5.36E-02
4.00 1.00E+04 2.93E-01 2.77E-02 6.54E-02
4.10 1.26E+04 3.85E-01 3.68E-02 7.82E-02
4.20 1.59E+04 4.86E-01 4.73E-02 9.19E-02
4.30 2.00E+04 5.92E-01 5.90E-02 1.07E-01
4.40 2.51E+04 7.00E-01 7.15E-02 1.22E-01
4.50 3.16E+04 8.07E-01 8.45E-02 1.40E-01
4.60 3.98E+04 9.1 IE-01 9.76E-02 1.59E-01
4.70 5.01E+04 1.01E+00 1.1 IE-01 1.81E-01
4.80 6.31E+04 1.11E+00 1.24E-01 2.04E-01
4.90 7.94E+04 1.20E+00 1.36E-01 2.30E-01
5.00 1.00E+05 1.28E+00 1.48E-01 2.58E-01
5.10 1.26E+05 1.36E+00 1.58E-01 2.86E-01
5.20 1.59E+05 1.42E+00 1.68E-01 3.15E-01
5.30 2.00E+05 1.47E+00 1.75E-01 3.45E-01
5.40 2.51E+05 1.50E+00 1.80E-01 3.74E-01
5.50 3.16E+05 1.51E+00 1.82E-01 4.03E-01
5.60 3.98E+05 1.49E+00 1.80E-0T 4.31E-01
5.70 5.01E+05 1.44E+00 1.74E-01 4.58E-01
5.80 6.31E+05 1.37E+00 1.65E-01 4.83E-01
5.90 7.94E+05 1.28E+00 1.53E-01 5.06E-01
6.00 1.00E+06 1.17E+00 1.39E-01 5.25E-01
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Abstract. Anomalous ion line spectra have been identified 
in many experiments. Such spectra are defined as deviations 
from the standard symmetric “double-humped” spectra de­
rived from incoherent scatter radar echoes from the upper at­
mosphere. Some anomalous spectra -  where there are sharp 
enhancements of power over restricted height ranges -  have 
been attributed to satellite contamination in the beam path. 
Here we outline a method for detecting such contamination, 
and review in detail a few cases where the method enables the 
identification o f anomalous spectra as satellite echoes, sub­
sequently ascribed to specific orbital objects. The methods 
used here to identify such satellites provide a useful way of 
distinguishing anomalous spectra due to satellites from those 
of geophysical origin. Analysis of EISCAT Svalbard Radar 
data reveals that an average of 8 satellites per hour are found 
to cross the beam. Based on a relatively small sample of 
the data set, it appears that at least half o f the occurrences 
of anomalous spectra are caused by satellite contamination 
rather than being of geophysical origin.

Key words. Ionosphere (auroral ionosphere, instruments 
and techniques) -  Radio Science (signal processing)

1 Introduction

Incoherent scatter radars have been used to study the Earth’s 
ionosphere since their introduction in 1959. The European 
Incoherent Scatter radar (EISCAT) in Northern Scandinavia 
is positioned in the auroral zone and is reviewed in Risbeth 
and Williams (1985). By contrast the EISCAT Svalbard radar 
(ESR) is positioned further north in the polar cap region (74° 
magnetic latitude). It first started its operations in 1996 and a 
detailed introduction to the system can be found in Wannberg 
et al. (1997). The information obtained from these radars is 
contained both in the spectral shape o f the scattered signal 
and in the power returned. The majority o f the ion line spec-

Correspondence to: J. Porteous 
(J.Porteous@shu.ac.uk)

tra are o f the standard symmetric “double-humped” type as 
expected. There has been much interest in those spectra with 
enhanced ion-acoustic shoulders since the time when they 
were first identified in incoherent scatter spectra (Foster et 
al., 1988) using data from the Millstone Hill radar in West- 
ford, Massachusetts. Other authors (Rietveld et al., 1991; 
Collis et al., 1991; Forme, 1995) have reported occurrences 
of anomalous spectra in the data from the Tromso radar in 
Norway.

Many theories have been proposed to account for the oc­
currences of such spectra. The earliest o f these suggests that 
they may be due to current-driven instabilities, but in this sit­
uation the field-aligned current densities would need to be 
unusually high (Collis et al., 1991; Rietveld et al., 1991). A 
second possibility is that they may be due to the paramet­
ric decay of Langmuir waves (Forme, 1995), whilst a third 
suggestion is that they are caused by ion-ion two-stream in­
stabilities (Wahlund et al., 1992).

Many examples of naturally enhanced ion acoustic spec­
tra have been reported in the ESR data. Recently, Buchert 
et al. (1999) suggest that the ion-acoustic fluctuation level 
seems to depend quite strongly on the wave number, k. In 
their review paper, Sedgemore-Schulthess et al. (1999) dis­
cuss examples o f enhanced spectra in the context o f small- 
scale aurora, transient field-aligned currents and time varying 
magnetic reconnection. For a detailed review of naturally- 
enhanced ion-acoustic spectra, see Sedgemore-Schulthess 
and St-Maurice (2001).

Given the large size o f incoherent scatter data sets, the only 
acceptable method of identifying such spectra is to use an au­
tomated program to search the data. However, as the paper by 
Rietveld et al. (1996) indicates, there are many other causes 
of spectral anomalies, the most common of which is satellite 
contamination. The identification o f anomalous echoes of  
geophysical interest would be greatly facilitated if  a reliable 
algorithm could be found to identify and reject the satellite 
contamination. As a result, we have attempted to find a way 
of automatically checking the data for anomalous spectra and 
isolating those cases which are clearly caused by satellites.

mailto:J.Porteous@shu.ac.uk
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Fig. 1. Results showing (a) spectra, and (b) power profile for LP2 
data at 10:31:19 UT, 1 December 1999, using EISCAT rtg3 program 
when a probable satellite was seen in the beam.

2 Identifying enhanced spectra

The data used in this study come from the EISCAT Svalbard 
Radar (ESR), and are measured using the GUP3 experiment. 
This experiment makes use of both plain, long pulses and 
alternating codes, which are binary codes based on phase- 
coded long pulses. The use of two different modulations 
with overlapping range coverage is important, as it allows 
the presence of anomalies to be confirmed by comparing the 
data from the two pulse schemes. The experiment makes use 
of two long pulse channels, LP1 and LP2, and two channels 
for alternating code data, AC 1 and AC2. In this study, we dis­
cuss results from the comparison of the data from LP2 and 
AC2, although LP1 and AC 1 were also checked to ensure that 
the results are consistent. The range covered by the LP2 data 
is 229.5-859.5 km, whilst that covered by the AC2 data is 
228-732 km. Hence, the LP and AC data overlap within a re­
gion whose range extent is about 500 km. Within this region, 
full measurements of the shape of the backscattered spectrum 
can be obtained from both srheimes along with “power pro-’ O  r  r

files”, representing the variation in the backscattered power 
as a function of range.

A simple method is employed to search for anomalous ion-

Fig. 2. Results showing (a) spectra, and (b) power profile for LP2 
data at 11:55:49 UT, 1 December 1999, using EISCAT rtg3 program 
when enhanced spectra probably due to geophysical causes were 
seen in the beam.

line spectra, based on the asymmetry between the upshifted 
and downshifted ion-acoustic peaks. First, we obtain the fre­
quency at which the spectrum attains its maximum value. 
We call this the primary peak. Finding a secondary peak, 
if one exists, is more difficult. Instead, we restrict attention 
to the data more than 2.5 kHz from the primary peak and 
find the frequency at which the maximum occurs in this re­
maining data set. On most occasions, it can be verified that 
these two frequencies represent the peaks of the ion-acoustic 
lines. However, when the secondary peak is much lower than 
the primary one, the program will not identify the secondary 
peak. Instead, it identifies a point on a shoulder of the pri­
mary peak. When the ratio of the heights of these two points 
is less than some threshold value, the details are stored in a 
file for later examination. After making several observations, 
the arbitrary number 0.8 is chosen as the threshold value. 
This is seen to ensure that those situations of interest to us 
are identified along with a small number of spurious cases 
which subsequently can be eliminated by a manual check.

In this paper, we present a typical example of the GUP3 
data, from 1 December 1999. The data set consists of
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1011 ten-second dumps recorded between 10:11:30UT and 
13:00:00 UT. The automated routine described above is used 
to examine the data from the LP2 long-pulse channel. The 
times at which anomalous spectra are identified by the pro­
gram are recorded for subsequent manual examination. In 
some cases, it transpires that the spectra identified as being 
anomalous contain essentially no backscattered signal and 
any such noisy spectra are eliminated. This leaves a num­
ber of spectra where the program suggests the presence of 
a satellite. Typical enhanced spectra from such a case are 
shown in Fig. la. In particular, the power profiles for these 
times are checked. When the returned signal is thought to be 
the result o f a reflection from a satellite or item o f space de­
bris, the power profile measured on the LP2 channel shows a 
sudden sharp increase, followed by a similarly sudden sharp 
decrease approximately 100 km further along the beam, as 
shown in Fig. lb. The spacing between these steps in the 
power is related to the range ambiguity of the sounding pulse, 
so a satellite large enough to cause a significant change in the 
returned power is detected in several range gates. This ex­
plains why the power increase is visible over a 100 km range. 
Sometimes the object detected is at a sufficiently high alti­
tude for only the increase in power, but not the subsequent 
decrease, to be within the range coverage of the recorded 
data. These situations are classified as possible satellites.

In contrast to this example, there are times when there are 
enhanced spectra in the data but the power profile shows no 
significant change, as shown in Fig. 2. The spectra obtained 
at these times can, therefore, be the result o f a geophysical 
phenomenon. In a situation where the enhancements in one 
ion line switch to the other line (Sedgemore-Schulthess et 
al., 1999), the enhancements are thought to be short-lived 
as are those for satellites. However, any increase in power 
which occurs is likely to be gradual rather than sudden, so it 
takes several range gates for the full increase to show in such 
geophysical situations. The example shown in Fig. 2 needs 
further consideration if  it is to be identified definitely, either 
as a geophysical phenomenon or as one or more satellites 
passing through the beam.

A detailed study o f the variations between adjacent points 
in the power profile reveals that a few very large power vari­
ations are seen, which are clearly attributable to satellites. 
Excluding these, the remaining variations show a continuous 
distribution, rather than being sharply divided between large 
and small changes. The distribution is shown in Fig. 3. In or­
der to accommodate the full range of power ratio variations 
on the same graph, the natural logarithm of the power ratio 
variation has been plotted.

Considering the histogram in Fig. 3, the cases at the left- 
hand extreme of the x-axis are highly likely to be due to geo­
physical conditions, whilst those at the right-hand extreme 
are highly likely to be due to satellites. This leaves a large 
number of intermediate points, many o f which could also be 
due to satellites, either of varying cross section, or passing 
through the side lobes rather than the main beam.

20

o

Fig. 3. Histogram showing frequency of occurrence of In of power 
ratios obtained when enhanced spectra occurred in the 1 and 2 De­
cember 1999 ESR, GUP3 data.

3 Long pulse and alternating code comparisons

To progress further, a comparison is made between the long 
pulse (LP2) results and those from the alternating code (AC2) 
data. The range extent o f the LP2 long pulse data is 229.5- 
859.5 km, whilst for the AC2 data it is only 228-732 km. As 
a consequence, only a subset of the anomalous spectra iden­
tified in the LP2 data can be checked using the AC2 data.

By examining the power profile from the AC2 data at the 
relevant times, similar characteristics can be seen, as shown 
in Fig. 4. When the enhanced spectra are probably due to 
a satellite passing through the beam, the AC2 power profile 
shows a steep pointed peak; otherwise, there is no significant 
change. The smaller extent o f the peak in the power profile 
response arises because the range resolution is better for the 
alternating code data than it is for the long pulse data. At 
these times the peak o f the AC power is confined to a very 
narrow range and is within the region in which the step oc­
curs in the LP data. Thus, good agreement is shown between 
the two pulse schemes. In addition, the use o f the AC data 
helps to clarify a number of cases where the LP data alone 
does not provide an unambiguous identification o f a satellite.

In order to classify the data, we use a threshold ratio for 
the LP power increases between adjacent range gates above 
which the enhancement is probably caused by a satellite. Be­
low this ratio geophysical causes are more likely, but there is 
a possibility that the anomally is caused by very small items 
of space debris or by a satellite being detected in the far side 
lobes o f the radar beam. For the data we are considering here 
we suggest that an appropriate threshold to use is 0.2. This 
represents a 20% increase in the returned power. Examples 
which are close to the threshold are checked manually.

We now consider ways of calibrating such identifications, 
to verify that satellites or their debris have indeed passed 
through the beam.

4 Checking for satellites

The monitoring of space debris, and the determination of its 
orbital parameters is an important activity for the space in­
dustry. Many such objects are routinely monitored and their 
positions can subsequently be reconstructed. An element file

a p i O T t c o c M T - o t - c M C O T j - w e o t ^ N -  

v o o o o o 2 2 2 S S 5 2 S a 
9  n  N  'T  °  r  M  O  t  B  o

ln(power ratio)
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Fig. 4. Results showing (a) spectra, and (b) power profile for AC2 
data at 10:31:19 UT, 1 December 1999, using EISCAT rtg3 program 
when a probable satellite was seen in the beam.

for satellites and other space debris with NORAD catalogue 
numbers, (University of Arizona, 2002), updated on 2 De­
cember 1999, is used to check for the occurrence of satellites 
in the ESR radar beam at various times on 1 December 1999.

At 10:31:13 UT an object with catalogue number 24134- 
94029 GH is found to have had an azimuth of 179.88°, an 
elevation of 81.63° and a range of 652 km relative to the EIS­
CAT Svalbard Radar, as shown in Fig. 5.

The radar data indicates that at 10:31:19UT (i.e. the 10-s 
dump starting at 10:31:10UT) there was a probable satellite 
visible in the beam. The range of the observed anomalous 
echo is in good agreement with the predicted position of the 
object.

Using spherical trigonometry, the distance of the object 
from the centre of the radar beam can be calculated. The 
radar beam had an elevation of 81.6° and an azimuth of 
181.0°. Hence, the identified object was 1.9 km from the 
centre of the beam. This is well within the limits of the ex­
pected lateral extent (~6.5 km) of the main beam at a range 
of ~650 km.

This example, together with five other times at which the 
prediction software successfully confirms the presence of 
a satellite or item of space debris within the range of the

beam, are shown in Table 1. The examples identified at 
10:31:13 UT and 12:04:10 UT are likely to have been de­
tected within the main beam, whilst the rest are more likely to 
have been detected in the side lobes. At each of these times 
the power profiles for both the LP2 and the AC2 returned 
signal show the typical characteristics described earlier, sug­
gesting that the sounding pulses were being reflected from a 
hard target. The object detected at 11:36:35UT is likely to 
have been quite large, hence, the high value obtained for the 
power ratio.

At 12:07:32 UT a satellite is noticed to be 3.210° from the 
centre of the radar beam and at 834 km along its range. This 
is too great a range to enable it to be visible in the AC2 data. 
However, the LP2 data does show enhanced spectra around 
this range, as well as the expected increase in power. The 
increase in power, though significant, is not as great as in 
the earlier examples. This is possibly a result of the larger 
distance from the beam centre, suggesting that the satellite 
passed through the side lobes rather than the main beam. A 
further satellite at 12:08:21 UT is identified to be 2.849° from 
the centre of the beam, but at a range of 871 km. This is not 
detected in either the AC2 nor the LP2 data. Additionally, 
at 11:55:30 UT a satellite 6.319° from the centre of the radar 
beam and at a range of 815 km is not detected in the LP2 
data.

5 Conclusions

Over 1000 ten-second dumps of raw data from the EISCAT 
Svalbard Radar have been studied, in order to find a method 
for identifying likely causes of enhanced spectra. It is sus­
pected that many of the cases found are due to satellites or 
space debris passing through the main beam or the side lobes. 
An automated routine has been developed and used to iden­
tify those times at which enhanced spectra occur.

It is shown that examining the variation of power with 
range gives a good indication of whether the spectra are 
caused by satellites or are possibly of a geophysical nature. 
In the ESR GUP3 experiment, which contains both long 
pulse and alternating code data, enhancements in the power 
profiles of both modulations are noted when satellites appear. 
A threshold increase of 20% in the returned power is used to 
help divide the cases into two classes. Situations in which the 
returned power shows an increase of 20% or more are clas­
sified as being due to satellites or space debris. Those which 
show a smaller increase in power need further investigation 
to see if they have a geophysical cause. On this basis, it is 
possible to use an automated program to distinguish between 
such cases. A small number of noisy spectra are identified 
by the program and have to be eliminated.

In the period 10:11:30 UT to 13:00:00 UT on 1 Decem­
ber 1999 the numbers of satellites and possibly naturally en­
hanced spectra occurring in the region covered by the ESR 
radar beam are as given in Table 2. It can be seen that 
there are, on average, about eight satellites per hour passing 
through the radar beam.
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01/12/9910:31 Local 24134 01/12/9910:31 UTC

Fig. 5. Path of space debris, NORAD number 24134-94029GH, showing its position relative to the radar at ESR at 10:31:B U T  on 1 
December 1999.

Table 1. A sample of times at which a satellite or item of space debris appeared within the ESR beam on 1 December 1999

Time (UT) 
on 1 Dec 1999

NORAD Cat. No. Angle from centre 
of radar beam (°)

Range (km) Power Ratio

10:30:36 24149-94029GY 1.400 629 1.796
10:31:13 24134-94029GH 0.166 652 4.788
11:36:35 25919-99051A 0.310 706 733.497
12:04:10 12760-81053DD 0.195 762 4.467
12:06:32 25941-99057B 0.278 771 0.462
12:16:27 20466-90010B 1.394 641 2.906

Table 2. The number of satellites and possibly naturally en­
hanced spectra found in the region covered by the ESR beam for 
10:11:30 UT to 13:00:00 UT on 1 December 1999

Range(km) Number of 
satellites

Number of possibly 
naturally enhanced spectra

<600 2 1
600-750 7 5

>750 15 10

Satellites which are at too great a distance, such as that 
predicted at 12:08:21 UT with a range of 871 km, are not de­
tected by the radar. Similarly, those at too large an angle 
from the beam centre, such as that predicted at 11:55:30 UT 
at an angular distance of 6.319°, are not detected. This gives 
some insight into the area within which the beam at Svalbard 
could detect satellite contamination. Further work needs to

be carried out to provide greater refinement.
The routine has been tested using a further 6 h of data on 

2 December 1999 and almost 16 h of data on 3 December 
1999 and similar results have been obtained. Since there are 
a large number of satellites, or items of space debris, orbit­
ing the Earth and, therefore, likely to pass through the radar 
beam, care must be taken to distinguish between the spectra 
caused by such phenomena and those caused by geophysical 
conditions. This applies not only to the ESR data, but to any 
radar data.

Further studies still need to be performed at the times of 
those anomalous echoes, not automatically rejected as being 
due to satellite contamination, to determine whether or not 
these are genuinely of a geophysical nature. Since the occur­
rences of enhanced spectra due to geophysical conditions are 
small, automated search routines of the type described here 
provide the scope for extracting such data from very large ex­
tended data sets. This method can assist in the investigation 
of naturally enhanced spectra and their causes.
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