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Abstract
In this study investigations were made into the effects of Ultrasonic Impact Treatment 
(UIT) on pre-exfoliated AA 2024 T351. Electrochemical tests were conducted to determine 
any changes in electrochemical behaviour of the alloys due to UIT condition. Uniaxial 
monotonic, cyclic and fatigue crack propagation (FCG) tests were conducted on material in 
As-Received (AR) condition and UIT condition in air and in a corrosive environment by 
pre-exfoliating the test specimens at pre-defined set of time periods and temperature range 
(20 °C). It was clear that the fatigue performance was severely reduced by the introduction 
of the corrosion environment for AR specimens. SEM analysis suggests that UIT 
conditioned AA 2024-T351 exhibits resistance to exfoliation corrosion at ambient and 
temperatures ranging between 20°C to 40°C when compared to AR specimens. However, 
these results are not supported by potentiodynamic polarisation curves which show a 
decrease in corrosion resistance of UIT specimens. Also it is understood that there is a 
considerable amount of Cu refinement and enrichment near the surface when the AA 2024- 
T351 is subjected to exfoliation corrosion tests. Whilst hydrogen is in an atomic state, it 
can be adsorbed onto the metal surface and consequently diffuses into the matrix and can 
have serious detrimental effects. A reference line for minimal pre-existing hydrogen in the 
alloy is identified and the magnitude of hydrogen is found to be 180 Arbitrary Hydrogen 
Units (AHU). It is also found that in corrosion environment, the hydrogen ingress and 
further charging is prominent at ambient temperatures for AR samples, and showed 
damage over the full width of cross-section.
The following conclusions were drawn:
1. UIT surface treatments, followed by exfoliation corrosion have shown increased 
resistance to a reduction in mechanical properties, notably tensile and yield strength. 
Fractographic analysis further supported this finding by showing smaller average brittle 
failure depths for UIT specimens when compared to AR specimens. SEM analysis of AR 
samples (without exfoliation) showed a crystallographic contribution to the mode of failure 
where high density slip bands are formed and the initial failure exhibits a step format.
2. It is observed that during exfoliation, hydrogen ingress and adsorption is more 
prominent at ambient temperatures for AR samples.
3. A slight improvement In Low Cycle Fatigue (LCF) life is observed for pre­
exfoliated and UIT conditioned sample but not for UIT conditioned samples only. Little 
effect is observed for either treatment in the High Cycle Fatigue (HCF) region.
4. Fatigue crack initiation occurred from the edges for all samples.
5. Fatigue crack propagation of exfoliated specimens exhibited faster crack 
propagation than As-Received specimens. UIT caused retardation in crack propagation rate 
in AR samples but not in corroded samples. Failure of pre-exfoliated, UIT treated samples 
failed within the treated strip. It is also noted that crack deviation can occur when the crack 
tip reaches a secondary phase particle.
6. Nanocrystallisation generates uniformity of the surface which refines the secondary 
phase particles and helps mitigate crack initiation sites.

IV



Presentations
Presentations:

1. Oral Presentation at IOP held at University of Southampton, 2007

Topic -  “Effects of Ultrasonic Impact Treatment as an effective Surface Engineering 
Treatment to Improve Corrosion Fatigue Properties of Pre-Exfoliated A1 2024 T351.”

2. Oral Presentation at Corrosion Science Symposium, Sheffield Hallam University 
2007

Topic -  “Effects of Ultrasonic Impact Treatment and their corrosion fatigue properties of 
Pre-Exfoliated A1 2024 T351 ”

3. Oral Presentation at MERI Research Day 2005

Topic -  “Use of Ultrasonic Impact Treatment to Improve Corrosion Fatigue Properties of 
Pre-exfoliated A1 2024 T351.”

Poster Presentations

Poster Presentation at ICAM-IMURS, Bangalore, India 2007 

Poster Presentation at EUROMAT, Nuremburg, Germany 2007

V



Contents
A cknow ledgem ents................................................................................................................................................ II

A bstrac t .....................................................................................................................................................................IV

P resen ta tio n s ........................................................................................................................................................... V

C o n ten ts ................................................................................................................................................................... VI

List of Figures......................................................................................................................................................... XII

N o m en c la tu re ..................................................................................................................................................... XVII

C H A P T E R  1 ................................................................................................................................................. 1

Introduction...........................................................................................................................................................1

1.1 Ageing Aircraft..........................................................................................................................1

1.1.1 Lap joints and Corrosion Detection Problems...................................................................2

1.2 Aims & Objectives.........................................................................................................................2

1.3 Outline of this Thesis...................................................................................................................3

C H A P T E R  2 ................................................................................................................................................. 5

Literature Survey................................................................................................................................................. 5

2.1 C orrosion .......................................................................................................................................5

2.1.1 Economic Impact and Effects................................................................................................ 5

2.1.2 Corrosion Classification...........................................................................................................5

2.1.3 Corrosion Processes..................................................................................................................6

2.1.4 Polarisation.................................................................................................................................7

2.1.5 Passivity.......................................................................................................................................8

2.2 M odes of Corrosion in Al 2024-T 351 ................................................................................8

2.2.1 Pitting........................................................................................................................................... 8

2.2.2 Intergranular Corrosion.........................................................................................................10

2.2.3 Stress Corrosion Cracking..................................................................................................... 11

2.3 Fatigue of Metallic Materials...................................................................................................12

2.3.1 Introduction..............................................................................................................................12

2.3.2 Plain fatigue..............................................................................................................................12

2.3.2.1 Introduction........................................................................................................................12

VI



2.3.2.2 Fatigue failure m echan ism ...............................................................................................14

2.3.2.3 Fatigue life ap p ro ach es .....................................................................................................15

2.3.2.4 Factors affecting fatigue d am ag e ................................................................................... 16

2.3.2.4.1 Mean Stress Effect...........................................................................................................16

2.3.2.4.2 Grain Size........................................................................................................................... 18

2.3.2.4.3 Role of Surface on crack initiation...............................................................................18

2.3.2.5 Fatigue Mechanism -  Crack Propagation..................................................................... 19

2.3.2.5.1 Stage I Crack G row th ...................................................................................................... 19

2.3.2.5.2 Stage II Crack G row th .....................................................................................................20

2.3.2.5.3 Stage III Crack G row th ....................................................................................................21

2.3.2.6 Describing cracking propagation.................................................................................... 22

2.3.2.6.1 Linear Elastic Fracture M echanics...............................................................................23

2.3.2.6.2 Elastic Plastic Fracture Mechanics...............................................................................25

2.3.2.6.3 Crack Closure.................................................................................................................... 28

2.3.2.6.4 Short Fatigue Cracks....................................................................................................... 28

2.3.2.6.4.1 Introduction...................................................................................................................28

2.3.2.6.4.2 Brown-Hobson Model (air)........................................................................................ 30

2.3.2.6.4.3 Navarro de los Rios Model (NR Model) (a ir) ........................................................ 32

2.4 Corrosion Fatigue ...................................................................................................................... 35

2.4.1 Introduction............................................................................................................................. 35

2.4.2 Influencing P a ram e te rs ........................................................................................................ 35

2.4.2.1 Frequency Effects............................................................................................................... 36

2.4.2.2 Cyclic W aveform ..................................................................................................................37

2.4.2.3 Environmental Aspects...................................................................................................... 37

2.4.2.4 Mechanical Aspects............................................................................................................ 38

2.4.3 Mechanisms for Life Reduction........................................................................................39

2.4.3.1 Pitting......................................................................................................................................39

2.4.3.2 Crack Tip Dissolution..........................................................................................................41

2.4.3.3 Hydrogen Embrittlement.................................................................................................. 41

2.4.4 Corrosion Fatigue M odels .................................................................................................44

2.4.4.1 Modified Brown-Hobson Model (Environmental)...................................................... 47

2.4.4.2 Modified Navarro-de los Rios Model (Environmental).............................................47

C H A P T E R  3 ...............................................................................................................................................48

VII



Surface Engineering Techniques....................................................................................................................48

3.1 Introduction.................................................................................................................................48

3.2 Shot Peening (SP)....................................................................................................................... 49

3.3 Laser Shock Peening ................................................................................................................. 49

3.4 Ultrasonic Impact T re a tm e n t ................................................................................................. 50

3.4.1 History.......................................................................................................................................50

3.4.2 Nano-Crystallisation.............................................................................................................. 51

3.4.2.1 Effects of Nano-crystallisation......................................................................................... 52

3.4.2.1.1 Mechanical properties....................................................................................................52

3.4.2.1.2 Corrosion resistance....................................................................................................... 53

3.4.3 Ultrasonic Impact Treatment Mechanism....................................................................... 54

3.4.4 UIT Conditions.........................................................................................................................55

C H A P T E R  4 ...............................................................................................................................................57

Experimental Techniques................................................................................................................................57

4.1 Introduction.................................................................................................................................57

4.2 Glow Discharge Optical Emission Spectroscopy................................................................ 58

4.2.1 Introduction............................................................................................................................. 58

4.2.2 Principle of O pera t ion ...........................................................................................................58

4.2.3 Sputtering.................................................................................................................................59

4.2.4 Sputter Yield............................................................................................................................ 60

4.2.5 Development of Depth Profiling Applications................................................................ 60

4.2.6 Specimen prepara tion ...........................................................................................................61

4.3 Scanning Electron Microscopy............................................................................................. 61

4.3.1 Scanning Process .................................................................................................................... 62

4.3.2 Detection of Secondary and Backscattered Electrons...................................................63

4.3.3 Electron Diffraction X-Ray Spectroscopy..........................................................................64

4.4 Corrosion Testing........................................................................................................................64

4.4.1 Electrochemical Corrosion M easu rem en ts ..................................................................... 64

4.4.2 Instrum ent................................................................................................................................65

4.5 Mechanical Testing.................................................................................................................... 66

4.5.1 Introduction............................................................................................................................. 66

4.5.2 Classification............................................................................................................................ 67

4.5.3 Tensile Testing.........................................................................................................................68

VIII



4.5.3.1 Tensile Test Practice.......................................................................................................... 68

4.5.4 Fatigue Testing......................................................................................................................70

4.5.4.1 Fatigue Test P rac tice ......................................................................................................... 70

4.5.4.1.1 S-N Curves..........................................................................................................................70

4.5.4.1.2 Fatigue Crack Growth (FCG) Analysis.........................................................................71

4.5.4.1.2.1 Test S e tup ...................................................................................................................... 72

C H A P T E R  5 ...............................................................................................................................................75

Corrosion Analysis............................................................................................................................................ 75

5.1 In tro d u c tio n .............................................................................................................................. 75

5.2 Coupon Testing...........................................................................................................................75

5.2.1 Microstructural Characterisation.......................................................................................77

5.2.1.1 SEM Analysis.........................................................................................................................77

5.2.1.2 Copper Distribution Analysis........................................................................................... 81

5.3 Polarisation Curves................................................................................................................. 84

5.3.1 Droplet Cell.............................................................................................................................. 84

5.3.1.1 UIT1.........................................................................................................................................84

5.3.1.2 UIT2.........................................................................................................................................86

5.3.1.3 UIT3.........................................................................................................................................87

5.4 Assessment Potentiodynamic curves with SEM Analysis................................................ 88

5.5 Chapter Summary...................................................................................................................... 89

C H A P T E R  6 ...............................................................................................................................................91

Influence of Hydrogen Charging in to the Metal Matrix of Al 2024 due to Exfoliation Corrosion 
................................................................................................................................................................................91

6.1 In tro d u c tio n ...............................................................................................................................91

6.2 Hydrogen Studies........................................................................................................................92

6.2.1 As-Received Samples............................................................................................................. 92

6.2.2 Exfoliated Samples..................................................................................................................93

6.3.3 UIT Treated Samples.............................................................................................................. 95

6.3 Chapter Summary...................................................................................................................... 97

C H A P T E R  7 ...............................................................................................................................................98

Influence of UIT on Strength Properties of AA 2024-T351 after Corrosion Exposure..................... 98

7.1 Introduction.................................................................................................................................98

7.2 Mechanical Characterisation...................................................................................................99

IX



7.2.1 Reference M ateria ls..............................................................................................................99

7.2.2 Influence of Exposure T im e...............................................................................................100

7.2.3 Influence of Exposure Tem pera tu re ................................................................................101

7.3 Fractographic Analysis & Discussion.................................................................................. 103

7.3.1 Zones of Failure....................................................................................................................103

7.3.2 Crystallographic Failure......................................................................................................105

7.4 Chapter Summary....................................................................................................................106

C H A P T E R  8 .............................................................................................................................................108

Influence of UIT on Fatigue life AA 2024-T351........................................................................................108

8.1 In t ro d u c tio n ............................................................................................................................ 108

8.2 Fatigue Life...............................................................................................................................108

8.2.1 Fatigue Life Curves............................................................................................................... 109

8.2.2 Low Cycle Fatigue Curves.................................................................................................. I l l

8.2.3 High Cycle Fatigue Curves...................................................................................................I l l

8.3 Exfoliation Condition Number of Cycles Vs Number of Cycles.....................................112

8.4 Crack Growth Analysis..........................................................................................................113

8.4.1 Crack P ropagation ............................................................................................................... 113

8.4.2 Fatigue Crack Growth (FCG) Analysis............................................................................. 115

8.4.2.1 FCG dependence on exfoliation corrosion of AR AA 2024 T351..........................115

8.4.2.2 FCG dependence on exfoliation corrosion of UIT AA 2024 T351.........................117

8.5 Chapter Summary.................................................................................................................... 119

C H A P T E R  9 .............................................................................................................................................120

Summary of Results........................................................................................................................................ 120

9.1 Summary of the Results..........................................................................................................120

9.1 Exfoliation Corrosion.............................................................................................................. 120

9.1.1 Current Practice.................................................................................................................... 120

9.1.2 Effects of Testing Parameters............................................................................................122

9.1.2.1 Effect of Time..................................................................................................................... 122

9.1.3 Copper Enrichment.............................................................................................................. 123

9.2 Fatigue......................................................................................................................................123

9.2.1 Effects of Nanocrystallisation............................................................................................124

9.2.2 Effects of Residual S tresses ............................................................................................... 124

9.2.3 Effect of Hydrogen Embrittlement.................................................................................. 125

X



CHAPTER 1 0 ......................................................................................................................................... 126

Conclusions....................................................................................................................................................... 126

CHAPTER 1 1 ......................................................................................................................................... 128

Future w o rk ...................................................................................................................................................... 128

Appendix A ........................................................................................................................................................... i

Coupon Testing...................................................................................................................................................... i

In troduc tion .......................................................................................................................................... i

Appendix B ..........................................................................................................................................................x

Crack Length versus Number of Cycles..........................................................................................................x

1 In troduc tion ......................................................................................................................................x

Appendix C .................................................................................................................................................... xxiii

d a d N  vsAK ........................................................................................................................................................ xxiii

1 In troduc tion .................................................................................................................................xxiii

R eferen ces ..........................................................................................................................................................a

XI



List of Figures

Figure 1: A nineteen-year-old Boeing 737 aircraft lost a major portion of the upper
fuselage near the front of the plane, in full flight at 24,000 feet................................................ 1
Figure 2: Schematics of common forms of corrosion [6 ]........................................................... 1
Figure 3: A chart categorising the various corrosion types........................................................ 6

Figure 4: A cross-sectional SEM image for 24 hours exfoliation showing pit formation. 
Micrograph 1.1 shows an exploded view of a pit with a surrounding local cathodic region. 8
Figure 5: A schematic of anodic and cathodic sites in a corrosion cell.....................................1
Figure 6 : 48 hours of intergranular corrosion in ambient conditions according to ASTM
G 1 1 0  showing preferential path of intergranular attack along grain boundary..................... 1 0

Figure 7: 48 hours of exfoliation corrosion according to ASTM G34 depicts intergranular
corrosion due to voluminous effects of the corrosion products............................................... 11

Figure 8 : Constant life curves for fatigue loading with non-zero mean stress...................... 17
Figure 9: Nomenclature for stress parameters which affect fatigue life, the variation of
stress with tim e...............................................................................................................................18
Figure 10: The three basic opening modes....................................................................................1
Figure 11: An SEM image of fatigue Striations on Ultrasonic Impact Treated (UIT) A1 
2024 T351 at 14.5mm from the surface of the specimen subjected to cyclic loading at 25Hz
[41]...................................................................................................................................................21
Figure 12: Three stages of fatigue crack propagation.................................................................1
Figure 13: Typical log-log plot o f crack propagation rate vs. stress intensity range  24
Figure 14: Definition of crack tip opening displacement, 5t.....................................................27
Figure 15: Classification of SCs.................................................................................................. 29
Figure 16: Brown-Hobson's graph of the short crack behaviour at different stress levels.. 30
Figure 17: Brown map showing various fatigue crack regimes...............................................31
Figure 18: Three zones that constitute fatigue damage. The parameter i=2a/D represents 
the normalised crack length in half grain intervals (i=l, 3, 5,). The parameter iD/2 
represents the extent of the fatigue damage and D is the grain size........................................32
Figure 19: The effect of slip-band locked by the grain boundary on stress concentration in 
three stages: a) blockage of the plastic zone by the grain boundary increases 0 3 ; b) further 
crack propagation until 0 3 = a C3 results in new slip-band development and c) relaxation of 
0 3  and yielding on a new grain. The parameters oi and 0 2  represent crack closure stress and
cyclic yield stress respectively..................................................................................................... 33
Figure 20: Schematic representation of crack arrest..................................................................34
Figure 21: Summary of general influence of parameters on corrosion fatigue.................... 36
Figure 22: A representation of the SP process..............................................................................1
Figure 23: Laser Shock Peening (LSP) in the confined ablation mode [133].......................... 1

XII



Figure 24: a) Micrograph a shows the crystal structure of bare A1 2024 T351. b) A TEM 
Micrograph showing crystal structure subjected to UIT. Nanocrystallisation is evident and
its measured to be between (10-15) nm [136]............................................................................52
Figure 25: TEM micrographs: (a) Trapezoidal A12 Cu particle as emission source of 
dislocations; (b) dislocation cells and tangling in aluminium matrix. (Courtesy: picture is a
published work by X. Wu et al [137]).........................................................................................52
Figure 26: Effect of UIT on corrosion resistance on 24 hours exfoliated at 20 °C............... 54
Figure 27: Esonix device for realisation of single impact on specimens................................55
Figure 28: The phenomena present in the neighbourhood of the cathode, (a) Cathodic 
sputtering, excitation phenomena, ionisation and de-excitation with the emission of light, 
(b) trajectories of ions and electrons in the source, (c) trajectories of the material removed 
from the sample (cathode). Picture is a published work from the book GDOES by Payling
R [138].............................................................................................................................................59
Figure 29: The impact of an atom or ion on a surface produces sputtering from the surface
as a result of the momentum transfer from the in-coming particle..........................................60
Figure 30: Depth measurement of the GDOES spot using roughness meter......................... 61
Figure 31: Configuration of Self-Biased Electron Gun............................................................ 62
Figure 32: Schematic Diagram showing the working principle o f SEM................................63
Figure 33: Schematic diagram of Instrumentation setup of electrochemical polarisation
tests...................................................................................................................................................66
Figure 34: ASTM Standard E8-04, Standard test specimen for tension testing of metallic 
materials. Specimens were machined perpendicular to the rolling direction (Fig: Not to
Scale)............................................................................................................................................... 69
Figure 35: Test set up showing specimen in the ESH servo hydraulic test machine (250KN)
 1
Figure 36: Test setup to produce total life curves......................................................................71
Figure 37: Test specimen design showing the specimen dimensions..................................... 71
Figure 38: Samples were prepared according to ASTM standards E 647 and pre-notched in
the centre of the specimen using Electric Discharge Machining (EDM)............................... 72
Figure 39: Fatigue crack growth analysis test setup..................................................................73
Figure 40: Crack Length at 45000 cycles at 25Hz for UIT1-C exfoliated ambient
conditions for 24 hours, R = 0 .1 .................................................................................................. 73
Figure 41: Samples of AR & UI subjected to exfoliation corrosion for 24 hours and at
80°C................................................................................................................................................. 76
Figure 42: (a) SEM analysis of cross-section of AR sample showing (72 20) with an 
exfoliation depth of 550 jum. (b) A SEM micrograph showing UIT 1 sample (72 20) with
negligible exfoliation corrosion depth.........................................................................................77
Figure 43: (a) SEM analysis of cross-sectional AR sample showing (48 40) with an 
exfoliation depth of 700 pm. (b) A SEM micrograph showing UIT 1 sample (48 40) with
exfoliation corrosion depth of 500 pm........................................................................................ 77
Figure 44: SEM micrographs of (a) As-Received Al 2024 T351 treated for 24 hours in 
exfoliation solution at 20°C. (b) UIT condition samples treated for 24 hours in exfoliation 
solution at 20°C.............................................................................................................................. 78

XIII



Figure 45: The above figure compares the exfoliation corrosion tests for AR (orange strip 
blocks) and UIT condition (blue stripe blocks) with respect to temperature and time period 
of exfoliation. The red line shows the tolerance limit specified where when the panels need
to be replaced..................................................................................................................................79
Figure 46: Micrograph f  24hrs exfoliation which shows about 170pm of the cross-section
being affected by this form of corrosion.....................................................................................80
Figure 47: The above graph shows immersion tests performed on AL 2024 T351 coupons 
according to ASTM standards G 110-92. All the tests were conducted at ambient conditions
(20°C)...............................................................................................................................................80
Figure 48: Average copper distribution of 24 hrs exfoliated at 20°C..................................... 81
Figure 49: Average copper distribution of 24 hrs exfoliated at 40°C..................................... 82
Figure 50: Copper redistribution for AR samples 48 hours of exfoliation at 20 °C............. 82
Figure 51: Copper redistribution for AR samples exfoliated for 48 hours and at 40 °C 83
Figure 52: Comparison of copper concentration for AR samples subjected to exfoliation
corrosion tests at 20°C and at 40°C..............................................................................................83
Figure 53: Potentiodynamic polarisation curves o f Al 2024-T351 for AR and UIT 1
condition showing a high cathodic activity in 3.5% NaCl solution........................................ 85
Figure 54: Anodic curve zoom of Figure 53 shows that the pitting potential of AR and UIT

• 91 are similar. However, the rate of corrosion increases by 4 pA/cm at lOOmV above open
circuit potential...............................................................................................................................85
Figure 55: comparison of potentiodynamic plots for UIT 2 and AR conditions...................86
Figure 56: Detailed anodic branch of UIT 2 potentiodynamic curve......................................87
Figure 57: Potentiodynamic curves showing results similar to UIT 2 with lower corrosion
rate before the sample reaches its pitting potential....................................................................87
Figure 58: A zoomed anodic section of UIT 3 potentiodynamic curve.................................... 1
Figure 59: Potentiodynamic plot showing Comparison of all three UIT conditions with the
AR condition...................................................................................................................................89
Figure 60: The above micrograph shows the results of exfoliation corrosion testing for all
the three samples subjected to 24 20. UIT 1 shows good corrosion resistance.................... 89
Figure 61: Qualitative hydrogen analysis for AA 2024 T351..................................................92
Figure 62: A GDOES result showing the comparison between Reference sample and AR
samples exfoliated for 24 hours at ambient conditions (AR 24 20)...................................... 93
Figure 63: A GDOES result for hydrogen showing AR 24hours of exfoliation at 40°C
(AR24_40°C) Vs the reference line o f A A 2024 T351............................................................. 94
Figure 64: A comparison showing the affect of increasing temperature at same exfoliation
conditions........................................................................................................................................ 95
Figure 65: A comparison between AR & UIT1 condition of A A 2024-T351....................... 96
Figure 66: Shows a comparison of UIT and AR samples subjected to Exfoliation testing for
24 hours at ambient conditions.....................................................................................................96
Figure 67: A comparison of AR and UIT conditions at ambient and 40°C subjected to
exfoliation corrosion for 24 hours................................................................................................97
Figure 68: A comparison of AR and UIT samples with respect to time showing gradual
tensile properties degradation after exposure in exfoliation corrosion..................................100

XIV



Figure 69: A comparison of AR & UIT samples with respect to temperature at constant
time................................................................................................................................................ 101
Figure 70: Yield Stress characteristics of AA 2024 T351 subjected to exfoliation corrosion
at temperatures ranging from 20°C to 80°C at constant immersion time (24hours) 102
Figure 71: Ultimate tensile strength characteristics of AA 2024 T351 subjected to 
exfoliation corrosion at temperatures ranging from 20°C to 80°C keep at constant
immersion time (24hours)...........................................................................................................102
Figure 72: Three modes of failure of AA 2024 T351 subjected to exfoliation corrosion for
24hours at 40 °C........................................................................................................................... 103
Figure 73: A cross-sectional SEM micrograph of AR 24 hours of exfoliation at ambient 
conditions showing ductile failure mode transition to brittle mode of failure due to 
hydrogen induced embrittlement. The average depth of brittle failure is found to be 360
pm.................................................................................................................................................. 104
Figure 74: A cross-sectional SEM micrograph of UIT 24 hours of exfoliation at ambient 
conditions showing ductile failure mode transition to brittle mode of failure. The average
depth of brittle failure is found to be 268 pmA........................................................................104
Figure 75: A cross-sectional SEM micrograph of AR AA 2024 T351 showing
crystallographic (marked areas)................................................................................................. 105
Figure 76: A zoomed image of section marked in Figure 75 showing a series of step
pattern............................................................................................................................................ 106
Figure 77: A series of steps resembling a staircase pattern produced by monotonic plastic
strain...............................................................................................................................................106
Figure 78: Fatigue life curves of AA 2024 T351 at constant amplitude loading at various
exfoliation conditions.................................................................................................................. 109
Figure 79: As Received (I) AR samples reveal that there are less significant number of 
crack initiation points. UIT Conditioned (II) More number of crack initiation points are 
noticed on UIT samples and most of them were originating from the edges of the samples
as highlighted in the figure..........................................................................................................110
Figure 80: Low Cycle Fatigue regime for different surface treatment conditions.............. 111
Figure 81: High Cycle Fatigue regime for different surface treatment conditions..............112
Figure 82: Various exfoliation conditions as a function of number of cycles to failure for 
AA 2024 T351. The above results are plotted from the data of fatigue crack growth
analysis...........................................................................................................................................113
Figure 83: First possible detectable crack for UIT 1 - 25000 cycles...................................113
Figure 84: Crack path after 40000 cycles..................................................................................114
Figure 85: Crack deviation/bifurcation visible in the crack path on the right side of the
notch...............................................................................................................................................114
Figure 86: Final photo microscopic image analysis before failure -  75000 cycles.............115
Figure 87: Crack length (a) versus number of cycles (N) graph for AR AA 2024 T351 at 
exfoliation time of 24 hours to 72 hours in steps of every 24 hours at ambient conditions
(20 °C)............................................................................................................................................116
Figure 88: FCG graph of AA 2024 T351 at exfoliation time of 24 hours to 72 hours in
steps of every 24 hours at ambient conditions (20 °C)............................................................117

XV



Figure 89: Crack length (a) versus number of cycles (N) graph for UIT conditioned AA
2024 T351 at exfoliation time of 24 hours and at temperatures o f 20 °C and 60 °C 118
Figure 90: FCG graph of UIT conditioned AA 2024 T351 at exfoliation time of 24 hours
and at temperatures of 20 °C and 60 °C.................................................................................... 118
Figure 91: Schematic diagram showing current industrial practice of grinding..................121
Figure 92: Results of exfoliation corrosion tests at 20 0 C exhibiting corrosion resistance of
UIT conditioned specimens........................................................................................................ 121
Figure 93: Results of exfoliation corrosion tests at 40 0 C exhibiting corrosion resistance of
UIT conditioned specimens........................................................................................................ 122
Figure 94: Schematic graph showing transition from pitting to exfoliation corrosion with
respect to time...............................................................................................................................123
Figure 95: A Probable crack path showing the effect of disoriented sub grains due to UIT
process........................................................................................................................................... 124
Figure 96: Physical zones of UIT effect on material properties and condition of A12024 
T351............................................................................................................................................... 125

XVI



Nomenclature
a, ao, af crack length, initial crack length, final crack length [m]

AR As-Received AA 2024-T351

AHU Arbitrary Hydrogen Units

C, m empirical factors in Paris type relation

d depth of compressive stress region, grain size [m]

D grain size [m]

E Young’s Modulus of Elasticity [GPa]

Epit pitting potential [ V ]

/ mathematical function

i half grain number (i = 1, 3, 5, ...)

Kc material fracture toughness [MPaVm]

K c l closure stress intensity factor [MPaVm]

K e ff effective stress intensity factor [MPaVm]

K i mode I stress intensity factor [MPaVm]

K-max maximum stress intensity factor [MPaVm]

K op opening stress intensity factor [MPaVm]

ky locking parameter in Petch-Hall equation

mi, mi orientation factor of the first grain, of the ith grain

N, Nf life of component, cycles to failure [cycles]

P load [m]

R stress ratio

UIT Ultrasonic Impact Treatment

UIT-C Ultrasonic Impact Treated - Corroded

Y geometry factor

XVII



AK stress intensity factor range [MPaVm]

%wt Percentage weight

5, 5, displacement, crack tip opening displacement, CTOD [m]

A5t cyclic crack tip opening displacement [m]

AKth threshold stress intensity range [MPaVm]

Kic local stress intensity [MPaVm]

AP change in load, load range [N]

A O eff effective stress range [MPa]

Aa nominal stress range [MPa]

a applied stress [MPa]

^m ax maximum stress [MPa]

G0p opening stress [MPa]

a y yield strength of a polycrystalline material [MPa]

XVIII



CHAPTER 1

Introduction

1.1 Ageing Aircraft
Ageing of an aircraft is a process of systematic structural degradation of components as a 

result of various detrimental processes occurring during the life cycle of an aircraft. 

Potentially all aircraft are subjected to the issues of ageing. These aircraft have been and 

continue to be a safety concern internationally with a high public profile. Aircraft panels 

initially designed to meet fail safe design requirements can be significantly affected by the 

number of years and numbers of flying hours in service. Today, there is a growing number 

of aircraft which fall under the general title “ageing aircraft”. Problems associated with 

structural failure were brought to world’s attention with the 1988 Aloha Airlines 737 

accident [ \  2] as shown in Figure 1. This accident raised concerns that structures could 

lose their inherent fail-safe condition as a result of fatigue damage and/or extensive 

corrosion.

Figure 1: A nineteen-year-old Boeing 737 aircraft lost a major portion of the  upper  fuselage near  th e  f ron t  of the  
plane, in full flight at  24,000 feet.
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Many civil transport aircraft were originally believed to be able to meet continuing 

structural airworthiness requirements for an indefinite period -  in practice this has not 

always proved to be the case. The requirements for aircraft utilization have been steadily 

increasing in recent years. Current schedules and route structures are such that aircraft 

could see as many as 16 hours per day of service. High utilization could approach 6000 

hours in a year, a number that has been steadily increasing over the past 10-15 years,
•  'X

resulting in fewer opportunities to allow an aircraft in for maintenance [ ].

The structural integrity of aircrafts is o f concern since factors such as fatigue cracking and 

corrosion are flight cycle and time dependent. Intensive investigations carried out over the 

last couple of decades have shown that the occurrence of corrosion appreciably reduces the 

mechanical performance of aluminium alloys, facilitates the onset of fatigue cracks and 

reduces appreciably the fatigue life and the fatigue crack growth resistance [4].

1.1.1 Lap joints and Corrosion Detection Problems
A particular corrosion inspection problem is the detection of hidden corrosion in lap joint 

structures. A lap joint is formed by at least two metallic skins joined together by fasteners. 

The presence of corrosion between the two skins will lead to thinning of the metal skin as 

well as pillowing (bulging) of the surface of the lap joint (caused by the presence of 

corrosion by-products). When the thinning o f  the metal skin reaches a specified level, 

normally 10% o f  the nominal skin thickness, the section o f  the lap jo int must be replaced. 

Presently, this type of corrosion is detected mainly by visual inspection, e.g., by observing 

the pillowing of the surface when a beam of light (flash lamp) is directed onto the lap joint 

at a grazing angle. This method of detection is tedious, time consuming, very dependent on 

the operator as well as being qualitative in nature. Quantitative methods such as ultrasonic 

inspection are needed if the aerospace industry wishes to shift from a reactive mode toward 

corrosion (i.e. "find and fix") to a managed proactive approach (i.e. "predict and plan").

1.2 Aims & Objectives
The work presented in this PhD thesis addresses the structural degradation and crack 

growth characteristics of Al 2024-T351 and improvement o f alloy performance using 

Ultrasonic Impact Treatment (UIT).

The aims of this study were initially defined as follows:
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• To understand the effects of nanocrystallisation and compressive residual stresses 

on behaviour of untreated, corroded and UIT specimens.

• To correlate the UIT conditions with fatigue performance of corroded samples.

• To understand the effect of hydrogen induced embrittlement on untreated samples 

and corroded samples.

• To understand the structural degradation of Al 2024-T351 alloy subjected to 

exfoliation corrosion.

• To characterise the corrosion resistance of as-received and UIT conditioned 

samples.

1.3 Outline of this Thesis
Apart from this introduction, this thesis is organised as follows:-

In chapter 2, a comprehensive literature review focuses attention on scientific concepts, 

mechanisms pertaining to corrosion, corrosion fatigue and fracture mechanics of metallic 

materials. Fatigue mechanism both in air fatigue and corrosion fatigue are given. 

Additionally, the basics of hydrogen embrittlement are summarised and various existing 

models both in air and corrosive environments are analysed.

Chapter 3 considers the various existing surface engineering treatments and a brief 

description of these are illustrated.

Chapter 4 considers the experimental equipment used during this PhD project. It also 

provides the measurement and analysis methods used to obtain and interpret information.

The Chapter 5 to 10 comprises the knowledge obtained during this study.

Chapter 5 and chapter 6 provide results on corrosion and hydrogen embrittlement effects 

on untreated Al 2024-T351. A subsequent corrosion investigation was provided on UIT Al 

2024-T351 and their results are compared.

Chapter 7 presents the influence of UIT on mechanical properties of Al 2024-T351 by 

comparing UIT specimens and As-Received (AR) specimens.

Chapter 8 presents the fatigue life and crack propagation results comparing untreated and 

UIT specimens.

Finally, chapter 9 brings together the main results and discussion of this thesis.
3



Chapter 10 & Chapter 11 provide conclusions of this thesis along with suggestions for 

future areas of work respectively.
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CHAPTER 2
Literature Survey

2.1 Corrosion

2.1.1 Economic Impact and Effects
Corrosion is a natural process. A given corrosion problem usually concerns a specific 

environment. Just like water flows to the lowest level, all natural processes tend toward the 

lowest possible energy states. In other words, Corrosion is electrochemical reaction 

between a material and its environment that produces a deterioration of the material and its 

properties. According to a report presented to the Institute o f Materials, Minerals and 

Mining (IoM3) corrosion damage is estimated to be between 2-3% of GNP per year for 

the UK economy or on a more personal note that corrosion costs around £600 per capita 

per year; that's equivalent to around l-2p/£ for each tax-payer [5].

2.1.2 Corrosion Classification
Aqueous corrosion can be classified in many ways. An important way of classification 

relevant to research would be according to the visual observation or use of magnification 

as shown in Figure 2. The mode of corrosion attack would be the basis of the 

classification.

Pitting

More noble 
m e ta l

Flowing Cyclic
corrodent movoment

Dealloying Intergranular Stress-corrosion
cracking

Metal or 
nonmetal

Crevice 

Cyclic s tre ss

FrettingUniformNo corrosion

I onsile s tre ss

Figure 2: Schematics of com m on forms of corrosion [6].
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However, not all corrosion cases would fit in more than one category. Nevertheless, 

corrosion classification system is quite useful to study its problems. Figure 3 is a 

schematic chart which will categorise most of the corrosion cases.

Corrosion

Uniform Loca lized

Microscopic

l . Intergranular
2. Stress Corrosion

Cracking

3. Hydrogen D am age
4. Corrosion Fatigue

5. Fretting Corrosion
6. Cavitations

Macroscopic

l . Pitting
2. Crevice
3. Galvanic

4. Erosion-Corrosion
5. Exfoliation

6. Select ive  Leaching

Figure 3: A chart categorising the various corrosion types.

2.1.3 Corrosion Processes
Most metals, especially important engineering ones such as iron and aluminium, are 

required to be extracted from their ores before they are of practical use. In the form of an 

ore the metal is in a low energy state. To remove the metal from its ore requires an input of 

energy, some of which is retained by the metal. The metal will readily give up this energy 

to revert to its original condition which it is able to do through corrosion processes.
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An electrochemical process takes place during the corrosion of a metal or alloy in an 

electrolyte. This involves the transfer o f electric charge and some metallic mass loss, 

which take place by means of two reactions. One reaction is known as oxidation (anodic 

reaction), whereby the metal gives up electrons and dissolution of the metal occurs. The 

other is known as reduction (cathodic reaction), where the newly flowing electrons are 

consumed. Examples of the reactions are given below.

Oxidation (anodic reaction):

A1 ->  A l3+ + 3e~ (Aluminium oxidation) Equation 1

Reduction (cathodic reaction):

2H++2e_ —»H2 (Hydrogen evolution/reduction) Equation 2

0 2 +2H 20 + 4 e - —»40H~ (Oxygen reduction) Equation 3

Other reactions may also occur between the ions within the electrolyte solution such as:

Al3+ -t-30H —̂ Al(OH)3 (Formation of aluminium hydroxide) Equation 4

If the surface of a metal, which is in contact with an electrolyte, contains many active 

anodic and cathodic sites, then general corrosion of the metal will occur. However, if the 

surface has a good protective layer, such as aluminium oxide on aluminium, then, in 

general, these sites will not be able to react and the metal is passive. If, for some reason, a 

breach in the protective layer, or passive film, exists then corrosion can occur on a 

localised scale, however passivation may occur depending upon solution conditions.

2.1.4 Polarisation
In general terms, the deviation from equilibrium potential is called polarisation. 

Polarisation can also be defined as the displacement of electrode potential resulting from a 

net current. The driving force for the corrosion reaction is the potential difference between 

the anode and the cathode in the corrosion cell, and the reaction rate is equal to the current 

that flows through the cell. The total resistance throughout the corrosion cell is the total of 

the resistance associated with the anode plus the resistance of the ionic path plus the 

resistance associated with the cathode plus the resistance of the electronic path. As with the 

Ohm's law, i.e. V = IR for the simple electrical circuit, the potential, current, and 

resistance in a corrosion cell are related. For a given potential difference between the 

anode and the cathode, the current or corrosion rate will increase as the resistance 

throughout the cell decreases and vice versa.
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2.1.5 Passivity
Passivity is the characteristic of a metal exhibited when that metal does not become active 

in the corrosion reaction. Passivity is caused by the build up of a stable, tenacious layer of 

metal oxide on the surface of the metal. This oxide layer is formed by corrosion on a clean 

metal surface, where the corrosion products are insoluble in the particular environment to 

which the metal is exposed. Once the layer, or film, is formed, it acts as a barrier 

separating the metal surface from the environment. For further corrosion to occur, the 

reactants must diffuse through the oxide film. Such diffusion is very slow or non-existent, 

thus corrosion either decreases markedly or stops.

2.2 Modes of Corrosion in Al 2024-T351

2.2.1 Pitting
Pitting can be broadly classified as a form of localised corrosion of a metal surface, 

confined to a point or small area, which takes the form of cavities called pits as shown in 

Figure 4. Pitting is one of the most insidious forms of corrosion [6]. It causes equipment to 

fail because of through-wall perforation in pipes can occur which represents only a small 

percentage weight loss of the entire structure. Pitting can also accelerate the fatigue 

processes by generating preferential sites which act as stress concentration features where 

cracks can initiate and grow [7,8]. Furthermore it is often difficult to detect pits because the 

pits are often covered with corrosion products.

Local Anode

Local Cathode

M icrograph 1.1
M icrograph 1

F igu re  4: A cross-sectional SEM  image for 24 hours exfoliation showing pit formation. M icrograph 1.1 shows 
an exploded view o f  a pit w ith a surrounding local cathodic region.

8



Pit growth is not always continuous, sometimes a pit may initiate but growth will cease if 

the conditions required for growth are no longer present, for example, if  the potential 

difference between the anode and cathode is reduced as shown in Figure 5. Two important 

potentials exist for pit growth behaviour [9,10]. The first is the pitting potential, a potential 

above which pits nucleate and develops. The second is the re-passivation potential, below 

which pitting will cease and it is possible that the passive film may reform. At potentials 

between these two, pits already nucleated may continue to grow, although no new pits will 

nucleate. However, in some circumstances, pit growth will continue through a self 

perpetuating mechanism [2, 7]. When metal ions are produced within the pit, anions in the 

solution, such as chloride ions in aqueous solutions, are attracted towards the pitting area. 

Due to a hydrolysis process, the metal chloride will become a metal hydroxide and the 

chlorine will combine with the hydrogen ions to produce an acid, thus producing increased 

acidity within the pit. In the presence of hydrogen and chloride ions, dissolution of most 

metals will readily occur.

Aluminium depends on a protective film for corrosion resistance; it is susceptible to 

localized forms of corrosion due to the following reasons;

1. Chemical (acidity, low O2 concentrations, CI2 concentrations/alkaline environments) 

or mechanical damage (scratches) to the protective oxide film [n].

2. Presence of secondary phase particles (Cu, Mg) or non-metallic inclusions.

Pitting occurs at local sites of passive film breakdown. Thus, corrosion resistance of 

aluminium alloys particularly 2xxx series depends on the extent of ability of the surface to 

form a passive oxide film.

Anode

O N

O p  H , - 0

F igu re  5: A schematic o f  anodic and cathodic sites in a corrosion cell.
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Another driving power for pitting corrosion is the lack of oxygen around a small area. This 

area becomes anodic while the area with excess of oxygen becomes cathodic.

2.2.2 Intergranular Corrosion
Intergranular corrosion is localised attack along the grain boundaries, or immediately 

adjacent to grain boundaries, while the bulk of the grains remain largely unaffected. This 

form of corrosion is usually associated with chemical segregation effects (impurities have a 

tendency to be enriched at grain boundaries) or specific phases precipitated on the grain 

boundaries. Such precipitation can produce zones of reduced corrosion resistance in the 

immediate vicinity.

Aluminium is susceptible to intergranular corrosion due to the following reasons;

Preferential attack on the grain-boundary phase: The attack is usually related to the 

segregation of specific elements such as copper in 2xxx series of aluminium alloys or the 

formation of a compound in the boundary. Corrosion then occurs by preferential attack on 

the grain-boundary phase, thus making the grain boundary anodic relative to the remainder 

of the surface. The attack usually progresses along a narrow path along the grain boundary 

and, in a severe case of grain-boundary corrosion; entire grains may be dislodged due to 

complete deterioration of their boundaries. Figure 6 shows a typical intergranular attack 

on A1 2024-T351 subjected to ASTM G110 [12] standards at ambient conditions for 48 

hours.

Aco.V Spot Macjn 
20.0 kV 5.0 848x

Det WO
SE 9.8

F igu re  6: 48 hours o f  intergranular corrosion in am bient conditions according to A STM  G110 
showing preferential path o f  intergranular attack along grain boundary

Voluminous effects: The corrosion products and the second phase particles form oxides

and higher corrosion products which tend to create a typical tensile pressure in the affected
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zones and this voluminous expansion mainly leads to loss of cross sectional area by 

removing material from surface along the rolling direction.

In Figure 7, the surrounded white region represents corrosion products formed due to 

exfoliation corrosion and as a results of these corrosion products, separation occurs along 

the rolling direction.

A cc V Spot Det WO 
1 5 0 kV 5 0 SE 9.7

Figure 7: 48 hours o f  exfoliation corrosion according to ASTM  G34 depicts intergranular 
corrosion due to voluminous effects o f  the corrosion products.

2.2.3 Stress Corrosion Cracking
Stress corrosion, or stress corrosion cracking (SCC), is caused by the combination of an 

applied or residual tensile stress and a corrosive environment. When SCC occurs there is 

usually no or little appreciable other corrosion damage. SCC can occur in mildly corrosive 

environments such as 3.5% NaCl solution and under stresses which would otherwise cause 

no damage to the metal. If either one of the two components required is removed, then the 

remaining component may have limited damaging effects on its own.

Mechanisms for SCC include: the breakdown of the protective oxide film and subsequent 

inter-granular or trans-granular cracking, accelerated by the applied stress; and a 

dissolution mechanism, whereby the anodic dissolution of the metal is accelerated by the 

applied stress because it increases the thermodynamic energy of the atomic bonds within 

the crystal lattice.
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A large number o f experimental results indicate that a major effect o f hydrogen in solid 

solution on the plastic behaviour of Face Centred Cubic (F.C.C) crystals is to promote 

plastic strain localisation [13]. Hydrogen induced plasticity is increasingly invoked in many 

SCC cases. Delafosse [14] conducted experiments where a potential change from E0 to Ec 

after a 0.8% plastic strain is produced a macroscopic reduction of the elongation to failure, 

showing that hydrogen effects cannot be excluded.

The obvious assumption of hydrogen decreasing the local stress intensity (Kic) via a 

decrease of surface energy due to absorbed hydrogen is the most straightforward 

mechanism one can propose to account for the embrittlement of metals subjected to 

hydrogen ingress. In F.C.C metals, dislocation sources are expected to be numerous in the 

vicinity of any SCC crack tip, and can easily be activated at any stress level and 

temperature.

2.3 Fatigue of Metallic Materials

2.3.1 Introduction
This chapter presents an overview of progress made in understanding the behaviour of 

corrosion fatigue and the importance of the current research. The classification of the 

literature review is as follows:

1. Plain Fatigue

2. Corrosion Fatigue

2.3.2 Plain fatigue

2.3.2.1 Introduction
The phenomenon of fatigue first became a topic of scientific investigation in the early 19th

century. In fact, in 1838 Albert [15] first introduced the term “fa tigue” while investigating

the cyclic proof strength of cast iron mine hoist chains. However, detailed studies of the

phenomenon were not conducted until later in 1843, when as a result o f a number o f tragic

railway accidents attributed to fatigue, W. J. M Rankine was funded to investigate the

fatigue of railway materials. In his work Rankine did numerous cyclic bending tests and

noticed the general characteristics of metal fatigue. Components of machines, vehicles and

structures are frequently subjected to repeated loads, also called cyclic loads, and the

resulting cyclic stresses can lead to microscopic physical damage to the materials involved.

Even at stresses well below the materials ultimate strength, this microscopic damage
12



accumulates with continued cycling until it develops into a crack or other macroscopic 

damage that leads to failure of the component. This process o f damage and failure due to 

cyclic loading is called “fatigue”. The understanding of mechanical failures from fatigue 

has been the subject of engineering efforts for more than 150 years. Albert was considered 

as the first person to explore the damage mechanism which occurs due to fatigue; he also 

tested mine hoist chains, made of iron, under cyclic loading, in Germany around 1828. The 

term “fatigue” was introduced by Poncelet [15] in his book on mechanics. The railway 

accident near Versailles in France, which resulted in the loss of many human lives, resulted 

in greater efforts by scientists to investigate the fatigue mechanism.

A British railway engineer, Rankine recognised some of the distinctive characteristics of 

fatigue fractures and noted the dangers of stress inducing concentration features in 

mechanical components. In the mid-1800s many researchers exerted significant efforts to 

study and understand the fatigue behaviour of mechanical components. Hodgkinson [15] is 

also one of the many investigators who studied the fatigue of wrought and cast iron used in 

railway bridges; this was done with the assistance o f the British government. In 1860, 

Wohler [15] conducted systematic investigations of fatigue failures in railroad axles for the 

German railway industry. In addition to this Wohler was the first to characterise fatigue 

behaviour in terms of stress amplitude-life (S-N) curves and to introduce the concept of a 

fatigue endurance limit.

Significant progress has been achieved in the development and understanding of fatigue 

life approaches in last few decades. Before turning to a detailed review of the fatigue 

assessment of aluminium alloys, some books are mentioned which give an introduction to 

the subject and summarize the fundamentals as well as recent developments. Among 

others, Suresh [15] gives a comprehensive description of the mechanics and micro­

mechanics of fatigue in metals. The topic of the textbook by Dowling [16] is the mechanical 

behaviour of materials in general, but emphasis is placed on practical methods of 

predicting the fatigue life of mechanical parts and structural members. He also emphasised 

the fatigue mechanism in materials (See Section 2.3.2.2 Fatigue failure mechanism) and 

how the mechanism can be affected by a wide variety of practical conditions.

Theories used for fatigue analysis, based on local surface strains, have been developed 

from the 1950’s. A major feature of local strain fatigue is that fatigue lives to crack
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initiation can be calculated. This is of increasing importance as more emphasis is being 

placed on product safety and product liability legislation, and as a result the traditional 

approach to ‘total life’ based on stress-life curves alone is becoming much less relevant. 

Simple cyclic plasticity models were developed to estimate elastic-plastic stresses from the 

measured strains, so that the effects of mean stress could be included.

2.3.2.2 Fatigue failure mechanism
The Institution of Mechanical Engineers, in Britain, explored the so called crystallisation 

theory of fatigue during 1840s. The pioneering work of Ewing and Humphrey [1?] on 

interpretation of fatigue mechanisms based on the old re-crystallisation theory became the 

basis for the work of further research.

The mathematical framework for the quantitative modelling of fatigue failures was
1 Rpioneered by the study o f Irwin [ ], with the help of the stress analyses concept developed 

by Inglis [19] in 1913, and the energy concept developed by Griffith in 1921. Griffith 

showed that the amplitude of stress singularity ahead of a crack could be expressed in 

terms of the scalar quantity known as stress intensity factor. Paris et al [20] were the first to 

suggest that the increment of fatigue crack advance per stress cycle, da/dN could be related 

to the stress intensity factor range, AK during constant amplitude cyclic loading.

Fatigue crack initiation can be a contentious subject. Often, fatigue life is considered to 

comprise three regimes: initiation; propagation; and failure. However, the initiation period 

is subject to the scale of observation [21]. Some assume initiation to be the cyclic period 

required for a crack to reach a detectable size, whereas others may regard initiation to be 

the onset of changes, at the microstructural level, in the material under scrutiny. As can be 

seen from the ensuing paragraphs, the fatigue phenomenon can be expected to start from 

the very first loading cycle.

As has been mentioned previously, fatigue failures can occur at stresses below the ultimate 

tensile stress or the yield stress of a material. However, for permanent changes to occur, 

i.e. the formation and propagation of a fatigue crack, localised plasticity must be present; 

therefore the yield stress must be achieved. Although the applied stress may be below the 

yield stress, local stresses at certain points within the stressed body may exceed the yield 

stress due to stress raisers. Some early observations of stress concentrations were made on 

a macroscopic level by Wohler [22] when he noted that on shafts with a sharply stepped
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change in diameter, failure would occur at the sharp corner, and he suggested that this was 

due to irregularities in the stress distribution. Neuber [23] and Peterson [24] have published 

much information on stress concentrations found in engineering components due to 

notches, key ways etc. Using such works as design guides, the stresses produced by such 

features can be limited.

However, even when the stress due to a macroscopic stress concentration is kept below the 

yield stress, fatigue cracks can still occur. This is due to microscopic stress concentrations 

such as surface roughness (micro-notches), second phase particles, inclusions or corrosion 

pits, or from microstructural features such as twin or grain boundaries [25,26,15].

Another important feature of the fatigue process is the formation o f  persistent slip bands 

(PSBs). Slip bands that form within crystals can be seen on the surface by a characteristic 

peak and valley (intrusions and extrusions) formation during cyclic loading [17]. PSBs are 

so called as it was found that the intrusions and extrusions re-emerged after their removal 

by electro-polishing, once cyclic loading was recommenced [26]. PSBs are formed when a 

crystal undergoes cyclic plastic straining, during which dislocation movement results in 

dislocation structures being formed, such as the ladder or labyrinth structure [15]. It has 

been suggested that cracks form from PSBs, either by micro-crack formation from an 

intrusion [27], or from the PSB -  matrix interface, where a sharp drop in the dislocation 

density from the PSB to the matrix gives rise to a weakening of the interface [15]. The 

latter is said to be strongly influenced by the roughening of the surface caused during the 

PSB formation [28].

2.3.2.3 Fatigue life approaches
Nowadays engineers are very conscious of fatigue problems and the approaches to

predict the possible total-life of mechanical components have an enormous significance. 

There are three different concepts of design [15];

Safe-life concept: The components are analysed or tested in the laboratory under load 

conditions which are typical of service spectra and a useful fatigue life is estimated for the 

component. The safe-life approach depends on achieving a specified life without the 

development of a fatigue crack so that the emphasis is on the prevention of crack initiation.
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Fail-safe concept: This concept, by contrast, is based on the argument that, even when 

an individual member of a large structure failed, there should be sufficient structural 

integrity in the remaining parts to enable the structure to operate safely.

Damage-tolerant concept: The basic idea here is that all the engineering components 

are inherently flawed. The useful fatigue life is then defined as the number of fatigue 

cycles or time to propagate the dominant crack from this initial size to some critical 

dimension. The prediction of crack propagation life using the defect-tolerant approach 

involves empirical crack growth laws based on fracture mechanics.

2.3.2.4 Factors affecting fatigue damage

2.3.2.4.1 Mean Stress Effect
Methods for characterising the fatigue life in terms of nominal stress amplitude, using 

experimental data obtained from uniaxial tests on smooth specimens, was introduced by 

Wohler in 1860 [15]. The S-N approach is a simple method of representing the uniaxial 

fatigue data in a single graph, with the stress amplitude plotted on a linear scale against the 

number of cycles to failure plotted typically on a logarithmic scale. In 1910, Basquin [15] 

observed a linear relationship between the stress amplitude and the number of cycles to 

failure when he plotted these two components on a log-log scale. Later the Basquin 

equation became popular and was widely used in assessing the fatigue life of many 

engineering component, based on a stress life approach. The Basquin equation is: -

= cra = <Jf  (2N f  )b Equation 5

where Ofis the fatigue strength coefficient, which is approximately equal to the true 

fracture strength obtained from monotonic tension test, b is known as the fatigue strength

exponent or Basquin exponent, <ra is the stress amplitude and Nf is the number of cycles to

failure.
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Basquin’s empirical relationship applies to fully reversed fatigue loads with zero mean 

stress. However, fully reversed stress cycles with zero mean stress are not always 

representative of practical applications. A method used to calculate the different levels of 

cyclic stress effect, on fatigue life calculations, was explained by Gerber in 1874 [29]. Some 

years later, in 1899, Goodman [30] also proposed an approach to account for the mean 

stress effects in fatigue damage calculations. The concept that the elastic limit of metals in 

fully reversed loading can be different from that observed in monotonic deformation was 

popularised by Bauschinger in 1886 [31]. Concepts of cyclic softening and hardening were 

investigated and presented by Bairstow in 1910 [15]. The constant life plots represented in 

Figure 8 are described by the following expressions:

Modified Goodman relation [30]
cr cr

Equation 6

Soderberg relation [32] ^ + ^ = i
G Gar y

Equation 7
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Figure 8: Constant life curves for fatigue loading with non-zero mean stress
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F igu re  9: Nom enclature for stress parameters which affect fatigue life, the variation o f  stress with 
time

Figure 8 shows that significant differences in the predictions of fatigue behaviour will 

result from these equations. Therefore, in order to be confident about which of these is the 

most appropriate for a particular application, it would be necessary to a complete series of 

experimental tests, with different stress ratios (R) where R is the ratio of minimum to 

maximum stress values.

2.3.2A2 Grain Size
In general, grain size has a marked effect on the phenomena associated with the yield 

point. The Hall-Petch relationship [34] has been found to apply to the dependence of the 

lower yield stress on grain size. It is assumed that grain boundaries are good obstacles to 

the propagation of the fatigue crack as they are for the propagation o f a brittle crack [35]. 

However, as the flow stress attains a certain degree of saturation due to high cyclic strains, 

the crack propagation in a Face Centred Cubic (F.C.C) structure becomes independent of 

grain size as they are now more susceptible to dislocation cells [36]. Thus, as the flow stress 

is larger than yield stress, there is little effect of grain size as the second term in Hall-Petch 

equation becomes of negligible.

2.3.2.4.3 Role of Surface on crack initiation
A given surface finish may influence the fatigue properties in many ways. The jargon of 

words in relation to the surface finish and crack initiation will all relate back to smoothness 

and metallurgical structure. Protrusions and intrusions on the surface generate slip bands at 

the surface [17]. These protrusions and intrusions along with stress concentrations at the 

root of the intrusions promote crack initiations sites.
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A good surface finishing technique like bead peening, burnishing and other similar 

operations can induce compressive residual stresses at the sub-surface which can be 

beneficial to mitigate the crack propagation rates.

2.3.2.5 Fatigue Mechanism -  Crack Propagation
Fatigue cracks generally propagate through three regimes of crack growth. Known as 

stages I, II and III, the extent to which the crack propagates during each is governed by the 

size of the crack tip plasticity [37].

Tensile opening 
(M ode 1)

In-plane sliding 
(M ode II)

Anti-plane shear 
(M ode III)

F igu re  10: The three basic opening modes.

The applied stress, the crack length, the microstructure, the environment and the loading 

conditions are amongst the main parameters that control the crack tip plasticity. The three 

modes are shown schematically in Figure 10.

2.3.2.5.1 Stage I Crack Growth
Stage I crack growth occurs along slip planes that are orientated at approximately 45° to 

the applied stress. This is due to the crack growing under a single shear mechanism. This 

shear propagation mechanism is known as mode II (in-plane sliding mode) as defined in 

Figure 10b. As can be determined using the Schmidt law [15], the resolved shear stress is 

found to be a maximum on planes that lie 45° to the applied stress. This is done by 

considering a stress, a  as a force, F acting on an area, A so that the resolved shear stress x 

is calculated by:

t  - a  cos A cos# Equation 9
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where is the angle between the shear force and the applied force ‘F’, and ‘0 ’ is the 

angle between the plane that the force ‘F’ acts on and the plane that the shear forces are 

acting on. Thus, V  can be found to be maximum when both angles are 45°. In a 

polycrystalline material, it can be expected that many grains will have slip planes at 45° to 

the applied stress and therefore cracks will be expected to initiate in these favourably 

orientated grains. As the crack grows, its path across successive grains will continue to 

follow the most favourable slip system within each grain. This can lead to a zigzag crack 

path, as described by Forsyth [38], and the resulting fracture surface can be described as 

having a faceted profile. This growth process will continue whilst the plastic zone ahead of 

the crack tip is of dimensions comparable to the microstructure, i.e. up to a few grain 

diameters in size.

During stage I crack growth; the microstructure has a large influence on the propagation. 

The rate of crack advance is hindered by microstructural barriers such as grain or phase 

boundaries, and the crack growth rate per cycle fluctuates [39].

2.3.2.5.2 Stage II Crack Growth
As the crack grows, the crack tip stress intensity increases, and correspondingly, the plastic 

zone size will expand. It is now possible for the stress field at the crack tip to initiate slip 

along two planes, one plane inclined at a positive angle to the perpendicular of the applied 

stress and the other at a negative angle. The resulting crack path is then along the 

perpendicular direction to the applied stress. This growth mode is known as stage II crack 

growth [38]. Due to the double slip mechanism, the fracture surface has a rippled texture, 

known as fatigue striations as shown in Figure 11, which were first observed by Zappfe 

and Worden [40].
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Fatigue striations

Figure 11: An SEM image of fatigue Striations on Ultrasonic Impact Treated (UIT) Al 2024 T351 at 14.5mm  
from the surface of the specimen subjected to cyclic loading at 25Hz [41].

These striations, most evident in pure metals and ductile alloys, have been shown to be 

spaced at distances correlating to the crack advance per cyclic loading [41]. It should be 

noted that observations of fatigue striations depend on AK levels, material and 

environment [15].

This second stage of crack growth is also known as the Paris regime. The micro structure 

now has little influence on the crack propagation, and the propagation rate increases in 

proportion to crack length. Fracture now occurs by means of a tensile opening mode, mode 

I, as shown in Figure 10a.

2.3.2.5.3 Stage III Crack Growth
The crack enters the third stage of propagation when the growth rate becomes much higher 

than that experienced during the Paris regime. This is said to be unstable crack 

propagation. An almost negligible portion o f life is spent in stage III and, consequently, not 

much research has been performed in this area. The stress intensity approaches the material 

fracture toughness, Kc, and static fracture modes can be observed [42], such as void 

coalescence, cleavage and ductile tearing. Due to the static fracture modes, the 

micro structure, once again, can have a significant bearing on the propagation rate.
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2.3.2.6 Describing cracking propagation
The fatigue crack growth regimes that are of primary concern are stage I and stage II (see 

Figure 12), also known as short and long crack growth stages respectively.

Crack grows 
perpendicular to 

applied stress 
through duplex slip

Crack; follow 
crystallographic 

slip planes

Unstable 
crack growth 

to failure

Stage IIIStage I

F igure 12: Three stages o f  fatigue crack propagation

Due to the recent changes in design methodologies towards a damage tolerance approach, 

much effort has been directed towards predicting long crack growth behaviour and the so 

called anomalous short crack growth behaviour.

The ability to describe conditions at the crack tip brought about the inception of Linear 

Elastic Fracture Mechanics (LEFM) [43]. However, for LEFM to be applicable, certain 

conditions concerning the crack tip plasticity must be observed these are discussed in 

Section 2.3.2.6.1, When these conditions are breached, it is possible to use Elastic Plastic 

Fracture Mechanics (EPFM) which is discussed in Section 2.3.2.6.2, For the case of a 

short fatigue crack, LEFM is no longer applicable, and if the crack is small enough for the 

microstructure to influence the growth, then EPFM is also unable to describe the short 

crack growth phenomenon which is discussed in Section 2.3.2.6.4 [44]. Thus, in 

Microstructural Fracture Mechanics (MFM), much attention is paid to the factors that 

affect the growth of the crack, such as the microstructural features, in order to describe 

crack growth.
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2.3.2.6.1 Linear Elastic Fracture Mechanics
LEFM is based on the concept of the stress intensity factor (SIF, AK). This factor, denoted 

K, was introduced by Irwin [43] to describe the stress conditions around the vicinity of a

crack tip. Irwin showed that the near tip stress field, Cy, can be described through K, thus:

dy -  i------fjj (0) + higher order terms of r Equation 10
V27tr

where ‘r ’ and ‘0 ’ define the location from the crack tip in polar coordinates and ‘fy’ is a 

dimensionless function of 0 at different modes of fracture. Ki, Ku & Km are defined for 

each fracture mode (Figure 10). For the majority of cases of cracked components, the far 

field applied stress imposes a mode I type fracture mechanism [45]. It can be seen that K 

characterises the stress conditions at the crack tip. It is a factor of the applied stress, the 

crack length and the crack geometry, given by:

K = aVrcaY Equation 11

where ‘a ’ is the applied stress, ‘a’ is the crack length and ‘Y ’ is a dimensionless 

geometrical factor which describes how the crack shape affects the severity of the crack tip 

stresses. The real significance of K is its ability to describe crack propagation. Paris et al 

[20] proposed the following relationship, commonly referred to as the Paris law, linking 

the crack propagation rate to the stress intensity factor range:

= C(AK)m Equation 12
dN

da
where -----  is the incremental crack extension per loading cycle, ‘C’ and ‘m ’ are

dN

experimentally determined material constants and ‘AK’ = (Kmax - Kmjn) is the stress 

intensity factor range, related to the applied cyclic stress range, Act (amax - cymin), through 

Equation 11. This is evidenced when plotting the propagation rate against AK on a log-log
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plot as seen in Figure 13, where the linear relationship produced by this power law is 

demonstrated.

Figure 13 also introduces the two terms A K th and K i c .  A K th is the threshold stress intensity 

factor range, below which long cracks do not propagate. This is usually determined by 

reducing the A K  level, affected by reducing the applied A c t  level, o f an observed stage II 

crack until the propagation rate is less than some predetermined value, often in the region 

of 10'10 m/cycle [46]. A K th value only applies when LEFM conditions are met, for example, 

whilst a long crack would be expected to arrest, or to propagate at very low rates (10'10 

m/cycle), around or below A K th, short cracks may still propagate and at rates much higher

-:c

_ d a _  =  C ( A K ) ! 
c I X

Region Region

Figure 13: Typical log-log plot of crack propagation rate vs. stress intensity range

than this [47]. The term Kic refers to the mode I fracture toughness. As Kmax approaches 

Kic, unstable stage III crack propagation occurs, and when Kmax attains the critical Kic 

value, the result will be a brittle fracture failure. Kic can be determined by methods such as 

fracture toughness test, employing plane strain conditions to provide conservative fracture 

toughness values. As well as the parameters C and m in Paris equation being dependent 

upon material microstructure, temperature, environment and stress ratio, R (CTmin/CTmax), the 

fracture toughness, Kic, is also sensitive to material and testing conditions such as 

micro structure, temperature and loading rate [16].
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LEFM analysis assumes that the bulk of the material is behaving in an elastic manner. As a 

plastic zone will always exist ahead of a fatigue crack, in practice, for small scale yielding 

conditions to be met, the plastic zone size should be no greater than one twentieth of the 

crack length [48]. This is also known as K-dominance, whereby the area under 

consideration ahead of the crack tip must be reasonably larger than the plastic zone size, in 

order that any redistribution the of stresses, due to the plasticity, does not affect the validity 

o f the solutions of K, yet this area must be small enough so that approximate solutions 

derived from Irwin’s analysis do not deviate significantly from the exact solutions.

2.3.2.6.2 Elastic Plastic Fracture Mechanics
When substantial amounts of plasticity are developed, and the use of LEFM is no longer 

valid, a line integral method developed by Rice [49], known as the J  integral, can be used 

to define the conditions for fracture. The line integral is taken along any path, T  encircling 

the crack tip from one crack flank to the other. In his work, Rice showed that the integral 

was independent of the path and could be given by:

J= f f w d y - T — ds
f a  ,

Equation 13

where T are tractions, stress vectors, acting on the path, x and y are rectangular coordinates 

from the crack tip, s is the distance travelled along the path, u are displacement vectors and 

w is the material’s strain energy density.

Hutchinson [50] and Rice and Rosengren [5I] showed that the stress field in a nonlinear 

elastic solid could be described through the J integral parameter along the same lines as K 

does for LEFM, thus:

l
^ n+l

va<ry£yInr y
a ij(0,n) Equation 14

where n is the reciprocal of the strain hardening exponent, In is a factor relating to the 

strain hardening exponent, r "1/(n+1) is the stress field singularity, s/cy = a ( a /a y)n where sy 

and cty are yield strain and stress respectively and are related through sy = a y/E, where E = 

Young’s modulus and a is the constant from Ramberg-Osgood relationship [ ], a  = 

K(ao/E)n_1, where K and n are constants that depend on the material being considered [15].
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Finally, CTij (0, n) varies with the strain hardening exponent and the polar angle 0, and also 

depends on stress state, either plane stress or plane strain.

A drawback of the J integral approach arises because of the assumption that the material is 

behaving in a nonlinear elastic way, so that the stress-strain curve is nonlinear and 

reversible. This then implies that this approach is only valid as long as no unloading 

occurs. Therefore, it is not fully substantiated for use when describing cyclic loading, but it 

does enable the prediction of the onset of crack extension. However, these limitations have 

been shown not to be as severe as is suggested. Hutchinson and Paris [53] have shown a 

possible use for stable crack propagation, and Dowling and Begley [54] have correlated 

propagation rates from cyclic loading to the change in J.

An important aspect of the J integral approach is the ability to determine fracture toughness 

values using specimens of a smaller size than those that would be necessary when 

employing formulae derived from LEFM analyses. Estimations of Kic can be achieved 

using:

J i c  ~  ~ZE (l ~ 1 ) 2 ) Equation 15
E

where u is Poisson’s ratio and ED is young’s modulus of the material.

Another method to describe fracture when the level of plasticity exceeds LEFM restrictions 

is through the crack tip opening displacement (CTOD). This approach was first developed 

by Wells [55]. From the K and J analysis it is seen that fracture occurs at critical values of 

stress
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Figure 14: Definition of crack tip opening displacement, 8t

or plastic strain. Methods employing CTOD, denoted 5t, assume fracture to occur when a 

critical displacement is achieved between two points on opposite crack flanks. Burdekin 

and Stone [56] utilised the Dugdale strip yield model to define the CTOD, 8t, as:

8a a
5 =  In  sec

‘ TtE

{ \  
TIG

2a
Equation 16

where E is young’s modulus of elasticity, a y is yield stress, a is crack length and a  is far

field stress. K and J can be estimated through the CTOD by the following approximations:

K2
6, = — (for LEFM) 

E ay

.  J
8, = — ( for EPFM)
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2.3.2.6.3 Crack Closure
The possibility that a fatigue crack can close even at a far-field tensile load was first 

rationalised by Elber[57] has increasingly concerned researchers of fatigue crack growth 

behaviour, particularly in the near-threshold stress intensity levels of long cracks. This is 

because the fractured surfaces in the wake o f an advancing crack tip close when the far- 

field load is still tensile before the attainment of the minimum load. Premature contact of 

the fracture flanks occurs and as a result, the crack tip does not experience the full range of 

AK, i.e., the real driving force or effective stress intensity range, AKeff (AKeff = Kmax -  Kop)

da
is lower than the nominal AK and therefore a lo w e r is expected. Here, K0D is the stress

dN P p

intensity when the crack is fully opened (> Kmin).

Elber suggested that a mechanism for such an effect is that of the constraint effect on the 

residual plastically stretched material which is left on the wake of the crack front by the 

elastic material which surrounds it, when the crack tip continues advancing through the 

plastic zone. However, several other mechanisms are envisaged as possible, e.g., due to the 

presence of corrosion debris within the crack (oxide induced closure), due to the contact 

between rough fracture surfaces (roughness induced closure), due to viscous fluid, 

obstacles and crack bridging by fibres [15].

2.3.2.6.4 Short Fatigue Cracks
It is well documented that short cracks (SCs) behave markedly different to long cracks [58]. 

Microstructural crack growth occupies a significant portion of the total fatigue life of 

several structures. The SC problem was originally proposed by Pearson [59] with his 

experimental work performed on aluminium alloys. It was realised that cracks of the order 

of the grain size tend to propagate at rates far higher than LEFM predictions suggest and 

thus is no longer appropriate.

2.3.2.6.4.1 Introduction
Acceleration, deceleration and crack arrest is commonly correlated to microstructure as 

long as the crack doesn’t cross the microstructural barrier (See Figure 16). Lankford [60] 

suggested that such behaviour is caused by the difficulty of cracks to nucleate 

microplasticity in certain crystallographic orientations and/or smaller grains.
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A comprehensive review on short fatigue crack behaviour has been published by Miller 

[6i 62] Qther researchers indicated that SCs may be divided into two primary zones of 

interest [63] :

>  The microstructurally short crack zone/regime (MSC) in which the crack is small in 

relation to the surrounding microstructural features (e.g. cracks which are 

comparable to the grain size). Crack growth is strongly influenced by 

microstructure. The micromechanical description o f its propagation is expressed by 

means of the MFM. (See Figure 15a).

>  Physically small cracks (PSC), which are significantly larger than the 

microstructural dimension and the scale of local plasticity, but are physically small 

with length typically smaller than a millimetre or two. Here, the microstructure is 

not the main parameters affecting their propagation but rather, PSC are strongly 

dependent on the stress level.

A) MICROSTRUCTURALLY 
CRACK

a= 2/im

a< 1 grain

FEATURES

HIGH STRESS 
MFM-MODE II AND III 
STAGE I (SHEAR) CRACK 
a/rp <1

v  A

B) PHYSICALLY SMALL CRACK
a=0.1 mm

a<10 grains

FEATURES

HIGH STRESS 
EPFM-MODES I, II AND III 
STAGE II CRACK  
a/rp interm ediate values

C) LONG CRACK 

a= 10 mm

a>100 grains

r FEATURES

LOW STRESS 

LEFM-MODE I(STAGE II) 

TENSILE CRACK  

a/rp  » 1

Figure 15: Classification of SCs

On similar grounds Suresh & Ritchie [15] later suggested a various scale sizes below 

which the growth rates of a fatigue crack may be found to exhibit crack size dependence

4  Microstructurally small flaws

Mechanically small flaws
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Physically small cracks

■^Chemically small cracks

2.3.2.6.4.2 Brown-Hobson Model (air)
Brown-Hobson Model considered the conditions required for both stage I shear crack 

growth and the transition to stage II tensile fatigue crack growth. In their model the cyclic 

crack growth rate is given by

do,
= AAsa (d -  a) Equation 17 (For Stage I)

 = BAs^ (a -  D) Equation 18 (For Stage II)
dN

Above yield stress level
o

Long C rack  
LEFM

o

At yield stress level

At fatigue limit

Below fatigue limit

Crack Length

Figure 16: Brown-Hobson's graph o f  the short crack behaviour at different stress levels, 

where A, B, a  and (3 are material constants, As is the applied cyclic axial strain range, ‘a ’ is 

the crack length, ‘d’ is the microstructural barrier distance and ‘D’ is a threshold condition 

dependent on the level of the applied stress-strain state. Figure 16 illustrates the Equation
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17 and Equation 18 and show how a microstructural crack will behave at various stress 

levels.

A significant contribution towards the understanding of SCs was put forward by Kitagawa 

and Takahashi [64] who developed the Kitagawa-Takahashi diagram (K-T). They showed

that Aoth, the threshold stress range for crack propagation, produced a straight line when

plotted against crack length on log-log scales showing a relationship pertaining to 

Equation 7, giving a constant A K th- However, of significance to short cracks, they 

demonstrated that as the crack length reduced, this line tapered away so as to 

asymptotically approach the fatigue limit. Thus, they had produced a map indicating the 

border between regions of propagating and non-propagating cracks.

Using various relationships and conventions, Brown [65] expanded the K-T diagrams to 

include all areas of crack propagation, with the exception to chemically short and notch

affected cracks as shown in Figure 17.

r i CG C R A C K S  
7 MO DE !  S T A G E I

I  F A T I G U E  L I MIT

L EF M 
MODE IMODE E 

I CR YS T AL L OG RA P HI C 
; C R A C K I N G

NON P R OP AG AT I NG
C R A C K S

PSB
- F O R M A T I O N

Q ( g m )

Figure 17: Brown map showing various fatigue crack regimes.
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2.3.2.6.4.3 Navarro de los Rios Model (NR Model) (air)
The NR model is based on the continuous distribution of dislocations. The fatigue damage

(crack and plastic zone) of any sized crack can be represented by three zones as shown in 

Figure 18. The first zone represents the crack, the second the crack tip plasticity and the 

third a microstructural barrier (grain boundary). In terms of the material resistance to crack 

propagation, the crack is considered as stress free unless some closure stress, cji, is acting 

on the crack flanks: the stress at the plastic zone is equal to the resistance of the material to 

plastic deformation (cyclic yield stress), a yc; and at the grain boundary, of width r0 the 

stress developed due to the constraint exerted on the plastic zone is 0 2 . This stress 

represents a measure of the reaction stress developed on the barrier due to the blocking of 

the Persistent Slip Bands.

one 3)

r -If

- a  0 a  *^/2
1 . 1 t i D / 2+r

crc(Z one  2)

crdZone 1)

Figure 18: Three zones that constitute fatigue dam age. The param eter i=2a/D  represents the norm alised 
crack length in h a lf  grain intervals ( i= l, 3, 5,). The param eter iD/2 represents the extent o f  the fatigue 
damage and D is the grain size.

Based on the equilibrium of dislocations along the three zones, the constraint stress ahead 

of the slip band for an opening mode loading, a , is given by,
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<72 = (  — )[(er‘ -  cr,) sin 1 nx -  cr2 sin 1 n2 + -  ott] Equation 19
cos n2 2

_ a
1 iD/2 + r0 ’ Equation 20

iD/2
n 2 ~  n  ~   Equation 21

iD/2+r0 H

where the parameters ni and n2 represent in a dimensionless form the crack length and the 

fatigue damage size, respectively. The parameter a yc represents the cyclic yield stress of 

the material.

As the crack propagates 0 2  increases in value and will reach a level equal to the strength of 

the boundary when the crack reaches a critical length denoted by ni= nc. The grain 

boundary will be overcome and crack tip plasticity is able to extend to the next grain 

boundary where it is again blocked. However, if 0 2  does not attain the level of the grain 

boundary strength before the crack tip reaches the barrier, the crack arrests. The steps 

according to the NR model are shown in Figure 19.

Crack  ►-<
Plastic zone

"Grain Boundary

Grain-

Crack
Plastic zone Grain Boundary

Grain

Figure 19: The effect o f  slip-band locked by the grain boundary on stress concentration in three stages: a) 
blockage o f  the plastic zone by the grain boundary increases c 3; b) further crack propagation until a 3=
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g c3 results in new slip-band developm ent and c) relaxation o f  o3 and yielding on a new  grain. The 
param eters O! and a2 represent crack closure stress and cyclic yield stress respectively.

Thus, the magnitude of stress for crack arrest is: 

2 -i
K

<j 2 cos n2+crl =<Ja Equation 22

It has been shown that crack arrest is achieved when:

m; q F L - o 1 

nrq +  <71 ° a r rest Equation 23

2 a
where i = — , G\ is the crack closure stress which is set to ai=0 for stress free cracks, a is 

D

m.
the crack length, D is the grain diameter and cjfl is the fatigue limit. The term —L is the

effect of grain orientation, which was evaluated and incorporated by de los Rios and 

Navarro on SC propagation using the following empirical relationship:

m
—  = 1+ 0 . 5 1 n ( i ) 
m l

Equation 24

 ̂  ̂̂  y ^ ^ ^ ̂  ^ ^

Oack-

G i am &:>undat y

Figure 20: Schematic representation of crack arrest.
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2.4 Corrosion Fatigue

2.4.1 Introduction
ASTM F I801-97 [66] defines corrosion fatigue as: the process by which fatigue failure 

occurs prematurely under conditions of simultaneous corrosion and cyclic loading at lower 

stress levels or fewer cycles than would be required in the absence of the corrosive 

environment. However, although this definition clearly demonstrates the importance of 

cyclic loading in an aggressive environment, the occurrence of prior corrosion can still 

have detrimental effects on the fatigue properties of materials, although this is not always 

strictly considered to be a corrosion fatigue process.

It can be seen from prior discussion that the nature of both fatigue and corrosion is 

complex and therefore the subject o f corrosion fatigue will be equally complex. In fact, due 

to the two processes acting simultaneously, the resulting corrosion fatigue process can be 

even more complex, with more parameters needing to be considered. This is demonstrated 

when considering that the synergistic effects of corrosion and fatigue together are more 

damaging than the sum of the constituent parts. Some of the additionally required 

parameters that affect corrosion fatigue will now be considered.

2.4.2 Influencing Parameters

The factors that influence the corrosion fatigue performance can be split up into areas such 

as: the waveform characteristics, frequency etc; the environment, temperature etc; and 

mechanical parameters, stress ratio etc. These are summarised in which follows the 

discussion on their influences.
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Figure 21: Summary of general influence of param eters  on corrosion fatigue.

2.4.2.1 Frequency Effects
When performing fatigue tests in laboratory air, the frequency is not often considered with 

regard to the fatigue performance. It is usually only considered so that the testing time is 

relatively short to save on time required to gain results and also to make financial savings 

[67]. However, in a corrosive environment, frequency can play a role in the fatigue 

performance of a material. Vogelesang [68] showed that, for a high strength 7000 series 

aluminium alloy in artificial sea water, reducing the frequency from 20 Hz to 0.5 Hz 

resulted in an increased crack growth rate for equivalent AKs. Blinn et al [69] conducted 

tests on a 2000 series aluminium alloy in a 10% relative humidity environment and also in 

an artificial sea water solution. Their results showed an increase in crack growth rate with a 

decrease in frequency, from 10 Hz to 0 .1 Hz, for the 10% relative humidity tests, but were 

inconclusive for the artificial sea water. An increase in growth rate with decreasing 

frequency has also been demonstrated in a variety of steels [70]. Bowles [71] conducted 

tests whereby he varied the frequency from a segment of low frequency cycles to a 

segment of high frequency cycles. On inspection of the fracture surfaces, he concluded that 

an environmental effect was noticeable during the low frequency cycles, but not during the 

high frequency cycles. The evidence for this conclusion was that the low frequency cycles 

produced fatigue striations, whereas the high frequency did not, as was consistent with 

tests performed in vacuum. Bowles made an interesting observation that, the striations 

produced at the low frequencies persisted for a small number of cycles during the high 

frequency regime. He suggested that this was because sufficient additional water, from the 

environment, or hydrogen remained during the step up in frequency to produce a transient 

period.

Corrosion is a time dependent process, therefore, if the environment is only in contact with 

the crack surfaces whilst the crack is open, then it can be envisaged that lower frequencies
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will induce higher corrosion processes. In another study by Bowles [72], he performed 

tests introducing holding periods at either the maximum or minimum stress level. His 

results showed that a greater effect of the environment was produced when the stress was 

held at the maximum level. With reference to frequency effects, Schutz [73] concluded that 

the effect is small when the complete life to failure consists o f long initiation phase and a 

short propagation phase. Therefore, frequency has a greater effect on propagation than it 

does on the early stages of fatigue life for long cracks.

2.4.2.2 Cyclic Waveform
Many corrosion fatigue tests are conducted under constant amplitude, sinusoidal 

waveforms. Tests performed using different wave shapes and variable amplitude stress 

cycles have shown that both these factors can influence the corrosion fatigue performance.
H A  • • •Barsom [ ] performed tests using positive and negative saw tooth waveforms in air and in 

corrosive environment. His results indicated that neither shape waveform had an effect in 

air, compared with a sinusoidal wave. However, in a corrosive environment, the negative 

waveform gave similar results to air, but the positive waveform yielded a pronounced 

reduction in fatigue performance. A reason proposed for this effect is that new crack 

surfaces are produced during the opening portion of the stress cycle and therefore a 

positive saw tooth waveform generates more time for corrosion processes to take place 

during the crack extension period [ ].

From tests performed for the Fatigue in Aircraft Corrosion Testing (FACT 1989) 

programme [ ], using variable amplitudes, results showed that, for an aluminium alloy, no 

significant effect of the corrosive environment occurred. In the same programme, under 

constant amplitude loading, a large effect was detected. Similar results were obtained by
H HSchutz [ ] when performing tests on steels.

2.4.2.3 Environmental Aspects
The environment is an obvious factor in corrosion fatigue. Different metal-environment 

combinations will produce different corrosion reactions, or rates of reaction. However, 

when considering individual metal-environment combinations, several aspects of the 

environment can cause variations in the corrosion fatigue performance. Some of these 

contributory factors include: temperature; pH; oxygen content; and pressure.
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A basic principle of chemistry indicates that, generally, an increase in temperature 

produces an increase in chemical reaction. This is also true of corrosion reactions. An 

investigation by Nakai et al [78] was performed to ascertain the effects of frequency and 

temperature on the corrosion fatigue properties o f steel. Their results showed that 

increasing the temperature brought increases in crack growth rates. From their tests, a 

plateau was achieved, whereby, further reduction in frequency showed negligible increases 

in crack growth rates. At these low frequencies the effect of temperature was also 

negligible. At higher frequencies, where the crack growth rates were below the plateau, a 

significant effect of temperature was observed. These results allude to the aforementioned 

increase in chemical reaction time with increasing temperature. Other investigations have 

shown similar results [79].

The oxygen content of a solution can have a significant effect on corrosion fatigue results. 

Testing a low carbon steel in salt solution and changing the solution conditions from 

aerated to deaerated, Duquette and Uhlig [80] found that the higher oxygen content 

reduced the fatigue lives of the tested specimen. In fact, the outcome for the deaerated 

solution was similar to air. Wan et al [81] made similar observations for an aluminium 

alloy, but noted that the crack length and AK levels had an influence on the effects of 

oxygen concentration.

The pressure of the environment is usually concerned with tests conducted in corrosive 

vapour environments and not fully immersed tests. Bradshaw and Wheeler [82] conducted 

experiments on aluminium alloys in water vapour environments. They saw that upper and 

lower saturation levels were achieved in the crack growth rate when alternating the water 

vapour pressure. With increasing water vapour pressure, a maximum growth rate was 

eventually reached, and vice versa. When changing the frequency of the tests, the same 

saturation levels existed. However, for the low frequency tests, the points at which the 

growth rate left the lower saturation level and reached the upper saturation level, occurred 

at lower water vapour pressures in comparison with the high frequency tests.

2.4.2.4 Mechanical Aspects
The mean stress, or stress ratio, are known to have an influence on fatigue. For purely 

mechanical fatigue, i.e. no environmental contribution, the fatigue strength is seen to
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increase as the stress ratio is reduced. It is, therefore, a valid assumption that the same 

effect will be seen during corrosion fatigue. However, during corrosion fatigue, the degree 

of environmental effect will depend on the accessibility of the environment to the crack tip, 

see frequency effects. Some analyses of stress ratio effects on corrosion fatigue have been 

made, such as that of Chu and Macco [ ]. These investigators showed that reductions in 

stress ratio yield reductions in fatigue strength. More importantly, however, they showed 

corrosion fatigue in seawater to be more sensitive to stress ratio than air fatigue. The 

reduction in fatigue performance as compared to air fatigue due to the environment was 

more pronounced at higher stress ratios. Such findings were also described by Corsetti and
84Duquette [ ]. Therefore, it can be seen that whilst increasing the stress ratio increases the 

corrosion fatigue life, this also has the effect of creating a larger difference between air and 

environmental fatigue lives. This can be reasoned by considering that the crack will be 

open, or open wider, for a longer portion of the stress cycle. Hence, the crack tip area is 

more accessible to the environment.

2.4.3 Mechanisms for Life Reduction
Discussed so far have been the factors that can influence corrosion fatigue, and the 

commonly experienced effects of each parameter. In some cases, a brief insight into why 

the environment diminishes fatigue life is given, or can be implied. During the next three 

sections, a more precise account will be given into why certain environments seriously 

reduce fatigue life.

2.4.3.1 Pitting
The contribution of corrosion pits to the reduction in fatigue performance is generally 

attributed to the generation of favourable crack initiation sites. This is evidenced through 

the finding of pits at the initiation point of corrosion fatigue cracks [85,86]. We know from 

previous discussions that cracks will often initiate where a stress raiser exists, and in the 

immediate vicinity of a pit, it can be expected that the stresses will increase.

Pitting is a time dependent process, i.e. some time is often required for a pit to form, and 

the size of the pit will then increase with time. The dependency o f the size o f the pit on
07  00

time is said to fit a power law function [ , ], such as:
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d = At8 Equation 25

Where d is a chosen pit dimension, t is time and A and B and empirically determined 

constants. The parameters A and B, are corrosion rate dependent and therefore require will 

identification for each metal-environment combination, and, in addition to this, they have 

also been identified as having a dependency on stress and frequency [87].

During corrosion fatigue, the corrosion process will affect crack propagation as well as 

promoting premature crack development. Therefore, investigations have been conducted to 

see the effects of the pit alone. Lindley et al [85] carried out such experiments by pre­

pitting test specimens and subsequently performing fatigue tests on them in air. Their 

results showed that the greater the pit depth, the greater the reduction in fatigue life. It was 

seen that a pit depth of 250pm could produce a reduction as large as 70% of the air fatigue 

life.

Characterisation of the pit with regard to modelling the point, at which transformation from 

pit growth to crack growth occurs, is generally viewed in two ways. The pit can be viewed 

as acting like a notch, and the stresses developed by that notch are then addressed 

|-89 9o 91 92j These investigations applied theoretical approaches to determine the stress 

intensification of the pit. Another approach has been to assume the pit to be an equivalent 

surface crack [85, 86,87, 88]. In two of these cases [87,88], the equivalent crack dimension 

is determined using an approach by Murakami and Endo [93,94]. The other two cases simply 

use the pit dimensions directly. In all the cases mentioned, where the pit is considered to be 

a crack like defect, the crack, or equivalent crack, is considered to grow when a critical 

value of AK is reached. This implies that the crack is growing under LEFM conditions, or 

more precisely, no short crack growth region is considered. However, Akid [95] has shown 

that short crack growth can be observed during corrosion fatigue and that the environment 

can have significant effects on the short crack region, i.e. the barriers to short crack growth 

are weakened and the transition from short to long crack growth occurs at a shorter crack 

length. Observations of corrosion affected short crack growth have also been observed by 

Rios et al [96].
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2.4.3.2 Crack Tip Dissolution
The role of anodic dissolution of a metal has already been shown to be a key factor in 

corrosion fatigue, as, on a localised scale, it results in pits. The detrimental effects of 

dissolution are, however, believed to continue beyond pit development, and cause 

enhancement of the crack propagation rates. This is due to dissolution of freshly created 

bare metal at the crack tip. The rate, at which dissolution, or crack advancement through 

dissolution, occurs, will depend upon, amongst other things, the rate o f newly created 

metal surfaces and the rate at which these surfaces may oxidise, and therefore protect from 

further dissolution [97]. Methods proposed to accommodate crack tip dissolution into 

corrosion fatigue crack growth rates have applied a simple summation of the dissolution 

rate plus the air fatigue crack growth rate [98]. Congleton et al [99] suggested that the 

anodic currents measured in their experiments are sufficient to account for crack growth by 

anodic dissolution.

However, it is argued that simple summation of the two rates would suggest that barriers to 

corrosion fatigue crack growth would retain the same strength as for air fatigue. The 

strength of these barriers is known to reduce, and therefore a simple summation may not be 

totally correct. Such conclusions have been drawn by Wang et al [100], where they showed 

that superposition of the two rates did not account for the corrosion fatigue crack growth 

rate that they measured. Although crack tip dissolution would not appear to account for all 

the detrimental effects the environment has on corrosion fatigue crack growth rates, it will 

bear some influence, the extent of which will, again, be dependent upon mechanical and 

environmental factors, i.e. frequency, load ratio and temperature [101].

2.4.3.3 Hydrogen Embrittlement
As stated in the Section 2.4.3.3, anodic dissolution, or the electrochemical removal of 

material from the crack tip, during corrosion fatigue, cannot fully account for the increases 

observed in crack propagation rates when comparing corrosion fatigue with air fatigue.

Generally, hydrogen is believed to be a major contributory factor to the enhanced corrosion
10?fatigue crack growth rates [ ].
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An important aspect of the presence of hydrogen within a metal matrix is the effect it can 

have on the mechanical properties of the metal. One such aspect is known as hydrogen 

embrittlement. The embrittlement of the metal is manifest in the reduction in ductility 

(elongation to failure) of a metal and the lowering of the fracture toughness values 

[I03,!04,!05,!06]. Various reasons have been suggested for apparent embrittlement. Some of 

the suggested mechanisms are: the production of molecular hydrogen within voids creating 

large internal pressures [107]; atomic bond de-cohesion [108,109]; surface adsorbed hydrogen 

reducing the surface energy [110]; and brittle hydride formation in metals that are 

susceptible to producing hydrides, such as titanium.

A second damaging characteristic of hydrogen within a metal is the effect it can have on 

the yield strength. It has been shown that the yield strength can be reduced by prolonged 

exposure to corrosive environments. On a macroscopic scale, the effect of hydrogen is not 

as damaging to the yield properties as it was to the ductility [m ]. However, with respect to 

fatigue, the reduction in flow resistance was said to play an important role in the shortening 

of the fatigue life in the presence of a corrosive environment. It was also suggested that the 

effectiveness of the grain boundaries to hinder short crack propagation was lessened.

With the application of an adequate heat treatment, the effects of hydrogen have been 

shown to be reversible to a great extent.

In the absence of an applied stress, the hydrogen will diffuse deeper into the material by a
1 19process of natural lattice diffusion [ ]. Therefore, to affect the bulk material properties,

long periods of time may be required for diffusion of the hydrogen. However, in the case 

of a growing crack with an applied stress, hydrogen transportation is more rapid, facilitated 

by trapping of the hydrogen atoms at dislocations and subsequent dislocation motion. One 

investigation found that two hydrogen concentration peaks exist ahead of a crack tip, one 

due to the dislocation build up ahead of the crack, and the second caused by the hydrostatic 

stress [112]. Therefore, whilst hydrogen effects due to corrosion may take time when no 

stresses are present, under the combined condition of corrosion and stresses, not only is the 

hydrogen migration process increased, but the nature of the transportation of the hydrogen 

atoms leads them to critical locations within the metal matrix, i.e. ahead of a crack tip. 

Also, atomic sizes of hydrogen gain the benefit of being small in comparison to other 

atoms in metal matrix and thus, easily penetrate into the substrate.
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In the present context, hydrogen is assumed to be introduced to a metal by the presence of 

an aqueous media. This assumption applies for the vast majority of corrosion fatigue 

studies. However, there are instances where hydrogen alone may be present in the 

environment and may directly contaminate metals, without corrosion processes taking 

place. Hydrogen gas cooled turbine generators, or hydrogen fuelled rocket engines are such 

instances. Therefore, fatigue studies on the effects of hydrogen are necessary, and not only 

for determination of the hydrogen contribution to fatigue in aqueous environments. 

Investigations have been conducted by either pre-charging specimens with hydrogen by 

conducting the EXCO tests [113].

Glow Discharge Optical Emission Spectroscopy (GDOES) and their subsequent tensile 

testing of the samples in same conditions have shown the surfaces created during EXCO 

tests in a hydrogen environment to be of a brittle nature.

Some results of hydrogen pre-charged specimens have also indicated increased crack 

growth rates. Mittal [114] showed, for three positive stress ratios, that pre-charging with 

hydrogen induced crack growth rates of an order 2 - 1 5  times that of air fatigue. Rios et al 

[115] also showed that pre-charging generated higher crack growth rates, but here they 

demonstrated the effect was also evident during short fatigue crack growth. After 

performing monotonic tests, they concluded that the short crack region was affected by: 

reduced frictional stresses on the Persistent Slip Bands (PSB) are, therefore generating 

larger crack tip plastic displacements; and reductions in the grain boundary strength. Both 

of these investigations suggested that, for the stage II crack growth, hydrogen 

transportation to favourable sites could be the cause for embrittlement ahead of the crack 

tip. Such ideas were proposed by Troiano [I16], where hydrogen, transported by 

dislocations to positions of high triaxial stresses, generates de-cohesive zones. Studies have 

been conducted, which showed that areas o f high hydrogen concentration exist ahead of a 

crack tip [117].

Other investigations have indicated that hydrogen can aid dislocation generation as well as 

increase the dislocation velocities [118,119]. In any case, it is obvious that hydrogen can play 

an important role in the enhancement of crack propagation rates during corrosion fatigue.
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2.4.4 Corrosion Fatigue Models
Many models have been proposed to describe corrosion fatigue of various materials in 

various environments. The majority include two portions of life, one for pit growth and a 

second for corrosion fatigue crack growth from that pit. More often than not, this method 

involves a critical pit depth to produce stress concentration factor, Kt, whereby a crack will 

propagate from the pit. However, other methods have been employed, based on corrosion 

rates, stress corrosion cracking rates and environmental influences on mechanical 

parameters, to name but a few.

190Wei et al [ ] has produced corrosion fatigue models, with subsequent developments. One

of the earliest was the superposition model he produced with Landes [120]. This model 

suggests that corrosion fatigue propagation rates consist of a simple summation of the air 

fatigue increment and a stress corrosion cracking increment, thus:

da _ da da
dNcf ~ dNaf  dNs Equation 26

da da da
where ~rrT is the total crack growth rate and the growth rates ~ r ;  and represent

dNcf dNaf d N csee

air fatigue and stress corrosion cracking respectively. However, this method implies no 

synergistic effects of the environment and the fatigue crack growth, and it does not account 

for corrosion fatigue in the event that the metal-environment combination does not induce

da
stress corrosion cracking. In other words, when“r~  =  0 , the corrosion fatigue and air

dNscc

fatigue behaviour will be identical.
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191 199 19^However, this model was later modified [ , , ] to recognise that mechanical fatigue

and cycle dependent corrosion fatigue proceed by different micro-mechanisms and can 

occur concurrently. The chemical modelling effort considered the processes that can be 

involved, in part or in total, in the enhancement of fatigue crack growth. These processes 

include: transport of the deleterious environment to the crack tip; reactions of the 

environment with the newly produced crack surfaces to evolve hydrogen or to effect 

localised dissolution; hydrogen entry; diffusion of hydrogen to the fracture (or 

embrittlement) site; partitioning of hydrogen among the various micro-structural sites; and 

hydrogen metal interactions leading to embrittlement. These processes are considered to 

operate consecutively. For a dissolution mechanism only, then only the first two steps need 

be considered, where the anodic dissolution reactions of the second step are directly 

responsible for crack growth enhancement. However, if  hydrogen embrittlement is the 

responsible mechanism then the reaction step serves only to produce hydrogen, then all the 

remaining steps must be considered.

Wei also produced probability based models with Harlow [124,125]. These models used 

probability density functions (pdfs) to describe factors involved in corrosion fatigue, 

assuming them to be random processes. This approach was developed to account for 

realistic conditions, to extend life predictions beyond laboratory experiments.

Another model, which, like Wei’s original model, includes a stress corrosion cracking 

component, is the Process Competition Model [126]. This was developed on the premise 

that, rather than stress corrosion cracking and corrosion fatigue being additive methods for 

crack advance, the two processes were mutually competitive. On this basis, the crack 

advances by whichever process is the faster. Methods to model corrosion fatigue, that 

include stress corrosion cracking parameters, have still been attracting attention in recent 

years.
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Of the numerous corrosion fatigue models based upon critical pit sizes, two will be
i fm\n

considered here as being representative examples. Hoeppner [ ] proposed a model which

is constructed by determining experimentally, characteristics of the corrosion fatigue 

process. Pit growth rate calculations are made so that a critical pit depth can be described 

by the number of cycles required for it to develop. The pit dimensions are described in 

terms of a flaw so that K  can be determined through Equation 7. The threshold stress 

intensity, A K th, is then found by extrapolating a growth rate versus A K  curve, for a Mode I 

crack. The number of cycles for the Mode I crack to grow from the pit/flaw size to failure 

is obtained using fatigue crack growth prediction methodology, such as LEFM. A simple 

summation of the two calculated cycles, pit growth and crack growth, is then left to give 

total life.

Kondo [128] proposed a model along similar lines to Hoeppner’s. Again, an expression for 

pit growth was determined in terms of cycles. However, once this was achieved, he 

substituted into the pit growth rate equation a term to describe A K .  From here two curves 

were plotted on the same axes of growth rate versus A K .  One curve showing the decreasing 

growth rate behaviour of the pit, and the second describing the accelerating growth rate 

behaviour of the crack. The point of intersection was described as being the transition from 

pit growth to crack growth. Thus, this model eliminates establishing a A K th value.

Although these two models describe corrosion fatigue life well, as demonstrated in the 

presented articles, they are both empirically based. Any effects of hydrogen are assumed 

from the crack growth rate parameters. Any effects of frequency, waveform or stress levels 

etc, on pit growth that may occur, are not taken into account. Stage II cracks are assumed 

to grow directly from the pit, thus implying that either insignificant short crack growth 

exists, or that pit growth exceeds short crack growth, until a point where an LEFM 

applicable crack can grow directly.
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2.4.4.1 Modified Brown-Hobson Model (Environmental)
Angelova and Akid [ ] developed a model based on four stages, or three transition points.

The model is based upon the Brown-Hobson model (See Section 2.3.2.6.4.2) with 

subsequent modifications to incorporate environmental effects. The three transitions 

consist of: p it to crack transition; micro-structurally short shear stage I  crack to physically 

small tensile stage II crack transition; and physically small tensile stage II crack to long 

stage II  crack transition. These transition boundaries, therefore, represent: a stress assisted 

pitting dependent state; an environment and stress assisted short cracking dependent state, 

and an environment and stress assisted physically small cracking dependent state. This 

model still utilises a pit to crack transition point, however, the crack is then assumed to 

behave as a short crack, taking into account influences of the microstructure.

2.4.4.2 Modified Navarro-de los Rios Model (Environmental)
A final model worthy of mention is that of Rios et al [130]. This model is based on the air

fatigue modelling. Again, a critical pit depth is assumed; however, the pit depth was 

determined empirically for several stress levels, instead of using an LEFM determined 

crack growth threshold value. Stress concentration factors were determined for the pit, and 

other parameters required for the Navarro-Rios model (See Section 2.3.2.6.4.3i were 

determined, i.e. environmental fatigue limit and a modified strain hardening parameter. 

This model takes into account the effects of pitting and also the increase in crack growth 

rates due to the environment, that are said to occur through an enhancement of the crack tip 

plasticity and a reduction in the strength of micro-structural barriers.
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CHAPTER 3

Surface Engineering Techniques

3.1 Introduction
Fatigue resistance for multigrain materials represents the degree of difficulty for a stage I 

crack becoming a stage II crack. Fatigue resistance would increase by introducing 

compressive residual stresses in the surface layer to compensate for tensile loading 

stresses. This is also complemented by introducing many and variable forms of textural 

barriers to hinder the development of a stage II crack. The application of suitable surface 

engineering treatments, alone or combined with other hardening processes, delays the 

propagation of such cracks. A number o f different ways have been identified by which 

fatigue resistance can substantially be affected: by machining, by rolling, by shot peening, 

by laser shock peening, and by Ultrasonic Impact Treatment (UIT).
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3.2 Shot Peening (SP)
The SP process has for some time been described as an effective mechanical surface 

treatment in tackling fatigue failure. This method is a cold working process that involves 

bombarding a metal component with a stream of small and relatively hard shot to induce 

desirable residual compressive stresses and strains within the surface layers of the 

component.

S  K L S  1 ^  S
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Figure 22: A representation o f  the SP process.

A general picture of what constitutes the mechanism by which the peening process can 

alter the microstructure and properties of the peened layer is shown in Figure 22 

[Hi l32] The particles are propelled by means o f compressed air and further accelerated 

(right side figure) when passing through a nozzle (from point A to B). At point B, the 

particles, highly loaded with kinetic energy, are projected to the surface (point C). The shot 

blast pattern is usually of the shape of a narrow cone with a region highly obliterated at the 

surface.

3.3 Laser Shock Peening
Laser shock peening is a technique similar to shot peening that imparts compressive 

residual stresses in materials for improved fatigue resistance. During Laser Shock Peening
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(LSP), pressures well above the dynamic yield strength of the material are imparted on the 

target in a fraction of a microsecond. The severity of the loading causes local plastic 

deformation which ultimately results in the development of the favourable residual stresses
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Figure 23: Laser Shock Peening (LSP) in the confined ablation m ode [133]

3.4 Ultrasonic Impact Treatment

3.4.1 History
The genesis of the UIT technology begins as early as the 1950's. During this decade many 

scientists believed that the introduction of ultrasonic energy into metal surfaces would have 

a positive impact in altering the sub-surface and surface properties of the metal resulting in 

prolonged life of metal components. A relatively thin surface layer of the treated material 

was plastically deformed, producing modifications of the surface micro relief and 

redistribution of residual stresses in this layer. Subsequently in the 1960s, Krylov et al. 

introduced an intermediate mass in the form of a free ball between the output end o f the 

ultrasonic transducer and the material being treated [134]. In this work, the method of 

oscillating system excitation replicated the continuous ultrasonic excitation used in the 

efforts referenced above.
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In the early 1970s, Statnikov proposed a method of ultrasonic impact treatment [135], which 

is finding expanding applications in various industries, including manufacture and 

maintenance of welded structures and machinery components. This method differs 

fundamentally in that it employs free needle indenters as impacting elements that move 

along the axis of the oscillating system and have a normalized wavelength relative to the 

carrier ultrasonic frequency. The indenters are installed in separate guiding holes and 

excited by modulation pulses of the carrier resonance frequency of the ultrasonic 

oscillation system. This engineering solution provides high-intensity ultrasonic impacts 

accompanied by ultrasonic vibrations of indenters in a gap and together with the surface 

being treated. These impacts initiate highly effective plastic deformation and transfer 

through high-intensity ultrasonic vibrations and ultrasonic stress waves into the material 

being treated. A combination of such factors of the ultrasonic impact creates necessary 

prerequisites to modify properties and conditions of the surface and subsurface material at 

a specified depth.

The development of the method [135] in the late 1990s and early 2000s [135] resulted in 

the Esonix technology that supported a firm position of the ultrasonic impact treatment 

among well-known techniques of improving fatigue resistance including surface plastic 

deformation (SPD) methods. The technology controls the quality, properties and 

characteristics of the surface, modifies material properties in the treatment area, improves 

the fatigue and corrosion resistance, as well as the resistance to abrasion and contact 

failures, reduces residual stresses and deformations, stabilizes and improves static quality 

and reliability characteristics in mechanical engineering.

3.4.2 Nano-Crystallisation
It is well known that component failure due to fatigue, corrosion or other forms of 

operational duty capable of introducing stress concentrators normally initiate on the 

surface. Hence, optimisation of the surface structure and properties may effectively 

improve the global behaviour of the material. The physical properties of a metal are 

dependent on the grain size. The Ultrasonic Impact Treatment process can effectively 

refine the coarse surface
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Figure 24: a) M icrograph a shows the crystal structure o f  bare Al 2024 T351. b) A TEM  M icrograph 
showing crystal structure subjected to UIT. Nanocrystallisation is evident and its m easured to be between 
(10-15) nm [136].

grains into equiaxed nano-crystalline grains of about 10 nm in elongated micro-bands of 

15nm to 20nm wide (see Figure 24). The affected surface was measured to be around 10- 

12 microns through cross-sectional depth of the alloy.

3.4.2.1 Effects of Nano-crystallisation

3.4.2.1.1 Mechanical properties
It is well known that grain refinement improves the strength of materials. The plastically 

deformed zone which is about (1-4) mm from the surface depending on the type of UIT 

treatment undergone. The Ultimate Tensile Strength (UTS) increases remarkably according

Figure 25: TEM  micrographs: (a) Trapezoidal A12 Cu particle as em ission source o f  dislocations; (b) 
dislocation cells and tangling in aluminium matrix. (Courtesy: picture is a published w ork by X. W u et al 
[136]).

to the reduction of the grain size. The reason for this increase in UTS has been proposed by 

X. Wu et al [136]. They used ultrasonic shot peening as a Severe Plastic Deformation (SPD)
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technique. The division into sub-grains was found to be the main mechanism responsible 

for grain refinement.

The simultaneous evolution of high boundary mis-orientation was ascribed to the sub-grain 

boundary rotation for accommodating further strains. Exposure of deformation could 

effectively enhance evolution of low-angle boundary mis-orientations into high-angle ones. 

The generation of ultrafine sub-grains resulted from the piling-up of dislocations along the 

{111} primary slip plane. The high stacking fault of Al makes dislocation slip on {111} 

planes the only deformation mechanism. Severe plastic straining produces a high density 

of dislocations which are effective at blocking slip at increasing strains and as a result, the 

mechanism responsible for accommodating large amounts of plastic straining is the 

subdivision of the original grains in to sub-grains with dislocations forming their 

boundaries.

3.4.2.1.2 Corrosion resistance
In terms of corrosion resistance, Al-Cu-Mg alloys without copper have good corrosion 

resistance in most reagents; only in alkaline solutions which attack Cu as well as 

aluminium their performance is poor. Copper reduces appreciably the corrosion resistance. 

Porosity decreases corrosion resistance. 2xxx alloys with iron have particularly good 

resistance to high-temperature water or steam.

UIT causes a division of grains in to sub-grains, thereby producing a microstructure with a 

higher density of grain boundaries. In addition UIT leads to a decrease in non-metallic 

inclusion size (physical breakdown) and a re-distribution of copper. Both these effects 

cause the structure to be less prone to pitting corrosion, resulting in the surface corrosion 

being more ‘uniform’. Figure 26 shows the effect of UIT1 condition on the corrosion 

resistance of Al 2024- T351 subjected to 24 hours of exfoliation at 20 °C. Further SEM 

images are tabulated in Appendix A.
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Figure 26: Effect o f  UIT on corrosion resistance on 24 hours exfoliated at 20 °C.

3.4.3 Ultrasonic Impact Treatment Mechanism
The Esonix Ultrasonic Impact Treatment (EUIT) is a technique that directly deforms the 

surface of the materials using ultrasonic impacts. This technique uses an ultrasonic signal 

to vibrate small diameter silicon-carbide heads at specific magnitudes and frequency. Due 

to the continuous contact of the peener head with the material surface, the technique can 

induces condition of ultrasonic strain creep. Hence, the affected surface layer is compacted 

and recrystalised with the sub-surface and un-corroded material while at the same time, 

high stable residual stresses are introduced. The device show in Figure 27 is a single 

impact EUIT which uses an ultrasonic transducer to converts a ultrasonic signal in to 

mechanical energy at indenter.
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Figure 27: Esonix device for realisation of single impact on specimens.

3.4.4 UIT Conditions
The Ultrasonic Impact Treatment (UIT) conditioning was carried out using the following 

parameters and was named UIT-1, UIT-2 and UIT-3. However, this research selected UIT- 

1 considering the results obtained on the first series of immersion tests in exfoliation 

solution.

UIT-1

Carrier Frequency 36 KHz 

Pin 0  5.0 x 17 mm, R25 mm;

Normalized impact -  64 impulses;

Amplitude under load -  18 micron;

Pressure force -  3 Kg

Impact frequency 260 Hz

Feed rate: 400 mm/min,

Cross feed 0.5 mm/work stroke
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UIT-2-36

Carrier frequency 36 KHz 

Pin 0  5x17 mm, R 25 mm; 

Normalized impact 64 impulses; 

Amplitude under load 15 microns; 

Piressure force - 3 Kg 

Impact frequency 220 Hz 

Feed rate 1000 mm/min

UIT-3-36

Carrier frequency 36 KHz 

Pin 0  5x17 mm, R 25 mm; 

Normalized impact 64 impulses; 

Amplitude under load 10 microns; 

Pressure force - 3 Kg 

Impact frequency 220 Hz 

Feed rate 1000 mm/min
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CHAPTER 4

Experimental Techniques

4.1 Introduction

The main objective of the experimental effort was to determine quantitatively the 

modifications on the surface and subsurface of the AA2024-T351 caused by Ultrasonic 

Impact Treatment (UIT) carried out under selected conditions, which may lead to an 

optimisation of the process in terms of the corrosion and fatigue resistance. To obtain 

optimum UIT conditions, the significant factors and their interaction for the selected levels 

were determined. This exercise rendered the best and worst UIT conditions in terms of 

residual stresses and corrosion resistance. Polarisation curves were also plotted using the 

Scanning Droplet Cell (SDC) which contradicts the results which were previously attained. 

The nanocrystallisation layer which is under 12 \im still needs to be investigated. Fatigue 

testing was undertaken employing such predetermined UIT conditions.
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4.2 Glow Discharge Optical Emission Spectroscopy 

4.2.1 Introduction
GDOES combines sputtering and atomic emission to provide an extremely rapid and 

sensitive technique for element depth profding. During analysis, plasma is generated in the 

analysis chamber by the applied voltage between the anode and the cathode (the sample 

surface) in the presence of argon under low pressure. Ionised Ar atoms cause sputtering of 

the sample area. Sputtered atoms excited in the plasma rapidly de-excite by emitting 

photons with characteristic wavelengths. Glow Discharge is a rich analytical source for 

atomic spectroscopy. The Grimm source was the most important historical development for 

GDOES. This source has external-sample mount geometry which permits almost any 

sample as long as it has one flat face. This source was extensively developed as a sputter 

source for both optical emission and absorption spectroscopy. Although GDOES was 

originally designed to perform bulk analysis, new areas of application continued to emerge 

such as the surface analysis and depth profiling. As this research mainly needs depth 

profiling of the samples it is worth discussion.

4.2.2 Principle of Operation
Glow Discharge (GD) operates on the simple principle of two parallel plates, one the 

cathode and the other the anode are separated by some centimetres in a glass vacuum tube 

and a carrier gas is introduced and a potential difference applied across the plates (See 

Figure 28). At suitable pressure and potential difference the source is seen to glow strongly, 

in bright and dark bands between cathode and anode. When the current is sufficiently high 

the cathode is fully covered by a dark space and some millimetres away from cathode would 

be a bright band, called a negative glow, this is followed by a dark band and then followed 

by a positive glow, which extends almost up to anode. When the anode is brought closer 

towards cathode, the positive glow will disappear and what remains is alternate negative 

glow in dark bands.

In the cathode dark space the argon is ionised and the argon ions produced there bombard 

the cathode surface causing sputtering of the cathode. Sputtered material from the cathode 

passes back through the cathode dark space and enters the negative glow region where it 

glows brightly by atomic emission. The emission lines are then detected to analyse the 

material being sputtered from the cathode.
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Figure 28: The phenomena present in the neighbourhood of the cathode, (a) Cathodic sputtering, excitation 
phenomena, ionisation and de-excitation with the emission of light, (b) trajectories of ions and electrons in 
the source, (c) trajectories of the material removed from the sample (cathode). Picture is a published work  
from the book GDOES by Payling R [137],

4.2.3 Sputtering
Whenever an energetic particle interacts with a metal, many processes are bound to occur. 

This particle eventually damages the surface causing considerable damage to the target (See 

Figure 29). Such a process is of interest in GDOES as the material is sputtered from the 

target, either as atoms or molecules in neutral or ionised states, or electrons may be ejected. 

In general, neutrals are mostly ejected. All this process takes only a few femtoseconds.
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F igu re  29: The impact o f  an atom or ion on a surface produces sputtering from the surface as a result o f  the 
momentum transfer from the in-com ing particle.

In these so called primary collisions, energy is either transferred to the target nuclei in 

collisions, so called nuclear energy loss, or to the electrons as either ionisation or excitation, 

termed electronic energy loss. The energy, Et which can be transferred to a target nucleus in 

a single collision is

_  Anynfiicos? -  = t]EteoS* 9  Equation 27
(m. +mt)

Where mi and mt are the atomic masses of the incoming particle and the target atom 

respectively, Et is the energy of the incoming particle and 6 is the scattering angle [137].

4.2.4 Sputter Yield
Sputter yield S can be defined as the number of atoms excited per incoming argon ion 

bombarded. From Equation 27, it is evident that S will be zero until E; reaches minimum 

threshold energy. Thus at low energies we may not expect sputter yield. Sputter yield 

depends on number of grounds such as threshold energy, sputtered species alloying 

components, angle at which target is bombarded etc.

4.2.5 Development of Depth Profiling Applications
GDOES was initially designed for bulk analysis, researchers unveiled Glow Discharge (GD) 

potential for procuring depth resolved chemical information [137]. The combined sputtering 

and atomic emission provide a modern, rapid technique for analysing depth profiling 

surfaces, coatings and interfaces. This technique is widely used in many research fields for a 

rapid profiling provided the sample is compatible with the vacuum condition.
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4.2.6 Specimen preparation
In Grimm’s glow discharge source the sample serves not only as the cathode in the 

discharge, but it has to ensure the vacuum sealing of the chamber against the surrounding 

environment. Since the cathode plate is a form of a disc carrying a centred O-ring (diameter 

10-25 mm), the sample must be flat and large enough to cover the O-ring completely. In 

addition, when mounting the sample to the cathodic plate, a good electrical contact must be 

assured.

Depth profiling can be conducted in two ways. The first method is a rather technical version 

following Bouman’s equations [ ]. The second method which is used in this research is

subjecting the specimen to Grimm’s glow discharge source and measuring the depth profile 

of the GDOES spot created using either a roughness meter or a laser profilometer. Thus, in 

order to identify the depth of hydrogen ingress into the metal matrix of A A 2024-T351, the 

depth of the GDOES spot was measured roughness meter as shown in Figure 30.

Modified Profile UIT-2 5 -1 - P/6.101 mm/LS Line 05/05/2006 12:16:53
UIT-2 5 - 6.1mm/mac/FTS S5 05/05/2006 12:16:14

29.0 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5 36.0 36.5
millimetres

Figure 30: Depth measurement of the GDOES spot using roughness meter.

The surface of the sample with GDOES spot was then ground off up to the depth measured. 

This will generate a fresh surface and further depth profiling using GDOES and process of 

measuring depth and grinding off the surface was repeated until the sample exhibited 

Arbitrary Hydrogen Counts (AHC) which is equal to that of the reference line (As-Received 

AA 2024-T351).

4.3 Scanning Electron Microscopy
The scanning electron microscope (SEM) is one of the most versatile instruments available 

for the examination and analysis of the micro-structural characteristics o f solid objects. The
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primary reason for the SEM's usefulness is the high resolution which can be obtained when 

bulk objects are examined. Advanced research instruments have been described which have 

achieved resolutions of about lnm. In general, SEM images are much easier to interpret than 

Transmission Electron Microscopic (TEM) images, and many SEM images, beyond their 

scientific value, are actually beautiful.

4.3.1 Scanning Process
In a typical SEM electrons are thermionically emitted from a tungsten or lanthanum 

hexaboride LaB6 cathode and move towards an anode. Tungsten is used because it has the 

highest melting point and lowest vapour pressure of all metals, thereby allowing it to be 

heated for electron emission (See Figure 31).

The Emission current density, Jc, coming from the cathode is expressed by the Richardson 

Law,

J c -  A T 2e  ̂ ^ A ! c m 2 E q u a tio n 2 8

F i l a m e n t  H e a t i n g  S u p p l y

Figure 31: Configuration of Self-Biased Electron Gun

62



El Electron Gu

M IU IIIIIII* - '

Scanning
Coils

d

Figure 32: Schematic Diagram showing the working principle of SEM.

where A is a constant which is a function of the material, T  is the emission temperature, and 

Ew is the work function [l39].

The electron beam, which typically has an energy ranging from a few hundred eV to 50 

keV, is focused by one or two condenser lenses into a beam with a very fine focal spot sized 

1 nm to 5 nm. The beam passes through pairs of scanning coils in the objective lens, which 

deflect the beam in a raster fashion over a rectangular area of the sample surface.

As the primary electrons strike the surface they are in-elastically scattered by atoms in the 

sample. Through these scattering events, the primary electron beam effectively spreads and 

fills a teardrop-shaped volume, known as the interaction volume, extending about less than 

100 nm to 5 pm depths into the surface. Interactions in this region lead to the subsequent 

emission of electrons which are then detected to produce an image.

4.3.2 Detection of Secondary and Backscattered Electrons
The most common imaging mode monitors low energy (<50 eV) secondary electrons. Due

to their low energy, these electrons originate within a few nanometres from the surface. The 

electrons are detected by a scintillator-photomultiplier device and the resulting signal is 

rendered into a two-dimensional intensity distribution that can be viewed and saved as a
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Digital image. This process relies on a raster-scanned primary beam. The brightness o f the 

signal depends on the number of secondary electrons reaching the detector.

Backscattered electrons may be used to detect contrast between areas with different 

chemical composition. These can be observed especially when the average atomic number 

of the various regions is different. There are fewer backscattered electrons emitted from a 

sample than secondary electrons. The number of backscattered electrons leaving the sample 

surface upward might be significantly larger than those that follow trajectories toward the 

sides. The detector positioned on one side of the sample has low collection efficiency for 

backscattered electrons due to small acceptance angles. The use o f a dedicated backscattered 

electron detector above the sample in a "doughnut" type arrangement, with the electron 

beam passing through the hole of the doughnut, greatly increases the solid angle of 

collection and allows for the detection of more backscattered electrons.

4.3.3 Electron Diffraction X-Ray Spectroscopy
Chemical analysis in the SEM is performed by measuring the energy intensity distribution 

of the x-ray signal generated by a focused electron beam. The x-ray signal from the sample 

passes through a thin beryllium window. This x-ray signal then passes through an evacuated 

chamber containing a cooled, reverse-bias p-i-n lithium-drifted silicon crystal. Absorption of 

the x-rays in the intrinsic region results in the formation of electron-hole pairs, which are 

collected by the applied bias through a charge pulse, which is then converted to a voltage 

pulse by a charge sensitive preamplifier. The signal is further amplified and shaped by a 

main amplifier and passed to a multichannel analyzer (MCA) where the pulses are sorted by 

voltage. The energy distribution is then displayed on a cathode ray tube.

4.4 Corrosion Testing
Corrosion tests provide the basis for the practical control of corrosion and therefore deserve 

a more exhaustive discussion than limitations of space will permit. Out of the three mains 

types o f classification of corrosion tests, laboratory tests, although often necessarily 

conducted under conditions that are not met in service, nevertheless have a number of 

advantages over the other types of tests.

4.4.1 Electrochemical Corrosion Measurements
In laboratory conditions corrosion can be measured in the following ways:-

• Polarisation curves

64



• Linear polarisation resistance

• Open circuit potential decay

• Ac impedance measurement

• Electrochemical noise measurement

The mechanism of corrosion is electrochemical; potentiodynamic polarisation is one of the 

most powerful tools. Using simple probes, potentiodynamic plots can be made in both batch 

and continuous process. Three things are required to make use of this test method: (1) 

knowledge of what a potentiodynamic polarisation instrument does, (2) an awareness of 

conventions for presenting and comparing data, and (3) a basic feel for electrochemical 

potentials and reactions.

4.4.2 Instrument
A Potentiostat is an instrument for controlling the electrochemical potential of a test 

electrode relative to some fixed reference potential, and capable of scanning a range of 

potential differences, an electrode can be defined as an electronic conductor in contact with 

an ionic conductor. Since adjustments to the potential are made with electrical current a 

third electrode is necessary in the experiment for the purpose of conducting electricity to or 

away from the test electrode. The fixed reference potential is usually taken from a special 

electrode known as reference electrode. Data from experiments of this kind are read out as 

plots of electrode potential versus the applied current required to produce that potential. 

Since in corrosion we are interested in rate, we have to add kinetics to the picture. This leads 

to polarisation curves which introduce kinetics because of the passage of electrical current is 

a rate function. Since changes in potential of unhindered electrochemical functions are 

linear with respect to the logarithm of current, a polarisation curve is usually a semi-log 

plot.
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F igu re  33: Schematic diagram o f  Instrum entation setup o f  electrochem ical polarisation tests.

The set up used for conducting potentiodynamic tests was that of a Scanning Droplet Cell 

(SDC), this is shown in Figure 33. The principle of this method is to position a small drop 

of electrolyte with a capillary on the investigated surface. The wetted area acts as a working 

electrode and the glass capillary contains the counter and reference electrodes, which are 

electrolytically connected to the surface through the drop. The single compartmental 

electrochemical test cell which is communicating via a continuous supply of electrolyte 

using peristaltic pump is connected to a Potentiostat, which is then setup to the desired 

voltage. The potential of working electrode is then measured. This technique allows 

individual areas of the surface to be analysed individually, rather than having an averaged 

response for the surface.

4.5 Mechanical Testing
4.5.1 Introduction
While it is very common to associate properties with a metal, it is possible to produce a 

wide range of properties from the same material, by varying the composition slightly, or by
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varying its processing. The different ways of processing a metal include how it has been 

cooled and worked, and any heat treatments it has been subjected to.

These processes and compositional changes affect the microstructure o f the material, in 

particular the grain shape and size and the dislocation density, as well as phase structure and 

precipitates.

4.5.2 Classification
Mechanical tests are employed to determine relevant material properties o f metals and 

weldments. They may be divided into two groups:

1. Large-scale, structurally representative tests

2. Small-scale materials characterisation tests which determine material properties or 

give results which are known to correlate with structural behaviour.

It would be relevant to discuss the small-scale materials tests as any large scale testing is not 

proposed in this project.

However, unlike the former ones not all small-scale tests give results which can be 

considered a material property. Some obviously do (such as tensile tests) but the predictive 

capability of others relies frequently on empirical correlations with full-scale behaviour. 

Such correlations exhibit a degree of inherent uncertainty due to the following factors:

• small-scale specimens do not have the same constraint as the structure due to 

differences in dimensions and stress state; this can cause, for instance, general 

yielding of small-scale specimens at stresses when structural behaviour is still elastic

• the loading and strain rates in small-scale tests cannot always simulate structural 

conditions

• the combination of small-scale specimen compliance and testing machine stiffness is 

not normally representative of the structure

This means that developed correlations have to be re-established for new materials. 

Nevertheless, there exist now a large number of material characterisation tests aimed at 

many different properties, materials and failure modes
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The list below gives a brief overview of the various mechanical tests proposed to be used 

during the course of the project:

1. Tensile Tests (Strength properties)

2. Fatigue Testing (Fatigue Properties)

a. Residual fatigue life estimation (S-N Curves)

b. Fatigue Crack Growth (FCG) analysis

4.5.3 Tensile Testing
The tensile test is the most obvious kind of mechanical test which can be carried out on a 

material and it is therefore applied more often than most others. Indeed, many of the other 

forms of mechanical test related to fatigue creep or notch toughness for example, were only 

developed in each case when it became obvious that simple tensile test results were 

inadequate to characterise the particular behaviour. Tensile tests are multi-purpose in 

character, in the sense that the results are typically applied in a variety o f contexts.

The quantities derived from a tensile test are best considered by reference to the deformation 

behaviour of a test piece when subjected to a continuously increasing tension load until it 

breaks. At yield stress in a mild steel, a sudden elongation occurs without any increase of 

load which is termed as yielding. Shortly after initial yield, narrow bands of plastically 

deformed material can be seen clearly in contrast with the generally undisturbed surface. 

These bands, known as Luders bands, extend from one edge of the test piece to the other, 

inclined at 45° to the axis of tension, along the two directions in which the shear stresses 

have their maximum value. When yielding is complete the load begins to rise again until it 

reaches a maximum value. After this, load falls off steadily while a more localized 

elongation takes place in one part of the test specimen, where it is said to neck. Load 

continues to fall while necking proceeds, until the reduction in cross-section is appreciable 

and fracture occurs at a certain failure load.

4.5.3.1 Tensile Test Practice

Prior to conducting tensile testing, all specimens were “pre-exfoliated” at gauge lengths by 

applying a thick layer of beeswax on the rest of the sample (except gauge length). These 

samples are then subjected to immersion tests according to conditions tabulated in Table 1. 

A standard specimen of sheet-type was selected with a gage length of 50±0.1 mm. Figure

34 shows the dimensions of the tension specimen (not to scale).
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Figure 34: A STM  Standard E8-04, Standard test specim en for tension testing o f metallic materials. 
Specimens were machined perpendicular to the rolling direction (Fig: N ot to Scale).

The samples of both As Received (AR) and UIT were exfoliated ranging from 24 hours to a

maximum of 96 hours in 24 hour steps and simultaneously, at temperatures ranging from

Ambient to a maximum of 80°C in steps of 20°C.

' testing I

Figure 35: Test set up showing specim en in the ESH servo hydraulic test 
m achine (250KN)

These tests were conducted similar to “coupon testing” and in accordance to ASTM G34 

[140] which generated 16 samples for each condition, namely AR and UIT according to 

Table 1. The crosshead displacement reading was taken as strain measurement assuming 

there is no slip during testing of the sample. Thus, on a Stress Vs Crosshead displacement 

plot, 0.2% proof stress value was attained.
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Table 1: All tests were conducted at various times and temperatures and named accordingly to the table.

24_20 48 20 72_20 96 20

24_40 48 40 72 40 96 40

24_60 48 60 72 60 96 60

24_80 48 80 72_80 96 80

Tensile testing was conducted to identify the mechanical properties of AR, UIT and UIT-C 

(UIT-Corroded) samples using a 250kN ESH servo hydraulic test machine as shown in 

Figure 35. These tests were conducted according to ASTM standards E8-04.

4.5.4 Fatigue Testing
Fatigue failures have been known and studied by the practical engineer for at least as long as 

there have been railways. The definition of fatigue testing can be thought o f as simply 

applying cyclic loading to your test specimen to understand how it will perform under 

similar conditions in actual use. The load application can either be a repeated application of 

a fixed load or simulation of in-service loads. The load application may be repeated millions 

of times and up to several hundred times per second. In many applications, materials are 

subjected to vibrating or oscillating forces. The behaviour of materials under such load 

conditions differs from the behaviour under a static load. Because the material is subjected 

to repeated load cycles (fatigue) in actual use, designers are faced with predicting fatigue 

life, which is defined as the total number of cycles to failure under specified loading 

conditions. Fatigue testing gives much better data to predict the in-service life of materials.

4.5.4.1 Fatigue Test Practice

4.5.4.1.1 S-N Curves
Fatigue testing was conducted using a 250 kN ESH servo-hydraulic testing machine as 

shown in Figure 36. The specimens (see Figure 37) were subjected to fatigue loading
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according to ASTM standards E 466-82 [I41] to identify the residual fatigue life for various 

conditions.

Figure 36: Test setup to produce total life curves.

The fatigue specimens were machined in such a way that the final surface roughness is 

around 0.2 pm. These samples were then UIT-1 conditioned within the calibrated section on 

all the four sides of the specimen. These specimens were then covered with beeswax outside 

the calibrated section and immersion tests were conducted according to Table 

1.
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Figure 37: Test specim en design showing the specim en dimensions.

4.5.4.1.2 Fatigue Crack Growth (FCG) Analysis
FCG specimens were prepared according to ASTM standards E 647. These specimens were 

then pre-notched at the centre of the specimen using Electric Discharge Machining (EDM). 

Two strips of 10 mm thickness (not shown in Figure 38) were treated at various pre­

determined conditions both of as-received and UIT conditions. These strips were 10mm
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apart from the centre of the notch and marked on either side of the notch. Datum lines were 

marked on the surface of the specimen to facilitate measurement of crack length, ‘a’ which 

is the horizontal distance between the centre o f the notch and crack tip. The tests were 

conducted at various treatment conditions e.g. 24hours exfoliation at 20°C.

SO null

0 1 nun

0.2 nun

1.5 nun

Figure 38: Samples were prepared according to ASTM standards E 647 and pre-notched in the centre of 
the specimen using Electric Discharge Machining (EDM).

4.5.4.1.2.1 Test Setup
A test setup similar to that used to determine S-N curves was used to determine crack 

growth rates. Datum lines are drawn across the section of the specimen which is under study 

as shown in Figure 39. AA2024-T351 contain copper as well as aluminium. Some contain 

magnesium and others as secondary elements (see Table 2).

Table 2: Chemical com position o f  2024-T351 in wt% based on EDX measurements.

Alloy Si Fe Cu Mn Mg Cr Zn Ti Zr Al

2024-

T351

min - - 3.8 0.30 1.2 - - - -
balance

max 0.50 0.50 4.9 0.90 1.8 0.10 0.25 0.15 -

72



According to the temper designation system:

T3. Solution heat-treated, cold worked, and naturally aged to a substantially stable 

condition. Applies to products that are cold worked

T_51. Applies to cold finished rod or bar when stress-relieved by stretching 1 to 3 % 

permanent set. Stretching is performed after solution heat treatment or after cooling from an 

elevated temperature shaping process. No straightening takes place after stretching

Ilf II

US|„ 
M l

i > 8  jiyMyi

Figure 39: Fatigue crack growth analysis test setup.

Cyclic loading was applied at a stress ratio R = 0.1 at a test frequency of 25Hz. The crack 

length measurements were taken every 5000 cycles after stopping the cyclic loading either 

at 60% of the applied tensile load so that the crack tip visibility is resolved. This was 

necessary due to extremely corroded sections and crack lengths measurements were often 

difficult to resolve.

Figure 40: Crack Length at 45000 cycles at 25H z for UIT1-C exfoliated am bient conditions for 24 
hours, R  = 0.1
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Crack Growth tests were conducted in compliance with ASTM Standard E647 on notched 

specimens that are pre-exfoliated at various conditions and the crack was followed using a 

Photo Microscopy (PM) method according to this standard using a high magnification 

camera. The resulting images were carefully matched using an in-house program as shown 

in Figure 40 and crack length ‘a’ was measured.

The secant method was used to create the da/dN vs AK curve, this method fits a line 

between adjacent data points. The slope of the line is the crack growth rate da/dN. The 

equations used are,

where the Equation 30 is used when a crack coalescence takes place, and where aj is the 

crack length of the small crack considered that joins to the bigger one and a, is the crack 

length of the bigger crack.

The stress intensity factor range AK is given by the following equation:

da!dN = (ai+l - a i)/(Ni+l - N t) Equation 29

da/dN = (ai+l - ( a j + aj))/(Ni+l -  Nt) Equation 30

a = (ai+l+ai)/2 Equation 31

Equation 32

where a = 2a/W, AP = Pmax - Pmin for R>0; expression valid for 2a/W<0.95.
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CHAPTER 5

Corrosion Analysis

5.1 Introduction
From the perspective of the failure mechanism of aircraft structures, along with fatigue 

assisted failure of the component, corrosion induced failure is also of serious concern. 

Corrosion leads to fatigue crack nucleation and facilitates cracks to grow at higher rates and 

thus is widely considered to be one of the most significant degradation mechanisms in 

ageing aircrafts. Widespread corrosion pits on the surface and hidden within the fuselage lap 

and riveted joints are an important cause of Multiple Site Damage (MSD), since the fatigue 

cracks are observed to nucleate and propagate from these corrosion pits.

Thus, corrosion tests, and application of the results, are considered to be a most important 

aspect of corrosion engineering. Many corrosion tests are made to select materials for 

construction for equipment in the process industries. This research gives attention to 

exfoliation corrosion which occurs on wing and fuselage panels of aircrafts. Modern day 

aircrafts tend to accumulate more number of flying hours due to their increased usage. Also, 

the use of number of short haul flights has increased dramatically due to an incredible surge 

in aviation sector. It is the lowest portion of the earth’s atmosphere which contains 

approximately 75% of the atmosphere’s mass and almost all o f the water vapour. Laboratory 

tests were conducted to simulate similar conditions experienced in ascent and descent 

periods of aircrafts.

5.2 Coupon Testing
Exfoliation corrosion is a more severe form of intergranular corrosion that can occur along 

aluminium grain boundaries in the fuselage, empennage and wing skins of the aircraft. 

Exfoliation corrosion can be defined as corrosion that proceeds laterally from the sites of 

initiation along planes parallel to the surface, generally at the grain boundaries, forming
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corrosion products that force metal away from the body of the material giving rise to a 

laminated appearance (see Figure 41).

r j

■■ & . - ■ 1
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Figure 41: Samples o f  AR & UI subjected to exfoliation 
corrosion for 24 hours and at 80°C.

As discussed in Chapter 1 (See Section 1.1.1), the extent of corrosion damage should be no 

more than 10% of the nominal thickness of the material. In aircraft wing and fuselage panels, 

depending on the section of the aircraft the average nominal thickness is 5mm. If the 

corrosion damage is beyond the 10% limit, the panel should be replaced. Thus, throughout 

this research, the nominal cross-sectional thickness of the sample is 5mm. Although removal 

of corroded sites can be removed by grinding, it reduces the cross-sectional area and thus, 

the strength of the structural member of the aircraft.

In order to simulate these conditions on a laboratory scale, these tests were conducted 

according to ASTM standards G 34 [142]. G112-92(2003) Standard Guide for Conducting 

Exfoliation Corrosion Tests in Aluminium Alloys was followed. The exfoliation solution 

comprises of preparation of one litre molar solution out of 4 M NaCl, 0.5 M Kn0 3  and 0.1 

M HNO3 . A detailed analysis is indispensable to understand the climatic conditions (See 

Section 5.1) where the varying temperature and water vapour packed atmosphere dominates 

the throughout flight path of the aircraft. This research focussed on the predefined time and 

temperatures as tabulated in Table 1. Throughout this research Table 1 is closely followed 

for both As-Received (AR) and UIT Condition samples. The next section focuses on SEM 

analysis and Taylor Hobson’s Roughness Measurements where a detailed study comparing 

AR and UIT conditions is performed by considering depth o f exfoliation as a factor to 

compare the 32 emerged conditions from Table 1 both for AR and UIT conditions.
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5.2.1 Microstructural Characterisation

5.2.1.1 SEM Analysis
The visual appearance of the cross-sectional surfaces was examined by SEM. A key part of 

this research concentrated on such cross-sections, UIT being a surface modification 

technique. Figure 44 compares the cross-sectional morphology of AR and UIT1 for 24 

hours of exfoliation at ambient conditions (20°C). In Figure 44, Fig (a) reveals an exfoliated 

cross-section with depth of exfoliation being present with a maximum of 170 jum. In contrast 

to this, UIT sample fared exceptionally well subjected to exfoliation testing in similar 

conditions as there modified surface remained resistant to corrosion damage, as seen in 

Figure 42b..

Figure 42: (a) SEM analysis o f  cross-section o f  A R  sample showing (72 20) with an exfoliation depth o f  550 
jum. (b) A SEM micrograph showing UIT 1 sample (72 20) with negligible exfoliation corrosion depth.

UIT-1 conditioning was also able to inhibit corrosion even after sample subjected to 72 

hours of immersion testing in exfoliation solution as shown in Figure 42.

Figure 43: (a) SEM analysis o f  cross-sectional AR sample showing (48 40) with an exfoliation depth o f  700 
pm. (b) A SEM  micrograph showing U IT 1 sample (48 40) with exfoliation corrosion depth o f  500 pm.
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However, at higher temperatures UIT exhibited to mitigate the exfoliation corrosion 
process. For example, at 48 hours of exfoliation at 40 °C immersion corrosion tests, the 
depth of exfoliation for UIT-1 sample was 200 pm less than As-Received sample as shown 
in Figure 43.

a step distance of0.004mm

Figure 44: SEM micrographs o f  (a) As-Received A1 2024 T351 treated for 24 hours in exfoliation solution at 
20°C. (b) UIT condition samples treated for 24 hours in exfoliation solution at 20°C.

UIT is seen to be acting as an answer for corrosion resistance even at elevated temperatures 

between 20°C to 40°C in most of the case identified in this research. For example, in Figure 

45, it is identified that the extent of exfoliation corrosion damage in UIT sample 48 40 is 

500 jum when compared to its analogous sample in AR condition is more than 700 jum. 

Similar results were noticed when samples were subjected to higher period of exfoliation 

time and the results of the SEM analysis are tabulated in Appendix A.
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Exfol iat ion depths  at var ious  t e m p er a t u re  and t ime
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Figure 45: The above figure compares the exfoliation corrosion tests for AR (orange strip blocks) and 
UIT condition (blue stripe blocks) with respect to tem perature and tim e period o f  exfoliation. The red line 
shows the tolerance lim it specified where when the panels need to be replaced.

As mentioned in Section 5.2. the exfoliation corrosion damage from the cross-sectional 

surface in to the bulk of the alloy, was analysed using SEM and the depths of exfoliation are 

tabulated in Figure 45. A first glance at Figure 45, one can comprehend that unlike any 

intergranular attack (See Figure 47) on A1 alloys, exfoliation corrosion is more severe form 

of intergranular corrosion where the ingress of the corrosion attack is not only severe 

laterally in the direction of grain boundary as shown in Figure 46, but also according to 

depth as the Figure 45. The specimens were at least 50 by 50 mm to remove any edge 

effects.
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R oll ing  D i r e c t i o n

Figure 46: Micrograph f  24hrs exfoliation which shows about 170pm of the cross-section 
being affected by this form o f corrosion.

Intergranular Corrosion Resistance of Al 2024
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Immersion T im e (Hours)

Figure 47: The above graph shows im m ersion tests perform ed on AL 2024 T351 coupons according to ASTM  
standards G 1 10-92. All the tests were conducted at am bient conditions (20°C).

Figure 45 and Figure 47 show results from same tests carried out for exfoliation corrosion

and intergranular corrosion according to ASTM G110-92 [143] respectively. It can easily be

identified that the exfoliation corrosion is time dependent as there is a fivefold increase in

exfoliation corrosion depth as we move from samples 24 20 to 96 20. Use of this test

method provides a useful prediction of the exfoliation corrosion behaviour in various marine
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and industrial environments. However, in Figure 47 at 24 20 there is the depth of 

intergranular attack is 85 pm and deviates by only a few microns from this value as the 

immersion time approaches 144 hours. These tests evaluate the adequacy of quenching when 

performed on material in the as-quenched condition as intergranular corrosion resistance is 

directly related to quenching conditions applied. Assuming that the depth of penetration is 

equally important in both mechanisms of corrosion attack, this behaviour can be explained 

as exfoliation corrosion forms more corrosion products of oxides and hydroxides along with 

attacking grain boundaries. The formation of oxides and hydroxides is more prevalent in 

exfoliation testing due to the fact that NaCl in exfoliation solution 4 times higher than test 

solution prepared for intergranular attack.

5.2.1.2 Copper Distribution Analysis
Alloying elements determine the common basic properties of alloys like mechanical 

properties, corrosion resistance etc. However, when AA 2024 T351 is subjected to severe 

environmental conditions, copper being a secondary phase particle, enriches near the surface 

and sub surface and appears to be responsible in creating galvanic couples between copper 

rich intermetallic particles (AI2CU) and the adjacent copper-depleted matrix which induces 

localised corrosion [144]. In Figure 48 & Figure 49, copper concentrations which are 

revealed by backscattered images of AR 24 20 and AR 24 40 are compared against cross- 

sectional depth of the samples. The results show that there is a higher concentration of 

copper near the surface of the alloy.
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Figure 48: Average copper distribution of 24 hrs exfoliated at 20°C.
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Figure 49: Average copper distribution of 24 hrs exfoliated at 40°C.

Similar results are seen when samples are subjected to 48hrs of exfoliation at different 

temperatures. Thus, it is concluded that copper enrichment near the surfaces further reduces 

the corrosion resistance.
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Figure 50: Copper redistribution for AR samples 4 8  hours of exfoliation at 20 °C.
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A verage C opper Distribution of 48 hrs exfoliated at 40 °C
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F igu re  51: Copper redistribution for A R  samples exfoliated for 48 hours and at 40 °C.
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F igu re  52: Com parison o f  copper concentration for AR samples subjected to exfoliation corrosion tests at 
20°C and at 40°C.
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It is noticed that exfoliation temperature has foremost effect in enriching copper near the 

surfaces of the alloy. In Figure 52, for 20°C exfoliation tests, it can be said that there is a 

little effect of exfoliation time as it increases from 24 hours to 48 hours. However, as the 

temperature is increased to 40°C, Cu enrichment near the surface is more established.

5.3 Polarisation Curves
Polarisation curves continue to be important in Environmental Assisted Corrosion (EAC) 

research as they provide rapid, accurate and quantitative evaluation of a materials resistance 

to corrosion. Potentiodynamic plots have been obtained for different surface conditions. 

Polarisation curves are plotted using Scanning droplet Cell (SDC) which is discussed in 

Section 4.4.2. 3.5% NaCl solution (0.6 M) was used to characterise corrosion resistance 

because exfoliation solution tends to clogs the pipes with dried NaCl crystals. All obtained 

data was fitted using in-house regression software.

5.3.1 Droplet Cell
An electrolyte droplet is dispensed and positioned on the surface of the capillary. Thus the 

wetted circular area forms the working electrode. Since UIT nanocrystallises the surface of 

AA 2024-T351, it became quite beneficial to understand the corrosion kinetics on a micro­

scale. Moreover, exfoliation corrosion damage often initiates at end grains, Cu enriched 

areas on the surface as discussed in Section 5.2.1.2 of the surface and the initiation o f the 

process is much localised. These tests were conducted in open air with a droplet size 

measured manually by measuring the size of the spot where test was performed. However, 

due to the nature of the exfoliation solution (which forms salt crystals due to evaporation of 

water in the process and clogging the tubing); a 3.5% NaCl was used instead.

5.3.1.1 UIT1
The polarisation of AR and UIT1 conditioned AA 2024-T351 in open air with 3.5% NaCl is 

compared in Figure 53. Figure 54 presents a more detailed plot of the anodic branches o f 

the Tafel slopes. An estimate of corrosion current, made by extrapolating the Tafel slope to
9 9Ecorr, gave values of 30 pA/cm for the AR and 100 pA/cm for the UIT 1 Condition. These 

results signify a threefold increase in corrosion rate of UIT 1 when compared with AR.

UIT 1 increases the rate of oxidation and reduction reactions. However, the pitting potentials

of the AR and UIT 1 remained similar and the break of protective aluminium oxide film

occurs at similar potentials. As the potential E is increased the rate of corrosion is increased.

AR sample shows a corrosion rate of 7 pA/cm at 1 OOmV above the open circuit potential,
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2whereas UIT1 is 11 pA/cm at this value above open circuit potential. Thus, this signifies 

that UIT1 increases the corrosion rate activity of the surface.

Potentiodynamic Plot for UITt Condition

0 5

UIT1 Condition 
As Received

-2.0 -I--------------- .--------------- .--------------- r--------------- i--------------- t--------------- .---------------
1e-8 ie-7 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1

Current Density (A/cm2)

Figure 53: Potentiodynam ic polarisation curves o f  Al 2024-T351 for A R and UIT 1 
condition showing a high cathodic activity in 3.5% NaCl solution.
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Figure 54: Anodic curve zoom o f  Figure 53 shows that the pitting potential o f  AR and U IT 
1 are similar. However, the rate o f  corrosion increases by 4 pA /cm 2 at lOOmV above open 
circuit potential.
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5.3.1.2 UIT2
An estimate of the corrosion current, made by extrapolating the Tafel slopes to Ecorr, it was

9 9found to be 80 pA/cm when compared to AR which is 30 pA/cm . However, the three plots 

of cathodic branch of the curve seem be varying in a bandwidth as seen in Figure 55 

indicating different that free electrons consumption rates are different and thus the pitting 

potentials are varying in anodic branch. In anodic branch of UIT2 condition (see Figure 56), 

it is noticed that the propensity of the corrosion rate is similar with respect to AR until it 

reaches pitting potential, EPjt.

Potentiodynamic Plot for UIT2 Condition

0.5 t — :  ----- — ------— ...... .........................
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F igu re  55: comparison o f  potentiodynam ic plots for UIT 2 and AR conditions.
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Figure 56: Detailed anodic branch of UIT 2 potentiodynamic curve.

5.3.1.3 UIT3
UIT 3 behaves the same manner as UIT 2 samples. However, it is interesting to note that

2 # 2 
corrosion current is 60 pA/cm in comparison to AR samples showing a value of 30 pA/cm .
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F ig u re  57: Potentiodynamic curves showing results sim ilar to UIT 2 with lower corrosion rate 
before the sample reaches its pitting potential.
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Potentiodynamic Plot for UIT3 Condition
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F igu re  58: A zoom ed anodic section o f  UIT 3 potentiodynam ic curve.

UIT 3 demonstrated a two fold increase in comparison to UIT 1 sample which established a 
threefold increase in corrosion rate.

5.4 Assessment Potentiodynamic curves with SEM Analysis
Potentiodynamic curves showed results where the corrosion resistance of the UIT conditions

are higher than compared to AR samples. However, these results are contradicted by SEM 

analysis. SEM analysis showed (See Figure 60) us that UIT is “exfoliation corrosion 

resistant” where the solution is highly aggressive. However, potentiodynamic curves shown 

in Figure 59, which are conducted using artificial sea water as electrolyte, portray
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Potentiodynam ic Plots for All U IT  Conditions
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F ig u re  59: Potentiodynamic plot showing Com parison o f  all three UIT conditions w ith the A R  
condition.

this treatment as more corrosive resistive than the AR samples. Thus, the inclination of this 

proposed Applied Ultrasonic’s research was directed towards using the SEM analysis to 

proceed with further analysis and hence forth, in this research further testing is carried out to 

characterise UIT l condition.

F igu re  60: The above micrograph shows the results o f exfoliation corrosion testing for all the three samples 
subjected to 24 20. UIT 1 shows good corrosion resistance.

5.5 Chapter Summary
In this chapter, the effect of exfoliation on subsequent corrosion resistance was assessed

following a series of tests in which exfoliation exposure time and temperature were varied

systematically. Samples subjected to UIT surface conditioning, followed by exfoliation

corrosion have shown increased corrosion resistance. Following exfoliation there is a

considerable amount of Cu redistribution with enrichment occurring near the surface. At
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ambient temperatures, UIT conditioning of the surface caused the alloy to become 

electrochemically more active. However SEM cross-sectional analysis showed little 

difference in corrosion, at temperatures below 40 °C, between UIT conditioned and 

compared AR specimens.



CHAPTER 6

Influence of Hydrogen Charging in to 
the Metal Matrix of Al 2024 due to 
Exfoliation Corrosion

6.1 Introduction
This study is aimed towards an understanding of the nature o f hydrogen embrittlement. Such 

knowledge is important for understanding the problems involving the embrittlement effects 

in high strength alloys applied in aerospace. Hydrogen embrittlement occurs at the atomic 

level, within a metallic material, with little or no visible defects or signs of premature 

cracking of the part, product or structure. The consequences are much more devastating than 

corrosion because failures are unexpected, occurring with no warning as the crack initiates 

at the atomic level, within the metal, often below the surface, unlike corrosion which is a 

surface phenomenon.

The quantitative analysis of a metal or alloy containing a gas can is often problematic as 

diffusion of the gas is occurring continually at a rate often undetermined. The present work 

involves the use of Glow Discharge Optical Emission Spectroscopy (GDOES) (See Section 

4.2) where the sample is sputtered using Argon ions from low pressure plasma. These 

sputtered atoms are excited and emit light which are picked up by photomultiplier tube. 

Qualitative hydrogen diffusion analysis has been performed for AR and UIT samples 

subjected to exfoliation at ambient temperatures. The results are grouped according to the 

exfoliation test conditions and were aimed to see the effect of exfoliation time and 

temperatures.
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6.2 Hydrogen Studies
When a metal comes in contact with a source of hydrogen, a thin layer is deposited on the 

surface which is then followed by activated absorption. Hydrogen Embrittlement (HE) is 

always an important issue as it can significantly affect the performance of a material. 

Hydrogen is also the only gas that is appreciably soluble in aluminium and its alloys and 

reduces the surface energy of many metals and is concentrated on the surfaces of separation 

[145]. During the cooling and solidification of molten aluminium, this dissolved hydrogen 

may precipitate in molecular form, resulting in the formation of voids.

6.2.1 As-Received Samples
As Received samples were sputtered for various time periods ranging between 20 sec to 

2000 sec. This resulted in to number of sputtered spots of various depths. The last few 

average hydrogen counts number was taken and plotted for the respective depths of sputter 

resulting in to hydrogen count Vs depth of sputter as shown in Figure 61 and a line of 

regression was plotted.
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F igu re  61: Qualitative hydrogen analysis for AA 2024 T351.
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Following the profile of AA 2024 T351 in Figure 61, it can be concluded that hydrogen 

reaches it saturation limit o f 150 hydrogen counts within 10pm. This amount of hydrogen is 

insignificant as it probably could have been detected as in the forms of compound. Thus, 

Figure 61 is used as a reference line for A A 2024 T351.

6.2.2 Exfoliated Samples
In accordance with the testing method for Reference curve of AA 2024 T351, AR samples 

were exfoliated for 24hours at ambient temperature and at 40°C. However, since GDOES 

requires flat samples for Hydrogen measurements, the exfoliated layer measured using SEM 

(See Section 5.1) was removed by grinding. Thus, it was assumed that hydrogen ingress 

will be highest in the exfoliated layer.

A s R eceiv ed  AA 2 0 2 4  T351  
Exfoliated for 24  hours at Am bient Tem perature
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of Exfoliation at Ambient Conditions
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Figure 62: A GDOES result showing the com parison between Reference sample and AR samples exfoliated 
for 24 hours at am bient conditions (AR 24 20).

From Figure 62, the profile of AR 24 20 it can be seen that hydrogen charging takes place 

as a result of exfoliation corrosion testing. Hydrogen was found in excess of 220pm in 

cross-sectional depth of AR24 20 sample. Figure 63 shows the result of AR24 40 sample 

Vs the reference curve. It is observed that hydrogen ingress, as a result o f exfoliation, occurs 

up to a depth of 512pm.
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A s R ece iv ed  AA 2 0 2 4  T351  
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AS R eceived Exfoliated for 24 h ours  at 40°C

F igu re  63: A GDOES result for hydrogen showing AR 24hours o f  exfoliation at 40°C (AR24_40°C) Vs the 
reference line o f  AA 2024 T351.

When all the GDOES results are compared, as shown in Figure 64, AR 24 20 exhibited 

maximum hydrogen charging, as about 3000 hydrogen counts were identified on fresh 

surface (after removal of exfoliated layer by grinding). However, the increase in temperature 

by 20°C reduces the hydrogen to 1700 counts, but the exfoliation damage is severe. Thus, it 

can be further concluded that the increasing exfoliation exposure time alongside with 

increasing temperature links together the deep pits through simultaneous intergranular 

corrosion. This newly created intergranular-pit path facilitates further the ingress of 

exfoliation solution and when the hydrogen evolution occurs as a result of electrochemical 

reaction taking place, it facilities further hydrogen charging deep in the material. Thus, the 

current conventional grinding process to tackle corrosion leaves behind the hydrogen 

diffused embrittled zone which could be catastrophic in any scenario.
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Hydrogen Characteristics for 24 hours of Exfoliation
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F igure  64: A com parison showing the affect o f  increasing tem perature at same exfoliation conditions.

6.3.3 UIT Treated Samples
From the Figure 65, it is observed that the UIT conditioned sample showed 1650 Hydrogen 

count initially, but this Hydrogen charging is reduced after 10pm and goes below the 

reference curve. At the same time since Hydrogen being the smallest element in the periodic 

table, thus having the smallest atomic size, even the nano scale crystallisation effect doesn’t 

impede the Hydrogen charging into the alloy.

When the UIT samples are subjected to exfoliation corrosion testing for 24hours of 

exfoliation at ambient and at 40°C, it is noticed that UIT samples show a remarkable 

resistance to hydrogen charging in to the alloy. UIT24 20 follows a similar trend as UIT 

condition sample and it drops from 1600 to 180 hydrogen counts within a distance o f 10pm 

cross-sectional depth. However, AR24J20 drops from 1800 to 180 hydrogen counts in more 

than 30pm. This suggests that there is less hydrogen charging in the UIT sample when 

compared to the AR sample. From these results as shown in Figure 66, it can be concluded 

that the since the
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F igu re  65: A com parison between A R & UIT1 condition o f  AA 2024-T351.
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F igu re  66: Shows a com parison o f  UIT and A R samples subjected to Exfoliation testing for 24 hours at 
am bient conditions.
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Hydrogen Characteristics for 24hrs of Exfoliation at 40°C
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F ig u re  67: A com parison o f  AR and UIT conditions at am bient and 40°C subjected to exfoliation corrosion for 
24 hours.

UIT condition attenuates the ingress of exfoliation solution in to the alloys cross-section; the 

hydrogen charging is also minimal. Similar results were obtained at 40 °C, however, the 

UIT24_40°C shows a higher hydrogen count in comparison to UIT24 20, suggesting that 

temperature increases the hydrogen ingress into the alloy.

6.3 Chapter Summary
Hydrogen embrittlement has always been an eminent factor often considered in 

understanding metal fatigue by material and design engineers as hydrogen illness is very 

sudden and the component fails without warning. Thus, this chapter summarises that AA 

2024-T351 is also prone to HE when subjected to exfoliation corrosion. A reference line for 

minimal pre-existing hydrogen is identified and the magnitude of hydrogen count is found 

to be 180. It is also found that, the hydrogen ingress and further charging is prominent at 

ambient temperatures for AR samples showing damage in greater width of cross-sections. 

The surface is also charged again showing a greater number of hydrogen counts.
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CHAPTER 7

Influence of UIT on Strength 
Properties of AA 2024-T351 after 
Corrosion Exposure

7.1 Introduction
Tensile properties are described in terms of the types of force or stress that the metal must 

withstand and how these forces are resisted. They determine the range of usefulness of the 

metal and establish the service that can be expected. Corrosion on aircraft components is 

tackled by removing the corroded area by grinding. Numerous reports have shown that the 

technique can only reinstate the yield stress and ultimate tensile strength of the component. 

Elongation to failure and elastic strain density remains unaffected due to hydrogen 

embrittlement effects [146].

After exposure of the specimens to the corrosive environments conditions tabulated in 

Table 1 (See Chapter 4), the corroded specimens were subject to tensile testing. The tests 

series include: (1) to establish the reference for uncorroded tensile specimens, (2) to test the 

AR specimens corroded to the ASTM standards for accelerated laboratory corrosion tests at 

different pre-determined time and temperature tabulated in Table 1 (See Chapter 4), (3) to 

test the UIT specimen thereby establishing the effect of the treatment, and (4) to test the UIT 

specimens corroded to the ASTM standards and in similitude to Table 1 (See Chapter 4). 

The tensile tests were performed according to ASTM E8m-94a specification [147].
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7.2 Mechanical Characterisation

7.2.1 Reference Materials
The Yield Stress (YS), Ultimate Tensile Stress (UTS) and Elongation at Failure (EOF) AA 

2024 T351 are summarised in Table 3. Nominal cross-sectional area before exfoliation is 

used in finding YS and UTS as the post-corrosion specimens were highly corroded for a 

meaningful cross-sectional area. The reference A A 2024 T351 tensile properties are in good 

agreement with the results published in material data sheet [148].

Table 3: Yield and tensile strength properties under different exfoliation conditions.

Name YS-AR YS-UIT UTS-AR UTS-UIT EOF- AR EOF-UIT
(MPa) (MPa) (MPa) MPa) (%) (%)

[U ":

• V ’; ) . ’r V j

| |

24_20 315 340 44 6 4 0 0 4 .4 3 .7

24_40 275 302 43 1 471 5 .6 12

24_60 155 285 250 411 5.3 4 .4

24_80 152 203 260 365 6.8 3 .1

48_20 300 285 438 397 4.1 4 .5

48_40 260 300 42 4 4 0 0 5.2 5

48_60 132 216 225 325 5.6 1 .75

48_80 110 178 207 268 4 .5 1 .25

72_20 278 259 4 1 0 295 3 2

72_40 222 295 352 388 4 .5 5 4 .4

72_60 112 205 195 315 3.3 2 .6

72_80 108 150 163 148 2.9 1.5

96_20 271 262 392 365 2.9 4 .5

96_40 220 251 350 292 2.1 3 .4

96_60 104 141 166 211 1.6 1 .15

96_80 102 112 140 164 3.1 1

The results tabulated in Table 3 suggest that UIT is not necessarily a severe plastic

deformation (SPD) technique which can be used to improve the tensile properties of the As-

Received AA 2024 T351 alloy. In comparison AR samples, the significance of UIT

conditioning is quite evident at temperatures of exfoliation ranging between 20°C to 40°C

and up to 48 hours of exfoliation time. For example, at 24 20 it is observed that UIT does

not have an effect on the yield stress. At 24 40, the effect of UIT is more apparent as a
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simple comparison of ultimate tensile stress (UTS) results of respective AR and UIT 

samples suggests that there is over 8% recovery of UTS. This further suggests that there is 

further strain hardening in the UIT samples. UIT is providing an increased resistance to the 

formation of slip bands at the micro scale. This is further discussed in Section 7.3.2.

7.2.2 Influence of Exposure Time
From Table 3, the data is further plotted with respect to exfoliation corrosion exposure time 

against the reference AR and UIT samples. It s evident that the corrosion attack tends to 

decrease Ultimate Tensile Stress (UTS) and Yield Stress (YS). The effect of exfoliation 

corrosion becomes appreciable with increasing aggressiveness of exposure time as shown in
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Figure 68: A com parison o f  AR and UIT samples with respect to time showing gradual tensile 
properties degradation after exposure in exfoliation corrosion.

Figure 68. A closer look for all the exposure times at ambient and at 40°C gives the 

impression of the samples being corrosion resistive. This indicates that UIT samples show 

resistance to corrosion in the temperature range between ambient and 40°C. However, the 

Elongation at Failure (EOF in %) values have always remained dramatic. Tensile ductility 

reduction was found for all the exfoliation conditions between ( 4 - 1 )  % except for 24 40
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and 48 40 AR and UIT conditions where the EOF values are found to appreciably standing 

out as tabulated in Table 3.

7.2.3 Influence of Exposure Temperature
As the data is plotted with respect to temperature of exfoliation at constant time (See Figure 

69), it is observed that there is a steep reduction in tensile properties of AA 2024 T351. 

However, this is not the occurrence for all the cases of exfoliation exposure times. When 

AR and UIT results are compared for 24 hours of exfoliation exposure time for various 

temperatures, it is observed that the rate of loss in yield and tensile properties values for UIT 

samples is relatively slower than AR samples.

■  YS-UIT(M Pa)

U TS-AR(M Pa) ■  U TS-U IT(M Pa)

£1300

Exfoliation Corrosion

Figure 69: A com parison o f  AR & UIT samples with respect to temperature at constant time.

Figure 70 shows yield stress values plotted against the exfoliation temperature at constant 

time period of 24 hours. It is, without difficulty, evident that UIT results in lower loss in 

mechanical properties than that of the untreated sample (not shown here). The ultimate 

tensile stress values follow a similar trend except that there is a marked reduction at 40 °C
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(See Figure 71). Similar results are noticed for UIT samples at lower exfoliation exposure 

temperatures below 40 °C.
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Figure 70: Yield Stress characteristics o f AA 2024 T351 subjected to exfoliation corrosion at tem peratures 

ranging from 20°C to 80°C at constant immersion tim e (24hours).
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Figure 71: Ultim ate tensile strength characteristics o f  AA 2024 T351 subjected to exfoliation corrosion at 

temperatures ranging from 20°C to 80°C keep at constant im m ersion tim e (24hours).
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7.3 Fractographic Analysis & Discussion
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7.3.1 Zones of Failure
Initial fractographic analysis of the tensile fractured surfaces using SEM (See Section 4.3) 

revealed three different zones of failure as shown in Figure 72. It is clear that the hydrogen 

embrittled zone is sandwiched between corrosion and ductile fracture zones. Thus this 

hydrogen induced element embrittles the zones ahead of the crack tip and even after existing 

grinding techniques are conducted to tackle the corrosion damage, there still exists the HE 

affected zone which is make alloys more prone to brittle failure.

Corrosion Assisted Failure Hydrogen Assisted Failure Ductile Failure

F igu re  72: Three modes o f  failure o f  AA 2024 T351 subjected to exfoliation corrosion for 24hours at 40 °C. 

Thus this so called “ductile to brittle transition” is found to be varying according to the 

exfoliation corrosion test time and temperature (Table 1, Chapter 4) which the sample has 

been subjected.
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F igu re  73: A cross-sectional SEM m icrograph o f  AR 24 hours o f  exfoliation at 
am bient conditions showing ductile failure mode transition to brittle mode o f 
failure due to hydrogen induced embrittlement. The average depth o f  brittle 
failure is found to be 360 pm.

Brittle Failure Mode** A " s '

F igu re  74: A cross-sectional SEM micrograph o f  UIT 24 hours o f  exfoliation 
at am bient conditions showing ductile failure mode transition to brittle mode o f 
failure. The average depth o f  brittle failure is found to be 268 pmA.

The micrographs shown in Figure 73 and Figure 74 compare the AR and UIT uniaxial 

tensile fracture cross-sectional surfaces after 24 hours of exfoliation at ambient conditions. 

Analysis of the micrographs shows that the UIT samples exhibit an average cross-sectional 

brittle failure depth of 300pm. In contrast to this, the AR sample, under similar conditions
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produced more than 360pm of cross-sectional brittle failure depth. This strengthens the 

exfoliation testing results stating a higher corrosion resistance for UIT condition samples in 

comparison to AR samples.

7.3.2 Crystallographic Failure
Fracture surfaces of uniaxial tensile loaded specimen surfaces of FCC crystal structure have 

distinct features. One of them is their mode of crystallographic failure. Also a series of 

steps resembling a staircase pattern are produced upon monotonic plastic strain.

Figure 75: A cross-sectional SEM micrograph o f  AR AA 2024 T351 showing crystallographic (m arked 
areas).

A series of slip planes forms a flat lamellar structure and span the entire cross section of the 

single crystal. Thus it is quite evident from Figure 76 that when the vein like structures, 

which contains the edge dislocations, disappear, a crystallographic slip plane is initiated and 

the sample failed in shear mode. Figure 77 is a zoomed section of Figure 76 showing the 

initial stages of the failure where the step pattern is visible and gradually decreasing and 

shears when a threshold value of far field stress has reached.
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Figure 76: A zoomed image o f  section marked in Figure 75 showing a series 
o f  step pattern.

Figure 77: A series o f  steps resem bling a staircase pattern produced by 
monotonic plastic strain.

No such appreciable crystallographic failures are observed in UIT treated specimens 

fracture surfaces.

7.4 Chapter Summary
In this chapter, the effect of exfoliation corrosion is well assessed following a series of tests

with exfoliation exposure time and temperature as varying parameters. Samples subjected to

UIT surface treatment, followed by exfoliation corrosion have shown increased resistance to

a reduction in mechanical properties, notably tensile and yield strength. Fractographic
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analysis further supported this finding by showing smaller average brittle failure depths for 

UIT specimens when compared to AR specimens. It is understood that AR samples failed 

under crystallographic mode of failure where high density slip bands are formed and the 

initial failure happens to be in step format.
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CHAPTER 8

Influence of UIT on Fatigue life AA 
2024-T351

8.1 Introduction
The main goal of these experiments was to determine the influence of UIT conditioning on 

pre-exfoliated AA 2024-T351 where the two main characteristic effects of UIT, are 

considered to be; nanocrystallisation and induction of compressive residual stresses [149]. 

Transmission Electron Microscopy (TEM) has revealed Ultra Fine Grain (UFG) refinement 

(See Section 3.4.2) on the surface of samples subjected to UIT. It is widely cited in 

literature that UFG structures tend to have a high resistance for crack propagation and UIT 

is understood to actively change the grain orientation.

8.2 Fatigue Life
Numerous failures of engineering structures are caused by fatigue. It is therefore important 

to be able to predict the lifetime to failure. The fatigue phenomenon is extremely complex, 

and hence reliable predictions demand detailed knowledge to an extent that is possible to 

achieve.

This chapter discusses the results of fatigue life curves o f pre-exfoliated AR and UIT AA 

2024 T351 with respect to reference curves of AR and UIT specimens. The curves are 

further analysed within the High Cycle Fatigue (HCF) and Low Cycle Fatigue (LCF) 

regimes. The current fail-safe industrial practice demands for crack propagation studies as a 

major portion of the structural component are not replaced unless the crack reaches a 

threshold value (See Section 2.3.2.3), Thus, it is necessary that the base material 

characteristic features are fully understood.
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8.2.1 Fatigue Life Curves
Fatigue life data of AA 2024 T351 determined at a cyclic frequency of 25 Hz at a stress 

ratio R of 0.1 are shown in Figure 78. Arrows indicate unbroken specimens. In ambient air, 

fatigue data obtained for AA 2024 T351 at constant amplitude loading show endurance limit 

240 MPa for lOe . However, when the alloy is subjected to UIT, it is observed that the 

samples fail at lower stress levels. Post analysis of the fracture surfaces of these samples 

(See Figure 79) revealed that crack initiation of these samples has originated at the edges of 

the samples.
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Figure 78: Fatigue life curves of AA 2024 T351 at constant am plitude loading at various exfoliation conditions.
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Table 4: Results o f  the fatigue testing at constant amplitude loading with stress ratio R = 0.1. in d ic a te s  that the 
sample did not fail AR and UIT-1 test results are referred.

Maximum
Stress(MPa)

AR
(Cycles)

AR_24_20
(Cycles)

UIT1
(Cycles)

UIT1_24_20
(Cycles)

AR_24_40
(Cycles)

UIT1_24_40
(Cycles)

80 1 1 2 3 2576* 4 7 3 2 9 2 8 1 1 2 3 2576*

100 10 0 0 0 0 0 0 * 112 3 2 5 7 6 * 100 0 0 0 0 0 *

130 10 0 0 0000*

140 4 4 6 2 0 8 3 1 1 0 4 0

150 4 5 5 2 4 8 1 2 6 1 4 4 0 2 2 5 3 6 8

170 3 1 7 2 6 4

160 1 0 2 5 0 3 0

180 4 3 0 3 1 0 4

190 12 8 2 0 0 2 0 8 8 7 2

200 2 2 8 9 2 0 4 4 1 9 0 4 1 4 9 4 4 8 1 1 1 4 1 7 6

210 6 0 1 9 8

215 1 3 0 6 4 0

234 9 8 1 4 4 2 0

240 1 2 4 0 5 6 13 5 9 7 6 1 1 0 2 0 8 4 0 1 1 8

245 6 8 8 3 4 1 4

250 4 0 3 5 3 6 3 0 6 0 4 1 0 3 6 0 4 8 9 9 4 8

260 268 5 9 2 6 8 4 0 0 9 5 4 6 0 9 1 3 6 4

270 2 6 7 8 8 8 1 1 1 7 6 0

285 664 7 2

300 186512 16520 7 0 6 1 6 3 5 6 4 0 3 1 5 5 5 1 1 3 8 6 4

330 8 9 7 0 8 10522 4 2 2 3 4 1 7 654 16563 3 0 7 6 1

C r o ss  se c tio n  
A rea

Cross section 
Area

Figure 79: As Received (I) AR samples reveal that there are less significant num ber o f  
crack initiation points. UIT Conditioned (II) M ore num ber o f  crack initiation points are 
noticed on UIT samples and m ost o f  them were originating from the edges o f  the samples 
as highlighted in the figure.
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8.2.2 Low Cycle Fatigue Curves
Low Cycle Fatigue (LCF) failures typically have a root cause which stems from flaws in the 

material such as voids and other defects. At maximum stress of 330MPa, Figure 80 shows 

the fatigue life of AR sample to be about 9xl04 cycles when compared to AR_24_20°C 

sample failing at lxlO4. This suggests that in LCF, the initial exfoliation corrosion condition 

discussed (AR_24_20°C), therefore reduces fatigue life by a factor of 9. However, this 

factor becomes smaller when exfoliated samples are compared. For example, at a maximum 

stress of 200MPa, it is noticed that UIT_24_20°C sample failed at 3.5xl05 cycles and AR 

24_20°C sample failed at l.lx lO 5, whereas AR sample reaches its fatigue limit suggesting 

that UIT condition increases the fatigue life by a factor of over 3.
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Figure 80: Low Cycle Fatigue regime for different surface treatm ent conditions.

8.2.3 High Cycle Fatigue Curves
Figure 81 shows the Stress-life plot in various exfoliation conditions. It is clear that the AR 

AA 2024-T351 alloy shows high fatigue life with a fatigue limit of about 240MPa. It was 

observed that by subjecting the AR specimen to UIT condition, the fatigue life of the 

samples is reduced by a factor of 3. The reason for this is considered to be due to the 

location of crack initiation, which originates from the edge of the sample, see discussion in 

Section 8.2.1,
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F igu re  81: High Cycle Fatigue regim e for different surface treatm ent conditions.

In Figure 81, it is noticed that the points of failure are scattered in a significant band. For 

example, UIT1_24_40°C data points cycles in a bandwidth between 140MPa to 300MPa for
7  •1 e  fatigue life cycles. This is shifting the HCF regime behaviour more like LCF where the 

failures typically tend to occur as a result of flaws such as voids in the sample. Exfoliation 

corrosion, being localised, the pit density plays a vital role failure of the samples. However, 

it is noticed that the maximum damage occurs at the initial condition (AR 24 20 °C).

8.3 Exfoliation Condition Number of Cycles Vs Number of Cycles
Figure 82 shows a plot o f exfoliation condition as a function of number of cycles to failure.

It is noted that AR samples tend to fail at much lower number of cycles when compared to 

UIT samples suggesting an improvement in fatigue life o f treated samples. This phenomenal 

influence on fatigue life is discussed in the next section.
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F igure  82: Various exfoliation conditions as a function o f  num ber o f  cycles to failure for AA 2024 T351.
The above results are plotted from the data o f  fatigue crack growth analysis.

8.4 Crack Growth Analysis

8.4.1 Crack Propagation
In fail-safe design approach, the growth kinetics of Fatigue Crack Growth (FCG) is of 

crucial significance to material resilience. The corrosion fatigue characteristics on pre- 

exfoliated specimens in aluminium alloy 2024 T351 is established at various exfoliation 

time periods and temperatures (Refer Table 1, Chapter 4). As Stated in Sec 4.5.5.2, 

instantaneous crack lengths were measured from the first detectable crack and thereafter 

every 5000 cycles using a high resolution travelling microscope according to ASTM 

standards E647. For understanding of the process certain phenomena, UIT1 crack 

propagation photo-microscopic images are presented below.

F igu re  83: First possible detectable crack for U IT 1 - 25000 cycles.
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Figure 83 show the first detectable crack recorded using Photo Microscopy (PM) method. 

It is observed that the crack propagation from the two branches of the notch as shown in 

Figure 83 is dissimilar. For example, at 25000 cycles, the crack length on the left side of the 

notch (aic) was measured to be 287 pm where following crack path on the right side of the 

notch, the crack length arc was found to be 157 pm.

Detail A

Figure 84: Crack path after 40000 cycles.

At 40000 cycles, this variation in crack length between left and right side of the notch was 

still evident. Upon closer look on the right side of the crack path as shown in Figure 85,

Figure 85: Crack deviation/bifurcation visible in 
the crack path on the right side o f  the notch.

Detail A, a deviation in crack path was observed as the crack no longer propagated in the 

direction normal to the applied far-field stress. However, due to the quality of the image, it 

is difficult to explain whether it is bifurcation of the crack path along a defect or secondary 

phase particle. However, this phenomenon explains the difference in crack length between 

left and right side of the notch.
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F igure  86: Final photo microscopic image analysis before failure -  75000 cycles.

Figure 86 shows the final photo microscopic analysis images taken for UIT1 crack 

propagation test before failure occurred at 76572 cycles. The measurements of the crack are 

12.84 mm and 10.50 mm, left and right respectively.

8.4.2 Fatigue Crack Growth (FCG) Analysis
To compare the growth rate data for the various conditions (Refer Table 1, Chapter 4), 

plots of crack length versus number of cycles and their respective crack propagation rate,

da
dN  , dependence on stress intensity amplitude, AK, are discussed in this Section. It 

should be noted that the observed scatter in crack growth rates of pre-exfoliated specimens 

is characteristic of these tests [150,151]. The FCG analysis focuses on the effect of a varying 

stress intensity factor while keeping the stress ratio constant during constant amplitude 

loading. The lines marked on the graphs shown in Section 8.4.2.1 indicate the treated strips 

of 10 mm in thickness and were 10 mm apart from the centre of the notch and marked on 

either side of the notch as explained in Section 4.5.4.1.2.

8.4.2.1 FCG dependence on exfoliation corrosion of AR AA 2024 T351
In Figure 87, it is quite evident that the fatigue crack propagation follows a similar trend

until it reaches the exfoliated strip according to various conditions mentioned in the graph. 

In Figure 87, AR, AR_24_20, AR 48 20 and AR 72 20 specimens are compared. It is 

quite evident that at about 52000 cycles, the crack length, a, of all the specimens reaches the 

exfoliated strip. As this strip is exfoliated according the various conditions, it is evident that 

the all the exfoliated specimens showed failure within the exfoliated strip where as the As- 

Received AA 2024 T351 failed beyond this strip. This clearly exhibits the effect of 

exfoliation corrosion. In comparison to AR specimen, a faster crack growth is also noticed 

in exfoliated specimen as shown in Detail A, Figure 87.
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F igure  87: Crack length (a) versus num ber o f  cycles (N) graph for AR AA 2024 T351 at exfoliation tim e o f 
24 hours to 72 hours in steps o f  every 24 hours at am bient conditions (20 °C).

da
Figure 88 shows a graph of crack propagation rate, dN  , dependence on stress intensity 

amplitude, AK, for AR, AR_24_20, AR_48_20 and AR 72 20 specimens. On first look it is 

clearly visible that all exfoliated samples failed at much lower stress intensity levels than 

As-Received specimen. It is also noted that exfoliated samples exhibited failure in stage II 

(See 2.3.2.5.2) of stable crack propagation which lies within the exfoliated strip. In stage I 

regime, slower crack growth is expected where microstructural effects are large. However, 

as the specimens are also subjected to exfoliation corrosion, hydrogen embrittlement effects 

are also large. Thus, a faster crack propagation rate is observed in stage I regime as shown 

in Detail A, Figure 88. However, due to the nature of the effect of exfoliation time is not 

clearly understood.
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F igu re  88: FCG graph o f  AA 2024 T351 at exfoliation tim e o f  24 hours to 72 hours in steps o f  every 24 
hours at am bient conditions (20 °C).

8.4.2.2 FCG dependence on exfoliation corrosion of UIT AA 2024 T351
In Figure 89 & Figure 90, the effect of UIT condition is evident as the UIT conditioned

sample exhibited retardation in crack length value, a, when AR and UIT specimens are 

subjected to same number for cycles. However, UIT1 24 60 specimen showed no 

retardation but followed a similar trend to AR specimen failing within the UIT conditioned 

strip. This suggests that the heating of the sample at 60 °C for 24 hours has affected the 

beneficial compressive residual stresses induced during the time of UIT process.
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F igu re  89: Crack length (a) versus num ber o f  cycles (N) graph for UIT conditioned A A 2024 T351 at 
exfoliation tim e o f  24 hours and at temperatures o f  20 °C and 60 °C.
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tem peratures of 20 °C and 60 °C.
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Appendix B consists of crack length, a, versus number of cycles, N, data for the various 

conditions (Refer Table 1, Chapter 4). Appendix C consists of their respective crack

propagation rates, d \' , dependence on stress intensity amplitude, AK.

8.5 Chapter Summary
The fatigue life of UIT A A 2024 T351 is strongly affected by the pitting and localised 

corrosion as it is noted that there is a massive bandwidth for most of the samples when they 

fail. This further suggests that the AA 2024 T351 is strongly affected by pit density. 

Secondly, it is further identified that UIT condition at the edges of the sample is configuring 

AA 2024 T351 more susceptible to crack initiation regions. A slight improvement In Low 

Cycle Fatigue (LCF) life is observed for pre-exfoliated and UIT conditioned sample but not 

for UIT conditioned samples only. Little effect is observed for either treatment in the High 

Cycle Fatigue (HCF) region.

Fatigue crack propagation of exfoliated specimens exhibited faster crack propagation than 

As-Received specimens. UIT specimen did show retardation in crack propagation, but the 

samples failed within the treated strip due to various environmental effects. Increasing 

temperatures affects the compressive residual stresses. It is also noted that crack deviation 

can happen even upon the crack tip reaches a secondary phase particle.
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CHAPTER 9

Summary of Results

9.1 Summary of the Results
In the previous chapters, a detailed description of the results obtained during these studies, was 

given. This chapter will discuss the main results. It will furthermore provide a snapshot of the 

conclusions.

In this study, a novel Severe Plastic Deformation (SPD) technique namely Ultrasonic 

Impact Treatment (UIT), was investigated in detail with respect to an aggressive corrosive 

environment. Here, a short overview of the results obtained will be given.

9.1 Exfoliation Corrosion

9.1.1 Current Practice
One of the existing industrial process to tackle corrosion and corrosion initiated fatigue 

cracks is grinding. Corroded layer is ground off from the component. This process is 

pursued until the component cross-sectional area does not reduce by more than 10 % of the 

nominal thickness of the component as shown in Figure 91. This affects the fatigue life of 

the component and thus reducing, for example the number of flying hours of an aircraft. In 

this research the nominal thickness of the AA 2024 T351 specimen was 5 mm. Following 

industrial standards, a tolerance of 10 % of the nominal thickness allows only 500 pm upon 

which the specimen is regarded redundant. Referring to Figure 45, At 20 °C, UIT 

conditioned specimens exhibited a remarkable resistance to exfoliation corrosion for 

exfoliation time up to 72 hours. However, the As Received specimens showed a significant 

corrosion attack.
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Figure 91: Schematic diagram showing current industrial practice of grinding.
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F igu re  92: Results o f  exfoliation corrosion tests at 20 0 C exhibiting corrosion resistance o f  UIT conditioned 
specimens.
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As Received (40 °C) 
O UIT Condition (40 °C)

Figure 93: Results o f  exfoliation corrosion tests at 40 0 C exhibiting corrosion resistance o f  UIT conditioned 
specimens.

Figure 92 and Figure 93 exhibits the effect of UIT against corrosion attack. UIT retards the 

loss of thickness in comparison to As Received A A 2024 T351.

9.1.2 Effects of Testing Parameters

9.1.2.1 Effect of Time
Referring to Figure 92, it is noticed that UIT exhibited excellent corrosion resistance. For 

UIT conditioned specimens, the process pitting (which is visible under microscopic 

examination from the surface) does not initiate until the specimen accrues more than 72 

hours of exfoliation corrosion testing. However, for AR specimens, pitting is initiated within 

first 4 hours of the exfoliation immersion tests as shown in Figure 94. This phenomenon 

can be ascribed to nano-crystallisation effect which the UIT conditioning produces as 

discussed in Section 3.4.2 however it is still not completely understood as the pitting
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potential of UIT conditions specimens were slightly higher than the AR specimens as 

discussed in Section 5.3.1.
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Figure 94: Schematic graph showing transition from pitting to exfoliation corrosion with respect to tim e.

9.1.3 Copper Enrichment
Exfoliation corrosion enriches the secondary phase particles and enriches at the near surface 

of the alloy surface. One of the beneficial effects of UIT conditioning is creation of 

homogeneous surface and at the near surface region of the alloy [152]. UIT conditioned 

specimens reduce this copper enrichment effect and preserve the homogeneity of the 

specimen surface.

9.2 Fatigue
Crack growth initiates at the most susceptible grain on the surface o f a component at a 

location where the most favourable conditions exist (stress raisers) such as a simple scratch, 

secondary phase particle, pit, grain orientation, inclusions or section changes. In a F.C.C 

structure, for stage I, the crack propagation initiates at an angle where maximum shear 

stresses exist which is approximately 45° to the loading axis. As the crack propagates to

123



stage II, the growth is more or less normal to the far-field stress. At stage III, a very high 

unstable growth is noticed.

9.2.1 Effects of Nanocrystallisation
As discussed in Section 3.4.2, UIT process modifies the surface of A A 2024 T351 by 

producing a nanocrystalline structure, nano- crystal grain in (6-8) nm and parallel micro 

bands as wide of (15-20) nm in certain orientation. This process of grain refinement takes 

places by grain sub division due to continuous impact of the peener head. Thus, this process 

of sub division of grains creates a network of sub grains which are highly oriented 

randomly. This random nature of nano-scale grain reduces the crack propagation as the 

crack path has to face more grain boundaries, as shown in Figure 95.

Figure 95: A Probable crack path showing the effect o f  disoriented sub grains due to 
UIT process.

9.2.2 Effects of Residual Stresses
Residual stresses developed from UIT process [152] should be sufficient to mitigate some of 

the fatigue life lost due to the pitting and general corrosion. Fatigue crack growth analysis 

exhibited retardation in crack propagation rates as soon as the crack front reached the 

modified strip. Once again, observations from these FCG data would imply that UIT should 

extend fatigue life of the pre-exfoliated specimens. Figure 96 depicts the general 

representation of the technical effects caused by UIT in samples at least 25 mm thick.
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F igure 96: Physical zones o f  UIT effect on material properties and condition o f  A12024 T351.

Figure 78 indicates that UIT can substantially decrease the fatigue resistance on As- 

Received specimens. However, UIT can have a significant effect on increasing the fatigue 

resistance of exfoliated material. FCG data further gave a substantial confirmation that the 

enhancement is due to the development of almost similar compressive residual stresses 

throughout the crack path. The technology requires further investigation towards 

optimisation.

9.2.3 Effect of Hydrogen Embrittlement
Hydrogen effects on the degradation of the alloy are noted. For all the exfoliated specimens, 

regardless of treatment, FCG was very unstable as soon as the crack front reached the 

exfoliated strip. Almost all the samples failed within the strip except the As Received 

specimen. Thus, this indicates that the plain stress fracture toughness values (Kic) would 

have been much lower than the As Received.
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CHAPTER 10

Conclusions

From the experimental work conducted on the fatigue of AA 2024 T351 in both As 

Received and UIT condition, the following conclusions can be drawn:

• UIT surface treatment, followed by exfoliation corrosion have shown increased 

resistance to a reduction in mechanical properties, notably tensile and yield strength. 

Fractographic analysis further supported this finding by showing smaller average 

brittle failure depths for UIT specimens when compared to AR specimens. SEM 

analysis of AR samples (without exfoliation) showed a crystallographic contribution 

to the mode of failure where high density PSBs are formed and the initial failure 

exhibits a step format.

• It is observed that during exfoliation, hydrogen ingress and adsorption is more 

prominent at ambient temperatures for AR samples.

• A slight improvement In Low Cycle Fatigue (LCF) life is observed for pre- 

exfoliated and UIT conditioned sample but not for UIT conditioned samples only. 

Little effect is observed for either treatment in the High Cycle Fatigue (HCF) region.

• Fatigue crack initiation occurred from the edges for all samples.

• Fatigue crack propagation of exfoliated specimens exhibited faster crack propagation 

than As-Received specimens. UIT caused retardation in crack propagation rate in
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AR samples but not in corroded samples. Failure of pre-exfoliated, UIT treated 

samples failed within the treated strip. It is also noted that crack deviation can occur 

when the crack tip reaches a secondary phase particle.

• Nanocrystallisation generates uniformity of the surface which refines the secondary 
phase particles and helps mitigate crack initiation sites.
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CHAPTER 11

Future work
The field of study and SPD techniques are both interesting and complex. To comprehend the 

complexities of this environmental assisted failure research on AA 2024 T351, and the 

influences of UIT process on the alloy in the context of fatigue, the following suggestions 

are made:

Residual Stresses:
It is recommended that residual stress analysis o f pre-exfoliated specimens should be 

performed. Future work should include in this department should include the following:-

a) Identification of manufacturing scatter

b) Effect of manufacturing

c) Real-time determination of residual stress profile with loading cycles.

Real-time Corrosion Fatigue Analysis:

It is highly desirable that all the testing to be conducted in real-time analysis at higher 

temperatures as well. A better alternative method should be investigated in this case to 

measure the crack length in FCP analysis.

Optimisation of UIT Process:

Alternative UIT parameters should be investigated to determine whether UIT can improve 

corrosion fatigue performance in the same way in which it is known to improve air fatigue 

performance.

Scaling Effect:

The effect of specimen thickness should be investigated as the stringer panels of aircraft 

fuselage don’t necessarily maintain similar cross-sectional thickness.
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Hydrogen Embrittlement:

Plain stress fracture toughness (Kic) values should be determined for both the conditions, 

namely UIT and As-Received specimens. This will give an estimation o f the effect of 

hydrogen in the alloy.
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Appendix A

Coupon Testing

Introduction
G 112-92(2003) & G34 standard guide for conducting exfoliation corrosion Tests in aluminium 2xxx 

Alloys was followed. The exfoliation solution comprises o f 4M NaCl, 0.5M K n03 and 0.1M HN0 3  in 

1 ltr o f  ionised water. The tests were performed at 4 different timescales (24hrs, 48hrs 72hrs and 

96hrs) and at different temperatures (Ambient, 40° C, 60° C and 80° C).
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Appendix B
Crack Length versus Number of 
Cycles

1 Introduction
This appendix collates all the crack length versus number of cycle’s graph for all the FCG 
test conducted on M (T) specimen.
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2.2 UIT1 Condition
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3 Time Dependent Analysis
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Appendix C
da
dN Vs AK

1 Introduction
This appendix collates all the FCP rates versus stress intensity factor for all the FCG 
conducted on M (T) specimen.
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