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Abstract
The work described in this thesis deals w,ith the noise reduction 
performance of plane acoustic barriers of finite dimensions. 
Equations are developed for prediction of sound attenuation based 
on Fresnel-Kirchhoff diffraction theory. The main feature of 
this technique is that attenuation can be predicted regardless 
of the shape and size of the barrier and of the proximity of 
source and receiver to the barrier. The theory is initially 
developed for the case of free-field environments and is 
subsequently extended to reflecting ground conditions. Computer 
programs were developed to perform the attenuation calculations 
in given environments. The programs are driven by a set of 
parameters which uniquely define the source, barrier and environ­
mental configuration. Experimental work was carried out in an 
anechoic chamber using a series of different source and barrier 
configurations. The experimental results were tested against the 
theory by applying the appropriate parameter values to the compu­
ter programs.
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1. INTRODUCTION

1.1 Review of previous research
Extensive literature is available on the attenuation due 
to semi-infinite barriers. These are classified as having 
finite height and infinite length. Particular emphasis is 
given to outdoor performance of noise attenuation due to 
barriers such as motorway embankments and fences (see 
Jonasson [l], Pierce [2] and Scholes et al [3]).

There is a dearth of published work on the noise attenua­
tion due to finite barriers. For example, Kurze [4] 
reviews the contemporary literature up to 1974 and there 
was scant reference to finite barriers.

Maekawa [5,6] postulates a method for the prediction of 
the attenuation due to a finite barrier on reflecting 
ground by applying the method of calculation of diffrac­
tion over the top edge of a serr.i-inf inite. screen also to the 
ends of the finite screen. However his theory limits the 
location of source and monitoring point and also the 
barrier is restricted to rectangular shapes. Kurze and 
Anderson [7] deal with finite barriers in a way which 
predicts the length of the barrier required in the 
presence of an infinite line source that gives approxi­
mately the same attenuation as an infinitely long barrier .

Considering noise control in enclosed working environments , 
Moreland and Minto [8] investigated the inclusion of a 
barrier in one particular process plant based on energy
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density equations and estimations of room absorption and 
source directivity. Royster and Stephenson [9] have 
published a review of measured noise characteristics in 
several industrial environments. Other work on the same 
subject has been mainly concerned with experimental 
research and prediction of noise effects based on 
empirical equations and known experimental results.

From the above background work it is shown that rigorous 
predicted solutions have been confined to straight-edged 
semi-infinite barriers. Also no theoretical solution has 
been given for finite barriers except that of Phillips 
et al [10,11], where the barrier has been subdivided into 
elements to enable a rigorous solution of any barrier 
shape to be obtained. The only other work on finite 
barriers has been restricted to experimental results for 
definite limited cases. It is therefore the aim of this 
work to investigate the effect of noise reduction by 
finite barriers and to provide information where any 
orientation in the shape of barrier is given. The 
theoretical background is based on the diffraction theory 
outlined by Born and Wolf [12] from which an easy to use 
computer package has been compiled.

1.2 Outline of work presented in this thesis 
Initially a theoretical approach is made, based on a 
combination of classical diffraction theory and an 
elemental subdivision of the barrier's surface, of

♦



predicting the attenuation of sound by a finite barrier 
in a free space environment. It is assumed that the 
sound source is a point source of monotonic frequency.
This assumption was made for two reasons, firstly 
because this type of source lends itself most favourably 
to a clear description of the diffraction technique and 
secondly because it acts as a.basic model upon which the 
theory for more complex types of source may be developed 
at a later stage.

It is assumed that the barrier is two-dimensional. The 
free space environment is initially assumed, again 
because it serves as a basic theoretical model which can 
be developed to suit more complex environments at a later 
stage. The free-field theory is described in Chapter 2.

In the next step, the theory of the free-field environment 
is extended to that in which a reflecting ground is taken 
into account. This theory uses the method of images with 
respect to the ground of the sound source and receiver's 
position. The theory is covered in Chapter 3.

Experiments in controlled conditions within an anechoic 
chamber were carried out using configurations of sound 
source, barrier and receiver's position which corres­
ponded with the theory in Chapters 2 and 3. The results 
of these experiments are presented in Chapter 4.

The theory of Chapters 2 and 3 was converted into

- 3 -



computer programs which were developed by the author.
These programs were written in Fortran V language, and 
developed on the IBM computer belonging to Sheffield 
City Polytechnic. These programs enabled the calculation 
of predicted attenuation results based on the theory of 
Chapters 2 and 3 by inputting parameters which uniquely 
define a particular configuration. The results obtained 
by executing these programs are presented in Chapter 4 
and are compared with the corresponding experimental results.

Proposals for extending this work to more typical in-situ 
working environments are given in Chapter 5.

- 4 -



2. NOISE REDUCTION BY A PLANE FINITE SCREEN IN THE FREE 
FIELD

2.1 Introduction
In this Chapter, formulae are derived for the prediction 
of the sound pressure distribution when a sound source 
and plane screen of finite, dimensions are positioned in 
a free-field environment. It is assumed initially that 
the sound is transmitted from a single point source S 
and that it is monotonic. The more general case of a 
source emitting multiple frequency sound will be discussed 
in Chapter 5.

The work applies to a planar screen of finite dimensions. 
Sound transmission by the screen is treated as a constant 
coefficient in the range 0 to 1, where 0 denotes that sound 
is transmitted through the screen. This coefficient 
depends on the material of which the screen is composed.
A novel feature of the theory developed here is that there 
is no restriction on the shape or size of the screen for the 
formulae to be valid, except that the screen should be 
finite and two-dimensional. The method is also applicable 
to barriers with holes. This is demonstrated in more 
detail in 2.3.

2.2 Insertion Loss by Interposing the Screen

2.2.1 The Insertion Loss at Any Position Within the Sound 
Pressure Field

In order to predict changes in the sound pressure distri­
bution after the barrier is placed in position, it is

- 5 -



necessary to predict the change in Sound Pressure Level 
(SPL) at any monitoring position P within the field and at 
each location monitoring the predicted SPL both before and 
after the barrier is placed in position, the change in 
sound pressure distribution can be mapped. Thus to 
formulate a method of predicting the sound pressure 
distribution, it is sufficient to determine the Insertion 
Loss IL(P) at any required position P in the sound field, 
where IL(P) is defined by equation (2.1).

IL(P) = SPLq (P) - SPLb (P), (2.1)
where

SPLq (P) is the SPL at P in the absence of any 
screen

and
SPL0 (P) is the SPL at P after the screen is placedJj
in position

2.2.2 Calculation of SPL     o
Since the environment is assumed to be free field and the 
sound is monotonic transmitted from a point source, S, 
the sound radiates spherically (see Born and Wolf [12]) and 
the complex quantity of sound pressure, or disturbance, Uq 
at P is given by the Spherical Wave Equation (2.2).

Uo ( P ) = A e i k d > ( 2 2 )
d

where
d is the distance SP,
k is the wave number of the operating frequency 
(ie k = 2tt/A, where A is wavelength),

and
A is the amplitude at unit distance from S.
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From established properties of wave-theory (eg Born and Wolf 
[12]), the Intensity I at P is related to the disturbance 
U by the formula

I(P) = |U(P)|2 (2.3)
and it is also known (see Beranek [13]) that the SPL is
related to the Intensity by the formula

SPL(P) = 10 logi o I(P) + 0.2 dB,
*ref

where Ire^ is the reference intensity of 10” 12 W/m2 .
Hence, the SPL is related to the disturbance b y  the 
equation

SPL(P) = 10 logt o |U(P)I2 + 0.2 dB (2.4)
*ref

Substituting equation (2.2) into equation (2.4), it 
follows that

SPL (P) = 10 log!o 1A|2 + 0.2 dB (2.5)
° i ..d2ref

Now suppose that SPLi is defined as the SPL at unit 
distance (ie 1 metre) from S. Then by substituting 
d = 1 into equation (2.5), it follows that

SPLi = 10 logic 1A 12 + 0.2 dB. (2.6)
*ref

If equation (2.6) is now substituted into equation (2.5),
then SPL (P) can be defined in terms of SPLi and d as o
follows

SPLq (P) = SPL2 - 20 logio d dB (2.7)

2.2.3 Calculation of SPLp(P)

Determination of the SPL when the barrier is inserted is a 
more complicated procedure. It is required to derive an

- 7 -



expression for SPL_.(P) which is generally applicable to any 
configuration of source, monitoring position and screen 
satisfying the conditions detailed in Chapter 1. This 
procedure is important because it forms the basis of the 
theory developed subsequently in this paper. To the author's 
knowledge, this technique has not previously been derived 
in such a widely applicable form by other authors and it is 
for this reason that a full and detailed explanation is given.
A discussion of the advantages of this technique may be 
found in (2.3).

The technique is based on classical wave diffraction theory which 
is described in Born and Wolf [12] . A brief summary is necessary 
of those aspects of the theory which are applicable to the 
work in this paper. Suppose the plane finite barrier is 
placed between S and P. Then diffraction will take place 
around the edge of the barrier, so that the total amplitude 
of the disturbance at P results from all diffracted rays which 
pass through P and any direct rays from S to P which are not 
obstructed by the barrier (see fig 2.1). Let it initially 
be assumed that the transmission coefficient of the barrier 
is zero. The more general case of a constant anywhere in 
the range 0 to 1 will be considered later in this Chapter.

- 8 -



Typical rays inc ident -.Typical d i f f rac ted  rays
on the edge of the barrier. ' pass ing  through R

Arb it ra r i ly  shaped f in i te
barr ie r  occupying the 
region B.

• "\

fjg 2.l ' PIFFRACTION AROUND THE EDGE OF THE BARRIER 

AND THE CO-ORDINATE SYSTEM Oxyz.
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Suppose now that a Cartesian co-ordinate system is defined 
as follows. Let the origin 0 lie somewhere on B, the 
region occupied by the barrier, with x- and y- axes 
defined in the plane of the barrier, and with the z- 
axis constructed so that the positive z-direction points 
into the half-space containing P (see fig 2.1). Let S 
and P have co-ordinates (x0, yo, z 0) and (xi, yi, zi)

in this system.

Application of Babinet's Principle and Fresnel Diffraction 
Theory

Let B be defined as the infinite region in the xy-plane 
not occupied by the barrier. Now it will be necessary 
to consider temporarily a very different barrier 
configuration. Suppose that the region B is now occupied 
by the same material as that from which the barrier is made 
and that the region B, which represents the exact dimensions 
of the barrier, is now an opening in this complementary 
plane screen (see fig 2.2). Then the Fresnel-Kirshhoff 
diffraction integral states that the disturbance Ug(P) at 
P due to the opening B in the infinite screen is given by

U-(P) = - Ai
2X J J

e ^ ( ^ +m) [COs(n, £) - cos(n,m)]dS 
B £m

(2 .8 )

where
& and m are the variable distances from S and P 
respectively to the point of integration 
Q (x, y, o) on B (see fig 2.2),

and

- 10 -
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(n,£) and (n,m) are the angles S and P make with 
the normal to the xy-plane at Q (see fig 2.3).

(see Born and Wolf).

Now reverting to the original configuration of the finite
screen as shown in fig 2.1, let ^ ( P )  denote the disturbanceb

at P in this case. Then from Babinet’s Principle, U^(P) 
may be expressed in terms of Ug(P) as follows

UB (P) = UQ (P) - U-(P), (2.9)

where U (P) was given in equation (2.2). It is immediate
from equation (2.4), that SPL_.(P) may be expressed inB
terms of UD (P) as follows B

SPLg(P) = 10 logio|UR (P)I2 + 0.2 dB (2.10)
*re£

In order therefore, to obtain a solution to this equation 
it is necessary to solve equation (2.9), but since U (P) 
is already known (equation (2.2)) the problem reduces to a 
formulation of U~(P). Thus it remains to solve the double 
integral in equation (2.8).

A Method of Evaluating the Fresnel-Kirchhoff Integral in
the Case of a Noise-Reducing Screen

It is important to note that the Fresnel-Kirchhoff Integral 
cannot be applied immediately in the form given in equation 
(2.8). There are a number of reasons for this, the first 
being that the integral is only applicable on regions whose 
linear dimensions are small in comparison with their distances 
from the source and monitoring position. In typical cases 
of barrier design, this condition will not be satisfied, 
since for example a large barrier is normally required and 
also it is favourable to place the barrier either close to

- 13 -



the noise source or to the receiver for efficient noise 
reduction. However, suppose the geometrical region 
covered by the surface integration in equation (2.8) is 
subdivided into smaller elemental regions R j , R 2 ,
Rn > say, as shown in fig 2.4. Then, provided that the 
dimensions of these elements are chosen correctly, the 
integral will be separately applicable on each of these 
regions, despite not being generally applicable on the 
whole region B.

For each j = 1, 2, ..., n, let

Up (P) = Ai 
R.i 2 A

e1 [oos(n,X,) - cos(n,m)] dS
£m

Rj (2.11)
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Then it is immediately obvious from equation (2,8) that

Ug(P) = “ Us CP). (2.12)
j=l J

In this paper, it will be assumed that the elements 

are rectangular for reasons which will become apparent
later. The dimensions of the elements R. must be chosen

3
carefully to best suit the various conditions which make 
the double integral applicable. A discussion of this 
appears in 2.3, but at this stage it may be assumed that 
these elements have already been chosen correctly.

It can be seen that the problem now reduces to that of 
solving the double integral in equation (2.11)on any 
valid rectangular element of the form R.., since the 
solution of Ug(P) will then follow immediately from 
equation (2.12).

In order to be able to solve equation (2.11), certain 
approximations must be made. These may be summarised as 
follows. First, it is assumed that R. is small enough for
the variations in the terms ’cos(n,£) - cos(n,m)' and 'l/£m’
to be negligible over R.. Let 0. be the centre point R. with

3 3 J
co-ordinates (X., Y., 0). Suppose also that the linear
dimensions of R. are 2 E  . in the x-direction and 2r\ . in the 

3 3 3
y-direction (see fig 2.5). Let L. and M. be the distances

3 1
SO. and 0 .P respectively. Then the above assumption may be 1 J
expressed by equations (2.13).
On R .,

3 ’ -»cos(n,£) - cos(n,m) = cos(n,L.) - cos(n,M.)1 3
and l/£m = 1/L.M.

3 3 (2.13)
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Hence equation (2.11) may be written
Up (P) = -2Ai [cos(n,L.)-cos(n,M . ) ]e 

J XL.Mj  ̂ ^
(2.14)

where eik a - m y  ds

(2.15)
It may be noted that the justification of making this 
assumption is one of the criteria in choosing the dimensions

thesis (Chapter 5). It should also be noted that the 
technique of approximating variables to constants in the 
Fresnel-Kirchhoff equation has also been used in the 
theory of Fresnel and Fraunhofer diffraction at a small 
aperture (see Born and Wolf [12] ) and in far-field diff­
raction by barriers (see McNulty et al [14] ).

The second assumption to be made is that the term
eik(£+m) @qUa-kion (2.15 ) is still variable on R ..
This is because the variation of k(5,+m) [ = 2tt (&4-m) ]

X
will be appreciably large except for very long wavelengths

■ or where R. is very small. If either of these exceptions J
occurs, then the expression k(&+m) can be assumed constant
and equal k(L.+M.) on R. and equation (2.14) becomes J J J

(2.i6;)

whence the solution to equation (2.11) is complete.

of the elements R . and is therefore discussed later in the1

Up (P)= - Ai [cos(n,L4 )-cos(n,M_. )]e K-i r>\ J J
ik(L >>

- 18 -



The remainder of this section considers the more common
ik(£+m) .is assumed variable on R ..Jcase, where the term e 

It will therefore be necessary to solve equation (2.15).

It can immediately be seen from fig 2.5 that
£2 = sq = (x-xQ )2 + (y-yQ )2 + zQ2 

 2m2 = QP = (x-xi)2 + (y-yi)2 + z
(2.17)

and
L 2 so = (X -x )2 + (Y.-y )2 + z2 -j —  OU. J o  J o  0

M. = O P = (X.-x )z + (Y.-y )z + z^J J J i J i l -J

(2.18)

In making the approximations in equation (2.13) it was
assumed that the linear dimensions of R . are small inJ
comparison with the distances °f R- from S and P. This

J
assumption is used again here to expand £ and m as a power 
series in

x-X. , y-Y. , x-X. and y-Y. on R.
L . I T J M .

giving
X,=Lj -(xo-Xj )(x-Xj) + (yo-Yj)(y-Yj) + (x-Xj )2+ (y-Y ̂ ) 2 +

L . J 2L . J

m=M . -(x -X .)(x-X .) + (y -Y .)(y-Y .) + (x-X )2 + (y-Y )2 +J > l J_____ J____ l J_____ J_ J JM. 2M .J J

It will further be assumed that the size of R . is such thatJ
the terms (x-X.)2, (y-Y.)2, (x-X.)2, (y-Y.)2 and those in

2L . 2L. 2M. 2M.J J J J
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higher powers of (x-X.) and (y-Y.) may be assumed negligibleJ J
compared with the leading terms L . and M . . Hence the above

3 3
equation reduces to

l (2.19)

£ = L. - (x -X.)(x-X. ) + (y -Y .)(y-Y .)J o J J w o 3 J

L  .
3

m - M. - (x - X .)(x - X  . ) + ( y  - Y . ) ( y - Y . )
J i 3  J i J  J_

M.J
on R . . Again the justification of this assumption is
discussed along with the choice of dimensions of R . inJ
Chapter 5. It may also be noted here that this technique
of expanding the distances £ and m linearly in terms of
(x-X.) and (y-Y.)is also used in the method of Fraunhofer v 3 3
diffraction for a small apperture( see Born and Wolf [12]).

Substituting equation (2.19) into equation (2.15) it 
follows that

I . = 1 J 4
rsJ i(a (x-X )+b (y-Y ) )

_ J J J 3 d(x-X.)d(y-Y.)
j j

( 2.20)

where a . = -k 
3

and b . = -k 
3

x -X. + x -X._o 3 _i 3L . M .
3 3 j

y -Y . + y -Y . o j * i 3
L .L 3

M . 
3

( 2 . 21 )

The inner integral of equation (2.20) is readily solved 
giving

5..
 ̂ i(a.(x-X.)+b . (y-Y .)) .e j 3 3 3 • d(x-X. ) =

-€ . 3 
3
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r
ib . (y-Y.) . . „e J J . sin a ,.g, . if a .̂ 0J J

a . J
ib . (y-Y .) r • _p rx e j v,y ^  if aj= 0 >

and since

"nJ
• d(y-Yj)

sin b .q . 3 3b .3

(
J

C_
i. if

equation (2.20) becomes

sin a . . sin b .q .   jJj.
a . b .J J

sin a . 6 . a_i • nj
a .J

E . . sin b .q . J J J
b .J

h  • nj

if a.f 0, b . f 0r  J T

if a .4 0, b . = 0  
3r 3

if a . = 0, b . f 0J J

if a . = Ob. = 0J J

( 2 .22 )

It may be noted here that the fourth value I. = q.,
* * *J  J

when substituted into equation (2.14) gives precisely 
equation (2.16). From this, the condition that the 
wavelength A is sufficiently long or the dimensions of 
are sufficiently small for the term eik(£+m) to be
assumed constant on the R.'s, may be incorporated intoJ

- 21 -



the above by specifying that I.= £..r|. on R. independently1 1 1  J
of the values of a. and b.. Observation of equations (2.14)

3 3
and (2.22) shows that it remains only to obtain a working
formulation of the term [cos(n,L.) - cos(n,M.)] in order toJ Jbe able to express U__ (P) in terms of measurable quantities.

R .
3

This is done as follows. By definition of the angles
(n,£), (n,m) subtended at the variable point Q(x,y,0)
(see fig 2.3), it follows that the angles (n,L.) and
(n,M.) occur in the special case Q = 0 . (see fig 2.6). It 

3 3
can be immediately observed from fig 2.6 that

and

Hence

cos(n ,L .) = SST = -Z 3 _____ QS O . L.3 3

cos(n,M.) = -cos(ir-(n,M.)) = -PP1 = -z J 3 __ lO.P M.3 3

[cos (n,Lj )-cos(n,Mj )] = Lj-z^ M ̂ Zq
L2. M 2. (2.23)
3 3

Now by substituting equation (2.23) into equation (2.14),
and substituting equation (2.14)into equation (2.12), it
follows that

U_(P) = -2iA_ I F
B A j=i 3 ’

where
F . = L . Zj - M . z . elk(Lj+Mj) I., (2.25)
3 3 J Q  J s

L 2 M 2 
3 3

Ii is given by equation (2.22), a_. and b_. are given by
j . and M .
3 3

. • JL. Q  _L V  V  X I  U  W  V [  U C 4  U  X  V 11 y  X- • /  y w V  • M * ! !  W  W  •J 3 J
equations (l.2l) and L. and M. by equations (2.18).
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This concludes the method of evaluating the Fresnel- 
Kirchhof f integral (equation (2,8)) for the noise- 
reducing screens, subject to the conditions concerning 
the screen described in 2.1.

The Effect of Barrier Transmission and the Calculation 
of SPLb (P)

Earlier it was explained that an expression for SPLg(P) 
was required. It is now possible.to complete the 
derivation of this expression in the case of zero 
barrier transmission. By substituting equations (2.2) 
and (2.24) into equation (2.9), the disturbance Ug(P) at 
P with the non-transmitting barrier in position may be 
expressed by

ikd nUD (P) = Ae + 2Ai S F. , (2.26)
B d~ ~ j = i 3

where d is the distance SP given by

d = /[(Xi - x0 )2+(yi-y0 )2+(zi-z0 )2 ] (2.27)

It was also stated earlier in this section that 
transmission of sound by the barrier will be treated as a 
fractional constant in the range 0 to 1, where zero 
denotes that the barrier is perfectly non-transmitting.
Let this coefficient be denoted by the symbol a. So far, 
zero transmission (i.e. a = 0) only has been considered. 
The disturbance Ug (P) in this case was given by the 
Babinet equation (2.9 ) which was

U B ( P )  = Uo (P) - U_(P). (a = o) (2.28a;)
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It is necessary here to consider also the effect of non­
zero transmission. Suppose in the extreme case that the 
barrier was perfectly transmitting (i.e. a = 1). This 
is the equivalent situation of there being no barrier 
present at all. In this case the Babinet equation (2.9) 
would be

UB(P) = UQ(P), (a = 1) (2.28b)

since U (P.) represents the free-field disturbance.

To obtain an expression for UB(P), where, a is anywhere 
between 0 and 1, the expressions in equations (2. 23a) and 
(2.28b) are interpolated linearly in a to give the
general formulation of U (P) as followsD

UB (P) = Urk(P)-( 1-a). U_(P),
where

o (2.29)
B

Hence equation (2.26) becomes, in the general case,
ikd nIMP) = Ae + 2A(1-a )iZ F. (2.30)

B d —  J=1 J

The general expression for the required Sound Pressure 
Level SPLg(P) at P with the barrier in position now follows 
by substituting equations (2.30) and(2.6) into equation 
(2.10) giving

SPL0(P)=SPL +20 log 1 
& i 1 °d '

n
coskd-2d(1-a)Z Im(F.)

n
sin kd + 2d(1-a)Z Re(F .) 

A j=l

(compare with equation (2.7) ).

A

1/2

j = l

(2.31)
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2.2.4 Calculation Of The Insertion Loss

It was stated in 2.2.1 that the purpose of this section 
was to devise a method of predicting the Insertion Loss 
IL(P) at P. The expression for IL(P) now follows by 
substituting equations (2.31) and (2.7) into equation 
(2.1), which gives

IL(P)=10 log 1
10 n -j 2 n

cos kd-12d(1-a)£Im(F.) I + tin kd+2d(l-a)£Re(F .) 
X .1=1 J J L X .1=1

where F. is defined by equation (2.25).

It is now possible, by using equation (2.29), to formulate 
a computer program which can be used to calculate the 
Insertion Loss IL(P) at any given monitoring position P, 
due to the interposition of the barrier. It may be 
demonstrated here that the program requires the following 
parameters of the configuration for input:

the co-ordinates (x0 >y0 >z0 ) and x 1,y1,z1  ̂ of S anc* P ’ 
the transmission coefficient a of the barrier, 
the wavelength X of the source,
the Sound Pressure Level SPL at lm from S in free space,
the number n of rectangular elements R . forming the sub- 

division of the finite region B occupied by the screen, and
for each element R., j = 1, 2, ..., n,3

the half x- and y- dimensions z. and n. respectively,3 3
and the co-ordinates X., Y. of its centre point.3 3

In a particular configuration of source, screen and 
monitoring position in the free field, the values of the
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above parameters uniquely define that configuration and 
from those values, both the Sound Pressure Level SPLq (P)
at P in the absence of the barrier and the Insertion Loss
IL(P) due to the interposition of the barrier, may be
calculated numerically. The computer" program which
performs these calculations has been developed by the
author and is described in Chapter 4.

2.3 Summary

The aim of this chapter is to derive formulae which can be 
used to predict the sound pressure field when a sound 
source and plane screen of finite dimensions are placed 
in free space. The method used was to consider any 
monitoring position P in the field and to calculate the 
Insertion Loss IL(P) at P due to the interposition of the 
barrier.

Using equation (2.1) it was thus required to determine 
both the Sound Pressure Level SPLq (P) at P in the 
absence of any screen and the SPL at P after the screen 
is placed in position, denoted by SPLg(P). In 2.2.2, 
an expression for SPLq (P) was derived based on the 
spherical wave equation.

In the derivation of an expression for SPLg(P), several 
factors had to be considered. The method used involves 
the novel feature of subdividing the area of the screen 
into smaller rectangular regions. This was necessary in 
order to obtain a solution of the diffraction integral 
over the whole barrier,' since the integral is only
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applicable to relatively small regions. The diffraction
integral itself comes from the classical theory of
diffraction and was first given by Fresnel and Kirchhoff.
This integral has also been used in the theory of
diffraction of sound by barriers, eg [4], [5], [6] and [7],
but it has usually only been applied to semi-infinite
barriers. In the work where it has been applied to finite 
barriers, (eg [6]), its use has been rather restricted.
One of the important features of the work in this paper
is that the use of the integral can be applied in a wider
variety of circumstances of finite barriers and especially 
there is total freedom in the size and shape of the
barriers. The barrier may even have holes in it, since 
any area can be represented as the sum of small rectangular 
regions to a sufficient degree of accuracy (see fig 2.7). 
Also an important aspect of this method is that the 
aocuracy of the predicted result in relation to an exact 
theoretical solution can be monitored. This is demonstr­
ated more fully in the light of actual results of the 
computer program in Chapter 4.

The formula for SPLg(P) is given in equation (2.31). The 
Insertion Loss IL(P) then follows immediately as shown in
equation (2.32). Finally, values of IL(P) in particular
configurations of source, barrier and monitoring position
can be calculated from equation (2.32) by invoking the
computer program of Chapter 4. Actual computed results
of this type are analysed in Chapter 4.

Another feature of the theory is that the transmission of 
the barrier may be considered in the form of a coefficient

- 28 -



JT v V  > n

X x X :

\ \  \ \ ' \W\\\ V . \ \

\ \  \  \ v  \

\

,

\ \ \  '■ x 
\  *\ \

X X V

V
\ \ \

\ ̂ ‘ \ X\
\  N  '•

\

•X w
\

V\\ \ \ x■.— \. \ X \  \ \
\ \  \  \

RjNX  \  \  \\ '

R j + i  \

\\ \x  \

\  \ - x  x
- \  'X  N ' X

\ \ W  vx V
v - \ \  \  

\ .;\\ \ \

\  ‘\  \ \  X

XX/x' 
\  \  \  \

\ -  - X

\\ \ '.\Vv\X'v \ \ \
X ■■. \ X \ \X\X\ \

\ —  x \ X. x ■ x.\ \ X

. -■
\\ '•

~ \v, ’ , ' -.v

\ \ \>:
\ \

- \ \  \ X. \  \  \ \
\ \ \ x  v\\\V\ \ \ \ \\ \

.. \  —  ..

\\R\x
K n - r '"' X  RX \\ Kn \ ■

\ \ W V

Figure 2.?. The Sub-division of an Irregularly Shaped Barrier 
with a hole in it.

- 29 -



a, constant over the whole barrier, where 0£a<£l. A value 
of a = 0 represents a non-transmitting barrier and a value 
of a = 1 represents a completely transmitting barrier. 
(Hence the extreme case of a = 1 is equivalent to having 
no barrier at all).

Next, the sound source is assumed to be monotonic emitted 
from a single point S. A discussion of how the theory 
may be extended to that of a multiple frequency source 
appears in Chapter 5.

Finally, it should be noted that this theory is extended 
in Chapter 3 to apply in the case where there is also a 
reflecting ground. This next configuration is, of 
course, much more important, since in most practical 
environments reflection by the ground must be considered. 
Thus, although the free field case of this chapter is of 
little immediate practical use, the theory derived is 
used directly in conjunction with other techniques (for 
example, the method of images in Chapter 3), where its 
importance can be more greatly appreciated.
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3. NOISE REDUCTION BY A FINITE SCREEN IN A REFLECTING
GROUND ENVIRONMENT

3.1 Introduction

In this chapter a screen is fixed in space and an 
addition to chapter 2 is included where there are ground 
reflecting surfaces. An extension of the theory outlined 
in chapter 1 is presented for this additional parameter.

The method of images is employed where the images 
relative to the ground of the source S and the monitoring 
position P are used to represent the reflected sound rays.
The chapter describes how the SPL at P is determined as a 
consequence of these reflected rays.

A description is given where the SPL is formulated from 
constant ground reflection and no barrier. In order to 
specify a coefficient for ground reflection a range 0 to 1 
is adopted where 1 indicates perfect reflection and 0 
perfect absorption. The formulation of the equations 
assumes a value of this coefficient.

The parameters are the same as in chapter 1 and additional 
parameters are introduced here to account for ground
reflection. Similarly the insertion loss IL(P) is also
required.

IL(P) = SPLq (P) - SPLb (P), (3.1)
where

SPLq (P) is the SPL at P in the absence of any screen
and

SPLg(P) is the SPL at P after the screen is placed in 
position.
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3.2 Calculation of the Insertion Loss

3.2.1 Calculation of S P L '(P)

There are two cases to consider, first where the source is 
above the level of the ground and secondly where the source 
is at ground level.

The first case, where the source is above the ground level,
is illustrated in fig 3.1. Suppose that the barrier is to
be placed in the xy-plane, with the origin at ground level
and that R and R represent the coefficients of ground 1 2
reflection on respectively the source side and the monitoring 
position side of the barrier. Suppose the co-ordinates of 
S and P are (x , y , z )  and(x , y , z ) respectively. In

O  O  O  1 1  1

view of the general relationship between SPL(P) and the
disturbance U(P) at P, it will be sufficient to determine 
UQ (P), from which SPLq (P) follows immediately.

The contributions to U (P) come from both direct soundo
between S and P and sound reflected by the ground before

/

reaching P. In view of theory given by Maekawa [5], UQ (P) 
may be expressed by the equation

U (P) = U (P) + U (P), (3.2)
0  0 1 0 2

where U (P) is the disturbance in free space and U (P)
0 1 0 2

is the contribution due to ground reflection.

By definition U (P) is simply equation (3.2) since it iso 1
the disturbance in the free-field. Hence

U (P) = Aelkd , (3.3)
01 “d
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where A, k and are defined in 2.2.2.

In order to establish U (P), the method of considering 
the image of S in the ground’s surface is employed. 
This technique has previously been used by Maekawa [5].
By definition has the co-ordinates (-xQ , yQ , z ) (see 
fig 3.2). The reflected sound at P is considered to be 
the equivalent of sound of the same wavelength as S 
emanating from directly. Hence the reflected sound is 
equivalent to direct free field sound from S., with the 
extra condition that aScalar multiplication of the ground
reflecting coefficient is required. Thus U (P) may be0 2
formulated as follows (compare with equation(2.2)).

ikdU (P) = R-pAe' 0 2
d

(3.4)

where E„ is the reflection coefficient at the point ofHi
ground reflection and d is the distance H7P, given by

d = / r (x +x )2 + (y -yn )2 + (z ~zn )2 (3.5)L i °  i °  i °  J

Now R,., is equal to either R or R . depending on whether n  i 2
the sound ray is reflected on the source side or the 
monitoring position side of the xy-plane. (For example, 
in fig 3.2, R^ = R ). Using simple geometry, R£ may beE
expressed as follows 

RRE if x z + x z o i i o
R

i 2

(3.6)

or the condition may also be written 
1E = < if x z + x z o i i o (3.6a)
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Hence, in view of equations (3.2), (3.3) and (3.4), the 
disturbance UQ(P) without the barrier is given by

U (P) = A o v 7
lkd , „ lkd e + R-r, e

- z   ill ------

d d
(3.7)

where is determined by equation (3.6)

Now, by invoking equation (2.4), the Sound Pressure Level 
SPLq (P) At P without the barrier may be expressed as follows

SPL (P) = SPL + lOlog ov ' i 10 i 2 + + cosk(d-d)
d2 dd

(3.8)

where SPL is the SPL at unit distance from S (see 2.2.2). i

In the second case, where the source is at ground level, 
there is no reflected ray component of UQ (P) and thus 
UQ2(P)=0, and hence from equation (3.2),

Uq (P) = U0j(P), (3.9)

and so the situation is identical to that of 2.2.2, where
SPL (P) = SPL - 201og d. (3.10)o v J i io

3.2.2 Calculation of SPLD (P)-------------------------------- — ----— .— ■ ■ ■ ■ ■ ■ — ±5--- -

As in 3.2.1, the two cases where first the source S is above 
ground level and secondly S is at ground level are considered 
separately.

When S is above ground level, there will be four different 
paths of diffracted rays with and without reflections on 
both sides of the barrier as illustrated in fig 3.3a. These 
components are illustrated independently in fig 3.3b. It
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may be noted that, as in 3.2.1, the image of S is 
considered as the imaginary source of rays reflected by 
the ground on the source side of the barrier. Also, in a 
similar way, the image P. of P is also introduced as the 
imaginary receiving position of rays reflected by the 
ground on the monitoring side of the barrier. Consider, 
for example, a ray which is reflected by the ground on 
both sides of the barrier (fig 3.3b (iv) ). Although the 
ray actually emanates from S, is reflected by the ground 
and diffracted by the barrier before being reflected again 
by the ground and then reaches P, it may equivalently be 
considered, for the purpose of calculation, to have 
emanated from before being refracted by the barrier 
directly to P ^ . The expression for the disturbance U(P) 
at P in this situation is given by Maekawa [5] as

U(P) = U (P) + R U (P) + R U (P) + R R U (P)
1 1 2  2 3  1 2 4  (3.11)

where U (P) is the disturbance due to the non-reflected i
component of the sound field, U (P) is the disturbance due2
to the component of the sound field reflected only on the 
source side of the barrier, U (P) is the disturbance due

3
to the component of the sound field reflected only on the 
receiver's side of the barrier, and U (P) is the disturbance 
due to the component of the sound field reflected on both 
sides of the barrier.

U(P) As a Combination of Free'-* Field and Semi-Infinite 
Di ffraction Components

It is required now to formulate expressions for U (P),
U (P), U (P) and U (P). Maekawa [15] has suggested
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expressions which are suitable when the barrier is 
rectangular in shape and has no holes. Also it is 
apparent that in his method, there are limitations on where 
S and P may be positioned in relation to the barrier.
Finally his method is an approximate one, and there is no 
facility for checking its accuracy in a given configuration, 
except by comparison with experimental results. In this 
work, expressions will be formulated for U.(P),U (P),U (P)

1 2  3
and U (P), for a barrier of arbitrary shape and which may 
have holes. Also, there is no limitation on where S and P 
may be positioned relative to the barrier. Further, 
although some approximations are made, it is possible to 
make a check on the accuracy of the results in comparison 
with the exact theoretical solution, and therefore control 
the accuracy of the technique. The method described in 
this chapter is based on results gained in Chapter 2 for 
the free field situation and, to the author's knowledge, 
has not previously been devised by other authors. As in 
Chapter 2, the assumption will initially be made that the 
transmission of the barrier is zero.

The key to this method is the fact that with a barrier on 
a reflecting ground, diffraction by the barrier can only 
take place around those parts of the barrier’s perimeter 
which are not in contact with the ground, which enables the 
following assumptions to be made. Consider firstly the 
component of disturbance U^(P) which represents the non- 
ref lected sound field at P with the barrier in position.
This is exactly the same as the total disturbance which
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would have been observed at P, if instead of the given 
configuration of barrier and reflecting ground, there was 
just the semi-infinite barrier shown in fig 3.4b in free- 
space. Let B be the region occupied by the original 
barrier in the xy-plane (see fig 3.4a) and let H be
defined as the semi-infinite region in the xy-plane
defined by jx<0> z-o, all yj. Then the above assumption 
is stating that Ui(P) is the total disturbance at P due to a
barrier occupying the region *£b u h ]'.

In a similar way, U (P) may be expressed as the total
2

disturbance at P in the presence of the screen occupying
the region { h u b}  where the source is placed at S^(-x0 ,y0 ,zQ ),
the image of S in the reflecting ground (see fig 3.5).
U (P) represents the component of the disturbance at P due 
2

to that part of the sound field which is reflected by the 
ground on the source side of the barrier. Similarly U (P)

3
may be expressed as the total disturbance at P.(-x ,y ,z )i i l l
with the source at S in the presence of the screen '{h u b }', 
since U (P) represents the component of the disturbance at

3
P due to that part of the sound field which is reflected 
by the ground on the monitoring position side of the barrier 
(see fig 3.6). Finally, in the same way, U (P) may be 
represented as the total disturbance at P^ due to the 
source at S^ in the presence of the screen |h Ub J- (see fig 
3.7).

It will now be necessary to formulate U (P),U (P),U (P) and
1 2  3

U (P) in view of the above assumptions. Let HUB representit
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that region of the xy-plane which is the complement of the
region HUB (see fig 3.8). In other words, HUB is that part 
of the xy-plane where x*>o except for the region B. Assume 
briefly that the xy-plane is now occupied by a screen
occupying the region HUB and that nothing occupies HUB.
Let U-(P),U-(P),U-(P) and U-(P) represent the disturbances

1 2  3 b

where the source, monitoring position are at (S,P), (S^,P),
(S,P^) and S^,P^) respectively in this configuration.
Then, by the theory of Fresnel diffraction, (see Bornand Wolf [12])

U-(P) = -Ai 
1 2 \

U-(P) = -Ai
2 2l

U-(P) = -Ai
3 2A

U-(P) = -Ai
4 2A

HUB
gik(&+m) [cos(n  ̂̂ )_CCjs(n,m)]ds 
Jim

HUB

HUB

HUB

eik(£ +m) j-cos^nj £t )_Cos(n,m)]ds 
£ ’m

eik(£+m ) [cos(nj £)_cos(njint )](̂s 
Jim1

0ik(Jl +m )^os(nj£t )_cos(njini ̂  
V m '

V  (3.12)

where £ ,,mt represent the distances from and P^ respectively 
to the variable point of integration on HUB. (cf equation(2.8))

Also, by Babinet’s Principle,
u (P) = IJ®(P) - D-(P)1 o 1
U (P) = D®i(P) - U-(P)2 0 2

U 3(P) = U®(P.) - U-(P)U X 3
and

rS .U (P) = U~i (P.) - U-(P ),u O 1 u

(3.13)
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where U (P) is the free field disturbance at P in the o v 7
absence of any screen or ground due to the source at S.
s . s s .

U ̂ (P), U^(P^) and UQ (P^) are similarly defined except

for the obvious difference in positions of the source and
smonitoring position. Now UQ (P) has already been formulated 

in equation (2.2). The other terms may be similarly 
formulated as follows:

US (P) = Aeikd
°  S

USi(P) = Aeikdo —

Do(pi) = M ikd

u V p  = Aeikd
O  — Td

(3.14)

where d = distance SP = distance SP and d = distance S^P 
= distance SP^.

Now, due to standard properties of integration over an area, 
the double integrals over the region HUB in equations (3.12) 
may be split into the sums of separate double integrals over 
the regions H and B as follows:
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U !(P) = -Ai 
2 X

’f r+
••H *

eik( £+m) j-cos(n> £)_cos(n,m) ] ds
B £m

U-(P) =
2

U-(P) =
3

-Ai
2 A

-Ai
2 A

H B
^ik( £ +m)[cos(n ,£')-cos(n, m) ] ds 
£' m

H
ik(£+m’)

B £m’ [cos(n,£)-cos(n,m’)]ds

U-(P) =-Ai
4 2 A L H B

^ik(£ +m )[cos^n ^£t)-cos(n ,m')]ds 
£' m'

(3.15)

Let Uu (P) denote the disturbance at P due to the source atri

S in the presence of the half-plane screen which occupies
s . s

the half-plane H only. Let the terms Ujj1 (P), UH (P^, 
s .

IL.1 (P.) be similarly defined. Then by use of the Fresnel H i
diffraction theory and Babinet’s principle (see Born and 
Wolf [12]), it can be shown that the following equations 
apply

s s f f
ik(£+m)U (P) = U (P) + Ai 

H 2 A e
H £m [cos(n,£)-cos(n,m)]ds

s . s .
U X(P) =U 1(P)+Ai 
H ° 2A

gik(£ +m) [cos(n ? ̂ T)-cos( n ,m) ] ds 
£ ’m *

H 3.16

UH (Pi)=Uo(Pi)+|| eik(£+m )[COs(n)£)-Cos(n,m')]ds 
£m’

H
s . s .

U 1(P )=U 1(P.)+Ai 
H 2A

ik( £ ' +m' )
£  ’ m ’

[cos(n,£’)-cos(n,m')]ds.
H
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By substituting equations (3.16) and (3.15) into equations 
(3.13) it follows that

U (P)=U„(P) + Ai(l-a) 
1 H 2~X

s .
U (P)=U 1(P)+Ai(1-a)
2 H 2X

U (P)=U (P )+Ai(l-a) 
3 H 1 2A

B
e
£m
ik(£+m)

[cos(n,£)-cos(n,m)]ds

ik(£'+m)
£' m . [cos(n,£')-cos(n,m)]ds

B

ik(£+m')
£m1 . [cos(n,£)-cos(n,m')]ds

B

(3.17)

s .
U (P)=U X(P.)+Ai(l-a) 11 iH 2 A

ik( £ ' +m' )
£ Tm' [cos(n,£')-cos(n,m’)]ds,

B

where the transmission coefficient a of the finite barrier 
is taken into account.

The double integrals on the right-hand sides of equations
(3.17) can be solved in the same way as in Chapter 2 and
can thus be converted directly into a form suitable for
solution by computer, when the parameters of a given
configuration are known. It thus remains to express the

s s . s s .
terms Un (P), IL.1 (P), IL^P.) and Urr1(P.) in an equally ii n ri 1 n 1
suitable form.

The Half-Plane Diffraction Components

Let S ’(x ', yo T, zQ f) represent a source of wavelength X,
and let P'(x y ’, z ') represent a general receiver's i i i
position in a free space environment which also contains 
the non-transmitting half-plane screen H (see fig 3.9).
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Then it will be required to determine the complex distur- 
s 1

bance U„ (P') at P' due to the source at S ’. The four termsn „S S . S S .
U^CP), Utr1(P), U„(P. ) and Uu (P.) will then followrl Jtl 11 X il 1

immediately by replacing S ’ and P' with the appropriate
s ’

symbols. The expression for (P’) is based on the 
Sommerfeld wave solution (see Sommerfeld[16]), and has been 
expressed by Born and Wolf [12] in a form suitable for 
calculation based on the conventions adopted in this 
thesis. The Born and Wolf equation has been improved by 
Maekawa [5] for sound attenuation by a barrier and it is 
this last form which is used here. The Maekawa expression 
is as follows

U (P’)=-Aielk(r'+S’  ̂
11 2(r ’ +s ’ ) [ jc(w ’ )-S(w* )} +i|l+C(w’ )+S(w’ )j ] ,

where
W ’ = ±2/(r+s)-(r ’+s’ )

A

(3.18)

(3.19)

and where r ’ + s' is the straight line distance from s ’ to 
P ’, r+s is the shortest distance from s ’ to P ’ via the edge 
of the screen (see fig 3.10) and C(w) and S(w) are the 
Fresnel integrals given by

C(w) = w

o

w

cos( ttv2 ) dv
V 2 /

S(w) = sin/ ttv2 ) dv 
\ 2 /0

(3.20)
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Now r ’ + s ’ is the distance S'P' , which may be defined as 
d f, say, as follows

r' + s ’ = d ’ =/[(x’-x’)2+(y1-y’)2+(z’-z’)2].(3.21)1 0  1 0  1 0

The distances r and s are defined such that r + s is the
shortest distance from S' to P 1 via the edge of the screen.
Let E r be any point on the edge of the screen with co­
ordinates (0,y’,0). Then S'E’ + E ’P ’ is the distance
from S' to P ’ via the edge. Suppose E is the position
such that S 'E = r and E P ! = s, that is S ’E + EP' 
represents the shortest distance from S ’ to P 1 via the
edge. Then it is required to find the value of y' which
gives the solution E ’ = E, or in mathematical terms, it is
required to minimise S ’E' + E ’P' with respect to y' . By
using elementary calculus, the solution may be shown to
be

d ' + d ' (3.22)o
where 2 2

V (3.23)2 2
d ’ = /(x* +z’ )1 1 1

it follows that
2 2 1 / 2

r = S ’E = d ’ ((d’+d’) +(y’-v’ ) )O___  O 1 1 o
d ’+d’ o 1 (3.24)

2 2 1/2
s = EP' d ’ ((d^-dj) +(y;-y;) )

d'+d’o
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so that
2 2

r + s = /[(d'+d') +(y!-y') ] O 1 1 o J (3.25)

In equation (3.19) it can be seen that there are two
possible values of w ’, one positive and the other
negative. This accounts for the two alternatives where P*
lies in the shadow zone or the bright zone of H with respect
to S' (see fig 3.11), where the positive value represents
the shadow zone. Let w^ represent the positive value, 

s *Then UTJ(P’ ) may be written in terms of w ’ as followsii +

u h  <P ' H

-Aieikd [{c(w')-S(wi )}+i jl+C (w' )+S(w' )| ] 
2d' L J

,(3.26)

Ae d + Aie d [{C(w' )-S(w’ +i |l+C(w’ ) +3(w' )} ] 
d* 2d'

the first equation applying when P T is in the shadow zone
of H with respect to S' and the second equation where P'
is in the bright zone,u' given by equation (3.21).

s . s .
Now the four terms U^(P), UHX(P), U^(P^) and may
be considered.

First, since S and P are both above ground level, it is 
clear that P is in the bright zone of H with respect to S. 
Also from equation (2.27) d is the distance SP and in this 
case

r+s = /[(d +d )2+(y -y )2] (3.27)o 1 1 O
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where
d = / ( x V )0 o o

2 2
d = /(x +z )1 1 1

[compare with equation (3.25) and (3.23)]. 
Let

w = //r+s - d

(3.28)

(3.29)

Then from equation (3.26),

Ug(p ) = Aelkd + Aielkd. [ {c(w)-S(w)|+i |l+C(w)+S(w)j-] ( 3. 30)

Next , since and are both below ground level, it
follows that Pi is in the shadow zone of H with respect to
S. . Also d is the distance S.P. (see note after equationl l l v
(3.14)). Hence from equation (3.26),
S;

(p i) = -H 2d
s

U X(P.) = -Aielkd. [-fc(w)-S(w)"Ui{l+C(w)+S(w)l] (3.31)
H 1 2d L J L J

Si sIn considering the terms U (P) and U (P.), it is
H H

necessary to establish whether P is in the bright or 
shadow zone of H with respect to and whether P^ is in 
the bright or shadow zone of H with respect to S. It is 
obvious, and can be proved geometrically, that
P is in the bright

shadow
zone of H with respect to S.

if and only if

P^ is in the shadow
bright

zone of H with respect to S (3.32)

(see fig 3.12).
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Hence it is sufficient to establish whether P is in the
shadow zone or the bright zone of H with respect to .
Again referring to figures 3.12a and 3.12b, it can be seen 
that if P is in the bright zone with respect to S^, then 
the line S^P passes above the edge of the barrier and if 
P is in the shadow zone, then S^P passes below the edge of 
the barrier. These two alternatives can be formulated by 
saying that in the former case x^o on S J? when z=o and
in the latter case x<o on S^P when z=o.

On the line SJ?, the following relation holds

x + x z - z_ o _  o
x + x_ z - z1 o i o

Hence, when z = 0,

X  =  - ( X q Z, + y 0 )
Z - Z 1 O

and so x^o if and only if xoZ i+x^z0 ^ o.

It may therefore be deduced that

P is in the bright
shadow

zone of H with respect to S.

if X  z +x z o 1 1 o r • (3.33)

Note that this condition is the same as that in equation 
(3.6) where it was required to ascertain whether sound 
reflection by the ground in the absence of a barrier 
occurred on the source or receiver side of the xy-plane.
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It now follows from equation (3.26) that

s .
U X(P) = -I 
H

Aelkd + Aielkd. [{c(w)-S(w)}+i {l+C(w)+S(w)} ]
2d if (x z +x z )<0v o i i o'

-Aielkd. [{c(w)-S(w)}+i{l+C(w)+S(w)}] 
2d if (x z +x z )>0 o i i o '

(3.34)

and because of the expression (3.32),

-Aielkd. [{C(w)-S(w)}+ i{l+C(w)+S(w)}] 
2d if (x z +x z )^0 o i i o '

(3.35)

Ae + Aie [{c(w)-S(w)}+i{l+C(w)+S(w)T] 
2d 2d

if ( x z + x z  )>0 , v o i i o y
where

/ / r + s  - d)
w = / \ X /

( 3 . 36 )

(Compare with equation (3.29), and where d is the distance
S^P which is also the distance SP^ and d is given by
equation (3.5). The term r+s is that given by equation

2
(3.27) since the same terms (y -y^) and d and d (seei * o  o i
equations (3.28)) are equally applicable whether the points 
S or S. and P or P. are under consideration.l l

Final Formulation of U(P), Where S is Above Ground Level

Now if the function In (a,b) is defined by
I (a,b) = i( |-oQ 
n 2A B

gik(a+b) [cos(n,a)-cos(n,b)]dS, (3.37) 
ab
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and the function G(v) is defined by

G(v) = jc(v)-S(v)} +i{|+C(v)+S(v)} , (3.38)

then from equations (3.30), (3.31), (3.34), (3.35), (3.17) 
and (3.11), the disturbance U(P) in the presence of the 
finite barrier on the reflecting ground satisfies the following 
equation

U(P) =1 (£,m)+R I (£ T,m)+R (£,m’)+R R I (£’,m')—^—  n i n  2 i 2 n

+ elkd + ielkd.(1-R R )G(w)+(-l)E (R -R )ielkd.G(w)+R^elkd 
d 2d 12 2 1 “ =

( 3.39)
where E is given by equation (3.6a)

Note that this is the expression for U(P) where S is above 
ground level.

Formulation of U(P), Where S is on the Ground

The situation where the source is at ground level is
illustrated in fig (3.13). In this case ground reflection
will only occur on the receiver’s side of the barrier and 
consequently there are only two components of the
disturbance U(P). Therefore U(P) is given by

U(P) = U (P)+R U (P) (3.40)
1 2 3

(see Maekawa)[5])
where R is the coefficient of ground reflection on the

2
receiver’s side of the barrier. [Compare with equation 
(3.11)1. It can be shown that U (P) and U (P) are the

1 3

same as defined at the beginning of this section and
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therefore are given by the first and third formulae in 
equations (3.17). It follows that in this case, U(P) is 
given as follows:

U(P) = I (Jl,m)+R (5.,m') + elkd + ielkd.G(w)+(-1 )ER ielkd 
“A n 2 d 2d -2—

+ 1 (l+(-l)E )e^k d . (3.41)
2 d

[Compare with equation(3.39)].

Formulation of SPL^ (P)

SPL0 (P) is expressed in terms of U(P) by combining equations
B ~ T ~

(2.4) and (2.6) to give:

SPL (P) = SPL + 10 |log1 0 U(P) (3.42)

From this, the Sound Pressure Level SPLI-)(P) in the presencea
of the barrier is given by substituting either equation (3.39) 
or (3.41) into equation (3.42) according as the source S is 
respectively above or at ground level.

3.2.3 Formulation of IL(P)

The Insertion Loss IL(P) at P due to interposing the barrier
follows from equation (3.1) and has two possible solutions.
Firstly, if the source is above ground level then IL(P) is
given by substituting equations (3.8) and (3.42) into
equation (3.1), where U(P) is given by equation (3.39).

A
Secondly, if the source is on the ground, then IL(P) is
given by substituting equations (3J10) and (3.42) into
equation (3.1), where U(P) is given by equation (3.41).

A
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Note now that the above equations, in a similar way to that
described in 2.2.4 for the free field case, can be solved
if the parameters relating to the configuration are known.
These parameters are those listed in 2.2.4 with the
addition of the coefficients of ground reflections R and1
R . Hence, as was the case in Chapter 2, a computer 
2

program can again be written which performs the calculations 
in a given configuration. This program was developed by 
the author and is described in Chapter 4.

3.3. Summary

It was the aim of this chapter to obtain information 
about the sound pressure distribution when a plane finite 
barrier is placed in position on a reflecting ground. The 
theory makes use of the results obtained in Chapter 1 and 
in addition the ’Method of Images’ of ground reflection is 
incorporated. The sound field between the source S and 
the monitoring position P is considered as the summation 
of separate sound fields, which follow different reflected 
paths between S and P. Formulae are obtained separately 
for the disturbances at P due to the separate component 
sound paths, and each formula is obtained by combining the 
theory of Chapter 2 with the theory of diffraction by a 
semi-infinite half-plane screen. The physical configuration 
of a finite balmier and reflecting ground is simulated by 
an equivalent theoretical combination of finite barrier and 
half-plane screen in order to obtain these formulae.

- 64 -



The ground reflection is considered to be a constant in the 
range 0 to 1. This constant may take different values on 
either side of the screen, but each value must remain constant 
over the ground’s surface on the side of the screen for 
which it applies. All other parameters concerning the 
configuration remain the same as those described in 2.1.

The principle of determining formulae for the Sound 
Pressure Levels at P first in the absence of the barrier 
and then with the barrier in position, is used in the same 
way as in Chapter 2. The Insertion Loss at P is then taken 
to be the difference between these two results.

It should also be noted that the two situations where the
sound source is above ground level and where the source is
on the ground, need to be considered separately. This was 
covered in 3.2 and the two resulting formulae for the
Insertion Loss were duly noted in 3.2.3.

As in Chapter 2, the results are applicable in a wide
variety of configurations due to the flexibility of the
formulae used and are also applicable for a finite screen
of any shape, which may have holes in it. A computer
program for this part of the work has been developed by
the author andis described in Chapter 4. The formulae
here were derived in such a way that the calculations by
computer could be made, given the parameters listed in
2.2.4 and in addition the two ground reflection coefficients
R and R . Results obtained by using the computer for 1 2
particular configurations are also presented in Chapter 4.
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Finally a discussion of how this technique can be further 
extended so that it applies to surroundings which include 
reflecting walls, ceiling and other modifications, is given 
in Chapter 5.
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4. Predicted and Measured Results
4.1 Introduction
In this Chapter, predicted and measured results of 
Insertion Loss are presented and compared. Various test 
configurations were used both in the free field and with 
the addition of a reflecting ground. Three different 
barriers were used and various positions of source and 
receiver were considered, representing different aspects 
of diffraction effects and barrier performance.

The predicted results in the free field were obtained 
using the theory of Chapter 2. The theory was converted 
into a computer program, which in a given configuration 
performs the necessary calculations and gives the resulting 
Sound Pressure Level predictions. Similarly, the results 
in the reflecting ground environments were obtained using 
the theory of Chapter 3 and again a computer program was 
written to perform the required calculations. A description 
of these programs is given in 4.2 with details of how 
they are executed.

The experimental results were obtained by constructing the 
test configuration in an anechoic chamber for both the 
free field and reflecting ground cases. The experimental 
procedure is described in 4.3.

Both predicted and experimental results for all of the 
configurations tested are tabulated together in 4.4 for 
easy comparison.
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Finally the results are analysed and compared in 4.5.

4.2 The Use of the Computer Programs in the Prediction of 
Barrier Performance

4.2.1 Description of the Program for Free Field Predictions 
Based on the theory of Chapter 2, a computer program was 
written to enable calculation of the Sound Pressure Levels 
in the free field. It is necessary for the purpose of 
executing this program to include the parameters relating to 
the particular free field configuration. These parameters 
may be listed as follows:
the co-ordinates x 0f yoi z0 of the source position; 
the co-ordinates xi, yi, zj of the receiver position; 
the Sound Pressure Level SPLx in the free field at a 
position 1 m from the source; 
the absorption coefficient of the barrier; 
parameters relating to the subdivision of the barrier; 
parameters relating to the sketch of the barrier which 
is produced on the print-out.

As an illustration, it will be demonstrated which values 
were input in order to achieve three of the sets of results 
given later. First the results listed in table 2 were 
obtained as follows. It was assumed that the Sound Pressure 
Level SPLi at 1 m from the source was 90 dB at all frequencies 
and that the subdivision of the barrier was into 25 x 25 
equal elements each having dimension 0.04 m. It was also 
assumed that the transmission through the barrier was zero.
The parameters input were
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90, 0.5, 0, -1, 0.5, 0, 1.5, 0, 0
0.02, 0.02, 25, 25 0, 0 
0

(A)
Vj

The first parameter is SPI^, the next six are the 
co-ordinates x 0, Y o r  z or x lf yi, z lf followed by the 
transmission coefficient a and finally a value of 0 to 
indicate that the barrier is square (if the barrier had 
been rectangular, this value would be 1 - see below).
This parameter will be denoted by SR in this section.

The second line contains £ and ri/ the half-dimensions
of each rectangular element (values £ = 0.02 and n = 0.02)
and the number of elements in the x- and y- directions
(both = 25). The next parameter indicates the number of
areas missing from the square barrier and the final parameter
of the second line is a similar parameter for the purpose
of the printed diagram. These 2 parameters will be denoted 
BSA and DSA here and are both set to zero in this example
because the barrier is square with no parts 'cut out'.
The third example describes a case where these values are
non-zero.

Finally, the third line has a single value 0 to indicate 
that the program has finished. This value could be set 
to 1 to indicate that another set of parameters of the type 
of the second line could be input giving an alternative 
subdivision of the barrier. For example
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90, 0.5, 0, -1, 0.5, 0, 1.5, 0, 0
0.02, 0.02, 25, 25, 0, 0 
1
0.05, 0.05, 10, 10, 0, 0 
0
would also give results for the same configuration but 
calculated on the basis of a subdivision of 10 x 10 
elements, rather than 25 x 25.

The print-out for example A is shown in figure 4.1.

The general case may be written as follows, using the 
already defined symbols:
SPL!, x 0, y 0f z0, Xi, yi, zlf a, SR
£, n f NX, NY, BSA, DSA
REP

The second example corresponds to the configuration described 
in table 12. In this case the parameters input were 
90, 0.38, 0, -1, 0.38, 0, 3, 0, 1 
0.025, 0.025, 15, 30, 0, 0 
0
Note that SR = 1 in this case, which results in a 
rectangularly-shaped sketch on the print-out, rather than 
a square one. For the purpose of the subdivision, it 
was decided that the barrier should be mapped as 15 x 30 
equal elements each of dimension 0.05 x 0.05 m. The print­
out is shown in figure 4.2.
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The third example shows the output when predicting the
results for a barrier which is not a perfect square or
rectangle. In this case the parameters input were
90, 0.5, 0, -1, 0.5, 0, 3, 0, 0 0
0.02, 0.02, 25, 25, 1, 1 
13, 25, 7, 19

(C)
XXXXXXX 
7, 12, 6, 15
0 v/
Here it may be noted that SR = 0, to indicate that the
general shape is square, but that BSA is non-zero, to
indicate that there are areas which have been cut out.
Since BSA = 1, this indicates that one area has been cut
away. It is then necessary to describe which area this
is. The information is given in line 3, which shows that
in the 25 x 25 element representation of the barrier, the
area cut away is that defined by the 13th to the 25th rows
of elements and by the 7th to the 19th columns (see figure 
4.3). The 4th row of parameters, although shown in this
case as 7 asterisks can, if required, be a brief description
of the barrier, which will then be shown on the print-out.
Up to 50 characters are allowed for this description. The
5th row is similar to the 3rd row except that it is for
the purpose of the sketch in the print-out. This can be
seen by comparing the values with the produced sketch in
figure 4.4. Also note that this line is allowed because the
parameter DSA in the 2nd row is set to 1.
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The predicted free field results for the configurations 
investigated in this thesis are tabulated in full in 4.4.

4.2.2 Description of the Program for Reflecting Ground 
Predictions

A computer program was written, based on the theory
of Chapter 3, to enable calculation of Sound Pressure Levels
in the presence of a reflecting ground. As in the case
of the corresponding program for free field predictions, 
it is necessary to include the parameters relating to
the particular configuration. The parameters are the same
as those for the free field program with the addition of
the ground reflection coefficients Rj, R2, where Ri is
the reflection coefficient of the ground on the source
side of the barrier and R 2 that on the receiver's side.

In order to obtain the results which appear in the
following tables, the procedure is similar to that by which
the free field predictions were obtained. The principal
difference is that the coefficients of ground reflection,
Ri and R 2 must be included. For example, the results
listed in table 15 were obtained by inputting the parameters
as follows:
90, 0.5, 0, -1, 0.5, 0, 2, 1, 1, 0, 0
0.02, 0.02, 25, 25, 0, 0 
125 
2
250
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2
500
2
1000
2
2000
2
4000
2
8000
0
Note that the frequencies are input separately. This 
enables the programmer to select individual frequencies 
if required, rather than..the full frequency range being 
automatically assumed. In this case the ground reflections, 
R x and R 2 are both equal to 1 and this is indicated by 
the 8th and 9th parameter on the first input line. The 
single entry of f 2 1 between each frequency input indicates 
that another frequency is to be entered on the next time.
If this parameter was 'O', it would indicate that it is 
required to end the program execution (see last parameter) 
and if it was 'l1 it would indicate that a new subdivision 
was required, that is an entry of the type indicated by 
the second input line.

The configuration representing table 23 is the same as 
table 15 with the exception that Ri and R 2 were both 
assumed equal to 0.5. The parameters input in this case 
were thus
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90, 0.5, 0, -1, 0.5, 0, 2, 0.5, 0.5, 0, 0 
0.02, 0.02, 25, 25, 0, 0 
125 
2
250
2
500
2
1000
2
2000
2
4000
2
8000
0
The general case may be written as follows, using the
symbols defined earlier in this Chapter (compare the
free field case).
SPLj, Xo, y o f Z q , x j, y i , zi, R i / Ri/ ot, SR
£, T1F NX, NY, BSA, DSA

fi
2

f z

2
m  •  •

2

fn
0,
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where f if f2/  r f are frequencies.

The predicted reflecting ground results for all of the 
configurations investigated in this thesis are tabulated 
in full in 4.4.

4.3 The Experimental Procedure
4.3.1 General Description
The experiments for sound attenuation by finite barriers 
were conducted in the anechoic chamber belonging to the 
Building Science and Mechanical Engineering Departments 
of the University of Sheffield and which is situated at 
Harpur Hill near Buxton, in Derbyshire.

The internal dimensions of the anechoic chamber are 10.97 m
long by 7.62 m wide and 2.74 m high. The walls and ceiling
are lined with four layers of absorbent material having a 
total thickness of 0.15 m with an air gap of 0.15 m 
between the walls and the material and of 0.3 m between 
the ceiling and the material (see figure 4.5).

The three barriers used were made of blockboard of 0.02 m 
thickness. The dimensions of the two principle barriers 
used were 1 m width by 1 m height and 1.5 m width by 
0.75 m height. The third barrier used was the same as 
the 1 m x 1 m barrier with the exception that a 0.5 m x 0.5 m
section was removed. This was done in order to demonstrate
that the shape of the barrier may be arbitrary for the 
theory developed in this work to apply. The barrier has
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already been discussed in 4.2 in the description of the 
computer programs, and is illustrated in figure 4.3.

The simulated point sound source was a small speaker 
emitting single frequencies determined by a Bruel and 
Kjaer Sine Random Generator. The intensity of the emitted ; 
sound was kept constant by using a compressor circuit 
including a microphone set at a constant distance from 
the centre of the speaker. The receiver microphone was 
connected to a Level Recorder which traced the Sound 
Pressure Levels over a full range of audio frequencies.
The Level Recorder was mechanically driven by the Sine 
Random Generator.

Only the essential parts of the apparatus, that is the 
speaker, barrier and receiver microphone were placed 
within the chamber. The remainder of the equipment was 
kept outside the chamber in a control room (see figure 
4.6 and plates 1-2).

4.3.2 Free Field Experiments
The free field environment was simulated by ensuring that
the ceiling, walls and floor of the chamber were all
covered in absorbent materials. In order that diffraction 
could take place around all of its perimeter, the barrier
was suspended by thin wires from the ceiling of the chamber.
The experiments for sound attenuation by the barrier were
performed by monitoring the sound pressure levels at the
receiver1s point first with no barrier and then with the
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PLATE 1. SOUND SOURCE, BARRIER & MONITORING MICRO­
PHONE ON THE CONCRETE FLOOR OF THE ANECHOIC 
CHAMBER

PLATE 2. THE APPARATUS IN THE CONTROL ROOM EXTERNAL 
TO THE ANECHOIC CHAMBER.
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barrier in position. The insertion losses afforded by 
the barrier could then be determined by comparing the 
two sets of results. ihe results are tabulated in 4.4.

In all experiments, the barrier is assumed to be in the 
xy-plane of a Cartesian co-ordinate system, with the 
y-axis corresponding to the bottom edge of the barrier 
and the origin 0 on the centre of this edge. The direction 
of the z-axis is chosen so that the receiver's position 
has positive z-co-ordinate and the source has negative 
z-co-ordinate. Two of the configurations for the 1 m x 1 m 
barrier and two for the 1.5 m x 0.75 m barrier are 
illustrated in figure 4.7.

The results for the 1 m x 1 m barrier are tabulated in
4.4 in tables 1-10. The results for 1.5 m x 0.75 m 
barrier appear in tables 11-14.

4.3.3 Experiments with a Reflecting Ground 
The reflecting ground environment was simulated in the 
anechoic chamber in a similar way to that of the free 
field, except that only the walls and ceiling were kept 
fully absorbent, while the floor was designed to allow for 
ground reflections. In all cases the barrier was positioned 
on the ground, as this represents the most typical position. 
Note that in the free field situation, the barrier was 
suspended to allow a truly representative free field 
configuration. The diffraction therefore is allowed to 
take place around the three edges of the barrier not in
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contact with the ground. The method of ascertaining 
the sound pressure levels at the monitoring position P 
both with and without the barrier at monotonic frequencies 
were the same as in the free field case.

The two barriers used were the 1 m x 1 m square barrier 
and the 1 m x 1 m barrier with a 0.5 m x  0.5 m section 
removed (see figure 4.3). The Cartesian co-ordinate 
reference system was also chosen in the same way in 
relation to the barrier, so that in this case, the origin 
0 was the point of contact between the barrier and the 
ground in the centre of the bottom edge of the barrier.

The following tables represent the experimental results 
obtained for the two barriers. It should also be noted 
that two different ground surfaces were assumed. The 
first of these was the base concrete floor of the chamber 
and the second was where the floor was covered with a 
partially absorbent material. The results for the 
base concrete ground are given first. In the results for 
the absorbent ground, the 'Insertion Loss' is taken to be 
the sourid level difference obtained by the combined 
effect of inserting the barrier and covering the ground 
with the absorbent material , so that the 'sound pressure 
level without the barrier' may be interpreted as the sound 
pressure level with no barrier and no absorbent covering 
of the ground, whilst the 'sound pressure level with the 
barrier' is taken to be the sound pressure level when 
the floor is covered with absorbent material and the 
barrier is placed in position.
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The results for the square barrier on the concrete floor 
of the chamber are tabulated in 4.4 in tables 15-18 
and the results for the barrier with the cut away section 
on the same surface appear in tables 19-22. The results 
for the square barrier on the partially-absorbent ground 
are tabulated in tables 23-30.

4.4 Tables of Predicted and Measured Results 
Both measured and predicted results are presented in this 
section. Free field results appear in 4.4.1 and reflect­
ing ground results appear in 4.4.2.

4.4.1 Tables of Insertion Losses in the Free Field 
The predicted results were obtained using the computer 
program described in 4.2.1 based on the free field 
theory developed in Chapter 2. Two different barriers 
were used, the 1 m x 1 m square barrier (tables 1-10) 
and the 1.5 m x 0.75 m barrier (tables 11-14). The source 
and monitoring positions were raised to represent differing 
diffraction aspects and distances from the barrier. Four 
of the configurations represented, those corresponding to 
tables 1, 6, 11 and 13, are sketched in figure 4.7.

- 88 -



TABLES 1-10 Free Field, Barrier 1 m x 1 m 
TABLE 1 Source Position (x, y, z) = (0.5, 0, -1)

Monitoring Position (x, y, z) = (0.5, 0, 1)

Free Field Barrier 1 m x 1 m (see figure 4.7a)
Insertion Losses (dB)

Frequency of 
Source (Hz) Measured Predicted

125
250
500
lk
2k
4k
8k

0
3
0
7

20
27
30

0
1
3
8

10
14
18

TABLE 2 Source Position (x, y, z) = (0.5, 0, -1)
Monitoring Position (x, y, z) = (0.5, 0, 1.5)

Free Field Barrier 1 m  x 1 m
Insertion Losses (dB)

Frequency of 
Source (Hz) Measured Predicted

125
250
500
lk
2k
4k
8k

0
0
0
5

16
19
27

0
1
2
6
9

11
16
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TABLE 3 Source Position (x, y, z) = (0.5, 0, -1)
Monitoring Position (x, y, z) = (0.5, 0, 2)

Free Field Barrier 1 m x 1 m
Insertion Losses (dB)

Frequency of 
Source (Hz)

125
250
500
lk
2k
4k
8k

Measured

0
2

-3
6

16
20
16

Predicted

0
0
1
5
9

11
13

TABLE 4 Source Position (x, y, z)
Monitoring Position (x, y, z) 

Free Field Barrier 1 m x 1 m
Insertion Losses (dB)

(0.5, 0, -1) 
(0.5, 0, 3)

Frequency of 
Source (Hz)

125
250
500
lk
2k
4k
8k

Measured

-1
0
0
2
11
20
15

Predicted

0
0
1
4
8

11
14
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TABLE 5 Source Position (x, y, z) = (1, 0, -1)
Monitoring Position (x, y, z) = (1, 0, 1.5)

Free Field

Frequency of 
Source (Hz)

125
250
500
lk
2k
4k
8k

Barrier 1 m x 1 m 
Insertion Losses (dB)

Measured

5 
7 
7
6 
6 
6 
7

Predicted

1
5
6
7 
6
8 
6

TABLE 6 Source Position (x, y, z) = (1, 0, -1)
Monitoring Position (x, y, z) = (1, 0, 2)

Free Field Barrier 1 m x 1 m (see figure 4.7b)
Insertion Losses (dB)

Frequency of 
Source (Hz)

125
250
500
lk
2k
4k
8k

Measured

-2
4
5
6
3
4 
7

Predicted

1
5
5
6
5
6 
6
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TABLE 7 Source Position (x, y, z) = (1, 0, -1)
Monitoring Position (x, y, z) = (1, 0, 3)

Free Field Barrier 1 m x 1 m
Insertion Losses (dB)

Frequency of 
Source (Hz) Measured Predicted

125
250
500
lk
2k
4k
8k

1
4
3 
6 
6
10
4

TABLE 8 Source Position (x, y, z) = (1, 0, -1)
Monitoring Position (x, y, z) = (0.5, 0, 3)

Free Field Barrier 1 m x 1 m
Insertion Losses (dB)

Frequency of 
Source (Hz) Measured Predicted

125
250
500
lk
2k
4k
8k

1
4
6
12
7
9

15

1
2
8

12
8
9

20
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TABLE 9 Source Position (x, y, z) = (0.5, 0, -1)
Monitoring Position (x, y, z) = (1, 0, 2)

Free Field

Frequency of 
Source (Hz)

125
250
500
lk
2k
4k
8k

B arrier 1 m x 1 m 
Insertion Losses (dB)

Measured

0
1
1

11
12
20
23

Predicted

0
1
4

13
17
15
19

TABLE 10 Source Position (x, y, z) = (0.5, 0, -1)
Monitoring Position (x, y, z) = (1, 0, 3)

Free Field

Frequency of 
Source (Hz)

125
250
500
lk
2k
4k
8k

Barrier 1 m x 1 m 
Insertion Losses (dB)

Measured

2
1
3
9

17
13
25

Predicted

0
1
2
9

22
11
18
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TABLES 11-14 Free Field, Barrier 1.5 m x 0.75 m

TABLE 11 Source Position (x, y, z) = (0.38, 0, -1)
Monitoring Position (x, y, z) = (0.38, 0, 2)

Free Field Barrier 1.5 m x 0.75 m 
Insertion Losses (dB)

(see figure 4.7c)

Frequency of 
Source (Hz)

125
250
500
lk
2k
4k
8k

Measured

-8
-3
6
5

16
18
23

Predicted

2
5 
7
6 
7 
7 
6

TABLE 12 Source Position (x, y, z) = (0.38, 0, -1)
Monitoring Position (x, y, z) = (0.38, 0, 3)

Free Field

Frequency of 
Source (Hz)

125
250
500
lk
2k
4k
8k

Barrier 1.5 m x 0.75 m 
Insertion Losses (dB)

Measured Predicted

-2 1
-5 4
5 6
7 5

17 6
16 5
38 5
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TABLE 13 Source Position (x, y, z) = (0.38, 0, -1)
Monitoring Position (x, y, z) = (0.75, 0, 2)

Free Field Barrier 1.5 m x 0.75 m  

Insertion Losses (dB)
(see figure 4.7d)

Frequency of 
Source (Hz) Measured Predicted

125
250
500
lk
2k
4k
8k

-10
-5
2
9

20
16
27

2
4
6
4
7
8
5

TABLE 14 Source Position (x, y, z)
Monitoring Position (x, y, z) 

Free Field Barrier 1.5 m x 0.75 m
Insertion Losses (dB)

(0.38, 0, -1) 
(0.75, 0, 3)

Frequency of 
Source (Hz) Measured Predicted

125
250
500
lk
2k
4k
8k

-4
-8
4
4

18
14
33
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4.4.2 Tables of Insertion Losses in the Reflecting Ground 
Environment

The predicted results were obtained using the computer 
program described in 4.2.2 based on the free field theory 
developed in Chapter 3. Two different ground surfaces 
were employed in the anechoic chamber for the experimental 
results. First, the uncovered concrete floor of the chamber 
and secondly, the same floor covered with partially-absorbent 
material. These surfaces were represented in the theoretical 
case by assuming ground reflection coefficients of 1 in the 
case of the concrete floor and of 0.5 in the case of the 
partially-absorbent ground.

Two different barriers were used, the 1 m x 1 m square barrier 
and the 1 m x 1 m barrier with the 0.5 m x 0.5 m section 
cut away (see figure 4.3). The results for the concrete 
ground configurations are tabulated in tables 15-18 for 
the 1 m x 1 m barrier and in ..tables 19-22 for the barrier 
with a cut away section. The results for the partially- 
absorbent ground configurations in the presence of the 
1 m x 1 m barrier are presented in tables 23-30.
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TABLES 15-22 Ground Surface - Concrete
TABLES 15-18 Ground Surface - Concrete, Barrier 1 m x 1 m

TABLE 15 Source Position (x, y, z) = (0.5, 0, -1)
Monitoring Position (x, y, z) = (0.5, 0, 2) 

Ground Surface - Concrete Barrier 1 m x 1 m
Insertion Losses (dB)

Frequency of
Source (Hz) Measured Predicted

125 0 -2
250 3 -1
500 6 6
lk 0 13
2k 22 10
4k 21 12
8k 28 22

TABLE 16 Source Position (x, y, z) = (0.5,
Monitoring Position (x, y, z) = (0.5,

Ground Surface - Concrete Barrier 1 m x 1 m 
Insertion Losses (dB)

Frequency of
Source (Hz) Measured Predicted

125 0 -2
250 1 1
500 7 4
lk 3 8
2k 5 11
4k 19 22
8k 20 19
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TABLE 17 Source Position (x, y, z) = (0.5, 0, -1)
Monitoring Position (x, y, z) = (1, 0, 2) 

Ground Surface - Concrete Barrier 1 m x 1 m
Insertion Losses (dB)

Frequency of 
Source (Hz) 

125 
250 
500 
lk 
2k 
4k 
8k

Measured

0
5
3

16
13
23
23

Predicted

-1
5

11
7

24
23
16

TABLE 18 Source Position (x, y, z) = (0.5, 0, -1)
Monitoring Position (x, y, z) =(1, 0, 3) 

Ground Surface - Concrete Barrier 1 m x 1 in
Insertion Losses (dB)

Frequency of 
Source (Hz) 

125 
250 
500 
lk 
2k 
4k 
8k

Measured

2
1
2
6

17
17
27

Predicted

-1
3

10
7

20
17
17
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TABLE 19-22 Ground Surface - Concrete, Barrier 1 m  x 1 m
with 0.5 m x 0.5 m Section Cut Away (see figure 4.3)
TABLE 19 Source Position (x, y, z) = (0.5, 0, -1)

Monitoring Position (x, y, z) = (0.5, 0, 2) 
Ground Surface - Concrete Barrier 1 m x 1 m with

0.5 m x 0.5 m section cut away 
Insertion Losses (dB)

Frequency of
Measured Predicted

Source (Hz)
125 0 -1
250 1 1
500 8 8
lk 3 5
2k 2 2
4k 0 2
8k 10 5

TABLE 20 Source Position (x, y, z) = (0.5, 0, -1)
Monitoring Position (x, y, z) = (0.5, 0, 3) 

Ground Surface - Concrete Barrier 1 m x 1 m with
0.5 m x 0.5 m section cut away 

Insertion Losses (dB)
Frequency of

Measured Predicted
Source (Hz)

125 1 -2
250 1 1
500 1 8
lk 12 12
2k 0 3
4k 1 7
8k 0 4
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TABLE 21 Source Position (x, y, z) = (0.5, 0, -1)
Monitoring Position (x, y, z) = (1,0, 2)

Ground Surface - Concrete Barrier 1 m  x 1 m  with
0.5 m x 0.5 m section cut away

Insertion Losses (dB)
Frequency of
Source (Hz)

125
250
500
lk
2k
4k
8k

Measured

0
0
1
9
0
7

10

Predicted

-1
4 

17 
13
8
6
5

TABLE 22 Source Position (x, y, z) = (0.5, 0, -1)
Monitoring Position (x, y, z) = (1, 0, 3) - 

Ground Surface - Concrete Barrier 1 m x 1 m with
0.5 m x 0.5 m section cut away 

Insertion Losses (dB)
Frequency of
Source (Hz)

125
250
500
lk
2k
4k
8k

Measured

-1
1
1
3
3
2

10

Predicted

-1
2
9

10
14
5
4
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TABLES 23-30 Ground Surface - Partially Absorbent,
Barrier 1 m  x 1 m
TABLE 23 Source Position (x, y, z) = (0.5, 0, -1)

Monitoring Position (x, y, z) = (0.5, 0, 2) 
Ground Surface - Partially Absorbent Barrier 1 m x 1 m 

Insertion Losses (dB)
Frequency of 
Source (Hz) 

125 
250 
500 
lk 
2k 
4k 
8k

Measured

4
10
7

-10
26
17
35

Predicted

2
4
6

12
12
14
20

TABLE 24 Source Position (x, y, z) = (0.5, 0, -1)
Monitoring Position (x, y, z) = (0.5, 0, 3) 

Ground Surface - Partially Absorbent Barrier 1 m x 1 m 
Insertion Losses (dB)

Frequency of 
Source (Hz) 

125 
250 
500 
lk 
2k 
4k 
8k

Measured

7
11
13
4
4

18
22

Predicted

2
3
6
9

13
19
19
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TABLE 25 Source Position (x, y, z) = (0.5, 0, -1)
Monitoring Position (x, y, z) = (1, 0, 2) 

Ground Surface - Partially Absorbent Barrier 1 m x 1 m 
Insertion Losses (dB)

Frequency of 
Source (Hz) 

125 
250 
500 
lk 
2k 
4k 
8k

Measured

5
6 
4

18
14
26
27

Predicted

3
5
8
9

23
19
19

TABLE 2 6 Source Position (x, y, z) = (0.5, 0, -1)
Monitoring Position (x, y, z) = (1, 0, 3) 

Ground Surface - Partially Absorbent Barrier 1 m x 1 m
Insertion Losses (dB)

Frequency of 
Source (Hz) 

125 
250 
500 
lk 
2k 
4k 
8k

Measured

4
7
6
9

16
24
31

Predicted

2
5
7
9

24
17
20
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TABLE 27 Source Position (x, y,. z) = (1, 0, -1)
Monitoring Position (x, y, z) = (0.5, 0, 2) 

Ground Surface - Partially Absorbent Barrier 1 m  x 1 m 
insertion Losses (dB)

Frequency of 
Source (Hz) 

125 
250 
500 
lk 
2k 
4k 
8k

Measured

5
7 
0

18
8

17
18

TABLE 28 Source Position

Predicted

2
5

15
15
10
14
18

(x, y, z) = (1, 0, -1)
Monitoring Position (x, y, z) = (0.5, 0, 3) 

Ground Surface - Partially Absorbent Barrier 1 m x 1 m 
Insertion Losses (dB)

Frequency of 
Source (Hz) 

125 
250 
500 
lk 
2k 
4k 
8k

Measured

5
8
2

15
4

14
12

Predicted

2
3

14
11
9

16
20
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TABLE 29 Source Position (x, y, z) = (1, 0, -1)

Monitoring Position (xf. y, z) = (1/ 0, 2) 
Ground Surface - Partially Absorbent Barrier 1 m x 1 m 

Insertion Losses (dB)
Frequency of 
Source (Hz) 

125 
250 
500 
lk 
2k 
4k 
8k

Measured

9
5

11
-7
16
19
10

TABLE 30 Source Position

Predicted

4
10
7 

13
9
8 
9

(x, y, z) = (1, 0, -1)
Monitoring Position (x, y, z) = (1, 0, 3) 

Ground Surface - Partially Absorbent Barrier 1 m x 1 m
Insertion Losses (dB)

Frequency of 
Source (Hz) 

125 
250 
500 
lk 
2k 
4k 
8k

Measured

10
6

12
8

-5
8
0

Predicted

3
9
6
8
8
8
9
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4.5 Analysis of Results
4.5.1 Free Field Environment
1. Barrier 1 m x 1 m
(a) Both S and P in Line with the Centre of the Barrier

(Tables 1-4)
The experimental results show a decrease in Insertion Loss 
with distance from 30 dB with P at 1 m from the screen to 
20 dB with P at 3 m. The theoretical results show a 
similar statistic except that the values are smaller at
18 dB and 14 dB respectively. In all of the tables 1-4,
the values of Insertion Loss over the frequency range 
show a similar trend in that the values are relatively 
low for frequencies of up to lk and larger for the higher 
frequencies.

(b) Both S and P in Line with the Top Edge of the Barrier 
(Tables 5-7)

This situation represents the limiting diffraction case. 
The results here show no decrease in the Insertion Loss 
with increase of distance of P from the screen. The 
Insertion Loss appears to be fairly constant at distinct 
frequency bands from 250 Hz to 8k Hz. In these cases, 
there is an extremely good correspondence between the 
predicted and measured results.

(c) One of S or P in Line with the Centre of the Barrier, 
whilst the other is;in Line with an Edge (Tables 8-10)

The experimental results show that there is an increase 
in Insertion Loss with distance of P from the screen.

- 105 -



It is of interest to note that the Insertion Loss is 
greater when the source S is in line with the centre of 
the barrier and P in line with the edge than when S is in 
line with the edge and P in line with the centre. This 
can be seen by comparing tables 8 and 10. Comparison 
between tables 8a and 10a show that the theory upholds 
this observation. This is to be expected because the 
source is nearer to the barrier in both cases and the 
barrier would tend therefore to move effective in its 
sound reducing capacity when the source is in line with 
the centre. Again there is a very good correspondence 
between predicted and measured results.

2. Barrier 1.5 m x 0.75 m
(a) Both S and P in Line with the Centre of the Barrier 

(Tables 11, 12)
Both the experimental and theoretical results show that 
Insertion Loss does not decrease with increase in distance 
of P from the screen. However, the theoretical results 
show generally lower levels of Insertion Loss throughout
and indicate that the Insertion Loss is more constant
with changes of frequency than the measured results.

(b) S in Line with the Centre of the Barrier and P in
Line with the Edge (Tables 13, 14)

The comments in (a) above are also applicable here, the 
correspondence between predicted and measured results 
again being rather poor.
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4.5.2 Barrier in the Presence of a Reflecting Ground
1. Barrier 1 m x 1 m on the Fully Reflecting Concrete Ground
(a) Both S and P in Line with the Centre of the Barrier 

(Tables 15, 16)
In this case there is a good correspondence between the 
predicted and measured results. There were generally low 
values of Insertion Loss at frequencies below lk Hz and 
higher value at the higher frequencies.

(b) S in Line with the Centre of the Barrier and P in 
Line with the Top Edge (Tables 17, 18)

Here there is a fairly good correspondence between the 
predicted and measured results. Again the Insertion 
Losses are higher at the upper end of the frequency 
range. An interesting observation is that the predicted 
Insertion Losses at the frequencies 500 Hz and lk Hz 
are of a rather unexpected nature in both cases (i.e.
P at 2 m and 3 m from the barrier).

2. Barrier 1 m x 1 m with a O . 5 m x O . 5 m  Cut Away 
Section

(a) Both S and P in Line with the Centre of the Barrier 
(Tables 19, 20)

Here there is a fairly good correspondence between the 
predicted and measured results. It is interesting to 
note that there is a tendency for higher Insertion 
Losses at the middle range of frequencies rather than 
at the upper end, and indeed that in the case where P
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is 3 m  from the screen, the measured Insertion Losses 
were practically zero at 2k Hz, 4k Hz and 8k Hz.

(b) S in Line with the Centre of the Barrier and P in 
Line with the Top Edge (Tables 21, 22)

Here there is a poor correspondence between the predicted 
and experimental results. Although these are higher 
predictions of Insertion Losses at the middle range of 
frequencies (as was observed in 2 (a) above), this was 
not borne out in practice.

3. Barrier 1 m x 1 m on the Partially Absorbent Ground 
Surface

(a) Both S and P in Line with the Centre of the Barrier 
(Tables 23, 24)

The experiment yielded erratic results for the Insertion 
Loss. The theoretical results appear to be more steady. 
Again there is a tendency for higher Insertion Losses 
at the upper end of the frequency range.

(b) S in Line with the Centre of the Barrier and P in 
Line with the Top Edge (Tables 25, 26)

Again the experimental measurements are somewhat erratic, 
although more stable than in (a). There is a fairly 
good correspondence between the predicted and measured 
results, although the measured Insertion Losses are 
consistently higher than predicted.
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(e) S in Line with the Top Edge of the Barrier and P 
in Line with the Centre (Tables 27, 28)

The measured Insertion Losses are higher with P. at a
distance of 2 m from the screen than at 3 m, although this
does not seem to be borne out by the computed values.
Otherwise there is a fairly good correspondence between
the predicted and measured results.

(d) Both S and P in Line with the Edge of the Barrier 
(Tables 29,30)

The measured results are somewhat erratic especially with P 
at a distance of 3 m from the screen. It appears that the 
higher values of Insertion Loss are not necessarily at the 
higher frequencies.

4.5.3 Summary of Results
The free field predictions of Insertion Loss due to inter­
posing the 1 m x 1 m barrier were usually well supported - 
by the site tests in the anechoic chamber. It was noted that 
the correspondence when the source and monitoring position 
were both in line with the edge of the barrier (the limiting 
diffraction case). The results were poor in the case of the 
rectangular 1.5 m x 0.75 m. It is not yet clear why this has 
happened, but a possibility is that there may be a flaw in 
the computer program for this particular dimension.
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In the fully reflecting ground situation, the predicted 
results were generally quite good. With the 1 m x 1 m
barrier with a missing section of 0.5 m  x 0.5 m the
results were better where the source was in line with 
the centre of the barrier and the monitoring position 
in line with the top edge than when both positions
were in line with the source. Where the 1 m x 1 m
barrier was used, the correlation between predicted 
and measured results were reasonably acceptable.

In the partially-reflecting ground situation, the 
predicted results were better when the monitoring 
position was in line with the top edge of the barrier 
and especially accurate when the source was also in 
line with the barrier's edge.

In most cases, the Insertion Losses tended to increase 
with increasing frequencies. Exceptions to this were 
in those cases where both the source and monitoring 
position were simultaneously in line with the same 
edge of the barrier.

In some cases it was noted that Insertion Loss decreased 
with increase in distance of monitoring position from 
the barrier, whereas in other cases, the Insertion 
Loss tended to remain constant.
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5. Conclusions and Recommendations for Further Research.
5.1 Conclusions

As explained in Chapter 1, the aim of this thesis 
was to formulate a method of predicting the Insertion 
Loss due to finite barrier of arbitrary shape based 
on the theory of diffraction around the edges of the 
barrier. This aim has been achieved in the cases 
of a free field environment and in the presence of 
a reflecting ground - The theory is based on 
Fresnel-Kirchhoff diffraction theory and is 
applicable to any shape and size of barrier. The 
source and monitoring positions are both supposed 
to be single points in space and they can assumed 
to be anywhere in relation to the barrier.

Transmission of sound through the barrier may be 
assumed a constant in the range 0 to 1. The theory 
applies only for single monotonic source frequencies. 
Suggestions for extending this to multiple fre­
quencies and frequency ranges appear in 5.2. In the 
case of a reflecting ground environment, the amount 
of reflection from the ground is simplified to two 
constant parameters in the range 0 to 1, the 
separate parameters representing reflection for the 
ground on the two sides of the barrier. The theory 
incorporated a technique of mathematically sub­
dividing the region of the barrier’s surface into 
finite elements for the purpose of providing a 
solution to the Fresnel-Kirchhoff diffraction 
formula.
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In the reflecting ground case, the theory also 
employed the 'Method of Images' of ground reflection 
in order to solve the diffraction problem for the 
separate component ray paths which occur when 
reflections take place.

The theory was converted into computer programs in 
order to effect the calculations for particular 
configurations of source, barrier and monitoring 
position. These programs were executed for test 
configurations and the results compared with 
corresponding experimental site tests conducted in 
an anechoic chamber. The results were compared 
and discussed.

In all, the aims of this work were achieved to a 
satisfactory extent in view of the above discussion.

5•2 Recommendations for Further Research

5.2.1 Extension of the sound source properties.

It was assumed that the sound emanated from a 
single point source of monotonic frequency. 
The theory could be extended to allow for 
multiple sources of multiple frequencies 
(using summation techniques) or of frequency 
ranges (using integration over the frequency 
range).

5.2.2 Extension of the environment to allow for 
further reflections
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The reflecting ground environment could be 
extended to a totally enclosed environment 
by considering reflections from walls and 
ceiling, too. The 'Method of Images' would 
also be used on the additional surfaces in 
extending the theory. Also the possible 
presence within the environment of other 
objects which would influence the sound 
field could be considered, for example 
'furniture' or large machinery.

5.2.3 In"situ representation.

If the above recommendation were to be 
implemented, then the resulting theory would 
act as a very flexible method of predicting 
performance of a noise-reducing finite barrier 
in a typical in-situ environment, such as an 
office or factory.

5.3 Optimization of the elements forming the subdivision 
of the barrier's surface.

It was stated earlier in this work that a discussion 
would be given on optimizing the choice of the finite 
elements Rj,j=l,2,...,n forming the mathematical 
subdivision of the barrier's surface. It may be 
noted that in Chapter 4 where the computer predictions 
were made, the subdivision of the barrier was always 
into the same number of elements, given the size of 
the barrier. Some work was done during the develop­
ment of this thesis in choosing these optimum numbers
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of elements. This was done by running the programs 
in given configurations of source, barrier and 
monitoring positions a number of times, varying 
only the number of elements comprising the theor­
etical subdivision. It was found, as would be 
expected, that the Sound Pressure predictions 
obtained were poor when the subdivision consisted 
of few elements and then converged to steady values 
upon reaching an optimum number of elements. By 
frequent test-running of this kind, it became 
obvious which numbers of elements was a most satis­
factory optimum for most barrier configurations.
If more elements than the optimum are chosen, the 
results will be just as accurate, of course, but the 
computer programs would in these circumstances 
perform more calculations making them more costly to 
run. For this reason, the optimum should be decided 
upon in given configuration for most economical use 
of the computer.
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APPENDIX 1 Computer Flow Diagrams

This appendix comprises flow diagrams of the two computer 
diagrams which were used in the calculation of predicted 
results. The first diagram represents the program used 
for predictions of Insertion Losses in the free field and 
which is described in 4.2.1. The second diagram represents 
the program used for predictions in reflecting ground 
environments and which is described in 4.2.2.
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Flow Diagram 1 - Calculation of predicted Insertion Loss 
due to an arbitrarily-shaped barrier in the free field.

Start

Read parameters relating to the source 
S and Monitoring Position, P, size and 
shape of barrier and chosen subdivision 
into elements.

Print the parameters in the form of 
numerical values combined with a 
schematic diagram.

nI'
Calculate and print the Sound Pressure 
Level at P with no barrier present (see 
equation (2.7)).

v
For each element R. in the subdivision ofJ
the barrier, calculate Re(Fj) and 1 m (Fj) 
(see equation (2.25)).

\kn n
Calculate E Re(Fj) and E lm(Fj) 

J=1 j=l

\k
Calculate the Sound Pressure Level at P 
with the barrier in position (see equation 
(2.31)).

Calculate the Insertion Loss due to the barrier 
(see equation (2.32))

Print the results for the frequency f.

v
Finish



Flow Diagram 2 - Calculation of predicted Insertion Loss 
due to an arbitrarily-shaped barrier in a reflecting ground 
environment.

(A)

Start

Read parameters relating to the source 
S and Monitoring Position P, size and 
shape of barrier, chosen subdivision 
into elements and ground reflection 
coefficients

\k
Print the parameters in the form of 
numerical values combined with a 
schematic diagram.

\K-> Read required source frequency f.
v

Calculate and print the Sound Pressure 
Level at P with no barrier present (see 
equation (3.8))

\1/Calculation In (£,m), In (£’,m), I (Aim1),

In(£,,m’) (see equation (3.37)) using
the same method as the free-field program,
by summation over the elements R. of the

3
subdivision.

\l/
Calculate E given by equation (3.6a)

\k
(B)
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(A)*

(B)

_ iCalculate w and w (equations (3.29) & (3.36))

Calculate G(w) and G(w), using a Fresnel 
Integral subroutine and equation (3.38)

\K

Calculate the disturbance U(P) at P in the 
presence of the barrier from equation (3.39) 
[or equation (3.41) if the source is on the 
ground].

Calculate the Sound Pressure Level at P 
with the barrier in position, using equation 
(3.42).

Calculate the Insertion Loss due to the 
barrier from equation (3.1) for the 
frequency f.

v
Yes Are predictions required for another 

frequency?

No

v
Finish
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