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Abstract

The work described in this thesis deals with the noise reduction
performance of plane acoustic barriers of finite dimensions.
Equations are developed for prediction of sound attenuation based
on Fresnel-Kirchhoff diffraction theory. The main feature of
this technique is that attenuation can be predicted regardless

of the shape and size of the barrier and of the proximity of
source and receiver to the barrier. The theory is initially
developed for the case of free-field environments and is
subsequently extended to reflecting ground conditions. Computer
programs were developed to perform the attenuation calculations
in given environments. .The programs are driven by a set of
parameters which uniquely define the source, barrier and environ-
mental configuration. Experimental work was carried out in an
anechoic chamber using a series of different source and barrier
configurations. The experimental results were tested against the
theory by applying the appropriate parameter values to the compu-
ter programs.
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1. INTRODUCTION

1.1 Review of previous research

Extensive literature is available on the attenuation due
to semi-infinite barriers. These are classified as having
finite height and infinite length. Particular emphasis is
given to outdoor performance of noise attenuation due to
barriers such as motorway embankments and fences (see

Jonasson [1], Pierce [2] and Scholes et al [3]).

There is a dearth of published work on the noise attenua-
tion due to finite barriers. For example, Kurze [4]
reviews the contemporary literature up to 1974 and there

was scant reference to finite barriers.

Maekawa [5,6] postulates a method for the prediction of

the attenuation due to a finite barrier on reflecting
ground by applying the method of calculation of diffrac-
tion over the top edge of a serr.i-infinite. screen also to the
ends of the finite screen. However his theory 1limits the
location of source and monitoring point and also the
barrier is restricted to rectangular shapes. Kurze and
Anderson [7] deal with finite barriers in a way which
predicts the length of the barrier required in the
presence of an infinite line source that gives approxi-

mately the same attenuation as an infinitely 1long barrier

Considering noise control in enclosed working environments ,
Moreland and Minto [8] investigated the inclusion of a

barrier in one particular process plant based on energy



density equations and estimations of room absorption and
source directivity. Royster and Stephenson [9] have
published a review of measured noise characteristics in
several industrial environments. Other wo;k on the same
subject has been mainly concerned with experimental
research and prediction of noise effects based on

empirical equations and known experimental results.

From the above background work it is shown that rigorous
predicted solufions have been confined to straight-edged
semi~-infinite barriers. Also no theoretical solution has
been given for finite barriers except that of Phillips
et al [10,11], where the barrier has been subdivided into
elements to enable a rigorous solution of any barrier
shape to be obtained. The only other work on finite
barriers has been restricted to experimental results for
definite limited cases. It is therefore the aim of this
work to investigate the effect of noise reduction by
finite barriers and to provide information where any
orientation in the shape of barrier is given. The
theoretical background is based on the diffraction.theory
outlined by Born and Wolf [12] from which an easy to use

computer package has been compiled.

1.2 Outline of work presented in this thesis

Initially a theoretical approach is made, based on a
combination of classical diffraction theory and an

elemental subdivision of the barrier's surface, of



predicting the attenuation of sound by a finite barrier
in a free space environment. It is assumed that the
sound source is a point source of monotonic frequency.
This assumption was made for two reasons, firstly
because this type of source lends itself most favourably
to a clear description of the diffraction technique and
secondly because it acts as a basic model upon which the
theory for more complex types of source may be developed

at a later stage.

It is assumed that the barrier is two-dimensional. The
free space environment is initially assumed, again
because it serves as a basic theoretical model which can
be developed to suit more complex environments at a later

stage. The free-field theory is described in Chapter 2.

In the next step, the theory of the free-field environment
is extended to that in which a reflecting ground is taken
into account. This theory uses the method of images with
respect to the ground of the sound source and receiver's

position. The theory is covered in Chapter 3.

‘Experiments in controlled conditions within an anecﬁdic
chamber were carried out using configurations of sound
source, barrier and receiver's position which corres-
ponded with the theory in Chapters 2 and 3. The results

of these experiments are presented in Chapter 4.

The theory of Chapters 2 and 3 was converted into



computer programs which were developed by the author.
These programs were written in Fortran V language, and
developed on the IBM computer belonging to Sheffield

City Polytechnic. These programs enabled the calculation
of predicted attenuation results based on the theory of
Chapters 2 and 3 by inputting parameters which uniquely
define a particular configuration. The results obtained
by executing these programs are presented in Chapter 4

and are compared with the corresponding experimental results.

Proposals for extending this work to more typical in-situ

working environments are given in Chapter 5.



2. NOISE REDUCTION BY A PLANE FINITE SCREEN IN THE FREE
FIELD

2.1 Introduction

In this Chapter, formulae are derived for the prediction
of the sound pressure distribution when a sound source

and plane screen of finite dimensions are positioned in

a free-field environment. It is assumed initially that
the sound is transmitted from a single point source S

and that it is monotonic. The more general case of a
source emitting multiple frequency sound will be discussed

in Chapter 5.

The work applies to a planar screen of finite dimensions.
Sound transmission by the screen is treated as a constant
coefficient in the range O to 1, where O denotes that sound
is transmitted through the screen. This coefficient

depends on the material of which the screen is composed.

A novel feature of the theory developed here is that there
is no restriction on the shape or size of the screen for the
formulae to be valid, except that the screen should be
finite and two-dimensional. The method is also applicable
to barriers with holes. This is demonstrated in more

detail in 2. 3.

2.2 Insertion Loss by Interposing the Screen

2.2.1 The Insertion Loss at Any Position Within the Sound
Pressure Field

In order to predict changes in the sound pressure distri-

bution after the barrier is placed in position, it is



necessary to predict the change in Sound Pressure Level
(SPL) at any monitoring position P within the field and at
each location monitoring the predicted SPL both before and
after the barrier is placed in position, the change in
sound pressure distribution can be mapped. Thus to
formulate a method of predicting the sound pressure
distribution, it is sufficient to determine the Insertion
Loss IL(P) at any required position P in the sound field,
where IL(P) is defined by equation (2.1).

IL(P) = SPLO(P) - SPLB(P), (2.1)
where

SPLO(P) is the SPL at P in the absence of any

screen
and

SPLB(P) is the SPL at P after the screen is placed

in position

2.2.2 Calculation of SPLO

Since the environment is assumed to be free field and the
sound is monotonic transmitted from a point source, S,

the sound radiates spherically (see Born and Wolf [12]) and
the complex quantity of sound pressure, or disturbance, U0

at P is given by the Spherical Wave Equation (2.2).

UO(P) - ég1kd ’

d

(2.2)

where
d is the distance SP,
k is the wave number of the operating frequency
(ie k = 271/)A, where A is wavelength),

and

A is the amplitude at unit distance from S.
-6 -



From established properties of wave-theory (eg Born and Wolf
[12]), the Intensity I at P is related to the disturbance
U by theyformula

I(P) = |U(P)|? (2.3)
and it is also known (see Beranek [13]) that the SPL is
related to the Intensity by the formula

SPL(P) = 10 logio I(P) + 0.2 dB,

I

ref

where I . is the reference intensity of 10-12 W/m?.

ef
Hence, the SPL is related to the disturbance by the
equation

SPL(P) = 10 log,,|U(P)|* + 0.2 dB (2.4)

Iref

Substituting equation (2.2) into equation (2.4), it
" follows that

SPLO(P) = 10 log;o|A]® + 0.2 dB (2.5)

2
Iref'd

Now suppose that SPL; is defined as the SPL at unit
distance (ie 1 metre) from S. Then by substituting
d = 1 into equation (2.5), it follows that
SPL; = 10 log;o|A|® + 0.2 dB. (2.6)
Iref
If equation (2.6) is now substituted into equation (2.5),

then SPLO(P) can be defined in terms of SPL; and d as

follows
SPLO(P) = SPL; - 20 log,;, d dB (2.7)

2.2.3 Calculation of SPL,(P)

Determination of the SPL when the barrier is inserted is a

more complicated procedure. It is required to derive an



expression for SPLB(P) which is generally applicable to any
configuration of source, monitoring position and screen
satisfying the conditions detailed in Chapter 1. This
procedure is important because it forms the basis of the
theory developed subsequently in this paper. To the author's
knowledge, this technique has not previously been derived

in such a widely applicable form by other authors and it is
for this reason that a full and detailed explanation is given.
A discussion of the advantages of this technique may be

found in (2.3).

The technique is based on classical wave diffraction theory which
is described in Born and Wolf [12]. A brief summary is necessary
of those aspects of the theory which are applicable to the

work in this paper. Suppose the plane finite barrier is

placed between S and P. Then diffraction will take place

around the edge of the barrier, so that the total amplitude

of the disturbance at P results from all diffracted rays which
pass through P and any direct rays from S»to P which are not
obstructed by the barrier (see fig 2.1). Let it initially

be assumed that the transmission coefficient of the barrier

is zero. The more general case of a constant anywhere in

the range O to 1 will be considered later in this Chapter.
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Suppose now that a Cartesian co-ordinate system is defined
as follqws. Let the origin O lie somewhere on B, the
region occupied by the barrier, with x- and y- axes
defined in the plane of the barrier, and with the z-

axis constructed so that the positive z-direction points
into the half-space containing P (see fig 2.1). Let S

and P have co-ordinates (Xp, Yo, Zo) and (X1, Y1, Z1)

in this system.

Application of Babinet's Principle and Fresnel Diffraction
Theory

Let B be defined as the infinite region in the xy-plane

not occupied by the barrier. Now it will be necessary

to consider temporarily a very different barrier
configuration. Suppose that the region B is now occupied

by the same material as that from which the barrier is made
and that the region B, which represents the exact dimensions
of the barrier, is now an opening in this complementary
plane screen (see fig 2.2). Then the Fresnel-Kirshhoff
diffraction‘integral states that the disturbance U§(P) at

P due to the opening B in the infinite screen is given by

US(P) = - élJ k(M) 1065 (n,2) - cos(n,m)]ds
A 2 B m
(2.8)

where

2 and m are the variable distances from S and P

respectively to the point of integration

Q (x, y, 0) on B (see fig 2.2),
and

- 10 -
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(n,%2) and (n,m) are the angles S and P make with
the normal to the xy-plane at Q (see fig 2.3).

(see Born and Wolf).

Now reverting to the original configuration of the finite
screen as shown in fig 2.1, let UB(P) denote the disturbance
at P in this case. Then from Babinet's Principie, UB(P)

may be expressed in terms of UE(P) as follows

UB(P) = UO(P) - UE(P)’ (2.9)

where UO(P) was given in equation (2.2). It is immediate
from equation (2.4), that SPLB(P) may be expressed in
terms of UB(P) as follows

|U(P)|* + 0.2 B (2.10)

I

SPLB(P) = 10 logio

ref

In order therefore, to.obtain a solution to this equation
it is necessary to solve equation (2.9), but since UO(P)
is already known (equation (2.2)) the problem reduces to a
formulation of Uﬁ(P)' Thus it remains to solve the double
integral in equation (2.8).

A Method of Evaluating the Fresnel-Kirchhoff Integral in
the Case of a Noise-Reducing Screen

It is important to note that the Fresnel-Kirchhoff Integral
cannot be applied immediately in the form given in equation
(2.8). There are a number of reasons for this, the first
being that the integral is only applicable on regions whose
linear dimensions are small in comparison with their distances
from the source and monitoring position. In typical cases

of barrier design, this condition will not be satisfied,

since for example a large barriér is normally required and
also it is favourable to place the barrier either close to

- 13 -



the noise source or to the receiver for efficient noise
reduction. However, suppose the geometrical region
covered by the surface integration in equation (2.8) is
subdivided into smaller elemental regions R;, R,, ...,
R,, say, as shown in fig 2.4. Then, provided that the
dimensions of these elements are chosen correctly, the
integral will be separately applicable on each of these
regions, despite not being generaily applicable on the
whole region B.

For each j =1, 2, ..., n, let

U— (P) = AI\IJ 1k(2+m) [cos(n,%) - cos(n,m)] dS

(2.11)

- 14 -
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Then it is immediately obvious from equation (2,8) that

n
5 UE. (P). (2.12)
j=1 Y

Ug(P) =

In this paper, it will be assumed that the elements Rj

are rectangular for reasons which will become apparent
later. The dimensions of the elements Rj must be chosen
carefully to best suit the various conditions which make
the double integral applicable. A discussion of this
appears in 2.3, but at this stage it may be assumed that

these elements have already been chosen correctly.

It can be seen that the problem now reduces to that of
solving the double integral in equation (2.11)on any
valid rectangular element of the form Rj’ since the
solution of UE(P) will then follow immediately from

equation (2.12).

In order to be able to solve equation (2.11), certain
approximations must be made. These may be summarised as
follows. First, it is assumed that Rj is small enough for

the variations in the terms 'cos(n,%) - cos(n,m)' and '1/4m'

to be negligible over Rj' Let Oj be the centre point Rj with
co-ordinates (Xj’ Yj’ 0). Suppose also that the linear
dimensions of Rj are 2gj in the x-direction and 2n‘j in the
Y-direction (see fig 2.5). Let Lj and Mj be the distances
§6j and 635 respectively. Then the above assumption may be
expressed by equations (2.13).

On Rj’
cos(n,%) - cos(n,m) = cos(n,Lj) - cos(n,Mj)l

1/L.M,
J J (2.13)J

1Y

and 1/%m

- 16 -
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Hence equation (2.11) may be written
ik(L.+ M.
1k ( J J) I,

Uﬁ'(P) = —2Ai [cos(n,Lj)—cos(n,Mj) le F

L.M.
J A JMJ

(2.14)

where N
s ik (2+m)
I = e 11L(Lj+Mj) JJ e ds
R

J 7 :
J

(2.15)
It may be noted that the justification of making this
assumption is one of the criteria in choosing the dimensions
of the elements Rj and is therefore discussed later in the
thesis (Chapter 5). It should also be noted that the
technique of approximating variables to constants in the
Fresnel-Kirchhoff equation has also been used in the
theory of Fresnel and Fraunhofer diffraction at a small

aperture (see Born and Wolf [12] ) and in far-field diff-

raction by barriers (see McNulty et al [14] ).

The second assumption to be made is that the term
eik(2+m) in equation (2.15) is stili variable on Rj'

This is because the variation of k(&+m) [ = 27 (2*m) ]
will be appreciably large except for very 103g wavelengths
or where Rj is very smallf If either of theée exceptions

occurs, then the expression k(%+m) can be assumed constant

and equal k(Lj+Mj) on Rj and equation (2.14) becomes

U (P)= - Ai [cos(n,L )-cos(n,M )]e ™ (Fy™M5) 4g o
: 5T j j i3
J L.M.
33

(2.16).

whence the solution to equation (2.11) is complete.
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The remainder of this section considers the more common

ik (£+4m)

case, where the term e is assumed variable on Rj'

It will therefore be necessary to solve equation (2.15).

It can immediately be seen from fig 2.5 that

£2 = s9Q

(x-xQ)2 + (y-yQ)2 + zQ2
2 (2.17)

m2 = QP = (x-xi)2 + (y-yi)2 + z
and
L2§g = (XgF )2+ (Y3 )2 + z2
(2.18)
Mo = 0P = (Xo-x )z + (Yy-y )z + 2%

In making the approximations in equation (2.13) it was
assumed that the linear dimensions of Rj are small in

comparison with the distances °f R- from S and P. This
J

assumption is used again here to expand £ and m as a power
series in

x-X. , y-Y¥Y. , x-X. and y-Y. on R.

L. ITJ M.
giving

X,=Lj -(xo0-Xj) (x-Xj)+(yo-¥j) (y-¥j) + (x-Xj)2+(y-¥Y*)2 +

L. 2L .
J J

m=MJ: - (;: l_x..'f) (x—XJ.) + (y l—YJ.) (y—YJ.) + (x—XJ) 2+ (y—YJ )2 +

M. 2M .
J J

It will further be assumed that the size of Rj is such that

the terms (x-X.)2, (y-Y.)2, (x-X.)2, (y-Y.)2 and those in
2L . 2L. 2M. 2M.
J J J J



higher powers of (x—xb) and (Y_Yb) may be assumed negligible
compared with the leading terms Lj and Mj' Hence the above

equation reduces to

£ = L., - -X. -X.)+ -Y . -Y .

3 (xo J)(x J) &Yo 3)(y J)
L .

3 1 (2.19)

m- M - (x -X.)X-X JD+(y -Y.)(y-Y.)

J i 3 J i J J_
M.
J

on R.. Again the justification of this assumption is

discussed along with the choice of dimensions of Rj in
Chapter 5. It may also be noted here that this technique
of expanding the distances £ and m linearly in terms of
(x-X.) and (y—Yj)is also used in the method of Fraunhofer

v

diffraction for a small apperture( see Born and Wolf [12]).

Substituting equation (2.19) into equation (2.15) it
follows that

I.=1 J i(a (x-X )+b (y-Y ) )
J 4 _ J J J 3 d(x-X.)d(y-Y.)
J J
(2 .20)
where a.= -k x X. + x -X.
3 _o 3 i 3
L. M .
3 3 3 (2.21)
.= - -Y . 4+ -y
and b3 k y 3 ¥1 3
L. M.
L 3 3

The inner integral of equation (2.20) is readily solved

giving
5..
A 3 - -
e:.(aj. (x=X)4D (Y=Y ) | 5 (x-x.)=

-€ . 3
3



and since

* d(y-Yj)
lan
sin b _qg.
3q3
b_.
3
- Aif
N— OI
equation (2.20) becomes
sin a . . sin b q. if a.£f 0, b.£f 0
jJJ r J T
a. b .
J J
sin a6, | if a.40, b.=0
L n ir 0 73
a.
J
E sin b gq. .
if a.=0b. rf 0
J J - I
b .
J
if a.= Ob. =0
h ¢ nj J J
(2.22)
It may be noted here that the fourth wvalue I. = d.,

0 I

when substituted into equation (2.14) gives precisely
equation (2.16). From this, the condition that the
wavelength A is sufficiently long or the dimensions of
are sufficiently small for the term eik(£+m) to be

assumed constant on the Rj’s, may be incorporated into



the above by specifying that Ij=§j.n on Rj indepéndently

J
of the values of aj and bj' Observation of equations (2.14)
and (2.22) shows that it remains only to obtain a working

formulation of the term [cos(n,Lj) - cos(n,Mj)] in order to
be able to express U_ (P) in terms of measurable quantities.
R

J
This is done as follows. By definition of the angles
(n,%), (n,m) subtended at the variable point Q(x,y,0)
(see fig 2.3), it follows that the angles (n,Lj) and
(n,Mj) occur in the special case Q=Oj (see fig 2.6)., It

can be immediately observed from fig 2.6 that

= ' = -
cos(n,Lj) EE ZO
SO. L.
J J
and
cos(n,Mj) = -cos(w-(n,Mj)) = -PP' = -z
0.pP M.
J J
Hence
[cos (n,Lj)—cos(n,Mj)] = LJZ1— szo )
J J

Now by substituting equation (2.23) into equation (2.14),
and substituting equation (2.14)into equation (2.12), it

follows that

n
U (P) = -2iA )X F.
- ) 5542, i (2.24)
where‘
: ik(L.+M.)
Fj = sz1 - szo . e j 3 Ij’ (2.25)
L2 M2
J J

Ij is given by equation (2.22), aj and bj are given by

equations (1.21) and Lj and Mj by equations (2.18).
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This concludes the method of evaluating the Fresnel-
Kirchhoff integral (equation (2.8)) for the noise-
reducing screens, subject to the conditions concerning

the screen described in 2.1.

The Effect of Barrier Transmission and the Calculation
of SPLB(P)

Earlier it was explained that an expression for SPLB(P)
was required. It is now possible.to complete the
derivation of this expression in the case of zero

barrier transmission. By substituting equations (2.2)
and (2.24) into equation (2.9), the disturbance UB(P) at
P with the non-transmitting barrier in position may be
expressed by

ikd

Up(P) = Ae + 281 T F, , (2.26)

o,
>)l
.
il
ot}
[}

where d is the distance SP given by

d = YI(x = %)%y =y)*+(Z -2,)" ] (2.27)

It was also stated earlier in this section that
transmission of sound by the barrier will be treated as a
fractional constant in the range O to 1, where zero
denotes that the barrier is perfectly non-transmitting.
Let this coefficient be denoted by the symbol a. So far,
zero transmission (i.e. o = 0) only has been considered.
The disturbance UB(P) in this case was given by the

Babinet equation (2.9) which was

UB(P) = UO(P) - UE(P). (o = 0) (2.28a)
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It is necessary here to consider also the effect of non-
zero transmission. Suppose in the extreme case that the
barrier was perfectly transmitting (i.e. a = 1). This
is the equivalent situation of there being no barrier
present at all. In this case the Babinet equation (2.9)

would be

UB (P) = UQ (P), (@ = 1) (2.28Db)

since U (P.) represents the free-field disturbance.

To obtain an expression for UB (P), where, a is anywhere
between 0 and 1, the expressions in equations (2. 23a) and
(2.28b) are interpolated linearly in a to give the

general formulation of UD(P) as follows

UB (P) = UgdP)—(l-a). U _(p), (2.29)
B

where

Hence equation (2.26) becomes, in the general case,
ik
iMp) = ae ¥ 4+ 2a(1-a)if F. (2.30)
B d — J=1 J

The general expression for the required Sound Pressure
Level SPLg(P) at P with the barrier in position now follows
by substituting equations (2.30) and(2.6) into equation
(2.10) giving

n

SPLO (P)=SPL +20 log 1 coskd-2d(1-a)Z Im(F.)
& i 1°d A j=1

n
sin kd + 2d(1-a)Z Re(F .)
A j=1

1/2 (2.31)

(compare with equation (2.7) ).



It was stated in 2.2.1 that the purpose of this section
was to devise a method of predicting the Insertion Loss
IL(P) at P. The expression for IL(P) now follows by
substituting equationsb(2.31) and (2.7) into equation
(2.1), which gives

IL(P)=10 log 1

n -2 ~- n 2
[?os kd-2d(1-0)ZIm(F,)| + Ein kd+gg(1-a)23e(F.j
x j=1 ) j=1 J

where Fj is defined by equation (2.25).

It is now possible, by using equation (2.29), to formulate
a computer program which can be used to calculate the
Insertion Loss IL(P) at any given monitoring position P,
due to the interposition of the barrier. It may be
demonstrated here that the program requires the following
parameters of the configuration for input:

the co-ordinates (xo,yo,zo) and xl,yl,zl) of S and P,

the transmission coefficient o of the barrier,

the wavelength A of the source,

the Sound Pressure Level SPL1 at 1m from S in free space,

the number n of rectangular elements Rj forming the sub-
division of the finite region B occupied by the screen, and

for each element Rj’ j=1, 2, ..., n,
the half x- and y- dimensions Zj and nj respectively,

and the co-ordinates Xj’ Yj of its centre point.

In a particular configuration of source, screen and

monitoring position in the free field, the values of the
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above parameters uniquely define that configuration and
from those values, both the Sound Pressure Level SPLO(P)

at P in the absence of the barrier and the Insertion Loss
IL(P) due to the interposition of the barrier, may be
calculated numeriéally. The computef”program which
performs these calculations has been developed by the

author and is described in Chapter 4.

2.3 Summary

The aim of this chapter is to derive formulae which can be
used to predict the sound pressure field when a sound
source and plane screen of finite dimensions are placed

in free space. The method used was to consider any
monitoring position P in the field and to calculate the
Insertion Loss IL(P) at P due to the interposition of the

barrier.

Using equation (2.1) it was thus required to determine
both the Sound Pressure Level 'SPLO(P) at P in the
absence of any screen and the SPL at P after the screen
is placed in position, denoted by SPLB(P). In 2.2.2,
an expression for SPLO(P) was derived based on the

spherical wave equation.

In the derivation of an expression for SPLB(P), several
factors had to be considered. The method used involves
the novel feature of subdividing the area of the screen
into smaller rectangular regions. This was necessary in
Order to obtain a solution of the diffraction integral

over the whole barrier, since the integral is only
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applicable to relatively small regions. The diffraction
integral itself comes from the classjical theory of
diffraction and was first given by Fresnel and Kirchhoff.
This integral has also been used in the theory of
diffraction of sound by barriers, eg [4], [5], [6] and [7],
but it has usually only been applied to semi-infinite

barriers. In the work where it has been applied to finite

barriers, (eg [6]), its use has been rather restricted.
One of the important features of the'work in this paper
is that the use of the integral can be applied in a wider

variety of circumstances of finite barriers and especially

there is total freedom in the size and shape of the
barriers. The barrier may even have holes in it, since

any area can be represented as the sum of small rectangular
regions to a sufficient degree of accuracy (see fig 2.7).
Also an important aspect of this method is that the
accuracy of the predicted result in relation to an exact
theoretical solution can be monitored. This is demonstr-
ated more fully in the light of actual results of the

computer program in Chapter 4.

The formula for SPLB(P) is given in equation (2.31). The
Insertion Loss IL(P) then follows immediately as shown in

equation (2.32). Finally, values of IL(P) in particular
configurations of source, barrier and monitoring position
can be calculated from equation (2.32) by invoking the
computer program of Chapter 4. Actual computed results

of this type are analysed in Chapter 4.

Another feature of the theory is that the transmission of

the barrier may be considered in the form of a coefficient
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Figure 2.7 The Sub-division of an Irregularly Shaped Barrier
with a hole in it
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o, constant over the whole barrier, where Ospasl. A value

of o
of o = 1 represents a completely transmitting barrier.
(Hence the extreme case of o = 1 is equivalent to having

no barrier at all).

Next,thé sound source is assumed to be monotonic emitted
from a single point S. A discussion of how the theory
may be extended to that of a multiple frequency source

appears in Chapter 5.

Finally, it should be noted that this theory is extended
in Chapter 3 to apply in the case where there is also a
reflecting ground. This next configuration is, of
course, much more important, since in most practical
environments reflection by the ground must be considered.
Thus, although the free field case of this chapter is of
little immediate practical use, the theory derived is
used directly in conjunction with other techniques (for
eﬁample, the method of images in Chapter 3), where its

importance can be more greatly appreciated.

- 30 -
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3. NOISE REDUCTION BY A‘TINITE-SCREEN'TN'A REFLECTfNG
GROUND ENVIRONMENT

3.1 Introduction

In this chapter a screen is fixed in space and an
addition to chapter 2 is included where there are ground
reflecting surfaces. An extension of the theory outlined

in chapter 1 is presented for this additional parameter.

The method of images is employed where the images

relative to the ground of the source S and the monitoring
position P are used to represent the reflected sound rays.
The chapter describes how the SPL at P is determined as a

consequence of these reflected rays.

A description is given where the SPL is formulated from
constant ground reflection and no barrier. 1In order to
specify a coefficient for ground reflection a range O to 1
is adopted where 1 indicates perfect reflection and O
perfect absorption. The formulation of the equations

assumes a value of this coefficient.

The parameters are the same as in chapter 1 and additional
" parameters are introduced here to account for ground

reflection. Similarly the insertion loss IL(P) is also

required.

IL(P) = SPLO(P) - SPLB(P), (3.1)
where

SPLO(P) is the SPL at P in the absence of any screen
and

SPLB(P) is the SPL at P after the screen is placed in

position.
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3.2 Calculation of the Insertion Loss

3.2.1 Calculation of SPL_(P)

There are two cases to consider, first where the source is
above the level of the ground and secondly where the source

is at ground level.

The first case, where the source is above the ground level,
is illustrated in fig 3.1. Suppose that the barrier is to

be placed in the xy-plane, with the origin at ground level
and that R1 and R2 represent the coefficients of ground
reflection on respectively the source side and the monitoring
position side of the barrier. Suppose the co-ordinates of

S and P are (x_, ¥y

o éb) and(xl, V. Z1) respectively. In

0)
view of the general relationship between SPL(P) and the

disturbance U(P) at P, it will be sufficient to determine
UO(P), from which SPLO(P) follows immediately.

The contributions to UO(P) come from both direct sound
between S and P and sound reflected by the ground before
reaching P. In view of theory given by Maekawa [5], UO(P)

may be expressed by the equation

U (P) =T (P) + T (P), (3.2)

where Uo1(P) is the disturbance in free space and UOZ(P)

is the contribution due to ground reflection.

By definition Uo1(P) is simply equation (3.2) since it is
the disturbance in the free-field. Hence

U (P) = AelKd (3.3)
01 _-a"
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where A, k and are defined in 2.2.2.

In order to establish U (P), the method of considering
the image of S in the ground’s surface is employed.
This technique has previously been used by Maekawa [5].
By definition has the co-ordinates (-xQ, yQ, z ) (see
fig 3.2). The reflected sound at P is considered to be
the equivalent of sound of the same wavelength as S
emanating from directly. Hence the reflected sound is
equivalent to direct free field sound from S., with the
extra condition that aScalar multiplication of the ground
reflecting coefficient is required. Thus UOZ(P) may be
formulated as follows (compare with equation(2.2)).

_ ikd
Upp (F) = Rpke (3.4)
d

where Eﬁ_is the reflection coefficient at the point of

ground reflection and d is the distance H7P, given by

d =/ f (xi+x°)2 + (y —iyn)02 + (z i~zgl)2 (3.5)

J

Now R’,}’ is equal to either Ri or R2 . depending on whether
the sound ray is reflected on the source side or the

monitoring position side of the xy-plane. (For example,
in fig 3.2, R]'E‘: = R ). Using simple geometry, R£ may be

expressed as follows

R .
RE if x z., + x.z (3.6)

R
i 2

E = < if x z., + x.z (3.6a)



P{xi,y,z)
. mﬁxO.<o~Nov

/ .
=R . ‘ . Reflection Coefficient =R
\ -

e

\ R
Reflection Coefficient
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Hence, in view of equations (3.2), (3.3) and (3.4), the

disturbance UO(P) without the barrier is given by

_ ikd _ikd
U_(P) = A{:%_ + Ry } , (3.7)

o} I(D

where RE is determined by equation (3.6)

Now, by invoking equation (2.4), the Sound Pressure Level

SPLO(P) at P without the barrier may be expressed as follows

\ -
1 - * 2Rg cosk(d—d)-J, (3.8)

el

SPL (P) = SPL + 10log 1+
(o] 1 10 3
dd

where SPL1 is the SPL at unit distance from S (see 2.2.2).

In the second case, where the source is at ground level,
there is no reflected ray component of UO(P) and thus
Uoz(P)=O’ and hence from equation (3.2),

Uo(P) = T, (P), (3.9)

and so the situation is identical to that of 2.2.2, where

SPL _(P) = SPL - 20log d. (3.10)
O ' 1 10

3.2.2 Calculation of SPL_(P)

As in 3.2.1, the two cases where first the source S is above
ground level and secondly S is at ground level are considered

separately.

When S is above ground level, there will be four different
paths of diffracted rays with and without reflections on
both sides of the barrier as illustrated in fig 3.3a. These

components are illustrated independently in fig 3.3b. It
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may be noted that, as in 3.2.1, the image Si of S is
considered as the imaginary source of rays reflected by
the ground on the source side of the barrier. Also, in a
similar way, the image Pi of P is also introduced as the
imaginary receiving position of rays reflected by the
ground on the monitoring side of the barrier. Consider,
for example, a ray which is reflected by the ground on
both sides of the barrier (fig 3.3b (iv) ). Although the
ray actually emanates from S, is reflected by the ground
and diffracted by the barrier before being reflected again
by the ground and then reaches P, it may equivalently be
considered, for the purpose of calculation, to have
emanated from Si before being refracted by the barrier
directly to Pi' The expression for the disturbance U(P)

at P in this situation is given by Maekawa [5] as

UP) = U (P) +R U (P) +RU (P) + RleUu(PzB.ll)

where U1(P) is the disturbance due to the non-reflected
component of the sound field, Uz(P) is the disturbance due

to the component of the sound field reflected only on the
source side of the barrier, US(P) is the disturbance due

to the component of the sound field reflected only on the

receiver's side of the barrier, and U (P) is the disturbance
4

due to the component of the sound field reflected on both

sides of the barrier.

U(P) As a Combination of Free-Field and Semi-Infinite

It is required now to formulate expressions for U1(P)’

Uz(P)’ US(P) and UQ(P). Maekawa [15] has suggested
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expressions which are suitable when the barrier is
rectangular in shape and has no holes. Also it is

appafent that in his method, there are limitations on where
S and P may be positioned in relation to the barrier.
Finally ‘his method is an approximate one, and there is no
facility for checking its accuracy in a given configuration,
except by comparison with experimental results. In this

work, expressions will be formulated for U,(P),U (P),U (P)
N 1 2 3
and UM(P), for a barrier of arbitrary shape and which may

have holes. Also, there is no limitation on where S and P
may be positioned relative to the barrier. Further,
although some approximations are.made, it is possible to
make a check on the accuracy of the results in comparison
with the exact theoretical solution, and therefore control
the accuracy of the technique. The method described in
this chapter is based on results gained in Chapter 2 for
the free field situation and, to the author's knowledge,
has not previously been devised by other authors. As in
‘Chapter 2, the assumption will initially be made that the

transmission of the barrier is zero.

The key to this method is the fact that with a barrier on

a reflecting ground, diffraction by the barrier can only
take place around those parts of the barrier's perimeter
which are not in contact with the ground, which enables the
following assumptions to be made. Consider firstly the
component of disturbance U1(P) which represents the non-
reflected sound field at P with the barrier in position.

This is exactly the same as the total disturbance which
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would have been observed at P, if instead of the given
configuration of barrier and reflecting ground, there was
just the semi-infinite barrier shown in fig 3.4b in free-
space. Let B be the region occupied by the original

barrier in the xy-plane (see fig 3.4a) and let H be

defined as the semi-infinite region in the xy-plane

defined by {%<0, z=0, all y}. Then the above assumption

is stating that U,(P) is the total disturbance at P due to a

barrier occupying the region {EUE}.

In 2 similar way, UZ(P) may be expressed as the total
disturbance at P in the presence of the screen occupying

the region {ﬁUﬁ} where the source is placed at Si(—xo,yo,z ),

o
the image of S in the reflecting ground (see fig 3.5).
Uz(P) represents the component of the disturbance at P due
to that part of the sound field which is reflected by the
ground on the source side of the barrier. Similarly US(P)
may be expressed as the total disturbance at Pi(-xl,yl,zl)
with the source at S in the presence of the screen {HUQ},
since U3(P) represents the component of the disturbance at
P due to that part of the sound field which is reflected

by the ground on the monitoring position side of the barrier
(see fig 3.6). Finally, in the same way, Uu(P) may be
represented as the total disturbance at Pi due to the

source at Si in the presence of the screen {ﬁUé} (see fig

3.7).

It will now be necessary to formulate UI(P),Ué(P),Us(P) and

U (P) in view of the above assumptions. Let HUB represent
L} .
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that region of the xy-plane which is the’complement of the
region HUB (see fig 3;8). In other words, HUB is that part
of the xy-plane where x30 except for the region B. Assume
briefly that the xy-plane is now occupied by a screen
occupying the region HUB and that nothing occupies HUB.
Let U;(P),UZ(P),U;(P) and U;(P) represent the disturbances
where the source, monitoring position are at (S,P), (Si’P)’
(S,Pi) and Si’Pi) respectively in this configuration.

Then, by the theory of Fresnel diffraction, (see Bornand Wolf[l12]).

-

r .
U-(P) = -Ai elk(2+m) [cos(n,2)-cos(n,m)]ds
e . '
U-(P) = -AL R(ATHM) 1o os(n, 8 )-cos(n,m)]ds
2% Jlgpg T
. (3.12)
N . '
U;(P) = -Ai e1k(£+m )[cos(n,z)—cos(n,m')]ds
2% ) gyg "
3 1
ErAR ” B o5 (n, 1) ~cos(n,m' ) 1ds,
2A HUB £2'm ]

where 2',m' represent the distances from Si and Pi respectively

to the variable point of integration on HUB. (cf equation(2.8)).

Also, by Babinet's Principle,

U = us - U-
L(P) U (P) UI(P)
_ S T
U2(P) = U_Ji(P) UZ(P)
U - r (3.13)
3(P) = U (Py) - U-(P)
and
U (P) = Ugi (Py) - U=(P),

-/
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where Ui(P) is the free field disturbance at P in the

absence of any screen or ground due to the source at S.

S, S S.
Uol(P), Ub(Pi) and Uol(Pi) are similarly defined except

for the obvious difference in positions of the source and
monitoring position. Now Ui(P) has already been formulated
in equation (2.2). The other terms may be similarly

formulated as follows:

T
US(P) - Ae1kd
0 ——
d
S. —
Uol(P) - ég1kd
d
_ '% (3.14)
S _ ikd
Ua(Py) = he
d
S
Uo (P.) églkd
d )
-

where d = distance SP = distance SP and d = distance S;P

= distance SPi.

Now, due to standard properties of integratidn over aa area,
the double integrals over the region HUB in equations (3.12)
may be split into the sums of separate double integrals over

the regions H and B as follows:



"£

(3.15)

r
U(P) = -Ai + eik( £+m) jeos (n>£) cos(n,m) ]ds
2X **H *B £m
U-(P) = -Ai ik (£ +m) [cos(n,£')-cos(n,m) ]ds
2 \J
2A " B £'m
s ik (£+m’)
U3(P) = 1;; g B £m [cos(n,£)-cos(n,m’)]ds
U-(P) =-Ai ~ik(£ +m ) [cos*“n”*fLt)-cos(n ,m')]ds
4 2A £|mv

L H B

Let Uu (P) denote the disturbance at P due to the source at

S in the presence of the half-plane screen which occupies
s . s
the half-plane H only. Let the terms Uxl (P), UH (P*,
s .
I%l (Pi) be similarly defined. Then by use of the Fresnel

diffraction theory and Babinet’s principle (see Born and

Wolf [12]), it can be shown that the following equations

apply

s s £t

U (P) = U (P) + Ai o ik (£+4m)
H 2A H £m [cos(n,£)-cos(n,m) ]ds
S . S .

U X(P) =U 1 (P)+Ai gik(£ +m) [cos (n?*)-cos(n ,m) ]ds
H ° 2A £'m *

H

eik(£+m ) [COs(n)£)-Cos(n,m')]ds
£m’
H

UH (Pi)=Uo (Pi)+]| |

S . S .
U 1(P )=U 1(P.)+Ai
H 2A £ 'm -
H

ik( £ "+m' )

[cos(n,£’)-cos(n,m')]ds.

.16



By substituting equations (3.16) and (3.15) into equations

(3.13) it follows that

U (P)=U,(P) + Ai(l-a) eik(£+m)
1 H 2~X £m [cos(n,£) -cos(n,m) ]ds
B
s ik (£'+m)

U (P)=U i(P)+Ai(1—a)
2 H 2X £'m
B

[cos(n,£') -cos(n,m) ]ds

(3.17)

U (P)=U (P )+Ai(l-a) ik (£4m")
3 H 1 2a £ml
B

[cos(n,£)-cos(n,m')]ds

S.
U (P)=U X (P,)+Ri(1-a)
H 1 2a £ Tm'
B

ik (£ '+m' )
[cos(n,£')-cos(n,m’)]ds,

where the transmission coefficient a of the finite barrier

is taken into account.

The double integrals on the right-hand sides of equations
(3.17) can be solved in the same way as in Chapter 2 and
can thus be converted directly into a form suitable for
solution by computer, when the parameters of a given
configuration are known. It thus remains to express the

S S S S

N .
terms U%_(P), E%J (P), E% g[) and Un%(P in an equally

1)

suitable form.
The Half-Plane Diffraction Components

Let S'(x ', yoT, zQf) represent a source of wavelength X,
and let P' (x . Y., z_ ') represent a general receiver's
1 1 1

position in a free space environment which also contains

the non-transmitting half-plane screen H (see fig 3.9).



Figure 3.9. The

S'(Xe, Yo, Zo)

Points S P’ and the Half Plane Screen H
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Then it will be required to determine the complex distur-
bance UZI(P') at P' due to ;he source at S’. The four terms
USCP), UE?(P), Ué}Pk) and Uu;(Pi) will then follow
immediately by replacing S’ and P' with the appropriate
symbols. The expression for ° (P’) is based on the
Sommerfeld wave solution (see Sommerfeld[1l6]), and has been
expressed by Born and Wolf [12] in a form suitable for
calculation based on the conventions adopted in this

thesis. The Bornand Wolf equation has been improved by
Maekawa [5] for sound attenuation by a barrier and it is
this last form which is used here. The Maekawa expression
is as follows

U (P’ )=-Aielk(r'+s’'*

1 2(r "+s ) [Jecw')-S(w* )} +i|1+C(w’')+S(W')J 1],

(3.18)

where

W' = ﬂ(ﬁ;)—(r’w’) (3.19)

and where r’ + s' is the straight line distance from s’ to
P’ , r+s is the shortest distance from s’ to P’ via the edge
of the screen (see fig 3.10) and C(w) and S(w) are the

Fresnel integrals given by

C(w) = w cos (ttv2 ) dv
v2 /
° (3.20)
w
S(w) = sin/ ttv2 )dv

\2 |/



Figure 3.10

@

The Distances r,s,r'and s’

R
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Now r' + s' is the distance S'P', which may be defined as

d', say, as follows
r' +s' =d' =/[(X;—X;)2+(y;—y;)2+(Z;—Z;)2]-(3-21)

The distances r and s are defined such that r + s is the
shortest distance from S' to P' via the edge of the screen.

Let E' be any point on the edge of the screen with co-
ordinates (0,y',0). Then S'E' + E'P' is the distance

from S' to P' via the edge. Suppose E is the position

such that S'E = r and EP' = s, that is S'E + EP'
represents the shortest distance from S' to P' via the

edge. Then it is required to find the value of y' which

gives the solution E' = E, or in mathematical terms, it is

required to minimise S'E' + E'P' with respect to y'. By

using elementary calculus, the solution may be shown to

be
{ FR— 1 1 1
y d,'vo" * 4 'Y,
1 1]
dy’' +d (3.22)
where 7]
2 2
1] o~ 1 1]
. = /(xO +z. )
o 2 [ (3.23)
ar = J(x' +z' )
1 1 1
J
it follows that -

. 2 2 1/2
= 1 = ' 1 txr ! .
r S'E do ((do+d1)+(y1 yo) )

dl_'.dv
o

|

, (3.24)
/2

/)]
i
=
e/
It

2 2 1
1 ' +4°! ! _xr!
dl ((dg*d)) +(y!-v5) )

da'+d’
o
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so that
2 2
= v 1 1—xy!
r+s = /[(d+d") +(y!l-y)) 1 (3.25)

In equation (3.19) it can be seen that there are two
possible values of w’, one positive and the other

negative. This accounts for the two alternatives where P*
lies in the shadow zone or the bright zone of H with respect
to S' (see fig 3.11), where the positive value represents
the shadow zone. Let w* represent the positive wvalue,

*
Then Ugﬂp’) may be written in terms of wi as follows

-Aieikd [{c(w')-S(wi)}+i jJI+C (w')+S(w')]| ]
2d' L J

UH <P 'H , (3.26)

Ae d + Aie d [{C(w')-S(w' +i |1+C(w')+3(w')} ]
d* 2d’

the first equation applying when PT is in the shadow zone
of H with respect to S' and the second equation where P'
is in the bright zone,u' given by equation (3.21).

s . s .
Now the four terms U~ (P), UHX(P), U~(P*) and may

be considered.

First, since S and P are both above ground level, it is
clear that P is in the bright zone of H with respect to S.
Also from equation (2.27) d is the distance SP and in this
case

r+s = /[(do+d1)2+(y1—yo)2] (3.27)



&

Figure 3.11. The Bright and Shadow Zones of S'with respect
to H. .

56



where -
d =/{x*+x?)
° °© 0 (3.28)

2 2
d =/(x +z )
1 1 1

[compare with equation~(3.25) and (3.23)].

v /«tiﬁxz_§> . (3.29)

Then from equation (3.26),

Let

uS(p) = aetkd 4+ pielkd, [{C(w)-—S(W)}+i{1+C(w)+S(w)}](3.30)
d 2d |

Next, since Si and Pi are both below ground level, it
follows that Pi is in the shadow zone of H with respect to
Si' Also d is the distance §;§; (see note after equation
(3.14)). Hence from equation (3.26),

S

U A(p,) = -aietXd, [Iﬁ:(w)—S(w)}+i{1+C(w)+S<wﬂr] (3.31)
l ——
H 2d
si S
In considering the terms U "(P) and U (Pi)’ it is
H H

necessary to establish whether P is in the bright or
shadow zone of H with respect to Si and whether Pi is in
the bright or shadow zone of H with respect to S. It is

obvious, and can be proved geometrically, that

-

P is in the |[bright | zone of H with respect to Si

Y

shadow

if and only if

-

P, is in the ] shadow| zone of H with respect to S (3.32)
bright |

Gee fig 3.12).
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Figure 3.12.a. P; in Shadow Zone of H with respect to S
<> Pin Bright Zone of H with respect fo S;

Figure 3.12.b. P; in Bright Zone of H with respect to S
<=> P is in Shadow Zone of H with respct fo S;

- 58 -



Hence it is sufficient to establish whether P is in the
shadow zone or the bright zone 6f H with respect to Si'
Again referring to figures 3.12a and 3.12b, it can be seen
that if P is in the bright zone with respect to Si’ then
the line SiP passes above the edge of the barrier and if

P is in the shadow zone, then SiP passes below the edge of
the barrier. These two alternatives can be formulated by
saying that in the former case x20 on SiP when z=o0 and

in the latter case X<0 on SiP when z=o.

On the line SiP, the following relation holds

X + X zZ - Z
—) - 9
Xx + X zZ -2
1 (e] 1 (o]
Hence, when z = O,

= (X 2 + X Z
X (01 lo)

Z - Z
1 (o]

and so x>0 if and only if X,z +x z, < o.
11

It may therefore be deduced that

P is in the [bright| zone of H with respect to Si

shado

if X 7z +xX z |< 0
[O S} 1 O .

s o (3.33)

Note that this condition is the same as that in equation
(3.6) where it was required to ascertain whether sound
reflection by the ground in the absence of a barrier

occurred on the source or receiver side of the xy-plane.
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It now follows from equation (3.26) that

ikd ika.[{C(Wj_stﬁi}+i{i+C(W)+S(W)}]

if (x z + <0
( 0%, XIZO)\

U Y(p) = <
H (3.34)

a1t e -s@} i fircms @}
3

if (x .z +x z )>0
O 1 1 O

[\

and because of the expression (3.32),

a0

_a1e™*9. {e@-st+ i{ire@ s}
= |

2 if (x_z +x z _)<O0
ISP, = o e
Ug(Py) = ﬁ (3.35)
2™ 4 1™ [{e@)-s@} i {Lrc@)+8 (W)}
2d 2d
! if (XOZ1+X120)>O s
where _
_ J/( r+s - @ (3.36)
w o= A

(Compare with equation (3.29), and where d is the distance
§;§ which is also the distance §§; and d is given by
equation (3.5). The term r+s is that given by equation
(3.27) Since the same terms (yl—yo)2 and do and d1 (see
equations (3.28)) are equally applicable whether the points

S or Si and P or Pi are under consideration.

Final Formulation of U(P), Where S is Above Ground Level

Now if the function In(a,b) is 'defined by
I_(a,b) = i(l—a)JJ K (a*D) rooc(n,a)-cos(n,b)]dS, (3.37)
B

2\ ab
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and the function G(v) is defined by
G(v) = jc(v)-S(v)} +i{|+C(Vv)+S(Vv)} , (3.38)

then from equations (3.30), (3.31), (3.34), (3.35), (3.17)

and (3.11), the disturbance U(P) in the presence of the

finite barrier on the reflecting ground satisfies the following
equation

ULR) =l (£,m)+R.I (ETm+R, (£,m )+R.R I_ (£’ ,m')

+ elkd + ielkd.(1-R R )G(w)+(-1)E(R -R )ielkd.G(w)+R”*elkd
d 2d 12 2 1=
(3.39)

where E is given by equation (3.6a)

Note that this is the expression for U(P) where S is above

ground level.
Formulation of U(P), Where S is on the Ground

The situation where the source is at ground level is
illustrated in fig (3.13). In this case ground reflection

will only occur on the receiver’s side of the barrier and

consequently there are only two components of the

disturbance U(P). Therefore U(P) is given by

U(P) = U (P)+R U (P) (3.40)
1 2 3

(see Maekawa) [5])

where R is the coefficient of ground reflection on the
2

receiver’s side of the barrier. [Compare with equation

(3.11)1. It can be shown that U (P) and U (P) are the

1 3

same as defined at the beginning of this section and



Figure w;w.. Ray Paths when S is on the Ground
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therefore are given by the first and third formulae in
equations (3.17). It follows that in this case, U(P) is
given as follows:

U(P = In(z,m)"'Rz(R’,m') + glkd ¥ j._e_lk ikd

d 2d

4 awy+(-HER ie
A 2

d

+ 1 (1+(-1)E)elkd, (3.41)

[\
o

[Compare with equation(3.39)].

Formulation of SPL,(P)

SPLB(P) is expressed in terms of U(P) by combining equations
A

(2.4) and (2.6) to give:

2
SPLy(P) = SPL_ + |o)10g10!g£§_13_1| (3.42)

From this, the Sound Pressure Level SPLB(P) in the presence
of the barrier is given by substituting either equation (3.39)
or (3.41) into equation (3.42) according as the source S is

respectively above or at ground level.

3.2.3 Formulation of IL(P)

The Insertion Loss IL(P) at P due to interposing the barrier
follows from equation (3.1) and has two possible solutions.
Firstly, if the source is above ground level then IL(P) is
given by substituting equations (3.8) and (3.42) into

equation (3.1), where U(P) is given by equation (3.39).
A

Secondly, if the source is on the ground, then IL(P) is
given by substituting equations (3.10) and (3.42) into

equation (3.1), where U(P) is given by equation (3.41).
A
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Note now that the above equations, in a similar way to that
described in 2.2.4 for the free field case, can be solved

if the parameters relating to the configuration are known.
These parameters are those listed in 2.2.4 with the

addition of the coefficients of ground reflections R1 and
Rz. Hence, as was the case in Chapter 2, a computer
program can again be written which performs the calculations
in a given configuratioﬁ. This program was developed by

the author and is described in Chapter 4.

3.3. Summary

It was the aim of this chapter to obtain information

about the sound pressure distribution when a plane finite
barrier is placed in position on a reflecting ground. The
theory makes use of the results obtained in Chapter 1 and
in addition the Method of Images' of ground reflection is
incorporated. The sound field between the source S and

the monitoring position P is considered as the summation

of separate sound fields, which follow different reflected
paths between S and P. Formulae are obtained separately
for the disturbances at P due to the separate component
sound paths, and each formula is obtained by combining the
theory of Chapter 2 with the theory of diffraction by a
semi-infinite half-plane screen. The physical configuration
of a finite barrier and reflecting ground is simulated by
an eduivalent theoretical combination of finite barrier and

half-plane screen in order to obtain these formulae.
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The ground reflection is considered to be a constant in the
range O to 1. This constant may take different values on
either side of the screen, but each value must remain constant
over the ground's surface on the side of the screen for

which it applies. All other parameters concerning the

configuration remain the same as those described in 2.1.

The principle of‘determining formulae for the Sound
Piessure Levels at P first in the absence of the barrier
and then with the barrier in position, is used in the same
way as in Chapter 2. The Insertion Loss at P is then taken

to be the difference between these two results.

It should also be noted that the two situations where the
sound source is above ground level and where the source is

on the ground, need to be considered separately. This was
covered in 3.2 and the two resulting formulae for the

Insertion Loss were duly noted in 3.2.3.

As in Chapter 2, the results are applicable in a wide
variety of configurations due to the flexibility of the
formulae used and are also applicable for a finite screen

of any shape, which may have holes in it. A computer
program for this part of the work has been developed by

the author andis described in Chapter 4. The formulae

here were derived in such a way that the calculations by
computer could be made, given the parameters listed in

2.2.4 and in addition the two ground reflection coefficients
: R1 and Rz. Results obtained by using the computer for

particular configurations are also presented in Chapter 4.
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Finally a discussion of how this technique can be further
extended so that it applies to surroundings which include

reflecting walls, ceiling and other modifications, is given

in Chapter 5.
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4. Predicted and Measured Results

4.1 Introduction

In this Chapter, predicted and measured results of
Insertion Loss are presented and compared. Various test
configurations were used both in the free field and with
the addition of a reflecting ground. Three different
barriers were used and various positions of source and
receiver were considered, representing different aspects

of diffraction effects and barrier performance.

The predicted results in the free field were obtained

using the theory of Chapter 2. The theory was converted
into a computer program, which in a given configuration
performs the necessary calculations and gives the resulting
Sound Pressure Level predictions. Similarly, the results

in the reflecting ground environments were obtained using
the theory of Chapter 3 and again a computer program was
written to perform the required calculations. A description
of these programs is given in 4.2 with details of how

they are executed.

The experimental results were obtained by constructing the
test configuration in an anechoic chamber for both the
free field and reflecting ground cases. The experimental

procedure is described in 4.3.

Both predicted and experimental results for all of the
configurations tested are tabulated together in 4.4 for

easy comparison.
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Finally the results are analysed and compared in 4.5.

4.2 The Use of the Computer Programs in the Prediction of

Barrier Performance

4.2.1 Description of the Program for Free Field Predictions

Based on the theory of Chapter 2, a computer program was
written to enable calculation of the Sound Pressure Levels
in the free field. It is necessary for the purpose of
executing this program to include the parameters relating to
the particular free field configuration. These parameters
may be listed as follows:

the co-ordinates Xy, Yor 2o Of the source position;

the co-ordinates xi1, Vi, 2z1 of the receiver position;

the Sound Pressure Level SPL; in the free field at a
position 1 m from the source;

the absorption coefficient of the barrier;

parameters relating to the subdivision of the barrier;
parameters relating to the sketch of the barrier which

is producéd on the print-out.

As an illustration, it will be demonstrated which values

were input in order to achieve three of the sets of results
given later. First the results listed in table 2 were
obtained as follows. It was assumed that the Sound Pressure
Level SPL; at 1 m from the source was 90 dB at all frequencies
and that the subdivision of the barrier was into 25 x 25

equal elements each having dimension 0.04 m. It was also
assumed that the transmission through the barrier was zero.

The parameters input were
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90, 005, O, -l, 005, O’ 105, O, O

0.02, 0.02, 25, 25 0, O (An)
0]

The first parameter is SPL,;, the next six are the
co-ordinates Xo, Yos Zosr X1s Y1s zy, followed by the
transmission coefficient a and finally a value of O to
indicate that the barrier is square (if the barrier had
been rectangular, this value would be 1 - see below).

This parameter will be denoted by SR in this section.

The second line contains £ and n, the half-dimensions

of each rectangular element (values £ = 0.02 and n = 0.02)
and the number of elements in the x- and y- directions

(both = 25). The next parameter indicates the number of
areas missing from the square barrier and the final parameter
of the second line is a similar parameter for the purpose

of the printed diagram. These 2 parameters will be denoted
BSA and DSA here and are both set to zero in this example

because the barrier is square with no parts 'cut out'.
The third example describes a case where these values are

non-zero.

Finally, the third line has a single value O to indicate
that the program has finished. This value could be set
to 1 to indicate that another set of parameters of the type
of the second line could be input giving an alternative

subdivision of the barrier. For example
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90, 0.5, ©, -1, 9.5, ¢, 1.5, 0, O

0.02, 0.02, 25, 25, 0, O

1

0.05, 0.05, 10, 10, O, O

0]

would also give results for the same configuration but
calculated én the basis of a subdivision of 10 x 10

elements, rather than 25 x 25.
The print-out for example A is shown in figure 4.1.

The genefal case may be written as follows, using the
already defined symbols:

SPL;, Xor Yor Z0r X1y Y1r 21+ 0, SR

£, n, NX, NY, BSA, DSA

REP

The second example corresponds to the configuration described
in table 12. 1In this case the parameters input were

90, 0.38, o, -1, 0.38, 0, 3, 0, 1

0.025, 0.025, 15, 30, O, O (B)

O \

Note that SR = 1 in this case, which results in a
rectangularly-shaped sketch on the print-out, rather than

a square one. For the purpose of the subdivision, it

was decided that the barrier should be mapped as 15 x 30

equal elements each of dimension 0.05 x 0.05 m. The print-

out is shown in figure 4.2.
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Figure 4.2
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The third example shows the output when predicting the
results for a barrier which is not a perfect square or
rectangle. In this case the parameters input were

90, 0.5, 0, -1, 0.5, 0, 3, 0, O

0.02, 0.02, 25, 25, 1, 1
13, 25, 7, 19

. (C)
HEAXKHX
7, 12, 6, 15
0}
Here it may be noted that SR = O, to indicate that the
general shape is square, but that BSA is non-zero, to
indicate that there are areas which have been cut out.
Since BSA = 1, this indicates that one area has been cut
away. It is then necessary to describe which area this
is. The information is given in line 3, which shows that
in the 25 x 25 element representation of the barrier, the

area cut away is that defined by the 13th to the 25th rows

of elements and by the 7th to the 19th columns (see figure
4.3). The 4th row of parameters, although shown in this

case aé 7 asterisks can, if required, be a brief description
of the barrier, which will then be shown on the print-out.
Up to 50 characters are allowed for this description. The
5th row is similar to the 3rd row except that it is for

the purpose of the sketch in the print-out. This can be
seen by comparing the values with the produced sketch in
figure 4.4. Also note that this line is allowed because the

parameter DSA in the 2nd row is set to 1.
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The predicted free field results for the configurations

investigated in this thesis are tabulated in full in 4.4.

4.2.2 Description of the Program for Reflecting Ground

Predictions

A computer program was written, based on the theory
of Chapter 3, to enable calculation of Sound Pressure Levels
in the presence of a reflecting ground. As in the case

of the corresponding program for free field predictions,

it is necessary to include  the parameters relating to

the particular configuration. The parameters are the same
as those for the free field.program with‘the addition of
the ground reflection coefficients R;, R,, where R; is

the reflection coefficient of the ground on the source

side of the barrier and R, that on the receiver's side.

fn order to obtain the results which appear in the
following tables, the procedure is similar to that by which
the free field predictions were obtained. The principal
difference is that the coefficients of ground reflection,
R; and R, must be included. For example, the results

listed in table 15 were obtained by inputting the parameters

as follows:

90, 0.5, o0, -1, 0.5, 0, 2, 1, 1, O, O
0.02, 0.02, 25, 25, 0, O

125

2

250
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500

1000

' 2000

4000

8000

0

Note that the frequencies are input separately. This
enables the programmer to select individual frequencies

if required, rather than.the full frequency range being
automatically assumed. In this case the ground reflections,
R; and R, are both equal to 1 and this is indicated by

the 8th and 9th parameter on the first input line. The
single entry of '2' between each frequency input indicates
that another frequency is to be entered on the next time.
If this parameter was 'O', it would indicate that it is
required to end the program execution (see last parameter)
and if it was 'l' it would indicate that a new subdivision
was required, that is an entry of the type indicated by

the second input line.

The configuration representing table 23 is the same as
table 15 with the exception that R; and R; were both
assumed equal to 0.5. The parameters input in this case

were thus
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90, 0.5, 0, -1, 0.5, o, 2, 0.5, 0.5, 0, ©
0.02, 0.02, 25, 25, 0, O

125

2

250

500

1000

2000

4000

8000

0

The general case may be written as follows, using the
symbols defined earlier in this Chapter (compare the
free field case).

SPL,, Xor Yor Zo0r X1+ Y1r 21+ R1y R1, 0, SR

&, n, NX, NY, BSA, DSA

£,

2
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where £;, £2, -——, fn are frequencies.

The predicted reflecting ground results for all of the
configurations investigated in this thesis are tabulated

in full in 4.4.

4.3 The Experimental Procedure

4.3.1 General Description

The experiments for sound attenuation by finite barriers
were conducted in the anechoic chamber belonging to the
Building Science and Mechanical Engineering Departments
of the University of Sheffield and which is situaFed at

Harpur Hill near Buxton, in Derbyshire.

The internal dimensions of the anechoic chamber are 10.97 m
long by 7.62 m wide and 2.74 m high. The walls and ceiling
are lined with four layers of absorbent material having a
total thickness of 0.15 m with an air gap of 0.15 m

between the walls and the material and of 0.3 m between

the ceiling and the material (see figure 4.5).

The three barriers used were made of blockboard?of 0.02 m
thickness. The dimensions of the two principle barriers

used were 1 m width by 1 m height and 1.5 m width by

0.75 m height. The third barrier used was the same as

the 1 m x 1 m barrier with the exception that a 0.5 m x 0.5 m
section was removed. This was done in order to demonstrate
that the shape of the barrier may be arbitrary for the

theory developed in this work to apply. The barrier has
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already been discussed in 4.2 in the description of the

computer programs, and is illustrated in figure 4.3.

The simulated point sound source was a small speaker
emitting single frequencies determined by a Bruel and

Kjaer Sine Random Generatdr. The intensity of the emitteéed:
sound was kept constant by using a compressor circuit
including a microphone set at a constant distance from

the centre of the speaker. The receiver microphone was
connected to a Level Recorder which traced the Sound
Pressure Levels over a full range of audio frequencies.

The Level Recorder was mechanically driven by the Sine

Random Generator.

Only the essential parts of the apparatus, that is the
speaker, barrier and receiver microphone were placed

within the chamber. The remainder of the equipment was
kept outside the chamber in a control room (see figure

4.6 and plates 1-2).

4,3.2 Free Field Experiments

The free field environment was simulated by ensuring that
the ceiling, walls and floor of the chamber were all

covered in absorbent materials. 1In order that diffraction

could take place around all of its perimeter, the barrier
was suspended by thin wires from the ceiling of the chamber.
The experiments for sound attenuation by the barrier were
performed by monitoring the sound pressure levels at the

receiver's point first with no barrier and then with the
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PLATE 1. SOUND SOURCE, BARRIER & MONITORING MICRO-
PHONE ON THE CONCRETE FLOOR OF THE ANECHOIC
CHAMBER

PLATE 2. THE APPARATUS IN THE CONTROL ROOM EXTERNAL
TO THE ANECHOIC CHAMBER.



barrier in position. The insertion losses afforded by
the barrier could then be determined by comparing the

two sets of results. The results are tabulated in 4.4.

In all experiments, the barrier is assumed to be in the
xy-plane of a Cartesian co-ordinate system, with the

y—-axis corresponding to the bottom edge of the barrier

and the origin O on the centre of this edge. The direction
of the z-axis is chosen so that the receiver's position

has positive z-co-ordinate and the source has negative
z-co-ordinate. Two of the configurations for the 1 m x 1 m
barrier and two for the 1.5 m x 0.75 m barrier are

illustrated in figure 4.7.

The results for the 1 m x 1 m barrier are tabulated in
4.4 in tables 1-10. The results for 1.5 m x 0.75 m

barrier appear in tables 11-14.

4.3.3 Experiments with a Reflecting Ground

The reflecting ground environment was simulated in the
anechoic chamber in a similar way to that of the free

field, except that only the walls and ceiling were kept
fully absorbent, while the floor was designed to allow for
ground reflections. 1In all cases the barrier was positioned
on the ground, as this represents the most typical position.
Note that in the free field situation, the barrier was
suspended to-allow a truly representative free field
configuration. The diffraction therefore is allowed to

take place around the three edges of the barrier not in
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contact with the ground. The method of ascertaining
the sound pressure levels at the monitoring position P
both with and without the barrier at monotonic frequencies

were the same as in the free field case.

The two barriers used were the 1 m x 1l m square barrier
and the 1 m x 1 m barrier with a 0.5 m x 0.5 m section
removed (see figure 4.3).' The Cartesian co-ordinate
reference system was also chosen in the same way in
relation to the barrier, so that in this case, the origin
O was the point of contact between the barrier and the

ground in the centre of the bottom edge of the barrier.

The following tables represent the experimental results
obtained for the two barriers. It should also be noted
that two different ground surfaces were assumed. The
first of these was the base concrete floor of the chamber
and the second was where the floor was covered with a
partially absorbent material. The results for the
"base concrete ground are given first. 1In the results for
the absorbent ground, the 'Insertion Loss' is taken to be
the sourd level difference obtained by the combined
effect of inserting the barrier and covering the ground
with the absorbent material , so that the 'sound pressure
level without the barrier' may be interpreted as the sound
pressure level with no barrier and no absorbent covering
of the ground, whilst the 'sound pressure level with the
barrier' is taken to be the sound pressure level when

the floor is covered with absorbent material ana the
barrier is placed in position.
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The results for the square barrier on the concrete floor
of the chamber are tabulated in 4.4 in tables 15-18

and the results for the barrier with the cut away section
on the same surface appear in tables 19-22, The results
for the square barrier on the partially-absorbent ground

are tabulated in tables 23-30.

4.4 Tables of Predicted and Measured Results

Both measured and predicted results are presented in this
section. Free field results appear in 4.4.1 and reflect-

ing ground results appear in 4.4.2.

4.4.1 Tables of Insertion Losses in the Free Field

The predicted results were obtained using the computer
program described in 4.2.1 based on the free field

theory developed in Chapter 2. Two different barriers

were used, the 1 m x 1 m square barrier (tables 1-10)

and the 1.5 m x 0.75 m barrier (tables 11-14). The source
and monitoring positions were raised to represent differing
diffraction aspects and distances from the barrier. Four
of the configurations represented, those corresponding to

tables 1, 6, 11 and 13, are sketched in figure 4.7.
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TABLES 1-10 Free Field, Barrier 1 m x 1 m

TABLE 1 Source Position (x, v, z) = (0.5, 0, -1)
Monitoring Position (x, y, z) = (0.5, O, 1)
Free Field Barrier 1 mx 1 m (see figure 4.7a)
Insertion Losses (dB)
Frequency of
Source (Hz) Measured Predicted
125 0] (0]
250 3 1
500 0 3
1k 7 8
2k 20 10
4k 27 . 14
8k 30 18
TABLE 2 Source Position (x, vy, z2) = (0.5, 0, ~-1)
Monitoring Position (x, y, 2) = (0.5, 0, 1.5)
Free Field Barrier 1 m x 1 m

Insertion Losses (dB)

Frequency of

Source (Hz) Measured Predicted
125 o 0
250 o 1
500 o 2
1k 5 6
2k 16 9
4k 19 11
8k 27 16
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TABLE 3 Source Position (x, vy, z) = (0.5, 0, -1)
Monitoring Position (x, y, z) = (0.5, 0, 2)
Free Field Barrier 1 m x 1 m
Insertion Losses (dB)

Ffequency of
Source (Hz) Measured Predicted

125 o o

250 2 o

500 -3 1

1k ‘ 6 5

2k 16 9

4k 20 11

8k 16 13
TABLE 4 Source Position (x, vy, z) = (0.5, 0, -1)

Monitoring Position (x, y, z) = (0.5, 0, 3)
Free Field Barrier 1 m x 1 m
| Insertion Losses (dB)

Frequency of
Source (Hz) Measured Predicted

125 -1 o

250 o o

500 o 1

1k 2 4

2k 11 8

4k 20 11

8k 15 14
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TABLE 5 Source Position (x, y, 2) = (1, 0, -1)
Monitoring Position (x, y, z) = (1, O, 1.5)
Free Field Barrier 1 m x 1 m
Insertion Losses (dB)

Frequency of
Source (Hz) Measured Predicted

125 5 1

250 7 5

500 7 6

1k 6 7

2k 6 6

4k 6 8

8k 7 6
TABLE 6 Source Position (x, vy, z) = (1, 0, -1)

Monitoring Position (x, y, z) = (1, 0, 2)
Free Field Barrier 1 m x 1 m (see figure 4.7b)
Insertion Losses (dB)

Frequency of
Source (Hz) Measured Predicted

125 -2 1

250 4 5

500 5 S

1k ' 6 6

2k 3 5

4k | 4 6

8k 7 6
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TABLE 7 Source Position (x, y, z) = (1, 0, -1)
Monitoring Position (x, y, z) = (1, O, 3)
Free Field Barrier 1 m x 1 m
Insertion Losses (dB)

Frequency of
Source (Hz) Measured Predicted

125 1 1

250 4 4

500 3 6

1k 6 8

2k 6 5

4k 10 5

8k 4 6
TABLE 8 Source Position (x, vy, z) = (1, 0, -1)

Monitoring Position (x, y, z) = (0.5, 0, 3)
Free Field Barrier 1 m x 1 m
Insertion Losses (dB)

Frequency of
Source (Hz) Measured Predicted

125 1 1

250 4 2

500 6 8

1k 12 12

2k 7 , 8

4k 9 9

8k 15 20
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TABLE 9 Source Position

(X’ y, Z)
z)

Monitoring Position (x, vy,

Free Field

Frequency of
Source (Hz)
125
250
500
1k
2k
4k

8k

Measured

11

12

20

23

TABLE 10 Source Position

Monitoring Position (X,

Free Field

Frequency of
Source (Hz)
125
250
500
1k
2k
4k

8k

Measured

© w = N

17
13

25

Barrier 1 m x 1 m

Insertion Losses (dB)

(x, v,

Barrier 1 m x 1 m

Insertion Losses (dB)
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Yy,

(0.5, 0, -1)

(1, 0, 2)

Predicted

13
17
15

19

z) (0.5, 0, -1)

z)

(1, 0, 3)

Predicted

© N = O

22
11

18



TABLES 11-14 Free Field, Barrier 1.5 m x 0.75 m

TABLE 11 Source Position (x, v, 2) (0.38, 0, -1)

(0.38, 0, 2)

Monitoring Position (x, y, z)

Free Field Barrier 1.5 m x 0.75 m (see figure 4.7c)

Insertion Losses (dB)

Frequency of

Source (Hz) Measured Predicted
125 -8 2
250 -3 5
500 6 7
1k 5 6
2k 16 7
4k 18 7
8k 23 6
TABLE 12 Source Position (x,y, z) = (0.38, 0, -1)

Monitoring Position (x, y, 2) (0.38, 0, 3)

Free Field Barrier 1.5 m x 0.75 m

Insertion Losses (dB)

Frequency of

Source (Hz) Measured Predicted
125 -2 1
250 ’ -5 4
500 5 6
1k 7 S
2k 17 6
4k 16 5
8k 38 5
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(0.38, 0, -1)

TABLE 13 Source Position (x, v, 2)

Monitoring Position (x, y, z) (0.75, 0, 2)

Free Field Barrier 1.5 m x 0.75 m (see figure 4.74)

Insertion Losses (dB)

Frequency of

Source (Hz) Measured Predicted
125 -10 2
250 -5 4
500 2 6
1k 9 4
2Kk 20 7
4k 16 8
8k 27 5
TABLE 14 Source Position (x, vy, z) = (0.38, 0, -1)

Monitoring Position (x, y, 2) (0.75, 0, 3)
Free Field Barrier 1.5 m x 0.75 m

Insertion Losses (dB)

Frequency of

Source (Hz) Measured Predicted
125 -4 2
250 -8 4
500 4 6
1k 4 4
2k 18 6
4k 14 6
8k 33 5
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4.4.2 Tables of Insertion Losses in the Reflecting Ground
Environment

The predicted results were obtained using the computer
program described in 4.2.2 based on the free field theory
developed in Chapter 3. Two different ground surfaces

were employed in the anechoic chamber for the experimental
results. First, the uncovered concrete floor of the chamber
and secondly, the same floor covered with partially-absorbent
material. These surfaces were represented in the theoretical
case by assuming ground reflection coefficients of 1 in the
case of the concrete floor and of 0.5 in the case of the

partially-absorbent ground.

Two different barriers were used, the 1 m x 1 m square barrier
and the 1 m x 1 m barrier with the 0.5 m x 0.5 m section

cut away (see figure 4.3). The results for the concrete
ground configurations are tabulated in tables  15-18 for

the 1 m x 1 m barrier and in .tables 19-22 for the barrier
with a cut away section. The results for the partially-
absorbent ground configurations in the presence of the

1 mx 1 mbarrier are presented in tables 23-30.
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TABLES 15-22 Ground Surface - Concrete

TABLES 15-18 Ground Surface - Concrete, Barrier 1 m x 1 m

(0.5, 0, -1)

TABLE 15 Source Position (x, v, z)

Monitoring Position (x, y, 2) (0.5, 0, 2)
Ground Surface - Concrete Barrier 1 mx 1 m

Insertion Losses (dB)

Frequency of

Source (Hz) Measured Predicted
ww”’1é5 0] -2

250 3 -1

500 6 6

1k 0] 13

2k 22 10

4k 21 12

8k 28 22
TABLE 16 Source Position (x, vy, z) = (0.5, 0, -1)

Monitoring Position (x, y, z) (0.5, 0, 3)
Ground Surface - Concrete Barrier 1 m x 1 m

Insertion Losses (dB)

Frequency of

Source (Hz) Measured Predicted
125 0 -2
250 1 1
500 7 4
1k . 3 8
2k 5 11
4k 19 22
8k 20 19
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TABLE 17 | Source Position (x, y, z) = (0.5, 0, -1)
Monitoring Position (x, y,-2) = (1, O, 2)
Ground Surface - Concrete Barrier 1 m x 1 m
Insertion Losses (dB)

Fréquency of

Measured Predicted

Source (Hz)

125 o) -1

250 5 5

500 3 11

1k 16 7

2k ' 13 24

4k 23 23

8k 23 16
TABLE 18 Source Position (x, v, 2) = (0.5, 0, -1)

Monitoring Position (x, y, z) =(1, 0O, 3)

Ground Surface - Concrete Barrier 1 m x 1 m

Insertion Losses (dB)

Frequency of

Measured Predicted
Source (Hz)
125 2 -1
250 | 1 3
500 2 10
1k 6 7
2k 17 20
4k 17 17
8k 27 17
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TABLE 19-22 Ground Surface - Concrete, Barrier 1 m x 1 m

with 0.5 m x 0.5 m Section Cut Away (see figure 4.3)

TABLE 19 Source Position (x, v, 2). (0.5, 0, -1)

(0.5, 0, 2)

Monitoring Position (x, y, 2)
Ground Surface - Concrete Barrier 1 m x 1 m with
0.5m x 0.5 m section cut away
Insertion Losses (dB)

Frequency of

Measured Predicted
Source (Hz)
125 0 -1
250 1 1
500 8 8
1k 3 5
2k 2 2
4k 0 2
8k 10 5
TABLE 20 Source Position (x, v, z2) = (0.5, 0, -1)
Monitoring Position (%, y, z) = (0.5, O, 3)

Ground Surface - Concrete Barrier 1 m x 1 m with
0.5 m x 0.5 m section cut away
Insertion Losses (dB)

Frequency of

Measured Predicted
Source (Hz)

125 1 -2

250 1

500 1 8

1k 12 12

2k 0

4k 1

8k
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(0.5, 0, -1)

TABLE 21 Source Position (2, vy, 2).
Monitoring Position (x, y, z) = (1,70, 2)
Ground Surface - Concrete Barrier 1 m x 1 m with
0.5 m x 0.5 m section cut away
Inéertion Losses (dB)

Frequency of

Measured Predicted
Source (Hz)
125 0 -1
250 0 4
‘500 1 17
1k 9 13
2k 0
4k 7
8k 10
TABLE 22 Source Position (x, v, z2) = (0.5, 0, -1)
Monitoring Position (x, y, z) = (1, O, 3)

Ground Surface - Concrete Barrier 1 m x 1 m with
0.5 m x 0.5 m section cut away
Insertion Losses (dB)

Frequency of

Measured Predicted
Source (Hz)
125 -1 -1
250 1
500 1
1k 3 10
2k 3 14
4k 2
8k 10 4
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TABLES 23-30

Ground Surface - Partially Absorbent,

Barrier 1 m x 1 m.

TABLE 23

Ground Surface - Partially Absorbent

Source Position

(%, Y z) = (0.5, 0, -1)

Monitoring Position (x, y, z) = (0.5, O, 2)

Insertion Losses (dB).

Frequency of

Source (Hz)
125
250
500
1k
2k
4k

8k

TABLE 24

Ground Surface - Partially Absorbent

Barrier 1 m x 1 m

Measured Predicted

4 2

10 4

7 6

-10 12
26 12

17 14

35 20

Source Position (x, y, z) = (0.5, 0, -1)

Monitoring Position (x, y, 2z)

Insertion Losses (dB)

Frequency of

Source (Hz)
125
250
500
1k
2k
4k

8k

Predicted

Measured
7 2
11 3
13 6
4 9
4 13
18 19
22 19
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(0.5, 0, 3)

Barrier 1 mx 1 m



(0.5, 0, -1)

TABLE 25 Source Position (2, v, 2)

Monitoring Position (%, y, z) (L, 0, 2)
Ground Surface - Partially Absorbent Barrier 1 mx 1 m
Insertion Losses (dB)

Frequency of

Measured Predicted
Source (Hz)
125 5 3
250 6 5
500 4 8
1k 18 9
2k 14 23
4k 26 19
8k 27 19
TABLE 26 Source Position (x, vy, z) = (0.5, 0, -1)
Monitoring Position (x, y, 2z) = (1, O, 3)

Ground Surface - Partially Absorbent Barrier 1 m x 1 m
Insertion Losses (dB)

Frequency of

Measured . Predicted
Source (Hz) ’
125 4 2
250 7 5
500 6 7
1k 9 9
2k 16 24
4k 24 17
8k 31 20

- 102 -



TABLE 27  Source Position (%, ¥y, 2) = (1, O, -1)
Monitoring Position (%, y, z) = (0.5, O; 2)
Ground Surface - Partially Absorbent Barrier 1 mx 1 m
Insertion Losses (dB)

Frequency of

Measured Predicted
Source (Hz)
125 ‘ 5 2
250 7 5
500 0 ' 15
1k 18 : 15
2k 8 ‘ 10
4k 17 14
8k 18 18
TABLE 28 Source Position (x, y, 2z) = (1, 0, -1)

Monitoring Position (x, y, 2) (0.5, 0O, 3)
Ground Surface - Partially Absorbent Barrier 1 mx 1 m
Insertion Losses (dB)

Frequency of

Measured Predicted
Source (Hz)
125 5 2
250 8 3
500 2 14
1k 15 11
2k 4 9
4k 14 16
8k 12 20
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TABLE 29 Source Position (x, vy, z). = (1, O, -1)

Monitoring Position (X, Y. 2). (L, 0, 2)
Ground Surface - Partially Absorbent Barrier 1mx 1 m
Insertion Losses (dB)

Frequency of

Measured Predicted
Source (Hz)
125 9 4
250 -5 10
500 11 7
1k -7 13
2k 16 9
4k 19 8
8k 10 9
TABLE 30 Source Position (x, v, z) = (1, 0, -1)
Monitoring Position (x, y, z) = (1, 0, 3)

Ground Surface - Partially Absorbent Barrier 1 mx 1 m
Insertion Losses (dB)

Frequency of

Measured Predicted
Source (Hz)
125 10 3
250 6 9
500 12 6
ik 8 8
2k -5 8
4k 8 8
8k 0 9
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4.5 Analysis of Results

4.5.1 Free Field Environment

1. Barrier 1 mx 1l m

(a) Both S and P in Line with the Centre of the Barrier

(Tables 1-4)
The experimental results show a decrease in Insertion Loss
with distance from 30 dB with P at 1 m from the screen to
20 dB with P at 3 m. The theoretical results show a
similar statistic except that the values are smaller at
18 dB and 14 dB respectively. 1In all of the tables 1-4,
the values of Insertion Loss over the ftéquency range
show a similar trend in that the values are relatively
low for frequencies of up to lk and larger for the higher

frequencies.

(b) Both S and P in Line with the Top Edge of the Barrier

(Tables 5-7)
This situation represents the limiting diffraction case.
The results here show no decrease in the Insertion Loss
with increase o0f distance of P from the screen. The
Insertion Loss appears to be fairly constant at distinct
frequency bands from 250 Hz to 8k Hz. In these cases,
there is an extremely good correspondence between the

predicted and measured results.

(c) One of S or P in Line with the Centre of the Barrier,

whilst the other is:in Line with an Edge (Tables 8-10)

The experimental results show that there is an increase

in Insertion Loss with distance of P from the screen.
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It is of interest to note that the Insertion Loss is
greater when the source S is in line with the centre of
the barrier and P in line with the edge than when S is in
line with the edge and P in line with the centre. This
can be seen by comparing tables 8 and 10. Comparison
between tables 8a and 10a show that the theory upholds
this observation. This is to be expected because the
source is nearer to the barrier in both cases and the
barrier would tend therefore to move effective in its
sound reducing capacity when the source is in line with
the centre. Again there is a very good correspondence

between predicted and measured results.

2. Barrier 1.5 m x 0.75 m

(a) Both S and P in Line with the Centre of the Barrier

(Tables 11, 12)
Both the experimental and theoretical results show that
Insertion Loss does not decrease with increase in distance
of P from the screen. However, the theoretical results
show generally lower levels of Insertion Loss throughout
and indicate that the Insertion Loss is more constant

with changes of frequency than the measured results.

(b) S in Line with the Centre of the Barrier and P in

Line with the Edge (Tables 13, 14)

The comments in (a) above are also applicable here, the
correspondence between predicted and measured results

again being rather poor.
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4.5.2 Barrier in the Presence of a Reflecting Ground

l. Barrier 1 m x 1 m on the Fully Reflecting Concrete Ground

(a) Both S and P in Line with the Centre of the Barrier

{(Tables 15, 16)
In this case there is a good correspondence between the
predicted and measured results. There were generally low
values of Insertion Loss at frequencies below 1k Hz and

higher value at the higher frequencies.

(b) S in Line with the Centre of the Barrier and P in

Line with the Top Edge (Tables 17, 18)

Here there is a fairly good correspondence between the
predicted and measured results. Again the Insertion-
Losses are higher at the upper end of the frequency
range. An interesting observation is that the predicted
Insertion Losses at the frequencies 500 Hz and 1k Hz

are of a rather uﬁexpected nature in both cases (i.e.

P at 2 m and 3 m from the barrier).

2. Barrier 1 m x 1 m with a 0.5 m x 0.5 m Cut Away

Section

(a) Both S and P in Line with the Centre of the Barrier

(Tables 19, 20)
Here there'is a fairly good correspondence between the
predicted and measured results. It is interesting to
note that there is a tendency for higher Insertion
Losses at the middle range of frequencies rather than

at the upper end, and indeed that in the case where P
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is 3 m from the screen, the measured Insertion Losses

were practically zero at 2k Hz, 4k Hz and 8k Hz.

(b) S8 in Line with the Centre of the Barrier and P in

Line with the Top Edge (Tables 21, 22)

Here there is a poor correspondence between the predicted
and experimental results. Although these are higher
predictions of Insertion Losses at the middle range of
frequéncies (as was observed in 2(a) above), this was

not borne out in practice.

3. Barrier 1 m x 1 m on the Partially Absorbent Ground

Surface

(a) Both S and P in Line with the Centre of the Barrier

(Tables 23, 24)
The experiment yielded erratic results for the Insertion
Loss. The theoretical results appear to be more steady.
Again there is a tendency for higher Insertion Losses

at the upper end of the frequency range.

(b) S in Line with the Centre of the Barrier and P in

Line with the Top Edge (Tables 25, 26)

Again the experimental measurements are somewhat erratic,
although more stable‘than in (a). There is a fairly
good correspondence between the predicted and measured
results, although the measured Insertion Losses are

consistently higher than predicted.

- 108 -



(c) S in Line with the Top Edge of the Barrier and P
in Line with the Centre (Tables 27, 28)

The measured Insertion Losses are higher with P at a
distance of 2 m from the screen than at 3 m, although this
does not seem to be borne out by the computed values.
Otherwise there is a fairly good correspondence between

the predicted and measured results.

(d) Both S and P in Line with the Edge of the Barrier

(Tables 29, 30)
The measured results are somewhat erratic especially with P
at a distance of 3 m from the screen. It appears that the
higher values of Insertion Loss are not necessarily at the

higher frequencies.

4.5.3 Summary of Results

The free field predictions of Insertion Loss due to inter-
posing the 1 m x 1 m barrier were usually well supported

by the site tests in the anechoic-chamber. It was noted that
the correspondence when the source and monitoring position
were both in line with the edge of the barrier (the limiting
diffraction case). The results were poor in the case of the
rectangular 1.5 m x 0.75 m. It is not yet clear why this has

happened, but a possibility is that there may be a flaw in

the computer program for this particular dimension.
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In the fully reflecting ground situation, the predicted
results were generally quite good. With the 1 m x 1 m
barrier with a missing section of 0.5 m x 0.5 m the
results were better where the source was in line with
the centre of the barrier and the monitoring position
in line with the top edge than when both positions

were in line with the source. Where the 1 mx 1 m
barrier was used, the correlation between predicted

and measured results were reasonably acceptable.

In the partially-reflecting ground situation, the
predicted results were better when the monitoring
position was in line with the top edge of the barrier
and especially accurate when the source was also in

line with the barrier's edge.

In most cases, the Insertion Losses tended to increase
with increasing frequencies. Exceptions to this were
in those cases where both the source and monitoring
position were simultaneously in line with the same

edge of the barrier.

In some cases it was noted that Insertion Loss decreased
with increase in distance of monitoring position from
the barrier, whereas in other cases, the Insertion

Loss tended to remain constant.
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5. Conclusions and Recommendations for Further Research.

5.1 Conclusions

As explained in Chapter 1, the aim of this thesis
was to formulate a method of predrting'the Insertion
Loss due to finite barrier of arbitrary shape based
on the theory of diffraction around the edges of the
barrier. This aim has been achieved in the cases

of a free field environment and in the presence of

a reflecting ground - The theory is based on
Fresnel-Kirchhoff diffraction theory and is -
applicable to any shape and size of barrier. The
source and monitoring positions are both supposed

to be single points in space and they can assumed

to be anywhere in relation to the barrier.

Transmission of sound through the barrier may be
assumed a constant in the range O to 1. The theory
applies only for single monotonic source frequencies.
Suggestions for extending this to multiple fre-
quencies and frequency ranges appear in 5.2. In the
case of areflecting ground environment, the amount
of reflection from the ground is simplified to two
constant parameters in the range O to 1, the
separate parameters representing reflection for the
ground on the two sides of the barrier. The theory
incorporated a technique of mathematically sub-
dividing the region of the barrier's surface into
finite elements for the purpose of providing a
solution to the Fresnel-Kirchhoff diffraction

formula.
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In the reflecting ground case, the theory also
employed the 'Method of Images' of ground reflection
in order to solve the diffraction problem for the
separate component ray paths which occur when

reflections take place.

The theory was converted into computer programs in
order to effect the caiculations for particular
configurations ofbsource, barrier and monitoring
position. These programs were executed for test
configurations and the results compared with
corresponding experimental site tests conducted in
an anechoic chamber. The results were compared

and discussed.

In all, the aims of this work were achieved to a

satisfactory extent in view of the above discussion.

Recommendations for Further Research

5.2.1 Extension of the sound source properties.

It was assumed that the sound emanated from a
single point source of monotonic frequency.
The theory could be extended to allow for
multiple sources of multiple frequencies
.(using summation techniques) or of frequency
ranges (using integration over the frequency

range) .

5.2.2 Extension of the environment to allow for

further reflections
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The reflecting ground environment could be
extended to a totally enclosed environment
by considering reflections from walls and
ceiling, too. The 'Method of Images' would
also be used on the additional surfaces in
extending the theory. Also the possible
presence within the environment of other
objects which would influence the sound
field could be considered, for example

'furniture' or large machinery.

5.2.3 1In-situ representation.

If the above recommendation were to be
implemented, then the resulting theory would
act as a very flexible method of predicting
performance of a noise-reducing finite barrier
in a typical in-situ environment, such as an

office or factory.

Optimization of the elements forming the subdivision

of the barrier's surface.

It was stated earlier in this work that a discussion
would be given on optimizing the choice of the finite
elements Rj,j=l,2,...,n forming the mathematical
subdivision of the barrier's surface. It may be

noted that in Chapter 4 where the computer predictions
were made, the subdivision of the barrier was always
into the same number of elements, given the size of
the barrier. Some work was done during the develop-

ment of this thesis in choosing these optimum numbers
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of elements. This was done by running the programs
in given configurations of source, barrier and
monitoring positions a number of times, varying

only the number of elements comprising the theor-
etical subdivision. It was found, as would be
expected, that the Sound Pressure predictions
obtained were poor when the subdivision consisted

of few elements and then converged to steady values
upon reaching an optimum number of elements. By
frequent test-running of this kind, it became
obvious which numbers of elements was a most satis-
factory optimum for most barrier configurations.

If more elements than the optimum are chosen, the
results will be just as accurate, of course, but the
computer programs would in these circumstances
perform more calculations making them more costly to
run. For this reason, the optimum should be decided
upon in given configuration for most economical use

of the computer.
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APPENDIX 1 Computer Flow Diagrams

This appendix comprises flow diagrams of the two computer
diagrams which were used in the calculation of predicted
results. The first diagram represents the program used

for predictions of Insertion Losses in the free field and
which is described in 4.2.1. The second diagram represents
the program used for predictions in reflecting ground

environments and which is described in 4.2.2.
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Flow Diagram 1 - Calculation of predicted Insertion Loss

due to an arbitrarily-shaped barrier in the free field.
Start

Read parameters relating to the source
S and Monitoring Position, P, size and
shape of barrier and chosen subdivision

into elements.

Print the parameters in the form of
numerical values combined with a

schematic diagram.

Calculate and print the Sound Pressure
Level at P with no barrier present (see

equation (2.7)).

I

For each element Rj in the subdivision of

the barrier, calculate Ré(Fj) and 1 m (Fj)

125 Hz,

N ‘

= (see equation (2.25)).

X

¥ l
'g n n

o Calculate ¢ Re(Fj) and =z 1Im(Fj)
ﬁ j=1 j=1

|

Repeat for each frequency £

<
W Calculate the Sound Pressure Level at P

.M

~ with the barrier in position (see equation

N

= (2.31)).

o

2 l

R Calculate the Insertion Loss due to the barrier
N e

s (see equation (2.32))

R

N

Print the results for the frequency f.

|

Finish




Flow Diagram 2 - Calculation of predicted Insertion Loss
due to an arbitrarily-shaped barrier in a reflecting ground

environment.
Start

Read parameters relating to the source
S and Monitoring Position P, size and
shape of barrier, chosen subdivision
into elements and ground reflection

coefficients

Print the parameters in the form of
numerical values combined with a

schematic diagram.

(A) — Read required source frequency f.

|

Calculate and print the Sound Pressure
Level at P with no barrier present (see

equation(3.8))

/ ~
3 1 ' 4
Calculation In(z,m), In(z ,m), In(z,m ),

In(z',m') (see equation (3.37)) using

the same method as the free-field program,
by summation over the elements Rj of the
subdivision.

7

Calculate E given by equation (3.6a)

\I

(B)
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(B)

l

Calculate w and W (equations (3.29) & (3.36))

\

Calculate G(w) and G(w), using a Fresnel

Integral subroutine and equation (3.38)

l

Calculate the disturbance U(P) at P in the
presence of the barrier from equation (3.39)

[or equation (3.41l) if the source is on the

l

Calculate the Sound Pressure Level at P

ground].

with the barrier in position, using equation

J

Calculate the Insertion Loss due to the

(3.42).

barrier from equation (3.1) for the

Yes @ Are predictions required for another
(A) e—

frequency f.

frequency?

No

Finish
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