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Abstract.

The incidence of fretting damage in the pressure armour wires of flexible pipes used in 
offshore oil explorations has been investigated. A novel experimental facility which is 
capable of simulating nub and valley contact conditions of interlocking wire winding 
with dynamic slip, representative of actual pipe loading, has been developed. The test 
set-up is equipped with a state of the art data acquisition system and a controller with 
transducers to measure and control the normal load, slip amplitude and friction force at 
the contact, in addition to the hoop stress in the wire. Tests were performed with selected 
loading and the fretted regions were examined using optical microscopy techniques.

Results show that the magnitude of contact loading and the slip amplitude have a distinct 
influence on surface damage. Surface cracks originated from a fretting scar were 
observed at high contact loads in mixed slip sliding while surface damage predominantly 
due to wear was observed under gross slip. The position of surface cracks and the wear 
profile have been related to the contact pressure distribution. The evolution of friction 
force and surface damage under different slip and normal pressure conditions has been 
analysed.

A fracture mechanics based numerical procedure has been developed to analyse the 
fretting damage behaviour. A severity parameter is proposed in order to ascertain 
whether the crack growth is in mode I or mode II cracking. The analysis show the 
influence of mode II cracking in the early stages of crack growth following which the 
crack deviates in the mode I direction making mode I the dominant crack propagation 
mechanism. The crack path determined by the numerical procedure correlates well with 
the experimental results.

A numerical analysis was carried out for the fretting fatigue condition where a cyclic 
bulk stress superimposes with the friction force. The analysis correlates well with short 
crack growth behaviour. The analysis confirms that fretting is a significant factor that 
should be taken into account in design and operation of the pressure armour wires of 
flexible pipes at high contact pressure if the bulk cyclic load superimposes with the 
friction force. As predicted by the numerical procedure and further by experimental 
investigations, the surface cracks initiating on the wire in this condition are self arresting 
after propagating into a certain depth.



CHAPTER 1: INTRODUCTION

1.1 Introduction

Fretting is a process of material damage, which results from microscopically small- 

amplitude oscillatory movements (slip) between contacting components. Fretting 

fatigue is a phenomenon where a component is subjected to fretting damage in 

conjunction with a bulk cyclic stress mainly in the mixed slip sliding (the mixed slip 

condition is explained in Chapter 2) condition. This normally leads to reduced 

fatigue life of the component. Under fretting, shallow cracks are originated on the 

surface of mating components and these cracks may propagate due to cyclic bulk 

stress. Fretting can severely reduce the fatigue strength of a component.

Key parameters affecting fretting fatigue are known to be normal load, slip 

amplitude, contact geometry, surface roughness and number of cycles, bulk cyclic 

stress and material properties. However, their contribution and how they influence 

the fretting fatigue process is still the subject of intensive research [1-6].

Fretting usually results in two forms of damage: surface wear in the gross slip 

condition (this condition is explained in Chapter 2) and surface cracks under the 

mixed slip condition, resulting in accelerated deterioration of fatigue life of a 

mechanical component. Fretting fatigue remains an important factor contributing to 

premature failure of load-bearing components stress level below the fatigue limit.
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Referring to data published from the “United States Air Force”, Ciavarella et al [4] 

states that “Fretting fatigue is responsible for one out of six in-service mishaps in 

gas turbine engines”.

Therefore, accounting for the effect of fretting damage is more important in 

designing of mechanical components that are in contact and subjected to small 

oscillatory movements.

1.2 Fretting damage in flexible pipes

The work presented in this thesis is on the fretting damage behaviour of un-bonded 

flexible pipes. Un-bonded flexible pipes are widely used in the off-shore oil industry 

to transport gas and oil from the sea bed to floating storage and production facilities. 

These pipes are manufactured as a composite structure comprising of several metallic 

and polymer layers, as shown in Figure 1.

Outer
Tensile armour layersprotective

sheath

Inner carcass

Anti Wear layers

Pressure armour layer Polymer
fluid barrier

Figure 1.1 - Sectional view of the flexible pipe structure
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The pipe structure comprises a composite of layered materials that form a pressure 

containing conduit. Each layer has a specific role, preventing either collapse, burst, 

or leak while allowing some degree of freedom between one another. Two types of 

metallic layers, pressure armour layers and tensile armour layers (Figure 1.1) are 

specifically designed to provide the hoop and axial strength of the pipe, respectively. 

The pressure armour layer is made up of profiled steel wires wound in helical shape 

as depicted in the Figure 1.2.

Pressure 
armour wire

Valley

Figure 1.2 -  The pressure armour layer made up of profiled wires.

The profile of the pressure armour wire is such that it interlocks in a nub and a 

valley contact (the nub and valley contact is illustrated in Figure 3.2). This nub and 

valley contact provides limited freedom for the pressure armour layer to move along 

with other layers when the pipe is flexing under service conditions.
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During service, the pipe structure is subjected to pressure from the external sea 

water and the internal pumping fluid. The pressure difference between the outer sea 

water and the internal pumping fluid in conjunction with the interaction of other 

metallic and polymer layers creates a contact pressure on the nub and valley contact 

of the pressure armour layer. This difference of pressure also creates a hoop stress in 

the pressure armour layer. The movement of the pipe due to sea waves, 

displacements of the floating production facility and other dynamic forces create 

small oscillatory movements between contact points, creating ideal conditions for 

fretting damage to occur. This condition may reduce the fatigue life of the pressure 

armour wire and it is therefore necessary to study and estimate the extent of fretting 

damage that might occur on the pressure armour wires of flexible pipes.

1.3 Aims and objectives of the research.

As the offshore exploration and production is developing in deeper fields, flexible 

risers have become a very important component in floating offshore production 

facilities. Consequently, the number of flexible risers in operation has tremendously 

increased in recent years. Predicting their fatigue life is very complex, especially 

when considering the possible interactions of additional degradation mechanisms 

such as fretting.

Whilst the presence of fretting cracks itself may be detrimental to the fatigue 

strength of the pressure armour wires, their influence on fatigue durability of the 

wires can be a potential risk.
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An understanding of the effects of loading and design parameters that control 

fretting damage in pressure armour wires is thus considered to be highly desirable in 

order to optimize pipe design and eliminate the risk of premature fatigue failure.

This study involved a comprehensive systematic investigation of the relative effects 

of local and global mechanistic parameters that determine fretting fatigue life of the 

pressure armour wires in flexible pipes. The aims and objectives of this research are 

as follows.

1. Develop a new testing facility to investigate the fretting damage behaviour in 

pressure armour wires of flexible pipes.

2. Perform experimental investigations to identify the influence of contact 

pressure, slip amplitude, bulk stress, wire profile, on the growth of fretting 

damage in pressure armour.

3. Investigate the damage process, crack growth and the damage rate of fretting 

fatigue.

4. Develop a predictive method to determine the fretting damage process and 

the rate and type of damage evolution.

This thesis comprises eight chapters. In the second chapter, a comprehensive 

literature review is presented. The literature review covers basic definitions and the 

current understanding of fretting damage reported in the literature. The parameters 

affecting fretting damage and their individual contributions, the experimental 

techniques in fretting damage analysis and numerical predictive methods used for 

fretting damage, are reviewed.
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One of the main objectives of the project was to design and build a new experimental 

facility to investigate the fretting damage behaviour of the pressure armour wires of 

flexible pipes. The experimental facility has been designed and developed including 

a digital controller which was used to control the experiments and to log data. The 

design and development of the experimental set-up are described in the Chapter 3.

The experimental investigation which has been performed using the new facility, 

consisted of three series of experiments and in total of 33 tests have been performed 

and the details of these tests are given in Chapter 4. The first series of experiments 

(preliminary experiments) were carried out in order to gain an understanding of how 

the contact pressure, the slip amplitude and the friction force interact and how these 

parameters would affect the fretting damage process. The second series, "interrupted 

tests" were performed in order to establish the boundaries between damage and non­

damage. Further cyclic tests were carried out on pre-fretted specimens, to estimate 

the reduction in fatigue strength due to fretting damage of pressure armour wires.

A fracture mechanics based fretting damage analysis procedure has been developed 

and is described in Chapter 5. The methodology is capable of predicting the crack 

path and the crack propagation rate and the size of non propagating cracks resulted 

from fretting. The experimental results and observations have been discussed and 

compared with the numerical predictions in Chapter 6. Conclusions derived from this 

study and future work proposed to further the knowledge of the subject are given in 

Chapter 7 and 8 respectively.

6



CHAPTER 2: LITERATURE REVIEW

The first specific citation of fretting damage according to the literature is by Eden et 

al. in 1911 [7], They found that brown oxide debris was formed in the grips of their 

fatigue machine, when in contact with a steel specimen. In 1927 Tomlinson [8] 

designed two testing machines to create small oscillatory amplitude motion and 

conducted the first controlled investigations on fretting damage. He used the term 

‘Fretting Corrosion’ to explain the damage process, since he saw red iron oxide 

debris during the process. Further, he established that small oscillatory movements 

were necessary for the damage to occur (which he termed as slip) and he observed 

that the damage was caused by movements with amplitudes as small as few 

micrometres.

2.1 Examples of Fretting Damage.

Fretting damage can be observed in almost all mechanical contacts involving two 

parts that are “nominally” fixed or held together. These include components such as 

interference fits, flexible couplings, roller bearings, riveted joints, pipe lines and 

turbine dovetail joints. The first clue to suspect that fretting damage is happening 

between two or more machine components is appearance of loose debris from the 

contact. On steel contacts, the debris is more red coloured than ordinary rust; for 

aluminium contacts, the debris is black where as the aluminium oxide is white in 

colour [9]. Due to this reason, early researchers [10] have used terms such as “friction 

oxidation, wear oxidation, bleeding, cocoa etc.” to describe the surface damage due to 

fretting in metals.
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Such damage is common in interference fits of railway wheels where the wheel is 

press-fitted onto a steel axle [9-13]. The shaft is subjected to bending, when it is 

loaded. The rotation of the wheel and axle causes cyclic loading in the contact area of 

the wheel and the shaft causing fretting damage. '

Assemblies of plates held together by rivets and bolts, such as aircraft fuselages are 

susceptible to fretting damage when subjected to vibrations or cyclic loading 

[9,14,15]. In a simple riveted or bolted joint there are three possible points where the 

fretting damage can occur, (a) between the riveted panels, (b) between the under side 

of rivet head and the joint panel (c) Between the shank of rivet and the rivet hole of 

the joint.

Flexible couplings are another mechanical component where the fretting damage can 

occur. Couplings are used to connect two rotating shafts in machines. Generally, 

there are two design types of couplings; rigid and flexible couplings. In both 

designs, slight misalignments may lead to small oscillatory movements between two 

joining components [1,9 ,10,16,17]. Under operational conditions, when two shafts 

are rotating, cyclic loads are imposed on the coupling. This may cause fretting 

damage with small oscillatory movements.

Steel ropes which are made of many small diameter wires wound together, are 

widely used for cable cars, cranes, mooring of ships and electric conductors (cables). 

When the rope is under tension, a high contact pressure is imposing between 

individual steel wires in contact. Under operational conditions when the wire is
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flexed small oscillatory movements occur between these individual wires creating 

most favourable conditions for fretting damage [1, 7,17].

Severe fretting damage can occur in ball or roller bearings that are subjected to 

vibration. This condition is predominant if the bearings are stationary for long period 

of time and are seldom used in rotary movements. In this case, damage occurs at the 

points of contact between the bearing and the races [7,18]. This type of damage can 

happen in roller bearings of gun mountings in tanks and ships and was a serious 

problem at one time in automobile bearings when, new vehicles were transported by 

rail [9].

In turbine rotors, the turbine blade is fixed by means of a dovetail joint. When in 

operation, due to centrifugal forces, the dovetail fixing of the blade to the disc is 

subjected to high contact pressure and variations of temperature and rotating speeds 

may create small slip movements within the contact creating fretting damage [4, 22, 

23].

2.2 Main parameters affecting fretting damage.

The main parameters affecting fretting damage are known to be the contact pressure, 

slip amplitude, frequency, local bulk stress and friction force. In addition to these, 

there can be many more parameters that have been observed to influence the fretting 

damage process [62].
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2.2.1 Slip regimes in fretting.

The slip is the relative displacement between two contacting points on two bodies 

(specimen and the pad). In real engineering components the relative displacement 

can vary from a few micrometres to a few metres. However, fretting is prominent 

when the relative slip is small, approximately 0.1 pm to about 300 pm[25] . There 

can be (a) stick, (b) mixed slip (stick-slip) and (c) gross slip zones of sliding in 

fretting fatigue [27].

In the stick zone, there is no movement between the fretting specimen and the pad, it 

occurs at very small amplitudes [2, 27, 29]. There is observed to be very little 

fretting wear and there is negligible fretting crack growth in this regime [2,27,29].

In the gross slip regime, the whole contacting area of the fretting pad moves relative 

to the specimen. In this condition, severe surface wear may occur [2, 27, 30] . For a 

contact pair (specimen and a pad), at constant normal load, for a given system in the 

stick condition, if  the displacement amplitude is increased, a transition from stick to 

gross slip through mixed slip will occur.

In the mixed slip regime despite the increase of global displacement, the region with 

high contact pressure will remain in a stick condition while the regions with low 

local pressure distribution start sliding. In this regime, the wear rate is moderate 

compared to the stick regime [2,24,27,29].
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These three regimes can be identified from the shape of friction loops, when the slip 

amplitude is plotted against the friction force [2]. The typical shape of friction loops 

for the above three regimes is graphically illustrated in Figure .2.1.

D i s p l a c e m e n t D i s p l a c e m e n t D i s p l a c e m e n t

St ick  M i x e d  Sl ip G r o s s  slip

Figure 2.1 Transition from stick, stick-slip to gross slip

The Figure 2.1 clearly shows that the friction force varies between a maximum 

positive and a minimum negative value through zero with slip amplitude during a 

cycle and the friction force within a cycle is not fixed. A constant value for friction 

coefficient (the ratio of normal force to the traction force) cannot be obtained for 

fretting conditions. The coefficient of friction, (/x) in the traditional sense, can only 

be defined for the case of gross slip where the friction force is constant throughout 

the sliding process. However, to describe the variation of frictional force with 

different slip conditions, the ratio of global friction range, AF^x, to twice the 

applied normal load 2N has been used in the literature [3]. Hence to avoid ambiguity 

between Coulomb friction coefficients and friction under fretting conditions, the 

term ‘traction coefficient’ is used in this thesis as the ratio of the global friction 

range, AFmax, and twice of the applied normal load 2N.
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2.2.1.1 Quantification of sliding condition.

As discussed above, the sliding condition is classically distinguished from the 

friction loop shape. Fouvry et al [30] introduced the ratio (Eqation 2.1) between the 

dissipated energy (area of the hysterisis loop) and the equivalent total energy as 

shown in Figure 2.2.

A = E*
Et 4Q.S,

Where,

S* -Displacement amplitude 

Q* - Tangential force amplitude 

Ed - Dissipated energy (Area of the friction loop) 

Et- Total energy given by Et -  4Q+5+

-(2.1)

Ed

E,

Figure 2.2. Sliding regime quantification parameters [30]
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It has been demonstrated that for an elastic sphere on flat contact configuration that 

this variable reaches a constant value (At =0.2) at the sliding transition. When A< At 

the sliding condition is mixed-slip and when A>At the sliding condition is gross slip 

[30].

2.2.1 Effect of slip amplitude

Vingsbo and Soderberg [31] illustrated the effect of slip amplitude in terms of stick, 

mixed sip and gross slip regimes on the wear process and fatigue life as shown in 

Figure 2.3.
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Figure 2.3 -The effect of slip amplitude on wear and fretting fatigue life [29]

According to the Figure 2.3 the wear rate increases with increase of slip amplitude. 

The wear rate is minimum in the stick region. It reaches a constant value in mixed 

slip region and increases gradually with increase of slip and reaches a maximum in 

the gross slip region or reciprocating sliding.
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On the other hand, the minimum fatigue life is observed in the mixed slip boundary 

and higher values are observed in the stick and gross slip regions.

Ding et al [17] carried out a finite element based analysis for slip regime on fretting 

wear and stress evolution. In their study they predicted that the gross slip condition 

is more wear dominant and the partial slip condition is more detrimental with regard 

to the fretting stress evolution.

2.2.2 Variation of Friction force during fretting damage.

During experimental investigations, a large variation of friction force can be 

observed in first few thousand cycles [3, 21, 32]. Starting from a low value, the 

friction force stabilises at a certain level after a few thousand cycles. The maximum 

raction coefficient under fretting conditions can go up to about 1.5 for steel-on-steel 

contacts, which is considerably higher than the conventional pure sliding coefficient 

of friction at large slip amplitudes [3]. If the slip condition changes from stick-slip to 

gross slip during the experiment, a significant increase of friction force can be 

observed for steel [29,30].

2.2.3 Effect of normal load

The normal load between the contacting surfaces is essential for fretting to happen. 

For an experiment carried out with steel contacts on aluminium alloy, a sharp 

decrease in fretting fatigue life when the contact pressure is increased from zero to 

30 MPa was reported by Waterhouse [9] and beyond 30 MPa the increase of the 

contact pressure had very little effect on the fretting fatigue life.
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Nakazawa et al [33] reported a reduction in fretting fatigue life and increase of 

fretting wear with the increase of contact pressure for austenitic stainless steel.

Under fretting conditions, Ramesh and Gnanamoorthy [32] reported a reduction of 

the friction force with increasing normal loads for bearing steel, EN31, and 

structural steel, EN24.

Fernando et al [21] have observed a reduction of fretting fatigue life with an increase 

of contact pressure up to about 80 MPa and an increase of the fretting fatigue life 

when the contact pressure was increased beyond 80 MPa. Further, they have 

observed that this behaviour is predominant at low axial stress amplitudes. Fernando 

et al have attributed this variation to the crack closure due to high compressive 

normal load.

Naidu and Raman [34] reported an increase of the traction coefficient with an 

increase of the contact pressure. The reduction of fretting fatigue strength due to 

contact pressure was variable. They have observed [34] that when the contact 

pressure increased from 100 MPa to 150 MPa, the fretting fatigue life was increased. 

Minimum fretting fatigue life was observed at 100 MPa contact pressure and the 

fretting fatigue life was decreased as the contact pressure was increased up to 100 

MPa. They have also attributed this effect to the crack closure at high contact 

pressure.
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lyre and Mall [35] derived a direct relationship between the contact pressure and 

decrease of fretting fatigue life. They observed in their numerical analysis that the 

local stress range increases with an increase of normal contact pressure.

2.2.4 Atmospheric pressure and oxygen concentration

Some researchers [37- 40] have reported that the coefficient of traction is high in 

vacuum. The value gradually drops with increase of pressure until atmospheric 

pressure and remains constant when the pressure is further increased. Iwabuchi [40] 

has reported that although the coefficient of traction was reduced with increase of 

temperature, the coefficient of traction did not significantly change with temperature 

in vacuum, at pressures below 10 Pa. Iwabuchi [40] also reported a low wear rate in 

vacuum, compared to the wear rate at atmospheric pressure.

2.2.5 - Effect of temperature

Researchers [2, 39] have reported that a glaze oxide is formed for nickel and ferrous 

based alloys resulting in reduction of coefficient of friction at high temperatures. On 

the effect of temperature on fretting wear, Kazuhisha et al [20] reported a lower rate 

of wear for Ti-48Al-2Cr-2Nb material, at 473K as compared to that at room 

temperature. The drop in wear rate was related to the increased rate of oxidation. 

However, the wear rate was increased with increasing temperature from 473K to 

823K. This behaviour was explained by oxide film disruption with crack generation, 

debris and pitting of the wear surface. Crack generation at high temperature (above 

473K) was attributed [20] to the reduction in yield strength of the material at high 

temperatures.
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2.2.6 Effect of lubricants

Lubrication is considered to be an important method of reducing fretting damage. 

The objective of the lubrication is to reduce the traction coefficient and thus reduce 

the fretting damage. McColl et al [41] reported a delay of fretting wear when the 

interface is lubricated with grease, in eutectoid steel ropes. A low coefficient of 

traction (below 0.2) was observed in the early stages of fretting wear, (up to 1000 

cycles), and was gradually increased to about 0.8-1.0 at 100000 cycles. When the 

same test was carried out with oil bath lubrication, a significant reduction in traction 

coefficient (0.2) was reported throughout the experiment [41].

Shima et al [42] have reported with oil lubrication, the coefficient of traction 

increased at low strokes of slip amplitude (below 5 /mi) but a decrease of traction 

coefficient was observed at high slip amplitudes.

Zhou and Vincent [44] in a review have noted that solid lubricants are effective in 

the partial slip condition while grease and oil are more suitable in the gross slip 

condition. Further, they have noted that the understanding on the effect of lubricants 

on fretting is still limited and further investigations are needed to understand the 

mechanisms.
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2.3 Contact mechanics and fretting damage predictive methods.

Fretting damage can be characterised as a crack initiation process in the early stage 

of fretting fatigue and subsequently these cracks propagate under dynamic loading. 

For safe design of mechanical components against fretting fatigue failure, it is 

necessary to estimate crack initiation and propagation life in relation to bulk and 

local loading conditions.

The majority of work on fretting damage was carried out with idealised contact 

geometries based on Hertzian contacts. These geometries are sphere on flat contact or 

cylinder on flat. Generation of analytical descriptions to obtain the pressure and 

subsurface stress distributions for this type of contact is well established. In addition 

to the simplicity in numerical analysis for this type of contact, the alignments are less 

critical compared to contacts involving flat with straight edges or flats rounded edges.

Hertzian contacts

The subject of contact mechanics was introduced in 1882 by Heinrich Hertz with his 

classic paper ‘On the contact of elastic solids’ (according to Johnson [45]). This was 

the first satisfactory analysis of the stresses at the contact of two elastic solids. Hertz 

theory was obtained for two parallel infinitely long cylinders or spheres in contact 

and is restricted to frictionless surfaces and perfectly elastic solids. A typical 

Hertzian contact is shown in Figure 2.4.
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Figure.2.4 -  Typical Hertzian contact

According to the Hertz theory, the pressure distribution of an elemental area at a 

distance x from the centre of contact is given by [45],

Where,

po. is the maximum Hertzian contact pressure 

a -  is the contact half width

x- any point along the contact at x distance from the centre line. 

The contact half width is given by [45],

-(2.2)

-(2.3)
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The maximum Hertzian contact pressure is given by [45],

- (2 .4 )

Where,

R -  Radius of the contact

E -  Young’s modulus

P = Load per unit length [MN/mm]

Note that if the mating materials are different, the E is defined differently taking into 

account the Young’s modulus of both mating materials and the reader is referred to 

reference [45] for further details.

The pressure distribution given by equation 2.2 is elliptical as shown in Figure 2.5.

Figure 2.5 -  Typical pressure and shear traction distribution for a Hertzian 

contact [43].
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Contact of flat rounded contacts

A closed form elastic analytical solution for the contact pressure distribution for a flat 

with rounded edges was given by Ciavarella. et al [46].

Px

Specimen

Figure 2.6 -Contact geometry with flat rounded edges

Considering the geometry, as schematically illustrated in Figure 2.6 the contact 

pressure distribution for the half flat length of b and comer radius of R, is given by

2 /7 1

n -  2(j)0 -  sin 2^c
■ x 1 (n -  2 <f>0) cos <j> + In

sin(^ + <f)0
sin

_sin (^ -^ 0)
X tan - — — tan

sin^o -(2.5)

P is the nominal (average) contact pressure and p($) is the contact pressure at a 

distance x from the centre of the contact. The distance d is the actual contact length.

The value of <f>0 is determined from the overall equilibrium for the contact and is 

given as:
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4PR(l-v2) = 7T-2<f>0 [ cot^0 
b2E 4sin2$) 2

where E  and v  are Young's modulus and Poisson’s ratio of the material.

The angle of $ is related to the distance along the contact using the equation

x = b ; - d  < x < d  -(2-7)
sin^0

d = - ^ —  . -(2.8)
sin^0

The pressure distribution calculated based on equation 2.5 for the current application 

for 260 MPa average contact pressure is shown in Figure 5.4 in Chapter 5.

2.3.1 Fretting damage prediction

Fretting damage prediction methodologies can be grouped into three categories. 

They are:

(1) Empirical equations specifically determined for fretting situations,

(2) Multiaxial based criteria and

(3) Fracture mechanics approaches.

All these methodologies are based on the accurate determination of local 

stress/strain distributions.
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2.3.1.1 Empirical equations

Nishioka and Hirakawa [47] argued that under fretting conditions, the fatigue 

strength is mainly characterised by the stress state in the fretted area and the stress 

state is mainly influenced by the alternating shear in the surface which arises from 

the frictional force. For a Hertzian type contact they derived the equation 2.6.

( 8 ^
= cth> -2/?>0[l-ex p

K
-(2.9)

\  /

Where,

Fatigue strength in the absence of fretting

8 Slip amplitude

M Coefficient of traction

K Material constant determined experimentally

^Jwl Stress to initiate a fretting crack

They have observed that the theoretical results agree well with the experimental 

observations with slip amplitude below lOjum. They have attributed the non 

agreement above 20 /m  slip region to the domination of wear process under gross 

slip condition. Analysing the equation 2.9, they further suggested conditions to 

mitigate fretting damage as: raise the fatigue strength, reduce the slip amplitude and 

contact pressure.

Ruiz et al [23] studied the effect of fretting three different materials commonly used

in gas turbine engines. Explaining the crack initiation behaviour at dovetail joints of

turbine blade and the disk, they proposed a “Fretting Damage Parameter” (FDP)

23



specific to the fretting. The FDP was defined as the product of contact shear stress at 

the contact surface and the slip amplitude and is given as

They argued that the combination of the slip amplitude and the interface shear stress 

is more appropriate to describe fretting damage. The FDP gives a measure of 

amount of fretting damage per cycle. Further, assuming that the further crack growth 

is governed by the bulk tangential stress ( cr^), the combined Fretting Fatigue 

Damage Parameter (FFDP) was defined as

2.3.1.2 Application of multiaxial fatigue parameters

Similarities between the features of cracking and observations of multiaxial fatigue 

and observations of the formation of cracks in fretting fatigue leads to application of 

multiaxial fatigue and damage concepts to the analysis of fretting problem [14,48].

Dang Van’s Criteria

Dang Van et al [49] has proposed a method for predicting fatigue life under high 

cycle fatigue conditions. This model was based on the observation that fatigue crack 

nucleation is a local process and begins within grains that have undergone plastic 

deformation.

The analysis is carried out by sub dividing a structure into sub divisions (similar to a 

mesh in finite element analysis). Analysis for fatigue failure can be carried out for 

any of the sub divisions to analyse the possibility of cracking at that point. First, the

point concerned is confined to a macroscopic elementary volume and further that
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volume is sub divided into mesoscopic volumes. According to Dang Van et al [49], 

the stress tensor at this scale results from the macroscopic one and the local residual 

stresses.

Where, p h is the Hydrostatic stress, r(t) is Instantaneous mesoscopic shear stress 

and m, n are material constants evaluated experimentally.

The fatigue resistance is checked point by point analysing the quantity

fatigue cracking. Dang Van and Maitoumam [50] have applied this criterion to the 

fretting problem and have obtained satisfactory predictions.

Application of the SWT parameter

Smith, Watson and Topper [28] have proposed a model to describe the fatigue life in 

push pull tensile compression. It was expressed as

The Dang Van’s Criteria is given as an inequality related to the mesoscopic stresses

at all instants (t) of a loading cycle as follows.

max {r(t) + aph{ (t) -b } < b -(2.12)

max {r(t) + aph{ (t) -  n}
The positive value of the DV means occurrence of

b

«,max -(2.13)
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Where,

O f  .Fatigue strength coefficient

b - Fatigue strength exponent 

6f - Fatigue ductility coefficient 

c- Fatigue ductility exponent 

E - Young’s modulus

Nf - Number of cycles to initiate a crack of a given length 

Ae - Strain range in the principal plane

On,Max - Maximum normal stress on the principal strain range plane

Szolwinski and Farris [14] applied a modified SWT parameter based on critical 

plane orientations successfully to predict the fretting crack initiation. They assumed 

that the crack nucleation occurs on a plane where the combination of strain 

amplitude and the maximum normal stress is maximum and not necessarily the 

maximum principal strain amplitude or the maximum normal stress at a given point. 

The SWT parameter has been successfully applied to the fretting problem by several 

researchers assuming that the fretting damage process is a mode I cracking problem. 

[4,14,58, 61, 64, 65, 66, 67, 68, 69,70].

Stress gradient effect considerations

Araujo and Nowell [61] applying the SWT parameter point out that the stress 

concentration is extremely localised and fretting cracks nucleate at points of high
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localised stresses similar to a notch situation. But the multiaxial crack initiation 

parameters do not account for the stress gradients. In fretting situations a high stress 

field exists in the vicinity of the contact and rapidly decays when moving into the 

material. For more rapidly varying stress fields, the high localised (surface) 

maximum is not sufficient to fully describe the crack initiation and growth unless 

the parameter concerned is sustained over a considerable length or volume. 

Therefore, they proposed an averaging methodology over a length or a volume.

The averaging methodology is basically based on the fact that the high stress must 

be sustained over a critical volume in order for a crack to rupture through the 

strongest micro-structural barrier.

Fouvry et al [71] have introduced a methodology of averaging parameters over a 

volume in order to take into account the high stress gradient exist in vicinity of the 

contact surface. Proudhon et al [67] have adopted this technique and analysed for 

2024-T-351 alloy and found a good correlation for the average grain size of the 

material with the process volume. Further, Munoz et al [69] compared the process 

volume for 2024-T-351 and 7075-T651 alloys and found that the process volume 

cannot correlate with the grain size for 7075-T651 alloy. During the same period, 

Proudhon et al [68] proposed a variable process volume approach.

New advancements were made by the application of the SWT parameter for the 

fretting wear damage process by McColl [3 ], Ding et. al. [17 ], Ratsimba et al [72] 

and Madge et al [73].
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A modified version of the SWT parameter was proposed by Ding et al [74] in order 

to capture the type of damage in the mixed slip regime and the damage in the gross 

slip regime separately. A modified Ruiz parameter in conjunction with the SWT 

parameter was also proposed by Vidner and Leidich [75].

Fatemi and Socie (FS) parameter

Fatemi and Socie [16] proposed a model based on the shear strain amplitude in a 

critical plane, for mode II cracking. Their model was expressed as;

Where,

AyMax -  Maximum shear strain range 

ery - yield strength

crnMax " Maximum stress acting normal to the plane with maximum shear strain range

t\ - Shear fatigue strength coefficient 

G - shear modulus

b7 -  Shear fatigue strength exponent 

c7- Shear fatigue ductility exponent

Nf - Number of cycles to initiate a crack of a given length 

a  - is a constant

/t, max -(2.14)
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2.3.1.3 Fracture mechanics approach

Fracture mechanics is an approach which can be used to estimate and predict fretting 

fatigue life [1,2,14, 23,47,51-60, 76-80].

Such methods are based on establishing the stress intensity factor AK  for cracks 

initiated in the contact zone. Calculation of the number of loading cycles, from an 

initial crack to failure was integrated using a Paris type crack propagation law.

where,

af  - is the crack size at failure 

a - the initial crack size,i 7

AK - is the range of the stress intensity factor (that depends on the crack size c)

C, m - are material parameters.

In early work of Nix and Lindley [11, 60] a fracture mechanics based procedure was 

used to predict fretting fatigue damage. However, in their analyses they assumed that 

the cracks propagates normal to the contact surface although in practice the actual 

cracks are typically generated oblique to the surface an angle at about 15° -  45°. 

Furthermore they only used mode I stress intensity factors in the analysis.

Faanes and Fernando [52] also have used LEFM approach to predict fretting crack 

growth. Crack propagation was evaluated by assuming a growth law of modified 

Paris type:

1 da
-(2.15)
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^ -  = c[t±KeJf-h K lh(a)]' - (2 .1 6 )
dN

Here, &Keff was calculated taking into the multiaxial stress state incorporating the 

bulk stress, normal and friction, and AKth {a) is the threshold stress intensity factor,

modified to account for small cracks through the relationship proposed by El 

Haddad [93]. They have correlated the threshold stress intensity factor range for a 

short crack through an intrinsic crack length aQi as follows.

A K J a ) = ^ M = L  -(2.17)
/̂1 + a0 / a

Where,

a - is the crack size

AKth. is the threshold stress intensity for a long crack.

The a0was evaluated from

a0 = — 
n

A*«(«>)

. Ao>i .
- a ,  -(2.18)

Here,

ai is an “initial crack length” normally assumed to be the surface roughness 

A<j fl is the uniaxial fatigue limit.

Mutoh and Xu [36] introduced a new concept based on the stress field near the 

contact. Based on experimental observations that fretting cracks initiate at very
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shallow angles to the surface and follows the direction of the maximum shear stress, 

they assumed that the fretting crack initiation is in the direction of the maximum 

shear stress, and the crack changes direction to the direction of maximum normal 

stress, after propagating for a few micrometres.

In this method it is very important to ascertain the crack initiation location and the 

location is assumed to be the point where, the most severe stress concentrated point 

on the contact surface. The crack path is predicted in steps assuming that the crack 

will initiate in the maximum shear stress direction and propagate in the maximum 

normal stress direction.

2.4 Experimental Techniques in fretting fatigue.

Generally, experimental investigations are focused on unveiling the influence of 

certain parameters which influence fretting damage processes. One objective of 

fretting damage experiments is to monitor fretting crack initiation and propagation 

under different loading conditions.

Hills and Nowell [62, 63] categorise fretting experiments into three groups 

depending on the objective of the experiment

1. Simulation of real engineering problems - The objective of these tests are to

reproduce as accurately as possible, either full size or possibly on a reduced

scale, the contact problem. This type of experiment is of great advantage to

designers, as the results obtained from tests, could be applied without

modification to real engineering problems.
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2. Material ranking tests -  The objective of this type of tests is to assess a 

materials resistance to fretting damage.

3. Idealised fretting fatigue tests - These tests are carried out in certain conditions 

to understand the influence and contributions of individual parameters to 

fretting fatigue. The objective of these tests is to understand the mechanics and 

underlying processes of fretting fatigue phenomena.

Out of the above three categories, simulation of a real engineering problem is more 

difficult since in most of the cases new experimental rigs need to be designed. In 

some cases, it might be extremely difficult to simulate the real contact conditions 

and associated stress fields under laboratory conditions.

2.4.1 Idealised fretting experiments

Generally, the design of idealised fretting experimental set-ups can be broadly 

classified into two categories, (i) bridge pad contact arrangement and (ii) single 

contact arrangement.

2.4.1.1 Bridge pad type contact arrangement.

This is a simple arrangement to carry out fretting experiments. A schematic diagram 

and a pictorial view of a bridge type test set-up is shown in Figure2.7.(a) and Figure 

2.7(b) respectively.
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Figure 2.7 -  Bridge pad type contact arrangement

In this arrangement, a cyclic bulk stress (tensile or bending) is applied to the 

specimen and a contact pressure is applied to the contact pad by means of a proving 

ring. This simple design provides the advantage of creating stick or slip sliding 

conditions by varying the distance between the two contacts of the bridge or the bulk 

cyclic stress. The slip amplitude is calculated knowing the distance between the 

bridges and the cyclic stress amplitude.

The contact pressure is varied by adjusting the screws of the proving ring and is 

measured by measuring the strain on the ring by means of strain gauges.

Although this is a simple arrangement to carry out fretting experiments its 

limitations are.

• The slip amplitude can not be calculated without knowing the bulk stress, 

bridge length and material parameters.

33



• If this arrangement is used with a rotating bending test set-up, it is difficult to 

continuously monitor the contact load and the friction force.

2.4.1.2 Single contact arrangements

In contrast to the bridge pad type experimental rigs, the single contact experimental 

arrangements use only one pad and the contact can be of rounded, flat- rounded or 

flat geometry. Two different designs are described in the literature. They are 

explained as Design type A and Design type B below.

Design type A

A schematic diagram of the design is shown in Figure 2.8. A hydraulic test machine 

is used to grip a specimen and apply a cyclic stress load. Due to the elasticity of the 

material, the specimen expands and contracts under the cyclic bulk load. But at the 

same time, the pads are held in a fixed position, by a fretting fixture. The two 

bodies, the pad and the specimen, rub against each other as shown in Figure 2.8. The 

slip amplitude is related to the bulk stress range.

Although this experimental set-up is simpler, it has the following disadvantages

• Slip amplitude needs to be calculated from the material properties and cyclic 

loading of the specimen.

• The dominant feature of the slip generating method is that always a slip- 

stick condition prevails and only the stick-slip condition can be investigated
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Figure.2.8. -  Test set-up with axial cyclic stress only 

Design type B

This set-up is capable of generating independent cyclic movement with respect to 

the specimen while the specimen is subjected to cyclic loading independently. A 

schematic diagram of the design is shown in Figure.2.9.

Contact Pressure

Slip amplitude

Pad

Bulk Stress
Specimen 2^

0 Slip amplitude

I I

Figure.2.9. -  Test set-up with axial stress and independent movement of pads
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A hydraulic test machine is used to grip a specimen and apply a bulk cyclic load to 

the specimen. One end of the specimen is fixed and a cyclic load is applied to the 

other end. Fretting pads are pressed by a static load in a direction perpendicular to 

the length of the specimen. Independent cyclic movement of the fretting pad in a 

direction parallel to the length of the specimen is applied by means of either 

mechanical or hydraulic devices.

The main features of this design are:

• The movement of the fretting pad is parallel to the direction of bulk stress 

and the fretting pads can move independently, in-phase or out-of-phase to the 

bulk stress.

• Capable of simulating all slip regimes (stick, stick-slip, gross slip).

Jin and Mall [36] have used this configuration and observed different slip regimes 

with change of the slip amplitude.

It should be noted at this point that the stress field o f the current investigation is 

entirely different from Design type A and Design type B. While the bulk cyclic stress 

is parallel to the slip direction in the design type A and B, the slip direction in the 

current investigation is in perpendicular direction to the bulk stress. The design and 

development o f the new experimental set-up is described in the next chapter.
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2.5 Crack nucleation site and Crack path.

Experimental observations on crack nucleation site and the crack path are of 

importance for numerical analysis procedures. Researchers have observed that cracks 

are nucleated within the contact zone and fretting cracks originate oblique to the 

contact surface [ 56, 78, 66, 79].

Vallelano et al [56] have reported that the cracks were nucleated within the contact 

zone and cracks were formed at small angles to the surface and soon kinked at 60°- 

90° angle with the horizontal.

Further they have observed that the crack path turned at around 20 /ml depth. They 

have carried out the tests with a spherical contact on a A17075-T6 material where the 

average grain size was measured to be 30 fim.

Munoz et al. [60] analyzing two different aluminium alloys 2024-T351 and 7075- 

T651, reported that cracks start from the contact surface at an angle closer to 55° and 

when the crack further grow, very close to the surface, the crack changes to form an 

angle of 70° - 75°. Further they have observed that the initial crack angle changed at 

around 50 /mi depth for 2024-T351 material and around 100 /mi depth for 7075-T651 

material.
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CHAPTER 3: DEVELOPMENT OF A NEW 

EXPERIMENTAL SET-UP

A novel experimental set-up has been designed and developed specifically to 

investigate the fretting damage behaviour of the pressure armour wires of flexible 

pipes. One of the main objectives of this investigation was to use the real 

engineering component under study, in experimental investigations and to simulate 

as far as possible the real operating conditions of the pressure armour wire nub and 

valley contact for fretting damage. In this chapter the approach and the design 

considerations which led to the development of the test rig are discussed.

3.1 Samples

The pressure armour is made of inter-locked steel wire wound in a helical shape as 

shown in Figure 1.2 (chapter 1), to form a metallic layer which will take mainly the 

hoop stress of the pipe. A sectional view of the pressure armour wire used by 

Wellstream International is shown in Figure3.1
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2 X R 6 3 .5

Figure.3.1 -  sectional view of the pressure armour wire

12 mm size wire was selected for the experiments and all specimens and pads were 

made from this wire size.

3.2 -  Requirements of the experimental set-up

The low angle helix winding of the wire creates an interlocked nub and valley 

contact arrangement. The kinetics and kinematics of the pressure armour wire under 

operational conditions are shown in the Figure 3.2.
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Figure 3.2 -  Pressure armour layer contact details

Complex contact conditions exists in the nub and valley region of the pressure 

armour wire due to the contact pressure, slip and pipe hoop stress. In order to 

simulate these conditions, the test set-up should be able to reproduce the following

• Apply a bulk stress to the specimen, which is equivalent to the hoop stress in 

the real pressure armour wire under operational conditions.

• Apply a contact pressure between the specimen and the pad, which is 

representative of the equivalent pressure acting on the pressure armour wire 

resulting from the pressure of sea water and the pumping fluid and interaction 

of other metallic and polymer layers of the pipe.
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• Produce small amplitude oscillatory movements in the nub and valley contact 

of the specimen-pad pair to simulate the relative movement in the pressure 

armour wire interlocking contact. This movement is generated in actual 

operational conditions from sea roughness and relative displacements of the 

floating production or storage system.

A schematic representation of an experimental configuration that would fulfil the 

above requirements is shown in Figure 3.3.

Contact Pressure

Slip amplitude

Bulk StressPad

p Contact Pressure

Figure 3.3 -  Contact configuration in the experimental set-up

In contrast to the design type (A) and (B) discussed in chapter 2, in the new 

experimental set-up, the bulk stress to the specimen is applied perpendicular to the 

direction of pad movement.

The loading conditions that need to be simulated in the experimental set-up for the 

specimen and the pad made out of pressure armour profile are shown in Figure 3.4.
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Figure 3.4 - Loading arrangement in the experimental set-up 

3.3 The Design

In this set-up, two straight pieces of pressure armour wire, referred to as “specimen” 

and fretting “pad”, are rubbed against each other. The specimen is subjected to an 

axial stress (a) which represents the hoop stress in the pressure armour layer. The nub 

of the pad is pressed on to the valley of the specimen with a controlled contact load 

(P). The pad is oscillated lateral to the specimen with a controlled displacement (5) to 

create the sliding action which ultimately results in fretting damage.

The ends of the specimen were modified by pasting grip plates as shown in 

Figure.3.5 using special epoxy glue to provide robust end gripping conditions.

Grip plates

Spacer rods

Figure 3.5- Modified ends of specimens for gripping.
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After pasting and curing the glue, the ends were ground parallel to obtain greater 

accuracy in alignment when mounting for testing.

A schematic diagram of the test rig is shown in Figure 3.6 and a pictorial view of the 

test machine is shown in Figure 3.7.

Flexible arms (

Straingauged to measure 
slip amplitude ^

To Left actuator^

Pad holder (H)

Front clamping pirf(F) 

Front end plate (M) 

Flexible arms (E l)

Adjustabl

.Vertical support (K) 

Back plate (N)

Specimen (I)

Back clamping pin (G)

To right actuator

Link (D)

Simply supported 
elastic beam (C)

Elastic beam 
supports (Q)

Oscillatory movementz Bottom actuator (B)

Machine bed (A)

y

Figure 3.6 Schematic diagram of the test arrangement

A close-up view of the specimen loading arrangement is shown in Figure 3.8. The 

test set-up is equipped with a multiaxial digital servo-controller and a data 

acquisition system to collect transient and periodic data of bulk stress, slip 

amplitude, contact pressure, friction force and number of cycles.
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Bi-Axial Controller and the data
machine frame acquisition system

Static loading to create 
contact pressure

Figure 3.7 A pictorial view of the test set-up.

The test rig was built up on a multiaxial testing machine composed of four servo- 

controlled hydraulic actuators. The two horizontal actuators (left and right) were used 

to apply the bulk stress (a) on the gripped specimen. The right actuator was 

controlled in position control mode to keep the centre position of the specimen fixed 

whilst controlling the left actuator in load control to apply the bulk stress to the 

specimen.

The specimen is rigidly attached to the actuators and loaded using mechanical

wedge grips as shown in Figure 3.8. The fretting pad is mounted in a holder and the

holder is supported to eliminate undue rotation of the pad during loading. The pad

holder is connected to the bottom actuator which generates a low amplitude slip
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between the specimen and the pad. The top actuator is connected to the centre of the 

specimen to avoid lateral bending of the wire during loading.

Left
actuator Specimen

/■-

$

Slip controlling 
beam

Bottom
actuator

Wedge grip 
connected to 

right actuator

Figure 3.8 Close-up view of the specimen loading.
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3.3.1 Control and measurement of contact load

It was necessary to develop a mechanism to apply contact load between the specimen 

and the pad so that the pressure on the pad can be controlled independent of the 

vertical movement (slip) of the pad. This was achieved by means of a flexible frame. 

The back plate of the frame N (Figure 3.6) is connected to the machine bed through 

the vertical support K. The front clamping pin F on the front end plate M is free to 

move vertically through the set of flexible arms El and E2. The back clamping pin G, 

located on the back plate N, is pressed onto the specimen. The front clamping pin is 

pressed onto the pad. This arrangement allows the pad and the front clamping pin F to 

move relative to the back clamping pin and the specimen without significant 

resistance. The front clamping pin F in contact with the pad is shown in Figure 3.9.

Figure 3.9 Front clamping pin F and back clamping pin G, in contact with the 

pad.
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Strain-gauges attached to the front clamping pin are calibrated to measure contact 

load. The contact pressure is controlled by adjusting the position of the front 

clamping pin and applying a static load to the back clamping pin by means of a 

hydraulic actuator.

3.3.2 Measurement of friction.

The friction was measured as shown in Figure 3.10 by a strain gauged arm (link D), 

fixed in between the fretting pad holding clamp and the flexible vibrating plate. The 

link D was calibrated previously using static loads to measure the friction force of the 

contact.

S p e c i m e n

P a d

x

P a d  h o l d i n g  c l a m p

L i n k  D
( s t r a i n  g a u g e d  t o  
m e a s u  re  f r i c

S m a l l  a m p l i t u d e  
o s c i l l a t o r y  m o v e m e n t  
f r o m  t h e  a c t u a t o r

pp*

Figure.3.10(a) schematic Figure.3.10(b) Pictorial

Figure 3.10 - Arrangement to measure friction force
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3.3.3 Low slip amplitude generation.

Due to the level of precision required in controlling slip between the specimen and 

the (fretting) pad, it was necessary to design an arrangement that allows accurate 

control of the slip amplitude in the range from 5/xm to 500/mi. The control of the pad 

displacement was accomplished by means of the simply-supported elastic beam as 

shown in Figure 3.11(C in Figure 3.6). The centre of the beam C was directly 

connected to the bottom actuator. The pad holder H was connected to the beam C 

through an adjustable link system D. In this arrangement, the movement of the pad 

holder was controlled by controlling load applied from the bottom actuator. This 

arrangement has been shown to work successfully [83], generating very small 

amplitudes of slip using frequencies of up to 20 Hz with high precision.

The slip amplitude was measured by strain gauging the flexible arms (E2), which flex 

proportionately to the slip between the specimen and the fretting pad.

o
os I— I

Elastic beam

Bottom actnator/^^

i i i i

Machine bed

Figure 3.11- Low amplitude slip, generating arrangement.
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3.4 Alignments.

Two critical alignments were taken into account at the design stage of the machine. 

One is the parallelism of the pad and specimen when in contact (along the contact 

length). The other is the alignment of the friction measuring arm in order to prevent 

the arm from bending when in operation. These issues are briefly discussed as 

follows.

(1) The parallelism of the specimen and the pad is a critical issue as it is necessary 

to make sure that the contact load is equally distributed along the contact area. In 

order to make adjustments, an adjustable screw joint (P in Figure 3.6) was 

designed in between the vibrating plate and the friction measuring arm. The 

adjustable screw is shown in Figure.3.12.

'O
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Material - Mild steel 

A ll dimensions are in  mm
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' CO
1
1 1

35

CLAMP ADJUSTER

Figure 3.12 Adjustable screw joint
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The pressure distribution was measured by “pressurex®” strips for each test and 

adjustments were made if necessary. The post test specimens were measured along 

the contact in order to confirm the equal wear or damage profile along the contact, 

and this data is given in experimental results section (Chapter 4).

(2) The other critical alignment is to prevent bending of the friction measuring arm 

when applying the contact pressure. This was achieved by proper design of jaws, 

their location and location of the load measuring arm in the flexible vibrating 

plate. Figure. 3.13 (a) shows the proper design to prevent bending and 

Figure.3.13(b) shows how the arm is bending when specimen is away from the 

pad.

Specimen

Pad

B

Pad holding clamp

Strain gauge to 
measure the fiictic

Specimen

Pad holding clamp

Bending of the arm

( a ) (b) ( c )

Fig.3.13 - Effect of incorrect alignment
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Further, this misalignment can cause incorrect geometry of contact in the valley of 

the specimen which could invalidate the whole experimental investigation.

Load measuring transducers were calibrated and suitable trips were set in order to 

confirm safe operation of the machine. A series of calibration tests have been 

carried out prior to the experimental investigations in order to confirm the 

satisfactory operation of the experimental set-up. A pictorial view of the 

displacement calibration is shown is Figure 3.14 and the calibration data is given in 

Table 3.1

Dial Gauge

m - j

Point of measurement

Bottom actuator

Figure 3.14 - Calibration of the displacement transducer
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Table 3.1 - Calibration data for the displacement transducer

No Strain gauge reading (jim) Dial gauge reading (nm)

Loading Un-loading Loading Un-loading

1 0 0 0 0

2 50 50 55 55

3 100 100 110 105

4 150 150 160 165

5 200 200 215 210
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CHAPTER 4 -  EXPERIMENTAL RESULTS

A comprehensive test programme was carried out using the novel experimental 

facility described in Chapter 3. The schedule of experiments was chosen to cover a 

wide range of parameters known to have a significant influence on the fretting 

damage process and to enable a systematic study of the associated phenomena.

The 12 mm size pressure armour wires supplied by Wellstream International Ltd, was 

chosen for the experimental investigation. Tests were carried out using the novel 

experimental facility described in Chapter 3. Prior to the testing, all specimens were 

cleaned and degreased with acetone and were inspected under optical microscopy to 

ensure that the specimens are defect free. Experiments were carried out to cover a 

wider range of parameters in order to gain an understanding of how each parameter 

affects the fretting damage process.

4.1 Material and specimens

The mechanical properties and chemical composition of the alloy steel of the pressure 

armour wire samples are given in Table 4.1 and Table 4.2 respectively. A sectional 

view of the specimen was given in chapter 3 (Figure 3.1).
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Table 4.1 -  Mechanical properties of the pressure armour wire material

Parameter Value

UTS 1068 (MPa)

Hardness 350 (Hv 10, Max)

0.2 % Proof stress 999 (MPa)

Endurance limit (107) cycles 400 MPa

Table 4.2 -  Chemical composition of the pressure armour wire material

Element Heat analysis (%) Product analysis (%)

Carbon 0.60-0.65 0.58-0.67

Manganese 0.55-0.80 0.53-0.82

Silicon 0.15-0.35 0.13-0.37

Sulphur 0.015 Max 0.015 Max

Phosphorous 0.015 Max 0.015 Max

Aluminium 0.06 Max 0.06 Max

Calcium 0.005 Max 0.005 Max

Cu+Ni+Mo+Cr 0.30 Max 0.30 Max

The Microstructure of the material is shown in Figure 4.1 and a typical surface 

roughness profile measurement is shown in Figure 4.2.
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Figure 4.1 Microstructure of the pressure armour wire material

The measured average grain size of the material is 8 /mi and the peak surface 

roughness measured in the valley of the specimen was 3 /mi.
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Figure 4.2 -  A typical surface roughness profile of the specimen material.
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4.2 -  Test procedure

The salient features of the test machine were described in Chapter 3. The 

experimental set-up was capable of measuring the slip amplitude and the friction 

force. These two parameters provide vital information with regard to the fretting 

experiments. The plot of slip amplitude vs friction force gives the information with 

regard to the sliding conditions. Representative friction loops corresponding to stick, 

mixed slip and gross slip were presented in the literature review (2.2.1). The 

experimental set-up was equipped with a digital controller and a data acquisition 

system. The friction data was logged to the data acquisition system periodically for 

post processing. The built-in oscilloscope of the controller was used to display the 

friction loop while in operation for each fretting cycle. This facility enabled sliding 

condition to be monitored and controlled during operation.

The wear rate was quantified by Talysurf analysis of the surface after fretting 

damage. Measurements were made at three different locations along the damage scar. 

The depth of wear and wear profile of the scar in wire valley regions were analyzed 

using a Taylor Hobson Laser Form Talysurf MK1 profile-meter with ± 0.01 pm 

accuracy.

The damage scar on the post-test samples was examined using an optical microscope 

to identify scar features. The pressure armour wires were sectioned in the damage 

zone perpendicular to the scar (section A-A) as shown in Figure 4.3, to investigate the 

presence of fretting generated cracks.
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Figure 4.3 -  pressure Armour Wire Specimen: Area of interest in the analysis

The sectioned samples were mounted on epoxy blocks as shown in figure 4.4, and 

examined using an optical microscope.

Figure 4.4 -  preparation of specimens for optical microscopy analysis 

4.3 Experimental programme

Three series of experiments were carried out in order to gain an understanding of

individual parameters that affect the fretting damage process and to quantify the

damage. A typical loading history in a test programme is shown in Figure 4.5.
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Figure 4.5 -  Typical loading history in a test programme

1. Preliminary tests: (P series)

First, a series of preliminary tests were carried out for a range of nominal contact 

pressure and a range of slip amplitudes. A constant 145 MPa static bulk stress was 

applied to the specimen in all preliminary tests. The objective of this test series 

was to:

• understand the friction behaviour,

• determine the slip condition

• quantify the wear rate,

• analyse the type of surface damage
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2. Interrupted tests ( I series)

A series of interrupted tests were carried out in order to quantify the crack 

initiation and growth behaviour, in the mixed slip sliding region. Tests were 

interrupted at pre-determined number of cycles in order to ascertain the crack 

growth behaviour at particular nominal contact pressure.

3. Cyclic tests (C series)

A series of tests with cyclic bulk loading were carried out in order to determine 

the effect of bulk cyclic stress at particular nominal contact pressure. Two 

different damage conditions; one in mixed slip regime and the other in gross slip 

regime were created on a single specimen and then the specimen was subjected to 

cyclic loading in order to determine the reduction of fatigue strength.

4.4 Preliminary test series

A total of 15 tests were carried out in the preliminary test series: The preliminary 

test programme schedule is given in Table 4.3
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Table 4.3 -  The preliminary test programme schedule

Experiment

Nominal contact 

pressure (MPa),PMax

Number of 

cycles

Slip amplitude

(yU m ), 5 Max

Test PI 260 200,000 ±20

Test P2 260 190,000 ±40

Test P3 260 190,000 ±80

Test P4 200 300,000 ±27

Test P5 200 250,000 ±50

Test P6 200 300,000 ±60

Test P7 160 250,000 ±25

Test P8 160 250,000 ±30

Test P9 160 250,000 ±60

Test P10 90 250,000 ±25

Test PI 1 90 250,000 ±55

TestP12 90 250,000 ±80

TestP13 60 200,000 ±25

TestP14 60 250,000 ±62

TestP15 60 250,000 ±70
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In the preliminary test series the nominal contact pressure ranged from 60 MPa to 

260 MPa and the slip amplitude varied from 20/xm to 80/mi. Tests were terminated 

approximately after 250,000 loading cycles to investigate the surface damage. All 

tests were conducted at a static bulk stress of 145 MPa. For each test, the loops of 

friction versus slip were recorded with the number of cycles at regular intervals of 

time

4.41 Wear rate

The surface wear profile measurements for the preliminary test programme are 

shown in Figure 4.6 through Figure 4.20.

o.o TestPI

 point 1
 point 2
 point 3

-0.3
2.51 1.5 20.50

Length across contact (mm)

Figure 4.6 -  Surface wear profile: Test PI; Nominal contact pressure -  260 

MPa, Stroke -  20 /am , No of\cycles 200,000.
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Test P20.00
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2.521 1.50.50

Length across contact (mm) .

Figure 4.7 -  Surface wear profile: Test P2: Nominal contact pressure -  260 

MPa, Stroke -  40 /xm, No of cycles 190,000.

Test P30.00
—  point 1 
- -  point 2
— • point 3

-0.30
2.51 1.5 20.50

Length across contact (mm)

Figure 4.8 -  Surface wear profile: Test P3: Nominal contact pressure -  260 

MPa, Stroke -  80 /xm, No of cycles 190,000.

The surface wear scars at 260 MPa nominal contact pressure for three different slip 

amplitudes, are shown in Figure 4.6 -Figure 4.8. Each wear scar was measured at 

three different places (point 1 - point 3 on graph) and a uniform wear pattern across 

the contact could be observed. The wear depth increased with the increase of slip 

amplitude. The maximum depth observed at 260 MPa contact pressure was 0.3 mm.
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Figure 4.9 -  Surface wears profile: Test P4 : Nominal contact pressure -  200 

MPa, Stroke -  27 jam , No of cycles 300,000.
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Figure 4.10 -  Surface wear profile: Test P5; Nominal contact pressure -  200 

MPa, Stroke -  50 [Am, No of cycles 250,000.
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Test P6
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Figure 4.11 -  Surface wear profile: Test P6; Nominal contact pressure -  200 

MPa, Stroke -  60 jam , No of cycles 300,000.

The surface wear scars at 200 MPa nominal contact pressure for three different slip 

amplitudes, are shown in Figure 4.9 -Figure 4.11. The wear scars measured in three 

points confirm a uniform wear pattern across the contact. The wear depth increased 

with the increase of slip amplitude. A decrease of wear rate could be observed 

compared to that observed at 260 MPa nominal contact pressure. The maximum 

depth observed at 200 MPa contact pressure was 0.17 mm.
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2.51 1.50.5 20

Length across contact (mm)

Figure 4.12 -  Surface wear profile: Test P7; Nominal contact pressure -160 

MPa, Stroke -  25 f im , No of cycles 250,000.
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Figure 4.13 -  Surface wear profile: Test P8; Nominal contact pressure -160 

MPa, Stroke -  30 f im , No of cycles 250,000.
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Figure 4.14 -  Surface wear profile: Test P9; Nominal contact pressure -160 

MPa, Stroke -  60 f i m, No of cycles 250,000.

The surface wear scars at 160 MPa nominal contact pressure for three different slip 

amplitudes are shown in Figure 4.12 -Figure 4.14. The wear scar measured at three 

points again confirms a uniform wear pattern across the contact. The wear depth 

increased with the increase of slip amplitude.
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A decrease of wear rate could be observed compared to that observed at 200 MPa 

nominal contact pressure. The maximum depth observed at 160 MPa contact 

pressure was 0.15 mm.
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Figure 4.15 -  Surface wear profile: Test P10; Nominal contact pressure -90  

•MPa, Stroke -  25 /am , No of cycles 250,000.
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Figure 4.16 -  Surface wear profile: Test P ll  ; Nominal contact pressure -90  

MPa, Stroke -  55 /am , No of cycles 250,000.
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Figure 4.17 -  Surface wear profile: Test P12; Nominal contact pressure -90 

MPa, Stroke -  80 / i m, No of cycles 250,000.

The surface wear scar at 90 MPa nominal contact pressure for three different slip 

amplitudes, is shown in Figure 4.15 -Figure 4.17. As before, the wear scar measured 

at three points confirms a uniform wear pattern across the contact. The wear depth 

increased with the increase of slip amplitude. A decrease of wear rate could be 

observed compared to that observed at 100 MPa nominal contact pressure. The 

maximum depth observed at 90 MPa contact pressure was 0.18 mm.
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Figure 4.18 -  Surface wear profile: Test P13; Nominal contact pressure -60  

MPa, Stroke -  25 f i m, No of cycles 200,000.
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Figure 4.19 -  Surface wear profile: Test P14; Nominal contact pressure -  60 

MPa, Stroke -  62 /i m , No of cycles 250,000.
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Figure 4.20 -  Surface wear profile: Test P15; Nominal contact pressure -  60 

MPa, Stroke -  25 /am , No of cycles 250,000.
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Table 4. 4 -  Summary of wear depth results for preliminary test series

Experiment Nominal contact 

pressure (MPa)

Slip

amplitude

(Mm)

Maximum 

wear depth 

(Mm)

Number of 

cycles

Test PI 260 20 110 200,000

Test P2 260 40 150 190,000

Test P3 260 80 300 190,000

Test P4 200 27 80 300,000

Test P5 200 50 140 250,000

Test P6 200 60 170 300,000

Test P7 160 25 70 250,000

Test P8 160 30 80 250,000

Test P9 160 60 150 250,000

Test P10 90 25 60 250,000

Test PI 1 90 55 130 250,000

Test P 12 90 80 180 250,000

Test P I3 60 25 30 200,000

Test P14 60 62 120 250,000

Test P I5 60 70 140 250,000
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The surface wear scars at 60 MPa nominal contact pressure for three different slip 

amplitudes, are shown in Figure 4.18 -Figure 4.20. Similar trends in wear pattern 

and wear depths were observed.

The lowest wear rate was observed in this series of experiments at 60 MPa. The 

preliminary series of tests clearly indicate that a direct relationship exists between 

the wear rate and contact pressure and the slip amplitude. The observations are 

summarised in Table.4.4. Details of these results have been discussed in chapter 6.

4.4.2 Friction data and slip condition

Frictional data was logged into a database periodically during experiments, a total 

of 36 points were logged into the database for each complete fretting cycle. This 

data was processed in order to understand the variation of the friction force and 

sliding condition. The traction coefficient was calculated as the ratio of the global 

friction range, (AFmax,) and twice of the applied normal load (2F).

For each of the preliminary tests, the variation of the traction coefficient and a 

representative friction loop in the stabilised condition are shown in Figure 4.21 

through Figure 4.35.

The variation of the friction force at 260 MPa nominal contact pressure for the three 

different slip amplitude is shown in Figure 4.21 , Figure 4.22 and Figure 4.23. The 

friction loop corresponds in each figure to the sliding condition in the stabilised
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state. The tests PI and Test P2 were carried out in the mixed slip condition while the 

test P3 was carried out in gross slip condition.

The stabilised traction coefficients in mixed slip is in the range of 1.0 to 1.1 where 

as the stabilised traction coefficient in gross slip is about 1.4

Test PI

o  0 .6  -

|  04 -
0.2 -

100000 150000 2000000 50000

no o f  cy c le s

Figure 4.21 -  Variation of traction coefficient and stabilised friction loop: Test 

PI; Nominal contact pressure -  260 MPa, Stroke -  20 fam, No of cycles 200,000.

Test P2

8  0.6 -

”  0.4 -

100000 150000 2000000 50000
no of cycles

Figure 4.22 -  Variation of traction coefficient and a stabilised friction loop:

Test P2; Nominal contact pressure -  260 MPa, Stroke- 40 jam , No of cycles

190,000.
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Test P3
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H  0 . 2 -

150000100000 200000500000
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Figure 4.23 -  Variation of traction coefficient and a stabilised friction loop : 

Test P3; Nominal contact pressure -  260 MPa, Stroke -  80 f im , No of cycles

190,000.

The variation of the traction coefficient at 200 MPa nominal contact pressure for 

three different slip amplitudes are shown in Figure 4.24, Figure 4.25 and Figure 

4.26. Test P4 was carried out in the mixed slip condition while the tests P5 and P6 

were carried out in the gross slip condition. The stabilised traction coefficients in the 

mixed slip condition were 0.9 whereas the stabilised traction coefficient in the gross 

slip is in the range of 1.2 to 1.6.
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Test P4
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Figure 4.24 -  Variation of traction coefficient and a stabilised friction loop : 

Test P4; Nominal contact pressure -  200 MPa, Stroke -  27 [ im , No of cycles

300,000.
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Figure 4.25 -  Variation of traction coefficient and a stabilised friction loop :

Test P5; Nominal contact pressure -  200 MPa, Stroke -  50 (Jbm, No of cycles

250,000.
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Test P6
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n o  o f  c y c le s

Figure 4.26 -  Variation of traction coefficient and a stabilised friction loop : 

Test P6; Nominal contact pressure -  200 MPa, Stroke -  60 f im , No of\cycles

300,000.

The variation of the traction coefficient at 160 MPa nominal contact pressure for 

three different slip amplitudes is shown in Figure 4.27, Figure 4.28 and Figure 4.29. 

Test P7 and P8 were carried out in the mixed slip condition and test P9 was carried 

out in gross slip condition. The stabilised traction coefficients in the mixed slip 

condition varied in the range 0.9 to 1.0 whereas the stabilised traction coefficient in 

gross slip was stabilised at around 1.3.
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Figure 4.27 -  Variation of traction coefficient and a stabilised friction loop : 

Test P7; Nominal contact pressure -160 MPa, Stroke -  25 jam , No of cycles

250,000.
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Figure 4.28 -  Variation of traction coefficient and a stabilised friction loop :

Test P8; Nominal contact pressure -160 MPa, Stroke -  30 jam , No of cycles

250,000.
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Test P9
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200000 250000150000100000500000
no of cycles

Figure 4.29 -  Variation of traction coefficient and a stabilised friction loop : 

Test P9; Nominal contact pressure -160 MPa, Stroke -  60 fJLm, No of cycles

250,000.

The variation of the traction coefficient at 90 MPa nominal contact pressure for 

three different slip amplitudes is shown in Figure 4.30, Figure 4.31 and Figure 4.32. 

The test P10 was carried out in the mixed slip and Tests P l l  and P12 were carried 

out in the gross slip condition. The stabilised traction coefficient in the mixed slip 

condition was 0.9 whereas in the gross slip condition it was in the range of 1.2 to 1.4.
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Figure 4.30 -  Variation of traction coefficient and a stabilised friction loop : 

Test P10; Nominal contact pressure -90 MPa, Stroke -  25 /xm, No of cycles

250,000.
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Figure 4.31 -  Variation of traction coefficient and a stabilised friction loop :

Test P ll;  Nominal contact pressure -90 MPa, Stroke -  55 /xm, No of cycles

250,000.
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Test P12
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Figure 4.32 -  Variation of traction coefficient and a stabilised friction loop : 

Test P12; Nominal contact pressure -90 MPa, Stroke -  80 f i m, No of cycles

250,000.

Variation of the friction force at 60 MPa nominal contact pressure for three different 

slip amplitudes is shown in Figure 4.33, Figure 4.34 and Figure 4.35. Test P13 was 

carried out in the mixed slip condition and Test P 14 and P I5 were carried out in the 

gross slip condition.

The stabilised traction coefficient in the mixed slip condition was around 0.7 

whereas in the gross slip condition it stabilised at around 1.1 to 1.3.
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Figure 4.33 -  Variation of traction coefficient and a stabilised friction loop : 

Test P13; Nominal contact pressure -60 MPa, Stroke -  25 fLm, No of cycles

200,000.
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Figure 4.34 -  Variation of traction coefficient and a stabilised friction loop :

Test P14; Nominal contact pressure -  60 MPa, Stroke -  62 f i m, No of cycles

250,000.
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Test P15
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Figure 4.35 -  Variation of traction coefficient and a stabilised friction loop : 

Test P15; Nominal contact pressure -  60 MPa, Stroke -  25 f im , No of cycles

250,000.

The frictional data for the P series is summarised in Table 4.5 and these results are 

discussed in detail in Chapter 6.2, Section 6.2.
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Table 4.5 -  Summary of stabilised traction coefficients for preliminary test 

series

Experiment

Test PI

Nominal 

contact 

pressure MPa

260

Stroke

amplitude (/im)

Stabilised

traction

coefficient

20 1.0

Test P2 260 40 1.1

Test P3 260 80 1.3

Test P4 200 27 1.0

Test P5 200 50 1.2

Test P6 200 60 1.3

Test P7 160 25 0.9

Test P8 160 30 1.0

Test P9 160 60 1.36

Test P10 90 25 0.94

Test PI 1 90 55 1.17

TestP12 90 80 1.2

TestP13 60 25 0.7

TestP14 60 62 1.14

TestP15 60 70 1.32
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4.43 Damage observations

Under certain loading conditions, two cracks could be observed on either side of the 

contact. The damage is presented as the damage in the left comer and the right 

comer separately. The damage area referred as left and right comer in the following 

microscopic images is schematically represented in Figure 4.36.

Pad

R 0,5R 1 .0

Right comerLeft comer
 ►

x

Figure 4.36 -  Designation of the left and right corner in the damage zone

The damaged area in the specimen (valley of the contact) that has been in contact 

with the edge of the pad with higher radius (R =1 mm) is referred as the left comer 

and the area that has been in contact with the edge with radius (R = 0.5 mm) is 

referred as the right comer.

The damage observed at 260 MPa contact pressure for 200 000 cycles at 20 jim, 40 

jLtm and 80 /ml slip amplitudes is shown in figure 4.37 through 4.39. This was the 

highest nominal contact pressure at which the tests were carried out in the 

experimental programme.
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( a ) (b)

Figure 4.37 -Damage observed in (a) left and (b) right corner for test PI; 

Nominal contact pressure -  260 MPa, Stroke -  20 jam , No of cycles 200,000.

Trend of the crack 
path

Actual crack path

Figure 4.38 - Damage observed in left and right corner for test P2 Nominal 

contact pressure -  260 MPa, Stroke -  40 jam , No of\cycles 190,000.
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(a) (b)

Figure 4.39 - Damage observed in left and right corner for test P3 Nominal 

contact pressure -  260 MPa, Stroke -  80 jam , No of cycles 190,000.

Two cracks inclined to the surface could be observed for test PI and test P2.

Cracks were formed in the edge of contact. Further analysis shows that the

initiation angle of the cracks in both cases is almost the same in the left and right

comers and that after propagating about 10 /mi to 20 /mi. The observed trends of the

cracks change as highlighted in Figures 4.37 and 4.38. In test P3, surface cracks

could not be seen. However, delaminating type damage with a severely worn out

scar could be observed for test P3.

Trend of the
crack path

Actual crack
(a) Path (b)

Figure 4.40- Damage observed in left and right corner for test P4; Nominal 

contact pressure -  200 MPa, Stroke -  27 jam , No of cycles 300,000.
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Figure 4.41 - Damage observed in left and right corner for test; P5 Nominal

contact pressure -  200 MPa, Stroke -  50 fJbm, No of cycles 250,000.

(a) (b)

Figure 4.42 - Damage observed in left and right corner for test P6; Nominal 

contact pressure -  200 MPa, Stroke -  60 /am , No of cycles 300,000.

The damage observed at 200 MPa nominal contact pressure for 250,000 cycles is 

shown in Figure 4.40 through figure 4.42.



While two cracks were observable on either side of the contact for test P4, no cracks 

were observable for test P5 and test P6. The cracks observed for test P4 again 

confirmed the typical pattern observed in test PI and test P2 at 260 MPa contact 

pressure. However, the crack depth in Test P4 was less compared to the crack length 

observed for test PI and test P2.

- /  20jim

( a ) (b)

Figure 4.43 - Damage observed in (a) left and (b) right corner for test P7 ; 

Nominal contact pressure -160 MPa, Stroke -  25 /am , No of cycles 250,000.

20 pm

( a )

Figure 4.44 - Damage observed in (a) left and (b)right corner for test P8

Nominal contact pressure -160 MPa, Stroke -  30 /am , No of cycles 250,000.
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(a ) (b)

Figure 4.45 -  Damage observed in (a) left and (b) right corner for test P9 

Nominal contact pressure -160 MPa, Stroke -  60 jam , No of cycles 250,000.

The damage observed at 160 MPa nominal contact pressure is shown in Figure 2.43 

through Figure 2.45. During Tests P7, P8 and P9, no cracks could be observed. 

Delaminating type damage could be observed for test P9.

(a) (b)

Figure 4.46 -  Damage observed in (a) left and (b) right corner for Test P10 

Nominal contact pressure -90 MPa, Stroke -  25 jam , No of cycles 250,000.
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Figure 4.47 -  Damage observed in (a) left and (b) right corner for Test P ll

Nominal contact pressure -90 MPa, Stroke -  55 /am , No of cycles 250,000.

5 * i

i , 20 pm • . ' t

(a) (b)

Figure 4.48 -  Damage observed in (a) left and (b) right corner for Test PI2; 

Nominal contact pressure -90 MPa, Stroke -  80 /am , No of cycles 250,000.

The damage observed at 90 MPa nominal contact pressure is shown in Figure 2.46 

through Figure 2.48.again during Test P10, PI 1 and P12, no cracks could be found.



20 pm

(a) (b)

Figure 4.49 -  Damage observed in (a) left and (b) right corner for Test PI3; 

Nominal contact pressure -60 MPa, Stroke -  25 f im , No of cycles 200,000.

2 0  p m

20 pm

(a) (b)

Figure 4.50 -  Damage observed in (a) left and (b) right corner for Test P14; 

Nominal contact pressure -  60 MPa, Stroke -  62 f i m, No of cycles 250,000.
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( a ) (b)

Figure 4.51 -  Damage observed in (a) left and (b) right corner for Test P15; 

Nominal contact pressure -  60 MPa, Stroke -  25 jam , No of cycles 250,000.

The damage observed at 60 MPa nominal contact pressure is shown in Figure 2.49 

through Figure 2.51. During these tests again, no cracks were observed.

4.5 Interrupted tests.

A series of experiments were carried out in the stick slip boundary for various contact 

pressure for a range of loading cycles.

The tests were terminated after a predetermined number of cycles to observe the type 

of damage observable after sectioning the fretted specimen. The tests were carried out 

in the range of contact pressure from 70 MPa to 260 MPa and the number of cycles 

ranged from 600,000 cycles to 5,000,000 cycles.
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Table 4.6 -  Interrupted test series

Test No Nominal pressure 

(MPa)

Number of cycles Slip amplitude 

(Hin)

Test 1 1 100 600,000 21

Test I 2 140 ' 600,000 24

Test I 3 180 600,000 32

Test I 4 160 1,600,000 30

Test I 5 120 2,000,000 28

Test 16 70 2,000,000 18

Test 17 110 2,800,000 22

Test 1 8 90 2,800,000 20

Test 19 145 4,100,000 30

Test 1 10 80 3,000,000 18

Test 1 11 80 5,000,000 17

Test 1 12 260 2,000,000 36
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Figure 4.52 -  Damage observed in left and right corner for Test 1 1; Nominal

contact pressure -1 0 0  MPa, Stroke -  21 [Am, No of cycles 600,000.

Test II was carried out at 100 MPa nominal contact pressure for 600,000 cycles. The 

measured slip amplitude was 21 /mi. No cracks could be observed on the damage 

surface for this test. The surface damage observed in Test II is shown in Figure 4.51.

(a) (b)

Figure 4.53- Damage observed in left and right corner for Test I 2; Nominal 

contact pressure -1 4 0  MPa, Stroke -  24 f im , No of cycles 600,000.



The surface damage observed in Test I 2 is shown in Figure 4.52. Test I 2 was 

carried out at 140 MPa nominal contact pressure for 600,000 cycles. The measured 

slip amplitude was 24 fim. No cracks could be observed on the damage surface for

Trend of the 
crack p a th \

Actual crack 
oath

Figure 4.54- Damage observed in left and right corner for Test I 3; Nominal 

contact pressure -1 8 0  MPa, Stroke -  32 /xm, No of cycles 600,000.

Test I 3 was carried out at 180 MPa nominal contact pressure for 600,000 cycles. 

The measured slip amplitude was 32 fim. The surface damage observed in Test 13 is 

shown in Figure 4.54. Two cracks were observed on the damage surface for this test. 

Furthermore, the crack path observed is similar to the crack initiation angle and the 

crack path observed in the preliminary test series for tests PI, P2 and p4.
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Trend of the
crack path \

Actual crack path
(a) (b)

Figure 4.55- Damage observed in left and right corner for Test I 4; Nominal 

contact pressure -1 6 0  MPa, Stroke -  30 f im , No of cycles 1,600,000.

Test I 4 was carried out at 160 MPa nominal contact pressure for 1,600,000 cycles. 

The measured slip amplitude is 30 /mi. The surface damage observed in Test I 4 is 

shown in Figure 4.55. Two cracks could be observed on the damage surface for this 

test. Further more, the crack path observed in test 1 4 is similar to the crack initiation 

angle and the crack path observed in the preliminary test series for test PI, test P2 

and test p4.

(a) (b)

Figure 4.56- Damage observed in left and right corner for Test I 5; Nominal

contact pressure -1 2 0  MPa, Stroke -  28 f im , No of cycles 2,000,000.
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The test I 5 was carried out at 120 MPa nominal contact pressure for 2,000,000 

cycles. The measured slip amplitude was 28 fim. No cracks could be observed on the 

damage surface for this test. The surface damage observed in the Test I 5 is shown in 

Figure 4.56.

(a) (b)

Figure 4.57- Damage observed in left and right corner for Test I 6; Nominal 

contact pressure -  70 MPa, Stroke -1 8  f i m, No of cycles 2,000,000.

The test 16 was carried out at 70 MPa nominal contact pressure for 2,000,000 cycles. 

The measured slip amplitude was 18 /mi. No cracks could be observed on the 

damage surface for this test. The surface damage observed in the Test 1 6 is shown in 

Figure 4.57.
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(a) (b)

Figure 4.58- Damage observed in left and right corner for Test I 7; Nominal 

contact pressure -1 1 0  MPa, Stroke -  22 /am , No of cycles 2,800,000.

The test I 7 was carried out at 110 MPa nominal contact pressure for 2,800,000 

cycles. The measured slip amplitude was 28 /un. The surface damage observed in the 

Test 17 is shown in Figure 4.58. No cracks could be observed on the damage surface 

for this test.

20 pm

(a) (b)

Figure 4.59- Damage observed in left and right corner for Test I 8; Nominal

contact pressure -  90 MPa, Stroke -  20 /xm, No of cycles 2,800,000.
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The test I 8 was carried out at 90 MPa nominal contact pressure for 2,800,000 cycles. 

The measured slip amplitude was 20 fim. No cracks could be observed on the 

damage surface for this test. The surface damage observed in the Test I 8 is shown in 

Figure 4.59.

Trend of the

Actual crack path

(a) (b)

Figure 4.60- Damage observed in left and right corner for Test I 9; Nominal 

contact pressure -1 4 5  MPa, Stroke -  30 f im, No of cycles 4,100,000.

The test I 9 was carried out at 145 MPa nominal contact pressure for 4,100,000 

cycles. The measured slip amplitude as 30 fim. The surface damage observed in the 

Test I 9 is shown in Figure 4.60. A crack was visible on the right hand side of the 

contact surface for this test. Further, the crack path observed in the test I 9 is similar 

to the crack initiation angle and the crack path observed in the preliminary test series 

for test P 1, test P2 and test p4.
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(a) (b)

Figure 4.61 - Damage observed in left and right corner for Test 1 10; Nominal 

contact pressure -  80 MPa, Stroke -1 8  f i m, No of cycles 3,000,000.

The test I 10 was carried out at 80 MPa nominal contact pressure for 3,000,000 

cycles. The measured slip amplitude was 18 fim. No cracks could be observed on the 

damage surface for this test. The surface damage observed in the Test 110 is shown 

in Figure 4.61.

(a) (b)

Figure 4.62- Damage observed in left and right corner for Test 1 11; Nominal

contact pressure -  80 MPa, Stroke -1 7  (Jbm, No of cycles 5,000,000.
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The test 111 was carried out at 80 MPa nominal contact pressure for 5,000,000 

cycles. The measured slip amplitude was 17 /mi. The surface damage observed in the 

Test I I 1 is shown in Figure 4.62.No cracks could be observed on the damage surface 

for this test.

(a) (b)

Figure 4.63- Damage observed in left and right corner for Test 1 12; Nominal 

contact pressure -  260 MPa, Stroke -  36 jam , No of cycles 2,000,000.

The test I 12 was carried out at 260 MPa nominal contact pressure for 2,000,000 

cycles. The measured slip amplitude as 36 /m i.. The surface damage observed in the 

Test I 12 is shown in Figure 4.63. Two cracks could be observed on the damage 

surface for this test. Further, the crack path observed in the test I 4 is well in 

agreement with the crack initiation angle and the crack path observed in the 

preliminary test series for test PI, test P2 and test p4. The surface damages observed 

in the P series and the I series have been discussed in Chapter 6, Section 6.5.
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4.6 Cyclic tests

A series of cyclic tests were carried out in order to ascertain the reduction of fatigue 

strength due to fretting damage. The tests were carried out as follows. Firstly damage 

was created in the mixed slip condition and the gross slip condition separately in the 

same specimen as depicted in Figure 4.64.

T  \  ^
image in Damage in w ke

End piece

Figure 4.64 -  Specimen preparation for cyclic testing.

Fretting damage was created in a particular specimen at a constant nominal contact 

pressure and a constant number of cycles in both conditions. The conditions for the 

tests were determined from the preliminary (P series) and the interrupted (I series) 

experimental programmes. Tests were carried out at 260 MPa, 200MPa and 180 MPa 

nominal contact pressure so that cracks are created in the mixed slip condition and 

wear in the gross slip condition. In the specimen C 1, two conditions similar to that 

of test P2 and test P3 were created and in the specimen C 2, conditions similar to that 

of tests P4 and P5 were created. In the specimen C 3, conditions similar to that of test 

13 were created. The test conditions for the cyclic test series is depicted in Table 

4.20
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Table 4.7 -  Fretting test programme for the cyclic test series

specimen Test No Displacement

amplitude

(jim)

Nominal

contact

pressure

No of cycles

Test C 1 C 101 40 260 MPa 250,000

Test C 1 C 102 80 260 MPa 250,000

Test C 2 C 201 27 200 MPa 300,000

Test C 2 C 202 50 200 MPa 300,000

Test C 3 C 301 32 180 MPa 600,000

Test C 3 C 302 55 180 MPa 600,000

Further, after creating the fretting damage in specimens C 1, C 2 and C 3, the 

specimens were subjected to cyclic loading. The direction of cyclic loading 

application is shown in Figure 4.65

[ley of the
Damage in 
mixed slip

Damage in 
gross slipEnd piece

Cyclic loading

Figure 4.65 -  Direction of the cyclic loading.
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This bulk cyclic loading direction is the one that the pressure armour wire would 

experience in operation. At the time of testing, it was expected that the fretting 

damage in the mixed slip condition or gross slip condition would significantly reduce 

the fatigue strength in specimen C 1, C 2 and C 3. The cyclic loading test programme 

is given in Table 4.8.

Table 4.8 -  Cyclic test programme

specimen Test stage 1 Test stage 2

Stress amplitude 

% fatigue strength

No of cycles Stress amplitude % 

fatigue strength

No of cycles

Test C 1 80% 5,000,000 90% 3,000,000

Test C 2 80% 5,000,000 90% 3,000,000

Test C 3 80% 5,000,000 90 % 3,000,000

The specimens were subjected to a two step cyclic loading programme. First the 

specimens were subjected to cyclic loading at stress amplitude of 80 % fatigue 

endurance strength up to 5,000,000 cycles and then again at stress amplitude of 90 % 

fatigue endurance strength up to 3,000,000 cycles. Despite the fact that both 

specimens were subjected to cyclic loading at very high stress amplitude, the 

specimens were not failed. Post test specimens were sectioned for examination and 

observations are given in Figure 4.66 to Figure 4.71.
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Figure 4.66- Damage observed in left and right corner for test C 101
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Figure 4.67 -  Damage observed in left and right corner for test C 102

The surface damage observed in tests C 101 and C l02 are shown in Figures 4.66 and 

4.67 respectively. Similar damage type was observed in C 101 and C 102 to that of 

tests P2 and P3.
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Figure 4.68 -  Damage observed in left and right corner for test C 201

(a) (b)

Figure 4.69 -  Damage observed in left and right corner for test C 202

Tests C 201 and C 202 were carried out under simialr conditions to Test P4 and P5. 

The surface damage observed in these tests are shown in Figure 4.68 and Figure 4.69 

respectively. Microscopic observations revealed similar damage to that of Tests P4



Figure 4.70 -  Damage observed in left and right corner for test C 301

Figure 4.71 - Damage observed in left and right corner for test C 302

The tests C 301 was carried out under similar conditions to Test I 3 and microscopic 

observations of tests C 301 revealed similar type of damage to that of Test 13. The 

test C 302 was carried out at the same nominal contact pressure and number of cycles 

the test I 3 was carried out but at higher slip amplitude in order to make sure that the 

slip condition is gross sliding. The surface damage observed in tests C 301 and test C 

302 are shown in Figures 4.70 and 4.71 respectively.



CHAPTER 5: NUMERICAL ANALYSIS

Various numerical methods applicable to predict fretting damage behaviour were 

discussed in Chapter 2. Most of these methods are based on general multiaxial fatigue 

or fracture mechanics criteria developed for conventional fatigue (cyclic loading) 

damage predictions. Recently, successful fretting fatigue predictive models were 

developed based on these methods with certain modification or adaptation to address 

specific features of contact stress fields, for fretting conditions [14,69,70,78,80]. 

These methodologies are discussed in Chapter 2. In this chapter, a fracture 

mechanics based numerical procedure to predict the fretting damage behaviour is 

presented. The advantage of this methodology is that it predicts the crack initiation 

angle, crack path, whether the crack is self arresting or not, crack length and crack 

propagation life.

5.1 Contact geometry, pressure and stress distributions

The contact geometry for the current application is shown in the Figure 5.1

Nub Valley

R0,5

Figure 5.1 -  Contact geometry for the current application
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In the nub (which is the fretting pad in the current application) the comer radii on 

either side are different, which makes it unique when compared with previous contact 

geometries used in fretting experiments reported in the literature.

A closed form analytical method to calculate pressure distributions for a contact 

geometry with flat rounded comers was given by Ciavarella. et al [46] (Equation 2.5). 

The equation was originally developed for a contact with similar radii comers on 

either side. This equation is adapted to the current application by considering the 

contact profile as two separate halves having two different comer radii.

5.1.1 Equilibrium position for two halves

It was assumed that each halve consists of a radius R (R = Ri or R2) and flat length of 

b ± 8 as shown in Figure 5.2.

Mi ,2

b±S

Figure 5.2 -  Nomenclature for the pressure calculation
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Initially a variable 6 was assumed and the flat region in the first halve was assumed 

to be (b+<5 ) and the second half (b —<5 ). Equation 2.6 incorporating 6 is written in 

the form; equation 5.1

4Pr _ n-2(j)Q + cot<j)Q
(b±S)E*  4sin2^0 2

di and d2 were calculated adapting the Equation 2.8 as,

_ { b ± 5 )
1,2 —

-(5.1)

sin^0

Considering Figure 5.3, the displacements Mi and M2 were derived as;

-(5.2)

Mi

b+d

Figure 5.3 -  the equilibrium position for one side of pad

r  — M . ,
Cos a  = -------- ~ -(5.3)

sin a  = d - ( b ± 5 )
-(5.4)
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Mi 2 = r(l -  cos(sin-i d - ( b ± 5 ) -(5.5)

Where,

Mi -  the amount of the pad immersed into the specimen one side of the pad 

M2 -  the amount of the pad immersed into the specimen in other side of the pad

The variable 6 was obtained by iteration, when the condition Mi = M2 was satisfied.

The pressure distribution obtained for the contact geometry is shown in figure 5.4, at 

250 MPa nominal contact pressure.

1000 -  

900 - 
800 - 
700 - 
600 - 
500 - 
400 - 
300 - 

^ 200̂
. 100 -

0 0.4 0.6-0.4 0.2- 0.6 - 0.2

length (mm)

Figure 5.4 -  Pressure distribution at 260 MPa contact pressure for the nub and 

valley contact.

The pressure distribution depends on the comer radius and the nominal contact 

pressure. The peak pressure is highest at the comer with lowest radius ( r= 0.5 in the

109



current application). The pressure distributions obtained are used further to calculate 

the subsurface stress distributions.

5.1.2 Stress distributions

If we consider an elastic half space loaded over (0<x<b), by a normal pressure P and 

tangential traction Q distributed in an arbitrary manner as shown in Figure 5.5, the 

stress distributions are given by [42].

p(s)

A(x,z)

Figure 5.5 -  Calculation of stress distribution of a contact half space.

__ 2z p ( s ) ( x - s ) 2ds 2 q ( s ) (x - s )2ds
a n  ■*) {(jc-s)2 + z 2}2 n  •o { (x -s )2 + z 2}2

_ 2z 2 p(s)ds 2z 2 j* q(s){x-s)ds
n  •» { (x -s )2 + z 2}2 n  ̂  { ( x - s ) 2 + z 2}2

r = J l f _  f  p ( .) ( x - ,) &  _ 2 z  f  q ( s ) ( x - s )2ds
B n  " { (x -s )2 + z 2}2 n  •" { (x -s )2 + z2}2

-(5.6)

-(5.7)

-(5.8)
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The stress tensor for the nub and valley contact including these stresses are shown in 

figure 5.6

22
Nub

zxValley
xz

R2

cryy

Figure 5.6 - The stress tensor for the nub and valley contact

In the stress tensor, Oyy is induced due to the hoop stress of the pipe, and rxz were 

due to friction and Ozz was due to contact load. The calculated distribution of these 

stresses along the contact is shown in Figure 5.7 and Figure 5.8.

When the pad is moving from left to right (one comer to the other), the left side of 

the pad is called the trailing edge and the right side is called the leading edge. After 

reaching the right edge of displacement, the pad starts to move in the reverse 

direction and the leading edge changes to the trailing edge and the trailing edge 

changes to the leading position. The stress distribution, when the pad is moving from 

right to the left is then reversed to reflect the trailing and leading edge stress state. 

Typical Stress distribution at 260 MPa average contact pressure at 10 jLtm depth when 

pad moving from left to right is shown in the figure 5.7 and when the pad is moving 

right to left is shown in the figure 5.8.
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Figure 5.7 -  Stress distribution, pad moving from left to right at 260 MPa 

nominal contact pressure, 10 n m depth ,

1000  -|

500 -
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Contact length (mm)

-1000  -

-1500 J

Figure 5.8 -  Stress distribution at 260 MPa contact pressure, 10 iim  depth , pad 

moving right to left
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Analysis of Figures 5.7 and 5.8 show that a significant tensile stress is imposed in the 

vicinity of the trailing edge on the surface of the specimen by the Oxx component of 

the stress tensor and a compressive stress in the vicinity of the leading edge. It is 

obvious that this cyclic variation of the stress state in microscopic movements is more 

responsible for fretting damage on the edges of the contact of the specimen and the 

pad [42]. A fracture mechanics based critical plane analysis to predict the crack 

length and crack propagation life is presented below.

5.2 Damage model

Fracture mechanics theories deal with the propagation of cracks in materials. Within 

the framework of fracture mechanics assumptions, the mode I (opening mode), mode 

II (shearing mode) are applicable to the crack growth under fretting conditions as 

shown in Figure 5.9.
\ y

\ Mode II

Ae Mode 1

Figure 5.9 -  Mode I and Mode II cracking modes in fretting.
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If the loading history and the loading conditions are known, critical plane based 

models allow the determination of the fracture plane and the calculation of the fatigue 

life of the material. Critical plane approaches have evolved from experimental 

observations of the nucleation and growth of cracks during loading. Cracks will 

initiation and grow depending on the material stress and strain state either in the 

plane with maximum shear range (Mode II cracking) or tensile planes normal to the 

plane with maximum normal strain range (Mode I cracking) [85, 86]. The general aim 

of the critical plane concept is to reduce the multiaxial stress state to an equivalent 

uniaxial one.

The advantage of multiaxial fatigue analysis using the critical plane method is that in 

addition to the life prediction, it can predict the crack initiation angle if a suitable 

model is used for the stress state of current application. Recently, critical plane based 

approaches have found wider application in fretting fatigue analysis [2, 14, 55 62, 

66]. This is mainly due to the simplicity of applying critical plane based methods to a 

complex multiaxial state of loading in fretting and their ability to use plain fatigue 

data to predict fretting fatigue life.

5.2.1 Procedure

The analysis was carried out for the mode II -(shear strain) criteria and mode I -  

(normal strain) criteria separately. The crack nucleation location was assumed to be 

the point with maximum shear strain range on the contact surface. The propagation 

of the crack was analysed in small increments. A schematic explanation is presented 

in Figure 5.10. A 5 /mi increment was used in the current analysis.
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Critical plane deti 
for each point x

Lined

Figure 5.10 -  Schematic representation of the analytical procedure.

The first step was to evaluate the state of stress condition on the contact surface and 

to ascertain the most probable crack initiation location (point A). Then it was decided 

that the crack would propagate along the plane with the maximum shear strain range 

or the plane with the maximum normal strain range (critical plane). Then the stress 

strain state was evaluated again at a point 5 /mi deeper than the previous sample 

location along the previously predicted crack path and the new critical plane 

orientation was evaluated again to predict the most probable path the crack might 

take.

5.2.2 Normal, shear and resultant stresses on an oblique plane

Consider an oblique plane ABC to x y  and z  axes as shown in Figure 5.11. The 

normal vector an makes angles nx ny and nz with the yz xz  and xy  planes.
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y

Figure 5.11 - Normal, shear and resultant stresses on an oblique plane.

The stress components in x  y  and z directions are given by [87];

R =<7 cos n + t  cos n + t  c o s  nxn xx x * xy y  * xz z

R = < j  cos n + t  cos n + t  c o s  nyn yy y  yx x " yz z

R._n =  COS n2 + cos nx + cos ny

The resultant stress on the plane ABC is given by;

R2 = R l + R i + R lxn yn zn
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The normal stress an is given by resolution perpendicular to the plane ABC, [84].

c .  = cosn, + Ry„ cosny +Rln cosh. -(5.13)

The shear stress is given by,

t = t]r 2-<tI -(5.14)

Substituting equations 5.9, 5.10 and 5.11 in 5.13 gives

a n = g„  cos nx + < jy y  cos n + g2z cos n2 + zpsnx cosny +

+ 2r cos n cos«z + 2t„ cos nx cos n2
-(5.15)

5.3 Critical plane analysis

A three dimensional critical plane analysis was carried out. The determination of the 

critical plane orientation is a crucial step in this analysis. The critical plane was taken 

as the plane with the maximum normal strain range [28] for normal strain criteria and 

the maximum shear strain range [16] for the shear strain criteria.

The orientation of an arbitrary plane can be defined by a normal vector as shown in 

the Figure 5.12, which is at a right angle to the plane concerned. In the current 

analysis, the normal vector is defined using two angles a  and /3. The angle a  is the 

angle of the normal vector in the xy  plane and the angle (3 is the angle of the normal 

vector from the xy  plane.

117



Normal
Vector

lane concerned

n,

Figure 5.12 -  directional cosines for the critical plane

The directional cosines for the normal vector are defined as,

ru

nx = sin a  cos /? -(5.16)

n = cos a  cos/? -(5.17)

nz = -  sin p -(5.18)

Three-dimensional stress and strain transformations using the above equations are 

applied to each element to find the corresponding stresses and strains for 36 different
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1 1
candidate critical plane angles, , in increments of 5° f o r  <cc<— and additional

n  k

increments of 5° for - — < / ? <  — .
n  n

5.3.1 Crack initiation location.

It is a well known fact from fatigue damage theories [30, 67] that local plastic 

deformation and damage accumulation must take place in order for a crack to initiate. 

It is assumed here that the surface crack is most susceptible to initiate from the 

location with maximum shear strain range or the maximum normal strain range. The 

distribution of shear strain range and normal strain range close to the vicinity of the 

contact edge, in the critical plane is shown in Figures 5.13 and 5.14 for left comer and 

the right comer of the contact respectively.
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Figure 5.13 - Crack initiation location at left corner
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Figure 5.14 - Crack initiation location at right corner.

Both parameters predict that the most favourable location for the crack to initiate is 

at the edge of the contact.

5.3.2 Crack path analysis for mode I and mode II cracking

The prediction of the crack path for the 260 MPa nominal contact pressure in the left 

side comer for mode I and mode II cracking is shown in Figure 5.15 and Figure 5.16 

respectively. The initial crack angle for the mode I prediction was 15° with the 

vertical direction and for the mode II predicted angle was 40° with the vertical. When 

moving into the material, the crack angle for mode I varied within the range of 20° - 

30° and for the mode II prediction, the crack angle varied within the range of 60° - 70° 

as depicted in Figure 5.15 and Figure 5.16.
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Figure 5.15- Crack path analysis for pure Mode I cracking
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Figure 5.16 -Crack path analysis for pure mode II cracking

The most favourable path for the crack to propagate on is either the mode I crack path 

or the mode II crack path or a combination of both. A severity parameter is proposed 

based on von Misses yield criterion.

121



5.3.3 Severity comparison between shear and normal strain.

It was assumed that surface fretting cracks will initiate at a critical location where 

stress conditions are very high and propagate into the material either in the shear 

plane or the normal plane depending on the severity of stress state on each plane. The 

analysis was carried out in 5 [im steps and the stress state was analysed on each step 

to ascertain the direction of the crack. Severity for both the shear and the normal 

plane were compared with the yield criteria as follows.

Severity coefficient y K for the shear plane (mode II cracking) was assumed to be a 

function of shear strain range Ay [16, 82] in the critical plane and the severity 

coefficient for the normal plane (mode I cracking) the severity parameter s K was 

assumed to be a function of the normal strain range A s  [16, 82] in the critical plane.

A typical crack subjected to mode I loading is shown in Figure 5.17 and a typical 

crack subjected to mode II loading is shown in Figure 5.18.

Surface

Figure 5.17 -  A typical crack tip subjected to mode I loading.
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In mode II cracking, the crack grows in the direction of shear loading and depends on

the maximum shear strain range. During shear loading, the irregularly shaped crack 

results in friction that will retard the crack growth. A tensile normal stress will 

separate the crack surface and reduce the frictional forces allowing the crack to grow 

further. Therefore the general formulae for mode II crack growth take the form

G h y  + S (JUax [26,82].

Where,

by - Shear strain amplitude in the critical plane

<jMax - Maximum normal stress in the critical plane

G - Shear modulus of the material

S - Material parameter

Surface

<■ Crack tip

Figure 5.18 -  A typical crack tip subjected to mode II loading.
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Further, from the observation that it is necessary to create cyclic plasticity at the crack 

tip to propagate the crack, both parameters were compared with the yield strength of 

the material using the octahedral yield criteria, to ascertain and compare the severity 

of both parameters. The severity coefficients e k and y K are defined as,

-(5-19)

for the normal strain criteria (mode I) 

and

GA/ +  lo -„„  = r t y K -(5-20)

for shear strain criteria (mode II) 

where X is a material parameter

The shear criteria (mode II) after substituting the von-Mises yield criteria, 

-j=<7yyK = (Ar + K<JMax) -(5.21)

If A G Max > ^ ( G ^ y  + K c t  Max )  ̂ cracjc wjp tend to follow the critical

plane for mode I cracking. If A Jfe* -  < A V . ±  K  a  \  then the
o’ ,  o- „

crack tends to follow the mode II cracking.
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5.3.4 Fracture mechanics analysis

The previous analysis was based on predicting the crack path for the crack to 

propagate due to the highly localised stress field on the contact surface but still 

questions remain un-answered. One is whether these cracks will propagate resulting 

in a catastrophic failure or not; another is about crack propagation life, in other 

words, at what number of loading cycles will the crack arrest or cause failure.

Although fracture mechanics theories can be successfully applied for life predictions 

of general fatigue situations, extra care must be taken when applying the LEFM 

theories to fretting situations. The major concerns that need addressing here are:

I. Fretting is a surface phenomena and a steep stress gradient exists very close to 

the contact and therefore a local mechanistic approach is more appropriate 

rather than a global approach when determining stress intensity factors.

II. The application of linear elastic fracture mechanic (LEFM) is inappropriate for 

short cracks which cross only a few grains of the material and therefore 

corrections to fracture mechanics theories are necessary in order to take account 

of short crack growth behaviour.

A fracture mechanics based analysis was carried out along the crack path predicted in 

Section 5.3.4 with corrections for short cracks.

Nisitani and Goto [91] have proposed that the rate of fatigue crack growth for short 

cracks is governed by equation 5.22. This equation was further established to be
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reasonable to assume for short cracks by experimental and numerical analysis carried 

out by researchers [21,90].

^  = C(AKeff- A K effliy -(5.22)

where,

AKeff - Effective stress intensity factor range, AKlheff - Effective threshold stress 

intensity factor range, N -  Number of cycles, C -  Crack growth coefficient

The AKtheff term represents the fact that the stress intensity range must exceed the 

threshold level, in order for short crack growth to occur.

McEvily and Yang [90] have proposed the term aKeff as given in Equation 5.23 below 

to maintain a linear elastic formalism for short cracks.

1 f ( \

^ e ff  = sec 7t<7
2 a

+ 1
Y I *N

_

A o --(l-e“*)4K0 -5.23

They have found a good correlation of predictions with experimental results for short 

crack growth of carbon steel.

For the purpose of explanation, the Equation 5.23 is written as follows in terms of 

three different terms.

AKeff -  [7erwl + YyjTerm2^S.a- term3 ' -5.23 (a)
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Ter m l

According to McEvily and Yang [90], Terml takes into account the crack tip notch 

effect. The constant re is evaluated from the following equation.

reis evaluated when a— 0, A K = A K effthn n d  A ct is the stress range at the endurance limit. 

Term2

Term2 is calculated using the analysis proposed by Dugdale [92] to take into account 

the crack tip plasticity zone.

Term3

The third term accounts for the development of crack closure as a crack grows from 

the developing state to a length beyond which there is no further increase in crack 

closure.

For short cracks, El Haddad et al [93] proposed from the observation that the 

threshold stress intensity factor for short cracks is less than that for long cracks and is 

calculated as follows.

CT -5.24

-(5.25)
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where, d is given by,

d  -a ,

Where, 7  is a geometry factor, A Of is the fatigue limit for the given surface 

roughness, ao is the initial crack length set to the surface roughness and a k THjo is the 

threshold stress intensity factor for a long crack

Further, the threshold stress intensity factor was corrected for the stress ratio in order 

to take into account the steep stress gradient and variation of stress ratio, very close to 

the contact surface. Walker [88] reported the dependence of the threshold stress 

intensity factor with the stress ratio as:

Where, R is stress ratio = a Min /<JMaxi AKmo Threshold stress intensity range for fully 

reversed cycles, aKTHeff is effective threshold stress intensity range for given stress 

ratio and n is a material property

Further, Masounave and Bailon [89] reported that for carbon steel (n-1) = 0.93 so that 

the equation 5.26 can be written as

-(5.26)

-(5.27)
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The fracture mechanics analysis was carried out until AK  < K m  for each point along 

the contact in the critical plane defined by the severity coefficient as shown in Figure 

5.10. The life for the crack to propagate from one point to the other (from A to B; B 

to C etc) was carried out in incremental steps using the Equation 5.22 for mode I 

crack growth.

The cumulative life was calculated by adding the life spent on propagation of the 

crack in preceding section concerned. The material parameters assumed based on [90] 

are as follows,

C = 2xlO “10 m/cycle 

k = 6 1/cycle 

^ = 6 . 8  MPa m 1/2 

AK th 0 =3.2 MPa m '1/2

A comparison of crack path, crack depth, and life predictions with experimental 

results are presented in the Chapter 6.
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CHAPTER 6: DISCUSSION

The fretting damage behaviour of pressure armour wires of flexible pipes was 

investigated using the novel experimental set-up that has been designed and 

developed. Three series of tests were carried out and the results were presented in 

Chapter 4. During the investigations involving a wider range of loading conditions, 

various damage profiles, sliding conditions and, in some tests, fretting cracks were 

observed.

The preliminary test series was carried out in order to understand the effect of slip 

amplitude and contact pressure on friction, the damage behaviour, crack path, and the 

crack depth. The conditions under which cracks are observed was confined to a 

specific region of a “damage map”. Detailed analyses of cracks revealed that they 

follow a path influenced by the local stress state. A fracture mechanics based critical 

plane analysis was developed to predict the crack path, crack depth and crack 

propagation life. The second experimental series (interrupted tests) was carried out in 

order to gain a better understanding of the crack growth process and to validate the 

crack path prediction and the damage map. A systematic quantification and analysis 

of results, together with a comparison of numerical predictions are presented in this 

discussion.
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6.1 Preliminary experimental programme.

The preliminary experimental programme was carried out to cover a wide range of 

contact pressures and slip amplitudes. The nominal contact pressure was varied in the 

range from 60 MPa to 260 MPa and the slip amplitude was varied in the range from 

20 /mi to 80 /mi. The tests ran approximately up to 250,000 loading cycles.

Pressure distribution

The predicted pressure distribution shows two peaks on either end of the contact. The 

peak values on either side are different in the current application due to the 

differences in comer radius. The comer with lower radius (0.5 mm) shown to be the 

highest peak of contact pressure while the higher comer radius (1.0 mm) led to 

comparatively lower peak contact pressure. At 260 MPa nominal contact pressure, 

the peak contact pressure was in the range of 850 MPa to 900 MPa (for each side) 

while the peak contact pressure ranged from 480 MPa to 500 MPa at 145 MPa 

nominal contact pressure. This clearly shows the influence of nominal contact 

pressure and the contact radius on the peak contact pressure. The lower the nominal 

contact pressure lower the peak contact pressure and the higher the comer contact 

radius the lower the peak contact pressure.

Slip boundaries

During the preliminary experimental investigation various slip conditions could be 

observed under different nominal contact pressure and slip amplitude. At low slip 

amplitudes the slip condition was mixed slip. As the slip amplitude was increased, a 

transition from mixed slip to gross slip was observed.
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The slip condition was identified for each test by observing the behaviour of 

stabilised friction loops. The friction behaviour and the slip condition for each test is 

presented in Chapter 5.

A boundary between the mixed slip and gross slip condition was drawn from the 

results of preliminary experimental investigation. The slip boundary in a map of slip 

amplitude and nominal contact pressure as presented in Figure 6.1.
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Figure 6.1- slip boundary between mixed slip and gross slip
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The slip boundary shown in Figure 6.1 provides vital information with regard to the 

type of surface damage under different slip regimes. The map reveals that at high 

contact pressure the transition occur at slip amplitudes of around 40 fim. At low 

contact pressure, typically below 100 MPa, the transition occurs at slip amplitudes 

approximately below 20 /mi.

6.2 Variation of the friction force

Large variations of traction coefficient could be observed during experimental 

investigations. The traction coefficient varied with the normal force and the slip 

amplitude. A comparison of stabilised friction loop at 260 MPa nominal contact 

pressure for different slip amplitudes is shown in Figure 6.2. The analysis shows that 

the traction coefficient increases gradually with the slip amplitude and attains 

maximum value under the gross slip condition.
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Figure 6.2 -  Variation of traction coefficient with slip amplitudes: (260 MPa

nominal contact pressure).
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The variation of traction coefficient under mixed slip conditions and gross slip 

conditions was analysed separately. The variation of the traction coefficient with 

number of loading cycles under mixed slip conditions is shown in Figure 6.3 and the 

variation under gross sliding is shown in Figure 6.4
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Figure 6.3. Effect of contact pressure on evolution of friction under mixed slip.

Figure 6.3 reveals that the traction coefficient stabilises at around 10,000 to 50,000 

cycles. The highest traction coefficient was observed for the highest nominal contact 

pressure 260 MPa and the lowest stabilised traction coefficient was observed for the 

lowest nominal contact pressure which is 60 MPa. At 260 MPa nominal contact 

pressure the stabilised traction coefficient was found to be approximately 1.1 whereas 

at 60 MPa nominal contact pressure the stabilised traction coefficient dropped down 

to approximately 0.7.
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Figure 6.4-. Evolution of friction for different nominal contact pressure in gross 

slip

The evolution of the coefficient of traction during testing under gross slip for 

different nominal contact pressures is shown in Figure 6.4. Generally, the traction 

coefficient varied in the range of 1.2 tol .5 under the gross slip condition.

It was observed that, at the beginning of an experiment with a new fretting pad and 

specimen, the traction coefficient always started at a lower value (around 0.3 -0.4) 

and the value stabilised after approximately 10,000 cycles, as shown in Figure 6.5.
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Figure 6.4-. Evolution of friction for different nominal contact pressure in gross 

slip

The evolution of the coefficient of traction during testing under gross slip for 

different nominal contact pressures is shown in Figure 6.4. Generally, the traction 

coefficient varied in the range of 1.2 to 1.5 under the gross slip condition.

It was observed that, at the beginning of an experiment with a new fretting pad and 

specimen, the traction coefficient always started at a lower value (around 0.3 -0.4) 

and the value stabilised after approximately 10,000 cycles, as shown in Figure 6.5.
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Figure 6.5 -Variation of friction force with number of cycles

The lower value of friction in the early stage of the experiment was explained by the 

existence of an oxide film on the surface of the material which has a lubricating 

effect. After this layer is disrupted by fretting action after a few thousand loading 

cycles, the traction coefficient reaches a maximum value for the particular slip 

amplitude and nominal contact pressure.

The variation of the stabilised maximum traction coefficient for a range of slip and 

nominal pressure conditions is shown in Figure 6.6. This figure suggests that there is 

a maximum value of traction coefficient of approximately 1.5; this is considered to be 

the coefficient of friction of the damaged surface under gross slip. The lower values 

of traction coefficients were observed for mixed slip. The maximum value of traction 

coefficient was found to be independent of the magnitude of the normal load.
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Figure 6.6.- Variation of stabilised traction coefficient with the slip 

amplitude.

6.3. Wear profiles under different slip conditions

The wear profiles were examined during the preliminary experimental programme. At 

constant contact pressure, a low rate of wear was observed at low slip amplitudes 

compared to high slip amplitudes at the same contact pressure.

In the current experimental investigation, experiments were carried out with mixed 

slip and gross slip conditions and the global sliding condition was distinguished by 

observing the shape of the friction loop. The analysis of the fretted valley profile 

provides evidence of the existence of a stick region on either side of contact close to 

the edge of contact. A comparison of fretted valley profiles for a mixed slip regime 

and a gross slip case for nominal contact pressure 150 MPa is given in Figure 6.7.
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Figure. 6.7 - The comparison of the fretted valley profile under mixed slip and 

gross slip: (200 MPa contact pressure)

Analysis of Figure 6.7 shows that the rate of wear is very high under gross slip 

conditions compared to the mixid slip conditions for the same nominal contanct 

pressure. Two deep valleys could be observed in the gross slip profile at either side 

of the contact region where peak pressure exist (refer to the pressure distribution 

shown in figure 5.11). In contrast to this, no deep valleys could be observed in the 

mixed-slip regime. A similar pattern was observed for tests carried out with 200 

MPa, 160 MPa 90 MPa and 60 MPa nominal contact pressures as shown in Figure 

6.7, to Figure 6.10.

Two valleys at high 
pressure region
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0 0.5 1 1.5
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Figure. 6.8 -  The comparison of the fretted valley profile in mixed slip and

gross slip: (160 MPa contact pressure).
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Figure. 6.9 - A comparison of the fretted valley profile in mixed slip and gross 

slip at 90 MPa contact pressure
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Figure. 6.10 - A comparison of the fretted valley profile in mixed slip and gross 

slip at 60 MPa contact pressure

The observation of two valleys in the gross slip region can be explained by the 

highest wear rate occurring in the high contact pressure regions at the edges of 

contact. In the middle section with low contact pressure, a peak was observed under 

gross slip condition. In contrary to this, a peak was observed in either side of the 

contact region under mixed slip condition.
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The existence of a peak in wear profile even in the region where a high contact 

pressure region, can be explained using the slip condition. The results suggests that

sliding regime and the wear rate is less in the mixed slip regime compared the gross 

slip condition.

Analysis of the wear profile reveals that, although in the experimental set-up the 

global slip and the contact pressure between the specimen and the pad was controlled, 

the local slip condition at any point along the contact is influenced by the contact 

pressure distribution. For example, the regions of low contact pressure would slip 

before the regions of high contact pressure assuming equal shear traction. Therefore 

different slip regimes may occur along the contact depending on the magnitude of the 

global slip.

From the above analysis, three different slip conditions were identified as stick, 

mixed slip and gross slip, for the current tests. They are schematically illustrated in 

Figure 6.11 to 6.13 respectively.

there exists a stick regions in the peak contact pressure regions for the mixed slip

A C B
B  -B  -11

B  -11 B
i  i  i

A C B

Figure 6.11 - Stick condition
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For small global slip the complete contact region is under stick. In this regime, the 

pad displacement occurs due to microscopic elastic displacements between the pad 

and the specimen due to the deformation of local asperities on mating surfaces. This 

regime is predominant at very high contact pressures and, at low global slip 

amplitudes typically below 15 pm.
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Figure 6.12 - Mixed slip condition

An increase in the global slip amplitude would make the middle region, where the 

contact pressure is lowest, slip, whilst the two end regions A and B remain in stick. 

Further increase in the global slip would create slip in the region B and not in the 

region A. This condition is denoted as mixed slip.
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C
4

B

A1 C 1 B

Figure 6.13 - Gross slip condition
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Finally the whole contact may be subjected to relative slip and this situation is known 

as gross slip. This regime is typical with high global slip amplitudes typically above 

60 pm. The slip regimes mentioned are characterised by the shape of the friction loop 

and the typical shape of the friction loop for each condition was presented in Chapter 

2 .

6.4 Variation of Wear Depth

The variation of maximum wear depth of the scar of each test against the slip 

amplitude is shown in Figure 6.14. A strong influence of slip amplitude and the 

nominal contact pressure on the wear depth was observed.
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Figure 6.14. Variation of wear depth with slip amplitude

The wear depth was found to increase with increasing slip amplitude and normal

load.
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6.5 Surface cracks

During the preliminary experimental investigations, surface cracks were observed 

only at high contact pressure under the mixed slip condition. Under gross slip 

conditions, a deep surface wear scar was observed without surface cracks. The 

loading region where the cracks were observed in the preliminary test series is 

depicted in Figure 6.15.
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Figure 6.15 -  The loading region for fretting cracks

Cracks were observed at 260 MPa and 200 MPa nominal contact pressure, under the

mixed slip condition. The cracks observed at 260 MPa, with 20 pm slip amplitude

(Test PI) are shown in Figure 4.35. The cracks observed for the same nominal

contact pressure at 40 pm (Test P2) are shown in Figure 4.36 and the cracks

observed at 200 MPa at 27 pm (Test P4) are shown in Figure 4.38. In all three tests

(Test PI, P2 and P4) two cracks were observed at each end of contact. Both cracks

were inclined while the left side crack was shorter than the right side.
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The difference of crack length can be explained using the contact pressure 

distribution as the peak contact pressure in the left hand side is less compared to the 

peak pressure at right hand side. The general trend path observed in these 

investigations is depicted in Figure 6.16.

Figure 6.16 -  The general trend of the crack path observed in the preliminary 

experimental investigations.

The analysis of crack path observed in the preliminary experimental investigation 

show that the crack path changes direction after moving about 10 fim to 20 [im from 

the surface. The cracks at both the left and right edges initiated at approximately the 

same angle to the surface^?» y/). The crack at the left edge was longer compared to 

the right edge during the initial stage. Both cracks were kinked and the secondary 

directions of the crack tip are approximately the same. The total depth of the crack at 

the right edge was greater than that of the crack at the left edge.

Left edge Right edge
Contact surface

■primary
direction

^Secondary 
direction /
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6.6 Numerical analysis and perdition of the crack path

In order to understand and explain this behaviour and to assess the crack path, the 

sub surface stress state was analysed and a critical plane based numerical 

methodology was developed. The numerical procedure was presented in Chapter 4.

In the numerical analysis, a severity parameter was introduced in order to ascertain 

whether the crack at any point (from the initiation to the final failure or crack arrest at 

a certain depth) is governed by the mode I cracking or mode II cracking. The results 

of the analysis (for mode I and mode II and prediction of the crack path) for test P2 

are summarised in Tables 6.1 and 6.2.

Mode II parameter Mode 1 parameter
Depth
Cum) O'nMax A 7 V'

>/T( A r + K a u „  ) /
/ a y

Max Ac
O iM c J

1

608 0.017 40 3.9 1893 0.023 15 2.1

5
357 0.013 40 - .. . ■ • 2.7 1181 0.017 15 1.3

1 0

157 0.009 40 1 .8 734 0 .0 1 2 25 0 .8
15

-463 0.007 70 0.3 556 : 0 .01 25 0 .6
2 0

-438 0.006 70 0 .2 2 455 0.008 25 0.5
25

-421 0.006 70 0.13 391 0.007 25 0.4
30

-426 0.005 70 0.06 349 0.006 25 0.3

Table 6.1 -  predictions of severity parameter for the left corner: Test P2



Mode II parameter Mode 1 parameter
Depth
Gum) Max A 7

h tx+ K a uj /
Max A £ *

P "nMax 

/<*»
1

475 0.0195 40 3.9 2058 0.029 15
2 .2

5
262 0.013 40 • V'’/.. : -  2.5 8 8 6 0.0159 2 0

0.98

1 0

-574 0.0089 70 0 .2 564 0.012 25
0.62

15
-462 0.0083 70 0.4 456 0.008 25

0.5

2 0

-397 0.0071 70 0.3 401 0.007 25
0.44

25
-353 0.0063 70 0.3 391 0.007 25

0.43

30
-320 0.0053 70 0 .2 349 0.006 25

0.38

35
-324 0.0054 70 0 .2 318 0.006 25

0.35

Table 6.2 -  predictions of severity parameter for the right corner: (Test P2)

Where, Ay is the maximum shear strain range, Ae is the maximum normal strain 

range, on Max is the maximum normal stress, \j/ is the angle of the mode II crack path 

with vertical direction, £*is the angle of the mode I crack path with vertical direction

The results of the severity parameter at the left comer show that the influence of the 

mode II is dominant when the crack is closer to the surface. The initial angle of the 

crack path is 40° with the normal to the surface.

After growing approximately 15 fim the shear crack path changes towards the surface 

(70°) and at this point the maximum normal stress amplitude on the mode II plane is 

compressive. According to the severity parameter at this point, the crack propagation 

is more dominant by mode I and the crack follows the mode I path.
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Analysis of the results at the right edge show that same influence of mode II cracking 

at the right edge is less than at the left edge. The severity comparison suggests that 

the mode II influence is approximately 10 pm deep and the crack follows a mode I 

crack path beyond 10 pm.

The crack path prediction using the severity parameter for the preliminary test series 

is compared with the actual crack path observed experimentally, in Figure 6.17 

through Figure 6.22.

Predicted crack nath
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Figure 6.17 Prediction of crack path using severity parameter (test P2 left edge)
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Figure 6.18 Prediction of crack path using severity parameter (test PI left edge)
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Figure 6.19- Prediction of crack path using severity parameter (test P4 right

edge)
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Figure 6.20 - Prediction of crack path using severity parameter (test P2 right 

edge)
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Figure 6.21- Prediction of crack path using severity parameter (test P4 right 

edge)
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Figure 6.22- Prediction of crack path using severity parameter (test PI right 

edge)

6.7 Crack nucleation behaviour during interrupted test programme (series I)

The envelope where fretting originated cracks could be observed was defined in 

Figure 6.15. This envelope was further investigated during the interrupted test series 

and the details of the interrupted test series together with the predicted crack path are 

discussed below.

The interrupted tests revealed that at constant normal contact load, the observable 

cracks appear after certain numbers of cycles and the lengths of these cracks depend 

on the nominal contact pressure. Figure 6.23 depicts results of all the tests carried 

out with the mixed slip condition.
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Figure 6.23 - Crack nucleation boundary

From these results, a boundary could be drawn where fretting originated surface 

cracks could be observable and the boundary is shown in Figure 6.23. Figure 6.24 to 

6.26 depicts the actual crack and the crack path predictions for Test 1 12, Test I 3 and 

Test 14 .

Predicted crack oath

tual crack oath

Figure 6.24 Prediction of crack path using severity parameter: (test I 12 left

corner)
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Figure 6.25 - Prediction of crack path using severity parameter: (test I 3 left 
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Figure 6.26 Prediction of crack path using severity parameter: (test I 4 left

corner)
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6.8 Life prediction

The relationship between crack growth and number of loading cycles was predicted 

based on the fracture mechanics concept described in Chapter 5. The crack 

propagation life for the left and right edges predicted by this method are shown in 

Figure 6.29 and 6.30, respectively.
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Figure 6.29 -  Prediction of crack depth at the left edge.
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Figure 6.30 -  Prediction of crack depth at the right edge.
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The analysis shows that all tests analysed within the nominal contact pressure range 

from 145 MPa up to 260 MPa nominal contact pressure, should arrest resulting in 

non-propagating cracks. According to the analysis, cracks with 260 MPa nominal 

contact pressure would arrest at approximately 65 (im depth at left edge (1 mm comer 

radius) and at approximately 70 /im depth at the right edge (0.5 mm comer radius). 

Further the analyses showed that the cracks in all test conditions reach the maximum 

length and arrest approximately around 10 million loading cycles.

6.9 Depth of crack arrest.

The range of stress intensity factor of the left edge crack for the 260 MPa and 160 

MPa nominal contact pressure cases were compared with the threshold stress 

intensity factor range to obtain the depth of crack arrest. Figure 6.31 shows that the 

threshold stress intensity range gradually increases with the crack depth and the stress 

intensity range gradually decreases with the crack depth. The above analysis was 

carried out in the absence of a cyclic bulk stress. Further, the Figure 6.31 depicts that 

the value AKeff -  AKeffth is lower for the low nominal contact pressure. The condition

AKeff < &Keffth need to be satisfied in order for the crack to arrest and this was

achieved for 160 MPa nominal contact pressure at approximately 30/mi crack depth 

and for 260 MPa nominal contact pressure this was 65/xm crack depth.
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Figure 6.31 -  Comparison of AKefrand AKth with crack length

6.10 Comparison of the crack arrest depth with experimental results.

The experimentally observed crack depths were compared with numerical 

predictions. The experimental crack depth and the corresponding number of cycles 

was compared with the numerical predictions in Figure 6.32 and 6.33 for the left and 

right edges respectively. Good correlation is evident between numerically predicted 

crack depth and experimentally determined crack depth. A summary of the 

comparison of experimental and numerical crack depths is presented in Chapter 7.
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Figure 6.32 -  Comparison of numerical and experimental crack propagation 

behaviour;( left edge).
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6.11 Numerical analysis of fretting fatigue

Further, a numerical analysis was carried out to explore the behaviour of crack

propagation when a bulk cyclic stress is superimposed in the axial direction (<7XX) of

the wire (the cyclic bulk stress is in the same as the fretting sliding direction). The 

comparison of the effective stress intensity factor range at 260 MPa nominal contact 

pressure with a 200 MPa cyclic bulk stress amplitude is shown in Figure 6.34.

18 Stress intensity factor range 

■•—Threshold stress intensity factor range

CL

s i  12 -<uo>

1200800 1000400 6002000
Crack length (^m)

Figure6.34 -  Variation of stress intensity factor range and threshold stress 

intensity factor range ( 200 MPa bulk stress amplitude in X direction at 260MPa 

nominal contact pressure)

Although the applied cyclic stress amplitude is only about 50% of the fatigue limit of 

the pressure armour wire material, the Figure 6.34 shows that the specimen can fail 

under fretting conditions.
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6.11.1 Crack path prediction with superimposed cyclic bulk stress

The crack path was predicted based on the numerical procedure discussed in Chapter

5. The predicted crack path at 260 MPa nominal contact pressure with a 270 MPa

cyclic bulk stress amplitude is shown in Figure 6.35.
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Figure 6.35 - Predicted crack path: (260 nominal contact pressure and 270 MPa 

cyclic bulk stress).



The crack path (Figure 6.35) shows an initial mode II part of the crack growing 

approximately to a depth of 20 jum. The mode II part makes an angle (0i) 

approximately 40° with the normal direction to the surface . The crack path deviates 

after the dominant mode changes from mode II to mode I and maintains 

approximately an angle (62) in the range of 30° -  35°. After the crack propagates 

about 1-2 mm, the trajectory of the crack changed to almost right angles to the 

contact surface as the cyclic bulk stress becomes more dominant in crack 

propagation.

This behaviour of crack path was confirmed by Fernando et al [94] and Mutoh and 

Xu [80]. Prediction and experimental results of Mutoh and Xu [80] are shown in 

Figure 6.36.

X) 100 200 (jum) 0 100 20D(#m)

Figure 6.36 - A comparison of predicted and experimental crack path [77]
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6.11.2 Crack propagation behaviour with cyclic bulk stress in the sliding 

direction

The predicted variation of the crack depth with number of cycles for various bulk 

stress amplitudes at 260 MPa nominal contact pressure is shown in Figure 6.37.
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Figure 6.37 -  Variation of crack depth with number of cycles for various bulk 

stress: (260 MPa nominal contact pressure).

According to Figure 6.37, the crack growth rate is highest at 200 MPa bulk cyclic 

stress amplitude whilst the lowest crack growth rate occurs when the cyclic bulk 

stress is not applied. The crack growth rate increases with the increase of cyclic bulk 

stress amplitude. After reaching a certain threshold value of cyclic bulk stress which 

is specific to a certain nominal Contact pressure, the crack grows until catastrophic 

failure.

Furthermore, this behaviour is confirmed by the analysis shown in Figure 6.38 where, 

the stress intensity factor range for a range of cyclic bulk stresses from 30 MPa to 200 

MPa and the threshold stress intensity factor range is compared with the crack length
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. The variation of the stress intensity factor range with crack depth for different bulk 

stress amplitudes at 260 MPa nominal contact pressure is depicted in Figure 6.39.
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Figure 6.38 - Variation of stress intensity factor range with crack depth for 

various cyclic bulk stress: (260 MPa nominal contact pressure).

The condition applicable for a crack to propagate under cyclic loading is that the 

stress intensity factor range of the crack tip should exceed the threshold stress 

intensity factor range for the same position. The analysis of Figure 6.38 shows that 

the crack is predicted to arrest at early stages at low cyclic bulk stress amplitude. At 

30 MPa cyclic bulk stress, the crack is predicted to arrest at 100 fxm depth. At 100 

MPa cyclic bulk stress, the crack is predicted to arrest around 270 /mi. At cyclic bulk 

stresses above 130 MPa, the crack is not predicted to self arrest but is predicted to 

grow until specimen failure.
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The variation of crack growth rate with the crack length at 260 MPa nominal contact 

pressure for various cyclic bulk stress amplitudes is shown in Figure 6.39.
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Figure 6.39 Crack growth rate at various cyclic bulk stress at 260 MPa nominal 

contact pressure.

From the Figure 6.39 three different crack growth behaviours can be identified. The 

one predicted at 200 MPa cyclic stress amplitude shows a very high crack growth 

rate. At 100 MPa the crack grows and arrest after propagating few hundred 

micrometres. At 150 MPa the crack grows and the crack growth rate retards at a 

particular depth and then again increases.
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The analysis of Figure 6.39 suggests that the reason for the crack growth to retard is 

that the effective stress intensity factor range drops when the crack is around 300 /xm 

long and attains almost the same range( t x eff -  &Keffth > 0 ) as threshold for the

corresponding crack length. If the combination of bulk stress and the contact pressure 

is sufficient to penetrate through this “barrier effect” the crack will grow until failure. 

If not the crack growth will arrest at a certain depth within the barrier. Such 

behaviour has been previously obtained experimentally by Kim and Lee [79] and 

Troshechenko et al [92]. Kim and Lee [79] reported that the crack growth rate is high 

at the beginning and decreases during the early stage of crack growth and then again 

increases during the later stages. They attribute crack arrest to the diminishing effect 

of contact stress field when moving away from the contact surface. This phenomenon 

is explained in terms of the effective stress intensity factor range and the threshold 

stress intensity factor range closer to the contact zone in Figure 6.39.

Effect of contact pressure with bulk stress

The variation of crack propagation rate at a 150 MPa constant cyclic bulk stress for 

different nominal contact pressures is shown in Figure 6.41. The variation of crack 

growth rate in this case is entirely different to that observed in Figure 6.40 for 

different cyclic bulk stresses.
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Figure 6.40 -  Variation of crack growth rate with crack length for different 

nominal contact pressure; (150 MPa cyclic bulk stress).

Figure 6.41 depicts that after penetrating through the “barrier effect”, the crack 

growth rate is almost the same for all contact pressure ranges. Before attaining the 

barrier range, the crack growth rate is greatly influenced by the contact pressure.

Reduction of fatigue strength of the actual wire

The objective of the cyclic test series (test C 1 0 1 -C 3 0 2 in  experimental results) was 

to determine the failure mode and the reduction of the fatigue strength if  a cyclic bulk 

load is applied in a perpendicular direction to the sliding direction. The stress state for 

this condition is shown in Figure 6.42

1.0E-03
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Figure 6. 41 -  stress tensor when the cyclic bulk stress is in perpendicular 

direction to the sliding.

Here, the cyclic bulk stress is the (% component while the stress components axx and 

Txz are due to friction force. ozz is due to the normal contact load. In this scenario the 

fretting cracks are originated on plane shown in Figure 6.41 (a). In the previous 

analyses it was shown that if the cyclic bulk stress is axx, the cyclic bulk stress can 

super impose on top of the fretting stress close to the surface and drive the fretting 

crack until material failure.

But in this situation, if the material is failing due to the cyclic bulk stress, the 

material should fail in the plane shown in Figure 6.41(b). Since the fretting originated 

crack is in a perpendicular plane to this, we can hypothesise two possible failure 

models.
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Failure mode 1

The first hypothesis suggests that a crack is initiated due to fretting in the plane 

shown in Figure 6.41 (a) and upon applying a cyclic loading the crack changes by 90° 

through a smooth transition curve to the plane shown in Figure 6.41 (b). In this 

situation, a significant reduction of fatigue strength should be expected since the 

fretting originated crack is continuing through the failure.

Failure mode 2

The second hypothesis suggests that a crack is initiated due to fretting in the plane 

shown in Figure 6.41 (a). Application of a cyclic <% bulk stress should not affect this 

crack and this crack in not changing or growing under the influence of the cyclic bulk 

stress. In order to cause failure due to the application of a cyclic Oyy bulk stress in the 

direction, a new crack should initiate and grow under cyclic loading in the plane 

shown in Figure 6.41 (b). In this situation, a significant reduction of fatigue strength 

should not be expected sirfce the fretting originated crack is not influenced by the 

cyclic bulk stress and the failure mode due to the cyclic bulk stress is not influenced 

by the fretting originated crack.

Prediction of crack growth under cyclic bulk stress

The numerical solution for a case of 260 MPa nominal contact pressure with a cyclic 

load of 90% of the fatigue strength (360 MPa) applied in a perpendicular direction, is 

shown in Figure 6.42..
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Figure 6. 42 Variation of stress intensity factor range with threshold: (260 MPa 

nominal contact pressure 360 MPa cyclic bulk stress in normal to sliding 

direction).

The Figure 6.42 shows the dominant influence of the contact stress field over the bulk 

cyclic stress in a normal direction to the sliding direction. The crack growth rate 

shown in Figure 6.42 is almost the same as that obtained for the case without cyclic 

bulk stress (Figure 6.31). In both cases the crack arrests at around 65 fim crack depth.

Furthermore, the same result occurs when a cyclic bulk stress of 110% of the fatigue 

strength (440 MPa) is applied in a normal direction to the sliding direction. The 

critical plane orientation and the effective stress intensity factor range for this 

situation is compared with the threshold value in Figure 6.43.
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Figure 6. 43 - Variation of the critical plane orientation and stress intensity 

factor range with threshold (260 MPa nominal contact pressure 440 MPa cyclic 

bulk stress in normal to sliding direction).

The analysis of Figure 6.43 shows that the effective stress intensity factor range drops 

down almost to the threshold level at 65 [im depth but increases suddenly after 

penetrating the stress barrier effect. But this sudden increase of the effective stress 

intensity factor range is accompanied with the change of the critical plane orientation.

This analysis predicts that there is no smooth transition of the fretting originated 

crack when the cyclic stress is applied normal to the sliding direction and the 

reduction of the fatigue strength due to the fretting originated crack is less significant 

in this case. However the amplitude of the cyclic bulk stress should be very close or 

exceed the fatigue limit in order for the failure to occur due to fretting originated 

cracks.
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Experimental results of cyclic loading of pre fretted specimens

The cyclic experimental series (tests C 1, test C 2 and test C 3) were carried out to 

investigate the influence of cyclic loading on pre-fretted specimens. The cyclic load 

was applied in the normal direction to the pad movement. The specimens were 

sectioned after the test in order to investigate the effect of cyclic loading on the 

fretting originated surface cracks. The results of the cyclic test programme were given 

in section 4.3 and the microscopic images are given in Figures 4.64 to Figure 4.69. 

The lengths of the surface cracks observed in the cyclic test series correspond to those 

observed for the corresponding test conditions where the bulk cyclic stress was 

monotonic (test P2, test P4 and test 13).

Although all three specimens investigated (Cl, C2 and C3) were subjected to high 

cyclic loading, none of the specimens failed by cyclic loading below the fatigue limit. 

The maximum load applied to the specimens was 90% of the fatigue limit. The 

experiments revealed that although the pre fretted specimens were subjected to 

fretting damage with a sliding direction normal to the direction of the cyclic bulk 

stress, the fretting originated cracks have insignificant effect on the fatigue life.
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CHAPTER 7: CONCLUSIONS

1. The fretting damage behaviour of pressure armour wires of flexible pipes has 

been investigated. A novel experimental set-up has been designed and 

developed specifically to investigate the fretting damage process of pressure 

armour wires of flexible pipes.

2. It was possible to generate fretting damage in pressure armour samples under 

different combinations of contact pressure and slip amplitude and study 

phenomena such as slip condition, evolution of friction and wear rate.

3. Examination of the damaged regions showed fretting originated crack 

initiation at high contact pressures under mixed slip conditions. Significant 

surface damage due to wear results under gross slip conditions; no cracks 

were visible in the damage scars of tests in gross slip.

4. The maximum traction coefficient observed in the tests was 1.5 which is much 

higher than typical coefficients of friction for undamaged surfaces of metals 

0*=0.3).

5. The results show that there is a significant influence of the normal pressure on 

the wear depth under gross slip. Less influence of normal pressure on the wear 

depth was observed under the mixed-slip condition.
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6. A critical plane based crack analysis procedure was carried out. A severity 

parameter was proposed in order to ascertain whether the crack is growing in 

the mode I or mode II cracking. The analysis showed that the cracks initiate in 

mode II and approximately after 20 /mi, the cracks deviate to the mode I 

direction and mode I dominates the crack propagation. The crack path 

determined by the numerical procedure correlates well with the experimental 

results.

7. A numerical analysis was carried out for the fretting fatigue condition where 

the cyclic bulk stress is superimposed with the friction force. The analysis 

correlates well with short crack growth behaviour (a reduction of the fatigue 

strength by 75% was predicted by the numerical procedure at the analysed 

condition).

The analysis show that under certain bulk and contact loading conditions, 

fretting originated cracks grow until failure or arrest at a certain depth. The 

reason for a crack to arrest is that of the combined cyclic stress amplitude is 

not sufficient to penetrate through the stress barrier effect (Figure 6.40). A 

component subjected to fretting loading can fail if the combination of cyclic 

bulk stress and the contact stress amplitude is sufficient to exceed the stress 

barrier.
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Note:

This behaviour was previously explained by Miller [3] with two possibilities. The 

argument for the first possibility was that “ Although the crack has been able to 

pass with comparative ease the first micro-structural barrier due to the surface 

applied biaxial stress system, it is not able to overcome a subsequent grain 

boundary ahead o f  the advancing crack”. The argument for the second possibility 

was formulated as “The near surface biaxial stress system has rapidly decayed to 

a level which is insufficient to achieve the micro-structurally short crack driving 

force to equate to the AK value for the long propagation phase” The current 

analysis is consistent with second explanation given by Miller [3].

This research investigation confirms that is a significant consideration in design 

and operation of the pressure armour wires of flexible pipes at high contact 

pressure when the bulk cyclic load superimposes with the friction force. 

However, the stress state of the pressure armour wire when in operation is such 

that the cyclic bulk stress is in a direction normal to the friction force. As 

predicted by the numerical procedure and verified by experimental investigations 

results , the surface cracks initiating in this condition are self arresting after 

propagating to a certain depth.

173



CHAPTER 8: FUTURE WORK

1. The numerical procedure was carried out in small layers along the crack path 

with moving into the material. The strength of this approach is the possibility 

to incorporate any changes of stress condition when moving into the material. 

Examples may be residual stresses induced by surface treatments such as shot 

peening. Further experimental and numerical analysis with this procedure is 

necessary to explore the accurate predictions for these conditions using this 

procedure.

2. Although a great deal of short crack growth behaviour has been explored and 

understood the crack growth behaviour near threshold level and very short 

region (below 100 /mi) need understanding. Methodologies and experimental 

techniques are needed for in-situ observation of such short crack growth 

behaviour.

3. The numerical procedure was based on elastic stress and strain distributions 

and further improvements to the numerical procedure can be made by 

incorporating plasticity.

4. During the experiments it was revealed that the reduction of fatigue strength 

by application of a cyclic bulk stress in a normal direction to the fretting crack 

does not significantly reduce the fatigue strength. The possible damage 

locations are where fretting cracks occur or fretting wear. However further 

tests at higher cyclic loading are necessary to determine the exact location of 

the failure. The other possibility is that the specimen fails neither in the 

fretting crack sites nor the fretting wear, due to the fact that fretting loadings
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might increase the surface hardness of the material similar to that in shot 

peening.

5. Although the proposed numerical procedure is capable of predicting the crack 

growth behaviour, further developments are needed to incorporate the wear 

process during fretting damage.

6. The numerical analysis, further confirmed by experimental results show that 

the contact geometry and comer radius has a greater influence on the fretting 

damage process. The pressure distribution shows that the peak pressure is less 

in the comer at higher comer radii. Furthermore, the crack path analysis 

shows that depending on the comer radius, the crack path is different and the 

crack arresting depth is also different. This means that there should be an ideal 

contact geometry that will minimise the fretting damage.

7. It is known that lubricants such as grease reduce wear and friction in 

tribological systems that are subjected to sliding. Detailed experiments are 

needed to explore the possibility of reducing the fretting damage process of 

pressure armour wires of flexible pipes.
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