
Applying visualisation to model-based formal specifications.

PARRY, Paul William.

Available from the Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/20208/

A Sheffield Hallam University thesis

This thesis is protected by copyright which belongs to the author.

The content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title, awarding
institution and date of the thesis must be given.

Please visit http://shura.shu.ac.uk/20208/ and http://shura.shu.ac.uk/information.html for
further details about copyright and re-use permissions.

http://shura.shu.ac.uk/information.html

Fines are charged at 50p per hour

- h OCT 2005 off,'\

2 2 AUG 2007 ^

REFERENCE

ProQuest Number: 10700853

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10700853

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Applying Visualisation to
Model-Based Formal

Specifications

Paul William Parry, B.Sc. (Hons)

A thesis submitted in fulfilment of the requirements of
Sheffield Hallam University for the Degree of Doctor of

Philosophy

January 2004

' ' ,«*

Abstract

The most important and challenging activity in developing new software systems is
arguably ascertaining their features and characteristics before development takes place.
This activity, known as requirements engineering, involves software developers
identifying the requirements of the customers who are procuring the system, and then
documenting them in a requirements specification.

Producing a requirements specification is a complex, time consuming and human-
centred activity. It is essential that both parties discuss the requirements, analyse them
and negotiate any issues, uncertainties or conflicts that arise. To assist in this process, a
prototype of the software can be developed and then thrown away after the requirements
process has been completed. Such a prototype helps to stimulate discussion and to
provide a vehicle for experimentation and evaluation. This form of prototyping is now a
popular and well-known requirements engineering technique.

One powerful throwaway prototyping approach involves developing prototypes quickly
using executable model-based formal specifications. These are based upon mathematical
notations that possess a defined syntax and semantics. They have a useful dual role in
the requirements process. On the one hand, they can be used to express requirements
specifications in a precise and unambiguous manner, whilst on the other they can also be
subjected to execution to produce a prototype.

However, despite the benefits that such executable specifications have for the developer,
their use can be problematic in situations that involve communication with customers.
This is because traditionally, for reasons of productivity, the execution behaviour of
prototypes developed in this manner is often depicted using developer-centred
representations. Such representations often do not correspond to the perceptions or
expertise of the customer, as they are often too abstract or technical. If the customer
cannot recognise or comprehend these, accurate evaluation of the prototype cannot take
place, stifling much needed dialogue and rendering the prototyping process ineffective.

This research advocates that applying visualisation to this form of prototyping can
alleviate the problems of comprehension and the subsequent breakdown in dialogue.
The objective is to employ the techniques and principles of visualisation to transform
the developer-centred prototype execution behaviour into customer-oriented
representations based upon pictorial and graphical forms from their own universe of
discourse. Applying visualisation in this way can retain the advantages of using
executable formal specifications to build prototypes, while at the same time stimulating
and sustaining effective dialogue between developers and customers.

The objective of the research concerns the production of a system for visualising the
execution of a specific executable formal specification-based prototype development
technique. The resulting system is then evaluated by demonstrating its application in a
series of case studies. These reveal the capabilities of the approach, and demonstrate the
benefits that can be gained over and above the use of existing prototyping techniques
based on executable formal specifications.

Keywords: Requirements engineering, prototyping, executable model-based formal specifications,
visualisation.

Acknowledgements

A work of such magnitude as this is not undertaken and completed without the help,
encouragement and motivation from colleagues, friends and family.

I would first like to express my gratitude to Sheffield Hallam University for providing
the opportunity and resources to complete the work. I would also like to extend many
thanks to my friends and colleagues within the School of Computing and Management
Sciences at Sheffield Hallam University who have offered advice and encouragement
throughout the duration of the research.

I would also like to acknowledge the work of Dr. Richard Hibberd, who developed the
ZAL system, and Dr. Graham Buckberry who developed TranZit. The work in this
thesis integrates closely with these systems.

In addition, I would like to thank my good friend Jo Sutherland for proof reading the
thesis after its completion. This, I realise, was no small task.

A great deal of thanks must be expressed to my supervisory team, Dr. Mehmet Ozcan
and Mr. Ian Morrey, for their enthusiasm, guidance, and technical expertise. However,
this thesis would not have been written without the generous support and
encouragement of Professor Jawed Siddiqi. Indeed, I have been extremely fortunate in
having Jawed as my Director of Studies. His direction, constructive criticism and help
whenever I have needed it have been very much appreciated. I have the utmost respect
for him and will always be in his debt. Thankyou is simply too small a word.

Last, and by no means least, I would like to express gratitude to my family. My sister
Nicola and Brother-in-law Shaun and their family, and my grandmother Emma, all
deserve recognition as they have all offered support during the research. The most
gratitude must go to my mother, Margaret. She has supported and encouraged me during
all my studies, from school, throughout university and throughout my doctoral research.
Her strength, determination and love continue to be a source of inspiration in my life.
Finally, these acknowledgements would not be complete without mentioning my late
grandfather Bill Rollinson. I just wish he were here now to see how far I have come.

Paul William Parry, B.Sc. (Hons)
January 2004

Table of Contents

Chapter 1 - Introduction

1.1 Problem Definition and Research Proposal...10

1.2 Research Contribution ... 12

1.3 Thesis Structure... 13

Chapter 2 - Background and Motivation

2.1 Requirements Engineering.. 16
2.1.1 The Product of Requirements Engineering...18

2.1.2 The Requirements Engineering Process.. 20

2.1.3 Requirements Prototyping... 23

2.2 Presenting Prototype Execution Behaviour..26
2.2.1 Critical Factors in Presenting Prototype Execution Behaviour.................................... 27

2.2.2 Applying Visualisation to Present Prototype Execution Behaviour.............................30

2.2.3 Challenges in Visualising Prototype Execution Behaviour... 35

2.3 Survey of Existing Approaches...41
2.3.1 Teamwork/ES [Blumofe88].. 42

2.3.2 Mosel-MetaFrame [Margaria98].. 43

2.3.3 ENVISAGER [Diaz-Gonzales87]... 45

2.3.4 Visualising Concurrent Z Specifications [Evans94]... 48

2.3.5 Visualising VDM Execution [Cooling94]..50

2.3.6 Problems with Existing Prototype Behaviour Visualisation Systems...........................52

2.4 Summary...54

Chapter 3 - An Alternative Prototype Execution Visualisation System

3.1 System Overview.. 57
3.1.1 System Context...57

3.1.2 Requirements o f the ViZ System... 62

3.1.3 ViZ System Characteristics and Capabilities..65

3.2 The ViZ Process... 67
3.2.1 Scenario Identification and Documentation..68

3.2.2 Visualisation Design and Construction... 72

3.2.3 Prototype Execution and Evaluation....................... 76

4

3.3 The ViZ Toolset.. 77
3.3.1 Visualisation Provision..78

3.3.2 ZAL Integration... 82

3.3.3 Visualisation Engine.. 84

3.4 Summary..86

Chapter 4 - Case Studies

4.1 Case Study - An Automatic Teller Machine.. 88
4.1.1 A im s..89

4.1.2 Context..89

4.1.3 Method..91

4.1.4 Results.................. 110

4.1.5 Observations and Conclusion.. 112

4.2 Case Study - An Email System..114
4.2.1 A im s.. 114

4.2.2 Context..114

4.2.3 Method..116

4.2.4 Results...130

4.2.5 Observations and Conclusions..131

4.3 Case Study - A Water Level Monitoring System... 133
4.3.1 A im s.. 133

4.3.2 Context..134

4.3.3 Method..141

4.3.4 Results...148

4.3.5 Observations and Conclusions..149

4.4 Case Study - A Security System.. 155
4.4.1 A im s..155

4.4.2 Context..155

4.4.3 Method..159

4.4.4 Results...166

4.4.5 Observations and Conclusion.. 170

4.5 Summary..171

Chapter 5 - Critical Evaluation and Conclusion

5.1 Thesis Contributions Revisited..173
5.1.1 Survey o f the State o f the Art.. 174

5.1.2 Development of a System to Visualise Prototype Execution.......................................174

5.1.3 Demonstration of the Effectiveness of the System..181

5

5.2 Evaluation Against the Original Research Objective.. 182

5.3 Discussion..182

5.4 Opportunities for Future W ork..186
5.4.1 Enhancements to the ViZ System ... 186

5.4.2 Further Research in Applying Visualisation to Requirements Prototyping............. 188

5.5 Concluding Remarks...189

References and Bibliography.. 191

Appendix A - System Specification Document... 205

Appendix B - ViZ Software Requirements Specification Document......................213

Appendix C - Results of ATM Visual Prototype Execution..................................... 225

Appendix D - Email System Formal Specification... 230

Appendix E - WLMS Formal Specification..237

6

Chapter 1
Introduction

Computing pervades nearly every facet of life in modem society. It is acknowledged that

no single technology has impacted society as quickly or radically, or has brought such

massive changes in the way lives are conducted. We are now at a point in history where

computing and some societies are inextricably linked.

Computing can be partitioned into two distinct fields. The first is hardware technology.

This comprises the electronics and machinery that provide the underlying processing

and communication capabilities. The second field is that of software.

When viewed in simple terms software is an abstraction that enables us to exploit the

ever-increasing power, speed and features of hardware devices. However, when viewed

from a deeper human-centred perspective software becomes an enabling technology that

allows us to enhance and extend our innate natural attributes and skills - it facilitates

our creative abilities, enables us to control complicated processes or activities, and

allows us to control devices that perform tasks which would otherwise be too dangerous

or too complex to perform ourselves.

Since it is so useful and critical, the demand for software is great. Requests for new

software increase annually, placing the onus on a global software development industry

to implement progressively more innovative and complex software systems.

The high demand for software far outstrips supply, and the ability of the software

development industry to supply it. Often software is delivered that does not perform as

originally intended, is delivered later than initially expected, or exceeds its budget

estimates. This problem, which in 1969 was termed “the software crisis” [Naur69],

persists today and its effects have an impact on all modem societies and economies

[Gibbs94]. Studies conducted by both industry and academia show that 31% of all new

software development projects will be cancelled before completion, and that 52% of

projects will suffer budgetary overruns [Standish98]. The reasons for such failure stem

from the fact that developing software is a time-consuming, thought-intensive, and

sometimes experimental activity, which often requires the effort of a large number of

software developers.

In response to this seemingly pessimistic situation, and to counter the difficulties, the

software development industry strives to develop a solid base of principles and

processes that can be applied by software developers. With academic research and

8

experience from the industry, the continuously evolving discipline of Software

Engineering aims to provide such foundations [Pressman97].

Due to more than 30 years of software engineering research and application, it is now

understood that the development of software follows a general ‘step-by-step’ process

that consists of a series of interrelated activities. Firstly, the functions that are required

of the new software are identified and documented. Secondly, the software is designed

and implemented with a view to meeting these requirements. Thirdly, the software is

tested to detect the presence of errors so that they are rectified before the final activities

are performed - that of delivery and use. Subsequently, and as part of an on-going

process, the software may be modified to meet changes to its requirements or its

environment, or address errors not detected in the development stages. This pattern of

software development can be characterised in the form of a ‘software lifecycle’

[Royce70]. A wide variety of lifecycles have been proposed to suit different software

applications, eccentricities with development practices, or to accommodate

organisational variations [Boehm88, Davis93], but still, it is widely accepted that these

activities are essential in all software development projects.

It has emerged that one of the most pressing difficulties with software development, and

one that has been identified as contributing greatly to the cause of erroneous or

inadequate systems, and to the software crisis in general, is the first stage of the software

life-cycle - that of ascertaining and securing the requirements of a new software

application [Brooks87]. The umbrella term Requirements Engineering (RE) is used to

encompass this early lifecycle activity [Royce70, Davis93, Dorfinan97, Swebok03]. It is

during the ‘requirements engineering stage’ of the lifecycle, that the stakeholders (i.e.

the individuals or groups with a vested interest in the software system, which include

software engineers and developers, customers, users, investors, managers, etc.) converge

in an attempt to define precisely what is required of the proposed software. The aim is to

develop a view of the proposed system that is shared, agreed and understood by all

involved [Faulk97]. The result of the requirements engineering stage is a document, or

set of documents, known as a software requirements specification, that describes the

features that the proposed software systems should possess.

The importance of requirements engineering in the software development process, and

the challenges faced when undertaking it, means that it is an important area of study. It

9

is with this in mind that requirements engineering is the focus of the research presented

in this thesis. The work aims to address a particular problem that can adversely affect

the practical application of requirements engineering. The aim of this chapter is to

introduce this work. An overview of the problem being addressed is provided, and

subsequently, the specific objectives of the research and the scope of the research

contributions are defined. Finally, the chapter will describe the structure of the

remainder of the thesis.

1.1 Problem Definition and Research Proposal

Effective requirements engineering is dependent upon dialogue between the developer

and customer being established and sustained. This is needed to facilitate discussion

about the requirements, so that the customers can elucidate their needs, resolve

uncertainties, or negotiate conflicting interests that may exist.

To assist in facilitating dialogue during the requirements stage, a notable and now

popular technique has been developed. This technique is prototyping. It involves

developing a mock-up of a proposed software system to illustrate its behaviour

[Brook87]. Prototypes provide stakeholders with an opportunity to interact with the

software, before it is fully developed, in a tangible way [Gomaa90, Sommerville97].

Importantly, prototypes become an instrument for stimulating dialogue between the

developers and customers. By observing the execution behaviour of the prototype,

stakeholders are able to see how a system, or part of it, will function when developed.

This leads to discussion about the requirements, which in turn can be used to help

resolve uncertainties or ambiguities with the requirements information, or uncover new

requirements as the prototyping process progresses [Thebaut90].

Experience with prototyping has shown that its effectiveness in assisting the

requirements engineering process is entirely dependent upon stakeholders understanding

the prototype’s execution behaviour. As a prototype is executed, outputs, such as results

from calculations, messages and other indicators of execution progress are generated

and displayed.

Difficulties occur if stakeholders find these outputs difficult or impossible to

comprehend, as then they will be unable to make evaluations and reasoned judgements

about the underlying requirements that they represent. This problem arises when the

10

outputs are presented using terminology, concepts or vocabulary with which the

stakeholders are unfamiliar. One particular source of such vocabulary is the domain of

software engineering. Developers prefer to use software engineering notations and terms

to present prototype execution behaviour, as they are familiar with these and they offer

the levels of precision and conciseness that developers require. However, whilst being

of benefit to the developer, the use of such languages and terminologies when

presenting prototype behaviour can adversely affect the ability of non-technical

stakeholders to comprehend it [Cooling94], or as Davis, when describing the ability of a

“computer-naive” customer to understand requirements specifications, states,

. understandability appears to be inversely proportional to the level o f complexity and

formality.” [Davis88]. This presentation problem can affect the quality and richness of

the dialogue between the developers and customers, and importantly, the reliability and

effectiveness of the whole requirements engineering stage.

The problem can occur irrespective of the display mechanisms used to show prototype

execution behaviour. Some prototyping approaches rely on text-based display

mechanisms. Whilst showing messages or calculation results, these offer little in the

way of attempting to meet non-technical stakeholder’s needs in terms of their

comprehension requirements. Other prototyping approaches base their displays upon

more sophisticated representations. These approaches use graphical presentation

techniques from the area of visualisation. The aim is to present information in ways that

will initiate or promote understanding by drawing upon the potentially expressive nature

of graphical representations. In favourable circumstances these offer much greater

‘bandwidth’ for portraying complex concepts or voluminous information than

alternative textual forms [Myers88, Shu89]. Prototyping systems that employ

visualisation techniques do so to amplify the comprehensibility of execution behaviour.

Despite the potential of graphical representations and associated visualisation

techniques, this research argues that even their application has produced little reward in

terms of facilitating customer comprehension of execution behaviour [Ozcan98a]. This

stance comes from observations made of existing prototype approaches where

visualisation has been employed. The graphical representations used to depict execution

in these approaches, are again often based upon developer-oriented software engineering

concepts and terminologies.

11

The utility, flexibility and potential that visualisation has to offer means that it remains a

promising technique for presenting prototype execution behaviour. The flexibility and

expressive power of graphical representations enable them to present a practically

unlimited range of subject material, values, and results from any domain [Cooling94].

This research argues that these characteristics can be exploited by prototyping. The

argument is that prototype execution behaviour can be presented using vocabulary and

concepts other than those belonging to the domain of the software developer by using

imagery that is borrowed directly from the stakeholders’ own domain [Parry95]. This

will require techniques that enable the use of a rich repertoire of representations, i.e.

representations that are based upon photo-quality images or diagrams, and graphical

animation, to depict the imagery from the stakeholder’s domain. By employing such

flexible and expressive display mechanisms, prototype execution behaviour can be

portrayed in ways that non-technical stakeholders might be able to comprehend more

readily.

It is proposed therefore, that this research should develop an alternative prototype

execution visualisation approach that provides customer-oriented display mechanisms.

The proposal is that this approach should differ from existing prototyping systems by

making available visually rich display facilities. The objective is to develop a

prototyping system that will be capable of presenting the results of executing prototypes

in more customer-oriented forms.

1.2 Research Contribution

This research contributes to the field of requirements engineering, and more generally to

the discipline of software engineering. In addition, by applying the principles and

techniques of visualisation, a contribution to the field of visualisation is also made. The

contributions are as follows:

1. A literature review that surveys the state of the art in visualising prototype

execution. This surveys current work in applying visualisation to prototyping,

simulation, and requirements modelling, by presenting a number of existing

approaches. An analysis and critique of these is also offered, and deficiencies

identified. The review provides a foundation on which the development of an

alternative and more powerful visualisation approach can be based.

12

2. The development of a system to visualise prototype execution. The system applies

visualisation to a specific prototyping facility, and aims to do it in such a way that

the general problems identified with existing systems are overcome. This particular

contribution also includes the development of documentation that describes the

system’s requirements.

3. Demonstration of the effectiveness of the system. This is achieved by applying the

system to a set of case studies.

To summarise, this research provides a unique contribution to the field of requirements

engineering by providing a novel approach to visualising prototype execution behaviour.

1.3 Thesis Structure

The thesis is divided into five chapters. The structure of these chapters and summaries

of their content are given below.

Chapter 2

This chapter introduces the key areas that are the focus of the research. Firstly,

requirements engineering is described. An overview is presented of its principles,

products and processes. The description then focuses on a particularly popular and

worthwhile requirements engineering technique, namely that of prototyping. Next, the

problem that forms the motivation for this research is discussed which surrounds the

problem of presenting prototype execution behaviour in a form that is comprehensible to

stakeholders. At this point, the discipline of visualisation is described, including its

principles and rationale, as a potential solution to the research problem.

After discussing the research problem and the merits of applying visualisation to

requirements engineering and prototyping, a survey of related work in the field is

presented. Several approaches that employ visualisation to presenting the output from

executing prototypes are described. A critique of each approach is also made to identify

potential drawbacks and deficiencies. The deficiencies are collated and general trends

identified. This leads to a summary of the disadvantages of existing approaches being

presented.

13

Chapter 3

Chapter 3 presents the substantial contribution of the research. It describes the

requirements and design for a system that overcomes the research problem stated in

Chapter 2. The Chapter is divided into three sections. The first presents an overview of

the system. In this, the prototyping facility that is the focus for the application of

visualisation is described followed by an abstract description of the system that presents

its major components and general architecture. This comprises two facets, namely a

process that provides step-by-step prescription of the activities required to undertake

visualisation, and a software toolset that provides the actual visualisation capability. The

second and third sections elaborate on the process and the toolset respectively.

Chapter 4

This chapter demonstrates the application of the system described in Chapter 3. This is

done through the use of four case studies. Each one exemplifies a certain aspect of the

visualisation system by following the development of a visual prototype for a target

specification. First the informal requirements specification is given, followed by the

enactment of the process. The results are then presented along with a conclusion.

Chapter 5

The fifth and final chapter concerns the evaluation of the work. This involves evaluating

the work with respect to the research contributions and the original research objective.

In addition, this chapter presents a discussion of relevant issues that pertain to the

research, along with an elaboration of improvements and further research directions that

would facilitate a continuation of the work.

14

Chapter 2
Background and Motivation

15

The aim of this chapter is to describe the background and motivation for this research in

detail. It describes a number of areas that are of particular concern and that provide

context for the work. Moreover, the specific problem that the work addresses is

elaborated in full.

The chapter is structured into four sections. The first section describes the area of

requirements engineering, and prototyping in detail, to provide a background for the

work. The second section concentrates upon the specific issue of presenting prototype

execution behaviour and the problems inherent in this. In so doing, this section frames

the work by introducing visualisation as a means to facilitate prototype behaviour

visualisation: The third section presents a literature survey that reviews existing

approaches in the field of prototype execution visualisation, from which general

shortcomings and disadvantages are identified. The fourth and final section in this

chapter offers a summary that indicates the specific objectives of the research, namely to

develop an alternative prototype execution visualisation system that overcomes the

problems identified with the existing approaches.

2.1 Requirements Engineering

Software is developed in response to the needs of organisations, governments and

general market forces. To implement software that will satisfy the needs of these

‘customers’, software developers must first ascertain exactly what is required. The

activity known as requirements engineering is conducted in aid of this.

The critical nature of requirements engineering cannot be stressed sufficiently. It forms

the foundation of a software development project by providing knowledge about the

customer’s needs. This knowledge will be used in all major decision-making and design

activities throughout the project [Diaz-Gonzales87]. The importance and need for RE is

such that it is recognised throughout industry and academia. It is a stated requirement in

major software engineering standards, process improvement schemes and good practice

guides [Paulk93, Spice03, TickltOl, Swebok03], and is found in most (if not all)

software engineering curricula and subject benchmarks used in education world-wide

[SEI03, QAA03, ACM03].

Requirements engineering is challenging, however. The practice of RE has long been

recognised as being difficult, with many authors within the software engineering domain

16

proclaiming so. For example, Brooks, in 1987 stated “The hardest single part o f

building a software system is deciding precisely what to build. No other part o f the

conceptual work is as difficult as establishing the detailed technical requirements...”

[Brooks87], and more recently, Potts claimed “[it] remains one o f the most challenging

areas fo r software developers” [Potts94]. A variety of problems can impede its

effectiveness, leading to errors in the resulting descriptions of the proposed software

system. These problems include:

• Establishing an understanding of customer needs early in the software development

lifecycle [Faulk97].

• Difficulties in exploring customer needs and helping customers identify what they

want [McConnell03].

• Distinguishing and recording what the software should do, as opposed to how it

should be built [Davis88, Swartout82].

• Problems of scale, and the inherent difficulties of gathering accurate requirements

for large systems that typically involve large numbers of users and developers

[Faulk97, Thebaut90].

• Communicating requirements to different, but relevant audiences, and in ways they

can be understood by these audiences [Stephens93].

- • Managing changes in requirements as a software development project progresses

[Scharer81].

If errors are manifest in the requirements specification, they will propagate throughout

the entire project, crippling it. Moreover, the effects of these errors often reach beyond

the bounds of the software’s functionality. It is widely observed that the later an error or

an omission is detected, the more expensive it will be to repair [Alford77, Boehm81,

Davis93]. In addition, software that is flawed or does not perform as the users expect, as

the result of an inaccurate or erroneous specification, will be ill received or may not be

used at all. Much evidence exists to support these observations [Boehm76, Daly77,
/

Hooper82, Standish98]. The problems are further compounded by the fact that

requirements errors are usually the last to be detected [Gomaa90].

17

Requirements engineering can be viewed from two perspectives, namely product and

process. The product is the document, the software requirements specification, which

states the desired functionality and other characteristics of the software. The process is

the collection of requirements-oriented activities that, when performed, contribute to the

delivery of the requirements specification. These two aspects will be described in detail

below.

2.1.1 The Product of Requirements Engineering

The product of the requirements engineering stage is a document, or set of documents,

known as a software requirements specification (SRS). The SRS has several roles

during, and after, a software development project, including:

• Providing a point of reference for the developers and other stakeholders by stating the

functionality of the software system. It is important that this functionality should only

state ‘what’ the software should do, and not describe ‘how’ the software should be

implemented, as this may restrict the developer’s choice of possible solutions

[Scharer81, IEEE98a].

• Acting as a focal point for communicating, circulating, and exchanging ideas and

information about the software.

• Forming part of a contractual agreement between the customer and developer

[Zave90].

• Serving as the basis for project costs calculation and scheduling [Dorfman97].

• It may be used in the testing and maintenance stages in the context of providing

details of what the software should do and what functionality was originally decided.

To fulfil these roles effectively, the SRS should represent a statement of all the

characteristics of the software system. These characteristics can be partitioned into three

fundamental categories [Davis93, Sommerville97, KotonyaOO]:

• The functional requirements of the software. This is a list of what the software

should do, its proposed behaviour, and how it should deal with inputs and outputs.

18

• The constraints placed upon the system. These define what the software should not

do, which includes its bounds, and any environmental quantities (such as laws or

standards) that place limitations on the software.

• Any non-functional requirements. These define non-behavioural aspects of the

software, i.e. attributes of the system as it performs its prescribed activities. For

example, non-functional requirements state the system’s desired level of efficiency,

performance, and maintainability.

Of importance is the means by which requirements specifications are documented.

Much work by the software engineering and requirements engineering communities has

gone into developing notations with which requirements can be expressed. As such, a

wide variety of notations exist, each offering varying features and different levels of

formality and abstraction to facilitate the definition of a specification that possesses the

attributes described above. They can be partitioned into two major classes: textual and

graphical.

Textual representations are a seemingly obvious choice for expressing requirements.

One such notation is that of natural language. This is due to the richness and

expressiveness of general vocabulary. However, reliance on natural language

specifications is one of the main sources of ambiguity, and hence difficulty [Pamas77,

Meyer85]. Natural language is verbose in nature, which enables the incorporation of

irrelevant information, and sometime results in unnecessarily long documents. It is also

ineffective at decomposing and structuring requirements. The use of mathematically

based specification languages has been advocated as an alternative [Pamas77, Hayes86,

Jones90]. These languages are based upon mathematical formalisms and concepts that

make it possible to concisely and unambiguously express requirements [Vienneau97].

In contrast, diagrammatic approaches employ graphical notations as the basis for

representing software requirements, capitalising on the diagram’s ability to present

relationships, express abstraction, and portray images. As such, a wide range of

graphical notations, each with their own defined syntaxes have been developed.

Example of such notations include: the Data Flow Diagram (DFD) [DeMarco78,

Gane79] used to represent systems in terms of hierarchical decompositions of data

stores and flows between them; State Transition Diagrams (STDs) that specify the states

19

that a system can be found in and the possible transitions between these states

[Pamas69]; Petri-nets are diagrams that are used to specify process synchrony during the

design of time critical applications and are represented as directed graphs augmented

with tokens [Petri62, Peterson81]; and a variety of notations (and associated methods)

designed for analysis and specification, including the Entity-Relationship Diagram (E-R

Diagram) [Chen76], Structured Analysis and Design Technique (SADT) [Marca88,

Ross77] and SSADM (Structured Systems Analysis and Design Methodology)

[Weaver98]. Finally, the Unified Modelling Language (UML) [Booch99] offers a

comprehensive graphical approach to specify designs for systems in object-oriented

terms.

2.1.2 The Requirements Engineering Process

In attempting to produce an SRS, it is essential that a defined and systematic approach

be taken. Without discipline and diligence, and a defined set of activities to guide the

developer, the delivery of an accurate SRS cannot be guaranteed. To this end, a general

process of requirements engineering has been established that consists of three

fundamental and interrelated activities, namely elicitation, analysis and definition and

validation.

Requirements elicitation is concerned with acquiring and establishing the nature,

features and boundaries of a software system. The product of requirements elicitation, is

a collection of knowledge that may or may not be structured or refined. The activity of

elicitation can be thought of as knowledge transfer from a source (a person, document,

etc) to the software developer.

Two major problems arise however. The first is that the knowledge to be transferred is

not always readily available in a form that the developer finds useful. The second is that

it is often difficult for the developer to actually elicit the knowledge from the source,

especially if the source is a human expert. For a human, articulating requirements

precisely is unusually difficult, as functions and processes are not easily described

[Scharer81]. To alleviate these problems, a number of techniques and approaches have

been developed. Some of these employ techniques from sociology and psychology.

Goguen describes various elicitation methods including interviews, form analysis,

brainstorming, observational study, and facilitated meetings [Goguen93].

20

After elicitation, the developer possesses a potentially large collection of raw knowledge

about the proposed system. In this state, the information may not be in a form suitable

for subsequent development - there may be inconsistencies, ambiguities and

redundancies that could complicate and impede the project. Such undesirable qualities

must be reduced or eliminated, and the results formulated into a useful software

requirements specification. The activity of requirements analysis and definition serves

this purpose. In analysis, the raw requirements details are sorted and refined, and

redundancies discarded. In specification, the refined information is structured in the

form of an SRS.

The SRS represents the developer’s view of the requirements. It is produced from the

developer’s understanding of the proposed system, which in turn is formulated from the

information gathered during the elicitation stage. Consequently, it is essential to judge

whether this view matches the customer’s original requests and that no errors have been

introduced along the way or that no omissions exist. Validation embodies this activity

[Fuji97, Lalioti93, Sommerville97].

From the developer’s point of view, validation seeks to answer the question “are we

building the right product?” [Boehm84]. From the customer’s point of view, validation

can be thought of as an activity that builds confidence into the product. Validation of the

SRS entails customers and developers evaluating requirements details, identifying

potential errors or omissions, and negotiating and resolving emerging conflicts. These

are complex, asynchronous and communication-rich activities, which importantly,

require effective dialogue to be established and sustained between the parties concerned.

To this end, a variety of requirements validation techniques have been developed

[Fujii97]. Each offers varying level of support for establishing and sustaining dialogue.

The most basic approach to requirements validation involves the customer reading the

requirements specification. This ‘direct’ strategy seems the most simple. However, a

major problem affects this approach, rendering it difficult and cumbersome, namely,

that the SRS is written by developers for developers and often using specialist

requirements notations. Therefore, customers may not be able to comprehend the

contents of the specification and hence may be unable to judge its accuracy.

Furthermore, customers may not be able to conceptualise how a written specification

represents their requirements. At best, customers often find a written specification dull

21

to read, and at worst, they may be unable to comprehend its contents at all, especially if

it has been written with developers in mind [Gomaa90, T*hebaut90]. This is echoed by

Dorfman, who observes “Requirements documents and specifications cannot easily be

read by users.” [Dorfman90].

An alternative to this basic approach to validation can be found in ‘goal-oriented’

requirements engineering techniques. A goal is “an objective the system under

consideration should achieve” [Zave97]. The goal-oriented approach can be useful in

enabling users to express requirements. Customers can often articulate what they want

to do with a system, but cannot give detailed breakdowns of the requirements that will

enable them to satisfy these needs. Therefore, goals are used as the basis for discussion

and investigation. It should be noted however, that goals are not requirements in

themselves; they are abstract descriptions of what the system should do, which may

require more than one requirement to fulfil [LamsweerdeOl]. Goal-oriented

requirements engineering has stimulated a number of methods and tools, including the

notable KAOS system [Lamsweerde95] and the related GRAIL approach [Bertrand97].

Another validation approach is that of scenarios. Scenarios are descriptions of examples

of system usage [Weidenhaupt98]. They provide a means of describing the activities

that comprise the software’s functionality and the situations in which the system will be

used. Scenarios used in this context are known as descriptive scenarios [Potts94,

Rolland98]. Scenarios can also provide a framework for asking questions about the

user’s tasks and how a system should facilitate such tasks [Rumbaugh94], i.e. questions

concerning “how is this done?” or “what if...?” and as such provide an opportunity for

requirements elicitation and validation by stimulating and facilitating discussion

[Hooper82, Potts94, Heymans98, Sutcliffe98]. Scenarios are gaining much popularity

within the requirements engineering community. This is evident by the development of

a wide range of tool support and methodological assistance [Filipidou98, Rolland98].

However, it should be noted that scenarios are not complete requirements specifications.

Scenario descriptions provide details of only instances of system use, whereas a

requirements specification describes the system in general terms.

However, these validation activities are often augmented with a technique that has

proved highly effective in developing and sustaining dialogue between developers and

other stakeholders during the requirements engineering process. This technique is

22

prototyping. Its aim is to enable customers to play a direct and involved role in the

requirements process, by enabling them to see and interact with a model of the

requirements, and is described next.

2.1.3 Requirements Prototyping

Prototyping is a well-known and popular requirements engineering approach. The

activity involves the development of an executable model of the requirements (or part

thereof) that the stakeholders of a software development project can use to experiment

on and evaluate ideas with. The aim is to enable the stakeholders to assess the accuracy

of the requirements gathered so far, as well as to evaluate each other’s understanding.

[Brooks87, Luqi89, Gomaa90]. To this end, prototyping embodies the activities of

requirements elicitation and validation.

The activity of requirements prototyping mirrors its traditional industrial/engineering

counterpart, whereby a prototype is developed and used to demonstrate or investigate

the intended features of a product or a manufacturing process before full-scale

manufacturing takes place. For software, prototyping comprises an ‘evaluate then

modify’ strategy [Davis92] that is repeated until it is agreed that the prototype reflects

the functionality required in the proposed product or that sufficient information about

the product’s features have been discerned.

For our purposes, the objectives and advantages of prototyping are synthesised as

follows:

• To stimulate and sustain dialogue between developers and other stakeholders during

requirements validation [Gomaa83].

• To encourage stakeholder participation in the process, and at an early stage of the

production process [Gomaa90, Carey90].

• To assist in problem analysis by providing an opportunity for uncovering and

understanding the details of the proposed system [Hardgrave93].

• To facilitate a non-linear requirements engineering process i.e. accommodate the re

working and correction of problems and errors found in an SRS [Davis93].

23

Due to its inherent flexibility, it is not surprising that variations of the prototyping

process have been developed to accommodate different types of software development

projects and the differences in the strength or level of understanding of requirements

[Davis92]. One variation is the ‘paper prototype’ [Thompson92], where an impression

of how the software will look and behave is created with paper-based documentation.

Another variant is that of ‘evolutionary prototyping’. This approach involves the

implementation of a small set of well-understood requirements in order to provide a

solid foundation, with additional functionality being appended as the process progresses.

During subsequent iterations of this prototyping process, further requirements are

revealed or clarified, and correspondingly implemented on top of the existing system

[Hekmatpour88, Luqi89, Davis93]. In this approach, the prototype is developed and

refined in a quality manner, using quality implementation techniques and tools. Such

prototypes embody quality architectural-, performance- and exception handling

characteristics.

Lastly, there is the discardable model. This is a prototype that is metaphorically ‘thrown

away’ once sufficient understanding of the requirements has been generated. The

experience and knowledge gained during the process contributes to completing the SRS

[Gomaa86]. In this approach, the prototype need not be a flawless implementation or

offer the same performance as a full-scale production-quality system [Brooks87]. In

addition, such a prototype need not model all the requirements of the proposed system.

It need only focus upon issues that are believed to require exploration or further

clarification. These prototypes can be constructed in a variety of ways, including the use

of conventional programming languages, fourth generation database tools, or executable

formal specification languages. In addition, specialist prototyping environments or

workbenches that facilitate rapid application development can be used [Hekmatpour88].

Although the flexibility and the non-linearity of the prototyping process are useful

attributes that make prototyping appealing, arguably its most important characteristic is

its ability to facilitate and sustain dialogue between developers and other stakeholders

[Gomaa83, Hardgrave93]. Promoting this interplay between the involved parties in a

software system’s development is critical. From the non-development stakeholder’s

perspective, they must be given a continuous opportunity to articulate their needs during

the early states of a software development project. They must be consulted on decisions

24

regarding requirements, and be instrumental in eliminating developer’s misconceptions

or clarifying assumptions. From the developers perspective, they must be given the

continuous opportunity to clarify and enhance their understanding of the requirements,

and resolve ambiguities, contradictions, or fuzziness in the requirements details. Both

parties must be given the opportunity to evaluate arid review requirements details as

they emerge, in order to stem errors that could propagate into the subsequent

development. These activities require a ‘communication rich’ environment where

dialogue is continuous. Such an environment can be stimulated and sustained by

employing prototyping [Carey90].

Prototyping facilitates and sustains dialogue by regarding the prototype as the focal

point of any discussion. Interaction with, and evaluation of the prototype stimulates

discussion about its features. Customers can judge, assess, and then discuss its

functional accuracy, and subsequently contribute additional materials or provide

clarification where necessary. Moreover, developers can use it as the basis to discuss the

requirements the prototype represents and use it as a framework to guide them through

the discussions about any fuzziness in their understanding. Both parties can evaluate the

prototype against their own perceptions of the requirements. They can also evaluate the

perceptions of the other party and gauge their reactions during the discussions. These

interactions provide customers and developers with the opportunity to express approval

or dissatisfaction with an aspect of the prototype, or discuss potential omissions.

As a result of the interaction and dialogue, developers become more aware of the

customer’s needs. They can validate their newfound knowledge by modifying the

prototype to reflect their understanding of the requirements. This process iterates until

both parties are confident that sufficient detail about the requirements has been

established. This cycle, of evaluate then modify, enables the requirements knowledge to

be refined with respect to time. In some forms of prototyping (such as ‘throwaway’

forms), this time may be quite short, with modifications being made to the prototype

almost continuously, whereas in others (i.e. ‘evolutionary’ forms), the modifications

occur over a longer timeframe and in a quality manner, whereby the prototype is grown

into a more mature product.

After the prototyping process has been completed, and depending on the form of

prototyping being used, either full-scale development continues using quality methods

25

and techniques, as is the case with throwaway variants or the prototype is used by the

customers in the same way as a full scale production-quality system would be, until

more functionality is added.

2.2 Presenting Prototype Execution Behaviour

The opportunities for iteration and communication offered through prototyping have

made it a useful technique that has been applied, in its various forms, to a great number

of software development projects. Its popularity and adoption within industry, and its

study within academia, illustrates its usefulness and importance. However, a variety of

issues and problems can effect the successful application of prototyping. These

problems include problems of a technical and managerial nature, such as determining

when to conclude the prototyping process, how to control and update the documentation

that the process can generate, and how the stakeholders can be reassured that the

prototype is not the full working system.

Of particular importance is a problem that can adversely affect what is arguably

prototyping’s greatest strength - its potential to stimulate, sustain and enrich the

communication between stakeholders about the requirements of a proposed software

system. This problem is that of presenting the prototype’s execution behaviour to

stakeholders effectively. Prototype behaviour is generally presented as the results,

messages, or inputs/outputs that are generated from the prototype’s execution. If for any

reason, these results are not presented in a manner that the stakeholders can understand

during evaluation of the prototype, validation of the requirements that the prototype

represents then becomes uncertain and unreliable. This is because stakeholders will not

be able to make a reasoned assessment of it [Parry95, Ozcan98a].

This section addresses this presentation problem. First, a series of critical factors that

contribute to the problem are examined. Next, a potential solution, in the form of

applying visualisation to present prototype execution behaviour, is elaborated. Finally,

challenges in applying visualisation to prototype execution are described.

26

2.2.1 Critical Factors in Presenting Prototype Execution Behaviour

The critical problem of presenting prototype execution behaviour in a way that is

comprehensible to stakeholders during the validation process is symptomatic of a

combination of several interrelated issues, namely support, presentation, developer

attitudes, development costs, and the inherent differences between developers and other

stakeholders.

Support concerns the presentation facilities that are available in the tools, languages and

workbenches that facilitate prototype implementation and execution. It is evident that

many of these simply do not offer comprehensive support for presenting prototype

execution, especially those that facilitate the development and exploitation of

throwaway prototype variants. Many prototype implementation approaches shun

comprehensive presentation techniques in favour of providing focused and productive

prototype development environments. In addition, these approaches usually accompany

specialist notations that are used to express prototype behaviour. Such notations are

often abstract, in that they obviate the need to specify behaviour in low-level terms. This

abstraction also displaces comprehensive display features in favour of general, and often

minimal, display and user-interface facilities. While being of benefit to the developer,

these abstract or minimal presentation techniques limit the range of representations with

which prototype behaviour can be presented. The types of representations usually range

from minimal text based outputs to rudimentary diagrams. However, in many cases the

only representations offered are based upon the concepts, terminologies and

vocabularies used by developers, i.e. those belonging to the domain of software

engineering. It is unreasonable to expect customers to learn and understand such

regimes, which in turn, leads to the situation where customers do not comprehend the

prototype behaviours that are presented to them [Lalioti93]. This factor is directly

related to next factor, presentation.

Presentation factors concern the nature of the representation used to depict execution

behaviour. When displaying the progress of execution, the various results, messages or

input/outputs are presented to the stakeholders. For this presentation to be effective, the

types and styles of the representations, from which the displays of results, messages or

input/outputs are constructed, must be sufficiently ‘rich’, i.e. be based on a wide range

of flexible and comprehensive appearance types. Such representations are required so

27

they are able to accommodate a variety of stakeholder types and domain characteristics,

and deliver displays that can be tailored to suit their needs so they can comprehend the

underlying requirements successfully. If however, prototyping approaches do not offer

suitably rich and flexible display mechanisms the representations used will not portray

the prototype’s execution in ways that suit the stakeholders and hence, in ways they will

understand. This can seriously impede the overall effectiveness of the prototyping

approach.

In addition, effective presentation is not just dependent upon varied and flexible

representation types. It also relies upon showing execution behaviour in meaningful and

unambiguous terms so it is not misinterpreted or misunderstood by stakeholders

[ParryOO]. In other words, representations must adhere to the concept of ‘what you see is

what it means’ (WYSIWIM).

Developer attitudes concern the preferences of developers when producing and using

prototypes. Developers often prefer to use technically oriented terms with which to

present prototype execution behaviour. They might not wish to use different, less

technical or less precise notations during the process. Instead, they are likely to be very

familiar with such representations as they may well have extensive practical experience

in using them. This has a direct influence on the types and styles of the representation

chosen to depict prototype behaviour.

Development costs concern the financial cost, time and effort required to develop

prototypes with comprehensive presentation characteristics. To reduce cost and effort, a

developer may chose not to implement fully functional customer-oriented user interfaces

that employ rich presentation techniques. User interfaces can consume much

development effort - it has been suggested that they can take between 30% to 80% of the

effort of developing a software system [Myers92, Remington97]. This particular point is

pertinent to throwaway prototyping applications where the investment in terms of time

and costs may never be recovered.

The difference between developer and other stakeholders concern the difference in

technical knowledge between developers and customers [Ozcan98a]. It is important to

recognise that fundamental differences do exist, and are manifested as divergences in

terms of the knowledge of each other’s respective domain. On the one hand, the

28

developer understands the domain of software engineering and its associated languages,

terminologies and concepts, and on the other, stakeholders understand their own

domain, their working environment, and the activities that are associated with their

domain. Additionally, when discussing or describing their domain, each group often

prefers to use their own terminologies, vocabulary, and shortcuts. Due to these

differences, a ‘comprehension gap’ may emerge between the parties involved. This

creates an invisible barrier between them. Whilst not immediately apparent, such

differences will produce cultural and technical divides that will affect communication.

Customers may feel ignored due to a lack of participation in the process, feel they may

be unable (and subsequently unwilling) to articulate their needs to the developer, or feel

that the developer does not (or is unwilling) to understand them and see their point of

view. Developers may feel insecure about the software they are developing as they may

lack confidence in the requirements that are emerging, or they may have little faith in

the customer’s ability to communicate their desires. These points can affect developer

morale and the eventual success of the project.

Although proponents of prototyping claim that it is possible to overcome the problems

that stem from these factors, in practice it is found that they still manifest themselves in

the prototyping approaches in use today. This renders many ineffective at depicting

prototype execution behaviour in ways that all stakeholders can recognise and

comprehend.

However, it is argued by many prototyping practitioners that a solution to this problem

can be found by borrowing certain principles from an area that has, from the outset,

been developed to address presentation problems. This area is visualisation. At its heart

lie techniques that can be utilised to enhance and amplify comprehension of information

by presenting it using graphics. Such techniques have been applied to prototyping,

whereby the results of prototype execution are presented using diagrams and pictures to

improve understandability and promote stakeholder comprehension. This notable

approach has been applied widely in a variety of prototyping situations. It is described in

detail in the following section.

29

2.2.2 Applying Visualisation to Present Prototype Execution Behaviour

As a way of overcoming some of the difficulties that are inherent with presenting

prototype execution behaviour, the application of the technique of visualisation has been

advocated [Cooling94, Parry95]. Visualisation is an activity that involves presenting

information using visual representations, i.e. representations that utilise the power of

computer graphics. The aim is to exploit the power of visual representations to amplify

the comprehensibility of information. To this end, visualisation can be viewed as a tool

that can be used in situations where the inherent expressive power of visual

representation might be leveraged against presentation problems.

The rationale for applying visualisation to prototyping rests upon its potential to assist in

stimulating communication between the customer and developer. Through visualisation,

visual images, based on visually rich and flexible displays techniques, can be used to

portray execution information in terms borrowed directly from the customer’s own

domain with which they are familiar. If the customer is able to comprehend the

execution behaviour through such appropriate images, then they will be able to make

reasoned comparisons between their own perceptions and what they see, or identify

omissions in what is presented to them. Subsequently, they will be able to discuss the

differences or omissions that they recognise with the developer. The communication in

this visualisation-assisted prototyping process is likely to be effective and productive.

Visualisation is beneficial to both the developer and customer. From the developer’s

perspective, confidence in the project can be built on the knowledge that the

requirements are an accurate reflection of customer’s needs. Confidence breeds

motivation, and in turn, results in higher probability that the project will be a success.

Such benefits accrue from a successful requirements engineering process, which can

occur if supported by effective communication through visualisation. Customers can

feel confident and content that they have played a role in the development process. They

see progress, and they see specifications that more accurately document their needs.

Visualisation stems from the development, throughout the 1980s, of computer graphics.

Rapid technological advancements and reduced costs facilitated the development of a

highly flexible output medium. Corresponding advancements in software took

advantage of the high-resolutions and colour capabilities of this medium, displacing

30

older text-based displays as the primary form of computer output. This is evident by

powerful high-resolution user-interfaces and use of photo-realistic images that pervade

every facet of computer use today.

Mass adoption of such technology has enabled graphical presentation techniques to be

harnessed and exploited to portray the results that emerge from applications. These

efforts are driven by knowledge that presenting information graphically, in many

circumstances, offers a greater degree of flexibility, abstraction and expression, than is

offered by text-based displays. These characteristics, coupled with advancements in

technology, and the need to alleviate problems with existing output methods, have led to

development of visualisation [Frenkel88, SpenceOl].

The origins of visualisation stem from the need to display increasingly complex and

voluminous information. Traditional display methods, as used through the 1960s and

1970s, were limited in their scope, with output often restricted to rudimentary one

dimensional text streams. Visualisation provides the techniques necessary to alleviate

these presentation problems by presenting information visually.

Visualisation is not merely an alternative display technique, however. When applied

effectively it allows information to be portrayed in ways to directly promote or amplify

comprehension. It enables values to not just be ‘seen’, but instead, it allows insights to

be gained, perhaps by enabling relationships between data to be discerned, by enabling

patterns from complex arrangements of information to be extracted, or by presenting

information in forms that accommodate the viewer’s ‘visual requirements’ [Gershon98].

Much has been documented about the superiority of graphical representations over

textual ones in certain circumstances. Many authors make claims or discuss

observations about the characteristics of presenting information visually and how this

facilitates and promotes comprehension. For example, Stasko claims, “the two-

dimensional format o f a picture can provide greater amounts o f relevant information

more fluently than a stream o f text” [Stasko92], and Barrett states “pictures leave a

more lasting impression that words alone” [Barrett94]. With another similar claim, Nan

Shu argues that ''’’pictures can help understanding and remembering” [Shu89].

In addition to the general claims outlined above, many authors state the impact of the

characteristics of visual representations in certain contexts or applications. One such

31

application is that of representing the complexity inherent in information [SpenceOl].

Certain types of visual representations, e.g. diagrams and charts, can be effective at

expressing situations that would otherwise challenge the abilities of textually-based

offerings. For example, Larkin [Larkin87] provides a good example of the contrast

between visual and textual representations by presenting a problem concerning the

arrangement of a pulley assembly. It is obvious from the representation that Larkin uses

that the arrangement can be easily and instantly discerned, whereas if a textually based

representation is used, the complexity exceeds the level by which it is possible to

instantly and accurately imagine the assembly. In addition, Cox claims “In general,

pictures provide a better representation fo r most complex structures...” [Cox89]. This

may be attributable to the size of the mind’s working memory, or the ability of an

individual to understand a scene and conceptually derive a mental image of it.

A particular advantage of visual representations is that they may provide a way of

alleviating certain communication problems [Camara94]. For example, pictures can be

used to express thoughts without the use of text/language and overcome some cultural

differences, or as Nan Shu states, “ When properly designed, pictures can be understood

by people regardless o f what language they speak.” [Shu89]. This is evidenced by the

proliferation of internationally recognised symbols and icons, such as road signs or the

‘Hazchem’ scheme used to indicate hazardous chemicals [TSOOl].

These characteristics have led to visualisation proliferating in areas where viewer

comprehension is of paramount importance. Such areas range from science to medicine,

economics and business [Mantey94]. For example, within the domain of physics,

mathematical models are portrayed graphically to facilitate greater insight into them

[Sprott97, Folin92]. In the field of medicine, data obtained from Magnetic Resonance

Imaging scanners can be co-ordinated and presented as three-dimensional images from

which medical personnel can make accurate and informed judgements as to the medical

condition of patients. In the domain of business and economics, economic models for

forecasting money markets or for analysing financial trends can be depicted as visual

representations, as well as business processes themselves [Barrett94]. For examples of

such systems, refer to [HagenOO], the proceedings of the IEEE’s series of annual

visualisation conferences [Visualisation02] and the ACM’s Special Interest Group on

Graphics and Interactive Techniques (SIGGRAPH) conference series [SIGGRAPH03].

32

While presenting voluminous data in a visual form is an effective application for

visualisation, the same techniques can be applied in different ways to support the

visualisation of other types of information. Visualisation is often used to facilitate the

direct display of representations. This type of application includes the visualisation of

software (i.e. source code, and object code that is under execution) to render it in a more

comprehensible form for developers [Myers88, Green91, ReissOl]. This is especially

useful for the development and maintenance of concurrent software [Pillet95]. Other

aspects of software and its development process can also be visualised, for example

software architectures (i.e. module interdependencies, and object-oriented relationships)

[Carr95, Feijs98, Booch99]. Computer-based applications can themselves be visualised,

for example, visualising the contents of databases for the purpose of information

retrieval [Combs92, Walton94]. The topology of communication networks and the

volume and direction of network traffic also lend themselves to visualisation

[Martin93]. Lastly, visualisation has been applied to illustrating the structure of the

World Wide Web and the relationships that exists between Hypertext documents

[Benford97].

Visualisation has also been extended to cover other domains. For example, visualisation

has been used to depict the use and structure of natural language [Narayanan95]. It is

also claimed that visualisation can play a major role in teaching, whereby complex

concepts can be presented as diagrams to pupils and students [Dobson94].

The nature of visualisation is rooted in the relationship between information and

representation. For the purpose of this research, information is viewed as consisting of

two related aspects: the inherent content or meaning that the information possesses; and

a representation that renders it accessible to a viewer. The knowledge provides ‘value’

whereas the representation provides an interface between the value and a viewer/reader.

The representation is fashioned as an outward face or appearance. Visualisation is

essentially a transformation process that transforms this appearance into alternative

forms. The alternative forms being visual, and with the intention of being more

appropriate to the viewer’s needs. However, it is desirable for the transformation

process to be performed in a way that does not change the value of the underlying

information - visualisation may alter the viewer’s perception of that information, but it

should not alter the information itself.

33

In traditional visualisation systems, such as those that facilitate scientific, mathematical

or volume visualisation, the transformation processes that underpin them are

encapsulated in a set of rules that state how the source representation will be re

presented. The rules would state how to process and analyse the source representation or

source information, which visual representations to apply, and how to render these on a

chosen display.

In contrast to the technical details of how visualisation is performed, an important issue,

and one that has profound significance to visualisation, is interpretation. Interpretation is

a pertinent issue in many domains, such as art, law, and philosophy. It is necessary

therefore to define its scope and meaning in the context of visualisation, and more

specifically to this research, to its relevance.

In terms of visualisation, interpretation, or more specifically, the act of interpreting a

visual representation, refers to a transaction between content and a viewer. This

transaction, concerning the determination of meaning from the source, is conducted

through a visual representation that portrays the content in a way that its designer/creator

deemed appropriate. The transaction is thought of as being successful if the viewer

accurately determines the knowledge as intended, from its representation.

A successful transaction depends upon two conditions. The first is that the

representation must be appropriate at portraying the knowledge, i.e. its appearance is

suggestive, indicative or directly corresponds to the knowledge concerned. In some

cases, to accommodate a particular viewer type, the representation must be composed of

visual cues with which a viewer is familiar. The second is that the viewer must be able

to understand the representation sufficiently to ascertain the knowledge it attempts to

convey. The viewer may require a certain level of knowledge or experience to

understand a representation. For example, the viewer may have to understand a

vocabulary of symbols, or be capable of reading a particular diagram or chart. If these

conditions are not satisfied, the representation may be misinterpreted, resulting in the

viewer determining an incorrect, or a partially correct perception of the knowledge.

From this position, an explanation of the objective of the visualisation process can be

derived. Visualisation attempts to deliver a representation of the knowledge that enables

the transaction (i.e. knowledge transfer) to be successful. Its objective is to transform a

34

given representation into one based upon graphical forms, that is able to convey the

underlying knowledge in a manner that reduces the potential for misinterpretation and

promotes viewer understanding.

2.2.3 Challenges in Visualising Prototype Execution Behaviour

A variety of fundamental challenges confront the application of visualisation to

presenting the behaviour of prototype execution. These challenges can be divided into

two sets. The first involves human factors challenges that pertain to cognition and

comprehension of visualisations, and the second involves the technical and practical

aspects of visualising prototype execution behaviour.

Human factors pose fundamental and profound challenges. The first of these involves

understanding how visualisations are indeed useful and how appropriate information can

be imparted, and subsequently comprehended by a viewer. Understanding this can form

a way to assist in building effective visualisations. Humans possess a powerful image

acquisition and processing system, the anatomy of which is well known. However,

problems begin to arise when a deeper understanding of what happens to an image after

it has been captured is required, as the precise reasons for the way meaning can be

grasped by ‘seeing’ a visual representation are not entirely understood. Some of the

more general ideas that have been postulated by various authors about image

comprehension will be highlighted.

Central to comprehension is the question that relates to how information can be

extracted from the collection of shapes, colours, and patterns that make up a visual

representation. When considering this issue, the constitution of the visual representation

must be taken into account. A visual representation consists of a certain number of

visual cues, or elements, by which information can be expressed [Domik93].

Additionally, the relationship between visual cues and their contribution to the overall

content of a complete visual representation is important [Lohse94]. One particular belief

is that each visual cue plays a role in conveying information, or a piece of it; for

example Domik suggests that “a picture is the sum o f its visual ewes” and that pictures

need combinations of various visual cues to be effective [Domik93]. This belief

comprises the ‘component-view’ of comprehension, whereby it is argued that a

representation is analysed by the human brain and understood by decomposing it into its

35

constituent parts. Each part is processed, with meaning attributed to each part (based

upon comparisons to existing patterns or images in memory) in parallel, resulting in a

real time mechanism that facilitates comprehension.

In contrast to the component-view, there is the overall or ‘synthesised-view’ of a how an

image is understood, or in other words, how the whole representation conveys meaning.

It is argued that to understand a text-based representation, a reader must focus upon each

word and understand it [Petre90]. There is a temporal issue here, which dictates that to

understand a sentence, the entire set of words must be read in their correct sequence,

whereby each word’s meaning must be retained then pieced together. Visual

representations on the other hand do not suffer from this, as they can be ‘scanned’

quickly, and the whole image can be ‘absorbed’ [Petre90]. Converting large data sets

into visually represented models therefore greatly assists in its rapid comprehension

[Webster90]. However, to gain an overall understanding of a large set of data, if viewed

by textual means, each data item would need to be read and understood.

The next human factors challenge progresses to understanding how the visual

processing system in humans is able to understand the image characteristics. Humans

excel at acquiring and processing visual imagery. They achieve this by invoking the

highly developed visual processing system that comprises the eye, the optic nerves, and

the visual cortex [Valeric03]. Anatomically, these areas are well known, but modem

medical science cannot fully explain how these bodily components combine to provide

the image capture and recognition system inherent in humans. Despite this fact, many

authors have stated claims about the observable capabilities of the human visual

processing system. For example, many authors have commented on the perceptual

endowments of people and that they are strongly optimised for real-time image

processing [Duisberg87, Myers88]. Other authors comment on the ‘bandwidth’ of the

eye-brain combination and how it is the most powerful human communication channel,

for example [Webster90], and that it is especially efficient when applied to analysing

pictorial information. For a more in-depth treatment of the visual abilities of humans,

refer to [Sekuler94, Humphreys89].

The final human factors challenge is in understanding how humans perceive visual

images. When the eye has received visual information, it travels along the optic nerves

into the brain. The images are passed to an area of brain known as the visual cortex

36

which is connected to the higher brain centres responsible for memory and

consciousness [Hung02]. However, the reasons behind the ability of humans to

understand, recognise, and interpret such visual information is not understood, although

many theories have been proposed. Many centre upon the development of ‘mental-

models’ of the world, and how certain visual images correspond more closely to these

models [Cox89, SpenceOl]. However, such imagery also affects how mental models are

interpreted. It is also claimed “the way a problem is represented has a strong influence

on whether we can understand and solve it” [Bocker86]. Indeed, many great scientists

have stated that they do not “think in words” as observed by Larkin [Larkin87] and that

many problem solvers prefer a diagrammatic approach. This lends more credence to the

notion of mental models, how mental models are developed, and how comprehension

may stem from such models. Another aspect of image comprehension is the process that

is invoked within the brain. The perception of spatial relationships and the discovery of

patterns activate a series of mental processes. Evidence indicates that these are different

to the mental processes invoked when a viewer reads text-based representations

[Domik93]. This suggests that visual and textual comprehension is handled by different

brain areas and are processed in different ways. For a more detailed investigation into

the cognitive aspects of understanding visual representations refer to [Marr82,

Spoehr82].

The technical challenges in providing visualisation facilities are as follows. Some of the

major concerns that accompany each challenge are also discussed to provide additional

insight into how the challenge may be satisfied, or what is required to overcome the

problems that the challenge presents.

The first technical challenge is tool support. This concerns the provision of visualisation

facilities through software tools and additional supporting systems. Satisfying this

successfully hinges on the ability to deliver visualisation facilities to both new and

existing prototyping environments and tools. When considering the development of new

prototyping support systems, their designers incorporate visualisation features from the

initial stages of the tool’s development. However, it is the case that a wide variety of

tools already exist to support validation through prototyping (for examples, see Section

2.3) Also, software developers often have a propensity to repeatedly use the same tools

over sustained periods because they are tried and tested, familiar and the investments

37

made in cost/training will not be wasted. To fully exploit the use of these existing tools

or retain their usefulness in the future, it would be necessary to augment them with

visualisation technologies, possibly via the use of a separate visualisation system. In

these cases, it would be imperative for the visualisation system to inter-operate with the

prototyping environment, so visualisations could be applied to the execution results.

The second technical challenge is to embrace presentation technologies and techniques

that will both enhance the depiction of outputs from prototype execution and offer

greater support to the visualisation process in general. Moreover, new technological

developments must be monitored with a view to exploiting these for the benefit of

visualisation. To satisfy this particular challenge, visualisation tools will be required to

possess certain characteristics such as diversity or visual power of the visual

representation and facilities fo r composing and modifying representations.

In terms of diversity, which may also be termed ‘visual power’, a spectrum of individual

visual cues and representation types should be made available from which visualisations

can be developed. However, there is a need to express how combinations of visual cues

can be used to formulate complete visualisations. In other words, an abstraction that

provides a frame of reference with which to discuss or implement visualisations is

required. Such an abstraction can be based on a ‘visualisation hierarchy’ that consists of

three levels.

At the first and lowest level in the hierarchy, is the need to provide a range of individual

visual cues, supported by graphical animation facilities. These provide the visual

building blocks from which any type of visual representation can be developed, and

comprise geometric shapes, text elements, and ‘larger’ cues such as atomic images or

charts. The visual cue types should span the range between direct and abstract to provide

flexibility to portray prototype execution in ways that are most appropriate given the

viewers and the subject material. Direct representations provide realistic presentations

of an object or system that is close to its real-world counterpart. Examples of such

representations include photo-realistic images. Abstract representations might be used to

provide overviews, and examples include diagrams or charts.

At the intermediate level is the need to combine individual visual cues and animations

to develop ‘visualisation objects’ that can be applied to the products of prototype

38

execution. Such execution products might consist of individual results, messages, or any

other indicators of execution progress. It is necessary to visualise these at run-time.

Examples of visualisation objects might include complete charts, with labels and axes,

complex combinations of geometric shapes that form complete images, or images

combined with results generated through execution. Also at this level, there exists the

need to depict the execution progress in a wider contextual setting. This should involve

augmenting the execution progress visualisations with visual objects that reflect how the

system could be placed in a real-world context by presenting entities that are external to

the system under consideration, or depict relationships between the visualisations of

execution progress. It is important to visualise such details to provide a ‘setting’ into

which the visualisations of execution progress can be placed. This is required to provide

meaning - data and values are often meaningless when presented by themselves, but

instead require a context for them to be understood.

At the highest level in the visualisation hierarchy is the need to present a complete

‘scene’ that contains combinations of visualisation objects, visualisations for both

execution progress and contextual details. Scenes may visualise the execution of

significant events. These may include the execution of a part of the prototype, or the

complete execution of a particular system function. Importantly, scenes can be likened

to frames in a storyboard, where each frame depicts an important event that is part of a

larger sequence. When augmented with contextual visualisations, this method enables

execution of schemas to be portrayed in a storyboard fashion [Andriole87]. This has

advantages, since the basic concept of storyboarding is readily familiar to many, and that

storyboards themselves offer a convenient means of visualising sequences of action

[FriaioliOO, Hart99].

With regard to composing and modifying visual representations, any tool that supports

visualisation should provide suitable editing facilities. Moreover, as a consequence of

the validation process, the prototype may undergo significant change. Consequently, the

visual representations associated with the prototype could also change. Considering the

number of iterations during user validation and the importance of timeliness of the

validation activity, it is important that a visualisation should provide speedy creation

and modification facilities.

39

The final technical challenge is concerned with overcoming the problem of the integrity

of visual representations. These problems arise when unsuitable visual representations

are used to depict prototype execution. This challenge may also be termed the

correspondence problem. It stems from the semantic distance that exists between the

meaning of executing a prototype and the representations that are used to portray that

meaning. Again, this relates to the communication problems attributed to traditional (i.e.

non-visual) prototyping (see Section 2.1.3). However, in systems for visualising

prototype execution, this problem can be more acute because of the nature of the

visualisation process - achieving correspondence between execution behaviour and its

representation is fundamentally difficult. There are no guarantees that a representation

will be relevant, meaningful or unambiguous when applied to depicting prototype

execution behaviour, especially if humans play a large part in the creation process. If

arbitrary or potentially ambiguous representations are used, then the intended meaning

of the behaviour of the prototype may be not communicated to a customer effectively.

This will result in misunderstandings arising that have the potential to impede the

prototyping process [ParryOO]. If a system for visualising prototype execution

automatically generates visualisations, using rule-based or algorithmic means and

depends upon defined inputs and outputs, this problem can be alleviated to a degree.

However, such systems may be considered rigid in that they might not offer the rich,

flexible and varied visual representations required by non-developers. Clearly such

systems are counterproductive. The correspondence problem is not merely a technical

problem, but a wider communications problem where it is necessary to match visual

representations to the expectations of the customer.

Our investigations into the challenges presented by human factors and technical issues

have elicited useful characteristics of visualisations and of the human visual processing

system that can be exploited when applying visualisation to prototype execution.

Following the presentation of the basic principles of visualisation and the rationale and

issues that surround its application to presenting the execution of prototype behaviour,

the following section presents a survey of existing work in this domain. The aim is to

highlight useful techniques and good practice, as well as revealing deficiencies that exist

with the current technology. The objective is to provide motivation to develop an

alternative visualisation system that can overcome these difficulties.

40

2.3 Survey of Existing Approaches

This section surveys the current state of the art with respect to existing approaches to

visualisation prototype execution behaviour. The aim is to identify shortcomings with

the existing approaches that may affect, constrain or limit their utility. The results of this

survey are then used as the basis for satisfying the research objective, which is to

develop an alternative visualisation system that provides enhanced visualisation

capabilities.

To facilitate the evaluation of these approaches, their characteristics are identified and

categorised in terms of a taxonomy comprising of a set of criteria based upon the

investigation into the principles of visualisation and the challenges presented by human

factors and technical issues, as described in Section 2.2. To quantify the extent to which

a system provides a particular feature, a simple categorisation scheme is offered based

upon a series of ‘ticks’ - no ticks indicate that the system does not provide the given

feature, whereas three ticks indicates that the feature is provided comprehensively. A

summary of the taxonomy is given in Table 2.1.

Application Domain The scope of the prototyping and
visualisation system. (not applicable)

Visual cues (the lowest
level in the visualisation
hierarchy)

The individual visual cues
available to construct visualisation
objects.

The range and com prehensiveness of
the visual cues provided.

Visualisation objects (the
intermediate level in the
visualisation hierarchy)

The basic units of visualisation
available to portray the execution
of prototypes.

The range and diversity of the
visualisation objects provided.

Scen es (the highest level
in the visualisation
hierarchy)

Compositions of visualisation
objects that indicate overall views
of the prototype behaviour.

The extent to which the system permits
scen e level visualisations to be created
and used..

Dynamism The way in which dynamism is
presented

The facilities available for dynamic
visualisation.

Flexibility
The mechanisms available for
composing and modifying
visualisations.

The extent of the facilities available for
composing and modifying
visualisations.

Representing
Relationships

Mechanisms available to facilitate
the depiction of relationships
between visualisation objects.

The amount of facilities available for
representing relationships between
entities in the given visualisation.

Abstraction

Any abstractions mechanisms
available to enable overviews of
execution to be generated or to
enable viewers to focus on
individual aspects of it.

The amount of mechanisms provided
to portray abstraction.

Correspondence The level of
correspondence/integrity between
the visual representations and the
underlying meaning of the
execution of the prototype.

The extent of between
specification/model and the
visualisation.

Table 2.1. The criteria used to classify and evaluate systems to visualising prototype
execution behaviour.

41

2.3.1 Teamwork/ES [Blumofe88]

Although many CASE tools exist that allow SA/RT (Structured Analysis with Real

Time extensions) [Ward85] diagrams to be drawn neatly, they are limited in so far as

they do not allow the resulting diagrams, or models, to be executed. The Teamworks/ES

system has been designed to achieve this, i.e. execute real-time structured analysis

specifications in an interactive and graphical manner for promoting understanding of the

system being modelled.

The system allows SA/RT diagrams to be drawn and modified by means of a direct-

manipulation style editor and then initialised with ‘tokens’. Tokens, which are

represented on the diagrams as black squares, can be placed in various locations, but

their placement must conform to the semantics of the diagrams. Firstly, tokens can be

placed on flow lines to show activity on that flow; and secondly, they can be placed on

bubbles (or processes) to represent that the bubble is capable of transforming its inputs

into outputs (i.e. the bubble or process is enabled). The SA/RT notation also allows

abstraction by further decomposing processing elements into lower-level DFDs.

Since real-time systems are the focus of Teamworks/ES, a number of features for

specifying and analysing the timing requirements of the models are provided.

Fundamentally, when a model is under execution, Teamworks/ES supplies a global

‘clock’ that defaults to 1 Hz, and all operations and events are synchronised with this. It

is possible to specify delays for certain processes to simulate the notion of real-time

execution. This feature can also be disabled, thus giving the impression that each

process completes instantly and consumes zero time. Execution of lower-level DFDs

can be controlled. They can execute normally, i.e. in real-time, or they can be made

‘transparent’ in that they simply return their results instantly, thus helping to speed up

model execution. The overall speed of execution can be controlled, with options from

full-speed to slow, and a pause feature is also provided. The results of the execution are

reflected graphically on the SA/RT diagrams, with tokens being placed and removed

according to changes in the state of the model.

Conclusion and Critique

The Teamworks/ES system is tied to a particular diagrammatical modelling approach,

i.e. SA/RT diagrams, and hence the range of visualisations offered can be somewhat

42

limited. The visualisations are often based upon the notation and formalisms used in the

underlying approach (which is in fact the software engineering/information systems

domain), This could cause the customer to experience comprehension difficulties.

Application Domain Real-time system s
Visual cues Simple geometric shapes combined to form SA/RT primitives
Visualisation
objects

Graphical elem ents corresponding to SA/RT diagram
primitives.

✓

S cen es Complete SA/RT diagrams.

Dynamism State changes in the executing model are reflected in the
resulting visualisation as changes to the graphical primitives.

✓

Flexibility Visualisations easy to modify via manipulation of SA/RT
diagrams through supporting software.

Y

Representing
Relationships

Possible to state position of entities within the SA/RT
diagram and connect them to others via arcs.

SS

Abstraction Supports hierarchical decomposition of SA/RT diagrams.

Correspondence

A degree of correspondence between script and resulting
visualisations. Problem surrounds the production of the
underlying scripts, in that it is impossible to determine if
these meaningfully depict the reguirements.

sv

Table 3.1. Classification o f Teamworks/ES.

2.3.2 Mosel-MetaFrame [Margaria98]

This system attempts to combine formal methods with a visualisation system to enhance

and improve user- and developer-accessibility during validation and verification of

hardware circuits. The aim is to make the formal specification technique used to

describe the operation of the circuits more accessible.

The characteristics of the approach are: i) it enables models of hardware circuits to be

expressed using a formal specification language, specifically monadic 2nd order logic.

This allows the operation and properties of the circuits to be defined, which then enables

the circuits to be subjected to mathematical treatments to detect errors; ii) it provides a

visual programming environment by which visual models can be constructed and

associated with the formal specification; iii) it allows ‘tests’ to be performed on the

models. This involves users observing general properties of the system through the

graphical presentation of the models or performing specific tests such as equivalence- or

incompleteness testing. The results of such tests can be shown graphically.

The models that are developed with Mosel-MetaFrame are based upon directed-graphs,

an example of which can be seen in Figure 2.1.

43

Conclusion and Critique

The designers of Mosel-MetaFrame see visualisation as providing a way of rendering

the formal specifications that are used to model their target systems as customer-centred

representations. In addition, the designers also claim that their system is capable of

improving the developer’s experience by reducing the effort required to verify the

correctness of the model.

These objectives are commendable, but the choice of representation used to depict the

models can be challenged, especially in light of the fact that customers are part of the

intended audience. It can be argued that the directed-graphs do not offer an adequate

customer-oriented representation, and that much learning would still need to be done

before customers could understand the resulting technical models.

Application
Domain

Simulation of hardware circuits

Visual cues Geom etric shapes from the domain directed-graphs s
Visualisation
objects

Directed graphs symbols based on geom etric shapes

Scenes Com plete diagrams based on directed-graphs
Dynamism None

Flexibility
Required to change underlying specifications to modify
visualisations. Manual process.

✓

Representing
Relationships

Possible to state position of entities within the diagram
and connect them to others via arcs.

✓

Abstraction Decomposition/expansion of diagram elem ents s s

Correspondence
Correspondence between script and resulting
visualisations exists, but is not entirely complete or
comprehensive.

V

Table 3.2. Classification o f the Mosel-MetaFrame visualisation approach.

44

: j .j aom en zrceil

Flirt Edit Window la y o u t Options

(Y1|-Y1&-YZ) S[~Y1&~Y2)j-X&(~Y2)

yz.Y1&-Y2

<yz

x &(~y i&Y2)|~x &(yz) c v z

-YZ

(Y2)

-YIA~Y2)|~X&(-VZ)

?T

Figure 2.1. Example visualisation from the Mosel MetaFrame environment.

2.3.3 ENVISAGER [Diaz-Gonzales87]

ENVISAGER (ENvironment for the Visual Specification And Graphical Execution of

Requirements) has been designed to provide tools to support the conceptual modelling

and simulation of real-time systems with the aim of using these in the requirements

validation stage.

The objective of ENVISAGER is to support the modelling of the various characteristics

inherent in real-time systems, including several independent (concurrent) processing

entities or data sources/sinks which could be either software or hardware components,

messages between these entities, synchronisation between different processes, sporadic

events which must be dealt with, and response times that must be adhered to. To

45

facilitate an accurate representation and simulation of a real-time system, knowledge

about these characteristics must be included within the model.

The conceptual models developed in ENVISAGER are based upon a collection of objects

that communicate through an asynchronous message passing mechanism. Logic

predicates are used to specify and maintain knowledge about the individual objects that

comprise the model and the interactions between them. The predicates are specified in

terms of a proprietary formal specification language. The formal nature of these

eliminates the potential for ambiguity and misinterpretation. Each object within a model

has its own set of predicates as well as a state, or ‘memory’, which holds the current

condition of that object. During execution of the model, the state of an object is changed

depending on external events or messages from other objects. As well as a textual

definition, each object has its own graphical representation, which may change during

the course of execution to denote changes in its state.

These concepts and the underlying model descriptions are hidden behind a graphical

interface that simplifies the development and execution of models. Figure 2.2 shows the

architecture of the system, which consists of a graphical specification editor, a static

analyser, which is used to check the specifications for inconsistencies before execution,

and a visual simulation tool to support execution.

Developer/ Customer

Graphical Interface

Static AnalyserSpecification Editor Visual Simulator

Figure 2.2. The architectural composition o f the Envisager system.

The Graphical Specification Editor is a tool to facilitate the design and modification of

model descriptions in a direct-manipulation style. Models are composed from graphical

objects and icons which are all derived from graphics primitives such as lines, circles,

46

and various fill patterns, etc. The editor also provides facilities for the specification of

timing constraints.

A noteworthy aspect of the Specification Editor is the provision for reusability. Libraries

of icons and graphical components for different application domains within the realms

of real-time systems are maintained. The reusable components come with their

associated text-based definitions that define their behaviours in terms of predicate logic.

The Visual Simulator provides the capabilities for executing a model, and presenting the

changes made to the model during its execution to the viewer. The simulator also

modifies graphical objects in accordance with changes to their internal state. The user

can interface with the simulator by sending ‘messages’ to objects to initiate events in the

system, or the system’s environment. The system then reacts accordingly, visually

displaying any changes to the model.

Conclusion and Critique

The ENVISAGER system provides a competent and effective system for the description

and execution of models of real-time systems for the purpose of requirements

validation. The system supports a variety of simple visual representations based upon

graphical primitives.

However, for certain systems a simple visual representation may not suffice. The need

for more advanced visual cue types, such as photographic pictures (in the form of

bitmaps) may be required to produce visualisations that offer an adequate level of

familiarity for customers. In addition, arguably the system does not provide adequate

facilities for directly visualising the content of the internal states of objects, or the

contents of messages^ i.e. the data values that are encapsulated in them. Instead, the

system provides a means of displaying a graphical view that merely changes in

accordance with changes in state. Perhaps the major difficulty with ENVISAGER is

finding a suitable graphical representation for every particular state or situation. This has

been a traditionally difficult activity, as Rasure [Rasure91] points out “It has been

found, it is not a good idea to try to visualise everything. Some things, like mathematical

formulas and numerical algorithms, are better handled with text” and as Tanimoto

observes “One o f the most challenging aspects o f designing visual languages is

producing efficient graphical elements” [Tanimoto87].

47

Application
Domain Real-time system s.

Visual cues Icons, based on simple graphical primitives such as geometric
shapes and lines.

y
Visualisation
objects

Icons representing specification elem ents that represent
entities in real-time system s

y

S cen es Composition of icons representing complete depictions of real
time system s

yy

Dynamism State changes in the executing model are reflected in the
resulting visualisation as changes to the icons.

y y

Flexibility
Visualisations derived from text-based specifications, Must
change the underlying to specification to cause changes to
visualisations.

y y

Representing
Relationships

Possible to state position of graphical objects and their
adjacency to others. Viewers can infer relationships from this.

y

Abstraction Diagrams are abstractions/models of real-time system s, but no
special mechanisms for abstraction available.

y

Correspondence
The model is expressed/specified graphically, so a high degree
of correspondence exists between the visualisations and the
specification.

y y y

Table 3.3. Classification o f Envisager.

2.3.4 Visualising Concurrent Z Specifications [Evans94]

The approach presented in [Evans94] describes a system in which Coloured Petri Nets

[Jensen81] are integrated with the formal specification language Z [Spivey92] to

specify, prototype, and subsequently visualise a class of systems that are notoriously

difficult to analyse and understand - concurrent systems.

The approach uses the Petri Net notation as a graphical specification method with which

the developer can interactively construct models of (potentially) complex concurrent

systems. The system provides facilities for automatically interpreting and converting

these graphical specifications into Z specifications. From this, the reasoning power of Z

may be used to prove safety, invariance, and timing oriented properties. Figure 2.3

shows the process involved and the possible uses for the system.

Interactive Editor Coloured Petri Net

Proof

Prototype /
Simulation

Concurrent Z
Specification Visualisation

Figure 2.3. The processes involved in visualising concurrent Z specifications.

48

The specification technique employed in this approach, the Coloured Petri Net, is an

enhancement to the traditional Petri Net notation, in that complex data structures can be

attached to the tokens used in the models. This allows more complex models of

concurrent systems to be specified using the notation. Predicates are also

accommodated, so complex conditions can be modelled.

This approach hinges on the state-based nature of both Petri Nets and the Z notation.

When a prototype , is executed, changes in the state of the modelled system can be

reflected in a visual representation of the model, thus giving the viewer a dynamic

picture of the workings of the system under investigation.

The authors claim that the approach can be applied to other methods that include similar

diagrammatic specification notations, such as State Transition Diagrams, Data Flow

Diagrams, etc.

Conclusion and Critique

This system is targeted at concurrent systems, and therefore cannot be applied to a wide

range of domains. Of concern however, is the inability of the system to provide

appropriate visual representations that a customer can understand; only a single

representation is offered, i.e. a Coloured Petri Net that may not offer a sufficiently

customer-oriented view. The Coloured Petri Net notation has been designed to offer a

way of modelling the complex structures, behaviours, and interactions inherent in

concurrent systems, and is a tool used primarily by developers. It was not intended to

reduce this complexity to a level where a customer could readily understand the

behaviour of a system, which limits the potential of this approach for customer

requirements validation, thus conflicting with the authors’ original objectives. A similar

system that visualises the execution of Petri-net based models can be seen in [Ae87].

Application
Domain Concurrent system s.

Visual cues Geometric shapes to form the symbols of Petri-Nets
Visualisation
objects Graphical Petri Net elements, such as nodes and tokens

S cen es Complete Petri Net models, including tokens
Dynamism Shows real-time ‘execution’ of Petri-Net models.

Flexibility Changes in the Petri-Net model directly affect changes in the
visualisation.

ss
Representing
Relationships

Petri Nets are able to represent relationships between states of
a system, but not special mechanisms available.

49

Abstraction Petri Nets are abstractions of real-time/concurrent system s.
Individual Events can be broken down into lower-level nets.

VV

Correspondence
Petri nets are graphical by default, and the models have a high
degree of correspondence between the graphical
representations.

v v v

Table 3.4. Classification o f the Concurrent Z Visualisation approach.

2.3.5 Visualising VDM Execution [Cooling94]

The approach described in [Cooling94] outlines a system that is designed to visualise

and animate formal specifications. The system is designed around the formal

specification language VDM, and the target application domain is that of embedded

real-time software systems. The objective of the approach is to “illustrate the key

properties o f specifications to non-computer specialists.”

The process of visualising VDM specifications using this approach is performed in two

stages. The first stage concerns the development of a traditional VDM specification to

model the system under investigation. The second stage involves the development of a

text-based ‘script’ that drives the visualisation and animation sequences. The script is

separate from the specification and contains the information necessary for visualisation.

It can be thought of as a program that mimics the semantics of the underlying VDM

specification and is executed to produce a visual simulation of its execution. The

description of the approach, given in [Cooling94], describes the development of the

visualisation scripts as a manual process.

The scripts describes both the static and the dynamic aspects of the visual

representations, for instance the type, colours, and location of graphical objects and the

elements that inform the support environment what to do in response to changes of the

system state. Conventional programming constructs are provided such as conditions,

iterations, and abstraction (via procedures). The system provides a variety of graphical

primitives from which complex diagrams can be developed.

It is claimed that the system has been used to demonstrate formal specifications of

systems to audiences including managers, engineers, and research workers, and their

reactions have been most positive.

50

Conclusion and Critique

The system as described provides an adequate approach for visualising specifications

based upon the formal specification language VDM. However, there are concerns as to

the method used for constructing and executing visualisations. The development of

visualisation scripts is a manual process. In this context, it is possible to construct

scripts that do not correspond to the underlying VDM specification. Using this method it

is possible for the advantages of formal methods to be lost, since ambiguity,

misinterpretation and incorrectness can be introduced at the script level if

correspondence does not occur.

If the script generation process is augmented with a method to produce visualisation

scripts automatically, what should be the extent of the automation? Developing suitably

expressive visualisations cannot be performed effectively by procedural means since

visualisation is a creative activity, unless the visualisations are limited or constrained.

As software has not yet gained the human qualities that are necessary for effective

visualisation, some human intervention must take place.

An important additional point concerns the overall method of developing and

subsequently modifying visualisations. Whichever approach is used, either manual or

automatic, the resulting script is text-based. This approach has definite limitations with

respect to changing the look and meaning of the visualisation. For example, suppose

that part of the visual representation does not adequately reflect the VDM specification.

It might be a time consuming and arduous task for the developer to have to re-write the

appropriate portion of the script.

The use of two languages is also a concern. By forcing the developer to learn and use

separate languages for the specification and visualisation components, difficulty and

mental load is increased, introducing the potential for error.

Application
Domain Real-time software system s

Visual cues Icons representing elem ents in real-time system s ✓
Visualisation
objects

Basic graphical primitives such as geometric shapes, and
colours. Possible to construct diagrams from these.

✓

Scen es Complete diagrams composed of icons W
Dynamism Static visualisations only

Flexibility
Visualisations derived from processing a text-based script.
Changes must be made to the script, and then re-processed to
modify visualisations.

✓

51

Representing
Relationships

Possible to state position of graphical objects and their
adjacency to others. Viewers can infer relationships from this.

Abstraction
Resulting visualisations represent abstractions/models of real
time system s. Abstraction is also provided through
procedures/functions for developing models.

Correspondence

High level of correspondence between script and resulting
visualisations. Problem with production of the underlying scripts
- manual process, so it impossible to determine if these
meaningfully depict the requirements.

Table 3.5. Classification o f the VDM visualisation approach.

2.3.6 Problems with Existing Prototype Behaviour Visualisation Systems

From the review of existing requirements visualisation approaches above, five important

shortcomings can be identified. These shortcomings form the rationale for developing

an alternative visualisation approach, as it can be argued that they compromise the

effectiveness of the systems - this is in spite of the good intentions of their creators.

The shortcomings can be characterised as lack of diverse or visually rich

representations; lack of correspondence; difficulties with the development of visual

representations; difficulties in associating visualisations to prototype definitions and

execution behaviours; and the lack of a guide or method.

The lack of visually rich customer-focused representations in the systems presented

above demonstrates how pertinent and real the problem of communication is, as

discussed in Section 2.2, even though the systems attempt to overcome it using

visualisation. It can be argued that these systems provide more examples of the

application of technically oriented depictions, either textual or graphical, of prototype

execution behaviour being used when customers are being involved in the prototyping

process. In each case, it is not hard to imagine the difficulties faced by a customer when

attempting to understand such representations.

A potentially serious problem that affects most of the above systems to a greater or

lesser degree is the lack of correspondence between the meaning of the visual

representation (that can be perceived by the viewer) and the meaning of the underlying

prototype execution behaviour. It is vital that customers should understand the meaning

that the developer intends if they are to make an informed judgement about the

requirements. In some of the systems presented above, it may be argued that the

connection between the visual representation and the prototype execution was unclear,

i.e. a non-technical viewer might not establish how the visualisations portray the

52

meaning of the behaviour of the prototype. This was due, in part, to the style and form

of the visual representations available to depict execution.

Further, developing and specifying visual representations is a critical activity in any

application of visualisation. Visualisation development involves two distinct steps.

Firstly, the visualisation designer (which may be a software developer or a specially

trained graphic artist for example) uses cognitive skills to imagine a conceptual

representation. Secondly, an ‘externalised’ representation is developed that reflects the

mental representation of the designer. This is achieved using a convenient or adequate

notation or mechanism that enables the ideas to be expressed. It is desirable for this

notation or mechanism to allow a representation to be expressed in a form that

corresponds as closely as possible to the conceptual representation. This enables the

designer’s mental load to be reduced - it reduces the potential for error, improves

productivity and reduces the constraints placed upon the creative process. Since the

conceptual representation is arguably based upon a pictorial form, it is desirable for the

notation to also be based upon a pictorial form. In other words, the objective is to

describe visual representations using visual representations.

There are two main deficiencies in the approaches described above regarding the

provision of support for developing visualisations. The first is the use of an

inappropriate means of defining visual representations. Some of the approaches employ

a textual language or scripting technique. Whilst accurate and concise, such approaches

constrain the designer of the visualisations in two ways. Firstly, such languages do not

correspond to the visual designer’s conceptual representations, and secondly, they force

the designer into learning an additional notation to perform the extemalisation process.

The second deficiency is the lack of tool support. This is critical in the development of

visual representations. Tools assist the visualiser in externalising the conceptual

representation. However, in some of the approaches described above, tool support is

minimal, providing only limited editing facilities. In some cases, tool support consists of

a text editor, by which visualisation scripts or the predicates that attach visual

representations to specification components can be edited. An important issue also lies

with how to associate the resulting representations with the requirements models. This

particular problem stems from the characteristics of a prototype, in that it is a

description of the functionality of a software system. Ideally, this description should

53

only include the details of the functional behaviour and exclude any extraneous

information that could confuse the meaning of the requirements. This is especially

pertinent when using formal specification techniques in a dual role - for generating

prototypes (through specification execution) and as the SRS. A potential source of

pollution could be the inclusion of the information required to perform visualisation

within the requirements model itself This situation could lead to confusion as to what

aspects comprise the model and what aspects comprise the visualisation details. To

prevent this, the visualisation system should limit the amount of detail required for

visualising the specification and facilitate the expression of such detail in a minimal

form, hiding any internal structure or content. Some of the approaches described above

do not make a clear separation between the prototype definition and the definition of

visual representations. Instead, they force a developer to associate large amounts of

visualisation details in specifications.

The last major deficiency that can be identified with existing systems is the lack of

accompanying method or process. Software engineering is replete with methods and

processes. These are defined prescriptive guides for developers and serve to describe

and communicate the tasks for achieving a given goal. The aim of any method is to

provide suitable guidance to render potentially complex procedures as a simple and

easy-to-follow series of steps. However, many of these approaches lack such methods.

The mere provision of software tools is not sufficient. Guidance is often necessary

which will inform the developer of the optimum and effective strategy for using the

toolset. In addition, if followed correctly, such a method would ensure that no activities

are omitted, leading to a more successful process.

2.4 Summary

This chapter has elaborated upon the context for the research that is presented in the

remainder of this thesis. It described a problem that can impede the effectives of the

popular and important requirements validation approach, namely prototyping. The

problem concerned customers being unable to comprehend prototype behaviour due to

its execution being presented using representations that are not customer-centred. A

potential solution was then advocated based upon the use of visualisation. The solution

advocated that familiar customer-oriented visual representations could be substituted as

alternative representations, so increasing the comprehensibility of prototype behaviour.

54

Visualisation was promoted as having the apparatus necessary to deliver such

representations. A survey of related work was then undertaken. This looked at various

efforts to visualise prototype execution behaviour. The aim was to identify deficiencies

to provide a motivation for the research.

The next chapter builds upon this. It describes the requirements and design for an

alternative prototype execution visualisation system that aims to overcome the

deficiencies found with existing systems.

55

Chapter 3
An Alternative Prototype
Execution Visualisation System

56

The previous chapter discussed the advantages of visualising the prototype execution in

the context of requirements engineering. It reviewed a number of existing approaches to

prototype execution visualisation and identified some important shortcomings with

these, which included the lack of rich and diverse visual representations, the lack of

correspondence between the meaning of visual representations and the prototype, and

the lack of a process or guide for users of the approach.

This chapter describes in detail a prototype execution visualisation system named ViZ

which provides an enhanced environment for visualising the execution of a specific

prototype execution technique. Its aim is to facilitate clistomer/user validation. In doing

so, this chapter presents the main contribution of the work.

ViZ comprises a lightweight process and a software based toolset. The process describes

the steps necessary for developing visualisations of prototype execution; it also acts as a

guide for the toolset of the ViZ system that provides the visualisation capability.

The ViZ system is described in three sections. The first presents an overview of the

system, and shows its major characteristics and properties. The second describes the

details of the ViZ process, presenting the stages that comprise the process, the work

products and the deliverables that result. Lastly, the third section presents details of the

software toolset, including its capabilities and component architecture.

3.1 System Overview

This section presents an overview of the ViZ system. It is divided into three parts. The

first describes the context in which the system is developed by describing the

characteristics of a prototyping approach to which visualisation will be applied. The

second part describes a set of requirements that the ViZ system should fulfil to visualise

the execution of prototypes developed using this chosen prototyping approach. The final

part of the overview describes the specific characteristics of the VIZ system.

3.1.1 System Context

Realising the research objectives - demonstrating how visualisation may be applied to

prototyping - may be achieved in one of two ways. The first approach involves the

development of a new prototyping system simply as a vehicle for the research. The

visualisation facilities would then be developed in tandem with this, and would be

57

integrated closely with the prototyping approach. The second approach is to select an

already existing prototyping system and augment visualisation facilities to this.

For the purpose of this research, it is this second approach that is taken, whereby an

existing prototype system is used as the vehicle for demonstrating the research goals.

This approach was taken to alleviate the effort required to develop a new prototyping

technique. However, this strategy is not without its difficulties. The characteristics of the

existing system must be explored fully in order for visualisation to be integrated

successfully. To this end, this section examines the chosen prototyping approach.

Known as RealiZe (“Requirements engineering by animating Z extensions”), this

prototyping development environment aims to improve the quality of requirements

specifications through the application of formal methods [Morrey98, Buckberry99,

HibberdOl]. This approach, developed as the product of research by the Requirements

Engineering Research Group (RERG) within the School of Computing and Management

Sciences at Sheffield Hallam University, provides an execution environment and usage

process for the popular state-based requirements specification language Z [Spivey92]. A

software developer can use RealiZe to specify the functionality of a software system and

then animate it, resulting in the production of a prototype that depicts the specified

system’s functional behaviour. This prototype can then be evaluated or subsequently

modified in the context of requirements validation.

The RealiZe system comprises two complementary software tools. The first is TranZit,

which offers full-screen WYSIWYG-style editing, syntax analysis, and type checking

facilities for Z specifications, as well as a transformation engine that allows Z

specifications to be converted into an executable form. This form is a notation based

upon Common Lisp, which is processed by the second tool in the RealiZe system - ZAL.

ZAL (Z Animation in Lisp) is the name for both the notation and the tool. The tool

embodies mechanisms necessary to execute the specifications that are expressed with

the notation. The relationship between the tools is that TranZit is used by developers to

construct and format Z specifications, and subsequently transform these into ZAL

specifications, then produce a prototype by executing the specifications with the ZAL

run-time support system. The two tools and their relationship to developers and

customers are shown in Figure 3.1.

58

D e v e l o p e r

Developer Modifies Z
specification to accommodate

feedback

Developer and customer evaluate prototype

Enter Z Specification using the TranZit tool

Transform Z specification to ZAL executable
specification using TranZit'

Execute ZAL specification to produce
interactive prototyping using he ZAL tool

C u s t o m e r

Figure 3.1. The relationship between the tools in the RealiZe Approach

One of the key features of the RealiZe approach is its ability to transform a captured Z

specification into a representation that facilitates execution, through the TranZit tool

[Buckberry99]. This is a non-trivial process, as one of the characteristics of Z is that

many of its constructs do not lend themselves to direct execution [Hayes89]. Therefore,

the transformation process is required to translate Z-based specifications into forms that

are directly executable yet still offer a large degree of semantic equivalence. While

comprehensive, in that a considerably large subset of the Z notation is accommodated in

ZAL, a small number of modelling constructs are not offered due to the inherent

difficulties in finding equivalent executable forms. For these constructs, the developer

must intercede and provide alternatives.

In terms of ZAL prototype execution, a characterisation can be found from an analysis

of the two important aspects of such prototypes, namely notation and behaviour. In

terms of notation, prototypes are defined as a series of ZAL-based expressions that

describe functional behaviour. In addition, a data or state description can also be

specified. This comprises a set of data stores, in the form of system state variables, with

each one consisting of an identifier and value.

A relationship between the descriptions of behaviour and state exists. Expressions that

represent behaviour consist of an operation and a set of associated arguments. The

arguments, in the form of identifiers, refer to variables that are a subset of the system

59

state. These are processed or transformed as an operation is evaluated by the ZAL

support system. Each expression, along with its arguments can be described as:

<expression> ::= <operation> <argument set>

<argument set> ::= [<argument>]

<argument> ::= <variable identified

In addition to the provision of behaviour and state, ZAL enables data inputs to be

defined and used in the execution of specifications. These provide an opportunity, at

run-time, for a user to enter data into variables that will be processed by expressions.

Moreover, ZAL facilitates the display of outputs, which can be used to show the

contents of system state variables or messages at run-time.

The evaluation of the expression produces a result, this being a modified system state, or

an output/message. Along with inputs, these items may be termed execution artefacts

since they are derived from or are directly involved in execution.

Execution can be viewed as a state machine, whereby it is seen as a series of discrete

states and changes to these states. The initial state represents the state of the prototype

(i.e. the configuration and content of the system state variables) before an expression is

evaluated. A discrete event then takes place to denote the expression being evaluated

and the system state being modified, if applicable. A second state then exists that

represents the new state of the prototype. This series of state changes continues until the

final expression in the prototype definition is evaluated.

To commence execution, a user, via a text-based command-line interface, invokes a

particular schema and supplies any input data. Execution of that schema is conducted by

processing each predicate in the schema sequentially. Execution of each predicate can

be thought of as a transformation process, whereby operands are modified in accordance

to the semantics defined by the operation. The result of this is the modification of the

system state or the generation and display of outputs.

ZAL does facilitate a simple display mechanism for execution artefacts, but this is based

upon a rudimentary text-based approach that presents items in the form of the

underlying LISP data constructs. Figure 3.2 shows a typical snapshot of the ZAL

environment and illustrates the user interface. This particular example shows the

60

execution of a simple database that is used to store details of the marital status of

individuals.

Despite the apparent utility of the ZAL system, and the ease of prototype development

through formal specification, the ZAL execution engine does not offer expressive or

richly interactive methods of rendering the prototype’s behaviour. It can be argued that

this style of interface does not facilitate effective user validation. This user interface

offers a substantial obstacle with regards to how a developer or customer might interact

with the prototype, invoke its functionality, or provide input data that is often required

to facilitate execution. It prevents stakeholders engaging fully with the prototype, and

provides practical barriers to comprehending its operation, its progress, or the contents

of system state variables.

. .1, 1. . .

£ > ’’ .1 L " Z ' - Di ' ~

i Save-All

hl(make married {'Bob 'Carol '
|£(make unmarried {'Jim 'Mary
|jj(make male {'Bob 'Ted 'Jim '
; ; (make female {'Carol 'Alice

(SCHEMA Bureau
:PREDICATE
(and

(eqz
(eqz
(eqz

)
)

(inter married uni
(inter male female
(unionz married ui

\» (make new? 'p a u l)
■>
!>(shou unmarried)

E rro r: Stray paren > in reader input
j[condition type: READER-ERROR]
!>

S> (show unmarried)
(*P (UNMARRIED (*S JIM JOHN MARV)))
> (show new?)
; ; E rro r: Unbound u ariab le NEW? in #<function 0
«xDCE5A0>

(SCHEMA Join'
SHOW (married unmarried mal
? (new? sex?)
PREDICATE
(and

(eqz (inter married uni
(eqz (inter male female
(eqz (unionz married ui

i> (show unmarried)
(*P (UNMARRIED (*S JIM JOHN MARV)))

!> (show m arried)
j(*P (MARRIED (*S ALICE BOB CAROL TED)))
l> (show male)
(*P (MALE (*S BOB JIM JOHN TED)))

i> (show female)
i(*P (FEMALE (*S ALICE CAROL MARV)))
>

- in i x'l

! SAVE-ALL shift-F2 Saves the contents of all of the modified lisp editor windows to their files

Figure 3.2. An illustration o f the ZAL environment.

In addition, the effects of the user interface are compounded by the complexities

introduced by formal methods. To the customer, formality presents another barrier to

comprehension. The ZAL system’s formal roots are reflected in its user interface where

the progress of execution, depicted by displaying the contents of system state variables

and outputs, are displayed using predicate or set-based representations, or other terse

messages.

61

Despite possessing several major benefits for the developer (such as a swift prototype

construction and modification tool, and in parallel, the production of unambiguous

specifications), it can be argued, on the basis of facilitating prototype comprehension,

that it is limited in the support it offers to the customer while undertaking requirements

validation. For this reason, the ZAL environment offers a suitable candidate to which

visualisation can be applied. Moreover, by complementing this particular prototyping

system with visualisation, a requirement validation suite can be developed that provides

support for the complete validation lifecycle.

3.1.2 Requirements of the ViZ System

The aim of the ViZ system is to provide comprehensive visualisation capabilities and

support for visualising the execution of ZAL-based prototypes. As such, it is necessary

to define a set of requirements that the system should fulfil. These requirements,

elaborated below, concern three areas of provision, namely visualisation provision,

software integration and process support.

In terms of traceability, these requirements are derived from a variety of sources. The

first source is the critical factors that pertain to presenting prototype execution

behaviour (described in Section 2.2.1). The second is the general issues in applying

visualisation to prototype execution (Section 2.2.2). Combining these lead to some

specific challenges being defined {Section 2.2.3). The third source includes the

deficiencies identified with existing systems (elaborated in Section 2.3). The fourth and

final source is the need to accommodate the characteristics of the ZAL system

(described in Section 3.1.1). These sources are summarised in Figure 3.3.

62

General issues in
visualising prototype

execution

Requirements of the ViZ
system

Critical factors in
presenting prototype
execution behaviour

Deficiencies with existing
prototype execution

systems

Accommodating the
characteristics of the

RealiZe system

Challenges in visualising
prototype execution

Figure 3.3. Source and traceability details o f the requirements for the ViZ System.

Visualisation Provision

Visualisations are central to the effectives of the approach. It is necessary therefore, to

provide the range of visual apparatus in accordance with the visualisation issues

described in Section 2.2.3. To this end, the approach should provide a range of

individual visual cues, and then enable these to be combined into visualisation objects

that can be applied to represent execution artefacts or contextual details. Subsequently,

the approach should facilitate combining these into scenes that visualise major events,

such as the execution of an expression, at run time.

These fundamental qualities should be augmented with capabilities concerning the

creation and subsequent management of visual representations. It is necessary for

facilities to be available for developing, storing and modifying visual representations.

As a consequence of the requirements validation process, a prototype might be built

rapidly and then undergo significant change. Reuse of visual representations is therefore

an important requirement to facilitate a timely visual prototype development and

evaluation cycle.

Features that assist in preserving integrity between the meaning of visualisations and

meaning of specifications are also of vital importance. This addresses the

correspondence problem that was identified with some of the existing visualisation

63

systems. It is important that the visualisation system possesses mechanisms to constrain

the possibility of introducing ambiguity into the validation process. For reasons

expressed in Section 2.2.3, a complete solution to this may be unreachable. However, a

compromise may be found between freedom and constraint by a ‘certification’

approach, whereby visual representations could be evaluated and classified as being

suitable for a particular purpose by software developers or domain experts before the

prototyping process commences.

Software Integration

These requirements concern the practical and technical aspects of integrating

visualisation software with the ZAL tools.

First, there is a need for a separate tool, working in concert with ZAL. The arrangement

should be such that ZAL would provide the underlying execution support and ViZ

would provide the necessary visualisation capability. A separate tool is required as the

ZAL system is an already existing self-contained software entity. Consequently, there is

a requirement for the two tools to interoperate so visualisation can be performed. This,

in turn, requires the tools to communicate along with suitable protocols to facilitate this.

Second, it is desirable to employ a mechanism that is efficient and minimal with regards

to associating visualisation details with a prototype definition, so they can be interpreted

and rendered at run-time. If a strict separation of concerns is maintained, then

identifying the respective visualisation details and prototype definition is

straightforward - this is advantageous when developing or modifying either.

Process Support

A process is required to guide the users of the approach through the activities of

developing visual prototypes. Such a process would facilitate repeatability, in that it

could be applied consistently to subsequent development projects, and not leave

prototype construction and use in the domain of ad-hoc development. As such, it should

define, from the perspective of the stakeholders, the activities of identifying which

aspects of the prototypes should become the focus of visualisation, developing suitable

visualisations and associating them with these aspects, and executing and evaluating the

resulting prototype.

64

The process should also combine the activities that comprise the RealiZe process with

those responsible for visualisation development.

A complete set of requirements documentation, encapsulating system and software

requirements are given in Appendix A and Appendix B respectively. Both specifications

are structured and presented in accordance with the relevant IEEE standards on

documenting system and software requirements [IEEE98a, IEEE98b]. The system

specification takes the view that the ViZ system is integrated closely with the TranZit

and ZAL approaches, providing a seamless environment for prototype definition,

execution and visualisation. As such it documents the facilities that are available across

all three systems. The software specification, however, focuses on the features that

pertain only to the ViZ software system.

3.1.3 ViZ System Characteristics and Capabilities

ViZ (Visualisation of Z) provides an approach for validating ZAL specifications via

specification execution and visualisation. The characteristics of ViZ are such that it

fulfils the requirements of visualisation provision, ZAL integration and process support

that were described above.

The objective is to retain the utility of the existing RealiZe approach and tools to

provide the basis for prototype construction and use, but attempt, through visualisation,

to overcome the difficulties in presenting execution behaviour. This is achieved through

an execution-driven visualisation mechanism. To this end, ViZ integrates closely with

RealiZe. Figure 3.4 illustrates this integration and the responsibilities and scope of each

of the processes and tools involved. The common factor between the three tools is the

ZAL specification. The existing RealiZe approach is used to develop and furnish

prototype behaviour through the development and execution of a ZAL specification,

whereas ViZ provides the means to visualise its execution.

ZAL
Specification

RealiZe

Prototype
Production

TranZit

Prototype
Execution

ZAL

Prototype
Visualisation

ViZ

Figure 3.4. Relationships and responsibilities between the RealiZe and ViZ processes.

65

ViZ consists of two related components: a process that forms the basis for visualisation

development and application, and a software tool that supports the process by providing

the necessary visualisation capability. These two components form the substantive and

novel contribution of this research.

In terms of fulfilling requirements (as described previously in Section 3.1.2), the process

fulfils the requirement of process support, whilst the software tool fulfils the

requirements of visualisation provision and software integration.

The ViZ process documents a ‘workflow’ that describes the steps a developer or

visualisation designer must undertake, using the ViZ software, to create and apply

visualisations to a ZAL-based prototype. The process aims to impart structure over the

potentially ad-hoc activities of visual prototype development and use. As such, it is

argued that the process represents a significant step in promoting a repeatable visual

prototype development method.

The ViZ software toolset [ParryOO] complements the process. It can be described in

terms of an architecture that is divided into three components. The first component is

responsible for realising visualisation provision. The second is concerned with

integrating visualisation with ZAL execution, whilst the third, the visualisation engine,

acts as a bridge between these to provide co-ordination and synchronisation of

specification execution and real-time rendering of visualisations. An overview of the

tool architecture and the interrelationships to external software systems is shown in

Figure 3.5.

Having provided a brief overview of the capabilities and features of the ViZ approach,

the process and associated toolset are described in greater detail in the following

sections.

66

(:
The ViZ Toolset

Visualisations of
specification
execution

External Graphics/
Image Editors

ZAL Execution
Support System

Visualisation EngineZAL integration Visualisation Provision

Figure 3.5. Overview o f the ViZ toolset.

3.2 The ViZ Process

The ViZ process dictates a comprehensive step-by-step approach for visual prototype

development and application. In addition, the process addresses three specific

requirements:

• To provide general guidance for stakeholders involved in visual prototype

development.

• To facilitate process integration between the RealiZe and ViZ approaches.

• To provide the basis of the correspondence preserving mechanism.

The process commences from the point where a ZAL specification has been developed

using the RealiZe approach. The first step entails identification and documentation of

descriptive scenarios. Scenarios sit well with the ViZ process and have multiple roles

within it. They are used to provide a means of eliciting requirements, and they are used

to indicate ‘test cases’ which can then be used to guide prototype evaluation.

Importantly, scenarios assist directly in the second stage of the ViZ process, which

concerns the design and development of visual representations. By exploiting a

relationship between the structure of scenarios and the structure of a Z specification,

scenarios can be used to indicate elements in a specification that should become targets

67

for visualisation. During this stage, and using the ViZ toolset, a visual prototype is

constructed.

Although scenarios can be used to indicate targets for visualisation, they do not provide

a means to assure that the meanings of the visual representations developed to portray

them do indeed correspond to the meanings of the targets. To this end, the process

provides the basis of a correspondence preserving mechanism that prescribes the

‘certification’ of visual representations by expert stakeholders as being suitable for

portraying the targets being considered. This certification is performed during or prior to

the development of a visual prototype, whereby appearances are developed and certified

before they are applied.

The third and final stage in the process is prototype execution and evaluation. Here, the

prototype is evaluated in accordance with test cases derived from the scenario

descriptions. The aim is to involve the relevant stakeholders to stimulate discussion

about the requirements that the visual prototype represents.

This series of actions is repeated until an agreement is reached as to the accuracy of the

requirements. A characterisation of the process is shown in Figure 3.6. This shows the

three stages along with the steps inherent in each stage. Figure 3.6 also shows the

relationships between the developer, the customer and the process, and where each

interested party is involved. A detailed elaboration of each stage is given below.

3.2.1 Scenario Identification and Documentation

The first stage in the ViZ process concerns the identification and documentation of

scenarios. This stage is required since scenarios play a key role in the ViZ process, and

is performed by the developer, with potential assistance from the customer. The

usefulness of scenarios in the ViZ process stems from three relationships that can be

identified and exploited. The first is between the structure of a scenario and the structure

of a Z/ZAL specification. The second is between scenario and the scenes that comprise a

visualisation, and the third is between scenes and scenarios. These relationships are

summarised in Figure 3.7, and are such that the expressions in a Z/ZAL specification

model the activities in a scenario, and the activities in the scenario equate to scenes in

the visualisation.

68

Informal
Requirements

Details

ZAL
Specification

Determine system functions of interest
Involved with

informal
requirem ents

production

LLI
Involved with

ZAL specification
developm ent CO

Identify and document scenario descriptions

Involved with
scen ario

identification

Analyse scenarios to establish targets for
visualisations

Develop suitable visual metaphor/scheme for the
whole visualisation Scenario

DescriptionsCM
UJ

C ustom erD eveloper

CO Construct visual representations using the ViZ
tools

Involved with
prototype
evaluation

Apply visual representations to the specification to
produce visual prototype Visual

Representations

Devise test cases from scenarios to guide the
prototype evaluationCO

111

CO Test casesExecute and evaluate visual prototype

Figure 3.6. Overview o f the ViZ process fo r visual prototype development and use.

The relationships enable the developer or visualisation designer to identify the following

aspects of a visualisation:

• The general structure of the visualisations, in terms of scenes that are required to

portray the execution of the schema.

• The content of the scenes, i.e. the execution artefacts and contextual details that

should form part of the visual prototype.

• The expressions in the specification to which scenes should be attached, so the

visualisations can be rendered appropriately as the expressions are interpreted by the

ViZ system at run-time.

69

Scenario Activities
indicate

Scenes

9c
o

Expressions

has
< ----------------- Visualisation

Executable
Specification

Figure 3 .7. Relationships between scenarios, visualisations and specifications.

Hence, the approach provides a purposeful basis on which visualisations can be

developed. It alleviates random or ad-hoc selection of specification elements to visualise

- some of which may be necessary but omitted, while others may be present but

contribute little to the resulting visualisation.

Scenario descriptions can be derived from the ZAL executable specification, the

underlying requirements, or any other information gathered from the requirements

engineering activities prior to specification production. It may even be the case that the

requirements have been described using scenarios and a complete set of documented

scenario descriptions already exist. In this situation, the scenario identification and

documentation stage may be omitted.

Scenario identification involves two steps: 1) identification of the system functions of

interest, and 2) scenario identification and documentation. These steps are examined

below.

Scenario Identification - Step 1

The first step is to identify the system function (or functions) that are to be validated or

that are to become the focus of further investigation. This step entails the identification

of schemas in the ZAL executable specification that represent these functions.

70

Scenario Identification - Step 2

Scenarios that illustrate how the functions established in the first step are used are

described in detail. This requires a list of scenarios that are of interest to be defined then

their contents to be elaborated. Establishing the contents of the scenarios is performed

by inspecting the expressions in the chosen schemas. The purpose of each expression in

the given schema is elicited along with its relationship to the user. The requirements of

the system (i.e. the unformalised description) can be instrumental in this. They enable

the developer to determine the context of the expression and identify its purpose with

respect to the overall system.

Scenario descriptions need to be expressed in such a way as to make the constituent

parts of a scenario visible and easily identifiable. This is so the descriptions are indeed

useful in the subsequent stages of the ViZ process. To facilitate this, the ViZ process

borrows a useful technique from an existing scenario-based approach, originally

proposed by Regnell [Regnell95]. This technique is a diagrammatic notation for

representing scenario descriptions. It not only enables the actors and their actions to be

expressed, but also enables data inputs and system responses/outputs to be defined.

Moreover, in Regnell’s notation, the sources and destinations of data (other than actors)

can also be made explicit. Such entities are termed Abstract Interface Objects (AIOs).

These form the interfaces between the system and its outside environment, and include

screens, keyboards, etc. AIO’s indicate a further aspect of the system that should be

visualised that corresponds not to elements in a specification but to contextual details.

Several scenario descriptions might be required to express the variety of situations that

may arise when a system function is invoked. These may describe normal uses cases or

exceptional cases where the system under consideration must respond to erroneous

inputs for example.

However, scenario identification and documentation is not without its difficulties. One

of the most important aspects of a scenario - actors - are sometimes not readily

identifiable. The problem stems from the difficulty in interpreting the definition of

‘actor’ - for some systems, the standard definition of an actor, i.e. a user or other

external entity that invokes a system function or is a recipient of the system’s output,

does not necessarily fit exactly. Such difficulties may occur, for example, if users or

71

external systems are not specified overtly in the requirements, or are otherwise assumed

to exist. In addition, identifying abstract interface objects can also be problematic. The

requirements for some systems may not directly specify interface entities. However, if

either actors or interface objects cannot be identified easily, this may indicate a more

fundamental problem with understanding the underlying requirements, requiring further

discussion with the system’s stakeholders. As such, in addition to forming a foundation

upon which to base visualisation development and specification execution, this stage in

the ViZ process can also be perceived as the first line of defence against erroneous

specifications. Scenario documentation provides an early opportunity, without

specification execution or visualisation, to identify and correct omissions or errors in a

specification.

3.2.2 Visualisation Design and Construction

The second stage of the ViZ process aims to produce a visual prototype. This involves

the design and construction of visualisations for this purpose. This stage in the process

adds structure to the potentially ad-hoc nature of visualisation design. The key driver is

the need to develop visual representations that are suggestive of the meaning of the

underlying formal specification or requirements description.

This stage comprises four steps: 1) scenario analysis, 2) visual metaphor design, 3)

design and construction of visual representations, and 4) application of visual

representations to a specification to produce a visual prototype. These steps will be

explored in detail below.

Visualisation Design and Construction - Step 1

An analysis of the scenario descriptions that result from Stage 1 comprises the first step

in Stage 2. This analysis exploits the relationships (described above) between scenarios,

Z/ZAL specifications and visualisations. The intention is to extract details from the

scenarios that direct the development of visual representations. To this end, the

relationships are used as follows.

Firstly, the relationship that is exhibited between scenarios and visualisations can be

used to determine the overall structure, in terms of scenes, of the visual prototype. The

structure may be thought of as a framework that provides basic information about the

72

number of scenes required to portray the scenario activities and the sequence in which

they should be presented. The relationship specifies that for each activity in a scenario

one scene is required. This structure provides a starting point for further visualisation

development. In practice, there may be a variety of subtly different views of the

structure. However, the aim at this point is to provide an indication of the possibilities

with regards to visualising the execution of the specification, and not to produce

concrete visualisations this early.

Secondly, exploiting the relationship between scenarios and specifications can indicate

the content1 of the scenes. This works as follows. Effective visualisation of prototype

execution requires visualisation objects be developed to portray certain execution

artefacts, namely data stores and inputs/outputs (as modelled by system state variables).

It can be seen that at the activity level, scenarios possess certain elements that closely

correspond to the execution artefacts, such as data values and inputs/outputs. By

performing a simple analysis of a scenario, as expressed using the Regnell notation,

such elements can easily be discerned. By using scenarios in this way, it is possible to

establish accurately the visualisation targets. It is argued that this method provides a

more straightforward approach, and one that is less likely to be prone to error, than

simply searching through formal specification definitions.

Importantly, to provide contextual details for the visualisation of data, AIOs and actors

can be identified as targets for visualisation. These elements can only be established

from the scenarios, since formal specifications are devoid of such details.

At this point, it is prudent to establish which expressions in a specification are suitable

candidates to which visual representations should be attached. The relationship between

scenario activities and expressions can be used to establish which expressions

correspond to the scenario activities, and which of these may be used as ‘hooks’ to

attach visualisation details. This works as follows. Scenes are packages that define

visualisation objects for the actors, AIOs data, and input/outputs. At run time,

specification execution generates data values (contained in system state variables).

Changes to these variables signify execution progress, and therefore the data in these

variables must be visualised. Visualisation is performed by applying the representations

contained in the scenes for data, augmented with contextual visualisations. By attaching

scenes to the specification a ZAL/ViZ hybrid specification is produced - one that

73

contains the executable model and the appropriate visualisation information which can

be processed by the ViZ system at run time to generate the visual prototype.

This analysis does not suggest the form for appearances or suggest how relationships

between the elements should be portrayed visually. Instead, this aspect of visualisation

remains with the skill of the visualisation designer/developer, in that they must provide

the visual cues to form appropriate appearances and visual relationships.

Visualisation Design and Construction - Step 2

A suitable visual metaphor is devised next that characterises the essence of the

specification in a form that enables its intent, i.e. its meaning as intended by its authors.

An appropriate metaphor should correspond to an underlying mental model the

customer might have of the system or of its desired operation. Metaphor design requires

the elements identified previously to be analysed in order to reveal their purpose or

behaviour in the system. If any represent objects that move physically in the real world,

or suggest movement, then suitable animations for these should be designed into the

metaphor. The resulting metaphor may consist of a comprehensive design template,

encapsulating the rationale for, and dictating the format of any visual representations

and animations in the visual prototype. Alternatively, it may simply consist of a general

‘design theme’ that indicates how a visualisation could appear. Metaphor design might

be likened to a high-level or conceptual design phase where ideas or themes that are

used as the basis for more detailed design are developed.

Visualisation Design and Construction - Step 3

Visualisation implementation, the third step, is performed using the features available in

the ViZ toolset that facilitate the construction of appearance and dynamic behaviour of a

visual representation, and subsequent storage in the repository. First, the visual

representations for the individual components (identified from the analysis step above),

such as Abstract Interface Objects, actors, and data elements are created using the

facilities afforded by ViZ tool. These correspond to visualisation objects at the

intermediate level in the visualisation hierarchy, as described in Section 2.2.3. It is

possible to acquire images, via an importation mechanism in the toolset, from external

software packages or the Internet. This provides greater flexibility and a potentially,

greater range of images.

74

Implementation of visualisations can be performed with a view of developing

visualisations for use immediately. Alternatively, this can be performed with the

intention of developing visualisations for certification, i.e. partitioning visual

representations into a class that can be applied, at a later date and by other developers or

customers, to a particular software development project. The certification activity is part

of the mechanism to assure correspondence between the meaning of a visualisation and

the meaning of the specification component to which the visualisation is being applied.

During construction, each component is given a unique identifier by the developer for

referencing purposes. In addition, visualisations for execution artefacts are attributed

with a type that indicates the type of the execution artefact to which it can be applied. At

this point in the process, certification of visual representations can take place, whereby

they can be evaluated and categorised by domain experts or developers. Indeed,

certification may occur throughout the visualisation implementation stages.

Subsequently, individual visual representations must be combined to form ‘expression

level’ scenes, i.e. visualisations that will portray a complete activity in a scenario. These

encapsulate all the intermediate visualisations required for a given expression into a

self-contained unit. This visualisation type corresponds to the visualisations at the

highest level in the visualisation hierarchy. They are also given a unique identifier by the

developer, and are then stored in the repository.

Visualisation Design and Construction - Step 4

The fourth step in this stage is the association of visualisation details to chosen schema

in the executable specification. When processed by the ZAL support system, these

expressions provide the necessary computational support for generation of values for

stimuli, system messages and system state variables. These execution artefacts can be

extracted directly from the ZAL system by the ViZ toolset. Therefore, it is necessary to

augment the expressions with the visualisations so the ViZ toolset applies the

appropriate visual representation at the appropriate time. This entails appending

expressions with the references that point to the expression-level visualisation units that

were stored previously in the repository.

In addition, it is also necessary to superimpose type information on the system state

variables, inputs and outputs in the ZAL specification. Both Z and ZAL can be classified

75

as weakly typed languages, but in order to visualise system state variables, inputs and

outputs, it is necessary for the run-time system to determine the type of the data that

these represent so it can apply the appropriate visual representation. It is necessary

therefore to apply strong typing for this purpose. The mechanics of this entails re-casting

data definitions in a different syntax than that of ZAL. At run-time, the ViZ system will

interpret this information and use it in the visualisation rendering process.

During this activity, there may be circumstances in which no specification portion can

be found that models or supports a particular part of the scenario being considered. If at

this stage, such a situation has occurred, it may be said that the requirements

specification is incomplete and should thus be reviewed. Again, this provides another

opportunity for anomalies to be detected before specification execution, thus facilitating

the development of higher quality requirements documents.

3.2.3 Prototype Execution and Evaluation

The final stage in the process involves specification execution and evaluation. There are

two steps in this stage: 1) selection of test data, and 2) prototype execution.

Prototype Execution and Evaluation - Step 1

The first step concerns using the scenarios defined in Stage 1 to devise test data, which

is used as the basis for a structured prototype evaluation. The scenario descriptions

provide details about the inputs required by the prototype. This involves the selection of

data that will be used to invoke or exercise a specific scenario. By ensuring that each

scenario is exercised, confidence that the requirements are evaluated thoroughly is

generated.

Prototype Execution and Evaluation - Step 2

The second step involves executing the prototype using the data defined above. Here, an

assessment of the behaviour of the system, as portrayed by the visual prototype is made.

This results in dialogue between the developer and the customer about the accuracy of

the prototype. If it is found that differences exist in the respective views of the

requirements, then negotiation must be undertaken, ultimately resulting in an agreement

(or compromise) as to any modifications that are required. Subsequently, this requires

changes to be made to the requirements, scenario descriptions, and Z/ZAL

76

specifications. Indeed, re-performing certain aspects of the method, from Stage 1, would

be necessary.

The execution of the ViZ process should continue, iterating through several cycles, until

a final agreement is reached about the state of the requirements knowledge. The Z

specifications that reflect this requirements knowledge would then be used as the basis

for full-scale software development.

3.3 The ViZ Toolset

The ViZ toolset provides the practical capabilities necessary to support the execution of

ZAL specifications and their subsequent visualisation [ParryOO]. The functionality of the

toolset is provided by three software components. The first provides visualisation

support, the second facilitates the integration of visualisation to ZAL, whilst the third

co-ordinates execution and visualisation. This decomposition, and the responsibilities of

the components, can be seen in Figure 3.8. An elaboration of the respective components

is given below. The aim of this elaboration is to build a picture of the whole toolset,

enabling its complete architecture, functionality and complexity to be discerned.

S p e c if ic a t io n E x e c u t io n V isu a lisa t io n F u n c t io n s

\rY

V is u a l is a t io n s o f
s p e c if ic a t io n

e x e c u t io n
External
image
Editing

Packages

Expression
Processor

Visualisation
Engine

ZAL Execution
Support System

Communication
Support

Visual
Component

Management

< 2
Q . O I

Visual Representation
Editors

Figure 3.8. The organisation o f the functions o f the ViZ toolset.

77

3.3.1 Visualisation Provision

With regard to providing support for visualisation, the toolset offers three important

functions. These stem directly from the requirements of the ViZ approach as discussed

in Section 3.1.2, and are:

1. Facilities for composing and modifying visualisations. Such facilities should

accommodate the different levels of visualisation, ranging from the composition

of visual cues to form visualisation objects, and the synthesis of visualisation

objects into expression-level scenes that can be used to depict the execution of

complete expressions.

2. Support for managing visualisations in the form of a visual component repository.

3. A mechanism that assures integrity between the meaning of a visual representation

and the meaning of the specification element to which it is being applied.

In terms of functions for visualisation composition and modification, the ViZ toolset

possesses three editors [ParryOO]: 1) Appearance Editor, 2) Dynamic Editor and 3)

Scene Editor (refer to Figure 3.8)

The Appearance Editor provides a means of developing the appearance of visualisations

from a variety of available visual cues. The Dynamic Editor enables the on-screen

location and animation characteristics (i.e. motions) of the appearance to be specified,

while the Scene Editor facilitates the synthesis of appearances and motions to form

visualisation objects, and further, to develop expression-level scenes.

The primary role of the Appearance Editor is to enable visual cues to be combined to

produce a visual representation. The visual cues that are available include text elements

and simple geometric shapes. Additionally, the power of third-party graphics packages

(such as professional image and photo editing tools) can also be exploited through an

importation mechanism whereby images, that are of popular bitmap formats and created

with the external software, can be imported and used as visual cues.

The user interface for this editor is based on a mechanism that promotes correspondence

between the designer’s conceptual view of the desired representation and the actual

view while editing. This is achieved by a WYSIWYG style interface that enables visual

cues to be specified individually, whilst at the same time giving the creator an

78

opportunity to see the appearance as a whole. In addition, each appearance must be

given a unique identifier by the developer.

The appearance definitions for visualisation objects conform to the following structure,

described in extended BNF form.

<appearance c o m p o n e n t ::= <appearance component id e n tifie r [<visual-cue>]

<appearance component id e n tifie r ::= <string>

<visual-cue> ::= <cue-> <type> [<attributes>]

<cue> ::= <text elem ent> | <shape elem ent> | <im age file elem ent>

<attributes> ::= <colour> | <image file details> | <text details > | |

The Motion Editor is concerned with providing support for the spatial and animation

aspects of a visualisation that may or may not have been created. Hence, an appearance

and its animation behaviour are regarded as being independent in that motions are

polymorphic entities that can be applied to any appearance. This particular editor must

support a range of dynamism, stretching from static displays to the graphically animated

form. At this static level, the editor can be used to simply define the desired on-screen

location which will be associated with an appearance. At run-time, an appearance will

be rendered at this given location. To represent dynamic visual forms, the tool allows

the path of an appearance to be described in terms of a sequence of nodes, the first node

representing the start position for the animation, and the last node representing the

resting position. At run time, the appearance will be animated smoothly along this path

to depict movement. Again, motions must be attributed with a unique identifier. The

structure of these motion components can be described thus,

<dynamic c o m p o n e n t ::= <dynamic component id en tifie r

<type>

<shape details>

<integer> | <string> | <set> | <m apping> | <m aplet> | <sequence>

<start-node> [<node>]

<dynamic component id e n tifie r

<start-node>

<node>

<vertical-component>

<horizontal-component>

<integer>

<integer>

<string>

<node>

<horizontal-component> <vertical-component>

The design of this editor is based upon a direct-manipulation style user interface. This

enables locations to be specified and paths to be described by creating and dragging

79

nodes on a ‘canvas’ - the canvas representing the screen onto which appearance will be

rendered. Figure 3.9 shows the conceptual design of this interface, and illustrates a

typical path with its associated nodes, numbered 1-4.

Figure 3.9. The conceptual operation o f the animation editor.

The Scene Editor is responsible for enabling individual appearance and dynamic

components to be combined to form visualisation objects. It then enables these to be

combined to form complete scenes or expression level visualisations. This editor also

accommodates the state based nature of expression execution by allowing a developer to

specify visualisation objects that should be applied to execution artefacts and rendered

before the expression executes, and again after execution has taken place. This is to

exploit greater visualisation opportunities, and to enable execution to be presented in a

finer level of granularity that provides the viewer with a more real-time view of

execution.

This editor possesses a user interface that presents scenes as a hierarchy - a scene

consists of before-state visualisations and after-state visualisations, each state consists of

visualisation objects, and each visualisation object consists of an appearance and motion

component respectively. The editor is such that visualisation objects can be defined for

portraying execution artefacts or contextual details that pertain to an expression. For

each visualisation artefact to be visualised, a user adds the required number of

visualisation objects. Additionally, the user designates these as a particular type - this

80

indicates the type of the execution artefact to which visualisation should be applied, and

valid types consisting of integer, set, string, etc.

The structure of scene visualisations is as follows:

<scene> ::= <scene identified

<before visualisations>

<after visualisations>

<before visualisations> ::= v isualisation object> [v isualisation object>l

<after visualisations> ::= v isualisation object> [v isualisation object>]

visualisation object> ::= <appearance c o m p o n e n t

<dynamic c o m p o n e n t

Support for managing visual representations is provided through the visual component

repository (see Figure 3.8). This acts as a simple database for visual components. It has

separate ‘containers’ in which to store the different categories of components, i.e.

appearance, motions, and scenes.

The assurance mechanism is an important aspect of the toolset. This, coupled with the

visualisation development activities prescribed in the ViZ process, provides a

comprehensive scheme by which the correspondence between the meaning of an

execution artefact and the meaning of an associated visualisation can be assured. The

mechanism consists of two complementary aspects.

The first aspect is a certification scheme, by which visual representations can be

certified as being applicable to a particular software development project. This is

facilitated via ‘applications containers’ in the visual component repository. These can be

likened to directories in a file system, whereby components that are related, by virtue of

being applied to a particular software development project, can be partitioned.

At design-time, a developer or expert stakeholder can partition pertinent appearance and

dynamic components, and scene visualisations, into appropriate containers in order to

specify a context in which the components can be used in the future. The editors then

place constraints upon which components can be applied - appearance and animation

components that belong to a particular application can only be applied to the scenes that

also belong to that application. This promotes a certification scheme that can limit the

possibility of visual representations being used inappropriately.

81

The second aspect is a mechanism that limits the application of visual representations to

inappropriate types of data. This is achieved by a simple type system. This mechanism

brings together the various typing actions performed on the visual components at the

early stages in the design process. At design time, visualisation objects, after

construction, are attributed with a type to indicate the type of the execution artefact to

which the object can be applied. The scene editor contains mechanisms to limit their

application to only execution artefacts that are of the same type.

Therefore, using simple and well-understood techniques, such as partitioning and

typing, the ViZ system establishes an effective assurance mechanism.

3.3.2 ZAL Integration

To integrate visualisation with ZAL prototype execution, the ViZ toolset requires a

number of specific functions. Again, these components are derived directly from the

required elements of the system, as elaborated in Section 3.1.2. The components are:

1. A means to associate visualisation definitions with specification sections so the

toolset can render visualisations at the correct points during execution.

2. An expression processor that is responsible for co-ordinating the execution of

individual expressions.

3. A communications interface to facilitate interoperability between the toolset and the

ZAL execution support system.

In order for the ViZ toolset to render the chosen visualisations at the correct point during

execution, it is required that visualisation details are attached to the specification to

indicate which execution artefacts are to be visualised, which visualisation to apply to

these, and when. Subsequently, this requires syntax enhancements to the ZAL notation.

The enhancements should adhere to the principle of a separation of concerns and

provide a minimal connection between visualisation definitions and the underlying

specification so not to clutter the specification with extraneous detail. Indeed, this

formed one of the criticisms of existing approaches in that some systems freely mixed

prototype definition with visualisation details.

With the ViZ system, a concise mapping between visualisation and specification is

possible since scene visualisations (which contain all necessary definitions to visualise

82

an expression) are treated as logically separate containers, with their contents treated

and stored as such. Scenes, which possess a unique identifier, can then be referred to

through this identifier as part of an expression within a ZAL specification. It is then

possible for the rendering system to apply in the visualisation objects to the arguments

in an expression at run-time. The resulting enhancement to the ZAL notation is

therefore,

<expression> ::= <operation> <argum ent set> <scene identifier^

This notation is used as the basis for the hybrid ZAL/Visualisation specification that is

produced when visualisation details are attached to ZAL specifications.

The details of the syntax enhancements are simply that for each expression that requires

visualising, a scene is attached through its identifier. Further, for each argument in the

expression, a corresponding visualisation object exists as part of the scene. The order in

which the visualisation objects are specified dictate the order in which they are applied

to the arguments in the expression - this is performed on a ‘first come, first served’

basis.

In this design, the onus is placed upon the ViZ tool to apply the visual representations to

the arguments in the expression in the sequence specified in the scene visualisation as

the execution takes place. This trades syntactic detail in a ZAL specification for

functionality in the toolset.

The expression processor is responsible for co-ordinating communication between the

ViZ and ZAL software systems. Adherence to the principle of the separation of concerns

has resulted in the two separate software systems, each responsible for providing a

defined set of functions. This necessitates the two systems to communicate, which in

turn requires the two systems to be suitably ‘arranged’ to facilitate this. The most

appropriate arrangement for this application is a client-server architecture, where the

ViZ system acts as a client to the ZAL execution support system (the server). Within the

chosen operating environment (Microsoft Windows), this is best implemented through

the ‘Direct Data Exchange’ (DDE) facility.

In general, the DDE can be viewed as a mechanism that facilitates communication

between applications within the same operating environment. It is based upon a client-

83

server model, whereby a client (seeking a service request) communicates with a server

(the service provider). DDE requires ‘handshaking’ to be enacted so two applications

can recognise each other. This is needed since several applications may be sharing data

through DDE. To differentiate between applications, a unique ‘key’ is required to

identify the DDE client and server. When a request to communicate occurs, the

operating environment polls the DDE interface of each application to see if any will

respond to that key. Should this polling result in success then the applications may

communicate. Subsequent communication between the applications then depends upon

a user-defined protocol.

In the ViZ system, DDE is applied in the following way. First, the expressions processor

accepts individual expressions from the visualisation engine. The expressions,

represented as simple strings, are communicated through the DDE facility to the ZAL

system, and the results are returned, again via the DDE. The protocol that has been

defined for the ViZ tool is illustrated in the sequence diagram in Figure 3.10. This

shows the sequence of messages that are passed between the two software systems as

communication is enacted.

R e q u e s t to
c o m m u n ic a t e to

ZA L
L o c a te Z A L s y s t e m

A c k n o w le d g e

Z A L L o c a te d

E x e c u t e (e x p r e s s io n)

E x e c u t e (e x p r e s s io n)

R e s u lt

R e s u lt

M S W in d o w s O p e r a t in g
S y s t e m (D D E

C o m m u n ic a t io n s F a c ility)
E x p r e s s io n P r o c e s s o r Z A L E x e c u t io n E n g in e

Figure 3.10. Event sequence characterising the execution o f a ZAL expression.

3.3.3 Visualisation Engine

The Visualisation Engine is the focal point of execution and visualisation activities with

regards to the ViZ toolset. It orchestrates schema execution and visualisation through

84

the functionality provided by the other components in the ViZ toolset; it is responsible

for the following functions:

1. Co-ordination of ZAL specification execution.

2. Visualisation of execution.

3. Provision of a user interface to enable invocation of the major system functions.

Execution entails processing a ZAL/Visualisation hybrid specification. After a user

selects a specification that models the system under consideration, the toolset parses this

to identify any syntax errors or unknown visualisation references. A symbol table is also

generated consisting of schema names. From this, a list of schemas is presented to the

user. Execution commences when the user selects a schema that represents the system

functions to be validated.

Execution, and subsequent visualisation, involves sequential decomposition of each

expression in the selected schema, whereby the ZAL component and the scene reference

is separated. At this point, the ‘before-stage’ of the visualisation is rendered. This is

achieved by interrogating ZAL as to the values of the system state variable referred to by

the arguments in the expression. Rendering is performed in accordance with the

visualisation objects contained in the ‘before-stage’ section of the scene. The contents of

the visualisation objects are retrieved from the ViZ repository. After rendering, the

whole expression is passed to ZAL, via the expression processor for execution, and the

system state, held by ZAL, is updated. The visualisation engine also collects any specific

results that are returned from this execution. Lastly, the ‘after-stage’ visualisations are

applied. Again, this is performed by first interrogating ZAL as to the contents of the

arguments involved as well as any results, and second applying the visualisation objects

in the ‘after-stage’ section of the scene. This course of action is continued until no more

expressions remain.

In terms of the user interface, facilities are provided for a user to invoke execution.

Controls are also offered to pause and resume execution when it is underway. In

addition, the user interface provides a means to access the editor and repository

functions. To this end, this component serves as the primary interface between the

system capabilities and the user.

85

3.4 Summary

This chapter has presented a description of an alternative prototype visualisation system,

known as ViZ. The aim of the system is to facilitate user validation by providing

capabilities to visualise the execution of prototypes developing using a formal methods-

based prototyping approach. The foundation for the system is rooted in overcoming

shortcomings that were identified with existing systems, and incorporating features that

are deemed desirable to provide effective visualisation. This chapter described the

characteristics of the two facets of the ViZ system, namely the software tool and the

associated methodology.

The following chapter extends this description by presenting a series of case studies that

illustrate how the ViZ approach can be used within the context of user validation. These

case studies highlight the possibilities and potential of the approach, and are based upon

specific examples of the invocation of the ViZ method and usage of the toolset.

86

Chapter 4
ViZ System Validation and Case
Studies

87

In the previous chapter, an enhanced prototype behaviour visual system, ViZ, was

introduced and described. The system possessed characteristics that enable the

execution of prototypes developed with the formal-methods based RealiZe approach

to be visualised. This chapter continues by describing the application of the ViZ

system to four separate case studies. The aim is to provide a validation of the system

by demonstrating both its capabilities and the effectiveness of visualisation in the

context of requirements validation. Each case study invokes the ViZ process and

toolset for a different specification. The case studies that will be considered are:

1. An Automatic Teller Machine (ATM) system.

2. An email system.

3. A safety critical Water Level Monitoring System (WLMS).

4. A security system.

The chapter is divided into four sections, each documenting a particular case study.

Each case study is presented in the style of a scientific experiment that describes five

aspects, namely aims, context, method, results, and observations and conclusion. The

aims state the overall objectives of the given case study. The context describes the

requirements and the specification that is being used to demonstrate those aims. The

method presents a narrative detailing the application of the ViZ process to produce a

visual prototype. Results present the outcome, i.e. the resulting visualisations of

prototype behaviour during execution. Lastly, observations and conclusions offer a

discussion centred on the effectiveness of the demonstration and in particular how the

results relate to the objectives.

4.1 Case Study - An Automatic Teller Machine

This case study presents the development of a prototype of the behaviour of an

Automatic Teller Machine (ATM) that is typically found in the domain of retail

banking. The prototype would then be used as a vehicle to stimulate discussion and

evaluation in the context of requirements validation.

88

4.1.1 Aims

The aims of the ATM case study are threefold:

• To show, primarily, the ViZ system achieving its objective in extending and

enhancing the presentation of ZAL- prototype execution.

• To demonstrate the application of the ViZ method as an effective process for

detailing the steps inherent in developing a visual prototype.

• To illustrate the general capabilities of the ViZ system and the utility of the

process and toolset, and especially to show the different types and styles of visual

representations that the system can accommodate.

The presentation of this case study is comprehensive in nature; for instance, the

activities inherent in visual prototype development are elaborated in full. This is to

facilitate the demonstration of the utility and power of the ViZ system.

4.1.2 Context

The requirements of the ATM system are based upon those found in [Regnell95]; they

relate to the control of a typical stand-alone ATM machine, and are as follows:

• The system will store information relating to one of more customers, such as

account number, PIN number, and the balance of each account.

• The system will update customer records and the amount of money in the machine

currently available for withdrawal.

• Customers possessing a card, encoded with their account number, will be

recognised by the system.

The ATM system will allow cash to be withdrawn from the machine. To do this, the

customer will be required to insert a card into the machine from which their account

number is read. The customer shall then be requested to enter their PIN via a keypad

on the machine. This is validated against the PIN held for that particular account.

Upon successful PIN validation, the customer is then requested to enter the amount of

money they wish to withdraw, again via the keypad. If the transaction is valid, i.e. the

89

amount of money requested does not exceed the balance of the account and the

machine has sufficient funds to cover the request, then the machine shall eject the

requested amount through the cash dispenser. Finally, the machine will eject the

customer’s card.

In the event of an unsuccessful withdrawal, the machine will issue a suitable error

message, depending on the condition.

The hardware of the ATM machine comprises of a card reader, into which the

customer’s card is inserted, a message responder, i.e. a display screen, a keypad, and a

cash dispenser [Regnell95].

Given these informal requirements, a Z specification that serves to model them can be

developed, thus:

[PIN, NAME, AMOUNT, MESSAGE, ACCOUNT]

rATM S ystem ---
name : ACCOUNT -+* NAME
pin : ACCOUNT -+> PIN
balance : ACCOUNT AMOUNT
cards : P ACCOUNT
available : AMOUNT

rWithdraw Money —
AATM System
request?
card?
pin?
request?
money_message!

AMOUNT
ACCOUNT
PIN
AMOUNT
MESSAGE

card? e cards
pin? = pin(card?)
request < balance(card?)
request < available
balance' = balance © {card? •—» (balance(card?) - request?)}
available' = available - request?
m oney_message! = ' Take_your_money

From this specification, and using the TranZit tool, a corresponding ZAL specification

can be derived. This needs to be augmented with a system state definition and

instantiated with appropriate sample data, in this case representing typical card details,

90

account balances, etc. The resulting transformed executable specification, shown

below, provides a starting point from which the ViZ process can be applied.

(make cards { 101 102 103})
(make name [#(101 Stan) #(102 Eddie) #(103 Hilda)])
(make balance [#(101 1000) #(102 50) #(103 250)])
(make pin [#(101 5671) #(102 8819) #(103 2350)])
(make available 550)
(schema WithdrawMoney

(? card?
? (pin? request?)
! money_message!

)
(and

(mem card? cards)
(equalp pin? (applyz pin card?))
(lessorequal request? (applyz balance card?))
(lessorequal request? available)
(make temp (- (applyz balance card?) request?))
(make balance' (override balance [#(card? temp)]))
(make available' (- available request?)
(make money_message! 'Take_your_money)

)

4.1.3 Method

Application of the ViZ process entails the undertaking of the three stages with their

inherent steps, i.e.:

Stage 1 - Scenario Identification and Documentation

Step 1 Determine system functions of interest

Step 2 Identify and document scenario descriptions

Stage 2 - Visualisation Design and Construction

Step 3 Analyse scenarios to establish visualisation targets

Step 4 Develop a suitable visual metaphor/scheme for the whole

visualisation

Step 5 Construct visual representations using the ViZ tools

Step 6 Apply visualisations to the ZAL specification to produce the visual

prototype

Stage 3 - Prototype Execution and Evaluation

Step 7 Devise test cases from scenarios to guide the prototype evaluation

Step 8 Execute and evaluate visual prototype

91

Scenario Identification and Documentation

The first step in identifying and documenting scenarios entails establishing which

system operations are to be validated (and hence visualised). In terms of the ATM

specification, the function for money withdrawal will be under scrutiny.

Identify and Document Scenario Descriptions

The second step involves development of the scenario descriptions. This is achieved

by selecting scenarios that are of interest from the possible set of scenarios that could

pertain to the system function being validated. In practice, this can be achieved

through identifying the significant executable pathways through the executable

specification.

With regard to the potential scenarios for the money withdrawal function, it can be

seen from the informal requirements and the executable specifications that two

outcomes become apparent: successful and unsuccessful money withdrawal. Success

can be characterised as:

success (card accepted A pin accepted A enough money in machine A balance adequate)

Failure can occur when any one of four conditions is not met:

failure => (card not accepted V pin not accepted V not enough money V customer balance inadequate)

From these, five possible scenarios can be identified: a single scenario with the

objective of describing the activities inherent in successful withdrawal of money, and

four others that describe the failure to satisfy any of the four conditions. The ones that

are of interest are selected for furnishing with specific details.

For the purpose of this case study, the derivation of the ‘Successful Money

Withdrawal’ scenario will be described in detail. The scenario description is

developed as follows. First, a general structure in terms of the system behaviour the

scenario should represent is established directly from the informal requirements. From

the specification, the behaviour of the system can be seen as:

92

1 . V a l id a te c a r d
2 . V a l id a te P IN
3 . V a l id a te a m o u n t r eq u ire d
4 . If t h e c a r d , P IN , a n d a m o u n t a r e v a lid , th e n e j e c t c a r d , th e n d i s p e n s e th e m o n e y

The Successful Withdrawal scenario is a specialisation of this behaviour. It requires

details that pertain to the specifics of successfully validating the card, PIN and the

amount, and demonstrating the successful dispensation of money and the card. In

addition, these key operations require contextualising if they are to be presented in a

user-centred form. This entails adding extra details that characterise how a user would

actually interact with the system and how and when the system would present results

and responses. The Successful Withdrawal scenario requires activities that describe

how the user enters the card, PIN and amount details into the machine. These

refinements are:

1 . C u s t o m e r in s e r t s c a r d in to th e c a r d r e a d e r
2 . C a rd is v a lid a te d
3 . C u s t o m e r e n t e r s P IN
5 . P IN is v a lid a te d
6 . C u s t o m e r e n t e r s r eq u ire d a m o u n t o f m o n e y
7 . V a lid a te a m o u n t
8 . E je c t c a r d
9 . D is p e n s e m o n e y

Subsequently, a detailed scenario description, based on the above list can be derived

that contains not only activities, but also actors, Abstract Interface Objects, and

data/messages, and inputs/outputs. Such a detailed scenario description specifies the

relationships between the activities, actors, AIOs and data. This refinement is

performed by taking each activity in turn and establishing the input stimuli it requires

(from actors), and any outputs that are generated (from the system). The finalised form

of the ‘Successful Withdrawal’ scenario is shown in the sequence diagram in Figure

4.1, which uses the notation described by Regnell [Regnell95]. This shows the actors

(the source of input data), the AIO that accepts the data and passes in to the system

operations, and the outputs/messages that result. The activities that comprise this

scenario are those with which the user/actor has direct interaction, and internal system

actions such as updating system state variables are not featured. It should be noted that

to develop more comprehensive visual prototypes for larger systems, establishing the

93

details of exceptional cases, to deal with unrecognised or erroneous inputs for

example, would also have to be performed at this point.

A T M
C u s t o m e r

O K) KD K >
C a rd M e s s a g e N u m b e r C a s h

R e a d e r R e s p o n d e r R e c e iv e r D is p e n s e r A TM S y s t e m

D e ta ils (a c c o u n t n u m b e r)R e a d C ard
D e ta i ls

V a lid a te C a rd
M e s s a g e C ard O K , E n te r P IN

Card OK

"C ard O K , E n te r P IN
D is p la y

M e s s a g e

P IN V a u e
R e a d P IN

V a lid a te P IN
M e s s a g e "PIN O K , E n te r A m o u n t"

PIN Ok

P IN O K , E n te r A m o u n t
D is p la y

M e s s a g e

A m o u n t

A m o u n tR e a d
A m o u n t

V a lid a te
a m o u n t

Amount OK
M e s s a g e A m o u n t O K , T a k e C ard

" A m o u n t O K , T a k e C ard"
D is p la y

M e s s a g e
R etu rn C ard

C ard
< - - - - - - - - - - - - c R etu rn C ard

D i s p e n s e M o n e y

M o n e y
D i s p e n s e M o n e y

Figure 4.1. Sequence diagram showing the scenario o f the successful withdrawal o f
money.

Visualisation Design and Construction

There are four steps in developing visualisations: scenario analysis to identify

structure and form of a potential visualisation, visual metaphor design, construction of

visual representations using the ViZ tools, and their subsequent association with the

94

specification (see Section 3.2.2). This case study illustrates the application of these

steps but does not however show certification of visual representations prior to their

use - this will be demonstrated in Case Study 3.

The major consideration during this stage is to devise visualisations that characterise

the execution of the prototype using forms that are suggestive of the meaning of the

underlying requirements, and encapsulating them in a storyboard fashion.

Visualisation design is not performed through software automation, but instead relies

upon the developer to interpret requirements, executable specifications and scenario

descriptions, and to exploit the opportunities for visualisation that are suggested as the

design steps are undertaken. This contrasts to the steps in constructing visual

representations, where software support, through the features in the ViZ tool, is

employed throughout.

Scenario Analysis

Scenario analysis (with the aim of determining the potential structure of the

visualisation) is achieved by simply devising notional scenes for each scenario activity

that will enable that activity to be portrayed visually. This is achieved by exploiting

the relationship between scenarios and visualisation that indicates that one scene is

required per scenario activity.

Table 4.1 shows one possible visualisation structure, in terms of scenes, that can be

established for the chosen scenario. This table is composed from: the scenario

descriptions originally identified, possible scenes identified from the sequence

diagram {Figure 4.1), and the corresponding ZAL related expression. Identifying these

expressions provides an indication as to the points in a schema to which the scene

definitions should be attached, so, at run time, the ViZ system can process the

specification and appropriately apply the visualisations in the associated scenes. The

actual attachment is performed later when the scenes have been defined using the ViZ

tool.

95

Scenario Activity Possible Scenes Related Specification Expression

1. Customer inserts card into the
card reader

2. Card is validated

Scene 1. Show customer inserting card into
machine, (used to show the state of the system
before executing the expression).

Scene 2. Show results of card validation (used to
portray the state of the system after the
expression is executed).

(equalp pin? (applyz pin card?))

3. Customer enters PIN

4. PIN is validated

Scene 3. Show customer entering PIN on keypad,
(used to show the state of the system before
executing the expression).

Scene 4. Show results of PIN validation, (used to
portray the state of the system after the
expression is executed).

(lessorequal request? (applyz balance card?))

5. Customer enters required
amount of money

6. Validate amount

Scene 5. Show customer entering requested
amount using keypad, (used to show the state of
the system before executing the expression).

Scene 6. Show results of amount validation, (used
to portray the state of the system after the
expression is executed).

(lessorequal request? (applyz balance card?))
(lessorequal request? available)

7. Eject card Scene 7. Show card being ejected

8. Dispense money
Scene 8. Show money being dispensed, (used to
portray the state of the system after the
expression is executed).

(make money_message! Take_your_money)

Table 4.1. Correspondence between scenarios and expressions, and possible scenes
required to visualise these.

The scenes identified facilitate a user centred portrayal of the execution of the

specification. This is achieved by concentrating the visualisation effort on the

activities that a user would be directly involved with or would otherwise experience.

The visualisation structure ‘leans’ in this direction in that only the activities that are

relevant to a user are earmarked for visualisation. This is reflected in the lack of

scenes to depict the typical housekeeping activities that update internal system state

variables. A typical ATM user (i.e. a bank customer) would not necessarily be

interested in these details - they would instead be more interested in collecting the

money they have requested. This is reflected in the presentation of reassurances,

through system messages, on the status and progress of the money withdrawal.

However, an issue arises as to the definition of user. Although a user of the ATM

machine may not be interested in internal housekeeping details at prototype level, the

bank, which may be regarded as a customer, insofar as they might the responsible for

procuring and financing the system, might show a keen interest - they want

reassurance that the system does indeed behave as they require, and therefore would

like to see how the system state is updated when transactions are processed.

96

It can be seen in Table 4.1 that for most scenario activities, one or more schema

expressions are used to model them. However, there is one exception, namely the

activity ‘7. Eject Card’. Here, no expression can be identified that models this. Such

situations may be symptomatic of an inaccurate specification, i.e. the specification

omits a particular step and is erroneous. Thus, by performing this type analysis, such

as identifying correspondences between scenarios and executable specifications,

errors in specifications (or errors in scenario descriptions) can be identified and

corrected early. In this particular instance, and after careful inspection, it is decided to

amend the specification, and the corresponding ZAL form, thus:

.-Withdraw Money---
AATM System
request? : AMOUNT
card? ' : ACCOUNT
pin? : PIN
request? : AMOUNT
card_m essage! : MESSAGE
m oney_m essage! : MESSAGE

card? e cards v
pin? = pin(card?)
request < balance(card?)
request < available
balance' = balance © {card? •—> (balance(card?) - request?)}
available' = available - request?
card_m essage! = ' Take_your_card
money_message! = ' Take_your_money

(schema WithdrawMoney
(? card?
? (pin? request?)
! (card_message! money_message!)

)

(and
(mem card? cards)
(equalp pin? (applyz pin card?))
(lessorequal request? (applyz balance card?))
(lessorequal request? available)
(make temp (- (applyz balance card?) request?))
(make balance1 (override balance [#(card? temp)]))
(make available' (- available request?)
(make card_message! 'Take_your_card)
(make money_message! 'Take_your_money)

To establish the indicative content of the scenes, identification of targets for

visualisation is performed. Scenes should contain a visual representation for each

important element found in the scenario activities. Therefore, for each actor, Abstract

Interface Objects (which form the interfaces between the system and the actors), and

97

data elements, a corresponding visual representation is required. By determining

which actors, AIOs and data elements feature in the scenario activities, it is possible to

establish how many visual representations are required. These elements can be

established directly from the scenario descriptions. Once identified, a visualisation

object, comprising an appearance and dynamic component, can be developed for each

of these elements. When developed, the visualisation objects that pertain to scenario

activities are subsequently packaged together to form complete scene definitions,

which will in turn be attached to the specification at the point identified in the

scenario analysis step.

Taking the first activity in the chosen scenario as an example (i.e. “1. Customer inserts

card into the card reader”), it can be seen from Figure 4.1 and Table 4.1 that the actor

is the ‘ATM Customer’, the Abstract Interface Object is the card reader, and the data

is the card identifier (an input to the system, that represents the user’s ATM card). The

complete set of elements that can be identified for all the activities in the Successful

Withdraw Money scenario can be seen in Table 4.2.

1. Customer inserts card into the card reader |

ATM Customer Card reader Card (input value) |

I 2. Card is validated |

[ATM Customer M essage responder I “Card OK” (m essage) I

I 3. Customer enters PIN |

ATM Customer Number receiver/keypad PIN (input value)

4. PIN is validated

ATM Customer M essage responder “PIN OK” (m essage)

[5. Customer enters required amount of money j
ATM Customer Number receiver/keypad I Amount (input value) I

| 6. Validate amount

ATM Customer M essage responder “Amount OK” (M essage) |

7. Eject card |

ATM Customer Card reader Card (M essage)

8. Dispense money |

ATM Customer Cash dispenser Cash amount (M essage)

Table 4.2. ATM Scenario activities and important elements that can be visualised.

98

Visual Metaphor Design

Once the information has been gathered with regard to the possible structure and

content of the visualisations, the next activity is to devise a visual metaphor or visual

scheme upon which the format and style of the visualisations will be based. This

metaphor should offer the viewer recognisable representations of physical artefacts

that correspond to their own perceptions and mental models of the ATM system and

its operation. At this point, it might be prudent to explore the possibility of using

established icons or representations that provide an already agreed upon or

immediately recognisable visual form. Such established representations may exist

already in the domain, or have been developed previously by domain experts, or

developed as part of research efforts along these directions [SpenceOl]. However, for

the purpose of this case study, no such established representations will be sought or

used, since its purpose is to demonstrate their development and application.

For the ATM System, a suitable metaphor would be that of a realistic presentation of

an actual ATM System, including realistic images for the actor and abstract interface

objects, as well as the actor stimuli and system responses.

The associated design of the visualisations for the scenarios, using this metaphor, can

be seen in Figure 4.2. This shows, in the manner of a sketched storyboard, the

envisaged format of the visualisations and associated animations and the obvious

influence of the visual metaphor. In this design, it is necessary to ensure that the

frames in the storyboard correspond to the scenes identified in the previous analysis

stages, and the pertinent aspects, such as actors, data and abstract interface objects

feature in the scenes.

99

OK

1

3

6

OK

5

P ec

7.

i i

Figure 4.2. Conceptual design o f the visualisation for the Successful Money

Withdrawal scenario.

100

Visualisation Construction

Visualisation construction follows design. In practice, construction involves four sub

activities:

1. Initialisation of the ViZ repository to create suitable storage containers for visual

representations that are developed,

2. Construction of individual visualisation objects to represent the scenario elements

identified above,

3. Creation of expression level scenes for each scenario activity (also identified

above),

4. Attachment of these scene definitions to the ZAL specification. To demonstrate

these activities the development of a complete scene will be presented.

The scene chosen for this purpose represents the activity ‘7. Customer inserts card

into the card reader\

First a suitable container in the visual component library is created. In this case, an

‘ATM application’ container is created in the library, as shown in Figure 4.3.

Next, construction of visualisation objects entails the use of the editors in the ViZ

toolset to produce concrete visual representations based on the above design. The

order of development is appearance of visualisation objects first and screen

position/animation details second.

For each element in the chosen scenario, a suitable appearance is devised. For this

case study, the design brief states that realistic images should be used, so it is

therefore necessary to obtain suitable images of the ATM entities. Table 4.3 shows the

images selected to represent the elements in the scenes used to portray the selected

scenario activity.

101

ViZ Library H Q

Applications S cen es A ppearances Motions

- Applications

0 S cen es
EE A ppearances
EEj Motions

EE Email System
E Library
B Library2
5 Mail Order Catalogue
EES- Marriage Bureau
5 Simple
5 W ater Level Monitoring System (WLMS)

New Application

Remove Application

Copy as....

Add S cen e

Remove Scene

Add A ppearance

Remove Appearance

Add Motion

e Motior

OK Cancel

Figure 4.3. The ATM application container in the visual component repository.

The issue of selecting images that are suggestive of the meaning of the entity that they

are supposed to represent again becomes prominent. In this case study, certification of

representation prior to their use is not considered, and therefore retaining integrity

between the meanings of visual representation and specification is the responsibility

of the developer/visualisation designer. However, due to the analysis and

decomposition of the requirements, potential visualisations and scenarios that are

offered in the preceding stages of the ViZ process, the developer is armed with

information they can use when constructing appropriate imagery. For the ATM

system, which has readily identifiable entities (such as actors, the ATM machine,

cards, etc.), constructing suitable representations may be regarded as being a

straightforward activity. For complex systems, there may be subtle differences

between entities, or a lack of understanding of their role within the system or their

meaning in a certain context. This may present difficulties. The analysis stages

102

however, may provide the developer with an opportunity to understand the system in

more detail, so they can develop appropriate representations without having to resort

to employing approximations or educated guesses.

Element Image

S cen e 1

S cen e 2

ATM Customer

Card reader

Card (input value)

ATM Customer

Message Responder

103

..

t S g m
“Card OK” Message

■

Table 4.3. The images to represent the entities in the scene “Customer inserts card
into card reader. ”

Using the ViZ Appearance Editor, and for each visualisation object, the images are

imported into the ViZ system, and attributed with a unique identifier. Figure 4.4

shows the card image in the Appearance Editor. Where appropriate, the visualisation

objects are adorned with other attributes. One such important attribute is a flag that

indicates to the ViZ system to display the contents of a system state variable, result, or

other execution artefact alongside the image. This not only enables values or

execution results to be presented, but also enables the data values be associated with a

particular image, strengthening the understandability of the value or result. This is

achieved by specifying, through the separate ‘Attribute Panel’ in the Appearance

Editor, where the value should be displayed in relation to the image. In addition, if the

visualisation object is to be used to portray execution artefacts, then they must be

attributed with a type - the data type of the system state variable to which the object

will eventually be applied. After creation, all visualisation objects are stored in the

visual component repository, in the project container that was created for the ATM

Application.

104

Appearance Editor S

Bitmap R esources

Bitmap L ist:

C: \S nappy32\l MAG E S \atm card. bmp

Add.

Change....

Remove..

Help

Cancel

OK

Preview:

Ce3 £

a-

A ttribute Editor

A ppearance Name: |ATM Card

Background

W Enable background

Colour

Change Colour

Frame

I- Enable frame

Colour

Borders

Options

r Single flag

I- Display flag

Data Attributes

Cancel

OK

A ppearance: |E lem entA pp

R ange A p p e a ra n c e : |"

Across

C' Down

Position : X |l 00

S ep ara to r: f o "

T op: [tT

Bottom : fo"

Left: [O'

Right: [ci-

Y [205~

F o n t: |Arial Narrow

Text Colour: Background Colour:

Change Colour

C hange Font

Change Colour

r n

Figure 4.4. Appearance editor, (above) shows the Appearance Editor with the
imported card image and associated parameters, (below) shows the Attribute Panel

that is used to specify options, data types, and additional parameters.

105

After the appearances have been created for the visualisation objects, the next step is

to specify the screen positions for the visualisation objects and specify any animation

paths that may be required in the scene - the paths indicating the route that an

appearance will travel when the visualisation is shown.

Taking the design of the scene as a basis, the Motion Editor is used to construct

separate spatial components for each visualisation object in the scene. The Motion

Editor enables screen locations to be specified in an interactive manner, as shown in

Figure 4.5. The grid is used as a reference system, from which positions can be noted

and discussed without having to resort to a low-level pixel based co-ordinate scheme.

S3 Edit Motion Obfect
M otion

Figure 4.5. Demonstration o f Motion Editor being used to specify the on-screen
location for a visualisation object.

For the scene that portrays the scenario activity being considered, one animation is

required. This is for an animation of the ATM card sliding into the machine to depict

the actions of a customer inserting a card into the card reader (refer to the conceptual

visualisation design shown in Figure 4.2). The Motion Editor can be used to specify

this motion by indicating a start and end point that an associated visualisation object

will follow during execution. Figure 4.5 shows the Motion Editor being used to

106

describe a simple path for the Card visualisation object. At run time, and when

associated with the Card visualisation object, the card image will animate smoothly

along the path, suggesting the card moving into the machine

Each spatial/animation component is also attributed with a unique identifier and

stored in the ATM Application container in the visual component repository. At this

point both appearance and motion components are separate entities. It is only at a later

stage that they are coupled to form complete visualisation objects for a particular

entity. This separation facilitates a degree of polymorphism and hence reuse, where a

description of a motion may be applied to one or more appearances.

After the individual appearances and motion components have been constructed, the

next step is to combine these to create visualisation objects to represent execution

artefacts or contextual details. This is done in the context of the scene currently under

development, and is achieved using the ViZ Scene Editor. The Scene Editor enables a

developer to specify visualisation objects that should be applied before an expression

is executed and again afterwards. The definition of the scene used to depict the

execution of the chosen scenario activity can be seen in Figure 4.6. This shows the

completed expression level visualisation, presented in a tree-like manner, comprising

two main sections. The first describes the ‘before’ visualisation objects

(corresponding to Scene 1), whilst the second describes the ‘after’ visualisations

(corresponding to Scene 2).

Scene visualisations are attributed with a unique identifier by the developer and are

then stored in the repository for later use. Scene visualisations are developed for each

of the scenes identified in earlier in the analysis phase (see Table 4.1). For this

particular scenario, the names of the scene are shown alongside their respective

scenario activities and the expressions to which they will be attached in Table 4.4.

The structure of scene visualisations is such that they specify the visualisation objects

to be applied to the execution artefacts. At run-time, the ViZ system applies these to

the execution artefacts in the expressions to which the scene visualisations are

attached on a sequential basis.

107

g j Scene Editor
Zoom

Q g Q

V isua lisa tion

ATM V blida...

B e m e n t

In teg er

B efo re

B e m e n t

Set

B e m e n t

Boolean

A fte r

Motion

A 7M _C and_l...

Motion

A T M _C ard_l...

True F a lse

Motion

A TM _Result

M otion

A TM _R esult

<1 1__

Figure 4.6. The completed scene used to represent the first activity in the chosen
scenario.

Scenario activity Related exp ression S cen e Identifier

1. Customer inserts card into the card reader

2. Card is validated
(equalp pin? (applyz pin card?)) ATM_ValidateCard

3. Customer enters PIN

4. PIN is validated
(lessorequal request? (applyz balance card?)) ATMJValidatePIN

5. Customer enters required amount of money

6. Validate amount
(lessorequal request? (applyz balance card?))
(lessorequal request? available)

ATM_ValidateBalance

7. Eject card (make card_message! ’Take_your_card) ATM_EjectCard

8. Dispense money (make money _message! Take_your_money) ATM_DispenseMoney

Table 4.4. Correspondence between scenarios, expressions, and the names o f the
scenes that contain the visual representations necessary to visualise them.

Apply Visualisations to Specification

Following visualisation design and construction, the final step is to associate the

completed scene visualisations with the corresponding expressions.

Firstly, it is necessary to superimpose type information on the system state variables,

inputs and outputs in the ZAL specification. This is a straightforward activity. Next,

108

the expressions that model the scenario activities are appended with the unique

identifiers of the relevant scenes. The results are reflected in the ViZ/ZAL hybrid

specification below:

(data set cards {101 102 103}}
(data mapping pin [#(101 5671) #(102 8819) #(103 2350)])
(data mapping name [#(101 'Stan) #(102 'Eddie) #(103 'Hilda)])
(data mapping balance [#(101 1000) #(102 50) #(103 250)])
(data integer available 550)
(schema WithdrawMoney

(header input card?
input pin?
input request?
local card_message!
local money_message!
local available'
local balance'
local temp

)
(and

(mem card? cards ATM_ValidateCard)
(equalp pin? (applyz pin card?) ATM_ValidatePin)
(lessorequal request? (applyz balance card?))
(lessorequal request? available)
(make temp (- (applyz balance card?) request?))
(make balance' (override balance [#(card? temp)]))
(make available' (- available request?))
(make card_message! 'Take_your_card ATM_EjectCard)
(show card? ATM_TakeCard)
(make money_message! 'Take_your_money)
(show request? ATM_TakeMoney)

)

)

Prototype Execution and Evaluation

Effective evaluation of the prototype is the purpose of the whole ViZ methodology. It

enables a dialogue between the developer and stakeholders to take place that

facilitates discussion and negotiation about the requirements. Evaluation takes places

by executing the prototype.

The first step in execution is to prepare test data that will enable the prototype to be

exercised sufficiently to present the execution of the selected scenarios. Once again,

one returns to the scenario descriptions. Each scenario will require appropriate data

inputs that will result in each pathway through it being exercised. Such data values

can be inferred by identifying potential values in the scenario descriptions, and can

then be inputted at run time into the system, whereby they will then be assigned to the

respective input variables.

109

The scenarios being evaluated for the ATM system involve successful money

withdrawal, and as such require suitable data arrangements to initialise and exercise

these. The data chosen as is follows, c a rd ? = 1 0 1 , p in ? = 5 6 7 1 , and

r e q u e s t ? = 200.

After the selection of data for inputs, the specification can be executed. When

execution is invoked, the ViZ system parses the ViZ/ZAL hybrid specification and

presents a list of schemas that are identified. Figure 4.8 shows the single schema

‘WithdrawMoney’ which can be selected to commence prototype execution.

Subsequently, ViZ prompts the user to enter the input data. This is performed before

the expression evaluation takes place. Figure 4.9 shows an example of data entry, by

demonstrating the input of the card number.

Execute Schema

WithdrawMoney

Execute Finish

Figure 4.8. The ‘Withdraw’Money’ schema as presented to the evaluators for
execution.

Input value for ca rd ?

Value: |l 01

T erminate

Figure 4.9. Data entry prior to expression evaluation, showing the entry o f the card
details.

4.1.4 Results

Executing the ‘WithdrawMoney’ schema, using the given test data, results in a series

of visualisations being generated. The visualisations generated for the execution of the

first schema (that represents the insertion and validation of the user’s card) is shown

110

in Figure 4.9. The visualisations represent Scenarios 1 and 2 in the ‘Successful

Money Withdrawal’ respectively. For brevity however, the remainder of the

visualisations are shown in Appendix C.

File Editors Specification W indow

• T

Card Number: 101

B S E : S B S M I
(mem c a rd ? c a rd s ATM _ValidateCard)
(equalp p in ? (a p p ly z p in c a rd ?) ATM_ValidatePIN)

(le s s o r e q u a l re q u e s t? a v a i la b le)
M p s v i r p n u a l r p r m g s r ? i a n n l v ? hf ll a n r p ______

suse R esum e

V isualisation speed : _<J J
Faster

± 1

111

!E H TSZ2E
|&1 F ie Editors Specification W indow

1

I

(mem c a rd ? c a rd s ATM _ValidateCard)
(eq u a lp p in ? (ap p ly z p in c a rd ?) ATH_ValidatePIN)

(le s s o r e q u a l re q u e s t? a v a i la b le)
11 p q q n y p m ia 1 r p w ip g f ? t .a n n lv ? h a I f t n r f r.ar.ri2J— 1-----------

R esum e

Visualisation speed; _«J J
Faster

jJ

Figure 4.9. Card insertion and validation.

4.1.5 Observations and Conclusion

The objectives of this particular demonstration of the ViZ system have been to show

how it enhances the presentation of ZAL prototype execution, to show the invocation

of the ViZ method and to illustrate the general capabilities of the system. To conclude

this case study, each of these objectives will be discussed.

First, from the visualisations that result, it can be seen that the ViZ system harnesses

and exploits visualisation to facilitate the graphical expression of ZAL prototype

execution. The screenshots (shown in Figure 4.9 and Appendix Q provide an example

of the basic visual capabilities of the ViZ system. These capabilities are important in

achieving the objective of overcoming the fundamental difficulties in presenting ZAL

based prototype execution behaviour. The system enables visualisations to be

constructed and attached, at strategic points, to a ZAL specification, and then

interpreted and rendered by the software component of the ViZ system at run time. In

doing this, this thesis argues that the resulting visualisations are more able to portray

the execution behaviour in a customer comprehensible form than the original

112

presentation generated by the ZAL system. In this instance, the visualisations, in the

storyboard style, are able to portray the execution of the prototype in terms of the step-

by-step usage of the ATM system. This style of presentation can be regarded as being

more amenable to customer understanding.

It is also worth noting that enacting the method enabled certain features that were not

in the original specification to be identified - for instance, discovering the need to

accommodate card ejection. Conducting analysis at various points along the process

provided greater opportunities for errors or omissions to be highlighted. This is an

important and worthwhile characteristic of the ViZ process.

Second, this case study demonstrates the invocation and execution of the ViZ method.

The method is designed to guide the developer through the process of visualisation

development and application, by presenting the tasks to be undertaken in a structured

manner. Importantly, the demonstration illustrated the enactment of the critical

analysis phase of the process. This imposes a degree of rigour into the act of

visualisation development by enabling information necessary for visualisation design

to be elicited from specifications and corresponding scenario descriptions. It is this

phase in particular that provides insight into the requirements of a proposed system,

its specification, and how visualisations might be developed to portray its execution.

Third, the case study narrative and accompanying screenshots illustrate the general

capabilities of the ViZ toolset. These include the tools to facilitate appearance and

motion development, and scene construction, as well as an execution support system

to facilitate visualisation rendering. The case study demonstrates how these tools are

used together to develop complete visual prototypes.

To conclude, this case study has introduced and demonstrated the fundamental aspects

of the ViZ approach. It has shown how visualisation is instrumental in transforming

the mathematically based results of executing ZAL prototypes into a more

comprehensible form that is amenable to customer comprehension in the context of

customer validation, and importantly it has demonstrated the fundamental features of

the system and how they are used.

113

4.2 Case Study - An Email System

This case study shows the application of the ViZ approach to a large industrial-scale

project that involves prototyping the requirements for an email system. The objective

is to illustrate how the method can be scaled, without modification, to accommodate

complex systems.

4.2.1 Aims

The specific aims of this case study are as follows:

• To show how the application of the ViZ system remains simple despite the

increase in size and complexity of the target specification.

• To demonstrate the design and development of non-trivial visual prototypes with a

view to showing the ease and swiftness by which these can be constructed when

the polymorphic and reusable characteristics of ViZ visualisations are exploited.

4.2.2 Context

The origins of the email system that is the focus of this case study can be found in

[Cohen86] where a complete electronic office system is developed and described. The

email system forms a major subset of this electronic office, which was originally

specified using the Vienna Development Method (VDM-SL). It has since been

translated into a specification based on the Z notation for use with the TranZit and

ZAL tools. It forms an interesting case study for the ViZ system.

The email system provides facilities to enable a number of users to each possess an

email account. In addition, the system provides features to enable users to compose

and send emails, as well as receive, read, and reply to emails sent by other users.

To facilitate email operations, the user is supplied with an arrangement of ‘trays’ and

a ‘pad’. Trays are areas where emails are stored. There are three trays: an ‘out-tray’,

where emails are stored that await sending after they have been composed; an ‘in-

tray’, where incoming items from other users are stored; and a ‘pending-tray’ where

copies of emails are stored that require replies. In the larger electronic office system,

the ‘pad’ is a multipurpose editor/viewer. For the purpose of the email system, the pad

114

is the area on which emails are composed or read. When a user has composed an

email on the pad, they can transfer it to the out-tray in readiness for sending to the

designated recipient(s). The out-tray can be flushed or ‘cleared’ to send the messages

to the recipients, and at this point, the system should generate a time-stamp and a

unique identifier for each email being sent. Emails that have been received from other

users arrive in the in-tray, and can then be transferred to the pad for viewing. When a

message is transferred to the pad, the current contents of the pad are overwritten. A

sender can also demand that a reply to a message is needed. In this case, when the

message is sent to the recipient’s in-tray, an additional copy is made and placed in the

recipient’s pending tray that cannot be deleted until a reply is sent.

The system represents known users by the use of unique identifiers. However, while

these are useful for the system they can be incomprehensible to potential users,

therefore the system facilitates the use of aliases by which real human-readable names

can be attributed to the internal identifiers used within the system.

The system is to provide the following functions to users:

• Post. Transfer the email on the user’s pad to the out-tray. To be sent to the out-

tray, the email must be well formed. A well-formed email comprises the attributes:

o ‘To list’ - a list of recipients for that email.

o “CC list” - a carbon-copy list (users who should also receive this

message).

o “Sender” - the name of the user sending this message,

o “Subject” - A description of the contents of the message,

o “Reply” - A flag indicating if a reply is required for this message,

o “Reference” - Possible reference to one or more pending emails,

o “Body” - The contents of the message.

It is also a requirement to preserve the ordering of the names in the ‘to list’.

• Clear. Transfer all documents in the user’s out-tray to the recipient’s in-trays, and

possibly pending trays. Also generate time-stamps and unique identifiers.

• List. Display a summary of all items in the user’s in-tray

115

• Collect. Transfer a particular email from the in-tray to the pad, overwriting the

current contents of the pad and deleting the email from the in-tray.

• Read. Transfer an email from the pending-tray to the pad - do not delete until a

reply is sent.

• List Pending (ListP). List a summary of emails in the pending tray.

In addition, three system administration activities are required:

• Add User. Create a new user account in the system.

• Delete User. Remove a user’s account from the system.

• Initialise (Init). Initialise an empty email system.

The Z specification that corresponds to these requirements (which was derived from

the original VDM-SL) can be seen in Appendix D.

4.2.3 Method

In accordance with the ViZ process, the three stages of scenario identification and

documentation, visualisation design and construction and prototype execution and

evaluation are enacted to develop the visual prototype. Specifically, the steps

described below will be followed:

Stage 1 - Scenario Identification and Documentation

Step 1 Determine system functions of interest

Step 2 Identify and document scenario descriptions

Stage 2 - Visualisation Design and Construction

Step 3 Analyse scenarios to establish visualisation targets

Step 4 Develop a suitable visual metaphor/scheme for the whole

visualisation

Step 5 Construct visual representations using the ViZ tools

Step 6 Apply visualisations to the ZAL specification to produce the visual

prototype

Stage 3 - Prototype Execution and Evaluation

Step 7 Devise test cases from scenarios to guide the prototype evaluation

Step 8 Execute and evaluate the visual prototype

116

Scenario Identification and Documentation

Identifying and documenting scenarios commences with the decision as to which

functions in the email system are to be validated or investigated further. For the

purpose of this case study, the functions that will be investigated will be Post and

Collect. By exploring the development of visualisations for more than one function,

the ease of visual prototype development, as facilitated by reusable visual

components, can be shown. The ZAL schemas that are of interest are shown below.

(SCHEMA POST
: ? (uid? m? to? cc? from? subject? reply?.refs? body?)
:PREDICATE
(and

(mem uid? (dom deskof))
(not-mem m? mailitem)
(not (equalp to? <>))
(subset (ran to?) (dom (applyz direct uid?)))
(subset (ran cc?) (dom (applyz direct uid?)))
(make temp

{ # ((applyz deskof uid?)
(applyz outbox (applyz deskof uid?)))

})(setf mailitem' (unionz mailitem {m?}))
(setf mailto'

(unionz mailto
{ # (m? (squash (resolve2 (mksi '#(k p) 'k
(dom to?) '(setf p (applyz deskof (applyz

(applyz direct uid?) (applyz to? k))))))))
)))

(setf mailcc1
(unionz mailcc

{ # (m? (squash (resolve2 (mksi '#(k p) 'k
(dom cc?) '(setf p (applyz deskof (applyz

(applyz direct uid?) (applyz cc? k))))))))
}i)

(setf mailfrom' (unionz mailfrom { # (m? from?) }))
(setf mailsubject' (unionz mailsubject { # (m? subject?)}))
(setf mailreplyreq1 (unionz mailreplyreq { # (m? reply?)}))
(setf mailrefs' (unionz mailrefs { # (m? refs?) }))
(setf mailbody1 (unionz mailbody { # (m? body?) }))
(setf outbox1

(override outbox
{ # ((applyz deskof uid?)
(unionz (applyz outbox (applyz deskof uid?))
{m?})) }))

)

)

(SCHEMA COLLECT
:? (uid? refno?)
:INCLUDE delta_email
:SHOW inbox
:PREDICATE
(and

(mem uid? (dom deskof))
(mem refno? (ran mailrefno))
(setf m (applyz (inverse mailrefno) refno?))
(mem m (applyz inbox (applyz deskof uid?)))
(make temp

{#((applyz deskof uid?)
(applyz inbox (applyz deskof uid?)))

})(setf mail_subject (applyz mailsubject m))

117

(setf mail_to (applyz mailto m))
(setf mail_cc (applyz mailcc m))
(setf mail_body (applyz mailbody m))
(setf mail_from (applyz mailfrom m))
(setf mail_replyreq (applyz mailreplyreq m))
(setf mail_refs (applyz mailrefs m))
(setf inbox' (override inbox

{ # ((applyz deskof uid?)
(setsub
(applyz inbox (applyz deskof uid?))
{ m })) }))

(setf mailitem' (setsub mailitem {m}))
(setf mailto' (domsub {m} mailto))
(setf mailcc' (domsub {m} mailcc))
(setf mailfrom' (domsub {m} mailfrom))

)

)

Next, it is necessary to develop the corresponding scenario descriptions. Taking the

Post operation first, it can be seen that this is concerned with taking the details of an

email from the pad and storing these in the user’s out-tray as a well-formed email.

Such an operation requires the user’s details as an input to the operation as well as the

attributes that comprise an email. The operation first performs two pre-conditional

checks; the first to determine the existence of the inputted user within the system

(validate the user), and the second to see if the new email is not already part of the

system as indicated by the existence of a unique identifier (validate the email). After

this, the rest of the operation is concerned with adding the attributes of the email to

the user’s out-tray.

In operation there are two obvious outcomes, namely a successful Post execution, and

an unsuccessful one. A successful Post operation is predicated on the user and the

email being valid. If either of these is invalid then the Post operation should fail.

Successful and unsuccessful Post operations can be characterised succinctly as:

post success => (valid user A valid email)

post failure => (user not recognised V email not valid)

It can be seen that this basic analysis is performed in much the same way as in Case

Study 1 - the ATM System. For systems with a discrete, and possibly small number of

states, this approach is most successful.

The Collect operation is concerned with retrieving the details of a message from a

given user’s in-tray to the pad (and is therefore opposite to the Post function). This

operation requires the user’s ID to indicate which in-tray to collect the email from.

118

The first activity in Collect is to determine the existence of the user within the system

(validate the user). After this, there is a check to determine if the given email is

actually in the user’s tray or not (validate the email). If these pre-conditions are

satisfied, the email’s details are transferred to the pad. Again, in practice, there are

two possible outcomes, namely a successful and unsuccessful Collect invocation.

These can be characterised as:

collect success => (valid user A given email is in the user’s tray)

collect failure => (user not recognised V given email is not in the user’s tray)

From this basic analysis, scenarios for both functions can be determined. At this time,

just the Successful Post and Successful Collect scenarios will be focussed upon. The

first step is to characterise the general behaviour of the functions. From the informal

requirements, the behaviour of the Post and Collect operations are as follows:

P o s t :
1 . V a l id a te U s e r ID
2 . V a l id a te E m a il ID
3 . C u s t o m e r e n t e r s e m a il c o n t e n t s in to th e P a d
4 . E m a il is s e n t , if t h e u s e r ID a n d e m a il ID a r e v a lid .

C o lle c t:
1 . V a lid a te U s e r ID
2 . V a lid a te E m a il ID
3 . R e tr ie v e s p e c i f i e d e m a il in to th e u s e r ’s P a d .

The second step involves refining the generalised forms into ones that reflect the

specific inputs that are required to produce the successful and/or unsuccessful results.

For the Successful Post and Collect operations, these are:

S u c c e s s f u l P o s t :
1 . C u s t o m e r e n t e r s U s e r ID
2 . U s e r ID is v a l id a te d s u c c e s s f u l l y
3 . C u s t o m e r e n t e r s E m a il ID
4 . E m a il ID i s v a l id a te d s u c c e s s f u l l y
5 . C u s t o m e r e n t e r s e m a il c o n t e n t s in to th e P a d
6 . E m a il i s s e n t

S u c c e s s f u l C o lle c t:
1 . C u s t o m e r e n t e r s U s e r ID
2 . U s e r ID is v a lid a te d s u c c e s s f u l l y
3 . C u s t o m e r e n t e r s E m a il ID
4 . E m a il ID is v a lid a te d s u c c e s s f u l l y V a lid a te U s e r ID
5 . R e tr ie v e s p e c i f i e d e m a il in to th e u s e r ’s P a d .

119

The last step in developing scenario descriptions is to augment these activities with

details elicited from the requirements with regards to AIOs, data, and system

responses. These descriptions, expressed using the notation given by Regnell

[Regnell95], can be seen in Figure 4.16 and 4.17 respectively.

Once these scenario descriptions have been developed, visualisation design and

construction may proceed.

X
Email
U ser

U ser ID
R ece iv er

Email ID
R ece iv er

M essa g e
R espon d er

Pad Email S y s te m

U ser ID

U se r D etails (ID nun ber)R ead
U se r ID

Validate Email

M e ssa g e "Usor recognised"
ID OK

TUser R ecogn ised
Display

M essa g e

Email 1C

Eriail ID
R ead ID

Validate Email

M essage "Email OK"
Email OK

"Ema
D isplay

M essa g e

Email
C ontentsRead

Amount

P o st Email

M essac e "Email Posted"

"Email P osted " Display
M essage

Figure 4.16. Email System Scenario: Successful Post Operation.

120

Email
U ser

K) K) K) K)
U ser ID

R ece iv er
Email ID
R ece iv er

M essage
R espon d er

Pad Email S y s te m

U ser ID

U ser D etails (ID nurr ber)R ead
U ser ID

Validate Email

M e ssa g e "US' :r recognised"
ID OK

TUser R ecogn ised
D isplay

M essage

Email 1C

Eriail ID
R ead ID

V alidate Email

M essa g e "Email OK"

Email OK
"EmaSI OK " •

Display
M essa g e

Email details

Email Details
Hold em ail

details

Figure 4.17. Email System Scenario: Successful Collect Operation.

Visualisation Design and Construction

Visualisation design and construction comprises four steps: scenario analysis, design,

implementation, and association with the specification (as described Section 3.2.2).

The first task is to analyse the scenarios to first establish a structure for the

visualisation, expressed in terms of scenes that will portray the execution of

expressions then establish the contents of the scenes by identifying potential

visualisation targets.

The scenes that may be used to visualise the Successful Post and the Successful

Collect operations are shown in Tables 4.5 and 4.6 respectively.

121

Scenario activity Possible scenes Related ZAL expression

1. User enters their ID number

2. User is validated

Scene 1. Show a user entering their ID number (used to
show the state of the system before executing the
expression).

Scene 2. Show results of user ID validation (used to
show the state of the system after the expression is
executed).

(mem uid? (dom deskof))

3. User enters the new email’s ID

4. Email is validated

Scene 3. (before state) Show a user entering the ID of a
new email

Scene 4. Show results of email validation
(not-mem m? mailitem)

5. User enters email's attributes and
contents into the pad

Scene 5. Show the contents of the Pad after all email
details have been entered. (Visualise the email
attributes).

(setf mailitem' (unionz mailitem {m? }))
..... (etc)

6. Post email (i.e. transfer it to the
out-tray) and inform the user of
success.

Scene 6. Show the contents of the out tray with the new
email in it.

(setf outbox' (override outbox (#((applyz
deskof uid?)(unionz (applyz outbox
(applyz deskof u id?)) jm? }))}))

Table 4.5. Correspondence between scenarios and expressions, and possible scenes
for the Successful Post scenario.

1. User enters their ID number

2. User is validated

Scene 1. Show a user entering their ID number

Scene 2. Show results of user validation
(mem uid? (dom deskof))

3. User enters the new email’s ID

4. Email is validated

Scene 3. Show a user entering the ID of a new email

Scene 4. Show results of email validation
(mem m (applyz inbox (applyz deskof
uid?)))

5. Transfer contents of email to the
user’s Pad

Scene 5. Show the contents of the Pad after all email
details have been transferred.

(setf mail_subject (applyz mailsubject m))
.... (etc)

Table 4.6. Correspondence between scenarios and expressions, and possible scenes
for the Successful Collect scenario.

Furnishing this structure with details about the potential contents is achieved by

examining the scenarios and executable specification to identify features of interest

that should be visualised. Such features include actors, abstract interface objects, and

data elements, and are gleaned by examining each activity in the scenarios in turn. The

complete set of features that should be visualised for the Successful Post scenario and

the Successful Collect scenario are shown in Tables 4.7 and 4.8, respectively.

122

Successful post operation

Actors AlOs Data

1. User enters their ID number

Email User User ID receiver User ID number |

2. Validate user |

Email User M essage responder “User OK” (m essage) |

3. User enters the new email’s ID |

Email User Email ID receiver Email ID number

4. Email is validated

Email User M essage responder “Email OK” (m essage)

| 5. User enters email’s attributes and contents into the pad

I Email User Pad Email attributes |

| 6. Post email and Inform user of successful post |

Email User ^ M essage responder Contents of the user’s out-tray |

Table 4.7. Activities and important elements fo r the scenario fo r Successful Post.

| 1. User enters their ID number

I Email User | User ID receiver | User ID number |

| 2. Validate user

| Email User M essage responder “User OK” (m essage) |

| 3. User enters the new email’s ID |

Email User Email ID receiver Email ID number

4. Validate email i

Email User | M essage responder “Email OK” (m essage)

| 5. Transfer email details to the Pad |

Email User Pad Email attributes

Table 4.8. Activities and important elements for the scenario fo r Successful Collect.

As in the analysis conducted in Case Study 1, this process provides much insight. Not

only does it reveal a scene-based structure of a visualisation, but it also indicates

where visualisation effort should be concentrated to produce user-centric portrayals of

the behaviour of the prototype.

123

Visual Metaphor Design

The next design task is to devise a visual metaphor upon which the actual format and

style of the visualisations can be based. This is achieved by using the information

about the structure and composition previously derived. Once again, the key objective

is to develop a visual style that enables the meaning of the underlying requirements to

be portrayed in a fashion that the user can recognise.

In terms of the Email System, a suitable metaphor could consist of a visualisation of

the Pad, as this is focus of the user’s interaction with the system. A visualisation of the

contents of the relevant trays (the ‘out-tray’ and the ‘in-tray’ for the Post and Collect

operations respectively) would also be useful. These visualisations correspond to the

elements revealed from the previous analysis phase.

By applying the resulting ‘visual concept’ a simple design scheme can be developed.

Using the ‘User ID Number’ that features in both the Successful Post and Successful

Collect scenarios as a design example (from Tables 4.8 and 4.9), it can be seen this is

a data item that represents a numeric value within the executable formal specification.

A visual representation of the user ID might be best portrayed using a direct display of

the value. By using a direct representation of the numeric value, it can be argued that

its meaning within the prototype can be made overt and eliminate the need, on the part

of the viewer, to perform some mental translation from an abstract form. Similar

treatments can be applied to the other elements that should feature in the visualisation.

Table 4.9 shows conceptual visualisations for the entities discussed above, populated

with example data values to show how the possible relationships between the

graphical and textual items.

124

Entity Data Type Anticipated Representation

User ID
Displays an

integer
appearance

User 1

Single Email
Representation

(text value
augm ented with
image of email)

Displays a text
value

Tray Contents
(Collection of emails,

uses a series of
individual email
representations)

Displays a set

> ~ < > —<

1 2

Com plete Tray
(represents both the
tray’s owner - user

ID
and the

corresponding tray
contents)

Displays the
relationship

between user
and tray.

User 1

Com plete Email
(represents the
attributes of a

complete
email m essage -

complete with
boxes in which the

details will
be placed).

Displays a
combination of

integer and
text values.

The Pad
(depicts the user’s
own desktop pad)

Displays a pad
with/without

email.

Table 4.9. Possible representations fo r the entities involved in email system.

Visualisation Construction

Construction of the visualisations using the ViZ tool follows design. This involves

construction of visualisation objects and then construction of complete scenes

125

containing the visualisation objects. The development of a complete scene was

described in detail in Case Study 1, and therefore a similar treatment is not necessary

here. Instead, the reuse of visualisation objects to demonstrate their polymorphic

nature will be elaborated upon.

First, suitable containers must be created in the visual component library. These are

used to store the respective visualisations as they are created with the ViZ tools. Next,

appearances that portray the pertinent elements of the scenarios (email, trays, and pad)

are constructed using the ViZ Appearance Editor. The final forms of the appearances,

with sample data are shown in Table 4.10.

Purpose Representation Identifier

ISI [Sl
M1 M2

To represent the
system state

variables: InBox,
OutBox, Pending.

Tray A pp earance

U sed to
en cap su la te the
attributes of an

em ail.

User

Subject

To

CC

Body

M essage ID

From

Reply Requested

Refs

Email A pp earance

R ep resen ts the
u ser’s pad,

com p lete with
em ail identifier.

Pad A pp earance

Table 4.10. Final form o f the appearances for the elements in the email case study.

126

Spatial and positional information for each visualisation object must be specified

through the use of the ViZ Motion Editor. For this particular case study, it is not

necessary to specify animation/movement, but merely to indicate the on-screen

locations of the visualisation objects. Again, these components are stored in the

component repository.

Complete scenes must be defined, using the VIZ Visualisation Editor. Scenes specify

the visualisation objects that should be used to visualise particular elements of an

expression. The scenes developed should correspond with those indicated earlier in

the process.

However, once visualisation objects, which are common to one or more scenes, have

been developed, their polymorphic characteristics can be exploited to deliver large

improvements in productivity to reduce development time. Polymorphism is

manifested in visualisation objects through the typing system, that is, visualisation

objects are designed to be ‘type-oriented’ but not ‘semantically-oriented’. In other

words, the application of visualisation objects to execution artefacts, such as the data

in an executable specification, does not rely on any semantic information from the

specification (or the underlying requirements) other than the type of the entity being

visualised. This enables a visualisation object that is designed for visualising a set, for

instance, to be applied to any set in any specification. Whether the application is

appropriate is a separate matter. Appearances for other types act similarly. The effect

of this, in terms of the Email System example, is that a visualisation object that is

designed to represent a generic tray can be used for all tray variants - i.e. in-tray-, out-

tray and pending tray. This facility, although simple, can be used to great effect when

developing separate scenes that contain common entities. In addition to

polymorphism, the visual component library is instrumental in facilitating reuse

through the storage of all appearance, dynamic, and scene components for subsequent

re-application in other validation projects.

From Tables 4.7 and 4.8, the dependencies and reuse opportunities that are exploited

in the Success Post and Successful Collect scenarios can be seen. It can also be seen

that the actor ‘Email User’ features in all the scenes used in the portrayal of the

127

scenarios, and consequentially, the same visualisation object is used. Similar

treatments for Abstract Interface Objects and data elements are employed.

The ViZ visualisation editor is applied, at this point, to combine the visualisation

objects into scenes. The scenes created for the Successful Post and Successful Collect

scenarios are shown in Table 4.11.

Email_Vis Visualise a well formed email, complete with input parameters.

lnTray_Vis Visualise the emails in the In Tray

OutTray_Vis Visualise the emails in the Out Tray

Table 4.11. Scenes and identifiers fo r the Post and Collect prototypes.

Apply Visualisations to Specification

The fourth and final step in visualisation design and construction is to append

references to complete scenes to the appropriate specification sections. This also

requires suitable type information to be superimposed over the underlying ZAL

executable specification. The result is the hybrid ZAL-ViZ schemas shown below.

(schema Post
(header

local mailitem'
local mailto'
local mailcc'
local mailfrom'
local mailsubject'
local mailreplyreq1
local mailrefs'
local mailbody'
local outbox'
local k
local p

)
(and

(show uid? subject? to? cc? body? m? from? reply? refs?
Email_Vis)

(mem uid? (dom deskof))
(not-mem m? mailitem)
(not (equalp to? <>))
(subset (ran to?) (dom (applyz direct uid?)))
(subset (ran cc?) (dom (applyz direct uid?)))
(make temp

{ # ((applyz deskof uid?)
(applyz outbox (applyz deskof uid?))) })

(show temp m? OutTray_Vis)
(setf mailitem' (unionz mailitem {m? }))
(setf mailto' (unionz mailto

{ # (m? (squish (mksi '#(k p) 'k (dom to?) '(setf p (applyz
deskof (applyz (applyz direct uid?) (applyz to? k)))))))
}))

128

(setf mailcc' (unionz raailcc
{ # (m? (squish (mksi '#(k p) 'k
(dom cc?) '(setf p (applyz deskof (applyz
(applyz direct uid?) (applyz cc? k))))))) }))

(setf mailfrom' (unionz mailfrom { # (m? from?) }))
(setf mailsubject' (unionz mailsubject { # (m? subject?) }))
(setf mailreplyreq' (unionz mailreplyreq { # (m? reply?) }))
(setf mailrefs1 (unionz mailrefs { # (m? refs?) }))
(setf mailbody' (unionz mailbody { # (m? body?) }))
(make temp { # ((applyz deskof uid?)

(unionz (applyz outbox (applyz deskof uid?)) {m?})) })
(show temp OutTray_Vis)
(setf outbox1 (override outbox { # ((applyz deskof uid?)

(unionz (applyz outbox (applyz deskof uid?)) {m?})) }))
)

)

(schema Collect
(header

local mailitem'
local mailto'
local mailcc'
local mailfrom'
local mailsubject'
local mailreplyreq'
local mailrefs'
local mailbody'
local inbox'

)

(and
(mem uid? (dom deskof))
(mem refno? (ran mailrefno))
(setf m (applyz (inverse mailrefno) refno?))
(mem m (applyz inbox (applyz deskof uid?)))
(make temp { #((applyz deskof uid?)

(applyz inbox (applyz deskof uid?))) })
(show temp m InTray_Vis)
(setf mail_subject (applyz mailsubject m))
(setf mail_to (applyz mailto m))
(setf mail_cc (applyz mailcc m))
(setf mail_body (applyz mailbody m))
(setf mail_from (applyz mailfrom m))
(setf mail_replyreq (applyz mailreplyreq m))
(setf mail_refs (applyz mailrefs m))
(show uid? mail_subject mail_to mail_cc mail_body m mail_from

mail_replyreq Email_Vis)
(setf inbox' (override inbox { # ((applyz deskof uid?)

(setsub (applyz inbox (applyz deskof uid?)) {m})) }))
(setf mailitem' (setsub mailitem {m}))
(setf mailto' (domsub {m} mailto))
(setf mailcc' (domsub {m} mailcc))
(setf mailfrom' (domsub {m} mailfrom))

)

)

)

129

Prototype Execution and Evaluation

The final stage in the ViZ process facilitates the evaluation of the visual prototype.

For execution to take place, test data must be prepared that will enable the scenarios to

be exercised.

The test data required to exercise both the Successful Post and Collect scenarios can

be derived directly from the system state definitions in the ZAL executable

specification, and is shown in Table 4.12.

Input Value

uid? 1

subject? 'Meeting

to? <’Chloe>

cc? < >

Successful Post body? 'What_time?

m? _

from? 'Bob

reply? 'No

refs? {}

Successful Collect
uid? 1

refno? 102

Table 4.12. Test data required fo r Successful Post and Collect schema executions.

4.2.4 Results

The results of executing the Email System prototype are presented below in Figures

4.18 and 4.19. Figure 4.18 shows the results of executing the Post specification, the

aim of which was to demonstrate the visualisation of a well-formed email. Figure

4.19 shows the visualisations produced by executing the Collect specification. This

retrieves the given email (reference number 102) from the user’s in-tray and places it

on the user’s pad. The screenshots show first the existence of email number 102 in the

user’s in-tray, and second, the details of email 102 on the user’s pad.

130

| VZ - [Execute Specification 1
l&l File Editors Specification Window

| n | x

I f f] x

iU

User

Subject Bye

J o Chloe

CC

Body _am_leaving_soon

Message ID M3 Reply Requested No

From Bob Refs □

Figure 4.18. Visualisation results for the Successful Post scenario.

4.2.5 Observations and Conclusions

This case study has highlighted the capabilities of the ViZ system with regards to

scalability. It showed how the ViZ method is applied, without change, to larger

systems. The only aspect where change could occur would be that certain activities are

repeated to take into account the greater number of visualisations that are required.

This case study has also illustrated the utility of the reusable qualities of the visual

representations that can be created using the ViZ system. This, in turn, is coupled with

the scalability issue, in that reuse enables visual prototypes for large system to be

developed without greatly increasing the effort or time overhead required.

Although useful, reuse of visual components is not without its drawbacks. The main

difficulty is that it provides more opportunities for applying inappropriate

visualisations. The type system ensures that visualisations for different types of

system state variables are not applied, and so goes some way to alleviate this problem,

but it does not prevent visualisations for the same type being applied.

131

E l File Editors S pecifica tion W indow - I f l l x l

3

H ViZ - (Execute Specification)

Pad
E l File £d ito rs S pecifica tion W indow

0
U ser

S u b jec t

To

CC

Body

U ser: 1

(show temp u id ? In T ray _ V is)

(s e t f m a i l_ s u b je c t (a p p ly z m a i l s u b je c t m))
M p r f m f l i l - t Q - l a n n l v r n a i l m . n U ______________

V isualisation sp e ed . j l J J

F ish a n d c h ip sfo r te a

M essag e ID M 102 Reply R equested No

Alex Refs

Execution Control - (CoBect) - PAUSED

Faste r

CUE

L̂QjxJ
(show u id ? m a i l_ s u b je c t m a i l_ to m a il_ c c m ail_ b o d y m m a il_ fro m ma:

(s e t f in b o x ' (o v e r r id e in b o x { # ((a p p ly z d e sk o f u id ?) (s e ts u b {
. / .s e r f ii>A.iJ-ir^m 1 f «tp,r<n.uh.. --

V isualisation sp e ed : j l J J
F a ste r

j J

Figure 4.19. Visualisation results for the Successful Collect scenario.

132

4.3 Case Study - A Water Level Monitoring System

This case study (documented in [Ozcan98b]) demonstrates the development of a

prototype for a system in the domain of safety critical applications.

4.3.1 Aims

The central aim of this case study is to demonstrate the correspondence preserving

mechanism that are offered by the ViZ system. These mechanisms offer assurance that

visual representations used to portray the execution of the specification are used

appropriately and are used in the manner for which they were created. Developers or

visualisation designers create visual representations with the intent that they will have

a specific purpose - often they will portray visually particular execution artefacts or

specific elements in a visualisation and often in a specific context. The developers

thus give the representation an inherent meaning, and although this meaning might not

specified using identifiable or formal attributes, it still forms part of the visualisation

nonetheless. If the representation is applied or subsequently reused to portray a

different execution artefact, and if this execution artefact does have a different

meaning, then the visualisation may not correspond to what is intended, resulting in

the potential for misinterpreting the visual prototype.

This case study shows how two simple mechanisms can be used to prevent

misapplication of visual representations so that correspondence is preserved, i.e.

visual representations are not applied, either intentionally or accidentally, to execution

artefacts with meanings/purposes different to those that were initially intended.

The case study will further illustrate the utility of the ViZ system in general, by

presenting another example of how visualisations of the behaviour of a system can be

developed and used.

To demonstrate these points, the case study focuses on the development of a visual

prototype for a substantial industrial-scale safety critical application. The system is a

water level monitoring system, the requirements of which are described in the

following section.

133

4.3.2 Context

The water level monitoring system (WLMS) is a safety critical application used in the

domain of steam generation, for example, in power generation or heating systems

[Jackson93, VanSchouwen91, Williams94]. The Z specification for the WLMS is

presented in Appendix E. The WLMS is intended to provide human operators with

information as to the state of the steam generation system and also to provide a simple

control system that is employed in the event of an error or system failure.

Physically, the WLMS is applied to a hardware system consisting of two water vessels

(see Figure 4.20). During steam generation, water is pumped from the reservoir to the

steam generator where it is boiled. The steam’s destination is not relevant to this case

study.

Steam

Boiler
Steam Generator Reservoir

Figure 4.20. A typical steam generation system.

The WLMS monitors the water level in the reservoir and sounds an alarm if it

becomes too low or too high. The pump is shut down should this situation occur. The

pump is also turned off if the WLMS control unit itself fails. In both cases, switching

the power supply off turns off the pump.

The WLMS has two push buttons. The first is a ‘self test’ button that lets the operator

check the system while it is shut down, the second is a ‘reset’ button that is used to

bring the system back to normal operation following a shut-down or test as long as the

water level is within the safe range. Internal faults in the WLMS are detected by an

external ‘watchdog’ that receives a periodic signal from the WLMS. If the signal is

not received, the watchdog assumes the WLMS has failed and turns off the water

pump. In addition, a global clock provide a time signal to co-ordinate system

134

shown in a non-graphical view in the ViZ visualisation repository, in Figure 4.27.

This will be attached, along with type information, to the PumpEnvironment schema

in the executable specification, to form a hybrid ZAL/ViZ specification. This

PumpEnvironment schema is shown below.

ViZ Library

Applications S cen es A ppearances Motions

- PumpS witchOnVis 0
0 Application

W ater Level Monitoring System (WLMS)
0 Before S tage

EE- Element
0 - Type
[E A ppearance
EE Motion

EE Element
B After S tage

0 - Element

1=3- Type
Element

0 A ppearance
PumpS witchApp

Motion
PumpEnvMotion2

EjB Element
E! Element
El Element
EE- Element

E RemoveBookVis
E RemoveKeptAsideForVis

New S cen e

Delete S cen e

Copy as....

Edit

n _ l n - - i . \ «•:. 0 Attach to...

OK Cancel Apply

Figure 4.27. The completed scene for the Pump Environment visualisation.

(schema PumpEnvironment
(and

(if (and

then

else

(eq powerNow? 'on)
(eq shutdownSignal 'go)
(eq watchdog! 'operate)
(make pumpSwitch! 'closed
PumpSwitchOnVis shutdownSignal watchdog!
powerNow? waterLevel)
(truev)

(if (or
(eq powerNow? 'off)
(eq shutdownSignal 'stop)
(eq watchdog! 'shut)

147

then (make pumpSwitch! 'open PumpSwitchOffVis
shutdownSignal watchdog! powerNow? waterLevel)

else (truev)

At this time, the specification can be executed to produce the simulation of the Pump

Environment schema. As with the previous case studies, appropriate test data can be

derived from the scenario descriptions to drive the evaluation process (although this

will not be covered in this case study).

4.3.4 Results

The result of executing the simulation of the Pump Environment function is shown in

Figure 4.28. The execution is performed with the conditions that result in the pump

operating normally, i.e. the power is on, the shut down signal is ‘go’ and watchdog is

‘OK’, with the visualisation reflecting the status of the system.

k .dsjxj

Boiler R eservoir

Safety level

The Pump Is On

Pump
Environm ent

S hutdow n S ignal G o Pow er O n

W a tc h d o g O p e ra te

jlT1

Figure 4.28. The results o f executing the Pump Environment simulation.

148

4.3.5 Observations and Conclusions

To conclude this case study, a demonstration of the effectiveness and utility of the

correspondence preserving mechanisms will be described. These mechanisms consist

of the type system, which prevents visualisations designated for one type of system

state variable being applied to variables of other types, and the constraints that form

part of the visualisation editors that prevent visualisations designed for other

validation projects being applied to the current one. These mechanisms will be

demonstrated through the development of a visualisation for an additional WLMS

function. In concert, a discussion of the activities required (and their implications)

when re-applying visual representations and how the correspondence preserving

mechanisms facilitate this, will also be given.

The function chosen as the vehicle to demonstrate the correspondence preserving

mechanisms is ‘PumpControT. This determines the status of the ShutdownSignal,

which in turn is used by the PumpEnvironment function to set the state of the pump

switch. The ShutdownSignal is set according to the conditions in Table 4.14 (these

conditions are abstracted from the description of the system given in Section 4.3.2):

Operating AllOk Not Pressed Go

Operating AllOk Pressed <unchanged>

Shutdown AllOk <unchanged>

Standby AllOk Stop

Test AllOk Stop

Bad Level Device Stop

Hard Fail Stop

Table 4.14. Conditions used to determine the status o f he ShutdownSignal

By conducting a very rudimentary analysis, it can be seen that seven specific scenarios

can be derived, each one corresponding to a row in Table 4.14, and any of which

could be used as the target for visualisation. However, when developing these

visualisations, it may be beneficial to consider the general case, and the elements that

may require visualising in order to portray all permutations and combinations of the

derived scenarios. Developing generalised visualisations ‘up-front’ is useful as the

resulting scenes can accommodate and visualise a variety of scenarios without

149

requiring change or subsequent effort later in the validation process. A generalised

visualisation of the PumpControl function would at least require visualisation objects

to depict each of the system state variables involved - in this case, the three input

variables OperatingMode, FailureMode, and ResetButton, and the output variable

ShutdownSignal.

After deciding which elements of executing the PumpControl schema should be

visualised, the structure of the visualisation should be considered. Like many of the

functions in the WLMS system, PumpControl is not actually invoked by an operator,

but instead forms part of a wider arrangement of functions that contribute to the

overall operation of the system. Inputs are collected without user intervention and

passed as parameters to the function, and the single output is passed on to the

PumpEnvironment function. Therefore, it is necessary to simply show the relationship

between inputs and outputs, and this can be performed using a single visualisation

scene that is shown after the schema has executed to reflect the final contents of the

relevant system state variables.

This leads to the implementation of the scene using the ViZ tools, and for this

particular scene, the reuse of visualisation objects. The scene must encapsulate

visualisation representations for the system state variables identified above. These

variables are all of type text string (known in ViZ as an ‘element’). A text string

visualisation already exists in the WLMS validation project and can be reused readily

in this new context - the polymorphic nature of such a visualisation enables this. On

completion of this construction activity, the scene shown in Figure 4.29 is produced.

The correspondence preserving mechanisms come into play during the construction of

scenes such as this. During construction, the developer/visualisation designer is

required to specify the system state variables that the scene should visualise, along

with the type of those variables (these details are shown in the four boxes titled

‘Variable’ in Figure 4.29). Specifying variables and their types is performed using the

dialog box shown in Figure 4.30.

150

S3 Scene Editor
Zoom

PumpControl...

PumpControl...

PumpControl...

^appearance
ShutdouinSig...PumpControl...

Shutdow n Sig...

PumpControl...

ME1

d

Figure 4.29. The contents o f the scene to visualise to the PumpControl function.

Specifying variables and their types is the first step in constructing scenes. The second

step involves assigning appearances to them. When the developer/visualisation

designer attempts to assign an appearance, they are presented with a list of

representations that belong to the current validation project and are invited to select

one {Figure 4.31). However when appearances are developed, using the ViZ

Appearance Editor and prior to the scene construction stage, the designer attributes

them with a data type. The data type of the appearance is thus checked against the one

designated to the target variable in the scene. If they are equal, the selected appearance

is associated with the variable. If not, the error message shown in Figure 4.32 is

displayed.

Object to Visualise.

Object Name |OperatinqMode

Data Type - none -
Boolean
Element
Integer
Maplet
Mapping
Sequence
Set

OK Cancel

Figure 4.30. The dialog box used to specify variables and types that should be
visualised by the scene.

151

Select an Appearance

alarmAfterStateApp
Default A ppearance
failureModeApp

i 1 u[m5
powerN owiApp
PowerNowApp 2
PumpS witchApp
ShutdownSignaApp
timelnModeApp
W atchdogA pp
W ater Level A ppearance

OK Cancel

Figure 4.31. Appearance selection.

A You cannot attac
; \ to this object as t

do not match.

The object 'Oper.
the appearance ’

I

:h this appearar
heir types

atingMode'is of
V/ater Level Ap

i ok I

ic e

type Element while
jpearance 'is of type Integer.

1

Figure 4.32. Error message displayed when a type mismatch has been detected.

This simple checking mechanism limits the application of representations that are not

of the same type, and thus presents a first line defence against accidental application.

This is effective, as much thought is often imparted both before and during

visualisation development as to the types of the representations and their use. The type

system ensures that this forethought is not merely discarded.

The second correspondence preserving mechanism is that which ensures scenes,

appearances and motions belonging to the same validation project can only be used

together. This prevents the mismatching or inappropriate application of visualisation

artefacts. This mechanism is facilitated through the use of ‘Application Containers’ in

the ViZ repository, which are used to store all the visualisation artefacts created

152

during the process of developing a visual prototype for a particular system. Figure

4.33 shows the contents of the WLMS application container. Inside each application

container, partitions exist for separation and storage of appearance and motion

components, as well as complete scene-level visualisations. When selecting

appearances or motion components to apply in the scene, the Scene Editor presents

only those that belong in the container of the current development project.

Appearances and motion components are partitioned at their time of implementation

as to which container they should be associated. This mechanism provides a simple,

yet effective approach for preventing visual representations being applied in situations

where they might be inappropriate.

Applications j S cen es | A ppearances | Motions |

W ater Level Monitoring System (WLMS)

B- Applications
± ATM
IB Email System
m Library
[jl Library2
[+j Mail Order Catalogue
EB Marriage Bureau
IB Simple

B „
13 S cen es
E-3 A ppearances

alarmAfterStateApp
Default A ppearance
failureModeApp
operatingModeApp
powerNowApp
PowerNowApp 2
PumpS witchApp
Shutdow ns ignaLApp
timelnModeApp
W atchdogA pp
W ater Level A ppearance

IB Motions

New Application

Rem ove Application

Copy as....

Add S cen e

Remove Scene

Add A ppearance

Remove Appearance

Add Motion

raon

OK Cancel

Figure 4.33. The contents o f the WLMS Application Container.

Combining these lightweight constraints produces a practical approach for

overcoming some of the problems that stem from the requirement to provide visually

153

rich and highly flexible representation for developing visual prototypes but constrain

the potential for applying these arbitrarily or inappropriately.

When the implementation of the scene has been completed, has been suitably

associated with the PumpControl schema, and the schema has been executed, the

visualisation shown in Figure 4.34 results. This visualisation shows the inputs to the

schema, and the single output that is the result of the processing conducted as the

schema executes. To assist the validation process further, a small table containing the

combinations and permutations of inputs and resulting outputs is also provided. This

is simply a presentation of values as defined by the informal requirements of the

WLMS. It can be used as an aid for any stakeholders to look-up the expected values

and assess the accuracy of the execution of the schema. Such on-screen graphical aids,

that augment the visualisation, can improve the effectiveness and efficiency of the

overall validation process - judgements and decisions can be taken swiftly without

having to resort to searching through paper-based specifications. Additionally,

presenting such information can also form the basis for further discussion as to the

appropriateness of the underlying conditions, expected values and results, and

scenarios.

To conclude, this case study has demonstrated the development of a visual prototype

for a substantial industrial strength application. Another aspect of the ViZ system,

namely the constraint mechanisms that combine to facilitate the preservation of

correspondence between the meaning of a visualisation and the meaning of the

specification that is the focus of the visualisation effort, was also demonstrated.

The assurance mechanism, whilst lightweight, is significant. For systems that are not

in the safety critical domain, for instance for the systems in the earlier Case Studies,

the use of these mechanisms may not be considered appropriate or worthwhile.

However, when validating systems in this particular domain, the assurance

mechanism may become a vital part of the prototype construction process in an

attempt to reduce all possibilities for error or ambiguity. Indeed, the corresponding

preserving mechanism may be regarded in its own right as an important quality

assurance technique.

154

ir;.-4s > . .i”r ym File Editors Specification W indow ^isj_x|

“ 1

O p e ra tin g M o d e O p e ra tin g

Failure M o d e Allok

R eset Button P ressed

S h u td o w n
S ig n a l^ i i ' j* 'n ® F a ilu re M ode R ese t Button M ode

opera ting all ok no t p re s s e d

o p era tin g all ok p re s s e d
9°

u n c h a n g e d

u n c h a n g e dPump Control
Function

sh u td o w n all ok

s ta n d b y all ok

t e s t all ok

s to p

s to p

s to p

s to p

bad level dev ice

hard fail

S hu tdow n S ignal G o

bJ J

Figure 4.34. The visualisation results for the execution o f the PumpControl schema.

4.4 Case Study - A Security System

This case study is concerned with the development of a prototype that illustrates the

behaviour of a secure entry system for a building.

4.4.1 Aims

The aim of this case study is to demonstrate the effectiveness of ViZ in providing an

effective platform with which to stimulate and engage users in the requirements

validation process. To achieve this aim, this case study will involve real users in

validating requirements for an upgrade to an existing system.

This case study will involve the development of two visual prototypes. The first will

reflect the behaviour of the current system to provide a frame of reference for

evaluating the requirements for the upgrade. The second will demonstrate the

enhancements. This will enable the behaviour of the upgrade to be compared to the

behaviour of the original system as well as providing a vehicle to explore the new

features.

155

f& l File Editors Specification W indow

DOOR OPEN

n̂}*}
th en (show knownpasses p a s s_ in ? DoorOpenVis)
e ls e (show know npasses p a ss_ in ? DoorClosedV is)

Visualisation speed: _<J J

i f 1

Figure 4.36. Results o f executing the prototype for the successful door open scenario.

M J f f l x l

It^l E'te Editors Specification W indow

i

f l

| f l M R n p r a m

0

DOOR CLOSED

e ls e (show knownpasses p a ss_ in ? DoocClosedVis)

Visualisation speed: J
Faster

jJ

Figure 4.37. Results o f executing the prototype for unsuccessful door open.

162

The second visual prototype depicts the execution of several functions that pertain to

the upgrade to the security system, namely entry, exit and the determination of the

passes and persons inside the secure area.

Resum e

Visualisation speed: j i J

To enter secure area with this system, the user exposes a known pass to the door

sensor in the same way the as for the original system. However, the difference is that

the pass identifiers are recorded. The second prototype models this through the

“Enter” schema. Visually, the execution of this schema is depicted in a similar way to

that of the first prototype, albeit with one difference. The visual metaphor for the first

prototype employed representations that were simply constructed from geometric

shapes to form a door-like presentation. The visual metaphor for the second prototype

employs photographs of a door in open and closed states. The photographs include a

person operating the door to add further realism. In addition, for the purposes of the

developer, a display showing the passes recorded after the person has successfully

entered the secure area is provided. Executing the “Enter” schema, using a pass

identifier that is known to the system, produces a visualisation presenting an open

door, as shown in Figure 4.38.

flfcl File £drtor$ Specification Window
1 - I t f l.X-i

3
— J ' S 3 2 I 4 th en (show knownpasses p a s s_ in ? DoorOpenVis)

e ls e (show knownpasses p a s s_ in ? DoorClosedV is)

Figure 4.38. Results o f successfully executing the “Enter" schema.

163

The visualisation also presents the passes that are known to the system, as well as

showing the pass identifier being used in the attempt to enter the secure area.

If the pass identifier is unknown to the system, then successful entry will not be

granted. In this scenario, the pass being used to enter the secure area is not recorded.

The visualisation that results presents a closed door. This can be seen in Figure 4.39.

E l File Editors Specification W indow

th en (show know npasses p a ss_ in ? DoorOpenVis)
e ls e (show know npasses p a s s_ in ? DoorClosedV is)

H i s n 1a v ^ p r \

T erminateR esum e

Slower

Figure 4.39. Unsuccessful attempt to gain access to the secure area.

The function that models a person leaving the secure area removes the given pass

from the set of pass identifiers that are recorded as being already inside. This is

achieved after the person exiting exposes their pass to the sensor and the pass is

recognised as being valid. The visualisation that is associated with this presents the

door open or closed according to the result. The images are those used for entering the

secure area.

The function to return the pass identifiers and the function to return the names of the

personnel attributed to those pass identifiers do not have visualisations associated with

them. Instead, the results of executing these functions is presented as text.

164

Evaluation Process

The prototype evaluation process will involve four separate activities. These are

designed to provide the users with sufficient opportunity to familiarise themselves

with the developer’s understanding of the system (as represented by the specification)

and opportunity to view, interact with and comment on the prototype.

The first activity is concerned with familiarising the users with the requirements and

specification for the original system. This is performed to orient the users and provide

them with a frame of reference for evaluating the requirements of the upgrade. It will

be achieved by first allowing the users to view the informal specification of the

original system and by the developers explaining the salient functions and system

operations.

The second activity involves an examination of the prototype that models the

requirements of the original system. The test cases devised in the earlier prototype

development activities are used as the basis for this. The examination of this prototype

is conducted by first explaining which scenario the prototype is being used to

demonstrate and the conditions that prevail for the scenario to occur. The prototype is

then executed with suitable test data. The resulting visualisations are then explained -

their form, purpose and what they are depicting. This examination is conducted for the

“Enter” function, and for the different scenarios that are associated with it. At this

point, it is possible for the user to comment on the accuracy of the prototype with

respect to the functionality of the original system. Even at this point, the developer

may learn vital insights into the functionality of the system that is being upgraded.

Also at this point, discussion may occur between the developer and user about the

nature of this prototype and characteristics of its visual form.

The third activity entails the familiarisation of the user with the requirements

specification for the upgrade. This is the first opportunity for validating the upgrade

requirements. In this step, the developer will explain, on a function-by-function basis,

their view of the requirements (as encapsulated by the informal specification). Since

the users will be familiar with the underlying functions of the required system, they

may be able to comment on the accuracy of the developer’s understanding of it at this

point.

165

The fourth and final step in the validation process involves the evaluation of the

prototype of the upgrade. This is performed by executing the prototype in accordance

with the scenarios and test data identified in the prototype development stage. Again,

the developer will drive this step by ‘walking’ through the execution of each scenario.

At this point, the users will be encouraged to articulate and discuss their thoughts and

perceptions about what they see in the prototype. Any comments generated by the

resulting discussions are to be recorded for future reference.

In practice, the next natural step would be to engage in the refinement of the prototype

in response to the feedback generated from the evaluation process. In this case study

this will not take place. Instead, and as stated previously, the focus is placed upon the

user’s involvement and the reaction and comments that emerge from the evaluation

process.

Having described the requirements of the system, the form of the visual prototypes

and the nature of the evaluation process, the next section will describe the results of

enacting the evaluation process and report on the comments, feedback and issues that

were raised.

4.4.4 Results

Undertaking the process elaborated in the previous section, and with the involvement

of three prospective users of the security system, a number of discussions emerged.

The users had wide experience with the functioning of the existing system as they

used the door security system each time they entered their work environment.

In these discussions that emerged, a variety of points were raised about the system, the

environment in which the system will operate and a number of factors that were not

considered when the requirements specification was initially developed. This section

will elaborate upon these discussions and describe the comments and feedback that

resulted.

The discussions and the points raised can be partitioned into two categories. The first

category includes the discussions that pertained to the prototype of the existing

system. The second includes those that pertained to the prototype of the upgrade.

166

Discussions about the First Prototype

The users were first given a written specification explaining in plain English the

functions of the existing system. After reading this, the users stated they were familiar

with the functionality as described.

The examination of the first prototype’s execution, and in particular in response to the

presentation of the enactment of the successful door open scenario, lead to some

fruitful dialogue about the original system.

The first important point that was raised was regarding the form of the prototype.

Although the users did understand the system’s requirements, they users did suggest

that they would have preferred to see a more decomposed and sequential set of

visualisations denoting the act of users exposing their passes, the door responding

accordingly and the reasons for the door being either opened or remaining closed,

instead of the visualisation of just the resulting open or closed doors. The

visualisations used in the prototype were, they commented, sufficient and enabled

them to see clearly the result of executing a scenario, but to add more realism and

provide a more ‘visual explanation’ of what the user was supposed to be doing, a

visualisations of the step-by-step actions of a user would have been preferable.

An important issue was raised with regard to the visualisation’s ability to depict a user

entering or exiting the secure area. The visualisation did not provide any visual clue to

the direction of the user.

In addition, one user queried the application of this prototype. They wanted to know if

this prototype specifically modelled their own door security system or whether it was

a generic prototype that could be used to depict any such system. A discussion

surrounding the purpose of the prototype then followed to clarify this matter.

At this point the discussion moved to the nature of the practicalities of the existing

security system, and especially, the issue of a user opening the door with their pass

and allowing extra people to enter without passes (for instance, if the user holds the

door open). The prototype did not address this situation.

167

After the users appeared suitably familiarised with the prototype of the existing

system, the evaluation process progressed to the examination of the prototype of the

upgrade.

Discussions about the Second Prototype

The discussions that occurred during and after the presentation of the prototype’s

execution were useful and revealed a number of points that were not considered as the

prototype of the upgrade was being developed.

The evaluation began by presenting the users with the informal requirements for the

upgrade. The users read these and appeared eager to view the prototype that reflected

them. In this prototype, photographs of the actual door that they are familiar with were

used as the basis for the visual representations. This presented a slight difference, and

the users were notified of this in advance.

Next, the scenarios identified in the earlier prototype development stages were enacted

by executing the prototype with the appropriate test data in turn. Each scenario was

explained, and the preconditions required for that scenario to arise were also

described.

The first scenario chosen was that of an attempt to enter the secure area with a valid

pass. Upon viewing the prototype the users repeated their comments about their

preference of a sequence of visualisations depicting the actions a user must undertake

to operate the system, instead of merely a single visualisation depicting the result. The

discussion lead to additional requirements surfacing, not least the requirement to limit

access to personnel with valid passes to specific times or dates (e.g. to restrict access

in holidays or times outside of normal office hours). These requirements were not part

of the original specification.

Another important issue was then raised. This involved the entry of visitors to the

secure area. The users stated that this might be addressed by issuing temporary passes

to visitors, but the practicalities of this needed clarifying (such as who would issue the

passes, when would the visitors return the passes, etc).

168

The evaluation then progressed to the function for exiting the secure area. After

viewing the execution of the prototype for the scenario that entailed a user with a valid

pass attempting to exit the secure area, the users posed two important ‘what i f style

questions. The first question was based upon a scenario in which a non-valid user had

slipped through security system (they had been allowed in by a valid user, for

instance). What would happen if the person did not have a valid pass to exit, and no

valid users were already in the secure area? The conclusion was that the person would

not be able to exit. Second, and coupled to the first question, what if an emergency

situation arose when such a person was inside the secure area and potentially could

not exit? The conclusion was that the person would be in a dangerous, and potentially

life-threatening situation.

This discussion then moved to the accommodation of emergency situations, and the

potential of connecting the door security system to the fire alarm: if the fire alarm

sounds, then the door locking mechanism should be instructed to unlock the door.

Again, the prototype did not model this function.

Following this, the discussion returned back to issues surrounding a person exiting the

secure area. The users reflected upon the complexities and general practicalities of an

easy-to-use security system, and realised that some important decisions about the

system and the environment in which it would operate would be required before a

more complete implementation could take place.

The last system functions to be presented to the user what those concerned with

returning the identifiers of the passes recorded as being inside the secure area and the

names of those personnel associated with those passes. This, surprisingly, generated a

discussion about legislation that would affect the security system. A legal requirement

of any organisation applying software systems in UK is the Data Protection Act that

prescribes how data can be handled by an organisation and how it may be divulged to

users. This is pertinent, since Sheffield Hallam University (the commissioners of the

system) would need to record personal details about the users of the security system,

such as their names and potentially staff numbers, etc. A situation might also be

envisaged whereby other details such as disabilities might be recorded - recording

these might be useful in emergency situations for example. A building administrator

169

might be able to see if any personnel with wheelchairs were inside the secure area if a

fire broke out. The users pointed out that recording this type of information within the

system does have Data Protection Act implications.

4.4.5 Observations and Conclusion

Having conducted a case study where real users are engaged in the validation process,

a number of observations were made.

First, with regard to the requirements of the security system, much was revealed about

additional features during the discussions that emerged. Several features that the

developers did not include in the requirements specification for the upgrade was

revealed. The discovery of these emergent properties was a direct product of the

dialogue that took place.

Secondly, from the perspective of the utility of the ViZ system, the visual prototype

provided the necessary vehicle on which the dialogue could be based. Without the

prototype, the detailed discussions about the properties of the system(s) may not have

occurred. All the users stated that the visual format of the requirements painted a

largely accurate picture of the functionality of both the existing system and the

upgrade, and that the prototype enabled them to see how the system would react to a

given situation. The users also commented on how well the prototype accommodated

and presented both the successful and unsuccessful scenarios.

It is also worthwhile to comment on the cost (in terms of effort and time) to develop

the visualisations. The ViZ system’s visual component repository enables the reuse of

the visualisations, offering an effective reduction in the time needed to construct

visual prototypes. In this case study, the functions being considered could be depicted

by very similar visualisations, specifically an image of the security door open or

closed. Once these visual representations were developed, they were applied to the

Open Door and Closed Door functions very swiftly, with very little effort. Indeed,

they could be applied to depict further scenarios with an equality small effort,

resulting in a scaling of the visual prototype with relatively low development costs.

170

Lastly, looking from the viewpoint of the validating the research hypothesis (that

visualisation is beneficial to the requirements validation process), it can be seen that

this particular requirements validation project has been successful. It has facilitated

dialogue, encouraged interaction between users and developers and resulted in

requirements that were not originally thought of by the developers. The success, we

can argue, is attributed to the facilities offered by the ViZ system.

4.5 Summary

This chapter has demonstrated the application of the ViZ system. It has shown the

characteristics and capabilities of both the VIZ method and the corresponding

software toolset. Three case studies were used to facilitate this demonstration. The

first case study described the enaction of the ViZ method and how the functions of the

toolset are used in close correspondence to develop visual prototypes. The second case

study showed how the ViZ method scales to accommodate large systems. It showed

that the method can be applied without an increase in complexity to develop visual

prototypes of systems that possess significant quantities of functions/schemas. The

third case study demonstrated both the application of the ViZ method to another

significant system and how the correspondence preserving mechanisms in the system

assist in preventing the inappropriate application of visual representations. The fourth

and final case study demonstrated the effectiveness of the ViZ system in providing a

platform for involving the user in the requirements validation process.

The final chapter provides an evaluation of the work as a whole against the original

research objectives that were defined in Chapter 1. It augments this with a discussion

as to the issues that have emerged as a consequence of undertaking the work. Finally,

a description about the possibilities for future work is offered, along with some

general remarks about the work.

171

Chapter 5
Critical Evaluation and
Conclusion

172

This thesis has described research into the development of a novel approach to

visualising prototype execution behaviour in the context of requirements engineering.

The work was motivated by the recognition of the difficulties of presenting prototype

behaviour using traditional representations during the validation of software and

system requirements. Subsequently, the thesis identified desirable properties of an

approach to visualise prototype execution by reviewing the current state of the art.

Further, the thesis proceeded to describe the requirements, design and architecture of a

system for visualising the execution of a specific requirements prototyping approach.

This final chapter presents an evaluation of the research and the conclusions that may

be drawn from it. In particular, the achievements of the work are reviewed against the

original research contributions and the initial research objective. Further, a discussion

is presented concerning several issues that emerged as a consequence of conducting

the research. Finally, the possibilities for future improvements of the ViZ system are

identified in order to provide a basis for the continuation of the work, along with some

general comments and conclusions concerning the work.

5.1 Thesis Contributions Revisited

The thesis has made a direct contribution to the field of requirements engineering, and

more generally, to the discipline of software engineering. However, three specific

contributions have been made. These were:

1. A review of the state of the art, evaluating and critiquing existing systems for

visualising prototype execution.

2. The development of a system to facilitate visualisation of prototype execution.

3. A demonstration of the effectiveness of the system via the use of a set of case

studies.

This section offers an evaluation of each of these contributions and establishes how

well the research has succeeded in fulfilling these.

173

5.1.1 Survey of the State of the Art

The first contribution, the survey of the state of the art, was presented in Chapter 2.

The survey was based upon a literature review and critique of several existing

prototype execution visualisation systems. It was conducted by identifying the

characteristics of the systems and partitioning these in accordance with a novel

taxonomy. The taxonomy was defined using criteria established from the preceding

discussions that established the background of motivation for the research (Sections

2.2.1 and 2.2.2). A critique of each system was offered and their strengths and

weaknesses were discussed [Parry95]. This particular work preceded more recent and

related research in reviewing and developing systems to facilitate requirements

visualisation [Dulac02].

The objectives of conducting the survey were twofold. The first was to provide an

overview of the current state of the art. The second was to establish a baseline for the

subsequent development of an alternative and enhanced prototype execution

visualisation approach. Combining and generalising the shortcomings identified in the

reviewed systems achieved this. In this respect, the objectives of the survey were

fulfilled, and it is believed that this contribution was successful and that it played an

important part in the overall research.

5.1.2 Development of a System to Visualise Prototype Execution

The second contribution involved the development of a system to visualise prototype

execution with the goal of presenting this behaviour in a customer-oriented manner.

This contribution led to the development of the ViZ system. It is necessary therefore

to evaluate the success of the ViZ system in fulfilling this goal. This evaluation will

be performed in three stages. The first will offer an evaluation of the ViZ system with

respect to its original requirements (as described in Section 2.1.2). The second will

provide a more abstract assessment of the worth of the system in light of factors that

were deemed critical to the success of such systems (as detailed in Section 2.2.1). The

third stage will conduct a specific review of the ViZ system in the same manner as the

survey of existing work. This will use the same taxonomy as that used for conducting

the survey, as described in Section 2.3.

174

Evaluating the ViZ System against its Original Requirements

Evaluating the system against the requirements originally defined for it provides an

assessment as to whether these requirements were fulfilled. To recap from Section

3.1.2, the requirements for the ViZ system were partitioned into three sections:

visualisation provision, software integration and process support. The complete set of

requirements are summarised in Table 5.1.

Requirem ents for Visualisation Provision

• Provide a range of visual cues
• Enable visual cues to be combined to produce visualisation objects to represent

individual execution artefacts and contextual information.
• Enable visualisation objects to be combined to produce complete scenes.
• Facilities for the creation, storage and modification of visual representations
• Facilitate reuse
• Promote correspondence/integrity between visual representations and specifications

Requirem ents for Software Integration

• Provide separate tool support for visualisation facilities
• Facilitate tool inter-operation. This in turn requires communication support between the

two systems
• Enable a minimal and efficient mechanism for associating visualisation details with

specifications.

Requirem ents for Process Support

• Guide users through the activities inherent in developing visual prototypes
• Need to integrate activities of existing R ealize approach with those responsible for

visualisation development

Table 5.1. Summary o f the requirements o f the ViZ system.

In terms of visualisation provision, the ViZ software tool was designed specifically to

provide a range of visual cue types and enable these to be combined to construct

visualisation objects. This can be observed in operation in all three case studies.

In addition, the first case study was used as a vehicle for demonstrating how the ViZ

tools accommodate the visualisation hierarchy. Providing this hierarchy was described

as one of the challenges in developing prototype execution visualisation systems in

Section 2.2.3. These tools provide a comprehensive environment for manipulating

visual cues into visualisation objects (through the Appearance Editor) and

subsequently arranging these into scenes (via the Scene Editor) that can be used to

visualise a complete expression in a specification. This is augmented with tool support

for specifying animation aspects of a visualisation'through the dynamic-component

editor.

The ViZ process also contributes significantly to visualisation provision. Direct

support for visualisation development is provided through the scenario-based

activities prescribed by the process.

In addition to creating and modifying visual representations, the visualisation

repository provides a useful facility for their storage and their reuse. After creation

with the ViZ editing tools, the representations are placed in a suitable container within

the repository and can be recalled for further editing or application to a validation

project. Again, the repository can be seen in action in the first case study.

The last requirement concerning visualisation provision, to provide a mechanism to

promote integrity or correspondence between the meaning of visual representations

and underlying specifications, is fulfilled by the mechanisms built into the visual

repository and the visualisation editors. These were demonstrated in the third case

study. They restrict the application of visual representations to only the areas for

which they were deemed appropriate, or the types of execution artefact they were

created to depict. These mechanisms are used in concert with the activities in the ViZ

process that specify the classification and partitioning of visual representations at the

time of their creation. Although the success of the assurance mechanism ultimately

depends upon the users of the system being sensible, and that it is not an automatic

mechanism, it can be seen that it offers an acceptable compromise between the

flexibility and rigidity in terms of visualisation provision. The rationale for such a

compromise was discussed in Section 2.2.3, where the need to retain flexibility over

rigidity for the purpose of satisfying the visual needs of non-developers was noted.

In terms of software integration, the ViZ tools provide a number of important features

that enable visualisation to be integrated with the RealiZe approach. The visualisation

functionality, encapsulated in the ViZ tool and kept separate from the ZAL tool to

facilitate the separation of concerns, satisfies the first requirement in this category.

Tool interoperation, the second requirement, is achieved by the innovative

communication sub-system. The sub-system is innovative in that it draws upon

176

lightweight technical features and simple principles and combines these to form the

central aspect of the ViZ system. Without it, the ViZ system would not be able to

visualise the execution of ZAL expressions directly. The sub-system is implemented

through an underlying transport mechanism (based on a client-server, shared memory

mechanism) augmented with an appropriate protocol to enable the separate tools to

communicate. The communication sub-system is more than adequate for providing the

required degree of tool interoperation.

The last requirement in this category specified the need for a minimal and efficient

means of associating visualisation definitions with specifications, so at run-time, the

definitions can be interpreted and applied to the respective execution artefacts. This

requirement was considered throughout the design of the toolset and was implemented

as both an addition to the syntax of the ZAL specification and a novel software

architecture responsible for parsing and interpreting these syntax enhancements. At

run time, the visualisation definitions are intercepted and the ZAL expressions are

sent to the ZAL execution for processing. The results are then received and passed to

the Visualisation Engine for rendering. The syntax enhancements and parsing

mechanism were designed to provide a separation of the necessary details by making

use of the principle of data hiding. By encapsulating the data that defines a visual

representation into a visualisation object and then packaging several of these into

scenes, and by referring to scenes by a unique name, a simple mechanism of

association was established. This entailed simply implanting the scene identifiers into

the specification. The parsing mechanism is then responsible for decoding the given

scene and applying the visualisation objects contained within it. By attributing more

of the work to software, a minimal approach to associating visualisation details to

specification was defined. This particular aspect of the system is demonstrated in all

three case studies.

The third category, process support, is fulfilled by the innovative ViZ Process. This

central component of the system provides the necessary guidance, missing in many

other systems for visualising prototype execution, for developers and other

stakeholders. Importantly, the process prescribes the steps needed to develop visual

prototypes in an effective and repeatable manner. From repeatability stems the

increased likelihood that success, in terms of developing a visual prototype that is

177

appropriate at portraying the requirements, will ensue. Experience in applying the

system can be developed over time, leading to maturity, potential improvements and

optimisations in the way the system is used. This is in contrast to the alternative: an

ad-hoc situation occurring each time a visual prototype is developed.

At a more detailed level, the ViZ process provides integration with the RealiZe

process. Indeed, the existing RealiZe approach was the starting point for developing

the ViZ process. The ViZ process commences at the point when a ZAL specification

exists and uses the ZAL specification as the primary input. To this end, the ViZ

system fulfils this particular requirement.

Evaluating the ViZ System against the Critical Factors

Evaluating the system against the critical factors that were deemed necessary for such

systems provides a more abstract review of the overall abilities of the system. The

critical factors that were described in Section 2.2.1 can be summarised as support,

presentation, developer attitudes, development costs, and differences between

developers and other stakeholders. The ViZ system will be evaluated against each of

these.

The first critical factor concerns the support available for presenting prototype

execution. In particular this factor stated that prototype execution behaviour should be

presented in terms that non-technical stakeholders can understand. The ViZ system

has been designed specifically to accommodate this. It has been the fundamental

motivating force behind the development of the system. Overall, the system provides a

comprehensive environment and process for creating and manipulating visual

representations, and subsequently for associating these with a specification so that

they can be rendered in real-time and in concert with the execution of the prototype. It

is regarded therefore that this critical factor is sufficiently addressed.

The second critical factor, presentation factors, concerned the nature of the visual

representations used to depict execution behaviour. It stipulated the necessity of

providing ‘rich’ representations consisting of a wide variety of visual cues and the

freedom to combine these into expressive visualisations. In addition, it also stated the

178

need to facilitate correspondence and integrity between the meaning of a visual

representation and the meaning of a specification it is used to depict.

By facilitating the importation of representations directly from the customer’s own

universe of discourse, and subsequently enabling their application to a prototype’s

execution, the ViZ system fulfils the requirement of offering visually rich

representations. This is the innovative aspect of the system. The system does not

restrict the developer or visualisation designer to using images of a particular type, or

representations that are computed or generated automatically by the system.

Therefore, the system overcomes a fundamental issue that was identified as being

problematic in existing prototype execution visualisation systems.

In terms of correspondence, the ViZ system provides the assurance mechanism that

manifests itself at various levels in the ViZ system. The assurance mechanism was

designed to provide a balance between flexibility and rigidity. On reflection however,

there are two potential drawbacks with this approach. The first is that the mechanism

is indeed a compromise - and compromise often requires certain aspects to be omitted

so others can be accommodated. The second drawback is somewhat less profound, in

that the mechanism provides only an assurance - and not a guarantee - that the

representations are appropriate for the given specification. It would be possible, either

through accident or deliberate misuse, that a representation could be certified wrongly.

This could lead to the possibility that a representation could be used inappropriately,

resulting in ambiguity arising in the validation process. This would be a dangerous

situation. The drawbacks notwithstanding however, it is still argued that the facilities

offered by the ViZ system culminate in the provision of an environment that addresses

this particular critical factor.

The third critical factor is developer attitudes. This concerns the preferences of

developers when producing and using prototypes. It was stated in Section 2.2.1 that

developers prefer technical, concise notations, and the rationale behind this. As well

as accommodating non-technical stakeholders, by enabling the depiction of prototype

execution in manner they can comprehend, the ViZ system also provides a simple and

concise method by which visualisations can be described and attributed to

specifications. The design of this particular component in the ViZ system was

179

carefully chosen to reflect the desires of developers - an overly complex approach,

with a possibly different syntax would have been inappropriate, and would probably

require unnecessary effort to use.

A particularly important concern, and one that is reflected by the fourth critical factor,

is that of development costs. When employing prototypes, in any form, in a software

development process, it is imperative that every effort should be made to reduce the

resources and costs required. In terms of addressing this particular factor, the ViZ

system offers a rudimentary reuse mechanism manifested through the visual

component repository and the polymorphic characteristics of the visual

representations. This facility also enables a visual prototype to scale without a

corresponding scaling in development effort. However, the efficacy of this can be

questioned, especially when new validation projects are considered. The usefulness of

reuse obviously depends upon the availability of visual representations at the time

they are required. If no such visual representations exist then they must at least be

created, thus resulting in no savings of effort or time. However, this is a problem that

affects the reuse paradigm in general and not the ViZ approach specifically.

Recognition of the fact that differences exist between developers and stakeholders is

the focus the fifth critical factor. This factor has lead to the development of the ViZ

system. Indeed, the fundamental aim of the system has been to address these

differences. Of importance however, is the need to engage the stakeholders in the

validation process and enhance their experience in this respect. Visualising prototype

behaviour using imagery and terminology with which they are familiar provides a

large stepping-stone towards comprehension. From comprehension comes

engagement, and then discussion about the requirements that the prototype represents.

To this end, it is argued that the very existence of the ViZ system addresses this

particular critical factor.

Review o f the ViZ System

Evaluating the ViZ system using the approach used for surveying existing systems

provides a means of classifying ViZ and comparing it to these systems. To this end,

the same taxonomy will be employed as described in Section 2.3. The criteria that

180

comprised this were described in detail in Table 2.1. The results of surveying the ViZ

system are given in Table 5.2.

Application Domain
Unlimited. The V iZ system can be applied to an
extensive range of domains and system types.

Visual cues (the lowest
level in the visualisation
hierarchy)

A variety of visual cues are available, including
geometric shapes, text, and the importation of
photographic images.

Visualisation objects
(the intermediate level in
the visualisation
hierarchy)

Appearance components are provided that
encapsulate the visual details necessary to depict
an execution artefact or a single contextual detail.
Dynamic components specify animation
components.

s s s

Scenes (the highest
level in the visualisation
hierarchy)

Scenes are provided as collections of appearance-
and dynamic components. Used to depict/visualise
complete ZAL expressions.

Dynamism
Dynamism is provided through animation of
appearances. Appearances are moved, in real time,
around the screen when necessary.

✓ ✓

Flexibility
The Appearance-, Dynamic-, and Scene editors
enable creation and modification of all necessary
visual components using graphical user interfaces.

v s

Representing
Relationships

No specific mechanisms are offered to depict
relationships between visualisation objects. These
must be created and displayed as contextual details
by the developer/visualisation designer.

s

Abstraction

No specific mechanisms are offered for
automatically creating abstract views of the
prototype execution. The developer/visualisation
designer must create these through the existing
visual apparatus.

Correspondence

Correspondence between the meaning of a visual
representation and specification is assured through
the correspondence preserving mechanism. This
requires the certification of visualisation
components as being appropriate for a particular
application, and the tools enforce this when they are
being applied.

Table 5.2. Review and classification o f the features o f the ViZ system.

5.1.3 Demonstration of the Effectiveness of the System

The third contribution of the research was to demonstrate the ViZ system. The aim

was to provide a validation of the system by illustrating its capabilities and

effectiveness. An evaluation of this particular contribution therefore centres upon

determining the success of the validation effort.

The demonstration of the effectiveness of the system was performed through three

case studies. These were documented in Chapter 4. The case studies also provided an

opportunity for illustrating how the steps in the ViZ process are undertaken.

Evidence to support that the case studies were successful is twofold. First, although

the case studies demonstrated the process of developing visual prototypes, the

resulting prototypes were nonetheless important. Such prototypes showed the

potential the system has for portraying requirements in a graphically oriented manner.

Contrast these prototypes to the text-based prototypes created with the RealiZe

system. The fundamental tenet of this thesis argues that the visual forms are indeed

superior for communicating the meaning of the underlying requirements, and can be

used to stimulate dialogue in ways that would not occur with the text-based

counterparts. The case studies were successful in demonstrating this.

In addition, the process, as illustrated by the case studies, offers a means to arrive at

and subsequently use visual prototypes in a repeatable manner. The case studies

successfully demonstrated this repeatability. Each case study was carried out using the

same systematic approach, in the style of a scientific experiment. This facilitated the

demonstration of the similarities of applying the VIZ process to entirely different

systems.

5.2 Evaluation Against the Original Research Objective

The original research objective was to develop an alternative prototype execution

visualisation system. This was stated in Chapter 1. Through the individual research

contributions, the problems identified with existing systems have been addressed. The

properties that are otherwise desirable in such systems are also accommodated. The

novel contribution made by the ViZ toolset and process combine to provide a

comprehensive environment with which software developers and their customers can

engage, with confidence, in the requirements validation process. To this end, the

original research objective is satisfied.

5.3 Discussion

It has been established, and not surprisingly, that applying visualisation in the context

of requirements validation is not a straightforward activity. Through applying ViZ to

the case studies arid when exercising its features during the testing phase of its

development, several practical and technical issues have emerged that must be

considered if the use of the ViZ system, and the application of visualisation to

182

requirements engineering in general, is to be successful. This section discusses these

issues.

First and foremost, it is observed that there is the need to devise visual representations

that aptly portray the meaning of the requirements to which they are being applied.

This may seem obvious. Although technical mechanisms may provide measures to

address this fundamental issue, the responsibility ultimately lies with the developer or

visualisation designer to create and apply appropriate visual representations.

There is also the need to address the visual requirements of the stakeholders. This is in

relation to the above issue. When applying visualisation to any domain, meeting the

visual requirements of the audience is important. In visualising prototype execution,

this need is amplified. In many other domains where visualisation is applied, there

may be perhaps one or two types of viewers, quite often with similar levels of

technical skill and visual needs. However, in requirements validation, there may be

many types of stakeholders, all with different vested interests in the proposed software

system, and all with different levels of domain- or technical knowledge. This presents

a problem, as this variety cannot always be accommodated through a single style of

visual representation or appearance type. Addressing this issue could require both

non-technical and technical mechanisms. Firstly, the intended audience’s visual needs

and capabilities must be identified before visualisation development takes place.

Second, software developers or visualisation designers must not simply assume that

their representations of a proposed software system are appropriate, and that

alternative representations may be effective at communicating the behaviour of the

system to the stakeholders. Additionally, the visualisation software must contain

suitable features to permit multiple views. At present ViZ does not easily support

multiple views of the same execution.

One particularly significant non-technical issue has emerged. During the development

of visualisations for a variety of systems, it has become apparent that devising visual

representations for some types of systems is more difficult than it is for others. The

difficultly lies with the apparent degree of abstraction of the software system being

considered. Some systems lend themselves quite easily to visualisation. These systems

mostly have identifiable real-world counterparts, closely model real-world systems, or

183

have tangible components (such as Abstract Interface Objects) with which a user can

interact. These types of system may be regarded as being ‘less abstract’. On the other

hand, even though their requirements might be founded in the real world, some

systems have no real-world counterpart; they might perform some kind of processing

using complex algorithms whose internal operational details are hidden, or they may

not have many inputs or outputs with which to easily gauge execution progress. These

types of systems may be regarded as being ‘more abstract’, and present difficulties for

visualisation development. Any solution certainly lies with the creative skill of the

software developer or visualisation designer and their ability to invent visualisation

schemes to portray the execution of such abstract systems.

Furthermore, it has been discovered that too much visualisation is potentially a bad

thing. For most validation projects, it is simply not necessary or even desirable to

visualise every detail of a prototype’s execution. Although the ViZ system enables

visualisation of potentially all execution artefacts, such power and freedoms must be

used with restraint. Offering too many visual representations leads to ‘information

overload’ on the part of the stakeholder, and this may lead to confusion, distraction,

and incomprehensibility - negating the very benefits that the application of

visualisation were intended to overcome. For example, during the case studies, we

have found it unnecessary to visualise most system housekeeping operations (i.e. the

rather mundane updates to the software system’s state). These add little to the overall

presentation of system behaviour non-technical stakeholders. However, we have

found it necessary to provide visualisations for activities in which actors play major

roles (or in other words, where users would directly be involved with the system).

Importantly, the use of scenarios in the ViZ approach has provided us with a basis to

establish where visualisation might be appropriate and best applied.

It is also important to exploit opportunities for reusing visual representations

whenever they arise. Capitalising on reuse reduces the effort, time and cost required to

develop visualisations. This is an important point; especially when software

developers are under continuous pressure to reduce the ‘time-to-market’ and complete

projects within allotted budgets. Additionally, visualisation reuse promotes visual

consistency, whereby representations are associated repeatedly with the same

execution artefacts. If a stakeholder becomes familiar with a particular association,

184

their mental load will be reduced - they will not have to perform a translation between

representation and artefact. If visual consistency is maintained within a validation

project, the likelihood that comprehension will ensue is greatly increased.

Lastly, it is important to consider the issue of maintaining the effectiveness and utility

of ViZ (and systems that facilitate visualisation of prototype execution behaviour in

general) in light of continuous developments within the areas of visualisation and

software engineering.

Developments in visualisation and graphical technologies, driven by research and

market forces, are rapid and frequent. New hardware devices, software techniques and

tool support emerge daily. Current developments include, for example:

• The advancement of real-time three-dimensional graphics, and especially making

this technology more accessible to application developers through toolkits,

libraries and application programmer interfaces (APIs).

• Professional-quality desktop video recording, editing and playback facilities,

enabled by recent advances in processing power and storage capacities, that

application developers can embrace and use in their software systems.

• Multimedia tools and environments with rich feature-sets and built-in scripting

languages that can be used to assist in the process of producing graphical and

multimedia assets (images, visualisations, animations, etc).

It is impossible that the design of a visualisation system such as ViZ could

accommodate all future graphical developments in advance. Indeed, this was not in

the original ViZ requirements brief. Instead, the emphasis should be placed on

applying whatever technologies are appropriate to portray requirements in forms that

are amenable to customer comprehension, as new technologies emerge.

Software engineering research and the evolution of practices in industry result in a

constant stream of advances in the realm of developing software systems. These

advancements occur across the entire spectrum of software engineering activities,

ranging from principles and theory, to processes and methods, and on to techniques

and tools. Of particular interest to this research are advancements in the areas of

185

requirements engineering and software development processes. Recent advancements

have seen the development and introduction of, for example:

• Agile methods, which are development processes that are responsive to changing

situations (i.e. changes in requirements, changing in business strategies, and

changes to environmental factors).

• Extreme programming, which is a development approach encompassing the entire

lifecycle that combines novel software design and implementation methods.

Irrespective of the approach used to develop systems however, there is one

fundamental activity that needs to be pursued before any development takes place, and

this is capturing requirements. The flexibility of prototyping, in either throwaway or

incremental forms, combined with its capacity to be incorporated into any software

development lifecycle, makes it still the technique of choice when developers have to

understand and capture unknown or partially known requirements. It can be argued

therefore, that visualising prototype execution behaviour is also relevant and would

support and enhance prototyping in any lifecycle context. Integrating the process of

visualisation into different software development lifecycles then becomes the

substantive issue.

5.4 Opportunities for Future Work

Through the development and application of the ViZ system, it has become apparent

that several directions could be pursued in the future. These would not only address

current shortcomings with the ViZ system, but also facilitate the further research that

was beyond the original scope of this thesis. The work can be partitioned into two

categories: 1) enhancements to the current ViZ system, and 2) further research into

applying visualisation to prototyping in the context of requirements validation, using

the ViZ system as a vehicle to achieve this. These will be elaborated in the following

sections.

5.4.1 Enhancements to the ViZ System

This category of future work largely addresses technical issues that pertain to the

current ViZ system. The aim is to provide enhancements or to address shortcomings

186

that have been identified. It is envisaged that these additions could be implemented

over the short- to medium term.

1. Embracing emerging technologies to that could benefit the presentation of

prototype execution behaviour, as mentioned in the ‘Discussion’ in Section 5.3.

This may be considered a significant enhancement to the ViZ system. The aim

would be to develop a mechanism that enables new technologies to be used by the

existing ViZ environment without the need to re-engineer the application each

time a new technology became available. Such a mechanism is traditionally

developed using a shared data model that specifies how data produced by one

application can be interpreted and used by another. This enables an application to

use the services of others by simply importing their products. Ultimately, it

becomes a simple matter of interpreting data formats. For each data format being

considered, an application requires an interpreter that specifies how the data shall

be interpreted, imported and used. Each interpreter can be constructed in terms of

a ‘plug-in’ that can be developed as new data formats become available. These

could be developed in accordance with a standard that states how the plug-ins

should be implemented. An appropriate software architecture that enables the

plug-ins to be used by the application would also be required.

In the ViZ system, this approach could be used to facilitate the importation of files

created with emerging third-party multimedia or animation applications. The data

in these files could then be applied by the ViZ application to visualising prototype

execution. The ViZ system would not have to require knowledge of the external

application in advance - instead, plug-ins could simply be developed when

necessary. This would enable ViZ to take advantage of new technologies and tools

when they became available.

2. In the review of the ViZ system, presented above in Section 5.1.2, two areas were

identified as being deficient. Both of these concerned the visualisation features

available for portraying relationships between visual objects and those available

for depicting levels of abstraction. Presently, to depict relationships or levels of

abstraction, the developer or visualisation designer must provide the appropriate

visual constructions. An enhancement to the ViZ system would be required to

187

address this. The enhancement should comprise the necessary visual cues,

augmented with appropriate user interface facilities to manipulate these.

3. The ViZ system should provide multiple views of the same prototype. Such a

feature would enable different stakeholder types to view the requirements in ways

that would be most appropriate for them. For example, managers may require a

different style of visualisation to end-users - differences in levels of detail or

appearances may be required. The ViZ system should provide a suitable

mechanism to enable the simple switching of visualisation styles, turn

visualisations on or off, and develop and associate different visual representations

with the underlying specification. Such a mechanism would require modifications

to both the ViZ toolset, further syntax enhancements to the ZAL notation, and

refinements to the ViZ process.

5.4.2 Further Research in Applying Visualisation to Requirements Prototyping

This second category of future work concerns larger-scale research that might be

undertaken over the longer-term.

1. One direction would be to apply the ViZ system to a greater number of validation

projects in different application domains with the aim of conducting empirical

studies into the effectiveness of applying visualisation to requirements validation.

Such studies are required to indicate further research directions in applying

visualisation to requirements engineering. Areas of study could include

investigations into the cognitive dimensions that pertain to the way prototypes are

comprehended so they can be portrayed more effectively in the validation process,

or the most appropriate way of portraying particular application domains or

system types. In each study, the ViZ system provides the means necessary produce

visual prototypes.

2. Presently, the ViZ system is used at the latter end of the requirements inquiry

cycle [Potts94]. The system relies upon the earlier activity of elicitation being

undertaken to produce a formal specification on which the construction of a visual

prototype can be based. One research opportunity would be to change this

arrangement. The aim would be to devise an alternative process that enabled the

188

ViZ approach to be employed earlier in the requirements cycle to directly

facilitate the elicitation and definition of a formal specification of software

systems. Such a process would be a natural refinement of the ViZ approach and

would further extend its usefulness in requirements engineering.

3. Over the longer term, another potentially useful research direction could entail the

application of the visualisation technology encompassed within the ViZ system to

a requirements engineering approach that does not rely upon formal

specifications. The aim of this research would be to bring the benefits of prototype

visualisation to the wider requirements engineering community - and to those

who do not use formal specifications. Such a direction stems from the recognition

that formal methods, for a number of reasons, have experienced only a limited

adoption within the wider software engineering industry. However, dispensing

with the mathematical basis for prototype development would necessitate the

introduction of an approach that would still facilitate execution driven

visualisation. A way forward may be found by devising an alternative prototype

execution mechanism based upon simulation techniques, combined with visual

programming [Myers92].

5.5 Concluding Remarks

Research in the discipline of computing is often initiated and conducted to address

problems that emerge as a consequence of using existing tools, techniques or

approaches. This research has been conducted to address a particularly challenging

problem that has emerged in requirements engineering. The problem concerned the

way prototype execution behaviour is communicated to customers when prototypes

are developed using executable formal specifications. It is necessary for customers to

comprehend their execution behaviour if they are to make reasoned decisions about

the accuracy of the requirements liberated during the requirements process. The

problem is such that prototyping approaches employing executable formal

specifications often portray execution in ways that are more suited to developers than

to customers. The research addressed the problem by developing a new and innovative

prototyping environment, known as ViZ, which employs visualisation and graphical

189

representations as the primary means o f communicating prototype execution

behaviour.

This thesis has documented the research. It has provided a survey o f existing work in

the field and identified deficiencies, described the requirements o f the ViZ system in

response to those deficiencies, then presented the design and architecture o f the

system. To validate the ViZ system, the thesis described its application to three case

studies. In all, this thesis has clearly demonstrated that applying visualisation to

requirements engineering has practical benefits, and that this application is justified.

It would also be prudent to mention potential advances in the field o f visualising

prototype execution. Conducting this research has revealed certain general trends and

needs. It is envisaged that future developments w ill be based upon the m ixing o f

software technologies with techniques from disciplines external to software

engineering such as graphic design, human-factors and systems theory. D oing so

would provide the necessary ‘added value’ that is required to enhance the underlying

practice o f visualising prototype execution. In addition, there still remains the need to

augment both new and existing requirements engineering practices and tools with

visualisation facilities. As a consequence, the development o f new approaches should

emerge that w ill enable a developer to perform requirements validation with greater

confidence.

To conclude, it is hoped that through this research the practice o f requirements

engineering, and the wider field o f software engineering w ill be better informed.

Through persistent and practical research, and through the development o f new

approaches such as ViZ, the field o f software engineering can be refined and advanced

with the aim o f addressing the problems that continue to face the software industry

and associated disciplines.

190

References and Bibliography

[ACM03] Association fo r Computing M achinery - Recommended Curriculum for
Software Engineering
http://sites.computer.org/ccse/
Accessed 30th July 2003

[Ae87] R apid Prototyping o f Real-Tim e Software Using Petri-Nets
Tadashi Ae, Reiji Aibara
1987 IEEE Workshop on Visual Languages
19-21 August, 1987, Linkoping, Sweden,
ISBN 91 7870 208 9, IEEE CS Press, p234-241

[Alford77] A Requirements Engineering M ethodology fo r Real-Tim e Processing
Requirements
Mack Alford
IEEE Transactions on Software Engineering.
January 1977, Vol SE-3, No 1, p60-9

[Andriole87] Storyboard Prototyping fo r Requirements Verification
S. J. Andriole
Large Scale Systems in Information and Design Technologies,
Vol 12, No 3, p231-247, 1987.

[Barrett94] Process Visualisation - Getting the Vision R ight is K ey
J. L. Barrett
Information Systems Management
Vol 11, No 2, 1994, p i 4-23

[Benford96] Visualising and Populating the Web: Collaborative Virtual
Environments fo r Browsing, Searching and Inhabiting Webspace
S. Benford, D. Snowdon, C. Brown, G. Reynard, R. Ingram
Proc JENC8 - 8th Joint-European Networking Conference JENC8.
1997, 123/1-9

[Bertrand97] Grail/Kaos: A Tool fo r Goal-Directed Requirem ent Analysis
P. Bertrand, R. Darimont, J. Declercq, E. Delor, P. Massonet,
A. van Lamsweerde
Genie-Logiciel. Dec. 1997; (46): 139-44
EC2 & Development

[Blumofe88] Executing Real-Time Structured Analysis Specifications
R. Blumofe
ACM Sigsoft Software Engineering Notes
Vol 13, No 3, July 1988, p32-40

[Bocker86] The Enhancement o f Understanding Through Visual Representations
Heinz-Dieter Bocker, Gerhard Fischer, Helga Nieper
Proceedings o f the CHI’86 Conference - Human Factors In Computing
Systems III
13-17 April 1986, Boston, USA, Edited by Marilyn Mantei, Peter Orbeton,
ISBN 0-444-70052-8, p44-50

191

http://sites.computer.org/ccse/

[Boehm76]

[Boehm81]

[Boehm84]

[Boehm88]

[Booch99]

[Brooks87]

[Buckberry99]

[Camara94]

[Carey90]

[Carr95]

[Chen76]

Software Engineering
Barry W. Boehm
IEEE Transactions on Computers
Vol 25, No 12, pl226-1241, December 1976

Software Engineering Econom ics
Barry W. Boehm
Prentice Hall, Englewood Cliffs, NJ, 1981

Verifying and Validating Software Requirements and Design
Specifications
Barry W. Boehm
IEEE Software
January 1984, p75-88

A Spiral M odel o f Software D evelopment and Enhancement
Barry W. Boehm
IEEE Computer
May, 1988, p61-72

The Unified M odelling Language User Guide
Grady Booch, James Rumbaugh, Ivar Jacobson
Addison Wesley, 1999

No Silver Bullet - Essence and Accidents o f Software Engineering
Frederick P. Brooks, Jr.
IEEE Computer
Vol 20, No 4, April 1987, plO-19

An Editor and Transformation System fo r a Z Animation Case Tool
Graham R. Buckberry
PhD Thesis
Sheffield Hallam University, August 1999

Pictorial M odelling o f D ynamic Systems
Antonio S. Camara, Francisco C. Ferreira, Edmundo Nobre, Jose E. Fialho
Systems Dynamics Review
Vol 10, No 4, 1994, p361-373

Prototyping: A lternative Systems Development M ethodology
J. M. Carey
Information and Software Technology
Vol 32, No 2, March 1990, pi 19-126

Experiments in Process Interface Descriptions, Visualisations and
Analyses
David C. Carr, Ashok Dandekar, Dewayne E. Perry
Software Process Technology 4th European Workshop
April 1995, pi 19-137, ISBN 3540592059

The Entity Relationship M odel - Towards a Unified View o f Data
P. Chen
ACM Transactions on Database Systems
Vol 1, No 1, p9-36, 1976

192

[Cohen86] The Specification o f Complex Systems
B. Cohen, W. T. Harwood, M. I. Jackson
Addison Wesley, 1986, ISBN 020114400x

[Combs92] Large Text Database Visualisation
N. Combs
Advances in Classification Research
Vol 3, Proceedings 3rd ASIS SIG/CR Classification Research Workings
25 Oct 1992, Pittsburgh, PA, USA, ISBN 0 938734 792 pl-14.

[Cooling94] M aking Form al Specifications Accessible Through the Use o f
Animation Prototyping
J. E. Cooling, T. S. Hughes
Microprocessors and Microsystems
Vol 18, No 7, September 1994, p385-392

[Cox89] PROGRAPH: A Step Towards Liberating Programming fro m Textual
Conditioning
P. T. Cox, F. R. Giles, T. Pietrzykowski
1989 IEEE Workshop on Visual Languages
October 4-6, 1989, Rome, Italy, IEEE Computer Society Press
ISBN 0-8186-2002-1

[Daly77] M anagement o f Software Development
E. B. Daly
IEEE Transactions on Software Engineering
May 1977; Vol SE-3, No 3, p229-42

[Davis88] A Comparison o f Techniques fo r the Specification o f E xternal System
Behaviour
Alan M. Davis
Communications o f the ACM
Vol 31, No 9, September 1988, pl098-l 115

[Davis92] Operational Prototyping: A N ew Development Approach
Alan M. Davis
IEEE Software
September 1992

[Davis93] Software Requirements: Objects, Functions and States
Alan M. Davis
Prentice Hall
Englewood Cliffs, 1993

[DeMarco78] Structured Analysis and System Specification
Tom DeMarco
Yourden Press, 1982

[Diaz-Gonzales87] Envisager: A Visual, Object-Oriented Specification Environment fo r
Real-Time Systems
Jose P. Diaz-Gonzales, Joseph E. Urban
Proceedings 4th Int. Workshop on Software Specification and Design
1987, pl3-20

193

[Dobson94]

[Domik93]

[Dorfman90]

[Dorfman97]

[Duisberg87]

[Dulac02]

[Evans94]

[Faulk97]

[Feijs98]

Learning Through and by Visualisation: A Case o f Inter-M edia
Translation
Michael W. Dobson
IFIP Transactions A - Computer Science and Technology
Vol 48, 1994, p77-94

Scientific Visualisation
G.O. Domik
Educational Multimedia & Hypermedia Annual Conference -
Proceedings o f ED-MEDIA ‘93 - World Conf. on Education Media and
Hypermedia
23-26 June 1993, Orlando, USA, pl53-160, ISBN 1 88009 406 1

System and Software Requirem ents Engineering
Merlin Dorfman
in System & Software Requirements Engineering
Edited by Richard H. Thayer, Merlin Dorfman,
IEEE Computer Society Press, 1990, ISBN 0 8186 8921 8, p4-16

Requirements Engineering
Merlin Dorfman
in Requirements Engineering (2nd Ed)
Edited by Richard H. Thayer, Merlin Dorfman,
IEEE Computer Society Press, 1997, p7-22

Visual Programm ing o f Program Visualisations
Robert Anthony Duisberg
1987 IEEE Workshop on Visual Languages
August 19-21, 1987, Linkoping, Sweden, IEEE Computer Society Press
ISBN 91 7870 208

On the Use o f Visualization in Form al Requirements Specification
Nicolas Dulac, Thomas Viguier, Nancy Leveson, Margaret-Ann Storey
IEEE Joint Int. Conference on Requirements Engineering (RE’02)
Essen, Germany, 9-13th September 2002

Visualising Concurrent Z Specifications
A. S. Evans
Z User Workshop - Proceedings 8th Z User Meeting
29-30 June 1994, Cambridge UK, Springer-Verlag, p269-281
ISBN 3 540 19884 9

Software Requirements: A Tutorial
S. R. Faulk
in Requirements Engineering (2nd Ed)
Edited by Richard H. Thayer, Merlin Dorfman,
IEEE Computer Society Press, 1997, p i28-149

3D Visualization o f Software Architectures
L. Feijs, R. De-Jong
Communications o f the ACM. December. 1998
Vol 41, No 12, p72-8

194

[Filipidou98]

[Folin92]

[Frenkel 8 8]

[FraioliOO]

[Fujii97]

[Gane79]

[Gershon98]

[Gibbs94]

[Goguen93]

[Gomaa83]

[Gomaa86]

Designing with Scenarios: A Critical Review o f Current Research and
Practice
D. Filipidou
Requirements Engineering Journal
Volume 3, No 1, 1998, pi

The Essentials o f Scientific Visualization: B asic Tools and an Example
S. E. Follin
Social-Science-Computer-Review, Fall 1992, Vol 10, No 3, p337-354

The A rt and Science o f Visualizing Data
Frenkel,-K.-A.
Communications o f the ACM. February, 1988, Vol 31, No 2, pi 10-21

Storyboarding 101
James O. Fraioli
Michael Wiese Productions, ISBN 0 941188 25 6, 2000

Software Verification and Validation
Roger U. Fujii, Dolores R. Wallace
in Software Engineering
Edited by Merlin Dorfman, Richard H. Thayer
IEEE Computer Society Press, 1997, p220-234

Structured Systems Analysis: Tools and Techniques
C. Gane and T. Sarson,
Prentice-Hall, 1979

Information Visualization
N. Gershon, S. G. Eick, S. Card,
Interactions, Vol. 2, March-April, 1998

Software's Chronic Crisis
W. Wayt Gibbs
Scientific American
September 1994

Techniques fo r Requirements Elicitation
Joseph Goguen, Charlotte Linde
Proceedings, Requirements Engineering '93
Edited by Stephen Fickas, Anthony Finkelstein,
IEEE Computer Society, 1993, p i52-164

The Im pact o f R apid Prototyping on Specifying User Requirements
Hassan Gomaa
ACM Sigsoft. Software Engineering Notes
Vol 8, No 2, April 1983, pl7-28

Prototypes - K eep Them or Throw Them Away?
Hassan Gomaa
Prototyping: State o f the Art Report.
Edited by M. Lipp, Oxford, UK, Pergamon Infotech Ltd, 1986
ISBN 008 034 0938

195

[Gomaa90]

[Green91]

[HagenOO]

[Hardgrave93]

[Hart99]

[Hayes86]

[Hayes89]

[Hekmatpour88]

[Heymans98]

[Hooper82]

The Im pact o f Prototyping on Software System Engineering
Hassan Gomaa
System & Software Requirements Engineering
Edited by Richard H. Thayer, Merlin Dorfman,
IEEE Computer Society Press, 1990, ISBN 0 8186 8921 8

Comprehensibility o f Visual and Textual Programs: A Test o f
Superlativism Against the "M atch-M ism atch' Conjecture
T. R. G. Green, M. Petre and R. K. E. Bellamy
Empirical Studies o f Programming: Fourth Workshop
1991, New Brunswick, NJ
Ablex Publishing Corporation. pl21-146

Scientific Visualization - M ethods and Applications
H. Hagen, A. Ebert, R.H. Van-Lengen, G. Scheuermann
Lecture Notes in Computer Science, Vol 2000 - “Informatics -1 0 Years
Back, 10 Years Ahead”, p311-327
Editor R. Wilhelm
Springer Verlag

Prototyping Effects on the System Development L ife Cycle: An
Em pirical Study
Bill C. Hardgrave, E. Reed Doke, Neil E. Swanson
Journal o f Computer information Systems
Vol 33, No 3, 1993, pl4-19

The A rt o f the Storyboard
John Hart
Focal Press
ISBN 0 240 80329 9, 1999

Specification Case Studies
I. J. Hayes
Prentice Hall, 1986, ISBN 0 13 826595 X

Specifications A re N ot Necessarily Executable
I. J. Hayes, C. B. Jones
Software Engineering Journal, November 1989, p330-338

Software Prototyping: Form al M ethods and VDM
S. Hekmatpour, D. Ince
Addison Wesley, 1988

Scenario-Based Techniques fo r Supporting the Elaboration and the
Validation o f Form al Requirements
M.D. Heymans, E. Dubois
Requirements Engineering Journal
Volume 3, No 3&4, 1998, p202

Scenario-Based Prototyping fo r Requirements Identification
James W. Hooper, Pei Hsia
ACM Sigsoft Software Engineering Notes, 1982, Vol 7, No 5, p88-93

196

[Humphreys89]

[Hung02]

[IEEE98a]

[IEEE98b]

[Jackson93]

[Jensen81]

[Jones90]

[KotonyaOO]

[Lalioti93]

[LamsweerdeOl]

[Lamsweerde95]

Visual Cognition: Computational, Experim ental and Neuropsychological
Perspectives
Glyn W Humphreys, Vicki Bruce
Pub: Hove Erlbaum., 1989
ISBN 0863771254

M odels o f the Visual System
Edited by George K. Hung, Kenneth J. Ciuffreda
Kluwer Academic/Plenum Publishers
ISBN 0306467151

IE E E Recom m ended Practice fo r Software Requirements Specifications
IEEE Std 830-1998, IEEE Inc. 1998

IE E E Guide fo r D eveloping System Requirem ents Specifications
IEEE Std 1233-1998, IEEE Inc. 1998

Form al Specification and Animation o f a Water Level M onitoring
System
P. S. Jackson, P. A. Stokes
Technical Report INFO-0428
Atomic Energy Control Board, Ottawa Canada
March 1993

Coloured Petri Nets and the Invariant M ethod
K. Jensen
Theoretical Computer Science
June 1981, Vol 14; No 3, p317-36

System atic Software Development Using VDM
C. B. Jones
Prentice Hall, Englewood Cliffs, 1990

Requirem ents Engineering, Processes and Techniques
G. Kotonya, I. Sommerville
John Wiley, 1998

Visualisation fo r Validation
V. Lalioti, P. Loucopoulos
Lecture Notes in Computer Science 685
Edited by Colette Rolland, Francois Bodart, Corine Cauvet
Advanced Information Systems Engineering 5th Int. Conf. CAiSE’93,
p586-600, June 1993, Paris, France, Springer Verlag, ISBN 3 540 56777 1

Goal Oriented Requirements Engineering: A Guided Tour
A. van-Lamsweerde
Proceedings 5th IEEE International Symposium on Requirements
Engineering
2000, p249-62

Goal-Directed Elaboration o f Requirem ents fo r a M eeting Scheduler:
Problems and Lessons Learnt
A. Van Lamsweerde, R. Darimont, P. Massonet
Proc 2nd International Symposium on Requirements Engineering (RE95)
York, England, 1995, p i94-203

197

[Larkin87]

[Lohse94]

[Luqi88]

[Luqi89]

[Mantey94]

[Marca88]

[Margaria98]

[Marr82]

[Martin93]

[McConnell03]

[Meyer85]

[Morrey98]

Why a Diagram is (Sometimes) Worth Ten Thousand Words
Jill H. Larkin, Herbet A. Simon
Cognitive Science, Vol 11, 1987, p65-99

A Classification o f Visual Representations
Gerald L. Lohse, Kevin Biolsi, Neff Walker, Henry H. Rueter
Communications o f the ACM
Vol 37, No 12, December 1994, p36-49

A Computer-Aided Prototyping System
Luqi, Mohammad Ketabchi
IEEE Software
March 1988, p66-72

Software Evolution Through R apid Prototyping
Luqi
IEEE Computer
May 1989

A View o f Visualisation - Its Origins, D evelopm ent and N ew D irections
P. E. Mantey
SPIE - Proc. o f the Society o f Photo-Optical Instrumentation Engineers
Vol 2178, No 22, 1994, p2-l 1

SADT: Structured Analysis and Design Technique
D. A Marca, C. L. McGowan
McGraw-Hill Co.
1988

Form al M ethods and Customised Visualisation: A F ruitful Symbiosis
T. Margaria, V. Braun
Lecture Notes in Computer Science, No. 1385 - “Services and
Visualisation”, p i90-207, Pub: Springer Verlag, 1998

Vision. A com putational Investigation into the Human Representation and
Processing o f Visual Information
David Marr
Freeman, 1982

Visualisation fo r Telecommunications Network P lanning
J. C. Martin
IFIP Transactions B - Applications in technology
Vol 9, 1993, p327-334

Software Project Survival Guide
Steve McConnell
Microsoft Press, ISBN: 0072850612

On Formalism in Specifications
Bertrand Meyer
IEEE Software, January 1985, p6-26

A Toolset to Support the Construction and Animation o f Form al
Specifications
Journal of Systems and Software
No 41, 1998, pl47-160

198

[Myers88]

[Myers92]

[Myers02]

[Narayanan95]

[Naur69]

[Ozcan98a]

[Ozcan98b]

[Pamas69]

[Pamas77]

Autom atic Data Visualisation For N ovice P ascal Programmers
Brad A. Myers, R. Chandhok, A. Sareen
IEEE Workshop on Visual Languages
October 10-12, 1988, Pittsburgh, PA, USA, pl92-198
IEEE Computer Society Press

Survey on User Interface Programming
Brad A. Myers, Mary Beth Robson
CHI’92 Conference Proceedings. ACM Conference on Human Factors in
Computing Systems
3-7 May 1992, Monterey, CA, USA, ACM Press, p i95-202
ISBN 0 89791 513 5

Exploring Visualization o f Complex Telecommunications Systems N etw ork
Data
M. Myers, R. Sterritt, E. P. Curran, Hongzhi-Song, A. E. Kamel,
K. Mellouli, P. Borne
2002 IEEE International Conference on Systems, Man and Cybernetics
Conference Proceedings Cat. No. 02CH37349, Vol.7
IEEE Computer Society Press

Language Visualisation: Applications and Theoretical Foundations o f
a Prim itive-Based Approach
A. Narayanan, D. Manuel, L. Ford, D. Tallis, M. Yazdani
Artificial Intelligence Review
No 9, 1995, p215-235

Software Engineering: Report on a Conference Sponsored by the
NATO Science Commission
P. Naur, B. Randell
Garmisch, Germany, 7-11 October 1968
Scientific Affairs Division, NATO, Brussels

Requirem ents Validation B ased on the Visualisation o f Executable Form al
Specifications
M. B. Ozcan, P. W. Parry, I. C. Morrey, J. Siddiqi
Proceedings COMPSAC 1998, Vienna, Austria, August 1998
IEEE Computer Society Press

Visualisation o f Executable Form al Specifications fo r User Validation
M. B. Ozcan, P. W. Parry, I. C. Morrey, J. Siddiqi
Lecture Notes in Computer Science, No. 1385 - “Services and
Visualisation”, p i42-157, Pub: Springer Verlag, 1998

On The Use o f Transition Diagrams in the Design o f a User Interface
fo r an Interactive Computer System
David L. Pamas
Proc. 24th National ACM Conference, 1969, p379-385

The Use o f Precise Specifications in the D evelopment o f Software
David L. Pamas
Proceedings IFIP, Toronto, Canada, August 1977, p861-867

199

[ParryOO]

[Parry95]

[Paulk93]

[Peterson81]

[Petre90]

[Petri62]

[Pillet95]

[Potts94]

[Pressman97]

[QAA03]

[Rasure91]

Development o f a Visual Requirements Validation Tool
P. W. Parry, M. B. Ozcan
Procedings 2nd International Symposium on Constructing Software
Engineering Tools (CoSET 2000), June 2000, Limerick, Ireland, pi 12-120

The Application o f Visualisation to Requirem ents Engineering
P. W. Parry, M. B. Ozcan, J. Siddiqi
Proc. Conference on Software Engineering and its Applications
Paris, France, 1995, p699-701

Capability M aturity Model, Version 1.1
M. C. Paulk, B. Curtis, M. B. Chrissis, C. V. Weber
IEEE Software, July 1993, Vol 10, No 4, pl8-27

Petri N et Theory and the M odelling o f Systems
J. L. Peterson
Prentice Hall, Englewood Cliffs, 1981

Where to D raw the L ine With Text: Som e Claims by Logic D esigners
About Graphics in Notation
M. Petre, T.R.G. Green
Proceedings Human-Computer Interaction - Interact’90
Third International Conference on HJuman-Computer Interaction
27-31 August 1990, Cambridge, UK, North-Holland, ISBN 0 444 88817 9

Kommunikationen mit Automaten
C. A. Petri
PhD Thesis, University of Bonn, 1961
English Translation: Technical Report RADC-TR-65-377, Vol 1, Suppl 1
Applied Data Research, Princeton, NJ

PARA VER : A Tool to Visualize and Analyse Parallel Code
V. Pillet, J. Labarta, T. Cortes, S. Girona
WoTUG-18, p l7 —31, Manchester, April 1995

Inquiry-Based Requirements Analysis
Colin Potts, K. Takahashi, A.I. Anton
IEEE-Software. March 1994,
Vol 11, No 2, p21-32

Software Engineering
Roger S. Pressman
in Software Engineering
Edited by Merlin Dorfman, Richard H. Thayer
IEEE Computer Society Press, 1997, p220-234

Subject Benchmark - Computing
The Quality Assurance Agency for Higher Education
http://www.qaa.ac.uk/
Accessed 9th August 2003

An Integrated Data Flow Visual Language and Software Development
Environment
John R. Rasure, Carla S. Williams
Journal o f Visual Languages and Computing
Vol 2, 1991, p217-246

200

http://www.qaa.ac.uk/

[Regnell95]

[ReissOl]

[Remington97]

[Rolland98]

[Ross77]

[Royce70]

[Rumbaugh94]

[Scharer81]

[SEI03]

[Sekuler94]

[Shu89]

Im proving the Use Case Driven Approach to Requirements Engineering
Bjom Regnell, Kristofer Kimbler, Anders Wesslen
Proc. 2nd IEEE International Symposium on Requirements Engineering
March 27-29, 1995, York, England, p40-47.

Encoding Program Executions
S. P. Reiss, M. Renieris
Proceedings 23rd International Conf. on Software-Engineering (ICSE)
2001, p221-30, IEEE Computer Society Press

Computer-Human Interface Software Development Survey
Robert J. Remington
in Software Engineering
Edited by Merlin Dorfman, Richard H. Thayer
IEEE Computer Society Press, 1997, p220-234

A Proposal fo r a Scenario Classification Framework
C. Rolland, C. Ben Achour, C. Cauvet, J. Ralyte, A. Sutcliffe, N. Maiden,
M. Jarke, P. Haumer, K. Pohl, E. Dubois, P. Heymans
Requirements Engineering Journal
Volume 3, No 1, 1998, p23

Structured Analysis: A Language fo r Communicating Ideas
D. Ross,
IEEE Transactions on Software Engineering
Vol 3, No 1, p i6-34, January 1977

M anaging the Development o f Large Software Systems: Concepts and
Techniques
Winston W. Royce
Western Electronic Show and Convention - WESCON
Aug. 25-28 1970, Los Angeles, p .~A /l-l-A /l-9

Object-Oriented M odeling and Design
J. Rumbaugh
Object Expo - Conference Proceedings
1994, p249-55
SIGS Publications, New York, NY, USA

Pinpointing Requirements
Laura Scharer
Datamation, April 1981, p 17-22

Software Engineering Institute - Capability M aturity M odels
http ://www. sei. cmu.edu/cmm/ cmms/cmms .html
Accessed 9th August 2003

Perception
Robert Sekuler, Randolph Blake
McGraw Hill, 1994, ISBN 0070560854

Visual Programming: Perspectives and Approaches
N.C. Shu
IBM Systems Journal
Vol 28, No 4, p525-547, 1989

201

[SIGRAPH03]

[Sommerville97]

[SpenceOl]

[Spice03]

[Spivey92]

[Spoehr82]

[Sprott97]

[Standish98]

[Stasko92]

[Stephens93]

[Sutcliffe98]

A C M Special Interest Group on Graphics and Interactive Techniques
http://www.siggraph.org/
Accessed 8th August 2003

Requirem ents Engineering
I. Sommerville, P Sawyer
John Wiley, 1997

Information Visualisation
Robert Spence
Addison Wesley, ACM Press, 2001

Software Process Improvement and Capability Determination
http://www.sqi.gu.edu.au/spice/
Accessed 13 th August 2003

The Z Notation: A Reference M anual (2nd Ed)
J. M. Spivey
Prentice Hall, 1992

Visual Inform ation Processing
Kathryn T. Spoehr, Stephen W. Lehmkuhle
Oxford, Freeman, 1982
ISBN 0716713748

Scientific Visualization in M athem atics and Physics
J. C. Sprott, C. A. Pickover
Interactions, January-February 1997, Vol 4, No 1, p78-9
ACM Press

The Chaos Report
The Standish Group. 1998
http://www.standishgroup.com
Accessed 31st July 2003

Understanding and Characterising Software Visualisation Systems
John T. Stasko, Charles Patterson
Proceedings o f the 1992 IEEE Workshop on Visual Languages
September 15-18, 1992, Seattle, Washington
IEEE Computer Society Press, ISBN 0 8186 3090 6, p3-10

Controlling Prototyping and Evolutionary Development
M. Stephens, P. Bates
Proceedings 4th International Workshop on Rapid System Prototyping
28-30 June 1993, Research Triangle Park, USA, p l6 4 -l85
ISBN 0 8186 4300 5, IEEE Computer Society Press

Experience with SCRAM: A Scenario Requirements Analysis M ethod
A. G. Sutcliffe, M Ryan
Proc. 3rd International Conference on Requirements Engineering
(ICRE98)
Colorado Springs, USA, 1998, pl64-171

202

http://www.siggraph.org/
http://www.sqi.gu.edu.au/spice/
http://www.standishgroup.com

[Swartout82] On the Inevitable Intertw ining o f Specification and Implementation
W. Swartout, R. Balzer
Communications o f the ACM
Vol 25, No 7, p438-440, July 1982

[Swebok03] Software Engineering Body o f K nowledge (SWEBOK)
http://www.swebok.org/home.html
Accessed 30th July 2003

[Tanimoto87] Visual Representation in the Game o f Adumbration
Steven L. Tanimoto
1987 IEEE Workshop on Visual Languages
19-21 August, 1987, Linkoping, Sweden, ISBN 91 7870 208 9
IEEE Computer Society Press, p i7-28

[Thebaut90] M arcel: A Requirements Elicitation Tool Utilising Scenarios
Stephen M. Thebaut, Mark F. Interrante, T. Frederick Burch
Proc. o f CAiSE’90: 4th Int. Workshop on Computer-Aided Software
Engineering
5-8 December, 1990, Irvine, CA, IEEE Computer Society Press
ISBN 0 8186 2129

[TickitOl] The T ickIT Guide
British Standards Institution, 2001, ISBN 0 580 36943 9

[Thompson92] Prototyping: Tools and Techniques - Im proving Software and
Documentation Quality Through R apid Prototyping
M. Thompson, N. Wishbow
SIGDOC-’92 - The 10th Annual International Conference, 1992, p i91-9
ACM Press

[TSOO1] The H ighway Code
The Stationery Office Books, 2001
ISBN 0115522905

[Valeric03] Essentials o f Anatom y and Physiology
C. Valeric C., Tina Sanders
Publisher: F. A. Davis, 2003, ISBN: 0803610076

[VanSchouwen91] T h eA -7 Requirem ents M odel: Re-exam ination fo r Real Time System s and
an Application to M onitoring Systems
A. John van Schouewen
Technical Report 90-276
Queen’s University, Kingston, Ontario K7L 3N6
January 1991

[Vienneau97] A Review o f Form al M ethods
in Software Requirements Engineering (2nd Ed)
Edited by R.H. Thayer, M. Dorfman
IEEE Computer Society Press, 1997, p324-335

[Visualisation02] Proceedings 13th IEEE Visualization 2002 Conference (VIS 2002)
October 27 - November 01, 2002, Boston, MA, USA,
IEEE Computer Society Press

203

http://www.swebok.org/home.html

[Walton94]

[Ward85]

[Webster90]

[Weaver98]

[Weidenhaupt98]

[Williams94]

[Zave90]

[Zave97]

N ow You See It - Interactive Visualisation o f Large Data-Sets
Jeremy. Walton
Proceedings Share Europe
18 April 1994, Brussels, Belgium, p769-782

Structured D evelopment fo r Real-Time Systems
P. T. Ward, S. J. Mellor
Yourdon Press, 1985

Scientific Visualisation - Great H ope or Great Hype?
G. Webster
Proceedings o f Computer Graphics ‘90 Conference
6-8 November 1990, London, UK, p323-330, ISBN 0 86353 253

Practical SSAD M (Version 4+): A Complete Tutorial Guide
Philip L. Weaver, Nick Lambrou, Matthew Walkley
Financial Times Pitman, 1998

Scenarios in System Development: Current Practice
Klaus Weidenhaupt, Klaus Pohl, Matthias Jarke, Peter Haumer
IEEE Software
March 1998, p34-45

Assessm ent o f Safety Critical Specifications
Lloyd G. Williams
IEEE Software
January 1994, p51-60

A Comparison o f the M ajor Approaches to Software Specification and
Design
Pamela Zave
System & Software Specification
Edited by Richard H. Thayer, Merlin Dorfman,
IEEE Computer Society Press, 1990, ISBN 0-8186-8921-8

Four D ark Cqrners o f Requirements Engineering
Pamela Zave, M. Jackson
ACM Transactions on Software Engineering and Methodology
Vol 6, No 1, 1997

204

Appendix A - System Specification Document

Table of Contents

1. Introduction...206

1.1 System Purpose...206

1.2 System Scope.. 206

2. General System Description.. 206

2.1 System Context... 206

2.2 Major System Capabilities.. 207

2.3 User Characteristics.. 208

2.4 Operational Scenarios...208

3. System Capabilities, Conditions, & Constraints... 208

3.1 The TranZit System ... 208

3.2 The ZAL System ... 210

3.3 The ViZ System .. 210

4. System Interfaces..210

4.1 Interface Between Visual Representations and Specifications...............................210

205

1. Introduction

This document details the overall concepts, sub-systems, software products, interfaces, and capabilities
of a system that will enable a user to produce and use prototypes of software systems in the process of
requirements validation.

1.1 System Purpose

The purpose of the system is to facilitate the construction, execution and application of prototypes to
requirements validation.

The system is founded upon the use of formal specifications. It provides facilities for executing such
specifications to produce prototypes. The system then provides additional facilities to visualise the
execution of such prototypes with the aim of furthering their effectiveness in the validation process.

1.2 System Scope

It is intended that the system detailed in this document will be applied to the process of acquiring and
validating a requirements specification. The scope of the system encompasses the activities necessary to
enable a user to:

• Construct specifications of software systems using the formal specification notation Z.
• Transform Z specifications into an executable form that can subsequently be animated.
• Produce two alternative forms of prototype for use in the validation process:

1. A textually-based prototype, by subjecting the specification to execution.
2. A visually-based prototype, by applying visual representations to the execution results in real

time. To facilitate this, the system enables a user to compose appropriate visual
representations.

2. General System Description

2.1 System Context

To support the production and application of prototypes to requirements validation, the system consists
of a process and a set of complementary software tools. In terms of software, the approach comprises
three software systems as shown in Figure A.I.

The first tool is TranZit, which offers full-screen ‘WYSIWYG’ style editing, syntax analysis, and type
checking facilities for Z specifications as well as a transformation system that allows Z specifications to
be transformed into an executable form.

The second tool is ZAL, a lisp-based environment and notation to provide execution behaviour for Z
specifications. The relationship between the two tools is that TranZit is used to capture and format Z
specifications, and then subsequently to transform the Z into art executable form, based upon the
aforementioned ZAL notation, for processing by the ZAL environment. The ZAL environment
possesses an execution engine that interprets ZAL based specification to derive a dynamic and
interactive prototype.

The TranZit and ZAL software tools constitute the RealiZe approach.

The third tool is ViZ, an environment that shall provide support for visualising the execution of ZAL
specifications. This software system shall provides facilities to enable a user to compose, edit, and store
visual representations then apply them to the results of executing the specification.

206

Enter Z specifications

Execute specification to derive text-
based prototype

Transform Z specifications into an
executable form

Add visualisation details to ZAL
specification

TranZit

Apply visual representations to
derive a visual-prototype

Figure A.I. The tools that comprise the system fo r requirements validation.

2.2 Major System Capabilities

The capabilities of the system can be categorised in terms of the functionality available from the three
separate tools.

2.2.1 Capabilities of the TranZit Tool

1. Enable a user to compose and edit Z specification using a WYSIWIG-style editor.
2. Provide syntax analysis and type checking facilities for verifying the specification.
3. Enable the Z specification to be transformed into an executable form based upon the ZAL notation

- a notation that supports the execution of a large subset of the Z notation.

2.2.2 Capabilities of the ZAL Tool

1. Provide execution facilities for specifications based upon the ZAL notation to produce prototypes.
2. Enable a user to invoke execution of Z schemas via a simple text-based command-line user

interface.
3. Enable a user to interact with the prototype, i.e. enter values for inputs and view the results of

execution via a text-based based user interface.

2.2.3 Capabilities of the ViZ Tool

1. Provide support for visualising the execution of ZAL specifications.
2. Enable a user to compose visual representations via a graphical direct-manipulation style user

interface.
3. Enable a user to associate visual representations with specification elements to indicate to the

software system how to visualise the execution results. This is achieved through modifying the
ZAL specification to indicate which specification element to visualise and which visual
representation to apply.

4. Enable a user to select schemas and subject them to execution, and view the resulting visualisation
of that execution.

5. To provide execution behaviour for the specification, the ViZ system shall interface with the ZAL
execution engine, whereby the ZAL specification elements will be processed.

207

2.3 User Characteristics

It is envisages that there will be two classes of users for the system:
1. The developers of a software system who are concerned with the activity of eliciting, negotiating,

and validating requirements. This user class comprises those concerned with developing
specifications, composing visualisations, attaching visualisation details to specifications, and
executing the specification for the purpose of evaluation.

2. The customers, managers, or other non-development stakeholder of the same software system who
are involved with the requirements validation process. These users are concerned with executing
the specification, experimenting and interacting with the resulting model, and commenting on its
suitability and accuracy.

2.4 Operational Scenarios

The usage of the system is outlined in Figure A.2. This shows the capabilities of the system and how the
users will exploit these.

3. System Capabilities, Conditions, & Constraints

3.1 The TranZit System

At the most simplistic level, TranZit is a full-screen editor. It offers the same standard editing facilities
that can be found in any word-processing software, such as cut, copy, paste, etc. The difference between
TranZit and conventional editors is the ability to offer creation and editing of Z specifications. It offers,
through the user interface, the full range of Z symbols in accordance with the defined Z standard. To
enhance productivity and ease of use, TranZit includes facilities to perform operations such as the
automatic generation of Z schema boxes. To this end, TranZit is used to assist in the formalisation
process of specification production.

In addition to providing creation and editing facilities, one of the key features of TranZit is its ability to
transform a captured Z specification into a representation that facilitates execution.

Central to this is TranZit’s Z syntax- and type-checkers and its transformation engine. The syntax-
checker is used to verify the correctness of captured Z specifications with respect to the defined Z
syntax. In addition, the type-checker is used to verify the correct use of data types throughout Z
specifications. Transformation into the executable form cannot proceed until all syntax and type errors
are eliminated. Both checking mechanisms are a necessary part of the transformation process, whereby
a ‘picture’ of the structure and syntax of the specification is built up in readiness for transformation.
The transformation engine subsequently uses this information together with a database of Z to ZAL
rules to produce a syntactically equivalent form.

Transformation results in the production of a specification that is directly executable. This specification
is based upon the ZAL notation, which is a lisp-based executable subset of Z. The transformation
process is largely automatic. However, there may be instances where a developer may be required to
complete the process. This is due to the incompleteness of the ZAL notation with regards to its ability
to provide execution behaviour for only a subset (albeit a large subset) of Z. When this situation arises,
the developer must ‘fill in the gaps’ and complete the ZAL specification.

The output of the transformation process is an entity suitable for processing directly by the ZAL
execution engine.

208

Elicit initial informal
requirements

Developers enter
requirements into TranZit

Editor

Developers and customer
stakeholders collaborate to define

 initial requirements

Developers perform type
checking and syntax

analysis of specification

O

Tranzit

Z Editor
Syntax Checker
Type Checker

Transformation Engine

Developers transform
^ Z into ZAL

XT'
T\

ZAL Specification (Text File)

ZAL ViZ

O
Developers or

customer stakeholders
select schemas and

use the execution
engine to animate

them

o
Evaluate results

Communication
Between ZAL

and ViZ

ZAL Execution Engine

Text-based representation

5evelopers or visualisation
designers compose visual
representations using ViZ

1
"Developers associate visual
representations to elements of
the specification using a text

editor

Modified ZAL Specification
(Text File) c>

Developers or
customer

stakeholders
execute and

visualise selected
schemas

Evaluate results

Visually-based representation

Figure A.2. The approach to requirements validation.

209

3.2 The ZAL System

Execution support for prototypes is provided through the “Z Animator in LISP” (ZAL). It is via ZAL
that Z specifications can be executed. ZAL comprises a notation and an execution environment.

Execution is performed on an indirect basis whereby Z specifications are transformed (using TranZit)
into the ZAL executable form. The syntax and structure of ZAL is deeply rooted in LISP, and a lisp
execution system is used to provide execution behaviour. The ZAL notation provides execution
behaviour for a large subset of the Z language and includes all of the constructs necessary for writing
most practical specifications. The ZAL notation is less abstract than the equivalent Z, but there is
essentially an isomorphic correspondence between the two.

The ZAL notation provides for all the data structures in Z, for example, sets sequences, mappings, etc,
and provides a wide variety of Z derived operations that may be used on them. ZAL and its underlying
execution behaviour reflect the state based nature of Z, in that it allows system state models to be
specified and subsequently modified by the operations as execution progresses.

In addition to representing equivalent Z specifications, ZAL also possesses rudimentary input and
display capabilities that can be used to set and display the contents of system state variables.

The ZAL environment is subsequently used to process the ZAL specifications. The environment has
been developed to include facilities to invoke execution operations and to investigate system states and
the contents of data structures and variables.

3.3 The ViZ System

The ViZ system extends the TranZit and ZAL software tools by enabling the execution of ZAL
prototypes to be visualised.

The ViZ system is related to the existing software tools and process in such a way as to collect,
interpret, and subsequently visualise the results of executing ZAL specifications. The ViZ system
consists of:

1. A software system that plays a central role towards supporting of visualisation activities. This
system supports the development and production of visualisation details and allows visual
representations to be created or imported. In addition, it provides a mechanism for the long-term
storage of visual representations. It also promotes the concept of correspondence, through an
assurance mechanism, between the meaning of visual representations and underlying specifications.

2. A means to enable associate visualisations to specifications to indicate which elements of that
specification are to be visualised and which visual representation to apply. This may be described
in terms of an interface between the required visualisation details, the specification, and the
visualisation renderer.

3. User support in terms of a process that describes the activities and steps required to develop and
use visual prototypes in validating requirements specifications.

4. Separate software packages to enable users to compose and edit high-quality visual representations
(i.e. graphics packages), and allow them to edit specifications to add visualisation details (a text
editor).

Figure A.3 presents the relationships between the software components.

4. System Interfaces

4.1 Interface Between Visual Representations and Specifications

To enable appropriate visualisations of the execution of ZAL specifications to be rendered, the
software-based renderer must possess enough information as to which specification element to visualise
and which visual representation to apply.

210

To this end, it is necessary to enable such details to be specified by attaching them to the specification
itself. In this approach, the specification would then contain everything the software required in order to
visualise its execution.

It is unnecessary and infeasible and to include all visualisation details in the specification. Therefore the
details must be applied in the specification in a minimal form, which also means that much the
visualisation details required must be stored outside of the specification.

To enable this, an interface between visualisation details and the specification must be established. The
interface should possess the following characteristics:

1. ‘Independence’ - the mechanism for connecting visualisation details to a specification should
ideally be minimal, i.e. the mechanism should require that the least amount of visualisation detail
be implanted into a specification.

2. The storage mechanism should allow the majority of visualisation information to be separated from
the specification.

3. Syntactic enhancements to the ZAL notation should enable such visualisation details to be stored
separately to be ‘referenced’ from a specification.

Informal
Requirements

ZAL Specification
(Text File)

The ViZ
System

ZAL + Visualisation References
(Text File)

Communication link between
ViZ and ZAL

Visual Representations
(Graphic Files)

ZAL Execution
Engine

TranZit

Text Editor

Graphics/drawing
packages

ViZ
Software System

Figure A.3. The relationship between the software components and interfaces in the ViZ system.

In addition, visualisation details and syntactic enhancements shall be amenable to processing by the ViZ
software system in order for it to render appropriate visual representations.

The relationship between the elements of the interface and the ViZ system components is shown in
Figure A.4.

211

Figure A.4. The relationship between the ‘interface’ between specifications and visual representations.

212

Appendix B - ViZ Software Requirements Specification Document

Table of Contents

1. Introduction... 214

1.1 Purpose...214

1.2 Scope.. 214

1.3 Definitions.. 214

1.4 Document Overview..214

2. General Characteristics... 214

2.1 Product Perspective... 214

2.2 Interfaces..215
2.2.1 Software Interfaces..215
2.2.2 Software Communication Interface.. 216

2.3 User Characteristics...216

2.4 Product Functions..216

2.5 Assumptions & Dependencies..217

3. Specific Requirements... 217

3.1 Pre-Processing the Specification..218

3.2 Enable the User to Select a Schema.. 219

3.3 Interpret The Selected Schema...219

3.4 Facilitate the Rendering of Visualisations...220

3.5 Facilitating Storage of Visualisation Components... 221

3.6 Enabling Visualisation Components to be Composed and Edited..................222
3.6.1 Enabling Appearances to be Composed and Edited................ 222
3.6.2 Enabling Motions to be Composed and Edited.. 222
3.6.3 Enabling Visualisation Scenes to be Composed and Edited.....................223

3.7 Evaluate ZAL Expressions... 223

3.8 Establish Communication between ViZ and ZAL... 224

213

1. Introduction

1.1 Purpose

The purpose of this document is to present in a precise manner, all software requirements deemed
necessary in a system for visualising the execution of ZAL specifications. This specification will describe
the functional, non-functional, and interface requirements of a software system that is intended to support
the process of visualising the execution of ZAL specifications.

This specification is intended to be the baseline to supply sufficient and appropriate information with
which a suitable design and subsequent implementation can be derived.

1.2 Scope

The objective of this SRS is to describe the software requirements of the ViZ system. The system will
provide the support for composing and editing visual representations, enable such visual representations
to be attached to ZAL specifications, then process the resulting specifications with a view to executing
them and visualise the results of this execution. The software will also provide support for storing visual
representations in a repository.

1.3 Definitions

DDE - Direct Data Exhange
MS - MicroSoft™
ZAL - Z Animation in Lisp

1.4 Document Overview

This document has three major sections. Section 1 (Introduction) provides an overview of this SRS
document.

Section 2 describes the product that will be produced. This includes:

• Product perspective
• Product activity
• User characteristics
• Constraints
• Assumptions
• Requirements subsets

Section 3 addresses the specific requirements of the ViZ system. This includes:

• Functional requirements - these include inputs, process aspects, and outputs for each primitive
process inherent in the system.

• External interface requirements

2. General Characteristics

This section introduces the characteristics of the ViZ software system. It also describes its relationship to
other software systems.

2.1 Product Perspective

The ViZ software system is a part of set of software tools and processes that facilitate the development of
prototypes for requirements validation purposes. The relationship between the ViZ software system and
the other software systems are described in greater detail in the System Specification Document in
Appendix A. The relationships are summarised in Figure B .l. The figure describes the abstract

214

architecture of the system - components in broken lines indicate generic software tools, i.e. any
appropriate non-specific software tools that may be used to fulfil the task as indicated.

Informal
Requirements

ZAL Specification
(Text File)

Text Editor

TranZit

ZAL + Visualisation References
(Text File)

Communication link between
ViZ and ZAL

Graphics/drawing
packages

ZAL Execution
Engine

ViZ

Visual Representations
(Graphic Files)

Figure B .l. The relationships between ViZ and other relevant software packages in the system.

The requirements described in the remainder of this document relate only to the ViZ software system.

2.2 Interfaces

2.2.1 Software Interfaces

The ViZ software system is part of a larger overall approach that facilitates the production of prototypes
for requirements validation purposes. To this end, ViZ interfaces with the other software systems that
form part of the approach. These, shown in Figure B .l, are:

TranZit - This tool is designed to enable a user to enter and edit Z specifications directly. In addition, it
translates Z specifications into ones based upon the ZAL notation which facilitate execution. The output
from TranZit is a text file containing a ZAL specification.

Text-editor - The “System Specification Document” describes an interface between ZAL specifications
and visualisations in the form of an extended specification syntax. To modify a standard ZAL
specification in accordance with the syntax, in order to associate visual representations with specification
elements, the user may employ any generic text-editor. The interface between the ViZ system and the
text editor should be based upon a file-sharing mechanism that enables ViZ to import modified ZAL
specifications.

ZAL - This component performs the evaluation/execution of ZAL specifications. The interface between
ZAL and ViZ shall be based upon a software-based communication link and protocol.

215

Graphics Packages - ViZ should enable visual representations to be associated with specifications and
then subsequently render visual representation during execution. ViZ should provide rudimentary
facilities for composing visual representation, but when more advanced representations are required (for
example photo-realistic quality images), then other graphics packages can be used to generate them. To
this end, any generic graphics-package may be used. The interface between ViZ and the graphics
packages should be based upon a file-sharing technique, whereby files created by the packages should be
imported and stored as visual representations.

It is envisaged that these external software systems be resident in memory at the same time as ViZ and
execute in parallel to the ViZ system. It is not necessary for distributed execution mechanisms to be
defined and implemented at this time.

2.2.2 Software Communication Interface

A software-based communication link between ViZ and the ZAL execution engine is required to enable
ZAL to process and execute the ZAL components of a specification and return the results back to ViZ for
visualising. To this end, the communications mechanism and protocol to support this should be based
upon MS Windows Direct Data Exchange (DDE) interface. The DDE interface is a shared memory
communication technique that enables two software packages to send and receive data.

2.3 User Characteristics

The users of the ViZ system consist of:

1. The developers of a software system who are concerned with the activity of eliciting, negotiating,
and validating its requirements. This user group concerns though involved with developing
specifications, composing visualisations, attaching visualisation details to specifications, and
executing the specification for the purpose of evaluation.

2. The customers, managers, or other non-development stakeholder of the same software system who
are involved with the requirements validation process. This group involves those concerned with
executing the specification, experimenting and interacting with the resulting model, and commenting
on its suitability and accuracy.

2.4 Product Functions

This section lists the functions that should be available in the ViZ system.

> The product shall provide support for the execution of ZAL specifications and facilitate their
subsequent visualisation.

> Through an appropriate user interface, the product should:

• enable a user to select a specification for execution/visualisation.
• enable a user to invoke execution of a specification and initialise the ViZ system in readiness

for execution and visualisation.
• enable a user to select a single ZAL schema from a list of schemas that are defined in a

specification. The product shall then execute this selected schema.
• provide a means of entering input values to schemas when necessary.
• enable a user to pause and resume the execution, and terminate it when desired.
• indicate the progress of executing the selected schema.

> The product should display the resulting visualisations and the results of execution on the screen.

> The product should provide facilities to enable a user to compose and edit visualisations, including
appearance and motion components.

216

> The product should enable a user to compose appearance components from basic geometric shapes
or more advanced visual representations based on photo-realistic quality bitmap images by
importing such images as files from external graphics packages.

> The product should enable visualisation components to be stored in the long term for use in current
and future projects.

> The product should enable a user to classify visualisation components in respect to the
application/project to which they will be used, thus promoting the concept of correspondence.

> The product should pre-process the modified ZAL specification to initialise and prepare the ViZ
system in readiness for subsequent schema execution activities.

> The product must execute selected schemas.

> The product must render visualisations of the desired execution elements.

> The product should evaluate ZAL expressions by passing them to the ZAL execution engine.

> The product should establish communications between itself and the ZAL execution engine in order
to evaluate ZAL specifications.

Figure B.2 shows the intended dependencies and relationships between the various components and the
user’s involvement. The figure also shows each component’s requirement number in accordance to the
above list.

2.5 Assumptions & Dependencies

The product is dependent upon the MS Windows operating environment being present on the target
machine.

3. Specific Requirements

The specific requirements for the ViZ product are described below.

217

Software Developers and other stakeholders C0)
(D

-4r'

User Interface to

L'
Edit Visualisation Store Visualisation

Classify
Visualisation
Components

Execution Operations Components Components

Pre-Process ! ^ Interpret / — \ Render
Specification Specification \ / Visualisations

M od ified ZAL
S p e c if ic a t io n s

Evaluate ZAL Expressions

Communication mechanism between ViZ and ZAL

nc
3O
rt*

o'3(/)

c/>
C

■o
T3O
5 '

(O
■nc3O
o'
3(/)

ZAL Execution Engine £f

Figure B.2. Relationships and logical dependencies between the components o f the product.

3.1 Pre-Processing the Specification

The product will pre-process a ViZ specification, once, to initialise and prepare the ViZ system in
readiness for subsequent schema execution activities.

The software should parse the entire specification to determine syntax validity and to initialise any global
data definitions.

Inputs

• ViZ specifications as a text file.

Processing

• To pre-process a specification, ViZ should scan the specification and declare and initialise global
system-state variables that are encountered by passing them to the ZAL execution engine (through
the ZAL expression processor), whereby the system-state shall be maintained.

• The software will also build a corresponding symbol table that contains the names of the system-
state variables and their associated types, and the names of the schemas in the specification. The
symbol table should also record the locations of each schema within the specification file.

218

• A syntax check on the visualisation references given in the specification should be performed, i.e.
determine the existence within them system of any visualisation-unit referenced within the
specification, i.e. determine if the visualisation-unit has already been defined and stored. Syntax
checking of ZAL operations should be deferred until processing of expressions, and shall be
performed by the ZAL execution engine.

• ViZ should perform a check on the usage of visualisation references in accordance to their
applicability to the specification. This check is required in facilitate correspondence between the
meaning of a specification and the meaning of associated visualisations.

Outputs

• A symbol table, containing:
i) Names of the system-state variables.
ii) The types associated with each variable.
iii) The names of the schemas in the specification.
iv) The position within the specification file, of each schema.

• Any error messages generated from the syntax validation check or the correspondence check.

3.2 Enable the User to Select a Schema

After pre-processing the specification, the ViZ system shall enable a user to select a single schema from
the whole specification by presenting a choice of schemas. To this end, a suitable user interface will be
required. The user shall be given the opportunity to completely exit the execution facilities at this point.

Inputs

• The user’s selection (when the menu has been presented)
• The symbol table (to obtain the names of the schemas in the given specification).

Processing

• The choice of schemas should be presented in the form of a list of names (obtained from the symbol
table constructed in the parsing activities) that the user might select.

Outputs

• The name of the selected schema.

3.3 Interpret The Selected Schema

The ViZ toolset must interpret a selected schema. Interpretation activities form a major function of the
ViZ toolset and are concerned with processing specifications and orchestrating the activities towards
their visualisation.

The toolset should interpret specifications to separate the ZAL elements from the visualisation details. It
should then pass the ZAL components to ZAL for evaluation, and render any results that are returned.

• The toolset should indicate the position in the specification where execution is currently occurring.
It should present a section of the current schema along with a visual indicator.

• A user should be able to pause the execution (and subsequently resume) or terminate it. Suitable
user-interface features should be provided to facilitate this.

Inputs

• ViZ specification as a text file.
• The name of the selected schema to execute.
• The symbol-table.

219

Processing

To interpret a specification, the product shall

• Locate the desired schema in the specification file (from the position recorded in the symbol table
created by parsing the specification).

• Execute any schema inclusions. This activity shall recursively execute the schemas encountered in
the schema.

• Enable a user to enter input data into a schema, when requested by the specification.
• The schema will then be processed by evaluating each expression deterministically (i.e. line-by-line,

in the sequence specified).

When processing each expression the following activities shall take place:

• Determine if the expression is to be visualised, i.e. check for the existence of any scenes referenced
by the expression.

• Check for expressions that are used to ‘cement’ expressions together - i.e. ‘or’ or ‘and’ expressions.
If these are found, they shall not be visualised but instead use them as the basis to calculate the
results of executing the expressions.

• If a reference to a scene is not found, then evaluate the entire expression. Move onto the next
expression.

• If a scene is found, visualise the expression.
• The specification processor shall record the results of executing each expression. All expressions are

treated as predicates by the ZAL execution engine and their evaluation returns either ‘true’ or false’,
the product shall record these values returned from each expression. These values shall then be used
in the calculation of expression conjunction or disjunction operations (‘and’ and ‘or’) that are used
to cement expressions together. The results of evaluating all the operations in the schema shall then
be returned as an output from the execution process.

• If any errors are encountered (as indicated by the ZAL expression evaluator) then terminate the
execution and display a corresponding error message.

• This process should continue until all expressions in the schema are executed, an error occurs or the
user terminates execution. When complete, the user shall be given the opportunity to select another
schema for execution, or terminate execution activities.

Outputs

• The display of the on-going progress of the execution.
• The predicated result of executing the schema - a ‘true’ or false’ value depending upon the return

values calculated from the results of evaluating each expression and the way in which they are
combined.

• If an error is detected during execution then inform the user of the error by presenting it on the
display.

3.4 Facilitate the Rendering of Visualisations

The ViZ system must facilitate the rendering of visualisations. To do this, it should apply the details
contained in a given scene, as attached to an expression.

The product should provide visualisation for two types of expressions: 1) ZAL expressions; 2) specific
output-oriented expressions that are used to display the contents of system-state variables only.

Rendering of the appearances should be based upon the applying the details specified in the appearance
component to the values of the system-state variables returned from the ZAL execution engine. This is to
facilitate execution-driven visualisation.

Inputs

• A complete expression, including reference to the required scene.

220

Processing

• To provide visualisation for ZAL expressions, the system should:
i) Obtain the value of each system-state variable in the expression from the ZAL execution

engine (this is required since the system-state is maintained by the execution engine itself and
not ViZ).

ii) Perform type checking on the types of the system-state variables in the ZAL operation and the
types of appearance-motion pairs attributed to them in the given scene.

iii) Visualise these elements by applying the appearance-motion pairs that are specified in the
‘before’ section of the given scene. Apply the appearance-motion pairs on a first-come-first-
served basis.

iv) Evaluate the ZAL part of the expression. If errors are detected, then terminate the visualisation
process, and return any error conditions.

v) Perform type checking on the types of the value returned from the evaluation of the expression
and the types of appearance-motion pairs attributed to them in the given scene. If the type
checking is unsuccessful then return an error and terminate execution, otherwise continue.

vi) Perform visualisation of the results of executing the operation. The renderer shall apply the
first appearance-motion pair in the ‘after-state’ section of the visualisation-unit to the result.

vii) If the expression contains any additional variables for visualisation, then apply the rest of the
appearance-motion pairs to them on a first-come-first-served basis. This activity will entail
obtaining the values of these variables from the ZAL execution engine. Perform type-checking
during this activity.

• When rendering appearance-motion pairs, the appearances should be rendered at the point specified
by the location in the first node in the motion sequence (as specified in the motion component of an
appearance-motion pair). If subsequent nodes exist in the motion sequence then the visualisation
renderer shall animate the appearance along the path described by the nodes.

• If more than one appearance exists (i.e. more that one system-state variable being visualised), then
animate the appearances simultaneously.

Outputs

• Rendered visualisations.

3.5 Facilitating Storage of Visualisation Components

Though a repository, the ViZ toolset should enable all visualisation components to be stored in the long
term to enable them to be used in current or future projects. The repository should also promote
correspondence, through an assurance mechanism, between the meaning of a visual representation and
the meaning of an underlying specification.

Inputs

• User inputs to select/create/delete/edit visualisation components and applications.

Processing

• The ViZ toolset shall enable the long-term storage of individual appearances, individual motions and
complete expression level scenes (i.e. sets of appearance-motion pairs as applied to whole
expressions).

• The product will also be instrumental in satisfying the requirement to provide correspondence
between the meaning of a specification and the meaning of an associated visualisation. To this end it
shall enable containers known as “Applications” to be defined. These should enable a user to specify
which visualisation components can be used with which specifications.

• The toolset should enable a user to edit visualisation components. To this end, a list of visualisation
components shall be provided to the user, then allow a user to select and subsequently edit the
desired component.

221

• The toolset should enable a user to delete and duplicate application containers and visualisation
components.

• The toolset should enable type information to be associated with a given appearance component.

Outputs

• A user interface to depict the arrangement and structure of the repository and its contents.

3.6 Enabling Visualisation Components to be Composed and Edited

The product shall enable a user to compose and edit the three aspects of a visual representation, namely:

• Appearances
• Motions/dynamic components
• Scenes/expression level visualisations

The editors must make use of appropriate user interface techniques to promote usability, including the
use of graphical direct-manipulation interfaces. The visualisation composition and editing functions are
described below.

3.6.1 Enabling Appearances to be Composed and Edited

The product should enable the outward face of a visualisation to be defined from a combination of basic
geometrical shapes, bitmaps, and text elements.

Inputs

• User inputs to create/edit appearance components.
• The name of a previously created appearance (if editing of an existing appearance is taking place).

Processing

• The appearance editor should present an image(s) of the appearance as it is being developed via a
graphical user interface.

• The product should enable a user to attribute a name to the appearance for identification purposes.
• Completed appearances should be stored long term.
• The product should allow previously defined appearances to be retrieved from storage and edited.

Outputs

• User interface for editing appearance components.
• Completed appearance components to store in long-term storage.

3.6.2 Enabling Motions to be Composed and Edited

The ViZ toolset should enable a user to define the on-screen position and motion of an appearance.

Inputs

• User inputs to create/edit motion components.
• The name of a previously created motion (if editing of a previously created motion is taking place).

Processing

• To allow the movements of an appearance to be described, the motion editor should allow such
movements to be described in terms of a series of nodes. The paths between the nodes describe the
path of the appearance when then visualisation is rendered.

• The product should facilitate the editing of previously defined components motion components.

222

• The product shall provide an interactive direct-manipulation style interface with which to place and
move nodes.

• The product should enable a user to attribute a name to the appearance for identification purposes.
• The visualisation editor should enable a user to specify the speed of an appearance as it traverses the

nodes.
• Completed motions should be stored long term.
• The product should also allow previously defined motions to be retrieved from the component

repository and edited.

Outputs

• User interface for editing appearance components.
• Completed motion components to store in long-term storage.

3.6.3 Enabling Visualisation Scenes to be Composed and Edited

The ViZ toolset should enable scenes, i.e. complete expression-level visualisations, to be defined and
edited, via manipulating the appearance and motion components. This should be performed using an
interactive graphical user interface.

Inputs

• User inputs to create/edit scenes.
• The name of a previously created scene (if editing of a previously created scene is taking place).

Processing

• The ViZ toolset should employ a suitable interactive user interface to enable the structure and
content of a scenes to be displayed while undergoing editing.

• The product should enable a user to attribute a name to the scene for identification purposes.
• Completed scenes should be stored in a long-term storage repository.
• The visualisation editor should also allow previously defined visualisation-units to be retrieved from

long-term storage and edited.
• This software component should also enable a user to classify/partition scenes in accordance with

the software development project to which they will be applied - this forms part of the assurance
mechanism.

Outputs

• User interface for editing scenes.
• Completed scenes stored in the component repository in readiness for subsequent application.

3.7 Evaluate ZAL Expressions

The ViZ software tool will include a component, known as the ZAL expression processor, to be
responsible for handing expressions to ZAL for evaluation. This component interfaces with the
communication subsystem.

Inputs

• An expression string from the visualisation engine.

Processing

• The expression processor passes a string containing a ZAL expression to the ZAL execution engine
for processing.

• The processor must wait for any results that are returned from the ZAL execution engine.

223

• If the ZAL execution system reports an error, then the expression evaluator should signal that an
error has occurred to the rest of the ViZ system, and terminate execution and visualisation activities.

• To pass the expression to the ZAL execution engine, the expression processor should establish a
software-based communications channel between itself and the execution engine (refer to Section
3.8).

Outputs

• The results of executing the given expression.
• Any errors from the execution.

3.8 Establish Communication between ViZ and ZAL

To pass a ZAL expression to the ZAL execution engine and retrieve the results, a software-based
communications channel between ViZ and the ZAL execution engine must be established.

To facilitate the communication between the two software systems, the product should use the MS
Windows DDE interface and protocol that is designed to enable two memory-resident applications to
share data.

Inputs

• An expression string to pass from the ZAL expression processor to the ZAL execution engine.
• A result string to pass from ZAL execution engine to the ZAL expression processor.

Processing

• The product should appropriately package the string to be passed to ZAL according to the protocol
defined by the DDE specification.

• The product should invoke the required MS Windows OS routines to initiate the transfer.
• The product must wait for the ZAL execution engine to return the results of executing the given

expression.

Outputs

• The result string - passed back to the ZAL expression processor.

224

Appendix C - Results of ATM Visual Prototype Execution

This Appendix presents the complete sets of results of executing the ATM visual

prototype from Section 4.1. The set contains the results of executing the prototype in

the context of successful money withdrawal.

This scenario embodies the activities involved in successful dispensing an amount of

money. The activities involved, and the associated visual scenes, are shown in Table

C . l .

1. Customer inserts card into the
card reader

2. Card is validated

Scene 1. Show customer inserting card into machine, (used to show the state of the system before
executing the expression).

Scene 2. Show results of card validation (used to portray the state of the system after the expression
is executed).

3. Customer enters PIN

4. PIN is validated

Scene 3. Show customer entering PIN on keypad, (used to show the state of the system before
executing the expression).

Scene 4. Show results of PIN validation, (used to portray the state of the system after the expression
is executed).

5. Customer enters required
amount of money

6. Validate amount

Scene 5. Show customer entering requested amount using keypad, (used to show the state of the
system before executing the expression).

Scene 6. Show results of amount validation, (used to portray the state of the system after the
expression is executed).

7. Eject card Scene 7. Show card being ejected

8. Dispense money Scene 8. Show money being dispensed, (used to portray the state of the system after the expression
is executed).

Table C.l. The activities and scenes in the successful money withdrawal scenario.

225

0!V iZ - [Execute Specification!
EH £ile Edtots r Specification Window \ -=M*1

~E

Card Number 101
(nea card? cards ATH_ValidateCard)
(equalp pin? (applyz p in card?) ATH_ValidatePIN)

(lesso requal request? ava ilab le)

Vsualsabon speed: - J

Ijnjxj

Faster

jti
<i I '

Scene 1. Insertion o f the card - the card number is ‘101

3 VIZ • [Execute Specification]
f7D £ile Editors Specification Window

RHH1

1

I I
I

l l i i l

TY/"‘ .. I iM *l
(aen card? cards ATH_ValidateCard)
(equalp pin? (epplyz p in card?) ATM_ValidatePIN)

(lesso requal request? av a ilab le)
-Hp,s.aaE,e.m.iftI rp m ip sr? /flnn lv7-hfllf>nre.-rflrri? l-lT W .,V fll 1 ,

Resume I Terminate

Slower Faster
Visualisation speed j< J ? __J j J

Scene 2. Card accepted

226

SJ ViZ • [Execute Specification]
itSI file Editois Specification Window

Ul£]xj
- l g [x |

iL J

(equalp pin? (applyz p in card?) ATHJTalidatePIH)
(lesso requal request? av a ilab le)
(lesso requal request? (applyz balance card?) ATH_ValidateAnount)
/aflfrg re»r« t - >flrtr,li?y hftlanrc ramieer^H

s Resume /. Terminate;

Visualisation speed < f J

rif1
Scene 3. Entering the Pin.

0 ViZ - [Execute Specification]
151) Eile EditotJ Specification Window

nn*Txi
-JgJxJ

Pin Accepted

JSJ*J
(equalp pin? (applyz p m card?) ATHJTalidatePIN)

(lesso requal request? av a ilab le)
(lesso requal request? (applyz balance card?) ATH^ValidateAaount)

romn f - t * nrtllrr V "

Resume Terminate

Visualisation speed j t J J jJ

UU

Scene 4. The Pin is accepted.

227

e se i
® £ile Editors Specification Window u j f f j x j

Q VIZ - [Execute Specification]

Enter Amount

IIS®
I S l l I

(lesso requal request? (applyz balance card?) ATM_ValldateAnount)
(nake temp (- (applyz balance card?) request?))
(make b a lan ce1 (override balance [#(card? tem p)]))
t n a V * 1 ftV.1 *» » < - f t W f t t l a M p r g m » n r t n - -- -- -- --

Resume : Terminate

:^VbuaSsation speed ijR 'f
Faster

•jJ
<i i

Scene 5. Entering the required amount o f money.

HJ VZ - (Enecute Specification]
[711 £Je Editcxt Specification tfn d o w

HME1
- j g l xl

1

Amount OK

rr~z * '^in]x)
(lesso requal request? (applyz balance card?) ATH_ValidateAnount)
(nake temp (- (applyz balance card?) request?))
(nake b a lan ce1 (override balance (#(card? tem p)]))
fttflV g I - f tm > ni> V ,]p r a w n a e r ?]]

Retume | Terminate

*
Slower Faster

Visualisationspeed < | L i -iJ

±U ' ■ . ■: . . :

Scene 6. The amount is validated as being sufficient.

iT

228

j EB ViZ - [Execute Specification]
file fditori Specification Window

□MU

Please Take
Your Card

Card Number. 101

(show card? ATH_TafceCard)
(aake noney_aessage! ' Take_your_»oney)
(show request? ATHJTakeKoney)

Visualisation speed: J l j J
<i i

Scene 7. Informing the ATM customer to take their card.

Faster
U

3 ViZ ■ [Execute Specification]
[7*1 file £ ditort Specification Jtfndow

cmei

i

Please
Take Your

Money

k : ? : ' e '

e - . V
•‘A t

Amount: 10

(show request? ATHJTakeKoney)

Visualisation speed: j J

fc-
■U

Faster

U
A

Scene 8. Informing the customer to take their money.

229

Appendix D - Email System Formal Specification

Appendix D presents the Z specification that models the email system used as the

basis for the second case study {Section 4.2). Its origins lie in a specification for a

complete electronic office system, of which the email system comprises a large

component [Cohen86]. For brevity, only the salient points of the specification are

presented, but where appropriate, the author’s comments and notes have been

retained.

[NAME, USERID, DATE, TRAYID, MAILID, FREETEXT]

BOOL : := Yes | No

ADMINID : I = admin

remail--

deskof : USERID TRAYID

inbox : TRAYID IP MAILID

pending : TRAYID IP MAILID

outbox : TRAYID - (-> IP MAILID

direct : USERID —1-> (NAME -+* U

mail item : PMAILID

mailto : MAILID seq TRAYID

mailcc : MAILID seq TRAYID

mailfrom : MAILID -l-» NAME

mail subject : MAILID FREETEXT

mailreplyreq : MAILID H -> BOOL

mailrefs : MAILID —1-> P N

mailwhensent : MAILID DATE

mailrefno : MAILID -l-» N

mailbody : MAILID FREETEXT

X : MAILID

admin : ADMINID

dom deskof = dom direct

V u : USERID | u e dom deskof • ran(direct(u)) c dom deskof

dom mailrefno = U(ran inbox u ran pending)

dom mailwhensent = U(ran inbox u ran pending)

230

x = U (ran inbox u ran pending)

V m l,m2 : MAILID | m! e x A m2 e x • mailrefno(ml) = maiIrefno(m2) => ml = m2

V m : MAILID | m e U (ran outbox) • m g dom mailrefno

dom inbox = ran deskof

dom pending = ran deskof

dom outbox = ran deskof

dom mail to = mail item

dom mailcc = mailitem

V m : MAILID | m e dom mailto • mailto(m) ^ 0

ran(U(ran mailto)) c ran deskof

ran(U(ran mailcc)) e ran deskof

dom mailfrom = mailitem

dom mail subject = mailitem

dom mailreplyreq = mailitem

dom mailrefs = mailitem

dom mailbody = mailitem

POST-

Aemail

uid? : USERID

m? : MAILID

to? : seq NAME

cc? : seq NAME

from? : NAME

subject? : FREETEXT

reply? : BOOL

refs? : N

body? : FREETEXT

uid? e dom deskof

m? g mailitem

to? * 0

ran to? c dom(direct(uid?))

ran cc? c dom(direct(uid?))

mailitem' = mailitem u {m?}

mailto' = mailto u {m? * squash({(k,p) : N x TRAYID | k 6 dom to? A p =

deskof(direct(invoker?)(to?(k)))})}*/

m ailcc’ = mailcc u {m? squash({(k,p) : N x TRAYID | k e dom cc? A p =

deskof (dir ect(invoker?)(cc?(k)))})}*/

231

mailfrom' = mailfrom u {m? h_» from?}

mail subject' = mailsubject u {m? •—» subject?}

mailreplyreq' = mailreplyreq vj {m? ^ reply?}

mailrefs' = mailrefs u {m? re fs?}

mailbody' = mailbody u {m? body?}

outbox' = outbox © {deskof(uid?) outbox(deskof(uid?)) u {m?}}

/ *
(

POST takes a mail from the "pad" of the user (outside the system) and adds it to their

outbox. This operation performs the following ta sk s:

Checks the mail id is not known

Checks that the TO list is not empty

Checks that those identified in the TO list are known a liases from the u ser's

directory

Does the same for those identified on the CC list

Adds the mail item to the list of known mails in the system

Creates a new version of the mailto se t with the new mail added and the TO list

changed so that the intended recipients' trays are present instead of their names.

Creates a new version of the mailto se t with the new mail added and the CC list

changed so that the intended recipients' trays are present instead of their names.

Completes the rest of the mail details provided.

* /

COLLECT

Aemail

uid?

refno?

m

uid? e dom deskof

refno? e ran mailrefno

m = (mailrefno~)(refno?)

m e inbox(deskof(uid?))

inbox' = inbox © {deskof(uid?) inbox(deskof(uid?)) \ {m}}

: USERID

: N
: MAILID

232

/ *

COLLECT a llow s a user to remove a mailitem from their inbox in order to preview it on

their "PAD". As the composing pad is outside the system it is simply removed. The

operation checks that the mail referen ce number is applicable and is in the inbox of the

user. The mail is then removed from the inbox. */

•READ------------------------------

E email

uid? : USERID

refno? : N

m : MAILID

uid? e dom deskof

refno? e ran mailrefno

m = (mailrefno~)(refno?)

m e pending(deskof(uid?))

/ *

READ is an operation which is used to a llow a user to check the contents of a pending

mail item (preview). It has to stay in the pending tray. This operation simply checks that

the user can do this. */

i-LIST-

E email

invoker?

mail ids!

mail subjects!

mailfroms!

mailwhensents!

mailrefnos!

: USERID

PMAILID

MAILID -++ FREETEXT

MAILID - h. NAME

MAILID -++ DATE

MAILID -+> N

invoker? e dom deskof

mail ids! = inbox(deskof (invoker?))

mailsubjects! = mailids! <1 mailsubject

mailfroms! = mailids! < mailfrom

m ailwhensents! = mailids! < mailwhensent

mailrefnos! = mailids! <1 mailrefno

233

/* LIST list all mails in the inbox of the user in question */

LISTP----------------

S email

invoker?

mailids!

mail subjects!

mailfroms!

mailwhensents!

mailrefnos!

USERID

PMAILID

MAILID -+> FREETEXT

MAILID -+> NAME

MAILID -+> DATE

MAILID ■+> N

invoker? e dom deskof

mailids! = pending(deskof (invoker?))

mailsubjects! = mailids! <\ mailsubject

mailfroms! = mailids! <1 mailfrom

mailwhensents! = mailids! < mailwhensent

mailrefnos! = mailids! <1 mailrefno

/* LISTP list all mails in the pending tray of the user in question

SEND-

Aemail

invoker? : USERID

mail ? : MAILID

now? : DATE

ref? : N

pendingmails : MAILID

outgoingto : MAILID -+> seq TRAYID

outgoingcc : MAILID ■+> seq TRAYID

pendingsrefs : MAILID -+» N

outgoingrefs : MAILID -+> P N

outgoingreplies : IPMAILID

outgoingrepliesreq : IPMAILID

f : TRAYID P MAILID

g : TRAYID -+» P MAILID

h : TRAYID -+> P MAILID

trays : PTRAYID

trayscc : TRAYID

invoker? e dom deskof

#(outbox(deskof(invoker?))) > 0

mail? e outbox(deskof(invoker?))

ref? £ ran mailrefno

pendingmails = pending(deskof(invoker?))

outgoingto = {mail?} < mailto

outgoingcc = {(mi,x) : MAILID x seq TRAYID | mi e dom({mail?} < mailcc) A (x =

mailcc(mi) j A x ^ 0) } * /

pendingsrefs = pendingmails < mailrefno

outgoingrefs = {mail?} < mailrefs

outgoingreplies = {m : MAILID | m e pendingmails A pendingsrefs(m) e U(ran

outgoingrefs)}

outgoingrepliesreq = {m : MAILID | m e {mail?} A mailreplyreq(m) = Yes}

outbox' = outbox © {deskof(invoker?) >-* outbox(deskof(invoker?)) \ {mail?}}

trays = ran(outgoingto(maiI?))

f = {(tr, x) : TRAYID x P MAILID | tr e trays A x = inbox(tr) u {m ail?}}*/

if mail? e outgoingrepliesreq

then g = {(tr,x) : TRAYID x P MAILID | tr e trays A x = pending(tr) u {mail?}}

e ls e g = 0

if # (o u tg o in g cc) > 0 th en

(tr a y s c c = ran o u tg o in g cc(m a il?) A

h = {(tr, x) : TRAYID x P MAILID | tr e trayscc A x = inbox(tr) u {mail?}}

e ls e

h = 0

pending' = pending © g ©{deskof(invoker?) •—> pending(deskof(invoker?)) \ outgoingreplies}

inbox' = inbox © f © h

mailwhensent' = mailwhensent u {mail? |—> now?}

mailrefno' = mailrefno u {mail? ref?}

/*
SEND a llow s a user to send a given mail item in their outbox to the intended recipients.

The operation does the following ta sk s:

The system checks the user is known and that their outbox is not empty.

It checks the given mail item is in the outbox and that the reference number to be

assigned to it is not already allocated .

It removes the mail from the outbox of the user

It determines the trays that the mail is going to.

It creates a temporary variable f which is the contents of all inboxes in which the

235

mail

in

has been copied into the trays identified above.

If a reply is required a temporary variable g is created containing all pending trays

which the mail has been copied into the trays identified above.

If no reply is required, g is empty.

If the CC list of the mail is not empty then it determines which trays require a

copy.

It creates a variable h containing the inboxes in which the mail has been copied

into the trays identified from the CC list.

If the CC list is empty h is assigned the empty se t.

The pending trays are overridden with the variable g (recipients on the TO list for

a mail requiring a reply) and any mails in the user's pending tray, which

w ere identified as being replied to with the mail in question, are a lso removed from

the pending trays.

The inboxes are overridden with the variables f and h to re flec t that the mails

have been sent to th ose on TO and CC lis ts .

The date stamp for the mail is created

The reference number for the mail is created.

236

Appendix E - WLMS Formal Specification

Appendix E presents the Z specification that models the WLMS [VanShouwen96]

that is used as the basis for the third case study {Section 4.3). The specification is

presented in its entirety, including the author’s preamble and comments.

Case Study : Water Level Monitoring System in Z

From : A. Van Shouwen

Date : 20th September 1996

Informal Description:

This specification is concerns the operation of a Water Level Monitoring system which might

be used in a safety-critica l system involved in steam generation, for example in a power

plant. The system con sists of two reservoirs; one serving as a steam generation v e s s e l ,

and the other as a source of w ater.

Under normal operation, water is pumped from the source into the steam generating v e s s e l

where it is evaporated. The pump transferring water to the generating v e s se l and the pump

controlling the rate of steam generation in regulated by a control system termed the

WLMS.

The WLMS monitors and displays the level of water in the stream generating v e s s e l . When

the water level is too high or low, the WLMS issu es v isib le and audible alarms and shuts

down the pumps. Pumps are a lso shut down if the WLMS itse lf fails either due to

external faults (such as failure of the water level detector) or internal faults in the WLMS

computer. Internal faults are detected by an external watchdog which receives a periodic

KICK from the WLMS. If and external faults is detected by the WLMS or the watchdog

fires, the WLMS shuts the system down by turning off power to both pumps.

In addition, the WLMS has two push buttons: S e lftest le ts the operator te s t the WLMS

output hardware w hilst the system is shut down. Reset returns the system to normal

operation following shutdown or te s t , provided that the water level is within the specified

limits.

237

/* Define Types to be used within the specification */

BYTE == 0 . .255

TIME == N

LEVEL == N

DEVICETYPE : : = ok | fa ile d

WATCHDOGTYPE : : = uninit | o p e r a te | sh u t

ONOFFTYPE : : = on | o ff

BUTTONTYPE : := p r e s s e d | r e le a s e d

OPERATINGMODETYPE : : = o p era tin g | sh u td o w n | sta n d b y

FAILUREMODETYPE : : = a llo k | b a d le v d e v | hardfa il

PUMPSWITCHTYPE : : = op en | c lo s e d

HEATERSWITCHTYPE : : = op en | c lo s e d

SHUTDOWNSIGNALTYPE : : = go | s to p

ALARMTYPE : := s i le n t | au d ib le

/* Now define some variables of th ese types, grouped by function */

i-ButtonTimes--

resetButtonTime : TIME

selftestButtonTime : TIME

■-Modes--

operatingMode : OPERATINGMODETYPE

faiiureMode : FAILUREMODETYPE

/* Now w e define the data structures associated with our model */

-StoredVar----------

alarm

shutdownSignal

ALARMTYPE

SHUTDOWNSIGNALTYPE

rStoredDatao io rea u a ia ----------------

time : TIME

timelnMode : TIME

watchDogTime : TIME

Modes

ButtonTimes

rContro 1 Signal s -----------

alarm : ALARMTYPE

shutdownSignal : SHUTDOWNSIGNALTYPE

pumpSwitch : PUMPSWITCHTYPE

heater Switch : HEATERSWITCHTYPE

watchdog : WATCHDOGTYPE

■-Monitor Var-----------------

diff Press : BYTE

resetButton : BUTTONTYPE

selftestB utton : BUTTONTYPE

powerNow : ONOFFTYPE

memory : DEVICETYPE

timeNow : TIME

timeDevice : DEVICETYPE

/* Now w e introduce the constant global va lu es associated with the WLMS

level LowerCal : LEVEL

level Upper Cal : LEVEL

shutdownLockTime : TIME

watchdogtimeout : TIME

hysteresis : LEVEL

highWater Limit : LEVEL

initTime : TIME

low Water Limit : LEVEL

maxAIarmTime : TIME

m axSelftestDelay : TIME

maxResetDelay : TIME

maxTestDelay : TIME

level Lower Cal = 130

level UpperCal = 270

shutdownLockTime = 200

watchdogtimeout = 500

h ysteresis = 5

highWater Limit = 260

low Water Limit = 140

maxAlarmTime = 4000

m axSelftestD elay = 500

maxResetDelay = 3000

maxTestDelay = 14000

PumpControl-

MonitorVar?

AModes

AStoredVar

(operatingMode = operating A failureMode = allok A (- 1 (resetButton? = pressed)) =>

shutdownSignal' = go)

(operatingMode = operating A failureMode = allok A resetButton? = p ressed =>

shutdownSignal’ = shutdownSignal)

(operatingMode = shutdown A failureMode = allok =>

shutdownSignal' = shutdownSignal)

(operatingMode e {standby.test) A failureMode = allok => shutdownSignal' = stop)

(failureMode e {badlevdev, hardfail} => shutdownSignal = stop)

240

rAlarmControl------------------------------

Monitor Var?

w aterlevel : LEVEL

AStoredData

AStoredVar

powerNow? = on

(operatingMode e {shutdown,operating} A failureMode = allok A

(-i(lowWaterLimit < w aterlevel <highWaterLimit)) =>

alarm' = audible)

(operatingMode = operating A failureMode = allok A timelnMode = 0 A

(1 owWater Limit < w aterlevel <high Water Limit) =>

alarm' = silent)

(operatingMode = operating A failureMode = allok A (-i(timeInMode = 0)) A

(1 owWater Limit < w aterlevel <highWater Limit)

alarm' = alarm)

(operatingMode = shutdown A failureMode = allok A

(1 owWater Limit < w aterlevel <highWater Limit) =>

alarm’ = alarm)

(operatingMode = standby A failureMode = allok => alarm' = alarm)

(operatingMode = te s t A failureMode = allok =>

alarm' = (if 0 < timelnMode < maxAlarmTime then audible e ls e silent))

(failureMode = badlevdev A timelnMode = 0 => alarm' = audible)

(failureMode = badlevdev A (- 1 (timelnMode = 0)) => alarm' = alarm)

PumpEnvironment--------------------------------

powerNow? : 0N0FFTYPE

Control Signals!

Stored Var’

(powerNow? = on A shutdownSignal' = go A watchdog! = operate =>

pumpSwitch! = closed)

(powerNow? = off V shutdownSignal' = stop V watchdog! = shut =>

pumpSwitch! = open)

241

-Was Operating------------------------------

Monitor Var?

AModes

ButtonTimes

w aterlevel : LEVEL

operatingMode = operating

operatingMode' =

if selftestB utton? =£ p ressed A (1 owWater Limit < w aterlevel < highWater Limit)

then shutdown

e ls e if selftestB utton? = p ressed A selftestButtonTime > m axSelftestD elay

then te s t

e ls e operating

■Was Shutdown------------------------------

Monitor Var?

AStoredData

w aterlevel : LEVEL

operatingMode = shutdown

operatingMode' =

if selftestB utton? ^ pressed A timelnMode < shutdownLockTime A

(1 owWater Limit + h ysteresis < w aterlevel < highWater Limit - h ysteresis)

then operating

e ls e

if selftestB utton? ^ p ressed A timelnMode > shutdownLockTime

then standby

e ls e

if selftestB utton? ^ p ressed A selftestButtonTime >

m axSelftestD elay

then test

e ls e shutdown

242

-Was in Standby------------------------------

MonitorVar?

AModes

ButtonTimes

w aterlevel : LEVEL

operatingMode = standby

resetButtonTime > maxResetDelay A

(I owWater Limit + hysteresis < w aterlevel < highWater Limit - h ysteresis)

operatingMode' = operating

selftestB utton? ^ p ressed A selftestButtonTime > m axSelftestD elay =>

operatingMode' = te s t

((-i(resetButtonTime > maxResetDelay)) A

(I owWater Limit + h ysteresis < w aterlevel < highWater Limit - h ysteresis)

(-((selftestButton? ^ p ressed A selftestButtonTim e > m axSelftestDelay))

operatingMode' = standby)

rWasinTest------

AStoredData

operatingMode = te s t

operatingMode' =

if timelnMode > maxTestDelay

then standby

e ls e test

-Was All ok---

MonitorVar?

AModes

level Device : DEV1CETYPE

control Unit : DEV1CETYPE

failureMode = allok

failureMode' =

if level Device = failed A control Unit = ok A timeDevice? = ok

then badlevdev

e ls e if controlUnit = failed V timeDevice? = failed

then hardfail

e ls e allok

rWasBadLevdev-------------------------------------

MonitorVar?

AModes

controlUnit : DEV1CETYPE

failureMode = badlevdev

failureMode' =

if controlUnit = failed V timeDevice? = failed

then hardfail

e ls e badlevdev

-Was Hard Fail

AModes

failureMode = hardfail

failureM ode', = hardfail

GetNextMode = (WasOperating V WasShutdown V WasinStandby V WasinTest)

(WasAllok V WasBadLevdev V WasHardFail)

-CheckButtonTimes--------

MonitorVar?

AButtonTimes

step : TIME

resetButton? = p ressed => resetButtonTime’ = resetButtonTime + step

resetButton? = re leased => resetButtonTime' = 0

selftestB utton? = p ressed => selftestButtonTime' = selftestButtonTime + step

selftestB utton? = re leased => selftestButtonTime' = 0

Get InmodeTime--------------------------

AStoredData

step : TIME

(operatingMode = operatingMode' A timelnMode' = timelnMode + step) V

(operatingMode =£ operatingMode' A timelnMode' = 0)

CheckControIUnit---------------------------------------

MonitorVar?

watchdog! : WATCHDOGTYPE

controlUnit : DEVICETYPE

memory? = ok A watchdog! = operate => controlUnit = ok

memory? = failed V watchdog! e {uninit,shut} => controlUnit = failed

CheckLevel Device--------------------------------

MonitorVar?

level Device : DEVICETYPE

diffPress? e {0 ,2 5 5 } => levelD evice = failed

-i(diffPress? e {0 ,2 5 5 }) => levelD evice = ok

245

-upaaiesioreauaia------------

MonitorVar?

AStoredData

AStoredVar

Control Signals!

controlUnit : DEV1CETYPE

w aterlevel : LEVEL

step : TIME

levelD evice : DEVICETYPE

step = timeNow? - time

CheckContro 1 Unit

CheckLevel Device

time' = timeNow?

GetlnmodeTime

watchDogTime' = step

GetNextMode

CheckButtonTimes

rGetWater Level-----------------

diffPress? : BYTE

w aterlevel : LEVEL

(let level == level LowerCal +

((diffPress? * 103803 - 4 8 5 0 1 0) * (level Upper Cal - level Lower Cal)) div 2 5 5 0 0 0 0

• diffPress? = 255 A w aterlevel < level Lower Cal V

diffPress? = 0 A w aterlevel > level Upper Cal V

1 < diffPress? < 255 A w aterlevel =

if level < level Lower Cal then level LowerCal

e ls e if level > levelUpperCal then levelUpperCal

e ls e level)

-CheckTimer--

watchDogTime : TIME

watchdog! : WATCHDOGTYPE

watchdog! = (if watchDogTime < watchdogtimeout then operate e ls e shut)

246

Initialise------

StoredData

StoredVar

0 < initTime < 5000

alarm = silent

shutdownSignal = stop

timelnMode = 0

watchDogTime = 0

resetButtonTime = 0

selftestButtonTime = 0

operatingMode = standby

failureMode = allok

0 < time < initTime

r-Heat er Envir onment-

MonitorVar?

AStoredData

AStoredVar

Control Signals!

if pumpSwitch! = open A alarm = audible

then

heater Switch! = open

e ls e

heaterSwitch! = c losed

rNormal Operation-

MonitorVar?

AStoredData

AStoredVar

Control Signals!

controlUnit

w aterlevel

step

levelD evice

DEVICETYPE

LEVEL

TIME

DEVICETYPE

PumpControl

Get Water Level

CheckTimer

PumpControl

AlarmControl

PumpEnvironment

Heater Environment

UpdateStoredData

shutdownSignal! = shutdownSignal'

alarm! = alarm'

