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Research into endurance running performance (economy, optimal running biomechanics, 

and injury mechanisms) lacks a universal running technique; however, landing heel-toe 

identified eighty percent of runners. A new Gravitational hierarchical model of running was 

developed based upon a novel technique Pose® running, owing to deficiencies in the current 

hierarchical model (Hay and Reid, 1988) on the interaction of forces involved in running. A 

major deficiency in the current hierarchical model is viewing gravity as only active during 

flight. In contrast, the Gravitational hierarchical model defines a gravitational torque as the 

motive force in running. Ground reaction force is not a motive force but operates according 

to Newton’s third law. The ground can only propel a runner forward via muscle activity, but 

leg and hip extensor muscles have consistently proven to be silent during leg extension. 

High Achilles tendon forces at terminal stance suggest the elastic recoil creates a re-bound 

effect in the vertical direction only, thus reducing work against gravity. Two experienced 

Pose® runners were compared (study 1) with two experienced heel-toe runners using 

primary and secondary research variables derived from the Gravitational hierarchical 

model, which effectively distinguished the two techniques while establishing gravity as the 

motive force. For example, maximum horizontal acceleration of the centre of mass occurred 

before maximum horizontal ground reaction force, supporting the Gravitational hierarchical 

model that only a gravitational torque could create acceleration. Finally, sixteen male 

recreational endurance heel-toe runners (study 2 using the same primary variables as study 

1) were randomly assigned into two groups where one group received a 7-hour Pose® 

intervention over 7-days while the other group remained as heel-toe runners. A 2 x 2 mixed 

factorial ANOVA where group (control vs. treatment) and trial (pre to post changes) 

assessed the primary research variables. Significant interactions were explored using Tukey 

post hoc tests, which found significance (Pose® runners pre-post test) for stance time (P=

0.001), centre of mass to support limb at 25 ms (P= 0.042), centre of mass displacement 

during stance (P = 0.001), knee flexion angular velocity during stance (P= 0.005) plus 

swing (P= 0.043) and stride frequency (P= 0.002). After 12-days the Pose® group’s post

test time-trial (2400 m) improved by a mean of 24.7 s compared with a 3 s decrease in the 

heel-toe group. No significant changes pre-post test, were found for an economy run (2400 

m) at 3.35 m-s'1. A preliminary prospective 3-month injury report found no injury incidence 

in the Pose® runners compared to six injuries in the heel-toe group. It was concluded, that 

the Pose® technique is a valid biomechanical technique, which improved performance, 

while reducing injuries. Future work should further quantify gravity’s role in accelerated 

running by ascertaining whether the horizontal acceleration of the centre of mass also 

occurs before maximal horizontal ground reaction force.



CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION TO THE PROBLEM

The problem of identifying and correcting errors in athletic technique is an important 

part of sports coaching. Technique represents the actions of internal and external forces 

on the human body, which determine how the parts of the human body move during a 

sports performance (Hay and Reid, 1988). Theories relating to technique tend to develop 

through coaches experimenting in a trial and error approach. In professional sport, 

athletes push themselves to their body’s limit, which often results in injuries (van 

Mechelen, 1992). Dapena (1984) suggested making a biomechanical template from elite 

performers technique as a potential solution. Unfortunately, Dapena’s method is little 

better than the trial and error approach, owing to a variety of elite performer’s 

techniques. This precludes trial and error and elite-template methods of technique 

development as a process for long-term success. A more systematic approach is therefore 

advised.

Mathematical modelling is a systematic and theoretical approach to analysing sports 

movement. It uses physical laws that link the model of the performer and their 

movement (Bartlett, 1999). Mathematical equations represent certain characteristics of 

the sports movement creating a simplified model of the performance. The mathematical 

model undergoes simulation (computer modelling) and finally optimisation (finding 

optimum values that minimise or maximise performance outcomes). However, the 

complexity of this approach for running is beyond the scope of this thesis.

Hierarchical modelling is another systematic approach. Relationships between the 

performance criterion (desired aim of the technique) and performance parameters (key 

performance variables) are established using biomechanical laws (Bartlett, 1997). 

Development of a hierarchical model precedes data collection (Bartlett, 1997).
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Following the model’s development, a data collection and analysis for a large range of 

performers is usually completed. Finally, results from the data are assessed with respect 

to the hierarchical model (for example, Hay et al., 1981). A hierarchical model functions 

as the ‘gold standard' enabling variations in performance to be quantitatively measured. 

Hierarchical models can also evaluate individuals or small groups of athletes’ technique 

as opposed to a large range of performers (Bartlett, 1999). This thesis aims to review an 

established hierarchical model for running (Hay and Reid, 1988; p. 282) while also 

developing a new Gravitational hierarchical model. The Gravitational hierarchical model 

will attempt to develop the interaction of the forces involved in running based on gravity 

as the motive and hierarchically leading force in running.

If force is applied as input to a biomechanical system, the system undergoes a 

displacement. Ensuing motion creates opposing forces, which are proportional to the 

displacement. An external force can be evaluated by the degree of energy needed for 

internal forces used in the displacement. External forces that cause displacement, which 

do not require large reciprocal internal forces will obviously decrease energy output 

(Bernstein, 1947). There are two key external forces (ignoring air resistance) involved in 

running: gravity and ground reaction force. Then* combined effects on internal muscle 

force during the gait cycle need further examination (for example, Fenn, 1930 began 

work in this area). However, gravity’s role as a constant external force in running during 

stance as well as flight, and its subsequent affect on muscle output is not apparent from 

Hay and Reid’s hierarchical model.

Endurance running instead, has attempted to explore biomechanical research in three 

main areas. The first area is running economy, which refers to the energy cost of running 

(Daniels, 1985). The next area is determining an optimal biomechanical profile 

(Williams, 1985) and finally, it is training without injury (van Mechelen, 1995). 

Endurance running, including track, road, cross-country and triathlon, has many 

unanswered questions today from these three areas (Cavanagh, 1990; Novacheck, 1998). 

For example, the degree to which running biomechanics can be modified to promote a 

better understanding of the association between metabolic and biomechanical correlates 

of economy, requires further investigation (Williams and Cavanagh, 1987). Rumiing is a 

fundamental movement pattern, yet the literature has not identified an optimal 

biomechanical profile that is universal for all runners. Injury incidence remains between



24-77% (van Mechelen, 1992; Taunton et al., 2002), and this incidence rate has not 

changed since the 1970’s running boom (Krissoff and Ferris, 1979).

Cavanagh (1990; p. 31) stated in a review of the running research literature over the last 

one hundred years; “that today we are basically still tiying to answer questions posed by 

Fischer and Fenn over 90 years agoF For example, Fenn (1930) suggested more 

economical runners might waste less energy on forward pressure on the ground.

The literature describes two main running techniques, heel-toe and forefoot ground 

contact. Approximately eighty percent of endurance runners are heel-toe runners, 

making them the predominant technique compared to twenty percent of forefoot runners 

(Kerr et al., 1983). Therefore, heel-toe running will be used as the current norm for this 

thesis. Elite endurance heel-toe runners have a few biomechanical variables in common, 

such as increased forward trunk lean (Girardin and Roy, 1984), increased knee flexion 

during stance (Kerdok, et al., 2002) and decreased vertical oscillation (Williams and 

Cavanagh, 1987). However, there are exceptions to these findings (Cavanagh and 

Williams, 1982), suggesting the heel-toe technique is identified predominantly by initial 

ground impact via the heel.

Several descriptions o f ‘good’ running have also been suggested in the trade literature:

“Good runners run tall, they tend not to hunch or lean. There is an economy and 
integrity in their form and movement. Their heads remain poised and balanced on top o f  
their spine. They run smoothly, lightly with the brakes off, they don 't pound or ‘excavate ’ 
on every stride. Good runners run with awarenessF (Alexander, 1989; p. 12).

Percy Cerutty, coach of Olympic gold medal winner Herb Elliot states:

“The head rests loosely on the shoulders, that is, it is not held rigid. It should be capable 
o f movement as the needs o f the athlete demand. In my techniques I  often test this rigidity 
o f an athlete. Many are quite incapable o f  turning their heads freely on their neck and 
shoulders. Any rigidity here spreads right through the whole musculature. Keep the head 
and neck free and the rest o f the moving parts will tend to be freeF  (Simms, 2003; p. 31)

The trade and scientific literature have only made limited suggestions on improving 

running technique, because no one has developed a running method that explains how to 

effectively combine all the forces involved in running. Hay and Reid (1988) provide the 

only attempt at modelling running. However, there are deficiencies with their model, for 

example, viewing the constant force of gravity as only active during flight and not
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relating gravity to forces exerted (muscle and joint forces) and the time forces act despite 

gravity being a constant force.

In 1977, in the Soviet Union, a track and field coach and university lecturer in 

biomechanics was wrestling with the question of how to teach rumiing. Dr. Romanov 

rejected popular wisdom that running is a simplistic movement skill, and that the best 

runners were genetically predisposed to success combined with hard training. He sought 

a comprehensive technique that would create a universal running method. He 

subsequently viewed teaching of other track and field events, throwing, jumping, and 

other movement skills such as ballet, dancing and the martial arts. Technique, he 

concluded, was of paramount importance for these sports, because, he realised that 

complex skills such as ballet and karate are broken down into simple movements that 

can be learned separately (i.e. Poses). Complex movements therefore derive from 

individual Poses. A complex skill is achieved, only after each Pose through numerous 

repetitions has thoroughly trained the neuromuscular pathways.

Using videotape of the world’s best runners, Dr. Romanov identified the rumiing Pose®. 

The Pose® method technique is based upon a running Pose®, which is a whole body 

Pose , that vertically aligns the shoulder, hip and ankle of the support leg, while standing 

with the weight on the ball of the foot. This creates a ‘S’ like body shape. The runner 

then moves from this Pose® on one leg to the other by potentially falling forward via a 

gravitational torque. The support foot is pulled vertically upwards from the ground using 

the hamstring muscles as the body falls forward, while the ipsilateral leg is not driven 

forwards during flight but allowed to fall to the ground via gravity to land in the next 

running Pose®. Many technique and strengthening drills have been developed to teach 

the runner to fall forwards while pulling their support foot from the ground using their 

hamstring muscles, and at the same time not driving their swing leg forwards via the hip 

flexor muscles (Romanov, 2002). Romanov (2002) states the running Pose® is a 

theoretically optimal position for external forces to cause displacement, without 

requiring large reciprocal internal forces.

Dallam et al. (2005) identified a profile of economical endurance runners from the 

literature. This profile included a reduced vertical oscillation, stance time and peak 

vertical ground reaction force, alongside increased trunk lean and knee flexion during
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support. Eight heel-toe male endurance runners trained in the Pose® method by Dallam 

et al. (2005) found the above variables described Pose® running remarkably well, yet 

their economy measures showed poorer economy for their Pose^ runners. These 

conflicting results may originate from running on a treadmill, which inhibits Pose® 

running owing to the foot being pulled backwards. Hence, clarification is needed on 

whether Pose® running is more economical using over-ground running.

Arendse et al. (2004) explored Pose running (3-years after Dallam et al., 2005) in 

reference to its similar lower-limb geometry with backward running in the hope it may 

aid in injury prevention. They identified a distinct biomechanical profile for Pose® 

running (supporting Dallam et al., 2005) compared to heel-toe and forefoot running. 

However, they administered no performance test nor did they collect injury data for their 

runners. This thesis will rectify these omissions and will attempt to explain the distinct 

biomechanical profile of Pose® running.

Running technique is currently dependant on whether a runner lands on the forefoot or 

heel-toe (Kerr et al., 1983). A universal running technique (which applies to all runners) 

that identifies the timing of all the forces with the displacement and timing of the body 

segments during the gait cycle would be useful. The literature has compared elite with 

recreational runners in the hope of distinguishing an elite runner’s profile (Miura et al., 

1973; Williams and Cavanagh, 1987). This method though has failed to establish a clear 

universal biomechanical profile of an elite runner. This thesis will take a different 

approach. Owing to the scale of unanswered problems in endurance running within the 

literature, the author seeks to begin with the Pose® method (Romanov, 2002) as a 

universal running technique. Then, evaluate the Pose® method theoretically to determine 

whether it is a universal running technique using the new Gravitational hierarchical 

model. A biomechanical comparison with the predominant technique of endurance 

running (heel-toe) using experienced heel-toe and Pose® runners will follow. Next, 

evaluate the Pose® method’s effectiveness with a group of male heel-toe endurance 

runners by training half of them in Pose" running and measuring performance via a 2400 

m time trial and a 2400 m economy run. Biomechanical variables will distinguish 

between the two rumiing techniques using inferential statistics. Finally, using a 3-month 

prospective injury study determine injury incidence in the Pose® and heel-toe ruiming 

techniques.



1.2 STATEMENT OF PURPOSE

Several beliefs predominate in the running community that have hindered the 

development of a universal technique of running. For example:

1. Running technique is a simplistic movement pattern;

2. Individual differences between people make it impossible to have a universal 

technique for all runners (Nytro, 1987).

3. Various distances and speeds require a different running technique;

4. There are numerous points of view based on subjective and unsubstantiated 

non-biomechanical models (Wallack, 2004); and

5. Technique being solely associated with ground contact, i.e. eighty percent of 

all endurance runners land on their heels (heel-toe runners) and twenty 

percent of all endurance runners land on the front part of their foot (mid and 

forefoot strikers) (Kerr et al., 1983; Whittle, 1991), whereas sprinters land on 

the forefoot (Mann, 1980).

6. Hay and Reid's (1988; pp. 287-288) hierarchical model highlights the current 

thinking that runners push off the ground via leg extension. The forces 

exerted box in their model represents shoulders, hips, knees, ankles and other 

joint forces (Hay and Reid, 1988; pp. 264 and 287-288). This focus on leg 

extension via muscle force has hindered development of other viewpoints on 

propulsive forces in running such as gravity being motive.

The primary aim of this thesis is to compare the Pose® method technique (Romanov, 

2002; Arendse et al., 2004; Dallam et al., 2005) with the heel-toe running technique. 

Development of a new Gravitational hierarchical model based on the Pose® method 

using the laws of physics will enable the Pose® technique’s systematic evaluation. The 

Gravitational hierarchical model and the current hierarchical model (Hay and Reid, 

1988; p. 282) are reviewed highlighting the different biomechanical theories of running. 

There are deficiencies with Hay and Reid’s model, for example, viewing the constant 

force of gravity as only active during flight and not relating gravity to forces exerted and 

the time forces act. Therefore, Hay and Reid’s model does not systemise the forces 

involved in running but acts as general descriptor, whereas, the Gravitational hierarchical 

model will aim to structure these forces. A comparison of the Pose® and heel-toe running

techniques will follow using two experienced male Pose® and heel-toe runners utilising
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the primary and secondary research variables (study 1; chapter 5) derived from the 

Gravitational hierarchical model. Upon establishment of the Pose® method technique, a 

group of male heel-toe recreational runners (study 2; chapter 6) will participate in a 

repeated measures design. An economy and time trial run will give the participants pre

test baseline physiological measures while the primary research variables will provide a 

biomechanical profile. The post-test will determine whether there is an improved 

performance on the economy and 2400 time trial run resulting from the potential 

biomechanical changes in the Pose® group from a 7-hour Pose® training intervention. A 

2 x 2  mixed factorial ANOVA will assess the main effects of group (control vs. 

treatment) and trial (pre to post changes) on the primary research variables. Tukey’s tests 

of honestly significant differences will be used to assess individual cell differences post 

hoc. A prospective 3-month injury study on all the participants post intervention will 

seek to determine injury incidence between the two running techniques.

Currently unanswered research questions on running biomechanics and their effects on 

performance, which this thesis aims to answer, include:

• Can the Gravitational hierarchical model based on the Pose® running technique 

clarify the relationship and timing of the forces involved in running?

• Can the Pose® running technique improve performance (economy and speed)?

• Can running injuries be reduced by the application of the Pose® running 

technique?

1.3 CHAPTER ORGANISATION

Chapter 2 reviews the literature on running economy, optimal running biomechanics, 

and injury mechanisms. These topics are reviewed using data collection tools, such as, a 

force plate, electromyography and two or three-dimensional analysis. The findings are 

then summarised to clarify whether a potential universal running technique is evident 

from the literature.

Chapter 3 conducts a detailed analysis of the forces involved in running while 

evaluating the Pose® method to determine if it is a universal running technique. A new
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Gravitational hierarchical model is developed and compared with Hay and Reid’s (1988; 

p. 282) hierarchical model of running.

Chapter 4 evaluates the experimental procedures. A statement of the problem is given. 

Hypotheses and the primary and secondary research variables derived from the 

Gravitational hierarchical model are stated. The research design and statistical model are 

specified.

Chapter 5 compares data for study 1 from two experienced male participants in the 

Pose® and heel-toe techniques of running. Kinetic and kinematic (primary and 

secondary) variables established from the Gravitational hierarchical model, distinguish 

the two running techniques. The Pose® method is discussed using the Gravitational 

hierarchical model.

Chapter 6 presents results from study 2 using sixteen male heel-toe endurance runners, 

where eight were trained for 7-hours in Pose® running (treatment/Pose^ group). Sixteen 

2 x 2  mixed factorial ANOVAs will assess the main effects of group (control vs. 

treatment) and trial (pre to post changes) on the primary research variables 

(physiological and biomechanical) derived from the Gravitational hierarchical model. 

Tukey’s tests of honestly significant differences will be used to assess individual cell 

differences post hoc. A 2400 m time trial and economy run will record physiological 

performance, optimal rumiing biomechanics will be documented via a laboratory 

assessment and a 3-month prospective injury study will record injury incidence.

Chapter 7 summarises the findings of the previous chapters and suggests possible areas 

for future research.



CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

This chapter follows biomechanical outlines from several comprehensive reviews of 

running (Williams, 1985; Novacheck, 1998): Economy, an optimal biomechanical 

profile and sustained injuries. Each one of these areas aims to improve running 

performance. Running economy research attempts to identify patterns of motion which 

improve economy and hence performance. Identification of an optimal biomechanical 

profile may reveal a universal running technique, which should improve performance in 

athletes of all abilities. High injury prevalence in runners can negatively influence 

performance.

2.2  RUNNING ECONOMY

2.2.1 Introduction

Economy and efficiency of running are often incorrectly applied.

“Efficiency o f movement refers to the mechanical energy/ produced relative to the 

metabolic energy’ used to cause the movement'' (Robergs and Roberts, 2000; p. 69).

Mechanical work is a key component of the work-energy relationship for efficiency of 

movement, which divides into two areas during constant speed running. Firstly, external 

work is the sum of work required to accelerate the centre of mass of the whole body, plus 

work completed against gravity. Secondly, are the work done by the limbs around the 

centre of mass, which is internal work. External work is higher than internal work up to 

speeds of 5.5 m-s'1, above this speed the work ratio is reversed (Cavagna and Kaneko,

1977). A major problem arises, however, estimating the storage and return of elastic
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energy associated with high muscular efficiencies (Cavagna et al., 1964; Williams and 

Cavanagh, 1983; Kubo et al., 2000). In eccentric exercise, mechanical energy can 

increase linearly, however, this appears to be individual owing to increases in stretching 

velocity of lower-limb muscles (Auro and Komi, 1986). Although initially this method 

seemed plausible, mechanical efficiency measures have varied enormously (22.7-75%) 

making subtle observations of mechanical changes in runners obsolete (Margaria, 1968; 

Asmussen and Bonde-Petersen, 1974; Kaneko et al., 1983; Bosco et al., 1987). Running 

economy presented itself as an appropriate and alternative measure of energy 

expenditure associated with running. Economy and efficiency however, are not 

synonymous (Robergs and Roberts, 2000).

Running economy refers to the energy cost of performing movement (Bransford and 

Howley, 1977; Daniels, 1985). Research into running economy tries to identify patterns 

of motion that improve economy and hence performance. Economy is defined as, the 

oxygen cost per kilogram of body mass per kilometre run (Cavanagh and Williams, 

1982; Morgan et al., 1989; Bergh et al., 1991; Noakes, 2002) with substantial individual 

variation in running economy observed among those running at the same speed 

(Mayhew, 1977; Daniels, 1985). Meaning, economical runners consume less oxygen 

relative to body mass when running at a submaximal intensity. Changes in running 

economy link to the biomechanics of running technique (Bransford and Howley, 1977; 

Cavanagh and Williams, 1982; Daniels, 1985) with 54% of the variation in running 

economy attributed to biomechanical variables (Williams and Cavanagh, 1987). Further 

variance may have been unidentified owing to nonlinear relationships with the 

biomechanical variables. Increased running training (volume) can change running 

economy in individual runners (Bransford and Howley, 1977; Conley and Krahenbuhl, 

1980). However, several studies have shown no improvement in running economy when 

training was increased (Costill et al., 1973; Wilcox and Bulbulian, 1984). Furthermore, 

intra-individual oxygen uptake variation exists between different test dates and running 

speeds (Morgan et al., 1987). Nevertheless, the term economy is the accepted 

physiological criterion for efficient running performance (Cavanagh and Kram, 1985). 

The next section discusses biomechanical variables associated with economical ruiming.
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2.2.2 Kinematics and running economy

Impact patterns

Research identifies two patterns of landing in runners: forefoot and rear foot or heel-toe 

(rear foot and heel-toe are used synonymously for this thesis) runners (Whittle, 1991). 

Nilsson and Thorstensson (1987) reported no significant difference in running economy 

between a group of six forefoot and six rear foot strikers; even when the runners 

voluntarily changed from fore to rear foot and vice versa. In contrast, Williams and 

Cavanagh’s (1987) work indicated that heel-toe runners maybe more economical in their 

running style, although this was not consistent across their participants. For example, the 

fastest 10-km runner from their study was a heel-toe runner who had the third poorest 

economy. However, impact patterns by virtue of the kinetic chain are influenced by 

stride-length, stride frequency, joint angles, and the position of the centre of mass at 

impact and terminal stance (Mero et al., 1992).

Stride length and stride frequency

Stride length is defined as successive contacts of the same foot, with step length (half a 

stride) as successive contacts of opposite feet (Cavanagh and Williams, 1982). Stride or 

step length is used depending upon the paper reviewed. However, step length can denote 

the distance the centre of mass travels during flight (Cavagna et al., 1976). Stride length 

is one of the few variables established by direct experimental evidence to affect running 

economy (Anderson, 1996). Curvilinear increases in aerobic demand occur when stride 

length increases or decreases at any given speed from one self-selected by the runner 

(Hogberg, 1952; Knuttgen, 1961; Morgan et al., 1989; Kyrolainen et al., 2000a). 

Cavanagh and Williams (1982) report running economy as the primary reason for 

runners— 10 well-trained participants—making self-selected stride lengths and stride 

frequencies. The optimal economical solution identified was a combination of self

selected stride lengths and stride frequencies. Cavanagh and Kram (1990) documented 

that stride length increased preferentially over stride frequency with increasing speed up 

to 7 m-s"1. Again, it appears that economy dominates the choice of stride length. Martin 

et al. (2000) state the typical explanation for this strategy (i.e., change in stride length 

rather than stride rate) is that it requires less energy to lengthen the stride within 

reasonable limits than to increase stride rate.
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A four-year study by Nelson and Gregor (1976) in contrast observed varsity distance 

runners decrease their stride length at a given speed as their performance improved. This 

perhaps suggests that freely chosen stride length is possibly a variable quantity over a 

runner’s life or they self-selected over-striding patterns to begin with. Morgan et al. 

(1994) monitored runners who self-selected an over striding gait pattern. They responded 

positively to step length optimisation training, because economy improved as step length 

decreased.

Rowland (1989) and Unnithan and Eston (1990) noted boys produced shorter stride 

lengths and higher stride frequencies than men, but the oxygen demand per stride was 

similar in both groups. It is possible that height and body mass in boys affect movement 

differences with their lower-limbs, which constitutes a substantial part of metabolic 

expenditure. Williams and Cavanagh (1987) however, found no differences in 

anthropometric measures for segmental lengths and masses in relation to an adult 

rumier’s economy.

In reference to step frequency, Kaneko et al. (1987) measured energy consumption 

during running at varying step frequencies while speed was kept constant at 2.5 m-s'1, 3.5 

m s '1 and 4.5 m-s'1. Energy was minimized for all three speeds at approximately the same 

step length, at about 2.9 steps-s'1, corresponding closely to the freely chosen step 

frequency of 2.8 steps-s'1. Kyrolainen et al. (2000b) used seven triathletes who ran a 

marathon to induce fatigue; step frequency increased and step length decreased. The 

authors suggested the triathletes compensated for impaired neuromuscular function with 

increased muscle activity, causing weakened economy. Cavanagh and Kram (1985) 

using twelve endurance runners recorded step frequency for running speeds of 3 m-s'1 to 

4.2 m-s'1. Step frequency increased by 4%, in contrast to a 28% increase in stride length 

over the speed range. However, two runners had similar stride frequency across the 

whole speed range. They concluded that there might be an individual economical stride 

frequency at different speeds in distance running.

Lower and upper limb kinematics

Maximum thigh extension at terminal stance had a positive correlation (r = 0.53) with

increased economy (increased oxygen consumption) from 13 elite males (Williams and

Cavanagh, 1986). In contrast, thigh extension in 31 recreational runners showed no
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correlation with oxygen consumption (Williams and Cavanagh, 1987). Williams et al. 

(1987) did not provide an explanation for these opposing results. Miura et al. (1973) 

associated thigh extension with increased push-off at terminal stance, identifying this as 

‘good' and associated with their elite runners (14 min 48-56 s for 5 km), but recorded no 

economy data to support this. Further, elite runners’ biomechanical profiles—thigh 

extension—may differ from recreational runners in this respect, owing to running speed 

differences.

Cavanagh et al. (1977) using elite runners demonstrated that more acute knee angles 

during the swing phase enhanced economy. Theoretically, greater knee flexion allows a 

faster recovery of the lower-limb by decreasing the moment of inertia (Bailey and Pate, 

1991). In support, Enomoto et al. (1999) recommended a rapid recovery of the thigh 

required a flexed lower-limb, and this action was associated with efficient runners. 

Martin (1985) and Meyers and Steudel (1985) added leg weights to the distal end of 

runners’ lower-limbs, producing oxygen consumption submaximal increases. It was 

evident an increased moment of inertia for the lower-limb reciprocally increased oxygen 

consumption.

Maximum knee flexion during support has also been associated with improved running 

economy (Williams and Cavanagh, 1987). Maximum knee flexion correlated 

significantly with less contact time, shank angle at impact and the second vertical ground 

reaction force peak. Improved economy was also associated with less extension of the 

knee (in contrast to Miura et al., 1973) during terminal stance, and less rapid knee 

flexion velocity during stance. Williams and Cavanagh (1987) speculated lower-limb 

kinematics cause subtle changes in muscular activity patterns before and during support 

that are related to differences in metabolic energy costs. An alternative explanation is 

lower knee flexion, shank angle at impact, plus the second vertical ground reaction force 

peak and the reduction in contact time, were a result of the centre of mass moving 

anterior of the support foot more quickly allowing earlier forward progression.

Maximum ankle plantar flexion angles at terminal stance were a mean of 10° more for 

good runners (mean marathon time 2:34:40) than elite runners (mean marathon time 

2:15:52) (Cavanagh et al., 1977). Decreased plantar flexion would logically be 

associated with less push-off and lower muscle force. In support of this idea, Williams
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and Cavanagh (1987) found more economical runners had 6.4° less plantar flexion at 

terminal stance than their least economical runners.

Williams and Cavanagh (1987) and Anderson and Tseh (1994) demonstrated a trend for 

more economical runners to use less arm movement, measured by wrist excursion during 

one stride. These economical runners have lower arm amplitudes, which may indicate a 

skilled-balance mechanism rather than a method of forward drive. Arm action reduced 

side-ways rotations in runners giving further support to this theory (Hinrichs, 1987). 

Mann (1981) also concluded from extensive analysis of sprint running that the upper- 

limb’s contribution is balance maintenance only. Therefore, arms appear not to 

contribute to the drive of the body in the anterior and posterior direction (Hinrichs et al., 

1987), and were not studied in this thesis.

Vertical oscillation of the body’s centre of mass and trunk lean

Williams and Cavanagh (1987) found a consistent, but non-significant trend for oxygen 

cost, associated with lower vertical oscillation of the body’s centre of mass in good and 

elite runners. Logically, excessive vertical oscillation would be ineffective for horizontal 

displacement, yet many individuals run economically despite high vertical oscillation. 

There is however, some general support for improved ruiming economy with lower 

vertical oscillation (Slocum and James, 1968; Cavanagh, et al., 1977). Several 

possibilities exist for the conflicting results. Firstly, measurement of vertical oscillation 

differed between using head-markers or displacement of the centre of mass. The use of 

head-markers assumes that trunk and neck angles remain neutral for each runner. 

Secondly, the variety of biomechanical variables associated with running economy, and 

their various combinations, make identification of one variable as an absolute 

economical variable in all runners unlikely. The source of vertical oscillation should be 

an important economy inquisition. Vertical oscillation can transpire from leg extension 

or the reciprocal flexion and extension of the stretch-shortening cycle. If certain runners 

predominantly utilise the stretch-shortening cycle, which requires lower muscle activity 

(Cavagna et al., 1964), this provides a possible explanation for economy differences.

Williams and Cavanagh (1987) found runners with a mean forward trunk lean, relative to 

the vertical axis, more economical at 5.9° compared with 3.3° and 2.4°. However, 

excessive forward trunk lean may create increases in economy (James and Brubaker,
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1973). There appears to be an optimal position for the trunk and by association the centre 

of mass position, to maintain postural alignment for improved running economy.

2.2.3 Ground reaction force and running economy

Increased stance time correlated positively (r = 0.49) with poorer economy (Williams 

and Cavanagh, 1986; Williams and Cavanagh, 1987), yet not all studies registered this 

relationship (Cavanagh et al., 1977). An explanation for variations in stance time in the 

three studies is use of both fore and / or heel-toe runners. For example, Williams et al. 

(1987) used elite females (with no heel-toe or forefoot classification), whereas Williams 

and Cavanagh (1987) used recreational runners, who were both forefoot and heel-toe 

runners. Stance time differs between forefoot and heel-toe runners (Arendse et al., 2004).

Williams and Cavanagh (1987) found significantly lower first peaks for vertical ground 

reaction force, plus less anterior and posterior ground reaction force in economical 

recreational runners. They suggested lower extremity kinematic demands just before 

ground contact, might have a significant affect on muscles both before and during 

support, which in turn can affect economy. Forefoot strikers rely more heavily on the 

musculature to assist with cushioning than heel-toe runners, who depend more heavily 

on footwear and skeletal structures to cushion and support impact force (Williams and 

Cavanagh, 1987). Kyrolainen et al. (2000a) speculated lower performances from poorer 

economy stem from limited action of the hamstrings. They linked poor economy with 

limited hamstring activity and higher braking forces at foot contact. Heise and Martin 

(2001) found total vertical impulse and net vertical impulse correlated with running 

economy (r = 0.62, r = 0.60, respectively) indicating a moderate correlation for stance 

time and the amount of force applied during stance. Inferred, was increased muscle 

support during stance produced reciprocal increases in economy.

2.2.4 Electromyography and running economy

Relationships between running economy and the temporal electromyography

characteristics of biarticular leg muscles were quantified in a group of well-trained

runners (Heise et al., 1996). Nine runners completed three test sessions: a determination

of maximal aerobic demand, an accommodation session at the experimental speed of
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4.13 m-s"1 and a session during which electromyography and running economy data were 

collected at 4.13 m-s'1 (see figure 2.2.1). Measures of muscle onset, on-time durations 

and on-time co-activation durations were calculated from: rectus femoris, medial 

hamstrings, lateral hamstrings and gastrocnemius muscles. Earlier onset of rectus 

femoris during swing phase and a shorter duration of hamstring-gastrocnemius co

activation during swing were associated with economical runners. Individuals who 

exhibited more co-activation (improved coordination) between biarticular muscles 

during the stance phase of the running cycle tended to be more economical. Economical 

runners produced different activation patterns with their biarticular muscles, which cross 

two joints—ankle-knee and knee-hip—  indicating economical runners had improved 

segmental coordination.
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Figure 2.2.1 S c a t t e r - p lo t  o f  r u n n in g  e c o n o m y  v e r s u s  h a m s t r in g - g a s t r o c n e m iu s  c o - a c t i v a t i o n  d u r in g  

s w i n g  ( H e i s e  et al., 1 9 9 6 ) .  N o t e  t h e  p o s i t i o n  o f  t h e  t w o  m o s t  u n e c o n o m ic a l  r u n n e r s .

Kyrolainen et al. (2000a) using seventeen well-trained endurance runners, found

electromyography for the biceps femoris—a biarticular muscle increased across

thirteen different speeds. As running speed increased, power in the lower-limb joints 

increased in the ground push-off phase. This provided a weak correlation with muscle 

activity and energy expenditure (r = 0.48 at p  < 0.05). However, no economy data were 

collected.

The stretch-shortening cycle of muscle contraction

The mechanical efficiency of running exceeds the efficiency of the conversion of 

chemical energy to kinetic energy by muscles (Cavagna and Kaneko, 1977; Winter,
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1978; Cavanagh and Kram, 1985). Elastic strain energy stored during eccentric 

contractions of running is subsequently released during concentric contractions, which 

makes a substantial contribution to propulsion (Cavagna et al., 1964; Cavagna and 

Kaneko, 1977; Hinrichs, 1990; Jung, 2003). A reduction in support time aids utilization 

of stored elastic energy in the muscle mechanisms, (Zatsiorsky, 1995; Paavolainen et al., 

1999a). Although there is no method of quantifying storage of elastic energy, there is a 

consensus that this phenomenon contributes to both efficiency and economy of 

movement (Cavagna and Citterio, 1974; Cavagna et al., 1977; Winter, 1978; Luhtanen 

and Komi, 1978; Cavanagh and Kram, 1985; Komi, 2000). The runner’s body possesses 

kinetic energy while the muscle-tendon unit contains potential strain energy. An optimal 

and complimentary combination of potential strain energy and conserved kinetic energy 

would theoretically improve a runners’ economy.

2.3  AN OPTIMAL BIOMECHANICAL RUNNING PROFILE

2.3.1 Introduction

Cavanagh et al. (1985; p. 404) elaborated on whether elite rumiers exhibit a

biomechanical profile that is substantially different from recreational runners:

“Many obsemers might suggest that elite athletes have practiced their event so 
frequently as to have self-optimised their movement patterns. It is a mistake, to assume 
elite athletes have perfect body structures and ideal movement patterns. The elite athlete 
cannot succeed without excellent physiological attributes. However, he or she can 
succeed in spite o f poor running mechanics and body structure

They highlighted that identifying ideal running biomechanics from elite runners can be

problematic. This section will use elite and recreational runners, to appraise kinematic

analysis, ground reaction force and electromyography. Several points are worth noting

when reviewing these areas of biomechanical research. Firstly, as stated earlier there are

two types of foot contact with the ground in running. Ken- et al. (1983) and Whittle

(1991) identified eighty percent of all runners land on the heel (heel-toe runners) and

twenty percent of all runners land on the front part of the foot (forefoot rumiers). As

speed increases, rumiers often change from a heel landing to a forefoot landing (Kerr et

al., 1983; van Mechelen, 1995). Secondly, attempts to quantify running biomechanics

fall within two methods (Williams and Cavanagh, 1987): measures sensitive to the entire
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running cycle such as mechanical power, while other studies measure certain variables at 

or between discrete points within the gait cycle, such as knee flexion at impact.

No definitive relationships exist between mechanical power and economy (Norman et 

al., 1976; Kaneko et al., 1983). Calculated power varies widely between studies 

depending on which assumptions were made (Norman et al., 1976; Williams and 

Cavanagh, 1983; Morgan et al., 1989), for example, inaccuracies in modelling the runner 

as a multi-segment rigid body or choice of filter and cut-off stride frequencies applied to 

the kinematic data (Arampatzis et al., 2000). Mechanical power is, therefore, not a 

sensitive enough measure for running performance evaluations. Williams (1990) stated, 

“that a multitude o f variables may be used to describe running action and it is therefore 

difficult ‘a priori ’ to know which variables to select.” Selecting too few may overlook 

vital variables while collecting too many variables may not enable identification of 

relationships between them. This problem confounds determination of an optimal 

running profile. Collecting many variables and using a factor analysis procedure to 

identify independent sets of variables is one method (Williams and Cavanagh, 1987). 

From this large number, a smaller set of variables may then be analysed in more detail. 

Williams (1990) recommended this method for each study even though this could be a 

time consuming approach.

There is another option for identifying an optimal biomechanical profile: construction of 

a hierarchical model via identifying relationships between various performance variables 

and the performance criterion (Bartlett, 1997; Glazier et al., 2003). Models of this type 

eliminate any arbitrary selection of performance variables, and specify critical 

relationships between these variables and the performance criterion based upon the laws 

of physics. This thesis adopts this approach.

2.3.2 Running kinematics

Introduction

The kinematic review will only appraise biomechanical variables of running 

substantiated in the literature. Most studies are descriptive, with only a few finding 

causative relationships between certain biomechanical variables and running 

performance (Williams, 1985; McClay, 2000).
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Kinematics of the Centre of mass

Vertical oscillation of the centre of mass decreased with increased running speed 

(Luhtanen and Komi, 1980; Ito et al., 1983a). For example, Luhtanen and Komi reported 

vertical oscillations of 10.9 cm, 8.6 cm, and 6.7 cm for speeds of 3.9 m-s'1, 6.4 m-s'1, and

9.3 m-s'1 respectively, for six runners. Ito et al. (1983b) obtained similar results for 

speeds of 1.9 m-s"1 to 6.1 m-s"1, while also observing the vertical oscillation of the centre 

of mass decreased during contact but increased slightly during flight as speed increased. 

If vertical oscillation decreases and vertical ground reaction force increases (Cavanagh 

and Lafortune, 1980; Roy, 1982; Hamill et al., 1983) at faster running speeds, logic 

dictates there is less vertical work. The increased ground reaction force reflects increased 

acceleration of the centre of mass, whereas decreased oscillation may reflect an 

increased angle swept by the lower-limb (Ferris et al., 1999).

Cavanagh and LaFortune (1980) found a mean decrease in the horizontal velocity of the 

centre of mass of 0.18 m-s'1 during the braking phase for seventeen participants running 

at 4.47 m-s'1. The propulsive phase found a mean increase of 0.27 m-s'1. Wide variability 

exists between rumiers, for changes in horizontal velocity of the centre of mass during 

support (Fenn, 1930; Bates et al., 1979). Perhaps the variability found in the horizontal 

velocity of the centre of mass during stance exists because impact patterns differed 

between the runners measured. For example, if the foot lands further ahead of the centre 

of mass at impact for one runner compared to others, a greater braking effect can occur 

(Fenn, 1930; Deshon and Nelson, 1964; Cavanagh et al., 1977; Bates et al., 1979; Kunz 

and Kaufman, 1981; Girardin and Roy, 1984; Hinrichs, 1990). Landing on the heel as 

opposed to the forefoot may decrease horizontal velocity at impact or vice versa. Impact 

patterns also affect stance-limb impact angles, at the hip, knee and ankle, via the kinetic 

chain (Bartlett, 2000), which subsequently alter the centre of mass’s vertical 

displacement (Lee and Farley, 1998). Lower-limb angles, centre of mass and foot 

position at impact, therefore, have an important relationship to reductions in horizontal 

velocity of the runner.

In an extensive evaluation of running, Fenn (1930) combined vertical and horizontal 

movements of the centre of mass within the body in the sagittal plane. In general, the 

centre of mass moves diagonally upwards and backwards (stance), then, reversing to go 

forwards and downwards (swing) within the body during the gait cycle. Only the slowest
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runner (6.91 m-s'1 compared to 7.22 m-s'1 and 8.5 m-s'1) had their centre of mass pass 

through a negative position in relation to their centre of mass in the standing position. 

Fenn (1930) linked decreases in horizontal velocity of the body at impact with position 

of the centre of mass in relation to their anatomical standing position. His faster rumiers 

produced positive scores showing a forward position in relation to their standing centre 

of mass location. The data clearly indicated that the body is pushed forwards from the 

hip at foot contact (hip velocity exceeded that of the neck), because the body’s centre of 

mass is in a positive position, with respect to their anatomical standing position at foot 

contact. Slocum and Bowerman (1961) state in reference to the cause of deceleration of 

the centre of mass:

UA simple force diagram will reveal that the further ahead o f the body the foot strikes the 

ground, the more acute the angle and the greater the deceleration from ground 

resistance.”

Deshon and Nelson (1964) also found that runners that are more proficient kept then foot 

as close as possible beneath their centre of mass. Mann and Herman (1985) using all 

sprint finalists (100 m, 200 m and 400 m) from the 1984 Olympics, determined Gold 

medallist’s centre of masses were 0.217 m behind the foot at impact compared to Silver 

medallists at 0.284 m and eighth position with 0.327 m.

Potential and kinetic energy of the centre of mass in running are minimum at mid-stance. 

The knee is maximally flexed at mid-stance—the centre of mass at its lowest point— 

which coincides with the braking phase during the first half of stance when horizontal 

velocity of the centre of mass is reduced (Enomoto et al., 1999). During the second half 

of stance, kinetic energy of the centre of mass increases owing to the accelerating affect 

of ground reaction force and gravity. However, kinetic and potential energy in running 

are nearly in phase with each other (see figure 2.3.1). Exchange of kinetic and 

gravitational potential energy conserves less than 5% of the mechanical work required to 

lift and accelerate the centre of mass (Cavagna et al., 1964). A biomechanical 

intervention that could reduce braking force would conversely preserve the centre of 

mass’s kinetic energy. In fact, Enomoto et al. (1999) found an improvement in 

mechanical energy conservation owing to lower deceleration of the centre of mass in the 

first half of support.
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Figure 2.3.1 R u n n in g  at 3 .8  m - s '1. t h e  k i n e t i c  e n e r g y  f lu c t u a t io n s  o f  t h e  c e n t r e  o f  m a s s  a r e  a p p r o x im a t e ly  

in  p h a s e  w i t h  th e  g r a v i t a t io n a l  p o t e n t ia l  e n e r g y  f lu c t u a t io n s .  S t a n c e  p h a s e s  a r e  i d e n t i f i e d  at t h e  b o t t o m  o f  

t h e  g r a p h  (F e r r is  et al., 1 9 9 6 ;  p .  2 6 0 ) .

Estimated potential strain energy for a 70 kg man's total energy turnover in each stance 

phase was 100 J at 4.5 m-s'1 (Ker et al., 1987). They estimated 35 J are stored as strain 

energy in the Achilles tendon and 17 J in the arch of the foot, with more stored in the 

quadriceps and patella tendons. Strain energy can reduce half of the energy needed by 

muscles, for instance, when acting as brakes at impact or producing work at terminal 

stance (Ker et al., 1987). This essentially reduces the muscles shortening and 

lengthening action owing to the tendon being stretched while the muscles holds tension 

(Alexander, 1992; Novacheck, 1998).

Spring-mass model

Spring-like motion of a bouncing ball models oscillation of a runner’s centre of mass 

(figure 2.3.2). The spring-mass model consists of a single linear spring (leg-spring) and a 

point-mass that is equivalent to the centre of mass (Alexander, 1988; Blickhan, 1989; 

McMahon and Cheng, 1990). Leg-spring stiffness represents the overall stiffness of the 

integrated musculoskeletal system. During early stance the leg-spring compresses (leg 

flexion), and then lengthens (leg extension) for the second half of stance. This model 

(figure 2.3.2) describes and predicts the dynamics of running remarkably well (Farley 

and Gonzalez, 1996; Fukunaga, et al., 1997).
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Figure 2.3.2 A spring-mass model and a stick figure representation of a single stance phase (Ferris and 
Farley, 1997). The model consists of a linear spring representing the leg and a point mass equivalent to 
body mass. This figure depicts the model at initial contact (left position), at mid-stance (middle position) 
and terminal stance (right position). AL = change in length.

Dynamic interaction between the stance leg and the ground are important: leg stiffness 

seeks to express this relationship. Components of leg stiffness include vertical excursion 

of the body’s centre of mass, stance time and ground reaction force (McMahon and 

Cheng, 1990; Farley and Gonzalez, 1996). Leg stiffness is defined as the ratio of ground 

reaction force to the compression of the leg-spring (AL) at the instance of mid-stance 

when the leg is maximally compressed (figure 2.3.2). Increased ground reaction force 

produces an increased leg-stiffness ratio. Conversely, an increased knee flexion reduces 

leg stiffness. Running on five different surfaces of varying stiffness ranging from 75 to 

945 kN-m'1, a 12.5 fold change; knee angle increased by 2.5% as surface stiffness 

decreased while time of ground contact did not significantly change (Kerdok et al., 

2002). Kerdok et al. (2002) credited changes in leg-spring to local joint stiffness 

variations and overall limb posture adjustment. The more compliant running surface was 

attributed to leg-spring change, because it acts as an elastic substrate capable of storing 

and returning mechanical energy in this case, 1.8 W of energy metabolism.

Leg stiffness remains virtually the same for running speeds between 2-6 m-s’1 (He et al.,

1991), although as stride length increases stiffness decreases by up to 51% (Derrick et

al., 2000). To maintain leg stiffness across the endurance speed range the angle swept by

the leg during stance increased enabling decreased stance times (figure 2.3.2; angle &).

Owing to the larger angle swept by the leg at faster speeds, the vertical displacement of

the centre of mass is less at faster speeds, which reduces stance time (Ferris et al., 1999).

Alterations in leg stiffness while running are possible. Leg stiffness occurs with a change

in stride frequency (Farley and Gonzalez, 1996), to reflect say, off-set changes in surface
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stiffness (Ferris et a l,  1996). By adjusting leg stiffness, runners were able to have the 

same peak ground reaction force, stance time and vertical displacement for the centre of 

mass regardless of the surface stiffness (Ferns et al., 1996). Dixon et a l (2000) in 

contrast, found individual variation in these variables. Individual variations are possible 

revealing skill differences, but their model works on a premise that at impact the centre 

of mass increases its distance behind the point of contact as running speed increases. 

This is not evident however in faster runners (Fenn, 1930; Deshon and Nelson, 1964; 

Cavanagh et al., 1977; Hinrichs, 1990).

Joint stiffness is defined as a change in joint moments divided by change in the joint 

angle (Kuitunen et al., 2002). These two variables potentially affect vertical and 

horizontal excursion of the centre of mass by their roles in limb displacement and force 

production. Kuitunen et al. (2002) measured ten sprinters at different speeds, and 

identified that ankle joint stiffness remained constant. Knee joint stiffness increased 

across the speed range. However, only a minimal change in knee joint angle took place, 

which suggested knee moment was a prominent factor, unless elastic mechanisms can be 

utilised.

As endurance runners fatigue, stance time increases (Nicol et al., 1991). This suggests 

that a time delay between the muscle stretch and the shortening action may have 

widened. In combination, peak braking and vertical ground reaction forces decrease with 

fatigue (Paavolainen et a l, 1999b). These data suggest that many repetitive stretch

loads—fatigue—decreased the capacity of the neuromuscular system to generate force 

rapidly (Mero et a l, 1992). One possible explanation may be a reduction of muscle 

stiffness in the braking phase (Nummela et a l, 1994). This scenario would lead to a 

reduction in stored elastic energy during the braking phase, reducing the ability to store 

and return elastic energy. Knee flexion and extension angular velocity increases with 

rising running speed allowing the spring-mass model to function. Greater impact spring 

stiffness arises from increased stride length of up to 20% (Dietz et al., 1979; Derrick et 

a l,  2000). At sprint running speeds, high leg stiffness may produce a stiff rebound 

(Chelly and Denis, 2001). However, research does not support an equal flexion and 

extension relationship during stance for thigh or knee angles (Milliron and Cavanagh, 

1990; De Wit and De Clercq, 2000; Li, 2000). Non-equal knee/hip flexion and extension 

may explain variations in position of the centre of mass to the support limb (see vertical
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oscillation of the body’s general centre of mass p. 19). For example, Lee and Farley 

(1998) concluded that stance-limb compression and impact angle both play an important 

role in determining the trajectory of the centre of mass. However, they did not deduce 

from their model that the centre of mass is behind the point of contact at impact thus 

negatively affecting forward progression. In addition, vertical oscillations of the centre 

of mass may reveal changes in the reciprocal knee flexion and extension angular 

velocities, which may affect forward progression.

Spinal Engine Theory

Based upon the spines capability for torsion and compression: Gracovetsky (1988) 

formulated two hypotheses. Firstly, runners’ legs cause the pelvis to rotate. Secondly, the 

spine can convert a lateral bending movement into an axial torque to drive pelvic 

rotation. Essential to the theory is the need to axially rotate the pelvis. In running, the hip 

extensors fire as the foot leaves the ground (see gait muscles and electromyography 

activity p. 35). Gracovetsky (1988) stated muscle power transfers directly to the spine 

and trunk through two distinct complementary pathways. The sacrotuberous ligament 

extends the action of the biceps femoris, through to the rib cage. This ligament crosses 

over the posterior superior iliac crest and continues as the lumbar intermuscular 

aponeurosis (Bogduk and Twomey, 1987), which has a direct link with the lumbar and 

longissimus lumbrum as well as the spinous processes via multifidus. Secondly, gluteus 

maximus connects to the lumbodorsal fascia, itself linked with latissimus dorsi and the 

upper extremities. Consequently, locomotion should be possible for a legless individual. 

Gracovetsky (1988) recorded legless participants walking on their ischiums by keeping 

normal spinal motion and electromyography patterns for the trunk musculature. These 

data corresponded to normal gait, except for amplitude of the movements. Justification 

for this phenomenon was the lordotic spine converts lateral bend into an axial torque 

driving the pelvis, thus demonstrating the need for compression and torsion in the spine 

during locomotion. Accordingly, spinal engine theory postulates that the legs follow 

pelvic motion in a desire to minimise energy expenditure. In addition, spinal engine 

theory promotes the central role of gravity as the motive force for legless locomotion.

Converted heel-toe runners

Williams et al. (2000) took six male and three female heel-toe runners and converted 

them to forefoot strikers in one laboratory session. Their research established a list of
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variables (table 2.3.1) that differentiated heel-toe and forefoot runners. Proceeding 

sections concentrate on the kinematic analysis of rear and forefoot strikers; the kinetics 

are discussed in section 2.3.3 p. 31.

Table 2.3.1 V a r ia b le s  f o u n d  to  b e  d i f f e r e n t  b e t w e e n  r e a r  f o o t  a n d  f o r e f o o t  s tr ik e r s  ( W i l l i a m s  et al.. 2 0 0 0 )

Stride length and stride frequency

Over striding requires considerable power during propulsion, resulting in excessive 

vertical oscillation of the centre of mass. In turn, this produces an impact position that 

creates increased braking forces and requires reciprocal joint ranges of motion, which 

invoke increased internal friction and stiffness (Hinrichs, 1990). Conversely, short 

strides increase internal work through increased frequency of reciprocal movements. 

Nilsson and Thorstensson (1987), within a range of running speeds of 1.5-8 m s'1, 

identified stride rates of 33 to 214 strides-min'1. These rates were the absolute lowest and 

highest the rumiers could perform. Runners can alter cadence and stride length, thus 

creating many different combinations (figure 2.3.3). Humans transition from walking to 

running at a critical speed of 2.2 m-s* , rather than at a critical stride rate or length 

(Laurent and Pailhous, 1986; Hreljac, 1995), plausibly indicating that the speed of 

locomotion is not the result of leg-work but the trunk and possibly the spinal motion via 

gravity’s work (see spinal engine p. 24). In addition, the flexibility to alter stride rate and 

stride length implies that the central nervous system must have mechanisms for actively 

controlling these variables. In support, the Froude number illustrates gravity’s role in 

running as a combination of leg length and running speed.

Froude number -  (speed of locomotion) (2.3.1)

Kinematics Kinetics
Plantar flexion at impact 
Inversion at impact 
Dorsiflexion excursion 
Eversion excursion 
Dorsiflexion velocity 
Eversion velocity 
Knee flexion at impact 
Knee flexion excursion 
Knee internal rotation velocity

Vertical ground reaction force 
Anterior ground reaction force 
Peak plantar flexion moment 
Ankle power absorption 
Ankle negative work 
Ankle inversion moment 
Peak knee flexion moment 
Knee power absorption 
Knee negative work 
Vertical loading rate________

gravitational acceleration x leg length
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Figure 2.3.3 Variations in stride length and stride rate with increase running velocity (Luhtanen and Komi, 

1978).

Dillman (1975) found better or more ‘skilled’—experienced college cross-country—  

runners tend to have longer strides at any given velocity than ‘poorer or less skilled’ 

runners. In contrast, Cavanagh et al. (1977) found elite runners took shorter absolute and 

relative strides than good distance runners did. Trained sprinters on a treadmill took 

considerably longer strides than non-sprinters despite similar leg-lengths (Armstrong and 

Cooksey, 1983). A helpful requirement would be a clear definition of skilled runners, 

which perhaps explains the conflicting reports. Dillman’s group had only four college 

runners. Cavanagh’s study compared good and elite runners at 5 m-s'1, equivalent to five 

and half minute mile pace (3 min 26 s per km), which might have been faster than good 

runners were used to, hence leading to altered stride lengths on the treadmill. Further, 

stride length and stride frequency may differ because sprinters over endurance athletes 

often spend more time completing running drills and strength training (Dillman, 1975). 

These ‘skill’ factors may have contributed to the differences found. No mention was 

made of how stride length was produced for example, were hip flexors more or less 

active in athletes with longer stride lengths owing to their associated knee lift increases 

(Armstrong and Cooksey, 1983).
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Longer strides may be associated with higher ground contact forces. Weyand et al. 

(2000) concluded maximal sprint speed occurs through an enhanced ability to generate 

and transmit muscular force to the ground, in contrast to a rapid repositioning of lower- 

limbs through stride length and stride frequency. Data collected on a treadmill rather 

than by over-ground running, possibly altered the findings (van Ingen Schenau, 1980; 

Nigg et al., 1995). For example, stance time for over-ground running was 15% higher for 

world-class sprinters Weyand et al. analysed from live footage than for their own 

treadmill data. The effective force applied to the ground and the time of foot contact 

determined aerial times (Weyand et al., 2000). Ariel times at maximal sprint speed 

between runners were similar, however, shorter stance times increased stride frequency 

in the fastest athletes. By applying higher ground contact forces, faster runners were able 

to increase both stride length and stride frequency. Although vertical force increased 

across the speed range (2-10 m-s'1), impulse decreased after 6 m-s'1. Ground reaction 

force reflects the acceleration of the centre of mass. This study showed a mean increase 

of 1 BW from 2 m-s'1 to 10 m-s'1. It seems unlikely that this increase in force alone 

reflects the considerable increase in speed. The top speed reached was 11.1 m-s'1 and the 

slowest was 6.2 m-s'1 from similar increases in force. There was more vertical force in 

the declined position (-6°) than the level, indicating body orientation to the ground 

(gravity) played a role in the vertical force found in running (Weyand et al., 2000).

Speed increases at low running speeds occur primarily through amplified stride length, 

for at high speeds, stride frequency is the primary factor (Weyand et al., 2000; Hay, 

2002). Endurance runners’ stride frequency reached a theoretical maximum at 5 Hz 

(Mann and Herman, 1985; Nilsson and Thorstensson, 1985). As noted earlier, Cavanagh 

and Kram (1985) found stride frequencies were individual, because runners appeared to 

maintain their chosen frequency for speeds of 3 m-s'1 to 4.2 m-s'1. With increased speeds 

(above 7 m-s"1), stride length did not increase significantly, whereas stride frequency 

continued to increase. Runners at high speeds, therefore, tend to enhance speed through 

increased stride frequency rather than stride length (Luhtanen and Komi, 1980). 

Increased frequency may cause shorter strides, casting reservation on the idea that this 

increase would amplify internal work (Hinrichs, 1990).

The running stride, further subdivides into support (stance) versus non-support (flight)

(Bates et al., 1979). Saito et al. (1974) found as running speed increased, the time for a
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complete running cycle decreased. Further, absolute and relative time spent in support 

decreased as running speed increased (Saito et a l,  1974; Bates et a l, 1978; Chapman, 

1982). Stance time changed from 68% at 3.35 m-s'1 to 54% at 6.4 m-s'1, although there is 

substantial individual variation (Nelson et al., 1972). Mami et al. (1986) found enlarged 

joint range of motion as speed of running increased, with subsequent reduction in 

support time (stance). They concluded that rises in angular velocity at the joints would 

create increased energy expenditure and force, thereby raising the possibility of injury. 

For example, in sprinting, hip flexion during swing was 80° compared to 40° for jogging 

(Mann et al., 1986). Increased hip motion during swing raises the foot higher from the 

ground possibly elevating impact forces. Increased running speed, however, has not been 

associated with increased running injuries (see p. 42; Yzerman and Van Galen, 1987).

Lower and upper extremity limb kinematics

Hip joint kinematics can differ depending upon the method used. Two commonly 

practised methods are orientation of the thigh with respect to the vertical axis or, 

obtaining hip joint angles using some markers on the trunk to define the upper body 

segment. However, there is generally a forward lean of the trunk in running (Williams 

and Cavanagh, 1987). Therefore, inclusion of trunk orientation will tend to increase the 

measured flexion angles and decrease extension angles compared to the measurement of 

the thigh orientation angles alone (Milliron and Cavanagh, 1990).

The hip joint has been observed to extend during support from about 35°, and flex during 

the swing phase from 40° for jogging, 60° for running and 80° for sprinting (Mann et al., 

1986). Maximum hip extension occurs at or immediately after terminal stance, and 

maximum hip flexion occurs at about two-thirds of the way through the swing phase as 

contralateral terminal stance begins (Sinning and Forsythe 1970; Dillman 1975; 

Cavanagh et al., 1977; Mami et al., 1986). Maim et al. (1986) suggest hip flexion is the 

main instigator for increasing running speed with the rest of the lower extremity 

following the lead of the hip's increased angular velocity. Maim et al. (1986) also found 

that knee extension began at the end of maximum hip flexion during the last third of the 

movement, and occurred through the concentric contraction of the quadriceps. The 

degree of maximal hip extension while occurring at terminal stance is less at moderate 

than faster running speeds (Mann and Hagy, 1980). In contrast, Mann and Herman 

(1985) found elite sprinters had less hip extension at terminal stance, because extension
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occurred via momentum of the flexing hip, owing to silent quadriceps muscles during 

hip extension. It might be pertinent to decrease elevation of the knee via decreased hip 

flexion during swing because it would lower work done against gravity. Possible 

differences in hip flexion and extension may also reflect the relationship with knee and 

ankle kinematics owing to the kinetic chain (Bartlett, 2000).

At impact, the knee angle has been generally reported to be in the range of 10° to 30° 

(Bates et al., 1978; Elliot and Blanksby, 1979; Clarke et al., 1983). A variety of angles 

for knee flexion have been found for support, ranging from 38 to 50° for speeds of 3.4 

m-s'1 to 7.5 m-s'1 (Cavanagh et al., 1977; Bates et al., 1978; Bates et al., 1979). 

Although, only small changes of 1.5° to 4° in knee flexion have been identified during 

support across speeds ranges of 3.33 m-s'1 to 6.67 m-s’1, despite absolute differences in 

knee flexion among individuals (Sinning and Forsyth, 1970; Miller, 1978; Nilsson and 

Thorstensson, 1985). After impact, flexion occurs in the cushioning phase and continues 

through mid-stance, followed by a knee extension phase that lasts up to or slightly after 

terminal stance.

At terminal stance, the knee does not fully extend although there appears to be a trend 

towards greater extension with increased speed (Cavanagh et al., 1977; Bates et al., 

1978; Elliot and Blanksby, 1979). This finding is not universal (Sinning and Forsythe, 

1970). Cavanagh et al. (1977) indicated that the knee did not fully extend throughout the 

gait cycle and was almost the same angle at impact as terminal stance. At 2.5 m-s'1 to 5 

m-s"1, knee extension was 23° (Elliot and Blanksby, 1979) and at 8 m-s'1, 18° (Mann et 

al., 1986). Extension increases were found for sprinting at 8 m-s'1 but not for distance 

running speeds of 2.5 m-s'1 to 5 m-s’1, contradicting a commonly held assumption, that 

rumiers push off the ground via knee extension (Milliron and Cavanagh, 1990).

Bates et al. (1979) found no relationship between knee angle at impact and the amount of 

decrease in horizontal velocity of the centre of mass during stance. Barefoot runners had 

greater knee flexion angular velocity than shod, which began 0.02 s before impact (De 

Wit et al., 2000). Running in shoes gave similar results, although comparison is not 

straightforward owing to other altered kinematic variables in barefoot runners as 

opposed to shod (Clarke et al., 1983). De Wit et al. (2000) concluded barefoot runners 

make kinematic adaptations just before impact, including increased knee flexion velocity
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0.02 s before, followed by a passive interaction between the ground and the contacting 

leg. Further, the initial ground contact phase indicated the overall stiffness of the support 

leg to be higher in barefoot running (see spring-mass model section p. 20).

At impact, the ankle is at approximately 90°, while at terminal stance, usually 20° of 

plantar flexion occurs (Milliron and Cavanagh, 1990). Mann et a l (1986) observed for 

jogging, running and sprinting dorsiflexion of the ankle joint occurred after foot contact. 

Dorsiflexion continued through mid-support, which occurred at about 50% of the support 

phase, followed by ankle plantar flexion until terminal stance and into swing. Magnitude 

of dorsiflexion was 10° for jogging and running with 15° for sprinting (Nilsson et al.,

1985). The magnitude of plantar flexion, which began at mid-stance was 45° for jogging 

and running with 35° for sprinting (Mann et a l, 1986). Plantar flexion is lower in 

sprinting than running and jogging, again contradicting the assumption of increased 

push-off at faster speeds. At all speeds, plantar flexion reached its maximum at terminal 

stance. For jogging and running progressive dorsiflexion occurred during the swing 

phase. For sprinting, plantar flexion reached a maximum just before impact (Mann et a l ,

1986). Cavanagh et a l (1977) identified that elite runners had less plantar flexion at 

terminal stance than good runners (67° versus 59°). If the runner is a heel-toe or forefoot 

striker this will effect ankle dorsi and plantar flexion angles making comparisons 

difficult (Williams et a l, 2000). For example, forefoot compared to heel-toe runners 

plantar flexors, fatigue faster during exhaustive running (Pratt, 1989). Pratt suggested 

this finding supported why eighty percent of distance runners are heel strikers.

Several studies found that the arms increased the vertical oscillation of the body’s centre 

of mass in running (Cavanagh, et al, 1977; Cavanagh and Williams, 1987; Hinrichs et 

al., 1987). Hinrichs et a l  (1987) concluded the arms tended to reduce fluctuations in the 

forward velocity and in side-to-side movements of the runner. Hinrichs (1987) measured 

angular momentum during flight, finding total angular body momentum about the 

vertical axis is constant in the absence of external torques. Therefore, the lower body 

receives 100% of its angular impulse from the upper body. If the upper body where not 

present (arms and upper trunk), the legs could not change direction while airborne, and a 

recognisable swing would not be possible. The radius between the hip and ankle affects 

angular momentum during flight, owing to an increased radius reducing the angular 

velocity of the swing leg causing a potential increased energy cost.
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Trunk lean has been observed to be in the range of 4° to 7° at impact at 7 m-s'1 with most 

of the literature supporting a forward trunk lean (Fenn, 1930; Girardin and Roy, 1984; 

Williams and Cananagh, 1987). Trunk lean in runners who ran against a head wind in a 

wind tunnel, ‘leaned’ into the wind, indicating it was mechanically efficient to do so 

(Davies, 1980). After impact, forward trunk lean has been reported to increase until mid

support, reaching 12 to 13° for speeds just over 5 m-s'1 (Elliot and Roberts, 1980; Elliot 

and Ackland, 1981). An increased trunk lean would permit a more forward position of 

the centre of mass during stance, subsequently allowing it to pass over the support foot 

earlier, potentially generating faster running.

2.3.3 Ground reaction force and optimal running biomechanics 

Introduction

Ground reaction force reflects acceleration of the total body centre of mass. The position 

and direction of the runner’s centre of mass determine the direction and magnitude of the 

ground reaction force. Hence, it is the sum of the acceleration of individual segments 

contributing in proportion to their masses. The support limb transmits the force to the 

ground, and theoretically need not create any contribution to the push (Miller, 1990). 

Collection of three-five trials is normally used to establish reliable data (Williams, 1980; 

Cavanagh and LaFortune, 1980; and Clarke et al., 1983). Diss (2001) found a high 

reliability (/* = < 0.94) for four ground reaction force variables from a single trial when 

compared to ten trials. Of the sixteen ground reaction force variables sampled, fifteen 

needed less than four trials at r = < 0.90. Only the commonly used ground reaction force 

variables that are relevant to thesis are reviewed.

The force plate and stride modification

Force plates positioned in a laboratory floor collect ground reaction forces. Data

collection assumes that a typical runner’s stride pattern is ‘normal’ (Hay, 1988; Miller,

1990). Related research has indicated that stride adjustments do occur when approaching

a target (Hay, 1988). A study that intentionally manipulated stride lengths, noted

differences in ground reaction forces, including support time, first maximum vertical

force, mean vertical force, and anterior-posterior maximum braking and propelling

forces (Martin and Marsh, 1992). Martin and Marsh (1992) recommend against

constraining stride length and stride frequency for evaluating representative gait
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kinematics and kinetics, requiring gait laboratories to design adequate approach runways. 

The laboratory runway was 15.66 m for this thesis.

Differences between heel-toe and forefoot ground reaction force patterns

Oakely and Pratt (1988) identified essential differences for vertical, posterior and 

anterior ground reaction forces between heel-toe and forefoot runners. Forefoot runners 

typically have lower vertical ground reaction force peaks than heel-toe runners (Harrison 

et al., 1988). The initial vertical peak in heel-toe runners is absent or attenuated in 

forefoot runners (see figure 2.3.4) (Cavangh et al., 1977; Cavanagh and Lafortune, 1980; 

Harrison et al., 1988). Posterior and anterior ground reaction force for forefoot runners 

produced a biphasic shape during the braking phase. Heel-toe runners typically showed a 

single retarding peak (Cavanagh and Lafortune, 1980; Clarke et al., 1983). Many studies 

have repeated these findings over the last twenty-five years.

Payne (1983) using a sprinter running at 9.5 m-s’1 who landed on their heel found 

increased ground reaction forces compared to forefoot sprinters. Normally sprinters land 

on the ball of the foot (Mero and Komi, 1986). Mero et al. (1992) recommended that the 

braking force and contact time be very short to avoid loss of velocity during impact with 

the ground, and associated this with forefoot landing.

Williams et al. (2000) using six male and three female trained heel-toe runners, asked 

them to land on their forefoot instead of their heels while running across a force platform 

(table 2.3.1; p. 24). All runners successfully changed from heel-toe to forefoot contact, 

eliciting loading rates lower than their heel-toe scores. Comparison of the converted 

forefoot runners with experienced forefoot runners showed similar movement patterns, 

with one significant exception, decreased peak vertical ground reaction force. The 

authors suggested it was owing to decreased plantar flexion force at push-off.

Vertical ground reaction force

Figure 2.3.4 illustrates a spike (known as an impact peak) on the vertical ground reaction 

force for the heel-toe runner, which is absent on the forefoot runner. The impact peak for 

running velocities of 3 m-s’1 to 6 m-s’1 usually falls within 2-3 body weights (Denoth et 

al., 1983; Nigg, 1983). The onset-time of the vertical impact peak has been associated 

with overuse injuries (Nigg, 1986).
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Twenty heel-toe runners in one laboratory session were asked to run normally—heel- 

toe—then on their forefoot (Arendse et a l 2004). A Pose* running intervention 

followed for an accumulative period of 7.5 h (1.5 h for 5-days). The heel-toe and 

forefoot styles were accompanied by greater magnitudes (F = 28.2, p  = <0.001) and 

loading rates (F = 35 A, p  = c.001) of the vertical impact force at 25 ms of stance and at 

peak magnitude compared with Pose® method running. Increased vertical impact force 

has been associated with injury mechanisms (see p. 44; Radin and Paul, 1971; Verbitsky 

e ta l,  1998).

The posterior and anterior (horizontal) ground reaction force

Posterior and anterior ground reaction force is biphasic in running (Miller, 1990). The 

initial horizontal ground reaction force is termed braking (posterior), and the latter phase 

propulsion (anterior) (Cavanagh and Lafortune, 1980). Mason (1980) reported mean 

braking and propulsive maxima of 38% and 50% body weight at 4.7 m -s1, 70% and 75% 

body weight at 7.6 m-s'1 respectively. Forefoot strikers running at 4.5 m-s'1 had mean 

braking maxima of 45% body weight and 50% for propulsive maxima at 4.9 m-s'1 

(Cavanagh and Lafortune, 1980). Kunz (1978) recorded high-jumpers approach runs 

across speed ranges of 2.5 m-s'1 up to 6.5 m-s'1. The posterior component of the ground 

reaction force did not increase across the whole speed range yet the speed of running 

increased by 4 m-s'1. This research used high jumpers (forefoot strikers) and not distance 

runners, nonetheless the speed of running increased with no reciprocal increase in 

posterior ground reaction force. Hoshikawa et al. (1973) found as stance time decreased
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with running speed, the posterior component decreased in time in relation to the anterior 

component, despite an increase in running speed. It appears in certain runners braking 

force reduces as speed increases. Horizontal braking {F = 18.0, p  = <.001) and 

propulsive forces (F=3 .6 ,p  = .035) were less in the Pose® than the heel-toe and forefoot 

running styles (Arendse et al., 2004).

Stance time

Stance time is the period when the foot is in contact with the ground. Stance time and 

velocity are negatively related (Munro et a l , 1987). Time spent on the ground can be 

logically linked to the position and timing of lower-limb in connection with the centre of 

mass’s flight path. The more extended the knee at ground contact, and the further the 

foot is in front of the centre of mass, the longer the foot remains on the ground (Kunz 

and Kaufman, 1981; Mann and Herman, 1985). Barefoot runners compared with shod, 

elicited shorter stance time when both landed on the heel at 3.5 m-s’1, 4.5 m-s'1 and 5.5 

m-s'1 (De Wit et al., 2000). Stance time may denote global biomechanical changes, 

because stride length, stride frequency, vertical loading rate and knee angular velocity 

were significantly different between the two conditions (De Wit et al, 2000).

Inverse dynamics method

During the braking and push-off phases of running, the ankle, knee and hip joints have 

negative and positive angular velocities (Ito et al., 1983a). Calculating external 

mechanical work during running is the combination of kinematics with ground reaction 

force (Fenn, 1930; Cavagna, 1975; Zatsiorsky and Fortney, 1993; Yeadon and Challis, 

1994). The inverse dynamic method therefore, aims to account for all the forces 

necessary to accelerate the body mass, such as, positive and negative work absorbed and 

produced at each joint. Instantaneous values for joint kinetics and muscle function during 

stance are included (van Ingen Schenau et al., 1983; Wells, 1988). However potentially 

effective inverse dynamics is (and will be), certain difficulties exist with this method. 

The inverse dynamics model does not account for the computation of multi-joint 

movements or measurement of biarticular muscles (Yeadon and Challis, 1994). Precise 

estimation of the mechanical work completed by extensor and flexor muscles of the 

lower-limb is also problematic (Yeadon and Challis, 1994). Employment of joint angular 

velocity to characterize eccentric and concentric actions of leg extensor muscles is 

questionable (Zatsiorsky and Fortney, 1993). Co-contractions of lower-limb muscles are
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difficult to account for and identify between runners (Belli et al., 2002). Assumptions of 

the method usually are as follows: body segments are rigid; the line of action for ground 

reaction force is at the head of the fifth metatarsal bone and elastic energy is also not 

accounted for. The number of assumptions and limitations preclude this method of 

analysis for this thesis.

2.3.4 Electromyographical research and optimal running biomechanics 

Introduction

A simple joint system (rigid link, synovial joint, muscle, neuron and sensory receptor) 

has five elements that interact to produce movement (Marieb, 1992). In this system, the 

muscle is able to exert a force that can vary in magnitude, a variation that is profoundly 

influenced by the nervous system. The most effective measurement of the neuromuscular 

response to movement is electromyography (Basmajian and Deluca, 1985).

Physiologically muscles and motor units can be compared to one another based upon 

discharge characteristics owing to biomechanical responses of the motor units to 

different inputs: speed of contraction, magnitude of the force exerted and resistance to 

fatigue (Burke et al., 1973). It is difficult to interpret the relationship between 

estimations of muscle moments and measurements for electromyography activity, 

because torque about a joint is affected by other anatomical and environmental factors. 

At present, electromyography cannot therefore determine net muscle moments 

(Pierrynowski, 1995). This section covers, muscle force prediction, electromyography of 

gait muscles and the stretch-shortening cycle in relation to optimal running 

biomechanics.

Electromyography and muscle force prediction

Using electromyographical signals to directly estimate individual muscles activity during 

motion is based upon the assumption that quantitative relationships between the 

electromyographical signal and muscle forces are known, or can be determined. The 

assumption of a linear relationship between the rectified integrated electromyographical 

signal and force is questionable (Hof and van den Berg, 1981). Muscles produce an 

electrical signal when activated. Magnitude and intensity of the electromyographical 

signal related to the force produced by a muscle under given conditions has been
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reported at least qualitatively (Liu et al., 1999). Difficulties of relating

electromyography to corresponding force signals were associated with highly non-linear 

and a time-variable relationship between these signals. Measuring electromyography 

consistently and repeatedly compounds this relationship. Currently, the 

electromyographical-force relationship in human skeletal muscle is still at a 

developmental stage and actual force predictions plus validations across muscles are not 

yet available. Liu et al. (1999) carried out promising work in this field with an artificial 

neural network approach. They predicted cat gastrocnemius muscle force from 

electromyographical data. Force predictions for walking cat’s gastrocnemius muscle 

correlation coefficients were r = 0.96 at 0.4 m-s'1 and r = 0.93 for 1.2 m-s'1. This is 

promising work but is not a feasible option for this thesis.

Another perspective involves force production, electromyography and fatigue. Studies 

on fatigue using repetitive stretch-shortening cycles for performance, demonstrated an 

acute decrease in force generating capacity in both prolonged (Nicol et al., 1991), and 

short-term intensive exercises (Moritani et al., 1990; Nummela et a l, 1994) plus a long 

bout of running (Hausswirth et al., 2000). Significant reductions in the integrated 

electromyographical signals were identified from the fatigued states.

Gait muscles and electromyography activity

Altered muscle activity patterns should correlate to changes in running style. Patla et al. 

(1989) have shown that transient increases in stride length produced increases in activity 

of some muscles, and decreases in the activity of others. Unfortunately, there is no 

research to the author’s knowledge on muscle activity differences between forefoot and 

heel-toe runners. Unless stated, the electromyographical studies may either represent 

heel-toe or forefoot runners, who are usually endurance athletes, or sprinters, 

respectively.
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Figure 2.3.5 E le c t r o m y o g r a p h y  a c t iv i t y  e x p r e s s e d  a s  a  p e r c e n t  o f  g a it  c y c l e  at 3 .3 5  m -s" 1 ( a d a p t e d  f r o m  

M a n n  et al., 1 9 8 6 ) .  N o t e  t h e  la c k  o f  m u s c l e  a c t iv i t y  a f te r  m id - s t a n c e .  1 =  m . Q u a d r ic e p s ;  2  =  m .  

H a m s t r in g s ;  3 =  m . T ib ia l i s  a n te r io r ;  4  =  m .  G a s t r o c n e m iu s

Semimembranosis is active just before maximum hip flexion and shortly after the onset 

of knee extension. This activity continues throughout most of the support phase, where it 

may act as a hip extensor during support (Mann et al., 1986). Kyrolainen et al. (2000a) 

found as running speed increased hamstring activity for hip extension amplified in 

magnitude and time duration during stance. Smidt (1973) using 26 runners reported 

moment arm lengths for their hamstrings increased as the knee flexed, reaching a peak at 

45°, then, decreasing again as flexion reached 90°. Relative positions of the knee and hip 

affect the hamstrings role, which may explain this biarticular muscles varied, but 

important activity.

The quadriceps femoris group includes: rectus femoris, vastus medialis, vastus lateralis 

and vastus intermedius. Rectus femoris is active during early swing, associated with hip 

flexion (MacIntyre and Robertson, 1987). Both rectus femoris and vastus lateralis 

recorded peaks during mid-stance (Elliot and Blanksby, 1979). Vastus lateralis’s main 

activity was eccentric muscle action during early stance while the knee was undergoing 

flexion. An interesting observation is that quadriceps muscles were quiet during the 

extension phase of stance, suggesting knee extension may occur without their assistance 

(see figure 2.3.5 and Figure 2.3.6) (Branded, 1973; Schwab et al., 1983; Nilsson et al., 

1985; MacIntyre and Robertson, 1987). During submaximal constant-speed running, the 

electromyographic activity of the quadriceps muscles increased owing to marathon type 

fatigue (Komi et al., 1986). Increased quadriceps muscles activity could raise internal 

work, which may cause a detriment in running technique.
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Figure 2.3.6 Range of motion of knee during sprinting, running and jogging (Mann et al., 1986). Notice 

the absence of knee extension during stance in the sprint condition.

The tibialis anterior represents muscle function for the anterior compartment of the lower 

leg. It is active just after terminal stance, and remains active throughout most of the 

swing through mid-support, when maximum dorsiflexion occurs (Mann et al., 1986). 

Elliot and Blanksby (1979) recorded tibialis anterior acting concentrically to bring the 

shank forward, and eccentrically to control the lowering of the foot during the first part 

of ground contact (for heel-toe runners). This muscle identifies foot contact for heel-toe 

runners.

Gastrocnemius represents the posterior compartment’s muscular activity, during foot 

descent for the swing phase, foot contact and mid-support. Gastrocnemius is mainly 

active at the middle of stance with a heel-toe runner (Winter, 1987). There is some 

controversy over the gastrocnemius’s role during support for different running speeds.
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Stance(TS)

TS

TS

Sprint

Run

Jog
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Faster speeds showed more activity (Elliot and Blanksby, 1979; Mami et al, 1986) but 

with slower speeds, the gastrocnemius muscle persisted for only 30-50% of plantar 

flexion (see figure 2.3.5) (Mann and Hagy, 1980). Komi et al. (1987) found a higher 

pre-activation before impact for the gastrocnemius muscle with barefoot compared to 

shod runners, possibly identifying different body-foot landing positions. The activity of 

the vastus lateralis, rectus femoris, anterior tibialis, gastrocnemius and the hamstring 

muscle group are, therefore, important in gaining understanding of lower-limb motion in 

running.

The stretch-shortening cycle and electromyography

Running involves lower-limb eccentric and concentric muscle actions. For example, at 

the ankle, the gastrocnemius muscle group is active during initial lengthening through 

early stance before shortening during plantar flexion. This movement is called ‘length- 

shortening’, and is usually referred to as the stretch-shortening cycle (Kreighbaum and 

Barthels, 1996). The cycle allows for preloading of the muscle, which enhances force 

output (Pugh 1971; Cavagna and Kaneko, 1977; Komi and Bosco, 1978) for a given 

neural innovation. Concentric muscle action occurs for 5-10% of the gait cycle and is 

both preceded and followed by eccentric action. It appears that eccentric loading may be 

owing to alternative central nervous system recruitment of motor units (Enoka, 1996; 

Christou and Carlton, 1999; Jung, 2003). For instance, time to peak force was less for 

eccentric contractions than concentric contractions. Auro and Komi (1986) using 

integrated electromyography for vastus lateralis and gastrocnemius muscles found a 

positive correlation in men and women (r = 0.45 at p  <0.001) in the eccentric-concentric 

ratio. The ratio rose linearly with increasing pre-stretch loading. They hypothesised 

maximum elastic capability of the muscle was 40% to 50% of its normal contractile 

capacity. Improved pre-stretch loading potentially enhances force output in runners. It 

would seem pertinent, therefore, to train this component. Kubo et al. (2000) found 

endurance runner’s vastus lateralis muscle were less compliant than their untrained 

counterparts. Lack of compliance was associated with a lower potential for elastic energy 

storage measured by less lengthening of the muscle-tendon complex. Fatigue can also 

decrease the stretch-shortening cycle. Nicol et al. (1991) studying a 10-km run observed 

increases in contact time as the event progressed owing to fatigue. Fatigued runners 

increased their quadriceps electromyographical output (Komi et al., 1986), suggesting 

possible reductions from the stretch-shortening cycle, owing to changes in stride length
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and frequency (see p. 10 Kyrolainen et al., 2000a). Long-term running training may 

therefore decrease the stretch-shortening cycle possibly increasing muscle work and 

injury.

Electromyographical activity of the lower extremity muscles increased with faster 

running (Elliott and Blanksby, 1979). In contrast, Ito et al. (1983b) using four runners, 

found muscle activity remained constant for the support phase during speed increases of 

3.7 m-s"1 to 9.3 m-s'1, but increased for the non-support phase. Mann et al. (1986) tested 

fifteen runners at 3.35 m-s"1, 4.4 m-s'1 and 9-10 m-s'1 and found very little differences in 

electromyographical activity. Ito et al. (1983b) suggested that during support, lower 

recorded muscle activity was owing to increased elastic energy contributions. Elastic 

energy is less when jogging owing to the shortening phase of muscle gaining little from 

reduced muscle lengthening (Jacobs et al., 1993). Both studies only tested elite forefoot 

runners. These findings warrant further investigation into whether heel-toe runners are 

less able to utilise their elastic mechanisms owing to different foot contact placement, 

and lower-limb-centre of mass positioning.

Electromyographical studies have shown that the knee extensor (vastus lateralis) and 

knee flexor (gastrocnemius) muscles are simultaneously active. There is a higher force in 

the extensors if the flexors are in use (Ferris et al., 1996). Further, length-shortening of 

the gastrocnemius muscle allows strain energy to be utilised. The vastus lateralis muscle 

is not active as leg extension begins (MacIntyre and Robertson, 1987), possibly owing to 

the potential use of elastic energy (figure 2.3.5). This may explain the decreased 

eccentric loading at the knee recorded for Pose® compared to heel-toe and forefoot 

runners (figure 2.3.7).
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Another method, known as muscle-tendon length change, estimates the instantaneous 

muscle-tendon length from approximate origin and insertion sites for a given muscle- 

tendon unit, and from joint kinematic data (Morrison, 1970; Grieve et al., 1978). 

Unfortunately, this approach does not account for muscle-tendon length changes owing 

to muscle fibre displacement, muscle fibre pennation angle change, or tendon strain. 

Each of these factors can affect the total muscle-tendon length (Narici, et ah, 1996; 

Fukanaga et al., 1997).

However, a new approach using sonomicricrometry measures muscle fibre displacement 

and velocities in vivo (Caputi et al., 1992), by suturing piezoelectric crystals into a 

muscle bundle. Recorded was the time required for ultrasound pulses to travel from one 

crystal to another. Transit time is used to calculate instantaneous fibre length. 

Interestingly, the medial gastrocnemius muscle fibres in walking cats shorten at the 

beginning of stance, even though the muscle tendon unit lengthens during this phase 

(Griffiths, 1991). This means tendons stretch further than has been currently predicted, 

with a subsequent elastic energy increase. Applying this theory to muscle work in 

running, a theoretically lower muscle force may be found in those runners able to utilise 

the increased elastic components.
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2 .4  RUNNING INJURIES

Introduction

Injury incidence and biomechanical research associated with injury are appraised. 

Reference to injury and running technique are included.

Injury incidence

Running is one of the most popular leisure activities in the United Kingdom. Next to its 

beneficial health effects, there are negative side effects in terms of sports injuries. A 

runner has been defined as a person running a minimum of three days a week covering a 

distance of at least 3 km during each session (Taunton et al., 1987). An injury— 

specifically an overuse injury—is an overload or repetitive impact to the musculoskeletal 

system (Renstrom, 1994). Since overuse symptoms usually occur over time, it may be 

difficult to determine the onset and specific cause. Rate of exposure and intensity are 

also difficult to define. For instance, is a two-hour run on concrete similar to a forest trail 

run? Are hill repetitions the same intensity as track repeats? These areas require more 

detailed scientific-work (Rolf, 1995). Reported injury incident rates differ between 

studies. Person-incidence rates are the number of injured runners per 100 runners, injury - 

incidence rates record the number of injuries per 100 runners and injury incidence per 

exposure, are the number of injuries per 1000 hours of running (van Mechelen, 1992).

It appears that for the average recreational runner, who is steadily training for long

distance running, there is a large range in yearly incidence for running injuries. For

example, 37% and 56% injure using sample sizes > 500 runners (Yzerman and Van

Galen, 1987), 25% to 75% (van Mechelen, 1995), and 33-85% (Macera, 1992) for 583

runners with 24% for 482 runners (Blair et al., 1987). These rates are dependent on the

specificity of the group of runners concerned, such as, competitive athletes rather than

recreational joggers, or children as opposed to adults. If incidence is calculated in

relation to time, it varies from 2.5 to 12.1 injuries per 1000 hours of running (Lysholm

and Wiklander, 1987; van Mechelen, 1992). In comparison, skiers are six times more

likely to injure per 1000 hours of activity (Marti et al., 1988). Most running injuries are

lower extremity injuries, with the knee joint being the main site of injury (van Mechelen,

1992; Stanish and Wood, 1994). About 50% to 75% of all running injuries appear to be

overuse-injuries owing to constant repetition of the same movement (Lehman, 1984). A
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recurrence of running injuries, results in 20% to 70% of recorded cases (van Mechelen, 

1992; Brill and Macera, 1995). From epidemiological studies, it can be concluded, that 

running injuries lead to a reduction or cessation of training for 30% to 90% of all 

documented injuries (Walter et al., 1989). Medical consultation or medical treatment is 

required for 20% to 70% of all injuries, with up to 5% resulting in absence from work 

(Gudas, 1980; Macera et al., 1989).

Aetiological factors associated with running injuries include previous injury (Powell, 

1986), lack of running experience (Powell, 1986; Blair et al., 1987), competitive rumiing 

and excessive weekly running distance (James et al., 1978; Andrews, 1983; Harvey, 

1983; Stanish, 1984; McKenzie et al., 1985). The association between running injuries 

and factors such as warm-up, stretching exercises (Koplan et al., 1982; Jacobs and 

Berson, 1986), stature (Walter et al., 1989), misalignment (Clement et al., 1981; 

Lysholm and Wiklander, 1987), muscular imbalance (van Mechelen et al., 1987), 

restricted range of motion (Subotnick, 1985), running frequency (Jacobs and Berson,

1986), ability (Clement et al., 1981) stability of running pattern (Stanish, 1984), and 

shoes and in-shoe orthoses (Kaelin et al., 1985; Frederick, 1986; Winter and Bishop, 

1992) remain unclear. Age (Koplan et al., 1982; Blair et al., 1987; Holmich et al., 1989; 

Walter et al., 1989), gender (Johansson, 1986), body mass index (Koplan et al., 1982), 

running hills (Yzerman and Van Galen, 1987; Macera et al., 1989), rumiing on hard 

surfaces (Clement et al., 1981), participation in other sports (Jacobs and Berson, 1986; 

Yzerman and Van Galen, 1987), time of the year and time of the day (Yzerman and Van 

Galen, 1987) are not significantly associated with running injuries. Yet, Lysholm and 

Wiklander (1987) registered a significantly higher injury incident rate during spring and 

summer, a time typically associated with increased volume and intensity of running.

Running volume was an important risk factor for increased injury incidence, whereas, 

running velocity was not associated with injury risk (Yzerman and Van Galen, 1987). 

Powell (1986) concludes that sudden increases in volume and intensity are the cause of 

running injuries, because the body has not had time to adapt to the new regimen. 

Holmich et al. (1989) recommended as an injury prevention method that runners reduce 

their volume. One solution was to run less than 30 km per week, which substantially 

reduced injuries (Holmich et al., 1989), although it is not a realistic option for elite 

athletes.
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Eccentric and concentric muscle contractions in a stretch-shortening cycle are potential 

components for overuse injury (Johansson, 1992). Repetitive impact loads may decrease 

the ability of leg extensor muscles to sustain impact loads and, subsequently, the muscles 

would lose part of their recoil abilities (Komi et al., 1987). In support, muscle strains 

usually occur during eccentric contractions (Glick, 1980). For instance, hamstrings 

muscles act in the running stride to decelerate knee extension, and the quadriceps act to 

decelerate knee flexion, therefore, acting eccentrically (Cavagna et al., 1977). No 

mention of different running styles or technique was made in reference to eccentric 

contractions and injury incidence.

Running injury epidemiology should include denominator-based incidence rates, in 

which the number of new injuries observed during one year is related to the population 

of runners at risk (Hoeberigs, 1992). In ten studies with denominator-based incidences 

selected from the literature, the annual incidence rates of injured runners vary from 24 to 

65% (Hoeberigs, 1992), which is in fact similar to the incidence rates. Comparison of 

denominator-based incidence rates from different studies requires clarity of what the 

denominator and the numerator are, for example, the study population and the definition 

of a running injury (Blair et al., 1987). Injury definitions differ from one study to the 

next (Koplan et al., 1982). Subgroups may differ in origin: volunteers, runners from a 

mailing list or entrants to a road race. Incidence rates are higher among supervised 

volunteers than among listed runners, and higher in both these groups, compared with 

race-entrants (Hoeberigs, 1992).

Biomechanical research into injuries

Current biomechanical injury research has primarily focused on impact forces and 

different ruiming surfaces. Lower-limb biomechanics are discussed in reference to 

potential impact forces. Anatomical mechanisms related to impact will be reviewed.

Vertical impact force has been strongly associated with the transmission of shock waves 

upward through the musculoskeletal system (Radin and Paul, 1971; Verbitsky et al., 

1998). It has been suggested that a positive relationship exists between the magnitude of 

impact force and the numbers of overuse injuries (Voloshin and Wosk, 1982; Wosk and 

Voloshin, 1982; Cavanagh, 1990). Impact force with insufficient attenuation by natural 

shock absorbers of the locomotion system, may cause over-loading, resulting in
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subchondral bone micro-fractures, and subsequent articular cartilage degeneration and 

osteoarthritis (Wosk and Volishin, 1982). There is speculation that impact-force peaks 

play a role in the development of pain and injuries in runners (James et al., 1978; 

Clement et al., 1981), indicating potential differences in injury rates for forefoot and 

heel-toe runners. Furthermore, increased ground reaction forces might result in the need 

for more intense muscular contributions to control segmental movements and stabilise 

body position during the support phase of running (Williams, 1990). This would result 

in an increased metabolic demand from the muscles involved. Williams tested this 

hypothesis using twenty-two runners by inducing fatigue (determined when end tidal C0 2  

pressure decreased). A lightweight accelerometer was placed on the tibial tuberosity and 

whenever fatigue ensued, peak acceleration during stance increased. He concluded, that 

fatigue and heel-strike induced shock waves are correlated. Fatigue-induced changes in 

shock wave attenuation can therefore have important implications for the etiology of 

injuries (Verbitsky et al., 1998).

Laughton et al. (2003) found a direct linear relationship between vertical ground reaction 

force and peak tibial acceleration. However, Hennig and Lafortune (1991) were only 

able to find a moderate correlation. Clarke et al. (1985) clarified the issue through use of 

an accelerometer attached to the lower leg. He identified tibial accelerations increased by 

taking longer strides, giving circumstantial evidence that increased stride length results 

in increased impact force. The estimated muscle moments during sprinting correlated 

significantly (r = 0.7 at p  = 0.05) with the magnitude of the knee flexor moment at 

impact for athletes with a history of hip extensor and knee flexor injuries (Mann and 

Sprague, 1980). Findings from Stergiou et al. (1999) support this study, in that they 

identified coordination patterns between the ankle and knee joint change with vertical 

impact forces. Overall, these studies suggest lower-limb activity at impact affects the 

vertical loading of the body (increase risk of injury), but again no mention is made of 

how technique modifications can affect these changes.

Crossley et al. (1999) using forty-six males, half with a history of tibial stress fractures 

and half with no record were measured for ground reaction forces and tibial bone 

geometry. They discovered the tibial stress fracture group had significantly less tibial 

cross sectional area (p = 0.02) than the non-injured runners. No ground reaction force 

differences were found, underlying the difficulty in early identification of chronic
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injuries. Kawamoto et a l (2002a) measured torsional moments at the tibia for running on 

curved paths. Six male participants running unshod at 3.5 m-s'1 navigated a track 

curvature of radii 15 m and 5 m. For comparison, a straight section of track was used. 

Torsion moments increased from the~straight to the most sharply curved track (11 Nm, 

12.2 Nm and 28.5 Nm respectively). For comparison, a typical 400 m running track has a 

radius of 35 m and the static fracture load of human tibia is 100 Nm. However, track- 

running speeds are usually several times faster than the study speed. Forwood and Parker 

(1989) reported less than 16.3% of the ultimate loading force could cause observable 

micro-damage in rat tibia, therefore, lending some risk of tibial torsion in running on 

tightly curved paths. Kawamoto et al. (2002b) took eight male runners and ran them on a 

straight running track at 5 m-s'1. The moment for tibial torsion showed considerable 

inter-individual variations during stance, and was correlated with vertical ground 

reaction force (r = 0.7 at/? = 0.05) and outward tilt angle of the shank in the frontal plane 

(r = 0.78 at p  = 0.05). A suggestion from the authors was reductions in ground reaction 

force, which reflects the acceleration of the centre of mass, might lead to a reduction in 

running injuries, in athletes’ tibiae. Perhaps, a more specific strategy should seek an 

understanding of how to modify the centre of mass’s movement patterns that 

subsequently produced the different tibial torsion.

Loading characteristics of the foot that are associated with fatigue were investigated in 

nineteen non-injured heel-toe runners (Willson and Kemozek, 1999). A Borg rate of 

perceived exertion scale quantified fatigue. Increased cadence and decreased loading of 

the heel at landing through increased medial forefoot loading occurred when fatigued. 

Christina et al. (2001) measured eleven female recreational runners who produced 

significant changes for loading rates, impact and push-off peak magnitudes for vertical 

ground reaction force and ankle joint motion. Further, a less inverted foot at heel-strike 

at 2.9 m-s'1 resulted from induced fatigue of the ankle invertors and dorsiflexors. These 

changes may play a role in lower extremity running injuries (Christina et al., 2001). 

During a 10-km race, eight elite runners were filmed at different stages of the race (Elliot 

and Ackland, 1981). Fatigue produced a more extended lower-limb throughout the gait 

cycle during the later stages of the race. Clearly, different foot contacts and possibly 

limb-body geometry affect loading and muscle activity at impact. Therefore, technique 

should play an important role in injury reduction interventions.
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Surface stiffness has been associated with overuse injuries, although mainly from 

circumstantial evidence. Dixon et al. (2000) used six heel-toe runners who performed 

shod running trials over three rumiing surfaces: conventional asphalt, a rubber-modified 

asphalt surface and an acrylic sports surface. Surfaces were categorised according to 

impact absorbing ability (BS 7044). Mechanical impact absoiption was greatest for 

rubber-modified asphalt, whereas conventional asphalt was the least. The rubber- 

modified asphalt compared with the conventional asphalt exhibited lower participant 

loading rates for peak impact force (p = 0.1). Individual and not group differences were 

found for kinematic variables. For example, peak joint angles, peak joint angular 

velocities and initial joint angles. Explanation of the different peak impact forces on 

conventional asphalt for some runners was via increased initial knee flexion, while 

others did not show compliance. This suggests that the lower extremity exhibited 

compliance on an individual basis to the harder surface stiffness, perhaps alluding to 

certain runners’ skill in reducing load through attenuated movement patterns.

Stride smoothness is a quantitative measurement based on jerk-cost (JC) function 

(Hogan et al., 1987).

JC = /To (d3r)2 dt / dr’ (2.4.1)

Where T is total movement time, and r is the position vector of a limb segment. When 

applying this function to evaluate smoothness of complex multi-joint movements, it has 

been demonstrated that the position vector, r, is best represented in terms of end-point 

Cartesian coordinates (Hogan et al., 1987). The theory of maximum smoothness 

(minimum jerk) suggests that the trajectory of a movement endpoint is planned in a 

manner that would minimise the jerk-cost function. In running, the endpoint is the foot. 

Winter (1987) suggested the major motor function during the gait cycle is control of the 

foot. Control of the foot trajectory achieves safe ground clearance and a gentle heel or 

forefoot landing. In support, Dixon and Kerwin (1999) found significant correlation with 

heel-lift height and reduced ankle dorsiflexion at heel contact, signifying an increased 

surface area for the foot at impact, suggesting heel contact is undesirable.

Using a 1-metre depth jumping exercise as an exaggerated motion for landing while 

running, ten healthy males landed on their heels or forefeet (Kovacs et al., 1999). The
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first vertical ground reaction force impact peak was 3.4 times greater for heel-toe landing 

compared to forefoot landing. The second peak was 1.4 times lower. During flexion, the 

hip and knee joints contributed 40-45% of the total torque (heel-toe group), whereas 

forefoot landing found the knee and ankle joints contributed 37% each. Total torque 

contributions were highest in the heel-toe landing (during the extension phase) with 41% 

and 45% for knee and ankle joints and 34% and 55% with the forefoot. 

Electromyography for vastus lateralis muscle activity differed during re-contact for the 

heel-toe landing, whereas gastrocnemius muscle activity in the forefoot group increased. 

Exaggerated motion (depth jumps) highlights greater loading characteristics between 

heel and forefoot contact, which in light of previous comments, suggests limb and body 

positions relationships play important roles in force attenuation and injury incidence.

Hreljac (2000) procured twenty-four well-trained athletes of whom twelve were 

experienced runners and twelve were team players (non-runners). All were heel strikers. 

The heel ascended and descended (lower jerk-cost) more gradually for the experienced 

runners than non-runners despite slight differences in vertical displacement. Bergmami et 

al. (1995) hypothesised that smooth gait patterns reduce joint loading and thus decreased 

the risk of injury. Hreljac et al. (2000) in a second study, took two groups of runners, 

those who had at least one overuse running injury and others who had been injury free 

for their entire running career. Using a sit-reach test, the injury-free group demonstrated 

increased hamstring flexibility. The injury-free group had a lower vertical force impact 

peak, maximal vertical loading rate and the maximal rate of rear foot pronation. This 

suggests that the injury free runners had developed stride patterns that incorporate 

relatively low impact forces, and a lower maximum rate of rear foot pronation. Muscle 

induced fatigue for the hamstring group of twelve sprinters, running 40 m maximal run 

repeats, identified differences between the fatigued and non-fatigued state (Pinniger et 

al., 2000). These variables were significantly different from the fatigued maximal runs: 

decreased knee and hip flexion at maximum knee extension in the swing phase, 

decreased leg angular velocity immediately before impact and a decreased angular swing 

phase. Electromyography indicated a significant increase in the duration of hamstring 

activity and earlier cessation of rectus femoris activity during the swing phase. They 

concluded the changes were a protective mechanism to reduce stress on the hamstring 

muscles at critical stages of the gait cycle. Effective hamstring muscle function
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(including increased flexibility), therefore, plays an important role in running 

biomechanics, although its injury prevention remains unclear.

Overpronation at the subtalar joint, which is external rotation, dorsiflexion and calcaneal 

eversion has been associated during the stance phase with injuries to the hip, knee, 

Achilles tendon and the foot (James et al, 1978; Taunton et al. 1982). As body weight 

moves forwards over the support foot after impact with the ground, the subtalar joint 

everts, the ankle dorsiflexes, while the knee and hip joints also flex. Stress fractures have 

been associated with poor alignment and overpronation (Slocum and James, 1968; 

Lysholm and Wilander, 1987). However, Stanish (1984) contested that overpronation 

was a causative factor in stress fractures. He cited lack of scientific support. A more 

recent review concludes that lower extremities injuries are still not well understood in 

reference to pronation in runners (Hintermann and Nigg, 1998). Risk of injury owing to 

increased and excessive pronation is unclear at this time in heel-toe runners.

Iliotibial band friction syndrome (lateral knee pain) and patellofemoral pain syndrome 

(anterior knee pain) are two of the most common complaints in runners (Clement et al., 

1981; Johansson, 1986). Downhill and fast running aggravated anterior knee pain. These 

activities increase the negative impact from retarding knee flexion and extension motions 

(Bennet and Stauber, 1986). To decrease load, increased initial knee flexion is used 

(Dixon et al., 2000). Bennet and Stauber (1986) administered eccentric training to an 

injured group of runners with good results, concluding motor control imbalance was a 

contributing factor to anterior knee pain. Lateral knee pain results from an increased 

compression of the iliotibial band against the lateral femoral epicondyle. Sutker et al. 

(1981) reported iliotibial band friction syndrome was an overuse injury most commonly 

affecting males running about 30 km a week for at least three years. Several etiological 

factors given were excessive pronation of the subtalar joint, a tight iliotibial band and 

excessive genu varum. Nutig (1981) observed this injury occurred from uphill running 

owing to increased loading. Not mentioned was the runner’s uphill technique may have 

altered their loading compared to level running.

A recent two-year study provides the latest published database for specific running 

related injuries (Taunton et al., 2002). Risk factors were associated with being under 

thirty-four years old for patellofemoral pain syndrome, iliotibial band friction syndrome,
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patella tendinopathy and tibial stress syndrome. Interestingly, McKenzie et al. (1985) 

recorded similar results nearly 20 years ago. Being active for less than eight and half 

years was positively associated with tibial stress syndrome. Patellofemoral pain 

syndrome was the most common injury, followed by iliotibial band friction syndrome, 

plantar fasciitis, meniscal injuries of the knee and tibial stress syndrome (Taunton et a l , 

2002). These data suggest a chronic injury accumulation, possibly owing to poor running 

biomechanics. Supporting this line of enquiry, Lewis et al. (2000) in their review on 

back injuries identified runners lifetime prevalence is as high as 47%. Specific 

predisposing factors to injury included: poor stability, muscle imbalances, weakness and 

fatigue, including an increase in load imposed on the spine while running. Again, these 

studies are descriptive without reference to prevention. However, a theoretical model 

that follows the laws of physics could establish a standard (ideal technique). Deviation 

from the standard technique would then quantifiably address injuries mechanisms. Those 

runners that deviate from the standard in a certain dimension would possibly develop 

certain types of injuries. Potentially, reduction in injuries may then occur through 

changes in technique.

Injury and technique

The correlation between running technique and injury has little direct research. Nytro 

(1987; p. 3196) states the current view,

“there is no scientifically founded technique, that suits everyone ... therefore there are 
no possibilities o f evaluating individual dispositions for a certain event. Absolute 
postulations that ‘this is wrong’ and ‘this is right’ are only revealing the coach’s lack of 
insight into the technical evaluation...”

Only one injury and technique study was found: McClay et al. (1999), possibly owing to 

the viewpoint above. In a single participant design, they used a 40-year old female with 

right plantar fasciitis and a left tibial stress fracture (recently healed) who underwent a 

gait analysis (VICON 6 cameras at 120 Hz; BERTEC Corp, OH.). An 8-week, 3-times 

per week training intervention was administered. The training intervention took place on 

a treadmill running at 3.35 m-s*1. A mirror provided feedback for the first three weeks. 

The participant began running for 10 min and progressed to 32 min by the end of the 

eight weeks. Hip internal rotation and adduction plus knee abduction for the right leg 

were altered (improved). Peak braking force and loading rates on the left foot decreased.
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These results suggest it is possible to modify gait biomechanics and potentially reduce 

the risk of injury, because previous symptoms of pain abated for their participant.

2.0 SUMMARY

Many of the reported findings present conflicting observations for economy, optimal 

biomechanics and potential injury mechanisms found in runners. The aim of the review, 

therefore, has been threefold: To highlight confusion that exists within the research 

literature, to review various assumptions, while presenting relevant findings. The 

summary’s purpose is to draw together the various findings, in an attempt to clarify 

whether a universal running technique currently exists.

Although there is an intuitive link between running biomechanics and energy cost, the 

belief persists that individuals are unique both anatomically and biomechanically, and so 

arrive at their own most economical running motion. However, biomechanical variables 

account for at least 54% of the variation in running economy (Williams and Cavanagh,

1987). An alternative viewpoint suggests runners become economical through 

continuous repetition of their gait pattern at a familiar speed, regardless of its 

biomechanical effectiveness. For example, intra-individual oxygen consumption 

variation exists between different running speeds—2.83 m-s'1 to 4.88 m-s'1—highlighting 

experienced runners become economical at their own well-trained pace (Morgan et al.,

1989), which might not always be associated with ‘good’ biomechanics. The optimal 

economical solution identified was a combination of self-selected stride lengths and 

stride frequencies.

Immediately a contention arises because, certain ‘skilled’ runners tend to have longer 

strides at any given velocity than ‘poorer or less skilled' runners, while in contrast it was 

found elite runners took shorter absolute and relative strides than good distance runners. 

There appears to be an optimum stride length, however, its cause is complex. Driving the 

leg forwards increases stride length, which is ineffective owing to increased braking 

forces from longer strides. Foot placement in front of the body at impact decelerates the 

body, which may affect the next stride. Further, driving the knee forwards increases 

work against gravity. Increasing running speed through increased ground reaction force
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appears to be ineffective, because amplified push-off from the ground was absent in elite 

endurance runners, who recorded lower vertical ground reaction force for the second 

vertical peak than good runners. Over-striding and short strides increase internal work. 

Over-striding requires an increased thigh extension and leg drive shown to be 

uneconomical. Further, tibial acceleration increases (from longer strides), raise impact 

forces and potentially increase injuries. Shorter strides can increase internal work. An 

alternative external force to ground reaction force that enabled forward progression in a 

legless man was gravity. This novel idea of gravity being the prime motive force in 

running requires exploration. If the length of stride were as long as the horizontal 

displacement of the body during flight, and the foot landed under the body, theoretically 

lower braking force would occur. Increased trunk lean from the vertical axis improved 

economy and increased running speed, which suggests stride length from increased trunk 

lean maybe effective. Hip horizontal velocity was greater than neck velocity at terminal 

stance, indicating the drive forwards emanates from the hip. Increased forward 

progression correlated with hip flexion. Less plantar flexion, and higher hamstring 

activity after terminal stance were associated with runners that are more economical. 

Further knee extension did not increase with rising speed while electromyography of all 

gait muscles ceased well before terminal stance. It is therefore possible that running 

speed originates from the body (gravity’s work on the runner’s mass) and not from the 

leg-drive usually associated with stride length. Hence, differences in stride length maybe 

attributed to the combination of gravity and ground reaction force, together with body- 

foot position while reducing muscle activity at terminal stance.

Continuing to evaluate external forces and rumiing, an interesting observation is that 

vertical oscillation of the centre of mass decreases with increases in running speed. In 

addition, increases in ground reaction force (associated with increased running speed) 

should raise the centre of mass. However, increased trunk lean and knee flexion during 

stance (and flight), plus shorter contact time also occur with increases in running speed. 

Running faster increases momentum of the centre of mass. Shorter time on the ground 

and less braking force conserves momentum allowing the centre of mass to move more 

quickly past the point of support (support foot). Increased momentum may explain the 

lack of push-off (less knee extension) and muscle activity at terminal stance seen in elite 

runners. Lower leg extension would also potentially reduce vertical oscillation at 

terminal stance.
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The stretch-shortening cycle is maximised with a forefoot landing with increased knee 

flexion (greater eccentric stretch) and shorter contact time. Forefoot landing, increased 

knee flexion and shorter contact time may allow the lower-limb to facilitate improved 

elastic energy, theoretically enhancing economy owing to reduced internal muscle force. 

In support, economical runners have effective co-activation of their biarticular muscles, 

which they potentially maximise via a certain lower-limb geometry.

Stride frequency increases by only 4% at speeds of 3 m s'1 to 4.2 m-s'1. With increased 

speeds (sprinting above 7 m-s'1), stride length did not increase significantly, whereas 

stride frequency continued to rise. At sprint speeds keeping the foot under the body 

differentiated Gold from Silver medallists at the 1984 Olympics. Applying this concept, 

stride frequency should correspond with the speed of the body to enable the foot to land 

under the body to allow the next stride to begin. Lack of higher frequency at endurance 

speeds may be associated with mainly heel-toe runners landing ahead of their bodies thus 

creating a slower turn over. Possible support for this idea is more economical runners 

had an increased hamstring activity during swing, which allowed for a faster leg 

recovery.

The review highlights the current lack of a clear universal running technique. However, 

certain variables were associated with improved performance. Therefore, the summary 

points out elite runners do not extend the knee, which requires less push-off and lower 

vertical oscillation. They plantar flex the ankle less, have an increased trunk lean, land 

with the foot more vertically aligned to their centre of mass and potentially utilise elastic 

mechanisms more effectively. Further, leg and hip extensor muscles were not active 

during leg extension. Finally, gravity, a constant force, may provide momentum 

conservation through increased trunk lean. As the body leans past its point of support 

(support foot), a gravitational torque overbalances the runner driving them forwards, 

seen in the legless walkers. Gravity may provide an alternative external force for 

locomotion. This thesis, therefore, aims to research a universal running technique that 

explores gravity as the motive force. This universal running technique should potentially 

reflect the variables associated with improved performance.
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CHAPTER 3

THEORETICAL MODELS

3.1 INTRODUCTION

A brief background of the historical development of running technique is given. Key 

discoveries are highlighted. Possible reasons for heel-toe running becoming the most 

popular style of running in recent years conclude the background. Then, two hierarchical 

models of running are discussed: the current hierarchical model of running (Hay and 

Reid, 1988) and a new Gravitational hierarchical model based on the Pose® method 

technique.

3 .2  BACKGROUND

Running has interested people throughout history from a theoretical and practical 

standpoint. Many earlier observations and measurements were attempts to develop or 

understand a clear biomechanical model of efficient running.

Several Greek vase paintings depict sprinters (circa 470 B.C.) and endurance runners 

(circa 525 B.C.), which clearly illustrate differences in limb range of motion (Gardner, 

1967; p. 134 and p. 138 respectively). Both runners land on the ball of the foot and no 

one straightens their legs at terminal stance. Whether this is artistic license or astute 

observation may never be known. During this time, Aristotle (384-322 B.C.) wrote the 

earliest known accounts of locomotion:

Concerning vertical oscillation of the body:

“If a man were to walk parallel to a wall in sunshine, the line described (by the shadow 
of his head) would not be straight but zig zag, becoming lower as he bends and higher 
when he stands and lifts himself up” (Encyclopaedia Britannica, 1952; p. 247).
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Concerning joint motion:

“For i f  one o f the parts o f an animal be moved, another must be at rest, and this is the 
purpose o f their joints; an imals use joints like a centre, and the whole member, in which 
the joint is, becomes both one and two, both straight and bent, changing potentially and 
actually by reason o f the joint” (Nussbaum, 1978; p. 32).

Early resemblance to Newton’s third law:

“But the point o f rest in the animal is still quite ineffectual unless there be something 
without which is absolutely at rest and immovable. And further the force o f that which 
initiates movement must be made equal to the force o f that which remains at rest. For as 
the pusher pushes so is the pushed pushed, and with equal force” (Nussbaum, 1978; p. 
44).

Another eighteen hundred years passed before records of running research are available. 

Leonardo Da Vinci (1452-1519) wrote the following concerning motion, balance and 

foot contact.

“Motion is created by the destruction o f balance, that is, o f equality o f weight, for  
nothing can move by itself which does not leave its state o f balance, and that thing moves 
most rapidly which is furthest from its balance” (McMahon 1956; pp. 133-134).

Again, this is re-stated. “That figure will appear swiftest in its course, which is about to 
fa ll foi'wards” (McMahon 1956; p. 135); “A man running on level ground has it first on 
his heels and then on the toes o f his fe ed  (Keele, 1983; p. 175).

Giovanni Borelli (1608-1679) was the first to systematically study locomotion in his 

classic “De Motu Animalum” published in 1682. He measured the centre of mass of the 

body during walking and described how balance is maintained through constant forward 

movement of the supporting area provided by the feet. Wilhelm and Eduard Weber one 

hundred and fifty years later published in 1836 a detailed work on human gait. Basic 

definitions established distinguishing differences between step length in sprinters and 

walkers; running involved smaller vertical oscillation than walking and the lower-limb 

appeared to act as a pendulum.

Etianne Jules Marey (1830-1904) was the first to record displacement and force 

simultaneously.

He noted: “All muscular actions which alter the centre o f gravity o f the body in such a 
manner as to raise it augment the foot pressure on the ground’ (Marey 1972; p. 150).
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Vierordt, (1881) was the first to record quantifiable evidence for the variability in step 

parameters, and Eadweard Muybridge (1830-1894) produced excellent photographs of 

running gait showing foot contact to be forefoot in barefoot running.

In the early twentieth century, Graham-Brown (1912; p. 875) wrote.

‘'The cycle ofprogression may be supposed to commence at a point at which one o f the 
limbs is perpendicular to the ground. The ‘initial velocity’ then carries the body past this 
point, and it then falls forwards along the circumference o f a circle the radius o f which 
is the limb in contact with the ground. ”

A.V. H ilf s (1927) Nobel Prize winning work, which included the development of a 

velocity curve for sprinting and the efficiency of running, showed that a combined 

physiological and biomechanical approach could provide considerably more insight than 

either approach in isolation. Fenn (1930) building on Hill’s work used film records, and 

a force platform, where he estimated the work completed against gravity through total 

body segment analysis. The migration of the centre of mass with respect to a fixed point 

on the body was studied showing it moves upwards and backwards, then downwards and 

forwards twice in each running cycle.

The modern growth and interest in running research has been spurred by the vast 

increase in participation in the late 1960's and early 1970’s. This period of research was 

essentially descriptive. Early work focused on the rear foot using high-speed 

cinematography in two-dimensions digitized by hand (for example, Inman, 1976; Bates 

et al., 1978). Alongside this were technical advances in shoe design. Interest in 

differences between barefoot and shod rumiing were identified during this period. Shoes 

tend to cause greater pronation producing an increased impact angle (Bates et al., 1978; 

Nigg and Luethi, 1980). They identified barefoot impact angles ranged from 0.8°-1.9°, 

whereas shod runners ranged from 3.7°-11.8°.

Although rear foot motion was the focus of most running studies, other studies focused 

on sagittal plane motion of the ankle, knee and hip joints (Nigg, 1986). Nilsson and 

Thorstensson (1985) found as running speed increased, joints moved through increased 

ranges of motion in less time, resulting in higher angular velocities. Cavanagh and 

LaFortune (1980) were the first to identify differences between rear foot and forefoot
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strikers: the impact peak of the vertical ground reaction force curve was attenuated or 

missing in forefoot strikers.

A new generation of research emerged in the 1990’s with the advent of automated 

motion-analysis systems capable of obtaining three-dimensional data. The ability to 

assess secondary planes of motion must still be viewed with caution owing to errors 

caused by marker placement and soft-tissue movement (Allard et al., 1995). However, 

coordination and timing of lower extremity joints were topics that could now be 

examined. Further, more hypothesis driven research was being reported in the literature 

(Bartlett, 1997; McClay, 2000). Prior research focused on heel-toe runners, and it was 

not until recently kinematic differences between rear foot and forefoot runners were 

investigated. McClay and Manal (1997) compared lower extremity biomechanics of ten 

rear and forefoot strikers. Forefoot strikers landed with greater flexion and external 

rotation at the knee.

Recent research has focused on the interaction of lower-limb joints (Zajac, 1993), rather 

than previously, on individual joint activity. For example, coordination of movement 

between the rear foot and knee may result in injury (Bates et al., 1983). The rear foot and 

knee are linked mechanically through the subtalar joint, thus motions at the foot will 

influence movements of the knee known as a coupling effect (McClay, 2000). Joint 

coupling can also be explored by assessing the relative timing of motion between two 

joints (De Wit and De Clercq, 2000).

It is not possible, therefore, to conclude that before modern running shoes most runners 

landed on the forefoot as opposed to eighty percent of runners today, landing on the heel 

(Kerr et al., 1983). Leonardo da Vinci concluded many years before running shoes that a 

man running lands first on their heel and then on their toes. Therefore, it is not certain 

whether modern running shoes really changed the biomechanics of runners to create 

predominantly heel-toe running. Individual technique differences seem a more plausible 

explanation for choosing heel-toe or forefoot running.

Gravity’s role as a constant force in running has been the subject of little research in 

modern times (1931-present). Observations and measurements from the past (Leonardo 

Da Vinci, 1452-1519; Graham-Brown, 1912; Fenn, 1930) have still not been harmonised
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into a universal running technique. Instead, the current prevailing scientific belief is that 

each runner optimises their own ideal running biomechanics (Nytro, 1987). This is in 

contrast to swimming which has attempted to teach universal techniques of freestyle to 

children as the ‘only way to swim’ (for example, Counsilman, 1977; Laughlin and 

Delves, 1996).

3 .3  TWO HIERARCHICAL MODELS OF RUNNING

3.3.1 Introduction

From a biomechanical perspective, running is simply the horizontal displacement of a 

runner’s centre of mass. However, scientists, coaches and athletes have a disparity of 

views on this activity. Some scientists insist, “there is no commonly accepted running 

model which will suit everyone” (Nytro, 1987). Similarly, the common views of coaches 

and athletes are: “No, there is no correct running form, and you couldn’t learn it. Form 

is God-given. If you systematise it, you destroy z7” (Wallack, 2004). This thesis takes an 

opposing view that a clear and comprehensively applied universal technique of running 

will be helpful to the running community.

Movement is the changing position of a material body in space, and the reason for this 

change is the action of a force. Classical mechanics uses the term ‘force’ as a 

quantitative measure of the interaction between material bodies. The action of force on a 

free material body (not interacting with a third party) is the acceleration of that body. 

Therefore, a force alters, or has a propensity to alter, the state of motion of a runner’s 

body. Whether at rest, or moving with constant velocity in a straight line, the runner will 

continue in that state unless compelled to change by an external force exerted upon them. 

An applied external force enables accelerated forward motion (horizontal displacement 

of the centre of mass) for the runner. Their acceleration is directly proportional to the net 

force acting on their body and inversely proportional to their mass. Hence, the body will 

accelerate in the direction of the net unbalanced force. Increased horizontal acceleration 

only occurs during stance, while during flight gravity accelerates the runner towards the 

earth, with air resistance minimally reducing horizontal acceleration.
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A certain number of known forces exist in running: external forces include gravity 

(Graham-Brown, 1912; Femi, 1930) and ground reaction force (Cavanagh, and 

Lafortune, 1980) plus an internal force, such as, muscle force (Heise et al., 1996); and 

muscle elasticity (Cavagna et al., 1964). Air resistance is neglected in-line with most 

other gait research (Anderson, 1996). These forces only increase horizontal acceleration 

during stance but not flight. The centre of mass’s horizontal displacement during flight is 

therefore, a consequence of the action of these forces throughout stance. The hierarchical 

order of these forces involved in running and their relationship to each other is not 

currently lucid. This thesis seeks theoretical (hypothetical) and numerical answers on the 

role of gravity as the main force defining the interrelations between the applied external 

and the internal forces involved in running. Numerical work on gravity’s role in running 

will follow in later chapters. Section 3.3.2 briefly reviews the heel-toe technique of 

running using Hay and Reid’s (1988) hierarchical model, while section 3.3.3 presents a 

new Gravitational hierarchical model of running based upon the PoseR technique 

(Romanov, 2002).

3.3.2 The current hierarchical model of running

The literature review provides background regarding current running research. This 

section aims to review the only current attempt to hierarchically model running. 

Therefore, examination of Hay and Reid’s (1988) model in figure 3.3.2 summarises the 

current lack of a clear integration of the forces involved in running. For example, in the 

current model, gravity is not in affect during stance nor does it relate to forces exerted 

(muscle and joint forces; Hay and Reid, 1988; p. 264) and time forces act despite gravity 

being a constant force. The basis of this section is to briefly show the current hierarchical 

model of running fails to identify gravity’s key role.

Description of the current running model (adapted from Hay and Reid, 1988)

In running (figure 3.3.2), the result is the time taken by the runner to cover a specified 

distance. Two factors determine time: The distance involved and the mean speed of the 

runner over that distance. The distance that the runner travels is generally subject to race 

conditions with minor variations, and is therefore not developed any further in this 

model. The mean speed of the runner is equal to the product of the runner’s mean step 

length and mean step frequency.
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Step length may be considered the sum of three separate distances:

1) The horizontal distance between the runner’s centre of mass and the toe of the
take-off foot at the instant of take-off (take-off distance);

2) The horizontal distance that the centre of mass travels while the runner is in the
air {flight distance); and

3) The horizontal distance between the centre of mass and the toe of the leading foot 
at the instant the runner lands {landing distance).

Take-off distance (figure 3.3.1) for a given runner is determined by their physique and 

body position at the instant of take-off. Landing distance is similarly governed by 

physique and body distance at the instant of landing. Flight distance of a runner is 

determined by the speed and angle of projection into the air, relative height at take-off 

air resistance and acceleration o f gravity. These are expressed as velocity at take-off the 

relative height at take-off and air resistance.

L a n d in g  d i s t a n c e
«----------- ►N—
T a k e - o f f  d is t a n c e F l ig h t  d is t a n c e

Figure 3.3.1 F l ig h t ,  t a k e - o f f  a n d  la n d in g  d is t a n c e  t o t a l l in g  th e  r u n n e r ’ s  s t e p  f o r  t h e  c e n t r e  o f  m a s s .  N o t e  

t h e  r u n n e r  is  f a l l i n g  d u r in g  m o s t  o f  f l ig h t .

Change in velocity is equal to velocity at take-off and velocity at impact. The change in 

velocity during the support phase is determined by the forces exerted (muscle and joint 

forces) on the runner, the times for which these forces act {time forces act), and the mass 

of the runner.

Mean step frequency of a runner is determined by the mean length of time taken to

complete one step {mean step time). Step time is the sum of:

1) Time of ground contact {time o f support).
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2) Time in the air (time o f non-support).

Time of non-support is determined by velocity at take-off relative height at take-off air 

resistance and acceleration o f gravity.

Hay and Reid (1988) suggest that the sub-division of the performance criterion be 

broken into a series of distinct, consecutive parts such as take-off distance and flight 

distance etc. Following this procedure, the identification of performance parameters that 

affect the performance criterion are selected. These performance parameters should be 

mechanical quantities that are measurable (Bartlett, 1999). For practical application in 

their running model, the forces exerted need clear specification similar to their high jump 

model (Hay et al., 1981). For example, ground reaction force only acts during stance, 

whereas gravity is a constant force. These differences should be distinct in the model and 

their affects on performance measurable. In fact, forces exerted in their model, represents 

shoulders, hips, knees ankles and other joint forces (Hay and Reid, 1988; p. 264). 

Despite Hay and Reid (1988) focusing on muscle force, each force in running (gravity, 

ground reaction force and muscle elasticity) will be reviewed. Potential inconsistencies 

will be highlighted.
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Figure 3.3.2 Current hierarchical model of running (Hay and Reid, 1988; p. 282).
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Internal force: Muscle activity

Co-ordinated muscle activity plays a significant role in running (Elliot and Blanksby, 

1979). Muscles can change the motion of body segments so that their relative 

accelerations contribute to the total ground reaction force (Cole et al., 1996). Hay et al. 

(1981) include joint torques broken down into several time intervals in their updated 

high jump hierarchical model, whereas their running model remains unspecified.

Beginning with muscle activation before impact, there are accelerations of body 

segments from muscle contractions via the swing leg (Montgomery et al., 1994). From 

impact until maximum vertical ground reaction force body weight lowers, which requires 

the muscle system to support the runner at the knee and hip as the quadriceps and 

hamstring muscle groups co-contract during early support during knee flexion (Elliot and 

Blanksby, 1979; Mann et al., 1986; Montgomery et al., 1994; Heise et al., 1996). These 

muscles are therefore, resisting the work of gravity, as the body lowers from impact to 

mid-stance (maximum vertical ground reaction force and maximum knee flexion). 

Maximum quadriceps muscle activity occurs at the transition between knee flexion and 

extension coinciding with maximum vertical ground reaction force (Branded, 1973; 

Nilsson and Thorstensson, 1985). After this, hip and knee extensor muscle activity 

begins to decrease and ends just as leg extension begins (Branded, 1973; Mann and 

Hagy, 1980; Schwab et al., 1983; Nilsson and Thorstensson, 1985; Montgomery et al., 

1994; Wank et al., 1998). Therefore, as the leg is rapidly extending, the leg extensor 

muscles are silent; this has become known as the ‘extensor paradox’ (McClay et al.,

1990). Maclntrye and Robertson (1987) noted the hamstring group recorded the greatest 

variability in phasic activity of ad the knee muscles they examined. Elliot and Blanksby 

(1979) who reported maximal activity for one female for biceps femoris just before 

terminal stance, in contrast to others who found no activity during terminal stance and 

early swing (Branded, 1973; Mann and Hagy, 1980; Schwab et al., 1983; Nilsson and 

Thorstensson, 1985). Kyrolainen et al. (2000a) identified poorer running performances 

from limited action of their hamstrings.

Only two exceptions of muscle activity at terminal stance where identified. At terminal 

stance the hip flexors are active, but show peak activity at the end of early swing 

(Montgomery et al., 1994). Findings for the gastrocnemius muscle activity are 

conflicting. Some studies have shown maximal activity at terminal stance suggesting a
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push-off motion (Elliot and Blanksby, 1979, Mann, 1982; Jonhagen et al., 1996), while 

others found activity persisted for only 30-50% of plantar flexion (Branded, 1973; Mann 

and Hagy, 1980), or produced no push-off at all (Reber et a l, 1993).

However, it is commonly accepted that the foot pushes off the ground in running. Figure

3.3.3 shows muscle activity of the leg extensors for a single runner at 4 m s'1 taken from 

a group of six participants. Muscle activity is synchronised with his knee flexion and 

extension. Interestingly, all three leg-extensor muscles cease activity simultaneously 

approximately 20 ms (mean for six participants 29.2 ±10.4 ms) after peak knee flexion, 

while knee extension continues in this participant for another 150 ms (mean for six 

participants 133.7 ± 16.5 ms). Extension time is longer than electromechanical delay 

(range 30-100 ms) between electromyography activity and force production, meaning the 

leg is extending without muscle force (Cavanagh and Komi, 1979). The mean knee 

flexion and extension time for the six participants was 162.8 ± 19.5 ms.

P e a k  k n e e  f le x io n  
4 u n n g  s ta n c e

P e a k  k n e e  
e x t e n s io n  a fter  
sta n ce^ -

-120 -100-80-60-40 -20 100 140 180 220 260

Time (ms)
Rectus femoris
Vastus Lateralis

Vastus Medialis

Figure 3.3.3 R e s u l t s  o f  p h a s i c  q u a d r ic e p s  e l e c t r o m y o g r a p h y  a n d  k n e e  f l e x i o n - e x t e n s i o n  f o r  a  t y p i c a l
e n d u r a n c e  r u n n e r  a v e r a g e d  o v e r  s i x  f o o t  s t r ik e s  ( a d a p t e d  f r o m  M c C la y  et at., 1 9 9 0 ) .

These data (figure 3.3.3) were obtained from a treadmill, which may have influenced the 

results. However, Mami et al. (1986) showed extensor muscle activity ceased as leg 

extension begins using over-ground running. This lack of muscle activity is supported by 

many studies using both treadmill and over-ground running (Branded, 1973; Mann and 

Hagy, 1980; Pare et al., 1981; Schwab et al., 1983; Nilsson and Thorstensson, 1985;
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MacIntyre and Robertson, 1987; Kyrolainen et a l , 2003). Gluteus maximus also extend 

the hip, however their activity is in late swing and the first third of stance (Mann and 

Hagy, 1980; Nilsson et al., 1985; Montgomery et al., 1994), showing this muscle is also 

inactive during the propulsive phase of stance. No comprehensive explanation for this 

‘extensor paradox’ presently exists.

Potential strain energy

Cavagna et al. (1964) estimated oxygen consumption during running would be 30% 

higher without contributions from elastic storage and return of strain energy. Mechanical 

efficiency of running exceeds the efficiency of the conversion of chemical energy to 

kinetic energy by muscles suggesting there is another source of energy (Cavagna and 

Kaneko, 1977; Cavanagh and Kram, 1985). Elastic strain energy stored during eccentric 

contractions during early stance subsequently releases during concentric contractions 

(Cavagna et al., 1964; Cavagna and Kaneko, 1977; Hinrichs, 1987; Alexander, 1992; 

Taylor, 1994; Jung, 2003) and is the other source of energy.

To effectively use stored elastic energy in the muscle mechanisms, support time must be 

short (Zatsiorsky, 1995; Paavolainen et al., 1999a). Although there is no exact method of 

quantifying storage of elastic energy—although real-time B-mode ultrasound apparatus 

looks promising (Fukunaga et al., 1997)—there is a consensus that this phenomenon 

contributes to both efficiency and economy of movement (Cavagna and Citterio, 1974; 

Winter, 1978; Luhtanen and Komi, 1980; Taylor, 1994; Cavanagh and Kram, 1985; 

Komi, 2000). The runner’s body possesses minimum kinetic energy at maximum vertical 

ground reaction force, while the stretch-shortening cycle of the muscular-tendon unit 

contains maximal potential strain energy at this point. This potential strain energy results 

from gravity’s work during impact. However, ‘an ideal’ body geometry and the ability to 

reduce stance time have not yet been clearly documented.

External forces related to running: Ground reaction force

Ground reaction force is not a propulsive force as of itself in running, but operates 

according to Newton’s third law (Zatsiorsky, 2002). The ground reaction force 

experienced by the runner is equal and opposite to the force exerted by the runner on the 

ground. Muscle force is an active internal force and can displace one body part with 

respect to another, but it cannot displace the centre of mass without an external force (i.e.
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ground reaction force). However, without the ground it is not possible to move using the 

muscle system alone. During the propulsive phase of running, as noted earlier, the 

muscle system is inactive (‘extensor paradox’), casting doubt that the ground in 

combination with the muscle system can propel the runner into the air.

Ground reaction force increases as it resists body weight from impact to maximum 

vertical ground reaction force and reduces after this point reflecting a rising body. The 

body is rising, but the ground is not pushing the runner upwards (Zatsiorsky, 2002). 

Presently, conventional running theory postulates applying increased ground reaction 

force to increase acceleration of the centre of mass (Munro et al., 1987; Hay and Reid, 

1988; Weyand et al., 2000). Further, increased running speed is directly associated with 

a greater force application to the ground enabling the runner/sprinter to drive themselves 

forward (Hay and Reid, 1988; Weyand et al., 2000). Hunter et al. (2005) however, found 

it was not advantageous to have a large vertical impulse during the acceleration phase of 

a sprint. In fact, their fastest runners only produced relatively moderate vertical impulses. 

Further, as running speed increases the decay rate during the propulsive phase from 

maximal vertical ground reaction force until terminal stance increases (Miller, 1990). 

Hunter et al. (2005) also found vertical impulse non advantageous, because maximal 

vertical ground reaction force occurs at mid-stance while the body is at its lowest 

position with the centre of mass poised to move almost vertically upwards. A large 

vertically directed impulse cannot produce a horizontal displacement for example, a step 

length of 1 m, but rather step length requires a horizontal force. The increased ground 

reaction force in sprinters may simply reflect their increased acceleration from their 

bodies at impact. However, sprinters also exhibit the ‘extensor paradox’ suggesting they 

are also not using the ground to accelerate themselves (Mann and Hagy, 1980; 

Novacheck, 1998).

Viewing ground reaction force in heel-toe runners, two peaks are usually identified, 

while forefoot runners elicit an attenuated first peak (Cavanagh and LaFortune, 1980). 

The first vertical ground reaction force impact peak (figure 3.3.4) is associated with the 

shock of contact with the ground. The first impact peak is related to body mass, stature 

and step length, vertical hip excursion, running speed, running technique, area of the 

foot-ground contact, as well as the properties of the shoe and surface involved (Hamill et 

al., 1983; Frederick and Hagy, 1986; Nigg et al., 1987; Bobbert et al., 1991; Nigg and
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Wakeling, 2001). Frederick and Hagy (1986) found body mass correlated highly with the 

second peak of the vertical ground reaction force (r = 0.95 at P = 0.05) coinciding with 

the lowest position of the centre of mass. The leg and hip extensors are inactive after this 

point coupled with decreasing ground reaction force, which strongly suggests another 

force is causing propulsion.

Second
peak

Impact peak
.Vertical force

3

2

Posterior-anterior
force1

0 0.2

Time (ms)

Absorption Generation

Figure 3.3.4 A  t y p ic a l  v e r t ic a l  a n d  p o s t e r io r - a n t e r io r  g r o u n d  r e a c t io n  f o r c e  c u r v e  f o r  a h e e l - t o e  r u n n e r .  

T h e  f ir s t  p e a k  is  a s s o c ia t e d  w i t h  t h e  s h o c k  o f  c o n t a c t  w i t h  t h e  g r o u n d  ( a b s o r p t io n ) .  T h e  s e c o n d  p e a k  

( v e r t ic a l  d a s h e d  l in e )  b e g in n in g  a t  o r  a b o u t  m i d - s t a n c e  is  a s s o c i a t e d  w i t h  b o th  b o d y  m a s s  a n d  m u s c l e  f o r c e  

g e n e r a t io n .

External forces related to running: Gravity

On Earth, gravity is by far the strongest mechanical force among all the forces of nature, 

where nothing can cancel its attractive pull owing to its constant manifestation. As a 

result, gravity should be considered as the dominant force on Earth. Anokhin (1978; p. 

29) stated, “all biological systems, the most essential characteristics o f it, are defined by 

the Universal Law o f Gravity. ” Despite this knowledge, the role of gravity is not 

regarded as a dominant or leading force in the current hierarchical running model. The 

current hierarchical model considers gravity only acts during flight, not stance. However, 

this contradicts the dynamic similarity hypothesis that predicts that animals and humans 

travelling with equal Froude numbers will use the same gait, because in equation 3.3.1 

gravity is significant in determining the biomechanics of locomotion.

Froude number = (speed of locomotion)2 (3.3.1)

Gravitational acceleration x leg length
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The Froude number is the square root of the ratio of inertial (mass x acceleration) to 

gravity forces (mass x gravity), while Dynamic similarity is an application of the 

pendulum principle, being the interaction between gravity and inertia. Motions are 

dynamically similar if they could be made identical by uniform changes of the scales of 

length and time. Thus, two pendulums of different lengths but identical angular 

amplitude are dynamically similar. Likewise, two running animals with different leg 

lengths but the same ratio of step-length-to-leg-length are also dynamically similar. 

Mathematically, pendulums (and running animals) are dynamically similar if  they have 

equal Froude numbers. When Froude numbers are applied to animal locomotion, speed 

of locomotion refers to forward velocity.

Animals exhibit a preferred walking speed above which they normally switch to a 

running gait. The change from a walking to a running gait in humans occurs abruptly 

rather than as a gradual transition (Thorstensson and Roberthson, 1987). Individual 

humans switch from walking to running at different absolute speeds, but at 

biomechanically equivalent speeds (Kram et al., 1997). That is the transition occurs at a 

similar Froude number. Alexander and Jayes (1983) further state, that animals and 

humans running have step lengths proportional to their leg lengths so:

A /1 = F (speed of locomotion)2 (3.3.2)

Gravitational acceleration x leg length

Where 1 is leg length, A is step length and F is the same function for animals of different 

sizes and species. This clearly illustrates again that the current model of running, which 

postulates step length is from leg extensor muscle activity is questionable. Animals and 

humans have consistently shown step length is based on running speed, gravity and leg 

length without reference to strength or muscle activity. Maxwell-Donelan et al. (1998) 

though, state the Froude-based hypothesis ignores the role of muscle-tendon spring 

forces in determining running mechanics. However, their calculations must include the 

vertical Froude number (instead of the horizontal Froude number) indicating the muscle- 

tendon spring is predominantly vertical in direction not horizontal. Alexander (1989) 

using the Strouhal number support the muscle-tendon spring motion is in the vertical 

direction.
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In summarising this critique of the current running model, there are several important 

questions. Firstly, if  the runner pushes off the ground why is ground reaction force 

decreasing from mid-stance and why are the extensor muscles silent at this time? 

Secondly, gravity is a constant force, yet its work has not been discussed during the 

propulsive phase of stance nor hierarchcially linked to forces exerted. The Froude 

number clearly shows the importance of gravity in running, which is illustrated in the 

Gravitational hierarchical model.

3.3.3 A Gravitational hierarchical model of running

The model in figure 3.3.5 attempts to hierarchically model all the forces involved in 

running. A description with supporting evidence is given for the Gravitational 

hierarchical model. It should be pointed out the evidence used here from the literature 

was not discussed or identified by the authors in their papers. Therefore, the 

Gravitational hierarchical model presented is the first to fully integrate and explain all 

the forces in running and how to potentially maximise them.
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Figure 3.3.5 The Gravitational hierarchical model of running. A gait cycle is right foot contact to right 
foot toe contact of the same foot.
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Description of the Gravitational hierarchical running model

In running, the result is the time taken by the runner to cover a specified distance. The 

distance is covered in less time by running faster. Angular velocity for knee flexion and 

extension during stance reduce time o f support thus directly affecting running speed via 

their relationship with reduced landing and take-off distance from a more aligned body 

position/physique. Increased horizontal velocity o f the centre o f mass results from a 

shorter step time (reduced time o f support/non support) because of a reduced landing 

distance where the centre of mass is vertically above the support limb. Non-support time 

decreases via increases in angular knee flexion velocity during swing leading to the 

swing foot returning earlier to the ground. The relative vertical position of the centre o f  

mass to the toe of the support foot determines the relative height at take-off Lower 

angular knee flexion and extension velocity during stance affects the relative height at 

take-off by increasing time o f support. Increased time o f support increases the relative 

height at take-off through increased leg extension that raises the centre of mass, which 

subsequently reduces the gravitational torque via work against gravity {gravitational 

force).

The time o f support and non-support affect the horizontal velocity o f the centre o f mass 

(less time for a given distance). Air resistance can reduce the horizontal velocity o f  the 

centre o f mass, which consequently affects the time o f non-support. The horizontal 

velocity o f the centre o f mass at terminal stance (with body position and height at take 

off) determines time o f non-support and step length. Driving the swing leg forwards via 

hip flexors causes the foot to land in front of the body increasing landing distance, thus 

decreasing horizontal velocity o f the centre o f mass and flight distance (Cavanagh and 

LaFortune, 1980). The body {acceleration o f the runner’s body) causes the runner’s 

horizontal velocity o f the centre o f mass via a gravitational torque {gravitational force) 

rather than using the leg extensors to push off the ground during leg extension. Muscle 

force is the result of gravity (via impact) and the action of the swing leg is to keep up 

with the body {acceleration o f the runner’s body) from gravity during flight.

Mean step frequency is determined by the mean length of time taken to complete one 

step {mean step time). Step time is the sum of:

1) The time of ground contact {time o f support).

2) The time in the air {time o f non-support).
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Step length may be considered as the sum of three separate distances:

1) The horizontal distance is from the runner’s centre of mass and the toe of the support 

foot at the instant of take-off (take-off distance). Take-off distance creates the moment 

arm for the gravitational torque. The relative position of the centre of mass to the toe of 

the support foot determines the relative height at take-off The faster the foot leaves the 

ground via reduced leg extension less vertical oscillation ensues, which increases the 

gravitational torque.

2) The horizontal distance is the distance the centre of mass travels while the runner is in

the air {flight distance). This is affected by horizontal velocity o f the centre o f mass, 

relative height at take-off and the take-off angle {body position).

3) Landing distance is the horizontal distance between the centre of mass and the toe of 

the leading foot at the instant the runner lands. The more vertically aligned the centre of 

mass is above the support limb upon landing, the shorter time required before the centre 

of mass moves past the support point (ball of the foot). A more vertically aligned body 

causes less reduction in the horizontal velocity o f the centre o f  mass (Fenn, 1930; 

Deshon and Nelson, 1964; Cavanagh et al., 1977; Bates et al., 1979; Kunz and Kaufman, 

1981; Girardin and Roy, 1984; Hinrichs, 1987) and shorter stance time. A shorter stance 

time improves elastic recoil (Zatsiorsky, 2002).

Step frequency and step length are a consequence of the forces of gravity, ground 

reaction, muscle action and elastic strain energy/. The timing and combination of these 

forces produce the mean velocity o f the centre o f mass throughout the gait cycle. These 

forces cause the angular (limbs) and linear (displacement of centre of mass) motion of 

the runner resulting in step length and step frequency, which is measured as mean 

horizontal velocity o f the centre o f mass.

Ground reaction force reflects the acceleration o f  the centre o f mass. During the first 

half of stance, the gastrocnemius and quadriceps muscle groups {muscle force) are being 

eccentrically stretched by gravitational force (absorption, figure 3.3.4). After maximum 

vertical ground reaction force following muscle-tendon lengthening, the support leg 

extends while the muscles shorten, known as the stretch-shortening cycle (Cavagna et 

al., 1964). After mid-stance as the muscles shorten in elastic recoil, the hamstrings 

{muscle force) begin to pull the support foot from the ground and continue their activity 

into swing. Elastic recoil reduces work against gravity.
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The mass is the body of the runner. Acceleration (horizontal and vertical) of the runner’s 

mass is downwards by gravitational force during impact to mid-stance and during flight 

(vertically downwards) but from mid-stance until terminal stance it is via a gravitational 

torque (causing a horizontal acceleration). Centre o f mass position as it passes anterior to 

the support limb via momentum from impact to maximum vertical ground reaction force 

allows gravitational force to then create an external gravitational torque around the axis 

of the support foot (ball of the foot) until terminal stance (figure 3.3.6).

Gravity (gravitational torque) is the motive external force from mid-stance until terminal 

stance (see figure 3.3.6) because muscle activity is absent, but during flight, gravity 

causes no horizontal acceleration.

if
T o r q u eC M

b ) I d
Figure 3 . 3 .6  T h e  r u n n in g  P o se®  ( R o m a n o v ,  2 0 0 2 )  a )  im p a c t  t o  m a x i m a l  v e r t i c a l  g r o u n d  r e a c t io n  f o r c e :  

s h o u ld e r - h ip - a n k le  v e r t ic a l  a l ig n m e n t ,  w h i c h  p o t e n t ia l ly  a l l o w s  g r a v it y  t o  m a x i m i s e  t h e  s t r e t c h - s h o r t e n in g  

r e f le x  a n d  e n a b le s  th e  w h o l e  b o d y  t o  w o r k  a s  a  u n it , b )  A  g r a v i t a t io n a l  t o r q u e  a c c e le r a t e s  t h e  b o d y  w h i l e  

th e  h a m s t r in g  m u s c l e  g r o u p  p u l l s  t h e  s u p p o r t  f o o t  f r o m  t h e  g r o u n d .

The research variables that were readily quantifiable, identified as important from the 

literature and that adequately describe the Gravitational hierarchical model are presented:

1. C e n tr e  o f  m a s s  d i s t a n c e  b e h in d  t o e  m a r k e r  ( h o r iz o n t a l  d i f f e r e n c e  a t 2 5  m s )  ( c m )
2 .  P o s t e r io r  g r o u n d  r e a c t io n  f o r c e  ( b r a k in g )  ( B W )
3 .  M a x im u m  v e r t ic a l  g r o u n d  r e a c t io n  f o r c e  ( B W )
4 .  A n t e r io r  g r o u n d  r e a c t io n  f o r c e  ( p r o p u ls io n )  ( B W )
5 . S te p  le n g t h  fo r  t h e  r ig h t  f o o t  ( c m )
6 . S te p  f r e q u e n c y  ( H z )
7 . C e n t r e  o f  m a s s  h o r iz o n t a l  v e l o c i t y  la r g e s t  d e c r e a s e  a f t e r  im p a c t  to  m a x im u m  v e r t i c a l  g r o u n d

r e a c t io n  f o r c e  ( c m . s - 1)
8 . C e n tr e  o f  m a s s  h o r iz o n t a l  v e l o c i t y  la r g e s t  in c r e a s e  f r o m  m a x im u m  v e r t i c a l  g r o u n d  r e a c t io n  f o r c e  

to  t e r m in a l  s t a n c e  ( c m .s ’1)
9 .  C e n tr e  o f  m a s s  h o r iz o n t a l  d i s p la c e m e n t  d u r in g  s t a n c e
1 0 . S t a n c e  t im e  ( m s )
1 1 . M e a n  k n e e  f l e x i o n  a n g u la r  v e l o c i t y  f o r  s t a n c e  ( r a d .s '1)
1 2 . M e a n  k n e e  e x t e n s io n  a n g u la r  v e l o c i t y  fo r  s t a n c e  ( r a d .s '1)
1 3 .  M e a n  k n e e  f l e x i o n  a n g u la r  v e lo c i t y 7 f r o m  t e r m in a l  s t a n c e  to  m a x im u m  s w i n g  a n g le  ( r a d .s '1)
1 4 .  V e r t ic a l  o s c i l l a t i o n  o f  t h e  c e n t r e  m a s s  ( c m ) .
1 5 . T im e  ( s )  ( t im e  tr ia l)
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Support for the Gravitational hierarchical model of running

Clearly, if  gravity, ground reaction force, muscle activity and muscle elasticity acted as a 

precisely coordinated system, efficient running would ensue. The main requirement for 

the interaction of forces in running is an efficient translation of body weight, regardless 

of the speed or distance of the event. Bernstein (1947) defined efficiency of movement 

as a ratio between external forces, such as gravity, which does not require or extensively 

utilise adenosine triphosphate (muscle contraction), as opposed to those that do, such as, 

ground reaction force. Efficient movement, he concluded, emphasised external forces 

that do not heavily engage muscles. Applying Bernstein’s concept to running, 

hierarchical relationships of these forces when structured reveal their specific functions 

during the running step. Gravity is constant throughout the gait cycle, whereas the other 

forces are restricted to a certain point in time and space. This section seeks to establish 

gravity as the motive and hierarchically leading force, over the other forces. Following 

this order, all forces will act efficiently in time and space.

Gravity was historically regarded as a key motive force: Leonardo Da Vinci was the first 

to recognise gravity as a propulsive force, when he stated that “motion is created by the 

destruction o f balance, that is, o f equality o f weight for nothing can move by itself which 

does not leave its state o f balance and that thing moves most rapidly which is furthest 

from its balance” (Keele, 1983: p. 173).

Graham-Brown (1912, p. 786) 400 years later wrote in support of gravity as a motive 

force: “It seems to me that the act ofprogression itself- whether it be by flight through 

the air or by such movements as running over the surface o f the ground-consists 

essentially in a movement in which the centre o f gravity o f the body is allowed to fall 

forwards and downwards under the action o f gravity, and in which the momentum thus 

gained is used in driving the centre o f gravity again upwards and forwards; so that, from 

one point in the cycle to the corresponding point in the next, no work is done 

(theoretically), but the mass o f the individual is, in effect, moved horizontally through the 

environment. ”

Fenn (1930) following extensive work on running found his fastest runner in comparison 

to a slower runner had his centre of mass further forward during stance (an increased 

body lean). He went on further to say: “that a runner does not leap into the air through



rises in their centre o f mass because they are maximal after take-off ’ (Fenn, 1930). 

Instead, the centre of mass rises while the foot is still on the floor and can continue 

briefly after terminal stance. The runner then falls while they are in the air for about 3 cm 

(Fenn, 1930). However, this research was not pursued and it is still unclear today how 

gravity relates hierarchically to the other forces in running. For example, no one has 

combined gravity’s work on the runner with the action of the lower-limb until Romanov 

(2002) identified as the body falls via a gravitational torque, the support foot needs to be 

pulled from the ground rather than pushed, in order to catch up with the body.

Gravitational torque from mid-terminal stance

In an attempt to model gravity’s role in running, it is necessary to find the point in the 

gait cycle where gravity could be propulsive, or rather, produces a gravitational torque. 

In fact, there is only one phase in the gait cycle: from maximal vertical ground reaction 

force (mid-stance) until terminal stance (Romanov, 2002). At this point (at peak vertical 

ground reaction force) in constant speed running, the centre of mass begins to move over 

the support foot (ball of the foot). The body (centre of mass) rotates forward and upward, 

while the foot acts as a pivot. Rotational movement of the body created by gravity 

appears as a gravitational torque, so the body could fall forwards (figure 3.3.7). The 

gravitational torque may therefore explain the ‘extensor paradox.’ If gravity is the 

motive force, the leg extensors do not need to thrust the body forwards and upwards, 

hence their silence as knee extension begins.

Centre o f^ ^ i
Gravitational Torquemassr = position vector 

from the support 
foot to the centre 
of mass -------

_Ld

Figure 3.3.7 A  to r q u e  c r e a t e d  a r o u n d  a n  a x i s  ( s u p p o r t  l im b ;  b a l l  o f  f o o t )  f r o m  g r a v i t a t io n a l  f o r c e .  C M  =  
c e n tr e  o f  m a s s ;  F g  =  g r a v i t a t io n a l  f o r c e ,  I d  =  m o m e n t  a r m  a n d  t h e  a x i s  o f  r o t a t io n  is  t h e  b a l l  o f  t h e  f o o t .

75



By taking the position vector and gravity vector from figure 3.3.7, it is possible to 

represent the gravitational torque from its vector components (figure 3.3.8). The vector 

product of any two vectors A x B is defined as a third vector C, the magnitude of which 

is AB sin 0, where the angle 0 is the angle between A and B. That is, if C is given by

C =  |A |  X  I BI (3.3.3)

Then its magnitude is

| C | = \ A \ | B | sind (3.3.4)

Following the right hand rule the gravitational torque vector is in the clockwise direction 

about the axis perpendicularly out of the paper. Therefore the gravitational torque is:

t  = Fgr sinQ 0 < 0 < 180° (3.3.5)

However, the gravitational force is comprised of two components. The Fr component 

creates no torque on the centre of mass because it acts through the axis of rotation, 

however the propulsive component (Fp) creates the torque about the support foot.

Fr + Fp = £F (3.3.6)
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-  G r a v it a t io n a l  to r q u e

a )  b )

Figure 3.3.8 a ) T h e  v e c t o r  c r o s s  p r o d u c t  o f  th e  c e n t r e  o f  m a s s ’ s  p o s i t i o n  v e c t o r  a n d  th e  f o r c e  o f  g r a v it y  

( F g )  c r e a t e  a g r a v i t a t io n a l  t o r q u e  a r o u n d  t h e  s u p p o r t  l im b  in  t h e  c l o c k w i s e  d ir e c t io n ,  r =  p o s i t io n  v e c t o r  o f  

th e  c e n t r e  o f  m a s s  f r o m  th e  s u p p o r t  l im b ,  b )  F g  =  g r a v i t y ,  a n d  it s  c o m p o n e n t s  d u r in g  s t a n c e  a r e  F r . w h i c h  

i s  t h e  f o r c e  a p p l ie d  to  t h e  g r o u n d  a n d  c a u s e s  n o  t o r q u e  w h i l e  F p  i s  t h e  p r o p u ls iv e  f o r c e  th a t  c a u s e s  t h e  

g r a v i t a t io n a l  to r q u e .

Ground reaction force is absent until two bodies contact one another and gravity has no 

components (Fr and Fp) until the runner touches the ground. As the runner falls forwards 

after mid-stance, ground reaction force is decreasing reflecting the runner’s rising centre 

of mass. There is also another torque that occurs via the ground reaction force vector and 

its moment arm about the centre of mass (figure 3.3.9), which reflects the acceleration of 

the centre of mass, as it moves in a non inertial frame during stance because of its 

acceleration and deceleration. A better option for an inertial frame is the gravitational 

torque around the support foot making it more suitable for analysis. More importantly, 

the point of application for the ground reaction force vector is the support foot and 

therefore the ground reaction force is in fact reflecting Fr. Fr is equal to the ground 

reaction force but in the opposite direction. Further, the ground reaction force is not 

propulsive because it is a reactive force (reacting to Fr). There is also no ground reaction 

from the leg and hip muscle extensors because they are not active during the propulsive 

portion of stance. The gravitational torque is therefore the motive torque and not ground 

reaction force, which is reflecting gravity’s work. The resultant (net) force (figure 3.3.9 

b) is the resultant of the ground reaction force and gravity vectors. However, the 

resultant vector of gravity and ground reaction force is the same as Fp (figure 3.3.10) the 

propulsive component of gravity.
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Centre of ^  
mass y i

Ground 
reaction force 
vector

Moment arm

Ground 
reaction force 
vector /

ce ̂  

/  1Resultant

Gravity
vector

'N^^ector (Fp)

a) b y

Figure 3.3.9 a) Ground reaction force torque about the centre of mass b) The ground reaction force and the 

gravity vector taken at the same point of stance as the vector product in figure 3.3.8.

Figure 3.3.10 uses figure 3.3.9 b but includes the components of gravity. Fp creates the 

gravitational torque representing the resultant of the two external forces (gravity and 

ground reaction force) acting on the runner and is the net force causing the gravitational 

torque that accelerates the runner in the direction of the net force. The net force (Fp) is 

perpendicular to the position vector representing the radius for the centre of mass around 

the support foot. Fp causes a tangential acceleration, which changes the speed of the 

centre of mass. Fr causes a radial acceleration, which changes the direction of the centre 

of mass. This motion is similar to an inverted pendulum where the centre of mass swings 

around the support foot. The torque (tangential component of gravity) for a pendulum is 

the same (if I = r) equation as the gravitational torque for running giving further support 

the gravitational torque (inverted pendulum) is the motive torque in running:

x = -mgl sin 6 (3.3.7)

Where -mg is the weight of the pendulum, 1 is the length of the cable and sine theta is 

the angle between the cable and gravity.

Gro J
reac
vecl

Gravity 
\T vector

Resultant 
vector or (Fp)

Figure 3.3.10 Gravity and ground reaction force vectors with gravity’s components included, showing the 

net force is Fp. Notice Fr is equal and opposite to the ground reaction force vector, leaving Fp as the net 

force or the resultant of gravity and ground reaction force.



The body is also moving upwards from mid-stance until terminal stance so the runner is 

working against gravity, but this does not negate the gravitational torque seen from 

figure 3.3.11.

R is in g  c e n t r e  o f  m a s s  
o w i n g  t o  t h e  g e o m e t r ic a l  
s h a p e  o f  t h e  o b j e c t

Gravitational
rtorque

b ) I d
Figure 3.3.11 T w o  id e n t ic a l  r e c t a n g le s  a r e  g i v e n  w i t h  t h e ir  c e n t r e  o f  m a s s e s  m a r k e d  a s  O F g  =  g r a v i t y ,  

a )  T h e  u p r ig h t  r e c t a n g le  r e p r e s e n t s  t h e  r u n n e r  a t  m i d - s t a n c e  w it h  t h e n  c e n t r e  o f  m a s s  a b o v e  t h e  s u p p o r t in g  

l im b  ( b a l l  o f  t h e  f o o t ) ,  b )  T h e  r e c t a n g le  ( r u n n e r )  t ip s  f o r w a r d s  v ia  m o m e n t u m .  A  g r a v i t a t io n a l  t o r q u e  

a r o u n d  t h e  r u n n e r 's  c e n t r e  o f  m a s s  s u b s e q u e n t ly  m o v e s  t h e m  h o r iz o n t a l ly  f o r w a r d s .  N o t e  h o w e v e r ,  t h e  

c e n t r e  o f  m a s s  r i s e s  o w i n g  t o  t h e  r e c t a n g le s  g e o m e t r y  a n d  t h e  r u n n e r  r i s e s  v i a  e l a s t i c  r e c o i l  a n d  l e g  

e x t e n s io n  fr o m  t h e  r i s in g  b o d y .

The centre of mass rises (does work against gravity), because of the lower-limb 

geometry (support/stance leg extends), whilst the gravitational torque horizontally 

displaces the runner. The stance leg is extending (passively) at this time owing to 

geometry of the body and elastic recoil, which raises the centre of mass. Obviously, less 

leg extension will result in lower work against gravity. Cavanagh, et al. (1977) found 

general support for improved running economy with lower vertical oscillation (less work 

against gravity). The momentum of the runner in the vertical direction would slow at this 

time owing to the work against gravity, except for the rebound effect of the muscle- 

elastic system. The leg extensors are maximally active (eccentrically) at mid-stance as 

the body absorbs landing and the centre of mass is at its lowest vertical position (Maim, 

1980; Wank et al., 1998). The angle of the centre of mass at or just after this time is just 

past the vertical (in the clockwise direction) where the leg extensor muscles become 

inactive. Any muscle force at this time would be directed more vertically than 

horizontally (Farley and Ferris, 1998). The elastic recoil of the musculotendinous 

junctions therefore, contribute to the vertical oscillation of the centre of mass thus
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reducing the work against gravity (Alexander, 1989). However, elastic recoil cannot 

create a typical one-metre step length. Rather, the constant force of gravity after 

maximum vertical ground reaction until terminal stance creates a gravitational torque, 

which produces step length from horizontally accelerating the runner’s body.

Returning to the Froude number, comprised of leg length, running speed and gravity. 

Gravity reflects the centre of mass’s height because it is the point about which gravity 

acts. The height (centre of mass position) of falling is also dependent upon the length of 

the leg. Alexander and Jayes (1983) proved that the longer the leg the longer the step. A 

longer leg increases the height of release, which will increase step length. However, 

running speed comprises of both step length and step frequency. When step length is 

maximal the only way to increase speed is to increase step frequency. The increase in 

step frequency at faster speeds is simply reflecting the ability to fall has been maximised 

(angle of inclination is maximal), therefore, to increase running speed, higher step 

frequency is required (more opportunities to fall), which is self-evident in sprinting. Step 

length reaches a maximum value at a running speed of around 7.0 m-s'1 (Luhtanen and 

Komi, 1978). To compensate, step frequency increases at faster rumiing speeds—than 

7.0 m-s'1—and up to maximum speeds (Luhtanen and Komi, 1978). If step length 

reflects these three components, it is possible to state, running speed increases via a 

gravitational torque up to a point where the maximal angle of inclination (from the centre 

of mass to the support foot) is reached, thus producing a maximal step length.

In support that gravity is creating forward progression, Chang et al. (2000) using three 

conditions: increased gravity and inertia, increased inertia and reduced gravity, took 

eight participants and ran them at 3 m-s'1 for all conditions. By increasing gravity and 

inertia, the magnitude of the horizontal ground reaction force impulse increased. By 

increasing inertia only, the horizontal impulse did not increase. As gravity was reduced, 

the magnitude of the horizontal impulse reduced proportionally. This suggests gravity is 

affecting the horizontal impulse. Perhaps this explains why the horizontal propulsive 

ground reaction force does not coincide with maximal muscle activity, but in fact, may 

reflect the gravitational torque. The vertical impulse had similar results to the horizontal 

impulse, indicating gravity strongly influences the vertical ground reaction force. Step 

length increased in reduced gravity and decreased in increased gravity and inertia but 

remained stable with increased inertia. This clearly suggests gravity is affecting step
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length and by implication, step length is created via a gravitational torque. The resultant 

ground reaction force peak angles of braking, propulsive and peak force were constant 

for all conditions. As running speed was constant for all conditions this would suggest 

the angle of inclination of the body would be constant, which is exactly what their results 

showed. A constant body angle would not change the gravitational torque (owing to the 

same moment arm) and hence changes in the vertical and horizontal impulses would be 

proportional to changes in gravity for the same leg-length.

Figure 3.3.12 illustrates the length of the force vectors are proportional to the vertical 

and horizontal components of the ground reaction force. Regardless of which technique 

of running—heel-toe and forefoot—both show maximum ground reaction force occurs 

on the ball of the foot when the body is in its lowest position reflecting maximum weight 

illustrating gravity’s work (figure 3.3.13). It is important to also note that the body 

cannot move forward until the centre of mass passes the ball of the foot (pivotal point of 

support) which only begins after maximal vertical ground reaction force in constant 

speed running.
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Figure 3.3.12 Vector representation of the ground reaction force in running for two participants (a) A heel- 

toe runner, (b) A forefoot runner. The view is of the right shoe from the lateral aspect with the shoe tilted 

30° upward (adapted from Cavanagh and Lafortune, 1980).

Leg extension during the propulsive of stance

Figure 3.3.13 illustrates the centre of mass reaches its lowest position and velocity at 

maximum vertical ground reaction force in running and hence its lowest gravitational 

potential and kinetic energy (McMahon et al., 1987; Farley and Ferris, 1998). 

Combining figure 3.3.12 with figure 3.3.13, it is possible to see that the centre of mass is 

lowest at maximal vertical ground reaction, and this point, is on the ball of the foot. 

Further, maximal vertical velocity occurs 0.1 ms (40% of stance time later) after 

maximal vertical ground reaction force. In fact, vertical ground reaction force is 

decaying too below body weight at maximal vertical velocity, thus it must be reflecting 

the vertical elastic re-bound affect, which subsequently causes the change in vertical 

velocity and not ground reaction force.
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Figure 3.3.13 Vertical ground reaction force, during the stance phase of running (a) vertical velocity of the 

centre of mass (b) and the vertical position of the centre of mass (c). The vertical dotted line illustrates the 

timing of maximal vertical ground reaction force with zero velocity and the lowest point of the centre of 

mass (adapted from Enoka, 2002; p. 192).
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In support of the muscle system not pushing the runner forwards, the flic-flac (figure 

3.3.14) illustrates there is a distinct thrust (active leg extensors) just before leaving the 

ground reflected by sudden increased vertical and horizontal ground reaction force 

traces. This trace is not evident in running, because the leg extensors are not active. In 

fact, in rumiing, there is a rapid decay in the vertical ground reaction force reflecting the 

body leaving the ground coupled with silent extensor muscle activity (‘extensor 

paradox’; McClay et al., 1990).

j

9

Tim#!*)

Figure 3.3.14 A  g y m n a s t  p e r f o r m e d  a f l i c - f l a c  ( s t ic k  f i g u r e )  s h o w i n g  v e r t ic a l  ( F z )  a n d  p o s t e r io r - a n t e r io r  

( F y )  g r o u n d  r e a c t io n  f o r c e .  N o t e  t h e  s p ik e  in  g r o u n d  r e a c t io n  f o r c e  at p u s h - o f f  w i t h  t h e  f e e t  ( Y e a d o n  a n d  

C h a l l i s ,  1 9 9 4 ) .

Fenn (1930) identified that the body pushes forwards from the hip at foot contact

because hip velocity exceeded that of the neck. In fact, the hips begin extension before

the knee and ankle during stance (Mann et al., 1986; Montgomery et al., 1994), which

supports Fenn’s observation. However, hip extension that produces forward movement,
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which leads the knee and ankle joints, is not universally accepted (Winter 1983). 

Montgomery et al. (1994) suggest the ankle musculature stabilizes the ankle while the 

trunk moves forward rather than these muscles producing an active push-off (Reber et 

al., 1993). Whereas, Winter (1983) suggested the calf musculature pushed off at terminal 

stance. However, Cavanagh et al. (1977) found elite rumiers did not plantar flex the 

ankle at terminal stance compared to less able runners, suggesting it is not effective. In 

figures 3.3.15 and 3.3.16, at the third position for each runner, which is just past 

maximum ground reaction force the hip is just about to begin extension. While positions, 

4 and 5 show both runners extending their hips as vertical ground reaction force is 

decreasing, noting leg extensor muscle activity ceases just after leg extension begins 

(Montgomery et al., 1994; Wank et al., 1998). Hunter et al. (2005) also dismissed leg 

extension at terminal stance as a cause of increased propulsion in sprinters, but found the 

mean of hip extension velocity was associated with greater propulsion. Therefore, owing 

to the body’s horizontal velocity, the body moves forward of the foot (having almost 

zero horizontal velocity) and leg extension will occur primarily because of the body’s 

inertia (reflected by hip motion). The body continues past the support point (ball of the 

foot), where the ankle musculature stabilises the ankle, and then the body accelerates via 

a gravitational torque. Leg extension is also aided via the stretch-shortening cycle. 

Changes in the length of the muscles belly are minimal, because most of the change in 

length comes from the stretch and recoil of the respective tendons (McMahon, 1990). 

Consequently, muscle tendons lengthen during the eccentric phase (impact to maximum 

vertical ground reaction force) and recoil elastic energy during the propulsive phase of 

stance. The muscles still exert tension but elastic energy allows the muscles to shorten 

less, thus reducing muscle work (Ker et al., 1987). Short stance time and correct body 

geometry (landing with the centre of mass over the ball of the foot to increase the pre

stretch via a more vertical weight vector) all potentially increases the stretch-shortening 

cycle. The release of elastic energy aids leg action through tension in the Achilles tendon 

at terminal stance (Kyrolainen et al., 2003) rather than an active push-off. Shorter stance 

time will result from a more vertically aligned body at impact, because the body travels a 

shorter horizontal distance during stance. A shorter stance time also enhances the elastic 

mechanisms (Zatsiorsky, 1995; Paavolainen et al., 1999a).
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Figure 3.3.15 Force-time recording of a forefoot runner (mass 80 kg, velocity 9.2 m-s'1) (Payne, 1983; p. 

749).
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Further evidence for the support leg being passively extended is seen in figure 3.3.17. 

Both runners have similar vertical oscillations until position 3, possibly illustrating 

comparable knee flexion angles. The vertical displacement of the centre of mass rises 

from mid-stance (position 3) until terminal stance (or just after) in both runners. 

However, the good runner does not extend his leg as much as the poor runner—position 

6—possibly leading to lower vertical oscillation from position 4 to 7. Note the term 

‘poor’ is relative in relation to his 5-km time making him still a very competitive athlete. 

Miura et al. (1973) found that the good runner’s centre of mass deviation from the 

vertical axis was greater on average at 34.7° compared to 31.8° for the poorer runner. A

larger angle from the vertical axis increases the moment arm for the gravitational torque,
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which potentially increases forward progression (increases running speed) while 

passively extending the leg. The lower leg extension in the faster runner may be related 

to his increased angle of deviation.

Poor runner
Good runner

«J
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Figure 3.3.17 V e r t ic a l  d i s p la c e m e n t  o f  t h e  c e n t r e  o f  m a s s  fo r  a  g o o d  r u n n e r  ( 1 4  m in  5 2  s ,  5  k m )  a n d  a  

p o o r  r u n n e r  ( 1 6  m in  2 9  s .  5  k m )  ( M iu r a  et al., 1 9 7 3 ) .

Milliron and Cavanagh (1990) also support a passive leg extension. Using four 

participants on a treadmill at a negative grade of -20%, level and a positive grade of 

20%, they found that leg extension decreased from level to uphill (20%) and increased 

for downhill running (-20%). These data suggest that downhill running causes greater 

extension (32.1°) owing to a faster body speed passively extending the leg further than 

uphill (13.0°) or level running (15.1°). Paradisis and Cooke (2001) also found similar 

results. In addition, the most variability in phasic activity of all the knee muscles is the 

hamstrings (Heise et al., 1996). Hamstring variance might better explain runners who 

flex their legs (via hamstring activity) earlier and faster at terminal stance than poorer 

runners do. Earlier and faster flexion at terminal stance would possibly reduce leg 

extension, maintain momentum—through reduced inertia of a less extended leg—and 

hence lower vertical oscillation and work done against gravity. Potentially a runner then



leaves the ground as the body falls forwards. If the body is accelerating from the 

gravitational torque and the next step is beginning, there is no need to push-off with the 

stance leg. In fact, Romanov (2002) is the first to mention pulling the support foot from 

the ground. If the foot is pulled from the ground, it is also moving in the same direction 

(upwards) as the elastic recoil of the lower-limb muscles. Elliot and Blanksby (1979) 

reported maximal biceps femoris activity at terminal stance suggesting rapid knee 

flexion supporting a potential pulling of the foot from the ground. The concept of pulling 

the foot from the ground among endurance runners is not common. However, in most 

sprinters, the knee does not fully extend during stance and rapidly flexes at terminal 

stance, suggesting the foot is indeed pulled from the ground (Mann and Hagy, 1980; 

Mann et al., 1986). If the hamstring muscle group flexes the knee at the same time as the 

muscles experience elastic recoil a coordinated lower-limb/body motion should ensue. If 

this action is coordinated with the body falling forwards, at this point, the body is rising, 

which un-weights the foot allowing it to be pulled from the ground. The foot will then 

essentially be catching up to the body as the runner enters flight.

Flight Phase

During flight the runner falls to the ground under gravity’s work (Fenn, 1930) and 

providing the opposite leg— swing leg— is not driven forwards (via hip flexion) gravity 

should allow the foot to drop under the centre of mass for the next step cycle to begin 

again. If the swing leg is driven forwards into the flight phase the swing foot will land in 

front of the centre of mass at impact reducing horizontal velocity (Bates et al., 1979; 

Hinrichs et al., 1987). A reasonable assumption is runners are thinking about driving 

their swing leg forwards at terminal stance, rather than pulling the support foot from the 

ground. This difference perhaps divides Pose® running from heel-toe rumiing (Romanov, 

2002). If the runner is not thinking about pulling the foot from the ground—using the 

hamstring muscles—as the leg extends, their centre of mass continues to rise via leg 

extension completing more work against gravity, thus reducing the gravitational torque. 

Reducing the gravitational torque reduces the take-off velocity, which subsequently 

reduces running speed.

In summary of the Gravitational hierarchical model that describes the Pose® technique of 

running, two key concepts emerge: falling under a gravitational torque and pulling the 

support foot (knee flexion) from the ground via the hamstring muscle group. The
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Gravitational hierarchical model has attempted to reflect these concepts while ordering 

the timing of the forces involved in running. Support presented for gravity being the 

motive force was the runner could only move forwards once the centre of mass passes 

the support point (ball of the foot) at mid-stance. Inertia brings the runner’s centre of 

mass after impact to this point (mid-stance), where ground reaction force is maximal, 

while vertical displacement and horizontal velocity of the centre of mass are minimal. In 

a flic-flac, there is a clear push-off the ground, but in running the ground reaction force 

decays from maximal vertical ground reaction force until terminal stance. The decay rate 

increases with running speed, suggesting increases in the acceleration of the centre of 

mass (faster angle of deviation) as it leaves the ground. A gravitational torque creates 

acceleration of the runner from mid-stance, potentially explaining the lack of leg and hip 

extensor muscle activity. In support, maximum propulsive horizontal ground reaction 

force occurs after extensor muscle activity ceases. Pulling the foot from the ground as 

the body is falling, reduces vertical oscillation by potentially decreasing leg extension 

(Wank et al., 1998), which allows the foot to catch-up with the body more quickly as a 

result of reduced lower-limb inertia. High Achilles tendon forces at terminal stance, 

suggest the elastic recoil plays a significant role in reducing work against gravity from 

mid-terminal stance. During swing, if the ipsilateral leg drops under gravity’s influence 

during flight, and is not driven forwards via the hip flexors, the foot will land under the 

centre of mass for the cycle to begin again.

3 .4  SUMMARY

There are three known forces involved in running (gravity, ground reaction force, muscle

force) and potential strain energy. Several deficiencies identified in the current running

model include: viewing the constant force of gravity as only active during flight and not

relating gravity to forces exerted and the time forces act despite gravity being a constant

force. The Gravitational model stated the forces involved in running could hierarchically

function when gravity orders their timing and work. A gravitational torque was shown to

be the main motive force in running as the body falls forwards. Ground reaction force is

not a motive force but operates according to Newton’s third law, which simply reflects

the forces it receives. The ground can only propel a runner forward via muscle activity.

Leg and hip extensor muscles have consistently proven to be silent during the support
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leg’s extension, in contrast to Hay and Reid (1988; pp. 264 and 287-288), who suggest 

leg extension via ankle, knee and hip musculature is the motive force in running. High 

Achilles tendon forces at terminal stance suggest the elastic recoil is creating a re-bound 

effect in the vertical direction thus reducing work against gravity. Gravity is the only 

external force that can displace the centre of mass from maximal vertical ground reaction 

force until terminal stance if muscle extensor activity is silent. The Gravitational 

hierarchical model therefore, identifies gravity’s important role in running. Forward 

movement (falling via a gravitational torque) begins once the centre of mass has passed 

over the ball of the foot. The flic-flac shows a clear spike in the ground reaction force 

trace reflecting a push-off, which is completely absent in runners. In fact, the ground 

reaction force decay rate increases as running speed increases. The decay rate is 

reflecting the body leaving the ground and not the support limb’s muscle activity 

pushing off the ground because the lower-limb’s muscles are silent. The Froude number 

supports gravity’s work in creating running speed, because step length differences from 

short or long legged runners are proportional to leg length. Muscle force is not a 

component of the Froude number because step length occurs via a gravitational torque 

not muscle force. Further, the hip’s extension velocity was significantly associated with 

the support leg’s passive extension. This again suggests the body is moving forward of 

the support limb (via a gravitational torque) and not being pushed forwards via the ankle 

and knee joints. The hip passively extends because the body moves past the stationary
dR)foot extending the lower-limb. In Pose running the hamstring muscles pull the support 

foot rapidly from the ground when the foot un-weights with the aid of the stretch- 

shortening cycle optimised from a short contact time. By pulling the support foot and not 

driving the swing leg forward of the body via the hip flexors, gravity can drop the swing 

leg under the body at impact enabling the cycle to begin again. The swing leg’s centre of 

mass must be vertically below the body’s centre of mass during flight for this to occur. 

Driving the swing leg forwards causes the foot to land ahead of the body slowing 

horizontal velocity of the centre of mass owing to increasing the distance of the centre of 

mass from the support foot. The Gravitational model, therefore, hierarchically explains 

the forces involved in running. Gravity causes the muscle system to absorb body weight 

on landing (maximum ground reaction force), which then produces elastic strain energy 

in the musculotendinous junctions. As the centre of mass passes over the support limb (at 

maximum vertical ground reaction force), a gravitational torque is produced as extensor 

muscle activity ceases. The runner falls forwards while ground reaction force decreases
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(the body is leaving the ground) and vertical work against gravity is reduced via elastic 

mechanisms. At terminal stance, as the foot is un-weighted, it is rapidly pulled from the 

ground (hamstring muscle activity) in order to reduce lower-limb inertia and to catch up 

with the body during flight. Finally, the runner returns to the ground via gravity during 

flight. The ability to fall via a gravitational torque and to pull the foot from the ground 

effectively, potentially divides the two techniques: Pose® and heel-toe running. The 

Gravitational hierarchical model, therefore, reflects these differences between the two 

running techniques and potentially offers a quantifiable method to differentiate between 

the two.
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CHAPTER 4

EXPERIMENTAL PROCEDURES

4.1 INTRODUCTION

The research aims are presented with the hypotheses for the main study. A research 

design for each of the two studies is provided covering sample size, equipment, research 

variables and treatment of data.

4 .2  STATEMENT OF THE PROBLEM

The primary aim of this thesis is to compare the Pose® method technique (Romanov, 

2002; Arendse et al., 2004; Dallam et al., 2005) with the heel-toe rumiing technique. 

Development of a new Gravitational hierarchical model based on the Pose® method 

using the laws of physics will enable the Pose® technique’s systematic evaluation. The 

Gravitational hierarchical model and the current hierarchical model (Hay and Reid, 

1988; p. 282) are reviewed highlighting the different biomechanical theories of running. 

There are deficiencies with Hay and Reid’s model, for example, viewing the constant 

force of gravity as only active during flight and not relating gravity to forces exerted and 

the time forces act. Therefore, Hay and Reid’s model does not systemise the forces 

involved in running but acts as general descriptor, whereas, the Gravitational hierarchical 

model will aim to structure these forces. A comparison of the Pose® and heel-toe running 

techniques will follow using two experienced male Pose® and heel-toe runners utilising 

the primary and secondary research variables (study 1; chapter 5) derived from the 

Gravitational hierarchical model. Upon establishment of the Pose® method technique, a 

group of male heel-toe recreational runners (study 2; chapter 6) will participate in a 

repeated measures design. An economy and time trial run will give the participants pre

test baseline physiological measures while the primary research variables will provide a 

biomechanical profile. The post-test will determine whether there is an improved
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performance on the economy and 2400 time trial run resulting from the potential 

biomechanical changes in the Pose® group from a 7-hour Pose® training intervention. A 

2 x 2  mixed factorial ANOVA will assess the main effects of group (control vs. 

treatment) and trial (pre to post changes) on the primary research variables. Tukey’s tests 

of honestly significant differences will be used to assess individual cell differences post 

hoc. A prospective three-month injury study on all the participants post intervention will 

seek to determine injury incidence between the two running techniques.

4 .3  THE HYPOTHESES

The thesis will reject Ho and accept Hi at P < 0.05. Each research and null hypothesis for 

study 2 are given including a brief explanation. Study 1 was a descriptive study.

4.3.1 Study 2 (Pose® method training study; Chapter 6) hypotheses

The treatment group were heel-toe runners who had 7-hours of Pose® instruction. 

Fourteen null and research hypotheses derived from the Gravitational hierarchical 

model’s primary research variables are given:

1. Reduced stance time correlates with elite runners and improved economy (Williams 

and Cavanagh, 1987; Nicol et al., 1991).

• Hi: The treatment group will show a decrease stance time.

• Hq: The treatment group will show no change in stance time.

2. There will be a decrease in vertical ground reaction force between the two groups

(Arendse et al., 2004).

• Hi: The treatment group will show a decrease in vertical ground reaction forces.

• Hq: The treatment group will have no change in vertical ground reaction forces.

3. There will be no difference in posterior and anterior ground reaction force between

the two groups (Chang et al., 2000).

• Hi: The treatment group will show no change in posterior and anterior ground 

reaction forces.



• Hq: The treatment group will increase in posterior and anterior ground reaction 

forces.

4. A decrease in horizontal velocity of the centre of mass at impact to maximal vertical 

ground reaction force has generally been found in ‘poorer’ runners (Fenn, 1930; 

Slocum and Bowerman, 1961; Deshon and Nelson, 1964; Enomoto et al., 1999).

• Hi: At impact, there will be less decrease in the horizontal velocity of the body’s 

centre of mass for the treatment group.

• H0: At impact, there will be no change in the horizontal velocity of the body’s centre 

of mass for the treatment group.

5. An increase in horizontal velocity of the centre of mass from maximal vertical 

ground reaction force until terminal stance for the Pose® runners will be used to 

support gravity’s role in forward progression (Keller et al., 1996).

• Hi: From maximal vertical ground reaction force until terminal stance, the treatment 

group will increase horizontal velocity of the centre of mass.

• H0: From maximal vertical ground reaction force until terminal stance, the treatment 

group will have no change in horizontal velocity of the centre of mass.

6. Vertical alignment of the body at impact is associated with faster runners (Deshon 

and Nelson, 1964; Mann and Herman, 1985).

• Hi: The treatment group will show increased vertical alignment of the body at 

impact.

• Ho: The treatment group will show no change in vertical alignment at impact.

7. Less horizontal displacement of the centre of mass during stance will reduce stance 

time (Ferris et al., 1999).

• Hi: The treatment group will show a decrease in horizontal displacement of the 

centre of mass during stance.

• FL: The treatment group will show no change in horizontal displacement of the 

centre of mass during stance.

8. Reduced vertical oscillation of the centre of mass has been associated with ‘good’ 

runners (Miura et al., 1973; Williams and Cavanagh, 1986).

95



• Hi: The treatment group will show a decrease in vertical oscillation of the centre of 

mass.

• H0: The treatment group will show no change in vertical oscillation of the centre of 

mass.

9. Mean knee angular velocity for flexion and extension during stance were 

significantly correlated with stride length, stride frequency, vertical loading rate and 

stance time (De Wit et al., 2000). A decrease in knee angular velocity for flexion and 

extension may reflect lower muscle activity.

• Hi: The treatment group will show a decrease in mean angular knee flexion and 

extension velocity during stance.

• H0: The treatment group will show no change in angular knee flexion and extension 

velocity during stance.

10. Increased mean knee flexion angular velocity from terminal stance until maximum 

swing shows a faster leg recovery, which correlates with faster running (Heise et al., 

1996).

• Hi: The treatment group will show an increase in mean knee flexion angular 

velocity terminal stance until maximum swing.

• H0: The treatment group will show no change in mean knee flexion angular velocity 

terminal stance until maximum swing.

11. Increased step length can cause braking of the runner’s horizontal velocity and 

potentially increase injuries (Volishin and Wosk, 1982; Hunter et al., 2005).

• Hi: The treatment group will show a decrease in step length.

• Hq! The treatment group will show no change step length.

12. Increased step frequency is associated with Pose® running (Romanov, 2002; Arendse 

et al., 2004).

• Hi: The treatment group will show an increase in step frequency.

• H0: The treatment group will show no change step frequency.

13. An increase in running speed for Pose® runners in the post-test 2400 m time trial will 

establish the Pose® method enables faster rumiing.
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• H i: The Pose® group will show an increase in speed for the post-test time trial.
(S)• H0: The Pose group will show no change in speed for the post-test time trial.

(K)14. An improved economy for Pose runners in the post-test 2400 m economy run will 

establish the Pose® method enables more economical running.

• Hi: The Pose® group will show an increase (improvement) in economy for the post

test economy run.

• H0: The Pose® group will show no change in economy for the post-test economy run.

4 .4  RESEARCH DESIGN

4.4.1 Introduction

On completion of the new Gravitational hierarchical model, two studies will assess the 

Pose® technique. Comparison of two experienced male Pose® and heel-toe runners will 

complete study 1 using the primary and secondary research variables from the 

Gravitational hierarchical model. A pre and post-test design using sixteen male 

recreational heel-toe runners, where eight will be trained in Pose® running, from a 7-hour 

intervention over one-week, will be compared using inferential statistics on the primary 

research variables.

4.4.2 Sample size and selection criteria 

Study 1: Experienced Pose® and heel-toe runner’s study

Only two suitably experienced male Pose® runners were prepared to travel to the UK for 

testing. No experienced Pose® runners lived in the UK at the time of data collection. 

Two experienced heel-toe runners who matched the Pose® runners in age, stature, weight 

and experience were recruited for the study. Descriptive statistics compared and 

evaluated the two running techniques using the primary and secondary research 

variables.
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Study 2: Pose® method training study

A population of local runners and triathletes recruited from Loughborough University 

served as volunteers for study 2. The main criteria for participant selection included that: 

(a) all subjects were males; (b) were of a competitive age of 18-30 years old; (c) were 

sub-elite and had been running for at least two-years (10-km personal best time 37-45 

min equating to 6 to 7 min per mile pace) who were distance runners (5-km-marathons). 

Sub-elite runners were selected owing to their availability over elite athletes, (d) They 

also had not read or heard of the Pose® method of running; (e) landed on their heel first 

when running; (f) were willing to change their running technique for the testing period; 

(g) had been without injury in the past 3-months and finally (h) were able to make the 

study research dates.

These criteria were selected to give the study internal and external validity, which would 

allow the results to be generalised to a population of recreational male endurance 

runners/triathletes. Selection of this population was based on them having the largest 

number of participants relative to the total running population. The emphasis was on a 

minimum and maximum age and ability, which reduced inter-participant variance in 

scores. All participants were heel-toe runners, which represented eighty percent of the 

endurance running population (Kerr et al., 1983). Using pilot data and data from the 

literature a power test was calculated giving n = 16 for the desired sample size for 99% 

confidence of rejecting the null hypothesis when it is true.

4.4.3 Equipment and design

Study 1: Experienced Pose® and heel-toe runner’s study

A force plate and a three-dimensional analysis system collected the research variables 

derived from the Gravitational hierarchical model for the two running techniques. 

Descriptive statistics described the two techniques.

Study 2: Pose® method training study

A force plate, portable gas analyser, heart rate monitor and a three-dimensional analysis 

system were used to quantify the changes between the heel-toe and Pose® groups for the 

laboratory experiment and the field-tests. Both heel-toe and Pose® groups completed a 

pre-test economy run and time trial of 2400 m involving a portable gas analyzer
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(Cosmed, K4 b2) and a heart rate monitor. They also completed a laboratory pre and 

post-test using a force plate and a three-dimensional analysis system for five trials run at 

3.35 m-s'1. The Pose® group received 60 min of instruction in the Pose® method from a 

qualified Pose® coach for 7-days. Immediately following the intervention, both groups 

were administered the post-tests using the same instrumentation.

4.4.4 Identification of the research variables

Study 1: Selection of research variables

Variables derived form the Gravitational hierarchical model (primary research variables) 

were used to assess differences between two experienced Pose® and heel-toe runners.

1. Stance time (ms).
2. Posterior and anterior ground reaction force (BW).
3. Maximum vertical ground reaction force (BW).
4. Centre of mass horizontal velocity from impact to maximum vertical ground 

reaction force (cm-s-1).
5. Centre of mass horizontal velocity from maximum vertical ground reaction force 

until terminal stance (cm-s"1).
6. Centre of mass behind the toe marker (horizontal difference at 25 ms) (cm).
7. Centre of mass horizontal displacement during stance (cm).
8. Vertical oscillation of centre mass (cm).
9. Mean knee flexion angular velocity for stance (rad-s'1).
10. Mean knee extension angular velocity for stance (rad-s"1).
11. Mean knee flexion angular velocity from terminal stance to maximum swing 

angle (rad-s'1).
12. Step length for right foot (cm).
13. Step frequency (Hz).

Secondary research variables aided the analysis of the two running techniques.

I. Time to maximum braking and propulsive ground reaction force (percentage of 
stance).

II. Time to maximum vertical ground reaction force (percentage of stance).
III. Centre of mass horizontal velocity from terminal stance until maximum swing 

(cm-s'1).
IV. Centre of mass at terminal stance forward of the support foot (horizontal 

difference) (cm).
V. Centre of mass horizontal velocity at terminal stance (cm-s"1).

VI. Horizontal velocity of the centre of mass from maximum vertical ground reaction 
force until terminal stance minus horizontal velocity of the centre of mass from 
impact until maximum vertical ground reaction (cm-s"1).

VII. Centre of mass and toe marker angle at terminal stance (rad).
VTII. Knee flexion from impact until mid-stance (rad).

IX. Knee extension from mid-stance until terminal stance (rad).
X. Knee flexion from terminal stance until maximum swing (rad).
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XI. Knee angle at impact (rad).
XII. Knee angle at maximum vertical ground reaction force (rad).

XIII. Flight time (ms).
XIV. Time of maximum horizontal acceleration of the centre of mass (cm-s'2).

Study 2: Selection of research variables

The research variables derived form the Gravitational hierarchical model (primary 

research variables) were used to assess differences between a group of sixteen heel-toe 

runners where eight participants were trained in Pose® running technique from a 7-hour 

intervention.

1. Stance time (ms).
2. Posterior and anterior ground reaction force (BW).
3. Maximum vertical ground reaction force (BW).
4. Centre of mass horizontal velocity from impact to maximum vertical ground 

reaction force (cm-s-1).
5. Centre of mass horizontal velocity from maximum vertical ground reaction force 

until terminal stance (cm-s'1).
6. Centre of mass behind the toe marker (horizontal difference at 25 ms) (cm).
7. Centre of mass horizontal displacement during stance (cm).
8. Vertical oscillation of centre mass (cm).
9. Mean knee flexion angular velocity for stance (rad-s'1).
10. Mean knee extension angular velocity for stance (rad-s'1).
11. Mean knee flexion angular velocity from terminal stance to maximum swing 

angle (rad-s’1).
12. Step length for right foot (cm).
13. Step frequency (Hz).
14. Time for 2400 m time trial (s).
15. Oxygen consumption (ml).

Secondary research variables aided the analysis of the two running techniques.
I. Time to maximum braking and propulsive ground reaction force (percentage of 

stance).
II. Time to maximum vertical ground reaction force (percentage of stance).

III. Centre of mass horizontal velocity from terminal stance until maximum swing 
(cm.s'1).

IV. Centre of mass at terminal stance forward of the support foot (horizontal 
difference) (cm).

V. Centre of mass and toe marker angle at terminal stance (rad).
VI. Knee flexion from impact until mid-stance (rad).

VII. Knee extension from mid-stance until terminal stance (rad).
VIII. Knee flexion from terminal stance until maximum swing (rad).

IX. Knee angle at impact (rad).
X. Knee angle at maximum vertical ground reaction force (rad).

XI. Flight time (ms)
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4.4.5 Treatment of collected data

Study 1: Experienced Pose' and heel-toe runner’s study

Descriptive statistical procedures compared the two running techniques. Discussion 

focused on differences supported by the primary and secondary research variables and 

running research.

Study 2: Pose® method training study

A power test for a repeated measures ANOVA statistical procedure was conducted to 

determine the probability of detecting a ‘true’ effect when it exists. Using proc power in 

SAS statistical software (version 9.1) sample size was calculated. Selected power was

0.8 at P < 0.05 (Cohen, 1988). Step length was selected as the variable since it 

generically describes the gait cycle because it is the direct result of the kinetic and 

kinematic motions of the runner. Using heel-toe runner’s pilot data for the sample mean 

(mean step length 97 cm), the literature was used to determine the population mean 

(mean step length 119 cm; Cavanagh and Kram, 1985) and standard deviation (14 cm; 

Cavanagh and Kram, 1985) at the test running speed of 3.35 m-s'1 enabling sample size to 

be calculated. Proc power requires the following information in order to do the power 

analysis: a) the number of levels (or groups = 2), b) the means for each level (119, 97), c) 

the common group standard deviation (14), d) the alpha level (P < 0.05) and e) the power 

(0.8). For n = 16 the calculated power was 0.99.

A 2 x 2 mixed factorial ANOVA assessed the main effects of group (control vs. 

treatment) and trial (pre to post changes) on the primary research variables. Tukey’s tests 

of honestly significant differences were used to assess individual cell differences post 

hoc. Data analysis was completed using the Minitab (version 14) statistical analysis 

package. An alpha level of P < 0.05 was used to establish statistical significance for the 

inferential procedures.
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Assumptions

Assumptions were satisfied for the inferential statistical analysis and are given below. 

Significance is taken at P = 0.05.

1. Independence: In this study, the two groups contain separate individuals so the

data are independent.

2. Scale of measurement: The scale of measurement was ratio.

3. Normality:

Table 4.4.1 Ryan-Joiner’s (similar to Shapiro-Wilk) normality test (N  = 16).

Variable Rvan-Joiner normalitv test
Stance time 0.1
Anterior-posterior GRF (brak) 0.1
Vertical GRF 0.1
Anterior-posterior GRF (prop) 0.1
Centre of mass horizontal velocity (brak) 0.1
Centre of mass horizontal velocity (prop) 0.1
Centre of mass to toe-marker at 25 ms 0.1
Centre of mass displacement during stance 0.1
Vertical oscillation 0.1
Knee flexion angular velocity 0.08
Knee extension angular velocity 0.1
Knee flexion angular velocity swing 0.1
Step length 0.1
Step frequency 0.07
Time trial 0.08
Oxveen consumntion 0.15

4. Homogeneity:

The variances between each group was examined using Levene's test for homogeneity of 

variances.
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Table 4.4.2 L evene 's  test for hom ogeneity  o f  variance (N = 16).

V a r ia b le s Levene Statistic Significance
Stance time Based on Mean 2.25 0.16
Anterior-posterior GRF (brak) Based on Mean 2.42 0.14
Vertical GRF Based on Mean 4.29 0.60
Anterior-posterior GRF (prop) Based on Mean 0.14 0.70
Centr e o f mass horizontal velocity (brak) Based on Mean 0.03 0.09
Centre o f mass horizontal velocity (prop) Based on Mean 0.30 0.60
Centre o f mass to toe-marker at 25 ms Based on Mean 7.91 0.07
Centre o f mass displacement during stance Based on Mean 2.59 0.13
Vertical oscillation Based on Mean 1.45 0.24
Knee flexion angular velocity Based on Mean 2.03 0.18
Knee extension angular velocity Based on Mean 0.93 0.35
Knee flexion angular velocity swing Based on Mean 1.21 0.29
Step length Based on Mean 0.36 0.56
Step frequency Based on Mean 1.01 0.33
Time trial Based on Mean 1.46 0.25
Oxygen Consumption Based on Mean 0.05 0.80

Table 4 .4 .3  I n t e r a c t io n s  f o r  t h e  p r im a r y  r e s e a r c h  v a r ia b le s  f o r  t h e  2 * 2  m i x e d  f a c t o r ia l  A N O V A  f o r  P =  
0.05 (A =16).

Variables F value P value
Stance time
T r e a tm e n t  *  G r o u p 7.28 0 .0 1 2
Anterior-Posterior GRF (Brak)
T r e a tm e n t  * G r o u p 0.0 0.960
Vertical GRF
T r e a tm e n t  * G r o u p 0.22 0.642
Anterior-Posterior GRF (Prop)
T r e a tm e n t  * G r o u p 0.53 0.472
Centre of mass velocity (brak)
T r e a tm e n t  * G r o u p 1.20 0.282
Centre of mass velocity (Prop)
T r e a tm e n t  * G r o u p 0.00 0.983
Centre of mass at 2 5  ms
T r e a tm e n t  * G r o u p 6.88 0 . 0 1 4
Centre of mass displacement
T r e a tm e n t  *  G r o u p 6.88 0 . 0 3 0
Vertical Oscillation
T r e a tm e n t  * G r o u p 1.62 0.213
Knee flexion angular velocity7
T r e a tm e n t  * G r o u p 1.27 0.269
Knee extension angular velocity
T r e a tm e n t  * G r o u p 2.49 0.126
Knee flexion angular velocity 
(swing)
T r e a tm e n t  * G r o u p 0.51 0.481
Step length
T r e a tm e n t  * G r o u p 1.50 0.231
Step frequency
T r e a tm e n t  * G r o u p 9.37 0 . 0 0 5
Time trial
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T r e a tm e n t  * G r o u p 0 .3 1 0 .5 8 2
Oxygen consumption
T r e a tm e n t  * G r o u p 0 .6 5 2 0 .6 5 2

Table 4.4.4 T u k e y  post hoc t e s t s  f o r  t h e  2 * 2  m i x e d  f a c t o r ia l  A N O V A  o n  t h e  p r im a r y  r e s e a r c h  v a r ia b le s  
( t r e a tm e n t  p r e  t e s t  i s  1 a n d  p o s t  is  2 ;  t h e  c o n t r o l  h e e l - t o e  g r o u p  is  3  a n d  t h e  P o s e 5 t r e a tm e n t  g r o u p  is  4 )  (N 
=  1 6 ) .

Variables Treatment Group P-value
Stance Time I n t e r a c t io n s  a m o n g  L e v e l s  o f  T r e a t m e n t * G r o u p  
T r e a tm e n t  =  1 G r o u p  =  3 s u b t r a c t e d  fr o m :

1 4 0.9991

2 3 0.8457
2 4 0.0006

Stance Time T r e a t m e n t  =  1 G r o u p  =  4 s u b tr a c te d  fr o m : 2 3 0.7763

2 4 0.0004
Anterior-Posterior GRF (Brak) I n t e r a c t io n s  a m o n g  L e v e l s  o f  
T r e a t m e n t * G r o u p  T r e a t m e n t  =  1 G r o u p  =  3 s u b tr a c te d  fr o m :

1 4 0.9999

2 3 0.4904
2 4 0.4904

Anterior-Posterior GRF (Brak) T r e a t m e n t  =  1 G r o u p  =  4 su b tr a c te d  
fr o m :

2 3 0.4486

2 4 0.4486
Vertical GRF (Brak) I n t e r a c t io n s  a m o n g  L e v e l s  o f  T r e a t m e n t * G r o u p  
T r e a tm e n t  =  1 G r o u p  =  3 s u b tr a c te d  fr o m :

1 4 0.9975

2 3 0.8187
2 4 0.5417

Vertical GRF (Brak) T r e a t m e n t  =  1 G r o u p  =  4 s u b tr a c te d  fr o m : 2 3 0.7145

2 4 0.4298
Anterior-Posterior GRF (Prop) I n t e r a c t io n s  a m o n g  L e v e l s  o f  
T r e a t m e n t * G r o u p  T r e a t m e n t  =  1 G r o u p  =  3 s u b tr a c te d  fr o m :

1 4 0.8421

2 3 0.9968
2 4 1.0000

Anterior-Posterior GRF (Prop) T r e a tm e n t  =  1 G r o u p  =  4 s u b tr a c te d  
f r o m :

2 3 0.9252

2 4 0.8421
Centre of mass horizontal velocity (Brak) I n t e r a c t io n s  a m o n g  L e v e l s  
o f  T r e a t m e n t * G r o u p  T r e a t m e n t  =  1 G r o u p  =  3 s u b t r a c t e d  fr o m :

1 4 0.9966

2 3 0.9217
2 4 0.8924

Centre of mass horizontal velocity (Brak) T r e a tm e n t  =  1 G r o u p  =  4 
s u b tr a c te d  fr o m :

2 3 0.9749

2 4 0.7940
Centre of mass horizontal velocity (Prop) I n t e r a c t io n s  a m o n g  L e v e l s  
o f  T r e a t m e n t * G r o u p  T r e a t m e n t  =  1 G r o u p  =  3 s u b tr a c te d  fr o m :

1 4 0.7612

2 3 1.00000
2 4 0.7187

Centre of mass horizontal velocity (Prop) T r e a tm e n t  =  1 G r o u p  =  4 2 3 0.7855
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s u b tr a c te d  fr o m :
2 4 0 .9 9 9 8

Centre of mass at 25 ms I n t e r a c t io n s  a m o n g  L e v e l s  o f  
T r e a t m e n t *  G r o u p  T r e a t m e n t  =  1 G r o u p  =  3  s u b t r a c t e d  fr o m :

1 4 0 . 9 6 8 9

2 3 0 . 8 0 4 7
2 4 0 . 1 0 9 2

Centre of mass at 25 ms T r e a t m e n t  =  1 G r o u p  =  4 s u b t r a c t e d  fr o m : 2 3 0 . 9 6 9 2

2 4 0.0420
Centre of mass horizontal displacement I n t e r a c t io n s  a m o n g  L e v e l s  o f  
T r e a t m e n t * G r o u p  T r e a t m e n t  =  1 G r o u p  =  3  s u b t r a c t e d  fr o m :

1 4 0 . 9 8 2 0

2 3 0 . 5 3 7 4
2 4 0.0002

Centre of mass horizontal displacement T r e a tm e n t  =  1 G r o u p  =  4  
s u b tr a c te d  fr o m :

2 3 0 . 7 6 0 7

2 4 0.0005
Vertical oscillation I n t e r a c t io n s  a m o n g  L e v e l s  o f  T r e a t m e n t * G r o u p  
T r e a tm e n t  =  1 G r o u p  =  3  s u b tr a c te d  fr o m :

1 4 0 . 9 9 8 6

2 3 0 . 9 9 9 4
2 4 0 . 2 7 6 6

Vertical oscillation T r e a tm e n t  =  1 G r o u p  =  4  s u b t r a c t e d  fr o m : 2 3 0 . 9 9 2 5

2 4 0 . 3 5 1 6
Knee flexion angular velocity (Stance) I n t e r a c t io n s  a m o n g  L e v e l s  o f  
T r e a tm  e n t  * G r  o  u p  T r e a tm e n t  =  1 G r o u p  =  3  s u b tr a c te d  fr o m :

1 4 0 . 9 9 2 8

2 3 0 . 2 6 7 9
2 4 0.0046

Knee flexion angular velocity (Stance) T r e a tm e n t  =  1 G r o u p  =  4  
s u b tr a c te d  fr o m :

2 3 0 . 4 0 1 7

2 4 0.0091
Knee extension angular velocity (Stance) I n t e r a c t io n s  a m o n g  L e v e l s  
o f  T r e a t m e n t * G r o u p  T r e a t m e n t  =  1 G r o u p  =  3  s u b t r a c t e d  fr o m :

1 4 0 . 9 8 1 7

2 3 0 . 8 6 6 9
2 4 0 . 7 0 1 7

Knee extension angular velocity (Stance) T r e a tm e n t  =  1 G r o u p  =  4  
s u b tr a c te d  fr o m :

2 3 0 .9 7 8 5

2 4 0 . 4 7 4 6
Knee flexion angular velocity (Swing) I n t e r a c t io n s  a m o n g  L e v e l s  o f  
T r e a t m e n t * G r o u p  T r e a tm e n t  =  1 G r o u p  =  3  s u b tr a c te d  fr o m :

1 4 0 . 9 8 1 5

2 3 0 . 2 9 9 8
2 4 0.0180

Knee flexion angular velocity ( S w  ing) T r e a tm e n t  =  1 G r o u p  =  4  
s u b tr a c te d  fr o m :

2 3 0 .5 0 2 3

2 4 0.0430
Step Length I n t e r a c t io n s  a m o n g  L e v e l s  o f  T r e a t m e n t * G r o u p  
T r e a t m e n t  =  1 G r o u p  =  3 s u b t r a c t e d  fr o m :

1 4 0 . 5 9 7 8

2 'J 0 . 9 1 5 4
2 4 0.0058
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Step Length Treatment = 1 Group = 4 subtracted from: 2 3 0.9287

2 4 0.1046
Step Frequency Interactions among Levels of Treatment*Group 
Treatment = 1 Group = 3 subtracted from:

1 4 0.9999

2 3 0.9937
2 4 0.0016

Step Frequency Treatment = 1 Group = 4 subtracted from: 2 3 0.9887

2 4 0.0019
Time Trial Interactions among Levels of Treatment*Group Treatment 
= 1 Group = 3 subtracted from:

1 4 0.9997

2 3 0.9999
2 4 0.8760

Time Trial Treatment = 1 Group = 4 subtracted from: 2 3 0.9989

2 4 0.8344
Oxygen Consumption Interactions among Levels of Treatment*Group 
Treatment = 1 Group = 3 subtracted from:

1 4 0.8473

2 3 0.6391
2 4 0.5372

Oxygen Consumption Treatment = 1 Group = 4 subtracted from: 2 3 0.9815

2 4 09475

4.4.6 Limitations

The limitations of this thesis are given below in no particular order.

• Only two experienced Pose® runners were available, making definitive 

statements on Pose® running preliminary.

• The runway length of 15.66 m possibly restricted the participants on the 

force plate because they were thinking of slowing down owing to a brick- 

wall 7 m away.

• Predominantly, the heel-toe intervention was unsuccessfully applied 

owing to participant non-compliance, making the heel-toe group a control 

group without an intervention.
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CHAPTER 5

EXPERIENCED POSE® AND HEEL-TOE RUNNER’S

STUDY

5.1 INTRODUCTION

A clear method of running would be advantageous in the identification of an ‘ideal’ 

running technique. A universal standard of what is ‘good’ technique needs identifying to 

make authoritative recommendations. The Pose® method (Romanov, 2002) has made 

theoretical claims of being a universal technique that applies the laws of physics to 

running, whereas the heel-toe technique is the most popular technique with endurance 

runners. This study therefore seeks to quantify the differences between experienced
(R)Pose and heel-toe runners using the Gravitational hierarchical model. Firstly, a review 

of how the two techniques are presently distinguished is given. Secondly, using the 

primary and secondary variables from the Gravitational hierarchical model, the two 

techniques of running are compared.

5.2  THEORETCIAL BACKGROUND

Skill, technique and style are terms used to describe human movement patterns

(Kreighbaum and Barthels, 1996). Skill is defined as a general movement pattern that is

adapted to the constraints of a particular sport, such as high jumping, which is a skill

within the general movement pattern of jumping (Kreighbaum and Barthels, 1996).

Technique represents the actions of internal and external forces on the human body,

which determine how the parts of the human body move during the performance of the

movement pattern (Hay and Reid, 1988). Following the high jump example, the Fosbury

flop and straddle are two high jump techniques. Style refers to individual adaptations of

a technique, such as a curved or straight run-up towards the high jump bar. Skills,

techniques and styles develop because of the constraints or limitations associated with a
1 0 7



particular sport. In running, the environment (forces of nature, hills, opponents and 

visibility) and the human body (size, strength, power and endurance) are constraints 

(Kreighbaum and Barthels, 1996). Heel-toe running is the predominant technique in 

endurance runners (Ken* et al., 1983). However, a new technique (Pose®) has made 

claims that it is an effective way to run. To compare the two running techniques, the 

Gravitational hierarchical model (see chapter 3) will be employed.

Pose* runners have shown a distinct biomechanical profile in comparison to heel-toe 

runners. Two studies took heel-toe runners and trained them in Pose® with a seven and 

half-hour and twelve-hour intervention respectively (Arendse et al., 2004; Dallam et al., 

2005). A consistent finding is stride length is lower in Pose® runners compared to heel- 

toe runners yet stride frequency increases in Pose® runners (Arendse et al., 2004; Dallam 

et al., 2005). As running speed is a combination of stride length multiplied by stride 

frequency, an endurance runner with a 2 m stride holding two strides-s'1 has a speed of 4 

m-s"1. If stride length increased to 2.5 m while holding the same cadence, running speed 

will be 5 m-s"1. Alternatively, if stride length remains at 2 m and stride frequency 

increased to three strides-s"1, running speed will be 6 m-s"1. If the increase to three 

strides-s"1 were accompanied by a decrease in stride length to 1.5 m, the running speed 

would be only 4.5 m-s"1 (Hay and Reid, 1988). These measurements are obviously 

correct, however, clarity on how to reduce internal muscle force in relation to producing 

stride length and stride frequency in combination with the external forces of nature is not 

currently lucid.

Cavanagh and Kram (1985) in a descriptive study found at speeds of 3 m-s"1 to 4.2 m-s"1, 

stride length increased as opposed to stride frequency. An increase in stride frequency 

potentially requires greater muscle activity during a shorter time in stance (Kyrolainen et 

ah, 2000). This possibly explains why endurance runners increase stride length over 

stride frequency up to 7 m-s"1, but around 7 m-s"1 stride length maximises (Cavanagh and 

Kram, 1990). An increase in stride length can involve a reciprocal increase in leg 

extension (Williams, 1985), although this finding is not universal (Mami et al., 1986). 

Clarke et al. (1985) identified tibial accelerations increased by taking longer strides, 

giving circumstantial evidence that increased stride length results in an increased impact 

force. Stride frequency increases over stride length above 7 m-s'1 lacks a clear 

biomechanical explanation (Luhtanen and Komi, 1978). The Gravitational hierarchical
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model seeks to offer a clear explanation of why stride length maximises at rumiing 

speeds above 7 m-s'1.

A second finding is vertical oscillation of the centre of mass decreased in Pose® runners 

(Arendse et al., 2004; Dallam et al., 2005). Vertical oscillation of the centre of mass 

decreases in runners generally as running speed increases (Luhtanen and Komi, 1978; 

Mero et al., 1992). Further, knee extension of the support leg correlates with increased 

vertical oscillation of the centre of mass after mid-stance (Wank et al., 1998). However, 

knee extension decreases as running speed increases (Mann et al., 1986). Logically, 

excessive vertical oscillation would be ineffective for horizontal displacement (Williams, 

1985) yet, many individuals run economically despite high vertical oscillation (Williams 

and Cavanagh, 1987). Vertical oscillation is maximal at terminal stance or just after 

coinciding with maximal leg extension of the support limb (Fenn, 1930). Dallam et al. 

(2005) found that the hip to ankle distance at impact reduced as well as stance time in
dR)Pose runners. It would be reasonable to assume that joint angles, impact patterns and 

the position of the centre of mass at impact and terminal stance influence vertical 

oscillation by virtue of the kinematic chain (Mero et al., 1992). The increased body 

angles at take-off and impact found at faster speeds may be associated with potential 

skill differences. Changes in the body angle at take-off affects performance owing to a 

change in the gravitational torque on the runner’s centre of mass in relation to their 

support limb (see chapter 3). In addition, at impact, a more vertical alignment of the 

centre of mass to the support limb reduces losses in horizontal velocity (Cavanagh et al., 

1977; Bates et al., 1979; Girardin and Roy, 1984). Further study of these body positions 

using these variables from the Gravitational hierarchical model will aim to clarify 

biomechanical differences between heel-toe and Pose® runners.

Williams et al. (2000) identified that heel-toe and forefoot runners differed in knee

flexion at impact and knee flexion excursion during stance. Arendse et al. (2004) also

found an increased knee flexion in preparation for and at initial contact in Pose® runners

as opposed to when they were heel-toe runners. Williams et al. (2000) found peak knee

flexion moment, knee power absorption and negative work at the knee differed between

heel-toe and forefoot runners. Arendse et al. (2004) also measured less eccentric work at

the knee and more eccentric work at the ankle in Pose® runners compared with heel-toe

running. The position of the torso during the gait cycle may explain the reduced knee

eccentric work and increased ankle eccentric work in Pose® running compared with their
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heel-toe running. Arendse et al. (2004) recommended that the position of the torso and 

the centre of mass should be included in future studies of running technique 

modification.

Transition from walking to running occurs at a critical speed of 2.2 m-s*1 or a similar 

Froude number, rather than at a critical stride rate or length (Alexander and Jayes, 1983; 

Hreljac, 1995). This suggests the centre of mass’s horizontal velocity determines the 

walk-run transition rather than a particular stride length or stride rate. A change in the 

centre of mass’s horizontal velocity would obviously reflect work by an external force. 

Pose® running technique suggests the external force is a gravitational torque. Therefore, 

falling forwards as the centre of mass passes over the support limb’s foot causes a 

gravitational torque while the support foot is pulled rapidly from the ground represents 

the Pose® technique. The Pose® and heel-toe running techniques differ theoretically, in 

which external force is motive. Pose® technique emphasises a gravitational torque as the 

motive force in running, whereas heel-toe running suggest leg extension via increased 

ground reaction force increases running speed. The aim therefore, using the primary and 

secondary variables is to compare the two techniques of running using the new 

Gravitational hierarchical model with two skilled heel-toe and Pose® runners.

5 .3  METHODS

Participants

Two experienced male Pose® runners were recruited for this study (aged: 28 yrs and 51 

yrs, stature: 1.74 m and 1.86 m, mass: 75.5 kg and 71.4 kg and 10-km personal best 

times of 42 min and 29 min) and were matched (in mass, stature and age) with two 

experienced male heel-toe runners (aged: 24 yrs and 47 yrs, stature: 1.76 m and 1.95 m, 

mass: 72.5 kg and 71.4 kg and 10-km personal best times of 34 min). Written informed 

consent and ethical approval from Sheffield Hallam University were obtained. All 

participants had no history of surgical intervention, chronic pain, orthotic use or current 

pathology of the lower extremity. Each participant wore his normal running shoes. All 

shoes were qualitatively assessed for rigidity of the heel counter and compliance of the 

cushioning element of the rear section of the shoe.
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Experimental protocol

All participants were pre-selected before the testing date through personal contact. All 

respondents were selected based on the following criteria: 1) they had been without 

injury in the past 12 months, 2) were male, 3) competitive athletes and 4) were 

experienced in their respective styles of running and were similar in age, experience, 

stature and weight. After their individual warm up, each participant run across a force 

plate at 2.5 m-s'1, 3.35 m-s'1, 4 m-s'1 and 4.5 m-s'1 while simultaneously recording 

kinematic data.

Lab door
Falcon HR 240
8 camera 
system

.66 m

Photoelectric 
cells /  s

Kistler
Force
Plate

4.19m
60 cm

3.0 m

40 cm

7.0 m

Crash mat covering the brick wall

Figure 5.3.1 Measurement set-up for laboratory data collection

Host
Computer 
processor 
and SVGA 
monitor

Video
processor
(MIDAS)

Collection and processing of ground reaction force data

Biomechanical data were collected using a piezoelectric transducer force plate with eight 

output signals, which were sampled at 1200 Hz (9281-CA Kistler Instruments 

Corporation, Winterthur, Switzerland). The plate was mounted flush with the running 

surface on a 15.66 m runway. The force plate was 8.66 m from the start position and
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measured 40 by 60 cm (figure 5.3.1). Participants were instructed to run normally while 

aligning their run-up to land with their right foot on the force plate. Each participant was 

allowed as many practice trials as needed to achieve ‘normal’ foot contact with the plate 

in their regular running shoes, with five trials collected. After each trial, the data was 

visually inspected to ensure that the footfall was ‘normal’ and centred on the force plate. 

After data collection the ground reaction force analogue data was processed through 

Matlab 6 software to convert volts into Newtons. In accordance with Munro et al. 

(1987), ground reaction force data were normalised to the participant’s body weight. 

Initial contact of the foot with the ground was identified from the ground reaction force 

data. Foot contact began once the vertical ground reaction force data exceeded 20 N and 

ended as it went below 20 N (Bobbert et al., 1991; Wright et al., 1998; Tirosh and 

Sparrow, 2003).

Collection and processing of kinematic data

A modified Helen Hayes marker set (22-markers) was used to collect their three- 

dimensional trajectories for computing kinematic data. Retroflective spheres of a 

diameter of 2 cm (4.4 g) were applied to their bodies in order to define a model 

comprised of twelve body segments: two segments for feet, lower legs, upper legs, 

forearm, upper arm and two single segments comprising the head/neck and trunk. These 

markers were applied directly onto the skin using athletic tape on the acromion 

processes, elbow and radiocarpal joints, sacrum, anterior superior iliac spines, lateral 

femoral condyles, lateral malleolus, and the dorsim of the feet between the second and 

third metatarsals. Two lateral wands were used to calculate the medial knee and ankle 

markers during the dynamic trials. The two lateral wands were 10 cm long and attached 

using athletic tape to the thigh, midway between the hip and knee joints, and for the 

shank, midway between the knee and ankle joints. Both wands were vertically aligned 

with the relevant joints. The attachment and length of the wands were such that 

oscillations of the marker at the tip of the wands were insignificant. An off-set marker 

placed on the right scapula precipitated software marker recognition through body 

asymmetry. Video data were collected using a VP AT 310 video recorder and an eight- 

camera (Falcon HR 240) motion analysis system recording at 120 Hz (Motion Analysis 

Corporation, Santa Rosa, California) which collected data for one step of the right leg 

while running in the positive X  direction. The cameras were zoomed in as far as possible 

to a volume of 3.6 m in x (fore-aft axis) by 1.4 m in y  (medio-lateral axis) and 2 m in z

(vertical axis) with the centre of the base corresponding to the centre of the force plate.
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The laboratory (global) orthogonal coordinate system followed the right hand rule and 

had the positive x-direction orientated in the direction of forward progression, the 

positive y-direction orientated to the left and the positive z-direction orientated vertically 

upward. The volume was calibrated before data collection using a cube and a 500 mm 

wand associated with EvaRT 3.2 data collection software (Motion Analysis Corporation, 

Santa Rosa, California). During data collection, the experienced heel-toe and Pose® 

runners ran at 2.5 m-s'1, 3.35 m-s'1, 4 m-s'1 and 4.5 m-s'1. Running speeds were measured 

by two photoelectric cells 4.19 m apart and 3 m from the centre of the force plate, and 

mounted so the participant’s waist triggered the photoelectric cells. Up to five trials were 

recorded at each speed, and only trials in which ‘good’ foot contact with a steady stride 

and speeds within 5% of the measured speed were analysed. The three dimensional 

coordinate data were filtered using a 2nd order low-pass Butterworth filter; a cut-off 

frequency of 6-8 Hz was used and was selected through visual inspection of the fit 

(Winter, 1987). Video and analogue data were time synchronised using impact, recorded 

when vertical ground reaction force exceeded 20 N. Following the filtering process in 

EvaRT 3.2, the filtered video data were extracted using OrthoTrak 5 software. 

Coordinate and angular data were calculated according to the method used by Winter 

(1990) from the filtered raw data.

Statistical analysis

Descriptive statistical comparisons between Pose® and heel-toe running were 

undertaken.

5 .4  RESULTS

Ground reaction force variables

Vertical and posterior-anterior ground reaction forces for both techniques of running are 

compared at each speed (figures 5.4.1-5.4.8). The Pose® runners elicit similar ground 

reaction force traces to forefoot runners, whereas the heel-toe runners match their 

traditional heel-toe counterparts. The first and second graph will always be the same 

rumier in both techniques for all speeds.
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Figure 5.4.1 Vertical and posterior-anterior ground reaction force for the Pose® runners at 2.5 nrs'1.

Figure 5.4.2 Vertical and posterior-anterior ground reaction force for the heel-toe runners at 2.5 nrs'1.

Tim. (ms) Tim. (ms)

Figure 5.4.3 Vertical and posterior-anterior ground reaction force for the Pose® runners at 3.35 m-s'1.
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Figure 5.4.4 Vertical and posterior-anterior ground reaction force for the heel-toe runners at 3.35 m-s'1.

Figure 5.4.5 Vertical and posterior-anterior ground reaction force for the Pose® runners at 4.0 nrs'

Figure 5.4.6 Vertical and posterior-anterior ground reaction force for the heel-toe runners at 4.0 m-s'1.



Figure 5.4.7 Vertical and posterior-anterior ground reaction force for the Pose® runners at 4.5 nrs"1.

Figure 5.4.8 Vertical and posterior-anterior ground reaction force for the heel-toe runners at 4.5 m-s'1.

Motion analysis variables

Flexion-extension, abduction-adduction for the right (support) knee and hip plus vertical 

oscillation of the centre of mass (figures 5.4.9-5.4.40) are graphed in the sagittal plane at 

each running speed. Each graph begins at impact with the vertical line representing 

terminal stance. The graph finishes at maximum swing angle for the right leg.

Hip angles represent the thigh relative to the pelvis (figures 5.4.9-16). Larger hip flexion 

angles occur for all speeds in the Pose® runners at impact. At terminal stance, the heel- 

toe runners exhibit hip extension, whereas the Pose® runners do not extend the hip or do 

so much less.
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Figure 5.4.9 Hip flexion and extension for the Pose® runners at 2.5 m-s'1.
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Figure 5.4.10 Hip flexion and extension for the heel-toe runners at 2.5 m-s'1.

Figure 5.4.11 Hip flexion and extension for the Pose® runners at 3.35 m-s'1.
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Figure 5.4.12 Hip flexion and extension for the heel-toe runners at 3.35 m-s'1.
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Figure 5.4.13 Hip flexion and extension for the Pose® runners at 4.0 nrs'1.
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Figure 5.4.14 Hip flexion and extension for the heel-toe runners at 4.0 nrs'1.
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Figure 5.4.15 Hip flexion and extension for the Pose runners at 4.5 nrs'1.

f

Figure 5.4.16 Hip flexion and extension for the heel-toe runners at 4.5 nrs'1.
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Vertical oscillation (figures 5.4.17-5.4.24) is lower in Pose runners for all speeds. The 

vertical path of the centre of mass follows a similar pattern for both techniques of 

running. However, from maximum vertical ground reaction force until terminal stance 

there is an increase in vertical oscillation of the centre of mass in the heel-toe runners 

compared to the Pose® participants.

Figure 5.4.17 Vertical oscillation for the Pose® runners at 2.5 nrs'1.

Figure 5.4.18 Vertical oscillation for the heel-toe runners at 2.5 nrs'1.

Figure 5.4.19 Vertical oscillation for the Pose® runners at 3.35 nrs'1.
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Figure 5.4.20 Vertical oscillation for the heel-toe runners at 3.35 nrs'1.

i.ii >.25

Figure 5.4.21 Vertical oscillation for the Pose® runners at 4.0 nrs'1.

Figure 5.4.22 Vertical oscillation for the heel-toe runners at 4.0 nrs'1.

Figure 5.4.23 Vertical oscillation for the Pose® runners at 4.5 nrs'1.
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Figure 5.4.24 Vertical oscillation for the heel-toe runners at 4.5 nrs'1.

Knee angular displacements

Right knee (support leg) abduction and adduction angles are recorded in figures 5.4.25- 

5.4.32. They verify accuracy of the marker and motion analysis system. Acceptable 

accuracy was determined by abduction and adduction knee angles under 14° (Kadaba et 

al. 1989). All runners for all speeds remained under 14° except the first Pose® runner 

from terminal stance until maximum swing at 2.5 m-s'1, 3.5 m-s'1 and 4 m-s'1.

/
//

Figure 5.4.25 Knee adduction and abduction for the Pose® runners at 2.5 m-s'1.

Figure 5.4.26 Knee adduction and abduction for the heel-toe runners at 2.5 m-s'1.
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Figure 5.4.27 Knee adduction and abduction for the Pose® runners at 3.35 nrs'
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Figure 5.4.28 Knee adduction and abduction for the heel-toe runners at 3.35 m-s'1.
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Figure 5.4.29 Knee adduction and abduction for the Pose® runners at 4.0 m-s'1.

Tims (ms)

Figure 5.4.30 Knee adduction and abduction for the heel-toe runners at 4.0 m-s'1.
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Figure 5.4.31 Knee adduction and abduction for the Pose® runners at 4.5 nrs'1.

Tim* (ms) Timt(nw)

Figure 5.4.32 Knee adduction and abduction for the heel-toe runners at 4.5 nrs’1.

Knee flexion and extension follow similar patterns for all four runners. Differences in the 

knee during impact, maximum vertical ground reaction force and swing are recorded in 

table 5.4.2. Increased knee extension from maximum vertical ground reaction force until 

terminal stance in the heel-toe runners, correlates with their increased vertical oscillation 

of their centre of mass (Wank et al., 1998).

Figure 5.4.33 Knee flexion and extension for the Pose® runners at 2.5 m-s'1.
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Figure 5.4.34 Knee flexion and extension for the heel-toe runners at 2.5 nrs'1.

Tima (ma) Tima (ma)

Figure 5.4.35 Knee flexion and extension for the Pose® runners at 3.35 nrs'1.
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Figure 5.4.36 Knee flexion and extension for the heel-toe runners at 3.35 nrs'1.

Thfna(aw) Tima(ma)

Figure 5.4.37 Knee flexion and extension for the Pose® runners at 4.0 nrs'1.
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Figure 5.4.38 Knee flexion and extension for the heel-toe runners at 4.0 nrs"1.
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Figure 5.4.39 Knee flexion and extension for the Pose® runners at 4.5 m-s'1.
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Figure 5.4.40 Knee flexion and extension for the heel-toe runners at 4.5 m-s'1.

The running gait for one Pose® and heel-toe runner at each test speed are given (figures

5.5.41-5.5.49). Each still frame was taken for every five frames at a frame rate of 120

frames-s'1. At impact, the ball of the foot is the first point of contact for the Pose® runner,

in contrast to the heel for the heel-toe runners. The Pose® runner has a more vertically

aligned body at impact plus he leaves the ground without fully extending his leg in

contrast to the heel-toe runners. Heel-toe runners had greater range of motion for the

lower-limb—knee flexion and extension—during stance than the Pose® runners. Knee

flexion was similar for both techniques from terminal stance to maximum swing (Table
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5.4.2). Knee flexion and extension angular velocity during stance was higher in the heel- 

toe runners. However, swing knee flexion angular velocity was much higher in the Pose® 

runners. The horizontal displacement of the centre of mass during stance was less for the 

Pose® runners. The horizontal displacement of the centre of mass for flight was still 

lower in Pose® runners but not as marked as actual step length. For example, Pose® 

runners displaced their centre of masses during flight 18.7 cm, 41.6 cm, 49 cm and 55.7 

cm for each test speed beginning at 2.5 m-s’1. The heel-toe runners displaced their centre 

of masses during flight for 26.5 cm, 42.1 cm, 57.3 cm and 69.3 cm beginning at 2.5 m-s' 

. Figures 5.4.41-5.4.49 allow visual inspection of these biomechanical differences for 

the Pose® and heel-toe runners.
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Figure 5.4.41 P o s e R r u n n e r  at 2 .5  m - s '1 f o r  o n e  s te p .
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Figure 5.4.42 P o s e *  r u n n e r  a t 3 .3 5  m - s ' 1 f o r  o n e  s tr id e .
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Figure 5.4.43 P ose£ runner at 4.0 m -s '1 for one stride.
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Figure 5.4.44 Pose® runner at 4.5 nrs'1 for one stride.
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Figure 5.4.45 Heel-toe runner at 2.5 nrs'11 for one stride.

Figure 5.4.46 Heel-toe runner at 3.35 nrs"1 for one stride.
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Figure 5.4.47 Heel-toe runner at 4.0 nrs'1 for one stride.

Figure 5.4.48 Heel-toe runner at 4.5 m-s'1 for one stride.



Figure 5.4.49 The second heel-toe runner at 3.35 nrs'1 for one stride.

Figures 5.4.50-5.4.57 time-align the support leg’s hip, knee and ankle joint flexion and 

extension with maximum vertical ground reaction force. Vertical oscillation is also 

included to highlight the centre of mass displacement. The graphs illustrate at maximum 

vertical ground reaction force for the Pose® runner the hip begins to extend or has been 

extending depending upon running speed. The knee and ankle follow in sequence each 

extending after the hip, proceeding maximum vertical ground reaction force. The heel- 

toe runner at all speeds has begun to extend the hip at maximum vertical ground reaction 

force, but the knee has also begun its extension. Vertical oscillation of the centre of mass 

changes direction from downwards to upwards at maximum vertical ground reaction 

force. In the heel-toe runner the centre of mass has just began to rise at maximum 

vertical ground reaction force. This rise of the centre of mass probably correlates with 

the knee extension (Wank et al., 1998).



/
./

Figure 5.4.50 Pose® runner at 2.5 m-s'1. Figure 5.4.51 Heel-toe runner at 2.5 m-s'1.

130



0217 Oil* 0 2SO 026? 0.2M 0*10 IMP 0 HI 0.1» 0.16?QUO 0.117 OI<3 01.IP 6167
T lm (n i)

S(i<0 *(Ki7

O WII 0 117 0.131 0150 0167 « 1*3 I20U 0250 0 267 02* '

Figure 5.4.52 Pose® runner at 3.35 m-s'1. Figure 5.4.53 Heel-toe runner at 3.35 m-s‘
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Figure 5.4.54 Pose® runner at 4.0 m-s'1. Figure 5.4.55 Heel-toe runner at 4.0 m-s*1.
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Figure 5.4.56 Pose® runner at 4.5 m-s'1. Figure 5.4.57 Heel-toe runner at 4.5 m-s'1.
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Figures 5.4.58-61 have vertical lines running from maximum vertical and anterior 

(propulsive) ground reaction force through the horizontal velocity and acceleration 

graphs. Maximum horizontal acceleration of the centre of mass occurs before maximum 

horizontal propulsive ground reaction force. Only one heel-toe and Pose® runner at 2.5 

m-s'1 had a horizontal acceleration after the propulsive horizontal ground reaction force 

(figure 5.4.58). Table 5.4.1 gives the maximum values for vertical and anterior ground 

reaction force and maximum horizontal acceleration of the centre of mass and 

percentages of stance time. Pose® runners consistently had higher horizontal acceleration 

of the centre of mass during the propulsive phase of stance.

G r o u n d  r e a c t io n  f o r c e  fo r  a  P o s d *  r u n n e r  G r o u n d  r e a c t io n  f o r c e  fo r  a  h e e l - t o e  r u n n e r

H o r iz o n t a l  v e l o c i t y  o f  t h e  c e n tr e : o f  m a s s  
f o r  a  P o s e *  r u n n e r .

H o r iz o n t a l  v e l o c i t y  o f  t h e  c e n t r e  o f  m a s s  f o r  a  h e e l - t o e  
ru n n e r .

H o r iz o n t a l  a c c e le r a t io n  o f  t h e  c e n t r e  o f  m a s s  H o r iz o n t a l  a c c e le r a t io n  o f  t h e  c e n tr e
fo r  a  P o s e *  r u n n e r . o f  m a s s  f o r  a  h e e l - t o e  r u n n e r .

Figure 5.4.58 G r o u n d  r e a c t io n  f o r c e ,  h o r iz o n t a l  v e l o c i t y  a n d  a c c e le r a t io n  o f  t h e  c e n tr e  o f  m a s s  f o r a  P o s e *  
a n d  h e e l - t o e  r u n n e r  at 2 .5  m - s ’ 1.
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Ground reactionIforce for a Pose runner Ground reaction orce for a heelitoe runner

Horizontal velocity of the centrejof mass Horizontal velocity of the centre; of mass for a heel-toe
for a Pose® runner. I runner.

Horizontal acceleration of the centre of mass 
for a Pose® runner.

Horizontal acceleration of the centre 
of mass for a heel-toe runner.

Figure 5.4.59 Ground reaction force, horizontal velocity and acceleration of the centre of mass for a Pose® 
and heel-toe runner at 3.35 m-s'1.



Ground reaction force for a Pofce® runner Ground reaction force for a heeljtoe runner

Horizontal velocity bf the centfe of mass Horizontal velocity of the centre! of mass for a heel-toe
for a Pose® runner. I runner.

Horizontal acceleration of the centre of mass 
for a Pose® runner.

Horizontal acceleration of the centre 
of mass for a heel-toe runner.

Figure 5.4.60 Ground reaction force, horizontal velocity and acceleration of the centre of mass for a Pose® 
and heel-toe runner at 4.0 m-s'1.
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Ground reaction force for a Pos£ runner Ground reaction force for a heelttoe runner

Horizontal velocity 
for a Pose® runner.

of the centra of mass Horizontal velocity of the centre!
j runner. I j

of mass for a heel-toe

Horizontal acceleration of the centre of mass Horizontal acceleration of the centre
for a Pose® runner. of mass for a heel-toe runner.

Figure 5.4.61 Ground reaction force, horizontal velocity and acceleration of the centre of mass for a Pose® 
and heel-toe runner at 4.5 m-s'1.
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Table 5.4.1 M a x im u m  v e r t i c a l  a n d  a n te r io r  g r o u n d  r e a c t io n  f o r c e  a re  r e c o r d e d  a s  a p e r c e n t a g e  o f  s t a n c e  

a n d  c o m p a r e d  w i t h  m a x im u m  h o r iz o n t a l  a c c e le r a t io n  o f  t h e  c e n t r e  o f  m a s s .  E a c h  v a lu e  i s  a m e a n  o f  th r e e  

tr ia ls  (N =  4).

Participant run
speeds

Time of maximum 
vertical ground 
reaction force (%)

Time of maximum 
anterior ground 
reaction force (%)

Time of maximal 
horizontal 
acceleration of the 
centre of mass (%)

1 P o se ®  2 .5  m  s ' 1 3 6 7 1 6 9

1 P o se ®  3 .3 5  m - s  1 3 7 7 2 6 5

1 P o se ®  4 . 0  m -s" 1 4 0 7 4 7 2

1 P o se ®  4 . 5  m  s  1 4 3 7 4 6 5

2  P o se ®  2 .5  m - s '1 3 8 7 0 7 1

2  P o se ®  3 .3 5  m - s '1 4 1 6 5 5 0

2  P o se ®  4 . 0  m -s" 1 4 3 7 1 6 6

2  P o se ®  4 . 5  m  s '1 4 0 7 1 7 0

1 H e e l - t o e  2 .5  m - s  1 4 2 7 5 8 8

1 H e e l - t o e  3 .3 5  m -s  1 4 8 7 3 7 0

1 H e e l - t o e  4 . 0  m  s 1 4 0 7 4 6 3

1 H e e l - t o e  4 .5  m - s  1 4 3 7 4 6 3

2  H e e l - t o e  2 .5  m - s '1 4 1 7 2 6 7

2  H e e l - t o e  3 .3 5  m -s" 1 4 4 7 4 6 6

2  H e e l - t o e  4 . 0  m  s '1 4 5 7 4 5 9

2  H e e l - t o e  4 .5  m  s '1 4 6 7 4 5 8

Primary and secondary variables for both the heel-toe and Pose® runners at all the test 

speeds are given in Table 5.4.2. Similar to other studies, stance time for both styles of 

running decreases with increases in rumiing speed (Williams, 1985). All the ground 

reaction force variables increase with running speed (Miller, 1990). Stride length also 

increased as running speed increased. However, stride frequency increased as running 

speed increased for the Pose® runners in contrast with all other research on endurance 

running speeds, whereas the heel-toe runners followed conventional patterns of no 

increase (Patla et al., 1989). Vertical oscillation reduced with running speed but more 

significantly in Pose® runners. Horizontal velocities for the centre of mass—braking and 

propulsion—were consistent across the speed range in the heel-toe runners but at 4 m-s'1 

and 4.5 m-s'1, the Pose® runners had significant reductions in braking.
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Table 5.4.2 Two experienced heel-toe and Pose* runner's mean scores across all collected speeds. The 

primary research variables are in bold ( N =  4).

Variables Model 2.5 nrs'1 3.35 nrs'1 4.0 firs’1 4.5 nrs'1

ST (ms) HT 272 260 230 209

P 262 216 195 174

M A-P GRF (brak) (BW)HT -0.16 -0.20 -0.25 -0.30

P -0.14 -0.23 -0.25 -0.28

M V GRF (BW) HT 2.46 2.58 2.84 2.93

P 2.32 2.63 2.77 2.84

M A-P GRF (prop) (BW)HT 0.108 0.15 0.19 0.25

P 0.084 0.16 0.2 0.24

T A-P GRF (brak) HT 23.7 23.8 23.4 25.1

(% o f stance) P 12.5 8.4 13.6 7.7

T V  GRF HT 41.3 44.1 42.5 44.8

(% of stance) P 37.8 37.9 39.9 40.6

T A-P GRF (prop) HT 73.7 73.3 74.4 74.7

(% of stance) P 69.9 71.2 72.7 72.9

CM (brak) (cm-s'1) HT -18.3 -22.7 -16.9 -18.3

P -12.1 -15.3 -2.2 -3.0

CM (prop) (cm-s'1) HT 12.2 20.4 18.5 22.2

P 9.7 17.7 8.3 12.9

CM diff (cm-s'1) HT -6.1 -2.3 1.6 3.9

P -2.4 2.4 6.1 9.9

HVTO (m-s'1) HT 2.64 3.50 4.13 4.6

P 2.51 3.6 4.12 4.8

CM S (cm-s'1) HT -16.0 -18.9 -33.3 -36.3

P -10.8 -27.3 -14.8 -13.7

CM 25 (cm) HT 35.5 37.2 38.4 37.8

P 29.8 32.7 33.2 32.1

CM TO (cm) HT 32.9 40.5 46.0 50.1

P 34.3 36.8 43.1 45.5

CM 0 (rad) HT 0.30 0.35 0.40 0.44

P 0.27 0.34 0.37 0.42

CM dis (cm) HT 75.1 89.3 91.4 94.5

P 64.4 75.6 78.2 82.9

SHA (cm) HT 15.6 16.6 12.9 11.3

P 7.95 8.0 5.2 2.8

VO (cm) HT 12.0 11.9 11.95 11.1

P 8.5 9.3 8.5 7.2

KF (rad) HT 0.57 0.55 0.51 0.45



P 0.42 0.44 0.39 0.33

KE (rad) HT 0.56 0.64 0.69 0.69

P 0.39 0.48 0.45 0.46

KSW (rad) HT 1.2 1.5 1.8 1.9

P 1.2 1.6 1.7 1.8

KTD (rad) HT 0.25 0.34 0.36 0.41

P 0.26 0.32 0.36 0.43

KVGRF (rad) HT 0.83 0.87 0.84 0.83

P 0.67 0.74 0.75 0.75

KFV (rad-s'1) HT 5.0 5.4 6.1 5.5

P 4.4 5.3 6.1 4.2

KEV (rad-s'1) HT 3.1 4.1 4.9 5.2

P 2.7 3.5 4.1 4.8

KFVS (rad-s'1) HT 5.4 6.4 7.5 7.95

P 6.2 7.7 9.1 10.1

SL (cm) HT 103.0 130.8 153.0 170.3

P 84.8 119.2 130.3 141.8

FT (ms) HT 110.0 120.0 150.0 150.0

P 90.0 120.0 120.0 110.0

SF (Hz) HT 2.5 2.7 2.6 2.8

P 2.9 3.0 3.2 3.5

Technique: P = Pose® and HT = heel-toe, ST = stance time (ms) right foot, M A-P GRF (brak) = maximum 

posterior ground reaction force (braking) (BW), M V GRF = maximum vertical ground reaction force 

(BW), M A-P GRF (prop) = maximum anterior ground reaction force (propulsive) (BW), T A-P GRF 

(brak) = time of posterior ground reaction force (braking) (% of stance), T V GRF = time of maximum 

vertical ground reaction force (% of stance), T A-P GRF (prop) = time of anterior ground reaction force 

(propulsion) (% of stance), CM (brak) = centre of mass horizontal velocity largest decrease after impact 

until maximum vertical ground reaction force (cm-s'1), CM (prop) = centre of mass horizontal velocity 

largest increase from maximum vertical ground reaction force until terminal stance (cm-s'1), CM diff = 

horizontal velocity of the centre of mass from maximum vertical ground reaction force until terminal 

stance minus horizontal velocity of the centre of mass from impact until maximum vertical ground reaction 

(cm-s'1), HVTO = horizontal velocity of the centre of mass at terminal stance (m-s'1), CM S = centre of 

mass horizontal velocity decrease between terminal stance and maximum swing (flexion) for the right leg 

during flight (cm-s'1), CM 25 -  centre of mass behind the to e-marker (horizontal difference at 25 ms) (cm), 

CM TO = centre of mass forward of the toe-marker (horizontal difference at terminal stance) (cm), CM 0 

= centre of mass and toe-marker angle at terminal stance from the vertical axis going clockwise (rad), CM 

dis = centre of mass displacement during stance (cm), SHA = shoulder, hip, and ankle marker difference in 

vertical alignment at 25 ms (cm), VO = vertical oscillation of the centre of mass (cm), KF = knee flexion 

range during stance (rad), KE = knee extension during stance (rad), KSW = knee flexion from terminal 

stance to maximum swing (rad), KTD = knee angle at impact (rad), KV GRF = knee angle at maximum 

vertical ground reaction force (rad), KFV = mean knee flexion angular velocity for stance (rad-s'1), KEV =
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mean knee extension angular velocity for stance (rad-s'1), KFVS = mean knee flexion angular velocity 

from terminal stance to maximum swing angle (rad.s'1), SL = step length for right foot (cm), FT = flight 

time (ms), SF= step frequency (Hz).

The primary and secondary variables are grouped in table 5.4.3 as similar, lower or 

higher for the Pose® runners compared with the heel-toe runners.

Table 5.4.3 Variables are grouped as similar, lower and higher for the Pose® runners compared with the 

heel-toe runners (N  = 4).

Similar Lower Higher
M V GRF

M A-P GRF (brak)

M A-P GRF (prop)

T A-P GRF (prop)

CM 0

KSW

KTD

HVTO

T A-P GRF (brak)

TV GRF 

CM (brak)

CM (prop)

CMS 

CM 25 

CM TO

CM disp (stance)

SHA

VO

KF

KE

KVGRF

KEV

KFV

ST

SL

FT

Hip ext.

Ankle flexion at impact 

CM disp (flight)_______

KFVS

SF

CM diff 

H accel. CM 

Hip flexion

The experienced heel-toe runners were compared with the literature where possible to 

ensure they accurately represented the recreational endurance running population.
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Table 5.4.4 Variables for the heel-toe runners (N  = 2) are matched with the literature at similar speeds. 

Any minor speed differences are noted after the reference. The thesis research variables fall within one 

standard deviation of the literature. Over-ground running studies were selected over treadmill running 

where possible owing to some kinetic and kinematic differences (Wank et al., 1998).

RV (m-s'1! HT Literature Sources

ST (ms) 2.5 272 283 (22) Martin (1985)
3.35 260 258(18) Munro et al. (1987)
4.0 230 229(14) Munro et al. (1987)
4.5 209 214(13) Munro et al. (1987)

M A-P GRF (brak) (BW)
2.5 -0.16
3.35 -0.20 -0.17(0.03) Munro et al. (1987)
4.0 -0.25 -0.21 (0.02) Munro et al. (1987)
4.5 -0.30 -0.24 (0.02) Munro et al. (1987)

M V GRF (BW)
2.5 2.46
3.35 2.58 2.52 (0.19) Williams and Cavanagh (1987) at 3.57 n
4.0 2.84 2.72 (.17) Munro et al. (1987)
4.5 2.93 2.79 (.18) Munro et al. (1987)

M A-P GRF (prop) (BW)
2.5 0.108
3.35 0.15 0.16(0.01) Munro et al. (1987)
4.0 0.19 0.20 (0.01) Munro et al. (1987)
4.5 0.25 0.23 (0.02) Munro et al. (1987)

T A-P GRF (brak) (% of stance)
2.5 23.7
3.35 23.8
4.0 23.4 21.48 Hamill et al. ((1983)
4.5 25.1

TV GRF (% of stance)
2.5 41.3
3.35 44.1 40.1 (3.7) Frederick and Hagy (1986)
4.0 42.5 42.3 (3.5) Frederick and Hagy (1986) at 3.83 m-s'1
4.5 44.8 42.1 (4.1) Frederick and Hagy (1986) at 4.47 m-s'1

T A-P GRF (prop) (% of stance)
2.5 73.7
3.35 73.3
4.0 74.4 73.05 Hamill et al. ((1983)
4.5 74.7

CM (brak) (cm-s-1)
2.5 -18.3
3.35 -22.7
4.0 -16.9
4.5 -18.3 -18.0 Cavanagh and LaFortune (1980)

CM (prop) (cm-s'1)
2.5 12.2
3.35 20.4
4.0 18.5
4.5 22.2 27.0 Cavanagh and LaFortune (1980)

VO (cm)
2.5 12.0
3.35 11.9 11.6(1.2) Collins et al. (2000)
4.0 11.95
4.5 11.1 11.8(1.1) Collins et al. (2000)

KF (rad)
2.5 0.57 0.57 (0.09) Christina et al. (2001) at 2.9 m-s'1
3.35 0.55
4.0 0.51
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4.5 0.45
KSW (rad)

2.5 1.2
3.35 1.5
4.0 1.8 1.85 Nilsson and Thorstensson (1985) at 3.83 m-s'
4.5 1.9

KTD (rad)
2.5 0.25
3.35 0.34
4.0 0.36 0.24 (0.09) Diss (2001)
4.5 0.41

KVGRF (rad)
2.5 0.83
3.35 0.87 0.78 (0.06) Morgan et al. (1990)
4.0 0.84
4.5 0.83

KFV (rad-s'1)
2.5 5.0 5.2(1.03) Martin (1985)
3.35 5.4
4.0 6.1
4.5 5.5

SL (cm)
2.5 103.0
3.35 130.8 119.5 (0.14) Cavanagh and Kram (1985)
4.0 153.0 152.0 (.07) Wank et al. (1998)
4.5 170.3

FT (ms)
2.5 0.11
3.35 0.12 0.093 (0.025) Martin (1985)
4.0 0.15
4.5 0.15

SF (Hz)
2.5 2.5 2.6 (0.07) Kyolainen et al. (1995)
3.35 2.7 2.7 (0.09) Kyolainen et al. (1995)
4.0 2.6 2.72 (0.10) Kyolainen et al. (1995)
4.5 2.8

5 .5  DISCUSSION

Discemable differences between the two running techniques were identified. Both 

techniques utilise the same external (gravity and ground reaction force) and internal 

force (muscle force), however differences occur from the timing of these forces resulting 

in different displacements of the runner’s body and lower-limbs. Discussion of these 

differences follows the Gravitational hierarchical model. The Gravitational hierarchical 

model is included for ease of reference from chapter 3.
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5.5.1 Comparison of the two running techniques using the Gravitational 

hierarchical model

The heel-toe runners exhibited similar profiles to those already established (see table. 

5.4.4). For example, Munro et a V s (1987) ground reaction force data were similar to this 

study at the same test running speeds. All the variables in table 5.4.4 for the experienced 

heel-toe runners were within one standard deviation of those found within the literature. 

Owing to the similarities between the experienced heel-toe runners and the literature, it 

seems reasonable to suggest the two experienced heel-toe participants were a good 

representation of the male recreational heel-toe endurance running population. The two 

experienced Pose® runners are also a good example of Pose® running. Arendse et al. 

(2004) recorded similar characteristics from their Pose® runners as this study’s 

experienced Pose® runners. For example, the experienced Pose® runners were similar to 

Arendse et al. (2004) for vertical oscillation, stance time and step length.

Comparison of running techniques across the four speeds illustrates clear differences 

between the heel-toe and Pose® runners (table 5.4.2). Running is a full body activity so 

thirty-four kinetic and kinematic variables (fourteen primary research and twenty 

secondary research variables) were used to describe both running techniques. Table 5.4.3 

depicts these variables for the Pose® runners as similar, lower or higher than the heel-toe 

technique. Vertical and posterior-anterior ground reaction forces and take-off velocity at 

terminal stance have similar maximums. The time of the propulsive ground reaction 

force is also similar as well as the angle of inclination of the centre of mass from the 

vertical axis at terminal stance. Finally, knee angle at impact and maximum swing were 

similar. Only five variables are higher in the Pose® runners: knee flexion angular 

velocity from terminal stance to maximum swing, the difference between braking and 

propulsive horizontal velocity of the centre of mass, horizontal acceleration of the centre 

of mass, hip flexion at impact plus step frequency. Twenty-one kinematic variables were 

lower for the Pose® runners. The proceeding discussion using the Gravitational 

hierarchical model highlights these differences between heel-toe and Pose® running.

Distance and time

Time measures how long it takes to run the distance for a particular event and is the

performance criterion. The performance criterion is the measure used to evaluate the

level of success in the performance of a sports skill (Bartlett, 1999). Notice that the
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hierarchical model is relevant for any running event from sprinting to marathons. The 

Pose® method claims to be a technique that both sprinters and marathon runners can use 

because both still experience a gravitational torque, whereas endurance runners 

predominantly use the heel-toe technique with sprinters landing on the forefoot.

Air resistance

Air resistance was not measured in-line with most other gait research (Anderson, 1996). 

However, strong winds change runner’s technique by causing them to lean into the wind 

(Davies, 1980). Interestingly, Pose® running suggests forward movement is the result of 

a gravitational torque; by leaning forward in the wind, the torque increases via an 

increased moment arm.

Relative height at take-off

Vertical oscillation was 3.4 cm lower on average in Pose® runners for the mean of all the 

test speeds. As running speed increased vertical oscillation decreases for both techniques 

in-line with other research (Luhtanen and Komi, 1980; Mann and Hagy, 1980; Ito et al., 

1983a). Knee flexion from impact to maximum vertical ground reaction force was also 

lower in Pose® runners, which suggests decreased knee flexion accounts for reduced 

vertical oscillation. Less knee extension also correlates with lower vertical oscillation 

(Wank et al., 1998). As the body passively extends the support knee (Mann et al., 1986), 

having the support foot remain longer on the ground potentially increases vertical 

oscillation in heel-toe runners. Stance time was less in Pose® runners and knee extension 

was lower, possibly supporting this concept. As running speed increased, vertical 

oscillation of the centre of mass decreased, again suggesting leg extension is not related 

to running speed increases (Hunter et al., 2005). In fact, the Pose® technique recorded no 

increases in leg extension across the endurance run speeds of 3.35-4.5 m-s'1. The heel-toe 

runners extend their knee and increase their vertical oscillation after maximal vertical 

ground reaction force until terminal stance, but they do not increase knee extension as 

running speed increases (4.0-4.5 m-s'1). Pose® runners have increased mean knee angular 

velocity from terminal stance until maximum swing as they rapidly pull the foot from the 

ground yet they have lower mean knee extension angular velocity during stance. This 

may explain why heel-toe runner’s knees extend more, because they are not thinking 

about pulling then foot from the ground, and hence their knee passively extends further, 

increasing vertical oscillation. The Gravitational hierarchical model illustrates the
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relationship of vertical oscillation with knee flexion and extension angular velocity 

owing to it being on the same level in the model.

Knee flexion and extension angular velocity during stance

Enomoto et al. (1999) using an effective index for mechanical energy tested thirty-two 

participants. They found less knee flexion in the first half of stance, and lower vertical 

oscillation correlated with smaller reductions in horizontal velocity of the centre of mass 

(P < 0.01). Their fastest runners exhibited these traits (less knee flexion, lower vertical 

oscillation and less braking of the centre of mass horizontal velocity), which matched 

this study’s Pose® runners. In support, Lee and Farley (1998) stated stance-limb impact 

angle and virtual stance-limb compression both play important roles in determining the 

trajectory of the centre of mass. In agreement, figure 5.5.2 clearly shows the different 

centre of mass’s vertical displacements of the two techniques, highlighting the affect 

gravity has on certain body geometry. Arendse et al. (2004) identified ankle position also 

distinguished between the two techniques at impact, with the ankle dorsiflexed (-18.3° 

±9.8°) in heel-toe and neutral (-0.4° ±4.9°) in Pose® running. Low work values were also 

found at the knee and high eccentric work values for the ankle 6.91 J/kg (±1.93) 

compared to 5.85 J/kg (±1.39) as heel-toe runners. This suggests the magnitude of the 

moment arm at the ankle in Pose® running is greater than at the knee during eccentric 

loading. Arendse et al. (2004) proposed this might be owing to a combination of the 

lower-limb geometry and the position of the torso at impact. Positioning of the torso over 

the supporting limb at impact may influence the direction of the ground reaction force in 

relation to the lower-limb joint centres thus increasing eccentric work at the ankle in 

Pose® runners. Whether running barefoot in Arendse et aV  s (2004) study caused 

increased eccentric work at the ankle in the Pose® technique or the technique itself, 

requires further investigation, which is outside the scope of this thesis.

Increasing running speed via knee extension lacks support (Mann et al., 1986). Instead, 

the propulsive phase of stance is attributed to hip motion. Belli et al. (2002) measured 

peak joint ankle, knee and hip power for nine male endurance runners at speeds of 4.0 

m-s 1 to 6.0 m-s'1 and at their maximal running speed. Ankle and knee joint power 

increased with running speed, but the highest changes were for the hip (327 ±203 W at 

4.0 m-s'1 and 1642 ±729 W at maximal speed). They concluded that hip extensors are the 

prime forward movers as running speed increases in contrast to the knee and ankle. In

support, power generation at the knee was significantly lower in Pose^ runners (5.01
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W/kg ±2.49) than heel-toe runners (6.27 W/kg ±1.44) (Arendse et al., 2004). Arendse et 

al. (2004) found no significant increase in ankle power generation and concentric work
( D  •in Pose runners. They suggested the hip is the source of power for forward propulsion, 

which was likely increased in Pose® running. Novacheck (1996) noted that the 

contribution of knee and ankle power is minimised as running speed increases. The 

concept that the hip extends leading the knee and ankle joints from maximum ground 

reaction force to initiate or enable forward movement is actually well documented 

(figures 5.4.50-57; McClay et al., 1990; Montgomery et al., 1994; Pink et al., 1994; Belli 

et al., 2002; Hunter et al., 2005). Leg extension by the forward progression of the hip 

passively extending the knee seems a plausible explanation. In confirmation, the hip, 

knee and ankle reach their maximum moments just after maximum vertical ground 

reaction force in sprinters and these moments were associated with impact (Mann, 1981; 

Biewener et al., 2004). After maximum vertical ground reaction force, they decreased. 

This suggests joint moments are associated with impact and are not propulsive per se.

The Pose® technique suggests the body is falling via a gravitational torque from 

maximum vertical ground reaction force, because leg and hip muscle extensors are silent, 

and ground reaction force is decaying (see chapter 3). Knee extension angular velocity is 

lower in Pose® runners while the hip is leading the lower-limb joints extension seen 

clearly in figures 5.4.50-57 which time aligned the lower-limb. The Pose® technique 

proposes it is body weight (via a gravitational torque) leading the propulsive movement 

as the runner falls forwards after mid-stance, reflected by hip extension, hence the lower 

knee extension angular velocity in the Pose® runners.

Figures 5.5.50-57 show the two techniques time aligned. A consistent observation is 

knee extension has just begun at maximum vertical ground reaction force in the heel-toe 

runners, whereas the knee is at maximum flexion in Pose® runners. In both heel-toe and 

Pose runners, the hip has consistently begun to extend before the knee, but in heel-toe 

runners the knee extends earlier. Perhaps the early knee extension in the heel-toe runners 

increases work against gravity as stated earlier through increased vertical oscillation. Leg 

extension of the support limb however, should be passive by using the elastic recoil and 

forward movement of the body. Mann et al. (1986) in support states: “Knee extension 

which occurs during the toe-offphase o f support during jogging and running is the result 

o f the forward movement o f the body over the fixed foot and tibia.” Passive leg extension
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would complement the Pose^ method’s concept of pulling the foot from the ground 

rather than trying to extend the leg via the ‘push-off foot-ground contact.

Knee flexion angular velocity from terminal stance to maximum swing

Knee flexion angular velocity from just before or at terminal stance until maximum knee
(R)swing angle was higher in Pose runners for all speeds, but particularly at the faster 

speeds. At the two faster running speeds, Pose® runners had 121% and 127% greater 

mean angular knee flexion velocity than the heel-toe runners. Pose® runners significantly 

increased their mean angular knee flexion velocity from terminal stance to maximum 

swing potentially via pulling their foot from the ground. This would bring the foot closer 

to a faster moving body during flight, potentially reducing angular inertia of the lower- 

limb (Enomoto et al., 1999). Knee flexion angles are similar for both techniques at 

maximum swing, yet the Pose® runners reach this position with greater angular velocity, 

which supports a lower rotational inertia of the leg from terminal stance. The 

Gravitational hierarchical model therefore, attempts to reflect the lower-limb’s key 

relationship to the centre of mass’s horizontal velocity and the forces that cause their 

motion.

Step time

Step time consists of flight and stance time and both were less in the Pose® runners 

compared to the heel-toe runners. Increased stance time has correlated positively (r = 

0.4; P = 0.05) with poorer running economy (Williams and Cavanagh, 1986; Williams 

and Cavanagh, 1987). As endurance runners become fatigued, stance times increases 

(Nicol et al., 1991), possibly reflecting reduced elastic energy in the muscle mechanisms 

(Zatsiorsky, 1995; Paavolainen et al., 1999a). Nicol et al. (1991) suggest that a time 

delay between the muscle stretch and the shortening action may widen when fatigued 

possibly reducing elastic energy. The Pose1 runner’s body geometry and lower-limb 

range of motion appear to reduce stance time, which may potentially enhance elastic 

energy.

Distance travelled (landing, flight and take-off distance)

Landing distance, flight distance and take-off distance represent one-step length in the

hierarchical model. Several primary variables represent these distances, landing distance

matches the centre of mass displacement in the horizontal direction during stance, flight

distance is step length and the centre of mass horizontal displacement at terminal stance
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to the support limb is take-off distance. All distances were less in Pose runners. The 

centre of mass horizontal displacement for Pose® runners during stance was 12.3 cm less 

on average across the speed range. Possibly the increased horizontal displacement 

travelled by the heel-toe runners decreases their horizontal velocity for their centre of 

mass owing to different body geometry at impact and terminal stance than the Pose® 

runners. Step length is lower in Pose® runners, however horizontal velocity of the centre 

of mass at terminal stance were similar, with a mean for all test speeds of 3.75 m-s 1 and 

3.73 m-s'1 for Pose® and heel-toe runners respectively. In a legless projectile a similar 

horizontal take-off velocity, would produce a similar horizontal displacement. It appears 

heel-toe runners are extending their leg at impact to increase step length. Further, 

increases in the distance between the support limb and the centre of mass at impact 

decrease horizontal velocity, which impedes the runner’s progress (Mann et al., 1986). 

Importantly, increased stride length correlates with increased ground reaction force 

(Clarke et al., 1985) cited as a potential injury risk (Volishin and Wosk, 1982) although 

not evident in this study. The Gravitational hierarchical model attempts to connect the 

horizontal velocity of the centre of mass and the lower-limb with the forces that cause 

stride length, potentially leading to a better understanding of running injury mechanisms.

Mean horizontal velocity of the centre of mass throughout the gait cycle

The mean horizontal velocity of the centre of mass for the gait cycle is divided into three 

phases: impact to maximum vertical ground reaction force (braking) and from this point 

until terminal stance (propulsion), then from terminal stance to maximum swing knee 

flexion angle. The heel-toe runners had consistent braking in their progression across all 

speeds. The Pose® runners brake less at 2.5 m-s’1 and 3.35 m-s’1 by -0.2 cm-s’1 and -7.2 

cm-s'1. At 4.0 m-s’1 and 4.5 m-s'1, the differences were more marked at -14.7 cm-s'1 and - 

15.3 cm-s’1 respectively. Pose® runners at 4.0 m-s’1 and 4.5 m-s’1 were only braking their 

forward progression of their centre of mass by -2.2 cm-s'1 and -3.0 cm-s'1 respectively, 

compared with -12.1 cm-s'1 and -15.3 cm-s'1 at the lower speeds of 2.5 m-s'1 and 3.35 

m-s"1. The more aligned position of the support limb and the centre of mass at impact, 

especially at the faster speeds, may explain these differences, along with the vertical 

alignment of the shoulder, hip and ankle in the Pose® runners. In support, Bates et al. 

(1979) showed their 400 m runner with the largest deceleration during stance also had 

the largest distance from the ankle to their centre of mass at impact of 0.27 m compared 

with 0.14 m for their runner with the least deceleration. The timing of the maximum
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braking force is also earlier in Pose runners suggesting accelerations of the body in the 

horizontal direction are different between the two techniques at impact. Bobbert et al. 

(1992) found a backward acceleration of the lower-limb segments relative to the rest of 

the body just before impact. The knee marker’s velocity became horizontal in the 

forward direction at impact, as it rotated around the now stationary ankle, because the 

ankle can no longer move forwards while the foot is on the ground. Further, the hip’s 

tangential acceleration remained positive, indicating it lead the lower-limb through 

stance owing to the body’s inertia. A lower braking effect on the horizontal velocity of 

the Pose® runners may reflect their distinct body geometry at impact (shoulder, hip and 

ankle vertical alignment).

The propulsive horizontal velocity from maximum vertical ground reaction force until 

terminal stance was higher at all speeds for the heel-toe runners. The differences were 

much larger again at the faster speeds of 4 m s 1 and 4.5 m s'1 with heel-toe runners 

having 10.2 cm-s'1 and of 9.3 cm-s 1 higher propulsive velocity respectively. An increased 

propulsive horizontal velocity in the heel-toe runners may reflect their swing leg being 

driven forwards, discussed later. Driving the swing leg forwards owing to its large mass 

will have a significant affect on the centre of mass’s velocity. Interestingly, horizontal 

velocity at terminal stance was similar between both techniques. A possible explanation 

is the propulsive horizontal velocity—change between maximum vertical ground 

reaction force and terminal stance—masks a rapid acceleration in the Pose® runners as 

they fall utilising the gravitational torque more effectively via less vertical oscillation. In 

support, figures 5.4.58-5.4.61 consistently show higher horizontal accelerations of the 

centre of mass in the Pose® runners during the propulsive phase of stance. Further, when 

the differences between braking and propulsion of the centre of mass’s horizontal 

velocity were calculated, Pose® runners show better overall propulsion, suggesting 

movement that is more efficient. The mean propulsive horizontal velocity (difference 

between braking and propulsion) across the four speeds was 16 cm-s'1 and -2.9 cm-s'1 for 

the Pose® and heel-toe runners respectively. By braking less, the overall horizontal 

velocity was positive in Pose® runners. It would seem reasonable to suggest this is more 

efficient, because the heel-toe runners needed to generate higher increases in horizontal 

velocity after maximum vertical ground reaction force potentially via driving their swing 

legs forwards.
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Figure 5.5.2 illustrates gravity’s acceleration on the two runners using the vertical 

oscillation of their centre of masses. Gravity has no affect on the horizontal velocity of 

the centre of mass during flight. However, while the support foot is on the ground a 

propulsive gravitational torque occurs from maximum vertical ground reaction force 

until terminal stance. The runner’s vertical oscillation is from impact until maximum 

vertical height reached during flight. The support foot’s position to the centre of mass is 

drawn beneath maximum vertical ground reaction force to certain points on the path of 

the centre of mass (light grey arrow). Both runners have their actual time of maximum 

horizontal acceleration of their centre of mass (dotted line) and their maximum anterior 

ground reaction force (dashed line) marked. Gravity’s work (black arrow) on the centre 

of mass as it rises from maximum vertical ground reaction force via elastic mechanisms 

and body geometry (see chapter 3) until terminal stance is constant. However, gravity’s 

propulsive component (dark grey arrow) changes depending upon the position of the 

centre of mass to the support foot (vector product: sine of the angle between gravity and 

the position vector). It is evident that the Pose® runner is able to utilise gravity more 

effectively for horizontal progression via less vertical oscillation compared to the heel- 

toe runner, owing to the larger propulsive component of gravity (dark grey arrow).

152



The maximal horizontal acceleration of the centre of mass at all speeds for the Pose® 

runners was higher, possibly reflecting a more effective use of the gravitational torque. 

Table 5.4.1 consistently shows the maximal horizontal acceleration of the centre of mass 

occurs before the maximum horizontal ground reaction force. This suggests the 

gravitational torque is the only other possible force (only two external forces in running) 

that could cause this maximum horizontal acceleration of the centre of mass. Further 

research should determine the horizontal acceleration of the centre of mass during stance 

using accelerated running, at a frame rate of at least 240 frames-s'1. This should verify 

the Pose® technique and whether the Gravitational hierarchical model effectively 

explains running. However, the Gravitational hierarchical model does reflect the 

complex inter-relationship of the effects of force and body kinematics on the horizontal 

velocity of the centre of mass.

Mean step length and step frequency

Stride length and stride frequency commonly evaluate individual runners and their 

differences at various running speeds (Hogberg, 1952; Cavanagh and Williams, 1982; 

Martin, 1985; Patla et al., 1989). Both running techniques increase their step length as 

running speed increases in-line with other studies (for example, Patla et al., 1989). The 

Pose® runners have shorter step lengths than the heel-toe runners for all speeds, with the 

faster running speeds— 4.0 and 4.5 m-s'1—differences being 22.7 cm and 28.5 cm 

respectively. At running speeds of 2.5 m-s'1 and 3.35 m-s'1, the differences were 19.0 cm 

and 11.6 cm respectively, whereas step frequency was higher at all speeds for the Pose® 

runners. Heel-toe runner’s step frequency is similar to other gait studies (for example, 

Wank et al., 1998; table 5.4.4). Pose® runners increased step length by 167% from 2.5- 

4.5 m-s'1 compared to 165% in the heel-toe runners. However, Pose® runners increased 

their step frequency from 2.5-4.5 m-s'1 by 121% compared to 112% in the heel-toe 

runners. Similar step length increases took place despite different absolute lengths, but 

Pose® runners increased their frequency more over the speed range.

Vertical alignment of the shoulder, hip and ankle in the Pose® runners at impact, may

suggest reaching or driving the swing leg forwards in front of the body, is absent in

Pose® runners. Heel-toe running emphasises driving the swing leg forwards (Williams

and Cavanagh, 1987). However, Williams and Cavanagh (1987) identified less knee

drive in their most economical runners. Driving the swing leg will increase step length,

and may possibly affect the timing of the braking ground reaction force (Pose® and heel-
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toe runners braking force was 10.6% and 24% of stance respectively). Support for 

driving the swing leg forwards in heel-toe runners is exhibited by lower differences for 

horizontal displacement during flight between the centre of mass and actual step length 

for the Poses runners. For example, the differences in step length and centre of mass 

horizontal displacement during flight between the two techniques for the four test speeds 

beginning at 2.5 m-s'1 were 10.4 cm; 11.1 cm; 14.4 cm; 14.9 cm respectively. As the 

differences during flight for step length and centre of mass horizontal displacement were 

lower in the Pose® runners, it suggests the actual step length differences result from the 

heel-toe runners driving their swing leg forwards. In addition, the horizontal 

displacement of the centre of mass was lower in the Pose® runners for all test speeds, 

suggesting their swing leg returned to the ground earlier.

Kaneko et al. (1987) calculated optimal step frequency for 2.5 m-s'1, 3.5 m-s'1 and 4.5 

m-s'1 using the work-energy relationship. Highest efficiency occurred at step frequencies 

between 2.8-3.0 Hz. The heel-toe runners fall below this range (2.5-2.8 Hz) while the 

Pose® runners are within or above this range (2.9-3.5 Hz). Kaneko et al. (1987) 

concluded that at lower frequencies, runners’ muscles must develop relatively high 

external power (external work) to obtain longer strides, and at higher frequencies, the 

power to move limbs increases internal work. It is not certain yet, which is more 

beneficial for performance. Increasing stride frequency for a given speed consistently 

increases oxygen consumption and raises heart rate (Knuttgen, 1961; Cavanagh and 

Williams, 1982). Dallam et al. (2005) found a mean increase in sub-maximal absolute 

oxygen cost of 3.28 (±0.36) Lmiin"1 to 3.53 (±0.43) Lnnin'1, P < 0.01 in their Pose® 

trained group, whereas this thesis found no change (see chapter 6). This studies control 

group (see chapter 6) and Dallam et aV  s (2005) exhibited no significant changes in 

either running kinematics or oxygen cost. The Gravitational hierarchical model suggests 

step length and step frequency are a consequence of the forces involved in running. From 

the Pose® perspective, the body falls forwards creating step length without the need to 

drive the swing leg forwards. In support, Novacheck (1998) recorded the pelvis and 

trunk tilt further forwards as running speed increases, suggesting body position is 

creating the increased speed. Increased body tilt, increases the gravitational torque, 

which potentially results in faster running (changes in stride length and stride frequency) 

up to a point where the angle of inclination maximises. After this theoretical point, 

running speed could only increase via increased step frequency.
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Muscle force

Reviewing electromyographical studies on running, each study consistently found that 

leg and hip extensor muscle activity ceased just after maximal vertical ground reaction 

force as leg extension begins supporting the ‘extensor paradox’ (Brandell, 1973; Mann 

and Hagy, 1980; Pare et al., 1981; Schwab et al., 1983; Nilsson and Thorstensson, 1985; 

Montgomery et al., 1994; Heise et al., 1996). Montgomery et al. (1994) recorded eleven- 

gait muscles for jogging, training and race pace. They found similar activity patterns at 

each speed with a general trend for increased activity as running speed increased. They 

determined the loading phase began at impact and continued until the centre of mass 

passed in front of the knee. The quadriceps muscle group were all maximally active up to 

this point to stabilise the knee. The biceps femoris muscle demonstrated an increase in 

activity as the centre of mass passed the knee, which they suggested initiated hip 

extension. Another possible explanation is the lower-limb extends because the body is 

moving forwards. Therefore, leg extension does not cause the centre of mass to pass 

forwards of the knee, rather the hip passively extends via inertia of the body activating 

the biceps femoris muscle (muscle lengthens via hip extension). Of the eleven gait 

muscles, only one muscle was significantly active after the centre of mass passed the 

knee until terminal stance: the iliacus muscle. Their conclusion was hip flexion during 

early and middle swing and knee extension during late swing provided forward 

propulsion, rather than knee or ankle extension at terminal stance. The Pose® technique, 

however, regards hip extension during stance’s propulsive phase as a consequence of a 

gravitational torque, because the limbs during flight cannot horizontally (or vertically) 

displace the centre of mass. Montgomery et al. (1994) also noted eccentrically 

contracting muscles at impact (i.e. the rectus femoris, vastus intermedius and short and 

long head of biceps, semimembranosus) may have increased risk of injury at faster 

running paces. Pose® runners had lower knee eccentric work of 17 J/kg (0.08) than when 

they ran heel-toe 46 J/kg (0.15) (Arendse et al., 2004), whereas they had an increase in 

eccentric ankle work 36 J/kg (0.9) and 43 J/kg (1.5) respectively.

Mero et al. (1992) recorded electromyography for the rear leg at the sprint start. The 

biceps femoris recorded peak activity at terminal stance while other muscles were 

virtually off, except for minimal activity from the rectus femoris. This potentially 

indicates that the rear leg is pulled-out (knee flexion) of the block because the leg 

extensors are not active and knee flexion is occurring via the hamstring group. It is

plausible if a sprinter can pull his leg out of the blocks, then Pose® runners could be
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pulling their feet from the ground. In support of this concept, knee angular flexion 

velocity from terminal stance until maximum swing is 17% higher in Pose® runners for 

the mean across all test speeds. Further, leg extension angular velocity during stance is 

13% lower in the Pose® runners. It appears the Pose® runners do not forcefully extend 

their legs, yet they powerfully flex their knees from terminal stance until maximum 

swing, which strongly suggests a pulling action.

The stretch-shortening cycle enhances muscle force output; however, muscle 

electromyography for leg extensors after maximum vertical ground reaction force 

reduces rapidly (Komi, 2000). A possible explanation for this dichotomy, is the muscles 

that extend on landing which enable a pre-stretch such as ankle and knee extensors, both 

interestingly have long tendons (Achilles and patella tendons) that are excellent storage 

sites for elastic strain energy (Alexander and Bennet-Clark, 1977). Efficiency of 

movement is possible because elastic mechanisms do not require adenosine triphosphate 

breakdown. During eccentric contraction, the cross-bridges forcibly detach and reattach 

without adenosine triphosphate splitting (Curtin and Davies, 1974). The stored elastic 

strain energy subsequently releases in the concentric muscle phase beginning at or just 

after maximum vertical ground reaction force (Farley and Ferris, 1998). The leg then 

acts as a spring allowing extension, but not from muscle contraction (owing to a lack of 

muscle activity reflected by electromyography at this time), although tension remains in 

the musculotendinous junctions (Edman, 1979). Further, vertical ground reaction force is 

decaying from its maximum point until terminal stance (body is rising off the ground), 

while elastic recoil acts in a predominantly vertical direction (angle of inclination at 

terminal stance is 70° to the horizontal), reducing work against gravity. Whether Pose® 

runners are more effective in utilising strain energy is unknown at this time. Muscle 

force and muscle elasticity are hierarchically above gravity in the Gravitational model, 

because gravity (body weight) causes the timing of their activity at impact as they absorb 

landing and as the gravitational torque accelerates the runner after mid-stance muscle 

activity ceases.

Ground reaction force

Mean braking ground reaction force was 0.23 body weights for Pose8 and heel-toe

runners across all four speeds. The mean time for the braking posterior ground reaction

force across all speeds, as a percentage of stance was 10.6% for Pose® and 24% for heel-

toe runners. Horizontal distance of the centre of mass from the support limb and running
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speed at impact affects impact force (Mero et al., 1992; Hay, 1994). The time of braking 

force is earlier in Pose® runners, possibly reflecting the shorter distance the centre of 

mass was behind the support limb at impact via a more vertically aligned posture (Hamill 

et al., 1983). Unshod Pose® runners had a lower braking force than their heel-toe running 

trials of 113.7 N (15% body weight) and 148.7 N (20% body weight) respectively 

(Arendse et al., 2004). Munro (1984) recorded 25% body weight at a similar running 

speed of 3 m-s'1 in shod runners. Presently it is uncertain whether shoes or running 

technique, cause differences in the posterior ground reaction force.

Maximum vertical ground reaction also revealed almost similar bodyweights—2% 

difference—for both techniques across all test speeds. Frederick and Hagy (1986) found 

body mass accounted for 90% of maximum vertical ground reaction force. Chang et al. 

(2001) using reduced gravity with a specially designed harness for treadmill running 

reduced gravity to 0.5 g, 0.38 g and 0.25 g. Maximum vertical ground reaction force 

reduced from 1495 (100) N at Earth’s gravity to 848 (58) N, 664 (40) N and 463 (39) N 

at the reduced gravity respectively. Clearly, gravity significantly affects maximum 

vertical ground reaction force. Chang and Kram (1999) applied a horizontal force of 

10%, 15% and 20% of gravity specific body-weight to his runners. Interestingly, 

maximum vertical ground reaction force barely changed with the applied horizontal 

force, suggesting maximum vertical ground reaction force is weight related and thus 

caused by gravity.

Maximum vertical ground reaction force and vertical oscillation of the centre o f mass 

were time-aligned (figures 5.4.50-57). In both techniques, maximum vertical ground 

reaction force aligns with the lowest point of the centre of mass (Cavanagh and 

LaFortune, 1980; Bobbert et al., 1991; Derrick et al., 2000). The ground reaction force 

curves decays from this point until terminal stance as the knee extends. The ‘extensor 

paradox’ (McClay et al., 1990) identifies a lack of muscle activity as the knee extends 

from just after maximum vertical ground reaction force until terminal stance. If the 

lower-limb extensor muscles were active, a spike or plateau would be evident in the 

vertical ground reaction force curve (see Yeadon and Challis, 1994; figure 3.3.14, p. 84). 

However, ground reaction force curves for all techniques of running have a smooth 

decay rate. Similar to gravity’s work on landing as weight is absorbed (force curve 

increases) until maximum vertical ground reaction force, the decay rate from this point

until terminal stance reflects the body leaving the ground (centre of mass is rising).
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Therefore, as the runner’s body leaves the ground (rises by muscle elasticity/body 

geometry) the runner falls forwards via a gravitational torque, while ground reaction 

force reduces. In fact, at faster running speeds, the decay rate increases (Miller 1990), 

reflecting faster falling.

Propulsive ground reaction force may reflect the body pivoting around the foot as the 

runner leaves the ground without the foot actually pushing backwards (Mann et al., 

1986; Miller, 1990). If the foot pushed backwards, leg extension would begin at the 

ankle and not the hips (figures 5.4.50-57; Mann et al., 1986; Montgomery et al., 1994; 

Riley et al., 2001; Belli et al., 2002). The propulsive anterior ground reaction force
(R)occurred at 72% and 74% of stance in Pose and heel-toe runners respectively, with a 

mean of 0.17 body weights recorded for both heel-toe and Pose® runners. The angle of 

inclination (producing the moment arm) for the centre of mass at terminal stance were 

also similar for both techniques possibly adding support that the gravitational torque is 

the motive force owing to the similar running speeds. Hunter et al. (2005) using 28 

sprinters at 8 nvs"1 grouped them into high and low propulsion trials. They found the 

high propulsion trials increased propulsive impulse (0.37 m s’1 to 0.33 m-s'1 for low 

propulsion), expressed relative to body mass, thus reflecting the change in velocity. It is 

possible that the faster running speeds produce increased friction from a faster body 

motion, rather than an increased pushing off the ground. Further, Hunter et al. (2005) 

using multiple linear regression to predict sprint velocity, found relative propulsive 

impulse explained 57% and relative braking impulse 7% of the variance in sprint 

velocity. Ground reaction force is a reflective (reactive) force with leg extensor muscles 

silent during the propulsive phase of stance; ground reaction force must be decreasing. 

This suggests a gravitational torque causes the ground reaction force trace, owing to a 

lack of any other force at this time (see chapter 3 for more a more detailed explanation).

Chang et al. (2000) reduced gravity by 0.75%, 0.50% and 0.25%, which reduced braking 

and propulsive ground reaction force as well as the horizontal impulse significantly. 

Conversely, when they increased gravity and inertia by 130% of body weight, propulsive 

ground reaction force increased and the horizontal impulse increased by 28%. However, 

increases in inertia only of 130% of body mass increased horizontal impulse by only 

10%. This clearly suggests gravity (in relation to a gravitational torque) has a strong 

relationship to propulsive ground reaction force (18% change in horizontal impulse).

This potentially explains the ‘extensor paradox’ (silent leg extensor muscles during the
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propulsive phase of stance) owing to gravity's strong relationship to propulsive ground 

reaction force rather than muscle activity. Further, Chang et al. (2000) used the same test 

speed for all gravitational conditions, and found the angle of inclination at impact and 

terminal stance were the same. This suggests the gravitational torque and the propulsive 

ground reaction force are related, because similar changes in gravity cause reciprocal 

reductions in the propulsive force. These reductions however, do not change the angle of 

inclination, because this appears directly related to maintaining their constant running 

test speed across all conditions of 3.0 m-s"1. Chang et al. (2000) concluded that gravity 

and not inertia has a major influence over both vertical and horizontal ground reaction 

force generation during running. In agreement with Chang et al. (2000), the 

Gravitational hierarchical model shows gravity affecting ground reaction force via body 

position.

Acceleration of the body

Maximum horizontal acceleration of the participant’s centre of masses showed only one 

trial at 2.5 m-s"1 for the Pose® and heel-toe runners occurring after the propulsive 

horizontal ground reaction force. Despite difficulties in obtaining acceleration from 

position data, it appears that maximum horizontal acceleration does not occur at 

maximum horizontal ground reaction force or just after it, but rather before. Further 

research should verify these findings, because a large horizontal acceleration without a 

corresponding horizontal force is not possible. The Gravitational hierarchical model 

suggests the horizontal acceleration is caused via a gravitational torque and the ground 

reaction force reflects the work of gravity on the runner’s body.

The heel-toe runners increased vertical oscillation of the centre of mass from maximum 

vertical ground reaction force until terminal stance increases work against gravity, which 

potentially reduces their gravitational torque. The Pose® runners consistently produced 

higher horizontal acceleration of the centre of mass coupled with less vertical oscillation. 

The Gravitational hierarchical model links gravity’s work on the rumier by identifying 

the centre of mass location in reference to the support limb. As the centre of mass moves 

anterior to the support limb a gravitational torque ensues. Pose1 runners appear to utilise 

the gravitational torque more effectively through lower vertical oscillation and a faster 

leg recovery (less leg extension).
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Centre of mass location to the support limb

At impact with the ground taken at 25 ms of stance to allow for potential differences in 

vertical impact (Arendse et al., 2004), noticeable variations were found for the centre of 

mass position in relation to the point of support. Vertical aligmnent—centre of mass 

more vertically aligned to the support foot—in the Pose® runners was 7 cm less (more 

aligned) at 25 ms for the mean of four speeds compared with the heel-toe runners. In 

fact, as running speed increased this distance decreased in both Pose® runners and heel- 

toe runners possibly indicating it is beneficial to do so. Hunter et al. (2005) in support, 

found at impact the distance between support and the centre of mass was lower for 

runners with a reduced braking impulse.

Shoulder, hip and ankle vertical alignment at 25 ms after impact also showed more 

vertically aligned Pose® runners— 8 cm less for the mean of four speeds—with this 

difference becoming more marked as running speed increased. Shoulder, hip and ankle 

vertical aligmnent resembles a coiled spring because of the body’s ‘S’ like shape, which 

Pose® runners are trained to land in. Lee and Farley (1998) referred to the centre of mass 

progression in running as similar to a bouncing ball. Perhaps this landing body geometry 

aids in enhancing elastic mechanisms. Further, the body cannot move forward until the 

centre of mass passes over the support foot (ball of the foot). Therefore, a more aligned 

body position at impact enables the runner’s centre of mass to pass more quickly over 

the support foot. This would suggest Pose® runners conserve momentum, because the 

centre of mass’s difference between braking and propulsive horizontal velocity was 

positive in the Pose® runners (table 5.4.2).

The horizontal distance from the centre of mass to the toe-marker at terminal stance was 

less in Pose® runners for all speeds except 2.5 m-s'1. The angles of inclination of the 

centre of mass from the vertical axis at terminal stance were similar in Pose® and heel- 

toe runners (mean of four speeds 20.4°: 21.2° respectively). If the angle of inclination is 

similar and the horizontal distance less in Pose® runners, the heel-toe runners must have 

more extended legs at terminal stance, which is in fact the case. The maximum 

acceleration of the centre of mass was higher in the Pose® runners. This suggests that 

despite similar angles of inclination, the Pose01' runners accelerate more from maximal 

vertical ground reaction force until terminal stance. Less knee extension in the Pose® 

runners, therefore, may facilitate increased horizontal acceleration via a gravitational
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torque. A clear link between the lower-hmb’s flexion and extension angular velocity and 

the centre of mass’s displacement is therefore evident (Farley and Gonzalez, 1996).

Gravitational force

As an external force causes motion, the Gravitational hierarchical model identifies 

gravitational force as the leading cause of movement because the ground and muscle 

system do not cause propulsion (Zatsiorsky, 2002; p.51). Several body weights are 

recorded at impact with the ground after flight in running, reflecting gravity’s work on a 

runner’s body mass, with both techniques—heel-toe and Pose®—being equally affected 

(Bobbert et al., 1991). Flight is predominately spent in descent, because maximum 

vertical oscillation occurs at or just after terminal stance (Fenn, 1930; Cavanagh et al., 

1977). There are, however, differences in landing posture between the two techniques, so 

the impact effects of gravity’s work on the runners will vary. The body continues to 

lower after impact under gravity’s work until maximum vertical ground reaction force as 

the centre of mass reaches its lowest position (Cavanagh and Lafortune, 1980; Bobbert et 

al., 1991). Immediately after this as the centre of mass passes anterior to the support limb 

(ball of the foot), the two techniques again show significant variations (figures 5.4.50- 

57) in movement as a gravitational torque potentially accelerates the runner’s body to 

terminal stance and into swing as the cycle is repeated again. Interestingly, the Pose® 

runners had lower propulsive velocity, which is more marked at the faster speeds. 

However, the Pose® runner’s angle of inclination and horizontal velocity at terminal 

stance was similar to the heel-toe runners. A possible explanation for these apparently 

conflicting results is that Pose® runners have lower vertical oscillation coupled with less 

leg extension. Therefore, the Pose® runners do less work against gravity and hence are 

potentially more able to utilise the gravitational torque to their advantage (see chapter 3; 

figure 3.3.11) gaining an increased horizontal acceleration of their centre of mass. In 

support, Gracovetsky (1988) recorded legless participants walking on their ischiums by 

keeping normal spinal motion (spinal engine theory) and electromyography patterns for 

the trunk musculature. Spinal engine theory promotes the central role of gravity as the 

motive force for legless locomotion, illustrating gravity’s potential for forward 

progression.
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5.6  SUMM ARY

Pose® and heel-toe runners had similar ground reaction forces. The time of braking and 

the vertical ground reaction force were earlier in the Pose® runners. Propulsive ground 

reaction force occurred at a similar percentage of stance time. Horizontal velocity of the 

centre of mass was lower in Pose® runners for braking and propulsion, while the angle of 

inclination of the centre of mass at terminal stance increased. Vertical displacement and 

horizontal displacement of the centre of mass were lower in Pose® runners. Their body 

was more aligned at impact; with knee flexion and extension during stance being lower 

in the Pose® runners. Knee angle at impact was the same but at maximum vertical 

ground reaction force it was lower in the Pose® runners. Stance time, flight time and step 

length were lower, while stride frequency was higher in Pose® runners. Mean knee 

flexion and extension angular velocity were lower during stance, whereas mean angular 

knee flexion velocity during swing was higher. Pose® runners therefore, exhibit very 

different gait characteristics to traditional heel-toe runners. It was argued, that leg 

extension did not propel the runner forwards, while using hip motion, it was implied that 

a gravitational torque creates forward progression. Support included silent leg and hip 

extensor muscle activity, decaying ground reaction force, an increased propulsive 

component of gravity in Pose® runners and the hip leading the lower-limb joints 

extension during the propulsive phase of stance. Joint moments were maximal at 

maximum vertical ground reaction force and therefore, not related with propulsion. 

Ground reaction force reflects gravity’s work as the body leaves the ground because the 

lack of muscle activity during propulsion coupled with reducing ground reaction force 

suggests a gravitational torque is the motive force. Both heel-toe and Pose® runner’s 

maximal horizontal acceleration occurred before their horizontal maximal ground 

reaction force, suggesting a gravitational torque by default is the motive force in running. 

It appears that both heel-toe and Pose® running techniques fall forwards via a 

gravitational torque, suggesting that these runners do not push off the ground. It was 

proposed that owing to lower vertical oscillation Pose® runners used the gravitational 

torque more effectively. The research variables were therefore, able to clearly explain the 

Pose® technique and the Gravitational hierarchical model. Whether Pose® running is 

effective at improving performance or reducing injury is discussed in the next chapter.
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CHAPTER 6

POSE® METHOD TRAINING STUDY

6.1 INTRODUCTION

A review on the importance of improved running economy an optimal biomechanical 

profile and injury reduction is given. This study then seeks to apply the Pose® technique 

(Romanov, 2002) of running to eight male endurance runners and compare it with eight 

heel-toe runners using the primary and secondary research variables from chapter 3 and 

5. The intervention of the Pose® method technique applied for 7-hours over seven days, 

will seek to improve performance. This chapter therefore, aims to review the 

biomechanical changes (optimal biomechanical profile) from a Pose® method 

intervention, and their affect upon performance, running economy and injury incidence.

6.2  THEORETCIAL BACKGROUND

Three parameters affect running performance: economy, an optimal biomechanical 

profile and sustaining an injury (Williams, 1985). Each parameter is reviewed in 

reference to how it may improve running performance.

Endurance runners are an array of shapes and sizes, which influences their running 

economy (Bergh et al., 1991). From a survey of 1,468 male endurance runners, the mean 

stature was 176.5 cm and body mass was 65.8 kg, but stature ranged from 152-197 cm 

and body mass from 40-100 kg (Frederick and Clarke, 1981). In animals, size also has a 

dramatic affect on running economy; a mouse uses twenty times the energy of a pony to 

run a mile (Taylor, 1994). There has been substantial research on the energy cost of 

running and differing body mass (for example, Oyster and Wooten, 1971; Bale et a l,

1986). Their conclusions on endurance running attribute running economy to the effects 

of stature and body mass. Running economy’s relationship with stature and body mass
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relates to the Froude number. The Froude number links running speed to gravity (body 

mass) and leg length (stature), suggesting gravity as an external force plays a significant 

role in running performance. If speed of locomotion increases and leg extension at 

terminal stance remains the same as speed increases (Hunter et al., 2005), then gravity is 

the only mechanism that can increase running speed. However, gravity is a constant 

force. In order for gravity to increase running speed, gravity must be able to work in such 

a way as to increase its affect on the runner. Gravity’s increased affect on running speed 

must be the result of the angle of inclination of the body (creating a gravitational torque) 

during the propulsive phase of stance (see chapter 3, 5).

Williams and Cavanagh (1987) identified that 54% of the variance in ruiming economy 

was attributed to biomechanical variables. Examining the affects of technique on running 

economy identified several related biomechanical factors (Williams and Cavanagh,

1987). For example, running economy has been associated with a freely chosen stride 

frequency and length (Cavanagh and Williams, 1982). It has also been related with lower 

vertical oscillation (Cavanagh et al., 1977), earlier co-activation of hamstring and 

gastrocnemius muscles during the support phase (Heise et al., 1996), and reduced plantar 

flexion occurring at higher speeds during foot removal (Williams and Cavanagh, 1987). 

Lower vertical oscillation and less plantar flexion would reduce work against gravity and 

therefore, enhance the effects of the gravitational torque on the runner.

Miura et al. (1973) suggested, technique attributed to the differences in running speed— 

5.6 m-s'1 to 5.2 m-s'1— for their participants running with the same maximum oxygen 

uptake of 70 ml/kg-min. Their faster rumiers all had a greater angle of inclination (34°) of 

the body at terminal stance compared with their poor runners (31.8°). An increased angle 

of inclination produces an increased moment arm for gravity from the centre of mass to 

the support foot, which increases the gravitational torque potentially increasing running 

speed.

Several studies attempted to modify running economy by manipulating running

technique directly via stride length (Cavanagh and Williams, 1982, Petray and

Krahenbuhl, 1985; Kaneko, 1987, Morgan et al., 1994). However, these studies failed to

achieve a significant change in either running technique or economy. In contrast, Dallam

et al. (2005) was successful in producing significant changes in triathletes’

biomechanical profiles by employing the Pose® technique using twelve hours of
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instruction. Elite triathletes in the British Olympic squad via anecdotal reporting (Chris 

Jones: head coach) were able to improve their running times by employing the Pose® 

technique. The mean improvement in their 10-km personal best times for two males and 

two females during the 2003/04 season was 108.5 s, although the mechanisms for this 

improvement remain unclear. This present study will aim to identify the potential 

biomechanical changes and their effects on performance.

Cavanagh and LaFortune (1980) found a mean decrease in the horizontal velocity of the 

centre of mass of 0.18 m-s'1 during the braking phase for seventeen participants running 

at 4.47 m-s'1. If the foot lands further ahead of the centre of mass at impact, an increased 

braking effect can occur (Fenn, 1930; Deshon and Nelson, 1964; Cavanagh et al., 1977; 

Bates et al., 1979; Kunz and Kaufman, 1981; Girardin and Roy, 1984; Hinrichs, 1990). 

Impact patterns also affect stance-limb impact angles at the hip, knee and ankle, via the 

kinetic chain (Bartlett, 2000), which subsequently alter the centre of mass vertical 

displacement (Lee and Farley, 1998). Lower-limb angles, vertical oscillation of the 

centre of mass and foot position at impact, therefore, have an important relationship to 

reductions in horizontal velocity of the runner and consequently performance.

Miura et al.’s (1973) good runners exhibited a longer stride length of 1.77 m compared 

to their poor runners of 1.60 m over a 5-km race, while stride-time was similar. In 

contrast, Cavanagh et a l (1977) found their good runners took shorter strides with a 

higher frequency in comparison to poorer runners. Possible differences may reflect the 

fact that Cavanagh et al.’s (1977) study was conducted on a treadmill where ten strides 

were filmed after ten minutes of running at 4.47 m-s'1, whereas Miura et aV  s (1973) 

runners ran 5-km on a track at 5.2-5.6 m-s'1. It is currently not lucid whether runners 

should have longer strides or higher frequency.

Dallem et al. (2005) found a significant reduction in their Pose® group in vertical

oscillation in comparison to the control group at a given treadmill velocity following the

Pose® method intervention. Although not statistically significant, the Pose® group

recorded reductions in mean hip to ankle distance at foot strike (more vertically aligned

body position) and lower support time. However, the modifications in running

biomechanics elicited by the Pose® method intervention were also associated with a

significantly increased submaximal oxygen cost (a 4.2 ml/kg/min increase in steady state

oxygen cost at 215 m-min following the instructional period). This may be owing to the
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fact that the majority of the participants were experienced enough to have already 

developed their most economical self-selected stride rate. Notably one of the eight Pose® 

group participants did demonstrate an improvement in economy following the 

instructional period. He was the least experienced triathlete/runner in the group with a 

two year training history in running and triathlon, as well as having the lowest initial 

stride rates (2.6 steps-s'1 at 215 m-min and 2.8 steps-s'1 at 250 m-min). This participant 

may not have been experienced enough to have developed his most economical freely 

chosen stride length before the study allowing him to possibly respond more favorably to 

the instruction. The mean increase in running economy of approximately 8%, should 

substantially affect running performance in their Pose® group. However, the Pose® group 

in Dallem et al. (2005) also demonstrated a similar perceived exertion during the pre and 

post steady state trial speeds (RPE = 11.3 + 2.1 versus 11.0 ± 1.8 and 14.5 + 1.6 versus 

14.7 + 3.1). They suggested the increase in steady state oxygen cost on the participant’s 

steady state rate of perceived exertion may have been negated by a reduction in the 

muscular activation associated with each individual step (reduced stride length and 

increased stride frequency).

Dallam et al.'s methodological design may have also attributed to the increase in running 

economy. The running economy data was collected after the lactate threshold and 

maximum oxygen consumption tests. Further, biomechanical data was acquired after the 

physiological tests when all the participants were in an extremely fatigued state. The data 

were also collected on a treadmill, which pulls the foot backwards. The pulling back of 

the foot significantly affects Pose® running technique because the foot should be pulled 

directly upwards in Pose® running not backwards. It is unlikely the Pose® group were 

able to maintain their new technique when fatigued while on a treadmill, which could 

have affected the results. Therefore, this study aims to collect oxygen consumption in a 

non-fatigued state during over-ground running, to determine, if the Pose® technique does 

in fact improve running economy. Dallam et al.'s (2005) study did not include a 

performance test. This present study will include a 2400 m time trial to determine if 

Pose® running improves performance from the potential biomechanical changes.

The Pose® technique has also made claims that it reduces running injuries (Romanov, 

2002). Pose® runners land on the forefoot, however, forefoot running is not associated 

with a lower risk of injury (Cavanagh and LaFortune, 1980). Arendse et al. (2004) 

trained twenty heel-runners in Pose® running. They found Pose® running was
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characterised by a shorter stride length, lower vertical impact force, a greater knee 

flexion in preparation for and at initial contact, less eccentric work at the knee and more 

eccentric work at the ankle compared with heel-toe and forefoot running. They proposed 

the position of the torso during the gait cycle may explain the reduced knee eccentric 

work and increased ankle eccentric work in Pose® running compared with the heel-toe 

running technique. They suggested that the position of the torso and the centre of mass 

should be included in future studies of running technique modification. This present 

study will measure the centre of mass position and velocity including torso position 

during the gait cycle.

Arendse et al. (2004) evaluated their runners in the barefoot condition, to which they 

were not habituated. Although standard to all test conditions, the barefoot condition may 

prevent the adoption of a conventional heel-toe running technique. Runners protect the 

heel during barefoot running and reduce distortion of the heel fat pad (De Wit and De 

Clercq, 2000). Subsequently, initial contact occurs predominantly with the anterior 

portion of the foot. Their horizontal braking and propulsive ground reaction forces 

differed between Pose® and heel-toe running in contrast to this thesis (chapter 5). Pose® 

running also produced significantly smaller vertical displacement of the body, the feet 

were kept close to the supporting surface with a shorter stride length compared with 

heel-toe running. However, Arendse et al. (2004) collected no injury data post 

intervention to determine if these Pose® running changes reduced injuries.

The aim of this present study is to measure via an economy and time trial run the 

participant’s pre-test baseline physiological measures while the primary research 

variables will provide a biomechanical profile. The post-test will determine whether 

there is an improved performance on the economy and 2400 tune trial run resulting from 

the potential biomechanical changes in the Pose® group from a 7-hour Pose® training 

intervention. A 3-month post intervention survey for any injury incidence will follow for 

all participants.
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6.3 METHODS

Participants

Sixteen recreational male heel-toe runners and triathletes were recruited for this study.
(K) •The heel-toe group (7 7  = 8) and the Pose group's (7 7  = 8) personal information are 

recorded in table 6.3.1. Written informed consent and ethical approval from Sheffield 

Hallam University were obtained before testing. All participants had no history of 

surgical intervention, chronic pain, orthotic use or current pathology of the lower 

extremity, except one participant from the heel-toe group post-test who had sore ankle 

musculature. Each participant wore his normal running shoes. All shoes were 

qualitatively assessed for rigidity of the heel counter and compliance of the cushioning 

element of the rear section of the shoe.

Table 6.3.1 P a r t ic ip a n t ' s  p e r s o n a l  d a ta  (N =  1 6 )

Group Age (yrs) Stature (cm) Mass (kg)
P r e  P o s t

10-km P.B. time (min)

Heel-toe Group

Range 1 8 - 2 7 1 7 4 - 1 9 3 .5 6 5 . 3 - 1 0 0 .5 6 5 . 3 - 1 0 0 . 5 3 8 - 4 5

Mean 2 0 .8 1 8 0 .2 8 2 .3 8 2 .0 4 1

S.D. 3 .6 6 .2 11 1 0 .9 2 .1

Pose® Treatment Group

Range 1 9 - 2 4 1 7 3 - 1 8 9 7 1 . 4 - 8 5 . 7 6 9 . 4 - 8 5 . 7 3 8 - 4 5

Mean 2 1 .1 1 8 0 .9 7 6 .9 7 6 .5 4 0 .6

S.D. 1 .7 5 .2 5 .4 6 .7 2 .8

Experimental protocol (see appendix 1 for participant recruitment)

All participants were pre-selected before testing via personal contact. All respondents 

were selected based on the following criteria: 1) they had been without injury in the past 

3-months. 2) They had been running for at least 2-years. 3) No-one in the study had read 

or heard anything about the Pose® method of running. 4) They were heel strikers, 5) sub

elite runners (37-45 minute 10-km P.B.), 6) male, 7) and aged between 18-30 years old. 

8) The pre-selection meeting finalised whether a participant was accepted into the study. 

Two participants were rejected from the study based on the study criteria. Sixteen 

participants were available for the study dates and divided into two groups of heel-toe 

and Pose® treatment runners. The participants were randomly distributed through an
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equal bias towards running technique from the pre-test questionnaire scores (table 6.4.4). 

All participants were tested on two separate occasions in a pre-post test design.

Track test (see appendix 2 for track data collection sheets)

The track pre-tests were held between May 24th and 25th, 2003 where all the participants 

ran a 2400 m economy run followed immediately by a 2400 m time trial on a running 

track at Loughborough University. The post-test track tests took place on June 6th 2003. 

After a self-selected warm-up a 2400 m economy run was collected at 8 min per mile 

pace. Mean heart rate, oxygen consumption via a Cosmed/K4b2, stride rate, and time 

were recorded. The Cosmed/K4b2 was found to have a 2% measurement error, and, 

Kawakami et al. (1992) recommended it as a powerful measurement tool for the field 

with strong correlation to values obtained from a metabolic cart (McLaughlin, et al., 

2001; Pinnington et al., 2001). To ensure participants ran constantly at 8 min per mile 

orange pace cones were placed at each 100 m segment of the track. Each 100 m section 

took them 30 s, which the participants checked using a hand-held stopwatch. Stride rates 

were determined from a digital video recorder (DCR-TRV, Sony Corporation, Japan) 

which filmed at 25 frames-s"1 20 m of the home straight for each lap of their economy 

and time trial run. For the 2400 m time trial that followed immediately after the economy 

run, mean and maximum heart rate, stride rate, Borg (Borg, 1970) scores and time were 

collected. No verbal encouragement was given during the time trial. In trained, non-elite 

runners, the coefficient of variation for economy ranges from ±2.64% in 95% of all trials 

for field tests of 1600 to 2400 m (Morgan et al., 1991). They concluded a stable measure 

of running economy can be obtained in a single data collection session involving trained 

non-elite male runners if the testing environment is controlled to minimise non- 

biological variability.

The laboratory tests (see appendix 3 for laboratory data collection sheets)

A printed itinerary was given to each participant before their test date covering

procedures and test times. Before the start of the test, each participant was given a verbal

explanation of the test procedures. Every participant warmed up for as long as needed.

All participants wore their own running flats for both pre and post-tests. Participants

were asked to maintain normal weekly training activities. The laboratory pre-tests were

held between May 26th-29th, 2003 and required each participant to run across a force

plate at 3.35 m-s"1 (8 min per mile pace) while simultaneously recording kinematic data.

The post-tests were held between June 9th- 11th, 2003.
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The intervention (see appendix 4 for intervention sheets)

Both interventions were held between May 30th and June 5th. The Pose® group received 

seven one-hour daily intervention sessions in the Pose® method of running technique by 

a trained and experienced Pose® instructor. The heel-toe group were to complete seven 

intervention sessions of traditional running drills and interval repeats on their own. Both 

interventions required the participants to complete a series of specific drills each day. 

The heel-toe group were trained to drive the leg forwards and to push-off the ground in 

bounding movements using traditional running drills such as butt kicks, high knee lifts 

and kick outs. The Pose® group using many specific drills were taught to use their body 

weight to create speed through falling forwards while pulling their foot from the ground 

using their hamstring muscles.

Collection and processing of ground reaction force data

Biomechanical data were collected using a piezoelectric transducer force plate with eight 

output signals, which were sampled at 1200 Hz (9281-CA Kistler Instruments 

Corporation, Winterthur, Switzerland). The force plate was mounted flush with the 

running surface on a 15.66 m runway. The force plate was 8.66 m from the start position 

and measured 40 by 60 cm (figure 6.3.1). Participants were instructed to run normally 

while aligning their run-up to land with their right foot on the force plate. Each 

participant was allowed as many practice trials as needed to achieve ‘normal' foot 

contact with the plate in their regular running shoes, with five trials collected. After each 

trial, the data was visually inspected to ensure that the footfall was ‘normal’ and centred 

on the force plate. After data collection, the ground reaction force analogue data was 

processed through Matlab 6 software to convert volts into newtons. In accordance with 

Munro et al. (1987), ground reaction force data were normalised to the participant’s 

body weight. Initial contact of the foot with the ground was identified from the ground 

reaction force data. Foot contact began once the vertical ground reaction force data 

exceeded 20 N and ended as it went below 20 N (Bobbert et a l, 1991; Wright et al., 

1998; Tirosh and Sparrow, 2003).
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Figure 6.3.1 M e a s u r e m e n t  s e t - u p  f o r  la b o r a to r y  d a ta  c o l l e c t i o n

Collection and processing of kinematic data (see appendix 5 for raw data)

A modified Helen Hayes marker set (22-markers) was used to collect their three- 

dimensional trajectories for computing kinematic data. Retroflective spheres of a 

diameter of 2 cm (4.4 g) were applied to their bodies in order to define a model 

comprised of twelve body segments: two segments for feet, lower legs, upper legs, 

forearm, upper arm and two single segments comprising the head/neck and trunk. These 

markers were applied directly onto the skin using athletic tape on the acromion 

processes, elbow and radiocarpal joints, sacrum, anterior superior iliac spines, lateral 

femoral condyles, lateral malleolus, and the dorsim of the feet between the second and
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third metatarsals. Two lateral wands were used to calculate the medial knee and ankle 

markers during the dynamic trials. The two lateral wands were 10 cm long and attached 

using athletic tape to the thigh, midway between the hip and knee joints, and for the 

shank, midway between the knee and ankle joints. Both wands were vertically aligned 

with the relevant joints. The attachment and length of the wands were such that 

oscillations of the marker at the tip of the wands were insignificant. An off-set marker 

placed on the right scapula precipitated software marker recognition through body 

asymmetry. Video data were collected using a VP AT 310 video recorder and an eight- 

camera (Falcon HR 240) motion analysis system recording at 120 Hz (Motion Analysis 

Corporation, Santa Rosa, California) which collected data for one step of the right leg 

while running in the positive X  direction. The cameras were zoomed in as far as possible 

to a volume of 3.6 m in x (fore-aft axis) by 1.4 m in y  (medio-lateral axis) and 2 m in z 

(vertical axis) with the centre of the base corresponding to the centre of the force plate. 

The laboratory (global) orthogonal coordinate system followed the right hand rule and 

had the positive v-direction orientated in the direction of forward progression, the 

positive y-direction orientated to the left and the positive z-direction orientated vertically 

upward. The volume was calibrated before data collection using a cube and a 500 mm 

wand associated with EvaRT 3.2 data collection software (Motion Analysis Corporation, 

Santa Rosa, California). All participants ran a pre-post test at 3.35 m-s'1 in two separate 

laboratory sessions eleven-days apart. Running speeds were measured by two 

photoelectric cells 4.19 m apart and 3 m from the centre of the force plate, and mounted 

so the participant’s waist triggered the photoelectric cells. Up to five trials were 

recorded, and only trials in which ‘good’ foot contact with a steady stride and speeds 

within 5% of the measured speed were analysed. The three dimensional coordinate data 

were filtered using a 2nd order low-pass Butterworth filter (commonly known as the 

Butterworth fourth order); a cut-off frequency of 6-8 Hz was used and was selected 

through visual inspection of the fit (Winter, 1987). Video and analogue data were time 

synchronised using impact recorded when vertical ground reaction force exceeded 20 N. 

Following the filtering process in EvaRT 3.2, the filtered video data were extracted using 

OrthoTrak 5 software. Coordinate and angular data were calculated according to the 

method used by Winter (1990) from the filtered raw data.

Statistical analysis

Assumptions of normality were satisfied for the inferential statistical analysis using the

Ryan-Joiner’s normality test. Homogeneity of variance were satisfied using Levene's
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test. Individual means and standard deviations were calculated for a variety of secondary 

research variables both before and after the instructional period. Sixteen 2 x 2  mixed 

factorial ANOVAs assessed the primary research variables for the main effects of group 

(control vs. treatment), and treatment (pre to post changes). Tukey’s tests of honestly 

significant differences were used to assess individual cell differences post hoc. Data 

analysis was conducted using Minitab (version 14) statistical analysis software. 

Statistical significance for the inferential statistical procedures was established at P = 

0.05.

6 .4  RESULTS

The seven-hour intervention in Pose® running aimed to make consistent biomechanical 

changes to eight of the heel-toe participants while the other eight participants (control 

group) practiced traditional running drills. Figures 6.4.1-6.4.6 allow visual inspection of 

the biomechanical changes for the Pose® and heel-toe group. Heel-toe runners (control 

group) pre and post-test illustrate a lack of any biomechanical changes. Pose® runners 

show distinct biomechanical changes pre and post-test.

Figure 6.4.1 Pre-test heel-toe runner 1 at 3.35 ms'1 taken every 5 frames at 120 frames.s'1.
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Figure 6.4.2 Post-test heel-toe 1 runner at 3.35 ms'1 taken every 5 frames at 120 frames.s'1.
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Figure 6.4.3 Pre-test Pose® runner 1 at 3.35 ms’1 taken every 5 frames at 120 frames.s’1.
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Figure 6.4.4 Post-test Pose® runner 1 at 3.35 ms'1 taken every 5 frames at 120 frames.s'1.



Figure 6.4.5 Pre-test Pose® runner 2 at 3.35 ms'1 taken every 5 frames at 120 frames.s'1.

Figure 6.4.6 Post-test Pose® runner 2 at 3.35 ms'1 taken every 5 frames at 120 frames.s'1.

The primary and secondary variables in Table 6.4.1 give the pre and post-test scores for 

the heel-toe and Pose® runners. Mean scores for comparison are given in bold from the 

experienced Pose® and heel-toe runners from chapter 5 at the same running speed of 3.35



Table 6.4.1 H e e l - t o e  a n d  P o s e ® g r o u p 's  (N=16) p r im a r y  ( in  b o l d )  a n d  s e c o n d a r y  m e a n  s c o r e s  a n d  s ta n d a r d  

d e v ia t io n s  p lu s  f o r  c o m p a r is o n  t h e  e x p e r ie n c e d  P o s e R a n d  h e e l - t o e  t e c h n iq u e  r u n n e r s  at 3 .3 5  m -s" 1 in  b o ld .

Pose® Heel-Toe

Variables Pre Post Pose® Pre Post Heel-Toe

S T  ( m s ) 2 4 5  ( 3 ) 2 1 0 ( 1 ) * 220 2 5 0 ( 2 ) 2 5 0 ( 1 )  260

M A - P  G R F  ( B W )  - 0 .1 8  ( 0 .0 3 ) - 0 . 1 8 ( 0 . 0 3 ) -0.23 - 0 .2 1  ( 0 .0 3 ) - 0 .2 2  ( 0 .0 4 ) -0.20

M  V  G R F  ( B W ) 2 .6 3  ( 0 .4 ) 2 . 6 9 ( 0 . 2 4 ) 2.63 2 . 5 9  ( 0 .2 2 ) 2 . 5 7 ( 0 . 1 6 ) 2.58

M A - P G R F ( p ) ( B W ) 0 . 1 6  ( 0 .0 3 ) 0 . 1 6 ( 0 . 0 2 ) 0.16 0 . 1 7 ( 0 . 0 3 ) 0 . 1 6 ( 0 . 0 1 ) 0.15

CM (brak) - 2 1 .3  ( 8 .4 ) - 1 6 . 2 ( 1 1 . 6 ) -15.3 - 1 9 .7  ( 7 .6 ) - 2 0 .0  ( 6 .5 ) -22.6

(c m -s" 1)

CM (prop) 1 7 .1  ( 5 .9 ) 1 4 .1  ( 6 .7 ) 17.7 1 7 . 4 ( 7 . 3 ) 1 5 . 7 ( 8 . 1 ) 20.4

(c m -s" 1)

CM 25 (cm) 3 2 . 7 ( 6 . 3 ) 2 4 . 9 ( 5 . 8 ) * * 24.9 3 1 .2  ( 3 .1 ) 3 2 .1  ( 2 .3 ) 31.9

V O  ( c m ) 1 1 .5  ( 2 .3 ) 9 .7  ( 2 .1 ) 9.3 1 1 . 4 ( 1 . 5 ) 1 1 .3  ( 1 .6 ) 11.9

K F V  (ra d -s" 1) 6 .1  ( 1 .5 6 ) 5 . 2 7 ( 1 . 4 8 ) * 5.25 7 .5 2  ( 0 .7 1 ) 6 . 9 4 ( 1 . 3 7 ) 5.41

K E V  (rad -s" 1) 4 .2 2  ( 0 .7 1 ) 3 .7 2  ( 1 .4 7 ) 3.48 4 . 1 6 ( 0 . 4 9 ) 4 .1 1  ( 0 .4 1 ) 4.1

K F V S  (rad -s" 1) 6 .8 9  ( 0 .8 5 ) 7 .9 1  ( 1 .1 4 ) * * 7.65 6 . 2 9 ( 0 . 9 7 ) 6 . 1 4 ( 0 . 8 5 ) 6.42

S L  ( c m ) 1 0 3 .5  ( 9 .4 ) 8 9 .1  ( 9 .3 ) * * 89.9 1 0 6 . 4 ( 1 0 . 6 ) 1 0 0 . 7 ( 7 . 9 6 ) 98.4

CM D i s  ( c m ) 8 7 . 3 ( 1 0 . 4 ) 7 2 . 7 ( 5 . 4 ) * 75.6 8 9 .8  ( 5 .8 ) 8 7 .4  ( 6 .4 ) 89.3

S F  ( H z ) 2 . 6 ( 0 . 0 9 ) 3 . 0 ( 0 . 2 5 ) * 3.04 2 .6  ( 0 .1 7 ) 2 . 5 7 ( 0 . 1 8 ) 2.65

Time trial ( s ) 5 6 8 .1  ( 1 0 .6 ) 5 4 3 .4  ( 7 .1 ) 5 7 0  ( 6 3 .5 ) 5 7 3 .3  ( 6 2 .2 )

02 Con ( m l )  2 9 3 6 . 9  ( 2 5 2 .6 ) 2 9 1 8 .1  ( 1 7 4 .8 ) 3 1 6 8 . 9 ( 3 9 9 . 9 ) 3 0 1 8 .5  ( 4 4 4 .3 )

T A - P G R F  ( b ) 2 6 .2  ( 2 .2 ) 1 7 . 2 ( 8 . 5 5 ) 8.4 2 3 . 8  ( 2 .3 ) 2 3 .8  ( 1 .8 5 ) 23.8

(%  o f  s t a n c e )

T V  G R F 4 4 . 8 ( 3 . 9 8 ) 4 4 .0  ( 3 .8 4 ) 37.9 4 4 .1  ( 2 .4 5 ) 4 4 .2  ( 1 .7 3 ) 44.1

(%  o f  s t a n c e )

T A - P G R F ( p ) 7 5 .8  ( 1 .9 9 ) 7 4 .9  ( 2 .2 8 ) 71.2 7 6 .1  ( 2 .1 5 ) 7 4 .8  ( 1 .8 8 ) 73.3

(%  o f  s t a n c e )

C M  S  (c m -s" 1) - 2 2 .0  ( 0 .7 ) - 1 5 .2  ( 0 .5 ) -27.3 - 2 8 .7  ( 6 .4 ) - 3 1 . 7 ( 6 . 4 ) -18.9

C M  T O  ( c m ) 3 7 . 0 ( 5 . 4 ) 3 4 .1  ( 4 .6 ) 36.8 4 2 . 8  ( 4 .3 ) 4 0 .7  ( 3 .9 ) 40.5

C M  6  (r a d ) 0 .3 3  ( 0 .0 5 ) 0 .3  ( 0 .0 3 ) 0.34 0 .3 8  ( 0 .0 2 ) 0 .3 7  ( 0 .0 3 ) 0.35

S H A  ( c m ) 1 3 .8  ( 7 .7 ) 8 .7  ( 4 .7 ) 8.0 1 2 .6  ( 3 .0 3 ) 1 3 .5  ( 2 .4 ) 16.1

K F  (r a d ) 0 .5 4  ( 0 .0 7 ) 0 .4 3  ( 0 .1 1 ) 0.44 0 .5 8  ( 0 .0 3 ) 0 .5 8  ( 0 .0 4 ) 0.55

K E  (r a d ) 0 .5 9  ( 0 .0 8 ) 0 .4 6  ( 0 .1 9 ) 0.48 0 .6 6  ( 0 .0 5 ) 0 .6 3  ( 0 .0 9 ) 0.64

K S W  (r a d ) 1 .5 4  ( 0 .2 5 ) 1 . 6 ( 0 . 2 4 ) 1.57 1 .4 2  ( 0 .1 8 ) 1 . 3 6 ( 0 . 2 2 ) 1.49

K T D  (r a d ) 0 .2 2  ( 0 .0 9 ) 0 .2 8  ( 0 .0 9 ) 0.32 0 .2 3  ( 0 .0 7 ) 0 .2 4  ( 0 .0 7 ) 0.34

K V G R F  (r a d ) 0 .7 1  ( 0 .1 2 ) 0 .6 8  ( 0 .1 1 ) 0.74 0 . 7 7  ( 0 .0 6 ) 0 .7 8  ( 0 .0 8 ) 0.87

F T  ( m s ) 1 3 6 ( 4 ) 1 2 6  1 3 ) 120.0 1 3 4  631 1 3 0  (2) 120.0

S ig n i f i c a n t  d i f f e r e n c e  (P =  0 . 0 1 )  f r o m  * P o s e 16 p r e  to  p o s t - t e s t .  S ig n i f i c a n t  d i f f e r e n c e  (P =  0 . 0 5 )  f r o m  * *  

P o s e *  p r e  t o  p o s t - t e s t .  N o  s i g n i f i c a n c e  w a s  f o u n d  p r e - p o s t  t e s t  f o r  t h e  c o n t r o l  g r o u p  o r  b e t w e e n  p r e - t e s t s  

f o r  t h e  P o s e *  a n d  c o n t r o l  g r o u p s .
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Experienced Pose^ and heel-toe runner’s scores are in bold as well as the training study’s primary research 

variables. Standard deviations are in parenthesis. ST = stance time (ms) right foot, M A-P GRF (brak) = 

maximum posterior ground reaction force (braking) (BW), M V GRF = maximum vertical ground reaction 

force (BW), M A-P GRF (prop) = maximum anterior ground reaction force (propulsive) (BW), CM (brak) 

= centre of mass horizontal velocity largest decrease after impact until maximum vertical ground reaction 

force (cm-s'1), CM (prop) = centre of mass horizontal velocity largest increase from maximum vertical 

ground reaction force until terminal stance (cm-s*1), CM 25 = centre of mass behind the toe-marker 

(horizontal difference at 25 ms), VO = vertical oscillation of the centre of mass (cm), KFV = mean knee 

flexion angular velocity for stance (rad-s"1), KEV = mean knee extension angular velocity for stance (rad-s' 

l), KFVS = mean knee flexion angular velocity from terminal stance to maximum swing angle (rad.s'1), SL 

= step length for right foot (cm), CM dis = centre of mass displacement during stance (cm), SF= step 

frequency (Hz), Time trial (s), 02 con = oxygen consumption (ml), T A-P GRF (brak) = time of posterior 

ground reaction force (braking) (% of stance), T V GRF = time of maximum vertical ground reaction 

force (% of stance), T A-P GRF (prop) = time of anterior ground reaction force (propulsion) (% of 

stance), CM diff = horizontal velocity of the centre of mass from maximum vertical ground reaction force 

until terminal stance minus horizontal velocity of the centre of mass from impact until maximum vertical 

ground reaction (cm-s*1), CM S = centre of mass horizontal velocity decrease between terminal stance and 

maximum swing (flexion) for the right leg during flight (cm-s'1), CM TO = centre of mass forward of the 

toe-marker (horizontal difference at terminal stance) (cm), CM 0 = centre of mass and toe-marker angle at 

terminal stance from the vertical axis going clockwise (rad), SHA = shoulder, hip, and ankle marker 

difference in vertical alignment at 25 ms (cm), KF = knee flexion range during stance (rad), KE = knee 

extension during stance (rad), KSW = knee flexion from terminal stance to maximum swing (rad), KTD = 

knee angle at impact (rad), KV GRF = knee angle at maximum vertical ground reaction force (rad), FT = 

flight time (ms).

Figures 6.4.7-8 give pre and post-test mean scores for the Pose® and heel-toe groups for 

time-aligned hip, knee and ankle joint displacements with maximum vertical ground 

reaction force and vertical oscillation of the centre of mass. Note, the horizontal 

displacement of the centre of mass during flight for the Pose® group post-test is 44.9 cm 

and the heel-toe group is 46.2 cm, whereas step length decreased in the Pose® group 

post-test.
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Figure 6.4.7 Pre (left) and post-test (right) control group (heel-toe) mean scores for ground reaction force, 

hip, knee, ankle and vertical oscillation of the centre of mass.
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Figure 6.4.8 Pre (left) and post-test (right) Pose® group mean scores for ground reaction force, hip, knee, 

ankle and vertical oscillation of the centre of mass.
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The following tables (tables 6.4.2-6.4.6) cover the economy run and the time trial. The 

London Met. office had no weather stations at Loughborough University so the two 

nearest stations were used to record the weather for the economy run and the time trial.

Table 6.4.2 Economy run (2400 m) (A= 16)

Pose® Heel-toe

Variables Pre-test Post-test Pre-test Post-test
AV HR 169.9 (10.5) 166.9 (7.1) 170.0 (22.0) 167.6 (20.5)

SF 15.7 (0.59) 16.6 (1.5) 15.4 (0.74) 15.6 (0.92)

o 2 2936.9(252.6) 2918.1 (174.8) 3168.9(399.9) 3018.5(444.3)

AV HR = mean heart rate (bpm), SF = Step frequency (mean for the 6 laps for the steps taken from a 20 m

stretch in the home straight), 02 = Economy run (oxygen consumption) (ml)

Table 6.4.3 Time trial run (2400 m) (N = 16)

Pose® Heel-toe

Variables Pre-test Post-test Pre-test Post-test
T 568.1 (10.6) 543.4 (7.1) 570.0 (63.5) 573.3 (62.2)

M HR 194.0 (9.9) 194.6 (6.9) 195.9(13.6) 193.1 (11.3)

AV HR 184.9 (9.58) 185.6 (7.2) 183.1 (15.4) 181.0(13.3)

Borg 17.5 (0.53) 18.1 (0.99) 16.8 (0.71) 17.0 (1.41)

SF 12.7(1.1) 13.4(1.5) 13.0 (1.34) 13.8 (1.51)

T = Time (s), M HR = Maximum heart rate (bpm), AV HR = mean heart rate (bpm), Borg = Borg Scale 

(6-20), SF = Step frequency (mean for the 6 laps from the steps taken from a 20 m stretch in the home 

straight).

Table 6.4.4 Questionnaire (scale 1-5) How important do you believe running technique is to overall 

performance? (N =  16)

Pose® Heel-toe
pre-test post-test pre-test post-test

5 5 4 4
3 4 5 5
4 4 5 5
4 5 5 4
5 5 5 4
4 5 4 3
5 5 4 4
5 4 4 4

Mean 4.4 4.6 4.5 4.1
S.D. 0.74 0.52 0.53 0.64

1 = not important at all; 2 = fairly unimportant; 3 = in between; 4 fairly important; 5 = extremely important
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Table 6.4.5 Weather on time trial and economy run days from Sutton Bonnington.

Date W N ws W Gust (N) W Gust Temp Hum Rain
May-24 268 7 266 14 13.7 82.8 0.0

May-25 294 8 295 16 14.7 78.6 0.0

Jun-06 209 9 207 17 16.8 85.3 0.1

NGR = 4507E 3259N, Altitude = 48 metres, Latitude = 52:83 N Longitude = 01:25 W (London Met. 

office ©, 2003) W N = Wind - Mean Direction Degrees True Clockwise from North, W S= Wind - Mean 

Speed (kn), W Gust (N) = Wind - Max Gust Direction Degrees True Clockwise from North, W Gust = 

Wind - Max Gust Speed (kn), Temp = Temperature - Dry Bulb (°C), Hum = Relative Humidity %, Rain = 

Rain - Amount (mm).

Table 6.4.6 Weather on time trial and economy run days from Leicester University.

Date W N W S W Gust (N) W Gust Temp Hum Rain
May-24 pre-test 245 5 265 12 14.2 80.4 0.0

May-25 pre-test 305 7 295 15 14.9 76.7 0.0

Jun-06 post-test 192 6 195 14 16.4 88.3 0.1

NGR = 4595E 3032N, Altitude = 80 metres, Latitude = 52:62 N Longitude = 01:12 W (London Met office 

©, 2003) W N = Wind - Mean Direction Degrees True Clockwise from North, W S= Wind - Mean Speed 

(kn), W Gust (N) = Wind - Max Gust Direction Degrees True Clockwise from North, W Gust = Wind - 

Max Gust Speed (kn), Temp = Temperature - Dry Bulb (°C), Hum = Relative Humidity %, Rain = Rain - 

Amount (mm).

Statistical Analysis

Statistical tests were performed with a commercial statistical programme Minitab 

(version 14). Significant differences between the means of the primary research variables 

were found using a 2 * 2 mixed factorial ANOVA, with the level of significance posted 

at P < 0.05. Significant differences between the means as indicated by significant F- 

ratios were explored with the Tukey post hoc analysis test. Significant interaction effects 

were found for stance time (P = 0.012), centre of mass to support limb at 25 ms (P = 

0.014), centre of mass displacement during stance (P  = 0.030) and step frequency (P = 

0.005). Tukey post hoc tests revealed significant differences between the Pose® group 

pre and post-test for stance time (P = 0.001), centre of mass to support limb at 25 ms (P 

= 0.042), centre of mass displacement during stance (P = 0.001), knee flexion angular 

velocity during stance (P = 0.005) plus swing (P = 0.043) and step frequency (P = 

0.002).
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A three-month prospective injury report was undertaken post intervention for the sixteen 

participants. Their self-report data is summarised. It was not possible to control the 

participants rumiing training owing to an inability to maintain personal contact (the 

researcher lived 6000 miles away). Each participant was asked to keep a diary of training 

mileage and injury incidence. All the participants (except two who ceased rumiing) 

maintained their normal weekly mileage (mean 25-km).

Table 6.4.7 A l l  b u t  t w o  p a r t ic ip a n t s  c o n t in u e d  r u n n in g  t h e ir  n o r m a l  w e e k l y  s c h e d u le s .  A  s e l f - r e p o r t  in ju r y  
s tu d y  w a s  c o n d u c t e d  fo r  t h r e e - m o n t h s  p o s t - t e s t  (N = 1 6 )

Pose® group Heel-toe group
N o  in j u r ie s  in  t h e  s i x  r u n n e r s F o u r  d e v e lo p e d  p a t e l lo f e m o r a l  p a in
w h o  c o n t in u e d  to  r u n  P o se ®  . s y n d r o m e .
T w o  r u n n e r s  ( w h o  le a s t  le a r n e d  P o s e ®  r u n n in g ) O n e  d e v e l o p e d  s u b c a lc a n e a l  p a in
r e v e r te d  b a c k  t o  t h e ir  fo r m e r  h e e l - t o e s y n d r o m e .
t e c h n iq u e  a n d  d e v e l o p e d  i l i o t ib ia l  b a n d O n e  d e v e l o p e d  c h r o n ic  c o m p a r t m e n t
fr ic t io n  s y n d r o m e . s y n d r o m e  in  t h e ir  l e g s .

T w o  c e a s e d  r u n n in g  b u t w e r e  n o t  in ju r e d .

6 .5  DISCUSSION

The major findings of this present study on Pose® running were as follows: 1) There 

were no significant differences in ground reaction forces in the Pose® group between pre 

and post-test. 2) There were significant differences in body and limb activity in the 

Pose® group between pre and post-test. 3) There was no significant change in economy 

in the Pose® group’s economy run, yet they ran faster in the 2400 m time trial. 4) No 

injuries occurred in the Pose® group who continued to run the Pose® technique, whereas 

all of the heel-toe technique that continued to run developed injuries. However, owing to 

the small sample size conclusive comment about injury incidence is not possible at this 

time.

A'endse et al. (2004) administered a Pose® method intervention to twenty male and

female endurance runners using a repeated measures experimental design (within-

subjects). Biomechanical data were collected for their natural heel-toe running style.

During the same data collection, they ran on their forefoot while the same biomechanical

data was collected. Pose® running instruction was then administered, which consisted of

a maximum of seven and half hours and comprised of one and half-hour sessions daily

for five consecutive days. Seven and half hours of Pose® instruction from a trained Pose®
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method teacher was adequate to change their heel-toe runners into Pose^ runners. This 

study therefore employed a similar seven-hour Pose® instruction over seven-days.

Previous attempts to modify running technique have focused on one or two (stride 

length/frequency) modifications (for example, Petray and Krahenbuhl, 1985; Messier 

and Cirillo, 1989; Williams and Ziff, 1991). Although these studies recorded individual 

kinematic variables— stride length, vertical oscillation, trunk inclination and arm 

swing—their results were inconsistent across their sample groups, showing a resistance 

to change from their individual running technique. In contrast, Pose® running produced 

consistent biomechanical changes (see table 6.4.1; Arendse et al., 2004; Dallam et al., 

2005). This study seeks to evaluate these biomechanical changes in the Pose® group (no 

changes were found in the heel-toe group) in relation to a performance test, economy run 

and injury incidence.

Kinetic and kinematic (primary and secondary) variables

The 2 x 2  mixed factorial ANOVA found all the ground reaction force variables non

significant. Lack of change in the ground reaction force makes sense. Chang et al. (2000) 

increased and decreased gravity on eight male endurance runners. They also increased 

inertia without changing gravity. Horizontal impulses, maximum braking and propulsive 

ground reaction force changed substantially with increased gravity compared to inertia. 

With increased gravity, the braking and propulsive impulses increased proportionally, 

whereas with inertia they did not. The vertical ground reaction force did not change with 

increased inertia, but when gravity reduced, the vertical ground reaction force reduced 

proportionally. This confirms gravity and maximum vertical ground reaction force (the 

runner’s weight) strongly relates with impact and is not propulsive (discussed in detail in 

chapter 5; Biewener et al., 2004).

Propulsive (horizontal) ground reaction force did not change in the Pose® runners, while

muscle activity is absent in all runners during the propulsive phase of stance

(Montgomery et al., 1994), indicating the runner is not pushing off the ground with their

muscle system (McClay et al., 1990). The lack of muscle activity, maximum horizontal

acceleration occurring before maximum horizontal ground reaction force (see chapter 5

table 5.4.1), and changes in ground reaction force that are proportional with changes in

gravity (Chang et al., 2000) lead to the deduction that a gravitational torque creates

propulsion (see chapter 3, 5) rather than the ground and the muscle system.
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However, propulsive impulse increases with running speed (Hunter et al., 2005). Using 

multiple linear regression to predict sprint velocity, relative propulsive impulse 

explained 57% of then variance in sprint velocity . The impulse-momentum relationship 

correctly explains motion changes in runners, but as running speed rises, the propulsive 

impulse increases do not have to come from more muscle activity, because the leg and 

hip extensors are silent during propulsion (McClay et al., 1990; Montgomery et al., 

1994). Rather an increase in the propulsive impulse may occur via a gravitational torque 

increasing the acceleration of the runner’s centre of mass. At faster running speeds, the 

increase in trunk inclination will subsequently increase the gravitational torque via an 

increased moment arm. The propulsive impulse may simply be reflecting the increased 

acceleration of the centre of mass via the increased gravitational torque at higher running 

speeds.

The timing of the ground reaction forces only differed in the braking condition for the 

Pose® runners. This may reflect their more aligned shoulder, hip and ankle at impact 

after the intervention (5.1 cm) and the significant difference found in their centre of mass 

being more vertically aligned (7.8 cm) with the support foot at impact. Although not 

significantly different, the Pose® group had a lower braking effect (0.051 m-s'1) for the 

horizontal velocity of their centre of mass during this time possibly reflecting a more 

aligned body position. As the Pose® group were faster post-test for the time trial this 

more aligned body position may reflect the cause of improved performance, because 

faster runners brake less (Bates et al., 1979; Girardin and Roy, 1984; Hinrichs, 1990).

Horizontal velocity of the centre of mass during the propulsive phase of stance was also 

not significantly different in the Pose® group although it did decrease. It is possible that 

the Pose® group did not need to accelerate as much during this phase to maintain a 

constant running speed because they braked less. Another possible explanation is the 

ipsilateral leg is driven forwards during this part of stance in heel-toe runners, which 

would increase the horizontal velocity of the centre of mass. Pose® runners are trained 

not to drive the swing leg forwards. Finally, calculation of the change in horizontal 

velocity of the centre of mass (difference between maximum vertical ground reaction 

force and terminal stance), may have masked increased acceleration in the Pose® group, 

because the experienced Pose® runners in chapter 5 had higher horizontal acceleration of

their centre of mass (chapter 5; figures 5.4.58-61).
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The Pose® group reduced their vertical oscillation in-line with other Pose® studies 

(Arendse et al., 2004; Dallam et al., 2005). Reduced vertical oscillation appears to be a 

distinguishable characteristic of Pose® running. Less knee extension correlates with 

lower vertical oscillation (Wank et al., 1998). The Pose® group reduced knee extension 

(0.13 rad) and vertical oscillation (1.8 cm). Stance time also significantly decreased in 

Pose® runners, suggesting having the support foot remain longer on the ground 

(increased stance time) via increased leg extension potentially increases vertical 

oscillation. Increased stance time correlated positively (r = 0.49) with poorer economy 

reflecting decreased performance (Williams and Cavanagh, 1986; Williams and 

Cavanagh, 1987). In addition, as endurance runners fatigue, stance time increases (Nicol 

et al., 1991). Directly the body begins to fall forwards (after mid-stance), Pose® runners 

are taught to pull their foot from the ground, which potentially decreases the knee 

passively extending, thus reducing vertical oscillation. Pose® running is characterised by 

decreased vertical oscillation, which may correlate with reduced stance time and lower 

knee extension possibly affecting performance. Enomoto et al. (1999) using thirty-two 

participants found their fastest runners produced lower vertical oscillation and less 

braking of the centre of mass’s horizontal velocity. This study’s Pose® runners improved 

their time trial performance eliciting these same traits.

The Pose® group significantly reduced knee flexion angular velocity at impact to 

maximum vertical ground reaction force. This possibly reflects their more aligned body 

at impact, because their knees flex less from impact to maximum vertical ground 

reaction force (0.08 rad). Knee extension angular velocity from maximum vertical 

ground reaction force until terminal stance decreased. The Pose® group flex and extend 

the knee less during stance, which potentially translates into less work and improved 

performance (Arendse et al., 2004). The knee flexion angular velocity for swing in the 

Pose® group post-test significantly increased, whereas knee range of motion barely 

changed (0.06 rad). The reduced moment of inertia at the knee (less extension) during 

stance and the significantly increased knee flexion angular velocity during swing may 

enhance performance based on lower energy cost (Enomoto et al., 1999).

The Pose® group reduced step length and significantly increased step frequency creating

another recognisable characteristic of Pose® running (Arendse et al., 2004; Dallam et al.,

2005). Increased vertical alignment of the shoulder, hip and ankle in the Pose® group at
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impact, may suggest reaching or driving the swing leg forwards in front of the body, is 

absent in Pose® runners. Driving the swing leg will increase step length, and may 

possibly affect the timing of the braking ground reaction force. Support for driving the 

swing leg forwards in heel-toe runners is exhibited by lower differences for horizontal 

displacement during flight between the centre of mass and actual step length for the 

Pose® runners.

Economy and time-trial runs

Dallam et al. (2005) found a mean increase in sub-maximal absolute oxygen cost of 3.28 

(±0.36) Lmiin"1 to 3.53 (±0.43) L»min-1, P < 0.01 in their Pose® trained group. However, 

this study found no significant change in economy. Differences between the two studies 

methodologies may explain the conflicting results. In contrast, to Dallam et al. (2005) 

this study employed an over-ground economy run test of 2400 m at 3.35 m-s'1 when the 

participants were in a non-fatigued state. Dallam et al. (2005) tested economy 

immediately after a maximal oxygen consumption test on a treadmill, leaving the Pose® 

runners in a very fatigued state. Use of a treadmill may also affect Pose^J running.

Consistent increases in submaximal oxygen cost occur with short term attempts to 

manipulate running economy by altering the self-selected stride rate or length (Cavanagh 

and Williams, 1982; Kaneko et al., 1987; Messier and Cirillo, 1989; Cavagna et al., 

1991). This is the first study in running to alter self-selected stride rate and length and 

not subsequently increase oxygen consumption. A possible reason for the difference is 

the Pose® method produces other biomechanical changes as well as changes in stride 

length and frequency (Table 6.4.1). Previous studies do not address how stride length 

and stride frequency occur, because they require participants to manipulate their own 

changes. The Pose® method instruction attempts to teach runners that stride length is a 

consequence of the body’s displacement (via a gravitational torque) not a cause of it. 

Stride frequency results from the need to pull the foot from the ground to keep up with 

the moving body while the swing leg is not driven forwards. Finally, the swing foot in 

the Pose® runners lands under the body identified by a significant change in the vertical 

alignment of the centre of mass over the support foot at impact.

In one exception to the above, Morgan et al. (1994) found that step length optimization 

training among runners who had self selected a stride length that was longer than that

predicted as most economical resulted in improved economy. By testing these runners at
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multiple stride lengths, they determined which was most economical. Approximately 

20% of the runners tested demonstrated a self-selected stride length that was not the 

same as their most ideal economical stride length. Consequently, the runners improved 

their economy by training for three weeks (Monday-Friday for 30 min) with audiovisual 

feedback that allowed them to reproduce the reduced stride length determined to be their 

most economical. Morgan et al. (1994) suggested the longer stride lengths were less 

economical owing to reduced elastic mechanisms and an increase in postural 

maintenance. In contrast, Williams et al. (1991) reported lowered predicted economy 

across a series of relative stride lengths (± 20% of leg-length) after 3-weeks of training at 

a non-optimal stride length condition (+10% of leg-length from their freely chosen stride 

length). They suggested improved economy results from favourable biomechanical 

changes that were not quantified. This study quantified biomechanical changes in the 

Pose® group and in agreement with Morgan et al. (1994) posture significantly altered. 

For example, at impact the Pose® group became more vertically aligned at the ankle, hip 

and shoulder, their centre of mass displaced less during stance and they had lower 

vertical oscillation. They left the ground with a less extended knee and were faster to flex 

the knee during early swing.

Evidence of a similar response may be found in cycling studies that examined pedalling 

rate, oxygen cost and cycling efficiency. Chavarren and Calbet (1999) demonstrated the 

most economical cycling cadences in experienced road cyclists (60 rpm) are lower than 

cyclists commonly self-select for training and racing (90-105 rpm). They attributed this 

phenomenon to a small but significant increase in delta efficiency with increased 

cadence. The change in muscular activation patterns resulting from movements at a 

higher frequency at the same power output, while cycling or running, may contribute 

positively to reducing peripheral fatigue mechanisms by reducing local leg fatigue later 

in the race. The participant feedback (Appendix 4) in this study indicated the Pose® 

runners felt reduced fatigue in their legs, which they concluded was significant in 

improving their performance.

Curvilinear increases in aerobic demand occur when stride length increases or decreases 

at any given speed from one self-selected by the runner (Hogberg, 1952; Knuttgen, 1961; 

Morgan et al., 1989; Kyrolainen et al., 2000a). The optimal economical solution 

identified was a combination of self-selected stride lengths and stride frequencies. The

Pose® group self-selected their stride lengths and stride frequencies, which were
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significantly altered from their original rumiing technique. Pose1*" training does not teach 

or emphasise changing stride lengths and stride frequencies. The Pose® technique 

teaches the runner to fall forwards from mid-stance and pull the support foot from the 

ground without regard for changing stride length and stride frequency. As the runner 

follows these commands their stride length and stride frequency are a consequence not 

the cause of running gait. That is, the speed the body leaves the ground from falling 

determines stride length. Stride frequency results from pulling the support foot faster 

from the ground to keep up with a faster moving body as rumiing speed increases. The 

Pose® method’s novel focus on body posture (rumiing Pose®) and a precise action of 

pulling the support foot from the ground may explain economy differences between this 

study and all other studies.

Other variables identified with economical running such as maximum thigh extension at 

terminal stance had a positive correlation (r = 0.53) with increased economy (Williams 

and Cavanagh, 1986) although this is not a consistent finding (Williams and Cavanagh,

1987). Miura et al. (1973) associated thigh extension with increased push-off at terminal 

stance, identifying this as ‘good' and associated with their elite runners, however, this 

increases the moment of inertia at terminal stance, which increases work (Fenn, 1930). 

Cavanagh et al. (1977) found more acute knee angles during the swing phase enhanced 

economy suggesting a reduced moment of inertia is beneficial (Bailey and Pate, 1991). 

The Pose® group reduced knee extension at terminal stance and increased significantly 

their knee flexion angular velocity from terminal stance to maximum swing. There is 

general support for improved rumiing economy with lower vertical oscillation (Slocum 

and James, 1968; Cavanagh, et al., 1977; Williams and Cavanagh (1987). The Pose® 

group reduced vertical oscillation, which correlates with reduced knee extension (Wank 

et al., 1998), possibly suggesting driving off the ground is not economical. Finally, 

Nilsson and Thorstensson (1987) reported no significant difference in running economy 

between a group of six forefoot and six rear foot strikers potentially negating changes in 

foot contact in the Pose® group had any affects on economy.

Increased heart rate and ventilation correlated strongly with inter-individual variation in 

running economy (Pate et al., 1989), indicating lower heart rate and ventilation 

correlated with improved economy. Increased ventilation and heart rate are associated 

with stress, often caused by change (Hahn and Payne, 1999). Despite the Pose® group

changing their biomechanical profiles they did not worsen economy, in fact, mean heart
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rate reduced by three beats post-test. In Dallam et al. (2005), fatigue and running on a 

treadmill, which they had not trained for in their Pose® intervention, increased minute 

ventilation and heart rate and thus worsened economy.

Despite not improving running economy all the Pose® group ran faster in the time trial 

with a mean improvement of 24.7 s for the post-test, with the heel-toe group differing by 

3 s. Interestingly, maximum and mean heart rate were almost identical in the Pose® and 

heel-toe groups pre and post-test. One Pose® runner was 56 s quicker for his post-test run 

with a mean heart rate 3 bpm lower than his pre-test score while having the same 

maximum heart rate. His Borg scale scores were 16 post-test and 17 pre-test. Borg scale 

scores did not change in the Pose® and heel-toe groups, pre and post-test. It is evident 

that improvements over one-week were not owing to physiological adaptation, but reflect 

the significant biomechanical changes post-test in the Pose® group.

The prospective injury study

The questionnaire asked, “How important do you believe running technique is to overall 

performance?” The Pose® group increased by 4% their belief that technique was 

important, whereas the heel-toe group reduced their belief by 8%. These shifts are small 

and probably insignificant because both groups still regarded technique as fairly too 

extremely important. Regarding technique as important does not necessarily predispose a 

runner to less injury. Interestingly, reviews on running injuries consistently neglect to 

mention technique (and changes) as a possible method of injury reduction or even as a 

cause (for example, Yzerman and Van Galen, 1987; van Mechelen, 1995; Taunton et al.,

2002). All participants recorded their running training plus injuries sustained over a 

three-month period post intervention, while maintaining their normal running routine. 

The prospective injury study revealed that those runners who continued to run Pose® did 

not injure in the proceeding three-months after the intervention. However, the two Pose® 

runners who returned to heel-toe running possibly because they found it hard to maintain 

Pose® running through practice drills, both developed iliotibial band friction syndrome. 

Six of the heel-toe runners developed injuries while the two without injuries had ceased 

running altogether (Table 6.4.7). Therefore, the self-report data collected from the post

test three-month injury study identified six overuse injuries in the heel-toe group and two 

overuse injuries in the Pose® group. Renstrom (1994) states overuse symptoms usually 

occur over time, making it difficult to determine the onset and specific cause. If

incidence is calculated in relation to time, it varies from 2.5 to 12.1 injuries per 1000
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hours of running (Lysholm and Wiklander, 1987; van Mechelen, 1992). This studies 

injury rate was 12.5 injuries per 1000 hours for the heel toe group and 4.2 injuries per 

1000 hours for the Pose® group. However, the two injured runners in the Pose® group 

reported they reverted to heel-toe running owing to difficulties in maintaining the Pose® 

technique, essentially leaving no injuries in those that remained running Pose®.

Most rumiing injuries are lower extremity injuries, with the knee joint being the main 

site of injury (van Mechelen, 1992; Stanish and Wood, 1994). In support of this finding, 

four heel-toe and two Pose^ runners who reverted to their heel-toe running had knee 

injuries. Therefore, the knee joint was the main site of injury in this study. Eccentric and 

concentric muscle contractions in a stretch-shortening cycle are potential components for 

overuse injury at the knee (Johansson, 1992). He suggested knee extensor muscle 

loading result from variations in running technique. Arendse et al. (2004) found knee 

power absorption and knee eccentric work were significantly less in Pose® runners 

compared to running heel-toe. Muscle strains usually occur during eccentric contractions 

(Glick, 1980). Ankle power absorption and eccentric work were greater in Arendse et 

n/.’s Pose® runners compared with their heel-toe running. Their knee power generation 

and concentric work were less in Pose® rumiing compared to their heel-toe running, 

however, there were no differences in ankle power generation and concentric work 

between the running techniques. In-line with Arendse et al. (2005), this study’s Pose® 

runners may have had less eccentric work and power absorption at the knee, however 

larger injury studies will confirm whether the Pose® technique significantly reduces knee 

injuries or possibly increases ankle injuries.

Vertical impact force has been strongly associated with the transmission of shock waves 

upward through the musculoskeletal system (Radin and Paul, 1971; Verbitsky et a l, 

1998). Several investigators identified a positive relationship between the magnitude of 

impact force and the numbers of overuse injuries in runners (Voloshin and Wosk, 1982; 

Wosk and Voloshin, 1982; Cavanagh, 1990). Vertical impact force was similar between 

the two techniques in this thesis. However, the time of the maximum horizontal braking 

force was earlier in the Pose® runners coupled with a more vertically aligned body 

position (shoulder, hip and ankle joints). Pose® runners are trained to land in this body 

position because the ‘S’ like position is meant to reduce the effects of impact forces. The 

‘S’ like position did not reduce maximum vertical impact force but maximum horizontal

braking force occurs earlier suggesting a change in the ground reaction force vector.
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Stergiou et al. (1999) support this study, in that they identified coordination patterns 

between the ankle and knee joints change the ground reaction force vector. Overall, these 

studies suggest lower-limb activity at impact affects the loading of the body.

Running volume is an important risk factor for increased injury incidence, whereas, 

running velocity is not associated with injury risk (Yzerman and Van Galen, 1987). The 

mean weekly mileage was 25-km for both groups (before and after the intervention), 

however, running intensity was not recorded. During a 10-km race, eight elite runners 

were filmed at different stages of the race (Elliot and Ackland, 1981). Fatigue produced a 

more extended lower-limb throughout the gait cycle (negative impact on performance) 

during the later stages of the race. Therefore, differences in landing posture between the 

two techniques in this study may vary gravity’s work on the runners. For example, centre 

of mass location to the support limb at impact may influence the impact force, owing to 

Arendse et al. (2004) finding Pose® running reduced eccentric work at the knee, while 

increasing eccentric work at the ankle. Hunter et al. (2005) found at impact that the 

distance between the support foot and the centre of mass was lower for runners with a 

reduced braking impulse. Impact force did not change in this study but the time it 

occurred did for the Pose® group, while impact distance of the support limb to the centre 

of mass reduced significantly after the PoseR intervention. The timing of braking force 

was earlier in the Pose* group post intervention possibly reflecting the more aligned 

body position at impact, which would affect the braking impulse and may be related to 

reduced injury incidence.

Using a 1-metre depth jumping exercise as an exaggerated motion for landing while 

rumiing, ten healthy males landed on their heels or forefeet (Kovacs et al., 1999). Total 

torque contributions were highest for heel-toe landing (during the extension phase) with 

41% and 45% attributed to the knee and ankle joints and 34% and 55% with the forefoot. 

Electromyography for vastus lateralis muscle activity differed during re-contact for the 

heel-toe landing, whereas gastrocnemius muscle activity in the forefoot group increased. 

Exaggerated motion (depth jumps) highlights greater loading characteristics between 

heel and forefoot contact, which in light of previous comments, suggests limb and body 

positions relationships play important roles in force attenuation and injury incidence.

This study’s sample is obviously too small to draw any conclusions about Pose® running 

reducing injury, except to mention the results are encouraging in that Pose® technique

191



changes may reduce injuries. Therefore, large retrospective and prospective injury 

studies should be conducted.

6.6  SUMMARY

A 2 x 2 mixed factorial ANOVA post hoc found significant differences between the 

Pose® group pre and post-test for stance time (P = 0.001), centre of mass to support limb 

at 25 ms (P = 0.042), centre of mass displacement during stance {P = 0.001), knee 

flexion angular velocity during stance (P = 0.005) plus swing (P = 0.043) and stride 

frequency (P = 0.002). It was suggested, posterior and anterior ground reaction force did 

not change because of its strong correlation with gravity, a constant force. It appears 

seven-hours of instruction in Pose® running is an adequate time to significantly make 

consistent biomechanical changes in male recreational endurance heel-toe runners, which 

matched other Pose® runners. Pose® runners ran faster after the intervention for a 2400 m 

time trial, while heart rate, and perceived exertion did not change. In addition, economy 

did not change for the Pose® group post-test in the 2400 m economy run. The improved 

running speed for the Pose® group in the time trial was attributed to the significant 

biomechanical changes in the Pose® technique rather than any physiological adaptations, 

owing to the short intervention time. It was suggested that the running Pose® (vertical 

alignment of the shoulder, hip and ankle at impact) improved perfonnance via reduced 

braking of the horizontal velocity of the centre of mass. Potentially, after mid-stance, as 

the Pose® runners fell forwards they made better use of the gravitational torque through 

lower leg extension and vertical oscillation. A faster leg recovery during swing enabled 

the leg to keep up with the body but without the need to drive the swing leg forwards of 

it, which decreases horizontal velocity of the centre of mass at impact. Stride length and 

stride frequency therefore, were a consequence of running Pose®, not the cause. A 

preliminary prospective three-month injury report revealed lower injury incidence in the 

Pose® runners as opposed to the heel-toe group.
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CHAPTER 7

CONCLUSIONS

Research into endurance running performance has focused on three main areas: 

economy, optimal running biomechanics, and injury mechanisms. However, this 

research has not provided a universal running technique, except to identify 80% of 

endurance runners land on their heels. Hay and Reid’s (1988) hierarchical model on 

running reflects propulsion in running occurs via pushing off the ground through leg 

extension. Alternatively, Pose® running claimed to be a universal technique that was 

economical, having an optimal biomechanical profile while reducing injuries. Therefore 

a new Gravitational hierarchical model of running based upon the Pose® technique was 

developed, which clarified the interaction of the forces involved in running by 

establishing gravity as the motive and hierarchically leading force in running. 

Experienced Pose® runners were then compared with experienced heel-toe runners 

(chapter 5; study 1). The study confirmed the Gravitational hierarchical model explains 

the interactions of the forces involved in running while clearly distinguishing heel-toe 

and Pose® running. The Pose® method study (chapter 6; study 2) replicated the same 

biomechanical profile as the experienced Pose® runners by training eight heel-toe 

recreational endurance runners in Pose®. The Pose® group improved performance 

without changes in economy while reporting no injuries in those who continued running 

Pose®.

7.1 THEORETCIAL MODELS

There are three known forces (neglecting air resistance) involved in running (gravity, 

ground reaction force, and muscle force) plus potential strain energy. Theoretical support 

for the Pose® method and the new Gravitational hierarchical model were identified from 

the literature.
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Ground reaction force is not a motive force but operates according to Newton's 

third law (Zatsiorsky, 2002; p.51).

The ground can only propel a runner’s centre of mass forward in combination 

with muscle activity (Zatsiorsky, 2002; p.51). Leg and hip extensor muscles have 

consistently proven to be silent after knee extension begins (Branded, 1973; 

Mann and Hagy, 1980; Pare et al., 1981; Schwab et al., 1983; Nilsson and 

Thorstensson, 1985; MacIntyre and Robertson, 1987; Montgomery et al., 1994; 

Kyrolainen et al., 2003) suggesting the ground in combination with the muscle 

system are not propulsive.

High muscle-tendon forces at terminal stance suggest elastic recoil is doing work 

against gravity rather than muscle force during leg extension (Cavagna et al., 

1964; Cavagna and Kaneko, 1977; Hinrichs, 1987; Alexander, 1992; Taylor, 

1994; Jung, 2003).

Elastic recoil is predominantly in the vertical direction (Farley and Ferris, 1998). 

A flic-flac movement shows a spike at terminal stance in the ground reaction 

force from a push-off action reflecting leg extensor activity, which is completely 

absent in runners (Yeadon and Challis, 1994). In fact, the ground reaction force 

decay rate increases as ruiming speed increases, owing to the higher acceleration 

of the centre of mass as it leaves support (Miller, 1990). Therefore, the decay rate 

is reflecting the body rising from the ground and does not support a pushing off 

from the lower-limb musculature.

Gravity (via a gravitational torque) is the only external force that can horizontally 

displace the centre of mass if muscle activity is silent during leg extension. 

Gravity causes a torque around the support foot as the centre of mass passes 

maximal vertical ground reaction force until terminal stance, creating a horizontal 

displacement of the centre of mass as the body falls forwards (Gracovetsky,

1988).

The horizontal ‘propulsive’ ground reaction force may reflect the gravitational 

torque’s propulsive component, because in reduced (or increased) gravity, 

horizontal propulsive ground reaction force changed proportionally (Chang et al.,

2000).

The hip’s extension coincided with reducing vertical ground reaction force 

(Payne, 1983). The hip passively extends via a gravitational torque as the body 

moves past the stationary foot, because hip extensors are only active at mid-

stance and late swing while hip flexors are mainly active in early swing
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(Montgomery et al., 1994). This again suggests the body is moving forward of 

the support limb (via a gravitational torque) and not being pushed forwards from 

the foot/ground via the ankle and knee joints (Fenn, 1930; McClay et al., 1990; 

Montgomery et al., 1994; Pink et al., 1994; Belli et al., 2002; Hunter et al., 

2005). This is in direct contrast to Hay and Reid (1988; pp. 264 and 287-288) 

who suggest leg extension via ankle, knee and hip musculature is the motive 

force in rumiing.

• Driving the swing leg forwards causes the foot to land ahead of the body. This 

potentially reduces horizontal velocity of the centre of mass by increasing the 

horizontal distance of the centre of mass from the support foot at impact (Fenn, 

1930; Deshon and Nelson, 1964; Cavanagh et al., 1977; Bates et al., 1979; Kunz 

and Kaufman, 1981; Girardin and Roy, 1984; Hinrichs, 1987).

7.2  EXPERIENCED POSE® AND HEEL-TOE RUNNER’S STUDY

Two experienced male heel-toe and Pose® runners were matched for age, mass, stature 

and experience. Comparison of these two running techniques was conducted using the 

research variables (primary and secondary), identified from the Gravitational hierarchical 

model. All data used here are the mean of the four test running speeds (2.5 m s'1, 3.35 

m s'1, 4.0 m-s'1 and 4.5 m-s'1). The research variables distinguished the two techniques of 

running, while giving strong support for the Gravitational hierarchical model.

• Pose and heel-toe runners had similar ground reaction forces, possibly reflecting 

their similar body mass and running speed. It was suggested gravity causes 

maximum vertical and anterior-posterior ground reaction force (Chang et al., 

2001). Running speed was associated with the angle of inclination of the centre 

of mass at terminal stance and the subsequent gravitational torque (Chang et al.,

2001).

• Each rumiing speed (2.5 m-s'1, 3.35 m-s'1, 4.0 m-s'1 and 4.5 m-s'1) produced 

increasing angles of inclination and ground reaction forces for the two 

techniques. It was suggested, increased angles of inclination (increased moment 

arm) increase the gravitational torque producing increased horizontal acceleration 

of the centre of mass. Increased horizontal acceleration of the centre of mass will
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subsequently increase ground reaction force. Further, maximal horizontal 

acceleration of the centre of mass increased with running speed.

The time of braking ground reaction force was earlier as a percentage of stance 

for the Pose® runners by 13.5% of stance time. Different body geometry at 

impact explained the braking ground reaction force differences (Deshon and 

Nelson, 1964; Bates et al., 1979). Propulsive and vertical ground reaction force 

occurred at a similar percentage of stance time for both techniques. Similar 

angles of inclination for each running speed explained the similar timing of 

propulsive ground reaction force, owing to their potential relationship to the 

gravitational torque (Chang et al., 2001).

Both heel-toe and Pose runner’s maximal horizontal acceleration of the centre 

of mass occurred before their horizontal maximal ground reaction force, 

suggesting by default that a gravitational torque is the motive force in running. 

The propulsive component of gravity caused increased horizontal velocity for the
(R)Pose runners. The increase was observed by graphing the vertical oscillation of 

one Pose® and heel-toe runner’s centre of mass. This clearly illustrated gravity’s 

increased propulsive component in the Pose® runner.
•  (R)In addition, the Pose runners had consistently higher horizontal acceleration of 

their centre of mass at all test speeds supporting the larger observed propulsive 

component of gravity in figure 5.5.2.

Lack of muscle activity during the propulsive phase of stance and maximum 

horizontal acceleration occurring before the maximum horizontal ground reaction 

force, suggest that both rumiing techniques do not push off the ground but fall 

forwards via a gravitational torque.

Horizontal velocity of the centre of mass was lower in Pose® runners for braking 

and propulsion by -11 cm s'1 and 6.2 cm-s"1 respectively. The angle of inclination 

of the centre of mass at terminal stance and the horizontal velocity were similar, 

suggesting the greatest change in the propulsive horizontal velocity masks a rapid 

acceleration via the gravitational torque in the Pose® runners.

Lower vertical oscillation was associated with less work against gravity in the 

Pose® runners. Vertical displacement and horizontal displacement during stance 

for the centre of mass were lower in Pose runners by 3.4 cm and 12.3 cm 

respectively. The Pose® runners utilise the gravitational torque more effectively 

via lower vertical oscillation, while lower vertical oscillation is associated with 

faster running (Miura et al., 1973).
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• Less horizontal displacement during stance was associated with a more vertically 

aligned body at impact. Pose® runners were more vertically aligned at impact, for 

shoulder, hip and ankle (8 cm), and the centre of mass more vertically above the 

support foot (7 cm). This is associated with less braking of the horizontal velocity 

of the centre of mass (Hunter et al., 2005).

• Knee flexion and extension during stance was lower in the Pose® runners by 0.12 

rad and 0.2 rad respectively. Less knee extension was associated with lower 

vertical oscillation (Wank et al., 1998).

• Knee angle at impact was similar in both techniques but at maximum vertical 

ground reaction force, it was lower by 0.11 rad in the Pose® runners. Less knee 

flexion was associated with increased leg-spring and possibly increased elastic 

recoil during stance (McMahon and Cheng, 1990).

• Stance time, flight time and step length were lower by 31 ms, 23 ms, and 20.2 cm 

respectively for the Pose® runners. While step frequency was higher in Pose® 

runners by 0.5 Hz. Conflicting research on whether shorter steps and increased 

frequency is more efficient make conclusive comment untenable at this time.

• Knee flexion and extension angular velocity were lower in the Pose® runners 

during stance by 0.5 rad-s'1 and 0.6 rad-s'1 respectively, whereas angular knee 

flexion velocity during swing was higher in the Pose® runners by 1.5 rad-s'1. Less 

knee angular flexion during stance may again be associated with a more aligned 

body geometry. Less knee extension angular velocity was associated with Pose® 

runners passively extending their legs. The higher knee flexion angular velocity 

from terminal stance until maximum swing was associated with the Pose® 

runners pulling their foot from the ground, in order to catch up with their body, 

potentially reducing rotational inertia of the lower-limb via less leg extension 

(Bailey and Pate, 1991).

• It was suggested in Pose® running that the hamstring muscles pull the support 

foot rapidly from the ground with the aid of the stretch-shortening cycle 

optimised from a short contact time (Zatsiorsky, 1995; Paavolainen et al., 1999a). 

By pulling the support foot and not driving the swing leg forward of the body, 

gravity can drop the swing leg under the body at impact so the cycle can begin 

again. If the swing leg’s centre of mass is vertically under the body’s centre of 

mass during flight, they will both land vertically aligned if the hip flexors are not 

active.
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• Lack of electromyography on Posew runners inhibits specific comment on muscle 

activity. There appears conflicting data on gastrocnemius activity at terminal 

stance (for example, Winter, 1983; Reber et al., 1993), although the leg and hip 

extensors are consistently silent during most of leg extension (Kyrolainen et al.,

2003).
(R) •• Pose runners therefore, exhibit very different gait characteristics to traditional 

heel-toe runners, such as: A more vertically aligned body position at impact 

(rumiing Pose®), shorter stance time, less knee flexion and extension during 

stance, less decrease in the centre of mass horizontal velocity at impact, increased 

knee flexion angular velocity from terminal stance until maximum swing angle, 

shorter step length, higher step frequency, and lower vertical oscillation. 

Therefore, Pose® runners exhibit a distinct biomechanical profile. This is the first 

attempt to create a universal biomechanical profile for running based upon the 

Gravitational hierarchical model.

• The Gravitational hierarchical model explained the ‘extensor paradox.’ The fact, 

maximum horizontal acceleration of the centre of mass occurred before 

maximum horizontal ground reaction force supported a gravitational torque as the 

motive force in running. Although further research is needed using accelerated 

running to determine if horizontal acceleration of the centre of mass also occurs 

before propulsive horizontal ground reaction force, similar to constant speed 

running.

• Therefore, both heel-toe and Pose® runners fall forwards via a gravitational 

torque refuting the theory that rumiers push off the ground. However, Pose® 

runners were better able to utilise the gravitational torque. The Gravitational 

hierarchical model is therefore a universal model of running, describing both
(R) •Pose and heel-toe running techniques and offers an attempt to create a universal 

profile for running.

7 .3  POSE® METHOD TRAINING STUDY

Sixteen male recreational endurance heel-toe runners were recruited and randomly 

assigned into two groups for a repeated measures design. One group received a 7-hour 

Pose intervention over 7-days while the other group remained as heel-toe runners.



Biomechanical and physiological (primary and secondary research variables) data 

including injury incidence were collected. The Pose® trained group improved their 

performance post-test on the 2400 m time trial run, significantly changed their 

biomechanical profile and recorded reduced injury incidence. Sixteen 2 x 2  mixed 

factorial ANOVAs with repeated measures were used to assess the main effects of group 

(control vs. treatment), and trial (pre to post changes) on the dependent variables 

(primary research variables). Tukey’s tests of honestly significant differences assessed 

individual cell differences post hoc.

• The Ryan-Joiner’s normality test found the data to be normally distributed.

• Levene’s test for homogeneity of variance revealed no significant group 

variability.

• A 2 x 2 mixed factorial ANOVA assessed the main effects of group (control vs. 

treatment) and trial (pre to post changes) on the primary research variables.
(K)• Significant interaction effects (Pose runners pre-post-test) were found for stance 

time (P -  0.012), centre of mass to support limb at 25 ms {P = 0.014), centre of 

mass displacement during stance (P = 0.030) and step frequency (P = 0.005).

• Tukey post hoc tests revealed significant differences between the Pose® group 

pre and post-test for stance time (P = 0.001), centre of mass to support limb at 25 

ms (P = 0.042), centre of mass displacement during stance (P = 0.001), knee 

flexion angular velocity during stance (P = 0.005) plus swing (P = 0.043) and 

step frequency {P = 0.002).

• It was suggested that the posterior and anterior ground reaction did not change 

because of its potentially strong correlation with gravity (Chang et al., 2000). The 

propulsive horizontal velocity variable may have masked the higher horizontal 

acceleration of the centre of mass in the Pose runners. Lack of significance for 

this variable may reflect the same ruiming speeds and similar angles of 

inclination of the centre of mass.

• Mean heart rate in both groups for the 2400 m economy run reduced by 3 bpm.

• No significant statistical change was found in the Pose® and heel-toe group’s 

economy data for the 2400 m economy run pre and post-test. Step frequency for 

the post-test rose slightly (0.9 steps) in the Pose® group.
(K) r*

• Pose runners ran faster (although not statistically significantly) after the 7-hour 

intervention over 7-days on the 2400 m time trial by 24.7 s, while heart rate, and
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perceived exertion did not change, indicating improved performance was owing 

to the Pose® intervention.

• The mixed 2 x 2  factorial ANOVA revealed the Pose® method significantly 

changed the biomechanics (to match experienced Pose® runners; table 6.4.1) of 

heel-toe runners after the 7-hour Pose® running intervention.

• It appears 7-hours of Pose® running instruction is an adequate time to 

significantly make universal biomechanical changes in male recreational 

endurance heel-toe runners.

• These biomechanical changes were clearly related to improved performance 

(increased running speed) over a 2400 m run from a short intervention period 

negating physiological adaptation as the reason for the performance change.

• Running economy did not change or improve in the Pose® group, however, this 

was the first study to change technique and not subsequently increase oxygen 

consumption (economy decreases).

• A preliminary prospective three-month injury report revealed lower injury 

incidence in Pose® runners compared with the heel-toe runners.

7 .4  FUTURE RESEARCH

Gravity’s role in running should be quantified by measuring the horizontal acceleration 

of the centre of mass from maximal vertical ground reaction force until terminal stance 

in accelerated running. Maximum horizontal acceleration of the centre of mass and 

propulsive horizontal ground reaction force should be time matched to determine if 

acceleration occurs before the ground reaction force, similar to constant speed running. 

The biomechanical technique of Pose® running is based upon a theoretical framework of 

using body weight (gravity) to produce movement, which could then also be applied to 

other sports upon its substantiation, creating future research opportunities.

1. To quantify gravity’s role in running by using accelerated running (data collected 

August, 2005). Measurement of the horizontal acceleration of the centre of mass 

from maximum vertical ground reaction force until terminal stance at 240 frames-s'1 

provides an accurate horizontal acceleration of the centre of mass. The maximal 

horizontal acceleration of the centre of mass occurs before the maximum horizontal
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ground reaction force. This supports the propulsive force in running is not ground 

reaction force but a gravitational torque.

2. Collect electromyography on Pose runners and compare it with heel-toe runners.

3. Replicate the Pose® training study using elite runners and triathletes.

4. Replicate the Pose® training study using female runners.

5. Replicate the Pose® training study using sprinters.

6. Measure technique changes and differences between heel-toe/forefoot runners and 

Pose® runners for downhill, uphill and running against strong winds.

7. Evaluate running technique in children by assessing changes through maturation and 

their relation to Pose® method via performance and injury incidence.

8. Develop the theoretical framework of Pose® movement for other sports based upon 

the Pose® technique of body weight (gravity) as the key motive force (current 

research is being conducted in cycling, golf, rowing and climbing) in relation to 

performance and injury.

9. Apply the Pose® running technique in team sports and evaluate running and 

performance changes.

10. Specific research into injury mechanisms in Pose® and heel-toe runners should begin 

with a large retrospective study involving several hundred runners (current data 

collection in London, England and America).

11. Evaluate how Pose® running is learnt using dynamical system theory (pilot study 

March, 2006).
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POSE® METHOD RUNNING STUDY INFORM ATION

Please read the following information regarding a study on the Pose® method of running 
that will be conducted at Sheffield Hallam University’s centre for Sport and Exercise 
Science, Collegiate Crescent Campus and Loughborough university by Graham Fletcher.

The aim: is to make a biomechanical and physiological analysis of the Pose® method of 
running using male runners with a 10 km best time between 37-45 minutes.

Selection of participants: to take part in this study you must be:
• Male (18-30 years old);
• Able to run a 10 km personal best time between 37-45 minutes equating to 6-71/2 

minute per mile pace.
• A runner who lands on the heel as the first point of ground contact.
• Able to make a time slot for data collection between May 24th-29th and June 6- 

13th 2003.

This study will be conducted using two groups:

Group 1: Control group
The first group will continue to run and train as normal while once a day for a week on 
your own, complete some drills, such as high knee lifts and butt kicks. This group will 
then need to attend the laboratory test and track run (between May 24th-29th and June 6- 
13th). A training log will then need to be kept for three months recording any injuries 
sustained. This can be handed in or emailed to Rick Velati.

Group 2: Pose® group
The second group will be trained in the Pose® method for one week with training 
sessions of 60-minutes each. This group will also need to attend the laboratory test and 
track run (between May 24th-29th and June 6-13th). A training log will then need to be 
kept for three months recording any injuries sustained. This can be handed in or emailed 
to Rick Velati.

Laboratory and track dates
Please fill in a time and day for both the lab and track pre and post tests (see sign up 
sheets).
Data collection dates:
Lab tests

• First lab test will be between May 26th and May 29th.
• Second lab tests will be between 9-11th June.

Procedure (what you need to do):
Please bring a pair of running flats (flattest pair of running shoes you have). A short tight 
fitting pair of running shorts. Please wear the same pair of shoes for both tests. You will 
need to sign the consent form and warm-up on arriving at the laboratory. Surface 
electrodes will be placed on five leg muscles to record the electrical muscle activity 
while you run (you will not feel any electrical impulses from this procedure). Reflective 
markers will be taped to certain points on your body so the cameras will be able to 
measure your running action. There will be a forceplate under the carpet that will record 
the forces you make when landing on the ground. Next you will practice running on the 
16 m runway (the length of the lab) to ensure the markers and electrode wires do not
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interfere with your natural running gait. Once you are comfortable with the running 
speed then five successful trials will be collected, at 3.35 m-s'1 (8-minute mile pace).

Running track data collection (2400 m economy and time trial run)
• First test May 24-25th (Saturday and Sunday between 8.30 am -  8 pm)
• Second test June 6th (Friday between 8.30 am -  8 pm)

You will select a 30-minute time slot between those times that suits your schedule on 
either day.

Procedure (what you need to do)
The warm up will consist of two laps at 8-minute mile pace. You will then be asked to 
run an economy run of 2400 m at 8-minute mile pace while oxygen consumption is 
collected by a portable gas analyser. Each 200 m section must be run evenly at a 1 
minute per 200 m. Heart rate and time will be recorded from a polar heart rate monitor 
for the run and at the finish for the time it takes for your heart rate to drop to 120 beats 
per minute. Stride frequency will be recorded by a digital video camera for a 20 m 
section each lap.

Immediately following the economy run after removing the portable gas analyser a time 
trial will be run for 2400 m. Maximum, average heart rate and time will be recorded. 
Stride frequency will be recorded by a digital video camera for a 20 m section each lap. 
At the finish of the time trial run, the time heart takes to return to 120 beats per minute 
will be recorded. You will be asked to rate how hard the run felt using a Borg scale.

Please note:
Regardless of which group I am assigned too I will maintain for the one-week study:

• To allow 48 hours of light training prior to the track testing days (this is essential 
for valid data collection);

• To maintain a consistent diet and drinking procedure before testing and during 
the testing period;

• To maintain a training log of my training during the one-week testing period.
• And then maintain a training log of any injuries for 3-months after the study.

Please contact Graham Fletcher at icuchange@pacificcoast.net or Rick Velati at 
rick vclati@liotmail.com before May 20th, 2003 if you are interested in taking part in 
this study.
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PARTICIPANT’S CONTACT SHEET

Name Contact phone # Time and day available for 
training
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QUESTIONNAIRE

Name: Date:

Pre test:

Post test:

Please read carefully and circle he number that matches your opinion.

Please read the following item, and circle the number that best reflects your 
agreement with the statement.

Running technique is defined as the technical details and skill (pattern 
and sequence of movements) that determine the degree of excellence in 
accomplishing running movement.

Question Not
important at 
all

Fairly un
important

In-between Fairly
important

Extremely
important

How
important do 
you believe 
running 
technique is 
to overall 
performance?

1 2 3 4 5
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INFORMED CONSENT

INFORMED CONSENT

N am e:
A ddress:

Tel:

The full details of the tests have been explained to me. I am d e a r  about what will be 
involved and I am aware of the purpose of the tests, the potential benefits and the 
potential risks.

The test results are confidential and will only be  communicated to others sue* a s  my 
coach if agreed in advance.

I have no injury or illness that will affect my ability to successfully complete the tests.

My perm ission to  perform th is te s t  is  voluntary; I am  free  to  s to p  
the  te s t  a t any  point, if I s o  desire.

I____________________________________________________________ acknow ledge th a t

th ere  a re  risks an d  dan g ers  inheren t in physical ex erc ise  and  d ec lare  that I know 

o f no reaso n  why I should  not com plete  the  te s ts  described . Any qu estio n s I 

hav e  ab o u t th e  te s t se ss io n  h ave  b e en  answ ered , an d  the information given on  

th e  m edical questionnaire is correct, and  should b e  trea ted  a s  confidential.

S igned:____________________________________________  D ate:______________

S ignature  of guardian  /  paren t if u n d e r 18 

S ignature  of tester:_____________________ D ate:



PRE-TEST MEDICAL QUESTIONNAIRE

PRE-TEST MEDICAL QUESTIONNAIRE

Nam e:...................... j.................. ...................... .............. ,........... ........... .......... .............

Date of Birth:................ .............  A ge:................  S ex :......... ......................

Please circle the appropriate re sp o n se  or fill In the blank.

1. How would you describe your present level of activity?

Sedentary Moderately active Active Highly active

2. How would you describe your present (evet of fitness?

Unfit Moderately fit Trained Highly trained

3. How would you consider your present body weight?

Underweight Ideal Slightly over Very overweight

A. Smoking Habits Are you currently a  smoker? Yes No
How many do you smoke ..perday
Are you a previous smoker? Yes No
How long Is it since you stopped? ....... ....... .......
Were you an occasional smoker? Yes No

 perday
Were you a regular smoker Yes No

 ....perday

5. Do you drink alcohol? Yes No
If you answered Yes, do you have?

An occasional drink A drink every day More than one drink a day

6. Have you had to consult your doctor within the last six months? Yes No
If you answered Yes, please give details................ . ........... ............ ..........

7, Are you presently taking any form of medication? Yes No
If you answered Yes, please give details  .............................. ...............



0. As far as you are aware, do you suffer or have you ever suffered from;
a Diabetes? Yes NO b Asthma? Yes No
c Epilepsy? Yes No d Bronchitis? Yes No
e ‘Any form of heart complaint? Yes No f Raynaud's Disease? Yes No
g ‘Marian's Syndrome? Yes No h ’Aneurysm/embolism? Yes No
1 Aneamia Yes No

9. Is there a history of heart disease in your family? Yes No
If Yes, please give details,,.,...,...

10. Do you currently have any form of muscle or joint Injury? Yes No
If Yes, please (jive details , ...........................................................................

11. Have you had lo suspend normal training In Ihe last two weeks? Yes No 
If the answer Is Yes, please give details,................. , ......

12. As for os you ore aware, Is there anything that might prevent you from
successfully completing the tests that have been outlined to you? Yes No

If you answ ered Yes to  any question pro coded by a * p lease ask  your G P  to 
complote the  'D octors Consent Form* provided.

If blood sam ples are to be taken, p lease answ er the following questions;

a) Are you suffering from any known serious infection? Yes No
b) Have you had jaundice within the previous year? Yes NO
c) Have you ever had any form of hepatitis? Yes Ko
d) Are you HIV antibody positive? Yes No
e) Have you had unprotected sexual intercourse with any

person from an HIV high-risk population? Yes No
0 Have you ever been involved in intravenous drug use? Yes No
g) Axe you hemophiliac? Yes No

* If the answer to any of the above is Yes then please discuss the nature of the problem 
with your Sport and Exercise Scientist.

Signature:................... ........... ........................ ............... ..........

Signature of Parent or Guardian if the subject is under 10: 

Date:.........................



PARTICIPANT’S PERSONAL DETAILS SHEET

Name 10 km time Age Current injuries
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APPENDIX 2

RUNNING TRACK TESTS

TRACK DATA COLLECTION SHEET ECONOMY RUN

Date and tim e__________________ /__________________

Pre test: |

Post test:

Name/number Oxygen Stride
frequency

Av HR Max HR Rec HR
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TRACK DATA COLLECTION SHEET TIM E TRIAL RUN

Date and tim e__________________ /

Pre test: |

Post test:

Name/number Time Stride
frequency

Av HR Max HR Rec HR Borg
scale
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TRACK SIGN UP SHEET

The economy and time trial run will take pace at Loughborough university track. Please 
select a convenient day and time for both pre and post tests.

Date Time Name Date Time Name
May 24th 8.30 am May 24th 2.30 pm
May 24th 9.00 am May 24th 3.00 pm
May 24th 9.30 am May 24th 3.30 pm
May 24th 10.00 am May 24th 4.00 pm
May 24th 10.30 am May 24th 4.30 pm
May 24th 11.00 am May 24th 5.00 pm
May 24th 11.30 am May 24th 6.00 pm
May 24th Mid-day May 24th 6.30 pm
May 24th 12.30 pm May 24th 7.00 pm
May 24th 1.00 pm May 24th 7.30 pm
May 24th 1.30 pm May 24th 8.00 pm
May 24th 2.00 pm May 24th 8.30 pm

Date Time Name Date Time Name
May 25th 8.30 am May 25lh 2.30 pm
May 25th 9.00 am May 25th 3.00 pm
May 25th 9.30 am May 25th 3.30 pm
May 25th 10.00 am May 25th 4.00 pm
May 25th 10.30 am May 25th 4.30 pm
May 25th 11.00 am May 25th 5.00 pm
May 25th 11.30 am May 25th 6.00 pm
May 25th Mid-day May 25th 6.30 pm
May 25th 12.30 pm May 25th 7.00 pm
May 25th 1.00 pm May 25th 7.30 pm
May 25th 1.30 pm May 25th 8.00 pm
May 25th 2.00 pm May 25th 8.30 pm

Date Time Name Date Time Name
June 6th 8.30 am June 6th 2.30 pm
June 6th 9.00 am June 6th 3.00 pm
June 6th 9.30 am June 6th 3.30 pm
June 6th 10.00 am June 6th 4.00 pm
June 6th 10.30 am June 6th 4.30 pm
June 6th 11.00 am June 6th 5.00 pm
June 6th 11.30 am June 6th 6.00 pm
June 6th Mid-day June 6th 6.30 pm
June 6th 12.30 pm June 6th 7.00 pm
June 6th 1.00 pm June 6th 7.30 pm
June 6th 1.30 pm June 6th 8.00 pm
June 6th 2.00 pm June 6th 8.30 pm

12



VIDEO DATA COLLECTION SHEETS

Each participant had a test name/number for each test, which was filmed using a sheet of 
paper before each economy and time trial run for the stride frequency data collection. 
This enabled each participant to be clearly identified for each test. An example is given 
below for participant 1 for each test.

Pre economy 1 

Post economy 1 

Pre time trial 1 

Post time trial 1
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6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Borg scale (Borg, 1970) 
Original rating scale

Very, very light 

Very light 

Fairly light 

Somewhat hard 

Hard

Very hard 

Very, very hard
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APPENDIX 3 

LABORATORY TESTS

ROUTE MAP

Sheffield Hallam University Online Visitors Guide * The Route to C... Page 1 of 2

Visitors Guide

The route to  Collegiate Crescent

We can provide you with personalised driving .directions 
to  the University or use th e  general Information below .

From Junction 33 of the Ml, follow signs for A630 Sheffield 
City Centre. Continue on the A630 until the dual carriageway 
ends at e roundabout with traffic signals (Park Square) © .

Take the fourth exit from the roundabout signposted City 
Centre, then the third left turn into Arundel Gate O .  The 
Crucible Theatre is on your right and the City Campus on your 
left. Continue along the dual carriageway and go straight 
ahead (second exit) a t the first roundabout © .

At the second roundabout, take the third exit onto the ring 
road © . Continue through the traffic lights to the next 
roundabout and take the first exit signposted A625 
(Castlcton) © .

The Collegiate Crescent Campus is approximately 750 metres 
(1/2 mile) along on the right.

Travelling by bus? take th e  81 ,82 , 83, 84, 85 or 86 from 
Pmstone S treet (outside the Town Hall) If visiting the Ecdesall 
Road end of the Campus. If visiting the Clarkehouse Road 
end of the campus, take the 50 (Dore) from the Transport 
Interchange or Church S treet o r me 60 (Ranmoor or Crimicar 
Lane) from Church Street or directly outside the train station. 
For Clarkehouse Road Schools (Health and Social Care/Social 
Studies and Law) you need to  get off a t the Haflamshfre 
Hospital.

itlc C ourt

rMPUSj

► SHU hom epage 
k Visitors hom epage 
kOur location  
kPlan your route 
k Travel information 
i How to g e t  to

■ City C#mpv*
■ C rescen t
• P*alt*r L*nc

k Campus plans
■ City Campu*
•  Cre«c*M
■ P u tU r  U f t t __________

M
http://www.shu.ac.uk/services/marketing/visit/tocoll.html 23/05/2003
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PARTICIPANT’S LABORATORY BOOKING SHEET

Day/date Car driver Morning Afternoon Evening
Monday 
May 26th

Tuesday 
May 27th

Wednesday 
May 28th

Thursday 
May 29th

Monday 
June 9th

Tuesday 
June 10th

Wednesday 
June 11th
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LABORATORY DATA COLLECTION SHEET

Name:   Date and time:

Weight:

Filename:

Consent/medical:

Questionnaire:

Height:

Pre-test:

Post-test:

Trial Accept GRF hit Time EMG Clean

18



APPENDIX 4

POSE® METHOD INTERVENTION

POSE® RUNNING INFORMATION SHEET 
(Dr. N. Romanov and Graham Fletcher M.Sc)

A general overview of the theory of the Pose® method can begin with the laws of 
Thermodynamics. The law states that any system in nature goes from a higher order to 
lower level of energy. Therefore, any system needs to be built by an outside force. A 
plant needs the sun in order to build its cell structure. Running is the same, where the 
structure (body) needs to be able to utilise higher order forces (gravity) and energy 
(muscle contractivity and elasticity) in the most effective order. By making the most 
effective use of gravity, the flow of energy loss is least costly. The continuous use of 
muscle activity is limited by the body’s ability to breakdown adenosine triphosphate 
(ATP). To accomplish an effective use of the available forces and energy in running, an 
economical skilful technique is paramount. Specifically, this relates to where force 
should be applied to continue movement, and the order in which these forces should be 
applied.

A brief discussion of linear kinematics can highlight the Pose® method’s structure. The 
force of gravity when released (potential energy) is transferred to kinetic energy. A 
pencil held in the fingers above a table has potential energy and, when it is released it is 
transferred to kinetic energy. Following the pencil example, a pencil balanced on its end 
has potential energy, which becomes kinetic energy when it over-balances. The over
balancing of the human body from one support limb to the other, in running, 
immediately has kinetic energy, and the more skilful application of this energy can result 
in a more economical running gait. Kinetic energy can also be greatly increased by the 
body’s velocity. The greater the velocity of the general center of mass (GCM) in flight 
increases the body’s kinetic energy.

Focusing on the position of the support limb in relation to the GCM, the line of gravity is 
restricted from exerting its pull due to the position of the support limb being forward of 
the line of gravity at toe-off. The heel strike is also known as a breaking force. The term 
breaking in running is illogical in itself. Momentum will continue to remain constant in 
the absence of other forces, so breaking momentum each stride reduces forward velocity. 
The Pose method teaches that the support limb must break contact with the ground 
immediately:
1) to not hinder the gravitational line of pull
2) to maximise muscle elasticity, using the law of the coefficient of restitution- the 

greater elastic value the higher energy return. This can only be achieved by a 
rapid action, which is best achieved by a mid-foot strike.

The following, from a previous article, illustrate the actual body movements needed to 
achieve this theoretical model.
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1) S (spring-like) shape of the body (the “running pose”) - the element of running 
technique used for utilizing muscular elasticity and integration of the body into a 
single system.

2) Free falling -  utilizes gravity as one of the main forces, driving the body forward 
horizontally.

3) Changing support -integrates forces that remove the foot from the ground while 
allowing gravity to pull the body horizontally forwards.

4) Pulling the support foot straight (vertically) up-wards using the hamstring 
muscles -  allowing the foot to break contact with the ground quickly.

Developing these concepts, further, beginning with point (1) it is essential to understand 
that body position is integral to all movement. The body position determines the position 
of the GCM and the GCM determines the direction of the whole body. Once the body 
leaves the ground the path of the GCM cannot be altered, so the position the body is in 
before take-off is essential. At foot-strike, the position of the body is paramount because 
it affects how much the lower limb (particularly the knee) is loaded.

Point two, is interesting, because the need to apply an external force to initiate movement 
is obvious, but the question is what force to utilise? Current thinking is to apply 
Newton’s third law of motion and push off from the ground. Following this logic to its 
natural conclusion, leads to wishing the runner, can push harder or faster, both requiring 
greater strength. Many seeking greater strength have unfortunately turned to illegal 
substances for the answer. However, there is another external force, which if utilised 
correctly, can be more effective. The following quotation written in 1912 by Graham - 
Brown in the British Medical Journal reveals the logic of this idea.
“7/ seems to me that the act of progression itself- whether it be by flight through the air 
or by such movements as running over the surface of the ground-consists essentially in a 
movement in which the centre of gravity o f the body is allowed to fall forwards and 
downwards under the action of gravity, and in which the momentum thus gained is used 
in driving the centre of gravity again upwards and forwards; so that, from one point in 
the cycle to the corresponding point in the next, no work is done (theoretically), but the 
mass of the individual is, in effect, moved horizontally through the environment. ”

Developing point three and four is again re-thinking our current running action ideas. 
Muscle force is predominantly focused upon when coaching or discussing running, yet 
another muscle property can greatly aid in limb movement. This is muscle elasticity. The 
musculotendinous junctions in the feet, Achilles and quadriceps tendon allow for storage 
and use of muscle elasticity, just as an elastic band can store elastic / strain energy when 
stretched. The key to effectively utilsing this energy to move the legs, is the speed at 
which the runner can change support. This means the speed at which you can remove 
your foot from the ground before the elastic energy has dissipated from those 
musculotendinous junctions.

This article has attempted to develop more fully some of the concepts of the Pose® 
method of running and highlight their differences with current running theory.
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POSE® INTERVENTIO N RUNNING DRILLS

Summary of the week
Days 1-2 Developing the concept
Days 3-4 Reinforcing the concept
Days 5-7 Individual technique and skill development

Overall aims and objectives
Develop cognitive models, perception of falling and pulling the foot from the ground and 
finally auto correction of technique.

Practical daily outline
Introduce the concept: theoretically and practically. Utilise specific drills to gain a feel of 
the concept of falling and pulling the foot from the ground. Video each participant too 
aid learning. Give verbal and written feedback after each session.

Day 1
Short theoretical session in a classroom
There are four forces involved in running: gravity, ground reaction force, muscle force 
and muscle elasticity. Gravity, ground reaction force and muscle elasticity are free in 
reference to internal energy costs. Pose questions on how does gravity work in running 
and which external force moves the body forwards?

Show body tipping and falling forwards and assess muscle forces involved. Clarify 
gravity causes the tipping and no muscle forces were needed to fall. Explain then how to 
continue moving forwards by pulling the foot from the ground. Explain the use of 
muscle elasticity and its role in aiding pulling the foot from the ground. Emphasise the 
timing of falling and pulling the foot from the ground through the key concept of 
shoulder, hip and ankle vertical alignment.

Key to learning:
Increase participant’s perception of the movement. Ascertain how they felt after each 
drill and running activity.

1) Use Pose® biomechanical model as standard to compare against.
2) Develop their perception but note their perceptions may be wrong so increase 

the correct perception.
3) They have to perceive two things: to feel falling and to pull the foot from the 

ground immediately they begin to fall forwards.

Drills
Warm-up: Video each participant running prior to intervention.
Falling position:

• Stand on heels and try and fall forwards. Try the same thing with the leg behind 
and in front.

Interaction with support:
• Stop participants in a freeze frame. Ask them where their weight is on their feet.
• Lift heels to see if weight is on the ball of the foot.
• Unlock knees and rapidly lift heels
• Keep weight on the ball of the foot at all times.

Move the body as an integrated system:
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• Push participant back and forth and side-to-side while maintaining an integrated 
body position.

Weight position in relation to foot and centre of mass:
• Place a hand on their chest and take the participants weight as they fall forwards. 

Feel weight move from foot to chest.
• Repeat but let go this time.
• Repeat but demonstrate how small a lean is needed to fall forwards.
• Repeat and show where participant’s foot lands in front of their body.
• Repeat, but ask them to pull their foot as they fall.

Feel pull of the foot from the ground:
• Hold their heel as they pull the foot from the ground
• Push foot down as they resist.

Video running and give feedback.

Summary:
Understand the model of gravity’s work on the body, body leads leg and the foot is 
pulled from the ground as they fall forwards.

Day 2
Perception drills for falling

• Hand on belly button and feel vertical relationship to the ball of the foot.
• Repeat and fall forwards.
• Repeat and feel how small and angle is needed to fall.
• Run with fingers on belly button.
• Repeat with eyes closed; use partner.
• Arms stretched out behind the back and run.
• Hands pushing on hips and run.
• Hand on chest with partners and run.
• Partners fingers on back and run.

Range of motion of the lower-limb:
Emphasise a decreased range of motion. Show using running shoes the position of the 
foot, on landing and flight and impact again. Do not drive the leg forwards.

• Run and video for feedback
Rubber bands to illustrate a correct leg action

• Leg behind and in front as they run with the bands attached to their ankles.
• Run with partners in front and behind with hands on their shoulders.

Reduce effort needed by only using hamstrings to pull the foot.
Reduce effort needed by only using the minimal amount of hamstrings to pull the foot. 
Technique problems to look for:

• Landing ahead of the centre of mass with the foot; do not drive with hip flexors.
• Landing on toes; feel ball of the foot on landing.
• Landing rigidly; relax and land with a neutral ankle.
• Landing on the sides of the foot; use pull up toes drill.
• Landing on the sides of the foot and rigidly; use Pony, tapping, slow light 

running.
• Landing hard, decelerate foot with hamstrings.

Hips and muscle integration:
• Standard hip drill, front back, behind and sides and run after each one.
• Standing and push person from all sides while holding them. Ensure body 

remains integrated.
• Run and video for feedback.
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Body integration drills: check their perception:
• Partner running with eyes closed. Feel lightness and integration.
• Push from behind and resist with whole body and then run.
• Press back on partners hands hard and then run.
• Run while partner pressing down on their head to feel no vertical movement.

Summary:
Reinforce their perceptions. Can they feel falling and pulling of the foot from the 
ground? Do they feel lightness and body integration?

Day 3
Reinforcing the concept
Increase their perception for falling and speed of pulling the foot from the ground.

• Run with arms in front and behind.
• Partners push the shoulder from the side intermittently to check rapid change of 

support while running.
Pulling:

• Use rubber bands to increase feel of hamstring work.
• Standing band work and running with bands
• Short sharp downhill run to feel pulling action
• Individual holds bands and pulls vertically upwards from the shoulders and push 

out to the side for increased tension. Pull foot vertically upwards.
Pattern of movement reinforcement:

• Pony drill
• Tapping drill
• Skipping drill
• Front lunge drill
• Run 200 m and video for feedback 

Summary:
Can they feel falling as they run? Can they pull the foot from the ground as they run? 

Day 4
Reinforce fall and pull

• Press-up position without bands face down and upwards. Pull for hamstring 
work.

• Press-up position with bands face down and upwards. Pull for hamstring work. 
Run 400 m and video for feedback:

• Use a metronome or count to develop stride frequency of over 180 per minute. 
Observe mistakes:

• Keep knees flexed; do not extend leg at toe-off
• Maintain a vertical alignment on landing.
• Do not land ahead of the centre of mass.
• Do not leave the support leg behind.
• Fall.
• Do not fix the ankle on landing.
• Hips not integrated.

Look for:
• Lightness.
• Body integration.
• Pose position on landing
• Ease of running
• No pressure, tightness or pain.
• Fall and pull action.
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Summary:
Give specific drills for each individual from feedback.

Days 5-7
Individual technique development

Day 5 
Warm-up:

• Pony, tapping and skipping
• Cross steps.

Drills:
• Jumps

Run and video for feedback:
Run on gravel to emphasise pulling of the foot.
Summary:
Give individual drills and comments.

Day 6
Partner work with hips and hamstring and run.
Run and video give feedback individually.
Summary:
Give individual feedback.

Day 7
• Jumps on one leg; movement in the hips not knee.
• Feel hip, knee, ankle and ball of foot light and loose.
• Harder hip work with partners
• Run and video
• Show them day 1 and today for comparison. 

Summary:
Final comments and feedback.
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CONTROL GROUP’S DRILLS

Please read carefully the description of the drills and the daily format. Follow the daily 
format on your own for each of the seven days.

Drill description 
Marching drill
Raise the right knee to hip level with each stride 
Butt kicks

Daily routine

Please complete each day on your own. Repeat drills for each leg for as long a distance 
or time as you can accommodate comfortably while holding form.

Day 1 Marching drill, high knee lifts and butt kicks repeat four times for
each leg.

Day 2 Marching drill, high knee lifts and kicks outs repeat four times for 
each leg

Day 3 Marching drill, kicks outs and bounding repeat four times for each 
leg

Day 4 Butt kicks, kick outs repeat six times for each leg and bounding 
four times 50 m.

Day 5 Butt kicks six times, high knee lifts repeat four times for each leg 
and bounding four times 50 m.

Day 6 Marching drill repeat four times, high knee lifts four times and 
bounding six times 50 m

Day 7 Butt kicks six times, kick outs four times for each leg and 
bounding six times 50 m.
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INJURY RECORD SHEET

Name

Date Cause of injury Type or
description of the 
injury

Days off running
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