
Mathematical model for optimising the performance of a ground source heat pump.

PALLEDA, Siva Prakash.

Available from the Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/20159/

A Sheffield Hallam University thesis

This thesis is protected by copyright which belongs to the author.    

The content must not be changed in any way or sold commercially in any format or medium 
without the formal permission of the author.    

When referring to this work, full bibliographic details including the author, title, awarding 
institution and date of the thesis must be given.

Please visit http://shura.shu.ac.uk/20159/ and http://shura.shu.ac.uk/information.html for 
further details about copyright and re-use permissions.

http://shura.shu.ac.uk/information.html


jj Sheffield S1 1WD [ 

1 0 1  9 6 3  6 6 7  X

REFERENCE



ProQuest Number: 10697466

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te  manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10697466

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106- 1346



MATHEMATICAL MODEL FOR OPTIMISING THE PERFORMANCE OF A 

GROUND SOURCE HEAT PUMP

E3y

Siva Prakash Palleda

The thesis is submitted in partial fulfilment of the requirement of Sheffield Hallam 

University for the degree of Master of Philosophy

October 2009



Abstract

Energy demand for the twenty first century is expected to increase many fold 
along with corresponding diversification of energy sources and generation 
methods. Of the many energy sources available, use of Ground Source Heat 
Pump (GSHP) system is the focus of the analysis in this research.

This work is carried out to identify the key parameters which affect the 
performance of the GSHP system. A mathematical model has been developed to 
understand the complex operation of the heat pump under typical working 
conditions. Individual sub-systems, such as Ground Heat Exchanger (GHE), 
evaporator, condenser, compressor and radiator are modelled in MathCAD and 
coupled together and solved simultaneously. The performance of the system is 
predicted while varying air temperature, power input to the compressor and the 
ground temperature beneath the earth's surface. In addition a special sub-model 
was developed for the single vertical U-tube GHE in FLUENT, a Computational 
Fluid Dynamics (CFD) software, to calculate the overall heat transfer coefficient for 
varying outer surface temperature of the borehole.

The overall system results are validated against the published results with the 
system operating range of 18°C to 33°C with around 10 percent deviations.

It is determined that the COP of the system increases with surface area and 
overall heat transfer coefficient (OHTC) of the heat exchanger. An increase in up 
to 500 m2 surface area, steep raise of COP from 10.05 to 10.3 is observed. 
Similarly increase of 10 W/m2K of OHTC has steep COP rise from 10.05 to 10.28. 
The temperature gradient across the system also has influence on its operating 
performance, where a 15°C increase in the ground temperature for cooling mode 
reduces the COP by around 5%. Finally the degree of refrigerant sub-cooling has 
a positive effect, for every 5°C temperature drop the COP improves by 0.5 similarly 
for degree of super-heating, COP improves by 0.25.

Scope for performance enhancement for GSHP is investigated by tuning operating 
conditions. The effect of operating variables to the sensitivity of performance of 
heat pump is also determined.
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A = Surface area of heat transfer (m2)

Cp = Specific heat ( J/kg K) 

d = Diameter of pipe(m) 
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k = Thermal conductivity(W/m K)

KpjPe=Thermal conductivity of pipe (W/m K) 

Kgrout=Thermal conductivity of grout (W/m K) 

Kground=Thermal conductivity of ground (W/m K)

I = length of pipe (m)

M = Mass flow rate (Kg/s)

mi = Mass flow rate of radiator water (Kg/s)

n = Number of bore holes

Qsr = Cooling load (Watts)

Qs = Condenser load (Watts)

Re = Reynolds number 

ri=lnternal radius of pipe(m) 

r2=External radius of pipe(m) 
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Tgir = Outside air temperature (°C)
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v = Velocity of water (m/s)

Win = Power input (Watts)
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ref = Refrigerant 
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Structure of the Thesis

Chapter 1 Introduction

This chapter gives the initiation of the project, answering why this topic has been 

chosen and sufficient information about the scope and the developments in the 

recent past. It is also introduces to the availability of the non-conventional energy 

resources and its applications and research objectives. The block diagram of the 

research carried out has been explained.

Chapter 2 Literature Review

In this chapter the detailed work undertaken by many authors and the 

methodologies used to represent the system is discussed in detail. The progress 

in the area of GSHP has been highlighted at appropriate instances. There have 

been many attempts to develop analytical model of the system and the true 

representation of the model in the numerical form as well. Numerous numerical 

procedures available to solve the system especially the ground surrounding the 

vertical U tube heat exchangers have been discussed. Calculation methods of the 

thermodynamic properties of the refrigerant adopted by different authors have 

been discussed.

Chapter 3 Steady state modelling of Ground Source Heat Pump

Each sub system of the GSHP is modelled representing heat balance and heat 

transfer equations. Overall there are five heat exchangers in the complete system. 

The system is represented by a set of simultaneous equations. Since heat transfer



is modelled in Log Mean Temperature Difference (LMTD) method, they are 

nonlinear in nature. Theses equations are solved simultaneously with some good 

initial guess work. Once the model is established, the variables are fine tuned to 

match with the published data. The validated model is used to calculate the new 

values of COP. With increase in the surface area of ground heat exchanger and 

better thermal properties for the pipe and grout material, the expected COP is 

much improved.

Chapter 4 Ground Heat Exchanger (GHE) modelling in FLUENT

FLUENT is versatile CFD software, used to model and analyse the complex 

physical problems. Methodology is developed to model, analyse the GHX and use 

results from Chapter 3, and the boundary conditions were used from the published 

data for the analysis. The value of the thermal resistance of the grout and pipe 

material is used in the analytical model to verify the results. This chapter explains 

conditions used to model the system, mesh quality and solution techniques. 

Different configurations are modelled to increase the surface area of heat transfer 

to observe the effect on COP of the system. Thermal properties of the grout and 

pipe material are improved to observe the improvement in the COP of the overall 

system.

Chapter 5 Results and discussions

Results from the analysis are discussed and the comparison is made with the 

published data to represent the reference model. Normal operating parameters are 

used to validate against the standard mode, the deviation for the analysis and the 

assumptions made are discussed.



Chapter 6 Conclusions

Conclusions are made with reference to the influence of operating parameters and 

the assumptions made. Power input to the compressor, Air temperature and 

Ground temperature are the three main variables which drives the system. Water 

inlet temperature, degree of superheating and sub cooling effect is also 

considered as variables and appropriate conclusions were made for the hybrid 

model

Chapter 7 Future scope of work

It is out of the scope of the work to implement all the practical operating and time 

varying parameters in the current study. Ground modelling for the grout and time 

variations might be a good approach for better understanding of the system. 

Different configuration of the ground pipe is worth the try. Future suggestions are 

made to improve the research to achieve the higher performance.
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Chapter 1

Introduction

Generating power to meet the growing demand of the developing world with 

limited resources calls for more efficient, safe, economical and environmental 

friendly means and has been a growing challenge for many years. Various non- 

conventional methods to generate power and heat from natural resources have 

been developed. They are wide spread from wind turbines, solar energy systems 

to tidal power systems. Air Source Heat Pumps (ASHP) and geothermal heat 

pump systems are environment friendly and greener energy systems. Generally 

the geothermal heat pumps are also called as geo-exchange systems. Ground- 

Source Heat Pump (GSHP) system uses ground as source or sink and this very 

basic energy exchange distinguishes the technology from air-source heat pumps. 

Since ASHP uses air as source or sink for the thermal energy exchange for 

heating or cooling, auxiliary heating sources are used as its efficiency and capacity 

decrease with outside air temperature [1].

GSHP can be used in almost any region, irrespective of any weather conditions. 

GSHP uses energy well below the earth surface, which is unaffected by the 

outside air temperature, hence it is more reliable technology compared to ASHP. 

Mechanical pumps were used directly to circulate the high underground 

temperatures water available like hot springs and steam vents for heating indoor 

spaces without the use of a heat pump system. Systems such as mechanical 

ventilation heat recovery system MVHR show the scope available to develop 

newer technologies in sustainable energy [2].
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In developed countries, approximately 40% of the total energy consumed is 

account for space heating and cooling [3]. With the increasing demand for the 

power, use of fossil fuel has a greater concern over global warming due to harmful 

emissions. Every effort is being made to develop and use energy efficient, 

environmentally friendly and less maintenance systems. This need gives rise to 

the development of the GSHP system for its less maintenance costs compared to 

the conventional alternatives available.

Today GSHP systems are considered to be one of the widely accepted systems in 

the renewable energy sector. Around one million GSHP system units have been 

installed worldwide in about 30 countries with annual increases of 10% over the 

period of last 10 years [4]. Energy consumption is reduced up to 50% in cooling to 

70% in heating mode can be observed [5]. This potential for significant energy 

savings has led to the use of GSHPs in a variety of applications.

25% Electricity Heat
Pump

100% Delivered Heat

75% Renewable 
Geothermal Energy

Figure 1 Renewable energy delivered by a heat pump system with COP of 4

The performance of the heat pump system is measured in Coefficient Of 

Performance (COP) as that is the ratio of work done to the energy supplied. In 

refrigeration cycle, either in heating or cooling mode, the COP is always greater



than one, but ASHP with defrost cycle COP can be less than one. The drop in 

performance can be accounted for the energy consumed to defrost the heat 

exchanger exposed to the outside air. The ranges of COP for practical application 

are around 3 to 5; the output is 3 to 5 times the power input to the compressor [6]. 

As shown in Figurel, these heat pumps with external energy input, cause the heat 

to flow from a lower temperature region to higher temperature region, which is the 

refrigeration unit that is being used other way round as heat pump system. The 

use of heat pump technology is not new, in 1852 Lord Kelvin developed the 

concept and Robert Webber was then modified as a GSHP in the 1940s. Duing 

1960s and 1970s these heat pumps gained commercial popularity.

1.1 Ground temperature variations

Earth's temperature is relatively constant after certain depth throughout the year 

and increases as it goes further in depth. GSHPs utilise the relatively constant 

temperature of the Earth to provide heating and cooling. Figure 2 shows typical 

monthly outdoor temperature variations in Erzurum, Turkey between October 2005 

and May 2006. This shows that mean temperature is around -10° C and max 

around 10° C for winter and summer respectively.

It is observed in the following Figure 3 that ground temperature is very much 

dependent on the air temperature [7] . At -10°C to 10°C outside temperature, the 

ground temperature is varying from-5°C to 8°C from months 1 to 5 for a depth of 5 

cm. The variation at much greater depth of around 100 cm, the variation is ranging 

from 5°C to 10°C.
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It is evident that the ground temperature very much depends on the outside air 

temperature for certain depth [7]. . It is almost linear to the temperature outside 

and is resilient for small changes.
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Figure 3 Monthly variation of mean ground temperatures at several depths from 

October 2005 to May 2006 in Erzurum, Turkey
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As the depth increases, temperature increases and eventually stabilises around 

constant value for greater depths and is no more affected by the outside air 

temperature.

As the heat is absorbed from the ground, high thermal inertia of the ground 

makes the temperature of the surrounding ground decrease very slowly. Before 

the temperature further drops, energy from the surrounding ground is extracted. 

This very nature of the ground makes it possible to use it as the infinite reservoir 

for heat exchange.

Below Figure 4 shows the temperature of the ground is nearly constant after 

certain depth the variations are shown from summer (August) and winter (January) 

in Nicosia, Cyprus [8]. It is evident that earth temperature is nearly stabilised to a 

constant value after certain depth irrespective of the geographical locations.
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Figure 4 Temperature variations with depth of ground
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1.2 Types of GSHP configurations

1.2.1 Open loop systems

In this system the water from the wells or ponds is used directly to add or reject 

the heat to the primary loop heat exchanger in the system. The water from the 

secondary loop is pumped back to the well or pond again. The cycle uses fresh 

water each and every time it exchanges heat from the primary loop.

1.2.2 Closed loop system

In this system the secondary loop which carries the water or glycol exchanges the 

heat with the source (water or ground) on one side and with primary loop on the 

other side. The primary loop is the main system loop of the heat pump system 

which involves compressor, condenser and evaporator and throttle valve. The 

water in the secondary loop is re circulated.

1.2.2.1 Horizontal trenches (Closed loop)

Horizontal trenches are made for the pipes to be laid usually at 1-3m deep 

underground. The area of the ground required depends on the heating capacity of 

the building, but usually it is also dependent on the space availability and it 

requires large area when compared to vertical borehole types. Below Figure 5 

shows the arrangement of the system [5]
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Figure 5 Horizontal closed loop heat pump system

1.2.2.2 Slinky coil horizontal system (Close loop)

Slinky coil system is another type of arrangement of horizontal loop systems, pipes 

are laid in coil shape on the horizontal trench rather than the straight pipe. This 

increases the surface area of the pipe for the given length of the trench laid hence 

it increase the heat transfer process. The overlapped looped pipes can be 30 to 

60% shorter than the traditional horizontal types and cheaper to install [9]. 

Following Figure 6 shows the general arrangement of the slinky coil system [9]

Figure 6 Horizontal closed loop slinky coil system
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1.2.2.3 U- tube vertical boreholes (Closed loop)

On the other hand, vertical borehole type configurations are widely used because 

of the space restrictions [4]. Vertical borehole types or the U-tube as they 

generally called as require 30- 50% less tube length compared with horizontal 

types for the same thermal loading, due to effect of high temperature at different 

depths [10]. The borehole depths of up to 200m are being used for these types of 

arrangements. Below Figure 7 shows the arrangement of vertical borehole system

[5]

Figure 7 Vertical U tube closed loop heat pump system 

1.3 Cost comparison

The choice of different configuration is influenced by the cost associated with each 

type. Following Figure 8 gives the capital costs for different configurations for 

ground to water heat pump systems [11]. The investment on the coil for the 

vertical system is more when compared to the horizontal system. On the other 

hand it saves on the length of ground coil required for the same capacity as 

explained earlier. Vertical drilling costs more compared to the horizontal trenches.



System
Type

Ground coil 
Costs (£/KW)

Heat pump 
Costs (£/KW)

Total system 
Costs (£/KW)

Horizontal 250-350 350-650 600-1000

Vertical
Indirect 450-600 350-650 800-1250

(Costs include installation and commissioning but exclude distribution system)

Figure 8 Capital costs for different configurations

Direct exchange systems

It is the simple cycle in which the refrigerant from the heat pump is directly 

circulated in the copper tubes buried in the ground. The heat is directly exchanged 

between the refrigerant and the ground which in contrast to the secondary loop 

containing water or antifreeze solution to exchange the heat with the indirect heat 

pump system. This avoids the secondary loop; copper being good conductor of 

heat, heat transfer rate is higher compared to the conventional pipes. It requires 

copper tubes for greater length and more quantity of refrigerant for circulation 

makes it expensive.
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1.4 Typical Heat pump cycle operation

Room thermostat
Heat pump and 

circulating pump

Base board 
backup heat

Supply air

Return air

Heat
Exchanger

Circulating pump

Ground loop

Figure 9 Typical Heat Pump Unit

GSHP system consists of three systems loops as shown in Figure 9 a ground 

loop, a refrigerant loop, distribution loop and optional domestic hot water loop [5] 

ground loop circulates the water in to the ground and extracts the heat, then enters 

the refrigeration loop where it exchanges the heat with the refrigerant. The cooled 

water will then enter the ground loop; hence the water keeps circulating in the 

same loop. The refrigerant loop once getting heat from the ground water will 

evaporate; the compressor then compresses the refrigerant vapour. The 

compressed high temperature refrigerant enters the condenser and looses the 

heat by heating the water in the distribution loop. The condensed refrigerant is

13



then expanded in the throttle valve before entering the evaporator. The heated 

water in the distributed loop will be circulated in the building for heating purposes.

In cooling the building for summer conditions, the heat is absorbed by the cold 

water in the distribution loop and transferred to the relatively cold refrigerant in the 

evaporator. The evaporated refrigerants are then compressed in the compressor 

and make its way to condenser to loose heat to the ground loop circulation water. 

Warm water in the ground loop rejects the heat to the relatively cold surrounding 

ground and it re-circulates again for the next cycle. The refrigerant after loosing 

heat in the condenser, pass through expansion valve and enters the evaporator to 

absorb heat from the distribution loop and this cycle repeats.

1.5 Role of GSHP in reducing C02 emissions

Properly sized and installed GSHPs have shown significant C02 reductions 

compared to conventional fossil fuel boilers, in the UK context with the current 

power station mix, 1kWh of electricity emits 0.43kg of C02[12]. At a Seasonal 

Performance Factor (SPF) of 3.8, this can lead to overall C02 reductions in excess 

of 40% compared to a ‘natural’ gas boiler. For gas grid, the C02 savings against 

oil, LPG, coal or direct electric heating, the C02 emission savings are even higher

[6]. In the context of the Stern review, it is now interesting to ‘cost’ carbon savings. 

Figure 10, extracted from a UK government report tabulates the relative costs and 

outputs of different renewable energy technologies. The final row of the table 

makes interesting reading for GSHPs. The existing capacity of the GSHPs is much 

less in comparison with the solar thermal energy generation. Capital cost of the

14



solar photovoltaic system is much higher than the ground source heat pump; it is a 

clear choice for the other systems to be replaced with GSHP.

Over the last few years, GSHPs have gained significant popularity, especially in 

the domestic market. Ease of maintenance and reasonable pay back period with 

impressive savings of the energy bills makes it a more viable alternative than the 

conventional systems.

Existing
Capacity

Capital Cost 
£/kW

kWh/yr 
per kW

Pay back 
(years)

Saving 
Tonne 

C 02/yr Per 
kW

Saving
kgC/yr

/E1000CAP
EX

Solar PV 8MW 6300 750 120 0.32 14

Micro-Wind - 2500-5000 1700 30 0.7 47

Solar Hot 
water

35MW
70,000

Installation
1250-2000 1000 80 0.2 54

GSHP 5MW 600 
Units 1000-500 3000 15-20 0.4 91

(Source: UK DTI report-Renewable Heat and Heat from Combined Heat and Power Plants-2005) 

Figure 10 Comparison of several renewable energy techniques

Form Figures 10 & 11 significant reduction in C02 emissions can be achieved by 

using GSHP systems. Figure 11 shows the relative fuel costs of the different 

technologies, as well as the C02 savings. All heating and hot water supplied by the 

heat pump, at an affordable cost, is a very satisfactory outcome. The table has to 

be evaluated for each country and region to be relevant.

Annual fuel cost to run the GSHP system is very low compared to all the other 

systems. The interesting fact remains that the emissions is the lowest among all 

the conventional methods.
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System Annual Fuel Costs Annual C 02 Emissions 
(tonnes)

GSHP £215 1.6

Natural Gas 
(Condensing Boiler) £300 2.9

Natural Gas 
(Non-Condensing) £345 3.3

Liquid Petroleum Gas 
(Bulk-Non-Condensing) £500 4.3

Liquid Petroleum Gas 
(Bottle-Non-Condensing) £670 4.3

Oil (35 sec) (Non-Condensing) £300 4.4

Direct Electric-Storage and Panels 
With night time Low Cost Tariff £510 6.5

House Coal £380 6.6

Smokeless Coal £515 7.5

(House =10001^-12500KWh/yr as per SAP 2001)

Figure 11 Comparison of fuel costs and C02 emissions for GSHPs and fossil fuel

Boilers

The following Figure 12 shows the Kg of C02 emissions for KW of energy 

produced [13]. It is very clear from the table that GSHP is the lowest producer of 

emissions compared to the other conventional and non-conventional methods of 

heating .It is evident from the following figure that GSHP performs 50% better than 

the ASHP. One more advantage being, the ground temperature is relatively 

constant for all the seasons; hence the system can maintain its performance all 

year around.
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Figure 12 Comparison of carbon dioxides emissions from GSHPs and other forms

of heating

1.6 Methodology

Calculating annual building loads as well as long-term ground thermal response 

for the demand, multi-year simulation is an invaluable tool in the design and 

development of GSHP systems [14]. Predicting the performance of GSHP for 

varying underground thermal properties, temperature and heating requirements 

has been a difficult task. GHE operates with various dynamically operating 

parameters, this gives an opportunity to study and improves its effectiveness, so 

as to improve the performance of the whole system. It has to operate with varying 

parameters such as load, soil temperature, configurations, thermal properties of 

ground and soil condition. Since the pipe is buried in the ground, it is a difficult 

task to calculate the thermal resistance between the borehole surface and pipe 

external surface. The configuration of the pipe and deep ground characteristics 

adds to the complexity of the resistance measurement. A method to calculate

17



thermal resistance has been introduced by Kavanugh et al [15,16] in which a pipe 

represented as a hollow cylinder with effective radius by assuming that the 

external surface of the pipe is completely in contact with borehole surface.

The work of Eskilson [17] presents the methods based on non-dimensional 

thermal responses for thermal interference between boreholes for multiple 

borehole systems. These functions are computed numerically and the values are 

given for various configurations of the pipes in the borehole. There have been a 

number of models based on some analytical solutions suggested by Ingersoll [18] 

and Hellstrom [19], but these models used oversimplified approaches to treat the 

boreholes for short time behaviour. In many design programmes, the time of 

interest is in the order of months or years. Boundary element method to calculate 

thermal resistance in the grout has limited use for simple, straight-line flows, which 

are practically not common. There are many programmes available for evaluation 

of GSHP systems [20]; these tools only deal with a peak load and for simple or 

basic heat exchangers.

This work is undertaken to develop a hybrid model combining analytical and 

numerical solution techniques known as Computational Fluid Dynamics (CFD) to 

predict the performance of GSHP and to identify the critical parameters, which 

governs the COP of the heat pump by considering response of changes in the 

load and the temperature difference between the room and the ground. The use of 

CFD techniques in thermal analysis and turbulence modelling is widely gaining 

popularity in design and research of heat exchangers [21].
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Having gained much popularity, CFD deals with some limitations; it is difficult to 

calculate the response for longer time of the ground and associated climatic 

conditions. In order to deal with the climatic conditions over the year, a powerful 

mathematical tool called MathCAD is used to develop the model of the borehole 

along with the pipe. Performance evaluation is carried out for steady state 

conditions by assuming the temperature on the outer surface of the grout as an 

initial start. The simulations are also carried out for changing temperature of room, 

ground, surface area of the grout and other varying parameters to observe the 

effect on COP of the system.

From Fourier's law, heat conduction without the temperature gradient indicates the 

material having no resistance to heat transfer or having infinite thermal 

conductivity. Practically existence of these condition is clearly not possible, 

however such condition is never be satisfied exactly. Such conditions can be 

approximated, considering the resistance to the conduction within the solid is small 

or negligible compared to the resistance to heat transfer between the solid and its 

surroundings [22].

The temperature from the outer surface of the tube is modelled for Logarithmic 

Mean Temperature Method (LMTD) for temperature distribution to the circulation 

fluid. LMTD is the logarithmic average of the temperature difference between the 

hot and cold sides of the fluid at each end of the exchanger. The larger the LMTD, 

the more heat is transferred
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Incropera et al. [22] shows that the steady-state average fluid temperature is the 

average log mean difference defined by LMTD.

ATm and AT0Ut are the fluid temperature variations, at the inlet and outlet, 

with respect to the ground temperature (i.e. ATin = Tin - Tg) and Tg is the grout 

temperature. This method is more accurate compared to the generally used 

average temperature method which generally over predicts the temperature.

1.6.1 Use of CFD and MathCAD

The CFD model is used for calculating the overall thermal resistance of the 

borehole by fixing the temperature on the surface of the grout. Previously the 

attempts were made to calculate the thermal resistance of the borehole by using 

Boundary Element Method (BEM) [20]. Here Finite Volume Method (FVM) does 

the simulation. This method is more accurate since it integrates the residuals over 

the entire domain before reaching the next iteration. This method converges 

quickly and is more reliable compared to the boundary element method which 

consumes both time and memory.

In this analysis, a 50 meter pipe is modelled with single u tube surrounding the 

grout. The geometry and the properties of the complete system are obtained from 

the manufacturer's handbook. Convergence is obtained for the values given in the

AT|m —
I AT out| I AT in|

(1)

Where
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published data; this model is used as a reference model for varying parameters. 

The temperature on the surface of the grout is varied along the length to observe 

the outlet temperature variations. To improve the model, different geometries and 

material properties were suggested.

Each subsystem is represented by a set of equations and assembling each sub 

systems represents the complete system. Simultaneous equations were solved in 

MathCAD for the convergence and compared with the published data to validate 

the model. The overall heat transfer coefficient from the CFD model is used to 

verify the temperature variations and compared with published data, this represent 

the complete system hybrid model.

1.7 Research objectives

To build the whole system model in MathCAD and use the operating conditions for 

the model from the published data as input, to create a reference model. Once the 

reference model is created the system is checked for the stability by changing 

predefined variable and to look for change in the solution. If the unique solution 

exists, the variables calculated will converge at the same value and with negligible 

or no residuals.

Then the initial guess for the variables to be calculated is changed and checked 

for the residue so that the convergence is achieved. This process gives the affect 

of variables on the system performance. The procedure is repeated for different
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values of material properties, flow rate, inlet water temperature to the GHE and 

area of grout.

The results were analysed and the key parameter which affect the performance 

are identified. The CFD model of the GHE is modelled and solved for the same 

boundary conditions used for the MathCAD model to calculate the thermal 

resistance of the GHE. The CFD results are analysed for temperature and velocity 

distribution in water and temperature distribution in the grout material and pipe. It 

also gives the surface heat transfer coefficient which can intern used to calculate 

the thermal resistance. The results were analysed and discussed at the end and 

necessary conclusions were drawn. Finally future scope for the model analysis is 

discussed.
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1.8 Block diagram of the project

GSHP

Parameters

MathCAD
Model

CFD Model

Hybrid Model

Results

Experimental
Results

Validate

No Accurate

Yes

Analyse

Conclude

Figure 13 Flow chart for the project

Above Figure 13 shows the steps followed to complete the cycle of the project. 

The analytical model developed in MathCAD is compared with the experimental 

values published. The key parameters are identified and the bench model is
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created. The CFD model of the GHE gives additional information of the overall 

heat transfer resistance of the heat exchanger. The final model is validated against 

the published data. The results are discussed and the necessary assumptions are 

made and discussed as appropriate.

Conclusion

The purpose of this first chapter has been to introduce the full scope of the project 

and define the main objectives for such a study. It gives brief introduction about 

the work to be carried out to build hybrid system. These remains centred upon 

how ground heat has become important to study and evaluate as an important 

alternative energy resource.
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Chapter 2

Introduction

The purpose to this section is to establish a working definition and framework for 

the GSHP and its potential toward becoming a primary energy saving system. A 

literature review acts a framework from which the analysis can be conducted and 

continue towards further development of GSHP. Further exploration is needed in 

order to build a foundation toward understanding new energy heat sources, which 

may work better toward ‘green’ initiatives. Methodologies use do model ground, 

thermal loading and environmental variables which affects the ground thermal 

storage, developed by different authors has been discussed. Building hybrid model 

in MathCAD and CFD has been outlined. Assumptions made for the modelling and 

its limitation due to complex working nature have also been discussed.

2.1 Literature Review

Until 1980's not much significance was given to the ground thermal storage 

systems. Growing demand for the green energy initiative has given significant rise, 

since then much work is done in geothermal energy extraction techniques.

One of the projects such as Metropolitan housing trust head quarters in 

Nottingham, UK has invested in greener energy initiatives. Major research work 

and development of GSHP technology with innovative applications such as hybrid 

GSHP systems and development of environmentally-friendly refrigerants are being 

carried out across many universities in the UK [23, 24]. The major deriving force in 

this research is to identify technologies that may be utilised by industries in the
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commercial market to strengthen GSHP's competitiveness at the global level [25]. 

Countries such as US, Canada, China, South Korea installed and successfully 

operating the GSHP systems for industrials and domestic applications.

A geothermal heat pump can transfer heat stored in the earth into a building during 

the winter, and vice versa during the summer. GSHPs are increasingly becoming 

popular due to their reduced primary energy consumption and there by reducing 

emissions of greenhouse gases. The technology is well established and adopted 

in USA and Europe.

A typical heat pump require 100kWh of power input to turn 200kWh of freely 

available environmental or waste heat into 300kWh of useful energy [26]. This 

saving of 200kWh correspondingly reduces the emissions of harmful gases such 

as carbon dioxide (C02), Nitrogen oxides (NOx) and Sulphur dioxide (S02).

Approximately the total number of globally installed GSHP-systems sums up to 

about 12,000 MWth[27]. This as almost equalling to the total number of global 

systems estimated around 1,100,000 units, of all the GHE types available, it was 

found that vertical closed loop type contribute to 46% of the systems and 

horizontal closed loop type contribute to 38% in USA alone, while the remaining 

are open loop systems [28]. In the last two to three decades, significant research 

has gone in to relating the effect of properties of ground, pipe and grout material 

on the performance of the GHE system. The goal being optimisation of the heat 

transfer mechanism and installation method used for the given ground type. 

Kavanaugh [29] suggested, during steady state operation the maximum expected
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thermal power is 50-80 W/m. For vertical GHE's one or two U tubes per bore hole 

is the most commonly used configurations. The sizing of the GHE depends on the 

load, thermal and physical properties of the soil such as thermal diffusivity, 

density, specific heat capacity, thermal conductivity, etc. Thermal conductivity of 

the tubing, grout material and the ground temperature plays important lone in 

designing of the GHE system. For typical ground conditions, Pahud and Matthey 

[30] suggest 50 W/m thermal power to be considered in designing a GHE, with 

ASHRAE [31] as also confirming around the same value. Taking into account, 

however; the parameters such as:

• The thermal loading on the building is not a steady state condition

• The time required by the GHE to reach steady state condition is 

comparatively longer due to its high thermal inertia. It is estimated around 

30 tonnes of soil per m2 of building area is required for heating and cooling 

operations.

• System is used alternatively for both heating and cooling purposes, it is 

important to consider the energy sustainability in the ground in response to 

the change in working nature of the heat pump system.

The critical parameter in designing the vertical system is the thermal power per 

meter of borehole that the GHE can handle [32]. With this mind, it is important to 

test the performance of the system with following equations.
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2.1.1 Coefficient of Performance (COP)

According to the first law of thermodynamics, in a reversible system we can show 

that

Qhot — Qcold "I" W (2)

and

W — Qhot" Qcold (3)

Where

Qhot = heat given off by the heat reservoir (Watts)

Qcoid = heat taken in by the cold heat reservoir (Watts) 

W= Work input (Watts)

Therefore, substituting for W from the definition of COP,

For a heat pump operating at maximum theoretical efficiency (i.e. Carnot 

efficiency) it can be shown that

COP heating —
Q hot

(4)
Q  hot ”  Q  cold

Q  hot _  Q  cold 

T hot Tcold
(5)

and

(6)

Where
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Thot = Temperature of the hot reservoir (°K)

Tcoid = Temperature of the cold reservoir (°K)

Hence, at maximum theoretical efficiency,

C O P  heating —
T hot

(7)

Similarly, for cooling

P O P  _  ^  c0^  _  co*̂  / o \o U r  cooling — n  n  —T T (o;
W hot" W cold I hot I cold

It can also be shown that COP COoiing = COP heating -  1.

Note that these equations must use the absolute temperature, such as the Kelvin 

scale. COP heating applies to heat pumps and C O P COoiing applies to air conditioners 

or refrigerators.

Although COP can never be remotely approached in practice to the theoretical 

values, it is useful as a reference to indicate important influencing factors. It is 

evident that the COP increases as the temperature difference between the 

condenser and the evaporator decreases.

The COP system can be calculated from the following equation

system
pumps

(9)

Where,

COPSystem =COP of the whole system

Qsr= Cooling Load (Watts)

29



WpUmps = Work input to the circulating pumps (Watts)

Wfan = Work input to the fans (Watts)

W^ = Work input to compressor (Watts)

For engines, efficiency is the general term in use for which values for actual 

systems will always be less than these theoretical maximums.

2.1.2 Ground Heat Exchanger (U tubes)

Vertical ground loop exchanger typically consists of High Density Polyethylene 

(HDPE) pipe U-tube as shown in Figure 14 inserted in to 50 meter deep vertical 

borehole drilled in the ground [33]. The borehole has a diameter of 150mm and a 

polyethylene pipe of 32mm internal diameter with 4mm thickness is used to 

circulate the water for the ground circuit. Circulating water in the pipe absorbs the 

heat from the refrigerant in the heat pump and rejects the heat to the ground on 

the other side or vice versa

Ground
'surface

FluidFluid
inlet

Utube
Grout

.Borehole

■Ground 
,Far field 
boundary

Figure 14 Vertical U-tube in symmetry plane
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Once the U-tube is inserted in to the borehole, the rest of the gap between the U- 

tube and the borehole is filled with grout mixture. The very purpose of the grout 

being used is to improve the heat transfer between the soil and plastic pipes by 

providing a better contact surface and also to provide a seal around the U-tube to 

prevent against the contamination in the ground water system. For this very 

reason, the maintenance is nearly zero for such systems.

2.1.2.1 Configurations of ground tubes

There are basic configurations which are generally used are shown in 15 & 16 [8]

Single U pipe Double U-Pipe
Pipe diameter = 25-32 mm Pipe diameter = 25-32 mm 

Width 50-70 mm Max. Width= 70-80 mm

Figure 15 Basic configurations of Vertical U tubes

Simple Coaxial ~ ~ ,
External Diameter = 40-60 mm ..  vrfonMax. Width = 70-90mm

Figure 16 Basic configurations of vertical U tubes
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The ground heat exchanger is the closed vertical type (U-shaped) and generally 

has 24-30 boreholes of depth ranging from 50- 175 m in depth depending on the 

load requirement. The distance between the boreholes generally maintained 

around 5 m. Thermocouples measures subterranean temperatures in the ground 

located at 1.5 m and 2.5 m away from the outer surface of the heat exchanger. 

Ground temperature might be varied with the temperature of the ground heat 

exchanger [34]. Ground temperature distribution may vary with different surface 

cover (such as bare ground, lawn, and snow), two different locations for example, 

bare land and grass lawn has been selected to measure the temperature 

distribution in the ground at different depths [35]. Cu-Konstantan thermocouple 

wires and thermocouple meters SR60 (Stanford Research System, USA) were 

used by POPIEL et al [36] to measure the temperature at different time intervals. 

Survey suggest that because of the complexity of acquiring the physical properties 

of ground and surface boundary conditions, simple empirical formulas such as for 

example formula proposed by Baggs [37,38] is commonly used.

For studying the heat transfer phenomena in transient condition most models uses 

step response for the heat transfer rate. Superimposing principle allows the final 

solution to be the form of convolution of these individual step contributions [39].

2.1.2.2 Effect of air temperature ground circulating water

Figure 17 shows evolution of daily averaged subterranean temperature at the 

depth range from 2.5-30 m and outdoor temperature measured during March 21- 

September 30, 2007 [34]. The ground is influenced by the outdoor air temperature 

till the depth up to 5 m,. However, it has no influence below 10 m depth and the
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temperature of the ground was observed to keep constant around 16°C regardless 

of the abrupt change in the outdoor temperature

C L Outdoor temp. 
Ground temp. (2.5m) 
Ground temp. (5m) 
Ground temp. (10m) 
Ground temp. (20m) 
Ground temp. (30m)

10

3/21 4/13 5/06 6/08 7/05 7/30 9/02 9/23

Date (Month/Day)

Figure 17 Evolution of daily average subterranean temperature and outdoor air

temperature

Figure 18 shows the outside air temperature, average temperature of circulating 

water, the surface temperature of the ground heat exchanger at 1.5 m and 2.5 m 

away from the ground heat exchanger at the depth of 10 m [34].

As the outdoor temperature increased, the temperature of circulating water was 

increased up to 22 °C. This gives the indication that the cooling load increased as 

the outside air temperature.
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30

Q .

— Outdoor temp.
— Circulating water temp.
 GHEX surface temp.
 Ground temp. (1.5m) from GHEX
 Ground temp. (2.5m) from GHEX

I U

3/21 4/13 5/06 6/08 7/05 7/30 9/02 9/23

Date (Month/Day)

Figure 18 Evolution of daily average temperatures of outdoor air, circulating water,

surface of ground heat exchanger

It can be seen that the temperature of circulating water strongly affected the 

surface temperature of the ground heat exchanger. The temperature of the ground 

appeared to be constant regardless of circulating water temperature at 1.5 m and 

2.5 m away from the surface of the heat exchanger.

2.1.3 Condenser and evaporator

The heat balance and the heat exchange from the water circulating in the pipe is 

analysed in the water to refrigerant heat exchanger at the condenser side of the 

heat pump. Plated Heat Exchanger (PHE) is assumed to be used in the 

calculation. Plated heat exchangers are the natural choice for flexible chillers and 

climate control applications for its high effectiveness, versatility and ease of 

maintenance. Its advantage is its ability to offer full performance at both full and

34



half load. PHE is mainly made of thin, corrugated alloy plates held in a carbon 

steel frame, each plate is separated by a gasket to avoid leakage. Plates are 

arranged in a manner to make flow channels by the arrangement of the gasket 

pattern and the ports of each corner of the plate acts as a header for the main flow 

line.

It has a major advantage over a conventional heat exchanger in that the liquids 

spread out over the plate. This facilitates the transfer of Heat, and greatly 

increases the speed of the temperature change. In a PHE plates are generally 

arranged in such a way that it forms channels of hot and cold liquid alternately. 

Due to corrugations in the plate, high turbulent flow increases the heat transfer 

rate.

As compared to Shell & Tube heat exchanger, for the same amount of heat 

exchange the size of the PHE is small, because of the large heat transfer area 

afforded by the plates. Expansion of the heat transfer area is possible in PHE just 

by adding the number of corrugated plates. These types of heat exchangers are 

widely used in district heating and cooling especially where the heat transfers 

between two-phase liquids. Since the refrigerant in the condenser is partial mixture 

of gas and liquid the selection of such heat exchanger is valid.
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Roller assembly
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Fixed cover
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Figure 19 Typical Plate Heat Exchanger

Above Figure 19 gives the arrangement of the heat transfer between the warm 

water and relatively hot refrigerant or vice versa in case of evaporator [40]. Heat 

transfer in the condenser and evaporator occurs at phase change of the 

refrigerant; hence the temperature of the refrigerant is constant (latent heat 

transfer). The amount of heat transfer is calculated by taking the enthalpy change 

with the mass flow rate of the refrigerant.

2.1.4 Methodologies used to model the Heat Pump System

The equations developed earlier to represent the heat pump are based on the 

assumption of one-dimensional flow, which were replaced by two-dimensional 

models during the 1990s and three-dimensional systems during recent years. 

Models have been devised in three dimensions but it seems one-dimensional 

approach remains the best for heat transfer. Finite difference methods have been
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extensively used to take account of thermal conductivity and heat flow in the 

ground surrounding the grout.

Borehole thermal resistance bears strong impact on the GHE performance. This is 

defined by the thermal properties of the construction material used and the 

arrangement of flow channel of the water pipes in the ground. The common 

methods for heat transfer in the semi-infinite medium from a perpendicular buried 

infinite cylinder were the cylindrical source and the line source solutions. While the 

cylindrical source solutions assume steady heat flux on the boundary of the 

borehole into the surrounding medium, the line source solution is based on the 

steady release of the heat of constant strength through an infinite line [40].

The thermodynamic analysis for the performance characteristics of the GSHP 

systems with U-tube ground heat exchanger for heating can be considered with 

mass, energy, entropy and exergy balance relations. It has been shown that the 

performance can be evaluated by energetic and exergetic aspects [41]. In 

thermodynamic analysis of energy systems, exergy analysis is proven to be a 

powerful tool .Exergy is calculated by setting a reference environment. It is used to 

detect and quantitatively evaluate the cause for the thermodynamic imperfection in 

the thermodynamic process. But only an economic analysis can decide the 

expediency of a possible improvement. The results of the exercise shows that the 

uncertainty analysis needed to prove the accuracy of the experiments 

[42].According to Kavanaugh and Rafferty [43] energy performance of the system 

is also influenced by the pumping energy required to circulate the fluid through the 

heat pump and the ground loop. In the design of GSHP systems, Kavanaugh and
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Rafferty [43] suggested the guidelines for pumping power for commercial GSHP 

systems. The values shown in Figure 20 is proposed as a benchmark for 

measuring the effectiveness of a pumping efficiency and piping system design for 

a minimum of 0.162m3/h per KW of cooling, with optimum pumping flow rates 

ranging from 0.162 to 0.192m3 /h per KW of cooling [44].

Watts Input Performance
Efficiency

Grade
Per Tonne Per KW

<50 <14 Efficient Systems A:excellent

50-75 14-21 Acceptable systems B:good

75-100 21-28 Acceptable systems C:medium

100-150 28-42 Inefficient Systems D: poor

> 150 >42 Inefficient Systems E:bad

Figure 20 GSHP System pumping efficiently required pumping water to cooling

capacity

2.1.4.1 Ground temperature variation modelling

Determining the temperature in the ground is a transient and complicated process. 

Over the past few years significant work has been done to develop algorithms to 

simulate the temperature inside the ground surrounding the pipe and heat carrier 

fluid in GHE. Developed algorithms should be tested against the experimental 

work to validate the calculation results. Reports are available relating to the 

comparisons made for various other simulation models [45]. Several field 

experiments and analysis of GSHP systems with multiple GHE designs are also 

developed [46, 47].
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Below 21 shows the earth temperature is nearly constant far away from the outer 

surface of the pipe [48] Solar assisted GSHP is operated alternatively for a period 

24 h with and without solar power for an interval of 4 hours of operation. The effect 

of the solar assist on the temperature distribution around the pipe is negligible. 

The ground seems to be more resilient in temperature for loading and unloading 

conditions.
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Figure 21 Earth temperature distribution surrounding buried coil at different depth

after 4 hour operation of GSHP

Below figure 22 shows the temperature of the earth decreases near the outer 

surface of GHE as the operation time increases and seems not affected at far 

distance [48]. Its give the clear idea that because its thermal inertia, system should 

be operated intermittently in order to extract the temperature from the ground.
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Figure 22 Earth temperature variation with the operation time of GSHP at a depth

of 5 m for different radius

Investigation on narrow channel models is becoming more important lately. 

Research work on wide diameter ratios was carried out at significant levels. It is 

observed that heat transfer characteristics of narrow annuli are different from 

conventional channels. Measurements were carried out for heat transfer 

coefficients in a narrow channel for a mercury flow [49]. Experiments conducted to 

calculate heat transfer coefficient at the inner wall of concentric annuli with wide 

diameter ratios for turbulent flow was suggested [50] It can also be seen that the 

choice of diameter ratio has an effect on the convective heat transfer coefficient. 

The Finite Element Model (FEM) developed to simulate natural convection and 

heat transfer around the annulus is interesting to observe how parameters such as 

flow rate and temperature can affect the heat transfer coefficient [51]. It is shown 

that the extended algebraic turbulence model is important for predicting flow 

pattern and wall heat transfer coefficient at transitional Rayleigh numbers [52].
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On the basis of works conducted before, it can be observed that there is an affect 

on the heat transfer mechanism on the geometry of the pipe

2.1.4.2 Thermal loading on the borehole

Simulation conducted by C K LEE et al [53] shows the importance of loading on 

the performance of the system in which loading is done on the borehole with 

temperature profile for steady state condition. The temperature in the ground and 

temperature profile on the borehole is greatly influenced by the initial loading 

temperature profile. Figure 23 shows with constant load for single borehole, 

neither of the borehole temperature and borehole loading was constant along the 

length of the borehole. This shows that the single finite difference scheme is not 

sufficient to estimate the performance by superposition.

Borehole temperature rise (°K)
6 7 8 9 10 11

0.2
■©—- 2 years 

■A—  5 years 
- X —  10 yearsX 0-4 

N  0.6

Figure 23 The borehole temperature rise profiles at different times

Where,

d= depth of borehole top from ground surface (m)

H= length of borehole (m)

z= Distance along the length of borehole (m)
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It is evident that the temperature raise is very little over the years. At least for 10 

years it shows that the system is very resilient.

Borehole loading (W/m)
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Figure 24 Borehole loading profile against a dimensionless parameter (z-d/H) (with 

value one at bottom and zero at borehole top)

From Figure 24 it was found that neither the temperature nor the loading was 

constant along the borehole. Borehole temperature is maximum at the top if finite 

line source model is used. Then the loading is decreased till bottom end this could 

be assumed that the mean fluid temperature inside the borehole decreased with 

depth.

By assuming no thermal resistance between tube and surrounding soil, the heat 

flux can be calculated by temperature difference between inlet and outlet of GHE 

and mass flow rate of heat carrier fluid. Figure 25 shows considering convective 

resistance and conduction in pipe material, temperature at the outer surface of the
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tube can be calculated which is the average temperature of inlet and outlet of GHE 

[54].

Time (hours)

Figure 25 GHE thermal load as a function of the load duration with the inlet and 

out let temperatures of water at 10°C initial ground temperature

The time for which GHE can provide a constant heat flux at maximum load which 

is used in the calculation can be determined.

The initial ground temperature was taken from 10 to 30 °C, the water temperature 

difference between GHE inlet and outlet was kept at 2 °C. Results shown in Figure 

25 and Figure 26, for areas with milder climate the representative ground 

temperature is around 20 °C.
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Figure 26 The GHE thermal load as a function of the load duration with the inlet 

and outlet temperatures of water as parameter 15°Cintial ground temperature

it can be seen that for cold climates at 10 °C, GHE is capable of covering loads 

up to 140 W/m for 1 h, but as in initial literature it was suggested to use 50 W/m 

corresponds to steady-state operation.

The ground heat exchanger and heat pump systems are used both for heating and 

cooling. It is can be understood that the initial ground temperature of 10°C is very 

low, this might be due to the additional heat absorbed from the ground during the 

heating period.

2.1.4.3 Heat transfer modelling of GHE

Sizing of GSHP depends on the ground thermal conductivity, capacity and the 

borehole thermal resistance. One popular method to estimate the thermal 

parameters is the interpretation of in situ thermal response tests.

The modelled response is average temperature which is calculated as

44



(10)

Where

Tm = average temperature of the fluid (°K)

Tjn= fluid inlet temperature (°K)

Tout= fluid outlet temperature (°K)

Mean fluid temperature (Tm) calculated from above equation often deviates from 

the actual fluid temperature. By the use of three dimensional finite element model 

it shown that the mean temperature values are different from those used from the 

equation 10. This intern overestimates the thermal resistance and has economical 

impact on the system design. Another approach to approximate the temperature is 

suggested by Marotte et al [55] is a P-linear method. This method gives nearly 

accurate results with the numerical solution. The method followed is explained 

below the effective borehole resistance Rb.

(11)

(12)

R pipe — R cond +  R conv (13)

(14)
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conv -  (sfDThi) (15)

Where , Di = inside pipe diameter (m)

D0 = are the and outside pipe diameter (m) 

hi = inside film coefficient 

K grout = grout thermal conductivity (W/m K) 

K pipe = pipe thermal conductivity (W/m K)

R  cond = resistance to conduction (K m/W) 

R"COnv = resistance to convection (K m2/W) 

Rgrout = grout thermal resistances (K m/W) 

Rpipe = pipe thermal resistances ( K m/W) 

Sb = shape factor defined as

d = borehole diameter (m)

Po & Pi are geometrical parameters function of the U-tube’s position in the 

borehole.

Following figure gives the shape factors for three different positions of a single U- 

tube in the borehole [55].

(16)

Where,
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Coefficient Pattern

14.4509 17.4427 21.9059
fa —0.8176 -0.6052 -0.3796

S1: U-tube legs are close to the borehole centre, S2: intermediate case, S3:U-tube 

legs are close to borehole wall.

Figure 27 Shape factors for three different positions

When the heat flux is constant for the length of borehole the mean fluid 

temperature is equal to fluid temperature. However, this assumption is not entirely 

accurate.

Heat transfer in a borehole especially in the turbulent region where the 

propagation is quick, Marcotte et all [55] derived a numerical relation. The 

measured inlet and outlet temperatures and volume integration within the pipe give 

average temperature of the fluid (T nUm). For simplicity resistance for convection is 

assumed to be zero and for the other boundary conditions assumed, the results for 

numerical and line-source solution were matched perfectly. Figure 28 shows the 

numerical model predicts exactly as the line source model [55].
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Figure 28 Mean fluid temperature: numerical and theoretical line-source solution

The scope of such models remains in the numerous use as many combine ground 

heat conduction and heat exchangers. It is important that predictions in heat 

extraction and injection rates should be accurate in promoting heat pump systems. 

The research field of heating, building ventilation and air coolant systems remain 

on the cusp due to these models. The only problem is that many analytical 

models extract data that remains inconclusive in their forecast especially for long 

term because they remain framed by the thermal conduction model. This model 

utilises the cylindrical coordinate system and sometimes the equivalent diameter 

model. For the purpose of further understanding these correlations, a numerical 

model is proposed because this model consider the heat transfer with ground flow. 

FEFLOW [56] proposed a calculation method toe estimate the distribution of 

temperature and to calculate heat transfer rate between GHE and its surrounding
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ground. In this method finite element model of the system for heat flow and fluid 

transport in the ground is simulated, which has attracted wide interest in analysis 

of ground water flow. The above model is based on the conservation of mass, 

momentum and energy to represent soil particles, liquid water and gas trapped in 

the ground. Fiji et al [57] used above model to study the FSHP's for dynamic 

working conditions for under eater and heat transport modelling.

Yujin et al [58] has developed the model of the ground heat exchanger 

considering the water pipe with 1-dimentional advection diffusion equation and 

convective heat transfer between the circulating water and the inner surface of the 

heat exchanger pipe. Figure 29 shows heat flux Q from the ground surface to 

ground is given by the following heat balance equation [58]

Q = Rsol “I" Rsky Rsurf H surf — L Surf (17)

Where,

RSOi = total solar radiation

Rsky = Downward atmospheric radiation

Rsurf =Upward long wave radiation from the ground surface

Hsurf = Sensible heat flux

Lsurf = Latent heat flux
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Solar Sky Radiation

Radiation (Long wave) 
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surface 
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Convection Evaporation
(Sensible heat) (Latent heat)

Figure 29 Thermal balance on ground surface

It is important to understand in the thermal analysis of soil the concept and effect 

of hydraulic conductivity or permeability on the performance [58]. It is also 

necessary to determine the thermal properties of soil for heat transfer analysis, 

such as soil conductivity and specific heat (volumetric). Most numerical model on 

GSHP is based on the principle of conduction. The temperature response of 

circulating fluid in single U- tube GHE for constant heat flux on the outer surface of 

the pipe is suggested by Austin et all [59]. Literature reveals that experimental 

formulations are available to estimate permeability of saturated soil. The overall 

heat transfer mechanism gives the temperature effect which couples all sub 

components the system. The temperature of the ground has significant effect on 

the performance. It is observed that during heating cycle, the increase in the 

source temperature has positive effect on the COP of the system while it has
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negative effect on COP in cooling cycle [52]. The curve, which best fits the data at 

both the conditions is shown below.

8

y = 0.005 x“ -  0.472 x + 15,026
6

Cooling COP

4
Heating COP

y = 0.001 x 2 + 0.070 x + 3.512
2

0 20O 10 30 40
Temperature of heat source (PC)

Figure 30 Variation of COP with increase in the temperature of heat source 

2.1.5 Development of GSHP

over the past few years more work has gone in to the development of GSHP 

especially in understanding the influence of soil properties in the heat transfer 

process[60-63]. Saturated soil can be treated as a porous medium with aquifer 

without significant flow at under ground water level. It is high in permeability 

because of porous nature makes it to model as porous medium. In Europe and in 

America extensive studies were made since 80's. Studies shows that the GSHP 

performance is largely affected by thermal performance of the ground an efficiency 

of GHE [64, 65]. Down hole heat exchanger is developed in order to greatly 

improve heat transfer between GHE and the soil [66]. to better understand heat 

transfer characteristics of GHE earth probe model is developed [67]. As discussed 

earlier, the effect of ground water flow for a colsed loop system under the aquifer



with wide range of flow were analysed [68]. Moisture content in the soil can effect 

the performance, this work is modelled in three dimension for the ground 

surrounding GHE and heat exchanger and results were analysed [69]. Numerical 

algorithm called AUTOTOUGH was developed to simulate the performance 

between single U-tube and double U-tube shape pipes [70].

Thermal short circuiting between the legs of the U-tubes and axial convective heat 

transfer can have any effect on the heat transfer process [71]. However it is 

assumed that there is no conduction outside the borehole or the thermal 

resistance of the ground (porous medium) is neglected. This show from academic 

stand point there is lot of work needs to be done to understand the complex heat 

transfer mechanism for different soil types. Understanding of long-term time factor 

and the considerations of short time steps [71] is also important factor to model 

long term analysis. Similarly other methods for different time steps were also 

analysed [72,73]. Finite volume method model for U-tube heat exchanger with 

borehole is modelled to understand heat transfer mechanisms have been 

proposed [74]. However these numerical methods i.e FVM and FEM developed 

with considerable assumptions and does not reflect the complex nature of the 

system. These models works for short time durations, to simulate for all year 

models these models consume computing time and resource. On the other hand 

analytical model are easy to comprehend and difficult to solve without 

assumptions.

Kavanaugh [75] proposed the method developed in cylindrical solution for the heat 

transfer around the GHE as exact solution. Line source model assumptions are
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the analytical solutions described by Ingersoll [76] and Jaeger [77] for cylindrical 

source solution. Both models are based on the assumptions of infinite borehole 

length for steady state condition. Above models proposed are in the form of line 

source solutions, but the integrals appeared in the solutions were modelled and 

analysed in exponential form by Igshpa and Cleland [78, 79].

However, above all surveys depend on the simplified models which still make 

some realistic assumptions to solve complex problems. With this information about 

the background work it gives opportunity to build the whole system and solve for 

the temperatures which couples all individual subsystems in GSHP system. 

Solving all equations simultaneously gives the understanding of the parameter 

which affects the COP of the whole system and also to analyse the critical 

parameters.

2.1.6 Refrigerant

Selection of the right type of the refrigerant is important for the range of the 

operating parameters. Much of the research has gone into developing new, nature 

friendly refrigerants and refrigerant mixtures without loosing the significance of the 

performance of the system. R134a is a single Hydro-Fluorocarbon Compound 

(HFC) and is generally used for many applications from automotive to industrial 

refrigeration. R41 Oa is a binary blend of HFC compounds 50% of R32 and 50% of 

R125. All the refrigerants are scale based on the Global Warming Potential (GWP) 

or the potential for ozone depletion better known as Ozone Depletion Potential 

(ODP). The GWP is a measurement that is usually measured over a 100-year 

period. This measurement can reflect how much a refrigerant can contribute to 

global warming when compared to carbon dioxide. C02 has a GWP = 1.0 potential
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rate. The lower the value of GWP, the better the refrigerant is for the environment. 

ODP also reflects the potential of the single molecule of the refrigerant that has the 

destroying capacity of the ozone layer. All refrigerants use R11 as a datum 

reference, where R11 has an ODP = 1.0. The smaller the value of the ODP, the 

better the refrigerant is for the ozone layer and the environment.

Common refrigerants with corresponding values of ODP and GWP are given 

below:

Refrigerants ODP GWP

R11 (obsolete) 1 4000

R22 (obsolete) 0.05 1700

R134a 0 1300

R410a 0 1725

Figure 31 Refrigerants with ODP and GWP values

Creating a model for the refrigerant cycle has been a challenging task, 

development of algorithms and computational techniques has helped to an extent 

for understanding. This represents nearly accurate behaviour of the cycle. From 

the survey, it is found that the many authors have derived the means to fit the 

curve with standard coefficients at the saturation liquid and at saturated vapour 

regions.
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2.1.6.1 Refrigerant cycle

A typical refrigeration cycle can be explained by the following figure. Following 

figure 32 shows the temperature and entropy relation of the cycle [22] and Figure 

33 shows pressure enthalpy relationship for the complete cycle. Saturated vapour 

is compressed (W jn) isentropically in the compressor (process 1 -2 )  and it leaves at 

the superheated state. It rejects the heat (Qh) the condenser at constant pressure 

(process 2-3).

T

s

Figure 32 Temperature entropy diagram for refrigerant cycle

The refrigerant leaves the condenser at saturated liquid state and it is made to 

pass through the throttle valve where it expands at constant enthalpy (process 3- 

4). At reduced temperature and pressure, it enters the evaporator it absorbs heat 

(QL) and evaporates and enters the compressor at saturated point (Process 4-1) 

and the cycle repeats.
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Figure 33 Pressure enthalpy diagram for refrigerant cycle

2.1.6.2 Temperature and pressure relation for refrigerant R 143a

Temperature and the pressure relations for R143a are given by A C CLELAND

[79]

( 2200.9809 \
Psal = exp(21.51297- 24661 + T J  ------------------------ (18)

/  -2200.9809 \
sal -  (ln(PSa d - 21.51297 ) “  246-61 (19)

Across the full range of applicability (-40°C < T sat<  70 °C) at largest difference of 

Psat from the source data is 0.46%, with the refrigerant application operating in 

the range of (-30°C < Tsat < 50 °C) the largest difference is 0.22%.



The polynomial curve fit for saturated specific volume for R143a is given by

/ 2669.0 \ -
v = exp -12.4539 + * (1.01357 + 1.067368*10'3*Tsat

2669.0

-  9.2532*1 O'6 *Tsa,2 -  3.2192*1 O'7 * Tsat3) (20)

The method of CLELAND et all [79] uses the equation for ideal gas reversible 

compression process but replaces the ratio of specific heats with a curve fitted 

factor.

c = polynomial with constant coefficients

The saturated temperature or pressure is calculated by the given pressure or 

temperature during the experiment. Assuming the isentropic compression process 

in the compressor, the superheated vapour refrigerant enthalpy can be obtained if 

the exit pressure is known. Similarly the superheated temperature is known 

because of the isentropic compression and the superheated enthalpy can be 

calculated.

For most practical purposes, the condenser exit state of the refrigerant is assumed 

to be saturated liquid and hence the state of the refrigerant can be calculated on

(21)

Where
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the saturated region. Since the throttling process is the constant enthalpy process, 

the exit state of the condensed liquid is obtained on the P-h diagram of the 

refrigerant.

For many applications reasonably accurate evaluations are made for the 

thermodynamic properties of the refrigerant. Increasing number of algorithms relay 

on accurate information of refrigerants properties for each step for better 

approximation of the complex thermodynamic process, ease of programming adds 

another challenge to evaluate thermodynamic properties and algorithm calculation 

itself. Monte [80] has developed theoretical concept to evaluate thermodynamic 

properties of tow refrigerant mixtures of hydro fluorocarbon (HFC) R407C and 

R410a in the super heated region .Martin-Hou equation for state has been 

modelled for a long time response for pure HFC e g R134a with reasonable good 

accuracy. R407a and R410a have been fully investigated and well understood 

refrigerant. The analytical results were not considered for other factors, such as 

compressibility factor, isentropic and isothermal compressibility, volumetric 

expansively, etc are fully understood. This gives accurate refrigerant end 

temperature for isentropic compression. This also reflects the work exchanged or 

volumetric efficiency. Gas compressibility effect works in favourable role in 

isentropic compression. This allows work done to be reduced 10% for refrigerant 

134a and refrigerant mixtures 407a and 410a. On the other hand it plays 

unfavourable role to reduce the compressor volumetric efficiency i. e refrigerant 

mass flow rate and consequently cooling and heating capacity of the vapour 

compression system.
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This work is carried out to develop the steady state condition model to simulate the 

system with constant air and ground temperatures with fixed power input to the 

compressor. The configuration of the ground heat exchanger is the standard U- 

tube with grout surrounding the pipe. Assuming the ground is the infinite source or 

sink, constant surface temperature is used in the model simulation. Ground 

temperature, Air temperature and the work input to the heat pump varies each 

time to get the system response.

2.1.7 Scope and limitations

The literature survey above shows that the scope is endless for the complexity of 

the model to be analysed. It is limited by the capability of the algorithm, feasibility 

and the variations of the parameters for the range of operating conditions. 

However, it gives the scope for engineers to develop the near accurate model of 

the physical system for all weather, loading and geothermal conditions which will 

be a real challenge for the engineers for the years to come.

Performance parameters of heat exchanger design calculations are generally

considered for steady state condition. It is general custom to prescribe

temperature or heat flux at fluid wall interface on the other hand only energy

equation has to be solved for the analysis. The results thus obtained only good to

find out heat transfer flows bounded by wall having very small thermal resistance.

However, in practical applications thermal boundary conditions are different from

the once used for the analysis. The constant temperature or flux conditions will

only work with some degree of accuracy. Line source model can not incorporate

GHE modelling within few hours when compared to numerical solution because of

line source model assumptions. Experiments for cooling and heating mode can be
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conducted for short time period with proper assumptions comparisons show 

reasonable accuracy is maintained between numerical and experimental results. It 

can be observed that numerical model with proper assumptions can simulate GHE 

for short time scale.

2.1.8 Computational Fluid Dynamics (CFD)

In early 1980's anyone steeped in the history of aeronautics, where the major 

thrust was always been to fly faster and higher, never realised that one day that 

will be a reality. CFD made many such events possible with its computing 

techniques capable of solving complex and time varying problems. CFD is a 

numerical method of solving partial differential equations by finite volume (FV) 

approach, it acts as a communicator between the theory and the experiments [81].

Figure 34 The three dimensions of computational fluid dynamics

As shown in Figure 34 it is nicely complements the other two approaches of theory 

and experiment, but it can never replace either of these approaches. However, 

CFD is helping to interpret and understand the results of theory and experiment.

TheoryExperiment
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Over all since its development it has gained popularity and been tested as a 

versatile tool in the diversified research community.

2.1.8.1 CFD as research tool

CFD results are the simulation of the actual physical problem with some 

approximations, ranging from scaled wind tunnel model to actual pipe flow models. 

The results from the simulation are more realistic as the methods use to represent 

the boundary condition and the solution techniques approaches the realistic in 

nature. However, exact physical system can be represented with complex 

equations, but to solve the complex equations without proper assumptions is still a 

challenging job for researches and engineers. The cost, time involved in solving 

the equations, the amount of computing power required, stability and reliability of 

the results obtained limits the extent to which the solutions techniques can be 

approximated.

Procedure for creating CFD model can be demonstrated as a pipeline of steps as 

shown in Figure 35 below [82].
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Create
Geometry

Mesh
Volume
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condition

Solve
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Geometry
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results

-► Pre-processing

Solving

-► Post-Processing

Figure 35 Basic structure of the CFD modelling tree

At first the part is created for which the analysis is to be carried out. this process 

generally known as geometry creation. Analysis generally deals with heat transfer 

and fluid flow. Once the geometry is built he geometry is referred to as the domain. 

This domain is discretised and boundary conditions are applied for the geometry 

and solved for the given boundary condition. Once the results were obtained, they 

are reviewed and analysed.
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2.1.8.2 Pre Processing

Geometry creation, meshing and applying boundary conditions for the geometry is 

done in pre processing. Meshing is a process of discretising the geometry in to 

small elements also known as cells. All regions of the domain need to be 

connected before solving for the continuity of the region. Geometry also needs to 

be defined by a continuum either as a fluid or solid region. These steps are to be 

followed to completely define the system before solving. GHE is modelled in 

FLUENT 6.3, CFD software to analyse the heat transfer from fluid circulating in the 

pipe to the ground. GAMBIT pre processor is used to model the GHE.

2.1.8.3 Solving

The system is solved for a given boundary condition, or i.e. continuity, energy and 

momentum equations to get the temperature and flow distribution within the 

domain. These equations are solved iteratively since the exact value of the 

variable is unknown. This starts with the initial guess and solved for the entire 

domain for the conservation of mass energy and momentum equations. The 

difference starts as a residue is added for the next iteration and this is until the 

convergence is reached. The difference can be in the order of one millionth of the 

initial value. The end user has the control over the order of the difference for in 

order for the solution to reach the desired accuracy. The process is called 

convergence, which is the solution for the governing differential equation for a 

given boundary condition. Refining the mesh size and selecting the type of model 

for the type of flow, e g. one equation, two equation models etc., allows desired 

convergence could be achieved.
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2.1.8.4 Post Processing

The results obtained from the solution are analysed as data get generated by the 

solving process is finished. Plots were drawn, change of dependent variables 

along or across the domain is being analysed. Software gives various options to 

view the results in the form of a fringe plot, flow lines in the form of a legend are 

provided to interpret the results and analysis. Any changes to be incorporated with 

the appropriate measures in mind can be taken, such as changing the mesh or 

boundary conditions or modifying the geometry itself. The whole cycle repeats until 

the satisfactory results are obtained.

2.1.8.5 Turbulence modelling

In theory, if we know the diameter of the pipe, density of the fluid flowing in the 

pipe, velocity of the flow and the dynamic viscosity of the fluid, then we can 

calculate the local Reynolds number. But in practical situations it is not that simple, 

depending on the geometry of the pipe, e g flow across the bends. The flow inside 

the pipe of the GHE may be laminar or turbulent based on the Reynolds number. 

This is difficult to predict whether the flow is laminar or turbulent because of 

temperature variation on the pipe surface and from the ground. Still the problem 

becomes complicated. Thus overall, the heat transfer from the ground to the water 

is a complicated and transient phenomenon. This can be modelled in FLUENT 

with proper boundary conditions. In order for FLUENT to solve the equation 

correctly, the user has to define appropriate turbulence equation available in the 

software. No single turbulent model can be accepted universally for any problems. 

The type of model selected depends on the physics of the problem and degree of
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accuracy expected forms it. The computational time and resource availability also 

limits the type of the model to be used.

Spalart-Allmaras turbulence model solves turbulence viscosity for transport 

equation. This type of model is used in which it is not required to calculate length 

scale for local shear layer thickness. This model is widely used for turbomachinary 

applications. Since being low Reynolds number model, viscous region of the 

boundary layer should be resolved properly. It can be used for the cases where 

course mesh is generated and accurate turbulent flow calculations are not 

significant. On the other hand the standard k - s  model is a two equation model for 

turbulent kinetic energy (k ) and dissipation rate (e ).This equation can be used in 

the region where the flow is assumed to be fully turbulent and effect of viscosity is 

negligible, hence it is only valid for fully turbulent flows. The other turbulent model 

k -  a) is a two equation model based on turbulent kinetic energy (k ) and specific 

dissipation rate (co), which is used to model shear flows with improved accuracy 

[83].

2.1.9 MathCAD

MathCAD is widely used software in many engineering applications for solving

simple mathematical calculations to complex, nonlinear equations with built in

functions to get exact or approximate solutions. For this project, MathCAD 13 is

used for modelling a set of equations for the GSHP system. A standard in built

function "Minerr” is used to solve all equations simultaneously for a given initial

guess. The function seeks solutions to a solve block that minimize errors with the

solution. It uses least square method to minimise the error. Since the equations

are nonlinear, a good initial guess is very important to get the converged solution.
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Conclusion

The purpose of this chapter was to provide extensive source material into the 

design, modelling and implementation of GSHP. This will allow the literature to be 

more than just good research but also reflect the design of such systems to build 

not only frameworks toward use, but also a step toward common acceptance 

within the consumer market. Though different approaches are available to model 

variable the nature has to offer, one step is to model the entire system with 

approximate assumptions. This makes such a choice more accepted and popular 

but also leads to cleaner ways of producing energy.
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Chapter 3

Introduction

In the previous chapter author identified and discussed various literatures 

regarding GSHP systems, methods used to represent such physical systems. It is 

clear that there are numerous focuses of previous studies. The focus on this 

chapter is to represent the complete GSHP system. Subsystems are represented 

as heat transfer and heat balance equations and solved simultaneously for the 

whole system. Thermal resistance for all heat exchanges have been identified and 

scope available for the GHE to improve the system performance is considered. 

Commercially available platted heat exchanger is specified for the analysis.

3.1 Steady state of analytical model

A method has been developed to analytically solve the system of equations 

representing each sub system of the overall GSHP. Each sub system is 

represented by a set of two equations, representing heat balance and heat 

exchange between the two components. Temperature of the circulating water in 

the ground pipe, enthalpy of refrigerant in the heat pump and temperature of the 

air in the building couples these equations. These equations are then solved 

simultaneously with an initial guess until the convergence is achieved. The initial 

guess is from the working parameters of the test conducted and the results 

published. The geometric details of the heat exchanger and the heat pump are 

used from the manufacturer's data and pipe and grout properties are from the 

published data.
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The main aim of the model is to:

• Calibrate the model for the results published

• Increase the surface area of heat transfer of the circulating water pipe by 

varying the configuration i.e. multiple passes, coils etc.

• Improve the thermal properties of the pipe and the grout material for 

improving the performance of the system.

3.1.1 GSHP system

Line diagram of the complete system shown in the Figure 36, the arrangement of 

the sub systems and the flow variables. Analysis of the system is carried out in 

cooling mode. Tair is the temperature of the outside air for summer and the heat 

transfer from outside to the wall is Qsr
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Figure 36 Line diagram of GSHP system

Overall heat transfer coefficient of the wall is used to calculate the heat transfer 

across the wall to the room using the equation 35. Heat gained in the room is 

balanced with the relatively cool water circulating in the radiator, which absorbs 

the heat and rejects in the evaporator. Circulating pump for the radiator loop 

maintains the constant flow of water.
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Refrigerant enters the evaporator as a mixture of gas and fluid state and absorbs 

the low energy (Qsr) from the warm water and evaporates. It leaves the evaporator 

in saturated vapour stage to the compressor.

The compressor compresses the saturated vapour to super heated vapour stage 

by increasing the temperature at constant entropy, which is also called as 

isentropic process. At high value of energy (Q s), refrigerant leaves the 

compressor and condense in the condenser at constant pressure to saturated 

liquid state. At this stage the energy released (Q s) equals compressor work (W jn) 

plus the heat added (Q sr) by the circulating water the radiator loop.

Q s =  Q sr "F W in  (2 2 )

Condensed refrigerant enters the throttle valve at saturated liquid temperature and 

pressure is reduced to get vapour mixture. Thus the cycle repeats.

Heat gained by the ground circulating water rejects the heat to the grout buried in 

the deep ground, and circulates back to complete the cycle. The grout intern 

rejects the heat to the ground, which is relatively at lower temperature compared 

to the grout.

The sizing of the grout and the number of columns required depends on the 

amount of heat to be rejected or absorbed from the ground. For the analysis, the 

number of grout columns is 24 since the area of the room to be cooled is relatively
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large. The diameter of the grout ranges form 120 to 150 mm and the depth vary 

from 50 to 200 meters.

3.1.1.1 Ground Heat Exchanger

The sub systems of GSHP are interesting to picture within a diagram that explain 

heat exchange and this is what Figure 37 serves to accomplish. The diagram 

explains how such position in the ground may contribute to better energy 

conduction.

The inlet (T fj) and the outlet temperature (Tf0) of the water for the ground heat 

exchanger are obtained by solving heat balance and heat exchange equations 23 

and 24 in the ground

m CpTfi Pipe m CpTfo

Grout

— A/WVVVV\__

To Ground

Figure 37 Line diagram of GHE

Q s “ Llg Ag ATLm (23)

Qs— rrivy Op AT (24)
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3.1.1.2 Heat Pump system

Super heated refrigerant gas is condensed by exchanging the heat to the ground 

circulating water in the pipe in the PHE as seen in the Figure 38 below.

Heat Pump 

1 T= Constant

Ground

Heat Exchanger 

1

<<

m CpTfo

mCpTfj

Figure 38 Line diagram of condenser

Q ^U iA iA T L m   (25)

Qs =mref (h4ref ~ h iref) (26)

3.1.1.3 Compressor

Compressor can be modelled as a standard thermo sealed isentropic compressor. 

Since the entropy remains constant during the compression process. The rate of 

energy addition to the refrigerant can be modelled as

Wjn ~m Cpref (T1 ref T2ref) (27)

In this analysis the compressor work is given. The line diagram of the compressor 

is shown in Figure 39 within the heat pump system. Saturated vapour from the



evaporator is entered to the compressor. The vapour is compressed to the 

superheated vapour in the compressor thus increasing the temperature and the 

enthalpy of the refrigerant. Thus the name is derived as the vapour compression 

refrigerant cycle.

Ground Heat Exchanger Loop

m CpTfi
Radiator loop

T2i I Throttle Valve

niref h3ref ^ fTlref h 4 ref

T20Ut

r T
— ►—

--------------------» —

f^ref h2ref \ Ĥ ref h i ref

Compressor

1

m CpTfo

Heat Pump

Figure 39 Line diagram of heat pump system

3.1.1.4 Evaporator

Evaporator is modelled similar to the condenser, only difference being that the 

evaporator is working at lower temperature. Refrigerant after throttling process 

enters the evaporator at low temperature saturated liquid. Liquid refrigerant 

absorbs the heat from the water-circulated from the room and evaporates. During 

the evaporation process temperature remains constant with gain in the enthalpy. 

The vapour refrigerant enters the compressor at saturated vapour condition.
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The line diagram of the evaporator is shown in figure 40 with the flow of the 

refrigerant inside the loop. Equations 28 and 29 are modelled to represent the 

evaporator with enthalpy gain and heat exchange with log mean temperature 

difference. The overall heat transfer coefficient U2 can be calculated by knowing 

the convective heat transfer coefficient of the hot and cold fluid and the 

conductivity of the plate material.

Qsr =mref (h2ref h3ref) — W)n (28)

Qsr- U2A2 AT[_n (29)

Radiator

i T= Constant

Heat Pump 

(Evaporator)

1

<

<<

rriref h3ref

m ref h 2 re f

Figure 40 Line diagram of evaporator

3.1.1.5 Throttle valve

Primary function of throttle valve is to reduce the pressure significantly with 

constant enthalpy. There is a pressure drop often accompanied by temperature 

drop across the device. Thus drop in the temperature will condense the liquid



refrigerant, which enters the evaporator to absorb the heat from the hot water from 

the radiator loop. During the throttling process, there is no work done (w=0), 

change in potential energy if any is very small (APe=0). Though the exit velocity is 

often considerably higher, the change in kinetic energy is insignificant (AKe~0). 

The conservation of energy equation is reduced to:

hi ~ h2 --------------------------(30)

Where

hi and h2 are the inlet and exit enthalpy of the fluid. Thus from the relation is 

formed.

U1+P1V1 =  U2+P2V2 ---------------------------(31)

Internal energy + Flow energy = Constant

The final outcome of a throttling process depends on which of the two quantities 

increase during the process. If the flow energy increases during the process

(P2V2>P iV1), it is done at the expense of the internal energy. As a result internal

energy decreases, which is usually accompanied by a drop in temperature. If the 

product PV decreases, internal energy and the fluid temperature will increase 

during the throttling process.

Throttle Valve

I
r T lre fh 3 re f   ...................................  * ---------- ^ r e f  h  4-ref

Figure 41 Line diagram of Throttle value 
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3.1.1.6 Radiators

Radiators are available with different sizes and capacities. The amount of heat to 

be removed or added to the room is given as Qrs, from the manufacturer's 

catalogue. For the purpose of this study, only one of the standard radiator types 

has been selected. The area of the radiator surface is selected from the standard 

by assuming the type of the radiator to account for the amount of load Qrs.

The radiator in the building is modelled as another heat exchanger absorbing the 

heat from the room by circulating relatively cold water from the evaporator side of 

the heat pump. Following figure 42 shows the radiator loop for circulating the water 

from the evaporator.

T2t
Room

g  Radiatorair
Radiator Loop

Figure 42 Line diagram of Radiator

Radiator is modelled using the following equations: Ur is the overall heat transfer 

coefficient of the radiator, which is calculated from convective heat transfer
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coefficient of air in the room, conduction in the radiator material, and this is usually 

cast iron, with the circulating water in the radiator loop.

Qsr ” Ur Ap AT|_m (32)

Qsr—m-i Op AT (33)

3.1.1.7 Room wall

The heat transfer across the room’s wall to the surrounding area is modelled as 

free convection in the room as well as outside air and the conduction through the 

wall. Assuming the outside air is still and the air inside the room is still, as well for 

the steady state condition, the convective heat transfer coefficient of the air is 

calculated. Free convection is obtained from thermal instability of the free 

convection boundary layer. The heat from the wall is transferred to the surrounding 

air, the warmer and lighter air moves vertically upward relative to the cooler and 

heavier air. Transition in a free convection boundary layer depends on the 

buoyancy and viscous forces in the fluid. It is correlated in terms of Rayleigh 

number, which is the product of the Grashof (Gr) and Prandtl (Pr) numbers. For 

vertical plates, the critical Rayleigh number is:

(34)

Where,

Ra = Raleigh number

Pr = Prandtl number

Gr = Grashof number
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g= Acceleration due to gravity (Kg/Sec) 

p = Thermal expansion coefficient 

v = Kinematic Viscosity (m2/Sec) 

oc= Thermal diffusivity (m2/Sec)

Ts = Surface temeprature of wall (°K)

T~=Fluid temperature far from the surface (°K)

In the following figure 43 the heat from outside air is transferred to the room which 

is maintained at Tr temperature. The temperature of the air outside is Tajr and the 

temperature at the wall outside is Tao. The inclined line in the wall shows the 

resistance offered by the wall for the heat transfer with in the wall, and the inside 

wall temperature is Taj and the outside wall temperature is Tao.

Where
Lw= thickness of wall (m)

Kw= thermal conductivity of wall (W/mK)

Uao = free convective heat transfer coefficient of outside air (W/m2K) 

Uai = free convective heat transfer coefficient of room air (W/m2K)

Qsr=UA AT (35)

(36)
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ao

WALL

Figure 43 Line diagram of heat transfer through wall 

3.1.2 Calculation of Thermal resistance

Heat transfer across a system, for a degree difference in temperature is measured 

by its UA values. It is calculated from the fundamental equations and the areas of 

heat exchangers are obtained by the standard manufacturer’s catalogue. Inverse 

of UA gives the thermal resistance of each heat exchanger, which identifies the 

area and this is where the analysis to be carried out reduces the resistance to the 

heat transfer.

Convective heat transfer coefficient of the air inside the room and the outside air is 

calculated assuming free convection. Nusseslt number is calculated from the 

standard relation for free convection with Reynolds number and the Prandtl 

number. Standard plated evaporator and condenser is selected based on the 

operating parameters and the range of workload. PHE P400T model is selected 

for evaporator and condenser. It is designed to operate efficiently during phase 

change of heat transfer fluid especially for air-conditioning and refrigeration 

industries [39]. Hence it makes a good choice to use for this model.



Dimensions and the operation conditions of the plates are as follows:

• 280 plates

• 0.601 mX0.25m

• Thickness of the plate 2.29mm

• Maximum working pressure at 155°C is 31 bar

• Plate material AISI 316.

The condenser DBD400 is selected with following dimensions:

• 282 plates

• 0.604mX0.216m

• Thickness of the plate 2.39mm

• Maximum working pressure at 155°C is 31 bar

• Plate material AISI 316.

The surface area of heat transfer is very high in plated heat exchangers and the

number of plates being used can vary the area. For the selected model and the

number of plates, the surface area will range from 36-42 m2. Radiator is assumed 

to be cast iron with standard dimensions.

From Appendix B, it is clear that the values for PHEs are high and the opportunity 

is available to improve at the radiator. From research, it is found that the 

improvements are being made by:

• High thermal conductive material

• Various shapes for increasing the surface area

• Improved design

• Low maintenance
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• Light weight

• High durability.

Although many factors will affect the performance with proper assumptions, still 

there is a scope for the improvement. From the following figure 43,, the UA values 

for the condenser and the evaporator are significantly high and the region of 

interest lies in making improvement in ground heat exchanger. The improvements 

in wall insulation and radiator design are limited owning to the space constraints. 

The clear choice is to improve the ground heat exchanger considering the 

flexibility and the methodologies available to optimise the performance the choice 

is justifiable.

Use of CFD to simulate the temperature and flow distribution in the pipe is very 

useful. CFD allows temperature, material properties, soil properties and the 

configuration of the pipe geometry to vary. This allows for calculations and its 

effect on the heat transfer rate from or to the fluid. By changing the configuration of 

the pipe inside the ground, the surface area of heat transfer can be varied. The 

length of the pipe can be varied to assess the variation of the temperature for each 

°C raise or drop. This information is very useful to calculate the cost associated for 

each meter depth of pipe to be buried.
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Figure 44 Various components within the system with their UA values

As an overview, the temperature and the enthalpy in the refrigerant connect the 

systems. Heat transfer from the outside air is coupled to the air inside the room. 

The circulating water in the radiator carries excess heat away. The radiator water 

is coupled to the heat pump with refrigerant exchanging heat in latent heat 

transfer. Power input to the compressor increases the pressure and temperature 

of the refrigerant, thus high-energy refrigerant exchanges the heat with cold water 

in the condenser with latent heat to the ground circulating water. The heated water 

rejects the heat in the ground heat exchanger to the ground at lower temperature.

All equations are solved for respective temperature; enthalpy and heat transfer 

between the systems. Initial guess is vital for the stable system. Once the system 

of equations is solved, the residues from each subsystem are tested for the 

maximum level of accuracy. In this model, the degree of convergence achieved is 

at acceptable level. The system uniqueness is tested with different room,
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refrigerant temperatures the solution values converge to the original values. The 

stability is also checked by monitoring the residual values and it is observed that 

the residues are in acceptable level and the system is stable.

3.1.3 Solving procedure

The system of equations are solved for different air temperatures with all other 

variables to vary, the procedure is carried out for the range of air temperatures. In 

this analysis, power input, ground and air temperatures are the variables. 

MathCAD model is solved by varying one variable at a time. Work input (W jn) to

the compressor is varied to observe the system response. Convergence is

achieved if the residues are minimum or negligible, for this analysis, values are 

nearly zero as shown in the appendix C. Similarly the equations are solved for air 

temperature (Tair) and ground temperature (Tg) and the residues are checked for 

convergence.

Sample values used for the calculations are 

Room temperature (Tr) =21°C

Refrigerant temperature at the evaporator side (T2ref) = 7°C 

Refrigerant temperature at the condenser side (T1 ref) = 25°C 

Ground loop water inlet to condenser (Tfi) = 21 °C 

Ground loop water outlet to condense (Tf0) = 25°C 

Radiator water temperature inlet to evaporator (T20Ut) = 21 °C 

Radiator water temperature outlet to evaporator (T2jn) =15°C 

Enthalpy of refrigerant before compression (h2ref) = 424299 J/Kg K 

Enthalpy of refrigerant after compression (hi ref) = 442112 J/Kg K 

Enthalpy after the condenser (h4re{) = 240716 J/Kg K
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Heat transferred by the outside air (Qsr) = 64391 Watts 

Heat transferred to the ground (Qs) = 70591 Watts 

Compressor power input (Win) = 6200 Watts

The residuals of the some equations are

Heat balance between grout and ground loop water = -3.2 x 10'10 Watts 

Energy balance between grout and ground loop water = -1.164 x 10'10 Watts 

Heat balance between condenser and ground loop water =8.73 x1 O'10 Watts 

Energy balance between condenser and ground loop water = -1.45 x 10‘10 Watts 

Overall balance of the heat pump = 0 Watts 

Heat balance between evaporator and distribution loop = 0 Watts 

Energy balance between evaporator and distribution loop = 1.4x10'10Watts 

Heat balance between radiator and distribution loop = 2.9x1 O'10 Watts 

Energy balance between radiator and distribution loop = -1.14x 10*10 Watts 

Heat balance between evaporator and distribution loop = 1.3x 10'10 Watts 

Energy balance between evaporator and distribution loop = 0 Watts 

Heat balance between room and the outside air = 1.3x 10'10 Watts

COP for the above values is 10.38 which is nearly the values at the published data 

as discussed in the results section. For all the equations, the residues are around 

the order of -9 to -10 magnitude which is well received for the convergence 

criteria.
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The effect of thermodynamic properties of the refrigerant in the system 

performance is out of the scope of this work. Methods have been modelled to 

simulate the properties have been discussed in the literature review.

Conclusion

Each sub system was modelled as a pair of heat transfer and heat balance 

equations. Coupling each sub system by temperatures and enthalpies to represent 

the complete GSHP system is the method proposed. Solving for range of 

temperatures and enthalpy shows the system response for the operating 

conditions. Values of residue and COP calculation for sample data are shown. The 

scope available to develop and improve the GHE has been discussed and 

selected for CFD modelling in the next chapter. The purpose here is to show how 

innovative and important to develop such hybrid model for future energy solutions.
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Chapter 4

Introduction

This chapter focuses upon modelling GHE with varying temperatures on the outer 

surface of the grout to represent the varying temperature of the ground. The inlet 

and outlet temp of circulating water is taken from the published data for reference. 

The results are analysed and overall thermal resistance is calculated. Analysis is 

carried out with symmetry boundary conditions to reduce computing time and 

memory. Geometry is modelled in GAMBIT and solved in FLUENT 6.3

4.1 CFD modelling in FLUENT

A method has been developed to model the pipe carrying the water, which is 

buried in the ground. The model is built in gambit and the temperature gradient is 

used as boundary condition for different depth of the ground. The temperature for 

different depth of the pipe is used from the published data to, which the results to 

be compared. The geometric material properties for the pipe and the flowing water 

are obtained from the standard material data handbook. Necessary assumptions 

are made to implement all the aspects of the process to model the complete cycle.

4.1.1 Modelling the U-tube

The pipe outside diameter is 40mm with 4mm thickness; the length of the pipe 

used is 100 meter. The depth of the borehole is 50 meters with 150mm diameter. 

The internal diameter of the u-bends of the pipe is 42 mm. The borehole is filled 

with grout material to have maximum surface contact with the surface of the pipe
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for better heat transfer and it also prevents the pipe from contamination from the 

foreign materials in the soil.

The circulation of the water in the pipe is analysed by periodic boundaries. The 

methodology commonly used in the analysis in which a section of the pipe is 

modelled and the output of the pipe is again used as input several times, remains 

until the exact length of the pipe is accounted. This avoids the modelling of several 

hundred meter of pipe and physics of the flow is not compromised. Assuming the 

length of pipe 400 meter for 200 meter borehole, considering the U tube 

configuration, the 50 meter model is made for simplicity and the water is 

recalculated for four times to capture the same effect of the 200 meter length pipe.

Periodic boundary conditions model the repetitive nature of flow considering space 

as variable for the length of pipe. It records the previous values of the variable at 

the outlet and feeds in to the inlet. The variables are calculated again for that given 

length as long as there are no geometric variations. This avoids modelling entire 

length of pipe.

Symmetric boundary conditions are used in cases where the flow parameters such 

as temperature, velocity etc do not change for fully developed flow across the 

particular plane. For temperature variations, the heat flux across the symmetric 

plane is assumed to be zero this reflects the exact properties of the fluid at the 

plane of symmetry of the geometry and flow.

87



Since the model is symmetric above the vertical plane, only half of the model is 

modelled and the results were reflected on the other side of the symmetric plane. 

Assuming the ground as infinite source or sink, the ground surrounding the pipe is 

modelled considering enough distance from the pipe to have steady distribution of 

the temperature. The diameter of the ground considered is about 5 meters to 

reflect the temperature measurements made from the sensors in the publication 

against which the results will be compared. Following figure 45 shows the basic 

geometry.

Figure 45 Pipe and water geometry in GAMBIT
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The following figure 46 shows the sectional view of the water and the pipe along 

the vertical plane. Properties of high-density polyethylene pipe and water or some 

times water with glycol mixture can be used for calculating heat transfer 

coefficient. The overall heat transfer coefficient is calculated by convection heat 

transfer coefficient of the water flowing in the pipe and the conduction of heat 

through the pipe to the surrounding ground.

Figure 46 Pipe geometry with grout in GAMBIT

In summer, the surface temperature of the ground is high and as the depth in the 

ground increases, the temperature in the ground decreases. The varying 

temperature is used on the surface of the grout as the temperature boundary
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condition. The typical summer temperature of 33°C is used and from the data 

published. It is observed that the temperature gradient is higher for the first few 

meters from the surface of the ground, and is maintained nearly constant for after 

certain depth. The temperature at 20m depths is around 18°C from the literature 

hence the same temperature is used for the analysis. Soil property can be found 

on the FLUENT material properties data base which is used for this analysis, for 

different soil types user can use other properties. Impact of these properties can 

be analysed based on the type of boundary conditions used.

4.1.1.2 Meshing

Meshing is a process of discretising the domain into small cells as the governing 

differential equation is conserved on each small cell and integrated over all the 

cells to complete the geometry. Hexahedral cells have greater accuracy and fast 

convergence when compared to tetrahedral cells [84]. Hexahedral cells with their 

degree of polynomials it converges accurately but relies on geometric simplicity. 

Tetrahedral mesh with high node numbers and degree of approximation used, 

takes more memory and time but on the geometry it has the advantage it can be 

used for any complicated geometries.
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Figure 47 Meshed geometry water in the pipe

4.1.1.3 Boundary condition and Solving

Velocity inlet with temperature of the water entering the GHE is assumed for this 

model. The velocity and the temperatures are obtained from the experimental data 

published. For the given geometry and the velocity the Reynolds number is well 

above 2100, the flow is turbulent. Stand /c-smodel is used to solve turbulent 

quantities. Continuity, energy equations and turbulent equations are solved for the 

flow field. With standard material properties and operating conditions, symmetric 

model of the GHE is solved for the given boundary conditions.
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Conclusion

Modelling of GHE with simple U-tube is demonstrated in this chapter. The 

geometry being simple, hexahedral mesh used for the straight length of the pipe 

and tetrahedral mesh for the U bend is appropriate. For the value of Reynolds 

number, type of flow use of two equation turbulent model is justifiable. Use of 

symmetric and periodic boundary conditions is valid for the type of the geometry 

and the analysis carried out. The results of this section is discussed in the 

following chapter
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Chapter 5

Introduction

This chapter discuss the results obtained from the above analysis and analyse the 

results. The variables are selected based on the real parameters which have an 

effect on the system performance for steady state conditions. Variables are also 

taken in to account the physical feasibility to implement them if performance 

shoots up, for example surface area of grout, grout thermal properties and ground 

and air temperature difference and degree of sub cooling and super heating etc.

5.1 Results and discussions

An analytical model is developed to observe the parameters affect the 

performance of the ground source heat pump system. This study reproduces the 

results of the experimental work carried out by Yujin Hwang et all [33] for a school 

building in South Korea. The dimensions of the geometry in the analytical model, 

material properties and working parameters are used from the same publication to 

validate the model. The CFD model of the ground heat exchanger is used to 

calculate the thermal resistance of the borehole.

The geometric details and the thermal properties of the materials used for the 

calculation are listed in Appendix A. The variables are the air temperature (Tair), 

power in put to compressor (Win) and the ground temperature (Tg). Temperatures 

of circulating water and refrigerant, enthalpies of the refrigerant at evaporator and 

the condenser exit are calculated directly. The enthalpy after the isentropic
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compression is derived from the temperature at the evaporator exit, which is 

assumed to be at the saturated vapour condition.

5.1.1 Results from the analytical model

This model is analysed in cooling mode. It is observed that for the typical outside 

air temperature ranging from 18°C to 50°C at constant ground temperature at 18°C 

and at constant power input, the figure 48 shows the COP increases almost 

linearly

It is reasonable to understand that in cooling mode as the load increases for the 

constant power input, the COP will increase. The increase in temperature gradient 

above the practical working range limits the performance due to surface area of 

the ground heat exchanger.
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Figure 48 COP varying with temperature gradient with Tg at 18°C

High values of COP are observed for not taking in to account the power consumed

by the circulating pumps. The 7500 watts power input suggested by Yujin Hwang
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et all [33] to the pumps will bring the values down to more than half the above 

shown values, which are quite near to the practical range of operations.

The ground is a vast reservoir for heat transfer, above conditions are assumed 

with negligible or no temperature variation of the ground surrounding the grout 

over the long period of time. The dynamic working nature of the system and the 

local condition of the ground the temperature might vary. Considering the long 

term working nature of the system if the ground temperature varies the effect on 

the system is adverse. In the following figure 49 it is observed that the system has 

to work against the temperature gradient.
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Figure 49 COP varying with temperature gradient with Tair at 33°C

The increase in ground temperature reduces the amount of energy transfer to the 

ground. This affects the overall performance since the additional heat cannot be 

transfer to the ground and the cooling load is reduced for the given power input. 

The effect of working temperature on the performance can be observed in figure 

48 when the (Tajr — Tg) is zero at Tg = 18°C the COP is around 9.85 and it is 8.7 

when (Tair-Tg) is zero at Tair =33°C in figure 49. For the same temperature



gradient of about 17°C it is observed that fixing the ground at lower temperature at 

18°C average COP increases around 5.14% when compared to fixing the air 

temperature at 33°C. The model is tested against the standard Carnot COP to 

check whether the actual COP should not be exceeded.

5.1.2 Validation with experimental model (Bench mark model)

The model is tested against the experimental values under the similar working 

parameters. Power in put and the temperature difference of the circulating water 

from the ground heat exchanger are considered as the parameters to compare. 

The performance is dependent on the power input to the compressor below figure 

shows the decrease of performance with power input for fixed air and the ground 

temperature. The experimental results were collected from Yujin Hwang et al [33].
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Figure 50 Experimental and actual COP for varying compressor power 

The corresponding power input to the compressor is used to compare the results 

with the experimental results. It is seen that the actual model over predicts the
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experimental model. The average actual COP is 9.14 and the experimental is 8.28 

the prediction is around 10.38% higher to the experimental.

This model would work for operating temperature below the one considered for 

this analysis for example for the case of the UK scenario. The effect on the COP 

is also depend on the other factors such as ground temperature at certain depth 

as it can be seen the temperature difference which drives the system have an 

effect on the performance. As it can be seen from the figure 47 & 48 by 

extrapolating, COP might be at the lower values.

Possible causes for the deviation:

• Methodology used to calculate the load on the compressor

• Thermal properties used in the calculation of the heat load

• Type of sensor used and the assumptions made in the measurement of 

room temperature

The temperature of the circulating water in the ground heat exchanger largely 

depends on the temperature at the inlet and the surface area for the heat transfer.
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Figure 51 Air temperature V/S circulating water temperature in GHE both actual

and experimental

Since the surface area is constant, the inlet temperature varies with the 

independent our side air temperature. As the air temperature increases the cooling 

load increases and so the temperature in the condenser. The inlet temperature of 

water to the ground increases and leaves the ground loop at higher temperature. 

The values of the temperature in the chart above nearly agree with the 

experimental results. The model under predicts the temperature at the entry to the 

heat pump about 0.5°C and over predicts by 0.5°C at the exit. The net raise in the 

temperature is nearly same as the experimental results. The average difference 

between the temperatures is around 2%, which are very nearly matches to the 

experimental results

The deviation for the results in comparison to experimental may be due to

• Thermal resistance of the ground, since the temperatures are measured at

2.5 meters from the surface of the grout
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• Input temperature profile on the surface of the grout.

• Method used to relate the temperatures of the working fluid

5.1.3 Comparison with Ideal Carnot COP

Ideal Carnot COP depends on the hot and cold temperatures and is used to 

measure the scale of the actual cycle COP. This comparison gives the limit to the 

actual cycle COP to operate; it is impossible to have any cycle to operate above 

this value. Results show that the actual COP is far less than the Carnot COP. 

Initial temperature difference between the source and the sink is very low hence a 

very high value of COP is expected. As the temperature gradient increases the 

Carnot COP decreases as shown in Figure 52 Comparison of actual and Carnot 

COP

As the temperature difference increases rapidly, the ground temperature will 

increase marginally. This causes the gradient of the curve for Carnot COP to 

reduce and eventually get steady well above the actual COP value.
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Figure 52 Comparison of actual and Carnot COP
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5.1.4 Parametric study

5.1.4.1 Effect of area of the grout on the performance

Apart from the operating parameters, the geometric parameters and the material 

properties might also affect the performance of the system. Consider the affect of 

surface area of the grout to improve the heat transfer rate to the ground. 

Theoretically, by increasing the area of the grout the heat transfer will increase the 

effect is analysed in the model. Below figure shows the improvement of the COP 

with increase in the surface area of the grout.
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Figure 53 Variation of COP with area of grout

The curve shows that the increase in COP will be significant to the area around 

900-1000m2 after that value the curve reduces the slope. After around 2000m2 the 

value of COP will almost remain same. The overall improvement of the 

performance is around 0.5-0.6 % for 1000m2 of increased area and it is around
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0.2-0.25% above 1000m2 area. Changing the configuration of the pipe in the 

ground can increase the surface area. Two different types U-tube and the coil type 

are suggested in previous chapter.
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Figure 54 Varying outlet temperature of water from the GHE with area of grout

As the surface area increases the outlet water temperature of the ground heat 

exchanger will decreases. The cold water absorbs more energy from the 

condenser and thus improves the performance of the system. Figure 54 shows the 

temperature (Tf0) of water decrease. Steep drop of around 3°C in the range of 400- 

1000m2 is observed .To compare the two results i.e. figure 47 and figure 48, at 

100m2 area of the grout the slope is reducing quite sharply and flattens at around 

2000m2. Giving sufficient information the COP does not affected much after the 

2000m2.
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5.1.4.2 Effect of degree of sub cooling and super heating on the performance

The effect of degree of sub cooling at the condenser exit and super heating before 

the compressor inlet is studied in this section. The effect of super heat is to 

completely vaporise the refrigerant before entering the compressor with some 

degree of superheated vapour. Figure 55 show that it is having the positive effect 

on the performance of the system. The ideal effect of the super heating is 

represented by the top line in the following figure on average of 10.66. Considering 

the energy required to super heat vapour, the actual COP is reduced to an 

average of 5.55. The average difference found to be around 47%; still the degree 

of super heating has the positive result.

Ideal COP

Actual COP

Deg of superheat

Figure 55 Effect of degree of super heat on COP

The effect is almost linear with the degree of super heat for each 5°C raise in the 

temperature above the saturated vapour region, gain of around 0.2% of COP is 

observed. The additional energy required to heat the vapour to the super heated 

region is gained from the water re-circulated from the condenser or any other heat
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exchanger. Similarly the effect of degree of sub cooling is also considered in this 

work. This affect shows the COP increase is higher for the same range of degree 

of sub cool temperature when compared to degree of super heat. Figure 56 show 

the much steeper gradient of the COP compared to previous method. The average 

gain in the ideal COP curve is about 11.12 and with the actual curve the gain 

reduces to 6.54. The net effect is quite positive with 41.18% deviation with ideal 

and actual COP.

The net gain when compared to super heating for the same temperature range is 

5.82 %. Considering the other unaccounted 20-30% losses, the net gain will be 

around 4.6%-4.1%, which is quite practical.

Actual COP

Deg of Sub cooling

Figure 56 Effect of degree of sub cooling on COP

By improving the mechanism of heat transfer in the condenser and using better 

thermal properties for the material, this objective can be achieved. An
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arrangement for cooling mechanisms might be implemented to get the degree of 

sub cool.

5.1.4.3 P-h-diagram for super heat and sub cooling cycle
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Figure 57 P-h diagram with sub cooling and super heating for a typical cycle

The cycle begins from inlet to the compressor. Point A is in the superheated region 

above the saturated vapour line. The refrigerant is compressed isentropically from 

A to B in the super heated region. From point B, the refrigerant at high energy 

level releases the heat in the condenser and reaches the saturated liquid line. It 

then sub cooled to the point C with constant pressure. At point C refrigerant is 

completely in liquid state and enters the throttle valve. The throttling process is 

represented by process C to D at this point it is liquid-gas mixture. At point D the
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refrigerant absorbs the heat in the evaporator and vaporises to reach point on the 

saturated vapour curve at constant temperature. It is super heated to reach point A 

to enter the compressor and the cycle repeats. The above section describes the 

actual cycle for the calculated values of the temperature and enthalpy of the 

refrigerant. This cycle repeats and changes the position of the points each and 

every time for different cycles.

5.1.4.4 Effect of U-value on the performance of the system

Improving the material properties to increase the performance is also one possible 

option, which is analysed in the exercise. The effect of overall heat transfer 

coefficient for the ground heat exchanger analysed and is shown in figure 54. The 

effect is not significant raise in COP with additional U value. It gives the limiting 

value of heat transfer coefficient around 20 W/m2 °K. Further increase in the U 

value has only noticeable effect on the performance. The overall gain is observed 

to be around 0.5% for about 10 W/m2 °K and it reduces to about 0.2% above the 

threshold of 20W/m °K.
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Figure 58 Variation of COP with U value of grout
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Improving the U value beyond certain range has the practical difficulty. The heat 

transfer coefficient is combination of convection and conduction in the pipe and 

grout. The major share of the heat transfer mechanism lies with convection of 

water in the pipe. It is worth looking at the fluid part in the pipe.

A CFD model is used for the ground heat exchanger to calculate the convective 

heat transfer coefficient. Different configuration of the pipe in the ground suggests 

the variation of the heat transfer coefficient. The common U tube configuration is 

modelled from the velocity and temperature boundary condition; the convective 

heat transfer coefficient is calculated.

5.1.5 CFD model

Figure 59 Contours of temperature distribution in the pipe
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The experimental value of outlet temperature of circulating water, which is 24°C, is 

used for the inlet for the CFD model. Temperature at the outer surface of the grout 

is maintained at 16.5°C, which is the average value calculated from the published 

experimental work for 200m depth bore hole. The CFD results show the outlet 

temperature is 22°C, which is very much comparable from the experimental outlet 

water temperature at 21.5°C. The deviation of around 2.3% can be observed in 

figure 60 is very negligible.

Figure 60 Contours of velocity profile in the pipe

The value of velocity is obtained from the published data and is also used to 

calculate the overall heat transfer coefficient in the analytical model. The inlet 

velocity 0.5m/s with in let temperature is used for the above solution. Figure 61 

also shows the velocity profile at the bend U section below the ground at 200m 

depths along with the grout.
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Figure 61 Contours of velocity in U tube

It is shown that the method used to compare the performance is valid. The effect 

of increase of grout surface area and the thermal properties of the GHX is also 

increases the performance. CFD results show the close match to the analytical 

solution. The convective heat transfer coefficient of the water in the pipe is shown 

in figure 62. The values are high at the inlet and reaches constant value at the exit 

to the grout temperature. The CFD value of the heat transfer coefficient is 1611.6 

W/m2 °K maximum and is 1612 W/m2 °K minimum. If all the values are added up in 

the fringe plot, the final value is 9.17 W/m2 °K and the calculated value is 7.88 

W/m2 °K from Appendix A. This deviation of 16% can be minimised by refining the 

mesh or using the different solving techniques to converge the solution.
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Figure 62 Surface heat transfer coefficient on the inner surface of the pipe 

Conclusion

Actual and experimental COP's for different power input are in reasonable 

agreement. The inlet and outlet temperatures of GHE are also predicted to the 

acceptable range. The effect of increase of area of grout and temperature 

difference between the air and ground seems to have slight impact on the 

performance. High values of COP can be expected without considering the effect 

of power consumption for circulating pumps.
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Chapter 6

Introduction

The influence of some parameters was not that significant as it was initially 

thought of, ground properties might have been the parameter to limit the 

performance. Complete system performance is reasonably accurate with the 

assumptions made; the methodology adopted has worked well for some 

parameters. Modelling the grout with the ground for transient conditions should 

show the actual impact on the system performance. As discussed earlier in the 

literature the possibilities are numerous. Outcome of this work is a step towards 

the better understanding of the complete system behaviour.

6.1 Conclusion and future scope of work

For the optimum design of the GSHP system, it is necessary to estimate its 

performance and economic feasibility before the installation. In this work an 

analytical model is proposed and developed for the steady state condition. 

Complete model is analysed in the MathCAD analytical model, and clear choice 

has been made to improve the GHE having compared all subsystems overall heat 

transfer coefficient. The model considered the effect of area of ground heat 

exchanger on the performance it has the positive impact.

Thermal properties of the materials of the pipe and grout have considerable impact 

on the performance of the system. The interesting aspect of degree of sub-cooling 

and super-heating of the refrigerant on the performance of the system clearly
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demonstrate the impact on the overall COP of the GSHP. The important test of the 

performance of the model was with the ideal Carnot cycle performance, gives the 

clear indication of its practicality of application. The accuracy of the model is 

verified by the experimental work published by comparing with the circulating 

water temperature at inlet and exit of the heat pump and power consumption for 

the compressor.

As a result of this study, many conclusions have come to the attention of the 

author and many reflections exist as a result of such scientific investigation.

What remains of interest is the temperature difference which drives the heat flow

i.e. T^r and Tg has resulted in steady increase of COP for the initial 20°C. The 

graph gradually reduces the slope with further increase in the difference of 

temperature. This furthers the premise behind the issue of performance. The 

performance is significantly affected by the ground temperature Tg. Results clearly 

shows that as the ground temperature Tg is varied, the raise in COP for 15 °C raise 

in temperature difference is 10% and with Tg held constant, for the same 15°C 

raise the COP is increased by 1.5% the net 8.5% raise in COP is observed.

Still further, it is the affect of grout area on the performance that is quite steep, at 

2% raise is observed for first 500m2 area. The raise is almost steady around 0.5% 

at every 500m2 area. Similar effect can be observed for the drop of temperature of 

the circulating water, it reduces steeply by 2.5°C for the same area and stabilises 

for the rest increase in the area.
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Furthermore, circulating water temperatures compared with experimental results 

are very nearly achieved with 2% deviation, which summarises the accuracy of the 

model. The results again supported by CFD model with 2.3% deviation. This 

directly suggests the effect of degree of sub-cooling and super-heating of the 

refrigerant is encouraging. This can be achieved by developing a system to re­

circulate the condenser exit auxiliary water to heat the evaporator exit. Similarly 

the system can be converted to sub-cool the condenser exit. This can lead to 

further innovation and improvements.

The main improvement in thermal properties of materials has shown increase in 

the performance for about 2.5% up to 20W/m2 °K, and the effect is reduced for 

further increases in the overall heat transfer coefficient. It is evident that for an 

increase of U value considering the thermal conductivity of the pipe and grout to 

be constant, the velocity needs to be increased and this is requires more power 

from the compressor. The model gives the safe range of overall heat transfer 

coefficient values.

Considering the difficulties to model such a complex and dynamic system, the 

appropriate assumptions are made to develop this model. The results chosen to 

compare are from the working range of temperatures. This model is developed to 

understand the operating parameters, which affect the performance of the system. 

To the extended of understanding the working methodology, this model gives fairly 

good results with very good consistency. Further research is needed to 

understand complex behaviour of the system working in the dynamic condition.
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Hybrid model gives more diversified access to improve the methodologies and 

procedures for these systems. This CFD approach to combine the analytical 

model is a good example to follow and develop still more sophisticated way to 

represent challenging and dynamic systems. The possible solutions to offer by 

hybrid model would be to analyse by considering long time variations such as for 

monthly or yearly of the weather which CFD will take time to reproduce. But the 

analytical solution can be obtained in quick time and CFD can help calculate the 

flow variables due to change in geometric configurations, ground condition etc at 

ease. Analysing the results in CFD is easier by plotting different variables on any 

part of the system.

6.2 Future scope of work

The future of work in this field can be focused upon the transient condition, by 

considering the daily variation of the out side air temperature for a typical day in a 

month. This can be extended for the month and a whole year. Furthermore, the 

ground surrounding the grout can be modelled and solved for time varying 

temperature conditions on the outer surface of the grout. The temperature on the 

far end of the ground can be fixed assuming infinite source or sink.

The modelling can also be extended to consider the affect of heat interface 

between the two adjacent legs of the standard U-tube compared with the other 

configurations such as coil type with different pitch to diameter ratio. Considering 

the nonlinearity of the system and all the dynamic aspects of the model, it is still 

challenging task to completely predict the model performance. Influence of
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different configuration of the GHE such as coil shape and other simple shapes 

which are easy to install is worth a try.

Modelling refrigerants with complex working environments is challenging task. 

With proper assumptions refrigerant modelling can explore the understanding and 

can help to develop new and nature friendly refrigerants. Combining complete 

system cycle with refrigerant modelling for time varying parameters is the complex 

work. This explores new ways to understand the GSHP system.

Conclusion

In closing, this study serves to promote the continued research into ground heat as 

a sustainable and alternative energy saving option for future. Introduction of such 

hybrid concept will have positive impact on the energy sector. With never stopping 

algorithm developments and computing power of the computer, results can be 

achieved in short time. Ideas and methodologies should work together to achieve 

this common goal of improving the quality of life with cleaner and greener energy.
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Appendix A - Numerical values for the variables

kg
p = 1000 A

m

v =  0.5 m/sec

d =  0.032m

p =  8.9 * 10"4 kg/m sec

Cp =  4189 ]/kgK

k =  0.59 W/mK

ri=0.016m

r2=0 .0 2 m

r3=0.075m

r4=2.5m

K?ipe=0.SlW/mK 

/̂ grout=2. 96W/mK 

/Cground=0.5iy /mK  

I =  175m 

n =  24 

p v  d
Re =   --------=  17977 >  2100

It is turbulent flow

0.079
c/=

P r  =

Re 0.25

C p n
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( 5 f \  (Re -  1000) Pr

Nu =  — — -—  ■—--------------
1 +  12.7-yJCf /2 (Pr213-1)

Nu =  121.83

h f =
NuK

h f =
121.83 * 0.59

0.032
=  2246.2W /m  a

UP =

h f  ' /f,

Ug=7.88 W/m2K

A =  7rd/n

A =  7T * 0.15 * 175 * 24

i4 =  1979 m2

123



Appendix B: Calculation of Overall Heat transfer Coefficient for heat 
exchangers

1. Ground Heat Exchanger (GHE)

LMghx=7.88 *1979 W/°K  

UAghx=1SS9AW/°K

2. Condenser and Evaporator.

Plate heat exchanger have high overall heat transfer coefficient (U) ranging from 

1000-2500 W/m2K, (SWEP Heat Exchanger manufacturer's catalogue)

Assuming the lower value for the safer design at 1000 W/mzK . Model DBD400 is 

selected as a condenser for this case. From the dimension of the heat exchanger, 

with 282 plates

2.1 (JJ A) con fo r  282 plates

Area 0.604 * 0.216 * 282 = 36.5m2

(l/A)cori= 1000*36.79 =36790 W/°K

Similarly P400T model is selected for Evaporator with following dimensions
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2.2 (UA)evafor 280 plates

Area 0.601 * 0.25 * 280 = 36.5m2 

(UA)eva=1000*42 = A 20 0 0W /°K

3 Radiators

For cast iron working between air and water the overall heat transfer coefficient is 

around 7.6 W/m2K with an assumed area 24m2

(M4)=7.9*24 =1896 W/°K

With the total mass flow rate of 15.54 Kg/Sec for each tube the flow rate is 

15.54/24=0.647 Kg/Sec for convenient in calculation 0.5 Kg/Sec is considered.
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Appendix C: MathCAD Calculations- Uses values given in Appendix A

Cn := 4189— -—  
p (kg-K)

W
K *  := 0.69

U 2 := 300.2886193

WUj := 1000y

(m-K)

W

(m 2-K )

(ih2- k )

Ur := 870.1426415; W

2
A 2 := 20m

W
U ai := 10 —

m2-K
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A j := 36.801393 lih2

L^, := 0.3 Or

A w := 214.424708&12

Tair := 630C

W in := 620CW

Cpref 600 kg-K

W
uao := 15—

m2 K

W
Ug :=7.~~

(ih2- k )

Tg := 18°C

A g := 1979n2

M w := 4.814769294^ 
w s

M  i := 2.561937614^ 
s

M r e f := ° - 357

A f := 24m2
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F l(T g ,T fi,T f0 ,U g ,A g ,Qs) := Q S -  Ug A
(Tfo -Tfi)

g g
In (Tf o - T J

g 'J

F2(M w ,Cp,T f0 ,T fl,Qs) := Qs -  M w.Cp-(Tfo -  Tfl)

F S fT lre f.T fi.T fo .U i.A ^ Q s) := Qs - U r A r
(Tfo -Tfi)

In
K e f-T fi)

(T1ref “  Tfo)

F4fQs , h 1 ref , h4rcj-, M  rcf ] : Qs Mj-ef • (h lref  h4ref )

F5(Qsr, h lre f, h4ref. M re f, W in) Qsr -  M ref (h lref -  h4ref) +  W jn

^(^ref ’ ̂ 2rcf ’ h4ref ’Qsr) • Qsr ^ref(^ref ^ref)

F7(u2.A 2.T2ref,T2in,T2out,Qsr) := Qsr -  U2-A2-
(T2out - T2in)

In C^out ”̂ 2ref)
(T2in -  T2ref)

F8(Mwi,CpfT2jn.T2out»QSr) QSr M wj-Cp-(T2out ^ in )

F9(Ur>A r ,T2in,T r ,T2out,Qsr) := Qsr -  Ur-Af .
(^out ^in) 

(Tr -  T2jn) '

(Tr - T2out)
In

F10(Kw.̂ w ’ ^ a o '^ a i’ Lw ’T r ’T a ir’ Qsr) : Qsr Uao +
LV

fw
Lw

+ U.ai ‘^w’Ĉair ^r)
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Constants for function F11 and F12

tc := 72.13°C 

al := 221.174!

bl := -514.966! 

cl :=-631.6251 

dl := -262.274! 

el := 105:
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0



v = 22 °C

^ r e f := 7°C

^ o u t := 21 °C

^ in  =̂ 15°C

T1ref . -  25.173'

Tfi := 21 °C

Tf o := 24.5 °C

h2 pf := 424299.0—  
ret kg

hi ,  := 442112.6857^- 
kg

h4ref := 240716.6575^- 
kg

Qsr := 64391.74V 

Qs := 70591.74V 

Given

F1(Tg*Tf r Tfo»Ug*Ag>Qs) = 0 

F2(M w ,Cp ,T fo , T fl,Q s )= 0

F̂ (^ref» ^fo ’ ̂ 1 *A1 ’ Qs) = ® 

F4{Qs , h l ref , h4ref , M ref ) = 0

F^(Qsr’^ r e f  »^re f ’^ re f *^ in ) = ^
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F6(M rcf , h2rcf , h4ref , Qsr) 0 

F7(U2,A 2,T2re f, T2in,T ! o u t’ Qsr) ^

^ (^w l’^p ^ in ’^out’^sr) “   ̂

F9(Ur ,A r ,T2in,T r ,T2out,Q sr) = 0

Aw,Ua0'Uai,Lw,Tr,Tair,QSr) -  0 

F l l ( T l r e f . h 4 r e f ) = 0  

F12(T2re f,h2ref)  = 0

( Tj^i

T.2

T.3

T .5

*.6

T .7

Q.l
Q.2

h.l

I h n J

Minerr (T r , T2 jn, T2 QUt, T2 ref »T1 ref »T fj, T f0
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Residue calculation for an initial guess

(Tfo _ Tn)
Qs_UgAs r (T fo -T j

In

-3.20142135< 10 10W

Qs - M W C -(Tf0 - T fl) =-1.16415322^ 10~ 10W

Qs - U r A r
(Tf o - T fi)

In
(T Ir e f - Tfi)

K e f - T fo)

8.73114914< 10 10 W

Qs - M ref (h lref - h4ref) = -1-4S519152< 10 U W

O - 0  +W - = owv sr v s m

Q s r - M ref(h 2 r e f -h 4 ref) = 0 W

Qsr “  U2 A2"
fo n t ^in)

In
(^ o u t ^ r e f ) 

(^ in -^re f)

=  1.45519152X 10 10W
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