Sheffield
Hallam
University

Using software abstraction to develop an agent based system.

OTHMAN, Zulaiha Ali.

Available from the Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/20155/

A Sheffield Hallam University thesis

This thesis is protected by copyright which belongs to the author.

The content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title, awarding
institution and date of the thesis must be given.

Please visit http://shura.shu.ac.uk/20155/ and http://shura.shu.ac.uk/information.html for
further details about copyright and re-use permissions.

http://shura.shu.ac.uk/information.html

Fines are charged at SOp per hour

RFFFRFNTF

ProQuest Number: 10697462

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

Inthe unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 10697462

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M 48106- 1346

Using Software Abstraction to Develop an
Agent Based System

Zulaiha Ali Othman

A thesis submitted in partial fulfilment ofthe requirement of
Sheffield Hallam University
for the degree of Doctor of Philosophy

KAU-A&

2004

School of Computing and Management Sciences
Sheffield Hallam University

Abstract

The main contribution of the thesis is to present a systematic process to develop an agent-based system
that assists a system developer to construct the required system, through a series of modelling activities,
employing several levels of abstraction to show the milestones and produce intermediate deliverables.
Current practice emphasises "downstream activities" such as implementation at the expense of "upstream
activities" such as "modelling".

The research has found that the development process for an agent system consists of three phases: agent
system development, agent environment development and agent system deployment. The first and second
phases represent an intertwined spiral model. All three phases themselves consist of three stages. Each
phase employs different development techniques and each stage uses appropriate models and tools such
as problem domain model, agent use cases, scenarios, agent system architecture, plan model and
individual agent model.

The proposed agent development method is applied to two case studies: a Filtering Agent System and
Diabetic Consultation System. Both systems have been implemented and tested. Three distinct ways
were used to evaluate the proposed method. First, comparing with the criteria of a methodology. Second,
comparing it with the current agent-oriented methodologies. Third, informal observations from a
potential user community,

In conclusion, the research has demonstrated an effective synthesising process to build a set of agent
concepts, development life-cycle and modelling to show a systematic process for developing agent
systems. Moreover, by employing a whole host of software abstraction tools and techniques in the
process, two benefits accrue: the introduction of more 'up stream' activities as well as placing modelling
at the heart of the process. Illustratively, we could say that the modelling presented here does for agent
systems what data flow diagram and data entity diagram have done for structured methodologies, i.e.
raise the level of abstraction employed.

EAcknowledgementS

I'would like to express my deepest thanks to my kindly supervisor, Professor Dr. Jawed Siddiqi
who have supervised, influenced and inspired me throughout the duration of this research
project. Similarly to Dr. Peter Collingwood who has helping me in the early stage of this
research and make comment on the thesis. Never ever forget to Dr John Stone who has kindly
help with the English and proof-reading of the final thesis.

Many thanks to all the staffs of Sheffield Hallam University, who were involved whether directly
or indirectly especially, Paul Manning, Darren, Chris, Angela, Lind, and all CMS and CIS staff
who provided necessary environment for the achievement of this research, especially to the
postgraduate co-tutor, Ian Morrey, who always give his full attention to all research students.
Great thanks to all other researchers in similar research agent areas such as Afsaneh, Abdullah
and Saadat for their technical comments.

To all my friends that I know them in Sheffield such as Zainah, Mariani, Liana, Tracy and both
Aminah, who always cheers up my life in here, our brotherhood will never be forget forever.

No amount of thanks can suffice for my husband Roslan for encouraging me all the time, from
the beginning to the end of this research, sharing the hardship of doing research and helping
me to use my time efficiency. To my three sons Mutasim, Muaz and Mustaqiim, a deep
appreciation from your mum for being patient, understanding and tolerant for several years of
motherless days. Your great behaviour really encouraged me throughout the research.

I'would like to extend my heartfelt thanks to my parents, brothers and sisters, whose constantly
provided great advice and encouragement. All of you are the sources of my determination to
complete the PhD. ‘

Finally, thanks to my sponsor, the National University of Malaysia, which provide financial
support for this research,

May God Blessed all of You,..

ii

Contents | Bl o Pages

ADSIFACE ... aoooevvreeerveeeneveieisersesssseesssssresssssessssassessssssessassesessssesssssessssssnssssossesssessansesesssssesssssnass i
ACKNOWICAGEMENLcoveverereereerccnncirrreisrssereectseseassestasessesessessessssessesssssessssessessessensessersssnsssssssasssss ii
ADBDFEVIQLIONS .vvooeeeeeeeieeeeeeieesireess ettt e st e eseeessessaessestetssssaetesasenessanstesssasnneessassaesesssaneessesanees vi
FUGUIES vttt sttt saesses e ses st sbessansnessessasnsestasseessasaansnessnsssesssasesss viii
TADIES oo ceveeeeceeerceteererte et s s e st e s e s e e e s b s b b r e s a b e s bbbt s e e b r e e e s bbb baeser bt aneessanrreseranaeian x
CHAPTER ONE

Introduction

1.0. MOTIVATION OF THE RESEARCH................. iereesseeesreresnresabesebeeesaresatasserbasraneenrates 1
1.1. THE CONTRIBUTION MADE IN THE RESEARCH PROJECT.coevveeevveriereevesseens 5
1.2. TOUR OF THE THESIS....ottictttitierreeineerneesssieesseesssesessssssesseseessseessssssssssssesssesssssessassesens 6
CHAPTER TWO

Background Literature Review

2.0. INTRODUCTION.ccocerieiririreririernsssisensesteessssesisessssessossessesssestssssessssssesssssssesssssonasans 8
2.1, AGENTS. ettt ettt ses e e sas e e s e sasastesnasasestssesssenansasssaessstsssssannas 8
2.1.1. CharacteriSing AGENLS.cceuevueveeceersieeniecessesiessessseessesassssssessessessesseseessenenas 9
2.1.2. Key Issues for Agent TeCHNOIOZYccovecuvveeeereeieriereeescesesnssecesssesseseessenes 12
2.1.3. Status of Agent TeChnologyceeeeeveveereeeeeeereerererennn, e 21
2.2. SOFTWARE DEVELOPMENT METHODOLOGY.. ...cccvcermerereererserrererenreseesseseeseseas 25
2.2.1. Principles of Software Development Methodology .. 25
2.2.2. System Development ADPFOGCK.c.ceevevcvecicsiesreeeievisseseseresessssess s sasssssassesas 27
2.3. SOFTWARE ABSTRACTION......ccsctciererrirerrersnserssssesosessessassssessssessssssassassesssssssnsesen 32
2.3.1. Software QreRitECIUNe.ouvcceevierieiesiesienieeiessessessesesssess s sesesseesessesseessosessees 33
2.3.2. ArCRIECIUre PAMIEINS.........c.couveeeercerierieneecisisisissessasesssnssssssssssessessesssssessessensesesses 34
2.3.3. DeSIGN PAHEINS. ..c..cevereevririreereeciriesiesisnissessesesssssassassesissessessassessensensessessonseseanes 35
2.3.4. Architectural Description Language(ADL) .. 36
2.3.5. FPAMEWOFEKS.cvveeeeeriieiieisisensivesisiessssitsesssssssessessesessessassessessassesssssassensensenes 37
2.3.6. Framework DevelOPmMEnt PrOCESS.cceveeivecveeeeeeeressessssessssssessesssessessasssenns 40
2.4. THE CRITERIA OF AN AGENT BASED SYSTEM.......ccivunrireirnerererreseereresseseersens 41
2.5 SUMMARY ..coiiiirrirnnininnneninenseseissssssisisisssssseeesssssssssssassesssssastossssssesssssssassssessossssssssnss 47
CHAPTER THREE

The Building Blocks Towards a Process for
Agent System Development

3.0. INTRODUCTION. ...ccovivererrinierneererreeressesensesessssenestessssserssssssssssssessassssasssssssssssssissassssnns 49
3.1. DERIVATION PROCESS FOR THE DEVELOPMENT OF AN AGENT SYSTEM. 51
3.1.1. Examining Software Abstraction................ ettt et e et en s areeaeabenenneneas 54

iii

3.1.2. Analysis of Existing Agent-Oriented Methodologiescucceueveeeeennnen. 55

3.1.3. Reverse ENgineeringcccccevvevvviieeiiiiiiienieaeseirereessssscssnesessssesesssssseaeeees 55
3.1.4. Scrutiny of the EXiSting ENVIFONMENL................cocereveereemreerivenirnsseesneeneesene 57
3.2. THE ESSENCE OF THE DERIVATION OF RESULT TOWARDS THE PROPOSAL
OF AN AGENT SYSTEM METHOD.cccceotminmiinnrininnenetetienieenteessessvessnens 58
3.2.1. Analysis and Design Concepts for Development Agent System....................... 59
3.2.2 Software Development PrOCesS.........u...ccoueeveervieeeiieeeiiiveeeasiiieessseesssnssssssses 67

3.2.3 Analysis, Design and Modelling Techniques for Agent System Development ..69
3.2.4. Analysis, Design and Modelling Techniques for Development Agent Environment
.. 77

3.3, SUMMARY ..ottt san e 85

CHAPTER FOUR

Towards a Method to Develop an Agent-based
System

4.0. INTRODUCTION......ueivtrrricrinintiteisiiiiisnessensiesieesusessesssesssessesssessssessaanssssssnessns 86
4.1. AGENT SYSTEM DEVELOPMENT.......ccotiiiiirrertrnercreneesnres s sereessnesseesaneenne 92
4.1.1. Analysis ReQUITEMENL...............ccocccuervermueieerieeiereseeseseeseaseesseseesseeannens93
4.1.2. Agent System Level DeSign............ccccocviveiiieiiuesresiesisesiesissiseninssesssesseenseens 101
4.1.3. Individual AGent DESIGN............ccccccoveviieiiiiecieeeiaiesieeseeesntveesseeeseseneseeesis 109
4.1.4. REfINEMENL.ccceveeeeiieniiteeiie ettt e rete s s ee e sae e s e e s s tae e sse e e ensbeesaseeeas 113
4.2. AGENT ENVIRONMENT DEVELOPMENTc.ccceevteniinrenrernecicierirensneesssensensens 115
4.2.1. Agent Environment ANGLIYSIS.........ccocucocviveeiiieeeieiiieisieeeesicreesssereraessesssenees 117
4.2.2. Agent Environment Architectural Design.ccoeevveveveiereiiieeinrreeesaesnnnes 124
4.2.3. COMPONERNE DESIGRoccvveiiieiireciiiicinesrieseaeestaeseeessaasesaneessseee s sveesanenes 128
4.2.4. Development of Jade Agent ERVIrONMENt.cceceveeeeveeeciveecineeeireaennnens 129
4.3. REUSE OF ‘OFF-THE-SHELF’ AGENT ENVIRONMENTS.ccccceevrervuerennecnenes 132
4.3.1. Process to Reuse the Off-the-Shelf Agent Environment...............cocuvevecueeennne. 133
4.3.2. Common Features of an Agent ERVIFONMENL...........cccovueeeeevvieeecinenreeencineenes 135
44. AGENT SYSTEM DEPLOYMENT.....cccttiiecrtinernreniennieeseetesatesnneessessanesnassseaas 138
4.3.3. Deployment DeSi@N PFrOCESSccccvvuieeereceeeeaveeesereeeeesseeessessseesessesanssnens 139
4.5, SUMMARY .oootiiieeeieesrceteestestesssessbessteessessse st e s s eeseesstessaesssesassasssasssesssssasseansns 142
CHAPTER FIVE

Development of Agent System - Case Studies

5.0. INTRODUCTION.......ccmirumrmimiramnsieresmencsmmmsseneenssessiessssesssenssenssessessessesssessssessss 144
5.1, FILTERING AGENT SYSTEM.....ccociniiniiiniiniiiiinecccenctinesesecssesenesessesssnssans 145
5.1.1. Requirement SPECIfiCALION.cccoccouerecueeriseeiisenieeseae e srteeseees e 145
5.1.2. PHASE I: Agent System Development.................cccccccuenn.. e 147
5.1.3. PHASE 2: Agent Environment Development..................cccoeeeercvrriererieensuennn. 173
5.1.4. PHASE 3: Agent System DeplOyment.ccccouerieiveecereereeireessseesinesans 178
5.2. DIABETICS CONSULTATION SYSTEM (DCS)....ctvcermirininnirnirnsnnecenssecececsennee 181
5.2.1. Requirement SPeCIfiCQtiON..............ccooverueecuiisiirsieineisiieseesreenieeeeeesenresineees 181
5.2.2. PHASE I: Agent System Development..............ccovueeeeiveeiencreeescneessevensenens 182
5.2.3. PHASE 2: Agent Environment Development.....................c............ s 207

iv

CHAPTER SIX

Evaluation and Discussion.

6.0 EVALUATION PROCESSES.....cctiiiciittiettiiieeiirereresesiineeteeeeesnrresssessesssssrsseseesssens 215
6.1 EVALUATION AGAINST THE CRITERIA OF A SOFTWARE DEVELOPMENT
METHODOLOGYttiieiiiiciiieeeesiireereesiessessssseeesessssisssssessrssssssesessessassssnsssssssssssns 218
6.2 COMPARISON WITH THE CURRENT AGENT-ORIENTED METHODOLOGIES
................... eterereesreeereeeseeiteteeeeei et eete s e tnreaeaeras et teeteteeeanttteaeesssrnsennaeeeanansnssnesaseses DRD
6.2.1 AGent PAFAAIGM.oooveeceeeereeeieeecieeeeieeiteeciteesveesteeessee s aessssseesssasnsnassnns 226
6.2.2 Development process and TECANIQUES.................ccoueeveeceeecuereeeireesreeiaesneesneenes 228
6.2.3 Modelling Techniques and NOIQHIONS.c..cccueiveeseevueereeeseesresiaeenseenseeens 234
6.3 POTENTIAL COMMUNITY EVALUATION.....cccettireecrreerreeerreeereeseennnvsnesseesess 242
6.4 ANALYSIS OF EVALUATION RESULT ...ccciiciitiiiirreticireerrerteecsreesesnnneessssnnenees 244
6.5 DISCUSSIONcetiiverireieeririrersortesissereessssaressersssesssssresssassssssssssesssssnsssssnssnesssnanness 251
6.6 FUTURE RESEARCHccicciiiiimiriinienteiietinsssinnessssesssssssensessessesssssssssssssnnnnsesssseses 253
6.7 CONCLUSION.ccctteicrrrerrerrererssnesssirsessssinteesssssessssrssesssssesssssessssssssssssssansssssssaseess 256
REFERENCES - ‘ o 259
INTERNET REFERENCES ‘ - ‘ 278
APPENDIX A :Analysis Existing Agent-Oriented Methodologies 281
APPENDIX B : Reverse Engineering =~ 294
APPENDIX C : The Scrutiny of Agent Frameworks 319
APPENDIX D : Software Abstraction in Agent Environment 336
APPENDIX E : Agent Modelling and Notation e 346

Abbreviations |

ACL Agent Communication Language

ADL Architecture Description Language

AEA Agent Environment Analysis

AEAD Agent Environment Architectural Design
AEAOMs Analysis of the Existing Agent-Oriented Methodologies
AED Agent Environment Development(AED)
Al Artificial Intelligent

AR | Analysis Requirement

ASD Agent System Development

ASDO Agent System Deployment

ASLD Agent System Level Design

AUML Agent Unified Modelling Language

BDI Beliefs, Desire and Intention

CD Component Design

CORBA Common Object Request Broker Architecture
DCOM Distributed Common Object Management
DCS Diabetics Consultation System

FAS Filtering Agent System

FIPA Foundation for Intelligent Physical Agents
FIPA-OS - FIPA-Operating System

FTP File Transfers Protocol

GP General Practice

GSM Global System for Mobile Communication
HTML Hypertext Markup Language‘

HTTP High Transportation Protocol

IAD Individual Agent Design

ISO International Standardisation Organisation
JDBC Java Database Compiler

KIF Knowledge Interchange Format

KQML Knowledge Query Manipulation Language
OFSAE ‘Off-the-Shelf” Agent Environment

OMG Object Management Group

RE Reverse engineering

RMI Remote Method Invocation

vi

SAEF
SL
SMTP
TCP/IP

UML
WCTP

Scrutiny of Existing Agent Frameworks

Semantic Language

Simple Mail Transfer Protocol

Transmission Control Protocol/Internet Protocol
User Datagram Protocol

Unified Modelling Language

Wireless Communication Transportation Protocol

Extensible Markup Language

vii

Figures

Figure 1.1: An Overview of the Research Process.......cuccuvievvevveriverenreeseenerceerseneereereeesssessennes 4
Figure 2.1: Characterisation of a Multi-agent SySteM.........ccecvrevrereererrenrerrrinererssereresssesessnsasses 13
Figure 2.2: Components of an Agent Architecture. ettt ettt sttt b sessaeans 13
Figure 2.3: Inter-agent Communication between Two Heterogeneous Agentscoceveuene 15
Figure 2.4: Example of @8 KQML MESSAZE......ccecerurmeirerrererreseresesrennsrssesesssserssesserenssssssecssesess 17
Figure 2.5: Example of FIPA [anguage.......cccceeireenririnesessenssssesisseesssssesessessesssesssssessssesessesses 18
Figure 2.6: The Evolution of the Software Development Methodologiescccecervneeruvucneee. 28
Figure 2.7: Dissemination of the Use Framework for Traditional and Agent-based Application
.. 39

* Figure 2.8: The Ability of Agent to Communicate Across Multi-Agent System............couvueee. 45
Figure 3.1: Devivation Process Towards Development of Agent System Development......... 51
Figure 3.2: The Sequence of the Derivation ProCesscceeveeieerenssencesercenessessesesesscssesenanns 52
Figure 3.3: Identification of Software AbStraction PrOCESSceeevereerverenrvereeernrnreeeessessesnanes 54
Figure 3.4: The Reverse ENgiNeering ProCess.......ucceivrvrreirrennresierrnrerrensessessessssnessssnsssssessesas 56
Figure 3.5: AZENt OVEIVIEW ...couiiuiiieiiiiectiineitent et seeesetesesaessssstesesseasesassessessessasassesresass 63
Figure 3.6: Agent MOAEIINGcccoueveriereireerenineeneiienenresnisineesessessensntessessesesssessesessessessesessanses 67
Figure 3.7: A Life-cycle of an Agent System Development.........occceveeevvieererernrneesessesessenees 68
Figure 3.8: The Agent System Design for Filter Agent Systeml........ccceveeevereerrerereereereressennens 72
Figure 3.9: Interaction Modelling Between TWO AZENtS.......ccceeveecriiereenersesieniesreerecsessesessennes 74
Figure 3.10: A UserModelAgent Modelccovvieevenriinnninrecinnisennieennsesnssesssessesssssnsssessens 75
Figure 3.11: Agent Design FramMEWOTKcoceeccerrerrrrenireereneneesseseeissssssenisssssesessssesessssaessescase 76
Figure 3.12: The Agent Environment Reference Architecture..........cooevvevererriveerirecreresreeseneeeens 83
Figure 4.1: The Artefacts of Agent Development Method........cccceveveeciirereenvennieescrueneennee 87
Figure 4.2: Agent System Design ArtefactS.....ccueieveierieinrintienieresinrssieereenssesesssssssessssessesenns 93
Figure 4.3: Agent Problem DOMaincccceivvereerinerenenrensoreniseerenmssesinmssesensessssessssessssessesesscsesns 94
Figure 4.4: The Filtering Application System Goal Model..........cccecvreverrcerecnereneereeseesennens 96
Figure 4.5: The User Event Use Casecocuirirerestininnreierierinsoneesessessnessssssssonsesssssssssessne 98
Figure 4.6: The Use Case for Filtering Application........c.coeueeeecurererenneeescrersennseresssseesesnresesnss 99
Figure 4.7: Filtering Application Agent Identification..........ceoceueevreeesenecenesnereeeneseesenaens 103
Figure 4.8: UserAgent ADSIaCtioncccceiictivcnnictnieneneciseineseeee et seesasesesessssesssssnees 104
Figure 4.9: The Agent System ArchiteCtUre........c.ccreererireerereernrernresensesersesseressesesssseesessesessees 100
Figure 4.10: The Plan Sequence Modelccoeeirveiecnicnnenenenntsnesrnneseseseessnssseseseesssesses 107
Figure 4.11: The Plan ACtiVity MOMEL......cccovvreeviinvenrirersennsienrenersenienessensessnessssessesessseseeseenes 108
Figure 4.12: USerAgent MOdel..........coeveueerereerevesneseeneesessersessesesessenne ereerereresress s asasaas 110
Figure 4.13: Communication Data Structure..........ccceveveeereeneneceeeceseeceeeeeesessaseesesenes 110
Figure 4.14: UserModelAgent Plan Model..........ccccoouruvenvrirrcvnennee. ettt 111
Figure 4.15: The Attributes to Define the User profile.........ccevvirereverninccrnneneinnersvensennns 112
Figure 4.16: The Association between FilterAgent and Learning Techniques......c..ccceesueenne 112
Figure 4.17: Agent Environment Development ProCessccveevierreierrnsseecnsercrnssseerassssesseesnne 116
Figure 4.18: The Artefact of Identifying the Agent Environment Requirement..........c.cceeeee 118
Figure 4.19: The Agent Environment Design Artefactsccecveerrerieeeieerieesinesssenesseesessesns 125
Figure 4.20 : The Structure of Relationship between the Components. ereteresneesesanee 130
Figure 4.21: The JADE Organisation ArChiteCtUIE.cveevverreerrirsrerreessessrneeseesssesssansesnenss 131
Figure 4.22: Reuse off-the-shelf Agent Environment........ccoccevvvenveenneeiienseneninersensensecneens 133
Figure 4.23: UML Class Diagram to Specify Agent Behaviour.........cceeveeveervrervereneessnesneens 140
Figure 4.24: The Inheritance of Agent AbStract Class.....c.ucuverreeerissecirsessiessessinsssessssssanens 140
Figure 4.25: Assigning an Agent Role with Simplebehaviourcccccevrerrverercerieeeseeseenne 141
Figure 5.1: The Filtering System GOalcccccvvrerrvecrersernienuenessenessensseseessessascnessssesses 148
Figure 5.2: The Filtering Agents System Context Diagram.ccoccvervreeveierinnesinseresirnenenns 149
Figure 5.3: Event USer ENQUITY ..ccovevervrersieesenisernntienuensernessseecsssssessssesssesssassssaessssassssesses 151
Figure 5.4: Event User Feedback.......ccceccverirenineninenineniininesenenesennsneesessesssesnes 151

Figure 5.5 : Event TIMETabIecccvvverecenivenivenninniinniniinnieneennsiensesieesestessesnesssesnns everene 152

Figure 5.6: The Filtering Agent System USe Case.ceveeerueeierierccrisrmrnsrisesessesessessessons 153
Figure 5.7: Assigning RoIEs t0 AZENt.....cccvrreerirreiniisiiiineniennriiisesiisieenesssenessessessesans 155
Figure 5.8: Agent System ArchiteCture.....cocvveiniisisienniineninieniiincesesieeeesresnesseenes 157
Figure 5.9: Agent INtEIACHIONS ..vevevevevereerererererssnnesesennenssnscsssessesesessnesssesessssssssssenssesscsisns 158
Figure 5.10: The Filtering Agent System Activity Diagram (the user initiator).........cccceevnne. 159
Figure 5.11: Activity Diagram from Clock Event (scheduler initatior)coccoveeeercrvesnnnnes 160
Figure 5.12: The Filtering Agent System Plan.......ccccouvnieiniinniiiccceceeensssnene 161

Figure 5.13 Enquirer User INterfaceccocuevvverviinieniinninieinnicnncenenninnennnnecsnsesssennns 162
Figure 5.14: Feedbacker User INErfacecoveuervirieniiinnininiineiincnencstiseseseeenesnssnssnns 162
Figure 5.15: USer AZEnt MOGE]cververereerrerrnreereeenisressessessessessessesessesssssnesssseesssssosasssones 163
Figure 5.16: The UserAgent State Model Diagram..........coevvevverveneevcrnennrensinniesnnnnennenens 165
Figure 5.17: UserModel Agent Model......ccovvvvevnmnniiiiiininniniiicrirccnnnseneennessenns 165
Figure 5.18: Internal State Diagram of UserModelAgentccuvveucevereerereeserreruenesncsussennes 166
Figure 5.19: SearchAgent MOdelcccceereenvirinnensinsioniernessceneeseressiesesssessesssessessssssseses 167
Figure 5.20: SearchAgent State Diagram.....c..cooeveerverseesirsnesceneessnencenes et raereraee 167
Figure 5.21:D0CUMENE AZENE ...eeererrernrrreisuecressuersossessussesessessesssessassassssssesssassssssssesssessassans 168
Figure 5.22:Document Agent State Diagramceveeeererneesneisnesnrnnssessssssesssscsessessseesenenes 169
Figure 5.23: INAEXINg PrOCESS..ceevereererreererseessessassarsnsssesssesseessessessasssessssssessssssssssasasessesses 169
Figure 5.24: FilterAgent DIagramcccevvercreriresenessiessessesesssnsesessssssesseessessssssessnsssesses 170
Figure 5.25: FilterAgent State DIiagram.......ccccveerueereeenrsssuercsessnnssssnsssessssesssssssessssssssesssessan 171
Figure 5.26:ScheduleAgent DIagrammcceceeereeerereerurseereesesseressesessessessessessesnssessessessnsns 173
Figure 5.27: Internal Design of @ ScheduleAgent.covuveemeinvenniinniiiniiiininnenneinneenien, 172
Figure 5.28: UserAgent Class Diagram.cccoccvvereerueninniennieneeneenenenescesessessessessnenes v 179
Figure 5.29: The Diabetics Consultation System- Context Diagram.cccceevereveereesrerssenaes 183
Figure 5.30: The Diabetic Consultation System Goalc.ccouevveerirrricrenseessensreesessessuesensnns 184
Figure 5.31: Patient USE Cas€...cceeveeerrerressersriosnesssierussseesssesseassansssssssessssessssosssssssesssssssns 187
Figure 5.32:D0CtOr USE CaSE...ccceererieerinrrsinsenteisnnmsesseesssierenstesenssssmmasssscesssssssssstssessesssssnesss 187
Figure 5.33: The Diabetic Consultation Use Cases.........ceuererrerierererereeresrcssssessesessessessesesses 188
Figure 5.34: Assigning ROIES t0 AZENt....uicueririererrerrruesrrerreerseesaersneessessneesssssseeesessssasssn 190
Figure 5.35: Agent System ArChItECIUIE. ...vevereeeruinrerreeneieientesereresrenssesesssesnssseessssssessesnns 192
Figure 5.36: Agent INteractions......eereervererseeseecreesuesensieseesstesesseessessensesssesssessssssesssessssnes 195
Figure 5.37: The Diabetic Consultant System Plan.........coceecevermnrenenrineesineninincssensninens 196
Figure 5.38 Patient ENQUITY ..ccvecvverveeereencenrensiersreeseneeesseesssssssnesssessassssesssesssnssssnesssessssessns 197
Figure 5.39: Patient Set timetablecocvreererrererneeeniesiinnnessteseesiesrssessessessesnnsstsssessessessens 197
Figure 5.40 : PatientAgent Data MOdE]ccovvereirucnruensuninniinneniieeinensessssessnssessssecsssesssns 198
Figure 5.41: The PatientAgent Plan Modelcceeeveeeirenuenierenenenteienesneneseesesresesssssessesseses 199
Figure 5.42: Patient Treatment of Doctor User Interface.......ccovveeveervecrineinseenscnssiecisnessansnnne 200
Figure 5.43: DOCtOrAZENt MOGEL....cccvrvvirirrrenrirrenrecinnienenniesenseesessesssessesssesssessssssasssssaees 200
Figure 5.44: DoctorAgent State Diagram........cccceereeeruerseririssseressesnrasssessssesssnsessssssssessessans 201
Figure 5.45: EXpertAgent MOGeEL.....cocceveeiiveeneecreesrenenriecenseessesssesessesssesssessessssssnessesssesnes 202
Figure 5.46: ExpertAgent State DIagramoceeiireeeesnisnssissnseesessesseesiosessasssesssessesnne 203
Figure 5.47:ReminderAgent MOdel........cccecueveiirineneniineninenreessetetestsssesessesseessssaessens 204
Figure 5.48: Reminder Agent State DIagramcceveerviserrersersensiereseessessessesnussssssessecsessenns 205
Figure 5.49: StOCKAZENt MOGEL.....ccoeereirerrernrecerniesririersreseessesssossessesssessessssssssssnsssesssessess 206
Figure 5.50: StockAgent State DIAZIAIM ..c.cvveeveeeneeiiverisnennesesessesnnsressasssssessnsseesassssssesses 206
Figure 5.51: Diabetic Consultation Execution architeCturececeeeeereerrcreresnnsesseneorsscrernsns 207
Figure 5.52 :Patient Agent Class DIiagram.cccecverrerrsuecrnesseeresosseesserssnressnesssssessesssseses 212
Figure 6.1 :Evaluation ProCeSS.....ccceereinreirenercsvecsueineersiisinessnesseesssesssessssessnnsssessssessossesens 217
Figure 6.2 :Comparison of the Stages of Agent Development Process.ceevveruvervessecsacna 230

Tables

Table 2.1: Analysis vS. DeSIZN.c.cccciiiiriimrerrreerrvsressesrreesssnnescssnesssreassssssnneesssssanassses SRR 27
Table 2.2: SOftWAre ADSITACHON. c.cuveveverererirrererereerereesessssesessssessssssesesessssessssesasseses reeeeeaenns 32
Table 2.3: Four aspects of Software architecture [SONi+95]. ..ccvveeverreesrreesreenieesnieesseesssensnsesns 34
Table 2.4: Characteristics of Agent-oriented Developments.........eeivvereiverrrerrerirreeenesernnesssns 41
Table 3.1: The Agent Environment Abstraction of Filtering application and NewsFilter
T A PPIICAIION. ciuvrrrreeeirceecee et rete et et e r e sae e s n e e s e sr s sr e s b e e san e e snasan e e s enneaes 61

Table 4.1: EVENt SCENATIO....ccceveiriiiiritiiressreniressseisiesseessseessessesssassssssssessssssssessnsesssasssasnne 97
Table 4.2: Agent Architecture Entities to Present Agent Behaviour..........ccccvveernnecernscssennns 120
Table 4.3: The Principle of Providing the Physical Environment..........ceeoceeeerueeeruerecsvnecsuees 122
Table 4.4: Agent Environment CharacteriStiCS.....ueeeereerruerirecrenrueereesiseesssesssessssessessssessness 123
Table 4.5: The JADE Functional ReqUIrement......c..cueeeeereerveesreesieesenerseesseessseesseesssessseessse 124
Table 4.6: Example of Comparison Criteria of the Existing Agent Frameworksccocceune 134
Table 5.1: EVent USEr ENQUITY....ccccerveererrerreerransarssessessenssessesssessesesssssesssessssssaessessnessesnes 149
Table 5.2: Event User FEdDACKcccuvvierrireriirnresieniiiisnieseenessunsnnnnessesessssassasssessanssssssnes 150
Table 5.3: Event Time SCheduler........ouieiiiiriivininiiiiiiccesssenesessssnenees 150
Table 5.4: Agent ADSIIACtION ...cueerrererersrerseersrensreeseesseeeseesseesrasssaessenssessssessssesssasssssssssessness 156
Table 5.5: The Schedule TIMEtablecvviveerrirrerrersuererrursnnrensieninnrneseessesssesssessusssesssessnssnes 172
Table 5.6: The Comparison analysis for Filtering agent environmentccocecveeveeererenereennes 177
Table 5.7: Event USer ENQUITY ...ccoviiirriinieinnineerrnsssinnnneneesssesssessiisssessnesseessssesssessssssssses 185
Table 5.8: Event Time SCREAUIETcccveevurrvirrenrrerriesnrersirseeseessiesesssessssessssessseesssnesseesses 186
Table 5.9: Agent ADSIIACTIONcvviereereerrererreriieseriresesesstesessessesesseessasssessesaseessasssssssennes 191
Table 5.10: The Comparison analysis for Diabetic Consultation Agent Environment............ 210
Table 6.1: Comparison (stages) between the Propose of Our Agent Method with the Current

AODMS.ciiiiiiiirieintresieisireresisiatsesssssinesestsssssssesessssnesssnasssassssssssesssassssansasssassssons 232
Table 6.2: Afsaneh Personal EValuationccceeceeveiniinnnenseineniennessessenseneneessessessnsones 243
Table 6.3: Saadat Personal Evaluation........c.ccueeveecreessieenencreesreesiseniessseessseesssessssesssssssssennee 243
Table 6.4: Comparison Result among the Methodology according Information System

POISPECLIVE. 1ueeereerrverereeesrenesrenesseeesrsnereressssssssnnesasressssssesessssnnesssssesesneesesnnsssnnes 248

CHAPTER 1

1Introduction

1.0. MOTIVATION OF THE RESEARCH

Software applications have been developed for some 50 years and their complexity has
gradually increased in parallel with the complexity of the problem domains in which software is
required. In the early 1970s, the problem domain of software was to perform largely routine
tasks but often to facilitate the performance of large-scale tasks. Later, the complexity of
software increased as it was needed to handle a massive volume of data, distributed, concurrent

and so on. Software is used in increasingly complex problem domains.

A simple system solution may have several lines of implementation code, which are easy to
understand, but a complex system consists of thousands of lines of code, so that it is difficult to
understand and impossible to maintain without proper documentation of the process to develop
the system. With complex systems, producing a systematic process for development of
software applications becomes a necessity. The study of this area is called methods for software

development[Hice+74].

Over decades, many methodologies been developed and introduced, specifically to overcome
several kinds of difficulties for different problem domains and no methodology has been wholly
successful in fulfilling its objectives, partly because computing is a highly dynamic field and the
nature of the sdftware domain problem is constantly changing in parallel with the invention of

new technologies. Yesterday’s solution will never completely solve today’s problem.

Nevertheless, methodologies promises to increase the speed of development of software
applications, reduce cost, facilitate easy maintenance and provide better quality[Jaya%4].
Methodology can help to ensure that the user’s requirements are met completely. They can
promote communication between project participants, by defining essential participants and
interactions, and can give a structure to the whole process and provide a standardisation of

process and documentation[Simo+99].

[Graha+97] defines a methodology that has a ‘tailorable life cycle model’. They define a
methodology to consist of the following attributes: actions (techniques), process (life cycle) and
representation(notation). [Jaya94] defines a methodology as comprising of a set of methods that

illustrate the concept of a software solution. It is supported with techniques, tools and notation

Introduction

to show systematically how to develop a software application, and covers stages of the

development process.

The main element of a methodology provides a method that describes a way of structuring the
designer’s thinking on how to solve a software problem. A method describes how to chunk the
“software problem into a hierarchy of sub-problems[Somm+97]. Despite many methodologies in
use to develop applications for domain-specific problems[Somm+97], for our purpose three
categories are sufficient to classify methodological approaches: structured, object-oriented and
knowledge-based methods. These methodologies describe different design strategies or ways
designers think about chunking the software problem into useful software application solutions.

Moreover they indicate the abstraction employed.

The pioneering method introduced was the structured method[Your79][DeMa+78]. In
structured methods, the designer thinks in terms of operation or functions to break down the
software problem [Ash+90]. The executing system is made up from sequences of functions or
operations using a data flow diagram. Later, this method was found to be inadequate to support
several difficulties in system development. [Your89] is process-oriented while [Finki89] is data-
oriented, which can lead to difficulty in co-ordinating these two views of models. The later
SSADM methodology [Ash+90] is undoubtedly very successful, but again it is only suitable to

provide solutions for specific problem domains.

In later years, a new way of design thinking was introduced, so-called object technology. In this
method, the designer thinks in terms of ‘objects’ instead of operations or
functions|Wool+95][Mull96]. The system solution is shown as a result of interacting objects
that maintain their own local state and provide operations on that state, resulting in benefits that
have features of independence. Object-oriented design modelling uses object classes and
relationships, using the object-oriented concepts of inheritance, encapsulation, polymorphism
and aggregation[Booc94]. The object-oriented method has been accepted and used for
development of various kinds of software in the industrial, commercial and academic domains

such as Object Management Technology(OMT) [Rumb91].

The structured methodology in general remains tied to the waterfall life cycle [Royce70], while
the object oriented approach is tied to an iterative cycle of development process, such as the
spiral model[Boeh88]. On the other hand, the knowledge-based method was introduced for
specific kinds of complex problem domain. It requires designers to think in terms of knowledge
and relationships. There are several perspective categories of knowledge-based design strategy,
such as rule based, case based reasoning, neural network and so on [Rusel+95] and knowledge-

based approach ties in with a rapid-prototyping development process.

Introduction

Based on the above discussion, we can generalise that new methods are developed associated

with new technology is implemented.

Today’s software applications are used to develop complex problem domains with high
independent and dependent attributes that run under a complex technology. Today applications
are also extensively networked and distributed, and operate under multiple, jurisdictions each
with their own mandate and prerogatives. Thus, the domain of software problems consists of the
elements of distribution of data, decision and location, intelligence, concurrency, complex rules,
high independence and dependence, and self-organisation, thus increasing the complexity of

software solutions.

With such kinds of software problem domains, in the early 1990s, the term agent was
introduced as a new paradigm for the design of software applications. An agent is simply
another kind of software abstraction, an abstraction in the same way as functions and objects.
An agent may be software or an entity that presents itself with human capability, such as
autonomy, reactivity, proactivity, social-ability and intelligence. The agent paradigm is believed
to be appropriate to provide the above characteristics of software problem domains. Agents
present a high level of abstraction of design solutions. The agent paradigm lets designers think
in terms of agents rather than objects or functions. The agent exhibits presents high dependency
compared with an object-oriented approach. Such a software application needs an appropriate
software development method. Existing software development methods are not suitable for the

development of agent systems.

Why are existing methods not suitable for development agent system? Is the agent a totally new
paradigm with a new software development method or does it adapt existing methods? If S0,
which method is most appropriately adapted? How do other methods play a role in the agent
development method? Which agent paradigm is the most appropriate to be adopted? When and
how should it be adopted? Can the existing development life-cycle be adapted? What modelling
and modelling processes are suitable for an agent based system? These other questions will be

answered in the following chapters.

The term ‘agent paradigm’ has been exploited to develop several types of complex applications
in an ad hoc fashion using their different agent paradigms, exploiting existing methods and
existing languages. Even though some agent methodologies have been proposed, they are tied to
a specific perspective, described at a very high level of design, with an unclear process and only

a partial indication of the development process.

The need for an agent-oriented methodology is apparent. Our research aims to contribute to the
area of development of agent-oriented methodology. The research is focused on the use of the

software abstraction concept to produce the various aspects of develdpment of an agent-oriented

Introduction

methodology, such as defining the set of concepts used to illustrate the agent paradigm, defining
the life-cycle of agent-oriented development, which consists of several stages of the
development process, identifying suitable technique§ and modelling to describe the various
level of abstractions. The overall aim is to show a systematic process for development of an
agent-based system and guidelines to development agent systems. However, in terms of

modelling processes we focus on transformational modelling between analysis and design.

The methodology proposed follows the traditional software development method that uses
several levels of abstraction to present a systematic process of development system (so called
software abstraction). This is because agent abstractions and models offer expressiveness and
flexibility that conventional notation lacks; it omits details throughout the development of a
system from a high-level to lower level [Triem99][Shaw+96]. At least three software
abstraction levels are used: requirements, design and implementation [Triem99]. Today’s
increasingly fast-paced and fluid demands in software engineering suggest that agent

abstraction could be useful for supporting the agent development process in general.

The Software
Literature Review Methodology
' Atftributes

Agent concept, Technologies and
Terminologies,

Software development process,
Software abstractions.

Personal experince of an ad-hoc <
development agent system

Applying agent technology, according
to the literature

Analysis Existing Agent Oriented /
Methodologies [—

Case
» Studies

SS —]
N /(
apV

Lo Dévelopment
 Life-Cycle l -

< o) Evaluation
A
~d

Captured the state of art of the three
attributes of a methodology

n interative proce

)

Reverse Engineering

Uses software abstraction to identify

‘“Techniques -
the issues of a methodology 1 Mo

and Modelling

Scrutiny Existing Agent Frameworks

Uses software abstraction, identify
reuse and agent technology pertinent
to development agent system

Figure 1.1: An Overview of the Research Process
In this research is conducted through various combinations of activities to identify attributes
pertinent to the attributes of a methodology as stated by [Graha+97][Jaya94] above: a set of

concepts to describe an agent-oriented solution, the life-cycle including the stages of

Introduction

~ development process, and techniques and modelling notation in each stage. Figure 1.1 shows
the integration of the research activities that leads to the research contribution in the area of
development of an agent-oriented methodology. The ﬁgufe shows that the research is conducted
through the following activities: literature reviews about agents, software development and
software abstraction including the current practice of agent development; experience in
implementation of agent systems in an ad hoc fashion; analysis of existing agent-oriented
methodologies; analysis of existing agent frameworks. The figure shows an 'n' iterative
processes of activities for identifying the issues and attributes of agent-oriented methodologies.
The reverse engineering and scrutiny process are the core activities in identifying appropriate
concepts, stages and modelling. The applicability of the proposal methodology is demonstrated
in two case studies: a Filtering agent system and a Diabetic agent system. The proposed of the
methodology is evaluated at three stages. First, evaluate according to the common criteria of
software development methodology. Second, comparative analysis with the current agent-
oriented methodologies developed in parallel with this research and the last evaluation is

according to the criteria of methodology in Information System perspective.

1.1. THE CONTRIBUTION MADE IN THE RESEARCH
PROJECT

Our research goal is to propose an agent-oriented methodology. When the research started 1998,
the agent paradigm was in its infancy; the concept of agents was not clearly identified. We
believe that our research makes a significant contribution in the area of development of an

agent-oriented methodology as stated below.
e It shows how software abstraction is used in identifying software development process.

e The abstraction process is able to define a set of agent concepts to illustrate the agent
paradigm.
e The comparative analysis of the existing agent-oriented methodologies is able to show

that other agent concepts, techniques, tools (modelling) and stages may be suitable in

particular domains of agent system.

e The future of the agent-oriented development life-cycle is explored, illustrating the
framework of the whole process of agent analysis, design, implementation and
applicability to the specific agent paradigm of agent development. The description of

stages is applicable to most types of agent system.
e The thesis presents suitable techniques for analysis and design modelling.

e Two concrete case studies of the agent development process are presented.

Introduction

Part of the subject matters addressed in this thesis has been published in the following

conference proceedings and technical reports:

[Othm99][Othm00][Othm+02a][Othm+02b][Othm+02¢][Othm+03] as shown in the
bibliography. The first two are technical reports on reverse engineering of the Filtering
application and NewsFilter application. The others were published in conference proceedings.

Those papers describe the case studies presented in this thesis.

1.2. TOUR OF THE THESIS
The chapters in this thesis are structured in such a way as to show the process of development of
the proposed agent-oriented methodology. The tour throughout the chapters will provide

understanding of the development of an agent-based system.
Chapter 2- Background Literature Review

The literature review aims to provide basic knowledge about the development of an agent-
oriented methodology. It is divided into three parts. The first part is the literature review on the
concept of agent, agent technology, the terminology and the domain of agent based systems.
The second part reviews the principles of software development methodology that can be used
to identify the criteria and scope of our agent-oriented methodology. This entails a comparison
of the existing software development methodologies, which leading to the identification of an
appropriate approach suitable to be extended to present the agent paradigm. The third part
discusses the concept of abstraction and several types of software abstraction tools used for the

development of complex software applications.
Chapter 3- The Building Block Towards a Process for Agent System Develvopment

The chapter is divided into two parts. The first part shows the derivation process towards the
development of the proposed agent-oriented methodology and the second parts presents the
essence of result of the derivation process. The derivation process consists of four analytical
" activities, which performed based on the syntheses of the current literature review on agent and
software development methodology. The four activities are examining the potential software
abstraction for agent system development, analysis of existing agent-oriented methodologies,
reverse engineering of agent systems and scrutiny of the existing agent frameworks. The
essence of the derivation results divided into the three attributes of a software development
methodology. The first presents the analysis and design concepts for development agent system.
The second shows the overview of development process of an agent system and the third
presents the appropriate modelling techniques was captured. The modelling techniques are

divided into two parts: development agent system and development agent environment.

Introduction

Chapter 4- A Method to Develop an Agent-Based System

This chapter aims to gather the agent concepts and techniques used, to present a proposal for an
agent-oriented methodology. It is an expansion of the overview of the methodology presented in
chapter three. In this chapter we demonstrate the life cycle of the development process from
requirements to implementation, and show how agent modelling is performed throughout the
stages. However, the agent modelling process presented here focuses only on the first part of
design of the agent system. The development of an agent environment uses the component-
based method adopted in the object-oriented framework approach and the development of the
agent environment life-cycle adopts the software architecture development process. The
software abstraction tools such as architecture pattern and design patterns, as presented in-
chapter four, are shown to be useful tools in developing the agent environment. In addition, we
provide the criteria to analyse the reusable agent environment that can be deployed to

implement the agent system. At this stage we can show the detailed design of the agent system.
Chapter 5- Development of Agent System -The Case Studies

The aim of this chapter is to show how the methodology presented in the previous chapter is
used, through the presentation of two case studies. The case studies present the deliverable of
documents at each stage. The two case studies are a Filtering agent system and a Diabetics
Consultation system. The agent environment reference architecture presented in chapter five is

used to analyse the reusability of the agent environment,
Chapter 6- Evaluation and Conclusion

The evaluation of the proposal of an agent-oriented methodology is performed in three stages.
The first is evaluated based on common criteria of software development methodology. This
method is able to view the progress made so far in the proposal of an agent-oriented
methodology. The second evaluates the methodology by comparison with parallel research in
the same areas such as MESSAGE, TROPOS, ODAC and PROMETHEUS methodologies.
Thus, we can see the contribution made in the area of agent-oriented methodology. The next
stage is to evaluate thé methodology according to the Information System Methodology
perspective, an expectation of what a complete agent-oriented methodology should be. Based on
this, we discuss the level of completeness of the agent-oriented methodologies that the research

community has achieved so far, and address possible future research directions in this area.

CHAPTER 2

2 Background Literature Review

2.0. INTRODUCTION

This chapter presents the three areas of background to the study. The first section focuses on
the concept of an agent, agent technologies and terminology pertinent to the development of an
agent methodology. The second focus of discussion is literature on software development
methodologies; their meaning is reviewed and several software development approaches are
used in development of software applications are presented. The third topic considered the
existence of software abstraction tools, which are commonly used for development of a
software application. Each area is discussed in more detail in the following sub-sections in
order to establish the theoretical context of the present research, which is based on the

integration of these three areas.

2.1. AGENTS

Agents present a new paradigm for the current and next generation of system development
solutions because they are is flexible', and bring intelligence’ and
autonomy[Wool+01][Jenn+98a]. Agent technology arises from a blend of the following
technologies: network communication [Harr93], artificial intelligence [Wins79], multi-agent
systems[Weis99], distributed problem solving[Less87], distributed systems[Mull93],
concurrency [Rank94], knowledge engineering[Adel90], distributed artificial
intelligence[Bond+88] and object-oriented technology[Booc94]. A problem resulting from the
inheritance of these technologies is a multiplicity of agent definitions, stemming from different
~ communities, and reflecting their different perspectives. With such technology, in practice
agents have been used to address the diversity and complexity of many real world problems of
software applications [Brad97a]. In earlier research, agent technologies were influenced by
Artificial Intelligence [Rusel+95] and Distributed Artificial Intelligence leading to notions of
strong and weak agents respectively[Treu+98][Wool+95]. This also leads to multiplicity of

! Various combinations of agent characteristics to present agent and can be located any where.
2 Wooldrige in his book[Wo0l01] define reactive as intelligence, pg 23. :

agent definition. Clearly, agents are not expert system® nor DAI[Alan88][Mamd98][Shen97] *
but as Etzioni states, agent based systems are 99% computer science and 1% Artificial

Intelligent [Etzi96].

2.1.1. Characterising Agents

Despite various definitions of an agent, we will agree with [Wool+95] who takes a simplistic
view, namely, an agent is one who acts. Therefore, an agent may represent a variety of things
such as a person, a machine or a piece of software. However, this view is too general and not
suitable for presenting an agent paradigm for software development. As a first step towards that
goal, we concur with [Wool+95][Wool+95a] and consider an agent as ‘consisting of a

combination of the following properties:

Autonomous: able to act without direct external intervention. The agent has some degree of
control over its internal state and action based on its own experiences [Maes90].

Reactive: Agents perceive their environment (which may be the physical world, a user via a
graphical user interface, a collection of other agents, the Internet, or perhaps all of these
combined), and respond in a timely fashion to changes that occur in it [Wool+95].

Interactive: able to communicate with other agents and its environment [Wool+95].

Sociable: capable of two-way conversation, in which one party askquuestions and the other
verifies or answers. The conversation allows inter-agent co-operation which enables agents to
exchange their knowledge, beliefs and plans and to work together to solve large problems
which are beyond an individual’s capabilities[Wool+95].

Proactive: having a goal-oriented ability or a purpose. The agent does not simply react to the
environment[Maes90].

Proxy: able to act on behalf of someone or something, that is, acting in the interest of, as a
representative of, or for benefit of some entity[Maes90].

Co-ordinative: able to perform some activity in a shared environment with other agents. Usually
this activity consists of a well devised plan and workflows, including some other process
management mechanism[Geor+95][Jenn93].

Co-operative: able to co-ordinate with other agents to achieve a common purpose (some
scholars define this as collaboration)[Weih+95][Krau97].

Competitive: able to co-ordinate with other agents, such that the success of one agent implies

the failure of another. This feature contradicts co-operation[Bacl92].

3 Expert system does not have environment which they act but act through middleman, does not have
reactive or pro-active and do not ability to socialise (cooperation ,coordination and negotiation)

Intelligent: able to state formalised knowledge such as beliefs, goals and assumptions and to
interact with other agents using symbolic language[Wool+95].

Mobility - agents can move around in their environment from one place to another and carry
data along with intelligent instructions and execute remotely[App+94].

Risk and trust- address the issue of delegation of tasks with at least a reasonable assurance that
the user wants to delegate the task, and that the agent can bring back the result the user
wanted[Jenn+98].

Rational - able to choose an action based on internal goals and the knowledge that a particular

action will bring it closer to its goals[Mamd98].

There are many more agent characteristics. Up to now a standard definition has not been
established to describe an agent. Jenning said agent must, at least, be an autonomous entity that
can interact with its environment [Jenn+98]. But, based on the various definitions and the
realisation of their usefulness for agent oriented development as we agreed with Etzioni[Etzi96]
and Wooldridge[Wool+95]. An agent should possess at least the first two of the above
properties to give a degree of usefulness to the agent paradigm in developing software
applications. The rich combinations of these behaviours can generate various degrees of
complexity of agent systems, with attributes in which an agent is able to keep observing
changes in its environment, as well as provide features of reasoning, capability to act rationally,
be pro-active, learn, adapt, etc. However, Kendal believes agents should be provided with

beliefs, desire and intention characteristics (BDI agent)[Kend+95].

The combinations of these properties have led to the emergence of several types of agent
systems: mobile agents, interface agents, reactive agents, autonomous agents, interface agents,
interactive agents, information agents, intelligent agents, entertainment agents, wrapper agents,
hybrid agents and collaborative agents[Brad97a][Jenn+98]. From detailed examination of
these types of agent systems, agents can be identified in other formvs such as broker agent,
mediator agent, facilitator agent, services agent, etc. These agents play a role in the system to

be developed.

Agents can be put into two categories: single agent systems and multi-agent
systems(MAS)[Treu+98][Weis99]. A commercial agent system such as information search is a
single agent. The agent is launched in order to return appropriate information as needed by the

requester. The single agent method is unsuitable in large scale problem domains. It does not

* DAI only focus with distributed static intelligent component (without autonomous), limited
communicates with share common goal and do not presented most criteria mentioned in footnote no 1.

10

-

Literature Reviews

reduce the complexity of the system, nor does it utilised the various agent characteristies stated

earlier. The next section discusses in further detail the issues associated to agent technology.

There are various types of multi-agent system, for example, a Travelling multi-agent system
consisting of various travel agents that negotiates a good price of a ticket. Such situations can
be viewed in terms of agents needing co-ordination either through co-operation, competition, or
a combination of both. Another speculative example involves various agents handling a
household system comprising an alarm clock, house heater, coffee maker and toaster. When the
alarm clock rings in the morning, as set by the owner, it co-operates with the house heater to
indicate when to start the heater. At the same time, the heater co-operates with the environment
to identify the right temperature of the heater. Based on the owner's preferences for the time of
having a bath and dressing, the alarm also co-operates with the coffee maker and toaster,
indicating when the coffee and toast should be ready. The coffee maker and toaster negotiate
with each other with the aim that the toast and coffee should be ready at the same time or that

the difference between the time of coffee and toast being ready should be minimal.

These two examples represent different types of multi-agent system environment that allow the
agents to co-operate with each other. In the first example, the multi-agent system environment
may consist of at least two layers of multi-agent environment: a software agent to present the
user agent, tourist agent and travel agent, and networking is needed to allow the agents to
communicate with each other. In contrast, in the second example, the appliances themselves are
the agents. It may only need a physical interconnection among the agents to allow the
appliances to co-operate with each other. Based upon these two examples we can see that the
development of an agent system consists of two parts: design of an agent system to achieve the
system goal, and identification of an appropriate agent environment in which the agent can be

exhibited.

From these examples, we can see that communication is the main issue in a multi-agent system,
irrespective of agent behaviour. It allows an agent to send messages to other agents and the
receiver agents are able to reply to the message to enable agent interaction. Such basic
interaction has an influence on several methods of agent socialisation such as negotiation, co-

operation and co-ordination.

Franklin classifies co-operative multi-agent systems into two types[Frank+97]: communicative

and non-communicative agents. But our research is focuses on communicative multi-agent

systems.

11

Literature Reviews

A real autonomous multi-agent system is likely to become a future paradigm of agent systems,
but now it is very much at an initial research stage [Mller+97][Jenn+98][Jenn+98a]. The recent
research has narrowed down the term into a more general term; instead of a real autonomous
multi-agent system, the paradigm is one of a multi-agent system composed of several
autonomous components that are able to autonomously interact. Thus, this paradigm can be
characterised as follows: each agent has the ability to solve a problem with its own expertise;

there is no global system control, data is decentralised and computation is asynchronous.

Through the discussion of the characteristics of a multi-agent system, we are able to identify

the key issues representing agent technology as discussed in the next section.

2.1.2. Key Issues for Agent Technology

According to the previous discussion we abstract three key issues as necessary for agent
technology. The first relates to the nature of the agent; the second relates to agent
communication and the third relates to agent management. Each of these issues discussed in the

following sub-sections.

2.1.2.1. Nature of Agent

An illustration of an archetype of a multi-agent system can be seen in Figure 2.1. The figure
also shows the features of a multi-agent system environment [Zam+00]. From the figure, it can
be seen that a multi-agent system consists of several agents, which interact with each other. The
figure shows that Agentl iﬁteracts with Agent2 and Agent2 interacts with Agent3. Interaction
protocol describes how these agents communicate (such as negotiate, requesting, biding).

Interaction medium describes the medium by which agent interacts, e.g. HTTP, SMTP.

The issue of openness plays an important role in nﬁulti-agent systems. The openness
characteristic can be presented on three levels: the high level is what we describe as agent
communication language, based on speech aét languages. The content of information is thén
transferred into different types of representation, which are understood by the middle level of
the communication operating system, which follows the ISO standard communication. The

lower level presents the actual physical connection between agents.

12

rature

HOVIeWS

uonoeIaU|

juaby a|buig

Interaction medium

Interaction Protocols

Figure 2.1: Characterisation of a Multi-agent System

At the same time, each agent may communicate with its own environment or external world,

which may influence the interaction between agents. Each agent is also provided with certain

types of behaviours that represented as roles or tasks. Agent management is needed to allow

agents to socialise. Agentl

is registered in Organisation2, Agent3 is registered in

Organisationl, while Agent2 is registered in both organisations. Even though Agentl and

Agerit3 are registered in different organisations that they can interact.

Figure 2.2 shows an example of the internal architecture of an individual agent that interacts

within agent

components, external world and processor, and other agents as shown with dotted

line, straight line and thick line respectively.

Agent
. Capabilities, plan and
External Expertise/Knowledge P serviogs
Objects Extemal
Objects
; \ 8
Y Intention | :
sensor teteeenrsaseeneey 7 :
41 Interpreter [Infention | | \ effector
| || Collaboration
Agent
<> o Intention
AT TTTTIOT y migration
Processor | Collaboration l':)l

Figure 2.2: Components of an Agent Architecture

13

TS ey e B P
Literature XKeviews

An agent uses a sensor or effector to interact with the external world and an agent interacts
with other agents based on its intention. An intention is an action that leads to communication.
The use of the term intentions reflects the fact that the action is not fixed, but rather may

change according to several factors.

A weak agent consists, at least, of autonomous behaviour and ability to interact with other
agents through its intention, a strong agent is able to carry out reasoning through its expertise,
and select plans capable of achieving its goals. A simple agent presents itself with beliefs using
a passive object that represents the agent’s knowledge. A strong agent has the capability to
retrieve a plan from a library. These plans are invoked when a triggering event occurs,
according to the agents interactions. Agent intentions are designed in such a way as to occur
concurrently. Figure 2.2 shows three types of intentions: involving interactions with external
objects, collaboration with other agents and migration with other processors[Kend+95]. As

indicated in the figure, the co-operation or negotiation agents are based on agent collaboration.

The main issue in relation to the agent is identifying the components or elements to represent
agent architecture. Agent architecture shows in Figure 2.2 consists of the following elements:
expertise, plan, intention and interpreter, while the external elements communicate with other
agents, external objects and the processor but these components may or may not be necessary
used to describe agents. An agent may consist of other kinds of components as well. In our

research we use these components to illustrate agents.
Agent Communication Issues

Based upon the description of an agent above, two types of agent communications are
identified: first, communication with external objects including human-user, legacy systems,
files, etc., so called Jocal communication, and second, communication between other agents,
named inter-agent communication. Inter-agent communication focuses on a multi-agent system.
Besides these, there is a special type of inter-communication, is categorised as inter-agent
communication but differing in the source of inter-communication. The former communication
focuses on an agent, while this communication focuses on communication as mobile agents.

The two communication types has shown diagrammatically in Figure 2.1 and Figure 2.2.

Local communication is not a new issue in agent technology. It uses the existing
communication technology through sensors. For example, it uses a 'socket' to communicate

with the Web.

14

Literature Reviews

Mobile communication focus on mobile agents. The mobile agent is a special case of agent
communication[Whit+97]. In order for agents to communicate, they have to move to a different
physical location to negotiate, for instance, rather than sending a message through a
communication channel. Therefore, mobile agents are special cases of implementation of an
agent system. The difference is the agent environment level rather than in the design of the
agent system itself. Inter-agent communication is the major issue in presenting agent
technology. Agent technology has initiated new communication techniques, which differentiate
between traditional applications and agent app]ications. In the next section, our discussion

focuses on inter-agent communication.

2.1.2.2. Inter-Agent Communication

The main concept of inter-agent communication of heterogeneous agents can be described
diagrammatically in Figure 2.3 below. The figure shows that discussion of inter-agent
communication requires consideration of two levels of inter-agent communication: logical

inter-agent communication and physical inter-agent communication.

Agent Agent Agent Agent
6 o) Logical , & o, Logical /"N Logical /5 O
(Y : [~} AN ~
Agent Platform Agent Platform
Physical

Operating System =~ (—n-——-> Operating System

Figure 2.3: Inter-agent Communication between Two Heterogeneous Agents

The logical inter-agent communication aims to allow the heterogeneous agents to communicate
with each other (interoperability). In the confext of agent technology, the issues of inter-agent
heterogeneity is deal with agent communication language’. In contrast, physical inter-agent
communication is focused on provision of a communication medium that allows agents in
different physical locations to communicate with each other (interoperability). Physical inter-
agent communication is focused on providing mechanism that allows agents to communicate

openly.

15

Literature Reviews

Agent Communication Language

According to [Gene97] there are two approaches to designing an agent communication
language(ACL), the procedural approach and the declarative approach. Communication in the
procedural approach is based on executable content that can be accomplished using a
programming language such as Java [Arno+98] or Tcl [Obje+98]. However, this approach has
limitations based on the difficulty of controlling the executable content, co-ordination and
merging. Recent research suggests using a declarative, which is based on elocutionary acts such
as request, send, command, query, etc[Fini+93]. The two most popular declarative languages
are KQML(Knowledge Query and Manipulation Language)® and FIPA(Foundation for
Intelligent Agents)’.

Both ACLs demonstrate three key elements of ACL[Fini+97][Huhn+98][Fini+98] [FIPA+97b]:

e acommon agent communication language and its protocol,
e acommon format content of communication and

e ashared ontology.

The common ACL protocol is known as performatives using speech act languages such as
send, accept, reject, etc. that mimic human of communication. Therefore the use of an ACL

system development provides a certain level of behaviour.

The common format content of communication and shared ontology exhibits the openness of
agent interaction. The common format content of communication describes language for
interpreting the information in the content field of the message, called ‘ontolingua’, whereas
ontology identifies the ontology to interpret the information in the content field of the message.

The content field provides the exact content of information to send or receive.

Ontologies are defined as specification schemes for describing concepts and their relationships
in a domain of discourse [Fini+97][Guar+94][Guar+95]. It is important not only that agents
have ontologies to conceptualise a domain, but also that they have ontologies with similar
constructions. Such ontologies, when they exist, are called common ontologies. Once
interacting agents have committed to a common ontology, it is expected that they will use this

ontology to interpret communication interactions, thereby leading to mutual understanding and

% The ACL is from knowledge representation language[Gene+92] of Al research.
®KQML is the earlier ACL developed part of a larger effort, the ARPA Knowledge Sharing Effort which
is aimed at developing techniques and methodology for building large-scale knowledge bases which are

sharable and reusable[Fini+93] [Gene+92],

16

Literature Reviews

(ultimately) to predictable behaviours. Ontolingua [Grub+93] is often mentioned in the
literature as a system that provides a vocabulary for the definition of reusable, portable and
shareable ontologies. Ontolingua definitions are described using syntax and semantics similar
to those of the Knowledge Interchange Format [Ginst91], also known as KIF, which is a
format to standardise knowledge representation schemes based on first-order logic. KIF is the
language used to interpret the KQML ontology whereas FIPA uses the semantic language’s
ontolingua[Holt+82] , i.e. SLO or SL1 and it is based on FIPA ontology [FIPA+97b]. This
means agents using interaction in KQML and FIPA do not have a similar ontology, due to their

different ontolingua. Details on FIPA can be found in [FIPA+97b].

The semantic language allows one to represent a belief, desire or uncertain belief of an agent as
well as action that agents perform. It is used to define a constraint that the sender of the

message must satisfy. For example [FIPA+97b]:

The semantics of the request are as follows:

< i, request(j,0)>
JSeasibility precondition: B;Agent(t,j) A Bil;Done(¢)
rational effect : Done(q)

The SL defines Bi as statement of believes of an 7 condition, Agent(c,j) means that the agent of
action o is j (i.e. j is the agent who performs o), J; as statement of intention j and Done(c)
means that the action o has been done. Thus agent / is requesting agent j to perform action o
under assumptions that agent i believes that the agent of o is j (the message is right) and agent i
believes that agent j does not currently intend that o is done. Figure 2.4 shows the example of

use KQML, while Figure 2.5 shows the example of use FIPA®,

(register
;sender agentA
receiver agentB
reply-with message2
:language common_language
:ontology common_ontology
:content "(ServiceProvision Manufacturing:TaskDecomposition)")

Figure 2.4:. Example of a KQML message.

7 FIPA was formed in 1996 to produce software standards for heterogeneous and interacting agents and
agent-based systems. It collaboration of various membershipsf MEM02] to produce a standard

ACL[FIPA99].
¥ Detail description of examples describe in FIPA Specification no FIPA00018[FIPA00].

17

Literature Reviews

Both figures show the similarity of using ACLs. FIPA is based on KQML [FIPA+97b],
therefore they have similar syntax languages, forms of message and message parameters.
However, FIPA agent communication language tied to FIPA architecture’. FIPA has additional
functionalities such as agent management. Agents are able to register, un-register, recommend,
recruit, broker and advertise, therefore Figure 2.5 do not use have 'register' command compare
to KQML. With this functionality, FIPA is restricted to agent management components in the

architecture, whereas KQML is not restricted to any architecture.

Communcation act type

h(Informe™
:sender agent1

Begin Message Structure ‘receiver hpl-aution-server | Message content expression
:content /

(price (bid good02) 150)
lin-reply-to round-4 | Parameter expression

Message parameter | ireply-with bid04 :
- :language SL1
:ontology hpl-auction ‘

Figure 2.5: Example of FIPA language

The differences mentioned above lead to incompatibility in communicating agents using
KQML and FIPA. Current research states that FIPA has become a standard for agent
interaction[FIPA00]. Although KQML and FIPA are the main declarative languages, however,
other research may use KIF or XML for interaction to present the openness of the internet
environment{Amun02]. The use of ACL provides the basic communication for several types of

socialising agents. The pattern of agent interaction is called the interaction protocol®.

Up to now we have discussed agent communication at the logical level as a basis of agent
socialisation. The next discussion is focused on physical inter-agent communication.

Network Inter-agent Communication

Physical inter-agent communication focuses on providing interoperability of inter-network
communication. It aims for agent interoperability, interconnecting from multiple network
resources at different locations. Inter-network communication is not a new technology for agent
technology; rather, it an enhancement of the existing network communication technology. For
the purpose of the agent paradigm, we can categorise the physical inter-agent communication
into three layers: agent platform, operating system and hardware. The hardware communication

is usually the lowest level of communication, such as the use of RS232 or broadband, etc. The

® FIPA ACL can also applied to any architecture that open to FIPA architecture.
1 There are more then dozen types of interaction protocol have been defined by FIPA group[FIPA00]

18

Literature RevViews

operating system level uses a standard communication protocol. Telecommunication network
management usually use the ISO (International Standardisation Organisation) and OSI (Open

System Interconnection) group. This network communication is needed for management.

On top of this, several middle-wares can be used for a specific purpose for agent
communication. For example, CORBA and DCOM are used to provide interoperability of
distributed heterogeneous agents. The middle-ware includes the agent communication
management mechanism as well, which most include in the agent platform, the so-called

message transport mechanism.

Message Transportation Mechanism

As previously stated, agent communication needs an agent environment that allows messages to
be scheduled, as well as event driven. The transportation mechanism should be able to identify
the unique agent address. At the same time, transportation mechanism should support other
communication terms such as uni-cast, multi-cast and broadcast to support the socialising
agent. These mechanisms are provided in middle-ware such as Common Object Request Broker
Architecture [Corba99], Object Management Groups (OMG) message services, the Java
messaging service, remote method invocation (RMI), Distributed Common Object Model

(DCOM) and enterprise Java Bean Events services.

2.1.2.3. Agent Management

In the previous discussion, we focused on the message transport mechanism, whereas in this
section we discuss agent management. The agent management provides mechanisms for
advertising, finding, fusing, using, presenting, managing, and updating agent services and
information[Wied+92]. To address these issues, the notion of middle agents [Deck+97] was
proposed. Middle agents are entities to which other agents advertise .their capabilities, and
which are neither requesters nor providers from the standpoint of the transaction under
consideration. The advantage of middle agents is that they allow a multi-agent system to
operate robustly when confronted with agent appearance, disappearance, and mobility. There
are several types of agents that fall under the definition of middle agents. Note that these types
of agents, which are described below, are defined so vaguely that sometimes it is difficult to

make a clear differentiation between them.

— Facilitators: agents to which other agents surrender their autonomy in exchange for the
facilitator's services [Brad97a]. Facilitators can co-ordinate agents' activities and can satisfy

requests on behalf of théir subordinated agents.

19

— Mediators: agents that exploit encoded knowledge to create services for a higher level of
applications [Wied+92].

— Brokers: agents that receive requests and perform actions using services from other agents
in conjunction with their own resources [Deck+96].

— Matchmakers and yellow pages: agents that assist service requesters to find service
provider agents based on advertised capabilities [Deck+96].

— Blackboards: repository agents that receive and hold requests for other agents to process

[Nii89] [Cohen+94].

Life Cycle Management

An agent runs in its environment. Refering back to the kitchen appliance example, the toaster
agent must always be plugged into the electric socket and turned on. Nevertheless, such agents
also need a mechanism to regulate such activities as starting, stopping, waiting, being traced
and removing. Mobile agents, for example, need other lifecycle issues such as permission to

run, permission to perform certain tasks, and communication in different locations[Flor99].

The agent life cycle needs to be identified and managed. A variety of messaging techniques
exist for this purpose. An event-style model is the most popular technique, guaranteeing
message delivery. Another method is a more casual method, where an agent sees a message of
interest to itself. A message may be sent based on a peer to peer approach, a store and forward

approach, or a published and subscribed approach.

In distributed systems, an agent may move to another server, which changes its unique
identification. In some situations, an agent may provide historical information on its action, so
the agent can learn what decisions have been taken before and can use it to evaluate the prior

actions.

Agent Security, Identity and Policy

Agent identity is becoming compulsory in agent systems, especially in multi-agent systems. An
agent may be identified by its name, role or group. However at the lower level, the agent should
be identified by the address where it is executed. In certain cases, an agent is identified by a

logging name.

Security becomes the main issue in a distributed computing environment. Many types of

security risks are considered when passing messages, which can be modified or destroyed.

20

Literature Reviews

Policy is a technique to reduce risk. It refers to how access to a valuable resource is controlled.

For example, an agent is limited to a certain type of processing job.

The above discussion only presents the common issues in representing agent technology.
However, there are more issues involves in agent technology such as mobile agent, real
autonomous‘agent, strong agent versus weak agent, etc., which entails an additional set of to
represent agent technology. However, we are not concerned here with mobile agents.
Discussion of mobile development systems can be found in [Arid+98][Oshi+98]
[Baum+97b][Baum+97¢] [Baum+97d][Baum+98][Zam01].

The current method to represent agent technology is to use architecture. There are many
different attributes to present agent architectures, such as FIPA architecture [FIPA+97a], BDI
architecture [Geor+95] and Kasbah architecture [Chav+96]. In addition, there are various agent
environment architectures used to represent agent technology such as KASBAH[Chav+96],
ARCHON[Cock+96], JADE[Bell+99], ZEUS[Nwan+99] and FIPA-OS[FIPAOS00].

Taking into account the various issues and techniques used to present agent technology, we
believe designers are free to build or chose appropriate architecture for particular domain of

solution.!

An agent environment is an executable system that is used to implement an agent system.
Differences in agent architectures may cause problems of communication between agents. For
example, a FIPA agent may not communicate with KASBAH agent due to different
architecture. Therefore, the criteria for choosing open agent architecture are important in agent
development for future maintenance. For example JADE and FIPA-OS are developed based on
FIPA architecture, so agents which are developed based on JADE can openly communicate
with agents developed based on FIPA-OS. However, recent research has proved that agents can
communicate even in different agent architecture [FIPAOO]. For example, the ZUES agent can
communicate with JADE agent in FIPA architecture. This means FIPA architecture presented
as open architecture. Similarly JACK agent is based on BDI architecture, it can communicate

with JADE agent in FIPA architecture. This means JACK is an open architecture.

2.1.3. " Status of Agent Technology

The literature review shows that agent technology moves forward by building upon existing
technologies (e.g. relational, knowledge based and object-oriented). Agent technology is not a

single technology or new technology but rather an integration of multiple technologies. Agent

21

& ReViews

technology is not for a specific kind of application but rather for various kinds of applications

which are suited to solutions with certain properties of agents. Agents can function as part of

an operating system or an application environment. In other situations, agents may strengthen

the human-computer interaction aspects of a system.

In practice, agents have been used in several kinds of complex software, for a wide range of

applications: information filtering and retrieval, entertainment, air traffic control, network

management and telecommunication, electronic commerce, management of business processes,

groupware, manufacturing, and as personal agents[Bren+98][Treu+99][Janc96]. The nature of

agent applications in these areas is described below:

1.

Information filtering and retrieval.

Agents are used in all the services needed to help users to find information they request
more easily, quickly and accurately. Examples of such agent applications are
Yahoo[Yahoo99], AltaVista[Alta99], MetaCrawler[Craw99], Google[Goog00]. They range
from simple search engines like NewsWatcher [Watch99], WebCrawler[Wcraw01] and
HotBot[Hotb00] to meta-search engines which provide learning behaviour, like
Copernic[Coper99]. The use of agents in information filtering has reduced the user time in
finding information through the Web [Smart00].

Entertainment.

Agents are also used in entertainment systems such as games, cartoons, films and
advertisements. For instance, in games, agents are used to provide autonomous interaction
between game characters, the environment and multiple players. In film, a camera agent is
used to provide automatic motion, focus and reaction, 3D graphical agents and avatars in
computer animated features films, cartoons and advertisements [Smart00]. Other
entertainment applications related to the Web are Lifestyle Finder [Smart00],
FireFly[Fly98]', Netradio and OpenSesame[Open99].

Air traffic control.

In air traffic control systems, for example OASIS [Ljun+92], agents are used to represent
both aircraft and the various air traffic control system loads with information and goals
corresponding to real world aircraft.

Network management and telecommunication.

In the network management and telecommunication application area, agent applications are
used in network control[Flet94] and network services[Mage96].

Electronic commerce.

1 Software architecture is a technique to design system architecture as discusses in later section.

22

T4 F e dr e TSt g g o
LiTeratlre Xeviews

In electronic commerce, applications involve configuration and delivery of user requested
services at the right time, cost and quality of services. Among these types of applications
are buying and selling services like BargainFinder, Bargain Bot, Fido and AdHound, Jango
and Kasbah[Broke99].

6. Business process management.
In the management of business processes, agents deal with the management of business
tasks and resources, provision of services and carrying out business operations. Examples
of this type of application are workflow management[Reic+98], financial
services| Wen+98] and telecommuting[App+94].

7. Groupware.
Groupware applications include computer conference systems such as e-mail, decision
support systems and appointment scheduling programs [Bren+98]. Examples of groupware
applications are Pleiades[Sycr95] and MAXIMS[Maes94].

8. Manufacturing.
In manufacturing applications, agents are used due to the dynamic nature of manufacturing
processes. Agents are used in industrial robots[Broo86] and factory automation [Bake96].

9. Personal agent. '
A personal agents system is one that uses agents to reduce the complexity of user tasks.
There are several types of system categorised as personal agents. In email and news
filtering systems, the used agents are focused on the interface for filtering. In personal
schedule management and personal automatic secretary, the agent is used to work on behalf
of the user by providing an ability to be aware of any changes that occur. In information
filtering and retrieval, the agents are used for advising and focusing information using an
intelligence learning capability. Examples Qf such applications are Letizia[Lieb95],

Webdoggie[Webd99] and Copernic[C’oper99].

Early applications of agent technology depended on the technology available at that time. Often
this was not appropriate to the available technology and new paradigm needed to be sought.
Some of the applications present the value of agent without applying the current means of agent

technology as discusses in previous section.

We conclude that in order to develop agent applications, several complicated technologies are
involved. Developing a new agent language for the development of an agent system is a long
process. There are advantages in using the existing programming languages to present the agent
technologies, since the existing languages are mature and established. However the problem
with the use of existing programming languages is that they are associated with a specific

paradigm. For example Pascal is associated with the structured approaches, Java and C

23

Literature Reviews

languages are associated with the object-oriented paradigm and Prolog is based on the rule-
based paradigm, none of these match the agent paradigm. An agent system represents a high

level of design paradigm that can be seen as an extension of existing design paradigm.

To overcome this problem, the current practice is to develop a mediator language, which is able
to present the agent paradigm. The mediator language is developed using existing development
techniques. For example, AgentO is developed using script languages[Shoh93], while Aglets is
developed based on Java[Agle98]. In practice, these mediator languages are called agent
frameworks. Currently, there are more than a hundred agent frameworks that have been
developed for commercial and academic purposes as partly shown in [Tools99]. Some of the
agent frameworks are freeware. These agent frameworks are developed based on existing
programming languages such as C++, Java and Script languages, but designed in such a way as

to present an agent paradigm.

Despite the complexity of the development of agent systems, most of the agent systems
reviewed are developed using agent frameworks as a language to implement the agent system.
In addition, the literature review of the existing agent oriented approaches discussed in the next
chapter shows the use of agent frameworks as a language to implement agents. However, the
existing agent frameworks shown in [Tools99] are tied to specific architecture, this limits their
use to specific domain of agent applications. For example, Kasbah[Chav96] and
JATLITE[Jat97] were developed for internet agents; Grasshoper, Leap, Aglets are focused on
mobile agent [Tools99]; JADE, Agentbuilder or Zeus are focused on multi-agent systems. The
choice of the use of existing agent frameworks depends on the requirements of the agent
system. Agent frameworks are limited in various kinds of requirement, such as specific
communication channels, the use of a specific coordination or negotiation strategy, and the use
of specific agent architectures such as decision making architecture, BDI architecture, etc.
These examples of requirements are part of the functional requirements of agent systems which
the existing agent oriented methodologies ignore. We see the development of agent frameworks
as a part of the development of agent systems that is influenced by some aspects of the agent
system requirements. Generally it focuses on the physical requirements: and the choice of
technology used to develop the agent, as we discuss in a detailed in a later chapter. In our view,
the developme'nt of agent frameworks requires its own kind of software engineering, which we
call development of an agent environment. This is because it focuses more on physical design

rather than logical design.

Therefore, we believe that the development of an agent system should consist of:

24

Lliterature Reviews

e identifying an agent paradigm associated with the user’s requirements;
e designing the agent system according to the agent paradigm;

e developing an agent environment (including designing appropriate architecture) to

develop the agent system and

e implementing the designed agent system based on the agent environment.

2.2, SOFTWARE DEVELOPMENT METHODOLOGY
2.2.1. Principles ofSoftware Development Methodology

A methodology is one of the central topics in software engineering. The main role is to develop
effective software application in the most efficient way. The Oxford Dictionary defines a

methodology as the ‘study of systematic methods of scientific research’.

There are several definitions of methodology have been well established within the field of
development software application. The following are some of the definitions of a methodology

in terms of development software application.
[Hice+74] define a methodology as

‘a recipe that enables an engineer to find a solution to a specific set of problems,

consisting of a set of guidelines’.
[Avis95] defines a methodology as

'a collection of procedures, techniques, tools, and documentation aids which will

help the system developer in their effort to implement a new system’.

A methodology should be sufficiently precise to enable any engineer to apply the recipe
successfully to a suitable problem, while at the same time it should leave enough room for

creativity.

According to [Hubm97], a methodology consists of the following components:

o A set of models that represent different aspects of the problem domain as well as the
solution at different stages; .

o A set of models that transform instances of one model into another model;

o A set of procedural guidelines that define an order for the systematic application of the

methodology's steps,’

25

On the other hand, those with a process model perspective, [Wyne93] assert that a methodology
must have at least one complete phase (requirement or analysis or design) of system
development, consisting of a set guidelines, activities, techniques and tools, based on a

particular rationale of system development.

Based on the above definitions, a fnethodology that consists of a set of activities towards
development of a software application is called system development life cycle. A well known,
system development life cycle is called the waterfall model [Boeh+77]Boeh88]. This consists
of the following stages: requirement analysis, design specification, coding, implementation and

maintenance. [Wain+92] identify steps in the development life cycle, namely:

e Definition phase: feasibility analysis, requirement definition.
e Construction phase: syStem design, system building and system testing.

e Implementation phase: installation, operation and maintenance.

[Kend92] defines seven steps in a system development life cycle as: problem definition,

feasibility studies, analysis, design, construction, conversion and maintenance.

The difference in the steps of these system development cycles depends very much on the
. author. For example, many authors include requirement/design specification as one of the steps
in the systems development life cycle. With such differences in description of various stages,
the most common elements represented in a development software application are: analysis,
design and implementation. The life cycle describes the sequence of stages to be performed.
There are several kinds of life cycle of development process, such as the spiral model, V-model

and increment model[Somm99].

It is useful to understand these three common concepts used in life-cycle for the development
of software appiications. The implementation stage is clearly identified as one of transferring
the system design into a specific language that allow the system to be executed, but the analysis
and design stages are prone to misconception. Therefore, in this section we discuss the

difference between analysis and design.

vAnalysis is essentially the process of deriving notional systems and understanding their
relevance to the situation in which problems are perceived. Design is the process of deriving
models that are expected to bring about the behaviour of the notational systems. The design
should consist of an attribute of a creative activity of constructing many elements and
organising them into not just one, but many viable unified wholes, such that each one is capable

of realising the notational system. Table 2.1 describes the analysis vs. design [Jaya94].

26

Criteria Analysis ' - Design

Role Problem formulation using system | Solution design using system notions
notions

Function To identify relevant notional To identify relevant elements of the
system(s) to the desired state notional system(s)

Primary concern To define the context relevance of | To define the content relevance of system
system ‘

Address questions What and why? How and whom?

Measure of Contribution of notion system’s Contribution of the integrated elements to

performance ' performance to the desired state the notion system’s.

Primary skills Critical thinking Creative thinking

required

Table 2.1: Analysis vs. Design

According to the above methodology definition, we identify the three key issues that need to be

addressed in characterising a software development methodology.

Firstly, a software development methodology should cover certain phases of the development
process'”. Each phase provide with techniques and modelling notations that facilitate

representation of the system.

Secondly, a good software development process provides clear guidance on movement from

phase to phase.

Thirdly, the method should be general purpose for a specific set of philosophical agent
paradigms and not focus on specific agent techniques (mobile agent or intelligent agent) or

problem solution (Filtering, business process, e-commerce).

2.2.2. System Development Approach

The discussion this section is concerned at the chronology of an engineering approach to
software development methods from structured to agent-oriented approach as shown in Figure
2.6. It shows the evolution of software development approaches charted against various foci of

analysis.

12 at least on phases such as analysis, design and implementation,

27

R I > e b S A P eares
Literature Reviews

Focus of Analysis

Agents
=1 Agents oriented
................ o

...... o

Knowledge : / -
. . {
Engineering { Knowledge Engineering (knowledge base, case base
A\ reasoning, neural network, fuzzy logic, etc.
\‘

Objects Object Oriented(O0)

System Control state /l real

transition time/Object
\ Information
/ Engineering/
Objects

Entity Information ﬂ
Data Structure Relationship Engineering
X Modern
Function > Structured
.- : Structured
Function; Decomposition Methodology Methodologies
Late 70s Early 80s Early 90s Early 00

Figure 2.6: The Evolution of the Software Development Methodologies

Software development approaches can be divided into three approaches: structured, object-
oriented and knowledge based.rThe former category was the pioneering approach of system
development based on the structured school, embracing functional, data structure and control
approaches, a variant of the structured school. Originally it was used for cutting-edge complex
applications; however, continued enhancements were required to accommodate the difficulty

posed by ever increasing size and complexity of problem domain.

The structured approach is based on top down functional decomposition of a system. It was the
pioneering approach in software development methodology in the mid-to-late 70s and focuses
upon what a system does, rather than how it does it. Therefore, it emphasises logical rather than
physical structures. The approach focuses on data stored and processes that support the data
stored, and so popularised the use of data flows and entity relationships. One of the most
popular structured approaches is by Yourdon[Your79] and De Marco[DeMa+78]. It focuses on
the complete life cycle development of the development process(SSADM)[Ash+90].

In the early 80s the object-oriented methodologies started to be explored and were soon being

used to handle complex applications involving concurrency, distributed systems, network

28

management and e-commerce. At this time too, the knowledge engineering paradigm was
introduced with the promise of better solutions for complex systems. These attempts have been
largely successful in providing solutions to various applications, particularly the complexity of

rules for making decisions and reasoning in expert systems.

Agents-oriented is a combination of the strengths offers by object-oriented and knowledge
engineering approach. In the early 90s the idea of agent, originated from Artificial Intelligence
(many of previous agents application follow this thread). However, the latest research found
that an agent-oriented approach stemmed from object-oriented ideas, while the knowledge

engineering techniques aided agents to provide intelligence such as plan, reasoning, etc.

2.2.2.1. Knowledge Engineering Methodology

CommonKADs is the only knowledge engineering approach that provide a full set of a
methodologies[Breu+94][Tans93]". CommonKADs consists of seven types of abstraction to
represent the analysis and design the problem domain: organisation, application, task, co-
operation, expertise, agent and design[Waer+93]. The first three involve identifying the
problem to be solved in an organisation, through functions that define the actual task that the
knowledge based system has to perform. The co-operation model is the specification 6f the
functionality of subtask in the task model. The expertise model is the central activity in
knowledge based construction, because it specifies the problem solving expertise required to
perform the problem-solving tasks assigned to the system [Breu+94]. The agent model is the
abstract description of objects and operations, which comes from the abstraction of expertise
and co-operation models, whereas the design model describes the realisation of problem
solving behaviours described in the expertise and communication models. The model
distinguishes between types of subsystems, application, architecture and platform design. In the
task model, agents are identified to represent components of the task model; thus reducing the

complexity of task model.

The pioneer agent-oriented development methodology being proposed is an extension of
CommonKADS methodology. The strength of knowledge engineering from an agent
perspective is the fact that it matured in prbviding intelligence techniques such as rule-based,
case-based reasoning, fuzzy rules, neural networks, etc. which are useful for agent intelligence.
The rules-based approach provides a technique of forward and backward chaining that allows
accurate modelling of decision-making. Case-based reasoning (CBR) offers a technique for

deciding how agents can act in the current situation. Several CBR tools have been used for

29

“Literature Reviews

specific tasks, for example Art-in and CBR-express. Fuzzy logic provides a technique for
agents to make decisions, whereas the neural networks technique offers pattern recognition
(back-propagation, kohonen map) and machine learning techniques such as genetic algorithms
which enable agents to learn about their environment behaviour or learn about human

behaviour[Rusel+95].

In the knowledge engineering community, the best method of creating a rule-based system is
"rapid prototyping", which means creating a set of rules to solve a specific case and executing
it to see whether the result solves similar cases with the rules it has in its knowledge base

[Harm93].

2.2.2.2. Object-Oriented (OO) Approach

The object-oriented approach is based on objecté and has been presented as a proper systematic
development methodology. Several object-oriented methodologies have been proposed, such as
- Coad-Yourdon's [Your89], Object Modelling Technique(OMT)[Rumb91], Object-oriented
Design[Booc94], Object-oriented Software Engineering (OOSE) [Jaco+92]. . A brief survey of
the above object-oriented approaches shows that the methodologies have different strengths
and weaknesses, and presented different modelling notation, but all of them similar abstraction
of objects by showing classes, attributes and relationships to present their methodology. The

developer is not restricted to using any specific development process.

Despite of various kind of object-oriented methods and notations we follow the Unified
Modelling Language (UML)[Rati97][Booc98]". UML encompasses three kinds of building
blocks: Objects, Relationships and Diagrams. All these building blocks show the static and
dynamic modelling. UML provides techniques to show the structure, behaviour, grouping and
annotation of objects[Larm97]. It also shows several kinds of relationships such as dependency,
association and generalisation. On the other hand, UML provides several kinds of diagram of
class, object, use case, sequence, collaboration, state chart, activity, component and deployment
diagrams, which are able to show the static and dynamic activity of system. The UML have

potential features to present a static and dynamic modelling for agent-based systems.

A deep understanding of agent concepts associated with the current software development
approaches has led us to our choice of the most suitable agent development namely an extended

object-oriented approach for the following reasons:

1 It has become the world wide standard for Knowledge Based System (KBS) development
methodologies and the tools that implement the CommonKADs methodology such as ILOG KADs.
" UML now been agreed as a standard object-oriented modelling languages

30

First, the concept of agent is quite similar to that of an object, though an agent is defined as an
active object. This means the abstractions for an object and agent can be quite similar. An
object is abstracted by attributes and methods, whereas an agent is abstracted by behaviour
(autonomous, reactive, etc.). Moreover, for our purposes an agent is extended to include a
knowledge engineering perspective in that an agent is abstracted by several processes that are
linked together to represent agent behaviour, where each process consists of several tasks

carried forward from [Treu+98].

Second, extension of object-oriented approaches has been the basic of existing agent-oriented
methodologies [Shoh93][Wool+95][Frank+97][Geor+95]. Moreover, at the implementation
stage features of the common usage of object-oriented language such as inheritance,

polymorphism and aggregation can be utilised for implementing agent-based systems.

Third, the maturity and advantages offered by object-oriented methodologies provides a robust

starting point for development of agent-based systems[Meye+93].

Fourth, object-oriented languages are popular among software developers. Developers tend to
put more efforts into the language that they know most. Recently, more then 70% of
commercial agent systems (agent frameworks) have been developed in object-oriented

languages[Tools99].

Fifth, the object-oriented approach is suitable for large scale complex application to present
agent technology. Object-oriented provides various terms of design pattern, architecture
patterns and software architecture that play role in developing a quality complex object-

oriented development.

Another strength of an object-oriented approach is reuse. This is shown in the development of
object-oriented frameworks[Bell+99]. There are several off-the-shelf frameworks such as
communication protocol components using TCP/IP, CORBA, HTTP, Distributed Component
Object Model (DCOM) that can be utilised taken advantage of, for constructing the properties
of agent systems such as distribution, concurrency and communication. This is because the
object-oriented approach is popular and is used in development of distributed artificial
intelligence and distributed systems. The object-oriented languages provide functionality to use
off the shelf frameworks. Therefore, the frameworks are easy to 'pick and plug' in an object-

oriented approach.

As we discussed previously, most agent systems are developed upon an agent frameworks. An

agent framework provides an environment for developing agent systems as programming

31

Literature Reviews

languages do. But they are different because the physical design lies in the agent framework
that has association with user requirement rather than a standard to presenting agent
technology. We view development agent frameworks is part of development of agent systems,
which is the most complex stage of development. Therefore, in order to- reduce such
complexity, various software abstractions are introduced. The common software abstraction
tool such as software architecture, frameworks and patterns are addressed to reduce complexity

of development agent framework.

In the next chapter, we will discuss more detail the means of abstraction and the potential used

for design agent systems.

2.3. SOFTWARE ABSTRACTION

Abstraction is a key part in any software development process [Triem99]. Software abstraction
is a tool or technique used to omit details throughout the development of a system. The UML
used for development object-oriented system; while data flow and entity diagrams are used in
SSADM. Agents offer expressiveness and flexibility since conventional notation is not enough
to support agents. The use of software abstraction enables having a clean software development
process, rather than having ad hoc implementation codes, as an ad hoc method is not a suitable
approach for the development of a complex system. The implementation code represents a very
lower level of abstraction, which difficult to understand and difficult to maintain. Moreover, it

not able to show the development process that other developers can follow.

System requirements specification Type of abstractions

besign method Function, Object, Agent

Modelling Class, State Diagram, Context Diagram, Activity
Diagram, etc.

Subroutine specification | Framework, components

Type, class Architecture

Pseudocode Pattern

Performance Criteria Theory(set of statements) about a class or type

Table 2.2: Software Abstraction

32

There are several techniques defined as software abstraction, which are used in different levels

of complexity and stages of a system, as shown in Table 2.2 *°,

There are several terms used in relation to abstraction: refinement, generalisation,
specialisation, documenting a refinement, views and compositions, which we can break down
into specification, patterns, interface, type, method, class, protocol, collaboration, framework,

message, design, function, etc.

The software development methodologies discussed in the previous section used software
abstraction. In object-oriented approaches for instance, several techniques of software
abstraction are introduced to reduce the complexity of the development process. Similarly, in
the cases of our research, the aim is to identify suitable software abstraction uses for
development of agent-based systems such as abstraction to describe agent and appropriate
modelling suitable for analysis and design agent system. On the other hand, the software
abstraction of framework, software architecture and patterns are necessary for development

agent environment'®,

In this research, we focus on identifying abstraction to model agent, and identifying appropriate
modelling for analysis and design agent system. However, in development agent environment

we utilise software abstraction, as discussed in the above sub-section.

2.3.1. Software Architecture

Software architecture is like system architecture in that thvere is no general agreement on the
definition. It can be interpreted differently depending on the context. For example, [Booc94]
defines architecture of the system as a class structure. He suggested that part of the architecture
is the way in which classes are grouped together. [Rumb91] used the term architecture to
describe the overall organisation of a system and sub-system. [Shaw+96][Shaw+93 define
software architecture as software at a high level of abstraction that can be described as a
number of distinct elements or subsystems combined together with their interconnection and
interactions. [Busch+96] defines software architecture as ‘a description of the subsystem and
components of software system and the relationships between them'. Subsystems and
components are typically specified in different ways to show the relevant functional and non-

functional properties of a software system. The system architecture of a system is an artefact.

'* The last four types of abstractions are define by [Triem99], while the first two are also define as
abstraction.
'8 Agent environment here means Agent Frameworks.

33

Literature Reviews

~ Software architecture are used for three purposes: develop architecture for individual software
system[Hofm+99], product-line architecture[Bosc99][Bosc00] or domain-specific software

architecture[D'So+98].

Based on the above discussion we can see that software architecture is an approach to software
development that has shifted developers' focus from fine-grained units to coarser-grained
architecture elements of their inter-connection structure. They enable developers to abstract
unnecessary details and focus on the big picture of the system being developed. Software
architecture may be seen as method to guide the design architecture for development agent

environment. [Soni+95] identified the four view different aspects of software architecture as

below:
Type of Architecture Examples of elements Examples of relationships
Conceptual Components Connectors
Module Sub-systems, modules Export, imports
Code Files, directory, libraries Includes, contains
Execution Tasks, threads, object Uses, calls
interaction

Table 2.3 : Four aspects of Software architecture [Soni+95].

There are various kind of applications which use software architecture such as framework

applications[Fayad+01], enterprise applicationsfHamu+98] or family types of
applications[Bosc00]. All these types of application provide environments for a specific type of
application. The agent technology, as discussed in the previous section, is the functional
requirement for the agent environment and focuses on the aspect of reuse similar to these kinds

of applications.

The issues associated with agent technology presented the potential of use software architecture
to model structure of agent environment (agent framework) that provides functionality to create

and executes them and also allow them to socialise.

2.3.2. Architecture Pattern

Architecture patterns are developed based on experience of a rapid software development to
produce good software architecture. Therefore, the essential contribution of architecture pattern
is in providing an indication as to which architecture style is appropriate to a system. Software

architecture is an architectural choice rather than a development‘life-cycle.

34

Several architectural style solutions have been identified, such as client-server systems, a pipe-
line design, layered architecture, blackboard, broker, model-view-controller, reflection and.
presentation-abstraction-control [Shaw+96]. Each architectural style is described in terms of
structural organisation, called architectural patterns. The architecture pattern is a fundamental
design decision when developing a software system, given that the designer is familiar with the
patterns. Several architecture pattern catalogues have been developed such as pipes and filters,
distributed system broker, blackboard, model-view-controller, adaptation system and micro-
kernel [Busch+96]. The architecture patterns guide the developer on identifying abstraction.
However, not all architecture patterns exactly match a system solution. Some of these
architecture styles are commonly associated with each other for a particular solution of a
software system. For example, adaptable systems use Microkernel and reflection architecture
patterns, while the interactive systems use the Model-View-Controller and Presentation-
Abstraction-Control architecture patterns [Busch+96]. Architecture patterns provide guidance

to produce a quality architecture design and it will be used for developing agent environment.

2.3.3. Design Patterns

Design patterns are tools used to guide the object-oriented designer in producing a quality
design. It has similar aims to architecture patterns but it focuses on a object level

design[Prec+97][Gam+95].

A pattern is an abstraction from a concrete form, which keeps recurring in specific non-
arbitrary contexts [Rieh96][Gam+95]. The problem occurs within a context and has a proposed
solution that involves a structure, which balances this concern, which is most appropriate for
the given context. Pattern form is used to describe the solution and tries to capture the essential
insight, which it embodies, so others may learn from it and make use of it in similar situations.
The solution can be applied in a different situation and has to be adapted to fit the needs of the

specific situation[App97].

A pattern should describe a single kind of problem, it should specify the context in which the
problem occurs, the solution as a constructable software entity, design steps or rules for
constructing the solution, and the forces leading to the solutions, provide evidence that the

solution, and resolves forces and describe details that are allowed to vary [Lea93].

Patterns have been used in the application, development and documentation of software
applications. In the development process, patterns play an important role in the various stages

of analysis, design and implementation[Cunn+87].

35

Literature Reviews

According to the pattern definition, a pattern is concerned with a subject. The subject focuses
on the problem domain, a system design or a program implementation. The subject describes
the classes or components, objects and relationships between them. In other words subjects
could be models of problem domain, interaction diagrams and source code. Therefore the term

pattern has been widely used in relation to architecture patterns and design patterns.

Design patterns can be presented in two ways: in a design pattern catalogue like a design
handbook, which contains a number of problems and corresponding solutions; or by
incorporating design patterns into the language in which the designer thinks, as a design

language.

Design patterns are divided into three categories: patterns dealing with flexible object creation,
patterns dealing with structural aspects of object systems and patterns dealing with behavioural
aspect of an object situation. Design patterns are independent of application domain but rather

map to a specific situation implemented before in specific classes of systems.

A design pattern is presented as a template. Each template consists of the following attributes
which are used to describe design patterns: Name, Problem, Context, forces, Solution,
Examples, Resulting Context, Rationale, Related Patterns, Known Uses. Several design
patterns have been produced and catalogued [Gam+95][Gran98][Gran99][Nels99], which are
used for general purpose object-oriented design solutions. Idiom is a kind of design patterns
which ties to a particular language. Its useful to transform an object-oriented design into an

implementation code.

We believe the development of agent environment is mainly uses object-oriented technology,

therefore design pattern plays important role in development agent system.

2.3.4. Architectural Description Language(ADL)

Architecture style presents a very limited architecture of a system and does not clearly define
how to model for a very specific condition. ADL is a modelling language that support
architecture-based development, similar to the way UML supports object-oriented
development. However, ADL focuses on the high-level structure of the overall application
rather than implementation details of any specific source modules[Ves93]. It allows for a
precise description of the externally visible properties of software architecture, supported by
different architecture style at different levels of abstraction. Externally, visible properties refer
to properties of a component, such as its provided services, performance characteristics, error

handling and shared resources.

36

ADL is a language that provides features for modelling a software system's conceptual
architecture. It provides a concrete syntax and a conceptual framework for characterising

architecture.

A number of ADLs have been proposed for modelling architecture within a particular domain,
Aesop, MetaH, LILEANNA, Artex, C2, Rapide, UniCon, Darwin, SADL and
ASME[Medv+97]. Each ADL mainly consists of component, connectors and architecture
configurations.” A collection of ADLs is used for development of software architecture
[ADLO00]. Understanding these domains and their properties the key to better understanding of
the development of software architecture. ADL has been classified into the following:
Editors/Viewers, Static Analysis, Runtime Analysis, Simulation and Monitoring,
Transformation to Implementation, Interface or Code Generators, Reengineering, Recovery,
Correspondence, Conformance Testing, Evolution, Test Case Generators - Design,v
Documentation and Tradeoff Analysis. Each classification describes the ADLs used [ADLO00].
Architecture patterns are used for a high level design while ADL presents a more precise
design. ADL is used for designing and developing the agent environment, rather than designing

the agent system itself,

2.3.5. Frameworks

A framework is a partial implementation system that can be executed to provide certain kinds
of functionality. It is a partially complete software or sub-system that is to be
instantiated[Booc94b]. Frameworks may be small systems or may consist of the integration of
many sub-systems. Development framework tied with a specific platform execution.
Frameworks are generally a hybrid of architecture-level information and implementation. A
framework defines the architecture for a family of sub-systems and provides the building

blocks to create them.

Agent environment is a framework that consists of various sub-systems. Software architecture
and architecture pattern are the key tools for the development agent environment, while in this
case a framework is a special case of the software architecture approach used for the

development of an agent environment.

Frameworks are useful for the development of specific-domain applications that can be reused.
In an object-oriented community, a framework comprises abstract and concrete classes. The A
framework is instantiates by composing and sub-classing of existing classes that are easy to use
for a specific domain. Frameworks enable the skeleton of an application that can be customised

by an application developer.

37

Literature Reviews

Frameworks are useful for the development of software applications that involve the design and
implementation of complex software, especially in view of the heterogeneity of hardware,
operating systems and communication platform which make it hard to build and expensive built

from scratch[Booc94b].

A framework is considered as a semi-complete application target for a particular domain,
whereas an object-oriented reuse technique is based on class libraries. Some examples are
Microsoft Distributed Common Object Model(DCOM), Java-Soft's Remote Method Invocation
(RMI), Common Object Request Broker Architecture (CORBA) and Microsoft Foundation
Classes (MFC). Frameworks are also used for more complex applications such as
telecommunications, distributed medical imaging and real time. Frameworks have become the
next generation of object-oriented applications, targeting complex business and application

domains[Fayad+01].

The benefits and design principles underlying frameworks focuses on reuse, for example in
system infrastructure framework (operating system[Russ90]), middleware integration
framework (database management [Bato+89], network protocol software [Huen+95]) and

enterprise application framework[Meyr86][Baum+97], routing algorithm[Goss90]).

The most important part is that a framework is developed using abstract and concrete classes
which are useful for presenting the functionality of the agent environment. Two abstract classes
are useful for the development of the agent environment: core agent and communication,
whereas, the other elements such as behaviour and interaction protocols can be defined as a
library of reusable components. The relationships of these two reused components are shown in
Figure 2.7. It also shows the difference between the use of frameworks in traditional
applications and the use of frameworks for an agent based system. The figure shows that all
agents are composed of inherit the core framework depending on the choice of framework
design methods, such as Holonic perspective[Sou+98], Consolidate perspective[Paru+01] and
AALAADIN perspective[Paru+01]. In addition, the instantiation of a framework by composing
and sub-classing the existing classes is useful for presenting agents and creating many agents.
A framework design provides features at two levels: domain features and structural
characteristics. The domain features describe domain-relevant features useful in the application
and structural characteristics describe the features facilitating the adaptation and the evolution
of the framework. The structural characteristics are concerned with both the logical and
physical structure of the framework[Pree96]. The structural characteristics are important

because a framework's implementation and design are the actual interface used by the

38

IR ey

T rafarofriirn Do
PN 30 01 AN R S % 5 3 G A € S

I

framework's user. Therefore, the design of a framework's logical structure is essential to the

application of the framework.

Core Core Core Core Core
framework framework framework framework framework
Application A Application B Agent A AgentB _4 Agent C

Traditional framework application Framework based for agent based system

Figure 2.7 Dissemination of the Use Framework for Traditional and Agent-based Application

The development of this type of framework is strongly associated with software architecture,
architecture patterns and design patterns. The abstraction makes it necessary for development

to deal with an increasing number of concerns that are needed for framework development.

The four issues that are characteristic aspects of an architectural abstraction for development
frameworks are structure, functionality, abstraction and reuse. Structure is focused on the
structure of composition of classes, whose collaboration and responsibilities are specified. This
describes the whole structure of the framework. Functionality is concerned with domain
features that describe a common functionality of the application. Therefore, the functionality
can be reused. Abstraction represents the abstraction of structures and functionality in the
domain as generalised structures and functionality. This is the core of the framework allowing

instantiation or inheritance.

Framework development process has been matured, it has been used in development of various
kinds of application that aims for reused such as library system, Visual Banker and Hotel
system[Dyson97], Fire Alarm System[Molin96], Measurement. System[Bosc99] and Gateway
Billing System[Lund96], in which the similarity of functionalities have been established. These
approaches describe the framework development process but are not focused on what

components are exhibited and how they connect with each other.

Therefore, architecture patterns and design patterns are used as guidance on how the
components or objects are structured in a specific context. In next section describes a ~

framework development process.

39

Literature Reviews

2.3.6. Framework Development Process

Framework development is different from a standard object-oriented application[Rieh96b]. The
important distinction is that the framework has to cover all relevant concepts in a domain,
whereas the application is concerned only with those concepts mentioned in the application
requirements. To set a context for the problem experienced and identified in framework

development, the following activities are part of the framework development model:

Domain Analysis. This describes the problem domain to be covered by the framework. It
captures the requirements by referring to various applications in the similar domain, experts in
the domain, and captures any standards, which exist in the domain. The result of the activity is
a domain analysis model that contain the requirements of the domain, the domain concepts and
the relations between those concepts[Booc94b].

Architectural Design. This takes the domain analysis model as input. The designer has to
decide on a suitable architecture style to underlie the framework. Based on the selected style,
among other considerations, the top level framework is designed. The use of architecture style
or architectural patterns can be found in [Shaw+96] and [Busch+96].

Framework Design. This is the stage in which the top-level framework and association classes
are designed. It may be described as the association between abstract and concrete classes.
There are various techniques of framework design include composing modelling -catalysis
[D'So+98], hot-spot driven [Pree96], systematic generalisation [Schm96], and structuring large
application framework [Baum+97].

Framework implementation: The implementation stage is the coding of the abstract and

concrete classes to an executable system reuse system.

Domain analysis presents problems unlike those of normal application development. For
example, behaviour and attributes are very likely to change in several cases. The analysis of
such behaviour and attributes needs to be emphasised in the development model, since it is the
nature of frameworks to provide reusable design and implementation that cover the variations

and hot spots in the domain.

During development of the framework, an architecture must be selected or developed. The
criteria for framework architecture depend on the domain and the domain variation. The
architecture must provide a solution to the problem without blocking possible variations in the

domain or different solutions to other domain problems.

During framework architecture design, decisions need to be made on whether some part of the
framework should be designed as a sub-framework or whether everything should be designed

as a single, monolithic framework. Also, interoperability requirements need to be established,

40

for example, whether the framework should cooperate with other frameworks, such as user

interface frameworks or persistence frameworks.

On the other hand, [Matt+96] proposed the activities of framework development as below:

Requirement analysis is carried out by collecting and anglysing the requirements of the
application that is to be one or more frameworks.

Based on the results from the analysis of requirements, a conceptual architecture for the
application is defined. This includes the association of functionality to components, the
specification of the relationships between them and the organisation of collaboration
between them. -
Based on the application architecture, one or more frameworks are selected based on the
functionality to be offered by the application as well as the non-functional requirements. If
more than one framework is selected, the developer may experience a number of
framework composition problems.

Having decided what framework to reuse, the developer can deduce the specific
applications that need to be defined that is specify the required application-specific
increments(ASI).

After the specification of the ASIs, they need to be designed and implemented.

Before ASIs and the framework are put together into the final application, the ASIs need to
be tested individually to simplify debugging and fault analysis in the resulting application.
Finally, the complete application is verified and tested according to the application's

original requirements.

2.4. THE CRITERIA OF AN AGENT BASED SYSTEM

From the literature review on agents, we have synthesised four agent characteristics that are

useful for agent development solution: behaviour, distribution, communication and openness as

shown in Table 2.4.

Agent Behaviour Autonomous, reactive, proactive,
believe, reasoning, etc. (refer chapter 2)

Distribution Conceptual

Locational
Communication With external world,

inter agent and inter entities
Openness the use of ACL

not limited to specific communication protocol
free to communicate between agent environment

Table 2.4: Characteristics of Agent-oriented Developments

41

Literature Reviews

The literature view reveals that many of the existing agent systems focus on providing agency
to agent, which this only part of the agent. Distribution is the highest criteria being utilised for
an agent system, which is useful for the development of large complex system with high
interaction. In addition, it provides mechanism of socialisation and utilise the criteria of

openness and autonomy.
Behaviour

Behaviour is the main aspect differentiating agents from other paradigms such as objects or
tasks'’. The combination of certain behaviours presents different agent types rather than a
standard view. Agent presents a dynamic paradigm, while object is static, described by its

attributes and method.

This dynamic agent paradigm forms the main bottleneck in the development of an agent-
oriented methodology that is suitable for all agent systems. Agents may be presented as
autonomous, proactive or having intelligence, or a combination of the agent behaviours. This is
the reason why the existing agent-oriented methodologies tend to adopt a specific architecture
or perspective, rather than a general one. Currently three combination of behaviour acceptable
of agent paradigm are autonomous BDI agents, autonomous reactive, and real autonomous. The
combination these behaviours represent the compulsory attributes for an agent, while others are

optional behaviour added into an agent.
Distribution

Distribution is classified into two categories: cbnceptual and locational distribution. Conceptual
distribution is utilised from the agent criteria as a method to identify agents from the analysis
requirement, whereas locational distribution is focused on providing architecture for the agent

environment in which the agents exist. This will be discussed in Chapter 4.

Conceptual distribution allows development of agent based applications involving various
characteristics, such as organisation [Wool+00], distance[Paru+97], location[Paru+97],
decision making[Buss+00] and logic[lglet98][{Glas96][Elam+99]. Such conceptual
distributions are utilised in agent development for several reasons, to reduce the complexity of
the system, to reduce transaction cost, and to increase reliability, openness, reusability and
performance. These criteria are a part of the non-functional requirements that influence the

design. The agent paradigm is a significant step ahead of distributed artificial intelligence,

'7 Just as the object paradigm, task paradigm and functional paradigm are associated with the object-
oriented, knowledge-engineering and structured approaches respectively, an agent paradigm is based on
behaviour.

42

Literature Reviews

multi-agent systems and distributed systems [Brad97a]. Distribution is ifnportant for agent
systems because it can facilitate the distribution of task and decision making processing, reduce
communication traffic, information loading and the communication costs associated with
central problem solving, allow gains in speed and computation resources through parallelism,

and provide greater robustness through lack of dependency on a single computation node.

In addition to agent behaviour, the characteristic of distribution also contributes to a part of the
method of viewing the agent paradigm that has an effect on designing agents. However, for our
purposes, we have identified the characteristic of distribution with the aim of reducing
complexity. This choice of agent distribution with the aim of reducing complexity is reinforced
by [Maes90][Jenn+98]. For example, a system is considered as complex if it involves too much
decision-making. The complexity can be reduced by distributing decision-making into several
smaller units and each decision making result contributes to the achievement of the global

decision making.

Similarly, if a system has too large an information load, it is considered as a complex system.
We need high processing systems and bigger space to load a large quantity of information.
Distribution of the information into small information units will increase the system

performance.

Four types of conceptual distributions are identified as a result of analysing the existing agent-
oriented methodologies: organisation|Wool+00], location[Paru+97], decision making
[Buss+00], logical or task [Parut+97][Igle+98]. These types of conceptual distributions are

accepted as perspectives on identifying the attributes that describe the agent abstraction.

The distribution perspective aims to provide smaller agents that are less complex and have
higher performances. It is essentially a modularisation concept for agent-based systems. This
modularisation concept is similar to traditional development, such as the structured or object-
oriented approaches, which use procedures or functions and interface or library respectively to
reduce the complexity of the development of such systems [Booc94]. However, the
modularisation in an agent-based system is not restricted to the development process but is also
able to reduce the complexity of the system itself. The traditional approaches are not able to
reduce the complexity of the system, but are restricted to the reduction of the complexity of the
developmfent process. This is because in agent systems, an agent is represented as an

independent system.

43

T P s D [N
Lilterajure HKevViews |

LEL

Communication

Communication is the basis of agent socialisation. It is derived from the agent distribution
characteristic. Three types of communication are identified. The first is communication of the
agent with its environment (external world) using a sensor to get information from the external
world or belief about the environment [Treu+99]. The external world is the subject that is

being observed by the agent. This external world, eg. user interface, sensor, signal, etc.

The second type of communication is the communication among agehts in a multi-agent
system[Wool+95]. This communication is derived from conceptual and locational
characteristics. This type of communication is a key requirement for agents to socialise, that is,
to interact, cooperate and collaborate through the interaction protocol. Technically, the
interaction protocol is described using standard agent communication via agent communication

languages.

Jenning states that any system that uses agent communication language is classified as an agent
system [Wool97]. Although some agent systems are developed without using agent
communication language for communication, in general, the agent community has agreed,
agent communication language has become a standard language for agent communication

[Wool197].

The third characteristic of agent communication is the ability of agents in a multi-agent system
to communicate with external entities [Moul+96]. These external entities are identified as

neither agents nor as entities. An example of external entities is a legacy system.
Openness

In order to allow heterogeneous agents to communicate with each other, the openness
characteristic plays an important role. From the literature survey we identified three types of

openness. The first type is identified from conceptual distributions which use ACL.

The‘ second type of openness provides agents with a choice of interac‘tion mechanism
[Cohen+94]. This means agents can interact using a variety of interface mechanisms such as
TCP/IP sockets, HTTP, Simple Mail Transfer Protocol (SMTP) or Global System for Mobile
Communications (GSM). This kind of message transportation is located at a lower layer of
agent communication. This type of openness only influences aspects of the designing of the
agent environment. This is because the design of the agent system is focused on the logical
design aspect, rather than the .physical aspect, and this type of 6penness only applies to the
physical aspect of design only.

44

Literature Reviews

The third type of openness describes how open the agent services exhibited in a multi-agent
system environment are reused by other agents located in another multi-agent system
environment[Dale01][Bell+99]. Figure 2.8 shows how two multi-agent systems for Market_ing
and Production use the services of the Pricelist Agent, which is located in the Production
system. The marketing system openly uses the Pricelist Agent services in order to achieve the
Marketing system goal without creating its own Agent Pricelist. This type of openness aims to

provides an open multi-agent system architecture, that allows agent interoperability.

Marketing system Production system
Agent StockAgent
Financial
Customer
Sales Agent
Agent > _, Assemble
~ Pricelist Agent
Agent

Figure 2.8: The Ability of Agent to Communicate Across Multi-agent Systems

These four characteristics are the key principles used in designing agent systems. The
characterisation of behaviours is the core principle in agent system development because it is
used to identify whether an agent is an appropriate approach to system solution, whereas the
distribution characteristics provides four perspectives on how the system is structured and
decomposed to form agents. Decisions on these matters influence the determination of the

agent communication and the way agents interact is known as the interaction protocol.

The key issue for development agent environment to provide an appropriate technology for a
development agent system which be divided into two kinds of environments: physical and

communication as each of them discusses as below.

Physical environment

The concept of a physical environment for an agent is analogous to the ecology of an animal,
that is, an environment that enableé a species to survive. For example, fish ecology consists of
water that is described through the variables of temperature, food items and salinity[Wils75].
While artificial agents can have different environments for their survival, they still need én
"ecological niche" or physical environment. The agent environment should provide the

principles and processes that govern and support the lives of the entities. Different kinds of

45

Literature Reviews

agents require different kinds of physical environments and vice versa. A Tourist agent system
depends on geographic position and uses a satellite as a vehicle for communications, whereas
an agent based supply chain is more focused on resources and orders as major components of
the system. We realise that artificial agents are much more dependent on application rather than
physical conditions, because they are associated with environmental information. Return to the
ecology analogy, the quality of a fish’s environment is important for the fish to alive. However,
what constitutes quality depends on the type of fish. Therefore, the aquarium is designed in a
way similar to the fish’s ecology. Similarly, artificial agents require quality aspects for their

environment.

Based on the literature review, we found several characteristics to describe the physical aspects

of an agent environment, as proposed by [Weis99][Rusel+95]:

¢ Diversity- how homogeneous and heterogeneous thé entities in the environment?

e Locality - does the agent have a distinct location in the environment, which may or may not
be the same location as other agents sharing the same environment?

* Accessibility — to what extent does the environment know the availability of agents?

e Determinism- to what extent, can agents predict events in the environment? How far is the
environment determined according to the agent’s current state and action selection?

e Controllability- to what extent, can the agent modify the environment?

o Volatility- how much can the agent environment change while the agent is deliberating?

e Temporality- is time divided in a clearly defined manner? Do the agent actions occur
continuously or discretely or episodically?

e Openness- how far does the agent environment provide opportunities of using any

communication medium for the agent to communicate?

Communication Environment

The communication environment is only needed for a collective of independent agents in a
multi-agent system. These independent agents need to communicate with each other. Therefore,

they need a communication environment that allows them to communicate effectively.

As a result of the literature review on agent principles in chapter two, we discovered that the
communication environment consists of two elements. First, it provides the principles and
processes that govern and support the exchange of ideas, knowledge, information and data.
Second, it provides strategic socialisation of agents, that is, those functions and structures that
are commonly émployed to enhance communication, such as roles, groups and patterns of

interaction (interaction protocols) between roles and agent groups.

46

Literature Revi

The communication environment should provide the following elements: communication,
interaction and socialisation environment. Communication is a method of conveying
information from one entity to another and it changes the state of the receiver. Interaction is
two-way communication. The sender receives at least an acknowledgement from the receiver
that it has received something. Interaction not only defines exchange of information but it also
confirms the original sender of information, even though it is received by the other agent. The
socialisation environment is even more complex, in that communication and interaction are-
employed together. It describes the patterns of interactions or interaction protocol, for example,
bidding. Other types of social interaction are coordination[Bond+88], cooperation[Haug+98]
and competition[Hayn97]. The interaction and socialisation environment are only needed for

the development of a multi-agent environment.

Several principles are required to facilitate the communication environment in order to model

multi-agent systems.

o Communication language - defines the three aspects of communication: syntactical,
semantic and pragmatic. These aspects are required to define the type of messages such as
send, request, etc. and the ontology. Examples are FIPA [FIPA+97b] and KQML([Fini+97].

e Interaction protocols - describe communication patterns as allowed sequences of messages
between entities and the constraints on those messages. An example is contra-net protocol;
FIPA has defined more than ten agent interaction protocols [FIPA0O].

e Coordination strategies - describe the method by which groups of agents socialise to
achieve their goals. The common strategies are cooperation, competition, planning and
negotiation.

e Social policies- describes the peﬁnission and obligations according to the social behaviour
[Wool+9s]. |

e Culture- influences the differences of set of values, desires, intentions and trust, which are
represented in agent communication languages such as FIPA versus KQML. Agent

communication languages are free from differences of culture or language [Gene+92].

2.5. SUMMARY

This chapter aimed to provide literature reviews towards the development of a systematic
method of development agent system. It started by giving a clear picture of agent theory as a
new paradigm for the development of software applications by describing the agent
characteristics and its technology. The discussion of software development methodology
identified three attributes of a methodology that agent oriented methodology should fulfilled:

agent design concept, software development process and modelling techniques. The discussion

47

in the relationship between agent and object, and object-oriented modelling is the essence
towards agent-oriented method. Beside that we provided various software abstraction
techniques, which may be used for development agent system such as software architecture,
framework, architecture pattern includes architecture description language and design patterns

as appropriate.

In the next chapter we discuss the building blocks towards development of an agent-oriented

methodology.

48

CHAPTER 3

3 The Building Blocks Towards a Process;
for Agent System Development '

3.0. INTRODUCTION

The purpose of this chapter is to present an integration of various derivations of activities
leading to production of the proposal of a method for developing an agent system. When the
research started, agent paradigm ‘was relatively new, the analysis of existing agent-oriented
methodologies was proposed based mainly on the developer’s thought about agents, which
focused on certain aspects of the agent. They focussed on certain aspects of modelling and did
not make clear the transaction from analysis to design. Some of the methodologies were very
close to object-oriented design techniques, while some of them focused only on certain stages
rather than the whole development process and some made assumption that agent framework

provide all agent technologies rather than as part of agent development process.

Our proposed agent method is at least a step ahead from them because we propose a method
based on analysing the current agent oriented methodologies, justifying them and prove them
through the reverse engineering process and experience in developing agent systems to identify
appropriate modelling for development agent system. Other differences in our method is the
fact that we believe agent frameworks part of agent development, a similar strand to [Zam01],

but not yet showing to be the agent framework development process.

The literature review in chapter two clearly discussed that the use of an agent framework is not
as an implementation language. It represents an agent infrastructure, which contains
appropriate attributes of physical and communication environment allowing agents to exist and
play it role. The derivation process has discovered that agent infrastructure is part of an agent

system requirement, which may be identified at an early stage.

In addition, an agent framework not only differs in terms of the agent infrastructure but also in
the use of a specific technique or mechanism to represent the agent infrastructure, such as
socialisation mechanism influenced by the requirement itself. For example, the decision to use

centralised or decentralised agent organisations depends on the patterns of agents interactions.

49

In addition, the scrutiny of existing agent frameworks has found that there are various
functionalities to represent agent technologies, which is associated with the requirement of the
agent system such as a different techniques to represent the four agent system characteristics',
different pattern of agent socialisations and different of choosing the use of technology to
represent the functionality. Beside that we identify another stage before implementation, called
deployment stage, which integrates the design agent system with components presented in the

agent framework.

The reverse engineering found that there are various components used in the implementation
code that are not modelled while designing the agent system. These components are used to
provide the functionality that allows the agents to perform their roles and present the features
of multi-agent System as the result of designing the agent system it self. The implementation
stage for us means an automatic transformation from the design to implementation using tools
such as Rational Rose [Rati97], which transforms object-oriented design into the

implementation code of Java language.

With such method we are able to achieve one aim of software development criteria in chapter
two to provide a general-purpose methodology with a systematic process that helps a developer
to develop agent systems. Dividing agent development into three phases we believed is able to
present a clear process to develop agent systems. This mean the gap between analysis and

design stage is reduced using modelling.

Our methodology focuses on a hard-methodology approach. Therefore, we focus less on
identifying what the system does, but more on translating the requirements through analysis and
modellingz. This means, we make thg assumption that the user requirements have justified
using agents by utilising the four agent system criteria. However, we do not specify what kind
of agent paradigm is most suitable in an agent solution (as is the current practice of the existing
agent-oriented methodologies). Therefore, in the analysis stage, the user requirements are to be
analysed to find out the most appropriate agent solution, which influences the design of agent

system and identifying agent environment functionality.

The next section shows the derivation process towards, the development of the agent-oriented
method, as integration of various derivation activities. Each derivation activity is discussed as

to what and how those activities are performed. The last section presents the essence of the

! Combination of behaviours, distribution, socialisation and openness as discussed in chapter two.
? This is because there are several analysis methods, that can be used such as Soft System Methodology
[Chec90][Somm+97][Jiro94][Ash+90], TELOS[Mylo+90] and agent-oriented methodology [Dubo+94].

50

yaten Development

concepts for analysis and design agent system, stages for development agent system, captured
appropriate modelling techniques and notations for analysis and design agent system, and
design agent environment as the result of the derivation activities.

3.1. DERIVATION PROCESSES TOWARDS THE

DEVELOPMENT OF AN AGENT SYSTEM METHOD

The development of the proposal of agent-system method is established from an integration of
five key pieces of work: literature review on agents and software development process, analysis
of the existing agent-oriented methodologies, reverse engineering of agent systems, an
empirical case study involving the scrutiny of the existing agent frameworks, and examination

appropriate software abstraction for agent system development as shown in Figure 3.1.

Analytical work
— e .
Syntheses of Examination Analysis of the Reverse engineering agent
literature the software existing agent systems(RE)
review on abstraction for oriented
agent and agent system methodologies v
software development (AEAOMs) Scrutiny of existing agent
development frameworks (SEAF)
methodology _
— —~—
Agent System Method

Figure 3.1: Derivation Processes Towards Development of Agent System Development

The proposal of the agent system method is strongly influenced by synthesis and reflection
from all these five underpinning components. Figure 3.2 shows how these five processes are
integrated towards developing a method for development agent system and development agent
environment. The development agent system part was derived from the literature review,
AEAOM, RE process and examining appropriate abstraction for modelling agent, and analysis

and design process modelling’. The development agent environment was derived from the

3 Observation the modelling techniques provided in structured, knowledge-engineering and object-
oriented approaches.

51

literature review, reverse engineering, scrutiny of existing agent frameworks and investigation

of the use of software abstraction® in the existing agent frameworks.

Development agent system Development agent environment

Literature review

Analysis of the
existing agent-oriented
methodologies

Scrutiny of the

existing agent
frameworks

Reverse
engineering

Software abstraction

Figure 3.2: The Sequence of the Derivation Process

The literature review on agents and software development processes was the fundamental

Y

starting point for proposing the agent-oriented metho