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Abstract

Partial differential equations (PDEs) are used in a wide variety of contexts in
computer science ranging from object geometric modelling to simulation of natu-
ral phenomena such as solar flares, and generation of realistic dynamic behaviour
in virtual environments including variables such as motion, velocity and acceler-
ation. A major challenge that has occupied many players in geometric modelling
and computer graphics is the accurate representation of human facial geometry in
3D. The acquisition, representation and reconstruction of such geometries are cru-
cial for an extensive range of uses, such as in 3D face recognition, virtual realism
presentations, facial appearance simulations and computer-based plastic surgery
applications among others. The principle aim of this thesis should be to tackle
methods for the representation and reconstruction of 3D geometry of human faces
depending on the use of partial differential equations and to enable the compres-
sion of such 3D data for faster transmission over the Internet. The actual suggested
techniques are based on sampling surface points at the intersection of horizontal
and vertical mesh cutting planes. The set of sampled points contains the explicit
structure of the cutting planes with three important consequences: 1) points in the
plane can be defined as a one dimensional signal and are thus, subject to a number
of compression techniques; 2) any two mesh cutting planes can be used as PDE
boundary conditions in a rectangular domain; and 3) no connectivity information
needs to be coded as the explicit structure of the vertices in 3D renders surface
triangulation a straightforward task. This dissertation proposes and demonstrates
novel algorithms for compression and uncompression of 3D meshes using a va-
riety of techniques namely polynomial interpolation, Discrete Cosine Transform,
Discrete Fourier Transform, and Discrete Wavelet Transform in connection with
partial differential equations. In particular, the effectiveness of the partial differ-
ential equations based method for 3D surface reconstruction is shown to reduce
the mesh over 98.2% making it an appropriate technique to represent complex

geometries for transmission over the network.
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Chapter 1

Introduction

1.1 Scope of the Research

Within three dimensional computer graphics, 3D modelling is the process of cre-
ating the numerical rendering from the three-dimensional surface or volumetric/-
solid representation of the object via specialised software. Models could be shown
like a two-dimensional image via a course of action referred to as 3d render or
even used in your personal computer simulation associated with actual phenom-
ena. Such graphical models (a surface or volumetric) are normally designed and
constructed using CAD-Computer Aided Design software or acquired through 3D
scanners. Once defined in an appropriate format, any 3D model can be printed out
using specialised 3D printing devices. This thesis is only concerned with 3D sur-
face data; in particular, surface patches defined on a regular xy-grid where the
depth of each point is defined in the z-axis. Such surface patches are typical of
data acquired using conventional 3D scanners based on stereo system perspective,

structured light or time-of-flight techniques.

This thesis addresses the issue associated with three dimensional data com-
pression as well as uncompressing applied to closed surface patches. Compres-
sion means to represent the data with fewer bits than the original representation

and can be lossy or lossless. In lossy compression, some information is lost,



while lossless means no loss of information. This research only describes lossy
compression. Data uncompressing is the process of recovering the original data
from the compressed data and normally this is achieved by reversing each step
of the process of the compression algorithm. When one refers to compression
it normally means both the process of compression and uncompressing. Unless
specifically stated otherwise, this thesis uses the word ‘compression’ in this con-

text.

The research approach to 3D compression described in this thesis follows four

steps:

1. To investigate a method to define structured geometric information;
2. To investigate polynomial interpolation techniques;
3. To investigate the use of partial differential equations; and

4. To perform comparative analyses with related data compression techniques
applied to the 3D case, such as Discrete Fourier, Wavelet, and Cosine trans-

forms.

In the techniques proposed in this dissertation, first, a polygon reduction described
in Chapter 4 is applied to the mesh resulting in a set of vertices lying in structured
planes of a sparse, regular grid. The data defined on such grids with their prac-
tical implementation issues and incorporation into compression techniques are

discussed in Chapters 5-7.

The first approach to compression described in Chapter 5 is by using polyno-
mial interpolation. The technique is applied to surface patches and it is shown to
be capable of decreasing the mesh by more than 99%. However, there are some
limitations such as lack of precision, and for polynomials of higher degree the 3D

surface becomes unstable and with smaller compression rates.

The second approach, considered in Chapter 6, is to perform 3D compression
based on partial differential equations (PDEs). Compression and 3D surface re-

construction using PDEs have never been solved before in this way. These new

2



methods are tested in various experimental setups and their effectiveness is evalu-

ated and discussed.

In Chapter 7 new methods for 3D data compression and reconstruction are
proposed and demonstrated. Upon applying a method of polygon reduction, the
vectors describing the data are parametrically defined and a comparative analysis
is presented via the Discrete Fourier Transform (DFT), Discrete Cosine Trans-
form (DCT) and Discrete Wavelet Transform (DWT). The transform coefficients
are further processed according to a quality factor, which substantially decreases
the amount of data. The file formats are defined with the necessary parameters
for a full reconstruction of the sparse mesh. Finally, in order to recover the vertex
density of the original mesh, the reconstructed data are represented by elliptic Par-
tial Differential Equations (PDE) and iteratively solved between adjacent planes
in connection with the Laplace equation. Experiments demonstrate the effective-
ness of the methods allowing compression rates of over 98% compared to the OBJ

file format and over 91% compared to a list of vertices in ASCII format.

1.2 Background and Motivation

Current improvements in three dimensional modelling have led to a common num-
ber of applications in most areas of science and engineering. Three dimensional
objects are now widely used in applications such as games, mechanical and archi-
tectural design, archaeology, as well as medical engineering among others. The
actual common integration associated with 3D models in different fields motivates
the need to be able to store, list, classify, and recover 3D objects automatically and

efficiently.

While computer-aided geometric design and computer-aided manufacturing
systems tend to be widely used for the design and development of physical objects
from digital models, the reverse problem, that of inferring a digital description
of an existing physical object, has received much less attention. In addition, in

several programs, it will be important to transfer 3D image types over the web



to share CAD/CAM models with e-commerce clients, to upgrade material with
regard to entertainment applications, or to support collaborative design, research,
and show of technological innovation as well as scientific data sets. Bandwidth
limitations and storage space restrict the transmission and use of 3D data over the

network.

Data compression techniques tend to be centred on representing the actual
geometry and connectivity of the vertices in the triangulated mesh. There has
been no systematic approach to the geometric parameterization associated with
arbitrary 3D objects aiming at efficient representation and compression. As a
result, a major concern of this research is to define the possibilities associated
with the compression of 3D data for fast transmission over the Internet, without

lack of precision and performance.

To achieve this, the thesis involves both theoretical and practical work. The
main theoretical work involves the development of mathematical methods for effi-
cient representation and parameterization of PDE-based models as well as geom-
etry optimisation methods for efficient fitting of PDE models to data and efficient
encoding of the residuals. This really is achieved by solving a second order, ellip-
tic PDE uses the method of lines to generate a surface from the solution to those
equations. Practical work involves the implementation of the methods within the
software; what is addressed here is 3D compression by a number of methods and
techniques, which is subject to experimentation regarding overall performance

and stability.

Within the GMPR Research Group we have developed methods for fast 3D
reconstruction using line projection [Robinson et al., 2004; Rodrigues et al., 2007,
2008, 2006]. The method is based on projecting a pattern of lines on the target
surface and processing the captured 2D image from a single shot into a point
cloud of vertices in 3D space. The reconstructed models are realistic and capture
the real Euclidean measurements of the object, and are useful for a large number
of applications including, among others, biometric facial recognition, industrial

inspection, reverse engineering and multimedia applications. A realistic scenario



which is explored in this study involves 3D facial biometric verification at airports.
The method is non-intrusive and aims at minimal disruption. It is based on our
past experience with 3D biometrics at Heathrow Airport (London, UK) in 2005. In
this scenario, an enrolment shot is taken and reconstructed in 3D at an automated
check-in desk, where a new database is created for each flight. At the gate before

boarding the plane another 3D shot is taken for verification.

The created databases are transmitted to the local Police who perform a search
against their records. If the Police find no information to warrant keeping the
data for longer, all data must be erased after a time lapse, normally within 24
hours. For international flights and where no mechanisms for sharing information
between Police Forces are available, the data can be transmitted to the destination
Police authorities before the flight actually arrives at the destination. A significant
constraint of this scenario is that 3D files are very large; a high definition 3D model
of a person’s face is around 20MB. For a flight with 400 passengers, this would
mean dispatching 8GB of data. If one considers the number of daily flights in a
medium sized airport, it can be concluded that this may be unworkable. It is clear
that methods to compress 3D data would be beneficial to the scenario considered
here but, more importantly, would represent an enabling technology for a large
number of other potential applications. For instance, the application of simple
texture mapping would lead to the creation of naturally-looking facial images, but
on the other hand, conceal the individuality of the subject in the 3D face geometry.
Apart from the aspects of privacy, confidentiality, and security concerns, the point
being made here is that without data compression it is impossible to make such
a scheme work. About 70 million passengers go through London Heathrow per
year, almost 200,000 per day. Each high density facial scan takes about 20MB
of disk space, so one would be contemplating about 4TB (terabytes) of data per
day and 1.4PB (petabytes) per year. To dispatch such a vast amount of data over
the network to the local police station and potentially to the origin and destination

police authorities is unworkable with current technologies.

Although some standards exist for 3D compression, such as Java 3D and

MPEG4, the compression rates are still low for general sharing of files over the



Internet. In general, there are three methods one can use to share 3D data. The
first method is based on image compression where each snapshot of a 3D scene
is compressed as a 2D image. The second method is based on hierarchical im-
provement of a 3D structure with regard to transmission, where a coarse mesh
is followed by increasing refinements until the original, full 3D model is recon-
structed in the other end. The third method is based on mesh compression where

algorithms traverse the mesh for a local compression of polygonal relationships.

The principle of compression proposed here is inspired by the GMPR scanning
method and its resulting mesh properties. The first step described in Chapter
4 is to cut an afbitrary triangulated mesh with a suitable number of horizontal
and vertical cutting planes and detect the intersection point of such planes on
the mesh. In order to code the mesh, the (x,y) coordinates are directly given by
the distances between the planes, so there is no need to code any (x,y) values
explicitly. Only the z-values are subject to compression schemes. The method is
not lossless and this research investigates compression techniques for the z-values
based on polynomial interpolation and also using PDEs for surface reconstruction.
Therefore, for a generic surface path the method involves cutting a number of
planes parallel to the Y-axis (or X-axis) of the 3D unconstrained point cloud;
then for each plane, finding the points in the structure intercepted by each plane
(within a threshold). In this way, an equivalent scan line structure as in the GMPR

scanning method is obtained.

This thesis investigates new methodologies on geometric coding of single-
value functions where the connectivity is explicitly derived from geometry. Meth-
ods for single-value functions are demonstrated in Chapter 5 where connectivity is
not coded at all. Once the geometry is coded, compressions over 99% are achieved
through the method of re-meshing the structure and representing the (x,y,z), in

parametric form using polynomial interpolation.

In Chapter 5 this thesis investigates the use of PDE mesh surfaces for com-
pression and reconstruction of large data files without loss of accuracy, extending
the work described in [Rodrigues et al. 2010].The parameterization of PDE-based



models are proposed in a way rather different from the previous work on polyno-
mial interpolation highlighted above. Here it is proposed to represent the geome-
try and connectivity of the mesh by means of solving an elliptic PDE. A perceived
advantage of the PDE-based approach is that it defines shapes by means of data
distributed around the shape boundaries and feature points only. This approach
contrasts with mesh models and spline surfaces, which often require hundreds of
control points in order to represent a realistic object. However, it is noted that to
date there has been no systematic approach to the geometric parameterization of

arbitrary 3D objects aiming at efficient representation and compression.

The main idea is to compress the geometry of each (sparse) cutting plane sep-
arately using either Fourier, Discrete Cosine or Discrete Wavelet transforms. And
then on the uncompressing stage, use each pair of such planes in turn as boundary
conditions for an elliptic PDE and iteratively solve the Laplace equation between
the boundaries by the method of lines. The connectivity of the mesh is directly de-
rived from solutions to the Laplace equations and the boundary planes. Therefore,
information on the number of vertices as well as a scale of the surface together
with the set of points lying in each cutting plane are integral components of the
PDE parameters. Cutting planes are used as boundary conditions and there is no

dependency on time.

The validation of the proposed method is a demanding task. In general, for
each 3D model is not known what is a structure and what is noise in the data.
While the PDE method can in theory model the original data set within a pre-
scribed error, it may not be possible to make a strong statement on the validity
of the method given the discrete nature of the 3D data, which is in itself an ap-
proximation of the real world. It is anticipated that the set of 3D data would be
defined parametrically. The thesis describes methods and compression algorithms
with experimental results and discusses the suitability of the techniques to a num-
ber of applications and general issues in 3D compression and reconstruction. In
particular, for each 3D data structure the same tests are performed using the fol-
lowing methods: Fourier, Discrete Cosine and Discrete Wavelet Transforms. The

comparative analysis of the techniques is presented by illustrating the Gaussian



approximation error distance of different methods.

1.3 Aims and Objectives

The aims of research are to demonstrate that PDE based modelling with geometry
re-meshing operations can effectively be used for 3D data compression of mesh
geometry and connectivity. The approach is different from current methods that
are based on coding, connectivity having geometry as a dependent property; the
proposed methods are based on geometry coding with connectivity derived from

geometry.

The objectives are identified as follows for arbitrary surface patches:

o To define a re-meshing method for efficient geometry coding through mesh

cutting planes in XY-directions.

e To define the possibilities associated with the compression of 3D data for
fast transmission over the Internet. Assuming that effective compression

can be achieved, would the proposed scheme yield satisfactory results?

e To collect statistics on the bit rate of such representation and compare with
existing polynomial as defined in [Rodrigues et al., 2010], and related work

in the literature.

¢ To investigate and define methods for PDE representation of plane intersec-

tions using Laplace and Fourier spaces and alternative representations.

o To define an optimal method for PDE representation from the results of the

investigation.

Given an arbitrary surface patch, the proposed method is based on determining the
mesh intersection of structured cutting planes in horizontal and vertical directions.
Each intersection point is a vertex defined on a regular xy-grid where the z-value

is the depth of each vertex. To compress and decompress 3D data, what is first



proposed is an interpolation of the z-values by high degree polynomials. Second,
a method is proposed for Fourier based data compression and PDE based data
uncompression. Finally, a comparative analysis of the PDE method is presented
via the DFT, DCT and DWT methods.

1.4 Contributions to Knowledge

This thesis presents a novel approach to accurate, efficient representation and
compression of 3D data compression centred on the parameterization of surface

patches. The major contributions made by this work are as follows:

o In the first approach using interpolation of polynomials of high degree from
30 to 80 degrees, the result shows a mesh reduction of over 99% compared
to the OBJ file format.

o A new approach was taken for 3D compression and reconstruction using the
method of lines to solve elliptic PDE, achieving a compression rate of over
98% compared to the OBJ file format. The methods are based on DFT to
reconstruct the original data from the vertices lying in each plane. Theoret-
ical results, in addition to numerical illustrations indicate the superiority of

this method, compared to the previous approaches used so far.

e The thesis provides a comparative analysis of DFT, DCT, and DWT in con-
nection with PDEs to recover the full vertex density of the original mesh.
Results indicate that both DCT and DWT are more robust than DFT for

compressing the data mesh.

1.5 Thesis Organisation

The thesis is organised as follows:



. Chapter 2 presents an overview of related work, with the history of the

numerical analysis using different methods of solving the PDEs.

. Chapter 3 introduces the basic concepts of Partial Differential Equations
and their solution. Direct methods and iterative methods are formulated,

and their feasibility is considered.

. Chapter 4 presents the data modelling and the pre-processing to be used
in all experiments in the thesis. This is the first step of the compression

method.

. Chapter 5 presents a polynomial interpolation method for efficient 3D data

compression through parameterization of free-form surface patches.

. Chapter 6 introduces Partial Differential Equations for 3D data compression
and reconstruction. The focus of this cFhapter is on data interpolation using

the Fourier Transform.

. Chapter 7 describes a comparative analysis of data compression via the
Fourier Transform, Discrete Cosine Transform, Discrete Wavelet Transform

and Partial Differential Equations.

. Finally, Chapter 8 discusses the conclusions of the study, and gives some

recommendations for possible future work.
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Chapter 2

The Related Work

2.1 Introduction

In this chapter, an overview is provided of research work with the relevant back-
ground related to the work presented in the thesis. It is beyond the scope of this
thesis to give a comprehensive overview of all related work. Thus, this chapter
will concentrate mainly on research closely related to the work presented later,
categorised in groups according to the method used. The first category is 3D rep-

resentation, the second is compression and the third is PDE-based approaches.

2.2 3D Representation

There have been many different schemes used to represent the shape of 3D objects,
and their associated properties. The particular improvement of the techniques used
to represent the 3D models started out of necessity in the computer aided the geo-
metric design community. Since then, many of the techniques have been adopted
and extended in the more general computer graphics field. The representation of
3D objects can be separated into two primary categories; surface modelling and
solid modelling. Thus, surface modelling deals with the problem of representing
2D surfaces embedded in the 3D space. These types of surfaces might or even
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may not define a volume degree. Solid modelling extends the actual techniques
of surface modelling to deal with the representation as well as manipulation of
volumes, totally surrounded by surfaces, say, for example a cube, buildings, and

the human body.

There are three well-known methods to represent a model:

1. Polygonal meshes: Points in 3D space, known as vertices, are connected
through a line segments to form the polygonal mesh. Most of 3D models
today are built as textured polygonal models, as they are flexible and com-
puters can render them so rapidly. Furthermore, polygons are planar and
can only estimate rounded surfaces that use many polygons [Foley, 1996;
King et al., 2000]. A triangular mesh is a mesh in which all the faces are
triangles. Any polygonal mesh can be transformed into a triangular mesh
by triangulating each polygonal face. Even though polygonal meshes can
precisely approximate any objects with planar surfaces, this approximation
can be made arbitrarily close to the curved surface being modelled by using

small enough polygons.

2. Curve modelling: Surfaces are defined as a curve blending control point.
Curve types include splines, non-uniform rational B-splines (NURBS), pat-
ches and geometric primitives. These types can be given either within the
implicit or parametric form. The implicit form makes it simple to deter-
mine if a point is actually on the surface, and if not, which side it is located.
However, the implicit form will not lend itself to computing the points on
the surface within a simple way, when sketching for instance and even less
to local modifications of the shape. Furthermore, it is very difficult to model
free-form objects using the implicit form [Akkouche and Galin, 2001; Bloo-
menthal, 1988; Witkin and Heckbert, 1994].

3. Subdivision surface: As an alternative to B-spline and NURBS, it starts
with a 2-manifold polygonal mesh and iteratively applies a refinement, or
subdivision, procedure [Chaikin, 1974; Cohen et al., 1980]. In geomet-

ric modelling subdivision, the processes were extended to general topology
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[Catmull and Clark, 1978]. The algorithms produce a surface, which is a
B-spline surface everywhere, except at a limited number of extraordinary
points [Doo and Sabin, 1978].

An algorithm with one refinement step and no corner cutting was proposed
in which the refinement step is used to isolate the irregularities of the mesh
[Loop, 1994]. In addition, a modified Butterfly subdivision scheme, which
is smooth on irregular meshes, is presented in [Zorin et al., 1996]. Subdivi-
sion schemes lend themselves to the representation of surfaces of arbitrary
topology in addition to surfaces represented by bivariate functions [Dyn and
Levin, 2002].

This dissertation is focused on polygonal meshes.

2.3 Compression

The compression schemes for geometric data models have recently been the sub-
ject of intensive research. Data compressions are crucial with regard to decreasing
space for storage or transfer over the network. There are two types associated with
compression, the first lossy data compression, which is not guaranteed to get the
same output bit for a bit for example, JPEG. Second is the lossless compression,
which is guaranteed to get the same output bit for a bit at decompression example
PNG, ZIP and TGZ.

Compression methods for 3D polygonal data are focused on representing the
connectivity of the vertices in the triangulated mesh. Examples include the Edge-
breaker algorithm [Szymczak et al., 2001] and [Szymczak et al., 2002]. Products
also exist in the market that claim 95% lossless file reduction such as from 3D
Compression Technologies Inc. [3DCT, 2010] for regular geometric shapes. In
addition, the generalisation of the Edgebreaker’s formula with regard to data com-
pression as well as decompression would be to divide every quad into triangles
based on the guideline that triangles made from every quad tend to be surrounded

within Edgebreaker’s traversal series (a triangle spanning tree). It leads to an en-
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coding of 30-80% which is smaller than an approach based on randomly splitting
quads into triangles [King et al., 2000; Rossignac, 2001],

Other techniques for triangulated models include the work of [Shikhare et al.,
2002] and vector quantization based methods [Qian et al., 1998] where rates of
over 98.75% have been achieved. However, a significant drawback to this tech-
nique in the use of vector quantization, which adds to computation and throws
valuable information away. A new compression algorithm that encodes the con-
nectivity of surface meshes directly into their polygonal representation, by im-
proving the triangulated mesh prior to data compression, is able to recover the
polygons by marking the edges along with 70% compression rate [Isenburg and
Snoeyink, 2000]. Some other local compression and decompression algorithms,
which are sufficiently fast for real time applications, accomplished compression
rates of more than 60% [Gumhold and StraB3er, 1998]. Regarding geometry en-
coding, recently reported data compression methods for the vertex coordinates
(geometry) have used vertex quantization, and geometric predictorsb, as well as
adjustable duration encodings associated with corrective vectors in order to shrink
the actual vertex coordinates [Deering, 1995; Kronrod and Gotsman, 2000; Li and
Kuo, 1998; Taubin and Rossignac, 1998; Touma and Gotsman, 1998].

The current state of the art in 3D compression is reasonably well developed
concerning connectivity representation, but it is in need of improvement concern-
ing geometric coding [Dodgson et al., 2006; Peng and Kuo, 2005]. The Java3D
API and MPEG-4 standards, address issues of compression. Because Java3D is
a collection of high-level constructs to create and manipulate graphics objects on
top of OpenGL or DirectX, it depends on how geometries are defined in under-
lying environments. Geometric compression in Java3D is possible using a binary
format based on the topological surgery algorithm [Taubin and Rossignac, 1998],
normally to one order of magnitude [Davidson and Hanson, 2004]. The MPEG-
4 multimedia standard also includes 3D mesh coding. MPEG-4 Part 20 contains
specifications for scene representation, manipulation and encoding in binary com-
pression format [Smolic et al., 2006] also based on the topological surgery algo-
rithm. While such initiatives provide a reference for research in 3D data com-
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pression, current compression rates are still too low for general sharing of 3D
geometry files over the internet. The GMPR research group has developed and
demonstrated original methods and algorithms for fast 3D scanning for a number
of applications with a particular focus on security [Brink et al., 2008; Robinson
et al., 2004; Rodrigues and Robinson, 2010, 2011; Rodrigues et al., 2008]. The
algorithms can perform 3D reconstruction in 40 milliseconds and recognition in
near real-time, but saving such 3D facial models has resulted in a severe bottle-
neck due to the size of the data files. All data used in this research have been

previously acquired using the GMPR scanner.

2.4 PDE-based Approaches

Recently, several approaches for solving PDE-based modelling have been de-
veloped. In particular, various methods were discussed in [Bloor and Wilson,
1997, 1989; Jain and Jain, 1978; Malcolm Bloor and Wilson, 1996; Mathews and
Fink, 1994]. However, surface modelling techniques tend to be fundamental for
many visual processing applications including interactive graphics, CAD/CAM,
animation, and digital environments. Frequently-used representation schemes for
free-form surface modelling such as spline-based approaches take advantage of
simple polynomial functions in collaboration with control points [Béhm et al.,
1984; de Boor, 2001; Farin, 1996; Forsey and Bartels, 1988; Piegl, 1991; Piegl
and Tiller, 1987; Ugail et al., 1999]. Nevertheless, an over-all way of establish-
ing distinction strategies in order to determine the numerically particular quasi-
linear PDE through Levenberg-Marquardt kind algorithms with regard to elliptic
as well as parabolic problems may be referred to [Wiegmann and Bube, 1998].
Consequently, the problem of regularisation of the Cauchy problem for Laplace’s

equation is considered to be close to the exact solution [Ang et al., 1998].

The design and data framework software for solving PDEs is reported in the
literature where sequences of finite-element problems could be constructed in the

self-adaptive or even quasi-interactive mode. The software includes linear, trian-
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gular, finite element areas, a posteriori error estimate, adaptivity of the mesh, con-
forming mesh-refinement algorithms for triangulations, along with a full multi-
grid method for resolving linear systems [Bartels et al., 2006; Grebennikov, 2005;
Rivara, 1984; Van Schijndel, 2003]. This research favours the method of lines
(MOL) which is a convenient method for the numerical integration of PDEs; for
example, the Korteweg-de Vries equations have been formulated to model shallow
water flow [Saucez et al., 1998; Schiesser, 1994] and are solved by the method of

lines.

Point datasets routinely generated via optical and photometric variety finders
are usually corrupted through the noise. In order to remove these kind of deficien-
cies from scanned stage, clouds, a large variety of denoising approaches based
on low-pass filtering are used [Linsen, 2001]. Typically, the moving least squares
(MLS) surface, used for modelling and also rendering with point clouds fitting
[Adamson and Alexa, 2003; Alexa et al., 2003; Amenta and Kil, 2004; Bremer
and Hart, 2005; Dey and Sun, 2005] and partial differential equations (PDEs)
[Lange and Polthier, 2005; Shu et al., 2003] has been proposed.

The Trefftz method along with the method of particular solutions provides an
attractive mesh-free alternative for solving non-linear Poisson equations in two
and three dimensions [Balakrishnan and Ramachandran, 1999]. Moreover, for
finding the approximate solution of a second order, non-linear PDE by transform-
ing the problem into an optimisation problem and considering it as a distributed
parameter control system [Gachpazan et al., 2000; Mai-Duy and Tran-Cong, 2001;
Sharan et al., 1997]. Furthermore, the new multi resolution scheme has been pro-
posed based on an image transform by a discretized elliptic partial differential
operator and use of a multi grid operator, leading to a pyramidal representation
[de Zeeuw, 2005]. '

Applying PDE-based methodology for image sequences, restoration and mo-
tion segmentation by a convergent stable algorithm and approximate a unique
solution of the initial minimisation is described in [Kornprobst et al., 1999]. The

actual factorisation associated with fourth order PDEs into a set of two nested or-
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der problems to generate free surfaces that fulfil artistic requirements that close
triangle mesh is described in [Golbabai and Javidi, 2007; Qian et al., 2006; Schnei-
der and Kobbelt, 2001; You et al., 2008]. Solving a fourth order PDEs with three
vector valued shape parameters to generate complex free form surfaces has been
described in [Zhang and You, 2002]. It has been shown that solving a fourth order
PDE with boundary conditions divided into a closed and non-closed form solu-
tions lead to a mixed PDE solution that can be applied to a number of surface
modelling types [Du and Qin, 2005; Duan et al., 2004; Zhang and You, 2004b].
On the other hand, second order PDEs can be improved by introducing fourth
order PDEs for one of the components leading to mixed order PDEs, which have
many more degrees of freedom, and hence are able to generate a family of surfaces
with sophisticated geometric features [Zhang and You, 2001].

An additional approach for optimisation is based on a PDE formulation en-
abling efficient shape definition and shape parameterization. It has been showed
how the choice of an elliptic PDE enables surfaces to be created that correspond
to complex shapes [Ugail, 2003; Ugail and Wilson, 2003]. In particular, an ac-
curate numerical solution of nonlinear PDEs can be obtained by using high order
approximation in space and time by solving the fourth order Runge-Kutta method
[Kassam and Trefethen, 2005]. The closed form solution associated with PDE
has often been either non-existent or not obtainable, depending on the boundary
conditions and the coefficients of the PDE; only a small proportion of them result
in a closed form solution [Zhang and You, 2004a], whereas solving the C? con-
tinuous surface blending by a sixth-order PDE satisfies the boundary conditions
and minimises the overall PDE errors [ You et al., 2004]. However, it is possible to
solve higher order PDEs and accommodate general boundary conditions in, say,
a sixth-order PDE solution. Evaluating higher order PDEs provides a very good
capability to make a broader selection of areas whilst sustaining the actual flexi-
bility from the PDE technique through concentrating on areas that are regular, to
ensure that topologically they’re just like a closed band [Kubiesa et al., 2004]. In
addition, solving PDEs with high order boundary continuity conditions produces

very fair and desirable solution surfaces [Xu et al., 2006].
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The actual formulation associated with 3D surface reconstruction utilizing
spectral active surfaces with edge fines could be put in place within spherical ge-
ometry. The spectral method uses the dual Fourier sequence being an orthogonal
base to resolve the series associated with elliptic PDEs within the unit sphere [Li
and Hero, 2004]. Discrete surface patches obtained by solving various geometric
PDEs to model geometric shapes can be used to choose suitable PDEs for each
problem shape [Qing, 2005]. Accurate modelling results are obtained by solv-
ing Laplace’s equation for anisotropic 3D magnetic resonance imaging (MRI). A
fast and accurate algorithm for generating the thickness map from the potential
function is shown to yield better results compared to other methods [Haidar et al.,
2005]. Mikhlin’s method for solving Laplace’s formula in increase linked exte-
rior websites with Dirichlet boundary data obtained highly accurate alternatives
in exterior domains [Helsing and Wadbro, 2005].

The reconstruction of the 3D geometry of human faces based on the use of
elliptic PDEs using a set of boundary conditions to generate surface patches from
the original scanned data is described in [Elyan and Ugail, 2007]. Therefore, the
fourth order PDE method is inherently capable of generating smooth facial anima-
tions with a complicated face design, by modifying only a relatively small number
of boundary curves. The solution of nine various PDEs along with twenty-eight
boundary curves was required to generate an entire face model. The continu-
ity within the model is actually assured through prescribing at least one typical
boundary condition for surrounding patches [Sheng et al., 2008; Ugail and Sourin,
2008].

In addition, a new technique for quantifying the uncertainty associated with
the solution of a PDE involving stochastic parameters is described in [Mathelin
and Gallivan, 2010]. The application of the PDE means of designing a paramet-
ric representation, and the parameterization and reconstruction of 3D face images
have been achieved in [Ahmat et al., 2011; Wang et al., 2012]; their studies show
that the simulation may be used to represent the powder compaction process and
predict the actual elasticity and plasticity associated with pharmaceutical materi-

als.
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Furthermore, a solution to PDE models in 3D provides an ideal platform on
which researchers from various fields can communicate with each other. With
regard to most cancers modelling, particularly, 3 as well as 4 dimensional visu-
alisation can be handy with regard to doctors in order to localise the actual be-
lieved tumour placement inside the site with regard to surgical treatment as well

as preparing the remedy. [Enderling et al., 2006].

2.5 Discussion

This Chapter has reviewed various popular schemes for the representation of a
complex shape. The most typical techniques tend to be polygonal works, paramet-
ric areas as well as subdivision methods, which appear to be better solutions for
free form surfaces. The other reviewed techniques Spline and B-spline (NURBS)
can only describe a limited set of shapes or are not adequate for modelling pur-
poses. While simple and flexible, polygonal meshes are not capable of accurately
representing smooth surfaces. The early compression methods were mainly fo-
cused on speeding up the transfer of model data from the CPU to the graphics
board, for rendering purposes, across a bus of limited bandwidth. Such methods
have to be of low complexity so as to be easily executed by the hardware on the

graphics board and therefore they only obtain modest compression ratios.

With regard to compression, most of the recent techniques for “lossless” pro-
gressive coding associated with carefully designed meshes use the independent
set concept to drive the mesh refinement operations to be organised into a set of
patches or along a chain of edges optimised for efficient rendering. Vertex posi-
tions are coded using various prediction schemes. Moreover, less work has been
done concerning geometry coding than for connectivity coding, since they are
lossy and it is difficult to analyse their performance. It is noted from the literature
review above that Laplace’s equation has not been used for surface reconstruction
in connection with PDEs as proposed in this research and demonstrated later on
in Chapters 5-7. In this research, each PDE patch is calculated independently
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using the boundaries defined by the cutting planes and given that the patches are
adjacent to one another, they use the same boundaries, so the issue of smoothing
between the boundaries will not occur. Laplace’s equation has been used in a
number of mesh post-processing methods, notably in hole filling, with similar re-
sults (that is, no smoothing issues between mesh boundary and inserted vertices)
[Rodrigues and Robinson, 2010].

The results presented thus far in the literature are quality deficient for the in-
tended application of 3D data compression, so alternative ways of defining and
solving PDEs over surface patches need to be investigated. In the next Chapter,
the numerical solution of PDE:s is presented and the background is provided on

the method that will be used later in this thesis.
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Chapter 3

Partial Differential Equations and

their Solutions

This chapter features some numerical concepts, that is to be needed during the
entire thesis. The partial differential equation (PDE) discretization methods con-

sidered here are the method of lines for solving Laplace’s equation.

Definition 3.0.1. Any equation involving an unknown function along with some
or all of its derivatives is called a differential equation (DE) [Hale and Lunel,
1993; Zill, 2012; Zwillinger, 1998].

Differential equations break down into two major kinds: ordinary differential

equations (ODEs) and partial differential equations (PDEs).

3.1 Introduction to Partial Differential Equations

Definition 3.1.1. Partial differential equations (PDEs) are equations containing
an unknown function of two or more variables and its partial derivatives with
respects to these variables [Evans, 2010; Hadamard, 2003; Jeffrey, 2003; Renardy
and Rogers, 2004].
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Partial differential equations (PDEs) provide a quantitative description for
many primary models in physical, biological, and the social sciences. Typically
the description is furnished in terms of unknown functions of two or more in-
dependent variables, and the relation between partial derivatives with respect to
those variables. A PDE is said to be nonlinear if the relations between the un-
known functions and their partial derivatives involved in the equation are nonlin-
ear. Regardless of the apparent simplicity of the fundamental differential relations,
nonlinear PDEs governs a vast array of complex phenomena of motion, response,
diffusion, equilibrium, conservation, and more. Because of their pivotal role in
technology and engineering, PDEs tends to be studied extensively by experts and
practitioners. Indeed, these studies have found their method into many entries
throughout scientific literature. They reflect a rich development of mathematical
theories and analytical techniques to solve PDEs and illuminate the phenomena
they govern. Nonetheless analytical theories provides simply a limited account
for the selection of complex phenomena governed by simply non-linear PDEs
[Babuska, 1995; Griffiths and Schiesser, 2010; Hamdi et al., 2007; Ritger and
Rose, 1968; Schiesser, 1991].

The general linear partial differential equations (PDEs) of order two in two
independent variables has, the form [Bhamra, 2010; Farlow, 2012; Pinsky, 2011;
Sapiro, 2006; Tréves, 1975]

A(x,y)Usx + B(x,y)Usy + C(x,9)Uyy + D(x,y)Ux + E (x,y)Uy + F (x,9)U = G(x,y)

3.1)
where A,B,C,D,E, F,G, may depend on x and y but not on U. Uy is the first partial
derivative of U with respect to x, 0U /dx, and U, is the first partial derivative of U
with respect to y, oU /dy, Uy, is the second partial derivative of U with respect to x,
02U /9x%, and Uy, is the second partial derivative of U with respect to y 92U /dy?,
and Uy, is the second partial derivative of U with respect to y then with respect to x,
02U /9dydx, and Uy, is the second partial derivative of U with respect to x then with
respect to y, 92U /0xdy. A second order equation with independent variables x and

y which does not have the form 3.1 is called nonlinear. A linear PDEs is called

22



homogeneous if G(x,y) = 0, while if G(x,y) # 0 it is called non-homogeneous.

Equation 3.1 is often classified as:

e if B2 — 4AC < 0 the equation is elliptic (Laplace’s equation)
e if B2 — 4AC > 0 the equation is hyperbolic (wave equation)

e if B2 — 4AC = 0 the equation is parabolic (heat or diffusion equation).

This thesis focuses on Laplace’s equation, which is a classical Elliptic PDE.
There are several ways to solve Laplace’s equation, in the experiments of this the-
sis the focus on two methods, first using a separation of variables which involves
the fast Fourier Transform, and second solved by the method of lines on a grid.
The method of lines is regarded to be a unique finite difference method, however,
is more effective with respect to accuracy as well as computational time than the
normal finite difference method. Furthermore, the method of lines is not just a sin-
gle, straightforward, clearly defined approach to PDE problems, but alternatively,
is a general concept that could need a specification of information for each new
PDE issue [Schiesser, 1994]. The technique associated with the method of lines

has got the subsequent qualities:

e Replace the spatial derivatives in the PDE with algebraic approximations.

e Needs approximately ten times less storage than conventional finite differ-

ence methods.

e Mathematical stability: by splitting the difference, it is easy to set up stabil-

ity and convergence for a variety of problems.
e Decreased programming effort: by a approximating system of ODEs.

e Decreased computational time: since only some discretisation lines are nec-

essary in the calculations, there is no need to fix a large system of equations.

Therefore, the method of lines is a technique where we discretised all the inde-

pendent variables except one. This leads to a large set of coupled ODEs, this
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system of ODEs are solved analytically. Any method can be used to discretised
the independent variables. This includes Fourier Transform or the finite differ-
ence method. The technique being used in this thesis was to replace all the partial
derivatives with the central finite difference approximation that gives a system of
ODEs. Although this formulation may differ from other approaches, it is clearly
advocated by [Liu et al., 2004; Lord et al., 2014; Trefethen, 2000] as an alternative
approach, as the fundamental principles are the same. The method of lines which
is used in the thesis involves solving the elliptic PDEs over a rectangular domain.
The domain is defined by mesh cutting planes yielding vertices on a regular grid
that define the top and bottom boundaries of the domain. All vertices on the top
boundary can be paired to their corresponding vertices on the opposite bottom
boundary. The left and right boundaries are defined by interpolating between the
first top and first bottom vertices and last top and last bottom vertices using the
finite difference method. The number of interpolated vertices is user defined. All
interior vertices to the rectangular domain are initialised to zero and are interpo-
lated by iteratively solving Laplace’s equation over the domain. Therefore, we
approximate Laplace’s equation at each grid point, and the resulting equations are
solved by iteration through implementing the Matlab function ‘gmprLaplace.m’.

Further description is given in Section 6.2.3.

3.2 Boundary Value Problem

Boundary conditions need to be carefully defined to create a design that performs
efficiently and is a good approximation of the phenomenon being modelled. There
are three significant kinds of boundary value problems that occur in most applica-

tions:

1. Dirichlet boundary condition: “The solution has some value at the endpoint
or along the boundary.” [Duffy, 2008]

2. Neumann boundary condition: “The derivative of the solution equals a par-

ticular value at the endpoint or in the normal direction along a boundary.”
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[Duffy, 2008]

3. Mixed boundary condition (Robin): “A mixture of the values of the func-
tion and its normal derivative is specified on the boundary of the bounded
domain.” [Duffy, 2008; Koch and Segev, 1998]

3.3 Classic Fourier Series

Fourier sine and cosine series are consistently known as half range series since
only half of a symmetrical period is applied in the integrals interpreting the coef-
ficients. To obtain these series one symbolizes that the function f is an even or
an odd function [Edwards, 1979; Grafakos, 2004; Tolstov, 2012; Walker, 1996;
Young, 2001].

One can observe that if f is even, then f(x)cos(nmx/L) are also even. The coef-
ficient a, has an even integrand on (—L,L). We write twice the integral over half

the interval and obtain

2 (L nTx
=7 /O fx)cos () dx (3.2)
Since f(x)sin(nmx/L) is odd and b, has an odd integrand over a symmetric inter-
val, we have
bp,=0
With f(x) even, to obtain
a d nwx
flx) ~ 3" + Y ancos (), (3.3)
n=1
where 5 L
nmx
an = Z/o f(x)cos (T) dx (3.4)

The interval in this case is (0, L), but the even periodic extension of f(x) presumes
a period of 2L. This series is known as the Fourier cosine series or the half range

Fourier cosine series.
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If f(x) is an odd function, then f(x)sin(nmx/L) is an even function. Just in

case such as this 5 L
. /nTx
ba=% /0 £(x)sin (—L—) dx (3.5)

The product f(x) cos(nmx/L) are odd, and

a, =0
As a result, we may write
by . ATX
flx) = —2—+ Za,,sm(—L—), (3.6)
n=1
where ) L
. nmnx
ba=7 /0 f(x)sin (—L—) dx (3.7)

Again the interval is (0,L) and a period of 2L is assumed when the odd periodic

extension of f(x) is considered. This is a Fourier sine series.

Definition 3.3.1. A Fourier series is an infinite series of the form

1 — .
o(x) = 540 +n§1 (a,, cos(%) + by, sm(?LEx-)). (3.8

Assuming the series converges, the function defined by the series is periodic on
the interval [—L,L} but it may not be continuous. The coefficients {an }n, {bn}n
are generally known as the Fourier coefficients of the function ¢ [Brown and
Churchill, 2012a; Edwards, 1979; Tolstov, 2012].

Joseph Fourier (1768-1830) applied this particular concept of writing a func-
tion as a sum of trigonometric functions within his research from the numerical

concept associated with heat conduction [Grattan-Guinness and Ravetz, 2003].

Definition 3.3.2. A function f(x) is said to be periodic with a period L if f(x+
L) = f(x) for all x in the domain of f [Brown and Churchill, 2012a; Harding,
1985].
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3.4 Dirichlet Boundary for Laplace’s Equation

In this section solutions to Laplace’s equation with Dirichlet boundary problems
are discussed. The first solution is through the method of separation of variables
which involves the fast Fourier Transform, and the second solution involves the

method of lines on a grid.

3.4.1 The solution by separation of variables

To solve the Dirichlet boundary value problem of Laplace’s equation in a rectan-
gular domain by separation of variables (see Figure 3.1) [Babuska, 1995; Gakhov,
1990; Haberman, 1983; Ritger and Rose, 1968; Wazwaz, 2002]:

U+ Uyy =0 (3.9)

where u(x,y) satisfies the homogeneous boundary conditions, and

u(0,y) = u(x,b) = u(x,0) =0 (3.10)
u(a,y) = f()

where u(x,y) satisfies the non-homogeneous boundary condition, and f is a given

function.

By using the technique of separation of variables (a solution can be expressed as
a product of unknown functions each of which depends only on one of the inde-
pendent variables), assume the solution to Laplace’s equation is separable form,
u(x,y) = X(x)Y (y). To compute the partial derivatives that we require within the

equation, we note that

uy(5,3) = g;mxmy» —X(@Y'(y) G.11)

w(53) = 2 (X)) =X (Y 0) a.12
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y A
u(x,b)=0
b (a.b)
u(0,y) =0 Uxx + Uyy =0 ula,y) = f(¥)
u(x,0)=0 @ X

Figure 3.1: Defining Laplace’s equation over a rectangular domain.

thus,
a2
mww=aﬂmnmm=xmww) (3.13)
2
el ) = 23 (XY () = XY ) (.14)

Then Laplace’s equation 3.9 can be written as:
X"XY@)+Xxr"(y)=0 (3.15)
That can be rearranged to form

X' __Y'0) _,
Xe) O Y0)

(3.16)

where A is a separation constant. The left hand side depends only on x, while the
right hand side depends only on y. Thus Eqs.3.16 is partitioned into two ODEs as

X"(x) = AX (), 3.17)

and
Y'(y) = =AY (y). (3.18)
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Let Y (y) satisfy the Dirichlet boundary condition
Y(0) =Y (b) =0. (3.19)

Egs. 3.17 and 3.18 are ODE and can be solved with basic techniques. There
are three different cases, depending on the sign of A, each will give four different
solutions to Laplace’s equation. Then, solving for Y in Eq. 3.18 with the boundary

condition in Eq.3.19, the nontrivial solution is
Y=csin(52)  win A=(TR (3.20)

where n = 1,2,.... For the A in Eq.3.20, it is found that the general solution to

Eq. 3.17 is
X (x) =Ae®* +Be B, (3.21)

or
X(x) = ¢ cosh [%(x—L)] + c; sinh [%(x——L)]. (3.22)

The shift in x by L is selected to satisfy the boundary condition at x = L. It is
assumed that X (L) = 0, which implies ¢; = 0. Thus

X(x) = csinh [%(x—L)]. (3.23)

Thus, it is found that the nontrivial product solutions to Laplace’s equation to-

gether with the homogeneous boundary conditions are constant multiples of
u(x,y) = czsinh | bn(x L)]sin(nmy/b). (3.24)

By the superposition principle theorem, we obtain

u(x,y) = Zc,,smh[ (x—L)] sin(nmy/b).. (3.25)

29



The coefficients ¢, are identified by the boundary condition

u(a,y) = Y casin(nma/b)sinh(nmy/b) = f(y). (3.26)
n=1
Therefore the quantities ¢, sinh(nma/b) must be the coefficients in the Fourier sine

series of period 2b for f and are given by

2 b . nmy
A"_B/o f(y)sdey. (3.27)

Thus, it can be written:
Ap
Cp =

= —s_inhT’-m—TLT (3.28)

Thus the solution to the partial differential Equation 3.9 satisfying the boundary
condition 3.10 as given by Eq 3.25 with the coefficients ¢, computed from Eq.
3.27. From Eqgs.3.25 and 3.27 it can be seen that the solution contains the factor
sinh(nmx/b)/ sinh(nma/b).

To estimate this quantity for large » one can use the approximation sinh& == ¢5/2,

and thereby obtain

sinh(nmx/b) , 3exp(nmx/b)
sinh(nma/b) — lexp(nma/b)

= exp[—nn(a—x)/b). (3.29)

Thus, this factor has the character of a negative exponential; consequently, the

series 3.25 converges quite rapidly unless a — x is very small.

3.4.2 The solution by the method of lines

In the previous section, the solution to Laplace’s equation by the method of sepa-
ration of variables was discussed. However, making use of this technique could be
formally complicated given it will involve the particular calculation of the Fourier
coefficients. Furthermore, this Fourier series may only converge gradually on the

boundary.
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Therefore, another alternative method is to solve Laplace’s equation on a grid by

the method oflines [Lord et al., 2014; Strang and Aarikka, 1986],

Uor + Uy = 0 (3.30)

In Figure 3.2 divided the interval into N and M sub-intervals with Ax= *1 )’

and Ay = such that (X7,yj) = (/Ax,j'Ay) where /= 0,1,...,N—1,and j =
0,1,....M —1
Yt
i

7 r i r

ir ir jr J

Ir 7i i b

Ax X
Ay
i=0 i=1 t=2 i=3 i—4

Figure 3.2: The value in green is given by the boundary condition, the only un-
knowns are Utj marked in red.

The domain has four boundaries;

U,0=g(Xi,0),  Uw-i=g{xi,b)  /=0,1,...,iV —1 (3.31)
Uoj = g{0,yj),  f/v-ij = 7—0,1,... M—1.

The boundary conditions are simplified along the boundary (green), and the inte-

rior points (red) are unknowns.

Finite difference approximations must now be used to replace £** and Upy in the
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Laplace’s equation. Focusing on an interior point (x;,y;), the simplest approxima-
tions to replace the second derivatives with it is a central finite difference approx-

imation as follow,

—~ U(xi—layj) - 2U(xhyj) + U(xi+17yj>

Usx (i, 5) = o) (3.32)

and

(xXi,¥j=1) = 2U (xi,y;) + U (%, j+1)

&P (3.33)

U
Uyy(xi,}’j) ~

Egs 3.32 and 3.33 tend to be just like individuals for that regular second deriva-
tives, d%u/dx* and d?u/dy?, only that in Eqs. 3.32 y is held constant (all terms in
Eqgs. 3.32 have the same j) and in Eqs. 3.33 x is held constant (all terms have the
same 7). Eqgs. 3.32 and 3.33 are equivalent to

~ U(X_Axay) - 2U(x7y) +U(x+Ax,y)

Uxx(x,y) ~ _ (Ax)z ) (334)
Ulr,y - Ay) —2U(x,y) + U(x,y+ A
Uy () ~ L2 =) (A(;c)zy)+ .y +4) (3.35)

Connecting Egs. 3.32 and 3.33 into the unique Laplace equation and by the used

of the method of lines approximation, to obtain a system of ODEs

Ui iUy i Ui i1 =2 :i4U ;
Uity = 20 Uity Dot = 20 FUHL _ o the grid point(i, j)-

(Ax)? (Ay)?
(3.36)
or
Ui-1,j+Uit1,j —4U;,j+ Ui j-1+ Ui j31 =0 (3.37)
Assuming that Ax = Ay, where U; ; = U (iAx, jAy). That gives
Uy = Ui-1,j+ Uit1,j + Uij-1 + Uijs1. (3.38)

4

Thus, U;; should be the average of its nearest neighbours. When the average

is higher than some numbers in the neighbouring, those neighbours below the
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average have the potential to reach higher values after some iterations. Therefore,
when U reaches a highest on a few internal levels, then a similar highest can also
be achieved by each neighbour within this level. We can continue iterating this
technique right up until we cover all the points in the rectangle, and we get the

vector U.

Un \

Uz

(]
Il

Ua |, (3.39)

Umn
Moreover, Eq. 3.38 is an approximation of Laplace’s equation, and it is an M X N

matrix that can be solved as Jacobi iteration

g+ _ Lrom

v [ )
hJ 4 7i-LJ

AU +ul U] (3.40)

i+1,j T Vijo1

where the superscript denote the iteration number and U; ; is the solution at the i, j
grid point,
lim U =y, ;. (3.41)

N—oo B/
Therefore, U; ; is an excellent approximation to the exact solution to Laplace’s

equation.

3.5 Signal Representation

Lately considerable effort has been dedicated to finding sparse representations
with regard to target signals aiming in enhancing processing speeds upon large-
scale data. Sparse representation indicates that a signal can be decomposed into a

direct linear combination of a few main signals. In this thesis, we are focusing on
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one-dimensional signals that can be represented by the following:

1. The Discrete Fourier Transform (DFT).
2. The Discrete Cosine Transform (DCT).
3. The Discrete Wavelet Transform (DWT).

4. The PDE-based Approach.

3.5.1 The Discrete Fourier Transform (DFT)

The discrete Fourier transform is a numerical approximation to the Fourier trans-
form, which is very useful in data compression, because a few coefficients of
the Fourier expansion may be sufficient for the reconstructed signal to be close
enough to the original function. It has already been found that the use of the FFT
techniques has considerably enhanced the strength of digital techniques for a very
wide range of problems such as spectral research, sign managing, graphic con-
trols, and also the solution of differential equations [Cooley et al., 1969; Hanna
and Rowland, 2008]. The fast Fourier transform is an efficient algorithm for com-
puting the discrete Fourier transform DFT and its inverse, which takes a regularly
spaced data value, then returns the value of the Fourier transform for a set of
values in frequency space. Moreover, the FFT algorithm can decrease the pro-
cessing time of a standard Discrete Fourier Transform from several minutes to a
few milliseconds, and it is global problem solving technique. The significance of
Fourier Transform comes from allowing the evaluation of particular relationships
in a problem domain from an entirely different viewpoint. Studying the behaviour
of a function and its Fourier Transform is often the key to efficient problem solv-
ing [Weinberger, 2012].

The Fourier Transform allows approaching PDE’s by modifying them into a sim-
pler differential equation. Once this is done, the facts about the transform must

then be used, in order to find its inverse. The continuous Fourier Transform is
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defined as

fv)=H{fO)]v) (3.42)
= / - f{t)e™ 2™ ds. (3.43)

If the integral exists for each value of the parameter f then Eqs 3.43 defines f(v),
the Fourier Transform of f(#).

Now consider the generalisation to the situation of a discrete function, f(r) —
f(t) by letting fy = f(#) , where ty = kA , with k =0,1,....N — 1. Writing this
out gives the Discrete Fourier Transform F;, = % [{ fk}sz_ol] (n) as

N-1
Fo=Y fre 2N, (3.44)
k=0

The inverse transform f; = 7, ! [{Fn}fz"o’] (k) is then

R
fi=v X Fae?™ N, (3.45)
n=0
Discrete Fourier Transforms are useful because they reveal periodicities in data
views as well as the relative importance of regularity elements. There are a few
details on the interpretation of Discrete Fourier Transforms, however. Typically,
the Fourier Transform of an actual series will be a series of an actual and complex
variant of the same duration. Particularly, if f; are real, then Fy_, and F, are
approximated by:
Fy—n = Fy, (3.46)

forn=0,1,...... ,N — 1, where Z signifies the actual complex conjugate. Exactly
what this particular means is that the factor Fy is always real for real details. Due
to the above, a frequency function will contain peaks within not one, but two
locations. This happens because the periods become separated into “positive” and

“negative” frequency complex components.
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3.5.2 The Discrete Cosine Transform (DCT)

The Discrete Cosine Transform (DCT) are important to numerous types of lossy
compression of audio and image, to solve PDE by spectral techniques where the
different version of the DCT matches to slightly different even/odd border circum-
stances at the two ends of the range. The use of cosine rather than sine features is
crucial in these applications: for compression, it can be seen that cosine functions

are much more effective.

In particular, the DCT is equivalent to a DFT, but with only real values: the DCT
is comparable to a DFT of approximately twice the length since the FFT of a real
and even function is real and even, where in some versions the output is shifted

by half a sample.

The most common DCT definition applied to 2D image compression is the fol-
lowing [Halpern et al., 2002]:

~1N-1 v+ ”
Clu,v) = o(u)ou(v) Zo Y fx) cos[ (2 ;1) ]cos [n(zé; D ] (3.47)
X= )’—

foru,v=0,1,2,...,N — 1. The inverse transform is defined as

—1N-1
f09) =Y T au)a(v)Clu,v)cos [n(b;;l)“] cos [“(22;1”] (3.48)
u=0 v=0

foru,v=0,1,2,...,N—1.

3.5.3 The Discrete Wavelet Transform (DWT)

The term ‘wavelet’ is used to describe a spatially localized function. ‘Localized’
means that the wavelet has compact support or it almost has compact support in
the sense that outside some interval the amplitude of the wavelet decays expo-
nentially [Jameson, 1993]. Just like the Fourier sequence, wavelets are statistical

features that are used to signify information or other features, by analysing the
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data according to scale. This function has developed mostly over the last 15 years
and has generated tremendous interest in many areas of research in mathematics,
physics, computer science, as well as architectural. However, most applications
of wavelets have focused on analysing data and using wavelets as a tool for data

compression.

Wavelet methods combine the advantages of both spectral (Fourier) and finite dif-
ference methods and allow both space and time dependent coefficients [Beylkin,
1993; Dahmen et al., 1999; Schneider and Vasilyev, 2009; Vasilyev and Kevlahan,
2005; Vasilyev et al., 1997; Xu and Shann, 1992]. Wavelets allow decomposition
of a signal or an image into its components with respect to a whole cascade of
levels. This decomposition is done by the fast wavelet transform (FWT) which
is of linear complexity as long as the wavelet is compactly supported [Meyer,
1990]. Decomposition and reconstruction allow a signal or an image to be trans-
formed from one representation to a different one; namely, from a single scale to
a multi-scale representation. However, successive application of these two opera-
tions, gives back the original signal or image as long as the corresponding filters
are chosen appropriately. The reason why wavelets are so successful in signal
and image processing lies in the fact that the multi-scale representation allows the

modification of the signal or image for different purposes.

Firstly, it has been found that reasonable signals or images have a sparse multi-
scale representation in the sense that many coefficients in this representation are
zero, or at least small. Consequently, it is possible to neglect these small coef-
ficients. This can be the key point of compression. However, just to compress
a signal or image is only half of the story. Certainly, one would like to change
the original information as little as possible when compressing the data. Since
wavelets (no matter whether they are orthogonal or bi-orthogonal) allow the esti-
mation of the error arising in terms of the neglected coefficients, it is quite easy
to control the error. The reason for this is that wavelet bases give rise to so-called
norm equivalences. Because of this norm of a function (for instance, a signal) is
equivalent to the norm of the wavelet coefficients. Finally, such an equivalence
not only holds for one single type of norm, but for a whole range [Urban, 2009].
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3.5.4 The PDE-based Approach

The PDE-based approach to global sensitivity analysis gives access to a profound
theory and broad methodology. Methods of lines are generally simple to imple-
ment due to the possibility of using standard ODE solvers. Concerning error
control, adaptive ODE solvers straightforwardly allow for temporal adaptivity.
However, spatially adaptable methods of lines commonly rely on a posteriori er-
ror estimates, that require a complete solution of the system, before the spatial
discretization can be adapted [see for instance [Adjerid et al., 1999]]. In that re-
spect, both methods offer a substantial advantage, since the temporal and spatial

discretization can be adjusted in each integration step.

The method of lines is a technique that transforms a PDE into a set of ODEs
with a single variable. The transformation is done by discretizing the PDE in
space, leaving a number of unknowns and their time derivatives. For the space
discretization, the techniques referred to previously may be used. For instance,
when the finite difference technique can be used, the area discretization results in
one unknown and its time derivative at each grid point in the domain, that is a
set of ODEs. One advantage of the method of lines is that advanced numerical
solution techniques can be found with regard to resolving common ODEs which
not necessarily nevertheless are available regarding PDEs. There are, for instance,
solvers with automatic step adjustment to find a solution with needed precision.
An additional benefit is actually which combined techniques containing both ODE
and PDE based models become much easier to solve since the space discretiza-
tion of the actual PDEs outcomes in ODEs that may be resolved with the already
existing ODEs.

Consequently, solve the PDEs by the method of lines [Hamdi et al., 2007; Schiesser,
19911, tend to be of broad interest in science and engineering. The General Ray
(Gr) method is applied for the solution of direct boundary value problems, and
uses explicit formulas with the fast inversion of the Radon transform. This leads
to fast algorithms realised in Matlab [Grebennikov, 2005]. The 2D case has been
attempted by works such as those of [Gali¢ et al., 2005; Mainberger and We-
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ickert, 2009; Peloquin, 2009; Stiirmer et al., 2008] with promising results in 2D
images that can be seen as single-value functions from pixel intensities. How-
ever, such methods have not attempted to encode arbitrary 3D geometries. Hence,
the method of lines (MOL) given in Section 3.4.2 will be implemented in Sec-
tion 6.2.3.

3.6 Interpolation and Compression

Definition 3.6.1. Interpolation is the term used for methods that construct new
data points from a discrete set of data points. Usually this means to construct a

continuous function from a discrete set of function values.

Approximation (a curve fitting in 1D) is similar to interpolation, but it does not
necessarily pass through all data points. The advantage of this particular technique
is that it frequently leads to a smoother reconstruction. The drawback is generally
a reduction in accuracy, image resolution or maybe precision. Moreover, with
interpolation a function is sought that allows to approximate f(x) such that func-
tional values between the original data set values may be determined. With the
curve fitting, one simply requires a function that is a good fit to the original data

points.

Definition 3.6.2. Compression is the process of encoding data by using as few
information-bearing units (usually bits) as possible, such that the inverse process,
called decoding, will return the original information [Pennebaker and Mitchell,
1993].

The new three dimensional object is a polygonal fine mesh consisting of various
entities such as vertices, edges, and faces that are associated to some numerical
quantity or attributes such as vertex locations, normal vectors, texture coordinates,
in addition to reflectance. Geometric data, specify vertex locations; connectivity
data, describe the relationship between vertices, and property data specify the

various other attributes that are normally attached to vertices. The real issue of
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compressing a 3D object is to deal with geometry and connectivity (since prop-
erties can be dealt with in the same way as geometry) and a number of methods

have been proposed since the early 1990s.

In general, there are three methods one can use to compress 3D data:

1. Image-based compression: where each snapshot of a 3D scene is com-
pressed as a 2D image. This is a palliative solution (for instance, flash
animation of the three dimensional picture) and the shortcomings are that

this is not fully interactive and not immersive.

2. Single-rate mesh compression: algorithms traverse the mesh searching for

areas susceptible to local compression of polygonal relationships.

3. Progressive mesh compression: hierarchical refinement of a 3D structure
for transmission, where a coarse mesh is increasingly refined with richer

details until a full 3D model is reconstructed at the receiving end.

In this study, the interest is compression methods 2 and 3, which are focused on
representing the vertex, geometry and connectivity information in the triangulated

mesh.

3.7 3D Geometry Formats

In spite rapid progress in mass-storage density, processor rates of speed, and dig-
ital interaction system performance, the demand for data storage space capac-
ity and “data-transmission” data transfer usage continues to outstrip the abilities
of available technologies. The recent growth of information intense multimedia
based web applications has not only increased the need for finding better ways to

represent data, but also made this central storage space and interaction technology.

Here only some preferred open standard formats are highlighted, such as COL-
LADA, OpenGL and OB]J for file interchange of uncompressed 3D data. COL-
LADA is an interchanging file format for 3D applications developed by the Khronos

40



Group [Arnaud and Parisi, 2007; Kessenich et al., 2004]. It uses an XML schema
designed to interchange digital assets across software applications. It can store
information like vertices, edges, faces, texture maps, and also physical properties
like weight, the centre of mass and others. The same COLLADA file can store
information about multiple models. To describe the model, it first defines all the
vertices in the form of an array of coordinates and then the normal direction for
each face. However, the problem of loading COLLADA files directly using We-
bGL (also defined by the Khronos Group, WebGL is usually an instance of the
canvas HTML class that provides a 3D design API implemented in a web browser
without the need for plug-ins) will be that programming rapidly will become ex-
tremely intricate, as the developer needs to adapt to the file format and to what
COLLADA supports. A simpler, more useful and faster the solution is to load
data that have been defined in JSON (JavaScript Object Notation) format. JSON
is really a textual content document that contains sets associated with ideals inside

a specific order.

OBJ (or .OBJ) is a geometry based information framework first developed by
Wavefront Technology for its Impressive Visualizer activity package [Kato and
Ohno, 2009]. The data structure has been implemented by other 3D design pro-
gram providers. In most aspects, it is a globally approved structure. The OBJ ba-
sic format is straightforward, containing geometry information only, namely the
(x,y,z) position of each vertex, the (u,v) texture coordinates of each vertex, and
a list of triangulated faces. The list of vertices is defined in a counter-clockwise

order negating the need for explicit declaration of face normals.[Min et al., 2003].

Furthermore, object data files can be interchanged with a variety of applications.
As an illustration, a 3D model can be defined in OBJ format by specifying the po-
sition of vertices in space. An example is shown below containing 8 vertices (lines
starting with v) and their faces (lines starting with f specifying which vertices are
connected which):

1 %Simple example for OBJ file

2 % Number of vertices=8

3 %Number of points=0

41



20

21

22

23

%Number of lines=0
%Number of faces=06
9%Number of materials=]
90 # Vertex list

v —0.5 -0.5 0.5

v —0.5 -0.5 -0.5

v —0.5 0.5 -0.5

v —0.5 0.5 0.5

v 0.5 -0.5 0.5

v 0.5 -0.5 -0.5

v 0.5 0.5 -05

v 0.5 0.5 0.5

Y# Point/Line/Face list use mtl Default

f4 3 2 1
f2 6 5 1
f3 7 6 2
f8 7 3 4
f5 8 4 1
f6 7 8 5
%End of file

Since this thesis uses the Matlab program for all experiments, all 3D data can be
saved in *.mat format. However, in order to ensure data interchange with other
applications and environments, it is proposed to save all original, uncompressed
data in .OBJ format. An OBJ exporter has been written and it is included in
the Appendix to this thesis that converts 3D data from the Matlab internal rep-
resentation of a list of vertices and a list of faces to OBJ format. The function
‘gmprWriteOBJ’ accepts four arguments: path, which is a string representing
the file name to be saved; points3D, which is an n-by-3 matrix representing a
list of vertices; faces, which is an m-by- 3 matrixes representing the list of tri-
angular faces in the 3D structure; and vertexcolour which is a p-by-3 matrix
representing the vertex colour. What it does is to save to the filename provided
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the list of vertices, faces, and so on as specified by Wavefront’s OBJ file format.
Please see the Matlab function on the page (170-171).

For compressed 3D data a special representation of the data is required and this is
provided in Chapters 5-7. The approach in this thesis is to define the file format
as an open standard, and save all data in plain ASCII. In this way, applications can
be written to both compressed and uncompressed data following the procedures

that will be described in subsequent chapters.

3.8 Discussion

This Chapter discussed elliptic PDEs, the boundary value problem and solutions
to boundary conditions. Moreover, the importance of the Fourier sine and co-
sine series has been emphasized. A note is made here that different and alter-
native notations will be used in subsequent chapters. The numerical solution of
elliptic PDEs can be presented as the Dirichlet boundary for Laplace’s equation.
Moreover, the Discrete Fourier Transforms, DCT and Wavelet methods are also
discussed in this chapter. The general approaches to the solution of a linear sys-
tem of equations are presented. It has been shown that the Dirichlet problem for
Laplace’s equation obtains the exact solution in a finite number of operations, but
is not suitable for very lérge sparse matrices, especially 3-dimensional problems.
Therefore, iterative methods will be considered in this research, in particular the
method of lines (MOL) as it is regarded as a special finite difference method,
but are more effective with regard to precision and computational time than the
regular finite difference technique. This essentially involves discretizing a given
differential equation in one or two dimensions while using the analytical solution
in the remaining direction.

The method of lines has got the value associated with both the finite difference
method and analytical process; it does not provide spurious modes, nor does it

have the problem of “relative convergence”. The 3D data file is also discussed

and the preferred file format for uncompressed data is OBJ and for compressed
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data is plain ASCII whose specific information on the 3D data parameters to be

saved will be described in subsequent chapters.
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Chapter 4

Data Modelling and Pre-Processing

4.1 Introduction

The representation of geometric entities, such as shapes and surfaces, has been
a central problem in 3D modelling. In practice, the majority of these entities
are represented by triangular meshes specifying both points and connectivity. The
digital representation of a real, physical object is described by point clouds, which
are sampled on or near the object’s surface. The 3D data used in this thesis are
acquired by the GMPR scanner, which is a multiple stripe, structured light scan-
ner. On the application of the methods proposed in this thesis it is important to
understand and analyse the intrinsic geometry of point clouds in 3D to determine

geometric quantities on shapes and surfaces.

The method proposed here was devised from previous research on fast 3D acqui-
sition using structured light methods [Rodrigues et al., 2010], [Rodrigues et al.,
2008], [Brink et al., 2008],[Robinson et al., 2004]. The actual 3D scanning method
is dependent on splitting the projection pattern into light planes. Every plane hits
the target object as a straight line and also the apparent bending of the light due
to the position of the digital camera in relation to the projection allows us to cal-
culate the depth associated with any point along the projected light plane. Taking

complete advantage of such properties, the proposed method is closer to polygo-
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nal mesh compression [Peng et al., 2005; Touma and Gotsman, 1998], but with
significant differences, as it does not depend on searching for local relationships

that are most susceptible to compression.

In this Chapter we develop new data representation techniques, allowing 3D point
cloud data to be defined as single valued functions which are then suitable for
compression. We start with a 3D model that is normally represented as a point
cloud or polygonal mesh that can be displayed as a smooth surface aided by sur-
face rendering algorithms. The source data model typically uses a connected mesh
of vertices with triangular faces. Our proposed technique involves a re-meshing
operation over the mesh through structured cutting planes, resulting in a new set
of structured vertices. This new set of vertices should not change the geometry of
the mesh, providing that the cutting planes are defined as a fine grid. In this way,
the sequence of points lying in each cutting plane can be described as points on a

curve, and can be parametrically described by a variety of techniques.

This Chapter is organized as follows: Section 4.2 Data representation, Section 4.3
describes the connectivity of the mesh, Section 4.4 the modelling, Section 4.5

presents the method and the data sampling. Finally, a discussion in Section 4.6.

4.2 Data Representation

Without loss of generality, surfaces are described by using certain special curves,
and representations for curves generalise to representations of surfaces. Further-
more, shape representation is based on the boundaries of three dimensional ob-
jects, which are generally shown as the boundaries (surfaces) of 3D objects. 3D
image surfaces can be represented mathematically in various types. The most
common types are implicit, explicit, and also parametric. The implicit forms are
usually identified with a system regarding algebraic equations, and parametric
forms are usually identified through rational polynomials, and they are known as

rational curves or surfaces.
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A surface can be represented in parametric form as;
x=x(u,v), }’:)’(H,V)a z=z(u,v), up Susup,vi<v=wv (41)

where the coordinates of a point (x,y,z) are expressed as a function of u and v
in a closed domain. The function is assumed to be continuous with a sufficient

number of continuous derivatives.

The implicit form of a point (x,y,z) satisfies an equation

f(x3,2)=0. 4.2)

However, the explicit form is a special case of the implicit equation. In fact, all
surfaces in the implicit form can be transformed into an explicit form but not vice
versa. For a successful geometric modelling in this thesis, both techniques (the

implicit and parametric forms) are used.

Each 3D model acquired by the GMPR scanner is reconstructed from equally
spaced light planes hitting the surface of the object as illustrated in Figure 4.1 left.
On the right, the reconstructed point cloud is visualised. Any point s = (x,y,z)
on the point cloud corresponds to a surface point illuminated by plane n. The
position of s is given by the scanning function S(u,v,n) = (x,y,z), where (u,v) is
the position of the point s’ in a plane, and » is the index number of the plane. The
index array is one-to-one mapping which takes all the points and labels them with
the index of the plane. Not all vertices defined over this grid contain valid data,
vertices with data are marked as valid otherwise invalid. In other words, every
index array element [c][r] which does not contain valid data will have a value of
NULL.

The structure of the data means that the connectivity of the vertices is a derived
property, and triangulation of the surface is thus a straightforward task without
the need for complex triangulation algorithms. The techniques are described in

the following sections.
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Figure 4.1: The GMPR scanner maps light planes hitting the target to surface
points (x,y,z).

4.3 Creating Scattered Interpolation Points

The coding process of polygonal meshes can usually be divided into two compo-
nents: connectivity and geometry. Connectivity coding works with the topology
ofthe mesh, or quite simply the adjacency relationships between the polygons. On
the other hand, geometry coding works with the position within place, or coordi-
nates, of each and every vertex along with optionally the standard, colourings or
other model properties. Generally speaking, geometry coding will probably take
advantage of the connection details to increase the data compression efficiency.
Compression methods are, thus, focused on representing the geometry and con-
nectivity of the vertices in the triangulated mesh. Geometrical approaches aim to
reduce the size of the mesh by simplifying its geometry and approaches include

geometry coding [Taubin et al., 1998].

A 3D source data model typically uses a connected mesh of vertices with triangu-
lar faces, which is the standard data type in many 3D computer generated models,

such as Wavefront OBJ, Java 3D, VRML and COLLADA formats [Ames et al.,
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1997; Amaud and Barnes, 2006; Chen and Chen, 2008]. In the GMPR 3D scan-
ning system [Brink et al., 2008; Robinson et al., 2004], the model is a constrained
version of this mesh, with rows and columns of vertices connected in a rectan-
gular pattern (see Figure 4.1), conforming to the stripes in the original-projected
pattern. The Figure clearly suggests that in mapping to 3D space one can sim-
ply save the 3-part vector for each vertex, without the need for a separate list of
faces and vertex connections, as required in the 3D file formats mentioned above.
This explicit arrangement of 3D points makes mesh triangulation a simpler and
more reliable process than with an arbitrarily connected mesh, gives a more com-
pact data representation, and allows smaller file sizes when compared with OBJ,
VRML and COLLADA formats. Some similarities to the use of triangle strips to
encode mesh connectivity can be found in the literature, and a distant resemblance

to the method developed by [Auerbach et al., 1997] is acknowledged.

The actual proposed data compression and decompression scheme relies on an
adaptive sparsification of the data by means of triangulation coding. In this cod-
ing, data are decomposed into a number of triangular regions such that within each

region, it can be recovered in sufficient quality by interpolation from the vertices.

Figure 4.2: The implicit triangulation method between two planes ki,&2-

Mesh triangulation is performed between each pair of cutting planes. The idea
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is that what is required is the sequence of vertices in each plane. Each vertex in
one sequence would be paired to their counterpart in the other sequence, within a
specified sequence of vertex indices.This is shown in Figure 4.2 for two sequential
planes k| and £2 where the neighbouring vertices have been assigned sequential
indices. Triangulation then proceeds as follows: using vertices labelled as 1,2,3,4
create the first triangle by connecting vertices 1-2-3 then create the second triangle
by connecting vertices 2-3-4 to close the first block. Then move one vertex to
the right on planes k| and £2 and relabel them as 1,2,3,4. The same sequence
is repeated by moving to the second block taking vertices 1-2-3 then 2-3-4,and
then repeat the triangulation process until reaching the end of planes k| and &A™
Furthermore, the same will be done in the second and third planes and so on until

the whole mesh is triangulated.

In this way, the triangulation (or connectivity of the mesh) is not coded at all,
as it can be a derived property of two adjacent planes. The Figure 4.3 shows a
number of cutting planes whose triangulation is obtained following the procedure

described above.

Figure 4.3: Connected path of triangulation mesh.

It is clear from the above discussion that what are subject to compression are the
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sequences of vertices in each cutting plane, as triangulation for 3D reconstruction
and visualisation becomes a straightforward task. To specify reasonable inter-
polation when interpolating between function values, a function is required that
smoothly connects function values. Natural options for differential operators are
thus smoothing operators. When used for compression there is also another very
important factor that needs consideration: performance. The discrete operator
must be as easily computable as possible, otherwise the technique will be very

impractical.

In certain applications, it is appropriate to be able to make both three- and four-
sided polygons, as most rendering hardware support only three- or four-sided
faces. If a renderer supports only three-sided faces, then polygons may be con-
structed out of triangular strips as illustrated in Figure 4.2. However, many render-
ers support quads along with larger sided polygons, or are able to turn polygons
into triangles on the fly. In any case, following the procedure of defining poly-
gons from the sequence of points in each plane as described above, causes it to
become unnecessary to store a new fine mesh in a triangulated form as a sequence

of vertices in the plane will suffice for correct triangulation.

4.4 Modelling

Whilst reconstruction specifications may force the decision associated with re-
gardless of whether the data compression plan will be lossy or even lossless, the
precise data compression plan utilized is determined by a variety of elements.
Probably the most important elements would be the characteristics of the data that
need to be compressed. Modelling is a process of setting up an environment to
allow the variables of interest to be observed or certain behaviour of a system to
be explored. It is a formalisation and extension to the description of a problem.

Rules and relationships are often set in mathematical formulae.

Modelling is to extract the information about any redundancy that exists in the
data and describe the redundancy in mathematical terms. Typically, the coding
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is a description of the model and a “description” showing how the data differ
from the model. Each tends to be encoded, usually utilizing a binary alphabet.
The variation involving the data and the model is often referred to as the resid-
ual. Modelling is a critical stage of algorithm design. The model can sometimes
define immediately the approaches of the algorithm [Pu, 2005]. In addition, the
modelling stage consists of identifying the very best rendering for just about any
type of the reconstructed model. Also, there are various ways associated with
modelling an object based on the input data, the rendering algorithm and the final

uses of the model.

At a high level of description, in this thesis, the proposed model representation

and compression techniques used are as follows.

e Source data. The source data model typically uses a connected mesh of

vertices with triangular faces.

e Sampling points. The method defines a large number of horizontal and
vertical mesh cutting planes and the intersection of all planes on the mesh
defines a set of sampling points. The sampling method by structured cutting
planes operating on the source data is described in Section 4.5. The con-
nectivity of the mesh is derived directly from the vertices in each cutting
plane. The explicit structure of the sampled vertices allows the definition of
the x and y coordinates on a regular grid while the z-values will be subject

to interpolation and compression by several methods.

e Sampling of data points are compressed using FFT, DCT and DWT, and
PDEs are used at the decompression stage to interpolate data between cut-
ting planes after the inverse transformations iFFT, iDCT and iDWT are ap-

plied.
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4.5 Method

4.5.1 Polygon Reduction by Explicit Structured Vertices

One of the many requirements with regard to geometric design systems is the
ability to parameterize the shape of objects. A simple tactic would be to create a
general description of an object or class of objects, in which the shape is managed
through the values involving a set of design variables or parameters. Moreover,
the function of a boundary representation is to describe an object in terms of its
boundary surfaces: vertices, edges and faces. In the simplest case, the faces are
restricted to planar polygons and the representation is thus a polygonal mesh.
The method presented in this Chapter applies to the manner in which re-sampling
converts a mesh model or a patch of the model into a regular grid of z- values. An
example of such data captured with the GMPR structured light scanning technique
[Robinson et al., 2004], is depicted in the Figure 4.4 below.

Figure 4.4: Example of a textured and shaded 3D model acquired by the GMPR
structured light technique.

The measured surface of the 3D image was represented as a point cloud or polyg-
onal mesh that displayed as a smooth picture aided by the surface rendering algo-
rithms. Figure 4.5 shows aregular grid for sampling data points at the intersection

of vertical and horizontal planes. It is important to stress that although the GMPR
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data have a structure defined by each light plane, the method regarding sampling
by cutting planes described here assumes an arbitrary mesh with an arbitrary poly-
gon structure. The purpose of the method is to guarantee that an arbitrary mesh
is given the desired structure for compression and reconstruction. In this way, a
simpler and the more reliable triangulation process is obtained than with an arbi-
trarily connected mesh that may require demanding triangulation algorithms such

as Delaunay [Weatherill and Hassan, 1994].
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Figure 4.5: Sampling points on a regular grid

In a surface patch, the height of a point is represented by its z-value and it can be

stated that the height of a function (x,y) is some function f(x,y).

P(u,v) = (w,v,/(W,v)) 4.3)

with normal vector n(w,v) = (—8f/8u, —8f/8v, 1). Both u and v are the de-
pendent variables for the function; w-contours lie in planes of constant x, and
v-contours lie in planes of constant y. Whenever such a patch is visualized within
three dimensional, utilizing quads, for instance, each single edge of the polygon

is a trace of the surface cut by a plane with x — k| and y —  for some values
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associated with k; and k3.

4.5.2 Data Sampling

Sampling will reduce the number of polygons in a mesh. Our method involves
polygon reduction through cutting planes defined on a regular grid, resulting in an
arrangement of explicit-structured vertices. The mesh to be sampled is a randomly
oriented surface patch described in relation to a global coordinate system. The
bounding box (or minimum bounding box) of the patch in 3D can be estimated by
geometric algorithms (see, for example, [Geng et al., 2013; Lahanas et al., 2000;
Lee et al., 2002; Quinn et al., 2007]). The patch must be rotated until its bounding

box edges are aligned with the x-, y-, and z-axes of the global coordinate system.
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