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I. Abstract

There is an increasing interest in evaluating the role of ultrasound in the identification 
and management of osteoporosis. We may measure the velocity of ultrasound through 
bone and the frequency-dependent attenuation, generally referred to as broadband 
ultrasound attenuation(BUA). The dependence of these parameters upon osteoporotic 
changes in density and architecture(total loss or thinning of trabeculae width) is still 
not well defined.

A physical model for cancellous bone was developed by introducing an array of 
cylindrical voids of defined diameter and configuration into polymethylmethacrylate 
(Perspex). Experimental studies on the cancellous bone model demonstrated that the 
relationship between BUA and porosity is approximately parabolic, with low BUA 
values obtained at both low (cortical bone) and high (bone marrow) porosities. This 
explains the discrepancies in the correlation between BUA and density for different 
bone structures reported in the literature. BUA was also found to be dependent on the 
number of pores and the pore distribution(structure). Velocity was found to be 
dependent on pore size only. BUA and velocity were also found to be temperature 
dependent. Permeability provides quantitative information related to structure, 
validated using the perspex model.

In vitro studies were carried out on bovine and human cancellous bone (calcaneus and 
vertebrae). The relationship between Young's modulus, strength and density followed 
the power law predicted by theoretical models. Measurements on bovine and vertebrae 
samples were carried out in three orthogonal directions. Young's modulus, strength, 
BUA, velocity and permeability were shown to be direction dependent and hence 
dependent upon structure. The relationship between BUA and density followed the 
parabolic trend observed in the physical model, with the human samples on the rising 
phase and the bovine on the falling phase of the parabola. BUA in the calcaneus was 
found to follow a power law relationship with density (BUA = p7'99). BUA was a good
predictor of strength in both the bovine (R^ = 74%) and calcaneus (R^ = 75%) 
samples. Velocity was a good predictor of both Young's modulus and strength when
applied to the bar wave equation (E  = V2p) with an R^ of 94% and 88% respectively 
for the calcaneus and 91% and 92% respectively for the bovine samples. For the
calcaneus samples an R^ of 83% and 80% for Young's modulus and strength were 
obtained when density in the bar wave equation was substituted by BUA. The cortical 
end plates have a significant offset effect on BUA in the calcaneus. Permeability was 
highly correlated to strength. BUA and velocity were shown to be good predictors of 
cancellous bone strength in vitro.

Future work should concentrate upon the investigation of controlled structural models 
of cancellous bone and also on the extrapolation of this study to the in vivo prediction 
of bone strength.



II. Aim of Project

Osteoporosis may be defined as a deficiency of the protein matrix of bone with loss of 

the hard calcium-rich mineral hydroxapatite, resulting in an increased risk of fracture 

from non-traumatic fall [National Osteoporosis Society, 1990]. It is now known that 

50% of all Caucasian women can expect an osteoporosis - related fracture at some 

time. 1 in 5 of hip fracture patients die and more than half become dependent on 

others [National Osteoporosis Society, 1990; Law et al., 1991]. Recent reports from a 

variety of international communities reveal that the prevalence of osteoporosis is 

increasing, along with an increasing incidence of vertebral fractures [Avioli, 1991].

Bone density measurement have been shown to be a predictor of fracture risk 

[Cummings et al., 1993], but density may not be the only determinant of bone strength. 

Other properties of bone such as fatigue damage, trabecular architecture, 

mineralization and elasticity may be important in determining fracture risk 

[Kleerekoper et al., 1993; Goldstein et al., 1993]. Current radiological techniques such 

as quantitative computed tomography, single or dual - photon absorptiometry and 

dual-energy x-ray absorptiometry provide only density measurement. These methods 

only measure the amount and distribution of minerals in bone [Tothill, 1989]. 

Therefore a technique which provides structure information in addition to density is 

required.

Since the pioneering work of Langton [Langton et al., 1984], a great incentive has 

developed into the possibility of using ultrasound in diagnosis of bone diseases, 

especially osteoporosis. The attractiveness of ultrasound in clinical application lies in 

its low radiation risk and its sensitivity to structural changes [Langton et al., 1990a]. 

Its low radiation risk has pushed forward the idea of using ultrasound as a screening 

tool for osteoporotic risk group women. The need for screening is vital because all 

prophylactic and therapeutic procedures in relation to osteoporosis are based on 

modifying either bone formation or resorption or both. A bone framework must exist. 

No extra bone can be created where bone trabeculae have been replaced by fat.



A few questions still haunt researchers in this field which include:

* What is ultrasound measuring ?: can empirical formulae be derived to

correlate the structural and density changes to velocity and BUA ?

* What is the role of ultrasound measurements of bone at the calcaneus in

osteoporosis management ?

* How does ultrasound at the calcaneus compare to other established

modalities such as DXA ?

The first question constitutes my research theme and therefore the objectives of the 

project are:

♦ Develop the understanding of ultrasound transmission through cancellous 

bone

♦ Determine the relationship between ultrasound, mechanical and structural 

properties of cancellous bone

♦ Identify the structural dependence of broadband ultrasound attenuation 

(BUA)

Before trying to answer the above questions, fundamental descriptions of the structure 

and functions of bone must be discussed. Thus, the first part of this thesis presents a 

clinical background and literature review and the second part presents the experimental 

investigation.
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CHAPTER 

1. THE STRUCTURE OF BONE AND 

OSTEOPOROSIS

1.1 Bone Structure

1.1.1 Introduction

Bone is a very highly specialised form of connective tissue. Its extreme hardness 

distinguishes it from other forms of connective tissue. It makes up the skeleton on 

which the human body is built, constituting about 18% of total adult body 

components. The adult human skeleton usually consist of 206 named bones . In 

addition to contributing to body shape and form, bones provide the body with some 

fundamental functions such as stability, locomotion, ion exchange, protection of 

various organ and storage of chemicals [Spencer and Mason, 1979].

Bone tissue can be considered to be a composite material consisting of a fibrous, 

organic matrix protein (collagen) which is permeated by large stores of inorganic salts. 

The organic components include the cells (osteoblast and osteoclast) and 

approximately one third of the matrix are proteoglycans, glycoprotein and collagen 

fibres, all of which are secreted by osteoblasts. Collagen fibres provide bone with great 

tensile strength, that is, its ability to resist stretch and twisting [Spencer and Mason, 

1979]

On the other hand, the inorganic salts of bone are principally calcium and phosphate. 

The precise nature of the mineral composition of bone, both its chemistry and 

morphology is still a matter of some dispute [Currey, 1984]. However there is
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agreement that some of the bone mineral is the version of calcium phosphate called 

hydroxyapatite whose unit cell contains Cai0(P O 4)6O H )2 . The presence of this mineral

salts is responsible for the most notable characteristic of bone - its exceptional 

hardness, which allows it to resist compression [Marieb, 1989]. The right combination 

of fibre (organic) and salts (inorganic) makes bone exceptionally strong without being 

brittle. Water accounts for about 20% of the wet weight of mature cortical bone, bone 

salts make up approximately 45% and organic substances account for the remaining 

35% [ Carter and Spengler, 1978].

Bones come in many shapes and sizes. So, at a macroscopic level bone can be 

classified according to shape. Four principal types can be identified namely ; long 

bones (e.g. humerus, femur, radius), short bones (wrist), flat bones (ribs) and irregular 

bones (vertebrae). The various shapes and sizes of bones have evolved through the 

process of natural selection. This implies that natural selection will favour structures 

which will enable the organism to execute its locomotory function with the greatest 

efficiency [Currey, 1984]. Bones of different shapes contain different proportions of 

the two basic types of osseous tissue; compact (cortical) and spongy (cancellous, 

trabeculae) bone.

1.1.2 The Structure of Cortical Bone

Cortical(compact) bone tissue forms the diaphyses of long bones and the thin shell of 

the bone ends. It appears dense to the unaided eyes, however, a microscope reveals 

that it is composed of many organised systems of interconnecting canals and 

passageways serving as conduits for nerves, blood vessels and lymphatic vessels. The 

structural unit of compact bone is called the osteon or haversian system [Spencer and 

Mason, 1979]. Each haversian system has a central haversian canal that is surrounded 

by a series of concentric layers (lamellae) of bony matrix. Located between adjacent 

lamellae are small cavities called lacunae, each of which contains one bone cell or 

osteocyte. The lacunae within each haversian system are interconnected by tiny canals 

called canaliculi (see Figure 1.1). Insterstitial lamellae fill in the spaces between the 

closely packed cylindrical systems. Nutrient supply and waste disposal from the
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osteocytes within the lacunae are accomplished by blood capillaries in the haversian 

canal. Haversian canals are interconnected by Volkmann's canals.

Figure 1-1: Typical Harversian System (Courtesy o f Spencer and Mason, 1979)

1.1.3 The Structure of Cancellous Bone

Unlike compact bone, cancellous (trabecular) bone exists as a 3-dimensional network 

of bony plates and columns filled with bone marrow and fat. The structural component 

is the trabeculae(struts) which is only a few cell layers thick and contain irregularly 

arranged lamellae and osteocytes interconnected by canaliculi. No osteons are present. 

Nutrients reach the osteocytes of cancellous bone by diffusion through from the 

marrow spaces between the bony spicules [Marieb, 1989]. Cancellous bone is found in 

many places and Currey [1984] distinguishes four major locations:

• At the end of long bones, under synovial joints

• Where it completely fills short bones
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• Where it acts as a filling in flattened bones

• Under protuberances to which tendons attach.

It is apparent from the above that, the location of cancellous bone are in places where 

stresses are applied over large areas. This indicates that cancellous bone plays an 

important role in the transmission and distribution of stresses in the human skeletal 

system. This occurs in places where the stresses if the bone were solid would be 

extremely low (and the weight of the bone correspondingly high); also, the 

morphology does not allow a mere thinning of the cortex of the bone, for this would 

produce a too fragile shell.

There has been extensive microscopic studies to reveal the network structure of 

cancellous bone or the arrangement of the struts (trabeculae) in space. These include 

the work of Whitehouse [Whitehouse et al., 1971, Whitehouse, 1975] and Singh 

[1978]. These work revealed various aspects of the structure. At low relative densities 

(real densityVapparent density2) the simplest kind of cancellous bone occurs, 

consisting of randomly oriented cylindrical struts(rods), about 0.05-0.14 mm in 

diameter, each extending for about 1 mm before making a connection with one or 

more struts [Singh, 1978]. As the relative density increases more material accumulates 

in the cell wall, the cylindrical struts are replaced by small plates (0.1-0.2 mm thick). 

The variation ranges from the just occasional plates among the struts to occasional 

struts among the plates. At the other extreme exists cancellous bone consisting wholly 

of plates forming long tubular cavities which interconnect by means of fenestae in the 

walls [Singh, 1978].

Bone re-models in response to the loads applied to it [Wolffs law]. The density of 

bone in a particular location depends on the magnitude of the applied loads. The work 

of Whitehouse and Dyson[1974] have supported this claim. The direction of the

^eal density = the ratio of bone tissue mass and volume occupied by the tissue.

2Apparent density = the ratio of bone tissue mass and bulk volume of the test specimen
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applied loads dictates the symmetry of the structure in cancellous bone. So, if the 

stress pattern in cancellous bone is complex, then the structure of the network of 

trabeculae is also complex and highly asymmetric. But in bones where the loading is 

largely uniaxial, such as the vertebrae, the trabeculae often develop a columnar 

structure with cylindrical symmetry [Gibson, 1985]. The observations of Whitehouse 

[1971] led Gibson [1985] to suggest four basic types of structure for cancellous bone:

♦ The asymmetric, open cell, rod like structure,

♦ The asymmetric, closed cell, plate like structure,

♦ The columnar, open cell, rod like structure,

♦ The columnar, closed cell, plate like structure.

6



Chapter 1

-jX 'v  W *  i 
-Mi W *

K W f c

Figure 1-2: Scanning Electron Micrograph Showing the Structure o f Cancellous 

Bone(Courtesy of Gibson and Ashby, 1988}

Evidently the different versions of cancellous bone are found in characteristically 

different places. Roughly, the type made of asymmetric, open cell rod like structure are
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found deep in bones, well away from any loaded surface, while the more oriented types 

made of many plates or completely of plates are found just underneath loaded surfaces, 

particularly where the pattern of stress is reasonably constant [Currey, 1984].

The structural characteristic of the trabeculae change according to their thickness. The 

thinner trabeculae (less than 100- 120pm thick) are completely devoid of vascular 

canals and consist of bony lamellae parallel to one another, while the thicker ones 

enclose secondary osteons- either extending throughout the trabeculae or limited to 

discrete segments of it. they consistently contain harversian systems when they are 

thicker than 450 pm. Most of the concentric lamellar systems found in the trabeculae 

of the calcaneus are secondary. [Lozupone, 1985].

1.1.4 Calcaneus

The calcaneus (os calcis) is the largest of the tarsal bones and forms the posterior leg 

of the subtalar stool. Thus it is one of the limbs of both the medial and lateral 

longitudinal arches. The calcaneus is mostly (>90%) cancellous with a thin cortical 

shell and multiple ligamentous and tendonous attachments. There are three articulating 

facets that form the subtalar joints; the posterior which is the largest, the middle and 

the anterior. The remaining joint with which the calcaneum articulates is the 

calcaneocuboid [Ross and Sowerby, 1985].

1.2 Osteoporosis:

1.2.1 Introduction

Osteoporosis is the world's most common bone disease (others bone diseases include 

osteomalacia, osteomyelitis, rickets, Paget's disease). It can be defined as a reduction in 

the amount of bone tissue per unit volume of bone or simply as a reduction with age 

[Stevenson and Whitehead, 1982]. Other schools of thought tend to restrict the 

definition to describe the fracture syndrome that results after bone mineral has been
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reduced to a level at which structural integrity of the skeleton is impaired. The general 

condition of low bone mineral density without fracture is then given the generic name 

osteopenia [Schapira and Schapira, 1992], this later definition is confusing and 

unhelpful because diagnosis then depends on one incident which results in fracture, 

while the precipitation events are ignored.

There are two common forms of osteoporosis - involutional and secondary. 

Involutional osteoporosis describes the progressive loss of bone mineral that occurs 

naturally with age. Secondary osteoporosis is due to predisposing medical condition 

such as rheumatoid arthritis and life style. Involutional could be further subdivided into 

Type I and Type II. Type I occurs in women in the 10 - 20 years after menopause, it is 

related to oestrogen deficiency and involves mainly trabecular bone. Type II 

osteoporosis or senile osteoporosis results in steady bone loss from the peak bone 

mass. It affects both females and males and involves trabecular and cortical bone [ 

Riggs and Melton, 1983, National Osteoporosis Society, 1990]. Type I osteoporosis is 

thought to be primarily responsible for wrist and vertebral crush fractures, while Type 

II for hip, humeral, pelvic and multiple asymptomatic vertebral wedge fractures seen in 

old age.

1.2.2 Pathogenesis of Osteoporosis

There are many causes of osteoporosis, the most common causes are old age, 

immobility and menopause, and the less common causes are complications of a 

predisposing medical condition (such as rheumatoid arthritis, chronic renal disease, 

endocrine disorder, malabsorption syndromes or drug therapy) and life style ( smoking, 

no physical exercise, diet and body habitus). Osteoporosis occurring from these less 

common causes is called secondary osteoporosis [ Stevenson and Whitehead, 1982; 

Ostlere and Gold, 1991].

Bone is involved in three fundamental activities namely: modelling, repair and 

remodelling. Modelling refers to the process by which the characteristic shape of the 

bone is achieved. Repair is the regenerative response to fracture. Remodelling is a
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continuous cycle of destruction (resorption) by the osteoclast cells and renewal (bone 

formation) by the osteoblast cells that is carried out by individual independent bone 

remodelling units [Marcus, 1991]. Osteoclasts increase in number and in activity in 

response to parathyroid hormone and 1, 25-dihydroxy vitamin D, and their number 

and activity is decreased by calcitonin. Bone renewal is most rapid in the young thus 

growth, reaching a peak bone mass in the mid thirties [Smith, 1987]. After that, in 

men there is a steady decline in bone mass of less than 1% per year. This steady loss 

occurs in women too, but is accelerated at menopause and for 10 - 15 years after that 

to between 3 and 5% each year [ Newton-John and Morgan, 1970]. Bone loss is more 

rapid in trabecular bone than in cortical. This is because trabecular surface area is 

greater and the turnover rate is eight times that of cortical bone. Hence fracture tend to 

occur at sites where there are relatively large amounts of trabecular bone.

Women

Danger
zone

120

60

40

20

20 30 40
Age (Y ears)

Period of 
rapid bone— 
loss in  
w om en after  
m enopause

50

Men

60 70 80

Figure 1-3: Total Skeletal Mass as a function o f Age (where %mPM represents male 

peak mass), courtesy o f the National Osteoporosis Society
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The age-related bone loss probably results from a combination of remodelling 

imbalance and an age-related increase in blood parathyroid hormone concentration 

[Eastel and Riggs, 1987]. Remodelling imbalance refers to an inequality between bone 

formation and bone resorption at the level of the bone remodelling unit [Parfit, 1984]. 

In men, bone loss appears to result from decreased bone formation and thus thinning of 

trabecular, whereas in women, bone loss appears to result from an increase in bone 

resorption and thus perforation of trabecular plate [ Aaron et al., 1987].

The cause of post-menopausal bone loss is still controversial. Recent studies have led 

to the belief that postmenopausal increase in bone resorption is not primarily 

attributable to an increase in bone-resorbing hormones. The current concept therefore 

of the pathogenesis of bone resorption is that loss of ovarian function accelerates the 

decline in the secretion of calcitonin (calcitonin is a hormone which acts directly on 

bone to reduce resorption, its secretion is increased by oestrogen) which occurs with 

age, and as a result the actions of the bone resorbing-hormones are unopposed 

[Stevenson and Whitehead, 1982].

Immobility in a younger person is source of low bone mass due to lack of applied 

mechanical forces. Bone mass is in part determined by genetic factors, mechanical 

forces and hormones then act on this genetic background to determine eventual bone 

mass. Some races and families have smaller, lighter and more fragile bones than others. 

For example Negroid have higher peak bone mass than Caucasians [Cohn et al., 1977] 

and men have higher peak bone mass than women. Epidemiologically,' the most 

important risk factors are age, gender and race. Other risk factors include a positive 

family history, premature menopause, inadequate calcium intake, petite frame, 

smoking, alcohol and sedentary life style [Ostlere and Gold, 1991],

1.2.3 Osteoporosis and Fracture

The most important consequence of bone loss is an increase of fractures which might 

occur either spontaneously or after minimal trauma when the bone mass has gone
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below the fracture threshold (Fig 1.4). The fracture threshold is defined as a bone mass 

level above which fracture does not usually occur without severe trauma.

The mortality, morbidity and financial significance of osteoporosis are reviewed by 

Avioli L V, [1991]. The classic sites for fractures in postmenopausal osteoporosis are 

distal forearm, the vertebral bodies and the neck of the femur (hip). These three 

fracture have a combined incidence of 35 - 40% in women age 65 and over 

[Stevenson and Whitehead, 1982]. Although vertebral fractures are extremely 

common, they are often asymptomatic and are not associated with high morbidity 

[Gershon-Cohen et al., 1953]. Fractures of the wrist are readily treatable in an 

outpatient setting and long term complications are rare. Hip fractures, on the other 

hand are associated with significant morbidity and mortality [Riggs and Melton, 1986]. 

In England in 1985, 37600 people aged 65 and over fractured a hip and nearly a 

quarter of all orthopaedic beds were committed to people over 65 with hip fracture 

[Law et al., 1991]. From this data and other there is a consensus that almost one 

woman in four living to the age of 90 in England can expect to have a hip fracture 

[Law et al., 1991]. Compared to age-matched controls, mortality in patients with hip 

fractures is 12% to 21% higher during the four to eight months following fracture. 

Only 25% - 50% of patients with hip fractures maintained their level of function when 

daily living activities and walking ability are considered. The financial cost is vast, in 

the UK approximately 500 million pounds each year. With an ever increasing elderly 

population, these cost are expected to at least double by the year 2000.

The incidence of femoral neck fracture in the United States appears to be increasing 

by about 40% per decade, with an increase in age-dependent incidence among the at 

risk population, from 1.8% per annum to 2.05% per annum between the years 1970 

and 1980 [Melton et al., 1987].
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1.2.4 Prevention, Treatment and Diagnosis of Osteoporosis

1.2.4.1 Prevention o f Osteoporosis

The primary aim in the prevention of osteoporosis will be to build or achieve a high 

bone peak mass. This is because all prophylactic and therapeutic procedures in relation 

to osteoporosis are based on modifying either bone formation or resorption or both. A 

bone framework must exist. No extra bone can be created where bone trabeculae have 

been replaced by fat. High peak bone mass can be achieved by regular physical 

exercises, adequate attention to dietary calcium and non-smoking [Law et al., 1991; 

Marcus, 1991]. For women at menopause, the timely administration of oestrogen is 

the most powerful intervention for preserving bone mass, but the benefit of general 

calcium supplementation is still debatable.

1.2.4.2 Treatment o f Osteoporosis

Having made the diagnosis of osteoporosis the course of treatment is dependent upon 

whether it is to provide symptomatic treatment or whether treatment is to prevent 

further loss of bone mass. Symptomatic treatment will concentrate on relieving pain 

and restoring and then maintaining mobility. No treatment available can restore bone 

mass to normal, but further bone loss could be prevented. Pharmacologic approaches 

to preventing further bone loss falls into two categories namely: agents that constrain 

the rate of bone loss (such as oestrogen, calcitonin, and bisphosphates) and bone 

forming agents such as fluoride [Marcus, 1991]. Oestrogen replacement at menopause 

has been shown to protect bone mass and provides significant protection against 

osteoporotic fractures [Stevenson and Whitehead, 1982]. Injectable calcitonin is not 

used in Britain mainly because of its side effects and expense [Stevenson and 

Whitehead, 1981] also calcitonin has not been shown to decrease the risk for 

osteoporotic fracture [Marcus, 1991].

1.2.4.3 Diagnosis o f osteoporosis

There is a relationship between bone density and skeletal strength [Weaver and 

Chalmers, 1966]. Population studies have shown that the incidence of vertebral and 

hip fractures is inversely related to bone mass. In most studies a decrease of 1 standard
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deviation in bone mass is associated with an increase of 50-100% in the incidence of 

fracture [Johnston Jr et al., 1991] . This is the reason why diagnosis of osteoporosis 

has concentrated on measurement of bone density. Several technique have been 

developed to measure bone mineral density (BMD). These methods indicate the 

potential for future fractures, as well as the seriousness of underlying bone loss in 

those who already have fractured. Also, changes over time are monitored either to 

assess the course of a disease or its therapy.

The various methods in current clinical application have been reviewed by P. 

Tothill[1989], Mazess [1990], Alhava [1991], Lang et al.[1991] and Ostlere and Gold 

[1991]. The methods include:- radiogrammetry, photodensitometry, single energy 

gamma photon absorptiometry (SPA), dual-energy gamma photon absorptiometry 

(DPA), single energy x-ray absorptiometry (SXA), dual-energy X-ray absorptiometry 

(DXA), quantitative computed tomography (QCT), peripheral quantitative computed 

tomography (PQCT), ultrasound, neutron activation analysis, compton and coherent 

scattering, magnetic resonance imaging and biochemical markers. The most common 

methods are discussed briefly below , with comparative performance described in 

Table 1.1.

♦ SPA:- The total BMC in the scan path is calculated from the difference in 

photon absorption between bone and soft tissue. The monoenergetic photon is

provided by sources such as 125 Iodine (1^1 , 28 keV) or 241 americium (241 Am, 60 

kev) which are linked to a scintillation detector. The use of a rectilinear scanner 

allows measurement of area several centimetres long on anatomically variable regions. 

SPA is frequently used for measuring the forearm (radius and ulna) and the calcaneus

♦ DPA:- This is a modification of SPA using a radioisotope that emits photons 

of two energy levels. In DPA measurements no condition is placed on the soft tissue 

thickness as opposed to SPA where a constant tissue thickness is required. In the DPA

technique, a high purity, high activity gadolinium (123g ^) source, which has photons 

of predominantly 44 and 100 keV, is used as the transmission source and the scans 

performed on a whole body rectilinear scanner. After measuring the absorption of the 

photons for each of the energies, simultaneous equations can be used to calculate the
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attenuation due to bone and to cancel out the effect of the soft tissue. The BMD is

expressed in gcm"2 an area-density rather than a volumetric density measurement. The 

principal advantages of DPA are low radiation dose, clinically sufficient accuracy and a 

large number of accessible measurement sites [Lang et al., 1991]. Short comings 

include long scanning time, gradual decay of the gadolinium source necessitating costly 

replacement every 18 months [Ostlere and Gold, 1991]

♦ DXA:-The gamma rays are replaced by high flux X-rays (50 - 1000 times 

greater than DPA). This offers several advantages over DPA including better spatial 

resolution, precision and much lower scanning time. However, errors related to source 

instability and beam hardening must be reduced. The necessary pairs of effective 

energies can be obtained either by K-edge filtering (e.g. Lunar) or by rapidly switching 

the generator potential (e.g. Hologic QDR).

♦ QCT In QCT either a contiguous transverse slices or a single slice are 

imaged. Under appropriate circumstances, the image can be quantified to obtain a 

distribution of attenuation coefficients and thus some measure of bone mineral density. 

The method offers the possibility of measuring trabecualar bone independently of 

surrounding cortical bone in practically any part of the skeleton [Alhava, 1991] . The 

major disadvantage of QCT is its relatively inferior accuracy mainly because of 

variations in the composition of the vertebral marrow. An attempt to solve this 

problem has been in the development of dual-energy QCT, which however, has less 

precision, higher patient dose, and longer scanning time. Hence dual-energy QCT is 

not widely available.

♦ Ultrasound:- Ultrasound is a non-invasive methods of osteoporosis diagnosis 

which does not involves ionising radiation. Ultrasonic velocity and attenuation 

through bone is related to both bone density and some other factors affecting bone 

fragility (See Chapter 3). Ultrasound equipment are cheaper and the scan fast, making 

ultrasound a very attractive tool for population screening.
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Table 1 .1 : Comparative Performance o f Common Physical Techniques fo r  the 

Assessment o f Osteoporosis

Technique Site Precision3

%

Accuracy4

%

Exam time 

min

Absorbed

dose(|uSv)

Cost

Dollars

SPA p and d radius 

Calcaneus

1-3 5 15 100-200 75

DPA spine, hip 

total body

2-4 4-10 20-40 50 1-150

DXA spine, hip, 

total body

0.5-2 3-5 3-7 10-30 75-150

QCT spine, hip, 

Peripheral bones

2-5 5-20 10-15 1000-

10000

100-

200

Although new technology has now provided the clinician with accurate and precise 

methods of measuring BMD, there is still no consensus on how these methods should 

be applied in clinical practice [Ostlere and Gold, 1991]. Measurements of BMD is not 

a useful screening test for future hip fractures or for most vertebral fractures because 

differences in bone density between people who subsequently have fracture and those 

who do not are to small to discriminate between them (The average difference between 

cases and control was 0.3 standard deviations in a survey by Law et al., [1991] ). 

However, there is a general agreement that densitometry is useful in monitoring the 

response to therapy of specific disorders of bone metabolism including osteoporosis

Precision is a measure of reproducibility, usually of multiple measurements over a short time 
period

4Accuracy is a measure of the ability of any technique to produce results that reflect the actual 
values
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and in confirming or disputing reontgenographically suspected osteoporosis [Ostlere 

and Gold, 1991].

Two fields o f  endeavours are involved in trying to answer the theme o f  this project. 

These are mechanical properties o f bone and ultrasound. The next two Chapters 

will attempt to pu t them in perspective.
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Chapter 

2. PHYSICAL AND MECHANICAL PROPERTIES 

OF CANCELLOUS BONE

2.1 Introduction

2.1.1 Basic Theory of Mechanical Measurements of Bone

In normal day to day activities, a complex pattern of forces are imposed on the skeletal 

system. Like any other material, when forces act on them they alter in size and shape. 

Solids unlike liquids completely recover to their original form if the deformation was 

not above a certain limit known as the elastic limit. Within the elastic range, the 

deformation is linearly proportional to the magnitude and direction of the applied 

force. This relationship is known as Hooke's law. The direction and magnitude of the 

deformations are dependent upon the direction and magnitude of the imposed loads, 

the geometry of the bone being loaded and the material properties of the bone tissues.

When a load is applied to a bar rod, the proportional changes in length Al/1 and width A 

b/b are called normal strains, denoted by £. A shearing deformation produces a shear 

strain. Shear strain is usually quantified as the change in angle undergone by two lines 

originally at right angles. The relationship between load applied to a structure and 

deformation in response to the load is called a load-deformation curve. On the other 

hand, stress is defined as force per unit area and may be classified as tensile, 

compressive or shear depending upon how the load is applied. The normal or tensile 

stress (a) is applied when equal and opposite forces act away from each other. 

Compressive stress can also be applied when the forces act toward each other. A 

shearing stress denoted by T is applied when equal and opposite forces have different 

lines of action which tend to alter the shape of the object without changing its
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volume. Stress is reported in units of Pascals (1 Pa = 1 Nm“2 ). The relationship 

between stress and strain can be represented on a stress-strain curve. The slope of the 

stress-strain curve within the elastic region is called the elastic modulus E (expressed in

Pascals (Nm“2 ), the reciprocal of which is known as compliance.

If the material has the same properties in all directions (perfectly isotropic), then there 

are only two moduli- Young's modulus for extension (generally the same value for 

compression) and the shear rigidity modulus G for the tangential forces [Blair, 1969]. 

Young's modulus is defined as the ratio of the axial stress to axial strain in simple 

elongation. Where simple elongation is the deformation produced in a long prismatic 

rod by forces acting parallel to its axis, the resultant force acting at the centroid of the 

cross section [Hall, 1968]. Young's modulus is the elastic modulus often referred to in 

the literature on mechanical properties of bone because of its straight forwardness in 

measurement. In cortical bone it has value in the range 4 - 2 5  GPa [Currey, 1984] , 

and a value in the range 1 -18 GPa for cancellous bone. The bulk modulus (K) is 

defined as the modulus of volume expansion, that is, the ratio of the isotropic stress to 

the relative change in volume. The isotropic stress simply implies that the specimen is 

being stressed equally in all three planes or Px = Py = Pz [B lair, 1969].

Balanced axial forces applied to a prismatic bar not only produce a linear strain but 

also give rise to a change in cross sectional area (lateral or transverse strain £j). It has 

been found experimentally that the ratio of lateral strain to the linear (axial) strain is a 

material constant. This ratio is known as the Poisson's ratio ( V ) of the material 

[Sprackling, 1985]. For an isotropic linear elastic material, the elastic constants can be 

represented as

E = 3 K (l-2 v )  (2.1)

£  = 2G(l + v) (2.2)

where E  = Young's modulus, G = shear modulus and K  is bulk modulus

Since E and K are both positive, Equation (2.1) indicates that the value v cannot be 

greater than 1/2 [Sprackling, 1985].
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The elastic theory works on the assumption of perfect elasticity. But for most materials 

such as polythene, perspex and bone, the elastic properties and strength are dependent 

upon both the rate and duration of application of the stress. This phenomenon is 

known as creep. Materials which exhibit creep are said to be visco-elastic. Mechanical 

testing has shown that bone, especially cortical bone, is a visco-elastic material 

[Schoenfeld et al., 1974; Carter and Spengler, 1978]. Using a Kelvin body the stress ( 

a ) in a viscoelastic material can be represented as:

o = Ee + ns (2.3)

Where E is the elastic modulus, £ is the strain and e is the strain rate.

This implies that the true modulus of elasticity is only obtained by letting £ —> 0. Thus, 

an infinitely low deformation rate ( quasi- static testing) is recommended for purely 

elastic property results [Linde and Hvid, 1987]. But, the human strain range is 0 - 0.12

with strain rates of 0.001- 0.03s" 1. Carter and Hayes [1976] suggested that the 

longitudinal strength and stiffness of mineralised bone tissue are approximately 

proportional to the strain rate raised to the 0.06 power. The viscoelastic property of 

bone necessitates the report of the strain rate used during testing in all mechanical 

property investigations.

Bone like wood and other biological structures is heterogeneous (elastic properties 

vary from point to point) and anisotropic (elastic properties and strength are dependent 

upon the orientation of the bone microstructure with respect to the direction of 

loading) [Currey, 1984]. For cancellous bone it is dependent on the orientation of the 

struts. This anisotropy was demonstrated by the work of Brown and Ferguson [1980]. 

They obtained detailed quantitative information about the spatial and directional 

variations of the material properties of the cancellous bone (proximal femur).

The stress-strain curve (Figure 2.2) is typically divided into two regimes: elastic and 

plastic region, which are divided by the yield point. In the first region, behaviour is 

linear elastic (that is, it obeys Hooke's law) as the cell walls bend or compress axially. 

The next phase is known as the plastic region (cellular collapse phase) whereas an 

increase in strain results in little or no stress. This so called plastic behaviour can be
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caused by a great variety of phenomena at the microscopic level, including collapse of 

the cells by elastic buckling, plastic yielding, crack growth or brittle fracture of the cell 

walls [Gibson, 1985]. The point/region where the deformation changes from being 

elastic to at least partially plastic is the yield poin t. Although a bone reaching this point 

still has far to go before it breaks, it is permanently damaged to some extent once it 

enters the plastic region. [Currey, 1984]. The amount of post yield strain that occurs in 

a material before fracture is a measure of the ductility of the material, the opposite of 

which is brittleness.

The yield strength is the stress at the yield point. The yield point is difficult to define 

when testing bone samples. Researchers such as Hvid and Jensen [1984] defines it as 

the point where the stress-strain curve begins to become non-linear. The maximum 

stress the bone can sustain is called the ultimate strength, and the breaking strength is 

the stress at which the bone actually breaks. The strength of a specimen as used in the 

literature refers to the maximum stress achieved before progressive trabecular tearing 

(in the case of tension) or collapse (in the case of compression).

The area under the stress-strain curve is a measure of the amount of energy needed to 

cause a fracture. This property is called energy absorption or toughness of bone and is 

an important property from a biomechanics point of view. A low toughness makes the 

bone more liable to fracture, and it is widely thought that bone toughness decreases 

substantially with age [Burstein et al. 1976]. On the other hand, measuring fracture 

toughness is not easy because samples with dimensions which meet the requirements of 

valid test can be cut only from large bones [Gibson and Ashby, 1988].

The basic mechanical properties terminology has been established. It will now be 

related to bone. Bone will henceforth in this text be referring to cancellous bone, 

except otherwise stated. Before describing the various methods o f measuring the 

mechanical properties a resume o f the importance o f these properties is given in the 

following section.
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There are many reasons why the study of the mechanical properties of bone is

important, apparent from the wide ranged of fields interested in these properties.

These include orthopaedic surgeons, trauma surgeons, orthodontists, prothodontist,

radiologist, practitioners of general medicine and scientists.

♦  A good knowledge of these properties can help predict how bones can be expected 

to behave in the body. For example, the loads they can and cannot bear or the 

amount of energy they will absorb before fracturing [Currey, 1970]. This 

knowledge can also be used as a predictor of the effects of ageing, and disease on 

the bone behaviour.

♦  Knowledge of the material properties of cancellous bone has a twofold implication 

for bone implantation. Firstly, if other materials are to be substituted for bone, their 

mechanical properties must be compatible with those of bone to ensure a viable 

system. Secondly, the whole process of fracture fixation- implant design and 

implant insertion will all depend upon the internal distribution of the material 

properties [Brown and Ferguson, 1980]. This is more so, when the prosthesis are 

predominantly surrounded by cancellous bone and accordingly rely on cancellous 

bone for fixation. An example is the total hip-joint replacement, in which one part 

of the artificial joint occupies the medullary canal of the femur and the other part 

occupies the acetabular region of the pelvis [Chamley, 1970],

♦  Data on the strength characteristics and other mechanical properties of bone might 
also be useful in the selection of sites for obtaining bone grafts.

♦  The ability of the human body to withstand acceleration and deceleration forces of 

various magnitude without severe trauma is of major importance to the safety 

engineer who must design the automobile, airplane cockpit or space vehicle to 

protect the occupant as much as possible from the effect of these forces.

♦  Some knowledge of these limits of tolerance is likewise of practical significance to 

the designers and manufacturers of protective clothing and equipment used in 

sports such as football, skiing and motor vehicle racing. Other researchers like
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anatomists, zoologists, physiologists, anthropologists, physicists, crystallographers 

and bio-engineers are also interested in the mechanical properties of bone.

The importance o f the mechanical properties has been discussed. The next section 

will review the various test methods used in measuring the mechanical properties o f  

cancellous bone, the values obtained, and the problems associated with the various 

measuring modalities. A distinction is made between the methods which are aimed at 

measuring the structural properties o f cancellous bone and those measuring the 

material( trabeculae) properties.

2.2 Methods and Problems of Measuring Mechanical 
Properties of Cancellous Bone.

The porous nature of cancellous bone, with 3-dimensional arrangement of trabecular 

struts and marrow-filled cavities, lends itself to a mechanical description by both 

material and structural properties. This implies that the method of measurement of 

cancellous bone will depend on whether it is the structure or the material that is being 

measured. The subsequent paragraphs will attempt to address the methods and 

problems associated with the different types of measurement starting with structure 

related measurement.

2.2.1 Uniaxial Compression Tests

Test specimens are machined from the region of interest. A load is then applied by 

squeezing the specimen between two flat platens (see Figure 2.1 ). The validity of the 

test depends critically on the two ends of the tests samples being plane and parallel to 

each other. If the faces are not parallel, a misalignment may occur with the loading 

platens resulting in a non uniform distribution of the stress, causing an underestimation 

of both Young's modulus and strength. Porous compression platens are used in cases 

where the specimen were tested with marrow in situ. The specimen are not usually 

given shoulders. As the Poisson ratio effect tries to make them expand radially 

outwards, frictional forces arise at the specimen - platen interface and add to the stress
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distribution pattern within the specimen. A long specimen with shoulders would help to 

decrease this effect. Some of the compression testing are carried out while confining 

the specimen in rigid cylindrical cavities [Carter and Hayes, 1976].

Applied Load

£Laten

.Specimen

Platen

Load Cell

Figure 2-1: Uniaxial Compression Test

The stress - strain curve obtained from mechanical compression testing reveals three 

distinct regimes of behaviour (see Figure 2.2); linear elastic, plastic region and fracture 

region. The second phase of collapse progresses at roughly constant load until the cell 

walls meet and touch. Once this happens the resistance to load increases , giving rise to 

a final increasing steep portion of the stress- strain curve. This is usually called the 

densification phase.

24



Chapter 2

Maximum Stress

Vi
Vi<uU Yield Stress

Fracture
Region

Plastic Region
Linear
Elastic
Region

Strain

Figure 2-2: Compressive Stress-Strain Curve 

2.2.2 Uniaxial Tensile Tests:

Tensile testing can be one of the most accurate methods for measuring bone 

properties, but bone specimens must be relatively large and carefully machined. Test 

pieces are machined from the region of interest. A tensile force is applied over a 

cross sectional area, generating both normal and shearing stresses. It is assumed that 

the applied force F is distributed uniformly over the cross sectional area. In order to 

ensure this uniformity of the load, tensile test pieces are made with shoulders and 

usually of circular cross section (see Figure 2.3 ) [Gilan 1969 ]. Ashman et al. [1984] 

used parallelipped tensile test specimens of 5mm*5mm*20mm. To strengthen the 

specimen ends and better distribute tensile loads, the ends of the bone specimens were 

potted in perspex).
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Tensile Force

7 mm15 mm

Figure 2-3: Example o f Tensile Test Configuration

The stress-strain curve recorded for tensile testing has a slight variation from 

compression. There is the initial linear region followed by a region which is non linear 

until a maximum stress is achieved. Beyond this point progressive trabecular fracture 

occurred, resulting in a gradual loss of stress with increasing strain until total 

separation of the fracture surfaces is observed (Figure 2.4) [Carter et al., 1980]. The 

gradual decrease in stress after the maximum is accompanied by a tearing phenomenon 

wherein the trabeculae of the cancellous bone progressively tear free from adjacent 

bone.
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Vi
VIa>t-

Plastic
Region

Linear E las tic 
Region

Strain

Figure 2-4: The Stress-Strain curve fo r  tensile loading

Studies of the mechanical properties of cancellous bone have emphasised the 

utilisation of compressive properties, both for reasons of experimental expediency and 

because compressive failure of trabecular bone is a common problem clinically. 

Difficulties in tensile measurement have arisen due to the porous nature of cancellous 

bone. This makes it difficult to grip the sample in tension measurement without 

crushing it [Carter et al., 1980].

The tensile behaviour of most porous materials differs significantly from the 

compressive behaviour. The modes of failure in the two types of loading could account 

for some of the differences. The struts in porous materials do not buckle under tensile 

loading, whereas some buckling may occur in compressive loading. In addition, since 

tensile fracture is associated with distraction of two fracture surfaces, no further 

energy is absorbed with continued loading after fracture, consequently, porous 

materials absorb much less energy in tension than in compression. The above 

arguments support the finding of Stone et al.[1983] and Kaplan et al. [1985], that the 

compressive strength of cancellous bone is greater than the tensile strength. The 

average ultimate strength recorded by Kaplan et al. [1985] was 7.6 ±2.2 MPa in 

tension and 12.4 ± 3 . 2  MPa in compression for bovine trabecular bone from the 

proximal humerus. These results are contrary to those of other researchers (see Table 

2.1). Carter et al. [1980] found no significant difference between tensile and
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compressive strength for human trabecular bone (femora), although, they noted that 

the energy absorption capacity was significantly lower in tension. Neil et al. [1983] and 

Bensusan et al. [1983] using human vertebral specimen and bovine trabecular bone 

respectively, supported Carter et al. [1980] findings. The source of specimen (human 

or bovine) and method of measurement may explain some of the discrepancies in the 

two schools of reasoning.

Table 2-1: Examples o f tensile and compressive strength o f cancellous bone

Author Specimen Tensile

Strength (MPa)

Compressive

(MPa)

Evans(1973) 

Carter et al.(1980) 

Stone et al.(1983) 

Neil et al.(1983) 

Kaplan et 

al.(1985),

Human vertebrae 

Human femora 

Bovine humerus 

Human vertebral 

Bovine humerus

1.18

No statistical 

2.63

No statistical 

7.6± 2.2

6.27-8.62

difference

8.29

difference 

12.4 ±3.2

2.2.3 Bending

An in situ bone in the living body is subjected to a variety of force systems- 

gravitational, muscular activity, static and dynamic support and impact, which tend to 

bend and twist the bone. Logic will dictate that the strength and other mechanical 

properties of bone be determined from bending and torsion tests. However, when a 

specimen of any material is tested in bending, its cross sectional area is subjected to a 

combination of tensile, compressive and shearing force. None of these forces is 

uniformly distributed over the cross- sectional area. Consequently, in bending, it is 

difficult to determine the numerical value for the various kinds of stress and the relative 

importance of each in the failure mechanism. This lends itself to the assumption for 

example, that E is the same in tension as in compression. It also assumes that the 

material is homogeneous and isotropic. For the above reasons, Evans [1973] supposed 

bending to be a rather unsatisfactory test for determining the mechanical properties of
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a material. Burstein and Frankel [1971] were also not satisfied with bending mode of 

testing.

On the other hand, Currey [1970], Simkin and Robin [1973] were in favour of the 

method. Their argument being that clamping or supporting the cortical bone is simpler 

when this method is used than with tension or compression tests. They also pointed 

out that the deflections are larger and the method is relatively insensitive to 

inaccuracies in the centricity of the load. Bending tests also allow testing to be done on 

samples which are slightly curved, without altering the value of E. Also, drying which 

may happen during the test, will not greatly alter the value of E obtained, whereas in 

the compression tests, the shrinkage is of the same order of magnitude as the strain. 

There is little data in the literature for bending measurements on cancellous bone. The 

structural nature of cancellous bone which makes test specimen difficult to machine 

may be the major reason.

2.2.4 Fatigue Test

Fatigue is a well known phenomenon occurring in engineering structures, most of 

which are subjected to time dependent variation in the applied loads. Such variation 

cause fluctuations in the stresses of different parts of a structure. If theses fluctuating 

stresses are sufficiently large, failure of a structure may occur, provided the stress is 

repeated often enough [Evans, 1973]. A failure produced by repetitive loading of a 

material or a structure is called a fatigue failure.

During the daily activities of life, the bones of the skeleton are repeatedly subjected to 

stress by gravity and muscle action. The response of the bones to this repetitive loading 

is important in understanding the nature of the so- called " fatigue", "stress", or " 

march" fracture. This type of fracture are commonly encountered in the metatarsal. 

Fatigue properties can be measured using either tensile, compressive, bending or 

torsional loading. Fatigue testing requires a test machine capable of applying cyclic 

loading. Fatigue tests are considerable more time consuming than the other discussed 

methods.
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2.2.5 Osteopenetrometer

This method is based on the principle of recording the force necessary to advance a 

needle into the bone and also the depth of penetration [Hvid et al., 1984]. The strength 

data is reported as the average penetration strength (pa), given by the force average 

over 1 mm interval divided by the projected area of the measuring profile [ Hvid et al.; 

1985b, Jensen et al., 1991]. Penetration tests do not reflect any well defined 

mechanical property of trabecular bone, but Hvid et al. [1984] have shown that the 

relation to the ultimate strength of bone cylinder could be expressed as average

penetration strength given by 1.74a[t^-^^. This method has a fundamental flaw 

however, which is the lack of relationship between the measured values and the 

mechanical properties of bone.

2.2.6 Problems Associated with the Measurement of Cancellous Bone 

Properties

The Young's modulus of cancellous bone reported in the literature ranges from 0.2 - 

9800 MPa in compression. A survey of the published data is given in Table 2.2. The 

variations is accounted for by factors such as age of the bone, anatomical location and 

testing conditions. The following sections will discuss how the testing conditions affect 

the reported data on cancellous bone.

2.2.6.1 Specimen Configuration

High porosity makes complicated specimen shapes difficult to machine. Different 

specimen configurations have been used for different methods of testing, cubic and 

cylindrical specimens are commonly used in compressive testing. Generally, the 

specimen must be large enough that a representative section of pores and struts can be 

analysed, yet small enough to resolve the heterogeneity of the tissue. It has been 

shown that 5 mm cubic test samples is the minimum size for which the continuum
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characterisation is realistic [ Brown and Ferguson, 1980; Harrigan et al., 1985,]. This 

minimum size is still disputed with Linde et al. [1988] advocating 7 mm.

Surface irregularities; induced bending; and difficulties associated with accurately 

measuring strains present a problem for compressive testing. Attempt to solve the 

problems is usually done by making the width to length ratio as small as possible, and 

making the measuring surfaces as parallel as possible. The use of a confining ring has 

been reported to result in the data being higher than that which would be measured in 

an unconfined uniaxial test by a factor of about one third [Gibson, 1985]. This may be 

because side bending is prevented. On the other hand, loading in tension though less 

susceptible to non- uniform loading requires larger more complicated shapes.

The anisotropic structure require mechanical properties to be measured in several 

different directions to completely characterise the anisotropy.

2.2.6.2 Strain Rate

The viscoelastic property of bone poses problems of reproducibility with variation in 

strain rate used. The resistance of bone to load varies proportionally to the rate at 

which the load is applied, so the mechanical properties of wet bone vary slightly with 

strain rate. If strain rate is increased by an order of magnitude, measured bone strength 

will increase by about 15% [Carter and Hayes, 1977].

2.2.6.3 Preservation

A problem of great importance in studies on mechanical properties of bone is the 

preservation of a specimen during the time between harvest and testing. The main 

concern is to avoid the specimen from drying. This can be done by keeping it in water, 

physiological saline solution, embalming fluid, alcohol or by freezing it. The possible 

effect on mechanical properties will depend on the method and length of preservation. 

The effects of the various methods of preservation have been investigated by Sedlin 

and Hirsch [1966] and by Evans [1973]. Sedlin and Hirsh could not demonstrate an 

effect of fixation of the specimen in formalin but advised against fixation. On the other 

hand Evans revealed that alcohol fixation causes a significant and irreversible decrease

in the deflection of human tibia tested in bending. Freezing at -20°c has been shown
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not to affect the physical properties of bone so long as the specimen is adequately 

hydrated and thawed before testing [Sedlin and Hirsch, 1966, Evans, 1973]. Most 

researchers have taken to freezing as a mode of storage, although at various freezing

temperatures. For example, Evans et al. [1990] at -20°c, Brown and Ferguson [ 1980]

at -10°c, and Hvid et al.[ 1985a] at -30°c.

2.2.6.4 Miscellaneous

Cancellous bone as explained earlier, has the porous cells filled with marrow. Carter 

and Hayes [1976] reported that the presence of marrow during testing did not 

generally alter the elastic properties of cancellous bone. So, while some researchers 

carry out their investigations on defatted specimens [Ashman et al., 1987], others 

either carry out on specimens with fat in situ or do not bother to report [Vahey and 

Lewis, 1987].

In defatting of the samples, Carter et al. [1980] used two methods: jet of warm water, 

and methanol and chloroform on two different set of specimen. They demonstrated 

that the method of marrow extraction did not affect the elastic properties. They also 

showed that samples which were kept wet throughout the preparation procedure were 

generally more compliant than samples which were dried and rewetted. Sharp et al. 

[1990] showed that only immersion in trichloroethylene and ultrasound bath for 4 

hours removed all the fat.

It worth noting that most mechanical measurements are performed in vitro. In vivo 

bones are more springy(elastic) and resilient, have a nerve supply (cortical bone only) 

and rich in blood supply. They are in a state of continual and rapid turnover as far as 

their inorganic material is concerned. They can adapt their shape to their function, 

particularly when they are young, so that faulty posture or unsuitable shoes may cause 

distortion of bones. Hence it is difficult to relate in vivo to in vitro data.
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2.2.7 Conclusion

The above are major methods used in the literature. As it is apparent from above each 

of the methods has inherent problems and advantages, but current sentiment favours 

uniaxial compression testing.

Table 2-2: Survey o f Compressive Young's Modulus Reported fo r  Cancellous Bone

Author Region Modulus (MPa)

Evans and King(1961) p. femur 20.68-965

McElhaney et al.(1970) vertebral 151.7

Pugh et al.(1973) d. femur 413-1516

Schoenfield et al.(1974) p. femur 344.7

Townsend et al.(1975) patella 121.3-580

Lindahl (1976) p. tibia 1.4- 79.2

vertebral 1.1- 139

Carter and Hayes(1977) p. tibia 20-200

Ducheyne et al.(1977) d. femur 58.8- 2942

Brown and Ferguson(1980) p. femur 1000-9800

William and Lewis(1982) p. tibia 100-500

Goldstein et al.(1983) p. tibia 4.2 -430

Martens et al.(1983) p. femur 58- 2248

Ashman et al.(1986) vertebral 158- 378

Ciarelli et al.(1986) p. tibia 5- 552

p. femur 49- 572

d. femur 7.6- 800

humerus

001

Struhl et al.(1987) vertebral 10- 428

iliac crest 5- 282

Ashman & Rho(1988) d. femur 1636

where p = proximal, d = distal
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2.3 Methods and Problems of Measuring the 
Mechanical Properties of the Trabeculae

The trabeculae could be said to be the unit structure of the cancellous bone. The field 

of biomechanics has acquired a good understanding of trabeculae bone behaviour on a 

continuum level (macroscopic or structural level). Investigators have now begun to 

study trabecular bone behaviour on a microstructure level (material level). The 

structural properties of cancellous bone are defined using the cross-sectional area 

which is inclusive of both trabeculae and pores. Conversely, material properties define 

the intrinsic properties of the trabecular struts alone. This is the source of the two 

densities- apparent(bulk) density and real(material) density mentioned earlier. Material 

properties are generally higher than structural properties. For example the apparent

density varies from 100 - 1000 kg m"̂ » while material density varies from 1600 - 1900 

kg m‘3 •

Characterisation of the mechanical properties of human trabecular bone is a very 

important aspect of musculoskeletal research. The progress of the research has been 

hampered by the controversy over the value of the trabeculae compared to cortical 

bone. It all started with the speculation by Wolff(1892) that trabecular bone posses 

similar properties to cortical bone. This has been supported by the highly referred 

empirical model of Carter and Hayes [1976], where they indicated that the strength and 

Young's modulus were proportional to the square and cube of the apparent density 

respectively. In their model, they proposed that all bone should be viewed as a single 

material. The smallness of the struts (111- 181 pm) makes mechanical properties 

measurement difficult to implement. Different methods have been used by different 

laboratories including; microhardness, ultrasonic testing, buckling of single struts, three 

point bending and finite element. The results of some of the investigations are 

summarised in Table 2.3. The following section will discuss briefly some of the 

methods used.
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Hardness is usually defined as the resistance of the material to indentation under static 

or dynamic loading [Davis et al., 1964]. The indentation hardness value is obtained by 

pressing a specially shaped diamond or hard steel ball into the polished surface of the 

material with a known loading for a specified time. According to Buckle[1959] if the 

indent is less than 30 pm  made with a load of less than 200 g, then the hardness should 

be included within the microhardness range. If Vickers hardness tester is used then the 

Vickers hardness number (VHN) is calculated from the expression

VHN = 1854.4*P/d2 (2-7)

where P = applied force(g), d = mean of two measured diagonals (pm).

Microhardness is an attractive method of quantifying the physical effects of small scale 

spatial variation in the composition of bone. This is more so for material (trabeculae) 

measurement of cancellous bone because bone specimen can be as small as 150pm 

across. Weaver [1966] showed that microhardness was an accurate and reliable 

measure of the degree of mineralisation. Evans et al. [1990] suggested that 

microhardness data was a feasible way of estimating the mechanical properties of 

specimens that are not easily accessible by conventional testing methods.

2.3.2 Buckling

It has been suggested that bending and buckling are highly probable modes of 

deformation of trabeculae in most cancellous bone area [Pugh et al., 1973]. This has 

encouraged the direct use of mechanical buckling to investigate the trabeculae 

properties. The elastic buckling theory is based on the Euler's Equation given by

f t  El
( 2 ' 8 )k I

where Pc is the critical applied load, E is Young's modulus, I the area moment of

inertia, k  the end condition constant and / the free length of the beam. Researchers like 

Runkle and Pugh[1975] and Townsend et al.[1975] have used the above method to
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obtain 8.75 GPa and 11.46 GPa(wet), 14.1 GPa(dry ) respectively as the Young's 

modulus of trabeculae.

Other techniques as shown in Table 3.3 have been implemented to the study of 

trabeculae. The discrepancy and controversy still exist as to the value of the elastic 

modulus of trabeculae as compared to cortical bone. While Ku et al.(1987) showed no 

difference (3.8 GPa (cortical) and 3.17 GPa (trabeculae)), William and Lewis (1982) 

predicted an order of 10 difference (1.3 GPa (trabeculae) 16 GPa (cortical)). The small 

value for the Young's modulus of cortical bone obtained by Ku et al.(1987) is rather 

puzzling in comparison with published data for cortical bone. Rice et al.[1988] 

speculated that the very small specimen size may enhance surface imperfections effects 

on the measured value.
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Table 2-3: Estimates and Determinations o f the Elastic Modulus o f Individual 

Trabeculae o f Cancellous Bone

Author Type of 

bone

Analytical/ 

Test method

Estimate of trabeculae 

elastic modulus

Wolff (1892) Human

Bovine

* 17 - 20 GPa (wet)

18 - 22 GPa(wet)

Pugh etal. (1973) Human distal 

Femur

finite element 

method

concluded that 

Etrab < ^compact

Townsend et al. 

(1975)

Human proximal 

Tibia

inelastic buckling 11.38 GPa(wet) 14.13 

GPa(dry)

Runkle and 

Pugh(1975)

Human distal 

Femur

buckling 8.69 ±3.17 GPa(dry)

Williams and, 

Lewis (1982),

Human proximal 

Tibia,

expt. with 2 - D, 

finite element method 1.30 GPa

Ryan and 

Williams (1986)

Fresh bovine 

Femur

tension test, single 

trabeculae

0.76±0.39 GPa

Mente and Lewis 

1987

Dried human 

Femur

experiment with 

finite element method

5.3 ±2.6 GPa

Ku etal. (1987) Fresh frozen 

Human tibia

three point bending 

of ultra small machined, 

specimen

3.17 ±1.5 GPa

Ashman and 

Rho (1988)

Bovine femur 

Human femur

ultrasound test method 

ultrasonic test method

10.90 ± 1.60 GPa(wet) 

ultrasonic test method

Rice et al.(1988) Human

Bovine

statistical data 

statistical data

0.61 GPa 

1.17 GPa

Hodgskinson 

etal. (1989)

Bovine proximal 

Femur

microhardness concluded

no statistical difference

2.3.3 Conclusions

♦  Dissection of single trabeculae from cancellous bone is a problem of its own.
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♦  The various measuring procedures have their own inherent problems and 

assumptions which contribute to the results.

♦  The turnover rate in cancellous tissue is eight times that in cortical bone tissue, 

thus making calcium content of trabeculae bone not a constant value [Rice et al., 

1988].

The above factors may be wholly or partly responsible for the discrepancies in the 

values obtain by different researchers. On the other hand the question of the similarity 

of the elasticity of trabeculae and cortical bone is disputable on two accounts. Firstly it 

has been shown that the bone mineral content (BMC) and material density of 

trabeculae are less than those of cortical bone (BMC = 63%(cortical), 

51%(trabecular)) [Gong et al., 1964]. The density of ash cortical bone is consistently 

higher than in cancellous bone tissue [Galante et al., 1970]. Secondly, the exponential 

influence of small changes to mineral content and density on stiffness and strength 

[Currey, 1969; Carter and Hayes, 1977; Currey, 1984]. Ashman and Rho[1988] using 

Currey[1984] equation of the dependence on BMC estimated that elastic modulus of 

trabecular bone would be expected to exhibit a 25% lower value than cortical bone. 

This argument coupled with the fact that most investigations find that the Young's 

modulus of the trabeculae to be less than that of compact bone will call for a rethink of 

the assumption made by Wolff[1892] and later by Carter and Hayes [1976]. Hopefully 

in the future, more refined modes of measurement will help resolve categorically the 

controversies.

2.4 Factors Affecting the Mechanical Properties of 
Cancellous Bone

2.4.1 Introduction

There is now a general consensus that the mechanical properties of cancellous bone, 

like any other cellular material, are affected by three intrinsic factors;

1. Apparent density (volume fraction of solids)

2. Architecture or fabric of the trabeculae
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3. Properties of the cell wall material, this relates to the mineral content of the bone 

material itself [ Carter and Hayes, 1976; Carter and Hayes, 1977; Carter et al., 

1980; Gibson, 1985; Hodgskinson et al., 1989].

Additional variables include temperature at which the properties are being determined, 

whether the bone is living or dead, embalmed or fresh, the age, sex, race and species of 

animal from which the bone is obtained. There may be other microstructural factors 

such as amorphous- to crystalline calcium phosphate ratio, and mineral to non -mineral 

bonding [ Evans, 1973; Behrens et al., 1974] . Over the years many researchers have 

tried to relate the above physical properties to the mechanical properties (compressive 

strength, elastic modulus, tensile strength). This has stemmed from the societal need 

to be able to predict fracture risk and the physical factors could easily be measured in 

vivo. The following sections will summarise the various attempts to correlate these 

physical factors to mechanical properties.

2.4.2 Density

As mentioned earlier, two types of densities are always referred to in the literature:- 

apparent density (bulk density) p and real density (material density) pm (see section

1.3.2). The porosity of a porous material varies approximately linearly to the apparent 

density of the material, but it is assumed that the matrix material density does not vary. 

Hence, it is assumed that the apparent density is proportional to the solid volume 

fraction. Therefore porosity and apparent density are reasonable measures of the 

amount of mineralised tissue.

Different methods of measuring the density have been used in the literature, thus 

making comparison of results difficult. Sharp et al. [1990] reviewed some of the 

methods used in the literature. They went on to suggest a protocol for measuring the 

density of trabecular bone: the total specimen volume and total specimen mass are 

measured prior to mechanical testing, the sample is then defatted in trichlorethylene in 

an ultrasound bath for 4 hours. The defatted specimen is then rehydrated in distilled 

water for 4 hours under vacuum, and then suspended on a hook, submerged in distilled
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water, and the submerged weight measured using Archimedes' principle. The specimen 

is then centrifuged for 15 minutes at 17g on blotting paper, and finally weighed in air 

to obtain the hydrated tissue mass. The density of water multiplied by the difference 

between the hydrated tissue mass and the submerged mass gives the bone tissue 

volume. The densities may then be calculated.

There is a catalogue of data attempting to relate mechanical properties (Young's 

modulus(E), compressive strength and tensile strength) to the apparent density. The 

attractiveness of these correlations lies in the fact that these measures are relatively 

easy and may relate to similar non-invasive techniques enabling the characterisation of 

bone properties to be performed in vivo [Currey, 1969; Galante et al., 1970; Townsend 

et al., 1975; Carter and Hayes, 1977; Brown and Ferguson, 1980 and reviewed by 

Goldstein, 1987]. This has become necessary, because of the need to be able to predict 

fracture risk. Most of the relationships have been expressed as a function of linear 

regressions and power functions (see Table 2.4). Current sentiment among researchers 

tends to favour the power relation. This has been generated because of the similarity of- 

trabecular bone to porous engineering materials.

Carter and Hayes [1976,1977] reported a power relationship between apparent density 

and compressive strength and Young's modulus for test on human and bovine 

cancellous bone. Employing data from the work of McElhaney [1966] and Galante et 

al. [1970], Carter and Hayes[1977] concluded that the axial Young's modulus E, 

depended upon the apparent density to the third power and strain rate e to the 0.06 

power, thus arriving at E in MPa as

E  = 3790£006 p 2 (2.9)

where p is the apparent density in gcm'^ and e is the strain rate in s“l- They also 

concluded that the axial compressive stress a  depended upon strain rate to the 0.06 

power and upon the square of apparent density thus

c  = 68e006p2 (2.10)
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where a  is in MPa, the rest as in Equation 2.9. Two assumptions were made before 

empirically arriving at the above results namely:

1. Young's modulus and strength of both human and bovine cancellous bone have 

exactly the same dependence on apparent density.

2. Based on the suggestion of Wolff[1892] law that cortical bone is simply more 

dense cancellous. The validity of the above assumptions is debatable.

On the other hand other researchers such as Brear et al. [1988] and Hodgskinson and 

Currey[1990] could only demonstrate a quadratic relationship for both strength and 

Young's modulus. Rice et al. [1988] have conducted a comprehensive survey of the 

literature. By taking into consideration the factors of species (bovine/human), direction 

(longitudinal, anterior-posterior and medial-lateral), axial stress condition (compressive 

or tensile), method of testing(confined, unconfined and indentation), they carried out a 

rigorous statistical analysis and came to the following conclusions;

♦  Elastic modulus is proportional to the square of apparent density.

♦  Strength is proportional to the square of apparent density.

♦  Elastic modulus is directly proportional to strength.

♦  The data on mechanical properties of cancellous bone tissue from different 

species cannot be combined.

♦  The mechanical properties of compact bone can not be obtained by extrapolation 

of the mechanical properties of cancellous.
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Table 2-4: The Relationship Between Mechanical Properties and Density o f  

Trabecular Bone

Author Region Relationship
Weaver and Chalmers Human vertebral linear*
(1966) Human calcaneus linear
Galante et al.(1970) vertebral linear
McElhaney et al.(1970) Cranial bone Ec - P 3 

oc “  P2
Behrens et al.(1974) Distal femur linear

proximal tibia linear
Lindahl(1976) vertebral linear
Carter and Hayes (1977) human tibia and ___ s - Q  •  0.06 ^ 2

Gc = b°£  P
bovine tibia E c =  3790e0 06 p3

Carter et al.(1980) proximal femur as above
Marten et al.(1983) proximal femur linear
Stone et al.(1983) bovine humeri c J =  21.6p1-65
Kaplan et al.(1985) bovine humeri <JT = 14.5pl-71 

oc = 32.4p1-85

Ciarelli et al.(1986) Distal femur linear
proximal femur linear
Proximal tibia linear
proximal humerus linear
distal radius linear

Brear et al.(1988) bovine femur E c oc pl-87

o  p i.77 c r

where E  is the Young's modulus, C is the strength and c, s,  and T  are compressive, 

shear and tensile respectively.

The results obtained by Carter and Hayes[1976, 1977] are empirically arrived. 

Theoretical calculation of elastic modulus and strength of very highly porous materials 

will depend on the state of the pores of the material, that is

a) whether it is closed or open cell, and

b) whether the loads applied to the cell walls deform them primarily in simple axial

loading (tension, or compression) or in bending

& Linear implies that both E and a  are linearly related to density
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These are idealised models and cancellous bone is no ideal. As mentioned in Section 

1.3.2 its structure ranges from open cell symmetric to closed cell columnar. So its 

structure will depend on the specimen in question. Most of the evidence of cancellous 

bone mechanics suggest that bending is the primary mode of deformation of the cell 

walls [Pugh et al., 1973; Gibson, 1985], although William and Lewis[1982] identified 

situations where deformation was primarily axial loading.

Gibson and Asby[1982], and Gibson [1985] have attempted to tie together the power 

relationships (quadratic and cubic) obtained by different researchers, using theoretical 

models. They argued that at low apparent densities, the structure of cancellous bone is 

one of connecting rods to form open cells. At higher apparent densities the cells fill in 

more, and the structure becomes one of plates forming closed cells. It was further 

argued that the principal mechanism of the linear elastic deformation is cell wall 

bending and that elastic collapse is caused by elastic bending and buckling of cell wall. 

The model and analysis predicts (for both compressive strength and Young's modulus) 

a quadratic relation for an open cell and cubic relation for a closed cell structure. This 

work by Gibson and Ashby [1982] has been supported by Christensen[1986]. The 

limitation of the above theoretical treatise is that it is based on regular repeating cells. 

The cell size of trabecular bone however is not uniform. Also, in some locations, the 

pores in the trabecular bone have a distinct orientation which induces a mechanical 

anisotropy.

The bone mineral content (BMC) has got the advantage that it could be measured in 

vivo either radiologically or by gamma ray or x-ray absorption techniques. Weaver and 

Chalmers [1966] as well as other investigators have sought a correlation between 

mineral content and mechanical properties. Behrens et al. [1974] reported a statistically 

significant but not very strong, relationship between the linear photon absorption 

coefficient and the compressive strength of cancellous bone using americium as a 

photon source. Hvid et al. [1985b] reported a linear relationship between BMC and 

mechanical properties. Currey [1986] using Hvid et al.[1985b]'s data demonstrated 

that power relationship should be favoured.
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The problem and cause of the scatter in the relationship between mechanical properties 

and density is that the mechanical properties are influenced by many factors. For 

example , it must be remember that bone is anisotropic, requiring different correlations 

with density for different material directions. Furthermore, the degree of anisotropy 

varies significantly throughout most cancellous structure. Therefore one should use 

caution when predicting tensorial properties (moduli) from a scalar property (density) 

[Ashman et al. 1987]. So, a more reliable correlation will be obtained from an 

experiment thoroughly executed with most of the other influencing factors at 

minimum.

2.4.3 Architecture

The architecture basically refers to how the bone is arranged in space. On a broad 

term, the architecture of the bone will include it apparent density, its connectivity (the 

extent to which structural elements are connected together ) and its anisotropy. It has 

generally been known that the physiology of bone function directly influences the 

structure and strength of bone, a relationship known as Wolffs law [Wolff, 1892]. It 

follows that the arrangement of trabeculae in space follows the lines of stress pattern 

and the architecture of trabecular bone then exist as a physiological optimisation 

maintaining mechanical integrity while minimising bone mass. These variations in 

mechanical properties have been shown to be a function of anatomical position and 

loading direction. This has been supported by work done on cancellous bone at knee 

[Behren et al., 1974], proximal femur [Brown and Ferguson, 1980], ankle joint [Jensen 

et al., 988; Hvid et al., 1985a], and proximal tibia [Hvid and Jensen, 1984].

Early evidence of architecturals effect were recorded by Bell et al.[1967]. They 

pointed out that in an ageing human vertebrae, the cancellous bone loses strength more 

rapidly than the reduction in the amount of bone tissue. They attributed their findings 

to the fact that the loss is largely in transverse struts. The functions of these struts is 

probably to a great extent to act as lateral braces so that the longitudinal struts do not 

buckle. Reducing the number of points at which sideways support is provided for a 

slender column considerably reduces the load it can bear even though the cross- 

sectional area remains unchanged [Currey, 1970]. Galante et al.[1970] showed that
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specimens (vertebral bone) loaded in the superior-inferior direction were more than 

twice as strong as those loaded in the lateral-medial direction. Behrens et al. [1974] 

also observed that the compressive strength of the knee varies with the location. 

Brown and Ferguson [1980] produced a detailed quantitative information about the 

spatial and directional variations of the material properties of cancellous bone 

(proximal femur).

The continuous process of remodelling that occurs throughout life changes the internal 

architecture of bone. The modelling and remodelling activity of bone is influenced by 

the complete loading history to which the tissue is exposed over some period of time 

[Cowin, 1986]. Behren et al. [1974] was able to show a strength difference between 

loaded and unloaded condyles of specimens taken from patients suffering from vagus.

Researchers including Brown and Ferguson [1980] have tried to link the stress pattern 

to the actual orientation of trabeculae. This has been thanks to advanced stereology, 

digital analysis algorithms and refined imaging processes. Pugh et al.[1973], 

Townsend et al. [1975] and Hodgskinson and Currey [1990] have attempted to 

correlate the architectural properties (anisotropy, fabric, and connectivity) and 

morphologic measures (trabecular plate thickness, trabecular plate separation) to the 

material properties. Due to the problems of multicollinearity it was difficult to correlate 

them.

2.4.4 Temperature

It is generally known that the elastic properties of many materials are temperature 

dependent. But, a great majority of tests on cancellous bone have been carried out at

room temperature (21°C). However, it is likely that these properties will have different 

values at body temperature (37°C). Smith and Walmsley [1959] demonstrated that 

Young's modulus was approximately linear but inversely proportional to the

temperature in the temperature range used (5°C-37°C). Recently, Brear et al [1988]

demonstrated that loading at 37°C rather than room temperature results in lower 

values for all the mechanical properties they tested, but the decrease is not large (2- 

4%).
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2.5 Quantitative Assessment of the Structure of 
Cancellous Bone

2.5.1 Introduction

There is now the necessity to quantify the structural morphology of cancellous bone 

since it has been hypothesised that bone strength is linked to its structural integrity. 

Cancellous bone has been defined as a 3-dimensional network of struts (Section

1.1.3). A 3-dimensional characterisation of it will require a 3-dimensional analysis of 

structure. The structure of porous medium can be quantified by a variety of 

geometrical properties. The major ones being porosity (volume fraction), connectivity 

(degree of connection of the individual struts) and anisotropy (orientational 

dependence of connectivity).

The well established methods of stereology would provide 3-D parameters from 

random plane sections through the material. However, topological parameters (number 

of features and connections between these features, that is connectivity) are not 

accessible from the plane. Different methods can be used to determine these 

topological parameters. One method is the direct analysis of the material by serial 

sections on which the topological parameters are counted manually [Kwiecen et al., 

1990]. This method is tedious and time consuming. Other methods include theoretical 

model to build the 3-D structure [Quiblier, 1984] and computer simulation of the 

structure [Jemot et al., 1992].

Different methods for measuring structural anisotropy have been developed for 

cancellous bone. The early works of quantifying the structural anisotropy of cancellous 

bone was by Whitehouse [1974], who measured the mean intercept length in 

cancellous bone as a function of direction on polished plane sections. It was further 

demonstrated that when the mean intercept lengths were plotted in a polar diagram as 

a function of the angle, the polar diagram produced an ellipse. Harrigan and Mann 

[1984] extended Whitehouse's work by showing that the mean intercept length 

measured on cancellous bone specimen fitted the Equation of an ellipsoid in three 

dimension and could be represented as a second rank tensor. The term "fabric" has

46



Chapter 2

been used to describe the anisotropy of cancellous bone, with slight difference in 

definition with different authors [Cowin, 1986; Hodgskinson and Currey, 1990]. The 

structural analysis using the above method is time consuming. An alternative method 

using permeability (the rate of flow of fluid) is used as a structural index herein.

2.5.2 Permeability

It has been proposed that the rate of flow of a fluid through the porous sample will 

give a quantitative description of the porosity and connectivity of the sample. This 

follows from the dependence of rate of fluid flow on the following properties, namely:

•  Number, size, shape and orientation of the pores inside the medium.

•  Its dependence on density and viscosity of the fluid

•  The boundary conditions.

The main advantages of permeability measurements over the other methods of 

quantifying porous media are :

•  It is very easy and quick to carry out

•  It is non-destructive.

•  It could be theoretically modelled and experimental evaluated

2.5.3 Theory

In 1856 the French mathematician Darcy observed that the flow a fluid through a 

porous material is directly proportional to the pressure drop and inversely proportional 

to the flow path. The flow is also dependent on the viscosity and density of the fluid. 

This relationship is now known as the Darcy's law written as

^  K A A P
Q = — -—  (2.11)

a

where Q  is the flow rate (m^s"!), A is the cross-sectional area of the porous medium

(m2), P is the hydraulic pressure, K is a proportionality constant and d is the 

specimen thickness. The constant K is proportional to both the viscosity (rj) and 

permeability (k) of the porous medium. So Equation 2.11 can be written as
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.  kAAP
Q = ---- —  (2.12)

T| d

but Q  = velocity of flow(v)*cross-sectional area of path (Ap), therefore Equation 2.12 

can be rewritten as

k A AP
v = ---------- (2.13)

T\APd
when A p  = A, then

k A P
v = — r  (2.14)

T| d
and in differential form as

V = ^ P  ( 2 1 5 )

*n
where Tj is the viscosity of the fluid and K is the permeability values of the porous 
media and v  is the flow velocity.

The above Equation applies to an incompressible liquid of constant density and 

viscosity and porous media of homogeneous permeability. It ceases to apply at high 

flow rate velocities due to the emergence of inertia effects, in laminar flow and the 

onset of turbulence. There have been attempts to introduce a critical value above 

which Darcy laws ceases to apply by the introduction of Reynolds number. It is given 

by Equation 2.16

Re = - ^ ^ -  (2.16)
T1

where d  is the diameter of the flow channel (cell size), p/ is the density of the liquid, T|

is the viscosity and v  is the fluid velocity. Experiment shows that the critical Reynolds 

number for the transition between laminar and turbulent flow depends on the tortuosity 

of the channel. For flow through a straight pipe the transition occurs at Reynolds 

number of 2100 and for flows through soils ( with large tortuosity and low porosity) it 

occurs at 10 [Gibson and Asby, 1988]. Different researchers have reported different 

values. External conditions of the porous medium also affects Equation 2.15, for 

example if the medium is compressible then external stresses might affect the results 

[Scheidegger, 1974].
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3. ULTRASONIC STUDIES OF CANCELLOUS

BONE

3.1 Basic Physics of Ultrasonic Wave Propagation

3.1.1 Introduction

This chapter will endeavour to define the basic physics and principles of ultrasonic 

application in medicine. The last two sections will examine the present method of 

ultrasonic interrogation of bone, and the in vivo and in vitro results obtained.

Ultrasound is generally defined as sound waves above the human audible frequency (> 

20 KHz). Ultrasonic waves may be used in medicine in preference to audible sound 

because they are directional and can be more easily focussed. Generally the principles 

of waves propagation applies to ultrasound.

3.1.2 Generation of Ultrasound

Waves can be generated in a stationary medium when its equilibrium is disturbed by the 

application of forces which vary periodically with time. This disturbance causes the 

particles in the medium to vibrate, with the result that sound waves are propagated in 

the medium.

Ultrasonic waves generation can be achieved using different types of generators such 

as mechanical, piezoelectric and magnestostrictive. The main component of the 

generator is the transducer which in general terms converts energy from one form to 

another. In biology and medicine, the transducers are usually made of piezoelectric 

materials. These materials have the property that any voltage applied across the 

electrodes produces a proportional change in thickness and conversely, pressure
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applied across its two faces produces a potential difference between the electrode. The 

piezoelectric material commonly used is lead zirconate titanate (PZT), which is a 

synthetic ceramic.

When a transducer is vibrating in a liquid or gas the condition for resonance is fulfilled 

when its radius r is equal to one quarter wavelength, ie

X c
r = 7  = 7 7  (3-1}4 4 /

where r is the radius of the transducer, c  is the longitudinal wave velocity in quartz ( ~

4000ms" 1 in PZT along the x-axis) and f  is the resonance frequency. The characteristic 

acoustic impedance Z for PZT is approximately 14 times that for water and soft tissue. 

For detail construction principles of transducer refer to Bamber and Tristam [1988].

3.1.3 Ultrasonic field

The ultrasonic field of a transducer is the term used to describe the spatial distribution 

of its radiated energy. The configuration depends on the dimension of the transducer 

and also on the wavelength. The field is usually considered to consist of two regions 

namely, the near field (Fresnel region) and far field (Fraunhofer region). These regions 

are separated at the position of last axial maximum given by

4 r 2 _ ' > 2  2

X ma x = <3-2>4 a  X

where r  is the radius of the source and r ^ »  A2 [Woodcock, 1979]. Beyond the near 

field the beam diverges at an angle 0 where

• o  ° ’ 6 l X  ^s m 0 =   (3.3)
r

The configuration of the far field depends on the directional characteristic of the 

transducer for a particular medium. The shape of an ultrasonic field in a fluid is a 

function of the ratio of the diameter of the transducer to the wavelength. For solids the 

directional characteristics are more complex than for fluids. This is especially true 

where the diameter of the transducer does not exceed the wavelength, because of the
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appearance of transverse and surface waves as well as longitudinal waves. The 

directional properties will also depend upon whether it is a continuous or pulsed wave.

3.1.4 Ultrasonic Waves Within Matter

Ultrasonic waves can be propagated in all forms of media:- solids, gases, and liquids. 

In isotropic and homogeneous solids (where the wavelength «  the radius(d) of the 

bar), both transverse(shear) (Cs) and longitudinal (compression)(C/) waves can be

propagated [Pain. 1985], the velocities are given by:

where E  = Young's modulus, G = shear modulus, K  = bulk modulus, V = Poisson's 

ratio.

In straight uniform bars with small radius (d) compared with the wavelength (X) of the 

propagating longitudinal waves, the velocity is represented by

Complications arise when the radius of the rod is nearly equal to the wavelength. 

Ashman et al.[1987] have shown that the density(p) in Equation 3.6 is the apparent 

density. It may be assumed that with the exception of bone, biological tissues act for 

ultrasound transmission like fluids. They are unable to support transverse waves to any 

great extent and the longitudinal wave speed is as given in Equation 3.6, where p is 

mean tissue density and E is adiabatic bulk elastic modulus. The average speed for soft

tissue is about 1540 ms“l ± 6% . The speed of sound (c) is not a strong function of 

frequency, except in bone and is temperature dependent [Evans and Tavakoli, 1992].

Anisotropic solids may have as many as 21 independent elastic constants. In one 

direction of wave propagation, three plane wave velocities could be equated to 

longitudinal and transverse wave velocities in isotropic solids. This implies that

(3.4)

(.K  + 4/3G ) 

P p ( l - 2 v ) ( l+ v )
E{ 1 -v )

(3.5)

(3.6)
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Equation 3.4 to 3.6 could be applied to anisotropic cancellous bone. In this application, 

definition of the direction of propagation is essential.

If the solid medium is limited by a free surface another type of wave motion, a surface 

wave, may be propagated. The particles of the medium execute vibrations both along 

and perpendicular to the direction of the wave propagation. Also, in a medium which 

has two free parallel surfaces, situated at a distance of the order of a wavelength apart 

(ie a lamina or plate), lamina, plate or lamb waves can be propagated [Leszek, 1966].

3.1.5 Attenuation of Ultrasonic Waves in Matter

As Ultrasound beam interrogates a medium, some of its energy is lost from the beam. 

The phenomenon is known as attenuation. So, the intensity of a plane wave 

propagating in the x direction decreases exponentially with distance as

Ix = I0exp(-|ix) (3.7)

where ji is the intensity attenuation coefficient.

Factors contributing to this attenuation include beam spreading (diffraction), 

scattering, absorption due to various mechanisms and mode conversion resulting in 

partitioning of the energy among two or more wave modes each traveling at its own 

velocity. The beam diffraction is an extrinsic factor and the main factors depending on 

the media are absorption and scattering.

Absorption is the dissipation of ultrasonic energy in the medium via conversion to 

heat, due mainly to the internal friction. This process is utilised in ultrasound induced 

hyperthermia. There are many mechanisms by which this may occur. Depending on the 

medium, three classes of mechanism are used to explain absorption; classical, 

molecular relaxation and relative motion losses [Bamber and Tristam, 1988]. Classical

mechanism which involves viscous losses, give rise to an frequency dependence. In 

molecular relaxation the temperature or pressure fluctuations associated with the wave 

cause reversible alterations in molecular configuration. Also, in relative motion losses, 

the wave induces a viscous or thermally damped movement of small-scale structural 

elements of tissue.
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Scattering effects occur when particles absorb part of the ultrasound energy and 

reradiate it in all directions as a spherical field. Different kinds of scattering 

phenomena occur at different levels of structure (see Table 3.1). The types of 

scattering interactions have been classified according to the scale of the characteristic 

dimension a of the scattering structure relative to the wavelength of the ultrasound 

[Bamber and Tristam, 1988]

Table 3.1: Types o f Scattering Interactions

Scale of 

interaction

Frequency

dependence

Scattering

strength

a » X

Geometrical region

f0 strong

a ~X

Stochastic region

variable moderate

a « X

Rayleigh region

f4 weak

Where a is characteristic dimension of the scattering structure.

♦ Geometrical Region: At a large scale boundary, representing the interface 

between two homogeneous media, the usual law of reflection and Snell's law for 

refraction apply to predict the direction of the reflected and refracted sound [Pain, 

1985], The intensity of the reflected sound beam, relative to the incident intensity 

depends on the relative acoustic impedances of the two media. Acoustic impedance (Z) 

is an inherent property of every material, and is the product of the density of the 

material (p) and the speed of propagation of sound (c) within it ( Z = pc). The acoustic

impedance of air = 4*10^, fat = 1.38* 10^, brain = 1.58* 10^ and bone 7.8* 10^. The 

intensity reflection coefficient(R) for ultrasound encountering an interface is given by

RJ z 2cos9i-Z1cos9tr  (3g)
[ Z2 cos0 j+Zi cos0t J
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Where 0 j,0 , are the incident and transmitted angles respectively [Pain, 1985]. Hence 

one would expect from this equation that, the interfaces between media that are 

separated by the greatest difference in acoustic impedance to provide the largest 

reflection coefficient.

♦ Rayleigh Region. This is the region where the diameter of the scattering 

structure is much smaller than the wavelength of the ultrasound wave. The scattering

strength is very weak, is proportional to the volume of the scatterer and follows 

frequency dependence [Bamber and Tristam, 1988].

♦ Stochastic Region. When the diameter of the scattering structure could be 

approximated to the wavelength of the propagating wave then the region is known as 

stochastic. Scattering in this region is characterized by a variable frequency 

dependence. Scattering is highly anisotropic

Generally, the size of the scattering particle compared to the wavelength of the 

interrogating wave determines the frequency dependency. Taking cancellous bone for 

example, scattering effects are a function of mean trabeculae length, mean pore size, 

and the ratio of the pore diameter to the ultrasonic wavelength.

3.1.6 Propagation of Ultrasound in Porous Media

The diverse type of structured matrices and inclusions in a porous media has led to 

numerous theories being developed. These include single scattering, the multiple 

scattering and the Biot theories. The single scattering theory calculates the attenuation 

produced by a single obstacle. It then assumes that the total attenuation is this value 

multiplied by the number of obstacles. This approach is therefore only valid for very 

low concentrations of isolated scatterers and is therefore irrelevant for the study of 

cancellous bone.

For more concentrated media, the multiple scattering theory has been developed. It 

introduces the concept of averaging the spatial distribution of a number of scatterers 

and summing their effect as in the single scattering theory (Waterman and Truell, 

1961). The drawbacks of this model include the prerequisite of discrete scatterer and 

spherical pores. Athough self consistent theories have been presented [ Sayer and
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Smith, 1982], they fail to encompase the high porosity and interconnectivity found in 

cancellous bone.

Ultrasound wave propagation in highly porous media such as cancellous bone 

saturated by viscous fluid is influenced in various degrees by dynamic interactions 

between the fluid and the frame. Biot theory [Biot,1956, 1962] analyses the relative 

motion of the porous structure (trabeculae framework) and the interspaced fluid ( 

marrow) induced by the ultrasonic wave. This approach considers the energy loss due 

to the frictional inter-action of the marrow flowing within a trabecular framework cell, 

and on the inelasticity of the trabecular bone framework. This theory has been used by 

Mckelvie and Palmer [1991] to predict ultrasound attenuation in cancellous bone. They 

found that the theory produced significant deviant results. However, Williams [1992] 

was able show a correlation of r = 0.78 between experimental ultrasonic velocity 

through bovine tibia and the velocities predicted by Biot's theory. To test the validity 

of this theory to cancellous bone accurate mechanical and structural properties , such 

as bulk modulus, permeability and tortuosity will be required.

3.2 Principles of Ultrasonic Measurement

3.2.1 Velocity Measurement

It was discussed in Chapter 2 that the high degree of porosity, anisotropy, 

heterogeneity and size limitations imposed by the overall size of bones, add to the 

difficulty of measuring the elastic properties of cancellous bone. These problems are 

acute in mechanical testing (compression, tension, bending, etc). Ultrasound offers 

alternative methods of measurement with some advantages over mechanical 

techniques. Smaller specimens of simpler shapes can be used and the non-destructive 

nature permits several measurements to be undertaken on a single specimen. Two 

parameters are measured when using ultrasound to infer the material properties namely 

velocity and attenuation.
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Velocity measurement could be achieved using either pulse-echo or transmission 

technique. Pulse-echo technique utilises a single transducer both to transmit and 

receive the signal. The generated ultrasonic pulse travels through the sample and is 

reflected at an interface, back into the same transducer where it is detected. This 

method implies that the pulse interrogate the specimen twice. In a transmission 

method, one transducer acts as transmitter and a second acts as receiver. In the 

application to cancellous bone the transmission technique is preferred because of its 

highly attenuating nature. In applying this method to the clinical environment where 

the bone is surrounded by soft tissue, correction may be allowed for the soft tissue 

thickness.

Ashman et al. [1984], Ashman et al.[1987], Ashman and Rho [1988] used continuous 

waves to excite the transmitting piezoelectric transducers. The propagation time was 

measured from the phase shift between transmitted and received ultrasonic signals. 

Lang [1970] among other researchers have used pulse or wave trains for excitation. 

The wave generated is received on the opposite side of the specimen with another 

transducer. The time (8t) associated with the propagation of the wave through the 

specimen was measured from the start of the transmitted wave to the start of the 

received wave. Ashman et al. [1984] believed that measurement of the propagation 

time is inherently more accurate with the continuous wave method than pulse method. 

Assuming or measuring the thickness (x) of the specimens and the measured 

propagation time, ultrasonic velocities can be calculated as,

V = x/St (3.9)

Antich et al.[1991] have proposed an alternative method for measuring velocity by 

using ultrasound reflection. In this approach the critical angles for which total internal 

reflection occurs at an interface between soft tissue and bone are measured. The phase 

velocities are calculated in correspondence to these angles

V = c/sin<J)c (3.10)
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where c is the velocity of sound in soft tissue. Antich et al.[1991] were able to 

demonstrate that velocity obtained by transmission and by reflection were in excellent

agreement (r^ = .9993).

This velocity of propagation is strongly dependent upon the elastic properties of the 

material (see Section 3.1.4). Several modes of wave propagation are possible 

depending on the overall specimen geometry, the internal structure of the specimen and 

the type of acoustic excitation (longitudinal or distortional wave propagation), but the 

bar wave relationship (Eqn 3.6) is normally used. The condition for the application of 

this Equation(3.6) is that the wavelength of the ultrasonic wave be greater than the 

cross-sectional dimension of the specimen. The wavelength must also be greater than 

the characteristic dimension of the structure if the structure is to be considered as a 

continuum. This is important since it is the structure which is being measured not the 

material. Unfortunately a defined rule for how much larger the wavelength must be 

inorder to satisfy these requirements does not exist. However, the specimen must be 

large enough that a representative section of pores and struts can be analyzed, yet 

small enough to resolve the inhomogeneity. Ashman et al.[1987] were able to fulfil this 

requirement by using low frequencies (50-75 KHz) whose wavelength are 

approximately l-2cm.

Ashman et al. [1984] have given detail of a method of obtaining the elastic properties 

using the velocities of propagation. Ashman et al. [1987] tried to validate ultrasonically 

measured moduli with mechanically measured moduli using bovine specimens. 

Ultrasonic specimens were cut from the centre of mechanically tested specimen after 

mechanical testing was completed . They found a good correlation between the two 

techniques, giving

Emech = Eult + 23-3MPa* R2 = 93.5%. (3.11)

The elastic modulus measured ultrasonically and mechanically ranged from 304- 3648 

MPa and 337-3534 MPa respectively. The shear modulus measured ultrasonically and 

mechanically ranged from 164-484 MPa and 137-660 MPa respectively. The good 

correlation between the ultrasonic and mechanical technique opens way for more 

experimentation using ultrasound. Ultrasound would be a better way to characterise
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the anisotropy of bone structure. This is because ultrasound test result are not time 

dependent.

The porous nature of cancellous bone lends itself to both structural and material 

properties description. The preceeding sections measures the structural properties. A 

similar technique to the one used in measuring the structural properties of cancellous 

bone [Ashman et al.,1986] can be used for material properties measuements. The 

major condition for material properties measurement is that the wavelength of the 

ultrasonic wave must be shorter than the characteristic dimension of the structure in 

order to interact with the trabeculae rather than the structure. Ashman and Rho [1988] 

used pulse transmission technique with transducer tuned to resonate at 2.5 MHz. the 

wavelength of the waves were of the order 1 mm which is greater than the cross 

sectional dimension of the trabeculae (0.1-0.5 mm). Ashman and Rho [1988] obtained 

trabecula modulus of 13.0 ± 1.47 GPa for human distal femur averaged from 53 

specimen. They noticed that the values for bovine specimen 10.9±1.57 GPa were much 

less than human. The advantages of using ultrasound include the ease of specimen 

preparation and small specimen size. There also exist limitations which are inherent to 

the method, the major one being the possibility that 1 mm wavelength may not be small 

enough to allow for only material properties to be measured.

3.2.2 Attenuation Measurement

The attenuation of ultrasound through bone is determined by measuring the reduction 

in ultrasound signal amplitude resulting from the propagation through bone. The 

method of ultrasound attenuation applied in this investigation uses Broadband 

Ultrasound Attenuation (BUA). A single short pulse of ultrasound is produced by a 1 

MHz transducer and, after passing through the sample, is received by another 

transducer positioned on the other side. The frequency content of the received signal is 

found either using a spectrum analyser or Fourier transform and is then stored. At each 

frequency the received signal amplitude is compared with that received in the absence 

of sample (usually degassed water). Using a reference material compensate for the 

variation in ultrasound signal amplitude with frequency for a particular pair of
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ultrasound transducers. The difference between these two is attributed entirely to bone 

attenuation and a graph of attenuation against frequency can be plotted. Langton et 

al.[1984] demonstrated a linear relationship between attenuation and frequency for 

cancellous bone between 0.2 MHz and 0.6 MHz, to which a linear regression may be 

applied, yielding the BUA index.

3.3 Review of Previous Studies

3.3.1 Introduction

A number of techniques which uses ultrasound in the diagnosis of bone disease have 

been reported in the literature over the years. The techniques uses one or both of the 

ultrasonic parameters namely:- ultrasound velocity and attenuation. This section 

reviews these techniques and explains why the present work was necessary.

3.3.2 Velocity Measurements

Studies of ultrasonic velocities for clinical purposes in bone have been reported for at 

least 30 years. Most of the early reported data for bone velocity were for cortical bone, 

measured at various anatomical positions and studied both in vivo and in vitro ( see 

Table 3.2). A variety of technique can be employed to acquire these measurements but, 

time of flight (TOF) measurements and pulse echo are the most commonly used 

methods in clinical applications.

Fry and Barger [1978], Ashman et al. [1987] and Turner and Eich [1992] have 

reported values for the velocity in cancellous bones measured in vitro. A number of 

authors have evaluated the correlation between Velocity and another parameters which 

have a relationship to fracture risk (see Table 3.3). Avioli et al., [1988] compared 

velocity measurements in patella with SPA of the radius shaft and concluded that they 

had an equal sensitivity. DPA was used by Heaney et al. [1989] who found that 

velocity measurements were equally sensitive indicators of bone fragility in post 

menopausal and osteoporotic women as BMC of the spine and also that the velocity 

generally decreased with increasing age after menopause. Evans and Tavakoli [1990] 

demonstrated a highly significant correlation between velocity and physical density of
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bovine femur. Other interesting relationships which have been discussed include the 

work of Rubin et al. [1987] who demonstrated changes in velocity to immobilsation 

and sporting activity.

Table 3.2: Published values o f velocity o f ultrasound in cortical human bone

Reference Location Method Velocity

Siegel et al., 1958 Tibia in vivo ,TOF 3481

Rich et al., 1966 in vitro, - 2880

Abendschein & Hyatt, 1970 Tibia in vitro, - 3526

Martin etal., 1971 Skull In vitro, - 3050

Cravem et al., 1973 Radius in vivo, Pulse echo 3406

Whiting, 1977 Tibia in vivo, Pulse echo 3550

Yoon and Katz, 1979 Femur in vitro, TOF 3550

Andre et al., 1980 Femur in vivo, Pulse echo 3250 ± 190

Behari and Singh, 1981 in vivo, TOF 3457

Greenfield et al., 1981 Radius in vivo, Pulse echo Male 3311±205 

Female 3359±195

Rubin et al., 1987 Tibia in vivo, TOF Male 2383± 133 

Female 2192±120

The precision of velocity measurement is usually assessed by repeated measurements 

on one or several subjects. The precision is usually quoted as the coefficient of

variation given as a percentage of standard deviation divided by the mean value of

successive readings. Different precision values in clinical applications have been 

reported by different authors. Rossman et al.[1989] reported a precision of 1%, but, 

Heaney et al.[1989] reported a lower precision of 2.2%. ‘

In clinical environment three types of velocities can be identified namely: heel velocity,

bone velocity and time of flight velocity

Heel Velocity = (Distance between transducer)/Transit time
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Bone Velocity = (Distance between transducer - soft tissue thickness)/(Transit 

time- Transit time through soft tissue)

Time o f  f ligh t velocity is defined as: V to f = ----- ---------

x

where Vw is the velocity in water, x  is bone thickness and t is the difference between 

transit in water with no bone and transit time in water with bone.

These three types of velocities have been investigated by Miller et al.[1993] and 

demonstrated that the velocities correlated closely with each other. Vtof  had the 

optimum precision but the smallest range (CV = 0.70% but Vtone (CV = 2.71%) had 

the largest range, a factor that enhances its sensitivity for distinguishing normal from 

abnormal results.

Table 3.3: Published Correlation Between Velocity and Physical Parameter.

Reference Physical

Parameter

r-values Comment

Rich et al., 1966 Calcium content 0.99 Cortical b o n e ,

Poor for cancellous bone

Abendschein & Hyatt, 1970 Physical density 0.866 Tibia

Evans and Tavakoli, 1990 Physical density 0.85 Bovine Femur

Rossman et al., 1989 SPA (Radius) 0.66 Calcaneus

DPA (Spine) 0.63 1535±20 Normal

DPA (Femur) 0.52 1505±20 Abnormal

Zagzebsky et al., 1991 SPA (Radius) <0.4

DPA (Spine) <0.4 Calcaneus

DPA (Femur) <0.4 1571±36

DPA (Calcaneus) 0.72

Waud et al., 1992 DXA(Calcaneus) 0.66 Calcaneus(all): 1721± 110 

Premenopause: 1744±75 

Postmenopause 1689± 92
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3.3.3 Attenuation Measurement

Until 1984 the literature on the diagnostic potential of ultrasonic attenuation has been 

sparse. Garcia et al. [1978] used an immersion transmission method, excited by both 

continuous wave and broadband pulse technique. They demonstrated decrease in 

attenuation of bovine cortical bone with decrease in mineral content. Cancellous bone 

attenuation was investigated by Fry and Barger [1978] and Smith et al. [1979]. Their 

work however was confined to the skull for the purpose of finding the optimum 

parameters for trans-skull diagnostic imaging.

Significant interest developed in the application of ultrasound to bone pathology after 

the work of Langton et al. [1984]. They demonstrated that the attenuation of 

ultrasound over a frequency of 0.2 - 0.6 MHz (Broadband Ultrasound Attenuation,- 

BUA) was linear and the slope of this graph could differentiate between normal and 

osteoporotic bone. As is the fate of any new technique coming into a well established 

field, the questions asked are:

•  How does BUA compare with ionising radiation methods ?

•  What is the role of ultrasound in the assessment of bone pathology ?

•  What is ultrasound measuring ?

The ability of ultrasound to discriminate between normal and osteoporotic subjects are 

cited in the literature (see Table 3.4). The differences reported between the normal and 

osteoporotic volunteers are statistically significant. Resch et al.[1990] found a 

significant difference in BUA between 37 Caucasians women (mean age, 65±1 years) 

with one or more atraumatic vertebral fractures and 23 healthy women (mean age. 63± 

2 years). Variants in age do not account for this significance, although a negative 

correlation between BUA and age has been reported [Herd et al., 1992; Waud, 1992]. 

Damilakis et al.[1992] demonstrated using multiple regression analysis that the 

difference between normal and osteoporotic patients was more disease related 

(p<0.001) than age related (p<0.05).
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Table 3.4: Published BUA demonstrating discrimination between normal and 

osteoporotic subjects

Author No of Selection criteria BUA(dBMHz'l) Mean

subjects range BUA

Langton et al. N40 5 5 -9 0

1984 020 FFN 2 0 -5 0

Baran et al. N29 54.5(2.2)

1988 022 Osteopenia at 

2SD or VCF

40(2.5)

010 FFN 32(3.4)

McCloskey et al. N24 Premenopausal 6 5 -9 0 79.6(1.1)

1990a N10 Perimenopausal 7 0 -8 5 79.6(1.1)

021 VCF 2 0 -8 0 55(4)

Resch et al. N23 4 0 -9 0 62.6(2.9)

1990 037 VCF 2 0 -8 0 54(2.2)

Agren et al. N17 70(3)

1991 021 without fracture 56(3)

020 VCF or FFN 51(2.7)

Herd et al. N200 40-120

1992 033 VCF 33- 92 55

Damilakis et al. N74 66.5(12)

1992 019 Radiograph 48.8(6)

Where N is normal, O is osteoporotic, VCF is vertebral crush fracture, FFN is fracture 

of femoral neck and SD is standard deviation

A series of in vivo comparative studies between BUA and bone mineral density (BMD) 

have been reported in the literature. Table 3.5 represents some of the published 

correlation coefficient between BUA and various densitometric techniques which vary 

from r = 0.41 to r =0.92. The interpretation of the data is complicated by many factors 

including:

•  measurement site assessed by BUA and bone densitometry techniques,
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•  effects of different ultrasound system used,

•  the mode of interaction of ultrasound and photon based techniques are 

different,

•  age range of the samples

From a clinical view point, correlation studies could be criticize on the ground that it 

fails to provide information about the predictive value of one test against another. The 

diagnostic value of a clinical test can be calculated using either Z-score or receiver 

operating characteristic (ROC) analysis [Eastell, 1992]. The ROC curves are generated 

from sensitivity and specificity of the method. The sensitivity/specificity of BUA have

been reported at 70 dBMHz"! by Baran et al. [1988] to be 80%/80%; at 50 dBMHz- !

by McCloskey et al. [1990a] to be 81%/93% and at 63 dBMHz"! by Agren et al. 

[1991] to be 76%/76%. From these works it appears that BUA measurements can 

have a similar diagnostic accuracy to lumbar spine BMD.

The relationship between BUA and physical density has also been investigated in vitro. 

McCloskey et al. [1990b] reported measurements of BUA and physical density on 

samples of calcaneus obtained from cadavers and concluded that there was a good 

correlation of r = 0.85. McKelvie et al.[1989] obtained similar correlation (r = 0.83) 

between BUA and physical density of the calcaneus. Evans and Tavakoli [1990] found 

a poor correlation (r = 0.33) between BUA and physical density of bovine femur. 

Tavakoli and Evans [1991] investigated the dependence of velocity and BUA on bone 

mineral content. The bone mineral content (BMC) of bovine femur specimens were 

demineralized by nitric acid. They showed a good correlation between BUA and 

BMC, but velocity measurements showed a better correlation greater than 0.97.
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Table 3.5: Published Correlation Coefficient Between BUA and BMD in vivo and 

Precision o f BUA Measurement.

Reference BMD

Site

BMD

method

Correlation

Coefficient

Precision

(%)

n

G lueretal. 1992 Calcaneus SXA 0.72 2.76 33

Waud et al. 1992 Calcaneus DXA 0.73 2.8 64

Zagzebski et al., 1991 Calcaneus DPA 0.56 10 42

McCloskey et al. 1990b Calcaneus QCT 0.80 25

McKelvie et al. 1989 Calcaneus QCT 0.83 33

McCloskey et al. 1990a Distal radius SPA 0.77 3.1 61

Evans et al. 1988 Distal radius SPA 0.45 2.1 -

Petley et al. 1987 Distal radius SPA 0.80 3.9 44

Poll et al. 1986 Distal radius SPA 0.80 3.9 44

Rossman et al. 1989 Radius shaft SPA 0.64 10 76

Hosie 1987 Radius shaft QCT 0.85 - 44

Hosie 1987 Ultradistal

radius

QCT 0.66 - 24

Massie et al. 1993 Spine DXA 0.42 2.6 328

Agren et al. 1991 Spine DXA 0.61 2.3 58

Baran et al. 1991 Spine DXA 0.83 2.9 22

McCloskey et al. 1990a Spine DPA 0.72 3.1 61

Rossman et al. 1989 Spine DPA 0.66 10 76

Evans et al. 1988 Spine QCT 0.64 2.1 -

Baran et al. 1988 Spine DPA 0.61 2.6 61

Massie et al. 1993 Femoral neck DXA 0.32 2.6 328

Agren et al. 1991 Femoral neck DXA 0.68 2.3 58

Baran et al. 1991 Femoral neck DXA 0.87 2.9 22

Rossman et al. 1989 Femoral neck DPA 0.41 10 76

Baran et al. 1988 Femoral neck DPA 0.59 2.60 61

where BMD is the bone mineral density and n is the sample size
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Due the different modes of interaction of ultrasound with bone compared to photon 

based techniques, the question has been raised on several occasions [Gluer et al.,1992; 

Waud et al., 1992; Baran et al., 1988]

♦  Is ultrasound measuring another quantity in addition to density ?

♦  Is this quantity structure ?.

Langton et al. [1990a] confirmed the structural dependence of BUA. However, a more 

rigorous three dimensional analysis of cancellous bone structure and the ultrasound 

attenuating mechanisms is warranted and form the basis of this investigation.

3.3.4 Clinical Ultrasonic Bone Measurement Systems

Since the arrival of the Walker Sonix UBA575 (Worcester, USA), other clinically 

available systems have appeared on the market. These include McCue CUBAClinical 

(Winchester, UK), Lunar Achilles (Madison, USA) and Osteo Signature (Framingham, 

USA). The various parameters measured and the locations are given in Table 3.6. 

Contact Ultrasonic Bone Analyser (CUBA) was used in this investigation and a brief 

description will be presented in Chapter 4.

Table 3 .6 : Clinical Ultrasonic Bone Measurement Systems

System Parameters Measured Measurement

site

Comment

Walker Sonic BUA Calcaneus Fixed distance 

Rectilinear scanning

Osteo Signature V(heel) Patella Contact

Lunar Archiles V(tof), BUA Calcaneus Fixed distance

CUBA Clinical V(heel and bone), 

BUA

Calcaneus Contact

Soft tissue corrections
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Chapter

4. EXPERIMENTAL METHODS

4.1 Introduction

Previous chapters have introduced the concepts relevant to this investigation. The 

various methods of measurement both for mechanical properties and ultrasonic 

parameters have been of a broad nature. This chapter will describe in greater detail the 

specific methods applied. The following parameters were investigated;

•  Mechanical parameters: Young's modulus (E), strength(c) and apprent density (p)

•  Ultrasonic properties: velocity (V) and broadband ultrasonic attenuation (BUA)

•  Structural properties: permeability (k)

The experimental set-up to acquire these parameters will be described with special 

emphasis on the precautions taken to achieve accurate and reproducible readings.

The in vitro measurements were performed in the following order:

1. Samples prepared.

2. Samples degassed.

3. Ultrasonic measurements (BUA and Velocity).

4. Samples defatted and degassed.

5. Ultrasonic measurements.

6. Permeability measured.

7. Mechanical properties (Young's modulus and strength) measured

8. Apparent density measured

4.2 Specimen

For the in vitro studies, proximal and distal bovine femi, human calcaneus and human 

vertebrae were investigated.
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The bovine samples were obtained fresh from a local butcher. No information on the 

sex, age and weight of the bovine samples were provided. The femi were cleaned and 

soft tissue removed. Large blocks of cancellous bone were then cut out using a band 

saw. These blocks were then cut down into 20 mm cubes under constant irrigation 

using a 220 grit diamond wafering blade, with fine smoothing on fine carborundum grit 

if necessary. These specimen were cut out at different locations from both the proximal 

and distal ends of the femi. The edges of the cubes were approximately in line with the 

longitudinal ( proximal-distal PD), anteroposterior (AP) and mediolateral(ML) axes of 

the bones from which they were obtained. The orientation with respect to the bone axis 

was noted and the sample's physical dimension measured.

The vertebrae specimens were obtained dried. No information of age, sex nor 

pathology were available. Cubes of variable sizes were cut out as described in the 

preceding paragraph. They were hydrated before any measurements were carried out.

The calcaneus samples were obtained post mortem from 20 different cadavers(ten 

males and ten females) with age range of 59 to 90 years. No pathological information 

on the specimens was available.

•  After removal of soft tissue, a coring drill with an internal diameter of 21 mm was 

used to remove samples in the mediolateral direction. This is approximately the 

area where clinical(m vivo) measurements are carried out.

•  The cortical end surfaces were removed to leave a cylinder of trabecular bone 

using 220 grit diamond wafering blade under constant irrigation.

•  The fat was then removed from the samples. This involves subjecting the specimen 

to high speed jet of water, and then compressed air. This process is repeated until 

no fat is visible. The specimen is then tumbled overnight in excess of 2:1 

chloroform-methanol mixture.

For all samples, care was taken to produce smooth parallel surfaces. This is crucial for 

accurate determination of Young's modulus [Currey, 1970]. The specimens were kept
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frozen ( -20°C) until required for testing, then they were thawed and allowed to attain 

room temperature before measurement.

During preparation, all specimen were kept wet and cool. All measurements were 

carried out at room temperature.

4.2.2 Specimen Degassing

Any slight introduction of air bubbles would increase the attenuation substantially 

since an air interface effectively acts as a total reflector. In the clinical situation ( in 

vivo), no air bubbles would be present. So, to ensure that no air bubbles are left inside 

the samples, they were thoroughly degassed under water using a water powered 

vacuum pump connected to a dessicator. The samples were left degassing overnight at 

a pressure of 30 inches of mercury (1 bar) on bowden gauge. The specimens were 

transferred to the water bath without exposure to air. A wetting agent (tepol) was 

applied to the water during degassing to enhance gas removal.

4.3 Ultrasonic Methods

Conventional ultrasonic technique are based on the pulse-echo technique which utilises 

a single transducer both to transmit and to receive the ultrasonic signals. An ultrasonic 

pulse generated by the transducer travels through the sample and is reflected from the 

far side interface, back into the transducer where it is detected. The pulse therefore 

travels twice through the measured sample. Due to the highly attenuating nature of 

cancellous bone, the reflected signal is very weak and thus difficult to detect. 

Therefore the pulse-echo technique is not applicable to cancellous bone and a 

transmission technique must be adopted. The transmission technique uses two 

transducers placed at opposite ends of the samples, one as the transmitter and the other 

as the receiver.

This technique has been incorporated into the Contact Ultrasonic Bone Analyser 

(CUBA) system [Langton et al., 1990b] which was used throughout this investigation. 

CUBA consisted of a portable PC interfaced to a spike generator (transmitter ) and 

digital receiver (Thurlby DSA 524) with dedicated menu driven software (Figure 4.1).
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Two 1 MHz (nominal frequency), broadband ultrasonic transducers were mounted on 

a hand-held sliding calliper. One transducer acts as the transmitter and the other as the 

receiver. Two pairs of broadband ultrasonic transducers were used during the 

investigation; a 19 mm and 13 mm diameters. The former were used for phantom 

studies while the later for in vitro studies. The calliper was attached to a digital vernier 

gauge to measure specimen thickness. The transmitting transducer was excited by a 

fast rising 600V pulse (width 1 ps), producing a short RF pulse of broadband 

ultrasound (Figure E.6). This signal after propagating through the sample (submerged 

in water) is received by the other transducer positioned on the other side of the 

specimen.

Coupling is an important consideration when performing ultrasound measurement since 

an air interface effectively acts as a total reflector. Water provided the coupling in this 

case. The samples were submerged in a water tank and all the measurement carried out 

under water. Immersion contact technique was used in the in vitro studies reported in 

this thesis. Tap water was used with tepol detergent to improve sample wetting and to 

increase the cavitational threshold [Njeh , 1990]

At the start of the measurements, the system is switched on after setting up and initially 

allowed 30 minutes before commencing measurements. This allows the water to settle, 

air bubbles to disperse and the electronics to warm up. Samples were also allowed a 

setting time of 5 minutes in the water. This stabilising period is to allow air bubbles 

introduced by placing the sample to escape.
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Figure 4-1: Schematic Diagram o f CUBA

As discussed in Chapter 3, ultrasound may be used to characterise the physical 

properties of a material such as cancellous bone. The two characterisation parameters 

are velocity and Broadband Ultrasound Attenuation(reduction in ultrasound signal 

amplitude -dB/MHz). The next section discusses how they are measured using the 

CUBA system.

4.3.1 Ultrasonic Velocity

Ultrasonic Velocity (V) can be defined as

_ Measured Sample Thickness 
Measured Transit time

If the thickness of the sample and the transit time for the ultrasonic pulse through it are 

measured the ultrasound velocity can thus be calculated. The CUBA system collects 

data in the time domain thus allowing for the transit time to be measured. During
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operation, the initial screen displays a transmission ultrasonic pulse. The amplitude 

and time sensitivity are controlled via the keyboard. The transit time is obtained 

through a digital timebase expansion method controlled manually by the operator but 

the clinical version of the CUBA has been updated to do it automatically. Also the 

clinical version has the facility to measure the overlying soft tissue using ultrasonic 

pulse-echo technique [Langton et al., 1990b]. The 4096 collected data points are 

initially represented using only 256 horizontal screen pixels. By expanding a small 

region (window) of the screen, 256 data points may be displayed on the 256 pixels. 

Transit time is measured from the begining of the first window (trigger pulse) to the 

arrival of the transmitted ultrasonic pulse. The precision of velocity measurement is 

typically 0.2% (based on 4 cm bone sample at 2500 m s'1 measured at 5 \is per 

division), since the resolution of time measurement is 1 % of time base sensitivity and 

the resolution of transducer separation is 0.01 mm.

4.3.2 Broadband Ultrasonic Attenuation (BUA)

To determine BUA, the frequency amplitude spectrum for a selected portion of the 

received time domain signal was calculated using a Fast Fourier Transform(FFT) 

algorithm. The frequency amplitude spectrum of the signal through a reference 

material, (chosen to be degassed water without the specimen) was first recorded and 

stored as the reference trace. The reference trace is usually recorded at transducer 

separation of 90 mm. The frequency spectrum of the signal after passing through the 

specimen was subtracted from that of the reference to yield directly the attenuation as 

a function of frequency (Figure 4.2). This subtraction method corrects for the 

frequency dependence of the transducer efficiency and beam profile for a particular 

pair of ultrasound transducers [Langton et al., 1984]
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Figure 4-2: Description o f BUA(a) The amplitude spectra fo r  a sample and reference are 

compared, (b) Typical attenuation trace, (c) Regression analysis is performed over a selected  

frequency range
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There is a linear relationship between attenuation and frequency for cancellous bone 

between 0.2 MHz and 0.6 MHz [Langton et al., 1984] (Figure 4.4b). Therefore, a 

linear regression was fitted for the plot of attenuation against frequency between 0.2

MHz and 0.6 MHz and the slope computed, to give BUA index of units dB MHz'* 

(Figure 4.2c). The BUA is nomalised for the fact that the reference trace and sample

trace are collected at different transducer separations denoted nBUA(dB M H z'l). To 

obtain a true volumetric parameter, the nBUA is further divided by the specimen

thickness to give nnBUA(dB M H z'1 cm- 1). All these calculations have been 

incorporated in the CUBA software. The software also stores both the time domain 

(received signal) and frequency domain (amplitude spectrum) for the test sample on 

disc thus enabling additional data analysis if required.

4.3.3 Evaluation of CUBA

The evaluation of clinical equipment involves investigating its reproducibility 

(precision), accuracy, sensitivity and specificity.

Reproducibility is the ability of a technique to produce identical result for the same 

sample on separate occasions, and is often referred to as the precision. The numerical 

representation of reproducibility can be made in several ways. If many samples are 

measured twice, the mean difference between the pairs of readings can be used. 

Equally, the standard deviation from this mean (sd), or the standard error of 

measurement (SEm), may be quoted. This is given by

SEm = Z (—7=) (4.1)

where n is the number of observations in the sample, and Z is the value from the 

standard normal distribution corresponding to K percent confidence. The confidence 

levels most commonly used in practice are 95%, 99% and 90%. If the confidence level 

is not specified 95% is used with z value of 1.96 [Bowman and Robinson, 1990]. This 

often produces the largest error, so very often the coefficient of variation (CV) defined 

as a percentage of the mean reading is used.
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It is generally accepted medically that precision (reproducibility) in a research 

environment is better than that of the daily hospital situation [Cummings and Black, 

1986]. However, measurements to check things such as the long term drift of 

equipment are often taken using ideal phantoms. This is one of the reasons for a bone 

phantom which will be treated in the next chapter. Reproducibility tests for the present 

work were carried out using low density polyethylene. This is one of the reference 

materials that was used to validate the CUBA system [Langton et al., 1990b].

Accuracy is the term given to the ability of a technique to measure a known quantity 

correctly, but can also be used to describe the correlation of one measuring system 

with an independent measurement. The other parameters for the evaluation of a system 

are sensitivity and specificity of the technique. For a clinical system this covers the 

ability of a technique to diagnose a problem correctly or not (Sensitivity = abnormals 

detected/total abnormals, Specificity = normals detected/ total normal). These last 

two parameters are of vital importance in the hospital environment but are not relevant 

to the present studies, so will not be considered further .

4.3.3.1 Short Term Reproducibility

Three 90 mm (A, B, C) long and 50 mm diameter polyethylene blocks were used at 

the beginning to investigate both the short term and long term reproducibility. Six 

successive independent measurements were recorded for each of the three blocks. The 

results are given in Tables 4.1 and 4.2. BUA has a CV range of 1.75% - 3.5% with a 

mean value of 2.75%. The implication of this is that a less than 2.75 % change in BUA 

can no be attributed to change in the measured parameter. Positioning could not have 

been a source of error in the precision measurement for these blocks. This is because at 

the macroscopic level they are homogeneous and the diameter were 140% larger than 

the transducer's diameter. The probable source of error could have been phase 

cancellation artefacts[Personnal communication-C Langton]. Velocity has a better 

precision (0.6%) than BUA, this could be attributed to the ability to measure the transit 

time accurately.
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Measurement BUA

No Block A Block B Block C ALL

1 36.45 36.75 38.23

2 37.62 39.28 39.98

3 36.25 38.70 38.31

4 38.33 38.28 39.78

5 40.16 38.94 38.79

6 38.50 38.80 38.66

Mean 37.89 38.46 38.96 38.35

Stdev 1.33 0.82 0.68 1.055

CV(%) 3.5 2.13 1.75 2.75

Table 4.2: Short Term Reproducibility o f Velocity

Measurement Velocity

No Block A Block B Block C ALL

1 2083 2049 2046

2 2073 2049 2047

3 2074 2050 2052

4 2043 2050 2043

5 2041 2051 2040

6- 2074 2053 2044

Mean 2065 2050 2045 2053

Stdev 16.4 1.37 3.73 12.72

CV(%) 0.8 0.07 0.18 0.62
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4.3.3.2 Long Term Reproducibility

The same blocks as in short term reproducibility were measured over a period of one 

month and the results are given in Table 4.3 and 4.4

Table 4.3: Long Term Reproducibility o f BUA

Days BUA CV(%) AH

Block A Block B Block C Block A Block B Block C

1 37.89 38.44 38.96 3.50 2.13 1.75

2 41.05 38.58 39.97 3.1 5.13 0.85

5 40.21 39.32 40.02 2.07 1.74 1.7

10 37.71 36.5 37.42 1.09 2.93 1.84

17 37.6 37.52 38.23 1.86 1.25 1.12

20 37.18 36.14 36.79 2.7 3.24 3.7

25 37.88 37.27 38.1 4.44 2.57 2.32

Mean 38.50 37.68 38.50 2.68 2.71 1.90 38.23

Stdev 1.38 1.071 1.13 1.04 1.17 0.86 1.26

CV 3.58 2.84 2.94 38.7 43 45 3.31

Table 4.4: Long Term Reproducibility o f Velocity

Days Velocity (m s"l) CV(%) All

Block A Block B Block C Block A Block B Block C

1 2065 2050 2045 0.75 0.07 0.18

2 2057 2045 2048 0.5 0.38 0.19

5 2093 2084 2079 0.37 0.31 0.21

10 2054 2048 2038 0.21 0.21 0.001

17 2079 2076 2074 0.21 0.01 0.16

20 2096 2091 2079 0.17 0.18 0.45

25 2079 2090 2090 0.34 0.23 0.23

Mean 2075 2069 2065 0.36 0.20 0.20 2070

Stdev 15.41 19.19 18.96 0.19 0.12 0.12 18.39

CV 0.74 0.93 0.92 52 59.9 60 0.89
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The blocks correlated well with each other. For example a regression analysis 

between block B and C gave an R-squared value of 95% with a coefficient of 0.978 

(p= 0.00) and a non significant intercept (p =0.846). There was no significant drift in 

the long term mean values for both BUA and velocity. The short term mean BUA was 

38.35 ±2.75% while the long term mean BUA was 38.23±3.31. There was a non 

significant daily fluctuation in the mean values measured. The cause of such fluctuation 

could arise from the water trace being recorded under different conditions or variation 

in room temperature. So, the non-significant variation could be attributed to the 

measuring conditions rather than the equipment.

4.4 Permeability Measurement

Permeability is an expression relating to the flow rate of a fluid through a porous 

material, the hydraulic pressure which causes the flow, the material thickness and the 

cross-sectional area. This relationship is known as the Darcy's Law (section 2.4).

4.4.1 Apparatus

There are many ways of measuring the permeability of media. Depending on the 

method the variables to be measured are volume of discharge, and time at constant 

pressure head or velocity and time at falling pressure head. For this experiment the 

falling pressure head was used. The schematic representation of the set-up is shown in 

Figures 4.3, 4.4. The two metre transparent perspex tube provides the pressure head. 

The lower end is attached to the specimen holder. The pipe was of internal diameter of 

34 mm. It was graduated from 2m to 0m at 0.2 m intervals
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Water from the  
tap

Pressure Head Tube

Overflow

Sample

Sam ple Holder

Bung

Water Collector

Figure 4-3: Schematic Representation o f Permeability Measurement

The specimen holder consists of 51 mm long cylindrical perspex casing of 34 mm 

inside diameter. The perspex casing is held between two brass plates, the top brass 

plate has an inner threaded surface which is used to screw it onto the long perspex 

tube. Two securing nuts fasten the plastic casing onto the brass casing . Two O-rings 

are fitted at the top and at the bottom of the specimen to keep the specimen in position 

as well as acting as a sealant in preventing the water from flowing through the sides 

rather than through the specimen. The O-rings had an outside diameter of 41.5 mm 

and inside diameter of 34 mm.
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For cubic specimens, a cylindrical perspex casing to fit into the original perspex casing 

with an internal cubic dimension was made. The cubes were made to fit well with no 

leakage by winding PTFE tape around them. For cylindrical specimens of diameter 

less than 34 mm, an adaptable casing was made. Water flow was prevented until the 

start of the experiment by applying a stopper bung at the bottom of the specimen 

holder. A computer program was used to carry out the measurements and calculate 

the permeability values.

Securing Nut

Brass Casing

■Perspex Casing

Specimen

Brass Plate

Figure 4-4: Specimen Holder 

4.4.2 Method and Procedure

If the liquid level changes from height Hq to H j in time tg j then from Equation 2.13, 

the flow velocity may be written as

v = KA£gAff
T[dAp

On the other hand , at a specific height H, then Equation 4.2 becomes
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dH  _  K ApgH  

dt T|d AP
(4.3)

Hl ' d H = KApg_‘j dt
(4.4)

giving

ln(Hi/Ho) (4.5)

where v is velocity (m s4 )  of fluid flow, rj is the viscosity (kg m“ls"l) of the fluid, A is 

the area (m^) of the specimen , p is the density (kg m'3) of the fluid , Ap  (m^) is the

area of the pipe and K is the permeability with units m^. In petroleum engineering, 

permeability is expressed in Darcy (10"8 cm^).

A two metre column of water was used to produce the initial hydraulic pressure 

through the specimen. The system was checked for leaks and when the water level in 

the pipe was static the bung was removed to initiate the flow and begin the 

measurements. The time Tqi to drop through each graduation was recorded by the

operator pressing the space bar of the computer, the time calculated from the internal 

clock.

The permeability coefficients (k) could be calculated using either Equation 4.2 (method 

1) or 4.5 (method 2).

Method 1: The variables are velocity and height. The level velocity changes from 

zero at maximum height to a maximum at zero height. There are various ways by 

which this velocity could be measured including:

a. Measuring instantaneous velocity at various points and taking an appropriate 

weighted mean.

b. Measuring the velocity at a point 3/4 of the way from the pipe centre to the wall, 

since it is well known that in a fully developed profile the velocity at that point is 

approximately equal to the mean velocity.
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c. Measuring the time for the meniscus to travel a specific distance from a known 

pressure height.

The third method was used with 0.2 m being the specific distance. Equation 4.2 implies 

that a linear plot of velocity versus height could be obtained provided all the other 

parameters remain constant. A linear regression was fitted for the plot of velocity 

versus height and the slope computed. The permeability coefficient was extracted 

from this gradient.

M eth o d  2: This method uses Equation 4.5 and by-passes the necessity of calculating 

the velocity. The time taken for the meniscus to fall from 2 m ( zero time) to the 

defined graduations was recorded. A linear regression was fitted to the plot of time 

versus natural log of height, and the gradient computed. The permeability coefficient 

could be calculated from this gradient.

4.4.3 Validation of the Technique

Sintered high density polyethylene (HDPE) gaseous filters were chosen for the porous 

media in the validation study due to the availability of manufacturers permeability 

values (Accumatic Filtration Limited) listed in Table 4.5. It is noted that the highest 

mean pore size of 125 pm is below those found in cancellous bone.

Table 4.5 : Properties o f the Filters Used in Validation

Sample 

or Grade

Pore size distribution Gas Permeability

min. mean max. (pm) 10‘8 rrfi

P 05 4 15 35 30

P 10 7 30 75 40

P 20 10 60 100 70

P 30 15 75 175 70

P 40 20 90 275 280

P 50 30 125 350 440
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Filters of 6 mm thickness and 35 mm diameter of each grade were used for this 

investigation. The following investigations were carried o u t:

♦  The permeability values were measured for one filter, then the number of filters ( 

thickness) was progressively increased to 5 filters (30 mm) of the same grade.

♦  One P50 filter was studied with the diameter being progressively decreased by 4 

mm to investigate the effect of specimen dimension.

4.4.3.1 Results

The results are given in Figure 4.5 and 4.6

Experimental Permeability vs Reference
25 0

2 0 0 -

1 5 0 -

5 0 -
R -  Squared =  0  .9 5

50 100 150 20 0  25 0  30 0  350  40 0  450
Reference (nT2)

Figure 4-5 : Comparison Between Experimental Permeability Values and References 

Values

It can be seen from Figure 4.5 that the values correlate very well with an R-square 

value of 95%. The linear regression fit gives the x-coefficient of 0.433. This implies 

that the experimental values are approximately a factor of 0.5 less that the references 

values, due to the reference values quoted for gaseous permeability rather than liquid
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permeability. The permeability results obtained using the two different methods as 

outlined in the preceding section were compared in Figure 4.6.

Comparison of the Two Methods
250

R -  Squared =  95%

1  100 -

R -  Squared = 9 2
LJ

100 150 200  25 0  300  3 5 0  40 0  450500
Reference Permeability

m Method 1 +  Method 2

Figure 4-6: Comparison o f the Two Experimental Methods

Method 2 has a higher R- squared value (95%) indicating a better accuracy. On the 

other hand the difference in R-squared values between the two methods is not 

statistically significant. Method 2 was found to have a short term reproducibility of 2- 

2.5% (cv) while method 1 was 7-8% (cv). The poor results of method 1 could have 

arisen from the method of velocity calculation. The change in velocity from the top of 

the pipe to the specimen is a continuous function and to calculate the discrete values 

requires a very sensitive device (which we did not have). Method 2 by-passes this 

problem by measuring the time. Further results of permeability in this report will refer 

to those obtained by method 2 except otherwise stated.

The effect of varying the specimen diameter is given in Figure 4.7.
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Permeabili ty vs  Diameter of  Spec imen
1 6 0 0

1 4 0 0 -

1 2 0 0  -

1 0 0 0 -

8 0 0 -

6 0 0 -

R -  Squared =  99 .1 %
4 0 0  -

200
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Reciprocal of Diameter Squared

Figure 4-7: Permeability versus the Reciprocal o f Specimen Diameter Squared

Figure 4.7 indicates that the areas A and Ap in Equation 4.2-4.5 represent the area 

surface of the specimen and the area through which the fluid is collected respectively, 

which are equal.

4.5 Mechanical Properties

4.5.1 Apparatus

To obtain the mechanical properties ( Young's modulus and compressive strength) an 

1122 Instron Universal Table Testing machine was used (See Figure 4.8), consisting 

basically of a cross head, loading column, water bath (to regulate the temperature), 3 

kN loading cell and chart recorder. The loading column is fabricated from stainless 

steel with flat, smooth but unpolished end. The base of the water bath is a 5 mm thick 

stainless steel plate. The full scale load had a range of 100N to 5000N.
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Figure 4-8: Schematic Representation o f the Instron Table Testing Machine 

4.5.2 Procedure

The measurements were carried out in compression. The cubes and cylinders of 

cancellous bone were compressed directly between the flat end of the loading column 

and the base of the water bath, which itself sat directly on a 5 kN load cell. Load and 

deformation were recorded on the machine's pen recorder, at a cross head speed of 1

mm minute" 1 and chart speed of 500 mm m inute'1. This gave a magnification of 500

and strain rate of 0.0017 s"l.

The maximum load to which the bone is loaded is important. For example if too low a 

load is used the load-deformation trace would not reach the linear portion. On the 

other hand if too high a load is used, the trace begin to bend over, that is the onset of 

yielding. If that happens, it introduces an error in the measured values of Young's 

modulus in other directions for cubic specimens. This is because of the onset of 

irreversible micro damage. Very different maximum loads were found appropriate for 

different specimens, mainly according to their apparent density. To minimise the 

possibility of loading the specimen into its yield region, ( since the elasticity was being
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measured in the 3 orthogonal direction for the cubic specimens), the compression load 

was gradually increased over several cycles until the load deformation curve was linear. 

Due to the viscoelastic nature of cancellous bone, this repetition was carried with the 

minimum time possible.

After measuring in the 3 directions for cubic specimen , one direction (proximal - distal 

) was compressed into its plastic region, in order to record the ultimate strength. 

Ultimate strength is the maximum load sustainable by the sample, was defined as the 

point where a deflection was not observed with increased in load (Figure 4.9).

Ultimate Stress

Yield Stress
«
(A<D

Strain

Figure 4-9: A Typical Stress - Strain Used to Define Ultimate Stress

The compliance of the loading system was determined at appropriate loads, by loading 

it against itself (that is no specimen present). The full scale load was increased from 

100N to 5000N and the deflection measured. This loading system compliance was 

corrected for in subsequent elasticity calculations. Although temperature has a slight 

effect on the mechanical properties [Brear et al., 1988] and on the velocity [Evans and
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Tavakoli, 1992] room temperature was used rather than physiological temperature to 

ease comparison with reported data.

The set up of the sample in measuring the mechanical properties introduces variation. 

This has been investigated by Linde and Hvid [1987] who demonstrated that different 

constraints on the loaded specimen, that is whether placed directly on wet platens, as 

here, or cemented to the platens, or constrained in a jacket, can produce differences in 

the strain at any particular load. This study was particularly constrained by the fact that 

loading was needed in three orthogonal directions, so cementing was not possible. This 

system was regarded as suitable for the purpose of this particular investigation, which 

was to demonstrate orientational dependence.

Mechanical measurements were done on defatted samples. This is because permeability 

measurements were required prior to compressing them. Fortunately the works of 

Pugh et al.[1973] and Carter and Hayes [1977] showed that the fluid in the inter- 

trabecular spaces has no effect on the mechanical behaviour of trabecular bone at the 

strain rate used in our investigation.

4.5.3 Calculations

Young's modulus was defined as the maximum slope of stress - strain curve in the most 

linear portion of the preyield region. With the modulus defined in this manner, the 

small initially non-linear behaviour due to surface irregularities of the specimen is 

disregarded.

Stress
Young's modulus = --------

Strain

= (Load/ cross-sectional area)/

(deflection/height)

To correct for the instrument's compliance the real deflection is calculated by dividing 

deflection by the magnification factor and then subtracting the correction factor. The 

correction factor is calculated using the regression Equation obtained from the linear fit
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of the load deflection graph of the instrument. A simple computer program was written 

by Dr. R. Hodgskinson to do the Young's modulus calculation in which the following 

inputs were required; height of the specimen(mm), cross-sectional area of the

specimen(mm^), deflection(mm), full scale load(N), and the magnification.

Ultimate strength was obtained by dividing the maximum load by the cross sectional 

area. For the cubic specimens this measurement could only be carried out in one of the 

orthogonal directions. This was chosen to be the proximal distal direction.

4.6 Apparent Density

The apparent density is defined as the ratio of dehydrated tissue mass to total specimen 

volume. The density measurements were carried out after the mechanical and 

ultrasonic testing. To obtain the dehydrated tissue mass, the soft tissue and fat were 

removed from the specimen as described by Brear et al.[1988]. This involves 

subjecting the specimen to high speed jet of water, and then compressed air. This 

process is repeated until no fat is visible. The specimen is then tumbled overnight in 

excess of 2:1 chloroform-methanol mixture. The defatted cubes were then dried at 60

- 70 °C  to constant weight. The pre-testing specimen external dimension were 

measured using a micrometer and the volume calculated. The dried weight is divided 

by the volume to give the apparent density.

90



Chapter

5. DEVELOPMENT OF BONE PHANTOMS

5.1 Introduction
This chapter demonstrates the attempt to develop a physical model for cancellous 

bone. The model will then be used to study the various parameters which affect the 

transmission of ultrasonic wave through a porous material. The structure of bone, 

especially cancellous, is both heterogeneous and anisotropic. This makes it difficult to 

model cancellous bone. Examining the structure of bone from the work of Whitehouse 

et al. [1971], Gibson [1985] proposed four structure for cancellous bone (see Chapter 

1). The models are idealised ones, in real bones, a combinations of the models are 

observed and they are continuous, that is, one model fuses into another without a 

distinct separation. The following sections will describe an attempt to mimic various 

bone components.

5.1.1 Materials

There are many attributes required in a bone phantoms which is to be tested 

ultrasonically and these include the following :

♦ Physical (density) and acoustical (velocity and attenuation) parameters must 

approach those for bone (See Table 5.1).

♦ The elimination of air bubbles. This is because air bubbles are highly attenuating 

and thus their presence will falsify the results.

♦ It must also be variable, that is the physical and acoustical properties may be 

changed.

♦ It must be easily available and inexpensive.

♦ It must be manageable, that is it could easily be prepared under normal 

laboratory conditions.
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♦ Durability and stability, this means the phantom could last for a long period of 

time without degradation.

In the search for bone phantom the following have been studied: Plaster of Paris, 

perspex, agar gel, lard, castor oil, aluminium mesh in agar gel and filters. The following 

sections will describe them in great detail.

Table 5.1: Velocities and Attenuation o f Common Medical and Industrial Materials, 

Wells, 1977

Material Velocity

m s '1

Attenuation 

dB M H z 'W '1

Density

kgm"3

Subcutaneous

Fat 1450 0.5 952

Muscle 1580 1.5 1075

Water 1480 - 1000

Cortical Bone 3000-4000 3.5 1800-2000

Cancellous Bone 1600-2500 5- 20 100-1000

Perspex 2680 2 1180

Aluminium 6400 0.02 2700

5.2 Cortical Bone Phantom

•  Plaster of Paris (POP)

•  PMMA (Perspex)

5.2.1 Plaster of Paris (POP)

Laboratory grade Plaster of Paris (calcium sulphate, BDH production no 27622) was 

studied. Specimens were prepared by mixing water with powder POP. The mixture 

was then left to set in an open ended cube whose internal dimensions were 

approximately 40 mm cubed. The cube so produced was then soaked in water for a 

number of days. This was necessary so as to eliminate the air pockets formed in the 

specimen during preparation. The optimum soaking time was not determined.
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5.2.1.1 Results

The weight ratio, 3:2 of POP to water yielded density and velocity values close to 

those of cortical bone (see Table 5.2) The exact value of density and velocity 

depended on the length of soaking. This was a critical drawback of the specimens, 

because virtually none of the specimens had identical values (see Table 5.2). From the 

results given in Tables 5.2, 5.3 and 5.4, POP was considered not to be practical as a 

cortical bone phantom:

♦ It was rather difficult to manufacture two specimens of identical BUA.

♦ The velocities came short of those quoted for cortical bone and nnBUA was 

more than two order of magnitude greater.

♦ It is impracticable as a phantom to study the effect of variation in structure.

The possible good feature of POP was the ability to vary the nnBUA by the 

introduction of holes into the block (see Table 5.3,5.4). The wide variation in nnBUA 

(6.47 - 20.97 dB MHz'1 cm"1 ) makes POP a good candidate for inter-equipment 

comparison.

Table 5.2: The Attenuation and Velocity in POP Specimens (numbers in bracket are 

CV)

Specimen nBUA nnBUA Velocity Density

dB MHz'1 dB M H z 'W 1 m s '1 Kg m"3

1 58.91(6) 12.56(10) 1750(0.4) 1654

2 64.53(2) 13.59(2) 2057(0.5) -

3 83.97(3) 18.34(3) 1877(1) -

4 26.59(10) 6.47(10) 2240(0.5) 1722

5 28.88(8) 7.04(8) 2227(0.7) 1784

6 27.27(3) 6.65(3) 2194(0.5) 1784

Mean 48.36 10.78 2056 1736

Stdev 22.13 4.43 186 53.7

CV 45.8% 41.1% 9% 3.1%
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Table 5.2 illustrates that there is a 46% variation in nBUA with a 3.1% change in 

density. The coefficient of variation in velocity is much lower than that for nBUA, 

probably because velocity is less sensitive to gas pockets in the sample. It can be noted 

that the last three specimens with higher density have a lower nBUA but higher 

velocities. This is an indication that these two ultrasonic quantities have different 

behaviour with changing physical parameters.

Table 5.3: The BUA and Velocity Values in a POP Specimen with 9, 3 mm Diameter 

Holes Measured over Period o f Time and Density 1631 Kg m 3.

Days nBUA nnBUA Velocity

0 83.43(4.1) 20.35(4.1) 1997

2 68.1(2) 16.61(2) 1997

4 85.98(2) 20.97(2) 1974

180 47.05(7) 11.4(7) 2188

Table 5.4: The BUA and Velocity values in a POP Specimen with 16, 4.1 mm 

diameter holes measured over period o f time and density 1325 Kg m 3

Days nBUA nnBUA Velocity

0 90.86(10) 22.61(10) 1952

10 80.94(4) 19.74(4) 1943

180 106.22(2.3) 25.98(2.3) 1966

It can be noted in Tables 5.3 and 5.4 the effects of introducing holes in POP and also 

changes in attenuation with time. Velocity for the two cases studied above is invariant 

with number of holes nor with duration after manufacture.

5.2.2 PoIymethylmethacrylate(PMMA) - Perspex Block

A brief description of polymers will be given so as to introduce the importance of some 

of the measurements made on polymers. High density polymers are long chain 

molecules with relative molecular masses from thousand to many millions. The 

polymer molecule may consist of a single chain-linear polymer, it may have secondary
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chains branching from the main. A branched polymer or the polymer chain may be 

bonded together at various points by covalent bonds (cross-linked polymer).

Polymers, depending on the rate of cooling from liquid(molten) state, can give rise to 

an amorphous or crystalline structure. In the amorphous state the polymers are 

randomly oriented. In the crystalline state the polymers chains are aligned. Polymers 

are further classified as thermoplastics, elastomers and thermosetting depending on 

their response to load and temperature. The mechanical properties as well as 

ultrasonic characteristic will depend on the type of polymer. For detail mechanical 

properties the reader is referred to standard texts of polymers [Gibson and Ashby, 

1984, Sprackling, 1985].

Table 5.5: Examples o f a Few Thermoplastic Polymers

Material Condition at 

room temp.

Density 

Kg m'3

Velocity 

m s'1

E(GPa)

Polyethylene(LD) P C 910-940 1950 0.15-0.24

Polyethylene(HD) P C 950-970 1950 0.55-1.0

PMMA Amorphous 1180 2670 3.3

Nylon P C 1150 2620 2-3.5

(PVC) Amorphous 1400 2.4-3

Where PVC is Polyvinyl chloride and P C represents partially crystalline polymers

It has been shown that polymers and fibre composite solid are example of materials 

with high attenuation coefficients[Hartmann and Jarzynski, 1972]. Although the 

densities and velocities of the polymers come short of those for cortical bone (See 

Tables 5.1, 5.5), the structure of these solids has been intensively studied and is 

considerably simpler than that of bone tissue [Hartmann and Jarzynski, 1972], It was 

anticipated that an insight into the mechanism of ultrasound transmission through bone 

may be achieved by first studying these simple polymers.

5.2.2.1 Results

The velocity and BUA values of perspex, polyethylene, polystyrene, and nylon were 

measured and the results are presented in Table 5.6. As a cortical bone mimics, none 

of the polymers met all of the requirements of a good cortical bone phantom. For

95



Chapter 5

example polyethylene has a very low density and the attenuation is quite high. Nylon 

on the other hand has too low an attenuation (52%) Perspex was the polymer with the 

closest properties to cortical bone.

♦  It has an nnBUA value of 3.97 ± 7 dB MHz'1 cm'1 which is a few percentage 

above quoted values for cortical bone.

♦  The velocity and density (see Table 5.5, 5.6) were not significantly less than 

those of cortical bone.

♦  Perspex is a popular polymer with most of its physical and acoustical properties 

well defined.
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Table 5.6: BUA and Velocity Values of the Polymers

Material Density

Kgm~3

nBUA 

dB M H z1

nnBUA 

dB M H z 'W

Velocity 

m s'1

Velocity* 

m s '1

Polyethylene 940 26.37 4.19 ±6% 2052.80 1950

Polystyrene 1060 42.58 4.73 ±11% 2078.81 2350

Nylon 1150 16.76 1.67 ±9% 2222.23 2620

PMMA 1180 27.90 3.97 ±7% 2624 2670

where velocity* is reference data velocity.
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Figure 5-1: Experimental and Reference Velocity o f the Polymers versus Density

From Table 5.6 no specific relationship seems to emerge. For example the BUA does 

not increase with density. But Garcia et al. [1978] suggested that there exists an 

inverse relationship between increased attenuation and increased density for polymers. 

A regression analysis gave an R2 value of 60.83% for the graph of density versus 

velocity and an R2 value 21.7% for the graph of density versus nnBUA. There are 

possible explanations to the absence of a relationship or poor correlation. The trivial 

one being the low number of data points. Other explanations may be the fact that
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density is a scalar quantity while velocity and BUA are apparently vector quantities. So 

their values are dependent on the density and structural properties of the material in 

question.

As seen from Table 5.5, although the four materials are all polymers they have 

structural differences. Nylon and polyethylene are partially crystalline, while PMMA 

and polystyrene are amorphous. The mode of interactions of ultrasound waves with 

these two types of polymers are fundamentally different. These concept is in line with 

the hypothesis of Hartmann and Jarzynski [1972] that a hysteresis mechanism is 

operative in the low megahertz frequency range. According to this concept attenuation 

in polymers depends on the structural geometry of the constituent long chain polymer 

molecules, and their inter-association. Thus, a given degree of crystallinity determines 

a set of possible structural states, an associated set of critical activation energies. 

Hysteresis absorption is then related to these energies. These differences could also be 

observed from the frequency spectrum output. While crystalline materials show 

approximately uniform attenuation with frequency, amorphous exhibits ringing.

The velocity showed an increase with density. Fundamentally the ultrasound velocity is 

a function of density of the medium. The poor correlation of the velocity of 

polystyrene and nylon and with reference data velocity can be attributed to the 

specimen size. The blocks had the following length: polyethylene- 63 mm, polystyrene- 

90 mm, nylon - 100 mm and perspex -70 mm. For long specimen the material 

attenuates most of the signal and thus increasing the error associated with transit time 

measurement. Finally, a more rigorous theoretical insight into the mechanism of 

ultrasound interaction will elucidate these results.

5.3 Fat Phantom

•  Agar Gel

•  Lard

•  Castor Oil

The physical characteristic of fat which are of importance in ultrasonic interaction are 

density and viscosity. The viscosity of the fluid affects the level of viscoils loss in 

ultrasonic interaction in composite porous materials. It has been shown [Evans, 1986]
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that in a fluid of changing viscosity, the attenuation increases with viscosity. The state 

of the fat (that is solid or liquid) is also important in ultrasonic interaction. Bone 

marrow is solid at room temperature but liquid at body temperature. The liquid state 

and the temperature affect the ultrasonic velocity and attenuation (Figure 5.2 and 5.3). 

Many materials have been suggested to mimic bone marrow among which are agar gel, 

lard and castor oil.

5.3.1 Agar Gel

The sample consisted of a powdered graphite suspension (averaged particle diameter, 

7 |L im ), in a solid matrix of agar, distilled water and n-propanol. The graphite powder 

concentration (99.5g/litre of material) determines the attenuation. The n-propanol 

concentration (8.6% in the matrix material) determines the speed of sound [Burlew et 

al., 1980]. The agar gel phantom had a velocity of 1472 m s'1 and density of 1100 kg

m'3 which are quite comparable to real fat of 1450 m s'1 and density 952 kg m'3. The 

phantom has the advantage of very low air spaces inside and good coupling. The most 

likely problem is the semi-solid state of the phantom, because bone marrow is 

supposed to be viscous. The viscous state affects the ultrasonic measurements. Agar 

gel could be prescribed as a good soft tissue mimic than bone marrow mimic.

5.3.2 Lard

The velocity of the original household lard was measured to be 1574.5 m s'1 and 

attenuation of -1.0 dB MHz'1 cm'1. When the lard was melted and allowed to solidify 

into a 40 mm cube, the acoustic properties measured thereafter were different. This is 

indicative of the fact that ultrasound measurement are dependent on both structure and 

density. When the lard is melted some of the covalent bonds are broken and when 

allowed to solidify the conditions such as temperature affects the bonding. For example 

the values of velocity measured for lard which solidified under room temperature were

different from those for lard which solidified at -20°C.

On the other hand, lard was melted and the temperature raised to 70°C and then 

allowed to cool, while BUA and velocity were measured. The results are presented in 

Figures 5.2 and 5.3 From this, it appears no trend exist between BUA and
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temperature, but a line plot presented in Appendix E (E .l) reveals three phases. The 

first phase is the steady decrease in BUA with decrease in temperature up to 35 °C, 

then there is a jump in BUA (phase I I ) and a gradual increase in BUA with decrease in 

temperature up to 18°C, where there a fall in BUA (Phase III) and then a gradual 

increase in BUA thereafter with decrease in temperature. These phases coincide 

approximately with the three state of lard: phase I - liquid, phase II- molten, and phase 

III - solid. This therefore supports the argument that BUA is dependent on the 

structure in addition to density.

There was a predictable trend between velocity and change in temperature with two 

different rate of change in velocity with temperature. From 70 °C to 27°C there is a 

2.91 m s'1 per °C fall in temperature, from 27°C to 0°C there is a rapid fall in velocity at 

9.29 m s '1 per °C. These are presented in Equations 5.1 -5.3 and Figure E.2.

[70 °C - 27°C] V = 1514 - 2.91*(Temp) R2 = 99% (5.1)

[27°C - 0°C] V = 1704 - 9.29*(Temp) R2 = 90% (5.2)

[70 °C - 0°C] V = 1642 - 5.61*(Temp) R2 = 89% (5.3)

Ultrasonic wave propagation is supported by the elasticity of the media and therefore 

explains why there is a decrease in velocity with increase in temperature. The 

difference in Figure 5.2 and 5.3 points to the fact that BUA and velocity are 

determined by different parameters of the medium.

Lard will be a good marrow phantom if it is maintained in a liquid state.
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Figure 5-2: The BUA in Lard with Changes in Temperature (°C)
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Figure 5-3: The velocity o f ultrasound in lard with fa ll in temperature
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5.3.3 Castor oil

It is a liquid at room temperature. This property makes it a very plausible mimic, 

although the viscosity may be different from that of bone marrow. Castor oil has a

density of 969 kg m'3 and velocity at room temperature of 1472 m s '1.

5.4 Cancellous Bone Phantom
The following structure have been investigated as possible cancellous bone mimics:

•  Aluminium mesh in agar gel,

•  Filters,

•  Porous perspex.

5.4.1 Aluminium Mesh in Agar Gel

The phantom was made up of aluminium mesh (supplied by David and Sons Ltd) 

placed in setting gel (agar). The mesh was approximately 1 mm in hole size.

Aluminium has the following properties- Density 2700 kg m'3, longitudinal velocity of 

6420 m s'1 and transverse velocity of 3040 m s'1. Human trabeculae has the following

properties: density 1820 kg m'3, longitudinal velocity 3300 m s'1, transverse velocity 

of 1800 m s'1. Therefore the probable disadvantage of aluminium is its high density 

and velocity of transmission compared to trabeculae which may magnify the effect of 

reflection at interfaces.

In the investigation three samples were prepared with the following specifications

1. The holes of the mesh placed parallel to each other,

2. The mesh placed criss-crossed,

3. Parallel mesh allowed to float in setting gel.

The ultrasonic velocity and attenuation were measured using water as coupling 

medium. Measurements of the attenuation and velocity were obtained as follows
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a) The direction of propagation was perpendicular to the plane of the mesh 

at 90 mm transducer separation,

b) The direction of propagation was parallel to the plane of the mesh at 90 

mm separation,

c) The transducer were touching the sample (42 mm thick) and 

perpendicular to the plane of the mesh,

d) The transducer were in contact with the sample and parallel to mesh 

plane.

The results are presented in Table 5.7

Table 5 .7 : The Results o f the A l Mesh in Agar Gel Phantom

Measurement Specimen BUA nnBUA Velocity

Method Specification dB MHz'1 dB M H z'W '1 m s '1

a 1 20 (4) 2.26 1529(0.3)

2 81(5) 9 1517(0.2)

3 33(1) 4 1525(0.2)

b 1 67(3) 7.41 1555(1.2)

2 58(4) 6.44 1557(0.7)

3 72(1) 8 1545(0.5)

c 1 30.2(1) 7.28 1534 (0.4)

2 48(6) 14.71 1519(0.5)

3 37(7) 9 1514(0.4)

d 1 72(2) 13.37 1567(0.6)

2 57(10) 10 1567(0.2)

3 73(1) 13 1589(0.6)

The following observations can be made from Table 5.7;

• The velocity recorded was on the lower band of cancellous bone velocity range. 

There is no significant change in velocity in the three different samples for the 

four measurement procedures. It could be noted that the velocity value is closer to 

soft tissue velocity than cancellous bone.
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• The attenuation in the phantom was in the range quoted for cancellous bone but the 

variation was not significant between specimens. The criss-cross arrangement 

produced a higher nnBUA than the parallel arrangement in the perpendicular 

direction.

5.4.2 Filters

Sintered high density polyethylene (HDPE) filters manufactured by Accumatic 

Filtration Limited were also considered as possible cancellous bone phantom (see 

Section 4.5.3). These filters are produced from powdered polyethylene, with controlled 

particle size distribution. The result of the acoustic properties are given in Table 5.8.

Table 5.8: Acoustic Properties o f HDPE Filters

Grade Mean Pore BUA nnBUA Velocity Density

size (pm) dB M H z1 dB M H z 'W '1 m s '1 kgm"3

P05 15 10.1(4.5) -0.23 1709 454.3

P20 60 21.14(1.6) 3.45 1732 500.7

P30 75 33.18(0.27) 7.46 1800 542.0

P40 90 36.30(0.5) 8.5 1776 553

P50 125 102.5(1) 30.43 1745 571.8

Mean 73 40.64 10.01 1752 524.36

Stdev 40.4 36.10 10.62 35.98 42.07

CV 55 88.83 100 2.1 8

The following observations can be made from Table 5.8;

* The density values for the filters fall within the range of cancellous bone 

densities (100 - 1000 kg m'3) but the range of densities was small with a 

CV of only 8%.

* Velocity values are also within the range quoted for cancellous bone 

(1600 - 2500 m s’1). It should be noted that although the densities were 

similar to those found in dense cancellous bone, the corresponding
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velocities were lower than expected. There was no significant change in 

measured velocity across the different filters, with a CV of 2%.

* The nnBUA values are within the range quoted for cancellous bone (5-20 

dB MHz'1 cm'1) The variation from filter to filter was significant especially 

in grade P50 (1%).

* The mean pore size were lower than observed in both human calcaneus 

(471 - 1469 |im, Hans, 1993) and human vertebrae (670 - 1390 |im, 

Bergot et al., 1988).

The drawbacks of HDPE filters as a phantom for the study of ultrasound propagation 

are the limited range of the pore size and density. It could be concluded that the filters 

are good phantoms for calibration because of the 100% CV range.

5.4.3 Porous Perspex

Perspex has previously been shown to be a favourable cortical bone phantom. Based 

upon the argument that the trabeculae of cancellous bone are of similar mechanical and 

ultrasonic properties to cortical bone, perspex was used to develop a simulation of 

cancellous bone. The perspex was first made heterogeneous by introducing an array of 

holes to mimic the marrow pores drilled using a computerised system. The object of 

the experiment was to investigate how the number and distribution of holes affected 

the BUA and velocity. The experiment was implemented as below:

36 (6x6) symmetrical and vertical holes were drilled on a perspex cube of 41x41x41 

mm dimension. The number of holes was kept constant but the hole diameter was 

increased from 1 mm to 5.5 mm in 0.5 mm step. One block was used continuously, 

that is, the hole size increase was done on the same specimen. The 36 holes covered an

area of 34x34 mm^ (Figure 5.4).
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Figure 5-4: Schematic Representation o f Holes in Perspex Cube, (A) hole diameter o f  

2 mm, (B) maximum hole diameter 5.5 mm

5.4.3.1 Results o f  Perspex Studies

Porosity is a characteristic of a porous medium and is defined here as the fraction of 

the holes to the total volume covered by the holes.

Porosity = (Volume of Pore/Vol. of Solid)xl00. (5.1)

Porosity = Ntk|)^/4A , (5.2)

where N is the total number of holes, $ is the diameter of the holes and A is the area 

covered by the holes.

The results are given in Table 5.9, where d represents inter-hole spacing, <|) hole 

diameter and the numbers in bracket are the coefficients of variation. Substituting the

values (N = 36, A = 1156 and it) in Equation 5.2 gives 2 A 5 ^ .  nnBUA was obtained 

by dividing nBUA with the specimen thickness.
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Table 5.9: The effect o f increase in hole diameter on BUA and velocity fo r  36 holes 

on an area o f 34x34

4>

(mm)

d

(mm)

Porosity

(2.45(>2)

nBUA 

(dB MHz'1)

nnBUA

(dB MHz ’W 1)

Velocity

(m s '1)

0 5.7 0 21.9(7) 5.34(7) 2657 (0.5)

1 4.7 2.5 23.06(9) 5.63(9) 2657 (0.5)

1.5 4.2 5.5 31.83(4) 7.62(4) 2646 (0.6)

2 3.7 9.8 39.70(1.4) 9.68(1.4) 2636 (0.6)

2.5 3.2 15.3 46.88(2.2) 11.44(2.2) 2637 (0.7)

3.0 2.7 22. 54.60(5) 13.32(5) 2634 (0.6)

3.5 2.2 30 56.02(2.3) 13.61(2.3) 2570 (0.8)

4.0 1.7 39.1 43.11(3.5) 10.51(3.5) 2457 (0.6)

4.5 1.2 49.5 27.94(6) 6.81(6) 2457 (0.6)

5.0 0.7 61.1 15.98(10) 3.90(10) 1969 (0.5)

5.5 0.2 74 8.68(12) 2.12(12) 1805 (0.4)

* The values in bracket are the coefficient of variation for the measurement

The discussion of the mechanism of ultrasound attenuation in the porous perspex will 

be presented in Chapter 6. It will suffice in this Section to analyse Table 5.9 in terms of 

its ability to mimic cancellous bone. The following can be observed from Table 5.9:

* The apparent density range (1180 - 295 Kg m’3) produced by drilling 

holes into the perspex block are within range of quoted values for 

cancellous bone.

* A large nnBUA range ( 2.12 - 11.44 dB MHz ^cm'1 ) with a mean of 

8 .18+ 45% dB MHz ^cm'1 also apparent.

* Velocity values are on the upper quartile of those quoted for cancellous 

bone and the only change in velocity value was observed for very large 

porosity samples.

* The behaviour of BUA was non-linear with changes in hole size.
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It can be concluded that porous perspex is a good cancellous bone phantom. It will be 

further used to study the effect of different number, size and distribution on BUA.

5.5 Conclusions
Pop was found not to be a good cortical bone phantom because it was not possible to 

manufacture identical phantoms and the attenuation was largely dependent on the 

length of soaking. Perspex was a better cortical bone phantom in terms of durability, 

stability, and manageability. Perspex also had the highest velocity and density of all the 

polymers studied and thus was the most appropriate of all the polymers as a substitute 

for cortical bone.

Agar gel was more of a soft tissue phantom than fat because of its high viscosity. Lard 

and castor oil were found to have properties close to fat. It was also demonstrated that 

both velocity and attenuation in the lard were dependent on temperature.

The ultimate objection was to be able to model cancellous bone, as 3-dimensional 

network of struts with the spaces filled by bone marrow. Aluminium mesh in agar gel 

did not satisfy the requirement of a cancellous bone phantom. It has been established 

that perspex with holes drilled in them provided a convenient phantom to study the 

propagation of ultrasound through porous material. On the other hand HDPE filters 

was found to be a good phantom for reproducibility study.
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6. EVALUATION OF CANCELLOUS BONE

PHANTOMS

6.1 Ultrasonic Studies of Porous Perspex
The cancellous bone phantoms developed in Chapter 5 were then used to study the 

ultrasonic and material properties. Perspex was shown previously as a favourable 

cortical bone phantom. Based on the argument that the trabeculae of cancellous bone is 

similar to cortical bone, perspex was used to simulate cancellous bone. This was 

achieved by drilling cylindrical holes into the cube. The objective of the experiment 

was to investigate the effect of hole size, number and distribution on the BUA and 

possibly velocity. The experimental details are given below in Section 6.1.1.

6.1.1 Experimental Procedure

Initially, the perspex was made heterogeneous by introducing scatterers as holes. The 

holes were an exaggerated representation of the pores found in cancellous bone. The 

holes were drilled using a computerised system. The following set up of holes were 

investigated.

♦ Constant number of holes but variable hole diameter.

36 (6x6) symmetrical and vertical holes were drilled into a 41 mm perspex cube. The 

number of holes was kept constant but the hole diameter was increased from 1 mm to 

5.5 mm in 0.5 mm steps. One block was used continuously, that is, the hole size

increase was done on the same specimen. The 36 holes covered an area of 34x34 mm^ 

(Figure 6.1). The procedure was repeated for 25 (5x5) and 16 (4x4) hole array
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covering an area of 30x30 mm^ and 25x25 mm^ respectively. In addition, 16 (4x4) 

symmetrical holes on an area of 34x34 mm^ was investigated.

♦ Constant hole diameter but variable number of holes.

The second group of investigations commenced with 4 holes (of 3 mm diameter) and 

progressed with an increase in the number of holes. The hole diameter was constant 

throughout. The various configurations studied are illustrated in Figures 6.2 and 6.3. 

The small arrows indicate the direction of propagation of the ultrasound wave and the 

large arrows indicate the direction of increase in number of holes. For example after 

measuring directions A1 and A2, the number of holes were increased and direction B1 

and B2 were measured.

♦ Non symmetrical arrays of holes.

The third arrangement consisted of a non symmetrical arrays of holes as illustrated in 

Figures 6.2C, 6.2D, 6.3F, and 6.3G. To further investigate the non-symmetrical arrays 

effect, two random hole patterns were generated with the following specifications (see 

Figure E.5):

1. 25 holes , 10 of which were of diameter 1.5 mm and 15 of diameter 2 mm

2. 30 holes , 10 holes were of diameter 1 mm, another 10 of diameter 22 mm and

the remaining 10 holes of diameter 2.5 mm.

The cubes were measured in four directions, that is on each cubic comers.

♦ Coupling and degassing effect.

The effects of changing the fluid in the holes, changing the couplant and degassing 

were investigated. Castor oil was used to replace water in some of the arrangements 

and investigations were carried out on the water and gel couplant.
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Figure 6-1: Schematic Representation o f Variation in Hole Numbers at Constant hole 

Diameter: A(4 holes), B(6 holes), C(8 holes) and D(10 holes)
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Figure 6-2: Schematic Representation o f Variation in Hole Numbers: E(12 holes), 

F(16 holes), G(33 holes) and H( 12 holes at 4 mm diameter)

In all the experimentation CUBA system was used and the velocity and BUA obtained 

are as described in Chapter 4. The measurements were carried out in wetted water 

(wetting increases the threshold of cavitation [Njeh 1990]). Water has a different 

acoustic impedance and absorption coefficient to perspex. Thus the interface between 

water and perspex acts as scatterers to incoming waves.

6.1.2 Results of Perspex Studies

The results are given in Appendix A, Tables A .l, A.2, A.3, A.4, A.5, A.6 and A.7, 

where d represents inter-hole spacing, $ hole diameter and the numbers in bracket are 

the coefficients of variation (stdev/mean*100). Table A .l represents nBUA, velocity
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and porosity for 25 holes (5x5) on an area of 900 mm^ Porosity is a characteristic of 

a porous medium and is defined in Section 5.4.3.1 as (N7U(j)2)/4A, where N is the total 

number of holes, (]) is the diameter of the holes and A is the area covered by the holes. 

Substituting the values (N = 25, A = 900 and n) in Equation 5.2 gives 2.18(|)2. Since 

the specimen thickness was constant it was thought unnecessary to include nnBUA for 

the tables. Table A.2 represents the results for 16 holes (4x4) on an area of 1156 mm2. 

Table A.4 represents the results for constant hole diameter with variable number of 

holes. The notation of the directions are as presented in Figures 6.1 and 6.2. Table A.5 

is a subset of Table A.4 including only those specimens with same hole size (3mm) and 

same number of rows(3). Table A.6 represents results for asymmetric setup.

6.1.3 Discussion for Porous Perspex Cancellous Bone Phantom

6.1.3.1 Broadband Ultrasonic Attenuation(BUA)

As mentioned earlier in Chapter 4 a contact method for ultrasonic measurement was 

used. The transducers were placed in contact with the perspex, submerged in degassed 

water with one transmitting and one receiving.

The plots of attenuation as a function of hole diameter and porosity are given in 

Figures 6.3 and 6.4. It can be observed that the attenuation (nBUA) increases with 

increase in hole diameter up to 3.5 mm and decreases rapidly thereafter. As would be 

expected the behaviour is similar for both hole diameter and porosity, the difference 

being a shift in the symmetry of the parabolic curve.
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The above results (Figures 6.3 and 6.4) could be explained in terms of the modes of 

interaction of ultrasound with perspex. The attenuation of the received signal could 

arise from geometric divergence (diffraction), absorption, scattering or a combination 

of the processes (see Chapter 3). The geometric divergence arises when the sound 

beam diverges from the centre of the beam in the far field. As shown in Table 6.1 and 

Equation 3.2 the onset of divergence depends on the frequency of the propagating 

wave and the diameter of the transducer (in this case 19 mm). The perspex blocks were 

41 mm cube and the end of the near field occurred within the specimen, therefore 

divergence loss was a contributory factor to the attenuation. This contribution is 

constant and therefore will not account for the behaviour of attenuation with changing 

hole diameter (Figures 6.3 and 6.4).

Table 6-1: The Wavelength and Near Field Range with Perspex

Frequency

(MHz)

Velocity

(m s '1)

Wavelength

(mm)
^max

(mm)

0.2 2657 13.29 6.79

0.6 2657 4.43 20.37

1 2657 2.66 33.93

In the perspex block without holes, the main attenuation mechanism is absorption 

(absorption in perpex ((7^)) and reflection at the perspex - water interface (a spw).

This is because perspex is amorphous and has no appreciable voids. The type of 

absorption mechanism has been described by Hartmann and Jarzynski [1972] as 

hysteresis. They further postulated that absorption mechanism occurs at the molecular 

level as the trapping of the polymer in one of its many local potential energy minima.

The introduction of voids in the form of cylindrical holes increases the attenuation 

processes (Figure 6.6). the additional attenuation processes being:

♦ Absorption in water (oaw),

♦ Scattering at perspex - hole interface (<3sph) and hole - perspex 

interface (a shp).
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Total attenuation coefficient (g j ) can be expressed as follows

G T = ' L ( G aP +G aw + G j P +G sPt + G , P h + G s hP)- (6.1)

The author does not use this model to predict the experimental results but to 

qualitatively explain the observations. The effect of reflection coefficients at the 

transducer-perspex interface and perspex-transducer with changing hole diameter are 

constant and thus could be eliminated from the equation. The contribution to 

attenuation with changing hole diameter are therefore absorption and scattering at the 

pore interface. The total absorption component of the attenuation is given by

where Wp and ww are the fractional width of perspex and water respectively. Since

the attenuation in water is used as the reference, its attenuation is therefore taken to be 

zero. Therefore Equation 6.2 becomes

The fractional width of perspex is given by (Area of perspex(Ap)/Total area of 

cube(A^))

but Ap = A{ - Aw (where Aw is the area of water), substituting in Equation 6.4,

the perspex without holes ( Table 6.1) was 5.34 dB MHz^cm'1. Substituting all these 

into Equation 6.5 gives

M'aT = wpa aP + ww a aw, (6.2)

M̂aT =  W p G ap . (6.3)

A p
VaT=— °aP-

A t
(6.4)

(6.5)

The area of the cube is 4.12 cm^, Aw = 36tc(J)̂ /4, and the measured attenuation in

367t(|)/4‘
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The results of Equation 6.6 are given in Figure 6.6. It shows that total absorption 

decreases with increase in hole diameter. Therefore the observed increase in 

attenuation with increase in hole diameter is due to the scattering effect.

0  0  0  0  0  0  
-}-Q 0  0  0  0  0  
f G O O O O O  
\ O O P  0 0  0

1
2

' 0 0 0  0 0  0  
0  0  0  0  0  0

Transducer Attenuation

1 Transmitting 3 Absorption in perspex 5 Scattering ph

4 Absorption in water 6 Scattering hP2 Receiving

<A> 2 mm holes (B> S.5 mm holes

Figure 6-5: The Attenuation Processes in the Perspex Cube
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The relationship between scattering contribution to attenuation and pore diameter(<|))

depends on the wavelength of the propagating signal. For X »  <|), it has been

proposed that CJs(f) = constant*(|)3f4 [Sanie et al. , 1987]. The cubic dependence

of this relationship comes from the volume of the sphericals inclusions, therefore in this 

case of cylindrical holes quadratic dependence may be more appropriate. A linear 

regression of log to base ten of nBUA versus log of hole diameter for hole diameter 

of 1 to 3.5 mm resulted in Equation 6.7,

log(nB U A )=  1.371 + 0.735log(ty) R 2 =  99.2%  (6.7).

Equation 6.7 shows that attenuation (nBUA) in this particular investigation was 

approximately related to hole diameter raised to 0.74 power. This is to be expected 

because as A, —> (|), the scattering coefficient becomes far less sensitive to pore size and 

Gs(f) —> constant*(|). Qualitatively looking at Figure 6.6, it can be seen that as the

hole diameter increases from 0 mm to 3.5 mm, the scattering cross section increases. 

This is because below 3.5 mm some of the waves go through the cube without passing 

through the holes. After about 3.5 mm the scattering cross section becomes constant 

and the dominant attenuation process becomes the absorption. Also, in terms of 

frequency, high frequency components are scattered with large intensity compared to 

low frequency component. The same experiment was carried out but reducing the 

total number of holes and the results are presented in Figures 6.7 and 6.8.
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Figures 6.7 and 6.8 illustrate the following :

♦ The three configurations all peaked at a hole diameter of 3.5 mm and

inter hole spacing (d ) of 2 < d < 3 mm.

♦ The peak porosities were 30 %, 26.7 % and 24.6 % for 36 holes, 25

holes and 16 holes, respectively.

♦ 36 hole configuration has higher nBUA at hole diameters of less than 3.5

mm.

♦ A linear regression of log nBUA against log of hole diameter from 1 mm 

to 3.5 mm (number of samples 6) gives the following gradients 0.735±

0.034. 1.057±0.078 and 0.933±0.096, and R2 = 99.2%, 97.9% and 

95.9%, for 36 holes, 25 holes and 16 holes, respectively, where ± is the 

standard deviation.
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♦ The fall in attenuation with hole diameter after 3.5 mm is not very 

smooth for 25 holes and 16 holes.

The above observations could be explained thus: The 3.5 mm hole diameter

correspond to an inter-hole spacing of less than 2.75, hence less than the wavelength 

(nominal) of the transducer. Therefore after 3.5 mm absorption dominates and hence 

the decrease in nBUA. If the contribution to attenuation from the holes is additive 

then one would expect the attenuation at any particular hole diameter to decrease with 

decrease in number of holes. But the results show no significant change. This anomaly 

may be explained by one or both of the following:-

I. Although the number of holes changed the area was not fixed, hence the 

wave interacted with the same total number of scatterers in all the three 

cases.

II. Also, changing hole number and maintaining the symmetry, maintains the 

structure but changes the density.

An attempt to verify the first statement was performed by repeating the experiment

with 16 holes but on 34x34 mm^ area. The results are presented in Table A.3. BUA 

peaked at 3 mm hole diameter, 5.5 inter hole spacing and 9.8 % porosity. Therefore 

the explanation of the results presented is highly possible.

The dome shape behaviour of nBUA with porosity poses a problem in predicting the 

porosity of a sample when the nBUA is measured. A look at Figure 6.9 shows some 

of the complications in using BUA as a predictor. BUA of specimen 1 is equal to 

BUA of specimen 3 but at any frequency fg, specimen 1 is more attenuating than

specimen 3. On the other hand specimen 2 is more attenuating than specimen 3 but has 

a lower BUA. In the application of BUA to bone, the impact of the second problem is 

small because A1 differs from A3 in the absorption and this value will be the same.

The author proposes that a combination of attenuation at a particular frequency 

(0.4MHz) with nBUA could linearize the response of nBUA with porosity. The 

attenuation values are given in Tables A .l, A.2 and A.4. The attenuation at 0.4MHz 

was not recorded for 36 holes because the software used in that case did not allow 

access to attenuation at particular frequencies.
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Specimen 1

Specimen 2

Specimen 3
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Frequency (KHz)

Figure 6-9: Schematic Representation o f the Problem with BUA in Prediction
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Figure 6-10: Attenuation at 0.4MHz fo r  25 Holes versus Porosity
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The attenuation for 25 holes shows an increase with increase in porosity (Figure 6.10 

), while the response for 16 holes has a peak at 3 mm hole diameter. The attenuation at 

0.4MHz was then multiplied with nBUA and the result is given in Figure 6.11. The 

effect of linearize the behaviour of nBUA with porosity was not achieved. The nBUA 

was then divided by the attenuation at 0.4MHz and an exponentially decaying response 

was obtained (Figure 6.12). Dividing nBUA by attenuation results in a quantity with 

physical meaning of MHz'1. A plot of log of nBUA/attenuation as function of 

porosity produce a linear response (Figure 6.12). The result of a linear regression fit 

applied to this graph is given in Equation 6.8,

Log(nBUAZatt) =1.102 - 0.025(Porosity) R2 = 96.7% (6.8).
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Figure 6-11: nBUA Multiplied by Attenuation and Plotted against Porosity fo r  25 

and 16 Holes
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Figure 6-12: nBUA divided by Attenuation Plotted against Porosity

The second and third group of experiments were aimed at identifying the structural 

effect on BUA and velocity values. The results are given in Table A.4 and A.5 

(Appendix A). The inter-hole spacing, d was given because it is also a structural index. 

This spacing is analogous to trabeculae width in cancellous bone. It can be observed 

from the Tables that

j i  °r O —> P  -----
BUA(l) O  BUA(2)

BUA(l) *  BUA(2) and d(l) *  d(2)

The nBUA depends on the number of rows, number of holes, inter-hole spacing (d), 

hole diameter and spatial distribution (direction) of holes. The various factors affecting 

the nBUA is indicative of the complexity of the system. In order to demonstrate an

124



Chapter 6

accurate correlation between BUA and one other influencing factors everything else 

must remain constant. This is rather difficult, for example when the number of rows is 

increased, the number of holes also increases. This makes it difficult to extract the 

independent effect of a single factor. So it is rather difficult to predict the effect of each 

factor on nBUA from Table A.4. Prediction of the influence of a particular 

configuration on the total attenuation would require analysis of a complex situation.

There is no prominent trend in the measured BUA in Table A.4, but when the set up 

with the same hole diameters and same number of rows are separated into Table A.5, a 

gradual increase in BUA with number of holes was observed.

The observations recorded in Table A.4 and A.5 may be qualitatively explained as 

follows

♦ Increase in hole number at constant hole diameter results in an increase in 

scattering cross section as long as the diameter is less than 3.5 mm. 

Therefore an increase in nBUA with increase in hole number would be 

expected (Table A.5).

♦ Attenuation is linearly related to distance of the specimen propagated, 

therefore the amplitude of the scattered wave will depend on the position 

or spatial arrangement of the scatterers in the sample. Hence the 

observed effect of number of holes and direction on nBUA.

♦ The effect of inter-hole spacing relates to the wavelength of the wave in 

determining the magnitude of absorption and scattering cross sections

The results of the random hole pattern is presented in Table A.6 . It could be seen that 

the difference between X and Y directions are significant, but no significant difference 

was observed between XX and X, nor between YY and Y.

The last set of experiment was designed to demonstate the effect of coupling fluid, 

type of liquid in the holes and the effect of gas bubbles. The results are given in Table 

A .l . The results confirmed the fact that if the fluid of different density and viscosity is 

used the resultant BUA values are going to differ. The density affects the coefficient of 

reflection at the interface while viscosity affects the viscous loss. The effect of the 

couplant is not significant because it affects only the transducer perspex interface.
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6.1.3.2 Velocity

The velocity was measured as described in Chapter 4. Velocity values were measured 

for all the perspex investigations discussed above. A plot of velocity as function of 

hole diameter for 36 (6x6) holes configuration is given in Figure 6.13 and 6.14. There 

is no significant change in velocity before 3.5 mm (porosity 30%) at which point it 

starts to decrease with hole diameter. This same effect was also observed in the other 

symmetric hole configurations.

Below 3.5 mm the material could be considered homogeneous for velocity calculation 

purposes. Hence the velocity recorded is that through the frame (perspex). After 3.5 

mm the material becomes inhomogeneous and the velocity becomes the velocity of the 

system which in this case is perspex and water. A linear regression fit to the linear 

portion produces equation 6.9. From this equation the velocity at 100% porosity (that 

is water velocity ) could be predicted to 1414 ± 120 (± standard error of estimate). 

This value is within experimental error close to the quoted value for water.

V  = 3080.983 - 16.66(porosity) R2 =  90.1 (6.9)
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The behaviour of velocity with hole diameter observed for the 6x6 hole configuration 

was poorer for the other hole configurations (5x5, 4x4) because the area covered by 

the holes was smaller hence exposing the set-up to repositioning problems.

There was no significant variation in the velocity measured for the second group of 

experiment (keeping the hole diameter constant, but varying the number). This is in line 

with the explanation given for the behaviour with varying hole diameter, because at 3 

mm hole diameter the specimen is still homogeneous and hence no variation in velocity

There is little in the form of theory that can be used to explain or predict these 

observations. Multiple scattering theory of Waterman and Truell[1961] have been 

adapted to porous solids but these theories are only applicable at low porosities (<10 (X 

m) and very high frequencies (>2 MHz <40 MHz). It has therefore been suggested 

[Mckelvie and Palmer, 1991] that Biot theory could be adapted to explain attenuation 

in our frequency band and high porosity.

Over a relaxation region of the acoustic frequency spectrum the velocity of sound is 

also observed to vary with frequency. In practice, however, the total variation is
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usually less than 1% of the actual speed and requires accurate measurements if 

quantitative deductions are to be made. Kramer and Kronig[Hughes et al., 1987] have 

developed a relationship between frequency dependent attenuation and phase velocity. 

The usefulness of these exact equations is limited by the fact that data are required 

over a frequency range extending from 0 to [Hughes et al., 1987].

6.1.3.3 Sources o f  Error

The size of the specimen was 41x41x41 and the diameter of transducer was 19 mm. 

Measurements were performed with the transducers in contact with the specimen, so 

the Fresnel region of the wave propagation is also used. The intensity of the wave is 

not uniform across the beam.

The scatterers introduced in the form of holes were not within the 19 mm diameter. 

Hence it was not possible to account for the effect of holes outside the field of the 

waves.

Further errors in attenuation and velocity measurement may arise from a number of 

sources including sample thickness measurement, digitisation, electronic noise and 

presence of gas bubbles in the water.

The temperture of the water bath was assumed to be room temperature. No control 

apparatus was set up to maintain it at a constant value so any fluctuation in the room 

temperature may have introduced some of the experimental errors.

6.2 Structural Studies

6.2.1 Perspex Modelling of Permeability

The permeability technique for quantitative assessment of cancellous bone was further 

validated by development of theoretical models. Since the actual geometry of the 

cancellous bone is often much too complicated for any mathematical analysis, the 

media was represented by theoretical models which can be treated mathematically. The 

level of complexity can then be increased to simulate the real porous media. The

128



Chapter 6

simplest models are those consisting of capillaries [Scheidegger, 1974]. There is also 

the "ball and Stick" proposed by Koplik [Koplik et al., 1984]. The straight capillaries 

model was investigated and is reported in this report. This model represent a porous 

medium by a bundle of straight parallel capillaries of uniform diameter $ ( Figure 6.1). 

The flow Q through a capillary is then given by the well known Hagen-Poiseuille Law

j t $ _ d p /  ( 6 I )
128ti / d x  y }

where r| is the viscosity and / f t x  the pressure gradient. If there are n such

capillaries per unit area of cross-section of the model, then the flow per unit area q will 

be

q = n-^J—'jpA r . (6.2)
128t) / a  x

Substituting Equation 2.12 to 6.2 yields the value of permeability to be

n n § 4
k  = — — (6.3)
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A comparison between the theoretical prediction and the experimental results are 

presented in Table A .8 and Figure 6.15 and shows a high correlation.
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Figure 6-15: Comparison Between Experimental and Theoretical Permeability
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6.2.2 Filter Studies

Porous sintered polyethene filters as explained in Chapter 4 were used to validate the 

experimental method of permeability measurement and were used in this section to 

investigate the relationship between permeability and BUA.

The permeability values were measured for one filter (6 mm thick and 40 mm 

diameter). The number of filters (thickness) was progressively increased to 5 filters (6 

mm - 30 mm) for a particular grade. The same procedure was repeated for all the 

grades. BUA values were also measured using the same sequence as described for 

permeability.

6.2.3 Results and Discussion of Filter Studies:

A plot of permeability against thickness for grade 400 (P40) is presented in Figure 

6.16. From the graph it could be observed that the permeability value increases with 

increase in thickness, from 5 mm to 15 mm and level off thereafter. From the equation 

for permeability (4.2) it would be expected that the permeability to be independent of 

thickness. The only possible explanation is that for the small thickness the rate of flow 

is not laminar and the application of Darcy law is not totally valid. This is confirmed 

by the fact that for lower permeability filters, the increase is less significant.

A plot of permeability versus grade is given in Figure 6.17. Grade values represent an 

indication of pore size distribution. The higher the grade the higher the porosity and 

the lower the density. The measured apparent density values showed a small range

0.4543 g cm'3 - 0.5718 g cm'3. Figure 6.17 shows that permeability is linearly related to 

porosity. This is expected and was demonstrated in the modelling.
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To further verify the relationship between BUA in the filters and theoretical 

expectations, the attenuation values were recorded as a function of filter thickness. 

That is, the filters were progressively increased from 6 mm to 30 mm. The results are 

given in Figure 6.18. The R- squared value of 99.7% confirms the linear dependence of 

attenuation with thickness. This also justifies the use of this filter to study the 

relationship between BUA and permeability.

A plot of BUA versus grade is presented in Figure 6.19. BUA is highly correlated 

with grade, with an R-squared value of 85%. BUA in a porous material as explained 

in the preceeding section on perspex, is a function of pore size. The filters had a pore 

size distribution of 4 pm - 350 pm (Table 4.3). The pore size ((J>) satisfied the 

condition of X »  <|). So, a plot of natural log of BUA versus pore size is given in 

Figure 6.20 and the linear regression fit given in Equation 6.9,

In (BUA) = -2.65 + 1.37ln(pore size) B? -  96% (6.9)

The high correlation coefficient (R^ = 96%) shows that BUA could be related mainly

to the (|)1*37 in the filter. It is worth noting that the structure in the filter was constant 

since they were produced by the same procedure with only increase in the diameter of 

the pores. A look back at the perspex results confirms the theory that as A, —> <|), then 

the dependence of BUA on pore diameter approaches one and then becomes inversely 

proportional.
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Figure 6-20: The Relationship Between BUA and Mean Pore Size

The BUA was plotted against the reference permeability and experimental permeability 

(Figures 6.21 and 6.22 respectively). Attenuation(BUA) as would be expected 

increases with increase in permeability. The filters were of low porosity and will 

correspond to the rising part of the relationship between BUA and porosity in Figures 

6.4 and 6 .8. So as porosity increases permeability increases and so does BUA. The 

low number of samples makes a formulation of an empirical equation to predict BUA 

from permeability studies poor.
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6.3 Conclusions
BUA in perspex with holes varies as a function of hole diameter with the peak 

occurring at around 3.5 mm. The scattering and absorption processes were used 

successfully in qualitative explanation of the results. A combination of attenuation at 

mid frequency (0.4MHz) could not linearize the behaviour of attenuation with hole 

size. Velocity on the other hand remained constant until a hole diameter of 4 mm 

where it started to decrease.

BUA was also found to vary according to spatial distribution of holes, hole number, 

inter-hole spacing and number of holes. These factors are an indication of the 

structure of porous perspex block. Therefore, the structural dependence of BUA has 

been proven by deduction. More rigorous experiment will be required to quantitative 

the structural dependence of BUA. A separation of the effect of absorption and 

scattering mechanism in attenuation will facilitate the above goal.

The permeability method was validated by comparing experimental methods with 

results from modelling using perspex models and by comparing the experimental 

results with manufacturer quoted values using filters.

The dependence of attenuation (BUA) on pore size was further demonstrated on 

filters. BUA was highly correlated with permeability. Permeability is proposed to give 

an indication of volumetric structure and therefore a correlation between permeability 

and BUA further substantiates the structural dependence of BUA.
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7. THE RELATIONSHIPS BETWEEN 

ULTRASONIC, MATERIAL AND STRUCTURAL 

PROPERTIES OF BOVINE CANCELLOUS BONE.

7.1 Introduction
Proximal and distal bovine femi were chosen for this investigation because they are 

readily available and there are reported mechanical data for comparison. The 

experimental methods used are described in Chapter 4. Specimens were obtained from 

various locations on the proximal and distal femi (Figure 7.1) of three different bones. 

Specimen numbers 1-4 were obtained from the tronchanter of the proximal femur, and 

specimens 5 and 6 obtained from head of the distal femur of the same bone. 

Specimens 7 - 1 0  were obtained from the distal femur and specimens 11 and 12 from 

the proximal femi, and specimens 13 and 14 from the distal femi of the same bone. The 

remaining four specimens were obtained from the third bone.

A resume of the measuring procedure is as follows:

1. The samples were prepared and machined into cubes (see Figure E3, E4)

2. They were then defatted and the acoustic properties and their permeability values 

measured.

3. The mechanical properties were then investigated.

4. The samples were then dried to obtain the dehydrated mass.

The specimens were maintained moist during all the mechanical and ultrasonic 

measurements.

In the following section the author will summarise the results obtained. This will then 

be followed by a discussion of the results with respect to the material, ultrasonic and 

structural properties.
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Head Tronchanter

Proximal Femur

M

D
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Figure 7-1: Schematic representation o f a bovine fem ur

7.2 Experimental Results
Measurements were carried out in three directions namely; proximal-distal (PD), 

anterior-posterior (AP), and mediol-lateral (ML) (see Figure 7.1). For ultrasound 

measurements six conservative measurements were recorded for each direction per 

specimen. The mean of the six measurements are presented in Appendix B. The mean 

coefficient of variation(CV) was 3.53% and 2.1% for BUA and velocity respectively. 

The error associated with Young’s modulus calculation is a combination of the errors 

associated with the following: area (A-0.17%), length(l-0.12%) and strain(Ax-1.7%). 

Therefore the error of Young’s modulus calculation could be estimated from

f d  A )
2

f d  n 2
f d A  x N

2
+ + as 1 . 6 8 % .  The error

A  J 1 1 J I  A  x J
d E =

permeability is 1.84%.

The results are given in Appendix B and the mean values, standard deviations and 

ranges summarised in Table 7.1. To examine the difference between the different
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directions, a two tail student paired t-test was carried out and the value P< 0.05 

(95% confidence) was chosen as the significance level. The t-test results are presented 

in Table 7.2 and includes the operation (difference), the mean of the differences and 

the p-values. For a sample size of 18 and within 95% confidence limit, the significant t- 

value is > 2.12 ( t j5 p = 0.975 = 2 .12).

The relationships between the variables were determined by conventional least square 

linear regression analysis. Some of the relationships were believed to be power 

functions hence logarithmic transformation (to base ten) was used to linearize them as 

shown below:

If y  = A xb  (7-1)

Then log(y)= log(A) + Blog(x) (7.2)

Confidence intervals (Bowman and Robinson, 1990) were used to verify the 

significance of the intercepts and gradients of the transformations in relation to the 

different directions. This theory states that to estimate some quantity <D using an
A

estimate O which is constructed in a linear fashion from the element of an 

independent normal random sample, the form of a confidence interval is 

O ± f n_2 5.e(0 ), where SE is the standard error of estimate.
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Table 7.1: Mean values, standard deviation (SD), population coefficient o f variation 

(CV) and ranges o f  the properties o f the bovine cubes

Quantity Direction Mean SD CV(%) Range

Young's PD 1195 617 52 429 - 2380

Modulus AP 770 453 59 187 - 1573

(MPa) ML 931 496 53 285 - 1908

Strength(MPa) PD 8.05 4.15 52 2.9 - 15.20

Velocity PD 2252 170 7.5 2041 - 2543

(m s'1) AP 2094 155 7.4 1814-2354

ML 2171 148 6.8 1948 - 2400

nnBUA PD 42.15 14.83 35 24.73 - 70.54

(dB M H z 'W 1) AP 34.02 7.05 21 23.76 - 50.03

ML 41.69 12.46 30 27.73 - 64.29

Permeability PD 1809 1712 95 52 - 5000

(*10- 13m2) AP 2533 1986 78 203 - 6440

ML 2256 1909 85 200-6411

Density (kg m '3) - 495 122 25 309 - 697
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Table 7.2: The t-test results fo r  Young's modulus, Velocity, BUA and Permeability in 

the different directions (n = 18).

Operation1 Mean2 T Value P Value

Young's PD-AP 424 5.63 0.000

modulus PD-ML 263 5.10 0.0001

(MPa) ML-AP 161 3.47 0.0029

Velocity PD-AP 158 4.09 0.0008

(m s~l) PD-ML 81 2.79 0.013

ML-AP -77.3 -2.34 0.032

nnBUA P D -A P 8.14 2.94 0.0091

dB M H z'1 cm" 1 P D -M L 0.46 0.16 0.87

M L -A P 7.67 2.65 0.017

Permeability PD-AP -724 -5.98 0.000

rr? PD-ML -447 -4.20 0.006

ML-AP -277 -3.62 0.0021

7.3 Discussion of the Mechanical Properties of 
Bovine Cancellous Bone.

7.3.1 Comparison with Reported Data

There is an extensive amounts of information on the mechanical properties of bovine 

cancellous bone measured in vitro. The data is marked by large variations in Young's 

modulus (stiffness) and strength reported. These variations have been shown to be a 

function of anatomical position, loading direction and testing conditions (see Chapter 

2). Some of the reported work performed in compression with the exception of 

Ashman et al. [1987] performed in tension, are stated in Table 7.3. From the Table it

difference of two directions

2Meanof the differences
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can be seen that the data currently reported lies within the range of previous work, 

especially those of Hodgkinson and Currey [1990]. The relatively high values of the 

work of Ashman et al. [1987] could be due to the fact that they were confined.

Table 7.3: Some o f the reported mechanical data o f bovine cancellous (fem i) bone.

Source Young's Modulus 

(MPa)

Strength

(MPa)

Density 

(kg m '3)

Cassidy and Davy (1985) 

Ashman et al. (1987) 

Hodgskinson & Currey (1990) 

Turner & Eich (1991)

Present Studies

168.6 ± 39  

337 - 3534 

35 - 1732 

20.7 - 954 

187 - 2380

7.94 ±1.57

0.54 - 9.52 

2.9 - 15.20

478 ± 23  

323 - 652 

174 - 705 

207- 1125 

330 - 697

7.3.2 Orientational Dependence of Young's Modulus

Tables 7.1 and 7.2 illustrates the directional dependence of Young's modulus. The 

lowest significance was between mediol-lateral and anterior-posterior ( p < 0.0029, t 

=3.47). The anisotropy is not surprising since cancellous bone remodels to external 

stress hence the arrangement of the trabecular struts will depend on location and 

direction. This is in line with the functional adaptation postulated by Wolf [ 1889]. As 

expected the proximal-distal direction gave the highest Young's modulus (Table 7.1) 

which is the load bearing direction. The directional dependence of the mechanical 

properties of cancellous bone has been investigated by other researchers. These include 

the work of William and Lewis[1982], Bensusan et al. [1983], Ciarelli et al. [1986] 

and Cassidy and Davy [1986]. William and Lewis [1982] were able to demonstrate 

anisotropy in elasticity of cancellous samples from human proximal tibia. They found 

out that the ratio of vertical (PD) to lateral (ML, AP) stiffness ranged up to a factor of 

10, with an average value of 3 to 4.

Results from the present studies (bovine proximal femi) showed average ratio of a 

factor of 1.5. A possible source of low ratio in the directions as compared to William 

and Lewis [1982] who used a 6 mm cubic specimens could have arisen from the size of 

the test specimen. In this study the 20 mm cubic specimens encompassed different

142



Chapter 7

structures. As seen from Figure 1 different locations were used and Young's modulus 

has been shown to vary with the anatomical position, since different positions have 

different functional needs and hence different stiffness. William and Lewis's findings led 

them to suggest that Young's modulus anisotropy was caused by the difference in 

deformation mode with direction. Our Young's modulus values agree well with the 

work of Bensusan et al. [1983] who also carried out their investigation on femi 

samples and reported the transverse direction to be significantly less than the 

longitudinal direction. Their reported Young's modulus was in the range of 150 - 2500 

MPa.

7.3.3 Power Law Relationship

The general consensus in the literature is that there is a power relationship between 

Young's modulus and apparent (structural) density. This is because of the similarity to 

rigid foams [Gibson, 1985] and also because the power law equation provides an 

improvement in extrapolation to zero density [Currey, 1986]. Using this knowledge, 

raw data of the present work was thus transformed into log to base ten scale. A linear 

regressional analysis was then applied to the log of Young's modulus (E) versus log of 

density (p). The results are given in the Equations 7.3 - 7.5

logEpD = -2.30 + 1.98 logp R2 = 81 % (7.3)

log E a p = -3.70+  2.42 logp R2 = 83% (7.4)

log E m l=  -2.53 + 2.031ogp R2 = 87% (7.5)

The ultimate compressive strength (a) (previously explained in Chapter 4) was 

measured for one direction (PD) only. A linear regression analysis of log of strength 

versus log of density resulted in Equation 7.6.

logo = -5 .05  + 2.211ogp R2 = 91% (7.6)

logEpD = 2.26 + 0.831oga R2 = 71 % (7.7)

The close correlation between Young's modulus and density, (Equations 7.3 - 7.5) 

indicate that density is an important predictor of Young's modulus (stiffness). The 20%
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variation may be due to structural differences between specimens and/or also from 

experimental errors in both density and Young's modulus measurement.

Figure 7-2: The Relationship Between Young’s Modulus and Density fo r  the Three 

Orthogonal Directions

There is no general consensus in the literature concerning the power of density in 

relationship to Young's modulus. Rice et al. [1988] comprehensively analysed a pool 

of data on the subject and came to the conclusion that Young's modulus varies as the 

square of the apparent density. Carter and Hayes who pioneered these studies, 

suggested a cubic relationship [Carter and Hayes, 1976, 1977]. Gibson [1985] and 

Gibson and Ashby [1988] used beam theories to propound cubic, quadratic and linear 

relationships depending on the cell structure and direction in which measurements 

were carried out.

From Equations 7.1 and 7.2, the gradients of Equations 7.3 - 7.5 are the power 

coefficients of density. An 80% confidence (since the values are in that range) 

was used to examine the significance of the gradients. Power coefficients of 1.98 ± 

0.21, 2.03 ± 0.17, 2.42 ± 0.24 for PD, ML and AP, respectively (where ± is the
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confidence interval calculated at a 80% confidence, and n = 18) were obtained. This 

demonstrates that Young's modulus (in the PD and ML) is proportional to the square 

of density, whereas in the AP it is well above the power of 2. This further supports the 

directional dependence of Young's modulus. Theoretically, the cell structure 

determines the mode of deformation, consequently directional variation in structure 

will affect the Young's modulus dependence on density. The curious finding was that 

the direction with the highest Young's modulus values had the smallest power 

coefficient. This is in contrast to the hypothesis of Gibson [1985] which states that 

more dense material have a close cell structure and have a higher power. The same 

trend is observed for the intercept values. These results demonstrate that stiffness is 

dependent on the direction of measurement as well as density. Caution must therefore 

be exercised when an accurate prediction of Young's modulus is performed from 

measured density.

The results presented in Equations 13-1.5  agree with the works of Bensusan et al. 

[1983] and Hodgskinson and Currey [1990] who carried out their investigation on 

bovine femi. They found out that Young's modulus more closely followed a density 

squared relationship over the density range investigated. It is important to note that 

although Hodgskinson and Currey[1990] carried out their investigation in three 

perpendicular directions, the correlation analysis was only done for the mean of the 

three directions. It is difficult to compare these results with theoretical predictions 

because these studies employed different regions of the femur which encompasses 

different structures. The theoretical predictions are for homogeneous structures only. 

The variety of structure in the femur is evident from the work of Whitehouse and 

Dyson [1974] on human femur who demonstrated that rod-like structures develop in 

regions of low stress and plate-like structures occur in regions of higher stress.

There is also controversy concerning the relationship between strength and density. 

Gibson’s [1985] theoretical predictions depend on the cell structure and the 

mechanism of deformation. For an asymmetric cell (open and closed) structure which 

fails by elastic buckling or plastic yielding, the model predicts a quadratic dependence. 

For a columnar cell structure being compressed in the longitudinal direction, which 

fails by uniaxial plastic yielding, the model predicts a linear dependence. If the 

columnar structure is compressed in the transverse direction and it fails by elastic
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buckling then the model predicts p3/2? 0r or if it fails by plastic yield then it

predicts p3. The scope of this investigation did not warrant us to study the mode of 

failure of the specimen. Assuming that all the specimens investigated had asymmetric 

cell structure, then a quadratic density dependence should be expected. Therefore the 

linear regression analysis of the results given in Equation 7.6 and Figure 7.4 are in 

close agreement with the theoretical predictions. This agreement is also supported by 

the statistical analysis of Rice et al. [1988] and the pioneering work of Carter and 

Hayes [1976, 1977] who came to the conclusion that compressive strength was 

proportional to the square of the apparent density.

It follows from Equations 7.3 and 7.6 that Young's modulus and strength of bovine 

cancellous bone are linearly proportional to each other (Equation 7.7 and Figure 7.4). 

This basic proportionality has been substantiated by works such as those of Brown 

and Ferguson [1980], Goldstein et al. [1983] and Bensusan et al. [1983]. It was 

deduced that the circled data points on Figure 7.4 were the greatest contributors to the

variation and hence the poor correlation (R^ = 71%) of this study. Large experimental 

errors could have incurred in measuring these two points.
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Figure 7-3: The Relationship Between Ultimate Strength (in the PD direction) and 

Density
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Figure 7-4: Young's Modulus in the PD Direction Plotted Against Ultimate Strength

7.4 Ultrasonic Properties of Bovine Cancellous Bone

7.4.1 Ultrasonic Velocity

Table 7.1 shows that velocity varies with direction and the significance of this 

variation is highlighted by the t-test (Table 7.2), and found to be significant (as 

expected). Velocity and Young's modulus are vector quantities which will vary with 

direction in any anisotropic medium. It therefore implies that a correlation between 

these two quantities will show no directional dependence. Within 80% confidence 

level (as used earlier) both the gradient and intercepts of Equations 7.8 -7.10 showed 

no difference.
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Figure 7-5: Velocity Plotted against Young's Modulus fo r  three orthogonal directions 

(R - Squared is fo r  all specimens)

log V po — 3.02 + 0 .1121og E pd R2 = 77% (7.8)

log V ap = 3.04 + 0.10 llog EAp R2 = 83% (7.9)

log VML = 3.04 + 0.1031ogEML R2 = 78% (7.10)

log V ah = 3.0 + 0 .1131ogEAu R2= 83% (7.11)

Velocity was also correlated to apparent density and the linear regression analysis are 

presented in Equations 7.11 - 7.13 and in Figure B.2 (Appendix B).

logVpD = 2.80 + 0.2061ogp R2 = 49% (7.12)

l°gVAP = 2.67 + 0.2431ogp R2 = 69% (7.13)

l°gv M L  = 2.77 + 0.2121ogp R2 = 70% (7.14)
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The correlation coefficient of velocity with density is lower than for Young's modulus. 

The relationship between velocity and density is still not well understood because the 

mode of propagation is influenced by many factors such as wavelength and the 

structure of the propagating media.

In isotropic and homogeneous solids, both transverse and longitudinal waves can be 

propagated (see Section 3.4). In a straight uniform bar with small radius compared 

with the wavelength of the propagating waves, a bar wave represented by

is propagated. In cancellous bone, Young's modulus has been reported to be linearly 

related to strength (a) [Carter and Hayes, 1976, 1977, Rice et al. ,1988]. This has been 

supported by present findings (Equation 7.7, 8.3). Therefore Young's modulus could 

be represented as

where K is bulk modulus, G is rigidity modulus, v is the Poisson ratio and E is the 

Young's modulus. The bar wave relationship (Equation 7.15) was used instead of 

Equation 7.18 because Poisson ratio was not measured and it is impossible to measure 

in-vivo, hence

Data from Kay and Laby [1989] were used to verify the feasibility of this relationship 

(see Appendix C). An R-Squared value of 98% was obtained for Vj0ng versus

(7.15),

E = Cgu (7.16),

substituting Equation 7.16 into 7.15 gives

(7.17).

However, the velocity measured in this investigation is the longitudinal velocity as 

defined by the following Equation

K + (4 /3 G )
(7.18)

(7.19)
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/K + 4 /3 G  (gqUatjon 3 4 ) the R-Squared dropped to only 94% when the 
V P

longitudinal wave velocity were correlated with (Equation B2). Therefore no

significant error was introduced in correlating Viong with • Applying this

Equation (7.19) to the data of this study gives:

V p d  = 1317 + 627J ErJ ^  R2 = 88% (7.20)

V a p  = 1455+543^e ^ /  R2 = 80% (7.21)

Vm, = 1349 + 625J Ep /  R2 = 82% (7.22)

^ , ,  = 1441+ 5 7 4  I E a j i /  r 2  = 85% (7.23)

V = 1149 + 7815W  R2 = 75% (7.24)
V /  r

These relationships are illustrated in Figures 7.6 and B.3. At 80% confidence limits, 

the application of Equation 7.19 to the data (Equations 7.20 - 7.22) showed no 

directional dependence. This is expected since density act as a normalising factor. 

Combining all the directions gave Equation 7.23 which is not significantly different

from the others. The R^ values of 85% is significant and similar to that reported by 

Ashman et al. [1987]. It is worth noting that Viong was measured in this investigation

while Ashman et al. claimed to have measured the bar wave velocity, however Vjong

is thought to be more appropriate to in vivo investigation.
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Figure 7-6: The Relationship Between Velocity, Young's Modulus and Density

On the other hand, when the predictive power, for Young’s modulus and compressive 

strength were examined, they showed a high goodness of fit (Figures 7.7 and B.4).

E = - 460 + 5.9*10"7V2p R2 = 91% (7.25)

a  = -280  + 4.92* 10-7V2p R2 = 92% (7.26)

The increase in correlation coefficient, could be due to the fact that the experimental 

errors were lower in measuring velocity and density than in measuring Young's 

modulus and strength. On the other hand the reason could be more to do with the fact 

that by squaring you remove the need to define whether it is bar or longitudinal wave is 

being measured. These results are interesting because velocity and density (using QCT) 

are the only measured parameters in vivo. These findings (Equations 7.25, 7.26) have 

far reaching implications with respect to the management of skeletal illnesses. For 

instance, it could be proposed that ultrasound and QCT be complimentarily used in 

the determination of bone stiffness and strength, whereby the velocity from 

ultrasound and density from QCT are used in Equation 7.25 and 7.26.
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Figure 7-7: Young's Modulus Plotted as a Function o f Density and Velocity
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7.4.2 Broadband Ultrasonic Attenuation

The attractiveness of BUA in cancellous bone characterisation has been its assumed 

ability to provide structural information. There are few in vitro studies investigating 

the relationship between BUA with physical and structural properties. Studies by 

Langton et al. [1990b], Tavakoli and Evans [1992] and Gluer et al., [1993] have 

thrown some light to the matter. This investigation was aimed at advancing the 

knowledge of the relationship between these factors. Table 7.1 and 7.2 show that BUA 

(like the other vectorial properties) is dependent on direction. This is in agreement with 

the pilot in vitro study of Langton et al. [1990b] who failed to show a significant 

relationship between BUA and density in equine third metacarpal cancellous bone, and 

supports the structural dependence of the BUA hypothesis.

7.4.2.1 The Density Dependence o f BUA

This study further investigated the relationship between BUA and density. The nnBUA 

values were plotted against density as shown in Figure 7.8 and it was observed that 

nnBUA decreases as the density increases. At lower density (higher porosity) the 

spread in nnBUA was significantly greater than at higher density (lower porosity) 

where the bone structure approaches cortical bone and hence the structural effect 

diminishes. At lower density the effect of structure is greater, hence a higher spread in 

nnBUA values.
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Figure 7-8: Scatter Plot o f nnBUA Against Density fo r  the Three Orthogonal 

Directions

The nnBUA values were then separated into the three different directions and plotted 

independently as a function of density. Logged values were used in the correlation 

since the dependence of BUA on density is not known.
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A : PD Direction
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Figure 7-9: Plot o f log nnBUA Against log Density in the PD Direction

In Figure 7.9 a linear relationship was observed for the log of nnBUA and log of 

density. The correlation coefficient was improved when the point circled in the Figure 

was not included in the analysis. This point corresponded to specimen number 2.

log(nnBUApD) = 4 .94- 1,241ogp R2 = 79% (7.27)

The R-squared value of 79% (Equation 7.27) implies that in this particular direction 

density accounts for 79% of the variance in BUA. Reducing the correlation to one 

direction will result in a reduction in the structural variation thereby improving the 

relationship between BUA and density. The value of specimen 2 is out of range by 

approximately a factor of 2. This large deviation cannot be totally explained by 

experimental error, however, it is suspected that due to the low density there is a large 

structural deviation from the other specimens in this direction.
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B: AP Direction
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Figure 7-10: Plot o f  log o f nnBUA Against log o f Density in the AP Direction( the 

line is hand drawn).

Figure 7.10 exhibits a similar trend to that observed in Figure 7.9, however, the scatter 

along the linear regression line was higher. In this case three specimens 1, 2 and 12 

were the highest contributor to the poor correlation. These specimen are circled on the 

graph(Figure 7.9)

log(nnBUAAP) = 2.94-0.5271ogp R2 = 43% (7.28)

The same explanation as given for Figure 7.9 will hold true for Figure 7.10. As 

explained in Section 7.3.1, a map of the structure of the femur will reveal that open 

cell, rod-like structures develop in regions of low stress, while higher density, closed 

cell, plate-like structures occur in regions of higher stress. Unfortunately, this claim 

cannot be substantiated because micrograph of the specimen were not taken.
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C: ML Direction
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Figure 7-11: Plot o f log o f nnBUA Against log o f Density in the ML Direction

The points circled in Figure 7.11 (specimen number 3 and 10) were the highest 

contributors to the variability. A linear regression including these points gave an R- 

squared value of 66% but when these points are excluded from the analysis, the R- 

squared value is increased to 91% and as shown in Equation 7.29.

log(nnBUAML) = 4.35 - 1.021ogp R2 = 91% (7.29).

From the gradients of Equations 7.27, 7.28 and 7.29 one could suppose that when the 

structure of a set of samples is constant then BUA is linearly proportional to density. 

The generally poor correlation of BUA with density was not surprising because it was 

shown in Chapter 6 that BUA has a parabolic relationship with porosity (density). 

Hence, a highly significant linear correlation could be observed if the density 

corresponding to the peak of the parabola could be identified and thus the graphs 

could be divided into two sections (ascending and descending). Among the specimens 

contributing to highest variability, specimen 1, 2, 3 are of lower density and thus could 

be at peak density values.
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Figure 7-12: Plot o f log o f nnBUA Against log o f Strength in the PD Direction

Specimen 1 was also the greatest contributor to the variability in the linear regression 

analysis of log BUA against log of strength., and excluding this point resulted in 

Equation 7.30; when included in the analysis an R-squared value of 24% was observed.

log(nnBUApD) = 2.11 - 0.51 llo g c  R2 = 74% (7.30)

Since in vivo the measurements are carried in one direction, one could propose that 

BUA is a good predictor of strength.

The plot of nnBUA against Young's modulus(E) is presented in Figure 7.13. Two 

trends can be observed which are separated by a vertical line, at Young's modulus of 

650 MPa. There is no defined behaviour between E and BUA below 650 MPa, even 

when the various directions are distinguished. Above 650 MPa, BUA decreases with 

increasing in E. From Figure 7.2 it can be seen that Young's modulus has a strong 

dependence on density, but BUA has a poor correlation with density (Figure 7.8). 

Hence a poor correlation between E and BUA would be expected. The relationship
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between BUA and E (Figure 7.13) also follows the same trend as between BUA and 

density.

The parabolic behaviour of BUA with density observed in Figure 6.4 could be used to 

explain Figure 7.13. For low density and hence low E, low BUA are observed and 

conversely for high density and hence high E, low BUA are again observed. To be able 

to predict E from BUA the peak of the parabola is required.

80

7 0 -

6 0 -

m 5 0 ‘

4 0 -

■ *
3 0 -
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1000 1500

Young's Modulus (MPa)
500 2000 2 5 0 0

Figure 7-13: A Plot o f  BUA versus Young's Modulus fo r  the Three Orthogonal 

Directions

7.4.2.3 BUA as a Predictor o f  Velocity

A  plot of nnBUA versus velocity is presented in Figure 7.14. No particular 

relationship emerged between BUA and velocity. This could be because different 

parameters of varying degrees influence velocity of ultrasound propagation and the 

ultrasonic attenuation in cancellous bone. For instance

• Velocity of propagation will be dependent on the specimen size, density and 

wavelength.
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• Attenuation will be dependent on wavelength, density and architecture of the 

specimen.

Therefore it not surprising to observe a poor correlation between velocity and BUA. A 

large scatter was observed in all directions at the velocity range of 1950 - 2200 (Figure 

7.14). Separating the results into different directions did not improve the correlation. 

This is because the two parameters are vectors quantities and therefore will be 

direction dependent in an anisotropic material.
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Figure 7-14: A Plot o f BUA versus Velocity fo r  the Three Orthogonal Directions

7.5 Permeability
Permeability was shown in Chapter 6 to give an indication of pore size distribution and 

density of the material. The permeability coefficients of the bovine specimens were 

measured to quantify the structure of the specimens.

The cylindrical specimen holder used for the filter experiments was fitted with a cubic 

adapter with bovine specimen dimensions. The cubic nature of the specimens lends 

itself to leakage at the edges and this was avoided by winding PFTE tape around the
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cubes. The results are given in Appendix B and the means and standard deviations are 

presented in Tables 7.1 and 7.2. The linear regression of log of permeability versus log 

of density are presented in Figure 7.15 and Equations 7.31 - 7.33.

IogKpo = 14.17 - 4.151ogp R2 = 78% 

logKAP = 12.5 - 3.441ogp r 2 = 82% 

logKjyjL = 12-8 - 3.591ogp R2 = 84%

The following can be deduced from Equations 7.31 - 7.33:

* Permeability is related to the power of apparent density

* Permeability is dependent on direction with PD direction significantly different from 

AP and ML directions.

The strong dependence of permeability on density only leaves 16% - 22% on structure 

and experimental error. This statement is not totally true because the author does not 

know how structure is related to density in this bovine specimens, some changes in 

density also result in structural changes and vice versa. On the other hand the 

directional dependence of permeability and power coefficients confirms the dependence 

of permeability on structure.

(7.31)

(7.32)

(7.33)
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R -  Squared =  84%

<£■
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R -  Squared = 82%
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Log (Density)

+  PD x  AP *  ML

Figure 7-15: A plot o f log o f permeability versus log o f apparent density fo r  three 

orthogonal directions

The relationship between Young's modulus and permeability is presented in Figure 

7.16. This figure demonstrates that Young modulus is inversely proportional to 

permeability. This is expected because permeability depends on the porosity of the 

sample while Young's modulus depends on the reciprocal of porosity. For example, a 

dense specimen will have a low porosity and low permeability but high Young's 

modulus.
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Figure 7-16: Plot o f Young's Modulus versus Permeability fo r  the Three Orthogonal 

Directions

A plot of strength versus permeability in the PD direction is presented in Appendix 

(Figure B .l). The behaviour of strength with permeability is similar to that of Young's 

modulus. A linear regression of log of strength versus log of permeability is presented 

in Figure 7.17 and Equation 7.34.

logG = 2.013 -0.3791ogK R2 =  78%  (7.34)

where 0  is strength in MPa and K is permeability in (1 0 "^ ) m2. It worth noting that 

the correlation coefficient in Equation 7.34 is the same magnitude as in Equation 7.27 ( 

prediction of strength from BUA) and Equation 7.31 (prediction of permeability from 

density). This indicates that density is a major contributor to variability in permeability 

and strength.
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Figure 7-17: Plot o f log o f Strength versus log o f Permeability in PD Direction

The relationship between velocity and permeability is presented in Figure 7.18. 

Velocity decreases with increase in permeability. Below a permeability value of 2000 

m there is a large scatter. At low permeability the bone structure is approaching 

cortical bone, but velocity is dependent on the elasticity of the sample (AE » A k  for 

low k ) . Hence, there is a large variation in velocity not permeability, which is a 

geometric parameter not material parameter.

165



Chapter 7

26 0 0

2 5 0 0 -

2 4 0 0 -

2 3 0 0 -

o 2 2 0 0 -
■

2 1 0 0 -

2 0 0 0 -

1 9 0 0 -

1800
1000 2 0 0 0  30 00  4 0 0 0  5 0 0 0  6 0 0 0  7 0 0 0

Permeability

Figure 7-18: Plot o f Velocity versus Permeability fo r  the Three Orthogonal 

Directions
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Figure 7-19: Plot o f nnBUA versus Permeability

A plot of BUA versus permeability is presented in Figure 7.19. There is an increase in 

BUA with increase in permeability up to a permeability value of 4500 m2, and decrease 

in BUA thereafter. This result also confirms the parabolic behaviour of BUA with 

porosity. Since porosity has a large influence on permeability, the relationship between 

permeability and BUA would be expected to follow the same pattern as between BUA 

and density (Figure 7.8). There is a higher scatter observed in Figure 7.19 than in 

previous trends. This could be due to their differing degree of structural dependence

The major problems with permeability as a structural index is that there is a large local 

variation in architecture along and perpendicular to the sample length, hence 

permeability values may exaggerate or underestimate the structural changes occurring 

in the ultrasound path. Incomplete defatting present a problem with permeability 

measurements, resulting in low permeability values. There was no method of verifying 

that the defatting was completed, this problem was acute in dense samples.
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7.6 Conclusions
The mechanical properties (Young’s modulus and compressive strength) fall within 

reported data for bovine cancellous bone. Orientational dependence of these properties 

has been demonstrated. Young’s modulus was related to the nth power of density, the 

n value being dependent on the direction of measurement n = 1.98 for PD, 2.42 for 

AP and 2.03 for ML). The ultimate compressive strength in the PD direction was also 

found to have a quadratic relationship with density.

Ultrasonic velocity was shown to be directionally dependent which is expected for a 

vector quantity measured in an anisotropic medium. Velocity correlated with Young's

modulus (R.2 = 83%) and there were no significant differences in the correlations 

when separated into the orthogonal directions. The correlation of velocity with density 

was lower and dependent on direction ( R2= 69% for AP, 70% for ML and 49% for 

PD). The ultrasonic velocity followed the well established relationship between 

velocity, Young's modulus and density ( Vbar = V(E/p) and Viong => Vbar-)

BUA was also shown to be directionally dependent and the highest significance was 

seen between PD and AP directions. When BUA was separated into different 

directions and the structural variation diminished, BUA was then found to be linearly 

proportional to density. It worth noting that one would not expect a correlation 

between BUA and density for random samples. For a specific direction (PD) BUA was

found to predict strength with an R^ of 74%. The behaviour of BUA with Young's 

modulus also followed the same pattern as between BUA and density. This is 

accounted for by the strong dependence of Young's modulus on density. There was no 

correlation between BUA and velocity

There was a high negative correlation between permeability and density. The gradient 

of the linear regression analysis varied for the different directions implying directional 

dependence of permeability and thus structure. A negative correlation was found 

between permeability with E, a  and V. Permeability was not found to be a good 

predictor of BUA for bovine cancellous bone. This is because for some of the bovine 

samples studied their density values are around the turning point of the BUA-density 

parabolic behaviour. Permeability has an inverse proportionality behaviour with density 

with a higher dependence than BUA.
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8. THE RELATIONSHIPS BETWEEN ULTRASONIC, 

MATERIAL AND STRUCTURAL PROPERTIES OF 

HUMAN CANCELLOUS BONE

8.1 Introduction

The samples for this in vitro study were obtained from the human calcaneus and the 

vertebrae. The calcaneus is the bone where clinical ultrasound measurements are 

performed, chosen for accessibility even in obese subjects, more than 90 % cancellous 

bone by volume, and little covering soft tissue, thus making the contribution of soft tissue 

and cortex negligible. In contrast to lumbar spine measurements, osteoarthritis cannot 

influence the results. The calcaneus is as good a site as any cancellous bone site for the 

prediction of hip fractures [Stewart et al., 1994]. This is because osteoporosis is a 

systemic disease and all bones lose mineral, albeit not all at the same rate nor in the same 

longitudinal profile. The calcaneus reflects this systemic nature of osteoporosis as well as 

any other skeletal site [Vogel et al., 1988]. The vertebrae on the other hand was chosen 

because of its marked anisotropy (Figure 8.26).

The methodologies employed in this study are as described in Chapter 4 . Further aspects 

of the sequence of calcaneus measurements were as follows:

• A coring drill was used to mark the area of interest before commencing measurement 

as illustrated in Figure 8.1.

• Ultrasonic measurements were carried out on the whole calcaneus samples 

(nnBUAwhoie) •
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• The whole calcaneus was then cored to produce a cylindrical specimen keeping cortical 

end plates (nnBUAco re ) in tact, as shown in Figure 8.1.

• These specimens were then measured without the cortical end plates (nnBUAcan).

• The samples were then defatted and further ultrasonic measurements carried out 

(nnBUAd ef).

• Velocities values were also measured for whole, core, cancellous and defatted samples.

• Mechanical testing was performed on the defatted cancellous cylindrical specimens. 

The specimens were maintained moist during all the mechanical and ultrasonic 

measurements.

BUA-whole

Measurement site

BUA-core

C ortical en d

BUA-can

D^dZD

Figure 8-1: Calcaneus Measurement Procedure

For ultrasonic measurements six conservative measurements were recorded and the values 

presented in Table 8.1, D .l and D.2 average values. The coefficient of variation are 4.4% 

and 1.5% for BUA and velocity respectively. The errors associated with Young’s modulus 

density and permeability are the same as discussed in Chapter 7The next four sections will 

report on and discuss the results obtained for the calcaneus specimens. Section 8.6 will 

present and deliberate the vertebrae results and the last Section will then draw conclusions 

on the findings in this chapter.
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8.2 Calcaneus Results

The results are presented in Table 8.1 and in Appendix D. The following notations and 

units were used in the presentation and discussion

• attenuation (nnBUA) - dBMHz" 1 cm" 1;

• velocity (V) - m s“ 1;

• compressive Young's modulus (E) - MPa;

• compressive strength (a) - MPa;

• density (p) - kg m“3 ; and

• permeability (K) - m^.

The correlation coefficients between nnBUAwh0je, nnBUAcore, nnBUAcan, nnBU A ^f,

velocity, density, compressive strength and Young's modulus are provided in Table 8.2. 

nnBUAwh0ie is the attenuation value obtained when measurements were carried out on 

whole bone calcaneus and represents most closely the in vivo situation. nnBUAcore and 

nnBUAcan are the attenuation measurements obtained on core samples with the cortical 

ends and on core samples without the cortical ends respectively. nnBUA^ef is the 

attenuation value obtained on defatted specimen.

The velocity quoted in Tables 8.1 and 8.2 represents the velocity of cancellous samples. 

The velocity values for whole, core and defatted samples are presented in Appendix D. 

The density refers to the apparent density of the cancellous samples. It was impossible to 

measure the apparent density of the core and whole samples as described in Chapter 4.
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I

Figure 8-2: Photographs of a Specimen from the Calcaneus (20 mm diameter)
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Table 8.1: Ultrasonic, Structural and Material Properties Data

Specimen Sex Age nnBUAcan Velocity Density Strength Young's K

no Years dB MHz'1 cm'1 ms'1 kgm'3 MPa modulus (MPa) m 2

1 F 87 23.09 1625 265 0.623 41.88 462

2 M 80 17.87 1680 268 0.440 30.03 500

3 F 89 14.81 1490 236 0.248 13.45 527

4 M 84 31.29 1646 351 0.684 61.6 115

5 F 75 26.27 1728 345 1.028 70.57 78

6 F 67 18.10 1663 286 0.590 52.37 1238

7 F 59 23.84 1668 291 0.685 38.63 823

8 M 79 30.85 1776 354 1.069 75.0 114

9 M 71 25.26 1697 375 0.960 80.56 113

10 F 83 12.9 1559 206 0.129 7.54 1539

11 F 63 15.21 1590 236 0.483 29.3 1734

12 M 67 23.19 1690 282 0.679 48.66 319

13 M 76 12.82 1663 236 0.305 26.29 645

14 F 74 3.66 1500 143 0.093 6.03 2504

15 M 84 13.37 1610 245 0.337 18.84 1056

16 F 89 6.21 1517 182 0.119 8.20 1232

17 M 90 19.02 1637 265 0.366 37.56 875

18 M 59 16.5 1663 230 0.288 25.09 994

19 F 69 20.22 1610 259 0.265 33.19 1260

20 M 80 11.07 1578 181 0.105 7.82 1185

Mean 76 18.28 1635 262 0.475 35.63 865.7

Stdev 9.89 7.40 76.6 61.4 0.306 23.18 630

CV 13% 40.48% 4.69% 23.44% 64.42% 65.06% 72.77%

where K is the permeability coefficients in * 10" 13
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Table 8.2: R- Squared values ( %) fo r  correlation between velocity, nnBUA, density, 

strength and Young's modulus (E) (Note that all parameters are not logged)

nnBUA^oig nnBUAcore nnBUAcan nnBUA^gf Density Strength E

Velocity 68 55 60 59 64 68 69

nnBUA wj10]e 94 87 88 79 73 74

nnBUAcore 89 85 76 69 71

nnBUAcan 91 87 76 79

nnBUA^gf 83 70 77

Density 81 91

Strength 89

* Note : all the correlation coefficients in Table 8.2 are for the raw data (not logged)

8.3 Mechanical Properties of the Calcaneus

The discussion of the mechanical properties will be in relation to the following points:

• Firstly, how do the mechanical properties correlate with reported data.

• Secondly, The dependence of mechanical properties on density.

8.3.1 Comparison with Reported Data

Few studies have addressed the mechanical properties of the calcaneus. The only cited 

studies (to the author's knowledge) are those of Weaver and Chalmer, [1966] and Jensen 

et al., [1991]. Jensen et al. [1991] demonstrated a topographical variation of the 

mechanical and physical properties of the calcaneus. This implies that in order to obtain 

good comparison with previous studies and within a sample set, both sets of studies must 

have been carried out at the same location for all the samples. The present study was 

performed in the mediol-lateral direction on the flat region of the calcaneus for all the 

samples, that is between the medial and the lateral process of the calcaneal tuberosity. A 

comparison of present and previous studies is given in Table 8.3. The results reported in
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this study (Young's modulus and strength) have a distribution lower than those reported 

by Jensen et al.[1991]. However the lower density reported here may explain the lower 

distribution. On the other hand it worth noting that our strength values are comparable 

to those of Weaver and Chalmer [1966] whose density values reported are ash weights

Table 8.3: Young's Modulus, Strength and Density compared to other studies

Source Young's Modulus Strength Density

MPa MPa kgm"3

Weaver and Chalmer - 0.035- 1.06 75 - 350

1966(Mean) - (0.37) (186)

Jensen et al. 54 -211 1.20-3.20 270 -450

1991 (Median) (83) ( 1-70) (350)

Present Studies 6.03 - 80.56 0.093- 1.06 143 - 375

(Mean) (35.63) (0.484) (261.8)

8.3.2 The Power Law Relationship

The general consensus in the literature favours a power law relationship between Young's 

modulus and density [Carter and Hayes, 1976, 1977; Gibson, 1985; Hodgskinson and 

Currey, 1990], where the power lies between 2 and 3. This is due to the similarity 

between trabecular bone and porous engineering materials. Gibson [1985] and Gibson and 

Ashby [1988] have predicted the relationship between Young's modulus with density, and 

strength with density for the different structures found in cancellous bone using beam 

theories. For a structure consisting of plates connected by rods , they predicted a cubic 

relationship for transverse modulus, assuming the stress applied normal to the plates 

causes them to bend. For strength, trabecular failure can occur either by elastic buckling

or by plastic yielding depending on the slenderness ratio. Gibson then predicted a  p2

or p3/2 for elastic buckling and for plastic yield. No experimental data were used to 

support this model in the transverse direction.
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Calcaneus data were logged to base ten and a linear regression analysis produced the 

results given in Equations 8.1, 8.2, 8.3 and Figures 8.3, 8.4, 8.5.

log a  =  —7 .4 6 + 2.921og p R2 = 88% (8.1)

log £  = -6 .1 +  3. llog  p R2 = 89% (8.2)

log (J = - 1 .7 3 + 0.91og E  R2 = 93% (8.3)

The linear regression given in Equation 8.2 and Figure 8.4 demonstrated that Young's 

modulus was related to 3.1 ± 0.26 power of density. This is in agreement with the 

cubic prediction of Gibson [1985]. Strength was related to 2.92 ± 0.25 (±se) power of 

density, within the 95% confidence the strength is proportional to density cubed. The R- 

Squared values of 88% and 89% are highly significant. The power agreement with the 

theoretical prediction may be considered significant because the theoretical prediction is 

based on a regular, repeating cell, but the cell size of cancellous bone is not uniform. The 

cubic relationship leads to the inference from Gibson [1985] theoretical analysis that the 

mode of failure is plastic yielding.

Strength was related to Young's modulus by a power of 0.90 ± 0.12 (see Equation 8.3 

and Figure 8.5). This agrees closely with the linear relationship reported in the literature 

[Carter and Hayes, 1977; Hodgskinson and Currey, 1990] and bovine cancellous bone 

findings reported in the Chapter 7. Mathematically, this is expected since both Young's 

modulus and strength correlates by the same power (3) with density, implying they should 

correlate linearly with each other.
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Figure 8-3: The Relationship Between Compressive Strength and Density
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Figure 8-4: The Relationship Between Young's Modulus and Density
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Figure 8-5: The Relationship Between Compressive Strength and Young's Modulus

The next step in correlating the experimental results with theoretical prediction is to 

determine the type of cancellous bone structure to be found in the calcaneus (Figure 8.2). 

The calcaneus exhibits two distinct stress patterns in the perpendicular and inferior 

directions [Jhamaria et al., 1983], which arises due to its functional adaptation. The 

perpendicular trabeculae are chiefly subjected to compressive force and inferior ones of 

the tuberosity are subjected to tensile forces [Gierce 1976]. The stress pattern gives rise 

to a structure that Singh [1977] described as plates. The plates are of irregular shape and 

show numerous fenestrations. They are connected by smaller plates and rods. The 

specimens were therefore tested along the lines of the struts and perpendicular to the 

plates (transverse direction), therefore the cubic relationships are in close agreement with 

the theoretical predictions of Gibson [1985].
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8.4 Ultrasonic Properties of the Calcaneus

8.4.1 Velocity

Velocity values were measured for whole calcaneus, core, cancellous and defatted and the 

results are given in Table 8.1 and Appendix D .l. The velocity values for whole and core 

specimen are the same within experimental error. Their mean values were 1652 and 1665 

respectively. A linear regression to fit the velocity of whole specimen with that of core 

specimen gives the following (Figure 8.6)

Vwhole = 39 + 0.969Vcore R* = 91% (8.4)

The coefficient of Equation 8.4 has a t-ratio of 0.32 and p = 0.753 . This implies that the 

coefficient 39 is not significant and hence Vwh0ie ~ Vcore On the other hand an analysis

of the differences gives a mean value of 10.05 and a 90% confidence interval of -0.05 - 

20.15. This supports the initial statement of equality of the values. The few samples whose 

values deviated from this general observation and hence 9% unexplained variation in 

Equation 8.4 could have been caused by error in thickness measurement and poor contact 

as illustrated in Figure 8.7.
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Figure 8-6: The Correlation Between Velocity o f Whole Calcaneus Bone Samples and 

Core B on e .

The core and whole calcaneus bone samples are irregular and therefore posed a problem 

in thickness measurement and proper contact with the transducer (see Figure 8.7). The 

specimen diameter was 21 mm and transducer diameter was 13 mm. Therefore there was 

4 mm outer radius for which the transducer position could vary. Unfortunately, these 

surfaces are irregular and as demonstrated in Figure 8.7 this generates contact problems 

and hence velocity problems, because the value obtained in Figure 8.7b will be lower than 

in 8.7c. This is due to the inclusion of transmission in water in Figure 8.7b. Although great 

effort was put into acquiring measuring condition close to the ideal situation (Figure 

8.7a), it was not always possible to achieve.
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Cortical End Plates

Transducer Cancellous Bone Transducer

A) Ideal Measuring Condition 

Water interface
Cortical End Plates

B) Measuring Condition for Core Sample

C) Another Possible Measuring Condition 

Figure 8-7: Contact Problems with Whole and Core Bone Samples

The velocity values for cancellous specimen and defatted (Appendix D .l) are also 

statistically the same. Their mean values were 1630 and 1626, respectively. A linear 

regression fit to velocity of cancellous specimen (Vcan) versus velocity of defatted

cancellous specimen (Vdef) (Figure 8.8) gives:

Vcan = -5 8  + 1.04Vdef  R2 = 93% (8.5).
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The coefficient of Equation 8.5 has a t-ratio of -0.54 and p = 0.599 while the gradient 

(constant) has t-ratio of 15.65 and p = 0.000. This implies that the coefficient value -58 is 

not significant and thus Vcan ~ V^ef. On the other hand an analysis of the differences

gives a mean value of -3.25 and a 90% confidence interval of -10.87 - 4.37. These results 

are to be expected since the difference between the two cases is the fat is replaced by 

water, whose acoustic impedance is not significantly different from that of fat.. The 7% 

variation in Equation 8.5 could be attributed to experimental errors such as inadequate 

degassing. Also there is the problem encountered with very porous specimens where the 

trabeculae start to collapse when good contact is sort with the ultrasound transducers.

1 8 0 0

1 7 5 0 -
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1 6 5 0  -

1 6 0 0 -

1 5 5 0  -

R -  Squared = 93%

1 5 0 0 +

1 4 5 0
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Velocity of defatted Cancellous Samples
1 7 0 0 1 7 5 01 5 5 01 5 0 0

Figure 8-8: The Correlation Between Velocity o f Cancellous Bone Samples and Defatted 

Samples

A correlation between velocity of whole calcaneus with cancellous specimens and whole 

calcaneus with defatted cancellous specimens are given below:

Vwhole = 363 + 0.793Vcan R2 = 65% (8 .6)
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Vwhole = 225 + 0.879Vdef r 2 =  70% (8.7)

The low correlation coefficient in Equations 8.6 and 8.7 could be related to the measuring 

problem described in Figure 8.7. One would expect the velocity of whole samples to be 

much larger than in cancellous samples due to the larger velocity value in the cortical end 

plates. The mean of the differences between whole velocity and cancellous velocity was 

25.5 m s'1 with a 90 % confidence interval of 7.8 - 43.2 m s'1. There is a similar range for 

other combinations (whole - defatted, core - cancellous, core - defatted). The mean of the 

differences are statistically different but the small value could be attributed to the thin 

cortical endplates and reduction in velocity by the water interface in some measurements. 

The velocity henceforth will refer to velocity of the cancellous samples except otherwise 

stated.
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Figure 8-9: Plot o f Velocity Against Density

The correlation coefficient for velocity versus density was 0.80 (R2 = 64%) (Figure 8.9). 

This value is lower than the 0.85 observed by Evans and Tavakoli [1990] ( R2 = 72%). 

Evans and Tavakoli studies were on bovine specimens, in addition Chapter 7 demonstrated 

a higher correlation coefficient (R2 = 69%, for logV versus logp) in the AP direction for
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bovine specimen. On the other hand Waud et al. [1992] observed a lower correlation of 

0.73 in vivo (R2 = 53%).

8.4.2 Velocity and Mechanical Properties

The relationship between ultrasonic velocity and mechanical properties is well established 

(Equations 7.15, 7.17). The problem (as discussed in Chapter 7.3) is to define the type of 

velocity being measured. The bar wave velocity relationship (Equation 7.18) was used 

and the linear regression fit given in Equations 8.8 and 8.9 and Figures 8.10 and 8.11 for 

Young’s modulus and compressive strength respectively.

y  = 1390+702A/ i / p  R2 = 73% (8.8)

V  =  1369 +  6460^/o/p R2 = 66% (8.9)
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0.4 0.450.15 0.35 0.50.1 0.2

Figure 8-10: The Relationship Between Velocity, Young's Modulus and Density

The correlation coefficient given in Equations 8.8 and 8.9 are less significant than would 

be expected. One explanation could be the fact that a broadband transducer with nominal 

frequency of 1 MHz was used in this investigation. 1 MHz and thus a wavelength of 1.5 

mm - 8.16 mm do not satisfy the condition for the application of the bar wave (Equation
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7.1). On the other hand, although the 1.5 mm is greater than the cross-sectional 

dimension of the trabeculae, its velocity could not be considered to represent the material 

velocities because it has been quoted to be above 2000m/s [Ashman et al., 1987]. The 

correlation coefficient given in Equation 8.9 explains only 68% of the variance. Turner

and Eich [1991] demonstrated a higher correlation coefficient (R^ = 77% ). They carried 

out their experiment on bovine specimens which have a larger density range. The results 

reported in Chapter 7 on bovine cancellous bone over a large density range also 

demonstrated a higher correlation coefficient.

1800

1750 --

1700 --

1650 ■-

O 1 6 0 0 -

1550 -

R - Squared = 66°/T)1500 --

1450
0.04 0.045 0.05 0.055 0.060.035

Sqrt(Strength/Density)
0.025 0.030.02

Figure 8-11: The Relationship Between Velocity and Strength fo r  Calcaneus

Another possible cause of the poor correlation of velocity with young's modulus and with 

strength, could be that the pulse method utilised in this investigation has an inherent 

inaccuracy in reading the start of the received signal as illustrated in Figure 8.12. This 

error becomes significant if the specimen is small or if the period is of the same order of 

magnitude as the time delay. The reason for this is twofold:

• Firstly, there is a region called the near field of the transducer in which the waves 

emanating from the transducer face interfere with one another. The length of the near 

field of the transducer (Zmax ) is given by Equation 3.2. For frequency range of 0.2 -
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0.5 MHz, Zjnax is 3.14 - 12.15 mm. The specimen encountered in this investigation

had thickness range of 15 - 25 mm.

• Secondly, when the specimen is short and the velocity is high enough, the interference 

disturbs the received signal and the time measurement is inaccurate. It was 

demonstrated in Chapter 4 that the system had a time delay (0.8 j l l s ). This was thought 

to affect the accuracy of the measured velocity since the specimen were of different 

thickness. Incorporating the time delay in the velocity measurement did not improve 

the correlation coefficient.

Received Signal

Trigger Pulse

Time

Measurement error

Time

Figure 8-12: Error Involved in Time o f Flight Measurement (not to scale)

On the other hand, the ability to use velocity to predict Young's modulus and strength 

given in Equations 8.10 and 8.11 and illustrated in Figures 8.13, and 8.14 respectively. 

The increased R-squared is due to the linearisation by squaring.

E = - 37.6 + 10_ 7 V2 p R2 = 93.5% (8 .10)

0  = - 0 .4 2 4 +  1.3* 10 V2 p R2 = 88% (8.11)
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The correlation coefficient of Equations 8.10 and 8.11 has more clinical relevance, since 

the main objectives is to be able to predict strength and Young's modulus from measured 

velocity. The standard error of estimates of Young's modulus in Equation 8.10 is 6.09 

MPa and 0.106 MPa for strength in Equation 8.11. It can be seen from Table 8.2 that the 

correlation coefficient has increased in the above combination in comparison to the 

individual correlation.

The mode of ultrasound propagation through porous structure such as cancellous bone is 

not well understood. Further investigations is necessary to elucidate the effect of pore 

size and distribution on velocity, dependence of velocity on frequency or wavelength and 

the validity of bar wave in this application. William[ 1991] demonstrated that Biot theory 

could be used for better theoretical prediction of ultrasound transmission through 

cancellous bone. They further argued that at 0.5 MHz, the longitudinal wave is 

transmitted as a bulk wave rather than a rod wave through the material.

D
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Figure 8-13: The Relationship Between Strength, Velocity and Density
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Figure 8-14: The Relationship Between Young's M odulus, Velocity and Density 

8.4.3 Broadband Ultrasonic Attenuation (BUA)

Since the introduction of the concept of using BUA as a discriminator of osteoporosis, 

little has been done to relate it to the mechanical integrity of the bone, this section 

examines that relationship. A commonly encountered problem with in vitro measurements 

is the extrapolation of results to in vivo conditions. This study has attempted to quantify 

this problem by first carrying out the ultrasonic measurements on whole samples before 

coring . The results are given in Appendix D - Tables C .l, C.2. A linear regression fit to 

the data are presented in Equations 8.12 - 8.14

imBUAw hole = 0.73 + 1.08nnBUAcore R2 = 94% (8.12)

nnBUAwjjoie=  4.34 + 1.02nnBU A can r 2 = 87% (8.13)

nnBUAcore = 3.60 + 0.93nnBUAcan R2 = 89% (8.14)

The effect of coring the samples on the attenuation is shown in Equation 8.12 and

illustrated in Figure 8.15. The standard deviation on the gradient and intercept are
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0.06552 and 1.47, respectively. The t-ratio and p-value of the intercept are 0.51 and 0.613, 

respectively. Therefore as would be expected there is a slight but not significant effect of 

coring on the intercept. The slight effect is due to the loss of the signal that would have 

been scattered back from an area outside of the cylinder when the samples are cored.

40

3 5 -

3 0 -

2 5 -

2 0 -

R -  Squared = 94%

35 4015 20 25
nnBUA ( Core Samples)

Figure 8-15: Plot o f BUA o f Whole Calcaneal Against BUA o f Core Samples

The effect of the cortical end plates are shown in Equation 8.14 and Figure 8.16. The 

standard deviation on the gradient and intercept are 0.0757 and 1.487, respectively. The t- 

ratio of the gradient and intercept are 12.28 and 2.42, respectively, implying that these 

values are significant. Within 95% confidence limit nnBUAcore is directly proportional to

nnBUAcan It is evident from Equation 8.14 and the statistics that the cortical end plates

affect only the intercept, thus causing an offset without changing the BUA pattern. This 

implies that the observed attenuation in vivo will be determined predominantly by the 

cancellous component of the bone.

The combined effect of coring and cortical end plates is given in Equation 8.13 and Figure 

8.16. The standard deviation on the gradient is 0.0949 and that on intercept is 2.014. The
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t-ratio of the gradient is 10.79 and that of the intercept is 2.32. The offset increases from 

whole - core to cancellous but the nnBUAwj10ie is still directly proportional to nnBUAcan

with a proportionality constant of 1 within experimental error. The correlation observed

between nnB U A ^ole  an^ nnBUAcan (R^ = 87% ) ( see Table 8.2) which is presented

in Equation 8.13 and illustrated in Figure 8.16 was significant. This implies that the 

mechanical measurements carried out on the cancellous samples could be related to the 

nnBUAwhole and thus the in vivo condition. There is also a gradual but not significant 

decrease in the correlation coefficient as the specimen under went coring to defatting [see 

Table 8.2].

4 0

R — Squared  =  87%
3 5 -

+
3 0 -

2 5 -

3  20  -  CD z - u

R -  Squared =  89%

15  2 0
nnBUA ( Cancellous)

2 5 3 0 3 5

+  nnBUAwhole ^  nnBUAcore

Figure 8-16: BUA o f Whole and Core Calcaneal Samples Plotted Against BUA o f  

Cancellous Samples

No significant difference was observed between the specimen with fat in situ and those 

without fat ( pores filled with degassed water). The mean of their differences was 0.511 

±1.086 ( 95% confidence limit). This could be explained by the fact that the difference 

in acoustic impedance between fat and water is small. Although mechanical measurements
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were carried out on defatted specimens the ultrasonic properties discussion will be on 

specimen with fat in situ. This is because specimens with fat in situ have no degassing 

problem for acoustic measurements, hence they were more reproducible.

nnBUACan = 0.33 + 0.96BU A def R 2 = 91% (8.15),

nnBUAw hole = 3.71 + 1.03nnBUAdef  R2 = 87% (8.16).

nnBUAco re= 3.52 + 0.91nnBUAdef  R2 = 85% (8.17)

The standard deviations of the intercept and gradients of Equation 8.15 are 1.47 (p = 

0.824, t = 0.23) and 0.073 (p = 0.000, t = 13.06). This confirms the equality of nnBUAcan

and nnBUA^gf discussed above.

There was a significant positive correlation between all the nnBUA values and density and

the highest significance was between nnBUAcan and density (R^ = 88%, see Table 8.2).

To determine the relationship between nnBUAcan and density a linear regression analysis

was applied to the log transformation of the data. This is presented in Equation 8.17 and 

illustrated in Figure 8.17.

Log(nnBUAcan) = - 3.57 + 1.991ogp R 2 = 87% (8.17).

The correlation coefficient was higher than that reported by McKelvie et al. [1989] (R2 =

0.69) and McCloskey et al. [1990] ( R2 = 71%). It is worth mentioning that the density 

reported by McKelvie et al. [1989] was actual density (total specimen mass including fat 

divided by the total specimen volume) not the apparent density reported here and by 

McCloskey. The high correlation of this study was unexpected since BUA has been 

reported to be dependent on both structure and density [Langton et al., 1990a; Tavakoli 

and Evans, 1992]. One possible explanation is that all measurements were carried out in 

one direction, hence the architectural variation will not be significant in comparison to the 

density changes. With the bovine results (see Chapter 7) significant correlation could be 

observed when the results were separated into the three directions. It must also be noted 

that some structural changes such as thinning or total loss of the trabeculae which occur in 

an ageing bone are not mutually exclusive of density changes (that is, a density change
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implies a change in structure). From the log transformation (Equation 8.17) it could 

suggested that the ultrasound attenuation also follows the power relationship with density

(nnBUA ocpl-99 ±0.09 ) as compressive strength. This will further justify the 

architectural dependence of BUA.

There have been a host of studies correlating BUA and density measured by established 

densitometric techniques (Table 3.4, Gluer et al., 1992; Waud et al., 1992; Rossman et al. 

1989). The reported correlation coefficients have varied from 0.41 to 0.85 (R2 = 17% - 

72%). Some possible reasons for the wide correlation values could be:-

1. A large age range which encompasses a large structural differences, for example 

Rossman et al. [1989] used 2 1 - 6 1  years females and Waud et al. [1992] used 35 - 83 

years.

2. The reports correlate BUA at the calcaneus with density of a different anatomical site 

(Table 3.4)

3. The values of BUA are not normalised for specimen thickness

To verify the third reason, correlation coefficient between BUA (dB/MHz)can and density,

and BUAcore and density were calculated. The R2 values fell from 88% (nnBUAcan ) to

81%(BUAcan) and from 76% (nnBUAcore) to 66% (BUAcore). This decrease could have

been more significant if the samples used in this study had a higher sample thickness CV 

(range 1 5 - 2 5  mm, mean = 19.95 mm and CV = 13.35% for cancellous samples; range 20 

- 33 mm, mean = 28.28 mm and CV = 12.53% for core samples). This decrease validates 

the third explanation of variation in correlation values in vivo . It could therefore be 

proposed that further study in vivo should normalise BUA for specimen in order to give a 

volumetric density. Studies by Herd et al. [1994] have also come to the same conclusion.
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Figure 8-17: A Plot o f BUA o f Cancellous Samples Versus Density

There is a high positive correlation (R^ = 75%) between nnBUAcan and compressive

strength as illustrated in Figure 8.18 ( see also Table 8.2). A linear regression analysis 

applied to the logjo transformed values is presented in Equation 8.18. A gradient of 1.18

shows that BUA is linearly proportional to strength.

Loga = -1 .8 4 +  1.181og(nnBUAcan) r 2 = 75% (8.18)

logE = - 0.220 + 1.361og(nnBUAcan) R2 = 77%. (8.19)

Young's modulus was highly correlated with nnBUA, with a higher but not significant 

correlation than strength (see Table 8.2 and Equation 8.19). The higher values could be 

because E normalise the measurements for specimen thickness, while strength does not. 

The specimen used in this study had thickness varying from 15 mm - 25 mm. A plot of 

attenuation versus Young's modulus is presented in Figure D . l l  (Appendix D) and the 

graph of the logged values presented in Figure 8.19.
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Table 8.2 shows that there is no significant difference in the values of nnBUAwj10le’ 

nnBUAcore, nnBUAcan and nnBUA^gf with compressive strength.

0.2

-H-
— 0 . 2 -

2  - 0 . 4 -

- 0 . 6 -

- 0 . 8 -

R -  Squared =  75%
- 1 . 4

Log (nnBUAcancellous samples)

Figure 8-18: A Plot o f log o f Compressive Strength Against log o f BUA
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Figure 8-19: Plot o f log o f Young's Modulus Against log o f BUA

A  plot of velocity (cancellous and defatted) against attenuation is presented in Figure

8.20. Velocity is proportional to attenuation with a correlation coefficient of 0.77 (R^ = 

60%). A higher correlation could have been observed if not for specimen number 3 and 4. 

When these two values are eliminated then correlation between velocity and attenuation

becomes 0.89 (R^ = 79%) as seen in Figure D.3 ( Appendix D). The 21% variance could 

be due to the difference in the modes of interaction of velocity and nnBUA with cancellous 

bone. Other researchers have found a poor in vivo correlation between BUA and 

ultrasound velocity. For example Rossman et al. [1989] observed an r = 0.53 , while Waud 

et al. [1992) found r = 0.74.
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Figure 8-20: The Relationship Between Velocity and BUA

Preceding sections have shown that nnBUA is a good predictor of strength and Young's 

modulus, Nonetheless, it is a better predictor of density for the age range used, hence the 

author substituted density with BUA in the bar wave equation (7.18) and the following 

relationships were obtained (Figures 8.21 and 8.22):

CT=-0.119 + 1.18*10"V2fit/A c„ R2 = 80%, (8 .20)

E = -10.21 + 9 .11*10-7V 2BUAcan R2 = 83%. (8.21)

The standard error of strength estimate is 0.14 MPa (Eqn. 8.20) and 9.77 MPa for 

Young's modulus (Eqn. 8.21). This means that the strength and elasticity could be 

predicted with 83% accuracy using only ultrasound parameters. These two parameters 

could be measured in vivo. The correlation coefficient for strength and Young’s modulus 

is higher from combined BUA and velocity than when used individually (Table 8.2).
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Figure 8-21: The Relationship Between Young's M odulus, Velocity and BUA
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Figure 8-22: The Relationship Between Strength, Velocity and BUA

No significant trend between any of the measured mechanical and acoustic parameters 

were observed with age (Figure D.4 in Appendix D), although age has been reported as a 

predictor of velocity and attenuation [Heaney et al., 1989, Herd et al., 1991, Agren et al., 

1991, and Waud et al., 1992]. Agren et al. [1991] observed a significant negative 

correlation (r = -0.448) between BUA and age, while Herd et al.,[1991] demonstrated that 

in addition to age, years since menopause was a significant factor in predicting BUA. In 

the first 5 years following the menopause BUA decreased by 2.5%/year, while in the next 

5 years the decrease fell to 0.5%/year. Heaney et al.,[1989] found no relationship between 

age and velocity in premenopausal normal women, but in contrast, found a significant 

negative correlation between velocity and age between older normal subjects (r = -0.422) 

and osteoporotic postmenopausal subjects (r = 0.295).

The non-significant correlation between age and the measured properties (E, p, a , velocity 

and BUA) in this study could be accounted for by the small age range and lack of 

pathological information on the specimens. This is because while a 60 years old female
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with mobility problems could have a low bone mass, an active 80 years old female could 

have a higher bone mass. So the trend of acoustic and mechanical properties with age 

could be better studied in a normative population or in a restricted sample with the criteria 

governing selection including:- general health, activity, body weight, drug treatment and 

the time for the onset of menopause

8.5 Structural Properties- Permeability

Permeability as a structural index was introduced in the previous chapters. Permeability 

coefficients of the calcaneus were studied and the results presented in Table 8.1 and 

Appendix D.3. A plot of permeability versus density is presented in Figure D.5 from 

which an exponential decay with density could be observed. Therefore a linear regression

plot of log(permeability) versus density ( presented in Figure D.6) results in an of 75% 

compared to 68% for log(K) versus log(p) (presented in Figure 8.23). The permeability 

study in bovine cancellous bone showed a strong dependence on density when the results

were separated into the three orthogonal directions ( = 82%, AP; R2 = 78%, PD and

R2 = 84%, ML). The lower dependence on density in the calcaneus samples (R^ =68%) 

could have arisen due to problems with defatting. There is no quick experimental method 

of determining that all the fat has been remove. Thus any sample without all the fat 

removed will give unnecessary low reading. This problem was more apparent with the 

calcaneus samples because of the method of which they were machined. The cylindrical 

calcaneus samples were acquired by drilling but not under constant water irrigation so the 

fat produced in the process were forced into the sample.
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Figure 8-23: A Plot o f Permeability versus Density.

Permeability is proposed here as being dependent on structure as well as density. 

Therefore one would expect a significant correlation between permeability and structure 

dependent parameters such as Young's modulus, strength and BUA. A plot of permeability 

versus strength presented in Figure D.7 shows an exponential decay with strength and

therefore an of 71% was observed for a linear regression fit of logK versus strength ( 

Figure 8.24

Permeability also decreases exponentially with BUA and a linear regression of of logK 

versus strength gave a correlation coefficient of 67%. Permeability therefore is a poorer 

predictor of BUA than density in the calcaneus. Permeability experimental technique and 

defatting could account for some of the poor correlation.
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Figure 8-24: A Plot o f Permeability versus Strength
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Figure 8-25: A Plot o f log Permeability against BUA
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8.6 Vertebrae Results and Discussion

The other source of human specimen used for this study was thoracic vertebrae because of 

the distinctive anisotropy. No information on sex, age and pathology of the specimens 

were available. The specimens were obtained dry, and they were then soaked in water 

prior to any measurements. The measurement procedures are as described in Chapter 4. 

The vertebrae measurements were carried out in the three perpendicular directions, giving 

three data points per specimen. The results are given in Table 8.4, including the mean, 

standard deviations (Stdev) and coefficient of variation (CV = (stdev/mean)xlOO). Young's 

modulus had the highest CV (71%), while velocity had the lowest (10.43).
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Table 8.4: The Mechanical, Acoustic and Structural Properties o f the Vertebrae

Specimen Young's Strength Density Velocity nnBUA K

no Modulus(MPa) (MPa) kg m'3 m s"1 dB M H z1 cm'1 m2 * io - l l

PD1 55.3 1.3 205 1861(1.7)* 31.62(5)* 194.14

PD2 113.4 2.05 254 1893(1.2) 44.83(1.4) 138.44

PD3 151.9 3 338 2079(2.5) 49.32(4.5) 113.7

PD4 107.6 1.85 267 1945(0.1) 43.86(4.5) 125.6

API 1 2 1526(1.0) 9.78(2.6) 109.3

AP2 30.2 1617(1.7) 17.73(2.3) 86.1

AP3 47.4 1683(1.0) 19.24(4.0) 94.34

AP4 48.6 1619(.01) 18.35(4) 91.23

ML1 14.6 1490(1.4) 10.87(1.0) 1 1 1 . 2

ML2 31.4 1652(1.0) 17.86(0.6) 94.6

ML3 57.9 1708(1.4) 23.22(1.6) 90.8

ML4 47.5 1622(1.4) 17.93(3) 86.1

Mean 59.82 2.05 266 1725(1.2) 25.38(2.88) 111.3

stdev 42.75 0.708 54.9 180 13.65 30.9

CV 71.46% 34.53

%

20.6% 10.43% 53.78% 27.76%

* where the value in brackets is the cv for that measurement

203



 ̂ o  -*
,‘? ^ i t ^ ' i / ’'*i?^ * *  *  *vVK: -•< W *  *  & ' I V  .SY  ^*“ 'V .  , «<*V-.~

*̂ 5*% ->V? %!*> > « » ? -v«?V/ :
i *> * ‘ - c~

^  %■**;: /> - V
k *  •■V>' ^ ' ,¥ ^ j '* V v>* ' i  'El :  ■v5-’ a  - "• '  **%-3 '

Figure 8-26: A Photograph o f a Specimen from the Thoracic Vertebrae( 12*12 mm)
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8.6.1 Mechanical Properties of the Vertebrae

Studies reported in the literature have looked at the mechanical properties of human 

vertebrae, however to the author's knowledge there is none examining both ultrasonic 

properties and mechanical properties apart from a recent report by Nicholoson et al. 

[1994]. Some of the cited work on mechanical properties are presented in Table 8.5 which 

illustrates that mechanical properties of this study fall within reported work.

Table 8.5: The reported mechanical properties o f human vertebrae (L = lumbar, T  = 

thoracic)

Source Strength (MPa) Young's Modulus Comment

Weaver & Chalmers 4.25 - < 50 years L

(1966) 2.54 - > 50 years L

Galante et al. (1970) 2.06 ±0.25 - L3, L4

Lindahl (1976) 4.6±0.3 55.6±0.7 males L2-4

2.7±0.7 35.110.6 females L2-4

Struhl et al.(1987) 0.06-15 10-428 Fresh

Present studies (1994) 2.05±0.7 59.82142 wet defatted,T

It can be seen in Table 8.4 that Young's modulus in the proximal - distal direction was a 

factor of 3 higher than the anterior-posterior and mediol-lateral directions and the values 

of Young's modulus in ML are approximately equal to those in AP. The higher value in 

PD is expected since the PD is the direction of applied load. A closer look at Figure 8.23 

(photograph of the vertebrae) will reveal that the vertebrae is an example of bone where 

loading is largely vertically uniaxial. The trabeculae often develop a columnar structure 

with cylindrical symmetry. The columns of bone are oriented in the vertical direction (PD). 

This gives relatively high Young's modulus and strength in the direction of load with lower 

Young's modulus and strength in the transverse directions. This anisotropy is accentuated 

with age due to the loss of the thin horizontal trabecular and an increase in diameter 

among the remaining trabeculae (Parfitt, 1984). Bone growth is stimulated by stresses to
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which it is subjected (Wolf, 1889), hence when the trabecular bone mass decreases with 

age, the compressive force on the remaining trabecular structure will increase. To reduce 

this critical increase, new bone is formed on the vertical trabeculae. The horizontal 

trabecular which are often disconnected or have dissappered are not involved in this 

adaption of the trabecular bone (Parfit et al., 1983).

A plot of log to the base ten of Young's modulus versus log of density is given in Figure 

8.27. The linear response of this graph indicates that Young's modulus in the vertebrae 

also follows the power relationship discussed for the calcaneus and bovine femi specimens. 

The gradient for the linear regression is 1.98±0.46, 2.78±1.12, and 2.78±0.73 for PD, AP

and ML respectively. The values are 89.8%, 76%, and 88% for PD, AP and ML 

respectively. The high correlation is not surprising because the previous studies have 

confirmed the power relationship between Young's modulus and density. The results 

suggest a cubic relationship with density in the AP and ML and a quadratic relationship 

with density in the PD direction. It is noteworthy that the power dependence of Young's 

modulus on density follows the same pattern as that observed in the bovine, whereby the 

direction with the highest Young's modulus had the lowest exponential. A linear 

regression of log of strength (PD direction) versus log of density resulted in a gradient of 

1.64±0.26 and an of 95.1%. As would then be expected strength (PD direction)

correlated positively and linearly with Young's modulus (PD- direction) with an R^ of 

92%.
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Figure 8-27 : A Plot o f log o f Young's Modulus Against log o f Density fo r  three 

Orthogonal Directions

8.6.2 Ultrasonic Properties of Vertebrae 

8.6.2.1 Velocity

It can be seen from Table 8.4 that velocity had the highest values in the PD direction and 

it is in agreement with a recent report by Nicholson et al. [1994]. Velocity also had the 

lowest coefficient of variation (CV) compared to the other acoustic and mechanical 

properties. The lowest CV could be due to the fact that velocity is highly dependent on 

microstructure (collagen and hydroxapatite) and the macrostructural dependence is highly 

affected by the wavelength of the propagating wave. Application of the modified bar wave 

equation (7.18) to the vertebrae data is presented in Figure 8.28 and Equation 8.21 

(sample number is 12),

V  =  1213 + 1151 R2 = 89% (8.21).
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The coefficient of correlation (Eqn. 8.21, r = 0.94) is higher than that for the calcaneus 

(r=0.84). The reasons for lower r in the calcaneus have been discussed, however the 

vertebrae had smaller specimen diameter and more appropriate for the application of the 

bar war relationship.

2 1 0 0

2 0 0 0 -

1 9 0 0 -

'e ' 1 8 0 0 -

1 6 0 0 -

1 5 0 0 -
R -  Squared = 89%

1 4 0 0

SORT ( Young's M odulus/Density)

Figure 8-28: The Relationship Between Velocity, Young's Modulus and Density 

8.6.2.2 Broadband Ultrasound Attenuation (BUA)

BUA exhibited a marked anisotropy with a factor of 2.6 higher in the PD compared to the 

AP and ML (see Table 8.4). The overall CV of attenuation is 54% compared with 71% 

for Young's modulus and 20.63% for density. This is a further indication of structural 

dependence of nnBUA. The coefficient of variation in the individual directions are 17.86% 

for PD, 26.88% for AP and 29.02% for ML. This shows that for the individual directions 

the coefficient of variation is comparable to density variation. This further confirms the
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reasons put forward in the calcaneus studies that within a specific direction the structural 

changes are smaller than density changes.

The log of attenuation as a function of log density is presented in Figure 8.29. There is an 

increase in BUA with increase in density in the ML and AP directions but no significant 

trend is observed for the PD direction. The unobserved change in BUA with density in the 

PD direction could be due the rod like structure and would be affected by real density 

rather than apparent density. Similar anomaly have been observed in velocity propagation 

by Nicholson et al [1994]. The trend for ML and AP is similar to the calcaneus results.

~K

0.9
2 .4  2 .4 5

Log (Density (K G /m ^ ))
2.5 2 .5 52 .3 52.3

Figure 8-29: A Plot o f BUA versus Density fo r  the Three Orthogonal Directions

The plot of log of BUA versus log of Young's modulus is presented in Figure 8.30. The 

linear regression analysis resulted in Equation 8.22. The correlation coefficient (r = 0.959) 

is highly significant and higher than observed in the calcaneus specimen ( r = 0.877). The 

high correlation between BUA and Young’s modulus for these highly anisotropic samples 

may be attributed to them measuring similar material properties (bone mass and structure).
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log(E) = -0.206 + 1.391og(nnBUA) R2 = 92% (8.22)

nnBUA = -102.22 + 0.074V R2 = 95% (8.23)

BUA in the vertebrae is also proportional to velocity as demonstrated in Equation 8.23 

and Figure 8.31. The correlation coefficient (r = 0.975) is higher than in the calcaneus ( r =

0.889.. The following factors could contribute to the higher correlation coefficient in the 

vertebrae

1. There is a higher velocity CV in the vertebrae than in the calcaneus.

2. The vertebrae has a high degree of anisotropy and thus different structures

were studied, hence bringing out the dependence on structure rather than density 

for both velocity and BUA.

3. The pore size (marrow connectivity) and trabecular thickness which affect 

both attenuation and velocity are different in the calcaneus and the vertebrae.

R -  Squared = 92%

0.9
2.2 2.4

Log (Young's Modulus (MPa))

Figure 8-30: A Plot o f log o f BUA versus log o f Young's Modulus
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Figure 8-31: The Relationship Between Velocity and BUA in the Vertebrae 

8.6.3 Permeability of the Vertebrae

The permeability in the vertebrae has the highest values in the PD direction and no 

significant difference between AP and ML directions. This is contrary to observations in 

the bovine where the PD direction had the lowest permeability, this is because in the 

vertebrae the columns present themselves as straight capillaries and the influence of 

tortuous route is thus eliminated. This further supports the hypothesis that permeability 

can be used as a quantitative indicator of the arrangement of struts in space.

A plot of log permeability versus log density is presented in Figure 8.32. there is an inverse 

proportionality relationship between permeability and density as observed in the calcaneus 

and bovine samples. Qualitatively the PD direction showed a linear decrease in 

permeability with increased in density while AP and ML directions are more curved. Due 

to the number of sample points this observation will not be expanded upon because it 

could well be an experimental error.
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Figure 8-32: A Plot o f log o f Permeability versus log o f Density

A plot of BUA with permeability showed a decrease in BUA with an increase in 

permeability but in two phases. The first phase involves the AP and ML directions and 

there is a jump to phase II involving the PD direction. The implication of this is that if the 

tortousity of the samples are included in the correlation then the phase transition could be 

eliminated. Further correlation between velocity, Young’s modulus, strength and density 

were not carried out because they will follow the same trend as observed in Figure 8.33 

since they are highly correlated with each other.
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+x

100 120 140 160 180 200
Permeability
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Figure 8-33: A Plot o f BUA versus Permeability

8.7 Conclusions

8.7.1 Calcaneus

The mechanical properties are similar to those reported in the literature. Young’s modulus 

and strength were found to be related to the cubic power of density for the mediol-lateral 

direction and this is in agreement with the power relationship predicted by the theoretical 

models of Gibson [1985].

Velocity of the core and whole samples, and cancellous and defatted samples were 

statistically the same. Velocity was relatively poorly correlated with density (R2 = 64%). 

The modified wave velocity relationship was investigated and the calcaneus data explain 

only 73% and 68% of the variance for Young’s modulus and strength respectively. On the 

other hand velocity was a good predictor of Young’s modulus (R2 = 94% ) and strength 

(R2 = 88%).
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The calcaneus has the measuring site advantage of accessibility and also it has more than 

90 % trabecular bone by volume [ Vogel et al., 1988], hence nnBUAwh0le «nnBUAcan. 

This was demonstrated by measuring cored samples and samples without the cortical end 

plates. The effect on BUA was only an offset due phase cancellation.

Broadband Ultrasonic attenuation (BUA) has been demonstrated as a good predictor of 

density (BUA a  p1"  , R2 = 87%) , bone strength (BUA ~ a , R2 =75% ) and Young’s 

modulus (BUA « E0'74, R2 = 77%) of the calcaneus.

It was also demonstrated that a combination of V2BUA could predict strength and 

Young’s modulus with 80% and 83% accuracy respectively.

There was no significant trend between ultrasonic and material properties with age . This 

was attributed to the limited age range .

Permeability was demonstrated to be related to density and also to predict both strength 

and BUA.

8.7.2 Vertebrae

The vertebrae was found to be distinctly anisotropic with the PD direction exhibiting the 

highest Young’ modulus, velocity and BUA values. The mechanical properties correlated 

with those reported in the literature and also follow the power relationship with density 

found in the calcaneus and bovine samples.

The modified bar wave equation had a higher correlation than in the calcaneus. The 

direction dependence BUA and velocity was further demonstrated in the vertebrae. Due 

the distinct anisotropy in the vertebrae BUA was highly correlated with both velocity and 

Young’s modulus more than in the calcaneus.

Further investigation is needed to understand the mode of ultrasound transmission through 

cancellous bone , especially the application of the Biot theory.
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9. COMPARATIVE ANALYSIS OF BOVINE AND 

HUMAN CANCELLOUS BONE

9.1 Introduction
Three sets of cancellous specimens(18 bovine femur, 20 human calcaneus and 4 human 

vertebrae) were investigated and reported in Chapters 7 and 8. This chapter 

investigates the effect of analysing the combination of data.

9.2 Mechanical properties

9.2.1 Young’s Modulus

A plot of the log (Young’s modulus) versus log (density) for all samples is presented in 

Figure 9.1 and linear regression analysis given in Equation 9.1

LogEAu = - 8.145 + 4.081ogp R2 = 86% (9.1)

The standard error of estimate is 0.279 and the correlation coefficient is highly 

significant and within the range of the individual groups (R is 89% for the calcaneus; 

82%, 83% and 87% for bovine PD, AP and ML directions respectively; and 90%, 76% 

and 88% for vertebrae PD, AP and ML direction respectively). At a 95% confidence 

limit, the intercept and slope of the whole data set are significantly different from the 

slope of the individual groups analysed separately, presented in Table 9.1 where SE is 

the standard error. The confidence interval (Cl) at p confidence limit, with n-2 degrees 

of freedom using the student t distribution is given by tn-2,p*SE.
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Table 9.1: Confidence Intervals fo r  the Relationships Between log(Elasticity-E) and 

log(Strength- a) with log(density)

Equation Constant SE CI(±) Gradient SE CI(±) R2 (%) N

E(A11) -8.145 0.468 0.93 4.08 0.181 0.36 86 86

E(A11)*‘ -8.79 0.590 1.19 4.31 0.233 0.47 89.5 42

E(B ovine)* -2.68 0.512 1.09 2.10 0.19 0.40 88 18

E(Calcaneus) -6.11 0.622 1.31 3.14 0.258 0.54 89 20

E( Vertebrae)* -4.4 1.726 3.26 2.51 0.713 1.35 86 4

G(A11) -9.48 0.718 1.44 3.84 0.286 0.57 83 39

G(B ovine) -5.05 0.502 1.08 2.22 0.189 0.41 91 15

G(Calcaneus) -7.48 0.607 1.27 2.93 0.252 0.53 88 20

G(Vertebrae) -3.66 0.630 1.19 1.64 0.261 0.49 95 4

One weakness of this analysis is that for bovine and vertebrae samples, three values of 

Young’s modulus were measured per specimen. Therefore one density value had three 

corresponding Young’s moduli. Young’s modulus as demonstrated in Equation 9.1 is 

related to the density of the whole data set by the power of four. This is higher than 

those reported in the literature. This could be because the literature, to the best of the 

author’s knowledge, has no measurement of the calcaneus in the medio-lateral 

direction. There is no predictive significance of this correlation (Equation 9.1) because 

as illustrated in Figure 9.1 the overall regression line overestimates the calcaneus 

values, while underestimating the bovine values. Therefore, the mechanical properties 

of the three sample groups are distinct in relation to density and should be analysed 

separately. This is supported by the statistical analysis of Rice et al. [1988] who 

concluded that human and bovine data on elastic modulus and strength are statistically 

distinct and cannot be combined to form interspecies relationships between mechanical 

properties. This is contrary to a recent study by Hodgskinson and Currey [1992] where 

three evolutionary widely separated mammalian species (humans, horses and bovines)

1 The linear regression was carried out using average values of Young’s modulus for the bovine and vertebrae 
specimens
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were used. They showed that the regressions for the whole data set were extremely 

close to the regressions for the species taken individually. One reason for the 

agreement observed in the work of Hodgkinson and Currey [1992] is that they used 

average values and included the structure index ‘fabric’ in their analysis. The mean 

Young’s modulus is not a material property that is important in any give loading 

situation; it merely gives an indication of the overall stiffness of the specimen.
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Figure 9-1: The Relationship Between Young’s Modulus and Density fo r  all 

Cancellous Bones

9.2.2 Strength

A plot of log strength versus log density of the whole data set is presented in Figure

9.2 and the linear regression analysis given in Equation 9.2

LogOAii = -9.48 + 3.81ogp R2 = 83% (9.2)

The standard error of estimate of Equation 9.2 is 0.280. The slope and intercept are 

similar to those of Young’s modulus (Equation 9.1), but significantly ( 95% confidence 

limit) different from the individual groups (see Table 9.1). Strength of the whole data 

set is related to density by a power of 4 which is higher than reported in the literature.
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As discussed above the different groups should be analysed separately because the 

dependence of Young’s modulus and strength on density is also affected by the 

orientation of the struts (open cell, closed cell, symmetric or non-symmetric) (Gibson 

1984). The orientation of the struts will therefore vary from specie to specie and from 

location to location.
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2.4 2.6 2.8 32.22

Log(Density)
▲ Bovine Femur + Human Calcaneus x Human Vertebrae

Figure 9-2: The Relationship Between Strength and Density fo r  Cancellous Bone

9.3 Ultrasound Properties

9.3.1 Velocity

A plot of velocity as a function of density is presented in Figure 9.3 and the linear 

regression through the whole data set given by Equation 9.3

Van = 1301 + 1.67p R 2 = 75% (9.3)

The standard error of estimate of Equation 9.3 is 145.8 m s'1. This value is higher than 

the standard error of the calcaneus implying such a relationship will be a poor predictor
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of density in the calcaneus from a velocity measurement. The correlation coefficient (r 

= 0.87) of the whole data set is higher than observed for the calcaneus samples alone(r 

= 0.80) but lower than observed for the bovine samples (r = 0.92). The intercept and 

gradient of the whole data samples is statistically different from that of the individual 

groups, presented in Table 9.2. The correlation for bovine samples given in Table 9.2 

was obtained from correlation of density against the average value of velocity for each 

specimen. The average value has no significance in characterising cancellous bone 

being anisotropic and thus direction dependent.

Table 9.2: Confidence Interval (Cl) o f Velocity versus Density and log(velocity) 

versus log(Young ’s modulus)

Equation Constant SE Cl Gradient SE Cl R2 n

p(All) 1301 46 91.5 1.67 0.11 0.22 75 84

p (Bovine) 1675 56.7 120.2 1.0 0.11 0.23 84 18

p (Calcaneus) 1374 46 96.6 0.97 0.17 0.36 64 20

E(A11) 3.09 0.006 0.012 0.085 0.003 0.006 94 86

E(B ovine) 3.0 0.02 0.04 0.113 0.007 0.014 83 54

E(Calcaneus) 3.14 0.01 0.02 0.049 0.007 0.015 73 20

E( Vertebrae) 3.03 0.028 0.062 0.122 0.017 0.038 84 12

It may be concluded that when vector quantities such as Young’s modulus, strength 

and velocity are to be predicted from scalar quantity such as density, each specie and 

direction must be treated individually.
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Figure 9-4: A Plot o f log(Velocity ) as a Function o f log(Young's Modulus)

The linear regression analysis of log(Velocity) versus log(Young’s modulus) and the 

confidence intervals of the gradient and intercept are presented in Table 9.2 and Figure

220



\^nujjier y

9.4. The line fit through the combined data has a higher correlation coefficient than 

the individual groups.

The plot of velocity as the combined function of Young’s modulus (E) and density 

(p) is presented in Figure 9.5 and the linear analysis in Equations 9.4 and 9.5

y  = 1446 + 55 l j E / p  R2 = 94% (9.4)

E = -382 + 5.61*10'7V2p R2 = 9 4 % ' (9.5)

The plot of velocity as the combined function of strength(a) and density (p) is

presented in Figure 9.6 and the linear analysis in Equation 9.4.

V = 1382+ 6 1 4 1 ^  r 2 = 93% (9.6)

ct =  -2.84 + 4.84 * 1 0 'V 2P R2 = 95% (9-7)

Table 9.3: Confidence Interval fo r  the Equations o f the Form V  = constant + 

gradient* V(E/\p) and gradient* V(o/p) Calculated at 95% Confident Limit.

Equation Constant SE CI(±) Gradient SE CI(±) R2(%) n

E(A11) 1446 16.0 31.8 551 14.5 18.9 94 86

E(Bovine) 1410 45.4 91.2 574 33.5 67.3 85 54

E(Calcaneus) 1390 35.8 75.2 702 101.6 213.5 73 20

E(Vertebrae) 1213 58 129.3 1150 125 278.8 89 12

G(A11) 1388 25 50.55 5983 276 558 93 39

0>(B ovine) 1103 159 343.4 8122 1246 2691 77 15

G(Calcaneus) 1390 42 88.24 6040 1021 2145 66 20

Table 9.3 demonstrates that both the confident ranges of bovine and human specimens 

lie within the same range. To further restrict the range, the confidence level was chosen

to reflect the values, for example 80% confidence for the bovine samples. Again 

the confidence ranges for both species were still within the same range. This implies 

that the bovine femur, human calcaneus and the vertebrae behave in the same way 

with respect to velocity, elasticity and density. It therefore also justifies Equations 9.4
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and 9.6 whereby the two species data were combined. Following from this, one could 

conclude that the relationship given in these equations could be applied to any 

anisotropic material.
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Figure 9-5: The Relationship Between Velocity, Young's Modulus and Density fo r  all 
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Specimen

The next question that should be addressed is to what degree can bone strength and 

stiffness be predicted from velocity measured using the CUBA system. The combined 

results have a very high correlation coefficients (Equations 9.5 and 9.7) but the 

individual data set have a relatively lower correlation coefficient (R2 = 88%, calcaneus; 

R2 = 92%, bovine). The pulse method utilised in this investigation has an inherent 

inaccuracy in reading the start of the received signal. This error becomes significant if 

the specimen is small or if the period is of the same order of magnitude as the time 

delay. The reason for this is twofold. There is a region called the near field of the 

ultrasonic beam transducer in which the waves emanating from the transducer face 

interfere with one another. The length of the near field region of the transducer (

( 4 r 2—X/2) 2
Xmax.) *s approximately given by Xmax= ----------   - — (when r » A )  where r is

4A A

the radius of the transducer and A is the wavelength. For bovine samples of velocity 

2252 ms'1 and frequency 0.2 - 0.6 MHz Xmax is 1.16 - 11.66 mm and for calcaneus

samples 3.14 - 15.5 mm for velocity of 1635 ms'1. The human calcaneus specimens
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measurements were carried out after the cortical end plates had been removed. This 

therefore produced specimens of varying thickness (25 mm - 15 mm) and the shorter 

specimens thus lend themselves to velocity measurement inaccuracy. From the 

previous results the effect of this inaccuracy was minimal.

The mode of ultrasound propagation through cancellous bone is not well understood. 

Ashman and Rho[1988] argued that for waves generated at 2.25 MHz and specimen of 

cross-section of 5 mm a bar wave is generated which travels along the trabecular 

struts. Contrary, William[1992] used Biot's theory to show that the velocities measured 

by Ashman and Rho are for bulk waves. Our application of the bar wave equation for 

simplicity yielded good correlation coefficients. Turner and Eich [1991] carried out a 

similar investigation on bovine cancellous femur. They measured two sets of velocity ; 

one with a transducer excited at 2.25 MHz and the other one at 215 kHz. The higher 

frequency produced higher velocity values, but the correlation with yield strength was

not significantly different ( R = 77% for 2.25 MHz and R2 = 73% for 215 kHz ). Our

studies on CUBA system (McCue Ultrasonic, UK) produced a higher R.2 value ( R^ = 

95% ). The numerical values between these two studies could not be compared 

because of difference in frequency used for velocity measurement. It was also noted 

that the Young’s modulus reported by Turner and Eich [1991] were lower than for 

corresponding density in this study. The discrepancy may be due to a lack of allowance 

for the compliance of the Instron system in the Young’s modulus calculation.

9.3.2 Broadband Ultrasonic Attenuation

A plot of nnBUA as a function of density is presented in Figure 9.6. It should be noted 

that only the PD values are included for bovine and vertebrae. It can be seen from 

Figure 9.6 that the behaviour of nnBUA with density was non-linear and this is similar 

to what was observed in the porous perspex study.

Low nnBUA values were measured for very low density calcaneus samples and very 

high density bovine samples. The explanation for this observation is the same as 

proposed for the perspex model in Chapter 6 , in which the contribution of scatter 

determines the shape of the curve and it is structure dependent. For the calcaneus, the
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specimens were obtained from the same position, thus limiting the structural variation, 

hence the linear response with density. The bovine samples were obtained from 

different position on the proximal and distal femur. It is generally accepted that 

different locations due to distinct functional requirement develop separate 

arrangements of struts - hence the scatter observed with the bovine samples.
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Figure 9-7: A Plot o f  nnBUA versus Density fo r  Calcaneus, Vertebrae(PD and 

Femur(PD)

The plot of BUA as function of strength is presented in Figure 9.8. and the relationship 

is parabolic as observed with density. This is due to the strong dependence of strength 

on density. When the BUA values were divided by density two distinct phases were 

observed;-ascending for calcaneus and descending for vertebrae and bovine. Therefore 

BUA could be used to predict strength if the region of the curve is known.
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9.4 Conclusions

* Density is a high predictor of Young’s modulus and strength for individual specie. 

The statistical analysis demonstrated that the mechanical properties are distinct 

and should be analysed separately for each site and each specie.

* Velocity had a low correlation coefficient with density and line fit through the
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combined data overestimates calcaneus values, while underestimating vertebrae 

and bovine values. Caution should then be exercised in relating vector quantities 

like velocity, Young’s modulus, and strength with scalar quantity like density 

without specifying or unifying the direction of measurement.

* Applying the modified wave equation ( V = ) t0 combined data

resulted in a veiy high correlation coefficient ( r = 0.97 for Young’s modulus and r 

= 0.96 for strength). Statistical analysis also confirmed that the relationship could 

also be applied to any bone site and specie. It was thus proposed that such a 

relationship could be used in-vivo with density measured from QCT to predict 

bone strength.

* The relationship between BUA and density for the combined data followed the 

same pattern as observed for the porous perspex models. The same pattern was 

observed for strength. A simple empirical formulation could not be derived to 

predict strength for the combined data.
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Chapter

10. DISCUSSION AND FUTURE STUDIES

10.1 Introduction

Osteoporosis is now recognised as a silent epidemic reiterated in the recent report by

the Department of Health, [1994]. At present, clinical non-invasive assessment of

osteoporosis relies mainly on bone mineral densityQBMD) measurements using dual

energy X-ray absorptiometry. Bone density has been shown to be a predictor of

fracture, explaining about 75 - 80% of the variance. The current sentiment now
*

believes that other properties of bone such as fatigue damage, trabecular architecture, 

mineralization and elasticity may be important in determining fracture.

The work of Langton [Langton et al., 1984] pushed ultrasound forward as an 

alternative modality to bone status assessment. Ultrasound has the advantage of being 

a mechanical wave and the process of fracture is mechanical. Therefore ultrasound 

could give information pertinent to fracture such as structure. There are few 

unanswered questions such as: what is ultrasound measuring?, can empirical formulae 

be derived to correlate the structural and density changes to ultrasound? These 

questions constituted my research theme and the objectives of the project were 

therefore:

* To develop the understanding of ultrasound transmission through cancellous bone

* To determine the relationship between ultrasonic parameters with mechanical and 

structural properties of cancellous bone



* To identify the structural dependence of ultrasound parameters

This chapter presents a resume of how the above objectives were achieved. The reader 

is referred to the preceding chapters for detail coverage.

10.2 Methodology

The investigation was carried out in two parts:- a phantom study and an in vitro 

cancellous bone study. For the phantom study only the factors affecting ultrasound 

transmission were investigated. Mechanical properties and ultrasonic properties were 

investigated in the in vitro studies.

Ultrasound properties were measured using the Contact Ultrasonic Bone 

Analyser(CUBA). CUBA’S short term and long term precision were assessed using 

polymers. The short term and long term precision was 2.75% and 3.31% for BUA and 

0.62% and 0.89% for velocity respectively. The lower precision in BUA was thought 

to be due to phase cancellation artefacts.

Permeability was introduced as a structural index because it is related to the porosity 

and connectivity of a sample. The method of measuring permeability was validated by 

comparing the experimental results with manufacture’s quoted values for porous 

HDPE filters (R2 = 95%). A straight capillary model was developed and the 

experimental values were highly correlated with theoretical prediction (R2 = 99%).

10.3 Properties affecting Ultrasound Transmission in Porous 

Material

10.3.1 Development of Physical Mimics

In order to gain an understanding into ultrasound transmission through cancellous 

bone, mimics were developed. Various mimics for cortical bone, bone marrow and 

cancellous bone were investigated. Plaster of Paris (POP) was not found to be a good 

cortical bone phantom because it was not possible to manufacture identical phantoms 

and the attenuation was largely dependent on the length of soaking. Perspex was a 

better cortical bone phantom in terms of durability, stability, and manageability.
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Perspex aiso had the highest velocity (V = 2670 m s'1) and density (p = 1180 kg m'3) 

of all the polymers studied and thus was the most appropriate of all the polymers as a 

substitute for cortical bone whose quoted velocity and density are 3000- 4000 m s*1 

and 1800 - 2000 kg m '3 respectively.

Agar gel was more of a soft tissue phantom than fat because of its high viscosity. Lard 

and castor oil were found to have properties close to fat. It was also demonstrated that 

both velocity and attenuation in lard are dependent on temperature.

Aluminium mesh in agar gel did not satisfy the requirement of a cancellous bone 

phantom. It was established that perspex with holes drilled in them provided a 

convenient variable phantom to study the propagation of ultrasound through porous 

materials. On the other hand HDPE filters were found to be a good phantom for 

precision studies.

10.3.2 Evaluation of Cancellous Bone Mimics

Perspex blocks with holes drilled in them (porous perspex) were further used to study 

the effect of age associated osteoporosis on ultrasound transmission. In ageing 

cancellous bone two types of bone loss occurs- thinning of the trabeculae or total loss 

of trabeculae struts. This was mimiced by increasing the hole diameter and by varying 

the number and distribution of the holes respectively.

Broadband ultrasound attenuation (BUA) in porous perspex varies as a function of 

hole diameter (porosity) with a peak occurring at around 3.5 mm. Scattering and 

absorption processes were used successfully in qualitative explanation of the results. 

The effect of scattering was dependent on the diameter of the pores compared to the 

wavelength of the ultrasound wave. The absorption contribution was independent of 

pore size. A combination of attenuation at mid frequency (0.4 MHz) could not 

linearize the behaviour of BUA with hole size. The dependence of BUA on pore size 

was further demonstrated on HDPE filters. The pore sizes found in the filters were 

lower than 3.5 mm (15 - 350 Jim) and the parabolic relationship with pore size was
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not observed. It was found that BUA could be related to (J)7 4 in the HDPE filters (R2 

= 96%).

Velocity on the other hand remained constant until a hole diameter of 4 mm where it 

started to decrease. The form of wave propagation (bar wave or longitudinal wave) 

could be used to explain this observation. For a pore size less than 4 mm ( « 

wavelength of the pulse) two wave path could be identified:- one through perspex 

only and one through perspex and water. Due to the signal to noise ratio only the wave 

solely through perspex is identified, hence resulting in the non-variant velocity with 

changing pore size. After 4 mm pore size, the change in velocity is inversely 

proportional to porosity (R2 = 90%).

10.4 Relationship Between m ech a n ica lu ltra so n ic  and  

structural properties o f cancellous bone

10.4.1 Bovine Cancellous Bone

The ultimate application of the ultrasound technique will be to predict the mechanical 

behaviour of bone from ultrasound measurements. Bovine bone samples were 

collected from proximal and distal femora. They were then tested both ultrasonically 

and mechanically.

The mechanical properties (Young’s modulus- E and strength- a) were within reported 

data for bovine cancellous bone. Orientational dependence of these properties was also 

demonstrated. Young modulus was related to the nth power of density, the n value 

being dependent on the direction of measurement n = 1.98 for PD, 2.42 for AP and

2.03 for ML). The ultimate strength was also found to have a quadratic relationship 

with density.
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Ultrasonic velocity was shown to be direction dependent which is expected for a 

vector quantity measured in an anisotropic medium. Velocity correlated with Young's

modulus (R.2 = 83%) but there was no significant difference in the correlations when 

separated into the various directions. The correlation of velocity with density was poor 

and dependent on direction ( R2 = 69% for AP, 70% for ML and 49% for PD). The 

ultrasonic velocity followed the well established relationship between velocity, 

Young's modulus and density (V = V(E/p)).

BUA was also shown to be direction dependent and the highest significance was seen 

between PD and AP directions. When BUA was separated into different directions and 

the structural variation diminished, BUA was found to be linearly proportional to 

density. It is worth noting that one would not expect a correlation between BUA and 

density for random samples. For a specific direction (PD) BUA was found to predict

strength with an R^ of 74%. The behaviour of BUA with Young's modulus also 

followed the same pattern as between BUA and density. This is accounted for by the 

strong dependence of Young's modulus on density. There was no correlation between 

BUA and velocity

There was a high negative correlation between permeability and density. The gradient 

of the linear regression analysis was different for the different directions implying 

directional dependence of permeability and thus structure. A negative correlation was 

found between permeability with E, a  and V. Permeability was not found be a good 

predictor of BUA for bovine cancellous bone. This is because for the bovine samples 

studied, their density values were around the turning point of the BUA-density 

parabolic behaviour, but permeability has an inverse proportionality behaviour with 

density. Also, the permeability dependence on density is higher than BUA dependence, 

thus having a lower dependence on structure than BUA.

10.4.2 Human Cancellous Bone

In clinical practice, ultrasound measurements are carried out at the calcaneus, patella, 

tibia and phalanges. However, the most popular site is the calcaneus due to its high 

cancellous bone content and parallel surfaces. Human samples were obtained from the 

calcaneus and spine. Mechanical, ultrasound and material properties were measured.
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10.4.2.1 Calcaneus

The mechanical properties are similar to those reported in the literature. Young’s 

modulus and strength were found to be related to the cubic power of density for the 

medio-lateral direction and this is in agreement with the power relationship predicted 

by the theoretical models of Gibson [1985].

Velocity of the whole and core samples, and cancellous and defatted samples were 

statistically the same. Velocity was relatively poorly correlated with density (R2 = 

64%). The modified wave velocity relationship was investigated and the calcaneus 

data explained only 73% and 68% of the variance for Young’s modulus and strength 

respectively. Velocity was however a good predictor of Young’s modulus (R2 = 

94%) and strength (R2 = 88%).

The calcaneus has the measuring site advantage of accessibility and also it has more 

than 90 % trabecular bone by volume [ Vogel et al., 1988], hence nnBUAwh0ie ~ 

nnBUAcan. This was demonstrated by measuring cored samples and samples without

the cortical end plates. The effect cortical endplates on BUA was only an offset 

probably due to phase cancellation.

Broadband Ultrasonic attenuation (BUA) has been demonstrated as a good predictor 

of density (BUA a  p 1"  , R2 = 87%) , bone strength (BUA « a , R2 =75% ) and 

Young’s modulus (BUA ~ E0'74, R2 = 77%) of the calcaneus.

It was also demonstrated that a combination of V2BUA could predict strength and 

Young’s modulus with 80% and 83% accuracy respectively.

There was no significant trend between ultrasonic and material properties with age and 

this was attributed to the limited age range.

Permeability was demonstrated to be related to density and also to predict both 

strength and BUA.

10.4.2.2 Vertebrae

The vertebrae were found to be distinctly anisotropic with the PD direction exhibiting 

the highest Young’ modulus, velocity and BUA values. The mechanical properties
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correlated with those reported in the literature and also follow the power law 

relationship with density found in the calcaneus and bovine samples.

The modified bar wave equation had a higher correlation than in the calcaneus. The 

directional dependence BUA and velocity was further demonstrated in the vertebrae. 

Due to the distinct anisotropy in the vertebrae, BUA was highly correlated with both 

velocity and Young’s modulus more than in the calcaneus.

10.4.3 Analysis of all cancellous samples

Density is a high predictor of Young’s modulus and strength for individual specie. The 

statistical analysis demonstrated that the mechanical properties are distinct and should 

be analysed separately for each site and each species.

Velocity had a low correlation coefficient with density and line fit through the 

combined data overestimated the calcaneus values, while underestimating vertebrae 

and bovine values. Caution should then be exercised in relating vector quantities like 

velocity, Young’s modulus,* and strength with a scalar quantity such as density without 

specifying or unifying the direction of measurement.

Applying the modified wave equation ( V = ) to the combined data

resulted in a very high correlation coefficient ( R2 = 94% for Young’s modulus and R2 

= 93% for strength). Statistical analysis also confirmed that the relationship could also 

be applied to any bone site and species. It was thus proposed that such a relationship 

could be used in-vivo with density measured from QCT to predict bone strength.

The relationship between BUA and density for the combined data followed the same 

pattern as observed for the porous perspex models. The same pattern was observed 

for strength. A simple empirical formulation could not be derived to predict strength 

for the combined data. The existence of a peak in this relationship means that a proper 

interpretation of the correlation between BUA and density requires a knowledge of 

the density range. For example, the calcaneus has a density range far below the peak 

value and hence a good correlation was observed between BUA and density. The 

bovine femur on the other hand has a density range including the peak and hence any
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linear correlation will not yield any meaningful results. This results then questions the 

validity of the in vivo correlation between BUA measured at the calcaneus with density 

measured at other sites because of the higher variation in density between sites.

When nBUA is separated into three orthogonal directions in the bovine specimens, a 

linear relationship was observed between nBUA and density. For the calcaneus a 

quadratic relationship was observed. This is analogous to the Young's modulus 

relationship with density in which Young's modulus relates to quadratic and cubic 

powers of density for bovine and calcaneus respectively.

10.5 Evidence o f Structural Dependence o f Ultrasound

BUA was also found to vary according to the spatial distribution of holes, hole 

number, inter-hole spacing and number of holes within the porous perspex mimic. 

These factors are an indication of the structure of the porous perspex mimic. 

Therefore, the structural dependence of BUA has been proven by deduction. More 

rigorous experimental analysis will be required to quantify the structural dependence of 

BUA. A separation of the effect of absorption and scattering attenuation mechanisms 

will facilitate the above goal.

The directional dependence of BUA, velocity, Young’s modulus and permeability in 

both bovine femur and vertebrae is conclusive evidence that these parameters are 

influenced by the arrangement of trabeculae (structure of the cancellous samples). The 

higher coefficient of variation (CV) of BUA compared to density is further evidence 

of structural dependence. The high CV makes BUA more sensitive to osteoporotic 

changes in cancellous bone than density measurement.

Permeability was introduced as a structural index because it is related to the porosity 

and connectivity of a sample. BUA in the HDPE filters correlated well with 

permeability (R2 = 83%). Permeability was proposed to give an indication of structure
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and therefore a correlation between permeability and BUA further substantiated the 

structural dependence of BUA.

10.6 Future Work

10.6.1 Methodology

Chloroform used in the defatting procedure has been reported to be carcinogenic 

(Private communication), therefore future studies involving defatting should use 

dichoromethane in conjunction with ultrasonic cleaning apparatus as described by 

Sharp et al. [1989].

One of the problems with permeability measurements is that poor defatting drastically 

affects the results and limits the ability to determine the cut off point when the Darcy 

equation ceases to apply. In future investigations, a method could be devised to 

determined whether the defatting is completed or not, and also investigate the 

limitation of the Darcy Law. The weakness with permeability as a structural index is its 

strong dependence on density. The phantom study in Chapter 5 was unable to identify 

the sole effect of structure on permeability. An experimental set up should be devised 

whereby the density is maintained constant and structure varied.

The temperature of the water bath was not controlled but was assumed to be room 

temperature, hence any fluctuation in temperature may affect the accuracy of the 

results. As demonstrated in Figure 5.2 and 5.3 and the work of Evans and Tavakoli 

[1992], BUA and velocity are temperature dependent. Hence it will be recommended 

that future studies use a temperature regulated water bath.

10.6.2 BUA

To investigate the sole effect of scattering to BUA, excess attenuation may be 

calculated. The excess attenuation may be obtained by subtracting the attenuation
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coefficient of perspex without holes from the attenuation coefficient of perspex with 

holes

The apparent strength of cancellous bone is reduced by multiple load cycles as opposed 

to a single load cycle. Static methods such as the one used in this investigation do not 

take into account the cyclic dynamic axial loading that occurs during everyday life. An 

investigation could be carried out to verify whether ultrasound (Velocity and BUA) 

can indicate changes in bone strength with the application of multiple load cycles, ie 

fatigue analysis.

Another experiment could be designed in such a way that velocity and BUA were 

measured on a sample as the load was being progressively applied. A relationship could 

be derived between applied load and ultrasonic parameters (Velocity and BUA).

The pilot studies on the vertebrae confirmed the marked anisotropy, so further 

extensive studies could be carried out to help the understanding of ultrasound 

propagation through porous materials such as cancellous bone, especially the 

application of the Biot theory.

10.6.3 In-Vivo Population Studies

It has been demonstrated that both BUA and velocity are good predictors of 

cancellous bone strength. A large prospective population study should be carried out 

to find the BUA and velocity values for the highest specificity and sensitivity for 

fracture prediction. This may incorporate the derivation of a combined parameter. It 

has been demonstrated that the prediction of strength was improved by using the bar 

wave equation. An in vivo study should be carried out using both QCT and 

ultrasound to investigate which combination could improve prediction such as: 

a  = v 2 BUA, or_ a  = y 2 QCT,
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10.6.4 Structural Analysis and Modelling

The studies here were limited to the macroscopic changes. A microscopic study may 

compliment the results obtained here. Such a study would look at topological 

parameters such as connectivity, trabeculae spacing and trabeculae thickness.

The problem with quantification of the structure of cancellous bone is, how do you 

define structure. The definitions are sometimes linked with the problem to be solved. 

Structure does not have a universal definition. So, an alternative approach to the study 

of osteoporosis will be what structural changes occur in an osteoporotic bone (thinning 

and erosion of trabeculae) and how do these changes affect the strength of cancellous 

bone. Chapter 5 demonstrated that BUA and velocity change with these structural 

changes but a model to predict the structural changes from measured velocity and 

BUA is needed.

The porous perspex models demonstrated that BUA was dependent on pore size, 

number and distribution. A theoretical model incorporating the Biot theory is needed 

that could predict BUA and velocity from the material properties of the sample.
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Chapter

11. CONCLUSIONS

1. Perspex was demonstrated to be a good cortical bone mimic in terms of durability, 

stability, manageability, ultrasound velocity and attenuation.

2. It was also established that perspex blocks with holes drilled in them and HDPE 

filters were good cancellous bone phantoms to study the propagation of ultrasound.

3. BUA varies with porosity having a peak value at 35% porosity. Scattering 

phenomenon were qualitatively demonstrated to be responsible for the parabolic 

behaviour.

4. Velocity is inversely proportional to porosity .

5. Young’s modulus is related to the nth power of density, the n value being 

dependent on the direction of measurement and on the site of measurement.

6. The measured ultrasonic velocity can be approximated to the well established bar 

wave equation which relates velocity to Young’s modulus and density.

7. Velocity and BUA are good predictors of Young’s modulus and strength.

8. Young’s modulus, velocity, BUA and permeability are all direction dependent, 

validating the structure dependence of these quantities.

9. Permeability coefficient is a good structural index

10.Future work is recommended in the aspects of in vitro methodology and in vivo 

studies.
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Appendix A : 

Experimental Results of the Porous Perspex 

Study

Table A.1: The Effect o f  Increase in Hole Diameter on nBUA fo r  25 Holes on an 

Area o f 30x30 mm  2

♦ d . Porosity % nBUA Velocity Atten

(mm) (mm) (2.18(J)2) (dB/MHz) (m.5-1) (0.4MHz)

0 6 0 13.9 (4) 2657 (0.5) 1.29 (26)

1 5 2.2 15.07 (7) 2642 (0.6) 1.82 (36)

1.5 4.5 4.91 26.94 (2.5) 2639 (0.6) 3.23 (6)

2 4 8.7 35.57(1.4) 2624 (0.6) 7 .72(3)

2.5 3.5 13.6 40 (2.6) 2640 (0.6) 11.61 (5)

3 3 19.6 47.67(1.7) 2638 (0.6) 13.54 (4)

3.5 2.5 26.7 62.99(1.7) 2592 (0.7) 18.66 (3.7)

4 2 35 51.39 (3) 2592 (0.5) 20.7 (14)

4.5 1.5 44.2 49.70 (3.3) 2592 (0.7) 23.28 (14)

5 1 55 49.19(3) 2529 (0.6) 24.27 (6)

5.5 0.5 66 35.25 (6) 2413 (0 .6) 37.48 (10)
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Table A.2: The Effect o f  Increase in Hole Diameter on nBUA fo r  16 holes on an 

Area o f  25x25 mm?

<i>

(mm)

d

mm

Porosity % 

(2 .01(f)2)

nBUA

(dB.MHz’1)

Velocity

(m.8-1)

Atten

(0.4MHz)

0 6.25 0 16.94(11) 2618 (0.5) 2.4 (7)

1 5.25 2 18.36 (4) 2633 (0.5) 4.55 (12)

1.5 4.75 4.5 30.44(5.5) 2632 (0.6) 6.58 (13)

2 4.25 8.04 35.14(4) 2596 (0.5) 9.12(7)

2.5 3.75 12.6 38.32(4) 2596 (0.5) 15.08 (4)

3 3.25 18.1 57.13(2) 2574 (0.6) 25.92 (9)

3.5 2.75 24.6 61.70(4) 2574 (0.6) 22.71 (9)

4 2.25 32.2 59.91(2.3) 2560 (0.7) 14.44 (3.5)

4.5 1.75 40.7 56.41(3) 2542 (0.6) 17.37 (3)

5 1.25 50 50.0(6.3) 2409 (1.4) 24.71 (2.5)

5.5 0.75 61 20.03 (7.1) 2331 (0.7) 14.1 (3)

Table A.3: The Effect o f  Increase in Hole Diameter on nBUA and Velocity fo r  16 

Holes on an Area o f34x34 mm 2

4>

(mm)

d

(mm)

Porosity % 

(1.08(f)2)

nBUA

(dB.MHz_1)

Velocity

(m s '1)

Atten

(0.4MHz)

0 8.5 0 14.90(11) 2611 (0.5) 1.48 (4)

1 7.5 L I 24.87 (4) 2611 (0.7) 4.48 (3)

1.5 7 2.4 25.24 (7) 2588 (0.8) 6.15 (17)

2 6.5 4.3 38.12(8) 2598 (1.3) 7.0 (9)

2.5 6 6.8 50.24 (5) 2578 (0.7) 8.29 (8)

3 5.5 9.8 58.82 (4) 2565 (0.8) 12.18 (3.2)

3.5 5 13.3 45.71 (3) 2569 (0.6) 25.36 (6)

4 4.5 17.4 28.33 (9) 2565 (0.5) 17.03 (4)

4.5 4 22.0 25.21 (7) 2565 (0.5) 11.1 0 (2)
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Table A.4: The Effect o f  Varying the Number o f  Holes and Keeping Hole diameter 

Fixed at 3 mm with the Exception o f Entry Numbers Starting from  16 on nBUA

No of 

Rows

No of Holes d mm Direction nBUA

2 4 17 A1 21.83

2 6 7 B2 45.4

3 6 17 B1 15.8

3 8 17, 3.7 C l 25.6

4 8 7 C2 36.6

3 10 17,3.7 D1 31.55

3 10 3.7,17 D3 25.8

4 10 7 D2 32

3 12 3.7 E l 30.06

4 12 7 E2 27.3

4 16 3 F2 54.5

4 16 7,3 F3 53.3

5 16' 3.7 FI 44.27

5 33 - G1 39.1

11 33 - G2 44.3

4 12 (4mm) 3.75 HI 25.76

3 12 (4mm) 1.17 H2 57.44

8 56 (1.5mm) 3 11 48.61

7 56 (1.5mm) 2.36 12 *

8 56 (2mm) 2.41 J1 39.27

7 56 (2mm) 1.79 J2 10.1
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Table A.5: nBUA Values fo r  the Same Hole Size (3 mm) and Same Number o f  Rows 

(3)

No of holes nBUA

6 15.8

8 25.6

10 28.7

12 30.06

Table A .6 : The Results o f  the Random Hole Pattern

nBUA

No of holes X XX Y YY

25 38.43 41.78 66.1 66.2

30 50.55 52.7 40.42 39.93

For the random hole pattern the directions were labelled as X and XX for opposite

direction and Y and YY for the perpendicular directions.
*

Table A. 7: The Effects o f  Coupling, Degassing and flu id  on BUA and Velocity values

nBUA nnBUA Coupling Holes Velocity

36.62(4) 8.93(4) Jelly Yes-oil(Degassed) 1999

28.49(9) 6.95(9) Jelly Yes-water(Degassed) 1961

19.92(4) 4.86(4) Jelly Yes-water 1940

23.26(4) 5.67(4) Water Yes-Water 1987

31.51(6) 7.68(6) Water No 2657

30.45(7) 7.50(7) Jelly No 2643
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Table A. 8: Experimental and Theoretical Data for Perspex Models

Diameter(mm) Porosity(%) Theoretical xlO*10 Experimental xlO'10

1.5 7.01 36.5 31.60

1.75 9.54 67.63 54.35

2.00 ' 12.46 115.37 84.44

2.25 15.77 184.79 141.60

2.50 19.46 281.66 225.90

2.75 23.55 412.37 329.21

3.000 28.03 584.04 483.70

3.25 32.89 804.44 694.50

3.50 38.15 1082.01 1020.90

1200

1000 - -

800 --

|  600 + 
Eh.o 

CL
400 +

200  - -

0.02 0.04 0.06 0.08 0.1 

Reciprocal of Porosity

0.12 0.14 0.16

Figure A - l:  The Relationship Between Permeability and Inverse Porosity
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Appendix B : 

Bovine Mechanical, Ultrasonic and Structural 

Data

Table B .l:  The Mechanical and Structural Data fo r  Bovine Cancellous Bone

Sample Young's Modulus (MPa) Permeability m3 Strength Density

no P - D A - P M - L P-D A-P M-L (MPa) (kg/mA3)

1 475 209 475 5000 6400 6411 2.9 330

2 657 187 578 4323 5513 4412 3.23 350

3 579 385 457 3457 4410 4281 4.89 365

4 966 476 485 3998 5370 4865 4.14 374

5 1334 848 867 1476 2214 1499 9.12 515

6 1482 1304

ooo

466 614 568 14.77 608

7 1884 1573 1766 441 616 583 * 688

8 1993 1403 ‘ 1447 467 941 714 * 640

9 1493 601 861 550 1192 770 12.39 546

10 * 572 362 559 839 2245 2236 8.41 459

11 899 807 836 1809 2316 2260 7.53 470

12 1894 829 1358 620 . 2301 1419 11.52 532

13 1687 1348 1354 944 1139 1064 * 607

14 1509 1047 1058 365 530 401 11.14 535

15 679 595 607 2400 3214 3080 5.24 414

16 429 270 285 4739 4998 4785 4.07 309

17 2380 1236 1908 203 52 203 200 697

18 599 386 454 615 1333 1052 6.15 471

Mean 1195 770 931 1809 2533 2256 8.05 495

stdev 617 453 496 1712 1986 1909 4.15 122.2

CV 51.6% 58.9% 53.3% 94.6% 78.4% 84.6% 51.6 24.6

Where * represents specimen with strength above the maximun applied load of the 

instron



Table B. 2: The Ultrasonic Data fo r  Bovine Cancellous Bone

Specimen Velocity nnBUA

no PD AP ML PD AP ML

1 2097 1848 2149 24.73 34.26 57.61

2 2107 1814 2107 58.18 28.32 64.29

3 2071 2005 1973 43.64 40.84 32.79

4 2375 1963 2037 65.67 39.5 48.82

5 2211 2241 2148 44.3 36.98 31.49

6 2210 2347 2347 26.54 28.11 30.84

7 2339 2354 2354 24.82 23.76 29.81

8 2479 2142 2363 27.03 24.5 30.96

9 2349 1984 2239 33.92 28.84 36.65

10 2041 2026 2135 54.73 32.1 61.26

11 2301 2185 2094 55.88 38.4 37.78

12 2469 2124 . 2400 33.48 44.14 33.89

13 2335 2172 2191 32.4 28.63 31.22

14 2429 * 2216 2135 33.75 30.65 38.17

15 2075 2050 2075 44.83 36.16 53.86

16 2059 1948 1948 70.54 50.03 59.38

17 2543 2222 2396 28.48 29.02 27.73

18 2048 2048 1990 . 55.86 38.11 43.89

Mean 2252 2094 2171 42.15 34.02 41.69

stdev 170 ' 155 148 14.83 7.05 12.46

CV 7.6% 7.4% 6 .8% 35.18% 20.72% 29.9%
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Figure B - l:  The Relationship Between BUA and Compressive Strength
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Figure B-2: The Relationship Between Velocity and Density (Bovine)
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Figure B-3: Relationship Between Velocity, Strength and Density (Bovine)
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Figure B-4: Strength as a Function of the Product of Velocity Squared and Density
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Appendix C : 

Relationship Between Longitudinal Wave 

Velocity and Bar Wave Velocity

As discussed in Chapter 3, many forms of waves velocity can be propagated in a 

solid depending on the specimen size and wavelength of the wave. The types mostly 

encountered in the study of cancellous bone are longitudinal wave and bar waves 

(Equations 3.7 and 3.8 respectively). This theoretical relationship between ultrasound 

velocity and elasticity was verified by using velocity, elasticity and density data from 

Kaye and Laby [1986] of metals and alloys. The correlation analysis on the data 

resulted in the following equations

v rod —  ~ 4 6  +  3 2 3 2 2 ^ / j E / p R2 = 99% (C l)

V iong =  9 7 1  +  3 0 5 6 7 7 ^ / p r 2 = 94% (C2)

K + 4 /3 G
Vrod = 1297+ 110456. R2 = 87% (C3)

K + 4 /3 G■218 + 33021 R2 = 98% (C4)

V bar  =  — 7 5 0 +  0 . 9 9 Vlong R2 = 93% (C5)

Where Vrocj, Vjong are in ms“l , K is the bulk modulus, G is shear modulus, E is

Young's modulus; K, G, and E are in GPa and p the density is in kgm“3- A graphical 

representation of the above equations are given in the following graphs ( Figure C l-
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Figure C -l: ^ ar Velocity and Longitudinal Velocity Plotted against the Square Root 
o f Young's Modulus divided by Density
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Figure C-2: The Relationship Between Longitudinal Wave Velocity and Elasticity
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Appendix D : 

Velocity, nnBUA Values and Some Relationships 

at the Calcaneus

Table D .l:  Velocity values fo r  the Different Modification at the calcaneus

Specimen no ^ el whole (m s ) Velcore (m s ) Velcan(ms*1) Veltfefat ^

1 1601(2.0)* 1591(2.5) 1625(3.0) 1632(1.1)

2 1645(2.4) 1666(3.0) 1680(1.0) 1648(1.2)

3 1542(1.3) 1571(1.4) 1490(0.6) 1528(1.6)

4 1700(1.7) 1754(2.0) 1646(1.3) 1637(1.4)

5 1739(2) 1725(2) 1728(2) 1712(1.7)

6 1617(0.6) 1618(1.0) 1663(2.0) 1650(1.2)

7 1648(2.5) 1665(2.0) 1668(1.0) 1647(1.4)

8 1774(2.0) 1786(1.0) 1776(1.5) 1743(1.5)

9 1703(1.0) 1728(1.3) 1697(0.5) 1709(0.8)

10 1629(3.0) 1631(1.3) 1559(1.2) 1545(0.8)

11 1654(2.0) 1659(1.1) 1590(0.4) 1617(1.6)

.12 1764(1.7) 1753(1.8) 1690(0.6) 1720(2.0)

13 1643(1.6) 1675(1.0) 1663(1.0) 1654(2.0)

14 1521(1.0) 1520(1.6) 1500(1.5) 1501(0.6)

15 1615(2.1) 1652(1.9) 1610(1.3) 1621(0.6)

16 1538(2.0) 1574(0.6) 1517(0.6) 1504(1.1)

17 1616(2.0) 1624(1.4) 1637(0.5) 1621(1.8)

18 1709(3.4) 1758((2.0) 1663(2.0) 1659(1.6)

19 1754(0.97) 1720(1.0) 1610(0.5) 1618(1.8)

20 1635(2.5) 1631(1.6) 1578(1.1) 1559(0.8)

Mean 1652.3(1.89) 1665.1(1.58) 1630(1.18) 1626(1.33)

Stdev 73.7 72.4 74.7 69.5

CV 4.46% 4.35% 4.58% 4.27%

* the values in brackets are the coefficient of variation for that measurement (%)



Table D.2: Calcaneus BUA Results fo r  the Different Modification (where the values 

in bracket are coefficients o f variation)

Specimen nnBUAwhole nnBUAcore nnBUAcan nnBUAdef

no dB MHz'1 cm'1 dB M H z 'W 1 dB MHz'1 cm'1 dB M H z 'W 1

1 26.30(4.5) 22.75(4.5) 23.09(4.6) 21.82(4)

2 23.00(5.5) 17.94(5) 17.87(4.5) 16.98(5.4)

3 14.96(4.1) 15.16(6.1) 14.81(4.4) 14.38(4.9)

4 35.30(3.8) 33.77(4.7) 31.29(1.87) 30.81(1.7)

5 32.53(3.7) 30.26(1.14) 26.27(1.03) 23.98(4.4)

6 25.13(7) 20.38(4.6) 18.10(4.5) 17.37(1.2)

7 26.59(3.3) 22.42(6.7) 23.84(3.4) 24.21(4.8)

8 33.35(5.9) 30.63(4.5) 30.85(3.37) 26.72(3.6)

9 30.39(2.2) 25.25(6.1) 25.26(3.4) 31.06(5.35)

10 16.24(7.8) 15.76(4.9) 12.90(3.5) 12.45(1.1)

11 22.17(4.9) 20.70(3.7) 15.21(3.2) 17.76(2.2)

12 31.89(2.8) 28.79(8.9) 23.19(1.3) 27.92(4.4)

13 19.20(6.1) 13.38(4.4) 12.82(3) 15.85(4.3)

14 5.04(4.1) 4.39(3.7) 3.66(2.9) 4.36(6.6)

• 15 23.12(3.5) 19.82(6.9) 13.37(1.3) 13.96(4.9)

16 9.28(4.8) 9.55(5.6) 6.21(3.4) 5.56(7.2)

17 17.68(4.5) 18.93(6.7) 19.02(2.3) 19(6.1)

18 25.60(7.2) 21.10(6 .1) 16.50(4) 19.01(4.0)

19 27.83(6.9) 25(3.1) 20.22(4.3) 20.29(7.0)

20 15.54(4) 15.82(8) 11.07(2.9) 12.29(3.0)

Mean 23.06(4.8) 20.5(5.3) 18.28(3.2) 18.79(4.3)

Stdev 8.15 7.28 7.40 7.37

CV 35.3% 35.5% 40.48% 39.22%
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Figure D-6: The Relationship Between log(permeability) and Density

268



3 0 0 0

2 5 0 0

*5 2000
oo

=  1500-QD
(1)
E
fe 1000Q.

5 0 0 -

0 0.1 0.2 0.3 0 .4 0.5 0.6 0.7 0.8 0.9 1 1 . 1
Strength

Figure D-7: A  Plot o f  Permeability Against Strength

3 0 0 0

2 5 0 0 -

% 2000 H
0 u

1  1500
.QDO
E
O 1000  
0.

5 0 0 -

10 15 20
nnBUAcan

25 30 35

Figure D-8: A Plot of Permeability Against nnBUAcan

269



Appendix E : Miscellaneous
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Figure E -l: A Line Plot o f  Change in BUA with Decrease in Temperature
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Figure E-2: Relationship Between Velocity and Changes in Temperature
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Figure E-3: Photograh of Bovine Sample(20*20mm) with Density 300Kg/mA3
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Figure E-4: Photograh o f Bovine Sample with Density o f 697 Kg m/y3
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appendix c

Figure E-5: A Photographic Illustration o f Perspex Models
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Figure E-6: Frequency Spectrum of a I MHz Broadband Transducer
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Appendix F : 

Quick Basic Program for Permeability 

Measurement

DECLARE SUB axis ()
CLS
' This version uses h as .2, and diameter 21 mm 
' and variable height 
' array dimension

DIM temps (20) AS DOUBLE 
DIM velocity (10) AS DOUBLE 
DIM SHARED xstep 
' constants

n = 0 
xstep = 50 
h = .3 
CLS

DO UNTIL work$ = "1" ORwork$ = "2" ORwork$ = "3"
LOCATE 5, 10
PRINT " Do you want to"
LOCATE 10,20
PRINT " Carry out measurements  > 1"
LOCATE 15,20
PRINT " Plot curves from files ---------- > 2"
CO LO R4 
LOCATE 20, 20
PRINT " EXIT ----------------------- > 3"
work$ = INPUTS (1)
LOOP
IF work$ = "3" THEN END 

CLS

IF workS = "1" THEN 
' presentation

COLOR 3 
LOCATE 2, 26
PRINT "PERMEABILITY MEASUREMENT

CO LO R7 
LOCATE 4
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PRINT " Press space bar key to start measurements"
PRINT
PRINT " then press space bar to carry out a measurement"
PRINT
LOCATE , 23
PRINT "Measurement (no) Delta (t) in sec. height (m)"
PRINT

mn = 2
DO WHILE n < 11 1 10 measurements to be carried out

response$ - INKEY$ ' record pressed key

IF response$ = " " THEN 'if pressed key = spacebar
temps (n) = TIMER 

LOCATE , 26: PRINT n, temps (n) - temps (0), SPC (7)
USING "#.#"

n = n + 1 
mn = mn - .2 

END IF
LOOP 

LOCATE 23, 26 

COLOR 4
PRINT " press any key 
COLOR 7

PS = INPUTS (1)

' velocity calculations

CLS
COLOR 3
LOCATE 2, 30: PRINT "VELOCITY ARRAY"
COLOR 7

PRIINT : PRINT 
LOCATE , 20

PRINT "measurement no velocity in m.s - 1"
PRINT

FOR t = 0 TO 9
velocity (t) = h / (temps (t + 1) - temps (t))
LOCATE , 23: PRINT t, velocity (t)

NEXT t

COLOR 4 
LOCATE 23, 26



PRINT " Press any key ..."
P$ = INPUTS (1)

END IF

IF work$ = "2" THEN 
CLS

FILES "a:\data\*.dat"
LOCATE 25, 1
INPUT "Name of the file "; nom$ 

name$ = "a:\data\" + nom$ + ".dat"
OPEN nameS FOR INPUT AS #2

FOR index 1 = 0 TO 10
INPUT #2, temps(indexl)

NEXT index 1

FOR INDEX2 = 0 TO 9
INPUT #2, velocity (INDEX2)

NEXT INDEX2 
CLOSE #2 

END IF
*

COLOR 7
SCREEN 12 ' graphic mode selection

CALL axis
fa = (temps(lO) - temps (0)) /  10 
ypas = 22
FOR jok = 0 TO 10 STEP 1 
ti = 0 + (fa * jok)

LOCATE ypas, 1: PRINT USING "###.##"; ti 
ypas = y pas- 1.8 
NEXT jok
LOCATE 1, 4: PRINT "time (s) "

'plotting of delta time versus height 
X I = 60

FO R y = 10 TO 0STEP -1
yl = 300 /  (temps (10) - temps (0)) * (temps (y) - temps (0)) +

50

LINE (XI -5 , y l)  - (XI + 5, y l ) , 15 
LINE ( X I ,  yl - 5 ) -  (XI, yl + 5 ),  15

XI = XI + xstep 
N EX Ty
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W$ = INPUTS (1)

'plotting of velocity = f(time)

CLS
SCREEN 12 

COLOR 15

CALL axis

LOCATE 4, 1: PRINT USING "###.##"; velocity (0)
LOCATE 22, 5: PRINT "0"

LOCATE 1, 4: PRINT "velocity (m.s-1)"

' plotting
X I = 90 

FOR t = 0 TO 9
y l = 350 - 300 /  velocity (0) * velocity (t)

LINE (XI - 5, yl) - (XI + 5, yl) , 15
LINE (XI, yl - 5) - (XI, y l + 5 )  , 15

XI = XI + xstep*
NEXT t

attenteS = INPUTS (1)
CLS
' constants 

ap = .0012566# ’ mA2
af. = .001194591# 'mA2 (39mm) 

g = 9.81 
ro = 1000
Vis = .001 'pa.s
d = .0305 'm

SCREEN 0 
'INPUT "Enter area of pipe ( m ) a f  

sumh = 0 : sumvel = 0 : sumh2 = 0 : sumvelh = 0 : 
h = .2 : sumhei = 0 : sumhei2 = 0 : sumtime = 0 : sumheitime = 0

SCREEN 0 
LOCATE 3 , 10
PRINT "Press Any Key for Linear Regression Results" 
waitS = INPUTS (1)

FOR t = 0 TO 9 
hi = (2 - (t * .2)) 

hei = LOG (hi) 
hei2 = hei A 2
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time = temps (t) - temps (0) 
heitime = hei * time

sumhei = sumhei + hei 
sumhei2 = sumhei2 + hei2 
sumtime = sumtime + time 
sumheitime = sumheitime + heitime 

NEXT t

FOR t = 0 TO 8 
hi = (1.8 - (t * .2)) 
h2 = hi A 2

velocity (t) = h /  (temps (t + 1) - temps (t)) 
velh = hi * velocity (t)

sumh = sumh + hi 
sumh2 = sumh2 + h2 
sumvel = sumvel + velocity (t) 

sumvelh = sumvelh + velh

NEXT t 
hn = sumh / 9 
vein = sumvel/9 
hn2 = sumh2 / 9 

velhn - sumvelh /  9 
hn22 - hn A 2 
hein = sumhei/10 
hein2 = sumhei2 /  10 
hein22 - hein A 2

timen = sumtime /  10 
heitimen = sumheitime /  10 

grad = (velhn - (hn * vein)) / (hn2 - hn22) 
grad2 = (heitimen - (hein * timen)) /  (hein2 - hein22)) A -1

SCREEN 0 
LOCATE 10, 10 

PRINT " The gradient using method 1 is"; grad 
LOCATE 13, 10
PRINT "The gradient using method 2 is"; grad 2

attente$ = INPUTS (1)
SCREEN 0 

CLS

perm l = grad * (ap * Vis * d) /  (af * ro * g) 
perm2 = -grad2 * (ap * Vis * d) / (af * ro * g)

LOCATE 8, 24
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PRINT " Permeability Values "
LOCATE 12, 16 
PRINT "Method 1 
COLOR 12 

PRINT perm l;
CO LOR2
PRIN T" mA2 ": Color 7 

LOCATE 16, 16
PRINT " Method 2 ";
Color 3 
PRINT perm2;
PRINT" mA2 ": CO LO R7 

COLOR 12 
LOCATE 21 2

PRINT " Press Any Key to Continue " 
attente$ = INPUT$(1)

IF works = "1" THEN 
SAVE THE VALUES 
LOCATE 25, 1

PRINT " Do You Want to Save the Results (y/ii) ?"
IF sr$ = INPUT$(1): PRINT 
IF sr$ = "Y" OR sr$ = "y" THEN

INPUT "Name of the File ";nom$
name$ = "a:\data\" + nom$ + dat"

OPEN name$ FOR OUTPUT AS #1 OPEN A SEQUENTIAL FILE
FOR Indexl= 0 To 10

PRINT #1, temps(indexl)
NEXT index 1
FOR INDEX2 = 0 TO 9

PRINT #1, Velocity(Index2)
NEXT INDEX2 

CLOSE #1 
END IF 
END IF

work$ = " 0 "
CLS

RUN

SUB axis
Drawing of x and y axis

LINE (60, 20) - (60, 350)
LINE -(600, 350)
LINE (595, 345) - (600, 350)
L IN E -(595, 355)

For y = 90 to 360 STEP 30 
LINE (53, y - 40) - (60, y - 40)

NEXTy 
LINE (55, 30) - (60, 20)
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Lin e  -(65,30)

FOR r = 40 TO 560 STEP xstep 
LINE (r + 20, 350) - ( r + 20, 357)

NEXT r

LOCATE 26,35: PRINT " height (m) " 
xpas = 70
FOR he = 0 To 2.1 STEP 0.2

LOCATE 24, xpas: PRINT USING he 
xpas = xpas - 6 3  

NEXT he 
END SUB
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Appendix G :

Conference Presentation, Paper Publications

and Posters

Conference Presentations

• Langton CM, Boutinaud RX and Njeh CF (1992), Ultrasonic characterisation of 

porous material. Sheffield City Polytechnic Research seminar.

• Njeh CF (1992) Relationship between ultrasound and material properties of 

cancellous bone. Expert workshop, 5 and 6 March, University of Cologne, 

Germany.

• Langton CM, Boutinaud RX, Njeh CF, Naylor K and Bernard O (1992) Recent 

advances in ultrasonic characterisation of bone. Ultrasonic Assessment o f  Bone 2, 

23 June, Bath.

• Boutinaud R, Njeh CF and Langton CM (1992), The role of permeability in the 

ultrasonic assessment of cancellous bone. Annual Review o f Progress in Physical 

Acoustic and Ultrasonics, IOP, 22 -23 ,  September, Oxford.
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