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Design of Discrete Time Controllers and Estimators
T J MOIR

ABSTRACT
This thesis considers optimal linear least-squares filtering 
smoothing prediction and regulation for discrete-time 
processes.
A finite interval smoothing filter is derived in the 
z domain giving a transfer function solution. The 
resulting time-invariant smoother can be applied to 
problems where, a time varying solution using matrix Riccati 
equations would diverge if the process is modelled 
inaccurately.
A self-tuning algorithm is given for the filtering and 
fixed lag smoothing problems as applied to square multi- 
variable ARMA processes when only the order of the process 
is assumed known. The dynamics of the process can also be 
slowly time varying. If the dynamics remain constant and 
unknown, it is shown how the self-tuning filter or smoother 
algorithm converges asymptotically to the optimal Wiener 
solutions.
LQG self-tuning regulation is considered. The LQG 
algorithms rely on input-output data rather than from the 
conventional state-space approach employing the Kalman 
filter. An explicit algorithm is given which is similar 
to certain pole placement self-tuning regulators, 
requiring the solution of a diophantine equation.
Following this, an implicit algorithm is shown to overcome 
the problem of solving a diophantine equation by estimating 
the regulator parameters directly using recursive least 
squares. The LQG algorithms are shown to be able to cope 
with processes which are non-minimum phase, open loop 
unstable and with an unknown time delay.
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Nomenclature
Unless otherwise stated in the text, the principal 
nomenclature used in this thesis is as shown below:
A ■ defined as
A,B,C,D Matrices used in the discrete time state

space process model.
A(z_1), C(z-1), Polynomials or polynomial matrices 
BCz” 1), D(z_1) used in the discrete time AR or CARMA

model.
nx Order 'x1 of polynomial or polynomial

matrix.
y(t) Process output vector at time t.
ss(t) Measured output or observation sequence

vector at time t. 
u(t) Control signal at time t.
a Lag in smoother.
N Number of sample points in fixed interval,
z Complex Z-transform variable .
E{a} Unconditional expectation of 'a’.
E{a|b} Expectation of ’a* conditional on 1b 1 .
w_(t) Process noise vector at time t.
v(t) Measurement noise vector at time t.
ê (t) Innovations sequence vector at time t.
Q Process noise covariance matrix.
R Measurement noise covariance matrix.
R e Innovations covariance matrix.
Qi Weighting on error in the co.st function.
Ri Weighting on control in the cost function.
F(z) Return difference matrix.
W(z) Process transfer function matrix.



_0
X(t)
K
2i(x(t))

U(t)

«(i - J)

Vector of parameters.
Vector of inputs and outputs.
Kalman gain matrix.
Single sided Z-transform of the 
sequence {x(t)}= 'S -x  ~z-■f-o
Two-sided Z-transform of the sequence
{x(t)} ^  is£ ~ — CX3
Heaviside unit step function U(t) = 1 
for all t  ̂ 0, U(t) = 0 for t < 0.

delta function 6(0) = 1;
6(m) = 0 ,  m f  0.



CHAPTER 1
An Introduction to Estimation and Control
1.1 Motivation
This work is concerned with optimal estimation and control 
with particular reference to industrial' applications.
It may appear from a careful examination of the existing 
literature that the work is already well developed 
[l - l:Q. Closer consideration reveals, however, that 
although the existing theory is useful for the particular 
application to which it was applied, it is not always 
the best for most industrial applications. The develop­
ment of a 'classical1 approach to modern control theory 
was centred specifically around problems encountered in 
rocket research. The applications included missile 
guidance and navigation, well-known missions being 
Mariner, Apollo and Ranger.

For example, rocket trajectory equations to give a desired 
orbit are inherently non-linear. To design a control 
guidance system for the rocket to follow a given 
trajectory optimally, requires that these equations first 
be linearised. Then the solution can be formulated into 
a linear quadratic type of control problem of which the 
solution is now well-known |_3 — 5J .

Estimation theory is usually employed in telemetry systems 
e.g. the radar tracking of aircraft. Linear least- 
squares filtering or smoothing may be used here Q lU- The 
idea of least-squares prediction first stemmed from the 
‘anti aircraft fire control problem'. This required the
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ability to predict the motion of an aircraft in order to 
intercept it. Wiener [jLJ solved the problem for this 
application intending to have a hardware solution.

A specific advantage of the methods developed in this 
thesis is that many of the assumptions made in the 
’classical’ approaches do not have to be made. In 
particular, the assumption that the model of the process 
is unknown cannot be made when using the Kalman approach 
to optimal control or estimation theory. Similarly the 
Wiener approach to estimation requires at least a 
knowledge of the spectral density of the corrupted signal. 
Again this assumption need not be made in this work.

The thesis comprises approximately two thirds estimation 
theory and one third control theory. As is appropriate 
at this time, it concentrates only on the discrete-time 
formulation of the problem, i.e. a solution which will be 
implemented digitally.
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1.2 Linear Least-Squares Estimation
The underlying theme in linear estimation theory is the 
extraction of a discrete signal vector y(k) contaminated 
with stationary zero mean white noise.

The measured (or observed) process z;(k) is given as
z(k) = y(k) + v(k) (1.1)

where y ( . ), _z( .) and v( .) are of dimension r. The white 
noise vector v ( .) has a known covariance

cov jz(k) > v( n)J = RS(k-n) (1.2)

The linear estimation problem is now posed as follows:

Given the stationary measurement sequence (1.1), determine 
the estimate of the signal y(k) given data up to and 
including time k-f (denoted y(k/kjO) such that the criterion 

J1 = E{(£(k) - £(k|kf ))T (y(k) - y(kjkf ))} (1.3) 
is minimised.

Depending whether k < kf, k = kf or k > k-f will determine 
whether y(k|kf) is a smoothed, filtered or predicted 
estimate respectively. Two approaches are traditionally 
employed to give the solution to the above.

A. Frequency Domain Solutions
The frequency domain solutions to the linear estimation
problem is found by the independent work of Wiener [jLJ 
(continuous time) and Kolmogorov Q2J (discrete time). 
Wiener’s solution to the above problem which was of the 
scalar case (r = 1) assumed a complete knowledge of all 
past observations (kQ = -«) and was achieved using 
variational arguments.
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The result is the so-called continuous time Wiener-Hopf 
equation, the solution of which yields the impulse 
response of the optimal estimator. The transfer function 
solution can also be found from this. The well-known 
solution involves a Wiener-Hopf spectral factorisation 
of the spectral density matrix of the measurement
process | l̂ H* Later, Wong and Thomas 06]] generalised
this work to the multivariable case for filtering and 
prediction in continuous time.

B . State-Space Solutions in the Time Domain 
Kalman 03,4]] altered the formulation of the problem by 
modelling the signal process in the more general time- 
varying observable form :

y(k) = C(k)x(k) (1.4)
x(k+l) = A(k)x(k) + D(k)w(k) (1.5)

with kQ > -» and where x(k:) is an n x 1 state vector, 
a)(k) is a q x 1 process noise vector and C(k), A(k) and 
D(k) are known matrices, and

cov jjjj(k) ,jto(nJJ = Q6(k-n) (1.6)

The Q and R matrices are non-negative definite matrices 
whose true values are assumed to be known. The resultant 
time varying Kalman filter solution is found iteratively 
030,610.

x(k+lJk) = A(k)x(k|k) (1.7)
x(kjk) = x (k|k-1) + K(k)(z(k) - C(k)x(k|k-1)) (1.8)
y(kjk) = C(k)x(k|k) (1.9)
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The Kalman gain matrix is updated from
K(k) = P(k|k-l)CT (k)R“ 1(k)' (1.10)

where the innovations covariance matrix is given as
R (k) = C(k)P(k|k-l)CT (k) + R (1.11)

and the n x n estimation error covariance matrix is found 
from

P(kJ'k) = (I - K(k)C(k) )P(kJk - 1) (1.12)
and

P(k + 1 |k) = A(k)P(k |k)AT (k). •+ D(k)QDT (k) (1.13)

Numerous other versions of the Kalman filter exist 0110.

Although the Kalman filter is derived for the general use 
of time varying non-stationary processes, it follows that 
for stationary systems of fixed dynamics the Kalman 
filter will converge in the steady state to the Wiener 
case.

Kalman | 3,40] has formulated the linear estimation problem
in terms of orthogonal projection in Hilbert space. 
However, this solution was restricted to prediction and 
filtering. Rauch 07J solved the smoothing problem in 
state space followed by Meditch 03,90 and others, e.g. 
Kailath 0110 using an innovations approach.

There are various different kinds of smoothing problem. 
Fixed lag, fixed interval and fixed point are the major 
ones, and are discussed in Anderson and Moore 0610. A 
notable paper which combines the various state space fixed

- 5 -



lag smoothing algorithms is by Moore 0 0 0

Following Kalman's work, interests changed from the input- 
output type of solution to state space solutions for both 
estimation and control. There are some drawbacks with 
the widely-used Kalman filter approach. Firstly, an 
accurate model of the signal process must be found in 
state-space form. Secondly, the Q and R matrices must be 
known or estimated apriori. Thirdly, it is known that the 
Kalman filter can be used for both time-varying and non- 
stationary processes. These conditions are met in 
systems like those for rocket guidance where the changing 
dynamics and noise statistics are known exactly.

In process control applications, it is not likely that a 
true time-varying model of the process can be found or 
accurate representations of the varying Q and R matrices.
If the model of the signal process is not correct., 
divergence may occur in the algorithm [_580 Q an<̂
R matrices are not known exactly, the filter will give 
only a sub-optimal estimate. These two major problems 
have been tackled in several papers and in this thesis.
One approach to the divergence problems has been studied 
by using a limited memory* Kalman filter, Jazwinski 0-2]] 
which deletes old data and thus does not accumulate any 
major numerical errors. This problem is solved in the 
frequency domain for a smoothing problem in Chapter 2 of 
this thesis, and is shown to relate to a Wiener type of 
smoother and to the recent work of Grimble 0 3 , 1 4 , 1 5 0  
This type of solution has certain advantages since it gives
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a transfer function solution to the smoothing problem 
which is very appropriate for implementation in some 
applications.

Filtering when the process is known but the Q and R 
matrices are not, has been solved by mainly 
Mehra 0L6,17,10] , Alspach and Abiri |_190 
Belanger [J20H anc* Carew and Belanger [ 0 1 0  These 
techniques are surveyed by Leondes and Pearson [ 0 2 0  
The problem which has not been solved before is filtering 
and smoothing in multivariable processes where both the 
process is unknown and the noise statistics are unknown. 
Macfarlane |_240  Arcasoy 0 5 J ,  Barrett |06J and 
Shaked l_27l] give a relationship in the frequency domain 
for the steady-state matrix Riccati equation of the Kalman 
filter. This result shows that the spectral density 
matrix of the measurement process, when Wiener spectral 
factorised, is related to the return-difference matrix of 
the stationary Kalman filter. This combines the alterna­
tive frequency domain or time domain approaches of the 
Wiener filter and Kalman filter. A similar result is 
provided in the polynomial matrix approach of Kucera [0280]. 
The adaptive estimation scheme which embodies the main 
part of this thesis uses this type of result..
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1.2.1 Self-Tuning Estimation Theory
Kalman filtering for process control needs an accurate 
model of the process and the knowledge of the Q and R 
noise covariance matrices. In Wiener filtering, the 
spectral density of the observation process must be 
known or the transfer function of the signal generating 
process together with Q and R. These assumptions are not 
made here, for the first time, as applied to multi- 
variable processes. Recall that already Kalman filtering 
where a knowledge of a process model is not assumed to be 
known has been covered by Anderson and Moore [j92,93]].
This is achieved by employing the Kalman filter as a time- 
varying Wiener filter requiring time-varying spectral 
factorisation []94l]. Signal statistics as would be 
required if using a Wiener filter must be known. This 
method therefore has the same limitations as the Wiener 
filter.

The self-tuning approach taken in this work overcomes 
these problems by assuming that the signal process model 
and the observation process model are unknown but can 
each be modelled as an autoregressive moving average 
(ARMA) time series of known order. If the order is 
unknown, it may be estimated beforehand []29,59J. The 
parameters of the ARMA model can then be estimated using, 
for example, extended recursive least squares or the real 
time maximum-likelihood method []56̂ ]. The measurement 
noise covariance can also be estimated simultaneously, 
assuming that it is white. The filtered, predicted or
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smoothed signal estimates can then be found based on this 
information. The process parameters can either be 
constant or slowly time-varying. If constant, the self­
tuning estimation scheme will converge to a Wiener type 
solution but the burden of spectral factorisation is 
omitted, as is the separation of causal from anti-causal 
modes

The first adaptive estimation scheme based on the 
identity of Astrom |_J34] was by Wittenmark |_30], This was 
a self-tuning predictor for scalar processes. This has 
been generalised to the multivariable case by Tanttu 031] 
and applied to forecasting by Sym and Wellstead []57j.

A self-tuning filter/predictor for multivariable processes 
was given by Ledwich and Moore |_32], of which Wittenmark’s 
work [J30J can be derived as a special case. Hagander 
and Wittenmark |_33]] solve the self-tuning fixed-lag 
smoothing problem for scalar processes. Chapter 3 of 
this thesis will generalise this work for the multi- 
variable case and show how all three multivariable 
(filtering, smoothing and prediction) self-tuning 
estimators may be found from one original frequency 
domain estimator. This gives a more unified theory.
When the process and noise statistics are assumed to be 
known, the estimators can be compared with the work of 
other authors e.g. Shaked [_27H> Astrom [J34] and Tanttu 
[_3l]. The convergence of the self-tuning filter and 
smoother will also be shown by using the asymptotic 
analysis of Ljung ]35,36,37]. Thus in this thesis, it is 
possible to achieve optimal filtering, smoothing or
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prediction for multivariable processes without the 
classical restrictions imposed- of a knowledge of signal 
model or of noise covariances as taken in Kalman theory. 
Similarly, the assumption of a known spectral density of 
the observed process is not made.
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1.3 Linear Least-Squares Stochastic Control 
A problem often solved in this area is Linear Quadratic . 
Gaussian (LQG) optimal control. The problem formulated 
here considers either making stationary control around 
a fixed set point value (the regulator problem) or to 
follow a time-varying reference signal (the servo 
problem). If the process is observed in the form of 
(1.1) then y(k) is assumed to be the output of a known 
linear system driven by stationary white noise plus a 
control signal vector u(k) to achieve a feedback control 
action. The problem now becomes one of deriving the 
control action u(k) such that the performance criterion 

J2 = E{yT (k)Q1y(k) + u T (k)R1u(k)} (1.14)
is minimised,

where the weighting matrices are defined as follows:
Qj is a constant symmetrical semi-positive definite
matrix,
and
1*2 is a constant symmetrical positive definite matrix.

Kalman [_5̂ ] solved this problem in the time domain using 
a state-space approach and Riccati equations. The 
solution requires a Kalman filter and a time-varying

I
feedback gain control matrix. This solution has similar 
advantages and disadvantages in application as discussed 
for the Kalman filter in 1.2. The first frequency domain 
solution was found by Newton et al [J38J, but this cannot 
be used for unstable processes. t

s «...

Astrom [j34_| uses so-called minimum variance control assuming no
T 11 "I



weighting on control and- no measurement noise. The 
resultant solution gives an unstable control law for 
non-minimum phase systems and may require a large control 
effort. Although most continuous time systems may be 
minimum phase. the discrete-time
equivalent system may well be non-minimum phase due to 
zeros which drift out of the unit circle at certain 
sampling rates. Therefore consideration of the non­
minimum phase problem is justified. A more general form 
of the minimum variance controller is found by Clarke 
and Hasting-James [J39J under the assumption of weighting 
on the control as well as the output. A minimum 
variance controller for non-minimum phase systems has 
been developed by Peterka [_4CQ and Astrom and Wittenmark 

but these may require a large control effort due to 
the omission of control weighting. A control-weighted 
minimum variance controller for non-minimum phase systems 
has been introduced recently by Grimble \_ 4 2 j[ . This 
controller is similar to the Clarke-Hasting-James 
controller but reduces to the controller of Peterka 
when the control weighting is zero. It also cannot cope 
with the problem of measurement noise.

The LQG solution in the frequency domain which minimises 
(1.14) overcomes the previously discussed difficulties. 
The solution has been derived by Shaked []43̂ ] and by 
Grimble [jI4J in z transfer-function format, and by 
Kucera [jl5^ using polynomial algebra. The LQG solution 
can deal with open-loop unstable and/or non-minimum 
phase systems. Measurement noise (usually white) can be
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allowed for. Disadvantages are in the complexity of 
solution. The Kalman time-domain approach requires the 
iteration of two matrix Riccati equations, one for the 
filter and one for the control. Solution in the 
frequency domain is by one of two approaches. The first 
requires the solution of one or'two diophantine equations 
and two polynomial spectral factorisations when using 
Kucera’s work. The second requires two spectral 
factorisations and the removal of causal from anti- 
causal modes if using the Shaked or Grimble approach 
(op cit). The following section will show how some of 
these problems can be overcome by using on-line 
identification in a self-tuning framework.
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1.3.1 Self-Tuning Control
Self-tuning control theory was developed in parallel with 
self-tuning estimation theory, for the same underlying 
reasons. Models of processes are normally inaccurately 
known and sometimes the dynamics may even vary with time. 
Self-tuning control can cope with this problem provided 
the parameters which define the internal dynamics vary 
slowly with time about a nominal value. The first 
practical self-tuner was only for regulation and was 
based on the minimum variance controller of Astrom (op cit). 
This was achieved by Astrom and Wittenmark £46J and had 
the same disadvantages as the minimum variance controller. 
The addition of control weighting and set.point 
following (Clarke and Gawthrop |_48,49^])was achieved by 
using the controller of Clarke and Hasting-James (op cit). 
Wellstead et al [j5Cf] and £5l£ , use pole assignment for 
self-tuning. The advantages of pole placement are that 
it can be used effectively on non-minimum phase and 
unstable processes. The disadvantage of this explicit 
approach is that a diophantine equation has to be solved 
on-line at each sampling instant to determine the 
controller parameters. This can be time-consuming if 
used on real-time systems. Other self-tuners developed 
have included a minimum variance self-tuning regulator 
for non-minimum phase systems (Astrom and Wittenmark[41 J) 
and a control weighted self-tuning controller for non­
minimum phase systems (Grimble £52£ ).

More recently a state space approach to pole-assignment 
self-tuning control has been introduced by Tsay and



Shieh [J33̂ ] and Warwick []54|]. These algorithms have the 
same advantages as the work of Wellstead et al (op cit).

The LQG self-tuning control problem has already been 
solved by Lam L^^ZI* ^he author employs a steady-state 
Kalman filter and a continuously updated feedback gain 
matrix. The advantages of the LQG methods have already 
been discussed. In this thesis, the work will be 
extended to enable LQG self-tuning from input-output 
rather than state-space considerations, by using the work 
of Kucera (op cit) in polynomial equation form. Recursive 
least squares will be shown to overcome the problem of 
solving a diophantine equation by deriving an implicit 
LQG self-tuner. Moreover, non-minimum phase and unstable 
systems can be dealt with easily. For non-minimum phase 
systems, no separation of minimum from non-minimum phase 
terms is required. The separation idea has been used 
previously by Astrom and Wittenmark [j4lU anc  ̂ Grimble
M .
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CHAPTER 2
Transfer Function Solution to a Multivariable Finite
Interval Smoothing Problem
2.1 Introduction
When using linear least squares estimation techniques 
in applications where the available data is finite, 
there are two approaches. Consider first the example of 
least squares filtering. A Wiener frequency domain filter 
or a time-domain Kalman filter can be used. The Wiener 
filter is derived under the assumption that an infinite 
amount of past observed data is available (k0 = -«). This 
assumption has to be made in order that the resulting 
frequency domain filter is time-invariant. For this 
situation, the Kalman filter approach only assumes the 
availability of a finite amount of observed data (k0 > -00) 
and gives a smaller estimation error than that of the 
Wiener filter. The underlying problem faced here is that 
the Kalman filter is time varying and cannot be realised 
in transfer function form for the finite data problem 
and the Wiener filter is not intended for use in 
applications where there is only a finite amount of data 
available and is inferior. Grimble [13,14] has derived 
new time-invariant filters for finite data records. The 
transfer function solution gives an optimal filtered 
state estimate at the end of the finite time interval.
This estimate is equivalent to the optimal time-varying 
Kalman filter estimate and is superior in a least-squares 
sense to either that of a Wiener filter or steady-state 
Kalman filter. The finite-time prediction problem was 
solved first by Zadeh and Ragazzini [J36J and enabled the
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optimal impulse response'of the predictor to'be found.
The impulse response of the predictor vanishes outside of 
the specified time interval and thus the predictor has 
a finite or limited memory.

Limited memory filters are well-known Q Q ,  |_67-72[]. 
Terminologies vary from ’Limited memory’, ’Fixed memory’ 
to ’moving window’ and 'sliding memory’. The latter 
terminology is used mainly in economic systems. The 
technique involves the processing of the most recent N 
measurements of data, where the ’window’ or ’memory’ 
length N is fixed a priori depending upon the application. 
At each sampling interval when a new data point is 
included, an old data point is dropped. This method of 
discarding old data allows it to be employed in 
situations where an expanding memory filter (or Kalman 
filter) would diverge due to erroneous data Q-2J.

The solution to this filtering problem in references 0L2]] 
and [j72J employ two expanding memory filters, one used 
for data addition and one used for data deletion. The 
advantages and limitations of these filtering schemes are 
summarised in [J7CQ. Bierman, in [j7l]] concentrates on 
achieving greater numerical stability by using a square 
root covariance technique. Blum [J39J uses orthogonal 
polynomials in a recursive scheme in order to fit a 
polynomial to the N observed data points. This enables 
past, present or future values of the data or its 
derivatives to be found.
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Recently a time-invariant smoothing filter has been 
proposed for finite data records [jL5^. The problem was 
solved in the frequency domain by posing an equivalent 
infinite-time (t0 = -°°) problem. It was shown how the 
solution to the infinite-time smoothing problem also gave 
rise to the solution to the finite-time problem of 
interest. The equivalence of the two estimators 
depended upon the choice of the estimation error 
criterion and the problem descriptions. '

In this chapter a discrete-time version of the finite­
time smoother is derived Q>2J. The driving process and 
measurement noise sequences are assumed to be stationary. 
The smoother is required to give an optimal estimate of 
the state vector of the process (x (K1|n )) at time K 1 , 
given the observations in |_0,lT]. This fixed interval 
problem normally has a solution involving both causal and 
anticausal filters but cannot be used for on-line 
smoothing |_73-75^]. The advantage of the proposed 
smoother is that it may be used for on-line smoothing by 
utilising either the weighting sequence or z transfer 
function forms.

The optimal time-invariant smoother is obtained by 
solving a discrete-time Wiener-Hopf equation. This 
equation is expanded and is transformed into the frequency 
domain by taking, the two-sided z transform. This provides 
a transfer function solution to the smoothing problem from 
which the weighting sequence is easily found. It is shown 
that the transfer function solution involves z-1̂  terms
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which can be neglected if the smoother is to be used 
within the fixed interval [jD,N]]. For implementation 
beyond the finite interval, the z“N terms must be 
included in the z-transfer function version of the 
smoother. However, in the weighting sequence form this 
sequence need only be set to zero outside the interval. 
The resulting smoother is of the fixed-lag variety 
but with limited memory.
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2.2 System Description -
The linear, time-invariant system can be expressed in

The signal y(k) is assumed to be corrupted with noise 
v(k), resulting in an observation vector

The Gaussian white noise sequences to(k) and v(k) are 
assumed to be zero mean with covariances:

The state, process noise and measurement noise vectors 
have dimensions n, q and m respectively.

In the following, the assumption is made that the initial 
state vector has a known mean m 0 and variance z 0. The 
finite interval problem of interest cannot be solved 
easily by considering only the interval Q),NJ, where N is 
the interval length. It is therefore assumed that the 
smoother has been in operation from time k 0 = but at 
time zero the system receives an input which creates new 
"initial" conditions. In this manner, the invariant 
problem of interest is embedded within an infinite time 
problem |__13]].

the discrete time state-space format
x(k + 1) = Ax(k) + Do)(k) + u(k),

y(k) = Cx(k), x(k)eRn , y(k)eRn , io(k)e:Rcl (2.2)

z(k) = y(k) + v(k) (2.3)

(2.4)

(2.5)

( 2 .6 )

- 20



In order to initialize the smoother, it is assumed that 
an impulse of magnitude xj = Ax-J is applied to the 
system at time zero. That is

u(k) = 6 (k) xi (2.7)
where

E L£o 1  A So (2.8)
and

^  TE ±.0 iiO i  E 0 $ 0 (2.9)

E 2Eo “.T (k ) = 0 (2.10)

E xo Z T (k) = 0

Define the resolvant matrix 
4(z ) 4  (zl - A )-1

and the transfer function matrix 
W(z) C$(z)D = 2i(w (k))

( 2 .11)

(2 .12)

(2.13)

where
w(k) 4  C$(k)D v k  ̂ 0 |

4 0 v k  ̂ 0 J
(2.14)

The state trajectory of the system in convolution 
summation form is given as:

k-1
x(k) = ' I 4 (k-i-l)(Du(i) + fi(i)xj)i = _oo

(2.15)

where $(k) = (J)(k-l)U(k-l) = A^"^U(k-l) and where U(k) is 
the Heaviside Unit Step function. Equation (2.15) 
becomes

k-1
x(k) = $(k)xi + I $(k-i)Dco(i) V k > 0 (2.16)

i=-co
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from which the state vector at time zero is '
-1

x(0) = I  J(-i)Du)(i) (2.17) ■
i = _ c o

Now
w(i) = 0

where the bar denotes the expected value and equation
(2.16) can be written using (2 .8 ) as

x(k) = $(k)Am0 = <Kk)m0 V k > 0. (2.18)
= 0  V k s 0 (2.19)

Thus the delta function input signal establishes the 
specified mean value for the initial state vector [_14̂ |.

Let the total state vector at time k = 0 be defined as
x 0 = xo + x(0 ) (2 .2 0 )

then for time k > 0 equation (2.16) becomes:
k-1

x(k) = cf>(k)xo + I $(k-i)Do)(i) (2.21)
i=0

Equation (2.21) follows directly from substitution for 
Xq into equation (2.16) and by using x(0 ) from equation
(2.17).
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2.3 The Optimal Finite Interval Smoothing Filter

Let h(k;N,£), k = 0,1 ... be the weighting sequence of 
the optimal smoother. The weighting is a function of the 
interval length N, the smoothing time lag £ and the time 
index k.

If the ideal output from the smoother at time k is 
defined to be x^(k), then the estimation error can be 
defined for all k as

x(k) 4 Xf(k) - x(k) (2.22)

By subtracting signals prior to time zero, the ideal output 
of the smoother considers the state component due to plant 
signals at times greater than zero only. That is

x.(Kl) = x(Kl) - i|»(N; £ )x( 0) (2.23)

and K1 = N - £ denotes the time at which the state 
estimate is required. The if/(N; £) matrix is included to 
optimize the zero input response of the smoother. The 
estimation error for k = K1 can be thought to involve only 
system inputs for times greater than zero and the vector 
Xq [JL3_|. Since the vector xo was assigned the 
statistics (m0, E 0 ) when defining the finite-time problem, 
it followrs that by solving the given infinite-time 
problem, the desired finite-time problem solution emerges.
A second consequence is that the impulse response of the 
optimal smoother is zero at the end of the interval, 
giving h(k;N,£) = 0, v k  ̂N.

The smoothing problem can now be defined as follows.
Given the observation sequence ^(k) over k = 0, 1 .... N,
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determine the optimal estimate of the state trajectory 
x(Kl|N) such that the following error criterion is 
minimised.

Note that for this particular problem, the optimal 
state estimate is a fixed interval smooth estimate of 
the state at time K1 given observations in [0,N]. 
Estimates taken at other times within the interval are 
sub-optimal. Outside the interval the smoother acts as 
an optimal fixed-lag smoother with lag £, using the 
optimal impulse sequence as a "sliding memory". Within 
the first interval k < N, for an unbiased smoother state 
estimate:

Theorem 2.1 Time Invariant Smoothing Filter 
The optimal transfer function matrix of the discrete time 
smoother which minimizes equation (2.24) in a least 
squares sense is given in z-transfer function form as:

J = E x(K1)t x(K1) z(0) ... z(N) (2.24)

E[]x (K1|n 3  = EQx(Klfl (2.25)
and outside the interval, k > N

E^x(k- AjkJ] = EQx(k-£)H (2.26)

H(z;N,£) = n11(z,£) A 2(z)
+ ip(N;t) [n12(z,N) + n2 (z , N}] A“1 (z)

(2.27)
where

(2.28)
+

n12(z,N) 4 - nlx(z,N) (2.29)

(2.30)
+

M(z) 4 A-1 ( z)C<±>( z)A (2.31)
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If a signal over all time has a 2 sided transform {f(z)} 
then the transform of the positive-time contribution is 
denoted by {f(z)}+ .

A(z) is obtained from generalised spectral factorisation, 

Shaked £27]]
W(z)QWT (z_1) + R + W(z)G + GtW t (z - ‘)
= A(z) AT(z“1) (2.32)

The i|j(N;£) matrix may be calculated using:
1>(N;0 = D(N-Jl) - Iii(N;iO

x [In + I 1 2 (N) + I 0S ( N O _1 (2.33)

with N-i = K1 (2.34)
and

n-1
Il1(N,A) 4 I n 1 1 (k,£)M(N-k) (2.35)

k=0
N-1

Il2 (N) 4 I n :2 (k,N)M(N-k) = -I i !(N,N) (2.36)
k=0
N-1.

S(N) 4 I  MT (N-k)M(N-k) (2.37)
k= 0

Proof of Theorem 2.1
The proof of Theorem 2.1 is given in Appendix 1
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2.4 Other Forms of the Optimal Smoother
Several cases of special interest now emerge from
equation (2.27) as follows.

Special Case 1
Consider H(z;N,£) -»■ n 1 1 (z,£) A *(z)

lim
(2.38)

This is the steady-state or infinite time fixed-lag 
smoother as expressed in transfer function form in the 
z-domain. The smoothing time delay is given by I  

sampling intervals.

By multiplying by the C matrix, equation (2.38) becomes

This equation represents an infinite-time fixed lag 
smoother which can be used to estimate a signal y(k) from 
an observation message z(k) when the state estimate is 
not required.

Special Case 2 
If z = 0 then

(2.39)
+

H(z;N,0).-»- n 1 1 (z,0).A 1( z ) (2.40)
lim
N->-«

or multiplying by the C matrix



Equations (2.40) and (2.41) represent a transfer 
function solution to the discrete-time stationary Kalman- 
Bucy filtering problem when dealing with state or signal 
estimation respectively. The two above cases can also 
be termed infinite interval or Wiener type estimators.
Case 2 has been studied by Shaked 027^] and in continuous 
time by Barrett [_26j[»

Special Case 3 
Consider

H(z;N,o) = a n f z . O W z ) " 1 + >KN;0)
x [n1 2 (z,N) + n 2 (z,N£] A-1 (z) (2.42)

Equation (2.42) is a finite interval, time-invariant
filter. This filter has been investigated both in
discrete-time and continuous-time by Grimble |_13[] &nci |_14]*

C'tThe filter has the property that^will obtain an optimal 
state estimate at the end of an interval of length N 
sampling intervals. Grimble [jL3j] has shown that the 
error covariance of the state is smaller than that of 
a Wiener filter and equivalent to that of a time-varying 
Kalman filter when estimating the state at the end of 
the interval. The filter has similar advantages to those 
of the finite interval smoother and can be implemented 
in either transfer function or weighting sequence forms.

Special Case 4
ft(z;N,N) = n 1 1(z,N)A(z) - 1 + iHN;N)

X Qj1 2 (z,N) + n 2 (z,Nf] A- 1(z) (2.43)

Equation (2.43) represents an initial condition estimator
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which is again time invariant. In the time domain,
Levy et al [J73̂ ] have shown how the continuous-time 
equivalent of equation (2.43) could be found by solving 
a time-reversed, truncated Wiener-Hopf equation.

The smoother of Levy et al is a combination of causal 
and anticausal filters and cannot be used for on-line 
smoothing. This is a standard solution to the fixed 
interval smoothing problem, e.g. Fraser and Potter [J75J.
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EXAMPLE 2.1
Finite Interval Smoother
Consider the following scalar signal generating system: 

x(k+l) = ax(k) + aj(k) 
z(k) = cx(k) + v(k) 

for k i  0 and |a| s 1 .

The independent noise sequences io(k) and v(k) are assumed 
to be zero mean with covariances q and r respectively.
The system is assumed to have been in operation from 
time k 0 = -°°. At time zero, the initial state vector is 
assumed to have covariance z0 = cr̂ .

Given the observation sequence z(k), k = 0,1 ... N an 
optimal estimate of the state at time K1 is required 
from the finite-time smoother at time N. For observations 
k > N the optimal smoother is required to act as a fixed- 
lag smoother with smoothing delay £ > 0 .

The system resolvant and transfer function are found as: 
W(z) = C$(z)D = c/(z-a)

wi t h
$(z) = (zI-A)” 1 = l/(z-a)

and
$(k) = a ^ U C k - l )

The spectral factors*' a.f'e ;
W ( z ) Q W t ( z “ 1 ) + R  = A ( z ) A T ( z “ 1 ) 

giving
A (z ) =

r ^ra (z - a )/(z - a)
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with

and
a = £ ± ( K 2 - 1 ) a .< 1

£ = |_q(c)2/ra + (a2 + l)/aJ/2
M(z) 4  A 1(z)C^(z)

ra ca/(z - a)

and n 1 1 (z,£) follows from:

n 1 1 (z,£) = \ $(z)DQWT(z-1 )A T(z"'1)z £I

l - l  1 - Z  l  + lz az a z+

where 3 = qc var,

[z-a 1-az 1-az 

/(1-aa) and ni2 (z,N) is found from

n 1 2(z,N) = -nn (z,N)

The remaining terms are found as follows:

'}n2 (z,N) 4  Eu|mt(z“ 1 )z“Nl

which from reference Q-3J becomes
n 2 (z,N) = E 02i [MT (N-k)(U(k) - U(k-N)3

ar ca [z (N 1 ) - a^zj / (1-az)

a
ar caaN_k 1 [U(k) - U(k-N)J

and by inverse z transforming 

n2 (k, N) = cro2

nxl(k,£) = 3 [(ak- & - a^~k )U(k-£) + a £_kU(k)]

n 1 2 (k,N) = - 3 [(ak“N - aN“k )U(k-N) + aN"kU(k)] 

M(k) = 'i 2
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The element \ p (N; Z) is determined from:

iKN;A) = (*(K1) - 11! (N; O  (.1 + I i2(N) + J:0S(N))_1
where ij>(Kl) = a^ -1

I 1 2 (N;£) = 3ca  ̂a ̂  2
(a r j

f„N-i _ aN-Jl
a - a

r N-£+l l+N+£>>a - a
1 - a

I 1 2 (N) = -IU (N;N)

= -Bca ar
and

Z0S(N) = (a0c)2aa(l - a2N )/(r(l -  a 2) )

The transfer function of the time-invariant smoother in 
the z-domain can now be obtained by using the result 
of Theorem 2.1.

H(z;N,£) = n 2 2 (z,£)A"1(z) + ^(N;£)
x |_?i 2( z > N) + n 2 (z,N)]A_ 1(z)

Hence using the previous results

H ( z ; N , £ ) = 3 ar
f(l-aa)z^  ̂ _ z(z-a)a^+  ̂ ^
^(1-az)(z-a) (1-az)(z-a)J

-4>(N; i )

' \ 2a
ar

g b2c) z( z-a)aN + 1  
r J(1-az)(z-a)

r Sa
*f *a A o ^

2c car\ s z - a ar C r

x (z-a)az1 N 
(1-az)(z-a)
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Alternatively, the weighting sequence for the smoother 
may be implemented as

h(k;N,£) = 3

+ < ip(N; Z ) ar 
1+N+k

!i
(a-a) - (l-aa)q N-k'

1 - a
/ -1 a

X2 f i  o \ r o\ 1+^+k^(l-aa)a - (a-a)a
arV. J

1 - azk. J

U(k)

- K N ; 0
f  ̂h  a
ar *nk-N + f „ 1 h

[ixj J

X f(l-aa)oc^ k + l-a-a2(l-a) )'|
[ I ”-"a2' ' J. U(k-N)

By direct calculation it may be shown that: 
fi(k;N, £> = 0 v k > N

Because of the delay terms in the optimal smoother, the 
weighting sequence is the more attractive method of 
implementation. In practice, the terms in the weighting 
sequence for times k  ̂ N may be neglected and the weightirg 
sequence can be simply set to zero for these times.

Note that the weighting sequence for the optimal smoother 
also yields the following

h(k;»,£) -5- infinite time smoother weighting sequence 
fi(k;°°,0) Wiener or steady state Kalman filter 
fi(k,N,N) -*• initial condition estimator weighting 

sequence
h(k,N,0) finite time filter weighting sequence
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The finite interval smoother was simulated for the 
process of this example with the following parameters 
selected

a = 0.99, c = 0.1, q = 10, r = 1, a 0 2 = 10 
The interval length was chosen as 10 sampling 
increments (N = 10) with a smoothing lag of £ = 5.
The observation sequence for such parameters, together 
with the state and smoothed state estimate are shown in 
Figure 2.2. Clearly, the state estimate is acceptable. 
There is a delay of 5 steps between the state and the 
corresponding estimate and this is unavoidable. The 
impulse response for the time invariant smoother is 
shown in Figure 2.1 and takes the form of a rising and 
falling curve which has a peak value occurring at k = £.
It is important to note that for times k > N, the 
smoothing filter has been used as a fixed memory, fixed 
lag smoother, using the ’moving window’ of filter informa­
tion present in the optimal impulse sequence. Figure 2.1 
shows the impulse response to be zero for k  ̂ N 
resulting in an observation length at any time k of 
only N, the observation length being [k-N,k]. Any 
observations prior to the interval (k-N,lT] is set to 
zero, thus discarding old data.
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2.5 Further Simplifications to Smoother 
The section will give a simplified algorithm for 
calculating the optimal smoother. The algorithm is 
found by manipulation of the steady-state matrix 
Riccati equation and thus links the steady-state time 
domain approach with the frequency domain. Further 
insight into the solution can then be seen. The 
assumption is made throughout that the process and 
measurement noises are uncorrelated-(G = 0) and that all 
terms of z“N can be ignored since these occur outside the 
finite interval. Smoothing outside the interval can still 
be achieved by setting the weighting sequence to zero 
at the end of the interval (op cit).

The steady-state discrete-time observer Riccati 
equation given by [60J:

P = APAT - AKCPAt + DQDt  (2.44)
where K is the steady-state Kalman gain matrix

K = PCTR-1 (2.45)£

The covariance matrix for the innovations is given as 
(Sage and Melsa L^^H)

R = R + CPCT (2.46)£

P is the positive definite symmetric filtering error- 
covariance matrix. The relationship between the return- 
difference matrix for the steady-state Kalman filter and 
the spectral factor of the observation is (ArcasOy |_27ll ) 

F( z)R£FT( z“"1) = A (z ) AT( z“1 ) (2.47)

where the return difference matrix of the Kalman filter is 
F(z) = C$(z)AK-tT (2.48)
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From (2.47)
xA(z) = F(z)R2 (2.49)£

and
A ^ z -1) = R^FT (z“ 1) (2.50)£

From (2.28)
n xl (z, £ )4{ $(z)QWT( z_1 )A"'I’(z” 1 )z”£}+ (2.51)

Now it is possible to manipulate equation (2.44) by the 
addition and subtraction of various terms as demonstrated 
in Appendix 4.

{$(z)QWt (z-1 )A“'^(z" 1 )z“^}+
= '{T(z-1 )z“a + $(z)AKR2z“£}_lE +
= {T(z_ 1 )z“£}+ + $(z)AKR2z-£ (2.52)

where
T( z_1 ) = P[MT (z“ 1) + c T a - ^ z - 1)̂  (2.53)

= P|AT*T(Z-1) + g c T A-T(z-l) (2.54)
and M(z) is defined as in (2.31).
Now define the time function matrix T(k)

T(k) =Kr!(T(z)) (2.55)
w h e r e d e n o t e s  inverse z transforming. Equation (2.52) 
then simplifies to

nil(z,A) = Z 1 [T(£-k)(U(k) - U(k-£))]
+ <Kz )AKr |z “£ (2.56)

= Hi [T(£“k )u (£“k )J + <Kz)AKR2z“£ (2.57)

The filtering case when £ - 0 is of importance since it 
is a special case of the smoother. Under these conditions 
it is simpler to determine n 1 1 (z,0 ) by the z° coefficient 
of the matrix Taylor series expansion of T(z_1). By
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defining '
{T(z_1 )z"£}+4[To + Tjz + T 2z 2 + ... + T^z^Jz-5'

(2.58)

Then when £ = 0
T 0 4  (T(z"1)}+ (2.59)

giv ing(Chen [J76J )
T 0 = lim T(z“ 1) (2.60)

z->0
= lim{PMT (z"1) + PCtA“t (z“ 1)} 

z->-0
Now

lim PMT (z_1 ) + 0  (2.61)
z-*0

and similarly
lim PCTa “T(z 1) 
z-3-0

using (2.50)
= lim PCtF“t(z-1 )R” 2

z+ 0 e
= PCTR-i (2.62)£

The expression for n 1 1 (z,0) now becomes
n lx(z,0) = T 0 + ^(z)AKR2 (2.63)

where
T 0 = PC^R” 2 (2.64)

The other terms of the optimal finite interval smoother 
also hold for the filtering case and follow 

n 1 2(z,N) = -nn(z,N)
= -Hl(T(N-k)) (2.65)

(Ignoring the z“N terms which occur outside the 
interval N)
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Substitute the initial error covariance matrix P q = £0> 
then

n 2 (z ,N ) = ^ ( P 0MT (N-k)(U(k) - D(k-N))) (2.66)
Define

n 2 2 (z,N) = n 1 2(z,N) + n 2 (z,N)
= ^(L(N-k>)

where
L(N-k) = P 0MT (N-k) - T(N-k)

Hence the transfer function matrix for the optimal 
smoother is greatly simplified, and becomes

H(z;N,£) = .[nu (z,l) + t(N;!l)n2 2 (z,N)]4(z)-l (2.70)
and is also greatly simplified since

N-1
Iii(N,D = I nn (k,A)M(N-k)

k=0
N-1

= I  T(*-k)M(N-k) 
k=0

N-1 A
+ I  [j>(k-£)AKRj; - T(£-kJ]M(N-k) (2.71)

k=£

Put I2 z(N) = I 1 2(N).+. P 0S(N) (2.72)
and I2 2 (N) can be simplified to be 

N-1
I2 2 W  = l  L(N-k)M(N-k) (2.73)

k= 0
and hence the i|j(n;ji) matrix becomes

r p ( N; Z)  = ( H N - Z )  - In(N,£))(In + I22(N))"1 (2.74) 
These simplifications lead to the following algorithm.

(2.67)
( 2 .68)

(2.69)
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Algorithm 2.1 Calculation of Finite Interval Smoother

1. Compute the steady-state innovation covariance
rpmatrix R E = R .+ CPC . Hence find the spectral 

factor A(z) from:
A (z ) =  (I + C<Kz)AK)R2 

where P and K are found from the steady-state 
Kalman filter Riccati equation.

2. Compute M(z) 4  A"1(z)C$(z)A
and hence find the time function M(N-k) by inverse 
z transforming.

3. Compute T(z-1) from P[mT(z_1) + CTA“T (z“ 1)] or 
P C A T ^ z - l )  + IJCtA-t(z-1 )

and hence find T(z) and the time function T(k).

4. If £ = 0, then nn(z,0) = T 0 + $(z)AKR2 else find
ill 1Cz, )A2l ̂ TCX-k) (U(k) - U(k— £) } + $(z)AKR2z"r

5. Find L(N-k) 4  P 0MT (N-k) - T(N-k)

6 . Compute n 2 2 (z,N) =2i(L(N-k))
N-1

and I2 2 (N) 4  \  L(N-k)M(N-k)
k=0

N-1
7. Compute I ^ C N ^ )  4  £ T(£-k)M(N-k)

k=0
.N-1 *

+ I  [j(k-£)AKR2 - T(£-k)]M(N-k) 
k=£ e

8 . Calculate ^(N; £) = ((j>(N-£) - In(N,£))(In + I22(N,k))_1

9. Find H(z;N,£) = [n1 ]L(z,£) + ^(N; £)n2 2 (z ,NfJA" 1 (z)
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EXAMPLE 2.2
Consider the linear discrete-time Scalar system given by 

x(k+l) = x(k) + w(k) 
y(k) = x(k) + v (k ) 

with process and measurement noise covariances q and r 
respectively. It is required to find the transfer 
function of the optimal finite memory smoother with 
memory length N and smoothing time lag l  > 0.

It is known that
$(z) = l/(z-l) and W(z) = l/(z-l)

The solution is found by following the Riccati based 
algorithm 2 .1 .
Step 1

R £ = R + CPC*' hence R £ = r + P 
A(z ) = (I + C$(z)AK)R*

=  4 z - a
z - 1 a = r/(P + r)

Where the steady-state Kalman filter gain matrix is found 
to be:

K = P/(r+P) and P is found from the steady-state 
Riccati equation

P = P - P 2 /(r+P) + q
to be

P = q/2 + {q2 + 4q r}2/2

Step 2
M(z) 4  A(z)_ 1C$(z)A 

= r:4 /(z-o)
M(N-k) = R £ 2 aN _ k _ 1
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Step 3
T( z“ 1) = p Ij T c z-1) + c Ta -Tc z-1)]

= P R •2 Z. i Z - a )  e '

and T(z) = P R~ 2z/(z-a) 
giving T(£-k) = P R“ 2

Step 4
nn (z,£) 2i(T(£-k)(U(k) - U(k-£))} + $(z )AKR *£

= PR 2 £

—  _ 0 _ 0z _ z l+£ z
z— 1 az-1 a az-1

Step 5
L(N-k) - ^ ™T'

= R“t(P0aN “ k “ 1 - PaN“k )
P 0M (N-k) - T(N-k)
_ i
\

£

Step 6

n 2 2 (z>N) = 2i(L(N-k))

_ X
= R e 2

't, N„ _ N+l "*Pna z _ Pq z
az-1 az-1

N-l
I2 2 (N) = I  L(N-k)M(N-k) 

k= 0

= p- 1R~1(Po - aP)£
l-l 2N
1- a J

Step 7
N-l

Ili(N,0 = I  T( £-k)M(N-k) 
k=0

N-l
+ I  [j(k-£)AKR2 - T(£-kj]M(N-k)

k=£ e
( p 'i
(p+r J

_ - •"N-£ , N+l , -£ L / m , ,— 1 - a + a  (a - a ) / ( l + a )

-i N— £ . _ i -t 1 - a N+l r —£ £\ — a - a 1
_ 1 - a 1 - az J
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Step 8
Hence tJj(N:£) is found by substitution into

tKN;*) = (<KN-A) - In (N,£))(I + I22(N)')-1

Step 9
H(z;N, I) = [nuCz,^) + £)n22(z,Nj]A x(z)

1 + SLp ]( z(z-l) f \r
P+r ((az-1 ) (z-a ) P+rV. J

P+r
,1-1

___________(az-1)(z-a)J

+ iKN* Z) - — — ] [■ r ■ VUN, i) [ r  p + r J | p + r ^

Note the exclusion of any terms of z“^.

N+l z(z-l)
(az-1)(z-a)

These terms occur outside the interval length of N, and 
thus are excluded in this algorithm.
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2.6 Summary
A finite interval, time invariant smoothing filter has 
been derived. The smoother can either be implemented in 
Z transfer function or weighting sequence form. For 
implementation of the smoothing filter beyond the finite 
interval N, the smoother has a fixed memory length. 
Implementation is achieved for these times by sliding a 
'window' of the N most recent observations and weighting 
these observations with the optimal smoother weighting 
sequence. In this way, divergence problems associated 
with erroneous data can be avoided. Four special cases 
emerge from the solution to the finite-interval smoother. 
They have been shown to be equivalent to related work 
in this area.

By manipulation of the steady-state matrix Riccati 
equation, a simplified algorithm has been found for 
computing the optimal smoother. Some of the steps of 
the algorithm are easily obtainable by using standard 
Riccati equation subroutine to avoid. _ spectral 
factorisation. The remaining terms may be more difficult 
to compute since they require z-transforming and inverse 
z-transforming. However, by using this kind of algorithm 
the problem of removing causal from anti-causal terms, 
which is manifest in the original solution, is overcome 
and further insight into the link between input-output 
and state-space Riccati equations is seen.

- 44 -



CHAPTER 3
Multivariable Self-Tuning Filtering, Smoothing and
Prediction
3.1 Introduction
The optimal filtering, smoothing and prediction of multi- 
variable processes traditionally employs a knowledge of 
signal statistics or signal model dynamics.- This approach 
is taken by Wiener [JLJ and Kalman [j3,4| in their respective 
frequency and time domain approaches (op cit). It is 
assumed using these approaches that signal statistics or 
signal model dynamics are found off-line from calculations 
using experimental data. This chapter considers the more 
difficult case for many real applications where these 
quantities are unknown and leads to a solution in which 
they need not be identified off-line. In addition, the 
parameters of the signal model may be slowly time varying.

A z transfer function solution to a finite interval 
smoothing problem has been derived in Chapter 2 of this 
thesis. It is shown how the first terms of the smoother 
solution relates to the infinite interval or Wiener 
type of smoother or filter.

Hagander and Wittenmark [J33J derived a computationally 
attractive implicit (without explicit spectral factori­
sation calculations), fixed-lag, self-tuning solution to 
the smoothing problem for scalar ARMA processes. The 
explicit form of their result is equivalent to the afore­
mentioned infinite interval frequency domain solution. 
Hagander and Wittenmark p33^] employ a Bayesian approach
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and innovations signal model in the solution of the fixed 
lag smoothing problem. The innovation model parameters 
are estimated on line using extended recursive least 
squares, or the real-time maximum likelihood method. The 
assumption is made that the order of the ARMA process is 
known or can be identified beforehand.

In this chapter a multivariable version of the problem in 
1_33[] is discussed using a z-domain approach and polynomial 
matrix algebra Q45]]. An explicit solution for the optimal 
smoothing, filtering and prediction problems is presented 
in Section 3.3. This solution assumes the process and 
noise statistics are given. No such&\priori information 
is assumed in the self-tuning Section 3.4. The parameters 
of the innovations signal model are estimated using a 
technique due to Panuska [j77] or extended recursive least 
squares. The optimal estimators are then implemented 
directly from these results. Self-tuning filters prove 
valuable in many industrial filtering applications (j78_|.
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3.2 Discrete-Time Process Description 
The discrete-time process will be represented in both 
state space and vector difference equation forms. This 
will enable the relationship between the Kalman and the 
z-domain results to be discussed.

(A) State Space Model
Consider a signal y(k) corrupted by a white noise sequence 
v(k) and observed as:

z(k) = y(k) + v(k) (3.1)
The state x(k) is generated from the following stable, 
discrete-time Markov process:

x (  k + 1) = Ax(k) + Du>(k) (3.2)
and

y(k) = Cx(k ), x(k)eRn , 2 (k)eRr , u(k)eRq (3.3)
where by assumption r = q. The Gaussian white noise 
sequences uj and v are assumed to be zero mean with 
covariances

cov|jL(k), a)(n)]]=Q6 ( k - n )  (3.4)
cov[y(k), v ( n j ] = R S ( k - n )  (3.5)
cov|j).(k), v(kj] = 0 (3.6)

The matrices Q and R are assumed to be symmetric and 
positive definite and the system is assumed to be in 
operation from time -».

The input-output transfer-function relating the signal and 
the driving noise is given as:

W(z) = C(zl - A)“ 1D (3.7)
and

W(k) A C$(k)D, for k > 0 (3.8)
4  0 for k ^ 0
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where $(z) = (zl - A) 1 and $(k) = ^U(k - 1 ) .  Here
U(k) A 1 for k  ̂ 0 and U(k) 4  0 for k < 0.

The signal can be calculated from the convolution 
summation:

y(k) = £k - 1 W(k - i)w(i) (3.9)
i=-co

The observations signal can be represented similarly:
z(k) = £k F(k - i)£(l) (3.10)

i=-<»

where {e(i)> is a white zero mean sequence with 
covariance:

cov[i(i)e(nfl = R 6 ( i - n )  (3.11)

and 6 (i) = 1 for i = 0 and <S(i) = 0 for i f 0. The signal 
e_ must, through (3.10) generate the same spectrum as the 
observations signal, so that

F(z)R£FT(z” 1 ) = W ( z ) Q W ( z )t  + R (3.12)
where

F(z) A^iCF(k)) (3.13)

It is well-known (Anderson and Moore [j>l[]) that a Kalman 
filter can be used to construct the observations signal 
z (\) given the white noise innovations signal. Thus, e_( • ) 
can be identified with the innovations (Gevers and 
Kailath [J79Q ) and F(z) represents the return difference 
matrix for the filter (Arc.asoy []25J ). The covariance 
matrix for the innovations (Sage and Melsa [J50II ) given 
as RE = R + CPCT . Note that,

F(z) = Ir + C$(z)AK (3.14)

and the Kalman gain matrix (Sage and Melsa L60]):
K = PCTR_1 (3.15)

£
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where P represents the positive definite symmetric matrix 
which satisfies the steady state Riccati equation:

P = APAT - APCTR~ 1CPAT + DQDT (3.16)
The return-difference relationship (3.12) follows by 
algebraic manipulation of the Riccati equation.
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(B) Vector Difference Equation Model 
The vector difference equation (VDE) model or multi-
variable autoregressive moving average (ARMA). model for
the system becomes

A(z_ 1 )y(k) = C(z-l)oj(k) (3.17)
where the zeros of det(A(x)) and det(C(x)) are assumed to 
be strictly outside the unit disc in the x-plane. Note 
that A(z_1) and C(z_1) should not be confused with the 
matrices occurring in the state equations since the 
arguments in z" 1 will be retained. Unfortunately the 
notation for both system descriptions is now standard.
The equivalent innovations signal representation becomes 
[80,81]] :

A( z” 1 )z(k) = D( z“ 1 )jb (k) (3.18)
The polynomial matrices A(z-1), C(z_1) and D(z_i) can be
represented as:

A(z“ 1) = Ir + AiZ-1 + A 2z“ 2 + ... + An z"na (3.19a)a
C(z” 1) = CiZ-1 + C 2z“ 2 + ... + Cncz“nc (3.19b)
D(z” 1) = Ir + r^z-1 + D zz“ 2 + ... Dndz"nd (3.19c)

The matrix A(z-i) will be assumed regular (that is An is
assumed to be non-singular). The zeros of det(D(x)) and
thence of D(x) are required to lie strictly outside the
unit disc in the x-plane. That is, D(z“ 1 )“ 1 is required
to be an asymptotically stable transfer function when
performing the spectral factorisation.

The equivalent VDE spectral factorisation result follows 
immediately as:

D(z - 1)R£.Dt (z ) = C(z-1 )QCt (z ) + A(z_1)RAt (z ) (3.20a) 
and from (3.12) the relationship between D(z_ 1 ) and F(z)
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can be established as:
D(z-1) = A(z- 1 )F(z) (3,20 b)

To simplify the following discussions, the usual case 
where nc $ na => n^ = na will be assumed to hold. If 
(3.203.) is multiplied by zRa and the limit as z 0 is taken
then

DndRE AnaR
and with the assumption that A(z *) is regular then 

H - A ^ D ndR£

Note that the above assumption is only necessary to allow R 
to be calculated and it follows that the assumption can be 
relaxed if R is known.
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3.3 Frequency Domain Solution to the Linear Estimation
Problems

The optimal linear estimator to minimise the performance 
criterion:

J = E{(y(k - Z) - y(k - J.|k))T(y(k - z )

- y(k - A|k))} (3.21)
for the system described in Section 2 and given the 
observations (_z(i)f, i = k, k - 1 , k - 2 , ... can be 
derived in the z-domain and can be calculated using the 
following results.

Theorem 3.1 Optimal Linear Estimator
The optimal steady state filter (£ = 0), smoother ( Z > 0) 
or predictor (t < 0) can be calculated using:

H(z;&) = {W(z)QWT(z_ 1 )Ft (z_ 1 )“ 1z”^}+R“ 1F(z)” 1 (3.22)
The notation {f(z~1)}, is used to denote the transform ofT
the positive time terms in the expansion of f(z_1).
Proof The proof follows from the results in Grimble [jl.3̂ ]
(£ £ 0) and Moir and Grimble [J32j] , ( I  > 0), and is given 
in Appendix 5.

The time invariant estimator can be implemented in the 
weighting sequence form:

y(k - fc|k) = £k H(k - i;£)z(i)
i=—oo

where H(k;£) is the impulse response sequence of the' 
optimal estimator, and y(k - £|k) denotes the least squares 
estimate of the signal at time k - z given observations up 
to and including time k. The estimator transfer function 
matrix:

H ( z ; 0  4 2j(H(k;JD)
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The expression for the transfer function matrix for the 
estimator can be simplified using (3.12): 

{ W ( z ) Q W T ( z - 1 )I'T (z -1 )- 1 z _1\} +

= {(F(z)R - RF^(z- 1 )_ 1 )z-^} (3.23)£ *T*
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(A) Filtering and Smoothing
The results will now be specialised to the filtering and 
smoothing problems ( Z 2 0). Recall that F(z) can be 
expanded as a convergent matrix series in z ~ 1 :

F(z) = I + F 1z ~ 1 + F2z"2 + ... (3.24)
thence from (3.23):

{■} I T ^ C Z )-1 = I  z - *’ -  R{f' I ' ( z_1)- 1 z - *}T £ j- T
x R~ *F(z)_1 (3.25)

and the final term in braces can be expanded as a Taylor 
series up to z terms:

{FT ( z _ 1 ) _ 1z“ £ } + = (Ir + p 1z + P 2 z2 + ...
I T-V A N -Z  

Z )

Thus, let P„(z)z“  ̂ A {F^(z“ 1 )_ 1z”^} = {A(z)l̂ D^(z)“ 1z_^} ,z + +
so that

P (z) = Ir + P xz + P 2z2 + ... + P 0z£ (3.26)Xf X f '

then collecting the above results, for Z £ 0, the transfer 
function solution becomes

H(z ; z )  = (Ir - RP (z)R"1F(z)"1 )z"il (3.27)X/ £ *.

The polynomial matrix P ^ ( z )  can be calculated using the 
algorithm in Appendix 6 .

The optimal smoothed estimate can be calculated using:
£(k - Z |k) = E ( z ; Z ) z ( k )

= z(k - I )  - R P ( z ) R _ 1e(k - J>) (3.28)— z e —
where in this last equation _z('k) = F(z)^(k) and

_e(k - z )  = z(k - z )  - y(k - £ | k -  z -  1) (3.29)

Notice that in the filtering case z = 0 and P 0(z) = IrX/

which leads to some simplifications in (3.28) and (3.27).
Also note that the smoothed estimate can be expressed in 
terms of a filtered estimate and a correction term (Appendix 7).
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(B) Prediction
The results for the prediction case are somewhat
differentfVsw-the foregoing. Let Z\ = - Z  > 0 then from
(3.23)

{ * }+R~1F(z)""1 = {F(z)z^1}+F(z)“ 1 (3.30)
= {A(z“ 1 )_ 1D(z"1 )z^1 }+F(z)_1 (3.31)

Introduce D(z_1) and A(z"’1), where det(A(z-1)) = 
det(Atz"1)) and A(0) = I r .via the relationship

D(z"1 )A(z“ 1) = A(z” 1 )D(z“ 1) (3.32)
and let H(z_1) and G(z-1) satisfy the diophantine equation: 

H(z“ 1 )A(z"1) + z"£lG(z“ 1) = D(z_1) (3.33)
where the order of H(z-1) is n^ .= Zi - 1. Thence

z£lH(z_1) + G(z_1 )A(z_1 )_1 = A(z_1 )_ 1D( z” 1 )zJ2'1 
and equation (3.31) may be simplified as:

H(z;& x) = G(z” 1 )A(z“ 1 )“ 1D(z)“ 1A(z” 1)
= G( z“ 1 )D( z“ 1 )-1 

The optimal predicted estimate can be calculated using:
£(k + J.i |k) = G(z_1)D(z“ 1 ) - 1_z(k) (3.34)

This is a multivariable version of the predictor derived 
by Wittenmark (1974) |_30̂ ] and presented in a multivariable 
self-tuning form by Tanttu (1980) |_31̂ ]. The work has 
been applied by Sym and Wellstead [J57J and by Holst [J32J. 
Thus, the multivariable self-tuning predictor is already 
well-established. The results here, however, do lead to 
some unification in the area.
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3.4 Self-Tuning Smoothing and Filtering
3.4.1 The Scalar Case
Hagander and Wittenmark |_33̂ ] considered the. difference 
equation representation of the process of equations 
(3.18) and (3.19). They assumed that the noise covari­
ances and process parameters were unknown, but that the 
order of the polynomials were given. The following 
algorithm was proposed in |_333 
Algorithm 3.1 Scalar Case
Step 1: Estimate the parameters Aj_, , i = 1, . . . . , na
in the polynomials A and D using ELS or the RML identifi­
cation method |_56]]. The estimated polynomials are 
denoted A and D, (estimate A and D from the innovations 
model of equation ( .3.18).
Step 2: Compute the polynomial P (z) from A(z) = P (z)D(z)" & Xf

and the smoothing estimate, from
y(k - Jl|k) = z(k -  Z)  -  (Dnd/Ana) P £(z)|^(k - Z) (3.35)

where
£(k - Z) = z ( k  - Z) - y ( k  - Z |k - Z - 1) (3.36)

The two steps of the algorithm are repeated at each step 
of time.

3.4.2 The Multivariable Case
This section serves as a natural extension to the work of
Hagander and Wittenmark. An explicit polynomial matrix
solution to the multivariable fixed-lag smoothing problem
was presented in Section 3.3. To determine the expression
for the z-domain smoother, prior knowledge of the noise
statistics and the plant matrix parameters was assumed.
Further, a matrix spectral factorisation (equation 3.12)
has to be performed in order to determine the polynomial
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matrix F(z 1) and the innovations covariance, matrix R .£

The self-tuning multivariable smoother proposed in the 
following section .alleviates these difficulties in the 
same way as that of the scalar smoother of Hagander and 
Wittenmark. The following assumptions are made:

1. The signal generating process is linear, stable 
and can be expressed in VDE form/ both from an 
innovations model (equation 3.18) and a process 
model (equation 3.17).

2. The degree of the A(z_1) polynomial matrix is 
assumed known and na = n^.

3. The dimensions of the observation vector and the 
process noise vector are equal (q = r) that is, 
the process is assumed to be square.

4. The parameters in the process are assumed to be 
constant or slowly time varying and the noise 
sources are assumed to be stationary.

The self-tuning smoother may be constructed by reference 
to equation (3.28). Clearly, the innovations sequence, 
P„(z), R and R must be calculated before the estimate 
may be found. The matrix P_̂ _(z) can be obtained using 
the algorithm in Appendix 6 once the innovations model 
polynomial matrices A(z_1) and D(z_1) have been obtained. 
These matrices and the noise covariance matrices can be 
estimated using the algorithm due to Panuska [j77^.

Parameter Estimation Procedure
First write the innovations model of (3.10) in the form 

z(k) = iK'k)0 + je (k) (3.37)

- 57 -



with K k )  = block diag (nT (k), nT (k), riT (k)} (3.38)
and

nT (k) = G-zT (k - 1),..., -zT (k - na), eT (k - 1),
. . . ,£T(k - nda T 

1 = it •••> l E F  (3*39)
A ith row of [Aj,...,Ana;Di,...,Dndj (3.40)

Equation (3.37) can be interpreted as the observation
equation for a state space model of (3.18) with the
state vector representing the (unknown) constant parameter
vector £(k) = 0_. The state equations for the parameter
estimation model become:

0(k + 1) = 0(k) (3.41)
z(k) = iKk)O(k) + £ (k) (3.42)

The extended Kalman filter algorithm proposed by
Panuska |_77̂ ] may be employed to estimate _0 and the
covariance matrices R and R .£

Algorithm 3.2 Multivariable Parameter Estimation
Initialise 0(0) = 0°, A(0) = A0, R (0) = R°

—  —  £  £

£(k + 1 1k) = _|(k|k - 1) + r(k)(z(k)
- #(k)e(k'|k - 1)) 

r(k) = A(k)GT (k)(G(k)A(k)G?(k). • . : '
+ R (k + I))-1£

A(k + 1) = A(k) - r(k)(G(k)A(k)GT (k)
+ R (k + l))rT (k)

R e(k + 1) = R £(k) + g-l-y (i(k)eT (k)

- fte(k))
where

^(k) = z(k) - ijj(k)_0(k | k - 1)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)
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and
_ 3(i|>(k)£(k|k - X))

G ( k ) -------3 0(k|k - 1) (3'48)

The measurement noise variance may be estimated from
 l ̂Dn ,EeR(k) = AnaDndR r(k) (3.49)

Now denote S = R R 1 and let
£

S(k) = A ^ D nd (3.50)

The self-tuning filtering or smoothing algorithm now 
follows:
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Algorithm 3.3 Multivariable Self-Tuning Filter or
Smoother

Step 1 : Using the Kalman filter algorithm of Panuska,
estimate the parameter vector Q_} and hence construct the
matrix coefficients A^, D^, i = 1,2,..., na , (na = n^). 
Step 2 : Estimate the innovations vector

_e(k - £) = z(k - £) - iJj(k - £)0^k - £ |k - £ - 1) (3.51)

For £ f  0 compute the variance R £(k - £).
Step 3 : If £ = 0, compute S(k) = An^Dnd else compute

B(k - i )  = AnlD„dR£(k - I )

Step 4 : If £ = 0 go to Step 5 else compute P^(z) from 
A^(z) D^Cz)” 1 using the algorithm in Appendix 6.
Step 5 : For £ = 0 compute the filtered estimate using 

y(k|k) = z(k) - S(k)£(k) (3.52)
else compute the £ step smoothed estimate from

y(k - £ |k) = z(k - £) - R(k - £)P^(z)
x R£(k - £)"1̂ (k - £) (3.53)

The above steps are repeated at each sampling instant.

Remarks
1. The system matrices are identified directly from the 
innovations model for the process and this avoids any 
spectral factorisation stage. The algorithm can therefore 
be classed as an implicit rather than an explicit self­
tuning estimator.
2. The implicit smoothing filter may be compared with 
the work of Hagander and Wittenmark since for the scalar 
case:
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Dnd/Ana ~ R/R e

and hence from (3.48)
y(k - £ |k) = z(k - £) - (Dnd/Ana)P^( z)_e(k - £)
A A Awith P (z) calculated using A(z)/D(z).

3. For the scalar case above, the noise variances R and 
Re may be found together as a ratio and can be employed 
directly in the smoother/filter equation. Under multi- 
variable conditions, only in the filtering case can 
RR"1 be used in the solution directly (S = RR” 1).
4. The o U e f ^ t A m . m a t r i x  $(k) is dependent on the 
previously estimated innovations. The most recent estimate 
of the plant parameters is used to calculate this approxi­
mation to the innovations:

£(k - i) = z(k - i) - ip(k - i)^(k|k - 1) 
for i = 1,2,..., n^. The dependence of the ob^-^ rV ^ ir id rL  - 

matrix on the parameter _e gives a non-linear estimation 
problem which is solveable using the extended Kalman 
filter.
5. If the computed innovations (residuals) in the 
information matrix iKk) are assumed to be independent of 
the estimated parameter vector 0(k) then it is clear that:

_ 3(i(k)i(k|k - 1)) _
G ( k )  F!(k|k - i) ,('(k)

6. The parameter estimation algorithm need not be multi- 
variable. For filtering problems the matrices Ana and 
Dnd can be estimated by calling a standard SISO extended 
recursive least squares algorithm r times. For smoothing 
problems, the innovations variance matrix R£ may be 
estimated via (3.46) and an extended least squares
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algorithm can be called r times to estimate A(z *)
_ 1and D(z ), There are clearly similarities with the 

work of Mehra [jL6-18^] on the identification of dynamic 
systems.
7. Equation (3.46) is merely a recursive form of the 
more familiar equation :

1 k-1  ̂ aT
R (k) = =- Z e(i) e (i) 
e K i=0

which is asymptotically unbiased.

3.4.3 Numerical Considerations
To avoid the matrix A(k+1) becoming singular (3.45) may 
be replaced by

A(k+1)-1 = A(k)”' + GT (k)R-1(k+l)G(k) + SI (3.54)£
for some small real scalar 6 > 0. In the same spirit, 
to avoid An becoming singular, (3.49) may be replacedcL

by:
R(k) = (A„a + S1i r 1Dn(JRe(k) (3.55)

for some small real scalar > 0 .  Under the given 
assumptions the problem with singularity should not 
arise after the first few iterations of the parameter 
estimation algorithm.
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3.4.4 Convergence Analysis
The following discussion of the convergence of the self­
tuning smoother or filter is based upon the work of 
Panuska Q77_J who used the asymptotic,, convergence anal­
ysis of Ljung [_35-37j . It will be shown that the 
parameter estimates generated by the algorithm converge 
with probability one (w.p.l.).

Assume that all absolute moments of the sequence 
{ji}(k)} exist and are bounded. Recall that the system 
(3.1), (3.2) was assumed to be stable and assume that 
the equation generating £(t) in (3.47) be stable. Note 
that the regularity conditions described by Ljung |_36l] 
can be satisfied. Thus, to apply the theory of ^36^] 
first obtain an alternative expression for the Kalman 
gain r(k) in (3.43). Write (3.43) and (3.54) in terms 
of

P(k) = (kA(k))"~1 (3.56)
Noting from (3.44) and (3.54):

r(k) = (A(k)-1 + GT(k)R (k+l)_1G(k))-1GT (k)R (k+1)-1
£ £

A(k+l)_1 = A(k)-1 + GT (k)R (k+l)_1G(k)
thus

§(k+l|k) = 0(k|k-l) + 1 GT (k)RE(k+l)_1

x (z(k) - if(k)0(k|k-l)) (3.57)
and

P(k+1) = P(k) + ^ I (GT (k)R£(k+l)"iG(k)
+ 61 - P(k)) (3.58)
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The convergence analysis - depends upon associating (3.57) 
and (3.58) with an ordinary differential equation that 
includes the necessary information about the asymptotic
behaviour | 36̂ ]. This equation will now be defined in
terms of stationary processes resulting from the algorithm 
when the parameter estimates are held at constant values 
£(k) = _0 and Re(k) = R e . Then G(k), i p ( k ) and j:(k) would 
give rise to some G(k;j3), iKk;0.) arid e_(k;(3) for large k. 
Taking now the expectation with respect to (o)(k)} define:

f(e,R ) = E { # ( k ; 0 )R-1 7(k; 0 )} (3.59a)—  £ — £ —  —
g(0,R ) = E{GT(k;0)R-1 G(k;0)} (3.59b)

—  £  £  —

h(0) = E{7(k;0)7(k;0)T } (3.59c)

It now follows from 03 6[] and by reference to equations
(3.57),. (3.58) and (-3.46) that the behaviour of the 
estimates can be described by the following coupled 
ordinary differential equations, as k «;

d0 (t) = P(t)-1 f(0(T), Re(t)) (3.60a)
dx

dP(t ) = g(0(t), R-(t )) + SI - P( t ) (3.60b)dr — e

_d_R (t ) = h(0(T)) - R (t ) (3.60c)
dr e

Global stability of (3.60) implies convergence w.p.l. of
(3.57), (3.58) and furthermore the possible convergence 
points of the algorithm are the stable stationary points 
of the corresponding differential equation (3.60).

The convergence properties of the algorithm may now be 
summarised.
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Theorem 3.2 Parameter Convergence
Consider the stable system described in Section 3.2 and 
assume the algorithm assures stable generation of £(k) 
in (3.47). This can be achieved by allowing only the

/V Aparameter vectors J3(t) for which D(z 1)~1 is stable.
AThen the estimate J3(k) converges w.p.l. to a stationary 

point of the function:
V(e,R ) = E{7T (k;£)R“ 17(k;e)} + tn(det(R )) (3.61)

where
7(k;e) = D^1(z~1)A0(z-1) z(k)' (3.62)

where AQ and D Q are polynomial matrices corresponding to 
0.

The asymptotic properties of the algorithm 3.2 are 
described by the differential equation (3.60). From- 
(3.59a), (3.47) and (3.61) obtain:

£ v(e,Bev = -2f(e.He)

and choose (3.61) as a Lyapunov function so that:

£  = ff(0<T>.Be(fj)

= [|{IT (k;9(T))Re(t)-17(k;0(T))}

+ s,n(det(Re(T))f|

= E(_d_ 7T (k;0)R-17(k;0))TP(T)_1f(0,R ) 
d0 e E

- E 7 T(k;0)R_1(h(£) - R )R“17(k;0)£ £ £
+ trace{R“ 1(h(0) - R )} e — e

= -21T ( 0 )R e )P(T)-1f(0,Re )

- trace{R_ 1(h(0)-R )R-1(h(0)-R )} g 0 (3.63)£ £ £ —  £
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For the differential equation (3.60a,b,c) to be globally 
stable and thence for (3.57) to converge w.p.l., the 
derivative of the Lyapunov function must be negative 
semi-definite. The convergence points of the algorithm 
are determined by the stable stationary- points of the 
differential equation These follow from (3.63)
as: _0 = 0* and = R* where 9*, R* satisfy 
f(0*, R*) = 0 and R* = h(0*).= E{7(k;0*) 7(k;0*)T }.
These are the stationary points of (3.61) which concludes 
the proof.

If R£ is known apriori the algorithm 3.2 will 
asymptotically minimise the usual Kalman filter minimum 
variance criterion:

v = e {7t r -17},
—  £  —

however, this is not the usual situation. For scalar 
systems for which D(z-1) satisfies a positive real 
property, a stronger result than Theorem 3.2 can be 
obtained.

Theorem 3.3 Convergence for the Scalar Case 
Consider the system (scalar) described in Section 3.2 
where A(z” 1) is stable and A(z_1) and D(z_1) have no 
common factors. Assume that the polynomial D_1(z“ 1)-l/2 
is positive real (i.e. Re{D“ 1(e‘;,(0) - l/2}>0, - tt<o)Stt) and 
D(z_1) is maintained stable, then the parameter estimates 
generated by the algorithm 3.2 converge to their true

A

values with probability one, i.e. J3(k) £  and
R (k) ->• R for k->«>. e e
Proof The result follows from Theorem 5.1 of Panuska 
Q77] with minor changes.
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Convergence of the Smoother or Filter
The smoother of filter transfer function may be written 
in parametric form as:

H(z; Z;  Q, Rg)
= (Ir - R(0,Re)PJ,(z;0)R-1F-1(z;0))z-)l (3.64)

Note also that the feature which ensures D(z_ 1 ) remains 
stable in the estimation algorithm also ensures that the 
smoother or filter is stable (see the return difference 
relationship (3.20b)). The above results may now be 
collected in the following theorem.

Theorem 3.4 Smoother or Filter Convergence
The self-tuning smoother or filter of Algorithm 3.3
converges with probability one to the estimator given by
H(z; sl, 0*, R*). Under the conditions of Theorem 3.2 —  £
the estimator converges with probability one to the 
minimum variance estimator (this also applies in the 
multivariable problem when D(z_1) = I ,

The representation of the multivariable system is not 
unique but the optimal estimator depends only upon the 
input-output transfer function matrix and thus the non-

A A

uniqueness of A(z_1) and D(z“ i) should not cause a 
difficulty in calculating the estimator. The identifica­
tion problem can be simplified by representing the 
system in a canonical form Q95-98]]. An alternative 
approach to the analysis of the convergence problem would 
be via the work of Goodwin, Ramadge and Caines^or Solo[_87J.
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3.5 Illustrative Examples
To illustrate the operation of the multivariable self­
tuning filter and smoother, three examples have been 
chosen.
Example 3.1
The process is two-input two-output in the VDE (or ARMA) 
form:

A( z-1 )y(k) = C(z-1 )a)(k)
with

A(z-1) = I2 + Aj^z"1 
C(z_1) = C iz“ 1

where

Ai =
a l 1 a 1 2 0.9 0.4

a 2 l a2 2 0.4 -0.9

Cl =
0.2

0.9

0.9

0.8

The signal vector is corrupted by white noise v and the 
white noise vectors oj(k) and v(k) have the variances:

Q = diag{0.01,0.01} and R = diag{1.0,1.0}
Some idea of the signal to noise ratio for this example 
can be gleaned from figures 3.1 and 3.2 which show the 
signal, noise and signal + noise for outputs (channels) 
1 and 2. The order of the above process (na = 1) was 
assumed to be known and the signal estimates for each 
channel were found using either the self-tuning filter 
(£ = 0) or the self-tuning smoother ( I  =10).
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^■gg ĵg/Tfg,v ..-i  g,»' 1) ■ — |

0  0  ©  ©  ©  ©  ©©  ©  ©  ©  ©  ©  ©
F * 0  C ‘-J •»"» ©  t H  0..i \\\

1 I 1

>> !>«»%
v̂-{ '"WffP—

i V >5%

m $ = -

■ET '

o  o
VQ 
CO
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For comparison purposes, the optimal Wiener'filter or 
smoothing filter estimates were also calculated based 
upon the actual plant model. The process was modelled 
using (3.18) and the spectral factorisation equation 
(3.20) was evaluated as:

D ( z _ 1 ) R e D t ( z )

“ 1.9785 + 0.9z + 0.9z-1 0.009 + 0.4z + 0.4z- 1 ~

There are many methods available to spectrally factorise 
the above. These include Shaked Strintzis Q86II >
Ku&era Q45J and Vostry Q$4^]. For this example, the 
algorithm of Tuel L_83̂ ] was used to obtain:

0.009 + 0.4z + 0.4z-1 1.9845 - 0.9z - 0.9z 1

D(z_:l)R
mi m 2

e m 3 mi*

where
mi 4 1.049 + 0.856z_1 
m2 4 0.382Z-"1 
m 3 4 0.386z_1 
m 4 4 1.047 - 0.859z_1

Now
D(z ~ 1 )R (I2 + D x z” 1)RE

thus
lim D(z 1)Re

and thus
r J = diag{1.049, 1.047}



and the innovation signal variance becomes:'
R = R* Rx 2e e e

= diagfl.l, 1.09}
Given R .the matrix D-. can be calculated as: e A

Di =
0.816 0.365

0.368 -0.821

The matrix polynomial P 0(z) is found using the algorithm 
in Appendix 6. For a smoothing lag of £ = 10 steps and 
na = 1, this algorithm gives: 

p
£p t(z ) = I  p izl i=0

where

Po = I2

p i = A? - D?
and P 2, P 3 , P 10 are given as:

P t = -Pi.jDj i = 2,3,..., 10

The innovations sequence can be generated from (3.18) 
£(k) = z(k) + A!z(k-1 ) - D^Ck-l) 

and thence the optimal (10 step) fixed-lag smoother may 
be implemented using:

yop(k - £ |k) = z(k - £) - RP£(z)R“ 1_e(k - £)

Simulation Results
The parameter estimates for the A* and Di matrices are 
shown in Figures 3.3 and 3.4. The true parameter values 
are shown in broken lines. Figure 3.5 shows the 
convergence of the measurement noise variance matrix R 
and Figure 3.6 shows the convergence of the innovations 
variance R ^ . Figures 3.7 and 3.8 show the signal, self-
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tuning filtered and self-tuning smoothed estimates for
channels 1 and 2 respectively. ' It can be seen
(particularly with channel 2) how the filter, and smoother
’tunes in’ to the signal. The first few hundred estimates
are erratic due to parameter uncertainty. To compare
with the optimal cases, the cumulative loss per
channel was computed from 

2000
%  = I (yi(J -  z )  -  yi(j - z ))2j=1000

for i = 1,2

By starting at 1000, the initial errors associated with 
the parameter estimation is avoided. The loss per 
channel was computed for:
(a) the self-tuning Wiener filter (Z = 0);
(b) the self-tuning fixed-lag smoother (Z = 10 steps);
(c) the optimal Wiener fiiter (Z = 0);
(d) the optimal fixed-lag smoother (& = 10 steps).

Figure 3.9 shows the results. For both channels, the 
self-tuning and optimal losses come very close to each 
other for the filter and smoother showing good performance. 
Example 3.2
A simulation study using the following process is 
considered:

(I2 + Axz-1 + A 2z ~ 2 ) y ( K ) - c (a->(K-0
with
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0.8 0.1
A 2 =

_0.1 0.9

C 1 = I2

and the noise covariance matrices are given as:
Q = diag{0.01,0.01} , R = diag{2,l}

A smoothing lag of I  = 10 was used.
The signal and observation for each channel is shown in 
Figure 3.10, giving quite a low signal to noise ratio 
per channel.

The signal, self-tuning filtered andv smoothed estimates 
for channels 1 and 2 are shown in Figures 3.11 and 3.12
respectively. These results, as with the previous
example, are quite acceptable. Finally the R£ and R 
matrix estimates are shown in Figures 3.13 and 3.14. 
Finally, the accumulative loss per channel is shown in 
Figure 3.15. This compares the self-tuning filter and 
smoother. As would be expected, the smoother gives a 
lower loss per channel than the filter.

Example 3.3
The purpose of this example is to study the effect of 
slowly time varying process parameters. Example 3.1 was 
used with R = diag{0.1,0.1} and the parameters ai2 an<3 a2i 
varying according to

a 12 = a2i = 0. 4sin(7rk/7000) 
this gives for the number of points used in the simulation 
a quarter of a sine wave with peak value 0.4. Thus when 
k = 3500, aj2 = a2i = 0.4 which is the same as used for
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example 3.1.

In order to get a parameter estimation routine to track 
varying parameters, it is best to use a 'forgetting 
factor' of less than unity. In this way, past data can 
be weighted exponentially more than present data. For 
this example, extended recursive least squares [_563 was 
used with a 'forgetting factor' of 0.997. Figure 3.17 
shows the parameter estimates for A!. The two time- 
varying parameters are both shown to be tracking the 
true sine curve 0.4sin(nk/7000). Figure 3.18 shows the 
Dj parameter estimates, two parameters of which are also 
varying with time. Figures 3.19 and 3.20 show conver­
gence of R and R£ . The self-tuning estimates are shown 
for channels 1 and 2 in figures 3.21 and 3.22. Note that 
the signal amplitudes are slowly increasing with time 
and how the self-tuning filter and smoother still manages 
to give good estimates for each channel.
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3.6 Estimation of R when 4v, is singular.. a
When A. is singular algorithm 3.3 fails. This is due 

a
to the computation of the measurement noise covariance R 
in step 3 or the computation of S in step 3 for the filter. 
This section overcomes the problem for the special case 
when the measurement noise covariance matrix is diagonal.
A simulation is shown to illustrate this.

If R is diagonal, let R be represented as
T

R = diag {ai, ot2 . . . ar ) and let the vector 6^ = jjxi,.oi2 • •
be the vector of unknown parameters of R.

The problem may be defined as :
Given A„ , and R , find R as the solution of

a d 0
A ■ R = D R (3.65)

a d 0
when det (An .) = 0.

a
Solution
Let the matrix A„ . and matrix product D R have elements

a ”d 0
a ^  and 3 —  , i, 3 1, 2 ... r respectively.
Define the r 2 x r dimensional matrix A as

ax = D y  n, . .;Nr]
T X (3.66)

where
Ni = diag i a ± 1 , &±2 ••• air> (3.67)
i = 1, 2 ... r

and the r 2 dimensional vector J as the rows of D R-x nd b
J x = C 3 h > 3 i 2  • • •  ^ i r > 3 2 i > 322 • • •  3 2r »

T (3.68)
. . . .  3 3 . . .  3 1Mri , Mr2 rr —1

and rewrite (3.65) in terms of A^, 0^ and Jx thus :
A 0 = j (3-69)x—m —x
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Equation (3.66) has a solution using least squares 
(Barnett [JLOÎ ] ).

0 = (At A ) 1 a t J —m x x 7 x —x (3.70)
Equation (3.70) holds under the assumption that A has fullX
rank r.
Algorithm 3.3 must be altered in step 2 so that R (k-£) is£
estimated for ■ Z ^ O .

Step 3 now becomes :
Step 3 (singular Ag )

For Z>y 0 compute 9.M (k-£)
A

giving R (k-£)

/'•rp ^   m  ^
(A A ) 1 A J (k-£) v x X7 x —xv 7

if Z = 0 compute S (̂k) = R(k) R^1 (k)

Example 3.4 A:n„ singulara
Consider the signal generating process given by :

(12 + A izJ  )z (k ) = “ (k -i)
where

0.49 0.49*
A i =

_0 .49 0. 49_
and with Q = diag {0.01, 0.01} and R = diag {1.0, 1.0} 
Evidently for this example Algorithm 3.3 fails when 
estimating R or S. The modified Algorithm in this 
section will be shown to be able to cope with that problem.

DiR. =

hence from (3.68)

£

~3i i 3 1 2

32 1 32 2
■

£.x - D*n» $*2’ ^21> ^22HiT
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A is found from (3.66) and (3.67) asX
0.49 0

1
0

1 1 1

0.49

0.49

• 0

1 0 0.49

which is full rank.
T0 = (a , a ) where the true values of a and a-m i' 2' i 2

are 1.0 as given by R. Using the modified algorithm to
A  A

compute 0 and thus R, the estimate of a and a is shown—m i 2
in figure 3.23. Figure 3.24 shows the ; cumulative loss 
per channel for the self-tuning smoother ( t =  10) and the 
filter. Figures 3.25 and 3.26 show the self-tuning 
smoothing and filtering responses for each channel. From 
the cumulative loss graphs, the smoother clearly performs 
better than the filter giving a lower mean square error.
3.6.1 Further difficulties arising
In the former analysis for A.n singular it was assumed thata

was full rank r. Although this is a fair assumption to
make there are cases where A^ is not full rank. For example
if A = i

A becomes x
0 0
0 1 0 I- IC

O

0 0
0 0.49

Twhich has rank one and makes A A singular in (3 .7 O). Thex x
following is a method of solving for this case although it 
is not intended to be in any way practical since it will 
require on-line testing of rank.
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Assume has rank p 7  0, then it is always possible to
find matrices C and D such that x x

A = C D (3.71)X X X  •

where is a r2 x p matrix and is a p x r matrix. Equation 
(3.69) then has solution (Barnett []101[].).

0 = A+ J (3.72)—m x —x

where A is the generalised inverse of A given byX X
Af = DT (D DT )_1 (CT C )_1 CT (3.73)X X X x' X X X

3.7 State Estimation
This section will briefly describe the possibilities of 
obtaining self-tuning filtered state estimates rather than 
self-tuning filtered signal estimates. The advantages in 
using state estimation lies mainly in optimal control or 
pole placement. For the single input/output case Tsay and 
Shieh £53~| employ a type of self-tuning steady-state Kalman 
filter for pole-placement self-tuning control. A similar 
technique is used by Lam [[55]] for LQG optimal control. The
approach used here is essentially that of Jakeman and Young
D o  2 3

From the state space description of the process (3.1), (3.2), 
(3.3) write the equivalent state-space innovations form as

E103II :
y (k|k-1) = Cx (k|k-1) (3.74)
x(k + 1 |k) = Ax (k|k-l) + Kp £(k) (3.75)

without loss of generality the following canonical form for 
(A, Kp, C} is found from equation (3.18)
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A =

-Ai

-A

-Ana

1 0  0

0 1 0

0 0

KF “ki ; k 2 ; Kna
C = [J  ] 0 ) ; <G

where K. ”* D. - A., i “ 1l l l ’
If A., D . , i ; 1, 2 . . .i* l

na
na are estimated using Algorithm

3.2 together with £(k) then the states may be reconstructed 
via equation (3.75). The signal estimate may be found 
using (3.74) but this is not the same estimate as would be 
obtained by using the self-tuning filter equation (3.52).
This is because (3.74) computes the a p r i o r i  estimate and 
(3.52) computes an a p o s t e r i o r i  estimate. Equation (3.74) 
would be obtained using a one step ahead predictor (Tanttu 
p31_| ) and is equivalent to the work of Shaked (Appendix 8 ).

To obtain the a p o s t e r i o r i  estimate of the state one must 
first compute [jL03̂ ]:

x(k|k) = x(k|k-l) + Ke(k) (3.76)
where K is as equation (3.15). K is related to K„ by the-T
relationship

AK = K, (3.77)
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giving a filtered signal estimate from the state space as
£  (k|k) = Cx(k|k) (3.78)

Equation (3.78) now gives the same estimate as the self­
tuning filter equation (3.52). Equation (3.52) may be 
written as

y (k|k) = z(k) - R R~ 1e(k) (3.79)

The relationship between (3.79)(the self-tuning filter),
(3.78) and (3.76) (the self-tuning state space filter), may 
be shown more clearly in the following.

Employing the state-space equations first :
From equation (3.76) and using (3.78)

£ (k|k) = y (k|k—1) + CKe(k) (3.80)
substituting (3.15) for K gives

y (k|k) = y (k|k-l) + CPCTR“1 e(k) (3.81)
Now R = R + CPCT => CPCT = R -R e e

hence
y (k | k ) = y (k|k-l) + £(k) - R R ^ ^ k )  (3.82)

From (3.29) with 1=0

_z(k) = y (k|k-l) + e_(k) (3.83)
substituting (3.83) into (3.82) gives 

£ (k|k) = z(k) - R R"1£(k)

which is (3.79), the equation for the self-tuning filter.
Chen has shown that a p o s t e r i o r i  estimates give a lower
mean squared error than a p r i o r i  estimates and therefore the 
use of a p o s t e r i o r i  estimates is justifiable.
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3.8 Summary
A self-tuning fixed-lag smoother or filter for linear 
multivariable processes has been developed. A polynomial 
matrix solution to the fixed-lag smoothing problem was 
first presented. This solution involved the spectral 
factorisation of a polynomial matrix and assumed the 
process and noise statistics were known. The self-tuning 
smoother and filter assumes no such knowledge and the 
unknown parameters were estimated from an innovations 
signal model. These parameters are utilised directly in 
the smoother or filter and in so doing the process of 
spectral factorisation is avoided. In the special case of 
a single input/output process, the proposed smoothing 
algorithm has been shown to be equivalent to the work of 
Hagander and Wittenmark.

The convergence of the proposed algorithm has been proven 
using the asymptotic stochastic convergence theory of 
Ljung. The analysis could have been extended to employ 
the recent work of Solo [J57J and this is an interesting 
topic for future research.

Examples have shown the successful operation of the 
self-tuning filters and smoothers. One simple example 
illustrates how the algorithm copes with slowly time 
varying process parameters.

The optimal multivariable predictor was derived by 
similar arguments to the above. However, the results 
were shown to be equivalent to those presented by 
Wittenmark Q30J and Holst [j32̂ ] in the scalar case and
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Tanttu [j3l] in the multivariable case. Thus, this 
result provided some unification of different approaches 
but it was unnecessary to develop a self-tuning prediction 
algorithm since it had already been discussed by these 
authors.
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CHAPTER 4
LQG Self-Tuning Regulators (STR)
4.1 Introduction
Linear Quadratic Gaussian regulators and controllers are 
often thought as being more robust than those which employ 
k-step ahead cost functions. The former can deal easily 
with non-minimum phase and unstable systems. The latter 
has problems when dealing with non-minimum phase systems 
(Astrom [j34[] ) and even with the addition of control 
weighting (Clarke and Hasting-James has difficulty
in dealing with unstable systems. The same conclusions 
may be drawn for self-tuning regulators and controllers.
The widely used generalised minimum variance STR (Clarke 
and Gawthrop [jl8 ]̂ ) has to have an additional cost- 
function polynomial adjusted to cope with unstable 
systems and the non-minimum phase problems.

The state-space approach to LQG regulators employs a 
Kalman filter and a feedback gain matrix (Kwakernaak and 
Sivan Q)9J.) This idea has been used by Lam Q55J to give 
the first LQG STR. The STR is able to cope with non­
minimum phase and unstable systems with sudden changes of 
time delay. The STR employed in this chapter is LQG but 
is considered from an input-output rather than a state- 
space point of view. The input-output LQG controller uses 
polynomial equations and has previously been developed by 
Peterka [^40J and Kucera []45_|. Two types of STR are 
developed here. The explicit STR requires the solution of 
one diophantine equation and one polynomial spectral 
factorisation. The implicit STR requires only one spectral
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factorisation and no diophantine equations. By explicit, 
it is meant that the controller•parameters are calculated
f-To'M i r 'K e . cliLa p k 3 - n- czxpsU.ajti.en.
^whereas the implicit method estimates them directly.
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A(z_1 ) = 1 + a^z-1 + a 2z“ 2 + ... + an
C(z“ 1) = 1 + c i z ~ 1 + c 2z“ 2 + . . . + cn
B( z” 1) = z"'k(bo + b i z ~ 1 + . . . + b“b-k

4.2 System Description
Consider the single-input/output process and disturbance 
given by:

= !Ŝ )u(t) + “(t) ^
with a measured output given as:

z(t) = y(t) + v(t) (4.2)
The disturbance and measurement noise sequence w(t) and 
v(t) are stationary, have zero mean with variances Q and 
R respectively and are independent.

The polynomials A(z ~ 1), B(z_1) and C(z_1) are given as:
_naz a (4.3) 

c z ~ D°  (4.4) 
z-(nb“k )) (4 .5 ) 

and na , n^ and nc are assumed to be known and it is 
assumed that the A and B polynomials are relatively prime.

The process can be unstable, non-minimum phase and includes 
a time delay kj of magnitude one or greater. If the 
process is non-minimum phase the polynomial B is factored 
into B = BiB2 where B^z""1) has all its zeros inside or 
on the unit circle. B 2 includes both the time-delay and 
non-minimum phase terms and has the form

B2( z _ 1 ) = z“^(b20 + b 2 1 z-1 + b 2 2 z“ 2 + ...
+ b 2 z-(nb 2-k) } (4-6)

(nb 2-k)

The order n, of the polynomial B z includes the delay k j .u 2
If the delay k x is known then b 20 is defined to be unity 
and k 4  kj. If the delay ki is unknown (ki < n^) then k 
must be set to unity in B and B 2 which is the minimum for 
physical realizability. Then if kj > 1  the coefficients
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b0, bi, bk 2 and bio, b2i, b2 'are zero
and the polynomial B 2 can be normalized so that b 2 = 1

( k  j - i )

Two generalised spectral factors introduced by Shaked 
[J27, 43J  are required for the analysis. They are:

A(z)A(z-1) - Q + H (4.7)

_ D(z~1 )D(z) 0 .
“ A("z“ r)A(z ) (4-8)

A 1(z)A1(z-1) - BA[ Ql + R 1 (4-9)

= D](z )Di(z) (4 1Q)
Aj ( z-x)Aj(z)

Hence
,-1

and
a(z_1) = S f ^ )  ( 4 -x i >

Ax(z-l) = (4.12)A(z L)

The polynomials D and Dj are Hurwitz Q45] and are given as 
DCz” 1) = 1 + dxz” 1 + d 2z“ 2 + ... + dndz”nd (4.13)

■ l *  
ndi

Di(z l ) = 1 + d u z  1 + d12z 2 + ... +dj z di (4.14)
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4.3 LQG Regulator
This section will consider the case when the plant is 
assumed to be known. The optimal LQG regulator will then 
be given in polynomial equation form.

The LQG regulator is chosen to minimize the cost 
function:

J = E{Qj e 2 (t) + RjU^t).} (4.15)
where E is the unconditional expectation operator. The 
optimal LQG regulator is defined by the following:
Theorem 4.1 Optimal LQG Regulator
For the process (4.1), (4.2), the LQG optimal regulator 
has transfer function

co(z_1) (4-16)
where the polynomials G 0 and H 0 are given by the unique 
solution of the diophantine equation:

A(z- 1)H0 (z- 1) + B(z- 1 )G0(z-1) = Di(z- 1 )D(z_1) (4.17)
with

ngQ na “ 1 > nh 0 = nb “ 1

and
HqCz” 1) = 1 + h 1z ~ 1 + ... + ^n^"" h° (4.18)

G 0 (z"~1) = g 0 + giz" 1 + ... + g z"nS 0 (4.19)go

Proof : The proof is presented in Ku&era [j45J an<^
Grimble Q44^]. A block diagram illustrating the LQG 
regulator is given in Figure 4.1.
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4.4 Self-Tuning LQG Regulators
To develop the self-tuning LQG regulator the innovations 
form of the process (4.1), (4.2) is written as:

«<*> - e(t) - u(t) (4-20) 
with the error e(t) = -z(t).

4.4.1 Explicit LQG STR
An explicit (controller parameters calculated) LQG STR 
algorithm now follows based on theorem 4.1.
Algorithm 4.1 Explicit STR ^64,65^]
DATA : Choose the cost function weighting Qi and R x .
Step 1 : Using extended recursive least squares 
estimate the parameters in the polynomials A, B and D 
from

A(z“ 1 )e(t) = D(z-1 )e(t) - B(z“ 1)u(t)

Step 2 : Calculate the Hurwitz spectral factor D x 
using

D 1(z” 1 )Dx(z) = B(z“ 1 )B(z)Q1 + A(z"1 )A(z)Rx

Step 3 : Calculate G 0 and H 0 from
ACz-^HpCz-1) + B(z-1 )G0(z-1 ) = UiCz-MDCz-1)

Step 4 : Compute the control signal 
U(t) = |tt(z-l)e(t)

Return to Step 1.

Grimble |_6 4H  has termed the above algorithm Fixed 
Criterion since Q* and R x are assumed to be fixed. The 
term Fixed Spectrum has also arisen assuming that Step 2 
is omitted and Di is chosen apriori, hence the STR then

- 114 -



becomes similar to the pole placement algorithms of 
Wellstead et al [[50,5i_|.

Assuming that the process parameters converge to their 
true values (this assumption may be made in all but a few 
counter-examples if using extended least squares, Ljung 
et al [JLOCQ ) then the closed loop form of the regulator 
may be found by substitution of the control

e(t) (4-21)

^ z | ) sft') - ^ Z 1 ̂ (z | ) eft') (4 22)e(t) A(z- 1) } A(z“ 1 ) Hn(z~1) e(t) (4.ZZ)

into the innovations form of the process (4.20), giving
’ — 1 13/ 17 - ( t-7 ” 1

0

or
e(t){A(z- 1 )H0(z-1) + B(z_ 1 )G0 (z-1)}

= D(z- 1 )H0 (z“ 1 )e(t) (4.23)

by using the diophantine equation (4.17):

e(t) = e(t) (4.24)

Equation (4 .2 4 ) shows how the closed-loop poles are given 
by the polynomial D 1(z” 1). The STR is thus guaranteed 
to be closed-loop stable. It also follows that the 
steady-state variance of the regulator error signal is 
given by the complex integral

g 2 „ g 2 1 I Hq(z)H0 (2 = 1) dz 4 2 5 )
e e 2 tti J Di(z)D]_(z ) z

where the path of integration is around the unit circle.
The above integral is easily computed by following the
algorithm in Astrom [j34̂ ].

The operation of the explicit LQG STR may be illustrated 
using the following examples.
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Example 4.1
Consider the output regulator problem given in Grimble

For this example, there is no measurement noise and o)(t) 
is a zero-mean white noise process with variance Q = 0.25. 
The process is both unstable and non-minimum phase. 
Therefore a generalised minimum variance self-tuning 
regulator (Clarke and Gawthrop [3*0) will work only with
great difficulty on this process | 65̂ J. The reasoning
behind this is as follows. Since the process is non­
minimum phase the generalised minimum variance (GMV) self­
tuning regulators control weighting, may be made 
sufficiently large to stabilize the process. However, 
this action is similar to using open-loop control which 
is unstable for this process. Therefore using GMV self­
tuning control on this process is difficult, requiring 
critical weighting on control for stability. Although a 
region of stability may be found using GMV self-tuning, it 
is unlikely that the corresponding values of control 
weighting would be known apriori.

The LQG STR of this chapter suffers from none of these 
difficulties. Selecting the performance criterion 
weightings as Qi = 1 ,  Ri = 0.0625 gives a Dj polynomial as 

D x(z_1) = 1 - 0.49132z_1 + 0.0289z“2 
which has poles at z \  = 0.423, z 2 = 0.0689 resulting in a

et al Q35[] and Tsay and Shieh Q53J
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stable closed loop process. Assuming the time delay 
(k = 2 ) is known, the G 0 and H 0 polynomials may be found 
from (4.17) to be

Gy (z“1) = g0 + giZ”1
and

Ho(z_1) = 1 + hjz" 1 + h 2z“ 2

with
g 0 = 0.0159, gx = -1.7326 = h2, h x = 0.00868

The fixed parameter or optimal regulator may be seen in 
Figure 4.2. This shows the control signal and output.
A comparison may be made with the explicit LQG STR of 
Figure 4.3 which is almost identical with the exception of 
the erratic values for the first few steps. The process 
parameter estimates are shown in Figure 4.4, the true 
values shown with broken lines.

Finally, the calculated controller parameters are shown 
in Figure 4.5 and are close to the true values. The 
conclusion may be made that the LQG STR performs as well 
as the optimal LQG regulator for this example, after 
parameter convergence has taken place.
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Example 4.2
This example examines the problem of an unknown and 
variable time delay. It is shown how the explicit LQG 
STR can cope with this problem.

The process is given as 

,-k
y(t) z - ( 1 - 2 z *)

1 - z ~ L + 2 z ^

1 - 0 . 5z‘
1 - z” 1 + 2 z z U>(t)

With .D x (z— 1) — l1—  z ‘ + 0.5z 2 and 
where w(t) is a white noise sequence of variance 0.25 
and, as before, R = 0. The time delay k is assumed to be 
unknown and will be varied from a minimum of k = 1 up to 
k = 3. Table 4.1 shows the various values of controller 
parameters and process parameters for these values. The 
following model for the process was used for simulation

y(t) = z' ^ h \ +.h l - ? ++2bzl.fZ + b *z~ 3) u(t)

~1 - 0.5z~l 
1 - z” 1 + 2 z~ z u>(t)

k t>0 bi b2 b 3 go gl bi h2 h3 t

1 1 -2 0 0 +.5625 -.9375 -1.06 0 0 0-299
2 0 1 -2 0 -.375 -1.125 -0.5 -1.125 0 300-599
3 0 0 1 -2 -1.5 0.75 -0.5 -1.5 0.75 600-900

Table 4.1

The assumption is made of a one step delay for physical 
realizability of the controller. The actual time delay 
is varied according to Table 4.1 above and shows the
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corresponding true values of the process model and 
controller parameters. The process parameter estimates 
are given in Figures 4.6 and 4.7. The spikes occurring 
in Figure 4.6 correspond to the sudden change in time 
delay. Figure 4.7 shows the changing B(z_1) parameters 
and are easily verified to be consistent with the true 
values in Table 4.1 In this example, the parameter 
convergence is very rapid since the process is open loop 
unstable giving an added inherent perturbation to the 
control loop. For open loop stable processes, convergence 
will be much slower and may require a ’forgetting factor' 
of less than unity if the time delay changes, to aid 
adaptation. The computed LQG controller parameters are 
shown in Figure 4.8. These too, are close to the true 
values in Table 4.1. The process output and control 
signal for the explicit LQG STR are shown in Figure 4.9. 
Parameter uncertainty during the sudden time delay changes, 
results in an erratic output and control signal for these 
times. This is unavoidable and can only be remedied by 
using a very low initial parameter estimate covariance 
in the recursive least squares routine which leads to 
very slow parameter convergence and thus slow adaptation 
to variation in time delay.

4.4.2 Implicit LQG STR
A control algorithm combined with process identification 
may be classified as self-tuning control. The explicit 
LQG STR is one such example. Because of the computational 
burdens of such a philosophy (matrix inversions etc.), an 
implicit LQG STR will be derived in which the controller
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parameters may be estimated directly using recursive 
least squares, avoiding the solution of simultaneous 
equations. In what follows, the arguments of the 
polynomial equations will be dropped for convenience.

Theorem 4.2 Implicit Model
The implicit model from which G q and Hu may be estimated 
is given as

B<Kt) = H 0e(t) + g(G 0e(t) - H 0u(t))
where

<Kt) = Die(t)

Proof:
From the innovations form of the process write 

e(t) = ^e(t) - |  'u(t) (4.26)

multiplying (4.26) by the A polynomial and substituting 
for D from the diophantine equation (4.17) gives

Ae(t) .(MfcJ: BGo.) e(t) _ BUJLh (4.27)

or

Die(t) = Hn + B G (
A (t) - n (4.28)

now let <j>(t) A D 1e(t),so that
BG
A<Kt) - H 0e(t) + — ^  e(t) - DiBU(t) 

A
and substituting for e(t) from (4.26)

K t )  = H 0e(t) + Ae(t) + Bu(t) 
D

D i Bu (t ) 
A

= H 0e(t) + | G 0e( t ) + A
_ Di Du( t )

A
- 128 -

(4.29)

(4.30)
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Prom the diophantine equation, (4.31) becomes

(j,(t) = H0e(t) + | (G0e(t) - H0u(t)) (4.32)

which completes the proof.

By writing the residual as <j>(t) - H0e(t) and the 
predicted output J(t|t-k) = ^ (G0e(t) - H0u(t))

Hence
(4.33)

A.
Consider ^(t|t-k). Assume the B polynomial is known or 
can be estimated separately. Now define e^(t) = -Bz(t) 
and u^(t) = Bu(t). The 1/D term is of the form (1 + delay 
terms) of which only unity is of significance since the 
optimal control has set the predictor to zero at all 
previous times. This argument was originally employed 
by Clarke and Gawthrop [48]. Assume also for the moment 
that the residual ĉ (t) and the predictor ^(tlt-k) are 
uncorrelated after convergence so that any estimates will 
be unbiased.

Estimates of Gq and Hq by regression can now be provided 
using the following regression equation:

where the regressa.nd -D^z(t) is available, the residual 
is given by HQe(t) and the regressors of e^ft) and 
u^(t) are known. The following LQG STR may now be 
given in a two stage identification algorithm.
Algorithm 4.2 Implicit LQG Self-Tuning Regulator 1 
Date: Choose the cost function weighting Q̂  and R^.
Step 1: Estimate the process polynomials A, B and D using 
extended least squares and the innovations model:

Ae(t) = De(t) - Bu(t)
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Step 2 : Calculate the Hurwitz spectral factor D} using: 
D j O -1 )DaCz) = B(z_ 1 )B(z)Q1 + ACz“ 1 )A(z)R1 

Step 3 : Estimate G 0 and H 0 using recursive least squares 
and the prediction model:

$(t|t-k) = G 0eb (t) - H 0u b (t) = XT (t-k)0

Step 4 : Calculate the control signal as u(t) = (G0/H0 )e(t) 
and return to Step 1.

The so-called fixed spectrum STR [j>4J neglects Step 2 and 
places the closed-loop poles in desired regions within the 
unit circle. In Step 3 above the vectors X and _0 are 
defined as:

XT(t-k) = (eb (t),eb (t-l) ... eb(t-ng ), - ub (t-l),
- ub (t-2 ) ... - ub (t-n-H )

0T = (g0» Si.••* Sng0»hi>h2 ••• hnh )

The drawback with Algorithm 4.2 as will be illustrated by 
an example, is one of parameter bias of G 0 and H 0. The 
assumption is made that after convergence $(t|t-k) = 0 

and hence $(t ) and 4>(t|t-k) are uncorrelated. That 
implies that E{e«x'^0 } = 0. However, there are regressors 
in J which depend upon data within <j>. That is,
E{e»X^} f  0 which violates the condition for unbiased 
estimates Q49,56l] and implies that E{^} f  0. Moreover,
<|>(t) and <j>(t|t-k) are correlated for all terms in J(t) 
occurring at times less than, or equal to, t-k. This 
problem is easily overcome by dividing the residual into 
two terms H 0 ie(t) and H 0 2 e('t).
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i(t) =-H„e(t) = H 01e(t). + H 02e(t)

where
H o x O " 1) = 1 t hjz-1 + ... + (4.35)

Hp 2 (z_1) = hkz“k + hk+1 z_(k+1) + ...

+ h nb_iz-(nb_1) (4.36)

giving
H 01e(t). = e(tj + h x e (t-1) + ... hk_lE(t-k+l) (4.37)

H 02e(t) = hke(t-k) + hk+1e(t-k-l) + ....

+ hnb_1e(t“nb+1) (4.38)

The term H 0 2e('t) now contains all residuals occuring from 
time t-k, t-k-1 etc. These terms are correlated with the

A Ipredictor <}>(t| t-k) and hence must be included within it. 
The modified predictor becomes:

$!(tft-k) = $(t|t-k) + H 02e(t) (4.39)

and therefore the implicit model may be rewritten as:

cf,(t) = H 01e(t) + ^(tl't-k) (4.40)

The regressions within H 0 ie(t) now are in the future 
(t  ̂ t-k+1 ) relative to the terms within ^(tlt-k) which 
occur in the past (t s t-k). The left-hand side of the 
expression is therefore uncorrelated with the right-hand 
side. This condition will give unbiased estimates. The 
new implicit Algorithm follows.

Algorithm 4.3 Implicit LQG STR 2
As Algorithm 4.2 except Step 3 is altered to accommodate
the modified predictor.
Step 3 : Estimate G 0 and H 0 using least squares and the
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prediction model:
^(tjt-k) = G 0eb (t) - H 01ub(t) - H oz(ub(t) - e(t)) 

where £(t) is the t step estimate of the innovation, 
computed from Step 1 using extended recursive least 
squares.

From the above:
5>i(t|t-k) = xf('t-k)_0

where
xf(t-k) = Jeb (t), eb (t-l) ... eb (t-ngo),

- ub (t-l) ... - (ub(t-k) - e (t-k)),

- (ub(t-k-l) - e(t-k-l)) ....
... - (ub (t-nhfl) - e(t-nh_o)f|

and Q_ remains as before.

From the previous argument
E{eX i} = 0 (4.41)

which implies unbiased parameter estimates or U ^ H
E{0} = 0 (4.42)
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Example 4.3
The following example illustrates the material discussed 
in 4.4.2. The operation of an implicit LQG STR is 
simulated using both Algorithm 4.2 and 4.3. The example 
is chosen in such a way as to highlight the drawbacks of 
Algorithm 4.2 by illustrating the bias problem when 
estimating the G q and Hy polynomials.

The process is given as
/4-\ -l (1 + biz 1 + b ?z 2)Y(t) = z *----(1 +"al2-S)' u(t>

1 + Cl Z 1''
1 + ai z 1 w(t)

1

a)(t) is a white noise sequence with standard deviation 
10.0 and R = 0.

The true parameter values are given as a x = -0.9,
C i = -0.5, h i = -1, b 2 = 1. For simplicity, the poles of 
the closed loop system may be pre-specified as 

Di(z_1) = 1 - 0 .6 z_1 
This type of controller has been termed an implicit fixed 
spectrum LQG STR [_64]]. From the diophantine equation 
(4.17) the controller parameters are computed as 
g 0 = 0.1186, hj = -0.3186 and h 2 = 0.13186. Initially, 
the implicit STR employing Algorithm 4.2 is simulated. 
Figure 4.10 gives the controller parameter estimates 
showing them to be either diverging or biased. This is due 
to correlation between the <£ and .<f> terms when using this 
algorithm. In particular, the h i parameter is the most 
in error. The process parameter estimates of Figure 4.11 
are close to the true values. Algorithm 4.3 is now
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employed and will overcome the problem of bias in Hq and 
G 0.

Figure 4.12 shows the convergence of controller parameters 
using this scheme and shows the elimination of the bias 
and divergence problem. For this example the H 0 polynomial 
is divided into 

Hqi = 1

H(j 2 = hxz” 1 + h 2z“ 2 

thus two terms in the regressors of the residual are 
correlated with the predictor when using Algorithm 4.2.
When using Algorithm 4.3, these two terms are included

Awithin the predictor and the resulting <f>j is uncorrelated 
with (f>.

The explicit Algorithm has also been simulated and the
results are shown in Figures 4.15 to 4.17. The
.cumulative loss function given by 

2000
L = I  (Qe2 (i) + Ru2 (i )) 

i= 1 0 0 0
is compared for the various schemes including the fixed 
parameter or optimal regulator. Figure 4.19 shows the 
loss for the implicit Algorithm 4.2 to be the highest 
whilst the fixed parameter, Algorithm 4.3 and the explicit 
Algorithm 4.1 give identical results of much lower loss.

By fixing the first identification in Algorithms 4.2 and 
4.3 (i.e. working with a known process), very similar 
results were obtained and are shown in Figures 4.20 and 
4.21 respectively.
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Example 4.4
The examples in this chapter have so far not included 
measurement noise. This example follows from example 4.3 
but with the inclusion of measurement noise. Consider 
example 4.3 but with Q = 1 and R = 10, thus giving a 
significant amount of measurement noise. The process 
model is identical to the previous example except the 
measurement now becomes: 

z(t) = y(t) + v(t)
The explicit LQG STR is only considered here since the 
implicit case follows as before. All the algorithms 
previously given can already cope with measurement noise 
in their present form. If the measurement noise is zero, 
then D(z-1) = C(z_1) and the innovations becomes the 
disturbance noise io(t). For this example, the only 
change is that the D polynomial alters to cope with the 
measurement noise as does the covariance of the innovations 
sequence.

The modified D polynomial may be found from (4.7) and 
(4.8) as:

A(z- 1 )A(z)R + C(z_ 1 )C(z)Q = D(z_ 1 )D(z” 1)R (4.43)£
where R^ is the innovations covariance. From Chapter 3,
it follows that the D polynomial is acting as part of a
self-tuning filter which is implicit in the controller 
design to eliminate the effect of measurement noise. For 
this example the D polynomial was found from (4.43) to be: 

D(z_1) = 1 - 0.8254 z" 1

which leads to an LQG optimal controller with parameters
given as g 0 = 0.022, h x = -0.548 and h 2 = 0.0246. The

- 147 -



process parameter estimates are shown in Figure 4.22 where 
the innovations representation of the process is estimated. 
This avoids any spectral factorisation in the form of 
equation (4.43).

The computed controller parameters, found by the solution 
of the diophantine equation, are shown in Figure 4.23.
These parameters are very close to their true values. 
Finally, the measured process output, the process output 
and the control signal are displayed in Figure 4.24. In 
practice, the process output would not be accessible 
but it is shown here to illustrate the amount of 
measurement noise for this example.
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4.5 Summary
A new LQG STR has been demonstrated using both explicit 
and implicit algorithms. The explicit algorithm requires 
the solution of a diophantine equation to compute the 
controller parameters. Using least squares, the implicit 
algorithms can estimate the controller parameters 
directly. This avoids the solution of the diophantine 
equation. One of the implicit algorithms has been shown 
to create parameter bias and this is overcome in the second 
implicit algorithm. The implicit algorithms are new, 
requiring a two-stage identification procedure. The 
first identification is that of the process and using 
these estimates the controller parameters may be estimated 
from the second identification.

The LQG STR ha£ been shown to cope easily with non-minimum 
phase and open-loop unstable processes. Previous STR have 
had difficulty dealing with this problem. - In
addition, measurement noise can be allowed for without 
any complications by using the innovations form of the 
process. This acts much like a self-tuning filter.

The time-delay in a process is usually assumed to be 
known or estimated beforehand. This assumption need not 
be made here. Moreover, an example illustrating this 
point has shown how an unknown and variable time-delay can 
be accommodated.
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Chapter 5
Concluding Remarks and Further Work

In this thesis, new theoretical results have been
presented in the field of linear least-squares estimation
and stochastic optimal control. The least-squares
estimation results overcome some existing problems for
filtering and smoothing in discrete time processes. The 
finite-interval smoother is of mainly theoretical
importance due to its complexity but it has interesting
properties and advantages over existing Riccati equation
based solutions.

The section on multivariable self-tuning estimation is 
intended for many real processes where the model and 
signal statistics are unknown. Successful operation 
is shown with various examples which may be encountered 
in industry. Fung and Grimble |_104J have applied this 
work to the dynamic ship positioning problem where a 
multivariable self-tuning filter is used to estimate the 
high-frequency motion of a vessel at sea. The filter 
has been shown to reliably adapt to various sea conditions 
giving encouraging results.

LQG regulators and controllers can cope with unstable and 
non-minimum phase processes without any difficulty. This 
thesis has considered LQG self-tuning regulators using an 
input-output rather than state-space approach. It has 
advantages over the pole-placement methods of Wellstead
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and co-workers since an implicit algorithm has been 
derived. A greater awareness is achieved for the control 
of a process if using LQG control since the process output 
and control signal can be separately weighted to the 
designer's wishes. Pole placement ideas, although robust do 
not give the designer any of this versatility.

Future research concerns the study of the asymptotic 
convergence of the LQG self-tuning regulator algorithms.
In particular, the implicit algorithm. This employs a 
novel two-stage parameter identification. The first 
estimates the process parameters and the second the 
regulator parameters. In the analysis it would be 
necessary to fix the parameters of the first identifica­
tion while studying the analysis of the second, and 
vice-versa, using probably the methods of Ljung. As an 
alternative to this two-stage identification technique, 
the bilinear estimation algorithm of Astrom [_89] could 
be used.
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APPENDIX 1 : PROOF OF THEOREM 2.1
Let the weighting sequence of the optimal smooting filter
by denoted by h(k;N,£) for all k, where N is the interval
length and a is the smoothing delay. The filter response
for v k then becomes

k
xCki/k) A I [h(k-i;N,£)z(i)

± = -00

+ Kk-i+1; A)6(i-l)x5 H (Al.l)k
= iKk;JOx0 + 1 h(k-i;N, £)z(i) (k > 0) (A1.2)

i = - o o

Note that since the plant has an impulse input at time
A

zero, the smoother has an input of magnitude xj in order 
to optimize the zero input response. In the finite time 
problem, xj is the initial state estimate. Define the 
vector

d 0(k;N,j?,) = i|>(k;ji)xJ y k > 0 (A1.3)

0 y k s? 0 (A1.4)

Equation (A1.2) then becomes
k

xCkj/k) = d 0 (k;N,£) + £ h(k-i;N,£)z(i) (A1.5)
i=-oo

Necessary and sufficient conditions for optimality
A necessary and sufficient condition that x(Kl/N) be a
minimum variance smoother for x^(Kl) is that the estimator
impulse response must satisfy the Wiener-Hopf equation.

N A
C0 Vj2 i(Kl),z(xfj = I  h(N-i;N,4)C0V|^(i),z(xf|

(A1.6)

and the smoother zero-input response do(k;N,£) be such 
that:
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E {x(Kl/N)} = Xi(Kl) (A1.7)

This is proved using the projection theorem in Appendix 3. 
The Wiener-Hopf equation can now be expanded and then 
transformed into the frequency domain, as follows:

Expansion of the Wiener-Hopf Equation
The LHS of equation (A1.6) can now be expanded by using 
the results in [13]

The RHS of the Wiener-Hopf equation is given as [13]

c° V g i ( K1),z(l)J = *(K1-X-1)DGU(K1-X-1)
+ $(K1)AE0AT$T (X)CT

r- i p(N;  Z) } <f> ( - X -1)DGU(-X-1)

X-l
+ I  ($(Kl-i)DQDT^T (X-i)GT

(A1.8)

where
* f-X) = E{x(0)xT (X)} 

0
(A1.9)

N -I h(N-i;N,£)COV[z(i),z(x

I  h(N-i;N,A) I
i-1 X-l 

I  I  w(i-j)Q6 (j-r)wT (X-r)
i=

N ^
+ l  h(N-i;N,t)[R6 (i-X) + w(i-X)G + GTwT (X-ij]

+ I  h(N-i,N,^)C$(i)Ax0A'r«>T(X)CT (A1.10)
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The fully expanded Wiener-Hopf equation now comprises 
equations (A1.9) and (A1.10) and can be simplified by 
using the result .

N  _

Q>(K1) - I  h(N-i;N,i)C1(1(i)jEoAT4T(X)CT 
i=l

= ^ (N ; £ ) E oAT 0T(X)CTU(X) (Al.ll)

for X > 0. The complete Wiener-Hopf equation can be 
considerably simplified by substituting for X = K1 - k 
and by using the substitution of equation (Al.ll). The 
condition for optimality may now be expressed as:

C-N (k) = 0 v k * " * ' (A1.12)
where

% ( k ) 4

iKN;£) [l:0AT $T (Kl-k)CTU(Kl-k) - <j>(k-Kl-1 )DGU(k-Kl-l )

;T]- <j> (k-Kl)C | + cKk-l)DGU(k-l)A qX

N j i-1 Kl-k-1
I  h(N-i;N,£M I  I  w(i-j)Q6 (j-r)wT(Kl-k-r)

i = _ o o  1 j = — oo r=-<»

+ RS(i+k-Kl) + w(i+k-Kl)G + GTwT(Kl-k-i)

Kl-k-1
+ I  $(Kl-i)DQwT(Kl-k-i) 

i=-°°
(A1.13)

where the smoothing lag is defined to be 
£ = N - K1 (A1.14)
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Transforming into the frequency 'domain
The transformation into the frequency domain is obtained 
by taking bilinear z transforms of equation (A1.10). 
Using the results of Appendix 2 the frequency domain 
expression becomes

%(z) = £) jj:0AT $T (z“ 1 )z”K1CT - $(z ) z ” K1DG

- $(z)DQDT$T(z“1)CTz“K:̂ j + $(z)DG 

+ $ ( z )DQWT ( z _ 1 ) - H( z; N, £ ) W(z)QWT(z"1)

+ R + W(z)G + GTWT(z“1) z Z (A1.15)

The generalised spectral factor, A(z), of the discrete, 
observation spectral density is such that [27j

A(z)AT(z“1) = W(z)QWT(z_1) + R + W(z)G

+ g V C z " 1) (A1.16)

where A(z) is a rational function of z whose poles are 
those of W(z) and whose inverse is analytic outside the 
unit circle.

Multiplying both sides of equation (A1.15) by 
A“t(z“1 )z~*5', the frequency domain expression becomes:

Gn (z)z-£A"T(z“1) = ^(N;£)[z0AT ^T (z-1 )CT - $(z)DG

- $(z)DQDT^T(z"*1 )Ĉ *" A”T(z_1 )z-N

+ $(z)D(G + QWT(z"1))A”T(z"£)z“£
- H(z;N,£)A(z) (A1.17)
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Referring to equation (A1.12), it can be seen that the
—T* — — ocross spectral density term Gn(z)a (z 1)z * is- zero for 

all k z Q., The smoothing filter is required to be
causal, so that all uncausal terms must be removed. This 
is achieved in the frequency domain by removing all terms 
in expression (A1.17) whose poles lie outside the unit 
disk (assuming that the signal model is stable).
Equation (A1.17), solved for the causal optimal smoother, 
then becomes:

H(z;N,Jt) = |$(z)D(G + QWT (z_1 ) )A-,I'(z- 1 ) z ~ Z

-  < K N ; Z ) (j(z)D(G + QWT(z-1))A-T(z-1)

- Z0AT'tT (z_ 1 )CTA_T(z-1 )]z“N| A-1 (z ) (A1.18)

And by using the simplifications of equations (2.28-2.31), 
equation (A1.18) can be expressed as:

H(z;N,0 = n 1 1 (z,£)A_ 1(z) + #(N; Z) p 1 2 (z,N)

+ n 2 (z,Nf]A_ 1(z) (A1.19)

This is the optimal, finite time smoothing filter in the 
z-domain. The calculation of the ty(N;&) matrix may now 
be considered.

Calculation of iKN;ft) matrix
From the necessary and sufficient conditions for 
optimality (Appendix 3), the zero input response must 
satisfy

N  .
d 0(N;N,Z) = x^(Kl) - I  h(N-i;N,z )z(i) (A1.20)

i=-o°
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and since z(i) = Cx(i) + v(i) then
_  N ' • _

d 0(N;N,£) = ^ ( K l )  - I  h(N-i;N,t)Cx(i) (A1.22)
i = _ o o

Since x(i) = 0 ^or i S 0 an^ by using equation (2.18):
N _

d 0 (N:N,O = Q>(K1) - I  h(N-i;N,d)C4,(i)Jm0 (A1.23)
i=l

and by comparison of equations (A1.23) and (A1.3), the 
(N ; Jl) matrix becomes

N
i|i(N;£) = K K 1 )  - I  fi(N-i ;N, A,) Cc(> ( i ) (A1.24)

i=l

and

£o = Slo

From equation (A1.19)

H(z;N, £)C$(z)A = Jnn(z,A) + £)(n1 2 (z,N)

+ n 2 (z,N)|M(z) (A1.25)

Using the following results

{Mt (z_1 )z"N }+ = ̂  [MT (N-k)U(N-kfl

n xl(k,£) = 2 i1 (n1 i(z,£)) and 
ni2 (k,N) = 2 1 1 (n i 2 (z »N)).. The inverse transform of equation 
(A1.25) into equation (A1.24) gives

N
IKNJJD = <J>(K1) - I nil(k,£)M(N-k)

k=l
N

- iKN;£) I n !2 (k,N)M(N-k)
k=l

N
- ^(N;A)Z0( I  MT (N-k)M(N-k)) (A1.26)

k=l
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Hence after re-arranging'equation (A1.26)
«KN;0 = 0»(K1) - I n  CN, *)□ lin + 1 12(N)

+ I 0S(N)J-1 (A1.27)

where In(N,A), Ii2 (N) and S(N) are given in equations 
(2.35 - 2.37) respectively.
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APPENDIX 2 : gr2 TRANSFORMATIONS OF SUMMATION TERMS
Consider the following

N i=l- Kl-k-1
l  l  l  h(N-i;N, S.)w(i-j )Q6 (j-r)

i=-°° j=-oci r=-°°

x wT (Kl-k-r) (A2.1)

By definition of the two sided z transform, equation 
(A2.1) becomes

N i-1 Kl-k-1 I I I I ^(N-i;N,£)w(i-j)Q<5(j-r)
k=—co i=- oo j  =—  oo p — —  00

x w^(Kl-k-r)z k (A2.2)

After the removal of the delta function, by substituting: 
p = Kl-k-j 
m = i-j 
s = N-i 

(A2.2) now becomes
00 CO CO

I  1 1  h(s;N,£)w(m)QwT (p)z“K1 zNz“sz mzp (A2.3) 
s=0 m=l p=l

Since N-Kl = £ and w(0) = 0
CO 00

\  Y 1 h(s;N,£)z sw(m)z mQwT (p)zpz^
s=0 m =0 p=0

= H(z;N,£)W(z)QWT (z“ 1 )z^ (A2.4)

Employing the same technique 
N

I  l  h(N-i;N, J.) [R6 (i+k-Kl) +w(i+k-Kl)G
k = - c o  i = - o o

+ GTwT(Kl-k-i)jz~k
= H(z;N,£)Ol + W (z ) G + GTWT (z~1 ))z£
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and
oo Kl-k-1

• l  l  $(Kl-i)DQw (Kl-k-i)z
k=-co i=-oo

= 4(z)DQWT(z-1)

To find^-2(^x o

From equation (A1.10)
<i> (-^ ) = E(x(0)xT (X))

X q X  —  —

and from equation (2.17)
-1

E(x(0) ) = I  $(-i)DE(ui(i))
i=_oo

and from equation (2.16)

E(xT (X)) = ^ ( / ( j D D V d - j )
j=-°°

which gives
-1 X-l

E(x(0)xT (X)) = I ' I  4>(-i)DQ6(i-j)DT $T (X-i=—00 j=-0O

Thus
<rv2(* (k-Kl))

A 0 A

-1 Kl-k-1
= I  l  l  4(-i)DQS(i-j)DT$T (X-j)z_1k=-°o i = -00 j = — 00

oo co
= £ I $(r)DQD$^(t)z~rz^z“k^

r=l t=l

= ( z )DQD^$^( z “ 1 ) z “ ^

(A2.6)

j)

(A2.7)
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APPENDIX 3 : THE DISCRETE WIENER-HOPF EQUATION
Theorem
A necessary and sufficient condition that x(Kl/N) be a 
minimum variance smoother for Xi(Kl) is that the matrix 
function h(N-i;N,£) should satisfy the Wiener-Hopf 
equation (K1 < N)

_ _  N
C°V[^i(K1 ) > Z(X)J = I  h(N-i;N ,SL) COV^(i), z(X)J

(A3 1 )

for all Ae(-»,N), and the smoother zero input response
d 0 (N;N,Jl) satisfy the equation:

N ^d 0(N;N,£) = xi(Kl) - I  h(N-i;N,£)z(i)' (A3.2)
i=-oo

Proof
Let X denote the space generated by the random vectors 
(x^(Kl)} and let U X represent the subspace generated 
by the set of observations {z^(k)} where the elements 
u(Kl)eU are given by

N
u(Kl) = d 0(N;N,A) + I  h(N-X;N,£)z(X) (A3.3)

x=-°°

where d 0(N;N,£) is an unknown deterministic vector. From 
the orthogonal projection theorem and the decomposition 
theorem [12], the norm |]xi- u |I is minimised by a vector 
x eU if (Xi~x) is orthogonal to U.

From the above, the inner product becomes

E{(xi(Kl) - x (K1/N))u T (K1)} = 0 (A3.4)
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Substituting for u(Kl) from (A3.3) gives 

(Xi(Kl) - E{x (K1/N')}Mo(N;N,ji)

N
+ I  E U x ^ K l )  - x(K1/N))zt (X)>

x=-°°

x hT (N-X;N,£) = 0 (A3.5)

The sufficient condition for optimality becomes:

E{x(Kl/N)} = x^(Kl) (A3.6 )

and

E{(xi(Kl) - x (K1/N))zT (X)} = 0 for Xe(-»,N) (A3.7)

since d 0(N;N,£) and h(N-X;N,£) are arbitrary matrices.
The necessity of the theorem can be verified by noting 
that if these matrices are chosen as

d 0 (N;N,£) = x±(Kl) - E{x(Kl/N)} (A3.8 )

and
h(N-X;N,Jt) = E{(Xi(Kl) - x(Kl/N))zT (X)} (A3.9)

then the terms in (A3.5) are positive definite. It follows 
that these terms must be identically equal to zero, 
establishing the necessity of the theorem.

The first condition for optimality requires that the 
smoother be unbiased and the second gives:

E{xi(Kl)zT (X)} = d 0 (N;N, Jl)zT (X)
N

+ I h(N-i;N,^)E{z(i)zT (X)} (A3.10)i=_<»

Combining (A3.10) and (A3.8 ) gives
E{xi(Kl)zT(X)} = I  h(N-i;N,i)E{z(i)zT(X)} (A3.11)

i = _ o o

This is the required form of the discrete Wiener-Hopf
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APPENDIX 4 
To prove

4(z)DQD^V^(z_i )A-T(z_1 ) = p[aT4T (z_1)' + ij 
X + 4(z)AKR^ (A4.1)

After manipulation of (2.44) (Arcasoy [25] ) 

(zI-A)P(z“ 1I-At ) + AP(z” 1I-At )
+ (z I-A)PAT + AKCPAT = DQDT (A4.2)

or
$(z)“ 1P$”'^(z"1) + AP$“'^(z"1) + $(z)"'1PA^'
+ AKCPAT = DQDT (A4.3)

Thus pre-multiplying (A4.3) by $(z) and £>ost multiplying
T — i T by $ (z A)C gives
PCT + $(z)APCt + PAT$T (z"1 )CT
+ $(z)AKCPAT $T (z""1 )CT = $(z)DQWT (z“ 1) (A4.4)

= PCT + PAT^T (z"l)CT + $(z)[AKReKTAT^T (z” 1 )CT
+ AKR^Q = $(z )DQWT(z “ 1) (A4.5)

with K defined as in (2.45) and R£ as in (2.46).

(A4.5) now becomes
p [a t$t( z_1) + iJcT + $( z )a k r £ [i + k Ta V C z- M c 1]
= 0 (z)DQWt (z“ 1) (A4.6)

From (2.48)
Ft (z“ 1) = KTAT$T(z~1 )CT +  I (A4.7)

and using (2.50)
R~^AT (z” 1) = Ft (z- 1)

Hence (A4.6) can be re-written as
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4 (z)DQWT(z_1) = p I a V C z -1) + l]cT

+ 4(z )AKR^AT(z - 1)

Clearly

$ ( z ) D Q W T ( z " 1 )a “ T ( z ” 1 )

= p U ^ ^ z " 1 ) + I_|c T A _ T ( z - 1 ) + $( z)AKR^ 

which proves equation (A4.1).

(A4.8)

(A4.9)
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APPENDIX 5 : PROOF OF THEOREM 3.1
Using the result of Theorem 2.1 as N -5- «> and G = 0 gives 
the infinite interval or Wiener smoother. From (2.39) 
this becomes

H ( z ; 0  = {W(z)QWT (z_1)A-T(z-1)z_<!'}iA-1(z) (A5.1)T

Substituting for A(z) and AT (z_1) from (2.49) and (2.50) 
(Arcasoy [27] ) gives

H(z;&) = {W(z)QWT (z“ 1)FT (z“ 1 )-1R“ 2z-^}£ T
x R ~ ^ F ~ 1(z ) (A5.2)

= {W(z )QWT (z - 1)FT (z “ 1)"1z " £ }+R“ 1F " 1(z ) (A5.3)
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APPENDIX 6 T POLYNOMIAL MATRIX EXPANSION ALGORITHM
This algorithm enables the computation of the z ■ + 1 
coefficient matrices of the polynomial matrix P(z), where

The coefficient matrices A^, D^, i = 1,2, .... are
r-square and it is assumed that na and n^.

The solution for the matrix coefficients is an extension 
of the scalar case given in [45]. The kth P matrix 
coefficient is given by the formulae:

s = MIN(na , k)

This leads to the following computational algorithm. 

Algorithm
Data required: smoothing lag z and degree of process na .

P(z) 4 A ( z ) TDT( z )  1

= I + P 2z + P 2z2 + ... + P z Z + ...

and
A(z) = I + A 2z + A2z 2 + ... An z ^a
D(z) = Ir + D xz + D2z 2 + . . .  Dn^z

Pk = 4 -  I pk_jDjj=i
for k $ na

for k > na

where
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Step
1 ll o

2 Set R = 0 a —
3 If k = 0 GO TO 8

4 C
_J

. II o
5 j = j + 1

6 R = R + P. .d 1cr a k-j j
7 If j < MIN(na , k)
8 If k $ na then Pk
9 If k = a STOP
10 k = k + 1

11 GO TO 2

To initialise the algorithm PQ = A0 = 1̂ * Finally, the
matrix P ̂ ( z )  maY t>e defined as:

p£(z) = !r + p iz + P2z 2 + ... + p,z'
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APPENDIX 7 : SMOOTHED AND FILTERED ESTIMATES '
The smoothed estimate y(k - £|k) can be expressed in terms

aof the filtered estimate y(k|k) as shown below. Erom 
(3.28):

y(k - £|k) =' z(k -  Z)  -  RP (z)R"1£(k - z )X/ £
and

_z(k) = y(k | k) + RR~1£(k) 

thence
y(k - z \ k) = y(k - £|k - z )

+ R(Ir - P J,(z))R^1£ (k - Z) (A7.1)

= y(k - z |k - z )

-  R f P i R  le(k - Z + i) (A7.2)
i=l e

or alternatively
Z

y(k|k + Z) = y(k|k) - £ RPiR“ 1e(k + i) (A7.3)
i=l e

by substituting k + z = b in (A7.3) above
b-k

y(k|b) = y(k|k) - £ RPiR’ ^ k  + i) (A7.4)
i=l e

b
= y(k|k) - I  RP^.R-leCi) (A7.5)

i=l+k 1 K e “

and (A7.5) may be compared with other more well-known 
results, e.g. Anderson and Chirarattananon [90] and Kailath 
and Frost .
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APPENDIX 8 COMPARISON OF TRANSFER-FUNCTION ESTIMATORS 
This appendix compares the derived transfer-function 
estimators of Chapter 3 with the related work of Shaked and 
Barrett.

Consider first the predictor. From (3.30) with £ 2 = 1 ,  
for a one step ahead predictor:

H(z;l) = {F(z)z}+ F_ 1(z) (A8.1)

Expanding F(z) in a convergent matrix series in z " 1 gives 

H(z;1) = {(Ir + Fjz-1 + F 2z “ 2 + ...)z}+ F_ 1(z) (A8.2)

where F^, i =.1,2 .... are Markov parameters. Now taking 
the causal part gives:

H(z;1) = (F (z ) - Ir )zF_ 1(z) (A8.3)

= z(Ir - F ~ 1(z )) (A8.4)

From (3.34)
y(k + 1 |k) = H(z;l)z(k)

= H"(z;l)z(k+1) (A8.5)

where
fi'(z;l) = Ir - F- 1(z ) (A8 .6 )

Equation (A8 .6 ) for the one step ahead predictor is the 
same as which has been derived by Shaked [27] and
Barrett [26] for continuous time. The aim of their work
is to show how the steady-state return difference matrix 
F(z) of the Kalman filter is useful in determining the 
transfer function solution to linear estimation problems. 
Clearly, the predictor is defined entirely by only F(z).
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The optimal filter transfer function matrix may also be 
written solely in terms of F.Qz) i From (3.27) with i  = 0)

H(z;0) = Ir -'RH“ 1F- 1 (z) (A8.7)

from (3.14)
F( 0) = Ir + C$(0)AK (A8 .8 )

= Ir - CK (A8.9)

Using (3.15) for K
F(0) = Ir - CPCTR“ 1 (A8.10)

since
R = R + CPCT e

on substituting CPC^ = R£ - R into (A8 .10) yields

f (o ) = ir - (R£ - r )r;x

= RR_1 (A8 .ll)e

Hence the optimal filter becomes

H(z;0) = Ir - F(0 )F_ 1(z) (A8.12)

which is expressed exclusively in terms of the return 
difference matrix.
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