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Design of Discrete Time Controllers\and Estimators
T J MOIR
ABSTRACT

This thesis considers optimal linear least-squares filtering
smoothing prediction and regulation for discrete-time
processes. '

A finite interval smoothing filter is derived in the

z domain giving a transfer function solution. The
resulting time-invariant smoother can be applied to
problems where a time varying solution using matrix Riccati
equations would diverge if the process is modelled.
inaccurately.

A self-tuning algorithm is given for the filtering and
fixed lag smoothing problems as applied to square multi-
variable ARMA processes when only the order of the process
is assumed known. The dynamics of the process can also be
slowly time varying. - If the dynamics remain constant and
unknown, it is shown how the self-tuning filter or smoother
algorithm converges asymptotically to the optimal Wiéner
solutions.

LQG self-tuning regulation is considered. The LQG
algorithms rely on input-output data rather than from the-
conventional state-space approach employing the Kalman
filter. An explicit algorithm is given which is s1m11ar
to certain pole placement self-tuning regulators,
requiring the solution of a diophantine eguation.

Following this, an implicit algorithm is shown to overcome
the problem of solving a diophantine equation by estimating
the regulator parameters directly using recursive Ieast
squares. The LQG algorithms are shown to be able to cope
with processes which are non-minimum phase, open loop
unstable and with an unknown time delay.
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Nomenclature

Unless otherwise stated in the text, the principacl

‘nomenclature used in this thesis is as shown below:

>

A,B,C,D

ACz-l), C(z-1),

B(z~!), D(z71)

y(t)

z(t)

u(t)

defined as

Matrices used in the discrete time state
space process model.

Polynomials or polynomial matrices

used in fhe discrete time AR or CARMA
ﬁodel.

Order 'x' of polynomial or polynomial
matrix.

Process output vector at time t.
Measured output or observation sequence
vector at time t.

Control signal at time t.

Lag in smoother.

Number of sample points in fixed interval.
Complex Z-transform variable.
Unconditional expectation of ‘'a‘'.
Expectation of 'a' conditional on 'b'.
Process noise vector at time t.
Measurement noise vector at time t.
Innovations sequence vector at time t.
Process noise covariance matrix.
Measurement noise covariance matrix.
Innovations covariance matrix.

Weighting on error in the cost function.
Weighting on control in the cost function.
Return difference matrix.

Process transfer function matrix.



B Vector of parameters.

X(t) ‘ Vector of inpﬁts and outputs.
K | Kalman gain matrix.
F(x(t)) Single sided Z—traﬁfform of the
sequence {x(t)} 2 ;EE‘*Lf)th
Fo(x(t)) Two-sided Z—tfansfzg; of the sequence
o -t

‘{X(‘t)} a Z-ch(_t)z_
U(t) Heaviside unit step function U(t) = 1

for all t = 0, U(t) = 0 for t < O.
(i - 3) Ktonecker delta function»a(O) = 1;

§(m) = 0, m # 0.



CHAPTER 1

An Introduction to Estimation and Control

1.1 Motivation

This work is concérned with optimal estimation and control
with particular reference to industrial applications.

It may appear from a careful examination of the existing
literature that the work is already well developed

[1 - 1i]. Closer consideration reveals, however, that
although the existing theory is useful for the particular
application to which it was applied, it is not always

the best for mostvindustrial applications. The develop-
ment of a 'classical' approach to modern control theory
was centred specifically around problems encountered in
rocket research. The applications included missile
guidance and navigation, well-known missions being

Mariner, Apollo and Ranger.

For example, rocket trajectory equations to give a desired
orbit are inherently non-linear. To design a control
guidance system for the rocket to follow a given
trajectory optimally, requires that these equations first
be linearised. Then the solution can be formulated into

a linear quadratic type of control problem of which the

solution is now well-known [3 - 5].

Estimation theory is usually employed in telemetry systems
e.g. the radar tracking of»aircraft. Linear least-
squares filtering or smoothing may be used here [ 1 |. The
idea of least-squares prediction first stemmed from the

‘anti aircraft fire control problem'. This required the

-1 -



ability to predict the motion of an_aircraftlin order to
intercept it. Wiener [1 ] solved the problem for this

application intending to have a hardware solution.

A specific édvantage of the methods developed in this
thesis is that many of the assumptions made in the
'classical' approaches do not have to be made. In
particular, the assumption that the model of the process
is unknown cannot be made when using thevKalman approach
to optimal control or estimation theory. Similarly the
Wiener approach to estimation requires at least a
knowledge of the spectral density of the corrupted signal.

Again this assumption need not be made in this work.

The thesis comprises approximatelybtwo thirds estimation
theory and one third control theory. As is appropriate
at this time, it concentrates only on the discrete-time
formulation of the problem, i.e. a solution which will be

implemented digitally.



1.2 Linear Least-Squares Estimation
The underlying theme in linear estimation theory is the
extraction of a discrete signal vector y(k) contaminated

with stationary zero mean white noise.

The measured (or observed)'process z(k) is given as
z(k) = y(k) + v(k) : ' (1.1)
where y(.), z(.) and v(.) are of dimension r. The white

noise vector v(.) has a known covariance

cov[g(k),y_(n)] = Ré§(k-n) . (1.2)

The linear estimation problem is now posed as follows:

Given the stationary measurement sequence (1.1), determine
the estimate of the signal y(k) givenvdata up to and
including time'kf (denoted i(k/kf))SUCh that the criterion
CJ1 = E{(y(k) - (s |keNT(y k) - FCkke))}  (1.3)

is minimised.

Depending whether k < ky, k = kf or k > k¢ will determine.
whether y(k}ks) is a smoothed, filtered or predicted
estimate respectively. Two approaches are traditionally’

employed to give the solution to the above.

A. Frequency Domain Solutions

The frequency domain solutions. to the linear estimation
problem is found by the independent work of Wiener [1]
(continuous time) and Kolmogorov [27] (discrete time).
Wiener's solution to the above problem which was of the
scalar case (r = 1) assumed a complete knowledge of all
past observations (kg = -«) and was achieved using

variational arguments.



The result is the so-called continuous time Wiener-Hopf
equation, the solution of which yields the impulse
response of the optimal estimator. The transfer function
solution can also be found from this. The well-known
solution involves a Wiener-Hopf spectral factorisation

of the spectral density matrix .of the measurement

process [1]. Later, Wong and Thomas [ 6_| generalised

this work to the multivariable case far filtering and

prediction in continuous time.

B. State-Space Solutions in the Time Domain

Kalman [ 3,4 | altered the formulation of the problem by
modelling the signal process in the more general time-
varying observable form :
y(k) = C(k)x(k) (1.4)
x(k+1) = A(k)x(k) + D(k)u(k) (1.5)
with ko > -=» and where x(k) is an n x 1 state vector,
w(k) is a g x 1 process noise vector and C(k), A(k) and

D(k) are known matrices, and

cov[g(k),g(nzl = Qs(k-n) (1.6)

The Q and R matrices are non-negative definite matrices
whose true values are assumed to be known. The resultant

time varying Kalman filter solution is found iteratively

[60,61].

X(k+1]k) = A(K)X(k|k) (1.7)
x(klk) = %(k[k-lj + K(k)(z(k) - c(k)g(krk—l)) (1.8)

V(k|k)

C(k)x(k|k) (1.9)



The Kalman gain matrix is updated from

K(k) = P(klk—l)CT(k}Rgl(k) (1.10)

where thé innovations covariance matrix is given as

Re(k) = C(k)P(k]k-l)CT(k) + R (1.11)
and the n x n estimation error covarianée matrix is found
from -

P(klk) = kI - K(k)C(k))P(k|k - 1) (1.12)
and |

P(x + 1]k) = A(K)P(k|k)AT(k), + D(x)aDT(k) (1.13)

Numerous other versions of the Kalman filter exist [117].

Although the Kalman filter is derived for the general use
of time varying non-stationary processes, it follows that
for stationary systems of fixed dynamics the Kalman
filter will converge in the steady state to the Wiener

case.

Kalman [ 3,4 | has formulated the linear estimation problem
in terms of orthogonal projection in Hilbert space.
However, this solution was restricted to prediction and
filtering. Rauch [ 7 | solved the smoothing problem in
state épace followed by Meditch E8,9] and others, e.g.

Kailath [11 | using an innovations approach.

There are various different kinds of smoothing problem.
Fixed lag, fixed interval and fixed point are the major
ones, and are discussed in Anderson and Moore [ 61]. A

notable paper which combines the various state space fixed



lag smoothing algorithms is by Moore [107].

FollowingvKalman‘s work, interests changed from the input-
"output type of solution to state space solutions for both
estimation and control. There are some drawbacks with

the widely-uséd Kalman filter approach. Firstly, an
accurate model of the sighal prbcess must be found in
state-spacé form. Secondly, the Q and R matrices must be
known or estimated apriori. Thirdly, it is known that the
Kalman filter can be used for both time-varying and non-
stationary processés. These conditions are met in

systems like those for rocket‘guidance where the changing

dynamics and noise statistics are known exactly.

In process control applications, it is not 1likely that a
true time-varying model of the process can be found or
.accurate representations of the varying Q and R matrices.
If the model of the signal process is not correct,
divergence mayvoccur in the algorithm [568 ]. If the Q and
R matriées are not known exactly, the filter will give
only a sub-optimal estimate. These‘two major problems
have been tackled in several papers and in this thesis.
One approach to the divergence problems has been studied
by using a Tlimited memory' Kalman filter, Jazwinski [ 12 ]
Awhichvdeietes 61d data and thus does not accumulate any
major numerical errors. This problem is solved in the
freqﬁency domain for a smoothing problem in Chapter 2 of
this thesis, and is shown to relate to a Wiener type of
smoother and to the recent work of Grimble [13,14,15 ].

This type of solution has certain advantages since it gives

-6 -



a transfer function solution to the smoothing problem
which is very appropriate for implementation in some

applications.

Filtering when the process is known but‘the Q and R
matrices are not, has’been solved by mainly

Mehra [16,17,187] , Alspach and Abiri [197],

Bélanger | 20 | and Carew and Beélanger [ 21 ]. These
techniques are survéyed by Leondes and Pearson [ 227].

The problem which has not been solved before is filtering
and smoothing in multivariable processes where both the
process is unknown and the noise statistics are unknown.
Macfarlane [ 24 ], Arcasoy [ 25 |, Barrett [ 26 | and

Shaked | 27 | give a relationship in the frequehcy domain
far the steady-state matrix'Riccati equation of the Kalman
filter. This result shows that the spectral density
matrix of the measurement process, when Wiener spectral
factorised, is related to the return—difference matrix of
the stationary Kalman filter. This combines the alterna-
tive frequency domain or time domain approaches of the
Wiener filter and Kalman filter. A similar result is
provided in the polynomial matrix approach of Kucera [287].
The adaptive estimation séheme which embodies the main

part ofbthis thesis uses this type of result..



1.2.1 Self-Tuning Estimation Theory

Kalman filtering for process cbhtrol needs an accurate
model of‘the process and the knowledge of the @ and R
noise covariance matrices. In Wiener filtering, the
spectral density of the observation process must be

known or the transfer function of the signal generating
process together with Q and R. These assumptions are not
made»here, for the first time, as applied to multi-
variable processes. Recall that already Kalman filtering
where a knbwledge of a process model is not assumed to be
known has been covered by Anderson and Moore [92,93].
This is achieved by employing the Kalman filter as a time-
varying Wiener filter requiring time-varying spectral
factorisation [94];. Signal statistics as would be
required if using a Wiener filter must be known. This
method therefore has the same limitations as the Wienef

filter.

The self-tuning approach taken in this work overcomes
these problems by assuming that the signal process model
and the observation process model are unknown but can
each be modelled as an autoregressive movingkaverage
(ARMA) time series of known order. If the order is
unknown, it may be estimated beforehand [ 29,59 ] The
parameters of the ARMA model can then be estimated using,
for example, extended recursive least squares or the real
time maximum-likelihood method [ 56 |. The measurement
noise covariance can also be estimated simultaneously,

assuming that it is white. The filtered, predicted or

- 8 -



smoothed signal estimateé‘can then be found based on this
information. The process paraméters can eiﬁher be
constantrbr slowly time-varying. If constant, the self-
tuning estimation scheme will converge to a Wiener type
solution but the burden ofbspectral factbrisation is
omitted, as is the separation of causal from anti-causal

modes.

The first adaptive estimation scheme based on the
identity of Astrom [ 34_] was by Wittenmark [ 30 |. This was
a self-tuning predictor for scalar processes. This has
been generalised to the multivariable case by Tanttu [ 31]

and applied to forecasting by Sym and Wellstead E57].

A self-tuning filter/predictor for multivariable processes
was given by Ledwich and Moore [ 327], of which Wittemmark's
work [ 30 | can be derived as a special case. Hagander

and Wittemmark [ 33 ] solve the self-tuning fixed-lag
smoothing problem for scalar processes. Chapter 3 of

this thesis will generalise this work for the multi-
variable case and show how all three multivariable
(filtering, smoothing and prediction) self-tuning
estimators may be found from one original frequency

domain estimator. This gives a more unified theory.

When the process and noise statistics are assumed to be
known, the estimators can be compared with the work of
other authdrs e.g. Shaked [ 27_], Astrom [ 34 ] and Tanttu
[31]. The convergence of the self-tuning filter and
smoother will also be shown by using the asymptotic
analysis of Ljung [35,36,37]. Thus in thiskthesis, it is
possible to achieve optimal filtering, smoothing or

-9 -



prediction for multivariable processes without the

classical restrictions imposed of é knowledge of signal
model or of noise covariances as taken in Kalman theory.
Similarly, the assumption of a known spectral density of

the observed process is not made.

- 10 -~



1.3 Linear Least-Squares Stochastic Control

A problem often solved in this area is Linear Quadratic .

Gaussian (LQG) optimal control. The problem formulated

here considers either making stationary control around

a fixed set point value (the regulator problem) or to

follow a time-varying reference signal (the servo

problem). If the process is observed in the form of

(1.1) then y(k) is assumed to be the output of a

known

linear system driven by stationary white noise plus a

control signal vector u(k) to achieve a feedback

action. The problem now bécomes one of deriving

control

the

control action u(k) such that the performance criterion

72 = ElyT()Quy (k) + uT()Ru (k) (

is minimised,

1.14)

where the weighting matrices are defined as follows:

Q; is a constant symmetrical semi-positive definite

matrix,

and -

R, is a constant symmetrical positive definite matrix.

Kalman [ 5 | solved this problem in the time domain using

a state-space approach and Riccati equations. The

solution requires a Kalman filter and a time-varying

feedback gain control matrix. This solution has

similar

advantages and disadvantages in application as discussed

for the Kalman filter in 1.2. The first frequency domain

solution was found by Newton et al [ 38 |, but this cannot

be used for unstable processes.

- e

Astrom [ 34 | uses so-called minimum variance contr

- 11 -
l
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weighting on control and no measurement noise. The
resultant solution gives an unstablébcontrol law for
non-minimum phasé systems and may require a large control
~effort. Although ﬁost contiﬁuous time systeﬁs may be
minimum phase. T e the discrete—time
equivalent system ma& well be non-minimum phase due to
zeros which drift out of the unit circle at certain
sampling rates. Therefore consideration of the non-
minimum phase problem is jusfified. A more general form
of the minimum variance controller is found by Clarke

and Hasting-James [ 39 | under the assumption of weighting
on the control as well as the output. A minimum

variance controller for non-minimum phase systems has
been developed by Peterka [ 40 ] and Astrom and Wittenmark
[[417] but these may require a large control effort due to
the omission of control weighting. A control-weighted
minimum.variange controller for non-minimum phase systems
“has been introduced recently by Grimble [AZ].V This
controller is similar to the Clarke—Hasting—James
controller but reduces to the Qontroller of Peterka

when the control weighting is zero. It alsd cannot cope

with the problem of measurement noise.

The LQG solution in the frequency domain which minimises
(1.14) overcomes the previously discussed difficulties.
The solution has been derived by Shaked [ 437 ] and by
Grimble [ 44 | in z transfer-function format, and by
Kucera [ 45 | using polynomial algebra. The LQG solution
can deal with open-loop unstable and/or non-minimum
phase systems. Measurement noise (usually white) can be

- 12 -



allowed for. Disadvantéges are in the compiexity of
solution. The Kalman time—doméin appfoach requires the
iteratidn of two matrix Riccati equations, ohe for the
filter and one for the control. Solution in the
frequency domain is by one of two approéches. The first
requires the solution of one or - two diophantine equations
and two polynomial spectral factorisations when using
Kucera's work. The second requires two spectral
factorisations and the removal of causal from anti-
causallmodes if using the Shaked or Grimble approach
(op cit). The following section will show how some of
these problems can be overcome by using on-line

identification in a self-tuning framework.

- 13 -



1.3.1 Self-Tuning Control

Self-tuning control theory was'deveioped in parallel with
self-tuning estimaﬁion theory, for the same undeflying
reasons. Models of processes are normally inaccurately
known and sometimes the dynamics may even vary with time.
Self-tuning control can cope with this problem provided
the parameters which define the internal dynamics vary
slowly with time about a nominal value. The first |
practical self-tuner was only for regulation and was
based on the minimum variance controller of Astrom (op cit)
This was achieved by Astrom and Wittenmark [ 46 | and had
the same disadvantages as the minimum variance controller.
The addition of control weighting and set.point

following (Clarke and Gawthrop [ 48,49 ))was achieved by
using the controller of Clarke and Hasting-James (op cit).
Wellstead et al [50 | and [ 51 ] , use pole assignment for
self-tuning. The advantages of pole placement are that

it can be used effectively on non-minimum phase and
unstable processes. The disadvantage of this explicit
approach is that é diophantine equation has to be solved
on-line at each sampling instant to determine the
controller parameters. This can be time-consuming if
used on real-time systems. Other self-tuners developed
have included a minimum variance self—tuniﬁg regulator
for non-minimum phase systems (Astrom and Wittenmark[@l:b
and a control weighted self-tuning controller for non-

minimum phase systems (Grimble [52] ).

" More recently a state space approach to pole-assignment

self-tuning control has been introduced by Tsay and

- 14 -



Shieh [ 53] and Warwick [54 ]. These algorithms have the

same advantages as the work of ‘Wellstead et al (op cit).

The LQG éelf—tuning control problem has already been
solved by Lam [ 55 |. The author employs a steady-state
Kalman filter and a continuously updated feedback gain
matrix. The advantages of the.LQG methods have already
been discussed. 1In this thesis, the work will be
extended to enable LQG self-tuning from input-output
rather than state-space cdnsiderations, by using the work
of Kucera (op cit) in polynomial equation form. Recursive
least squares will be shown to overcome the problem of
solving a diophantine equation by deriving an implicit
LQG self-tuner. Moreover, non-minimum phase and unstable
systems can be dealt with easily. For non-minimum phase
systems, no separation of minimum from non-minimum phaSe
terms is required. The separation idea has been used

previously by Astrom and Wittenmark [ 41 ] and Grimble

[527].

- 15 -



CHAPTER 2

Transfer Function Sélution to a Multivariable Finite

Interval Smoothing Problem

2.1 Introduction

When using linear least squares estimation techniques

in applications where the available data is finite,

there are two approaches. Consider first the example of
least squares filtering. A Wiener frequency domain filtef
or a time—dom#in Kalman filter can be used. The Wiener
filter is derived under the assumption that an infinite
amount of past observed data is available (kg = —=). This
assumption has to be made in order that the resulting
frequency domain filter is time-invariant. For this
situation, the Kalman filter approach only assumes the
availability of a finite amount of observed data (kg > -«)
and gives a smaller esfimation error than that of the
Wiener filter. The underlying problem faced here is that
the Kalman filter is time varying and cannot be realised
in transfer function.form for the finite data problem

and the Wiener filter is not intended for use in
applications where there is only a finite amount of data
available and is inferior. Grimble [13,14]| has derived
new time-invariant filters for finite data records. The
transfer function solution gives an optimal filtered

state estimate at the end of the finite time interval.
This estimate is equivalent to the optimal time-varying
Kalman filter estimate and is superior in a least-squares
sense to either that of a Wiener filter or steady-state
Kalman filter. The finite-time prediction problem was

solved first by Zadeh and Ragazzini [ 66 | and enabled the

- 16 -



optimal impulse response of the predictor to be found.
The impulse response of the predictor vanishes outside of
the specified time interval and thus the predictor has

a finite or limited memory.

Limited memory filters are well-known [ 9 |, [ 67-72]].
Terminologies vary from 'Limited memory', 'Fixed memory'
to 'moving window' and 'sliding memory‘. The latter
terminology is-used mainly in economic systems. The
technique involves the processing of the most recent N
measurements of data, whére the 'window' or 'memory'
length N is fixed a‘priori depending upon the application.
At each sampling interval when a new data point is
included, an old data point is dropped. This methodAof
discarding old data allows it to be employed in
situations where an expanding memory filter (or Kalman

filter) would diverge due to erroneous data [ 12 .

The solution to this filtering problem in references [}2]
and [7eremploy two expanding memory filters, one used
for data addition and one used for data deletion. The
advantages and limitatidns of these filtering schemes are
summarised in [ 70_]. Bierman, in [ 717] concentrates on
achieving greater numerical stability by using a square
root covariance technique. Blum [ 69 | uses orthogonal
polynomials in a recursive scheme in order to fit a
polynomial to the N observed data points. This enables
past, present or future values of the data or its

derivatives to be found.

- 17 -



Recently a time-invariant smoothing filter.has been
proposed for finite data records Elsj. The problem was
solved in the frequency domgin by posing an equivalenf
infinite~-time (t; = -«)problem. It was shown how the
solution to the infinite-time smoothing problem also gave
rise to the solution to the finiée—time problem of
interest. The equivalence of the two estimators

depended upon the choice of thc estimation error

criterion and the problem descriptions.

In this chapter a discrete-time_&ersioﬁ of the finite-
time smoother is derived [ 62]. The driving process and
measurement noise sequences are assumed to be stationary.
The smoother is required to give an optimal estimate of
the state vectbr of the process (g(Kle)) at time K1,
given the observations in [0,N]. This fixed interval
problem normally has a solution involviﬁg both causal and
anticausal filters but cannot be used for on-line
smoothing [ 73-75]. The advantage of the proposed
smoother is that it may be used for on-line smoothing by
utilising either the weighting seéuence or z transfer

function forms.

The optimal time-invariant smoother is obtained by
solving a discrete-time Wiener-Hopf equation. This
equation is expanded and is transformed into the frequency
domain by takihg.the two-sided z transform. This provides
a transfer function solution to the smoothing problem from
which the weighting sequence is easily found. - It is shown

that the transfer function solution involves z’N terms

~18 -



which can be neglected if the smoother is to be used
within the fixed interval [0,N]. For implementation
beyond‘the finite interval, the z=N terms must be
included in the z-transfer function version of the
smoother. However, in the weighting sequence form this
sequence need only be set to zero outside the interval.
The resulting4smoother is of the fixed-lag variety

but with limited memory.

-19 -



2.2 System Description -

The linear, time-invariant system cén be expressed in
the;discrete time state-space format
x(k + 1) = Ax(k) + Du(k) + u(k),
(2.1)
k=20, 1, 2

y(k) = Cx(k), x(k)eRD, y(k)eRD, w(k)eRd  (2.2)

The signal y(k) is assumed to be corrupted with noise
v(k), resulting in an observation vector

z(k) = y(k) + v(k) (2.3)

The Gaﬁssian white noise sequences w(k) and v(k) are

assumed to be zero mean with covariances:

cov [Q_(k), w(n):] = Qs(k - n) (2.4)
cov [y_(k), y_(n):l = R6(k - n) (2.5)
cov [g(k), y_(n)] = Gs(k - n) (2.6)

The state, process noise and measurement noise vectors

have dimensions n, g and m respectively.

In the following, the assumption is made that the initial
state vector hés a known mean my, and variance ;. The
finite interval problem of interest cannot be solved
easily by considering only the intervgl [b,N], where N is
the interval length. It is therefore assumed that the
smoother has been in operation from time kg = -« but at
time zero the system receives an input which creates new
"initial" conditions. In this manner, the invariant
problem of interest is embedded within an infinite time

problem [ 13 ].
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In order to initialize the smoother, it is assumed that
an impulse of magnitude x] = Ax{ is applied to the
system at time zero. That ié

} u(k) = s(k) x3 _— (2.7)

where
E [x5] 4mg (2.8)
and
E [:3(_5 56] A Zyp 20 (2.9)
g | xz of
[_§0 (k{] =0 (2.10)
E [256 XT(k)] =0 (2.11)
Define the resolvant matrix
o(z) A (zI - A)~1 ' (2.12)
and the transfer function matrix
W(z) Ce(z)D = A (w(k)) (2.13)
where
w(k) A Ce(k)Dy k > 0
(2.14)

A O vk,<.O'J

The state trajectory of the system in convolution
summation form is given as:
k-1
x(k) = ] ¢(k-i-1)(Du(i) + 8(i)xi) (2.15)
i=—
where o(k) = ¢(k-1)U(k-1) = A¥71U(k-1) and where U(k) is
the Heaviside Unit Step function. Equation (2.15)
becomes
k-1
x(k) = o(k)xi + ) o(k-i)Du(i) ¥ k > 0 (2.16)

i==e
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from which the state vector at time zero is

-1 ) t
Y ©(-i)Duw(i) (2.17) -

i=—e

x(0)

Now
w(i) =0
where the bar denotes the expected value and equation

(2.16) can be written using (2.8) as

x(k) = o(k)Amg = ¢(k)mg ¥ k > 0. (2.18)

0 ¥ k<0 . (2.19)

Thus the delta function input signal establishes the

specified mean value for the initial state vector [ 14].

Let the total state vector at time k = Okbe defined as

Xo = Xp *+ x(0) (2.20)

then for time k > 0 equation (2.16) becomes:
k-1

x(k) = ¢(k)xy + ) &(k-i)Duw(i) (2.21)
i=0

Equation (2.21) follows directly from substitution for
Xp into equatioh (2.16) and by using x(0) from equation

(2.17).
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2.3 The Optimal Finite Interval Smoothing Filter

Let h(k;N,£), k = 0,1 ... be the weighting sequence of
the optimal smoother. The weighting is a function of the
interval length N, the smoothing time lag £ and the time

index k.

If the ideal output from the smoother at time k is
defined to be x*(k), then the estimation error can be
defined for all k as

x(k) 4 Xf(k) - x(k) (2.22)

By subtracting signals prior to time zero, the ideal output
of the smoother considers the state component due to plant
signals at times greater than zero only. That 1is

X.(Kl) = x(K1) - ij»@; £)x(0) (2.23)

and K1 = N - £ denotes the time at which the state
estimate 1is required. The i/(N;£) matrix is included to
optimize the zero input response of the smoother. The
estimation error for k = Kl can be thought to involve only
system inputs for times greater than zero and the vector
Xg [Jd3 |. Since the vector xo was assigned the

statistics (m0O, o) when defining the finite-time problem,
it followss that by solving the given infinite-time
problem, the desired finite-time problem solution emerges.
A second consequence is that the impulse response of the
optimal smoother is zero at the end of the interval,

giving h(k;N,£) =0, v k ~ N.

The smoothing problem can now be defined as follows.

Given the observation sequence "~(k) over k =0, 1 .... N,
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determine the optimal estimate of the state trajectory
X (K1|N) such that the following error criterion is
minimised.

J=FE =x(K1)t x(K1) z(0) ... z(N) (2.24)

Note that for this particular problem, the optimal
state estimate is a fixed interval smooth estimate of
the state at time Kl given observations in [0,N].
Estimates taken at other times within the interval are
sub-optimal. Outside the interval the smoother acts as
an optimal fixed-lag smoother with lag £, using the
optimal impulse sequence as a "sliding memory". Within
the first interval k < N, for an unbiased smoother state
estimate:

E[]x (K1In3 = EQx(K1fl (2.25)

and outside the interval, k > N

E*x (k- AjkJ] = EQx(k-£)H (2.20)

Theorem 2.1 Time Invariant Smoothing Filter

The optimal transfer function matrix of the discrete time

smoother which minimizes equation (2.24) in a least

squares sense 1is given 1in z-transfer function form as:
H(z;N,£) = nll(z,£) A 2(z)

+ ipMN;t) [nl2(z,N) + n2(z,N}] AV1(z)

(2.27)
where
(2.28)

+
nl2(z,N) 4 - nlx(z,N) (2.29)

(2.30)

+

M(z) 4 A-1 (2)0&E(z)A (2.31)
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If a signal over all time has a 2 sided transform {f(z)}
then the transform of the positive—time contribution is

denoted.by'{f(z)}+¢

A(z) is obtained from generalised spectral factorisation,
Shaked [ 27 ]
W(z)QWT(z"l) + R + W(z)G + GTwTl(z"1)

= a(z) aT(z"1) (2.32)

The ¢(N;2) matrix may be calculated using:

P(N;2) = [$(N-2) - I;1(N;2)]

x [Ip + Iiz(N) + ZoS(N)]T! (2.33)
with N-2 = K1 | (2.34)
and
n-1
I11(N,2) A ) npq(k, 2)M(N-k) (2.35)
N-1
I,,(N) A 20 ny,(k,N)M(N-k) = -I;;(N,N) (2.36)
. o
N-1 |
S(N) 4o ¥ MT(N-k)M(N-k) (2.37)
k=0

Proof of Theorem 2.1

The proof of Theorem 2.1 is given in Appendix 1
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2.4 Other Forms of the Optimal Smoother

Several cases of special interest now emerge from

equatioh (2.27) as follows.

Special Case 1

Consider H(z;N,2) + ny;(z,8) A~1(2) (2.38)
lim }
N-»eo
This is the steady-state or infinite time fixed-lag
smoother as expressed in transfer function form in the

z-domain. The smoothing time delay is given by &

sampling intervals.

By multiplying by the C matrix, equation (2.38) becomes
Ho(z;8,2) + {<w<z>e + W(z)QWT(z"1))
lim _
N-»o X ATT (271 z-ﬁ} AT1(z) (2.39)
‘ +
This equation represents an infinite-time fixed lag
smoother which can be used to estimate a signal y(k) from

an observation message zZ(k) when the state estimate is

not required.

Special Case 2

If 2 = 0 then

H(z;N,0) » n;31(2,0) A71(=2) (2.40)
lim
- N>
or multiplying by the C matrix
A°(z;N,0) » {(W(Z)G + W(z)QWl(z"1))
lim
N-reo X A"T(z—l)} A=1(z) (2.41)
+
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Equations (2.40) and (2.41) represent a transfer

function solution to thevdiécfete—time stationary Kalman-
Bucy fiitering problem when dealing with state or signal
estimation respectively. The two above cases can also

be termed infinite interval or Wiener type estimators.
Case 2 has been studied by Shaked [ 27 ] and in continuous

time by Barrett | 26 |

Special Case 3

Consider
f(z;N,0) = ny;1(z,0)a(z)" 1 + y(N;0)

X [n1,(2,N) + ny(z,N)]a"1(z) (2.42)

Equation (2.42) is a finite interval, time—invarianf
filter. This filter has been investigated both in
discrete-time and continuous-time by Grimble [ 137] and [ 14].
The filter has the property thati%ill obtain an optimal
stafe estimate at the end of an interval ofllength N
sampling intervals. Grimble [ 13 ] has shown that the
error covariance of the state is smaller than that of

a Wiener filter and equivalent to that of a time-varying
Kalman filter when estimating the state at the end of

the iﬁtervél. The filter has similar advantages to those
of the finite interval smoother and can be implemented

in either transfer function or weighting sequence forms.

Special Case 4

H(z;N,N) = ny;(z,N)A(z)"! + y(N;N)

X [n12(z,N) + ny(z,N)[a"1(=) (2.43)

Equation (2.43) represents an initial condition estimator
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which is again time invariant. 1In the time domain,
Lévy et al [737] have shown how the continuous-time
equivalent.of equation (2.43) could be found by solving

a time-reversed, truncated WienerAHopf equation.

The smoother of Lévy et al is a combination of causal
and anticausal filters and cannot be used for on-line
smoothing. This is a standard solution to the fixed

interval smoothing problem, e.g. Fraser and Potter [ 75 ].
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EXAMPLE 2.1

Finite Interval Smoother

Consider the following scalar signal geﬁerating system:
xX(k+1l) = ax(k) + w(k)

z(k) = ex(k) + v(k)

for k ¥ 0 and |a| < 1.

The independent noise sequences w(k) and v(k) are assumed
to be zero mean with covariances g and r respectively.
The system is assumed to have been in operation from

time ky = ~-». At time zero, the initial state vectbr is

assumed to have covariance I, = o3.

Given the observation sequence z(k), k = 0,1 ... N an
optimal estimate of the state at time K1 is required
from the finite-time smoother at time N. For observations
k > N the optimal smoother‘is required to act as a fixed-

lag smoother with smoothing delay 2 > O.

The system resolvant and transfer function are found as:
W(z) = Ce(z)D = c/(z~-a)

with

8(z) = (zI-A)") = 1/(z-a)

and

o(k) = ak-ly(k-1)

The spectral factors ate: -
W(z)QWT(z=1) + R = a(z)aT(z"1)
giving
1

A(z) = [j;]z (Z’- a)/(z - a)
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with
l .
a =& % (g2 -1)* ; Ja] <1
and
[a(c)2/ra + (a2 + 1)/a]/2
M(z) A AT1(z)Ce(z)

oy
i

1

2
= |2 -
= [ra] ca/(z a)
and nj;;(z,%2) follows from:

n;;(z,2) = {@(z)DQwT(z—l)A-T(z~1)z“ﬂ}
+

6 lzl—z . az’™t _ o1z
|z-a l-az l-az

1

2
iL) /(1-ac) and n;,(z,N) is found from

where B = qc[ar

nlz(Z,N) = —nll(Z,N)

The remaining terms are found as follows:

n,(z,N) A ZU{MT(Z‘l)z'N}
+

which from reference [ 13 | becomes

n,(z,N) = 2oF MT(N-k)(U(k) - U(k-N))]
_ 1 _
- coz[é%] calz=(1) _ oNz]/(1-02)
and by inverse z transforming

1
n,(k,N) = gbz[é%) caaN‘k‘IE@(k) - U(k-N)]|

nyi(k,2) = 8[(ak"% - o Fyuck-p) + a*Fu(xki]

ny,(k,N) = -8 [{akN = N Eygoony « oNEy(ky]
by

M(k) = [é%}, caa® Tu(k-1)
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The element'w(N;z) is determined from:
P(N;2) = (¢(K1) = I;;3(N;2)(1 + I;1,(N) + 5S(N))~!

where ¢(K1) = aN-%

g 12 N-2 _ N-2
I,3(N;2) = Bcalé%J [Ia p—— g ]

. [aN-z+1 _ 0‘1+N+z]"]

1 - a4 J

IIZ(N) = —Ill(N;‘N)k

1
2

s e -
- and
LoS(N) = (ogc)2aa(l - a?N)/(r(1 - a?)

The transfer function of the time-invariant smoother in
the z-domain can now be obtained by using the result

of Theorem 2.1.

A(z;N,2) = ny11(z,2)a~1(2) + ¥(N;L)

X [n12(z,N) + n,(z,N)|a~1(z)

Hence using the previous results

A ~ (1- aoc)z1 % z(z-a)al** )
H(z;N, %) = B[ ) {(1 —az)(2-a) (1—az)%z-a)}

1 N
2 0j2c)z(z—a)aN L
HRACE l)f [ar] T Tr J(l—az)%z—a)

1-N
“VNG ) {[ar] Bg o T

(z—a)azl"N
(1-az)(z-0)

ar r

bl
[_a_]%s_ __o_ZEJ
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Alternatively, the weighting sequence for the smoother

may be implemented as

- & %(ak-ﬂ_ aﬁ-k\
h(k:N9'Q') = B[E] l 1 - o2 J(l-aa)U(k-'Q')
3 G20
+ {w(N;z) B[ﬁ%} - —%;%J

[al+N+k(u—a) - (l—aa)uN—k}
1 - a%

- v o) RN (28 - [

((1-aa)al-K + (BNl 1 o o201-2)))

x| S l}U(k—N)

By direct calculation it may be shown that:

h(k;N,2) =0y k >N

Because of the delay terms in the optimal smoother, the
weighting sequence is the more attfactive method of
implementation. In practice, the terms in the weighting
'sequenCe for times k > N may be neglected and the weightirg

sequence can be simply set to zero for these times.

Note that the weighting sequence for.the optimal smoother
also yields the following
h(k;®,2) + infinite time smoother weighting sequence
A(k;»,0) -+ Wiener or steady state Kalman filter
A(k,N,N) + initial condition estimator weighting
sequence

ﬁ(k,N,O) +~ finite time filter weighting sequence
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The finite interval smoother was simulated for the
process of this example with the foilowing parameters
selected ‘ .

a=0.99, ¢ =0.1, g =10, r =1, 0,2 = 10
The interval length was chosen as 10 sampling
inCrements (N = 10) with a smoothing lag of 2 = 5.
The observation sequence for such barameters, together
with the state and smoothed state estimate are shown in
Figure 2.2. Clearly, the state estimate is acceptable.
There is a delay of 5 steps between the state and the
corresponding estimate and this is unavoidable. The
impulse response for the time invariant smoother is
shown in Figure 2.1 and takes the form of a rising and
falling curve which has a peak &alue occurring at k = 2.
It is important to note that for times k > N, the
smoothing filter has been used as a fixed memory, fixed
lag smoother, using the 'moving window; of filter informa—.
tion present in the‘optimal impulse sequence. Figure 2.1
shows the impulse response to be zero for k » N
resulting in an observation length at any time k of
only N, the observation length being [k-N,k|. Any
observations pfior to the interval [k-N,k]| is set to

zero, thus discarding old data.
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2.5 Turther Simplifications to Smoother

The section will give a simplified algorithm for
calculating the obﬁimal smoother. The algorithm is

found by manipulation of the steady-state matrix

Riccati equation and thus links the steady-state time
domain approach with the frequency domain. Further
insight into the solution can then be seen. The
assumption is made throughout thaﬁ the process and
measurement noises are uncorrelated (G = 0) and that all
terms of z~N can be ignored since these occur outside the
finite interval. Smoothing oﬁtsidé the interval can still
be achieved by setting the weighting sequence to zero

at the end of the interval (op cit).

The steady-state discrete-time observer Riccati
‘equation given by [60 ]:

P = ApPAT - AxcpAT + pDT (2.44)
where K is the steady—state Kalman gain matrix

K = PCTRgl (2.45)

The covariance matrix for the innovations is given as
(Sage and Melsa [ 60 ])

R, =R+ cpcT (2.46)

P is the positive definite symmetric filtering error-

covariance matrix. The relationship between the return-
difference matrix for the steady-state Kalman filter and
the spectral factor of the observation is (ArcasOy [?7] )

F(z)R_Fl(z71) = a(z)aT(z"1) (2.47)

where the return differencé matrix of the Kalman filter is

F(z) = Co(z)AK +T (2.48)

- 36 -



From (2.47)

6(z) = F(Z)Ri | R (2.49)
and , ‘ .

AT(z"1l) = REFT(Z“l) (2.50)
From (2.28)

ny1(z, 2)A{e(z)QUT(z"1)a"T(z" 1)z (2.51)

Now it is possible to manipulate equation (2.44) by the
addition and subtraction of various terms as demonstrated

in Appendix 4.

{o(z)QWT(z~1)a"T(z"1)z= 2,

{T(z"1)z"% + @(Z)AKREZ—2}+

= {T(z"1)z"%}, + @(z)AKR§z42 (2.52)

where |
T(z"1) = P MT(é—l) +YCTA"T(Z‘1i] (2.53)
= P[ATeT(z"1) + 1[CTA-T(z"1) (2.54)

and M(z) is defined as in (2.31).
Now define the time function matrix.T(k)

T(k) =Z71(T(2)) (2.55)
Whereﬁéfl denofes inverse z transforming. Equation (2.52)
then simplifies to

nyq(z,4) =% [T(e-k)(U(k) - U(k-2))]

1
+ o(z)AKRZz ™% (2.56)
= Z, [T(2-k)U(2-kJ] + ¢(z)AKR!z=* (2.57)

The filtering case when 2 = 0 is of importance since it
is a special case of the smoother. Under these conditions
it is simpler to determine n,,(z,0) by the z° coefficient

of the matrix Taylor series expansion of T(z~!). By
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defining

{T(z )z *y A[Ty) + Tyz + Tpz2 + ... + T,z%]z7%

Then when & = 0

To & {T(z71)}, (2.59)
giving(Chen [ 76 | )
To = lim T(z1) (2.60)
z-0

= 1im{PMT(z~1) + PCTA-T(z-1)}
70

Now

1im PMT(z=1) =0 (2.61)
70

and similarly

1lim PCTA-T(z"1)
z~>0

using (2.50)

= 1im PCTF-T(z—l)R;%
70

pCTR_ | (2.62)

The expression for n;,;(z,0) now becomes
N ‘
ny;(z,0) = Ty + @(Z)AKR; (2.63)
where

s
T, = PCTR]? (2.64)

The other terms of the optimal finite interval smoother
also hold for the filtering case and follow
ny,(z,N) = -n;;(z,N)

~Z1 (T(N-k)) (2.65)

I

(Ignoring the z"N terms which occur outside the
interval N)
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Substitute the initial error covariance matrix Py = I,

then
n,(z,N) = Z (PMT(N-k)(U(k) - U(k-N))) = (2.66)
Define
N,5(2,N) = ny,(z,N) + ny(z,N) . (2.67)
= Z (L(N-k)) : (2.68)
where
L(N-k) = PoMT(N-k) - T(N-k) (2.69)

Hence the transfer function matrix for the optimal
smoother is greatly simplified, and becomes

H(z3N,2) = [211(2,8) + v(N;2)n,,(2,N)]A(2)"1 (2.70)
and Y(N;2) is also greatly simplified since

N-1
I;1(N,2) = Y nyq(k,2)M(N-k)
k=0

N-1
= ) T(&-k)M(N-k)
k=0
N-1 N
+ Y [§(k-z)AKR; - T(&-k)]|M(N-k) (2.71)
k=3
Put I,,(N) = I;,(N) + PyS(N) (2.72)

and I,,(N) can be simplified to be
N-1 '
I,,(N) = Y L(N-k)M(N-k) ' (2.73)
k=0
and hence the y(n;2) matrix becomes

P(N;2) = ($(N-2) = I13(N,2))(In + I,(N))7L (2.74)

These simplifications lead to the following algorithm.
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Algorithm 2.1 Calculation of Finite Interval Smoother

1.

Compute the steady-state iﬁnovation covariance
mafrix R, = R .+ cpcT. Hence find the spéctral
factor A(z) from:

A(z) = (I + Ce(z)AK)R.

where P and K are found from the steady-state

Kalman filter Riccati equation.

Compute M(z) A AT1(z)Co(z)A
and hence find the time function M(N-k) by inverse

z transforming.

Compute T(z~!) from P[MT(z~!) + cTa-T(z=1)] or
P[ATeT(z~1) + IJcTa-T(z"1)

and hence find T(z) and the time function T(k).

1
If ¢ = 0, then n;;(z,0) = T, + @(z)AKR: else find

nyy(z, 2)AA{T(2-k)(U(k) - U(k-2)} + ®(z)AKR§z-2

Find L(N-k) A PoMT(N-k) - T(N-k)
Compute n,,(z,N) = 2 (L(N-k))

N-1
and I,,(N) A ¥ L(N-k)M(N-k)
k=0

N-1
Compute I;;(N,2) A ) T(2-k)M(N-k)
k=0
N-1 N
+ § [0(k-2)AKR? - T(2-k)|M(N-k)
5,

Calculate $(N;2) = (¢(N-2) - I;;(N,2))(Ip + Io(N,k)7!

Find A(z;N,2) = [0;1(2,2) + $(N;2)n,,(z,N)]a"1(z)
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EXAMPLE 2.2

Consider the linear discrete-time ééalar‘system given by
x(k+1) = x(k) + w(k)
y(k) = x(k) + v(k)
with process and measurement noise covariances q and r
respectively. It is required to find the transfer

function of the optimal finite memory smoother with

memory length N and smoothing time 1ag‘2 > 0.

It is known that

¢(z) = 1/(z-1) and W(z) = 1/(z-1)

The solution is found by following the Riccati based
algorithm 2.1.
Step 1

R, = R + CPCT hence R_=r + P

A(z) = (I + C@(z)AK)Ri
3 [z - «
= R_ [z — 1) o =r/(P + 1)

Where the steady-state Kalman filter gain matrix is found
to be:
K = P/(r+P) and P is found from the steady-state

Riccati equation

P =P - P2/(r+P) + q
to be
. by

P =q/2 + {q2 + 4q T}*/2
Step 2

M(z) A A(z) 1Ce(z)A

-3
= R_*/(z-0)
-3

M(N-k) = R_% oIVl
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Step 3

Il

T(Z—l) P[MT(Z“I)‘+ CTA;T(Z—IZ]
= P Rf
€

and T(z) = P R_’z/(z-a)

s _
giving T(%2-k) = P Re2 ot K

Step 4

ny11(z,8) = FZHIT(2-k)(U(k) - U(k-2))} + Q(Z)AKRiz_Z

-2 -4
-3z _ =z 1+ 2z
PRe z—-1 az-1 T az~1

Step 5
L(N-k) = PoMT(N-k) - T(N-k)
1
= Rez(PoaN—k—l - PaN-k)
Step 6
ny,(z,N) = Z (L(N-k))
)
= R—Jz‘ EQ(INZ _ POLN+1Z
€ az-1 az-1
_ N-1
I,,(N) = ] L(N-k)M(N-k)
k=0
-1 1—Q2NV
= Re (Po - aP) T:_ET
Step 7
N-1

I;1(N,2) = ] T(2-k)M(N-k)
k=0

N-1 .
+ ) [@(k-z)AKR; - T(2-k)|M(N-k)
k=g

fpY [1 - aN—z + JNt1 a_l - az
5] | T == . T - a?

Il

“N-2

=1-a + aN+1(a—2

- o*)/(1+a)
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Step 8
Hence y(N:2) is found by substitution into

P(N;2) = ($(N=2) = T;3(N,2))(I + I,,(N))"L

Step 9

H(z;N,2) = [n11(2,2) + $(N;2)n,,(z,N)[a~1(2)
P z(z-1) T 1+8
P+r) | (az-1)(z-a) |P+r

P Zl—%
[P+r] (az-1)(z-a)]

] z(z-1)

pyBo_ 2 [z )N
+ w(N,Z)lI_ - 51;}[?1?) (a0z-1)(z-0a)

Note the exclusion of any terms of z~N,

These terms occur outside the interval length of N, and

thus are excluded in this algorithm.
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2.6  Summary

A finite interval, time invariant sﬁoothing filter has
been derived. The'smobther can either be implemented in
Z transfer function or weighting sequence form. For
implementation of the smoothing filter beyond the finite
interval N; the smoother has a fixed memory length.
Implementation is achieved for these times by sliding a
'window' of the N most recent observations and weighting
these observations with the optimal smoother weighting
sequence. In this way, divergence problems associated
with erroneous data can be avoided. Four special cases
emerge from the solution to the finite-interval smoother.
They have been shown to be equivalent to related work

in this area.

By manipulation of the steady-state matrix Riccati
equation, a simplified algorithm has been found for
computing the optimal smoother. Some of the steps of

the algorithm are easily obtainable by using standard
Riccati equation subroutine to avetd . spectral
factorisation. The remaining terms may be more difficult
to compute since they require z—tfansforming and inverse
z-transforming. However, by using this kind of algorithm
the problem of removing causal from anti-causal terms,
which is manifest in the original solution, is overcome
and further insight into the link between input-output

and state-space Riccati equations is seen.
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CHAPTER 3

Multivariable Self-Tuning Filtering, Smoothing and

Prediction

3.1  Introduction

The optimal filtering, smoothing and predicfion of multi-
variable processes traditionally employs a knowledge of
signal statistics or signal modél dynamics.- This approach
is taken by Wiener [1 ]| and Kalman [ 3,4 in their respective
frequency and time doméin approaches (op cit). It is
assumed using these approaches that signal statistics or
signal model dynamics are found off-line from calculations
using experimental data. This chapter @onsiders the more
difficult case for many reallapplications where these
quantitiés are unknown and leads to a solution in which
they need not be identified off-line. 1In addition, the

parameters of the signal model may be slowly time varying.

A z transfer function solution to a finite interval

- smoothing problem has been derived in Chapter 2 of this
thesis. It is shown how the first terms of the smoother
solution relatés to the infinite interval or Wiener

type of smoother or filter.

Hagander and Wittenmark [ 33 | derived a computationally
attractive implicit (without explicit spectral factori-
sation calculations), fixed-lag, self-tuning solution to
the smoothing problem for scalar ARMA processes. The
explicit form of their result is equivalent to the afore-
mentioned infinite interval frequency domain solution.

Hagander and Wittemnmark [ 33 ] employ a Bayesian approach
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and innovations signal mddel in the solution of the fixed
lag smoothing problem. The inhdvation model parameters
are estimated‘on line using extended recursive least
squares, or the real-time maximum likelihood method. The
assumption is made that the order of the ARMA process is

known or can be identified beforehand.

In this chapter a multivariable version of the problem in
[337] is discussed using a z-domain approach and polynomial
matrix algebra [ 45 ] An explicit solution for the optimal
smoothing, filtering and prediction probiems is preéented
in Section 3.3. This solution assumes the process and
noise statistics are giveh. No sucha:priori infdrmation
is assumed in the self-tuning Section 3.4. The parameters
of the innovations signal model are estimated using a
technique due to Panuska [ 77 | or extended recursive least
squares. The optimal estimators are then implemented
directly from thesé results. Self-tuning filters prove

valuable in many industrial filtering applications [ 787].
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3.2 Discrete-Time Process Description

The discrete-~time process will be represented in both
state spéce and vector difference equation forms. This
will enable the relationship between the Kalman and the

z—-domain results to be discussed.

(A) State Space Model

Consider a signal y(k) corrupted by a white noise sequence
v(k) and observed as:

z(k) = y(k) + v(k) (3.1)
The state x(k) is generated from the following stable,
discrete-time Markov process:

x(k + 1) = Ax(k) + Du(k) (3.2)
and

y(k) = Cx(k), x(k)eR®, y(k)eRT, w(k)eR% | (3.3)
where by assumption r = q. The Gaussian white noise |

sequences w and v are assumed to be zero mean with

covariances
cov@_(k)‘, w(n)] = Qs(k - n) (3.4)
cov[v(k), v(n)] = Rs(k - n) (3.5)
cov[w(k), v(k)] =0 _ (3.6)

The mafrices Q and R are assumed to be symmetric and
positive definite and the system is assumed to be in

operation from time -.

The input-output transfer-function relating the signal and
the driving noise is given as:

C(zI - A)"lD (3.7)

W(z) =
and
W(k) A Ce(k)D, for k > 0 (3.8)
0 for k £ O

it
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where o(z) = (zI - A)~! and o(k) = AK 1y -1). Here

U(k) A 1 for k 2 0 and U(k) A O for k < 0.

The signal can be calculated from the convelution

summation:

y(k) = Ek—l

W(k - 1)w(i) (3.9)
i=—o .
The observations signal can be represented similarly:

2(k) = 75 F(k - 1)e(d) | (3.10)

i=—o
where {e(i)} is a white zero mean sequence with
covariance:

cov[e(i)e(n)] = R_8(i - n) (3.11)

and §(i) = 1 for i = 0 and §(i) = 0 for i # 0. The signal
€ must; through (3.10) generate the same spectrum as the
observations signal, so that

F(z)R_Fl(z"1) = W(z)QW(2)T + R (3.12)
where |

F(z) A ZA(F(k)) (3.13)

It is well-known (Anderson and Moore [ 61]) that a Kalman
filter can be used to construgt the observations signal
z(+) given the white noise innovations signal. Thus, e(*)
can be identified with the innovations (Gevers and

Kailath E?Q] ) and F(z) represents the return difference
matrix for the filter (Arcasoy[25 ]| ). The covariance
matrix for the innovations (Sage and Melsa EGO] ) is given
as R, = R + CPCT. Note that,

F(z) = I, + Ce(z)AK | (3.14)

and the Kalman gain matrix (Sage and Melsa [ 60 ]):

K = pcTR™1 (3.15)
€
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where P represents the pdéitive definite symmetric matrix
which satisfies the steady sfafé Riccati équgtion:

p = apaT - APCTRglcPAT + DQDT . (3.186)
- The return-difference relationship (3.12) follows by

algebraic manipulation of the Riccati eqﬁation.
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(B) Vector Difference Equation Model

The vector difference equation (VDE) model of multi-
variablé autoregressive moving average (ARMA) model for
the system becomes

A(z"Ny(k) = C(z7 (k) ' (3.17)
where the zeros of det(A(x)) and det(C(x)) are assumed to
bé strictly outside the unit disc in the x-plane. Note
that A(z~!) and C(z7!) should not be confused with the
matrices occurring in the state equations since the
arguments in z~! will be retained. Unfortunately the
notation for both system descriptions is now standard.
The equivalent innovations signal representation becomes
[80,81] :

A(z"Yyz(k) = D(z7l)e(k) (3.18)
The polynomial matrices A(z !), C(z"!) and D(z~!) can be
represented as:

A(Z—vl) = II‘ + A]_Z-l + Azz—z + ... + Anaz-na (3.19&)

C(z71) = Cyz71 + Cpz™2 + ... + cncz‘nc (3.19b)
D(z"1) = I, + Dyz~! + D,z72 + ... Dndz‘nd (3.19¢)

The matrix A(z"!) will be assumed regular (that is Aﬁa is
assumed to be non-singular). The zeros of det(D(x)) and
thence of D(x) are regquired to lie strictly outside'the
unit disc in the x-plane. That is, D(z~!)~! is required
to be an asymptotically stable transfer function when

performing the spectral factorisation.

The equivalent VDE spectral factorisation result follows
immediately as:
D(z"l)RSDT(z) = C(z71)QcT(z) + A(z~1)RAT(z) (3.204)

and from (3.12) the relationship between D(z~!) and F(z)
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can be established as:

D(z"1) = A(z"1)F(z) - (3.20b)
To simplify the following discussions, the usual case ‘
where ne € nyg = ng = n, will be assumed to hold. If
(3.20a)is multiplied by z"2 and the limit as z + 0 is taken
then
[

DngRe = AnyR

and with the assumption that A(z”!) is regular then

= A=l
R = AnaDndRe
Note that the above assumption is only necessary to allow R

to be calculated and it follows that the assumption can be

relaxed if R is known,
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3.3 Frequency.Domain Solution to the Linear Estimation
Problems |
The optimal 1inear.estimator to minimise the performance
criterion:
J = B{(y(k - ) - §(k - 2]xNT(xx = 2)

- §(k - 2]K))} | o (3.21)
fdr the system described in Section 2 and given the
observations {z(i)}, i =k, k - 1, k - 2, ... can be
derivedkin the z-domain énd can be calculated using the

following results.

Theorem 3.1 Optimal Linear Estimator

The optimal steady state filter (& = 0), smoother (& > 0)
or bredictor (2 < 0) can be calculated using:

H(z;8) = (W(2)QWT(z"HF (2717 127"} ROIF(z)7)  (3.22)
The notation'{f(z"l)}+ is used to denote the transform of
the positive time terms in the expansion'of f(z~1).
Proof The proof follows from the results in Grimble [ 13_]
(2 < 0) and Moir and Grimble [62], (2 > 0), and is given

in Appendix 5.

The time invariant estimator can be implemented in the
weighting sequence form:

y(k - 2]k) = zk H(k - i;z)g(i).

where H(k;2) is the impulse response sequence of the’
~optimal estimator, and ﬁ(k - %2|k) denotes the least squares
estimate of the signal at time k - % given observations up

to and including time k. The estimator transfer function

matrix:
H(z;2) A F1(H(k;2))
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The expression for the transfer function matrix for the
estimator can be simplifiéd using (3.12):
(2wt (z"HFT (271127

= {(F(z)R_ - RFT(z-l)—l)z-2}+ (3.23)
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(A) Filtering and Smoothing

The results will now be specialised fo the filtering and
smoothing problems (&£ 3 0). Recall that F(z) can be
expanded as a convérgent matrix series in z™1!:

F(z) = I, + Fiz71 + Foz72 + ., ~ (3.24)
thence from (3.23): ]

{°}+R;1F(z)‘1 = 1,27% - R(FI(2"1)" 127,

X R_IF(z)7} | (3.25)
and the final term in braces can be expanded as a Taylor
series up to & terms:

(FT(z71)TlzTh ) = (Ip 4+ Pyz o+ Pyz? o+

+ Pzzz)z"g

Thus, let P (z)z™* o {FT(z"1)~1z7%} = (a(2)T0T(2)"1z7%),
so that

P,(2) = I + Pyz + Ppz? + ... + Pzl (3.26)
then collecting the above results, for & $ 0, the transfer
function solution becomes

H(z;2) = (Iy - RP (2)R_1F(z) 1)z~ (3,27)
The polynomial matrix Pl(z) can be calculated using the

algorithm in Appendix 6.

The optimal smoothed estimate can be calculated usihg:

J(k - 2]k)

H(z;2)z(k)

]

z2(k - 2) - RP (2)R]le(k - &)  (3.28)
where in this last equation z(k) = F(z)e(k) and

e(k - 2) = z(k - 2) - y(k - ¢|k = ¢ - 1)  (3.29)

Notice that in the filtering case 2 = 0 and Pz(z) = In
which leads to some simplifications in (3.28) and (3.27).
Also note that the smoothed estimate can be expressed in

terms of a filtered estimate and a correction term (Appendix 7).
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(B) Prediction

The results for the prediction‘case are somewhat
differentfrorithe foregoing. Let £; = -2 > 0 then from

(3.23)

{*} R IFr(z)"! {F(z)zzl} F(z)~l (3.30)
+ ¢ -+ :

{A(z-l)-ID(z-l)z21}+F(z)‘1 (3.31)

i

Introduce 5(2‘1) and A(z-l), where det(A(z“l)) =
det(A(z"!)) and A(O) = I,.via the relationship
D(z"1)A(z"1) = A(z"1)D(z"1) (3.32)
and let H(z"!) and G(z"!) satisfy the diophantine equation:
H(z1)A(z"1) + 27 16(z"1) = D(z"1) (3.33)
where the order of H(z"!) is np = &; - 1. Thence
zle(z'l) + G(z~DA(z"1)"1 = A(z'l)"lD(z"l)z21
and equation (3.31) may be simplified as:

G(z~1)A(z"1)~1D(z)~1A(z"!)

]

H(z;2,)

G(z~1)D(z"1)"1

The optimal predicted estimate can be calculated using:

J(k + 21]k) = G(z~1)D(z"1)"lz(k) (3.34)

This is a multivariable version of the prédictor derived
by Wittenmark (1974) EBO] and presented in a multivariable
self-tuning form by Tanttu (1980) [31]. The work has
been applied by Sym and Wellstead [ 57 | and by Holst [ 82 ].
Thus, the multivariable self-tuning predictor is already
well-established. The results here, however, do lead to

some unification in the area.

- 55 -



3.4.1 The Scalar Case

Hagander and Wittemmark [33] considered the difference
equation representation of the process of equations
(3.18) and (3.19). They assumed that the noise covari-
ances and process parameters were unknown, but that the
order of the polynomials were given. The following
algorithm was proposed in [ 33 ].

Algorithm 3.1 Scalar Case

Step 1; Estimate the parameters Aj, Dy, 1 =1, ...., By
in the polynomials A and D using ELS or the RML identifi-
cation method [ 56 |. The estimated polynomials are
denoted A and ﬁ, (estimate A and D ffom the innovations

model of equation ( .3.18).

It

Step 2: Compute the polynomial ﬁg(z) from A(z) ﬁz(zﬂiz)
and the smoothing estimate from |

y(k - 2]k) = z(k - ) - (ﬁnd/ﬁna)‘ﬁg(z)_é_(k ~ 1) (3.35)
where |

e(k - 2) = z(k - 2) - y(k - 2]k - ¢ - 1) (3.36)

The two steps of the algorithm are repeated at each step

of time.

3.4.2 The Multivariable Case

This section serves as a natural extension to the work of
Hagander aﬁd Wittenmark. An explicit polynomial matrix
solution to the multivariable fixed-lag smoothing problem
was presented in Section 3.3. To determine the expression
for the z-domain smoother, prior knowledge of the noise
statistics and the plant matrix parameters was assumed.
Further, a matrix spectral factorisation (equation 3.12)

has to be performed in order to determine the polynomial
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matrix F(z~!) and the innovations covariance. matrix RE.

The self-tuning multivariable smoother proposed in the
following section.alleviates these difficulties in the
same way as that of the scalar smoother of Hagander and

Wittenmark. The following assumptions ére made:

1. The signal generating process is linear, stable
and can be expressed in VDE form.,  both from an
innovations model (equation 3.18) and a process
model (equation 3.17). |

2. The degree of the A(z™!) polynomial matrix is
assumed known and n, = ng.

- 3. The dimensions of the observation vector and the
process noise vector are equal (g = r) that is,
the prdcess is assumed to be square.

4. The parameters in the process are assumed to be
constant or slowly time varying and the noise

sources are assumed to be stationary.

The sélf—tuning smoother may be constructed by reference
to equation (3.28). Clearly, the innovations sequence,
Pl(z), R and RE must be calculated before the estimate
may be found. ‘The matrix Pﬁ(z) can be obtained using
the algorithm in Appendix 6 once the innovations model
polynomial matrices A(z~!) and D(z~!) have been obtained.
These matrices and the noise covariance matrices can be

"estimated using the algorithm due to Panuska [ 77 ].

Parameter Estimation Procedure

First write the innovations model of (3.10) in the form

z(k) = v(k)o + eg(k) (3.37)
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with y(k) = block diag {nT(k), nT(k), ..., ni(k)} (3.38)

and
nT(k) = C2T(k - 1),..., -zT(k - ng), eT(k - 1),
eT(k - ng)]T |
o =[&f, eI, ..., eI : (3.39)
&7 A ith row of [Ay,...,An,;Dy,.-.,Dngl (3.40)

Equation (3.37) can be interpreted as the observation
equation for a state space model of (3.18) with the
state vector representing the (unknown) constant parameter
vector 9(k) = 6. The state equations for the paraﬁeter
estimation model become:
o(k + 1) = o(k) (3.41)
z(k) = y(k)e(k) + e(k) (3.42)
The extended Kalman filter algorithm proposed by
Panuska | 77 | may be employed to estimate @ and the

covariance matrices R and RE.

Algorithm 3.2 Multivariable Parameter Estimation

Initialise §(0) = 0°, 4(0) = 4°, R_(0) = R?
o(k + 1]k) = §

(klk - 1) + T(k)(z(k)
- P(k)O(k|k ~ 1)) (3.43)

r(k) = A(k)GT(k)(G(k)A(K)GT (k)"

+'ﬁs(k + 1))~} . (3.44)
Ak + 1) = A(k) - T(k)(&(k)A(K)GT(k)
+R_(k + 1))r(x) (3.45)
R (k + 1) = B () + g5 (2002T(K)
- R_(k)) (3.46)
where
e(k) = z(k) - p(k)d(k|k - 1) (3.47)
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and

30(k|k - 1)
The measurement noise variance may be estimated from
A A_l/\ A
R(k) = AnaDndRe(k) - (3.49)
Now denote S = R R™! and 1let

€

S(k) = AﬁéDnd (3.50)

The self-tuning filtering or smoothing algorithm now

follows:
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Algorithm 3.3 " Multivariable Self—Tﬁning Filter or

‘ Smoother
Step 1 : Using the Kalman filter algorithm of Panuska,
estimate the parameter vector é, and hencé construct the
matrix coefficients A;, D;j, i = 1,2,..., ng, (ny = ng).

Steg 2 : Estimate the innovations vector

ek - 2) = z2(k -9 - ¥(k - 2)8(k - 2]k -2~ 1) (3.51)

For % # 0 compute the variance ﬁe(k - ).

Step 3 : If & = 0, compute S(k) = Aﬁ;ﬁnd else compute

R(k - 2) = AplDp R (k - 2)

Step 4 : If % 0 go to Step 5 else compute Pz(z) from
AT(z) DT(Z)—I using the algorithm in Appendix 6.
Step 5 : For & = 0 compute the filtered estimate using
y(k|k) = z(k) - S(k)e(k) (3.52)
else compute the & step smoothed estimate from
I(k - 2]k) = z(k - 2) - R(k - 2)P (2)
x R_(k - £)7le(k - 2) (3.53)

The above steps are repeated at each sampling instant.

Remarks

1. The system matrices are identified directly from the
innovations model for the process and this avoids any
spectral factorisation stage. The algorithm can therefore
be classed as an implicit rather than an explicit self-
tuning estimator.

2. The implicit smoothing filter may be compared with

the work of Hagander and Wittenmark since for the scalar
case:
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Dnd/Ana = R/R8
and hence from (3.48) .

F(k ~ 2|k) =.z2(k - £) - (Dng/hp OB (2)E(k - 2)
with ﬁz(z) calculated using A(z)/ﬁ(z).‘
3. For the scalar case above, the noisé variances R and
R, may be found together as a ratio and can be employed
directly in the smoother/filter equation. Under multi-
variable conditions, only in the filtering case can
RR;l‘be used in the solution directly (S = RRgl).
4. The oksevvAation matrix y(k) is dependent on the
previously estimated innovations. The most recent estimate
of the plant parameters is used to calculate this approxi-
mation to the innovatiohs:

&k - i) = z(k - i) - $(k - 1)8(k|k - 1)
for i = 1,2,..., nq. The dependence of the obserVvdzrion -
matrix on the parameter é gives a non-linear estimation
problem which is solveable using the extended Kalman
filter.
5. If the computed innovations (résiduals) in the
information matrix y(k) are assumed to be independent of

the estimated parameter vector 0(k) then it is clear that:

Gy = 2LCRUERE =20 = Sy

6. The parameter estimation algorithm need not be multi-
variable. For filtering problems the matrices Ana and
Dnd can be estimated by calling a standard SISO extended
recursive least squares algorithm r times. For smoothing
problems, the innovations variance matrix Re may be

estimated via (3.46) and an extended least squares
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algorithm can be called r times to estimate A(z—l)
and’D(z—l). There are clearly similarities with the
work of Mehra [16-187] on the identificati&n 6f dynamic
systems.
7. Equation (3.46) is merely a recursive form of the
more familiar equation

~ 1 k-1 . AT

R(k) =% I e(i)e (i)

i=0 ‘

which is asymptotically unbiased.

3.4.3 Numerical Considerations

To avoid the matrix A(k+1l) -becoming singular (3.45) may
be replaced by

A(k+1)7 = aR) + éT(k)ﬁgl(k+l)é(k) + 61 (3.54)
for some small real scalar § > 0. In the same spirit,
to avoid Ana becoming singular, (3.49) may be replaced
by:

R(k) = (Ap, * 611)_1ﬁndﬁe(k) : (3.55)

for some small real scalar §; > 0. Under the given
assumptions the problem with singularity should not
arise after the first few iterations of the parameter

estimation algorithm.



3.4.4 Convergence Anal&sis

The following discussion of thé convergence of the self-
tuning'sméother or filter is based upon the work of |
Panuska [ 77 | who used the asymptotic.ccnvergence anal-
ysis of Ljung [35-37_| . It will be shown that the
parameter estimates generated by the algorithm converge

with probability one (w.p.l.).

Assume that all absolute moments of the sequence
{w(k)} exist and are bounded. Recall that the system
(3.1), (3.2) was assumed to be stable and assume that
the equatioﬁ generating é(t) in (3.47) be stable. Note
that the regularity conditions described by Ljung | 36 ]
can be satisfied. Thus, to apply the theory of [36]
. first obtain an alternative expression for the Kalman
gain T(k) in‘(3.43). Write (3.43) and (3.54) in terms -
of

P(k) = (kA(k))7! | (3.56)
Noting from (3.44) and (3.54):

(k) = (M) + GT(K)R_(k+1)71G(K))TIET (R _(k+1) 7

Ak+1)TL = 2007 + GTOOR (k+1)71G(k)
thus
B(k+1|k) = 8(k|k-1) + Biﬁz%l:i GT()R_(k+1)71
X (z2(k) - P(k)8(k|k-1)) (3.57)
and |
P(k+1l) = P(k) + E%T(GT(k)ﬁe(k+1)_lG(k)
+ §I - P(k)) (3.58)



The convergence analysis-depends upon associating (3.57)
and (3.58) with an ordinary differehtial equation that
includes -the necessary information about the asymptotic
behaviourv[36]. Tﬁis equation will now be defined in
terms of stationary processes resulting -from the algorithm
when thebparameter estimates are held at constant values
8(k) = 0 and R.(k) = B.. Then G(k), ¢(k) and e(k) would
give rise to some G(k;0), ¥v(k;0) aid e(k;0) for large k.

Taking now the expectation with respect to {w(k)} define:

£(o,R,) = E{G (k;0)R]! E(k; 0)} (3.59a)
g(8,R ) = E{GT(k;0)R_! G(k;0)} (3.59b)
h(e) = E{e(k;0)e(k;0)T} R (3.59¢)

It now follows from [ 36 | and by reference to equations
(3.57),- (3.58) and (3.46) that the behaviour of the
estimates can be described by the following coupled

ordinary differential equations, as k + «:

do (t) = P(t)" ! £(e(t1), R (1)) (3.60a)
dt

dP(t) = g(e(t), R (1)) + 8I - P(1) (3.60b)
dt '

dR_(t) = h(e(r)) - R_(1) | (3.60c)
a—'l'- €

Global stability of (3.60) implies convergence w.p.l. of
(3.57), (3.58) and furthermore the possible convergence
points of the algorithm are the stable stationary points

of the corresponding differential equation (3.60).

The convergence properties of the algorithm may now be

summarised.
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Theorem 3.2 Parameter ConVefgence

Consider the stable system describéd in Section 3.2 and
assume  the algorithm assures stable generation of e(k)
in (3.47). This éan be achieved by allowing only the
parameter vectors é(t) for which D(z71)~! is stable.
Then the estimate é(k)kconverges w.p.l. to a stationary
point of the function:

V(o,R) = E{e  (k;0)R;1E(k;0)} + en(det(R)) (8.61)
where A

e(k;0) = Dgt(z" 1A (z71) z(k) (8.62)
where A@ and De are polynomial matrices corresponding to

0.

The asymptotic properties of the algorithm 3.2 are
described by the differential equation (3.60). From.
(3.59%a), (3.47) and (3.61) obtain:

d = -
6 V(&,R). = -2f(8,R_)

and choose (3.61) as a Lyapunov function so that:

d _ dv '
- d_r(-Q(T)’Re(T))

= é% [E{E?(k;g(r))Re(r)‘lg(k;g(T))}
+ en(det(R_(7)))]

= E(d = (k;0)RYE(k;0))TP(1) 11(0,R )
do € —_ - €

o =T -1 - -1 -
E € (k,Q)R€ (h(e) Re)R€ e(k;0)
+ trace{Rgl(h(g) - RE)}

= -2£7(0,R )P(1)71£(9,R )

- trace{R_'(h(@)-R_)RZ!'(h(@)-R )} < 0  (3.63)
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For the differential equation (3.60a,b,c) to be globally
stable and thence for (3;57) to conVefge w.p.1l., the
derivative of the Lyapunov function must be negative
semi-definite. The convergence points of the algorithm
are determiped by the sfable stationary~points of the
differential equation [ 36 |. These follow from (3.63)

as: o = o* and R_ = R¥ where 0%, R¥ satisfy

£(0%, R¥) = 0 and R¥ = h(@*).= E{e(k;0*) =(k;0*)T}.

These are the stationary points of (3.61) which concludes

the proof.

If R8 is known apriori the algorithm 3.2 will
asymptotically minimise the usual Kalman filter minimum
variance criterion:

v = B{z B 1%},
however, this is not the usual situation. For scalar
systems for which D(z~!) satisfies a positive real
property, a stronger result than Theorem 3.2 can be

obtained.

Theorem 3.3 Convergence for the Scalar Case

Consider the system (scalar) described in Section 3.2
where A(z~!) is stable and A(z~!) and D(z~!) have no
common factors. Assume that the polynomial D~!(z71)-1/2
is positive real (i.e. Re{D‘l(ejw) - 1/2}>0, - mw<wgm) and
D(z"!) is maintained stable, then the parameter estimates
generated by the algorithm 3.2 converge to their true
values with probability one, i.e. é(k) +~ 0 and

ﬁe(k) - RE for k-,

Proof The result follows from Theorem 5.1 of Panuska

[77 ] with minor changes.
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Convergence of the Smoother or Filter

The smoother of filter tfansfér function may be written
in parametric form as:

H(z; &; 9, Re)

= (Iy - R(8,R_)P,(Z;0)RF 1(z;0))z™" (3.64)

Note also that the feature which ensures D(z~!) remains
étable in the estimation algorithm also ensures that the
smoother or filter is stable (see the return difference
relationship (3.20b)). The above results may now be

collected in the following theorem.

Theorem 3.4 Smoother or Filter Convergence

The self-tuning smoother or filter of Algorithm 3.3
converges with probability one to the estimator given by
H(z; &, 0%, RZ). Under the conditions of Theorem 3.2
the estimator converges with probability one to the
minimum variance estimator (this also applies in the

multivariable problem when D(z~1) = I, [777].)

The representation of thé multivariable system is not
unique but the optimal estimator depends only upon the
input-output transfer function matrix and thus the non-
uniquéness of A(z"l) and ﬁ(z“l) should not cause a
difficulty in calculating the estimator. The identifica-
tion problem can be simplified by representing the

system in a canonical form [ 95-98]. An alternative
approach to the analysis of the convergence problem would

. . 185] .
be via the work of Goodwin, Ramadge and CainegAOr Solo[Bf].
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3.5 Tllustrative Examples

To illustrate the operation of the multivariable self-
tuning'filter and smoother, three examples have been
chosen.

Example 3.1

The process is two-input two-output in the VDE (or ARMA)

form:

A(z™Dy(k) = C(z7Hu(k)

with
A(z"Y) =1, + Ayjz~!
C(z~!) = c,z71
where |
a; alz'] 0.9 0.4']
Al = =
La21 adoso LO 4 -0.9
[ 0.2 0.9 ]
= - |
| 0.9 0.8 |

The signal vector is corrupted by white hoise v and the
white noise vectors w(k) and v(k) have the variances:
Q = diag{0.01,0.01} and R = diag{1.0,1.0}
Some idea of the signal to noise ratio for this example
can be gleaned from figures 3.1 and 3.2 which show the
signal, noise and signal + noise for outputs (channels)
1 and 2. The order of the above process (ng = 1) was
assumed to be kihown and the signal estimates for each
channel were found using either the self-tuning filter

(% = 0) or the self-tuning smoother (& =10).

- 68 -



T (R
D00 B SOV R Y

| R A B

Noise

o
ot

]
[
.

Ty
Lrnele’

gt I3
T U
s
i

~ €9

D00 I L T At BRI SOV B
=omk o owhosb o osh sk
R TR 00 T oot T S O e B

.
0

wtd hol

. . . . . . .

IR NS 1 SR IR B A

Observation

Signal,Noise & Observation for Channel 1

Figure 3.1




2 Teuuey) J0J UOTIBAISSQQ % OSTON

¢

TBUYTS

o

¢ aJar

8 Tl

AR

e
P AU XY BN

DX IR Y
T

o
e
(e

"P"
ﬁ

Al
-,
Ll

]

i

G

]
U

R
i

1
1

X
Rl
1l

&
EY]

-
"
e
AR

i Yf'.;

[

Y
!

Tl =
i
L]

.

KR

.

]

o
el o=

)

I

i

1wt U] I

PR
THL

l

1

r""l

i

51 el o=d
v
i

1

Observation

Noise

Signal

70



For comparison purposes, the optimal Wiener filter or
smoothing filter estimatés Wefe also calculated based
upon the actual plént model. The process was modelled
using (3.18) and the spectral factorisation equation
(3.20) was evaluated as:

D(z‘l)REDT(z);

[1.9785 + 0.9z + 0.9z"1 0.009 + 0.4z + 0.4z~ 1"

0.009 + 0.4z + 0.4z} 1.9845 - 0.9z - 0.92_1[

There are many methods available to spectrally factorise
the above. These include Shaked [ 27 |, Strintzis [86] ,
Kufera [ 45 | and Vostry [ 84 ]. For this example, the

algorithm of Tuel [ 83 | was used to obtain:

D(Z—I)Ri = rml mz—l

B

where

m; A 1.049 + 0.856z 1

=2

m2_ 0.3822—1

>

ms3 0.3862—1

fi=

m, A 1.047 - 0.859z7!

li=g

" Now
_ 1 _ 1
D(z 1)R§ = (I, + Dz I)R;

thus

[

—1 o3
1im D(z 1)R€ =R

Z-ro

m

and thus

X | |
R® = diag{1.049, 1.047)
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and the innovation signal variance becomes:

R = R? RT3
€ € E

diag{1.1, 1.09}

Given Re,the matrix D; can be calculated as:

[ 0.816 0.365 |
D1=
0.368 -0.821

The matrix polynomial Pz(z) is found using the algorithm

in Appendix 6. For a smoothing lag of & = 10 steps and

n, = 1, this algorithm gives:
Pg(z) = .g) Pizi
i=0
where
Py = I,
P, = AT - DT
and P,, Pé, ..., Pjp are given as:
P; = -P; DI i=2,3,..., 10

The innovations sequence can be generated from (3.18)
e(k) = z(k) + Ajz(k-1) - Dye(k-1)

and thénce the optimal (10 step) fixed-lag smoother may

be implemented using:

Yop(k - &]k) = z(k - 2) - RP, (z)R_'e(k - 2)

Simulation Results

The parameter estimates for the A; and D; matrices are
shown in Figures 3.3 and 3.4. The true parameter values
are shown in broken lines. Figure 3.5 shows the
convergence of the measuremént noise variance matrix R
and Figure 3.6 shows the convergence of the innovations

variance Rs. Figures 3.7 and 3.8 show the signal, self-
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tuning filtered and self-tuning smoothed estimates for
channels 1 and 2 respectively;' It can be seen
(partidularly with channel 2) how the filter and smoother
'tunes in' to the signal. The first few hundred estimates
are erratic due to parameter uncertainty. To compare

with the optimal cases, the .. cumulative loss pér

channel was computed from
2000

Ly = ) (vi(3 - 2) - y5(3 - 2))?
j=1000

for i = 1,2

By starting at 1000, the initial errors associated with
the parameter estimation is avoided. The loss per
channel was computed for:

(a) the self-tuning Wiener filter (&2 = 0);

(b) the self-tuning fixed-lag smoother (2 = 10 steps);
(¢) the optimal Wiener filter (2 = 0);

(d) the optimal fixed-lag smoother (% = 10 steps).

Figure 3.9 shows the results. For both channels, the
self-tuning and optimal losses come very close to each
other for the filter and smoother showing good performance.

Example 3.2

A simulation study using the following process is
considered:
C (I + AgzT + AzT ) VKD = C W (R-1)

with
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C, =1,

and the noise covariance matrices are given as:
Q = diag{0.01,0.01}, R = diag{2,1}
A smoothing lag of 2 = 10 was used.
The signal and observation for each channel is shown in
Figure 3.10, giving quite a low signal to noise ratio

per channel.

The signal, self-tuning filtered and- smoothed estimates
for channels 1 and 2 are shown in Figures 3.11 and 3.12
respectively. These results, as with the previous
example, are quite acceptable. Finally the R8 andvR
matrix estimates are shown in Figures 3.13 and 3.14.
Finally, the accumulative loss per channel is shown in
Figure 3.15. This compares the self-tuning filter and
smoother. As would be expected, the smoother gives a

lower loss per channel than the filter.

Example 3.3

Thg purpose of this example is to study the effect of
slowly time varying process parameters. Example 3.1 was
used with R = diag{0.1,0.1} and the parameters aj,and a,;
varying according to

ajp = as; = 0.4sin(7vk/7000)
this gives for the number of points used in the simulation
a quarter of a sine wave with peak value 0.4. .Thus when

k = 3500, a;, = ap; = 0.4 which is the same as used for
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example 3.1.

In order to get a parameter eéfimation routine to track
varying parameters, it is best to use a 'forgetting
factor' of less than unity. In this way, past data can
be weighted exponentially more than preéent data. For
this example, extended recursive least squares [56] was
used with a 'forgetting factor' of 0.997. Figure 3.17
shows the parameter estimates for A;. The two time-
'varying parameters.are both shown to be tracking the

true sine curve 0.4sin(7k/7000). Figure 3.18 shows the
D; parameter estimates, two parameters of which are also
varying with time. Figures 3.19 and 3.20 show conver-
gence of R and Re. The self-tuning estimates are shown
for channels 1 and 2 in figures 3.21 and 3.22. Note that
the signal amplitudes are slowly increasing with time
and how the selfjtuning filter and smoother still manages

to give good estimates for each channel.
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3.6 Estimation of R when A

0,

-When An is singular algorithm 3,3 fails. This is due
a

to the computation of the measurement noise covariance R

" dis singular,

in step 3 or the computation of S in step 3 for the filter.
This section overcomes the problem for the special case
when the measurement noise covariance matrix is diagonal.

A simulation is shown to illustrate this.

If R is diagonal, let R be represented as

- 96 -

T
R = diag {a1, az . . . a )} and let the vector 8 = Eﬁ,azl..a;]
be the vector of unknown parameters of R.
The problem may be defined as
Given A, , D, and R, find R as the solution of
a d €
A . R=D R (3.65)
n, n, e
when det (A, ) = O.
a
Solution
- Let the matrix A . and matrix product DndR8 have elements
a
aij and Bij’ i, j; 1, 2 ... r respectively.
Define the r? xr dimensional matrix A_ as
T (3.66)
AX=|:N.‘1§ R
where 3 6
. = di ... A, .67
N, = diag {ail’ a; alr} ( )
i=1, 2 ... r
and the r? dimensional vector gx as the rows of Dn" Re
d
_{X:[Bn’ 812 LI ‘B;r; 821’ 822 PN BZI”
T (3.68)
'Br1, Brz Tt Brr :
and rewrite (3.65) in terms of AX, gm and JX thus
A9 =J (3.69)
X—M —X



Equation (3.66) has a solution using least squares
(Barnett [101] ).

=1 T
Ax t—I-x : (3.70)
Equation (3.70) holds under the assumption that AX has full

= T
Om (Ax A
rank r.

Algorithm 3.3 must be altered in step 2 so that Ra(k—ﬂ) is
estimated for any £30.

Step 3 now becomes :

Step 3 (singular Aﬁa)

T

x Ix (k=4

N /\TA -
For £ >0 compute 8, (k-£) = (AXbAX) 1A
giving R (k-£)

if £= 0 compute S(k) = R(k) R;I(k)

Example 3.4 éﬂa singular
Consider the signal generating process given by

(Iz + Alz—l )X_ (k)

0.49 0.49
A, = )
0.49 0.49

and with Q = diag {0.01, 0.01} and R = diag {1.0, 1.0}

w (k-1)

where

Evidently for this example Algorithm 3.3 fails when
estimating R or S. The modified Algorithm in this

section will be shown to be able to cope with that problem.

For this example D1R€ has the form

D]Re = 811 812
Ba1 Bz 2

hence from (3.68)

I, = [B11, Biz, B2, Bzé:F
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AX is found from (3.66) and (3.67) as

0.49 0 ]

which is full rank.

gm = (al, az)T where the true values of al and dz
are 1.0 as given by R. Using the modified algorithm to
compute Em and thus ﬁ, the estimate of al and a2 is shown
in figure 3.23. Figure 3.24 shows the - cumulative loss
per channel for the self—tuniﬁg smoother ( £= 10) and the
filter. Figures 3.25 and 3.26 show the self-tuning
smoothing and filtering responses for each channel. From
the cumulative loss graphs, the smoother clearly performs

better than the filter giving a lower mean square error.

3.6.1 Further difficulties arising

In the former analysis for A, singular it was assumed that
: &

AX was full rank r. Although this is a fair assumptioh to
make there are cases where AX is not full rank. For example
if A = 0 0.43 in example 3.4, then
! 0 0.49 *
A_ becomes
X : _
0 0
Ax = 0_ _0.49 _
0 0
0 0.49
which has rank one and makes Ag Ax singular in (3.70). The

following is a method of solving for this case although it
is not intended to be in any way practical since it will

require on-line testing of rank.

- 98 -



<)

time (I

Parameter

Estimates

of R natrix

e

Estima

“
3

3.2

”»

sure

Fi




ToUURYD J8C SSOT SATIRTOUND  $Z°€ 2anbT1g

v

Gt &
50

)
(]
(VI
[eg

[ (]
N
vt e e

®

¢ Tauueyy J

13

[\
@
Dox]
W

193TTI~-18 .WMWM
[y
¥

SO0 Ay
Tan ey
| Touueyy TGk T

194300Us-15

1937 Ta~1S

Loss

100

Loss



| Touuryy JI0J UOTITAIDSYQ puUL $JTWIISH! TRULTS GZ°g danhig

(%) 2wt

*.»

Q.0

Obsarvation

Smoothed

101

ltered

.
1

r

Signal



¢ Taduueyp J0I UOTILAIDISGQ put S93wdI1lsy’Teubig

9z € 2anbTy

Al

Obscrvation

d

r00the

Corny,

o

ltered

el

-

o

102



Assume AX has rank p > 0, then it is always possible to

find matrices CX and DX such that

Ax = CXDX . (3.71)

-where CX is a r?x p matrix and DX is a p x r matrix. Equation

(3.69)then has solution (Barnett [101 ] ).

6 = Al g (3.72)
—n X —X

where A; is the generalised inverse of AX given by

+
X

T
X

_ T To-1 T ~ \=1
A, =D, (DD)' (C Cc )t C (3.73)

3.7 State Estimation

This section will briefly describe the possibilitiés of
obtaining self-tuning filtered state estimates rather than
self-tuning filtered signal estimates. The advantages in
using state estimation lies mainly in optimal control or
pole placement. For the single input/output case Tsay and
Shieh [53 | employ a type of self-tuning steady-state Kalman
filter for pole-placement self-tuning control. A similar
technique is used by Lam [ 55 | for LQG optimal control. The
approach used here is essentially that of Jakeman and Young
[1027].
From the state space description of the process (3.1), (3.2),
(3.3) write the equivalent state—space innovations fdrm as
[1057] : |
¥ (k|k-1) = Cx (k|k-1) (3.74)
g(k + 1]k) = Ag (k|k-1) + Ky e(k) (3.75)
without loss of generality the following canonical form for

{4, K C} is found from equation (3.18)
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Kp = [gl: K2 j. . . 1 K, ]
a

c = [I:01:! .. .1 0]
where Ki.= Di - Ai’ i=1, 2. .. ,'n
If Ai’ Di’ i; 1,2. .., n, are estimated using Algorithm
3.2 together with e(k) then the states may be reconstructed
via equation (3.75). The signal estimate may be found
using (3.74) but this is not the same estimate as would be
obtained by‘using the self-tuning filter equation (3.52).
This is because (3.74) computes the a priori estimate and
(3.52) computes an a posteriori estimate. Equation (3.74)
would be obtained using a one step ahead predictor (Tanttu

[317] ) and is equivalent to the work of Shaked (Appendix 8).

To obtain the a posteriori estimate of the state one must

first compute [ 1037]:

x(k]k) = x(k|k-1) + Ke(k) (3.76)
where K is as equation (3.15). K is related to KF by the
relationship |

AK = KF (3.77)
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giving a filtered signal estimate from the state space as

¥ (k|k) = Cx(k|k)

Equation (3.78) now gives the same estimate as the self-

tuning filter equation (3.52). Equation (3.52) may be

written as

¥ (k|k) = z2(k) - B R]'e(k)

The relationship between (3.79)(the self-tuning filter),

(3.78)

(3.79)

(3.78) and (3.76) (the self-tuning state space filter), may

be shown more clearly in the following.

Employing the state-space equations first
From equation (3.76) and using (3.78)
y (k

substituting (3.15) for K gives

k) = i (k|k-1) + CKe(k)

ﬁ (k|k) = i (k|k-1) + cpc?t

Now R€ = R + CPCT => CPCT = RE -R

R_'e(k)

hence

¥ (klk) =y (k|k-1) + e(k) - B B 'e(k)

From (3.29) with £=0 ,
z(k) = y (k|k-1) + g(k)
substituting (3.83) into (3.82) gives

y (k|k) = z(k) - R B (k)

(3.80)

(3.81)

(3.82)

(3.83)

which is (3.79), the equation for the self-tuning filter.

Chen [ 76 ] has shown that a posteriori estimates give a lower

mean squared error than a priori estimates and therefore the

use of a posteriori estimates is justifiable.
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3.8 Summary

A self-tuning fixed-lag smodthér or filter for linear
multivafiable processes has been developed. A pélynomial
matrix solution to the fixed-lag smoothing problem was
first presented. This solution involved the spectral
fébtorisation of a polynomial matrix and assumed the
process and noise statistics were known. The self-tuning
smoother and filter assumes no such knowledge and the
unknown parameters were estimated from an innovations
signalrmodel. These parameters are utilised directly in
the smoother or filter and in so doing the process of
spectral factorisation is avoided. 1In the special case of
a single input/output process, the proposed smoothing
algorithm has been shown to be equivalent tobthe work of

Hagander and Wittenmark.

The convergence of the proposed algorithm has been proven
using the asymptotic stochastic convergence theory of
Ljungf The analysis could have been extended to employ
the recent work of Solo [ 87 | and this is an interesting

topic for future research.

Examples have shown the successful operation of the
self-tuning filters and smoothers. One simple example
illustrates how the algorithm copes with slowly time

varying process parameters.

The optimal multivariable predictor was derived by
similar arguments to the above. However, the results
were shown to be equivalent to those presented by

Wittenmark [ 30 | and Holst [ 82] in the scalar case and
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Tanttu [ 31 ] in the multivariable case. Thus, this
result provided some unification of different approaches
but it was unnecessary to develop a self-tuning prediction

algorithm since it had already been discussed by these

authors.
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- CHAPTER 4

4.1 Introduction ,

Linear Quadratic Gaussian regulators and controllers are
often thought as being more robust than those which employ
k-step éhead cost functions. The former can deal easily
with non-minimum phase and unstable‘systems. The latter
has problems when dealing with non-minimum phase systems
(Astrom [ 34 ] ) and even with the addition of control
weighting (Clarke and Hasting-James [ 39 |) has difficulty
in dealing with unstable systems. The same conclusions
may be drawn for self-tuning regulators and controllers.
The widely used generalised minimum variance STR (Clarke
and Gawthrop [ 48] ) has to have an additional cost-
function polynomial adjusted to cope with unstable

systems and the non-minimum phase problems.

The state-space approach to LQG regulators employs a
Kalman filter and a feedback gain matrix (Kwakernaak and
Sivan [ 99 |) This idea has been used by Lam [ 55 | to give
the first LQG STR. The STR is able to cope with non-
minimum phase -and unstable systems with sudden changes of
time delay. The STR employed in this chapter is LQG but
is considered from an input-output rather than é state-
space point of view. The input-output LQG controller uses
polynomidl equations and has previously been developed by
Peterka [ 40 | and Kucera [ 45 |. Two types of STR are
developed here. The explicit STR requires the solution of
one diophantine equation and one polynomial spectral

factorisation. The implicit STR requires only one spectral
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factorisation and no diophantine equations. 'By explicit,

it is meant that the controller parameters are calculated
from the dicphantine <guation

Awhereas the implicit'method estimates them directly.
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4.2 System Description

Consider the single-input/output prdcess and disturbance

given by:
-1 ' -1
y(£) = peErd u(e) + ) u(t) | (4.1)

with a measured output given as:

z(t) = y(t) + v(t) ' (4.2)
The disturbance and measurement noise sequence w(t) and
v(t) are stationary, have zero mean with variances Q and

R respectively and are independent.

The polynomials A(z~1),B(z"1!) and C(z~!) are given as:

n
A(z71) =1 + ayz7! 4+ 2,272 + ... +apz” F 0 (4.3)

n
C(z=1) =1 +cyz™! +coz™2 + ... + cngz ¢ (4.4)
B(z™1) = z78(bg + byz"! + ... + by, _ 2" ("7E)) (4.5)

and n,, np and n, are assumed to be known and it is

assumed that the A and B polynomials are relatively prime.

The process can be unstable, non-minimum phase and includes
a time delay k; of magnitude one or greater. If the
process is non-minimum phase the polynomial B is factored
into B = B;B, where B;(z"!) has all its zeros inside or
on the unit circle. B, includes both the time-delay and
non-minimum phase terms and has the form

Bo(z71) = 27K(byg + bp1z7™! + by,zm2 4

+ b 7~ (Fb2=k) (4.6)

*(np,-K)
The order nb2 of the polynomial B, includes the delay Kk;.
If the delay k; is known then by, is defined to be unity
and k A k;. If the delay k; is unknown (k; < np) then k
must be set to unity in B and B, which is the minimum for

physical realizability. Then if k; > 1 the coefficients
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bg, b1, ..., bk1—2 and bjg, by, ..., ‘are zero

by

| ® (k-2

and the polynomial B, can be normalized so that bz(k_ 1)= 1
-

Two genéralised spectral factors introduced by Shaked

[27, 43]] are required for the analysis. They are:

-1
pzya(aty = fE B g v R (4.7)
_ D(z71H)D(=)
T A(zTHA(z) (4.8)
pr(myay (a7 = REREL g + Ry (4.9)
_ Di1(z271)D; (=)
A1 (z=1)E)(2) (4.10)
Hence
- _ D(z™1)
A(z"Y) = =D (4.11)
and
- D,(z"!
Ay (z"1) =Kg—(z—fl)—) (4.12)
The polynomials D and D; are Hurwitz EAS] and are given as:
D(z~!) = 1 + dyz"l + dpzm2 + ... o+ dpgzT 4 (4.13)
DiE™l) =1 + dyjz !t o+ dppzT2 4 ... +d) 2 d (4.14)
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4.3 LQG Regulator

This section will consider the éase when the plant is
assumed to be known. The optimal LQG regulator will then

be given in polynomial equation form.

The LQG regulator is chosen to minimize the cost
function:

J = E{Q;e2(t) + Ryu?2(t)} (4.15)
where E is the uncondifional expectatién operator. The
optimal LQG regulator is defined by the following:

Theorem 4.1 Optimal LQG Regulator

For the process (4.1), (4.2), the LQG optimal regulator

has transfer function
- Gg(z~1) '
Co(z~1) = - 4.16
o( ) ﬁ%(g—rj ( )
where the polynomials Gy and Hy are given by the unique

solution of the diophantine equation:

A(z71)Hp(z71) + B(271)Ge(z"1) = Dy(z"1)D(z71) (4.17)

with
ngo =n, -1, Dh, = Db - 1
and
- . ~np
Ho(z"t) =1 + hyz7! + ... + hnhg 0 (4.18)
- n
Go(z™ 1) = go + g1271 + ... + Eng z7 8y (4.19)
0

Proof : The proof is presented in Ku¥era [ 45 | and
Grimble [ 44_]. A block diagram illustrating the LQG

regulator is given in Figure 4.1.
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4.4 Self-Tuning LQG Regulators

To develop the self—tuniﬁg LQG regulator the innovations

form of the process (4.1), (4.2) is written as:

-1
e(t) = %%§=T% e(t) - %%ng% u(t) (4.20)
with the error e(t) = -z(t).

4.4.1 Explicit LQG STR

An explicit (controller parameters ¢alculated) LQG STR
algorithm now follows based on theorem 4.1.

Algorithm 4.1 Explicit STR [ 64,65 ]

DATA : Choose the cost function weighting Q; and R;.
Step 1 : Using extended recursive least squares
estimate the parameters in the polynomials A, B ahd D
from

A(z"l)e(t) = D(z=1)e(t) - B(z~l)u(t)

Step 2 : Calculate the Hurwitz spectral factor D,
using

D;(z=1)D,(z) = B(z"1)B(2)Q; + A(z~1)A(2)R,

Step 3 : Calculate Gy and Hy from

A(z71)Hg(z7}) + B(z271)Go(z™t) = Dy(z71)D(z" 1)
Step 4 : Compute the control signal
w(t) = g2(z"1e(t)
0 .

Return to Step 1.

Grimble [ 64 | has termed the above algorithm Fixed
Criterion since Q; and R; are assumed to be fixed. The
term Fixed Spectrum has also arisen assuming that Step 2

is omitted and D; is chosen apriori, hence the STR then
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becomes similar to the péle placement algorifhms of

Wellstead et al [ 50,51 .

Assuming that the ﬁrocess parameters convergé to their
true values (this assumption may be made in all but a few
counter-examples if using extended least squares, Ljung
et al 100 | ) then the closed lbop form of the regulator

may be found by substitution of the control
_ Go(z~1)
u(t) = 'I_Tg—(?l—)' e(t) (4.21)

into the innovations form of the process (4.20), giving

-1 -1 -1
e(t) = §%§=T% e(t) - igj_lg gggz_lg e(t) (4.22)

or
e(t){A(z"1)Hy(z" 1) + B(z 1)Gy(z™ 1)}

= D(z"1)Hqo(z"1)e(t) (4.23)
by using the diophantine equation (4.17):

e(t) = %%%g;;% e(t) (4.24)
Equation (4.24) shows how the closed-loop poles are given
by the polynomial Dl(z'l). The STR is thus guaranteed
to be closed-loop stable. It also follows that the
steady-state variance of the regulator error signal is

given by the complex integral

g

o = e2 2ii § HO(Z)HD(Z—I) dz (4.25)

D1(z)D1 (2" 1) =z
where the path of integration is around the unit circle.
The above integral is easily computed by following the

algorithm in Astrom [ 34 |.

The operation of the explicit LQG STR may be illustrated

using the following examples.
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Example 4.1

Consider the output regulator problem given in Grimble

et al [65] and Tsay and Shieh [ 53]

y(t) = % _(;-1 322221 u(t)

1 - 0.5z"1 :
* [1 -z 1+ 2z'2} w(t)

For this example, there is no measufement noise and w(t)
is a zero-mean white noise process with variance Q = 0.25.
The process is both unstable and non-minimum phase.
Therefore a generalised minimum variance self-tuning
regulator (Clarke and Gawthrop [ 48 ]) will work only with
great difficulty>on this process [ 65 |. The reasoning
behind this is as follows. Since the process is non-
minimum phase the generalised minimum variance (GMV) self-
tuning regulatofs control weighting may be made
sufficiently large to stabilize the process. However,
this action is similar to using open-loop control which

is unstable for this process. Therefore using GMV self-
tuning control on this process is difficult, requiring
critical weighting on céntrol for stability. Although a
region of stability may be found using GMV self-tuning, it
is unlikely that the corresponding values of control

weighting would be known apriori.

The LQG STR of this chapter suffers from none of these

difficulties. Selecting the performance criterion

weightings as Q; = 1, R; = 0.0625 gives a D; polynomial as
D;(z"!) =1 - 0.49132z71 + 0.0289z"2

which has poles at z; = 0.423, z; = 0.0689 resulting in a
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stable closed loop process. Assuming the time delay
(k = 2) is known, the Gy and Ho,polyhomials may be found
from (4.17) to be
Go(z™1) = gg + g1271
and A
Ho(z"1) =1 + hyz7! + h,z72
with

gy = 0.0159, g; = -1.7326 = h,, h; = 0.00868

The fixed parameter or optimal regulator may be seen in
Figure 4.2. This shows the control signal and output.

A comparison may be made with the explicit LQG STR of
Figure 4.3 which is almost identical with the exception of
the erratic valﬁes for the first few steps. The process
parameter estimates are shown in Figure 4.4,‘the true

values shown with broken lines.

Finally, the calculated controller parameters are shown
in Figure 4.5 and are close to the true values. The
conclusion may be made that the LQG STR performs as well
as the optimal LQG regulator for this example, after

parameter convergence has taken place.
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Example 4.2

This example examines thé problem of an unknown and
variable time delay. It is shown how the explicit LQG
STR can cope with this problem.

The process is given as

“Kpq _ o1
y(t) = 20122 ), uce)

-4
. [1 - 0.5z }

T = z=1 ¥ oz=z|w(t)

With .Di(zfl) ﬁ'nl-—‘%—l + 0.5z 2 and

where w(t) is a white noise sequence of variance 0.25
and, as before, R = 0. The time delay k is assumed to be
unknown and will be varied from a minimum of k = 1 up to
k = 3. Table 4.1 shows the various values of controller
parameters and process parameters for these values. The

following model for the process was used for simulation

2z Y(by + byz"! + b,z72 + byz~3
y(t) = ZAPot Dre — * boy 227 u(t)

1 - 0.5z71
* [1 - z71 + 2Z_2]w(t)

kK 1bg by |ba [b3 | g0 81 hy h, hy |t

1{1 |-2|0 [0 ([+.5625 |-.9375 (-1.06 0 0 0-299
11-2|0 [-.375 |-1.125 |-0.5 |-1.125 0 [300-599
0 of1 |-2 (-1.5 0.7 |-0.5 |-1.5 0.75 |600-900

Table 4.1

The assumption is made of a one step delay for physical
realizability of the controller. The actual time delay

is varied according to Table 4.1 above and shows the
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corresponding true values of the process model and
controller parameters. The procesé parameter estimates
are given in Figures 4.6 and 4.7. The spikes oécurring
in Figure 4.6 correspond to the sudden change in time
delay. Figure 4.7 shows the changing B(z—l)_parameters
and are easily verified to be consistent with the true
values in Table 4.1 In this example, the paraméter
convergence is very rapid since the process is open loop
unstable giving an added inherent perturbation to the
control loop. For open loop stable processes, convergence
will be much slower and may require a 'forgetting factor'
of less than unity if the time delay changes, to aid
adaptation. The computed LQG contfoller parameters are
éhown in Figure 4.8. These too, are close to the true
values in Table 4.1. The process output and control
signal for the explicit LQG STR are shown in Figure 4.9.
Parameter uncertainty during the sudden time delay changes,
results in an erratic output and control signal for these
times. This is unavoidable and can only be remedied by
using a very low initial parameter estimate covariance

in the recursive least squares routine which leads to
very slow parameter convergence and thus slow adaptation

to variation in time delay.

4.4.2 Implicit LQG - STR

A control algorithm combined with process identification
may be classified as self-tuning control. The explicit
LQG STR is one such example. Because of the computational
burdens of such a philosophy (matrix inversions etc.), an

implicit LQG STR will be derived in which the controller
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parameters may be estimated directly using recursivé
least squares, avoiding the solution of simultaneous
equations. In Whgt follows, the arguments of the

polynomial equations will be dropped for convenience.

Theorem 4.2 Implicit Model

The implicit model from which Go and H, may be estimated
is given as

6(£) = Hoe(t) + S(Goe(t) - Hou(t))
where

$(t)

Dle(t)
Proof:
From the innovations form of the process write
-D - B.
e(t) = Ae(t) n u(t) (4.26)

multiplying (4.26) by the A polynomial and substituting

for D from the diophantine equation (4.17) gives

Ae(t) = (AHOD: BGo) . (t) - Bu (4.27)
or

Die(t) = [HO + E%ﬂ] e(t) - 1Ba(t) (4.28)
now let ¢(t) A Dje(t) so that

b(t) = Hoe(t) + 250 g(t) - 21B8(E) (4.29)

and substituting for e(t) from (4.26)

BG, [Ae(t)

5(t) Hoe(t) + G + Bu(t))

D

- EhE%LEl (4.30)

I

Hoe(t) + % [Goe(t) + Eﬂ%;LEl

_ QLEELEl) (4.31)



Prom the diophantine equation, (4.31) becomes

g, = HOe(t) + | (GOe(t) - HOu(t)) (4.32)
which completes the proof.
By writing the residual as <p() - HOe(t) and the
predicted output J(t|t-k) = 7~ (GOe(t) - HOu (t))
Hence

(4.33)
A

Consider ~(tlt-k). Assume the B polynomial is known or
can be estimated separately. Now define e”(t) = -Bz(t)
and u”(t) = Bu(t). The 1/D term is of the form (@ + delay

terms) of which only unity is of significance since the
optimal control has set the predictor to zero at all
previous times. This argument was originally employed
by Clarke and Gawthrop [48]. Assume also for the moment
that the residual c*(t) and the predictor *(tlt-k) are
uncorrelated after convergence so that any estimates will

be unbiased.

Estimates of Go and Hgo by regression can now be provided
using the following regression equation:

-D.jz(t) = GQeb (t) + HQub (t) + H e(t) (4.34)
where the regressa.nd -D"z(t) 1s available, the residual
is given by HQe(t) and the regressors of e”ft) and
u”(t) are known. The following LQOG STR may now be
given in a two stage identification algorithm.

Algorithm 4.2 TImplicit LQG Self-Tuning Regulator 1

Date: Choose the cost function weighting Q" and R".

Step 1: Estimate the process polynomials A, B and D using
extended least squares and the innovations model:

Ae(t) = De(t) - Bu(t)
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Step 2 : Calculate the Hurwitz spectralrfactor D; using:
D;(z"1)D;(2z) = B(z71)B(2)Q; + A(z71)A(2z)R

Step 3 : Estimate Gy and Hy using recursive least squares

and the prediction'modelz |

$(t|t-k) = Gpep(t) - Houp(t) = XT(t-k)o

Step 4 : Calculate the control signal as u(t) = (Gy/Hg)e(t)

and return to Step 1.

The so-called fixed spectrum STR [ 64 | neglects Step 2 and
places the closed-loop poles in desired regions within the
unit circle. 1In Step 3 above the vectors X and @ are

defined as:

2T(t-k) = (ep(t),ep(t-1) ... ep(t-ng ), - up(t-1),
- Up(t-2) ... - up(tony )
T
e = (go, g1 ... gngo:hl:hZ s hnho)

The drawback with Algorithm 4.2 as will be illustrated'by
an example, is one of parameter bias df Gp and Hy. The
assumption is made that after convergence $(t|t-k) =0
and hence ¢(t) and $(t|t-k) are uncorrelated. That
implies that E{e-zig} = 0. However, there are regressors
in $ which depend upon data within $. That is,

E{e-gT} # 0 which violates the condition for unbiased
estimates [ﬂ9,56] and implies that E{@} # 0. Moreover,
$(t) and ¢$(t|t-k) are correlated for all terms in o(t)
occurring at times less than, or equal to, t-k. This
problem is easily overcome by dividing the residual into

two terms Hp e(t) and Hyoe(t).
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$(t) = Hoe(t) = Hoye(t) + Hype(t)

where
Hop(z™) = 1+ hyz™! + ... +n_ 2" (K7D (4.35)
Hoz(z'l) = hkz_k-+ hk+lz_(k+1)'+
h 4+ h ~(Bp-1) '
+ nb_1z (4.36)
giving
HOIE(t) = S(t) + hle(t—l) + ... hk_le(t—k+1) (4.37)
Hpoe(t) = hype(t-k) + hk+1e(t—k—1) + ...,
+ hnb_le(t—nb+1) (4.38)

The term Hy,e(t) now contains all residuals dccuring from
time t-k, t-k-1 etc. These terms are correlated with the
predictor $(t|t—k) and hence must be included within it.

The modified predictor becomes:
o1(tlt-k) = ¢(t|t-k) + Hooe(t) (4.39)
and therefore the implicit model may be rewritten as:

$(t) = Hpre(t) + ¢1(t]t-k) (4.40)

The regressions within Hy;e(t) now are in the future

(t 2 t-k+1l) relative to the terms within $1(t|t—k) which
occur in the past (t ¢ t-k). The left-hand side of the
expression is therefore uncorrelated with the right-hand
side. This condition will give unbiased estimates. The

new implicit Algorithm follows.

Algorithm 4.3 Implicit LQG STR 2

As Algorithm 4.2 except Step 3 is altered to accommodate

the modified predictor.

Step 3 : Estimate G, and Hy using least squares and the
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prediction model:

31(t|t-k) = Goep(t) - Hoyup(t) - Ho,(Up(t) - e(t))
where E(t) is the t step estimate of the innovation,
computed from Step.l using extended recursivé least

squares.

From the above:
d1(t]t-k) = Xi(t-k)o
where
X (t-k) = [eb(t), ep(t-1) ... ep(t-ny ),
—_ go
- up(t-1) ... - (up(t-k) - e(t-k)),
- (up(t-k-1) - e(t-k-1))
- (U, (t-ny - t-n
(Up(t-np ) = e ( hoﬁ]
and @ remains as before.
From the previous argument
E{eX1} = 0 (4.41)

which implies unbiased parameter estimates or [ 56 ]

E{8} = o | (4.42)
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Example 4.3

The following example illustrafés the material discussed
in 4.4.2. The operation of an implicit LQG STR is
simulated using both Algorithm 4.2 and 4.3. The example
is chosen in such a way as to highlight~the drawbacks of
Algorithm 4.2 by illustrating the bias problem when

estimating the Gy and Hy; polynomials.

The process is given as

-1 -2
O afz?%ﬁ L y(t)

1 + cyz !
+ [————]——rl Yz ] w(t)
w(t) is a white noise sequence with standard deviation

10.0 and R = O.

The true parameter values are given as a; = -0.9,
¢y = =-0.5, by = -1, by, = 1. For simplicity, the poles of
the closed loop system may be pre-specified as

Dy(z"1) =1 - 0.6271
This type of controller has been termed an implicit fixed
spectrum LQG STR | 64 | From the diophantine equation
(4.17) the controller parameters are computed as
go = 0.1186, h; = -0.3186 and h, = 0.13186. Initially,
the implicit STR employing Algorithm 4.2 is simulated.
Figure 4.10 gives the controller parameter estimates
showing them to be either diverging or biased. This is due
to correlation between the $ and.% terms when using this
algorithm. In particular, the h; parameter is the most
in error. The process parameter estimates of Figure 4.11

are close to the true values. Algorithm 4.3 is now
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employed and will overcome the problem of bias in Hy and

Gp-

Figure 4;12 shows the convergence of controller parameters
using this scheme and shows the elimination of the bias
and divergence problem. For this example the H;, polynomial
is divided into

Hp; = 1

Hy, = hyz"! + hyz™2
thus two terms ih the regressors of the residual are
correlated with the predictor when using Algorithm 4.2.
When using Algorithm 4.3, these two terms are included
within the predictor and the resulting $1 is uncorrelated

with ¢.

The explicit Algorithm has also been simulated and the
results are shown in Figures 4.15 to 4.17. The

;cumulative loss function given by

2000

L = } (Qe?(i) + Ru?(i))
1=1000

is compared for the various schemes including the fixed
parameter or optimal regulator. Figure 4.19 shows the
loss for the implicit Algorithm 4.2 to be the highest
whilst the fixed parameter, Algorithm 4.3 and the explicit

Algorithm 4.1 give identical results of much lower loss.

By fixing the first identification in Algorithms 4.2 and
4.3 (i.e. working with a known process), very similar
results were obtained and are shown in Figures‘4.20 and
4.21 respectivély.
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Example 4.4

The examples in this chapter have so far not included
measurement néise., This example follows from example 4.3
but with the inclusion of measurement noise. Consider
example 4.3 but with Q = 1 and R = 10, thus giving a
significant amount of measurement noise. The process
model is identical to the previous example except the
measurement now becomes: |

2(t) = y(t) + v(t)
The explicit LQG STR is only considered here since the
implicit case follows as before. All the algorithms
previously given can already cope with measurement noise
in their present form. If the measurement noise is zero,
then D(z~ ') = C(z"!) and the innovations becomes the
disturbance noise w(t). For this example, the only
change is that the D polynomial alters to cope with the
measurement noise as does the covariance of the innovations

sequence.

The modified D polynomial may be found from (4.7) and

(4.8) as:

A(z"1)A(z)R + C(z-1)C(z)Q = D(z"1)D(z )R (4.43)
where Ra is the innovations covariance. From Chapter 3,
it follows that the D polynomial is acting as part of a
-self-tuning filter which is implicit in the controller
design to eliminate the effect of measurement noise. For
this example the D bolynomial was found from (4.43) to be:

D(z7l) =1 - 0.8254 z~!
which leads to an LQG optimal controller with parameters

given as g, = 0.022, h; = -0.548 and h, = 0.0246. The
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process parameter estimates are shown in Figure 4.22 where
the innovations representation of the process is estimated.
This avoids any spectral factorisation in the form of

equation (4.43).

The computed controller parameters, fouﬁd by the solution
of the diophantine equation, are showh in Figure 4.23.
These parameters are very close to their true values.
Finally, the measured process output, the process output
and the control signal are displayed in Figure 4.24. 1In
practice, the process output would not‘be accessible

but it is shown here to illustrate the amount of

measurement noise for this example.
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4.5 Summary _
A new LQG STR has been demonstrated using both explicit

and impiicit algorithms. The expliéit algorifhm requires
the solution of a diophantine equation to compute the
controller parameters. Using least squares, the implicit
algorithms can estimate the controller parameters
directly. This avoids the solution of the dicphantine
equation. One of tﬁe impiicit algorithms has been shown
to creafe parameter bias and this is overcome in the second
implicit algorithm. The implicit algorithms are new,
requiring a two-stage identification procedure. The

first identification is that of the process and using
these estimates the controller parameters'may be estimated

from the second identification.

The LQG STR has been shown to cope easily with non-minimum
phase and open-loop unstable processes. Previous STR have
had difficulty dealing with this problem, - : In
addition, measurement noise can be allowed for without
any complications by using the innovations form of the

process. This acts much like a self-tuning filter.

The time-delay in a process is usually assumed to be

known or estimated beforehand. This assumption need not
be made here. Moreover, an example illustrating this
point has shown how an unknown and variable time-delay can

be accommodated.
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Chapter 5

Concluding Remarks and Further Work

In this thesis, new theoretical results have been
presented in the field of linear least-squares estimation
and stochastic optimal confrol. The least-squares
estimation results overcome some existing problems for

filtering and smoothing in discrete time processes. The

finite-interval smoother is of mainly theoretical
importance due to its complexity but it has interesting
properties and advantages over existing Riccati equation

based solutions.

The section on multivariable self-tuning estimation is
intended for many real processes where the model and
signal statistics are unknown. Successful operation

is shown with various examples which may be encountered

in industry. Fung and Grimble|:104j have applied this
work to the dynamic ship positioning problem where a
multivariable self-tuning filter is used to estimate the
high-frequency motion of a vessel at sea. The filter

has been shown to reliably adapt to various sea conditions

giving encouraging results.

LQG regulators and controllers can cope with unstable and

non-minimum phase processes without any difficulty. This
thesis has considered LQG self-tuning regulators using an

input-output rather than state-space approach. It has

advantages over the pole-placement methods of Wellstead
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and co-workers since an implicit éigorithmvhas been

derived. 'A‘greater awareness is achieved for the control

of a process if using LQG control since the process output
and control signal can be separately weightéd to the
designer's wishes. Pole placement ideas, although robust do

not give the designer any of this versatility.

Future research concerns the study of the asymptotic
convergence of the LQG self-tuning regulator algorithms.
In particular, the implicit algorithm. This employs a
novel two-stage parameter identification. The first
estimates the process parameters and the second the
regulator parameters. In the analysis it would bé
necessary to fix the parameters of the first identifica-
tion while studying the analysis of the second, and
vice-versa, using probably the methods of Ljung. As an
alternative to this two-stage idéntification technique,
the bilinear estimation algorithm of Astrom [ 89| could

.be used.
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APPENDIX 1 ':" PROOF OF THEOREM 2.1

Let the weighting sequenée of the optimal smooting filter
by denoted by h(k;N,zj for all k, wﬁere N is the interval
length and & is the smoothing delay. The filter response

for y k then becomes

K
x(ky/k) o ) [B(k-1i;N,2)z(1)

=00

+ P(k-i+1;2)6(i~1)x5 | (A1.1)
X k
= p(k;2)xg + )} h(k-i;N,2)z(i) (k > 0) (Al1.2)

i=-o
Note that since the plant has an impulse input at time
zero, the smoother has an input of magnitude éa in order
to optimize the zero input response. In the finite time
problem, Xj is the initial state estimate. Define the

vector

do(k;N,2)

p(k;2)Xo ¥ k > 0 - (A1.3)
= 0 vks<O ' (A1.4)

Equation (A1.2) then becomes

v k
x(ky/k) = do(k;N,2) + §  h(k-i;N,2)z(i) (A1.5)

i=—ow

Necessary and sufficient conditions for optimality

A necessary and sufficient condition that g(Kl/N) be a
minimum variance smoother for x;(Kl) is that the estimator

impulse response must satisfy the Wiener-Hopf equation.

cov[gi(xl),g(x)] = 1; ﬁ(N—i;N,)@)COV[E(i),g(A)]

=00

(A1.6)

and the smoother zero-input response go(k;N,z) be such

that:
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E {x(K1/N)} = xj(Ki) ‘ (A1.7)

This is proved using the projection theorem in Appendix 3.
The Wiener-Hopf eduation can now be expanded and then

transformed into the frequency domain, as follows:

Expansion of the Wiener-Hopf Equation
The LHS of equation (Al.6) can now be expanded by using

the results in [13]

cov;Ei(K1),g(A{] ¢(K1-A1-1)DGU(K1-A-1)

o(K1)Az gATaT(a)CT

+

w(N;z)[}(—X—l)DGU(—A—l)

+ ¢Xox(fl)C?]

A-1
+ ¥ (e(K1-1)DQDTeT(a-i)aT
i=le
(A1.8)
where
6. _(=2) = E{x(0)xT(1r)} (A1.9)

XpX

The RHS of the Wiener-Hopf equation is given as [13]

N .
1 h(N-i;N,g)COV g(i),g(k{]

i=—w

N . i-1 A-1
= ] h-i;N,2) ¥ I w(i-3)Qs(j-r)wl(r-r)

N .
+ } h(N-i;N,2)[R6(i-1) + w(i-A)G + GTwT(x-i)]

j=—c

N A
+ § B(N-i,N,2)Ce(i)AzyaTeT(a)cT (A1.10)

l=—.m
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The fully expanded Wienér—Hopf equation now'comprises
equations (A1.9) and (A1.10) ahd can be simplified by

using the result

N
[3(kK1) - § h(N-i;N,2)Co(i)]zoATeT(a)cCT

i=1
= 3(N;2)z08TeT(1)CcTu(n) | (A1.11)

for » > 0. The complete Wiener-Hopf equation can be
considerably simplified by substituting for » = K1 - k
and by using thé substitution of equation (Al1.11). The
condition for optimality may now be expressed as:

Gy(k) =0 vk >- 2 (A1.12)
where

Gn(k) A

w(N;z)[%OATQT(Kl—k)CTU(Kl—k) - $(k—-K1-1)DGU(k-K1-1)

¢X0X(k—K1)C?] + ¢(k-1)DGU(k-1)

N | i-1 K1-k-1
Y AN-isN,2){ ) I w(i-3)Qs(j-rIwl(Kl-k-1)

i=—w Jj=—o r=-w

+ R6(i+k-K1) + w(i+k-K1)G + GIwl(K1l-k-i)

|
K1-k-1
+ ¥ o(K1-i)DQwT(K1-k-i) (A1.13)

i=—w

where the smoothing lag is defined to be

2 =N - K1 ' (A1.14)
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Transforming into the frequency domain .

The transformation into the frequency domain is obtained
by taking bilinear z transforms of equation (A1.10).
Using the results of Appendix 2 the frequency domain

expression becomes
Gy(z) = w(N;z)[foATéT(z'l)z’chT - o(z)z"Klpg
- @(Z)DQDTQT(Z‘I)CTZ_K%] + ¢(z)DG
+ 0(z)DQWT(z"Y) - fi(z;N,2)|W(z)QwTl(z"1)
R+ W(2)G + GTWT(z‘lszz (A1.15)
The generalised spectral factor, A(z), of the discrete,
observation spectral density is such that [27]
T, -1y — T, =1
A(z)A(z"Y) = W(2)QW (z"!) + R + W(z)G
+ GIwT(z—1) . (A1.16)

where A(z) is a rational function of =z whose poles are
those of W(z) and whose inverse is analytic outside the

unit circle.

Multiplying both sides of equation (Al1.15) by

A"T(z‘l)z‘z, the frequency domain expression becomes:

Gy(z)z~*a~T(z"1) = w(N;z)[%OAT@T(Z‘l)CT - ¢(z)DG

- @(Z)DQDTéT(z_l)C?]A‘T(z‘l)z—N

+ 9(2)D(G + QWl(z"1))a~T(z"*yz"%

- H(z;N,2)A(2) (A1.17)
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Referring to equation (Al1.12), it can be seen that the
cross spectral density term GN(Z)A-T(Z—I)Z_Z is..zero for
all k 2 0. The smoothiﬁg filter is requiréd to be
causal, so that all uncausal terms muét be removed. This
is achieved in the frequency domain by removing all terms
in expression (A1.17) whose poles lie outside the unit
,disk (assuming that the signal model is stable).

Equation (A1.17), solved for the causal optimal smoother,

then becomes:
H(z;N,2) = {@(Z)D(G + QwT(z—l))A"P(z*l)z‘Z

~ w(N;2) [3(2)D(G + QWi(z"1))a"T(z"1)

- zOAT@T(z‘l)cTa‘T(z—l[]Z‘N} A"1(z) (A1.18)
+

And by using the simplifications of equations (2.28-2.31),

equation (A1.18) can be expressed as:
H(z;N,2) = n11(2,0)87H(2) + p(N;0) [012(2, 1)

+ nz(z,Ni]A-l(z) (A1.19)

This is the optimal, finite time smoothing filter in the
z-domain. The calculation of the y(N;2) matrix may now

be considered.

Calculation of ¢(N;2) matrix

From the necessary and sufficient conditions for
optimality (Appendix 3), the zero input response must

satisfy

- N .
dg(N;N,2) = gi(Kl) - Y h(N-i;N,2)z(i) (A1.20)

1==—=c
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and since Z(i) Cx(i) # v(i) then

| N
%, (K1) - ] h(N-i;N,2)Cx(i) . (A1.22)

1=Se=

]

éO(N:N:R‘)
Since x(i) = 0 for i ¢ 0 and by using equation (2.18):

| N
dg(N:N,2) = [6(K1) - § A(N-i;N,2)Cé(i)]m, (A1.23)
i=1"

and by comparison of equations (A1.23) and (Al1.3), the

Y(N;2) matrix becomes

=2

Y(N;2) = ¢(K1) - ] A(N-1i;N,2)Ce(i) (A1.24)

i=1

and

From equation (A1.19)

H(z;N,2)Ce(z)A = [?11(2,2) + Y(N;2)(n;,(z,N)

+ nz(z,N{]M(z) (A1.25)
Using the following results

(212N, = 7 (MT(N-k) U(N-k )]

nyp(k,2) = %7 (n11(z,2)) and
ny,(k,N) = Z71(n1,(z,N)), The inverse transform of ‘equation
(A1.25) into equation (Al.24) gives

N
NG 2) = p(KD) = L naCk, £)MN-K)
N |
- ¥(N;2) ) npp(k,NIM(N-K)
k=1

N
- P(N;2)Zo¢ § MT(N-K)M(N-k)) (A1.26)
k=1
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Hence after re-arranging equation (Al.26)

¥ ) = [3(KD) - TN, 2)] [In + T1o(N)
| + IoS(NY]™? | (A1.27)

where I;;(N,2), I;,(N) and S(N) are given in equations

(2.35 - 2.37) respectively.
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‘APPENDIX 2 :125'TRANSFORMATIONS‘OF'SUMMATION'TERMS
Consider the following '
TN i=1 Kl-k-1_ :
PR T B(N-i;N, 2)w(i-3)Q8(j-T)
i=-ew

j:-oo r=—c

x WT(Kl—k—r{} : (A2.1)

By definition of the two sided z transform, equation

(A2.1) becomes

o N i-1  Kl-k-1
) ) ) Y B(N-i;N, 2)w(i-3)Qs(j-r)
k=—o i=—oc0 j:—oo Tr=—co
x wl(Kl-k-r)z"K (A2.2)

After the removal of the delta function, by substituting:

p = K1-k-j
m= i-j
s = N-i

(A2.2) now becomes

(=] ©©

20 21 Xlﬁ(S;N,2)W(m)QwT(p)z“KlzNz“Sz‘mzp (A2.3)
Since N-K1 = g and w(0) = 0

7Y F h(s;N,2)z Sw(m)z UqwT(p)zPz*
s=0 m=0 p=0

= f(z;N, 2)W(z)QWi(z~1)z* (A2.4)

Employing the same technique

o N R
y Y h(N-i;N,2)[Ré(i+k-Kl) + w(i+k-K1)G
K=" i=ce |
+ GTwT(K1-k-ijz‘k
= fi(z;N, 2R + W(z)G + GIWT(z"1))z* (A2.5)
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and

o  Kl-k-1 ey L
3 Y e(XK1-1)DQw'(Kl-k-i)z~
=—  i=-w :

= 2(z)DQWT(z"1) | (A2.6)

To find§%§(¢xex(k—K1)

From equation (A1.10)
bypx(T1) = E(X(0)XT(A))
and from equation (2.17)
-1
E(x(0)) = ] @(-1)DE(u(i))

i=—c

and from equation (2.16)

A-1
E(xT(0) = ) E(aT(3))0TeT(a-3)
J =00
which gives
-1 A-1
E(x(0)xT(A)) = ] ] e(-1)DQs(i-3)DTeT(r-3)

Thus

Z (0 £ (kK1)

- 1 Kl-k-1
= ) }  e(-1)DQs(i-j)DTeT(r-j)z~kK
k=—0° i=—oo ‘j=.-°°

= 1 _ ) ®(r)DQD®T(t)Z—rZ »—K1

8(z)DQDTe T(z=1)z~K1 (A2.7)
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APPENDIX 3 . THE DISCRETE WIENER-HOPF EQUATION

Theorem |

A necessary and sufficient condition that g(Kl/N)'be a
" minimum variance smoother for x;(K1l) is that the matrix
function h(N-i;N, %) should satisfy the Wiener-Hopf

equation (K1 < N)

COVE}gi(Kl), E(A):] = 1§ A(N-i;N,2) cosz_(i), E(A)]
i=ew .

(A3.1)

fqr all Ae(-»,N), and the smoother zero input response

§O(N;N,z) satisfy the equation:
N

do(N;N,2) = X, (K1) - J h(N-i;N,2)Z(i) (A3.2)
i=o _
Proof
Let X denote the space generated by the random vectors—
'{§i(K1)} and let U X represent the subspace generated
by the set of observations {z(k)} where the elements
u(Kl)eU are given by
v . |
u(K1l) = do(N;N,2) + ) h(N-x;N,2)z(r) (A3.3)

_ A=—o

where d (N;N,2) is an unknown deterministic vector. From
the orthogonal projection theorem and the decomposition
theorem [12], the norm ||x;-u|| is minimised by a vector
x eU if (x4-X) is orthogonal to U.
From the above, the inner product becomes

E{(x;(K1) - x(XK1/N))uT(k1)} = 0 (A3.4)
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Substituting for u(Kl) from (A3.3) gives
(X3 (K1) - B{Z(K1/N)IH3(N;N,2)

N . .
) BO(x; (K1) - x(K1/M))zT(A)}

x hT(N-2;N,2) = 0 (A3.5)

The sufficient condition for optimality becomes:
E{x(K1/N)} = X;(K1) (A3.6)
and
E{(x; (K1) - X(K1/N))zT(1)} = 0 for Ae(-=,N)  (A3.7)
since dy(N;N,2) and h(N-X;N, %) are arbitrary matrices.

The necessity of the theorem>can be verified by noting

that if these matrices are chosen as
dg(N;N,8) = 4(K1) - E{x(K1/N)} (A3.8)

and

h(N-A;N,2) = E{(x;(K1) - X(K1/N))zT(x)} (A3.9)

then the terms in (A3.5) are positive definite. It follows
that these terms must be identically equal to zero,

establishing the necesSity of the theorem.

The first condition for optimality requires that the

smoother be unbiased and the second gives:

E{x; (K1)2T(A)} = do(N;N, £)Z ()

N
+ Y h(N-i;N,2)E{z(i)zT(A)} (A3.10)
l=

-— 0

Combining (A3.10) and (A3.8) gives

N |
E{x; (K)zT(A\)} = ] A(N-1;N,0)E{z(i)zT(A)}  (A3.11)

1==0

This is the required form of the discrete Wiener-Hopf
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APPENDIX 4

To prove
2(2)DaDTWT (27 1) T(z1y = p|aTeT(2"1) + 1]

Y
x CTA"T(z"1) + % (2)AKR® , (A4.1)

After manipulation of (2.44) (Arcasoy [25] )

(zI-2)P(z711-AT) + AP(z~11-AT)

+ (zI-2)PAT + AkcpAT = pgpT (A4.2)

or
8(z)~-1Pe~T(z"1) + APo~T(z~1) + o(z)~lpAT

+ AkcpAT = pDT . (A4.3)

Thus pre-multiplying (A4.3) by ¢(z) and post multiplying
by <1>T(z"1)CT gives '
PCT + o(z)ApCT + paATeT(z-1)cT

+ 8(z)AKCPATsT(z~1)cT = o(z)DQwT(z1) (A4.4)

= pcT + PaTeT(z"1)cT + o(z) [AkR _KTAToT(z71)CT
+ AKR.] = o(z)DQWTl(z"1) (A4.5)
with K defined as in (2.45) and R, as in (2.46).

(A4.5) now becomes

PI_AT<I>T(z“1) + 1]cT + @(Z)AKRSL—I + KTaTeT(z~1)CT]

= ¢(z)DQWT(z"1) (A4.6)
From (2.48)
FT(z=1) = kTaTeT(z71ycT + 1 (A4.7)

and using (2.50)
R72aT(z71) = ¥T(271)

Hence (A4.6) can be re-written as
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(z)DQW (z"1) = P[§T¢T(zf}) + 1]cT

- @(z)AKRiAT(z"l) ' (A4.8)

Clearly

8 (z)DQWT(z"1)a"T(z71)

= p|aTeT(z"1) + 1]cTa~T(z"1) + @(z)AKRi (A4.9)

which proves equation (A4.1).
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APPENDIX 5 : PROOF OF THEOREM 3.1

Using the result of Theorem 2.1 as N + =« and G = 0 gives
the infinite interval or Wiener smoother. From (2.39)

this becomes

H(z;%) ='{W(z)QwT(z"l)A—T(z-l)z—2}+A‘1(z) (A5.1)

Substituting for A(z) and AT(z"l) from (2.49) and (2.50)

(Arcasoy [27] ) gives

H(z;8) = {W(z)QWT(z"1)FY(z71) 1R ta?y

-1 _
x R_*F lez) (A5.2)

'='{W(z)QWT(z-I)FT(z-lflz“z}+R;1F‘1(z) (A5.3)
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APPENDIX 6 ':" POLYNOMIAL MATRIX EXPANSION ALGORITHM
This algorithm enables the computation of the &2 + 1

coefficient matrices of the polynomial matrix P(z), where

P(z) A A(z)TDT(z)"!

= Ir + PIZ + P222 R PQZ +
and
n
A(Z) = II‘ + AIZ"*' A222 + ... AnaZ a
, oy
D(z) = I, + Dyjz + Dyz2 + ... Dpy2
The coefficient matrices Ai, Di, i=1,2, .... are

r-square and it is assumed that nyg and ng.

The solution for the matrix coefficients is an extension
of the scalar case given in [45]. The kth P matrix

coefficient is given by the formulae:

S
Pg = Ak - ] Py_jDy for k g n,

for k > n

where
s = MIN(ng, k)

This leads to the following computational algorithm.

Algorithm

Data required: smoothing lag 2 and degree of process ng,.
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Step

1 k = 0
2 Set R_ = 0
3 If k = 0 GO TO 8
4 i=o0
5 j=3+1
_ T
6 R, = R, +Pp_D;
7 If j < MIN(na, k) GO TO 5
8 If k ¢ n, then Py = Aj - R ELSE COMPUTE Pg = -R_
9 . Ifk = 2 STOP

10 k=k +1

11 GO TO 2

To initialise the algorithm Py = A, = I, Finally, the

matrix Pz(z) may be defined as:

P,(z) = I, +Pyz +Pyz? + ... +P 2%
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APPENDIX 7 ': SMOOTHED AND FILTERED ESTIMATES '

The smoothed estimate J(k - zlk) can be expressed in terms
of the filtered estimate’i(klk) as shown below. From
(3.28):

y(k - 2]k) = z(k - &) - P, (2)R]1e(k - 2)

and

z(k) = y(k|k) + RR_le(k)

thence

i

y(k - 2]k) = y(k - 2|k - 2)

+ R(Ip - P, (2))R_le(k - 2) (A7.1)

y(k - 2]k - 2)

- R }*PjR7le(k - & + i) (A7.2)
i=1 = ¢
or alternatively
%
y(k|k + 2) = y(k|k) - ] RP;jR_le(k + i) (A7.3)
i=1

by substituting k + 2 = b in (A7.3) above

b-k
§(k|b) = y(k|k) - § RP;R7le(k + i) (A7.4)
i=1
x| } o,
= y(k|k) - "RP; R 1le(di) (A7.5)
= = Ee =

and (A7.5) may be compared with other more well-known
result§, e.g. Anderson and Chirarattananon [90] and Kailath

and Frost [91].
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" 'APPENDIX 8 ':" COMPARISON OF TRANSFER-FUNCTION ESTIMATORS

This appendix compares the deriVed transfer-function
estimatérs of Chapter 3 with the related work of Shaked and

Barrett.

Consider first the predictor. From (3.30) with ¢&; = 1,

for a one step ahead predictor:

H(z;1) = {F(z)z}, F 1(z) (A8.1)

Expanding F(z) in a convergent matrix series in z ! gives

H(z;1) = {(Ip + Fiz7! + F,z=2 + ,..)z}, F l(z) (A8.2)

+

where F;, 1 = 1,2 .... are Markov parameters. Now taking

the causal part gives:

A(z;1) = (F(z) - Ip)zF 1(z) (A8.3)
= z(I, - F 1(z)) . (A8.4)
From (3.34)
y(k + 1]k) = A(z;1)z(k)
= H (z;1)z(k+1) ' (A8.5)
where
B (z;1) = Ip - F l(z) (A8.6)

Equation (A8.6) for the one step ahead predictor is the
same as which has been derived by Shaked [27] and

Barrett [26] for continuous time. The aim of their work
is to show how the steady-state return difference matrix
F(z) of the Kalman filter is useful in determining the
transfer function solution to linear estimation problems.

Clearly, the predictor is defined entirely by only F(z).
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The optimal filter transfer function matrix may also be

- written solely in terms of F(z). From (3.27) with 2 = 0)

H(z;0) = L. —'RRglF‘l(z) (A8.7)
from (3.14)

F(0) = I, + C8(0)AK ‘ | (A8.8)

=1I,.-CK (A8.9)

Using (3.15) for K

F(0) = I, - CPCTR]! (A8.10)

since

R, =R + cpct

on substituting cpcT = R, - R into (A8.10)yields

F(0) = Iy - (R_ - R)Rgl

RREI (A8.11)

Hence the optimal filter becomes
H(z;0) = I, - F(O)F 1(2z) : (A8.12)

which is expressed exclusively in terms of the return

difference matrix.
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