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Abstract

Results are presented from a variety of molecular simulations of phase coexistence 

using the well established Gay-Berne (GB) liquid crystal model.

Firstly, the simulation of bulk phase coexistence using the Gibbs ensemble Monte 

Carlo technique is presented, both for one and two-component GB systems. The 

one-component results, using a novel parameterisation of the GB, show a rich phase 

behaviour, displaying both isotropic and nematic-vapour coexistence, in good com

parison with previous studies. A method for arriving at the two-component parame

terisation is then discussed, followed by a novel application of the Gibbs ensemble to 

the isotropic-nematic transition in two-component systems. Results in broad agree

ment with theoretical predictions, subject to a large finite size effect, are obtained.

Secondly, upon the basis of the one-component Gibbs results, results are presented 

from a series of molecular dynamics simulations of a free standing GB film in equi

librium with its own saturated vapour. The introduction of inhomogeneity is shown 

to induce a preferred molecular alignment in the nematic film perpendicular to the 

liquid-vapour interface. At slightly higher temperatures the nematic film is wet by 

the isotropic phase, displaying an intermediate ordering regime where the formation 

of short-lived nematic domains within the film is observed. This effect has been 

analysed using orientational correlation functions, and shown to result from a de

coupling of the planar and perpendicular nematic ordering caused by the system 

inhomogeneity. A system-size analysis of this effect has also been undertaken, show

ing a definite increase in the range of decay of these orientational correlations with 

increasing system size.
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Chapter 1

Introduction

Liquid crystalline phenomena are highly significant in a range of areas in the physical 

and biological sciences. Ranging from such obvious technological applications as 

the twisted nematic display, and the wide-spread use of surfactants in the cleaning 

industry, through to the importance of self-assembly in a large number of biological 

processes, mesogenic behaviour is clearly a worthy topic of investigation.

However, despite having been under investigation since their discovery more than 

100 years ago [1], there is still much which is not known about the underlying 

physics [2,3] behind many liquid crystalline effects. In the last 30 years or so there 

has been considerable experimental characterisation of various liquid crystals. This 

has been relatively successful in determining the underlying structures of the various 

liquid crystalline phases, and in locating the transitions and phase diagrams which 

characterise such systems [4]. It is by systematic investigation of these that the via

bility of new liquid crystals for various applications is tested, and also, occasionally, 

novel behaviour is uncovered opening up the possibility of new applications.
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That said, it is important to realise that in the complicated statistical mechanical 

domain of phase transitions, experimental techniques can sometimes be of limited 

success in revealing the driving forces behind various phenomena. Also, the assump

tions needed for theoretical treatments of these effects can mean that they are too 

far removed from the real situation to provide useful information. It is here that 

computer simulation [5,6] can come into its own - essentially lying in between the 

realms of theory and experiment, simulation can be of great use in predicting trends 

which are difficult to access using the aforementioned techniques.

1.1 Aims

To date, the major application of thermotropic liquid crystals has been in the liquid 

crystal display (LCD), which takes advantage of the anisotropic optical and electrical 

properties of these molecules in low powered switching devices. In these, the use 

of mixtures of different liquid crystal compounds greatly improves the operational 

temperature range. Also of major importance is the pinning of the molecules at the 

device walls, since this affects the stable states available to the device and, to an 

extent, its power consumption.

The work described in this thesis relates to computer simulations performed with the 

aim of promoting greater understanding of these two aspects, namely polydispersity 

and interfacial symmetry breaking, and their effects upon phase behaviour. Specifi

cally, attention has been focussed on the phase coexistence of a much studied liquid 

crystal model, the Gay-Berne [7], in a novel parameterisation with a relatively small
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shape anisotropy. Initial simulations of the bulk monodisperse system indicated a 

potentially rich behaviour, and two different perturbations from this were therefore 

considered. Firstly, a relatively similar but different particle was introduced, mak

ing a bidisperse system whose behaviour around the isotropic-nematic transition 

was examined. Secondly, the effect of symmetry breaking upon the monodisperse 

coexistence was looked at, by direct simulation of an interfacial system.

The study of the isotropic-nematic transition for the bidisperse system was con

ducted mainly with a theoretical aim, that of observing fractionation, ie. preferen

tial existence of one species in the ordered phase in the coexistence region, since this 

provides a useful check of the mean-field theories which have predicted this effect [8]. 

Its successful observation would also mean a significant step forward in applying the 

Gibbs ensemble method to dense anisotropic systems. To date this effect has only 

been seen in markedly more bidisperse simulations [9], where the difference between 

the species types is much greater.

Although the interfacial system considered did not include any interacting walls, 

only liquid vapour interfaces, it was considered that this would provide an insight 

into the effect of the interparticle interactions upon interfacial alignment, being a 

reference system for the more complicated confined system. Explicitly, the aim was 

to see qualitatively realistic behaviour, with perpendicular (homeotropic) alignment 

at the interfaces and nematic wetting (surface ordering). This was also considered 

to be of theoretical as well as technological interest, being an example of complex 

behaviour observed with a relatively simple model, and exhibiting effects on many 

different length scales.
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1.2 Summary of Thesis

Aside from this introduction, the thesis is organised as follows.

In Chapter Two, an introduction to liquid crystals is given, concentrating on the 

types of molecules which display this intriguing phenomenon and the structures of 

the phases formed. Chapter Three considers previous attempts to model liquid crys

talline behaviour, using a variety of theoretical and simulation techniques, together 

with a brief description of the simulation methods used both in the previous studies 

and later on in this body of work. Attention is focussed on work which is relevant 

to the results presented here, although some effort has been made to give a wider 

consideration of experimental liquid crystals.

Chapter Four consists of the results of a series of Gibbs ensemble simulations of 

bulk liquid crystal coexistence, both for mono- and bi-disperse systems, together 

with descriptions of the parameterisations and the regions of the phase diagram in

vestigated. Based upon some of these coexistence results, simulations of a variety of 

different sized interfacial systems are presented in Chapter Five, using both standard 

Monte Carlo and molecular dynamics methods. As well as the usual considerations 

of the phase diagram, in depth analysis of the orientational correlations and their 

dependence upon system size is carried out, and comparisons are made with the 

bulk behaviour presented in Chapter Four.

Finally the implications of this work are considered in Chapter Six, from theoretical, 

experimental and simulation angles. The success of the program of work is assessed 

and suggestions are presented for future investigations.
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Chapter 2 

Experimental Liquid Crystal 

Behaviour

In this chapter a brief introduction to the physical properties of liquid crystals 

is given. Firstly the bulk phase behaviour is described, including details of the 

microscopic structure of the main liquid crystalline phases. This is followed by 

a short discussion of the effect of bidispersity upon this phase behaviour (ie the 

properties and importance of liquid crystal mixtures) and finally the implications of 

interfaces are considered, both for confined and unconfined materials.

2.1 Bulk Liquid Crystals

Materials which exhibit intermediate phases between the isotropic liquid and crys

talline solid states are termed mesogens. Mesogenic materials have been reported 

and investigated since their discovery in the late 19th century [1]. Their unique



properties have been exploited in many devices, notably in condensed matter sys

tems such as liquid crystal displays (LCDs), as well as applications in data storage. 

However, many of their properties and the underlying physics which gives rise to 

them are still not fully understood, and there remains scope for improvement in 

their utilisation.

Mesogenic materials can be classified into two distinct categories [3]; disordered 

crystal mesophases and ordered fluid mesophases. The former have their constituent 

molecules fixed at lattice sites but with orientational freedom, and are termed plastic 

crystals because they deform easily under stress. The latter exhibit long range ori

entational order with or without some long range translational order and are termed 

liquid crystals (LCs). They are generally classified in two categories; thermotropic 

and lyotropic. Thermotropic LCs form different mesophases solely upon variation 

in temperature, whereas lyotropic LCs do so by changes in concentration as well.

Like other states of matter, thermotropic mesophases are indefinitely stable at de

fined temperatures and pressures. They are split into two groups as follows. One 

in which the molecules have rod-like shapes - called calamitic liquid crystals - the 

first type discovered, and the other where they have disk-like shapes - called discotic 

liquid crystals - which were discovered relatively recently [10]. The familiar phases 

of liquid and solid are represented below (Fig 2.1) for calamitic liquid crystals.

As can be seen, in the isotropic liquid the molecules are completely disordered, 

whereas in the crystalline solid their long axes are all parallel and they are confined 

to a regular lattice structure. The intermediate mesogenic phases are characterised 

by varying degrees of orientational and positional order.
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Figure 2.1: Liquid and solid schematics

Since this work is primarily concerned with thermotropic calamities, a brief descrip

tion of only these phases will be given. They can be split into two main types; 

nematic phases where the molecules are orientationally ordered so that their long 

axes are preferentially aligned along some direction; this being called the director, 

and the more ordered smectic phases in which the molecules in addition display 

some sort of layered structure. Brief schematics of these phases are given (Fig 2.2).

If the liquid crystalline molecules are chiral then the nematic director will adopt a 

twist throughout the system, in what is called the chiral nematic phase. The length 

scale of the twist is often comparable to the wavelength of visible light, and it is these 

substances that are used in liquid crystal thermometers; the twist length changes 

with temperature and thus causes a different optical colouring to be observed when 

light is reflected by it. However, chiral systems are not of importance in this thesis.

Various sorts of smectic phases exist; their classification being dependent upon the 

degree of ordering within the layers and the presence of any tilt with respect to the

7



/A  / / .|V\ \
i W /

IIWI I
m m /
IlflUl

///////
///////
///////

Nematic S m ectic-A  Sm ectic-C

Figure 2.2: Liquid crystal schematics

layer normal. The simplest smectic phase, where each layer is a two dimensional 

liquid and there are no correlations between the layers is known as the smectic-A 

phase. The tilted analogue of this is the smectic-C phase, the nematic director 

being tilted with respect to the smectic layer normal. Both of these phases are 

shown above (Fig 2.2).

In the hexatic smectic-B phase there is long range order within the layers, the 

molecules being distributed locally on a triangular lattice; however the number of 

defects is such that the positional order does not extend over distances larger than 

a few 100A, but the bond order extends over macroscopic distances [2]. However 

there are no inter-layer correlations, and hence the phase keeps its liquid character.

A number of different molecules have been shown to display calamitic LC phases. 

All of these share a geometrical anisotropy in shape. A schematic showing the key 

constituents for a mesogenic compound is presented below (Fig 2.3).

From the vast amount of experimental data available, the main parts seem to be 

a rigid core, which generally consists of two cyclic compounds, A and B, possibly



Figure 2.3: A generic mesogenic template

linked by a group Y which maintains the linear nature of the core. The end groups, 

R and R’, are usually straight alkyl or alkyloxy chains and serve to introduce some 

degree of flexibility into the molecule; however one terminal unit is often a small 

polar substituent. The presence of lateral substituents, M and N, has been found 

to subtly alter the phase behaviour of many mesogenic materials, and can be of 

great use in optimising material performance. Two classic mesogenic compounds 

are p-azoxyanisole (PAA) and M-(p-methoxybenylidene)- p-butylaniline (MBBA), 

having the formulae shown (Figs 2.4,2.5).

O

Figure 2.4: PAA

Figure 2.5: MBBA

These two historical examples have been extensively studied and there is a wide



R K Sa N I
CbHu •  24.0 - •  35.0 •
c 6h 13 •  14.5 - •  29.0 •
c 7h 15 •  30.0 - •  43.0 •
c 8h 17 •  21.5 • 33.5 •  40.5 •
c 9h 19 •  42.0 • 48.0 •  49.5 •
Ci0H21 •  44.0 • 50.5 •

Table 2.1: Cyanobiphenyl transition temperatures (°C)

variety of information in the literature detailing the different aspects of liquid crys

talline behaviour they display. Just to give a rough idea of mesogenic dimensions, 

PAA is approximately 20A long by 5A wide, although obviously other mesogenic 

compounds can vary significantly from this. Unfortunately, PAA only displays a 

nematic phase at high temperatures and MBBA is not chemically stable, making 

them both rather unsuitable for modern day applications. It was the search for star 

ble room temperature mesogens that led to the discovery of the cyanobiphenyls, a 

ubiquitous group of liquid crystals that were first synthesised in 1972. Consisting of 

a biphenyl core with a cyano substituent, and an aliphatic chain of variable length 

as the two end groups (Fig 2.6), these molecules were the first commercially viable 

nematic liquid crystals for use in display devices, combining low melting points with 

relatively high isotropic-nematic transition temperatures, Tin  (Tab 2.1).

Figure 2.6: Generic structure for the cyanobiphenyls

It is clear that upon increasing the length of the alkyl chain the transition temper-
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atures tend to increase, as the additional anisotropy leads to more order at a given 

temperature. The noticeable two step behaviour, with transition temperatures go

ing alternatively down slightly and then up significantly, up to R^CgHig, is due to 

the well known odd-even effect. This arises because each successive addition of an 

alkyl chain will affect the anisotropy of the molecule in one of two different ways, 

depending on whether it is a linear addition or at an angle. As can be seen this 

happens in an alternate manner (Fig 2.7).

Figure 2.7: The odd-even effect

Upon further increasing the molecular length, the smectic phase is progressively 

stabilised, until eventually no nematic phase is observed (10CB). These molecules 

still find use today in digital watches and calculators, but generally in a mixture 

with other compounds (both mesogenic and non-mesogenic) which has been selected 

to give optimum device performance. It is on these mixtures that attention will now 

be focussed.

2.2 Liquid Crystal M ixtures

Perhaps the most relevant application of polydisperse liquid crystals is the widely 

practised use of mixtures in nematic devices, where the presence of two (or more) 

different molecule lengths delays the onset of smectic ordering, as would be expected 

intuitively [2]. This results in a nematic phase with a much larger stable temperature
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range, increasing the utility of such devices. The importance of this is obvious when 

it is considered that the vast majority of LCDs use twisted nematic cells.

However, polydispersity not only affects the relative stability of the phases, it also 

opens up the possibility of novel phases, and coexistence between them. A tran

sition between two uniaxial nematic phases has been observed experimentally [11] 

for a mixture of two relatively similar nematogens. Although no nematic-nematic 

coexistence has been observed for these molecules, it has been observed in mixtures 

of polymeric and low molecular weight nematogens [12], and also in mixtures of 

rod-like and disk-like nematogens [13].

Certainly, any improvement in the understanding of what drives these effects in 

liquid crystal mixtures would be of importance, and it is the aim of this work to 

make some progress in this direction. A simple generic phase diagram is shown (Fig 

2.8), which illustrates the important effects of extended nematic range and phase 

coexistence (I,N and S represent isotropic, nematic and smectic phases respectively).

T

N+I

N-I

.AT
S-N

N+S

Pure A % PurcB

Figure 2.8: Binary mixture phase diagram

A number of other complicated phase behaviours have been predicted theoretically;
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although more will be said of this in the next section, a practical application is worthy 

of mention here. The order parameters of the individual components of the mixture 

may differ appreciably [14] in binary nematics, which could prove useful in the design 

of dye displays. The dye molecules could be chosen to have a high anisotropy, and 

hence a high order parameter, one which would normally be indicative of a smectic 

phase for a one-component system. However the bi-dispersity will destabilise the 

smectic ordering and keep the system nematic, enabling a much better contrast ratio 

to be obtained due to the high order parameter [3].

Perhaps a better illustration of the degree of complexity bidispersity can confer on 

phase behaviour is given by the phase diagram shown (Fig 2.9), for a binary mix

ture of octyloxyphenyl-nitrobenzyloxy benzoate (DBgONC^) and decycloxyphenyl- 

nitrobenzoyloxy benzoate (DB10ONO2) [15] (Fig 2.9). X denotes the mole percent 

of DB10ONO2 .

220

200

160

140

120

100

60

1QC60

Figure 2.9: Phase diagram [15] - see text for details
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A number of different phases are present in this diagram, including isotropic (I), 

nematic (N), smectic A monolayer (Ai), smectic A bilayer (A2), smectic A partial 

bilayer (Ad), reentrant phases (re), tilted bilayer (C2) and a fluid antiphase (C ). The 

fact that both of these molecules are highly polar helps to explain to some degree 

the richness of the phase diagram, but it does still give an idea of the plethora of 

phases available in bidisperse systems.

2.3 Confined Liquid Crystals

Moving on from considerations of bulk systems, the single most important applica

tion of mesogens to date has been in the liquid crystal display (LCD). This makes 

use of the electric and optical anisotropic properties of liquid crystals to provide 

exceptionally low power displays. A very simple schematic of a twisted nematic 

device is shown (Fig 2.10).

ITO

Alignment Layers Polarising films

GLASS

LIQUID CRYSTAL

GLASS

Reflector 

Figure 2.10: LCD schematic [4]
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Light enters the cell from the top and is plane polarised by the uppermost film, 

before passing straight through the transparent glass, indium tin oxide (ITO) and 

alignment layers. Switching essentially occurs within the nematic liquid crystalline 

material. The alignment layers are set up during cell fabrication so that the topmost 

nematic layer is parallel to the incoming plane polarised light, and the bottom one 

is perpendicular. This forces the nematogen to adopt a twist across the cell and 

this twist rotates the polarisation vector of the light, allowing it to pass through the 

bottom plane polariser which is at right angles to the top one. The light is then 

reflected back through the cell and the display thus appears light. However, when 

an electric field is applied across the liquid crystal (delivered through the ITO) the 

liquid crystalline molecules align themselves parallel to it, and thus no longer twist 

the incoming light so that it can pass through the bottom polariser. The display 

therefore appears dark. The actual orientations of the molecules within these two 

states are shown below (2.11). Note - in real devices the cells are much thicker than 

the few molecular lengths shown here.

o o o o o o ° o 0 o° 
o o o  o o  o o °
o  ° o  O OO o  o o o
o °  o o o o o  o

O O q O O o  ° o °  O n

E

Off State (V=0) On State (V^O)

Figure 2.11: Orientations in the two states [4]

The liquid crystalline material in a device needs to possess a number of different 

properties to ensure its optimum operation. As mentioned earlier, a wide temper-

15



ature range of nematic stability is necessary for the device to be practical, as is a 

strong surface anchoring, which keeps the nematic in its twisted state. However, 

matters are complicated further by considerations of switching - a low viscosity and 

a large dielectric anisotropy will reduce the switching time and required voltage, in 

addition to which a high optical anisotropy is needed to improve the contrast of the 

device.

In general, mixtures of liquid crystalline compounds are used to achieve the desired 

properties. The optimisation of these mixtures to produce ever improving displays 

is an ongoing process, and it is obvious that comprehensive simulation of such a 

device is beyond current computational power. The role of simulation (and theory) 

instead is to look at various effects individually, and try to build up a picture of how 

they vary with certain trends, such as changing the length of the mesogen, or the 

strength of its interactions.

Clearly in a device such as the one above, the anchoring of the liquid crystal 

molecules to the alignment layer will be of major importance in ensuring successful 

operation. Ideally the molecules will need to be tightly anchored in the off state, 

to ensure the stability of the twist with temperature, shock etc. Before reviewing 

previous experimental studies of substrate-mesogen interfaces, a brief account of the 

theoretical distinction between weak and strong anchoring will be given.

Fig 2.12 shows how the angle the local nematic director makes with the anchoring 

direction at the wall, 9, varies across half of a typical device cell, where y  is the 

distance from the wall. The bulk gradient represents the twist across the device; the 

free energy of the system is minimised if this gradient is constant, however in the

16
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O

Figure 2 .1 2 : Anchoring of director at wall [2 ]

surface region considerations of anchoring energy minimisation lead to a deviation 

from this constant behaviour. In this region of molecular thickness a, the twist 

is dependent upon detailed molecular properties. The extrapolation length, b, is 

dependent upon the strength of the alignment and can be approximately estimated 

using

where A is a positive constant representing the anchoring strength and having dimen

sions of the surface tension, and K 2 is the bulk twist elastic constant; the stronger 

it is, the less the bulk nematic favours a twist deformation. Both of these quantities 

are dependent upon the materials used, and in practice there are two possible types 

of anchoring:

•  Strong anchoring, where the nematic-substrate interaction is comparable to

17



the nematic-nematic, and the extrapolation length b is comparable to the 

molecular dimension a.

•  Weak anchoring, where the nematic-substrate interaction is far weaker than 

the nematic-nematic, and the extrapolation length b may be much larger than 

the molecular dimension a.

Recent scanning tunnelling microscopy (STM) studies have probably been the most 

successful in showing the high degree of order promoted by the substrate interac

tion. For example, the interface between a droplet of liquid crystalline material, 

8-cyanobiphenyl (8 CB) and a planar substrate (cleaved pyrolytic graphite) has been 

shown to display a first adsorbed layer of mesogenic molecules forming a highly 

ordered, possibly 2 -d crystal, structure stretching for thousands of angstroms [16]. 

The effect of changes in the bulk behaviour have also been studied, indicating that 

they can drastically change the surface region order. Specifically, the crystal struc

ture of the adsorbed monolayer mentioned above is found to be destroyed at the 

bulk nematic-smectic transition [17].

Second harmonic generation (SHG) studies of similar systems have confirmed the 

existence of surface ordering but produced slightly contradictory results in that 

they indicate a tilted rather than planar ordering of the first monolayer at the sub

strate [18]. This could be attributed to the different substrate used in SHG (mica 

rather than graphite) however it should be noted that recent simulation results sug

gest the invasive nature of STM may promote a planar structure [19]. SHG studies 

have also observed phase transitions in confined systems - when ethylene glycol 

is added to 50CB adsorbed on mica it is preferentially adsorbed at the substrate
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and a concentration-dependent anchoring transition occurs, appearing to be surface 

driven [2 0 ].

Of marked importance in the consideration of interfacial phenomena and their effect 

upon optimum device performance is the interaction of different length scales - 

specifically the link between microscopic substrate anchoring and the macroscopic 

film (device) behaviour [21]. This can lead to some problems experimentally, since 

it is difficult to access the transition region across which this anchoring is conferred. 

Theoretical models, of which more will be said in the next section, have attempted 

to address this correlation, but only with limited success. Computer simulation 

is an ideal technique with which to study this effect, but unfortunately the large 

length-scales involved are at the limits of tractability. In an attempt to remedy this, 

a simpler reference system would make a far better target for the simulator. Aside 

from considerations of mesoscopic models, a suitable choice is an unconfined liquid 

crystal film, which still contains the symmetry breaking element which should induce 

some form of inhomogeneity, yet does not involve a complicated wall - molecule 

interaction. A brief survey of the experimental work in this area will be given as a 

preface to the theoretical and simulation review in the next chapter.

2.4 Unconfined Liquid Crystals

In a similar manner to confined liquid crystal films (such as in LCD’s), the break in 

symmetry at the free surface of a liquid crystalline material can induce a preferred 

alignment and/or a change in the degree of ordering.
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One of the first experimental investigations of free nematic surfaces looked at surface 

alignment using a light reflection technique. It was found that p-azoxyanisole (PAA) 

favours planar ordering, whereas 4-methoxybenylidene-4/-butylaniline (MBBA) prefers 

an oblique state, the surface director lying at an angle of 75 degrees from the surface 

[22]. Subsequent work confirmed this for PAA [23] and showed that MBBA in fact 

undergoes a transition from tilted to perpendicular (homeotropic) alignment at a 

temperature slightly below the triple point [24]. Studies of another common class of 

liquid crystal molecule, the cyanobiphenyls (CB), showed perpendicular alignment 

at the free surfaces of 5, 6 , 7, 8  CB [25]. This type of behaviour was also seen for a 

closely related compound, 8-oxy-cyanobiphenyl (80CB) [26].

Also of consideration is surface induced (dis)ordering, or wetting behaviour. Inter

faces which induce enhanced ordering are said to display nematic wetting, whereas 

those which are surface disordering are termed isotropic wetting. Virtually all real 

confined systems show nematic wetting, but at the free surface, disordering is intu

itively more likely to be possible (because of the lack of an order enhancing wall - 

substrate interaction).

A variety of experimental studies have established conclusively that orientationally 

ordered states, and in certain materials even density modulations, develop in the 

vicinity of the free surface [3]. Reflection ellipsometry work on the cyanobiphenyls 

[25] has shown nematic wetting of the isotropic free surface, with this wetting chang

ing from partial to complete upon increasing the molecule length (5CB partial; 6,7,8 

CB complete). This is in good agreement with theoretical predictions of increased 

nematic wetting ability upon increase of the degree of anisotropy (see Chapter 3).
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Furthermore a study of the surface tension behaviour for these systems [27] showed 

the expected trend for nematic wetting, which will be discussed at a later point.

More recently, prewetting transitions and a prewetting critical point have been ob

served at the free surfaces of various benzoic acid oxyphenylester derivatives [28]. 

These ellipsometric studies have all shown enhanced orientational order at the sur

faces.

The surface tension, 7 , of an interface is commonly determined by measuring the 

exact shape of a drop of liquid crystalline material (several methods are applicable), 

and using a simple relationship between this shape, the density difference between 

the drop and its surrounding fluid, and 7  [29]. The surface tension is important 

in that it gives an indication of the rigidity of the interfaces, and normally shows a 

certain qualitative behaviour with temperature depending upon the type of wetting 

displayed at the surface.

Generally speaking, the surface tension of an isotropic liquid with its own vapour 

shows a negative gradient with increasing temperature, decaying to zero at the 

critical temperature, where liquid-vapour coexistence ceases. In terms of decreasing 

temperature, if the isotropic liquid undergoes a transition to a nematic fluid, whilst 

staying in coexistence with its vapour, there is likely to be a discontinuity in the 

surface tension associated with the weakly first order transition. There is also a 

possibility of a change in sign of the gradient Jj around the transition, as wetting 

of some type occurs. Typical behaviours of the surface tension for isotropic (a) and 

nematic (b) wetting are shown below (Fig 2.13).
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Figure 2.13: Behaviour of surface tension vs temperature [30] (a) Isotropic wetting; 
(b) Nematic wetting

In general, negative discontinuities occur for isotropic wetting whereas positive ones 

are usually observed in cases involving nematic wetting. This can be explained quite 

simply by considering the well known relationship [3]

g — < « .-« ( .>

where S is entropy per unit area and the suffixes <r and /? refer to the surface and 

bulk states. If there is any surface ordering then Sa may be less than Sp and 

7  may show a positive slope. A large number of experimental studies have shown 

positive discontinuities (see refs in [3]), hardly surprisingly since the vast majority of 

liquid crystalline materials show nematic wetting at the free surface. However, some 

few examples of isotropic wetting can be deduced from appropriate surface tension 

behaviour. In particular, an early study of p-anisaldazine and MBBA [31] showed a 

negative discontinuity at the transition point, implying a surface disordering effect 

[32]. A region of positive gradient was observed below this; it is possible that this 

corresponds to enhanced layering at the surface at a temperature just below the 

bulk transition.
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In conclusion, the behaviour of mesogens at free surfaces is surprisingly rich, even 

when considered at the simple level presented here. Various sorts of smectic surface 

ordering have also been observed (see eg. [33]), although these will not be expanded 

upon since they are beyond the scope of this thesis. The role of these free systems as 

references for the confined systems is in no doubt, since the complicated behaviour 

discussed here will need to be understood and modelled accurately before concise 

treatments of confined systems can successfully developed. It is with this modelling, 

both theoretically and using computer simulation, that attention will be concerned 

in the next chapter.
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Chapter 3

Modelling Liquid Crystals

In this chapter an overview of the modelling techniques used for liquid phases is 

presented, together with a review of the current progress made with these methods 

in the liquid crystal field. Theoretical treatments are briefly dealt with first, then a 

more complete discussion of simulation work is given. The modelling methods used, 

both in previous investigations and this body of work are first considered, followed by 

studies of bulk ordering and concluding with the more complex interfacial systems.

3.1 Theoretical M odels

The statistical mechanics of liquid crystals is exceptionally difficult, and even for 

the simplest physical models, no exact solution has been worked out [2 ].

A number of different analytical techniques are available to the theorist, which can 

be broadly classified into two fields. Phenomenological theories attempt to model an
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observed behaviour empirically, but do not consider a priori molecular interactions. 

Conversely, molecular theories start from a consideration of inter-particle effects and 

predict the macroscopic behaviour in some way from these. Obviously assumptions 

and approximations have to be made in molecular theories to make them analytically 

tractable. One of the most important of these for mesogenic systems is the mean-field 

approximation, in which the molecular interactions are not considered individually 

but approximated collectively to give an average local effect - ie a mean field. This 

greatly simplifies the solution of these theories, but results in an incorrect treatment 

of local correlations; this can lead to erroneous predictions, especially in the vicinity 

of phase transitions where the correlation length scale is of primary importance.

Mesogenic theories have been applied to both bulk and confined systems as described 

below.

3.1.1 Bulk System s

The vast majority of liquid crystals (mesogens) are rod-like in shape and in the 

1940’s, in his seminal work, Onsager [34] showed that a system of hard rods will 

display orientational order above a certain concentration. Onsager used a simple 

form of density functional theory, with a mean field type approximation, and made 

a number of assumptions. Firstly the rods were not able to interpenetrate each 

other, secondly, the volume fraction was much less than one (sparse system), and 

lastly the rods were very long.

Within these limits, it was successfully shown that such a system undergoes a first
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order phase transition from the isotropic to nematic phase; this was the first proof 

that attractive forces are not necessary for a system to show spontaneous alignment. 

However, apart from the assumptions made above, this model differs from actual 

observations on thermotropic systems in many respects: the transition density is 

too low, the jump in density at the transition is too high, and the order parameter 

at the threshold is too big. Like all models involving only infinitely repulsive forces 

(so called hard models), the system is independent of temperature.

Maier and Saupe [35] developed a theory which takes into account the attractive 

intermolecular interactions, using a system of classical spin vectors located on the 

sites of a cubic lattice with nearest neighbour interactions. By solving this with a 

mean field approximation, they predicted a strongly first order transition to occur 

between the isotropic and nematic phases, at a transition temperature dependent 

upon the intermolecular potential. In particular the order parameter for the nematic 

phase was found to be much smaller than that predicted by Onsager and a lot closer 

to experimentally observed values.

However, later simulation results upon this spin system [36,37] showed the isotropic- 

nematic transition to be weakly rather than strongly first order (similar to that 

observed experimentally), indicating that mean field theory is not a very good guide 

for such characterisation.

Recently, some attempts have been made to extend the mean field type approach 

to bidisperse systems, using first numerical [8 ] and later analytical [38] methods. 

This essentially Onsager-like approximation (ie. only steric interactions) revealed a 

number of interesting features; the longer rods are always more ordered than the
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shorter ones; the presence of a strong fractionation effect (with the longer rods going 

preferentially to the nematic phase); a widened biphasic gap; and the possibility of 

nematic-nematic phase coexistence for sufficiently different sized rods. The predic

tion of so many features in such a simple system makes this an attractive area for 

study by computer simulation, which would have the advantage of treating more 

realistically the orientational correlations than the mean-field theory used here.

3.1.2 Interfacial System s

Theoretical treatments of both confined and unconfined liquid crystal films have 

shown a rich phase behaviour. Phenomenological treatments [39,40] based on a 

Landau-de Gennes [2 ] formalism have shown qualitative agreement with trends ob

served experimentally [2 1 ], such as shifting of the transition temperature relative to 

the bulk system. However, the number of different effects at work (ordering and 

disordering surface interactions, excluded volume effects etc) at a wide range of 

length-scales, coupled with the multitude of possible behaviours makes a complete 

understanding of these systems a considerable challenge. That said, the observation 

that subtle changes in intermolecular and molecule-substrate interactions can lead 

to considerable changes in the bulk behaviour suggests that this is a particularly 

suitable area for investigation by computer simulation.

The study of anchoring at the free liquid crystal - vapour interface is of importance 

both in its own right and as a reference for fully confined systems. The presence of 

an interface with no fixed barrier holding it in place allows particular attention to be 

focussed on the effect of bond-breaking symmetry upon the system. A surprisingly
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rich phase behaviour has been suggested for the interface between a nematic liquid 

and its own saturated vapour, including various induced orientations at the surface 

as well as both partial and complete wetting regimes and anomalous surface tension 

dependency. Theoretical treatment of a lattice-based model [41] predicts cross

over between surface and bulk-region transitions for finite width systems. It is the 

competition between these effects that gives rise to such complicated behaviour in 

liquid crystal films.

In the last 15 years or so, molecular theories have made significant progress in this 

area. A number of papers [42-44] have been published in which a generalised van 

der Waals theory [45], based on spherical harmonic expansion of the anisotropic 

attractive component of the intermolecular interaction potential, has been used to 

analyse the wetting and alignment properties of the liquid-vapour interface, both 

above and below the bulk isotropic-nematic transition temperature. These show that 

appropriate choices of the various expansion terms can yield perpendicular, parallel 

or oblique alignment at the interface. Although direct mapping of these terms 

onto physical properties is difficult, the first second order term which couples the 

translational and rotational degrees of freedom, and thus gives rise to a non-trivial 

surface behaviour, has been shown to induce homeotropic alignment for prolate 

molecules, and planar for oblate ones. The next second order term, which has a 

weaker effect at the free interface, has been shown to have the opposite effect, with 

oblique alignment resulting when there is near-cancellation of these competing effects 

and higher order terms become relevant. Recently the assumption of a spherical hard 

core for these theories has been called into question [30], casting doubt over some of 

the predictions for highly anisotropic models. However the general trends predicted



are still thought to be valid.

A related paper [46] which employs explicit expansions of a range of parameteri- 

sations of the Gay-Berne potential [7,47] has found that perpendicular alignment 

should arise in such systems. Conversely, studies based on perfectly ordered systems 

with ellipsoidally symmetric intermolecular interactions [48] predict parallel surface 

orientation. This apparent inconsistency is explained by noting [46] the considerable 

differences between the Gay-Berne form and its predecessor, the Berne-Pechukas 

potential [49], which is more consistent with the ellipsoidally symmetric potentials 

considered in the latter works.

Aside from considerations of induced orientation, the wetting effects of these systems 

upon approach to the vapour-isotropic-nematic triple point are also predicted to de

pend sensitively on the terms in the molecular model used. In summary, it has been 

found that increasing magnitude of the alignment inducing terms favours nematic 

wetting of the isotropic phase [44,50], as would be expected intuitively. A change 

from partial to complete wetting occurs as these are increased above a certain value, 

and correspondingly, for sufficiently small values, the opposite is observed (isotropic 

wetting of the nematic phase or surface disordering).

The behaviour of the surface tension in this region has been linked with the differing 

wetting regimes. As was stated in Chapter 2 , normally surface tension decreases with 

temperature, reaching a value of zero at the liquid-vapour critical point. Theoretical 

treatments of systems with disordering interfaces (ie. showing isotropic wetting) 

show this trend with the expected negative discontinuity at the nematic-isotropic 

transition. However for surface ordering systems an increase in the surface tension
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with temperature (on either or both sides of the transition) has been predicted, 

along with either a positive or negative discontinuity at the transition [30,43]. This 

is again in agreement with experimental observations described previously.

In conclusion, theoretical treatments of liquid crystalline systems have shown a rea

sonable degree of success in explaining experimental behaviour. The observation 

that repulsive interactions alone can give rise to mesogenic behaviour was an im

portant early result. However, this hardly seems surprising now when it is known 

that most liquid behaviour is governed by hard core interactions, and that attrac

tive effects can be regarded, with some reservations, as a simple perturbation away 

from this. Even in comparatively simple cases, though, theoretical techniques have 

not been wholly successful. For example they tend to overestimate the strengths 

of mesogenic transitions, and this is thought to be due to their inability to capture 

correctly the nature of orientational correlations. In more complicated interfacial 

and bi-disperse systems this problem will be even more acute, and it is here that 

computer simulation can provide a useful comparison between the effectiveness of a 

model and the theories being used to predict its behaviour.

3.2 Simulation Techniques

Computer simulations [5] aim to predict the properties of real systems and test 

theories based upon model systems by producing a correct behaviour for a relatively 

small idealised system of particles interacting through a given potential. The system  

is replicated periodically through space so as to avoid surface effects and enable a
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reasonable approximation to bulk behaviour to be made. However, this can lead 

to problems, especially around phase transitions, due to suppression of long range 

fluctuations. There are two main techniques, Metropolis Monte Carlo (MC), which 

attempts to create a series of configurations for the system using random moves 

accepted with an appropriate probability, and molecular dynamics (MD), which 

solves Newton’s equations of motion (to an acceptable degree of accuracy) for the 

system and can, therefore, be seen as representing the real evolution of the system 

through time. MD has the major advantage of allowing dynamical information to 

be obtained, however MC is conceptually the easier and was thus the first technique 

to be used. It has the advantage that many different sorts of move (not necessarily 

realistic) can be attempted, and through a prudent choice of these, certain systems 

can be brought to equilibrium with greater ease.

These techniques will now be further explained, starting in historical order with 

MC, which was also the first method used in this work.

3.2.1 M onte Carlo Theory

The term Monte Carlo [5] [51] has come into use to designate numerical methods in 

which specifically stochastic elements are introduced in contrast to the completely 

deterministic algebraic expressions of the MD approach. It was first used to describe 

a method developed at the end of the Second World War to study the diffusion of 

neutrons in fissionable material. The particular form used in liquid state physics 

was developed from this a few years later [52] and is generally known as Metropolis 

Monte Carlo (MC).
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In the context of a liquid state simulation, the MC method involves generating a 

set of molecular configurations by making random displacements of the particles in 

a model. A new configuration is accepted or rejected according to a criterion which 

ensures that, in the limit of an infinite number of transitions, a given configuration 

occurs with a probability proportional to the Boltzmann factor for that configura

tion, whatever the initial condition of the model. A more detailed analysis is now 

given.

Consider the canonical ensemble ie. a system consisting of N  particles in a fixed 

volume V  and at a fixed temperature T  (also referred to as constant N V T ). The 

probability of a certain configuration m of the particles occuring is proportional to 

the Boltzmann factor of its potential energy, Um, ie

Pn v t  (m) oc exp ■ (3-1)

To normalise this, the configuration integral is introduced. This is simply the sum 

of the Boltzmann factors for all the possible configurations of the system

Z n v t  =  J  exp ™ ̂  dm. (3.2)

Using this, the probability of a certain configuration m  occuring is now given by

P n v t  (m) =  — ~—~— • (3.3)
ZjnVT
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The configuration integral can be thought of as being the configurational (potential) 

part of the partition function. The partition function is the fundamental property 

in statistical mechanics from which all other thermodynamic quantities, such as 

the appropriate free energy, can be obtained. However, its direct calculation for 

reasonably sized systems is practically impossible, and what is needed is a way to 

sample the system effectively so that other quantities can be obtained accurately. 

The average value of some function f ( m )  in the canonical ensemble is given by

( / ) n v t  =  J  P n v t  {m )  f  (m) d m  (3.4)

and by sampling configurations at random, the integral can be estimated as

/ E r s / ( m ) e x p ( ^ ) \

( / w  \  a j - e x p ^ )  r

For an infinite number of trials, this random technique will give the correct result; 

however for the finite number of trials possible with computer simulation it tends 

to behave poorly, since it does not sample effectively the areas of phase space where 

the potential energy is such that significant contributions are made to the sum. In 

practice, most of the terms are virtually zero due, e.g., to a significant degree of 

molecular overlap, and as such the value required is incorrectly estimated.

The Metropolis technique instead uses an importance sampling technique where the 

configurations are chosen from a non-uniform distribution so that most of them  

make a significant contribution to the sums in Eqn 3.5. By sampling configurations
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at random from a distribution p, the value of a function can be estimated as

( / W = ( / W ^ )  • (3-6)
\ P  /  trials

For most functions, the integrand will be significant where P n v t  (m ) is significant, 

and in these cases choosing p  =  Pnvt  (^ ) should give a good estimate of the integral:

U ) n VT  ~  ( f  (m ))trials ' (3*7)

The difficult job is finding a method of generating a random sequence of states so 

that, by the end of the simulation, each state has occured with the appropriate 

probability. The solution is to set up a Markov chain of states of the liquid, which is 

constructed so that it has a limiting distribution of P n v t -  Each step in the Markov 

chain satisfies the requirements that it depends solely on the present state of the 

system (ie is independent of the previous states) and that the outcome of each step 

belongs to a finite set of states (Fi, T2, ...rm, rn,...], called the state space. If 7r is 

defined as the transition matrix then the element 7rmn is the probability of moving 

from state m to state n. The probability that the system is in a particular state 

is given by a state vector p  =  [pi,P2> --jPrnjPn, What is needed is a particular 

transition matrix such that the limiting distribution of the chain

P =  Jim p V  (3.8)
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is equal to the desired distribution ie P n v t -

The limiting distribution of p  is required to be independent of the starting guess, 

p 1. It must also satisfy the eigenvalue equation

p  =  pit. (3.9)

A 7r needs to be found which satisfies the equation

^ j Prn^mn =  Pn- (3.10)
m

This can be ensured using the condition of ‘microscopic reversibility’

Prn^mn =  Pn^nm- (3*11)

The Metropolis solution is

TTmn =  OLmn 

'Kmn =  ®mn (p^)

'Kmm ~  1 X /n ^ m  ^ m n

where a  is a symmetrical stochastic matrix (amn =  a nm), often called the under

lying matrix of the Markov chain. The symmetric properties of a  ensure that the

Metropolis solution satisfies the condition of microscopic reversibility.

Pn >  Pm m ^ n  

P n <  Pm m ^ n
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To implement the Metropolis solution, it is necessary to specify a. The commonly 

used technique for generating a new configuration n from an old one m  is to choose 

an atom (i) at random and displace it from its old position r™ with equal probability 

to any point r” within a sphere centred on r™. On a computer, there are a large 

but finite number of new positions N R and in this case a mn can simply be defined

The appropriate element of the transition matrix, 7r, depends upon the relative 

probabilities of the initial state m and the final state n. There are two cases to 

consider. If the move is downhill in energy ie A U =  Un — Um < 0  then pn >  pm and 

fimn =  Oimn. Since the probability a mn has already been incorporated in choosing 

the move, it can now be accepted automatically. However, if the move is uphill in 

energy A U  =  Un -  Um >  0  then pn <  pm and 7rmn =  a mn (pn/p m), so the move 

has to be accepted with a probability (pn/Pm)‘ This ratio can be expressed as the 

Boltzmann factor of the energy difference

Pn _  Z N V T  exP (fcgf) 
Pm Z x vT exp

To accept a move with this probability, a random number is generated uniformly 

on (0 , 1 ) and compared with exp ( ^ ^ ) -  If it is less than the exponential, the move 

is accepted. If the move is rejected then the system remains in its current state m, 

in accordance with the finite probability 7rmm, and the old configuration is recounted 

as a new state in the chain.

A typical Monte Carlo scheme is implemented as follows:

36



1 ) Generate new configuration.

2 ) Calculate energy change AC/.

3) Calculate X mn =  m in  ( l ,  exp ( ^ ^ ) )

4) Generate random variable ^  on [0,1]

5) Accept move if ij} <  X mn

This procedure is relatively easy to implement on a computer and several different 

types of MC simulation have been carried out in the N V T  ensemble.

For anisotropic systems, the underlying matrix of the Markov chain is altered to 

allow moves which usually consist of a combined translation and rotation of one 

molecule. This is quite straightforward to implement, simply involving a simultane

ous displacement in both the translational coordinates (as before) and the orientar 

tional coordinates (usually in terms of Euler angles or space fixed axes). However 

it is important not to bias the rotational part of the move by sampling uniformly 

from the Euler angles as might seem intuitively correct. Rather, it should be done 

either by choosing random displacements in the cosine of one of the angles [5], or 

alternatively by use of the Barker Watts algorithm [53], which involves rotating the 

molecule by a random amount about one of the three space-fixed axes (chosen at 

random). Both of these methods can be shown to satisfy microscopic reversibility, 

and the latter was used in this work.

It is also possible to generalise the Metropolis solution to other statistical mechanical 

ensembles; all that is needed is an appropriate modification of the transition matrix
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so that it gives the correct thermodynamic distribution of states. For instance, in 

the isothermal-isobaric (NPT) ensemble, the configuration integral is given by

ZNPT =  /  exp (^ ) d v  j  exp (^) dm. (3.13)

The Metropolis scheme is implemented by generating a Markov chain of states which 

has a limiting distribution proportional to

exp ( ( - ?v \  -f N ln V )
P n p t  (m) =  U  kBl  >-------------- >- (3.14)

6 N P T

by accepting trial moves with a probability

X mn =  rnin ( l ,  exp (  ^ ^ n) )  (3.15)

where

N  . /V n
A Hmn =  A Umn +  P (V n -  Vm) -  In ( i f )  (3.16)

Kb -L \V m /

and is closely related to the enthalpy change in moving from state m to state n.

3.2.2 The Gibbs Ensemble

Since a major aim of this thesis was to investigate the phase behaviour of liquid 

crystal systems with a specific interest in coexistence regions, a method was required 

for the accurate location of the phase boundaries. Simulating coexisting phases
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using traditional ‘one box’ techniques (as outlined above) is very expensive in that 

relatively large systems have to be used to calculate reliable coexistence properties, 

because of the predominating interfacial effects in smaller systems [54].

An alternative would be to simulate the two phases separately and to determine the 

temperature at which their pressures and chemical potentials equate. However, sim

ulation does not yield quantities like the free energy and chemical potential directly, 

and more indirect and expensive methods need to be used. Techniques used previ

ously have included determining the equation of state of the system and obtaining 

the free energy this way [55], and using the Widom particle insertion method [56] to 

calculate the chemical potential. However, frequently long and numerous runs are 

required in the vicinity of the phase transitions, and such procedures are obviously 

very expensive computationally.

Instead it was decided to make use of a relatively new technique proposed by Panar 

giotopoulos [57], the so called Gibbs ensemble, which has been shown to significantly 

reduce the computer time required for phase equilibrium calculations.

The Gibbs method uses two distinct simulation boxes, which are coupled using MC 

rules. These rules are chosen to ensure that the subsystems are in equilibrium. When 

a conventional one box simulation is performed in the two phase region, droplets of 

one phase are formed in a sea of the other. In the Gibbs ensemble, the system can 

lower its free energy by filling each box with one of the two coexisting phases. In 

this way the formation of interfaces, which increase the free energy because of the 

interfacial tension between the two phases, is avoided. The coexistence properties 

can be obtained directly from the two boxes and, since the method avoids interfaces,
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it can be used with a relatively small number of particles.

A more detailed analysis of the Gibbs ensemble, together with a derivation of the 

appropriate acceptance criteria will now be given.

In his original article, Panagiotopoulos introduced the Gibbs ensemble as a combi

nation of the constant-AFT, constant-iVPT and constant-// VT  ensembles. Here we 

take a different point of view, and consider the Gibbs ensemble as a new ensem

ble [54].

Consider a system at constant temperature (T ), volume ( F) and number of particles 

(N). The system is divided into two non-interacting subsystems 1 and 2. In a 

simulation, this implies that each box has periodic boundary conditions and that 

particles in one box do not interact directly with particles in the other. The particles 

are distributed over the two subsystems keeping the total number constant. The 

volume of each box may vary in such a way that the total volume remains constant.

In the configuration integral of this ensemble, we have to take into account the 

number of possible distributions of N  particles over the two subsystems, to allow 

for the subsystems to change volume between 0 and F, and to consider all possible 

configurations in each subsystem. This gives a configuration integral

N V T

where ni is the number of particles in box 1 and V\ is the volume of box 1 .
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Using this, it can be shown that, in the thermodynamic limit, the free energy density 

for the Gibbs ensemble is identical to that of the canonical (N V T ) ensemble, and 

will sample the same phase space. At state points where there is only one phase, 

the free energy of the Gibbs ensemble has its minimum value when both boxes have 

a density equal to the equilibrium density of the canonical ensemble. In the case of 

a first order transition, the surface free energy is the driving force which causes the 

system to separate into two homogeneous phases. This property makes the Gibbs 

ensemble a convenient ensemble to study phase coexistence.

The Gibbs ensemble technique can be implemented effectively using standard MC 

supplemented by moves which allow the whole of phase space to be sampled. From 

the configuration integral of the Gibbs ensemble, it follows that moves have to 

be made which displace the particles in the two boxes, change the volume of the 

subsystems, and exchange particles between the boxes. The acceptance rules for 

these moves can be obtained directly from the configuration integral assuming the 

condition of detailed balance in the same way as for conventional Metropolis MC.

For example, assuming that state n is obtained from state m via the displacement 

of a particle in box 1 , the ratio of the statistical weights of the two configurations 

can be written as

l £ , =exs> ( ~ k ^ r (Un ~  Um>)) ' (3-18)

Using the condition of detailed balance, we arrive at the following acceptance rule

41



X mn — TTlin ^l,exp rp (3.19)

For an increase in volume of box 1 by an amount A V  (and a simultaneous reduction 

in the volume of box 2 ), the ratio of the statistical weights leads to an acceptance 

rule

. (, (K + AF)ni(^-(Vi + AF)r -n3 ( 1 , rr „
X mn =  TTlin 1,  -----------------------------jrr—---- ---------exp —-—— (Un — Um)

mn \  ’ V i1 (V  -  Vi) 1 \  kBT K V )

(3.20)

If the configuration n is obtained from configuration m by removing a particle from 

box 1 and inserting it into box 2 , the ratio of statistical weights gives an acceptance 

rule

(■■ ( N - l l ' i n  “ >■ ( - 5 ?  <"■ - " ■ > ) ) '  (3 -21)

The moves described above are enough to sample the Gibbs ensemble effectively. 

The only other factor to be taken account of with homogeneous systems is the 

frequency of the different types of move, and the order in which they are attempted.

For heterogeneous systems, such as the bidisperse mixtures studied in Chapter 4, 

the particle transfer step has to be modified slightly to ensure detailed balance [58]. 

The type of particle to be transfered has to be chosen with a fixed (but otherwise 

arbitrary) probability, usually one which results in equal probabilities of attempted
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interchange of all species.

The major drawback of the Gibbs ensemble is that at high densities, the particle 

exchange moves are accepted with a low probability, slowing down the equilibration 

of the system and eventually making the method untenable. Special techniques can 

be used to overcome this, such as incorporating configurational and/or orientational 

bias into the insertion step, although this has not been attempted in this work.

An important speedup can however be achieved with a bidisperse mixture, due to 

the fact that smaller particles are obviously easier to insert than larger ones. In the 

modified method [59], direct transfers are attempted only for the smaller particle 

(say component two). For component one, the transfer step involves the following: in 

one of the two regions, a randomly selected particle of species two becomes a particle 

of species one, whilst at the same time in the other region the inverse procedure is 

applied. The move is accepted with a probability

( V 1N 2V 2N 1 / I  \ \

V H N }  +  1 ) V H N ? + 1 ) exp ( - 5 r -  Um)j )  ■ (3'22)

The advantage of the modification is that it is much more efficient to increase the size 

of an existing molecule than to attempt to place a molecule in a random position. 

Tests in the literature [59] have demonstrated that this new ‘semi-grand’ Gibbs 

method gives results statistically indistinguishable from the old.
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3.2.3 M olecular Dynam ics

3.2.3.1 Translational M otion

Molecular dynamics is a method [5] which solves the classical equations of motion 

for a system of N  molecules interacting via a potential JJ. There are various ways of 

expressing these equations [60], perhaps the most fundamental being the Lagrangian 

equation of motion

where the Lagrangian function L(q , q) is defined in terms of the kinetic and potential 

energies

L =  K  — U (3.24)

and is considered to be a function of the generalised coordinates and their time 

derivatives <&. When considering a system of atoms with Cartesian coordinates, r,-, 

and using the usual definitions of U and K, eqn. 3.23 becomes

mpi — fi (3.25)

where raT- is the mass of the atom i and
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ii =  V r,X =  - V riC7 (3.26)

is the force on that atom. These equations also apply to the centre of mass motion 

of a molecule, with f,- representing the total force acting upon molecule i. The equa

tions of rotation take a similar form, and will be considered later. For anisotropic 

molecules, the form of the force is more complicated as the potential is not only a 

function of t*. Price et al [61] derived a method which gives explicitly the forces and 

torques necessary for the simulation of a fluid of linear molecules.

Computing the centre of mass trajectories requires solution of a system of S N  sec

ond order differential equations, eqn. (3.25). This is achieved using finite difference 

methods. The general scheme is to take the known molecular positions, velocities 

and other dynamic information at time t and attempt to obtain the positions, ve

locities, etc, at a later time t  +  5t , to a sufficient degree of accuracy. The choice of 

the time interval St depends upon the method used, but St should be significantly 

smaller than the typical time taken for a molecule to travel its own length. There 

are a number of different time evolution algorithms which fall into the general cat

egory of finite difference methods. The most commonly used, and conceptually the 

simplest, method is the Verlet algorithm which will now be described.

This method was initially adopted by Verlet [62] and offers a direct solution to 

eqn. (3.25). The method is based upon the positions r(t), accelerations a(i), and 

positions r( t  — St) from the previous step. Taking Taylor expansions about r ( t  +  St) 

and r (t — St) gives,
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r(t +  St) =  r(t) +  Stv(t) +  | St2a(t) +  ..

r (t — St) =  r(t) — Stv(t) +  \St2a.(t) — .
(3.27)

By adding these equations together, an equation for advancing the positions is ob

tained,

r (t +  St) =  2 r (t) — r(t  — St) +  St2a.(t). (3.28)

This method does not require the velocities to calculate the trajectories, though they

are required to calculate kinetic energy. They may be obtained from the formula,

v(t) =  r (i +  y - f t ) . (3.29)

The eqn. (3.28) is correct except for errors of the order St4, the local error. The

velocities from eqn. (3.29) are subject to errors of order St2. More accurate estimates 

of v(t) can be made if more variables are stored, but this adds to the inconvenience 

that v (t) can only be calculated once r (t +  St) is known.

The algorithm is simple to program, exactly reversible in time and, given conserva

tive forces, is guaranteed to conserve linear momentum. It has also shown excellent 

energy conserving properties. However, the handling of the velocities is awkward, 

and the form of eqn. (3.28) may needlessly introduce some numerical imprecision, 

because it includes the difference of two similar quantities.
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Modifications to the basic Verlet scheme have been proposed to improve the algo

rithm. One such modification is known as the leap-frog scheme [63]. The algorithm 

is now expressed as

r (t +  St) =  r (t) +  Stv(t  +  \St)
(3.30)

v ( t  +  \St)  =  v (t — \St)  +  5t&(t).

This algorithm stores the current positions r (£), accelerations a(i) and mid-step 

velocities v(£ — \St).  The velocity equation is applied first, such that the velocities 

leap over the positions to give the next mid-step values v ( t  +  \St).  Subsequently, 

the position equation is applied to advance the positions, and the new accelerations 

are calculated for the next step. The on step velocities can be calculated using the 

formula

v ( t)  =  (3 3 1 )

Elimination of the velocities from these equations shows that the method is al

gebraically equivalent to Verlet‘s algorithm. The velocities now appear explicitly 

within the scheme, which is advantageous because, for example, control of Simula^ 

tion temperature is achieved by appropriately scaling velocities.
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3 .2 .3 . 2  R o ta tio n a l M otion

In classical mechanics, it is natural to divide molecular motion into translation of the 

centre of mass and rotation about the centre of mass [60]. The rotational motion 

is governed by the torque, tz-, about the centre of mass. This torque enters the 

rotational equations of motion in the same way that the force enters the translational 

equations. However, the nature of orientation space guarantees that the equations 

of re-orientational motion need not be as simple as the translational equations.

For a linear molecule, only the angular velocity and the torque perpendicular to the 

molecular axis need be considered. Taking u as the unit vector defining the axis, 

the torque can be expressed as,

r  =  u x g (3.32)

where g, the gorque, is simply an angular derivative of the intermolecular poten

tial. For a uniaxial particle, the vector g can always be replaced by its component 

perpendicular to the molecular axis, such that,

r  — u x g 1  (3.33)

where,

g x =  g  -  (g-u)u. (3.34)
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The equation of rotational motion can then be expressed using the second order 

differential equation [64]

±
VL =  +  Au (3.35)

where I  is the moment of inertia perpendicular to u  and A is a Lagrange multiplier, 

which constrains |u| to be a constant of motion. A proposed solution to this equation 

uses a leap-frog algorithm [65]. Firstly, an expression for A is obtained by considering 

the advancement of coordinates over a half time step

u(t) =  u(t -  i<St) + (3.36)

Taking the scalar product of both sides with the vector u(t), and using u(t).u(£) =  0 

and u(t).gx (t) =  0  gives,

A (t)8t =  —2 u (t — -5 t) .u(t)
Z

(3.37)

and so

Stu(t) =  S t ^ P -  -  2 u ( t -  -St) .n(t)  u(t). (3.38)

This is then used to advance a full step in the integration algorithm
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u (t +  i St) =  u (t -  i St) +  <ftii(t) (3.39)

and the step is completed using,

u  (t +  St) =  u  (t) +  Stu(t +  -\-5t). (3.40)
z

This algorithm has been used in liquid crystal simulations and produces stable and 

accurate trajectories.

3 .2 .3 .3  C onstant-T em perature M olecu lar D yn am ics

The methods described above allow simulation in the NVE  ensemble. In order to 

simulate other ensembles, modifications to these methods need to be made. The 

following section gives an overview of the constraint method which has been used 

to conduct fixed temperature simulations in this programme of work.

The constraint method simply re-scales the velocities at each time step by a fac

tor of ( T / T ) 1̂ 2, where T  is the current kinetic temperature and T  is the desired 

thermodynamic temperature. The equations of motion are expressed as [5,66],

r =  p /m
(3.41)

p =  f - f ( r , p ) p
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where £(r, p) can be considered as a friction coefficient which varies so as to constrain 

T  to a constant value. A variant of the leap-frog algorithm has been devised [67] 

which takes the form,

v  ( t  +  ^Stj  = v ( t -  ^Stj  +  (a(t) -  fv(£)) St. (3.42)

To implement this solution, an unconstrained half step is made,

v'(f) = v ( t -  ^Stj  +  |a(t)<5t.

Using these, the constrained velocities can be calculated using,

v  ( t +  ^ s t j  =  (2x -  l ) v  ( t  -  it f t)  +  x*(t)61 (3.44)

where x  =  ( l  +  1 =  ( T / T ) 1/2-

Similar arguments may be used to convert to rotational algorithms, such that the 

rotational and translational kinetic energies may be constrained separately [6 8 ].

3.2.4 Periodic Boundary Conditions

It is common for a real system to have of the order 1023 particles, whereas a typical

MC or MD simulation can only deal with 102 to 104 particles due to the compu

tational overhead involved when considering large systems. Confining the particles

(3.43)
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within a geometric shape will cause problems with surface effects for such a small 

system. Periodic boundary conditions are used to overcome this problem and in

volve effectively replicating the system box in all directions throughout space. If a 

particle leaves the system through one side then it will re-enter on the opposite side 

thus keeping the number of particles considered constant.

It is important to ask whether the properties of a small, infinitely periodic system  

and the macroscopic system which it represents are the same. This depends both on 

the range of the intermolecular potential and the phenomenon under investigation. 

If the range of the potential is large enough in comparison to the box size, then 

there will be a significant interaction between a particle and its own periodic image, 

imposing a degree of symmetry upon a structure which should in reality be isotropic. 

There can also be problems in the vicinity of phase transitions, since these can 

involve the creation of long range fluctuations which are suppressed by periodic 

conditions. This can lead to a rounding and shifting of the phase transition, and 

transitions which are known to be first order often exhibit the characteristics of 

higher order transitions when modelled in a small box due to the suppression of 

fluctuations. The implications of this periodicity will be further discussed along 

with the relevant results in Chapters 4 and 5.
i

3.2.5 Interaction Potentials

In a system of N  interacting particles, the potential energy can be divided into terms 

depending on the positions (and orientations) of the individual atoms, pairs, triplets
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etc

u  -  E  ei (r<) +  E I e2 (r*’>Ti )  +  E  E  E  e3 (r>'>ri> r*) +  ... (3.45)
i i j > i  i j > i k > j > i

where e\ represents the effect of an external field, represents a two body pair

wise potential, e$ represents a three body triplet-wise potential etc. The majority 

of the potential energy comes from the pair interaction term, however the triplet 

term is reasonably significant at liquid densities, accounting for up to ten percent 

of the total. It and higher terms are rarely used in computer simulations though, 

because they are extremely time consuming to calculate. Fortunately this pairwise 

approximation still gives a remarkably good description of liquid properties [69], 

though it should be noted that the potentials commonly used in computer simulation 

are effective pair potentials that represent all the many body effects, and are not 

necessarily the same as (or even that similar to) the actual pair potentials in real 

systems [5].

3.2.6 Analysis

Within the field of molecular simulation, the variables to be analysed can be split 

into two groups

a) Thermodynamic quantities - such as pressure, temperature, energy.

b) Structural quantities - order parameters, distribution functions.

Generally, a number of thermodynamic quantities are fixed at the beginning of a
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simulation, depending upon which ensemble is being used.

3 .2 .6 .1  P ressu re

The pressure can calculated in the course of a simulation by using the virial theorem

/ W \
P  =  Pideal +  (Pexcess)  =  p k l j T  +  { r ^ r )  (3 ‘4 6 )

where the angular brackets denote an ensemble average. The virial, W ,  is given by

i N - l  N

=  (3-47)
0  i= 1 j > i

This can also be used in a simulation for which the pressure is specified to provide 

a useful check of the program.

3 .2 .6 . 2  N em a tic  Order P aram eter

The nematic order parameter, P2) measures the degree of orientational order in a 

system. It is given by the run average of

^  =  (3.48)

where Uj is the orientation vector of molecule i, and d is the system director (defined 

as the orientation that maximises the right hand side of eqn. (3.48)). Its value
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ranges from 1 for a perfectly aligned crystal to ~  N  % for an isotropic system (ie 

no orientational order).

In practice, the director need not be determined, since the order parameter is usually 

calculated from the Q-tensor,

1 N

*=1

f
g i(x,x)  qi (x, y) qi (x, z)

Qi (y, y)  q i ( y , z )

Qi(z ,x)  Qi(z ,y)  Qi(z , z) J

(3.49)

where qi(x, y) is the product of the x and y component direction cosines of molecule

By diagonalising Q three eigenvalues are obtained, the largest of which, Ai, is used 

to evaluate the nematic order parameter via

P2 =  A1 - | ( A 2 +  A3) =  i(3 A 1 - l )  (3.50)

where Ai +  A2 +  A3 =  1

3.2.6.3 Radial Distribution Function

The radial distribution function g (r) provides structural information about the sys

tem. It is defined as the probability of finding a pair of particles a distance r  apart, 

relative to the probability expected for a completely random distribution at the 

same density.
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It is usually calculated in computer simulations by compiling a histogram. The 

volume around each particle is divided into concentric spherical shells, and the 

number of particles in each shell is counted and divided by the shell volume (given 

by the difference between two spherical volumes), to obtain the local density. The 

densities at each distance are then averaged over all particles, and normalised with 

the overall density to obtain g (r).

p’ lir ((r +  d r f  -  (r -  dr)3) N  I t Nj  ^ '51)

where Nj  is the number of particles j  such that r +  dr > | rz- — Tj \> r — dr.

The function g (r) can be split up into its two components parallel and perpendicular 

to the nematic director, g\\ and g±. These are calculated in a similar fashion ex

cept using the parallel and perpendicular components of the intermolecular distance 

instead of the scalar distance | r* — rj  |; these are given by

m =  Tij • d  (3.52)

r± =  V  ((n  -  T j f  -  rjj) (3.53)

where d is the nematic director obtained for the P2 calculation. In these two cases 

the normalising volume needs to be modified appropriately; instead of considering 

two spheres and using their difference as the volume, a sub-space of each of these

spheres is used, such that in each space the resolved distance is of the appropri

ate length or less (being (r +  dr) and (r — dr)). The difference in volume of the
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two sub-spaces is then again used as the normalising volume (replacing the factor 

§7r ((r +  dr)3 — (r — dr)3') in Eqn 3.51).

3.2.7 Reduced U nits

In computer simulations it is normal to use the mass of the molecule as a funda

mental unit, ie. set mx=  1. As a consequence the particle momenta and velocities 

become identical, as do the forces and acceleration. For molecules interacting by 

pair potentials of a relatively simple form this approach can be extended further. 

In the Lennard-Jones potential the molecular interactions are completely specified 

by the parameters e and cr, and from these further fundamental units of energy, 

temperature etc may be defined

Density p*

Temperature T*

Energy E*

Pressure P*

SurfaceTension 7 *

pa3 (3.54)

kBT/e (3.55)

E / t (3.56)

P a 3/e (3.57)

7<t2/« (3.58)

Since the Gay-Berne potential is essentially an anisotropic form of the Lennard- 

Jones, the reduced units used in this work are all defined in the same way.

The main advantage of using reduced units is that it avoids the possible embarrass-
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ment of conducting identical simulations. There are also technical advantages in 

that when paramters such as e and <r are given a value of unity, they do not need 

to appear in a program at all, and thus some time will be saved on the calculation 

of potential energy, forces etc.

3.3 Liquid Crystal Simulations

The types of model used to simulate liquid crystals off lattice can be broadly split 

into two main types - hard and soft particle models, each of which have been studied 

extensively. Both of these are discussed in this review, concentrating firstly on bulk 

systems and the history of liquid crystal simulation, with particular emphasis on 

previous studies using the Gay-Berne model, which has been used exclusively in 

the work in this thesis. Relevant work on bidisperse bulk systems is also discussed. 

Attention is then switched to interfacial systems, considering both those with free 

surfaces, as in the work conducted here, and with some sort of interacting wall. 

Passing consideration is given to lattice systems where they have shown effects of 

interest in bidisperse and interfacial systems. However, in general they were not 

thought to be as important as the off-lattice studies which have been conducted.

3.3.1 Hard Particle M odels

Hard particle models consist simply of an infinitely repulsive core within which no 

penetration is possible. They contain no attractive region, and it is their simplicity 

which makes them so useful to the computer simulator. The first simulations used
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hard particles, and over the years they have proved surprisingly effective at repro

ducing features of the liquid state, showing that the main driving forces behind 

liquid structure are excluded volume effects (although liquid crystalline behaviour 

has been observed using models with no hard core and anisotropic attractive inter

actions [70]).

It is therefore not surprising that the first successful simulations of mesogens used 

anisotropic hard particle models. As described on page 25, Onsager showed in 1948 

that orientational ordering will be seen in a system of needle-like hard bodies when 

the density increases above a certain (shape-dependent) value, so it was known that 

these particles were capable of forming mesophases.

3.3.1.1 Ellipsoids

Onsager’s theory was first verified by Frenkel and Eppenga [71] when they used 

MC simulations to show that a system of infinitely thin hard disks undergoes an 

isotropic-nematic transition. However, due to the platelets having zero volume, this 

system cannot crystallise and thus was guaranteed to display a nematic phase at 

sufficiently high densities.

Frenkel and co-workers [72] went on to explore the phase diagram for the hard ellip

soid system, considering a whole range of axial ratios from infinitely thin platelets 

through hard spheres up to various lengths of rod-like molecules. It was found that 

the stability of the nematic phase depends upon the degree of anisotropy in the 

molecule, and that although a nematic phase is seen for axial ratios of e = l/2 .7 5  

and 3  ( e = l  is equivalent to a hard sphere), no nematic phase exists for less extreme

59



ratios.

More extreme cases of e = l/1 0 ,l/5 ,l/3 ,3 ,5 ,1 0  have since been investigated [73] and 

in all cases displayed a spontaneous ordering to the nematic phase as the system 

underwent uniform compression. It was also noted that upon transformation from 

prolate to oblate (e to 1 /e )  the phase diagram is almost symmetrical, the oblate 

molecules being slightly more aligned at a given density than the corresponding 

prolate molecules.

The coexistence behaviour of the hard ellipsoid system at the isotropic-nematic 

transition has subsequently been investigated [74] using the Gibbs ensemble and 

standard Monte Carlo simulations with the Gibbs-Duhem integration technique. 

This enables navigation along the coexistence line from a known reference point. The 

Gibbs ensemble technique was found to be tractable only for an extreme axial ratio, 

e=20, where the low density at the transition makes insertion of particles easier. The 

transition was seen to weaken with decreasing elongation, and comparison was made 

between the simulation results and a modified form of Onsager theory. A reasonable 

comparison was seen for the modified version, whereas the original Onsager theory, 

although good in the limit of infinite rods, quickly became inaccurate as the rods 

were shortened.

Studies have also been made of bidisperse ellipsoid systems, albeit rods and plates [9]. 

Using the Gibbs ensemble technique, theoretically predicted demixing was observed, 

with coexistence typically occuring between a rod rich calamitic nematic system and 

a plate rich discotic nematic system. A biaxial phase was also seen, although its 

region of stability was severely limited by the system tending to demix into two co
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existing uniaxial phases. The use of the Gibbs ensemble technique to observe liquid- 

liquid coexistence, in this relatively dense system, is encouraging for the bidisperse 

work in the thesis, although it was noted that the particle insertion move was partic

ularly difficult. The number of attempted insertions, however, was not adjusted so 

as to give 1-3% of the particles transferring for each step, as has been recommended 

for atomic systems [57,58], since the orientational fluctuations here were observed to 

occur on a much longer timescale than the positional fluctuations in such systems.

3.3.1.2 Spherocylinders

Another computationally inexpensive hard core model for mesogens is the sphero- 

cylinder, which consists of a cylinder of length L , diameter D  with hemispherical 

caps of diameter D. The first simulations using this model [75] considered systems 

of parallel spherocylinders with 5 >  L / D  >  0.25, thus even at the lowest densities 

the system has nematic order. Certainly the most striking result of this work was 

that for L / D  >  0.5 the system displayed a stable smectic phase, the range of which 

increased with the non-sphericity of the particles. Subsequent work [76] revealed the 

existence of stable columnar phases (where the particles are confined in liquid like 

columns) for L / D  >  4 at densities intermediate between the smectic and crystalline 

phases.

The effect of the orientational degrees of freedom on the system (ie removing the 

parallel constraint) was first investigated for L / D  =  5 [77] and was later extended 

to other aspects [78]. It was found that for L / D  <  3 only isotropic liquid and 

crystalline phases can occur. For larger L / D  values, stable smectic and nematic
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phases were found.

Recently, an attempt was made to trace out the whole of the density vs axial ratio 

phase diagram for hard spherocylinders using a combination of simulation and the

oretical techniques [79]. It was found that stable smectic and nematic phases only 

exist for L / D  >  3.1 and L / D  >  3.7 respectively. Moreover, the size of the density 

jump was seen to diminish at the N-Sm transition with increasing particle length, 

whereas it increased for the I-N.

Finally, simulations have been carried out on binary mixtures of spherocylinders with 

different aspect ratios [80], although these have been confined to parallel systems. It 

was found that the nematic-smectic transition, which is postponed by increasing the 

length of the longer rod, is eventually preempted by a nematic-columnar transition 

when the length of the longer rod is increased by a certain amount, showing that in 

these mixtures bidispersity favours columnar over smectic order.

3.3.1.3 Conclusions

Despite the inherent problems of simulating mesogens, a large number of features 

have been reproduced using just hard core models. Of particular note is the es

tablishment of a stable smectic phase for systems of sufficiently long spherocylin

ders, proof that hard core effects are sufficient for the establishment of a variety of 

mesophases. The next logical step is the consideration of anisotropic particles with 

more realistic interactions ie soft potentials.
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3.3.2 Soft Particle M odels

That a realistic interaction has both attractive and repulsive components is evident 

from the fact that on one hand solids and liquids have the property of cohesion, 

but at the same time do not collapse indefinitely to a point singularity under the 

action of these forces. Soft potentials attempt to model this by comprising both a 

repulsive inner and an attractive outer region. Unlike hard particles, they do not 

generally have an infinitely repulsive hard core, but rather a steeply rising potential 

within a certain distance, hence the term soft particle. By far the most commonly 

used model interaction for atomic systems is the Lennard-Jones potential, given by

where €o is the well depth (ie the strength of the strongest attractive interaction) and

Co the collision diameter (the distance at which the potential between two particles

/ \ 12
is zero). The repulsive term comes from the overlap of the electron shells,

and should really be exponential. However the former is more convenient to use and 

gives approximately the same interaction. The attractive term arises from,

amongst other factors, the induced dipole-dipole interactions. This potential has 

proved exceedingly successful at reproducing real behaviour for a number of atomic 

systems, given an appropriate choice of the two parameters. In computer simula- 

tions of anisotropic molecules, an atomistic model would involve designating several 

Lennard-Jones potentials to each molecule in an attempt to accurately reproduce 

the intermolecular interactions. Although this technique has been used [81] with
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some success recently in the liquid crystal field, it will not be discussed here since 

this work is concerned solely with the use of single site anisotropic potentials.

The need to make efficient use of computational power has resulted in a number 

of attempts, since the beginnings of computer simulation, to effectively model a 

site-site potential with a single site interaction. This alternative type of potential 

was first introduced in 1948 by Corner [82], who proposed a numerical fit to a 

multi site Lennard-Jones potential with orientationally dependent range and energy 

parameters. Other potentials have been since been proposed [83] - here we will be 

concentrating on the Gay-Berne potential used in this work, and first, its predecessor, 

the Berne-Pechukas potential.

3.3.2.1 Berne-Pechukas Potential

The Berne-Pechukas potential [49] is essentially an axially symmetric Gaussian over

lap model generalised to a Lennard-Jones form. The basic potential acting between 

the two molecules is given by the Lennard-Jones interaction(3.59), with the angu

lar dependence of cr determined by the overlap of two axially symmetric Gaussian 

functions,

• f  ( f j j  • Uj +  Tjj • U j)2 (?,

! \  1 +  x(u; ■ Uj)
a ■ Ui -  • flj)2} '

1 - x(ui • Uj) J _ (3.60)

where x  is a parameter determined by the length of the major and minor axes of 

the anisotropic particle ie the shape anisotropy
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The energy parameter is also dependent upon x, and is given by

e(ui, Uj) =  e0 [l -  X2(iii ■ % )2)] 2 . (3.62)

<7o and €o are constants and uz and uj are unit vectors describing the orientation 

of the molecules. When the above orientation-dependent parameters are inserted in 

the Lennard-Jones potential, one obtains the Berne-Pechukas potential.

U ( i i i ,  U j, iij) =  4e(uj, U j) r i j  )  V r i j  j (3.63)

This model was first studied by Kushick and Berne [84] using constant temperature 

MD in both two and three dimensions. They applied an electric field to the isotropic 

phase, promoting orientational order, and then monitored the system after the field 

had been switched off. It proved easy to generate order by imposing an external 

field. However the establishment of stable orientational order in the absence of a 

field proved to be difficult, and any observed order was lost after sufficiently long 

simulations.

The Berne-Pechukas potential suffers from some unrealistic features. Firstly, the 

strength parameter does not depend on the intermolecular vector r, resulting in 

an equal interaction for configurations in which molecules are placed side-by-side



and end-to-end, whereas one would expect a stronger interaction for the former. 

Secondly, the r -dependence scales as cr, which results in an overestimation of the 

width of the attractive well for those configurations in which a  is large [85].

3.3.2.2 Gay-Berne Potential

Gay and Berne [7] addressed the problems of the Berne-Pechukas potential by com

paring it with the interaction between two molecules each composed of a line of four 

Lennard-Jones atoms. To enable meaningful comparison, the potentials were nor

malised so that the well depth of the side-by-side configurations were unity. Under 

these conditions, they confirmed that the two unrealistic features mentioned above 

are indeed the main discrepancies between the Berne-Pechukas and the site-site po

tential. For the Lennard-Jones array, the side-by-side well depth is much deeper 

(approx 5 times) than the end-to-end well depth, whereas the Berne-Pechukas po

tential has the two equal. Also, the site-site potential has well widths approximately 

independent of orientation, while in the Berne-Pechukas potential it is closely pro

portional to cr.

In order to rectify these unusual features, Gay and Berne proposed two modifica

tions. First, a new strength parameter depending explicitly on f  is defined:

€(«,-, uj, Tij) =  e06i(ui, Uj)e%(ui, %, ry ) (3.64)

where €i(uj, Uj) is the strength parameter given in the Berne-Pechukas potential 

(3.62) and e2 (ui,Uj,rjj) is a function taking the same form as the Berne-Pechukas
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cr(ui,Uj, tij) term (Eqn 3.60),

r (n f, f  1 1 1 v  [  ^  +  i( i  ' "J')2 I 1 13 651£2(ut,uJ1r,3) - l - 2x |  1 +  +  ! _ * ( * . * , )  )  (3'65)

where

/ fe A e ) 1̂  -  1
*  fe /e e )1/" +  1

Here ^  is the relative strength of the side-side to the end-end attractive interaction. 

Thus the anisotropy in the well depth is explicitly included in a phenomenological 

way. The exponents /z and v can be varied to give a wide range of anisotropic

potentials. In their work Gay and Berne found good agreement to the Lennard-

Jones array by using (jl =  2 and v  =  1.

The second modification involves a new dependence on the Berne-Pechukas <r(uf, uy, r^) 

(Eqn 3.60), which ensures that the potential is now being displaced rather than di

lated. The final form reads as follows

U (Uj, Uj ,  iij) =  4e(iii, Uj, fy )
<70

12

Jij  -  <r(Uj, Uj, Tij) + U 0J \ n j  -  <j(Uj, Uj, iij)  +  (To

(3.67)

Evidently, the Gay-Berne model is still computationally much cheaper than its site- 

site counterpart. It should be noted that in the limit k =  k =  1 (k =  crs/ a e, the 

shape anisotropy parameter; k =  es/e e, the well depth anisotropy parameter) the
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spherical Lennard-Jones potential is recovered. In this sense the potential can be 

regarded as a generalisation of the Lennard-Jones interaction to anisotropic systems.

The Gay-Berne model has been widely studied in a number of parameterisations 

and can be justifiably regarded as one of the most important anisotropic potentials 

in use at present. The first parameterisation suggested for the model was in the 

original work by Gay and Berne [7], who found satisfactory agreement to the 4 site 

linear Lennard-Jones array using the parameters k =  3.0, k =  5 .0 ,// =  2 ,v  =  1. 

The dependence of this potential on intermolecular separation in the four main 

limiting configurations (Fig 3.1) is given in Fig 3.2; the potential varies smoothly 

between these limiting behaviours for the intermediate configurations which occur in 

real simulations. The graph clearly shows that the side-side interaction is the most 

attractive; along with the end-end interaction it is this which promotes mesophase 

formation.

c
\J \Jc  I>

Side-Side End-End Tee Cross

Figure 3.1: The four main relative molecular configurations for the GB model.

Using this parameterisation, Adams et al [86] successfully demonstrated a spontar 

neous isotropic-nematic transition for p* =  0.32 and 1.7 <  T* <  1.8, using MD in the 

N V T  ensemble. They did this by observing the second rank order pair correlation 

function and the radial distribution function.

Further simulations [87] were carried out using different exponents (p  =  1, v  =
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Figure 3.3: GB well depths - (k =  3.0, k  =  5.0, (i — 1.0, v  — 2.0)
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2), to promote mesophase formation. This parameterisation has deeper (ie more 

attractive) parallel well-depths (ie. side-side and end-end) (See Fig 3.3) than the 

original GB, and using it isotropic, nematic, smectic-A, smectic-B and crystal phases 

were observed. The phases were identified using computer graphics to visualise 

configurations taken from the production stage of the simulations and by monitoring 

the orientational order parameter. In this paper an important point was made about 

the shape of the Gay Berne model. By looking at the contour corresponding to a 

change of potential energy from positive to negative, the potential was found to 

be essentially ellipsoidal in shape, and thus incapable of forming a smectic phase 

according to earlier hard particle simulations. However, as would be expected, 

the strong side-by-side interactions stabilise the smectic phase allowing one to be 

observed.

An attempt [47] has been made to model a real system with the Gay Berne potential, 

namely the mesogen p-terphenyl, which was chosen because of its rigidity and non 

polar characteristics. The total pair potential of the real molecule was constructed 

from a summation of Lennard-Jones site-site terms, each molecule having 32 sites 

and the central aromatic ring being twisted by 36 degrees with respect to the copla- 

nar end rings. As with the original Gay Berne fitting (to arrays of 4 LJ sites), the new 

parameters were chosen from comparisons with various biaxially averaged contours 

and the movement of one molecule around another. The final Gay Berne parameters 

obtained by this mapping were: k =  4.4, k =  39.6, eo =  4302/if, // =  0.8, v  — 0.74. 

The resulting repulsive core is more elongated in shape and the well depth anisotropy 

is significantly greater than the original Gay Berne value of 5.
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Preliminary investigations of this parameterisation successfully identified isotropic, 

nematic and smectic-A phases. The authors then proceeded to investigate the effect 

of reducing the well depth anisotropy (k ) using a smectic-A phase as the initial 

configuration. It was found that the smectic-A order was lost and the system re

verted to the nematic phase for a sufficiently small k . However, without a full phase 

diagram, a true evaluation of the newly parameterised Gay Berne potential could 

not be given.

De Miguel et al carried out extensive simulations with the original Gay Berne param

eterisation in an attempt to construct an approximate phase diagram for the system. 

The liquid-vapour region was located using the Gibbs Ensemble MC method [88], 

the isotropic-nematic transitions by thermodynamic integration [89], and the re

maining transitions were determined by observation of specific order parameters 

along various isotherms [90,91].

Chalam et al [90] studied the system size dependence of the Gay Berne model with 

regard to the isotropic-nematic region and found there was a slight shift 1%) in 

the transition density and pressure as the number of molecules was increased by a 

factor of approximately 2 (N  =  256 to N  =  500).

It should be noted that all of the above simulations (with the exception of the Gibbs 

Ensemble MC) were performed using the molecular dynamics technique, which seems 

to have been more successful with anisotropic systems. However some work [92] has 

been done using MG on the Gay Berne model with a parameterisation devised so as 

to enhance the parallel interactions (ie those involved in mesophase formation) (i — 

1, v — 3. Systems of both 512 and 1000 particles were studied, and it was found that
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exceptionally long runs were required to achieve reliable results, especially around 

the transition regions, due to the very long range fluctuations inherent in these 

systems. Isotropic, nematic and smectic phases were observed, and the isotropic- 

nematic transition was found to be more strongly first order as compared with 

the standard (/i =  2, v  =  1) potential. A noticeable shift (a few percent) in the 

isotropic-nematic transition temperature with change in system size was also seen.

Recently, more comprehensive studies of the phase diagram for the original Gay 

Berne parameterisation and systematic perturbations from it have been conducted. 

These have concentrated upon the effect that changes in the molecular elongar 

tion [93} and well depth parameters [94} have upon the overall phase behaviour 

of the system. Particular attention was paid to the Vapour-Isotropic (V-I) region 

(as observed earlier by De Miguel et al) and the effect of different parameterisations 

upon this. A slight discrepancy was found with these earlier results and a modified 

phase diagram for the original parameterisation determined (Fig: 3.4).

Considering changes to the original parameterisation, it was found that on increasing 

the molecular elongation parameter k , the V-I region disappears since the smectic 

phase is stabilised (ie occurs at a lower density) and thus is preferred to the isotropic 

region. The nematic phase still occurs at too high a temperature for any vapour 

nematic (V-N) coexistence to occur, although it too is shifted to lower densities. 

This stabilisation of the ordered phases is to be expected since increasing k results 

in deeper well depths for parallel configurations of molecules (Fig 3.5), making them 

energetically more favourable.

The well depth anisotropy parameter k was also found to have a significant effect.
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Figure 3.4: Temperature-density phase diagram for GB model [93]
(k =  3.0, k =  5.0, (i =  2, v  =  1)

Increasing values destabilise the nematic phase with respect to the smectic phase at 

a given temperature, and shift the density at which the smectic phase occurs down 

slightly. This is because k governs the relative strength of the side-side and end-end 

well depths, which control the degree of layering in orientationally ordered systems. 

Concentrating on the low k case, it was found that decreasing values shift the I- 

V coexistence region upwards. This is to be expected since lower values involve 

stronger overall attractive interactions, due to the increasing end-end well-depth. 

Combined with the stabilisation of the nematic phase as described above, this leads 

to a window of stable V-N coexistence for 1.25 >  /c >  1.0. The well-depths for the 

t i  =  1.0 case are shown in Fig 3.6.

In summary, the GB potential has shown a reasonable degree of success in displaying 

a variety of mesophases. Unfortunately it does not capture the fine detail inherent 

in real molecules and thus cannot display some of the more subtle liquid crystal
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features, such as conformational changes within the molecules themselves, or bulk 

tilted ordering. However its computational simplicity and large parameter space 

make it particularly attractive to the simulator, since it can access the time and 

length scales required for mesophase ordering, and can be readily adjusted to model a 

particular type of behaviour. In recent years, this simplicity, combined with rapidly 

increasing computational power, has enabled the simulation of more complicated 

Gay Berne systems, such as mixtures and at interfaces, Studies of these will now be 

considered.

3.3.2.3 Soft Particle Mixtures

To date, computer simulations of liquid crystal mixtures with attractive interactions 

have been very limited. Some lattice based simulations have been attempted, such 

as the MC investigation of a binary mixture of cylindrically symmetric nemato- 

gens by Hashim et al [95]. Using a simple anisotropic interaction between nearest 

neighbours and a low concentration of longer rods to facilitate equilibration they 

attempted a comparison with an earlier developed molecular field approximation 

(The Humphries-James-Luckhurst theory) [96]. It was found that the addition of 

the longer rods stabilised the nematic phase, as predicted. However the theory over

estimated the actual transition temperatures, as with other molecular field theories 

for one component systems.

Apart from lattice simulations, however, there have been very few simulations of 

liquid crystal mixtures with attractive interactions. Part of the problem is the 

requirement of a realistic potential to properly mimic the interactions between two
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different anisotropic molecules. An attempt has recently been made to use the 

Gay-Berne potential to simulate an LC mixture [97], using different parameters for 

each molecule and a set of parameters derived using the Lorentz-Berthelot mixing 

rule for the unlike interactions. This study used the standard MC technique and 

the monitoring of various structural and orientational functions to determine the 

existence of any mesophases. The authors reported a smectic phase and suggested 

some demixing for certain parameters. However the validity of their results must 

be called into question, since the unmodified Gay-Berne potential is unsuitable for 

mixtures due to its inability to distinguish between the two different T-configurations 

(Fig 3.7) possible for unlike molecules; ignoring this broken symmetry results in a 

potentially significant break with reality.

Figure 3.7: Tee Configurations for two unlike GB particles.

A recent paper by Cleaver et al [98] has proposed a generalised form of the Gay- 

Berne potential for the interaction between unlike mesogens which does distinguish 

between the two different T-configurations. This is achieved by extending the range 

parameter function, on which the shape of the Gay-Berne potential is based, to 

incorporate mixed interactions, and then importing it into the standard Gay-Berne 

form to provide an explicit interaction potential. The new range parameter function 

is given by
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CT(ui,Uj,ry ) =  C70

where

' I f  (af j j  • Uj  +  a  %  ■ Uj )2 ( g r i j - U j - g  • u.,)2 ~|

2 1  1 +  x (u ,-  • U j)  1 -  x (u >  • U j)  J

(3.68)

and

X =
\l

(If -  4 )
(i| +  cl?) (I? +  S )

(3.69)

g 2 =
\!

(i? -  4 ) ( i f  +  d?) 
(ij -  t y ( i ?  +  q )

(3.70)

where i  eind j  are the two different anisotropic particles.

A modified strength anisotropy term also needs to be introduced else the well depths 

for the two T-configurations would be equal. By reference to the shape parameter 

result the functional form

_ /_- A ^  J K.1* Li j  ’ “ t T U  t-ij • U jj  i'i j • Uj -  OL 1f i J- • U ^)2 )

€2(ui’u- r«)= 1 - 2X j ! + *(«,• a,) + ------i-x'(«“̂ j  }
1 /  f  { a  t i j  • Ui  +  a  xf y  • U j ) 2 ( ( a r i ____________________

(3.71)

is suggested which is combined with the other standard Gay-Berne expressions
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Uj) =  [l -  x 2(«i • Uj)2)] 2
V

(3.72)

€(«i> Uj, % ) =  £o«i(ui, u,)e^(ui, Uj, fjj) (3.73)

to give the generalised Gay-Berne interaction,

^ (u i ,U j , f , j )  =  4e(ui ,U j ,r ij )
12

00
rij -  Or(Ui, Uj, Tij) +  00 j i j  -  a(ii i ,  Uj, r ij) +  (T0

(3.74)

The question of relating the parameters eo, p,  v,  X and a  to the system of inter

est is rather less clear cut than it is for the parameters associated with the shape 

parameter, and the authors suggest it should be considered afresh for each system  

used.

This potential has already been used to investigate the phase behaviour of a bidis- 

perse system (50:50 mixture) of rod-like mesogens with axial ratios l/d, =  3.5 and 

l / d  =  3.0 [99]. Using the molecular dynamics technique in the NVE  ensemble, it was 

found that this slight bidispersity (from the difference in rod lengths) significantly 

stabilises the nematic region with respect to that of the corresponding pure systems, 

and that, as predicted by mean field theory, the longer rods are always more ordered 

than the shorter ones.
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3.3.2,4 Conclusions

In summary, the simulation of realistic anisotropic systems is clearly still in its 

infancy, and a lot of progress is yet to be made. Although the development of 

analytical expressions for the interaction between mesogens has been a significant 

step forward, there still remains the problem of relating these model interactions to 

real molecules, where there are a number of different factors having an effect (eg 

polarisability, flexibility) which are still very difficult to simulate effectively.

Where computer simulation has been successful is in determining the effects of small 

perturbations away from ideal behaviour, such as in investigating the effect of adding 

attractive interactions to hard particles. Although, strictly speaking, soft particles 

do not have a hard core, they still have a central region into which it  is very dif

ficult for other molecules to penetrate, and as such are comparable to a hard core 

with attractive interactions. The immediate future of simulation is in investigating 

the effects o f changes in these models systematically, and with regard to this the 

development of the Generalised Gay-Berne potential has been important in that it 

now allows the study of deviations from pure systems ie mixtures. It also opens up 

the possibility of multi-anisotropic-site systems, which should lead to closer approx

imation to real molecules. Certainly the scope of soft particle anisotropic systems 

is huge, and there are many different aspects still to be studied.
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3.3.3 Interfacial Simulations

Although the principal techniques for simulating an interface are the same as for 

simulating homogeneous phases, the time required to calculate key interfacial prop

erties, such as the density profile and the surface tension, is significantly longer than 

for a bulk fluid. It is for this reason that simulations of inhomogeneous systems have 

lagged behind those of bulk systems.

There is however a plethora of work in the literature on the liquid-vapour interface 

of the simple Lennard-Jones model, dating back some 20 years [100]. These Simula  ̂

tions have used the MC and MD techniques on systems consisting of either a central 

liquid slab flanked by two vapour regions, or a liquid region abutting a homogeneous 

wall on one side and in coexistence with a vapour region on the other. They have 

shown studying coexistence with interfaces to be tractable and have produced good 

agreement with the coexisting densities and energies predicted by other simulation 

techniques. However, there are numerous discrepancies in the values of key interfar 

cial properties, in particular the surface tension. A recent review [100] of this body 

of work concluded that interfacial systems are much more sensitive to the effects 

of simulation parameters, especially the potential cut-off, and that particular care 

must be taken in ensuring that the simulations are properly equilibrated. Studies of 

multi-site LJ models at the free interface in an attempt to model the surface tension 

of chlorine and hexane [101] have shown good agreement with experimental results, 

indicating the direct simulation method to be capable of producing accurate phase 

equilibria for molecular liquids providing sufficient care is taken.

The literature contains relatively few simulation studies of interfacial liquid crys
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talline systems. This is to  be expected, since the presence of orientational ordering 

will introduce the need for even longer run times. The lattice based Lebwohl-Lasher 

(L-L) model has been used to investigate the suppression of the nematic-isotropic 

transition. Luckhurst and coworkers [102] have studied the surface properties of a 

thin liquid crystal film by Monte Carlo simulations. They used a L-L system of 

10 x 10 x 10 sites and applied periodic boundary conditions in just two dimensions, 

thus forming two free surfaces orthogonal to the third dimension. They found a very 

small downward shift in the nematic-isotropic transition temperature ( T j v j )  over the 

bulk value (due to the effect of free surfaces and perhaps a smaller system size), and 

also an isotropic phase adsorbed on the surface when there is a bulk nematic phase 

in the centre of the pore. Cleaver and Allen [103] then considered the nature of the 

shifted bulk transition in a L-L slab with N  parallel planes, subject to a non-zero 

surface field, using MC simulation. They reported a critical thickness, S <  N c <  16, 

below which there was no bulk transition for the case of zero surface field i.e. a 

free surface. It was concluded that the cause of this critical point was related to 

the pretransitional divergence in orientational correlations at the bulk transition, 

explaining the failure of mean field theories - which underestimate the effects of 

correlations - to predict this critical point.

The work described above offered a useful comparison with the early theoretical 

work on confined liquid crystals, but the system’s simplicity (no density variation or 

spatial disorder is incorporated) renders it unable to model details of the interfacial 

structure. Specifically, the competing effects of surface packing density and orienta

tion are not incorporated, and so there is no possibility of observing tilted interfacial 

layers. To enable these requires an off lattice model, such as the Gay-Berne, at ei



ther a free surface or interacting with a wall with an appropriate particle-substrate 

interaction.

Recently there have been a number of such more realistic simulations. The free- 

surface types will be considered first, followed by simulations of interfaces between 

two liquid phases, and finally substrate systems will be discussed.

The first free-surface work looked at an isotropic GB fluid in coexistence with its own 

vapour [104], based upon the results of some earlier Gibbs ensemble simulations [88]. 

It was found that, as the temperature was lowered towards the vapour-isotropic- 

smectic triple point, the molecules at the interfaces tended to orientate themselves 

homeotropically, whilst the bulk of the fluid remained isotropic. This nematic wet

ting was important, but unfortunately this particular GB parameterisation did not 

exhibit nematic-vapour coexistence, and further cooling was not conducted due to 

the intractable run times needed to properly study any smectic coexistence.

Lately, two independent groups [105,106] have simulated a stable nematic-vapour 

system, using a different parameterisation of the GB potential, which had again 

previously been shown to display bulk nematic-vapour coexistence using the Gibbs 

ensemble technique [94]. Both groups found that, for this system, the free interfaces 

enhance orientational order and induce a director lying in a plane parallel to the 

interface. Upon cooling through the isotropic-nematic transition, a surface tension 

trend consistent with theoretical and experimental observations for nematic wetting 

was observed, and the adoption of nematic ordering parallel to the interface across 

the whole of the film was observed, However, it was suggested that this order did 

not grow in from the interfaces, as might be expected, but arose from orientational
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fluctuations within the middle of the film.

Two brief investigations into the interfacial ordering between an isotropic GB fluid 

and, respectively, its nematic [107] and smectic [108] phases have been published. 

Two different parameterisations were used, the first having been studied previously 

in a published bulk study [92] discussed earlier and the second being a modified 

version of a parameterisation obtained from comparison to a realistic mesogenic 

fragment [47]. These investigations used a questionable thermostating technique to 

maintain the stability of the two phases, by setting the temperature to be different 

in two regions of the simulation box. Although this might cast some doubt over the 

observed thermodynamic quantities, due to the unrealistic temperature discontinuity 

at the interface, the induced orientation should be correct. Using again a different 

parameterisation of the GB potential, it was found that planar ordering was induced 

at both liquid-crystal-isotropic interfaces, with orientational correlations extending 

a small way into the isotropic phase. In contrast, for the smectic interface, there 

was no such effect observed for the translational correlations.

Considering substrate systems, until recently only a brief investigation had been 

performed [90]. Moreover this employed a molecule-substrate potential which was 

separable into its angular and spatial parts (i.e. the location of the minimum in 

this potential was independent of the orientation of the molecule relative to the 

substrate). This oversimplification precluded the observation of either parallel or 

tilted layers arising due to competing effects at the interface.

Recently presented simulations of a confined Gay-Berne system, with a nonseparable 

particle substrate interaction potential [109], have confirmed theoretical predictions
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that suitable tuning of the molecule-surface interaction can lead to a range of dif

ferent pretilt orientations [110]. However, these simulations concentrated almost 

exclusively on the effects of particle-substrate coupling on the surface region struc

ture and did not explore any temperature dependent effects arising due to the various 

degrees of orientational freedom available to the system.

Subsequently, a brief investigation of a similar system has been published [111]. A 

surface induced smectic-C layering was observed, the intermediate region between 

this and the bulk being characterised by a high degree of biaxiality. Correspond

ingly, the director orientation underwent a strong distortion close to the surface. 

However, this work employed a separable particle-substrate interaction potential 

and was restricted to a single state point.

A more meticulous study of a confined liquid crystal film has been conducted [112], 

using a relatively small (N  =  256) system of GB particles confined between two 

substrates with a non-separable particle-substrate interaction. It was noted that 

very long molecular dynamics runs ( ~  500,000 timesteps) were required to bring the 

system to equilibrium, due to the formation of metastable domains which persisted 

over several tens of thousands of timesteps. However, by very carefully cooling 

the system from an isotropic state, both moderate and weak coupling strengths 

were successfully investigated. It was found that a tilted molecular layer developed 

at each wall, with the pretilt angle and layer density only very weakly dependent 

on the temperature as the bulk region was cooled through isotropic and nematic 

regions. Only at relatively low temperatures, when the bulk region adopted a layered 

structure, was much effect on the surface layer observed, with the change in pretilt
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angle being linked to the coupling strength, as would be expected.

This same decoupling between the surface and bulk regions has been observed in 

Monte Carlo simulations of GB particles, adsorbed on a relatively structured surface 

parameterised to model graphite [113]. Here it was found that the first layer of 

molecules align parallel to the substrate, with the second layer perpendicular, poking 

through the holes in the first layer to ‘touch’ the graphite. The imposition of a 

bulk director perpendicular to the second layer (ie parallel to the surface) had no 

effect upon the orientation of the two surface layers, the intermediate region simply 

adopting a smooth change in director to link the two limiting orientations. This 

is in agreement with standard continuum theory often used to model nematics at 

surfaces, where the director is assumed to smoothly vary throughout a sample. 

However, the abrupt change between the orientation of the first and second layers 

clearly contradicts this, a change in director of 90 degrees being observed for one 

molecular length.

Very recently molecularly thin, confined planar and homeotropically anchored GB 

films have been studied [114], using grand canonical ensemble Monte Carlo (GCMC) 

techniques in which the thermodynamic state of the film is determined by the tem

perature T  and the chemical potential /i; chosen so that the corresponding bulk 

fluid is isotropic. A substrate-particle interaction potential of the GB 12-6 form was 

developed by considering the interaction between an ellipsoidal film molecule and a 

spherical wall atom. When planar alignment occured at the surfaces, tilted, perpen

dicular and finally parallel alignment of molecules in the central region was observed 

as the wall separation was increased. It was concluded that the molecules in the
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contact strata are capable of inducing their own parallel orientation in the central 

region only if the wall separation is sufficiently large; this effect, not observed in sim

ple fluids was thought to be caused by competition between wall induced orientation 

and lack of space due to confinement. When the interaction potential was adjusted 

to support homeotropic surface alignment, a highly ordered, solid-like structure was 

observed in the contact strata; the inner portion of the film remained isotropic and 

nearly homogeneous, indicating that the walls were apparently unable to induce a 

high degree of order in the inner portions of the film beyond the contact layers.

Finally, it is worth considering the pitfalls to avoid when conducting such simular 

tions. These have been highlighted quite successfully, if unintentionally, by another 

investigation of a confined GB system [115]. Firstly, a rather strange substrate- 

particle interaction was used where a particle interacts with its own mirror image 

projected into the plane of the substrate, with a possible fixed orientation. This 

has two drawbacks, in that the structure of the wall will be continuously chang

ing and that no two molecules in the bulk will see the same structure. Secondly, 

woefully short MD runs were used (20,000 timesteps) along with very large changes 

in temperature between each state point, and the consequences of this quenching 

are all too apparent in the configurations presented, clearly identifiable metastable 

domains being observed in a number of them. Perhaps the one exception was the set 

of simulations using perpendicular anchoring, where the structures presented look 

reasonably free of defects. Here again the surface alignment was seen to propagate 

into the bulk for the nematic phase, with the smectic director adopting a slight tilt 

away from this, probably due to the number of layers formed being incommensurate 

with the box directions originally chosen.



3.3.3.1 Conclusion

The most important point to note from these studies is that subtle changes in the in- 

termolecular potential used can lead to quite noticeable effects in interfacial systems, 

certainly more so than has been witnessed for bulk systems. This is to be expected 

since the break in symmetry introduced by a surface means the dependence of the 

intermolecular interactions upon the relative orientations of the molecules will be 

even more important. However there is still much to be understood about these 

effects, and this is before even considering the consequences of molecule substrate 

interactions, which appear to dominate bulk effects. The work presented in Chap

ter 5 has focussed on unconfined films in an attempt to contribute further to this 

understanding.
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Chapter 4

Bulk Coexistence

In this chapter, the determination of liquid crystal two-phase coexistence using the 

Gibbs ensemble technique is presented, concentrating on certain parameterisations 

of the Gay-Berne model and its generalised form. First will be discussed, in brief, 

how the parameterisation of the Gay-Berne affects the phase diagram, followed by re

sults from a mono-disperse simulation using a novel parameter set which shows both 

isotropic and nematic-vapour coexistence. A two component perturbation of this 

is then considered, results being presented for simulations of the isotropic nematic 

coexistence region, following description of the generalised Gay-Berne parameteri

sation derivation for the system studied.

4.1 Single Component Gay-Berne Results

As was discussed in the previous chapter, the Gay-Berne model has been shown 

to display a wide variety of liquid crystalline phases, and, in a few cases, stable
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coexistence between them. These have included isotropic liquid-vapour coexistence 

with the standard Gay-Berne potential [88,94], k =  3.0, k =  5, fi =  2.0, v  =  1.0, 

and more recently both liquid and nematic-vapour coexistence [94] using a modified 

parameterisation k, =  3.0, k =  1.0, \i — 2.0, v  =  1.0. Upon considering the 

interactions for various configurations of the two molecules it is found that this 

parameterisation results in a much weaker side-side interaction. This is thought to 

destabilise the smectic phase and allow nematic-vapour coexistence to occur. This is 

consistent with other studies [93] which have shown that upon increasing the length 

of the Gay-Berne molecule (/c), which makes the side-side interaction even stronger, 

the smectic phase is further stabilised and eventually occurs at a low enough density 

to destroy the isotropic-vapour coexistence.

Simulations have been conducted using an alternative version of the Gay-Berne po

tential, where the exponents have the alternative values // =  1.0, v — 2.0 [87]. For 

a given k and k these give much stronger well depths for parallel configurations 

ie side-side and end-end, which are thought to stabilise mesophase formation. Al

though this stronger version of the GB has been shown to be capable of displaying 

a rich liquid crystalline phase behaviour, it has only been the subject of brief study, 

and to date no two phase coexistence using exponents other than the standard GB 

values, fi =  2.0, v  =  1.0, has been seen.

In this work the Gibbs ensemble technique has been used to pinpoint a region of 

phase coexistence for this stronger version of the Gay-Berne.
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4.1.1 Simulation Details

Attempts to find the region of liquid-vapour coexistence were made using the Gibbs 

ensemble MC technique in a fairly standard way. The simulations were started 

using two isotropic configurations at low densities running as normal MC in each 

box. Both were then compressed to a density of 0.1, a value known to be in the 

coexistence region for other GB systems [94]. The additional Gibbs moves were then 

switched on and the density in each box monitored to see if phase separation occured. 

Initially this was done at broadly spaced temperature intervals, the intention being 

to obtain a more detailed diagram once one temperature at which coexistence was 

stable had been found.

However, using the standard GB length of 3:1 (full parameterisation being k =  3.0, 

k — 5.0, fi — 1, v  =  2), an unexpectedly strong phase separation was observed 

below a certain temperature, T* «  0.7, leading to the formation of a very dense 

phase into which it became practically impossible to insert particles. Examination 

of configuration snapshots for this unequilibrated dense phase showed the presence of 

layering, and it was reasonable to assume that coexistence between vapour and either 

a smectic or crystal phase was the stable regime here, although this was impossible 

to clarify using the Gibbs method. At slightly higher temperatures no coexistence 

could be established at all, and upon comparison with the results of Brown et al [93], 

it was concluded that the smectic phase was stable at too low a density, destroying 

any possible simple liquid-vapour coexistence. This can be explained by looking 

at the relative well-depths in the four limiting configurations of the GB. In the 

parameterisation used, the side-side interaction is very strong compared to that for
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the normal GB, which displays I-V coexistence. Similarly in Brown et aVs results, 

it is an elongated GB again with a strong side-side interaction which shows no I-V 

coexistence; it seems that this well-depth is particularly important in determining 

the stability of the smectic phase.

With this in mind, the well-depths of various shortened forms of the stronger GB 

(/i =  1, v  =  2) were looked at. From these calculations it was found that a shape 

anisotropy («) of 2.0 gave a similar strength of side-side interaction both to that 

of the standard GB, and the parameterisation k — 3.0, k =  1.0, fi =  2.0, v  — 1.0 

which has also been shown to display liquid-vapour coexistence. This new potential 

could thus be reasonably expected to show I-V coexistence. The well depths for this 

parameterisation are shown in Figure 4.1

l
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Figure 4.1: GB well depths - (« =  2.0, k =  5.0, // =  1.0, v — 2.0)

Again, broadly spaced temperature intervals were considered, and this time simple
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I-V coexistence was observed, for T* =  0.56. Simulations were then conducted at 

rather smaller temperature intervals below this; sample density evolutions for the 

two boxes at two temperatures in the isotropic-vapour coexistence region are shown 

(Fig 4.2)

As can be seen, the values are reasonably stable after as little as 10,000 MC sweeps, 

and for the isotropic region runs of this length were used as the equilibration period. 

Average values were then measured for various observables over production runs of 

20,000 sweeps, the errors on these averages being estimated by a block averaging 

technique, with 10 blocks of 2000 sweeps each. Observation of the nematic order 

parameter P2 in the region 0.56 > T * >  0.485 showed no indication of orientational 

order in the dense box, and it was concluded that stable isotropic liquid- vapour co

existence was being observed for these temperatures. However, upon further cooling 

to T* =  0.480, a relatively large increase in density of the liquid box was observed, 

with a corresponding increase in the nematic order parameter. The evolution of 

these two functions from the final configuration of the T* =  0.485 production run 

is shown (Fig 4.3), together with the density of the vapour box. A significantly 

longer equilibration run length of 140,000 MC sweeps was required at this lower 

temperature due to the slow onset of orientational ordering.

Upon further cooling, similar values for p* and P2 were observed in the liquid box, 

with an expected slight increase in the density with lowering of temperature. How

ever, no large discontinuities similar to that between T* =  0.485,0.48 were seen, 

and it was concluded that a region of stable nematic-vapour coexistence existed in 

this temperature range. This is confirmed by looking at plots for two structural
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Figure 4.3: Density evolutions and order parameter for T* =  0.480
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functions at the temperature T* =  0.480 (Fig 4.4).

The second rank order correlation function, <72 O')* clearly shows a non-zero limiting 

value, indicative of an orientationally ordered phase. However, the radial distri

bution function resolved parallel to the director, pparM> shows no indication of a 

layered structure, so the ordered phase must be a nematic. (NB - These two func

tions are formally defined in the following chapter)

Values of various key observables for the cooling runs are presented (Table 4.1), 

together with the phase diagram in the appropriate temperature-density plane (Fig 

4.5).

rj-1* U*(l) U"(v) P*(0 P » P*(l) P*(v) A ( Q

0.560 -2.18(8) -0.52(4) 0.271(12) 0.045(3) 0.02(2) 0.016(2) 0.090(16)
0.550 -2.32(9) -0.50(8) 0.288(13) 0.042(5) 0.03(3) 0.015(3) 0.077(17)
0.540 -2.42(2) -0.39(5) 0.301(02) 0.034(3) 0.03(3) 0.013(2) 0.077(15)
0.530 -2.52(5) -0.27(3) 0.311(07) 0.025(2) 0.01(3) 0.010(2) 0.097(30)
0.520 -2.65(6) -0.25(3) 0.326(06) 0.024(2) 0.01(3) 0.009(1) 0.082(22)
0.510 -2.75(4) -0.21(5) 0.334(04) 0.020(3) 0.00(3) 0.008(1) 0.133(24)
0.500 -2.81(4) -0.20(3) 0.340(04) 0.017(1) 0.01(2) 0.008(1) 0.090(29)
0.490 -2.94(6) -0.19(3) 0.351(05) 0.015(1) 0.02(3) 0.006(1) 0.143(33)
0.485 -2.97(6) -0.16(4) 0.358(06) 0.014(2) 0.01(3) 0.006(1) 0.158(53)
0.480 -3.70(6) -0.15(3) 0.394(04) 0.012(1) -0.01(4) 0.005(1) 0.657(29)
0.475 -3.83(9) -0.14(3) 0.402(05) 0.012(2) -0.01(5) 0.005(1) 0.686(32)
0.470 -4.00(4) -0.10(3) 0.409(03) 0.010(1) -0.01(5) 0.004(1) 0.734(15)

Table 4.1: Observable averages at various temperatures

In addition to measuring the potential energy, U*, average density, p*, pressure, 

jP*, and nematic order parameter, P2j the reduced chemical potential p r was also 

measured, to ensure that the two phases were in chemical equilibrium. This was done 

using a modified version of the Widom insertion method, the energies calculated for 

the insertion moves of the Gibbs method used in the expression [116]
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Figure 4.4: Structural functions for T* =  0.480
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where U*A is the energy change for a given insertion, Vi and tia the volume of 

and number of particles in the receiving box at the time, and the angular brackets 

denote an ensemble (simulation) average. Further details are given in Appendix 

A. The reduced chemical potential values for each of the phases, along with the 

particle insertion ratios, ptns, and the number of attempted insertions per cycle, 

N ins, are shown at various temperatures (Table 4.2). These show, in conjunction

fjl* / / (I) HT(v) Pins Nins
0.560 -2.16(04) -2.16(2) 0.0262(72) 200
0.540 -2.13(04) -2.16(2) 0.0130(63) 400
0.520 -2.16(08) -2.19(3) 0.0073(12) 600
0.500 -2.13(06) -2.21(4) 0.0040(08) 1000
0.490 -2.17(06) -2.21(3) 0.0030(11) 1000
0.485 -2.20(11) -2.24(5) 0.0009(02) 2000
0.480 -2.14(10) -2.23(4) 0.0004(02) 10000
0.475 -2.11(17) -2.25(5) 0.0002(01) 10000
0.470 -2.27(11) -2.28(4) 0.0001(01) 20000

Table 4.2: Chemical potentials, insertion acceptance rates and attempts

with the pressure values in Table 4.1, that the criteria for chemical, mechanical and 

thermal equilibrium have been satisfied, each of the two coexisting phases at a given 

temperature having, to within statistical accuracy, the same pressure and chemical 

potential.

In previous Gibbs simulations involving relatively dense anisotropic fluids [93,94], 

the issue of particle insertion has caused particular problems, with the Gibbs method 

quickly becoming intractable as the probability of inserting a particle decreases ex-



ponentially towards the triple point. However, for the temperature range studied 

here, no particle insertion problems were encountered. Down to the lowest temper

ature, T* =  0.470, insertion success rates of around 0.0001 were observed, which 

for 20000 attempted insertions per sweep gave approximately 0.4% of the particles 

transferring at each step. Although this is lower than the original 1-3% suggested 

by Panagiotopoulos [57], considering the slow timescale of orientational ordering, 

it seems to be sufficient to ensure equilibrium, as has been noted before [9]. This 

reasonable success rate is attributed, in part, to the relatively small degree of par

ticle shape anisotropy being used (k =  2.0). Upon further cooling, however, the 

success rate dropped even further and it became too computationally expensive to 

increase the number of particle insertion attempts sufficiently for equilibrium to be 

established. The simulations were therefore curtailed at this temperature.

4.2 Generalised Gay-Berne Results

4.2.1 Param eter F itting

The parameters used in the original Gay-Berne potential were arrived at by compar

ing the well depths for various configurations with those obtained from two linear 

arrays of Lennard-Jones sites. One of the advantages of the GB potential is that 

its four parameters are conceptually easy to understand. Changes to this original 

parameterisation have been relatively simply implemented, with their effects readily 

understood, at least on a microscopic interaction level, by comparing the well depths 

in the four main configurations.
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However, for the GGB potential [98], the situation is considerably more complicated, 

there being 4 different parameters, x » X » & and a , for each of the four different 

molecule pairs, ii, j j ,  i j ,  j i .  Having decided upon the lengths of the two unlike 

particles, the like-like parameters x  and X are given by the explicit definitions in 

the standard GB, and a  and a  are set to one, since they only have a role in unlike 

pairings. However the relative strength of the two interactions, eu/ejj still needs 

to be calculated. For the unlike interactions, i j  and j i ,  whilst there are explicit 

definitions, given in terms of the molecular dimensions, for x  and a,  for a  and x  > 

there are no such expressions, and appropriate values must be arrived at using an 

alternative, but physically meaningful, method.

In the one previous parameterisation and subsequent simulation using the GGB po

tential [99], a fitting routine was described which gave the parameter values for a 

bi-disperse mixture of molecules with k — 3.0 and 3.5. Rather than using linear 

arrays of Lennard-Jones sites, which were remarked upon as introducing an unre

alistic odd-even dependency into the interactions, the fitting used the side-side and 

tee interactions of two Lennard-Jones jellium lines (in the following discussion the 

subscripts i and j  will be used when referring to the GGB particles, A  and B  for 

the corresponding jellium lines). The interaction between these is given by

/ T b + L b u b / 2  r r A + L A & A / Z  (  < y^J  \  (  \

JrB- L BuB/2 Jta- L aua/2 \  Ta  — Tb  )   ̂r'A — TB J

where L a and Lb are the two jellium line lengths, and u^, ub, r^, rB, are, respec-
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tively, their orientations and positions.

Using this function, the distance at which the potential energy equals zero was 

calculated for the side-side and tee configurations of pairs of identical jellium lines 

of equal, varying lengths {La =  LB =  LLj). It was found that for lines of length 

2.5ctq J and greater, these were within 1% of the Ll j =  oo analytical results, these 

being ( | ) 1/f6crqJ for the side-side interaction (S(Llj)), and ( |J )1/6cro_J for the tee 

(T(Llj)). This latter distance was measured between the centre of the cross-bar 

molecule and the near end of its partner (Fig 4.6).

u

Side-Side

S ( L U )

L u  L

Tee

u

T ( L U )

Figure 4.6: Particle positions and separation distances

The above distances were then used to determine the lengths of analogous jellium  

lines for the two GGB lengths under consideration, by equating the separations at 

repulsion in the two different configurations for two identical GGB particles with 

the equivalent separations for two identical jellium lines, S'(Llj) and T ( L lj).

Firstly, considering the side-side interaction, since the distance at zero energy for 

the side-side interaction of the GGB potential is always equal to Icq308, a quite 

simple relationship resulted
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1.0a0GGB =  (|)V»oW. (4.3)

When equating the separation in the tee configurations, which is given by yj  ̂ ^ - c7qGB 

for two identical GGB particles, a term ^-(Jq J needed to be incorporated, since the 

distance in GGB terms is given between the centres of the two ellipsoids, rather 

than the centre and the near-end as for T(L lj ). This gave the equation

By combining Eqns 4.3 and 4.4, a relatively simple relationship between a GGB 

particle of given shape anisotropy k and the length of its analogous jellium line, L l j 

was achieved

£ lj (4.5)

The appropriate jellium lines were then used to plot the well-depths for the four 

different tee configurations, using Eqn 4.2, and the remaining parameters in the GGB 

model obtained by fitting the GGB well depths to them, subject to the constraints 

eo =  y / 4 4 j  (*-e- the Lorentz-Berthelot mixing rule), x'ji =  Xij and a #  =  The

parameters obtained are shown in bold in Table (4.3), together with those explicitly 

declared in the GGB potential.

For the simulations of the I-N coexistence region considered in this work, simple
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a 33 i j j i
3.5:1 3.0:1 mixed

X 0.849 0.800 0.824 0.824t
X 0.666r 0.666r 0.6662 0.6662
eo 1.103 1.0 1.050 1.050
a 1.0 1.0 1.0150 0.9852

ia 1.0 1.0 1.011 0.989

Table 4.3: Parameter set for GGB potential (3.5:1 and 3:1)

perturbations away from the one-component, k =  2.0 system, which has been shown 

to display such a rich phase behaviour earlier in this chapter, were used. This had 

the advantage that this relatively short molecule was already known to be readily 

insertable using the Gibbs method, and also that for the pure system a stable nematic 

phase exists at densities low enough for nematic-vapour coexistence. Thus it was 

reasonable to expect that for a not too dissimilar mixed system this would also be the 

case. This was particularly important because it was expected that any simulations 

close to a smectic phase would fail due to the inability of the Gibbs method to work 

at the high densities typical of such systems.

Two such deviations from the pure 2:1 system were considered, both being 50:50 

mixtures of 2 :l’s with either 2.5:1s or 3:1s. In arriving at the GGB parameterisation 

for these mixed systems, an identical method to that described earlier for the longer 

system was initially considered. However, it needed modifying slightly since the 

separations at U^b =  0 were observed to be approximately the same as the analytical 

values only for jellium lines of lengths 2.5Oq3 or greater. For the new systems under 

consideration, it was expected that shorter lengths would be required, so instead 

of mapping directly onto the fixed separations as previously, the separations at
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zero repulsion were obtained by numerical integration of Eqn 4.2 for a number of 

shorter identical lengths in the tee and side-side configurations, giving two functions 

^ lj(^ lj )  and 5 l j ( £ l j )  m  terms of <7qJ. For the GGB particles, again S g b {k ) was 

fixed at I.Octq10®, and Tgb{k)  was as given before, so a relationship could again be 

constructed between L lj and /t, now being

7 lj(L Lj) LLj _  Ik2 +  1 , .
Slj(LL3) + 2slj (Llj ) V 2

(if one inserts the limiting values of TLj(L lj) and S lj(L lj) for L lj >  2.5crQ J, equar 

tion (4.5) is recovered by rearrangement). In practice, a trial and error fitting was 

sufficient to determine reasonably accurate analogous lengths of the jellium lines 

for k, =  2.5,2.0; since the LHS of Eqn(4.6) was almost linear with L lj making its 

behaviour quite easy to predict. Once these lengths had been determined, the fitting 

was then continued in an identical manner to that described earlier, the four GGB 

tee well depths being fitted to those from the jellium lines to determine realistic val

ues for the undefined parameters. The final two sets arrived at are given in Tables

(4.4,4.5).

ii 33 i j j i
3.0:1 2.0:1 mixed

X 0.800 0.600 0.693 0.6937
X 0.666r 0.666r 0.6600 0.6600
eo 1.520 1.0 1.233 1.233
a 1.0 1.0 1.075 0.931>
a 1.0 1.0 1.050 0.952

Table 4.4: Parameter set for GGB potential (3:1 and 2:1)
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ii n i j j i
2.5:1 3.0:1 mixed

X 0.724 0.600 0.659 0.659/
X 0.666r 0.666r 0.6600 0.6600
eo 1.316 1.0 1.147 1.147
a 1.0 1.0 1.048 0.954i
a 1.0 1.0 1.030 0.971

Table 4.5: Parameter set for GGB potential (2.5:1 and 2:1)

4.2.2 Simulation Details

The constant pressure Gibbs method was used instead of constant volume used 

in the previous simulations, since it removes the uncertainty in the coexistence 

pressures [58]. Also, by setting a relatively low constant pressure, it was hoped that 

the region at slightly higher densities than the supposed nematic-vapour coexistence 

could be targeted, which should be the most favourable for conducting the Gibbs 

simulations. A generic phase diagram showing the expected location of the isobar 

to be traversed is shown (Fig 4.7).

Figure 4.7: Phase diagram and isobar
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It should be remembered that in the two-component case being studied here, the 

system has another degree of freedom, namely concentration, which is not shown 

here as it is difficult to predict how exactly the three dimensional structure would 

look. The above diagram is probably best regarded as a slice through this structure 

at constant concentration.

A number of preliminary simulations were again carried out in an attempt to find 

a range of suitable temperatures and pressures at which to simulate, and check 

the suitability of the above parameterisations for simulating I-N coexistence. The 

isotropic nematic transition for the 2:1 and 3:1 system was found to occur at rather 

high densities. Also the degree of difference in particle sizes was thought to be a 

little too large and capable of causing too much fractionation, raising the spectre of 

layering in the long particle-rich phase.

Instead, attention was concentrated on the 2:1 and 2.5:1 system. Three isobars 

were studied using single-box N PT-MC, at P* =  0.5,1.0,2.0. The potential energy, 

U*j density, p*, and nematic order parameter, P2j were monitored in the box as the 

temperature was reduced, in order to determine approximate locations for the phase 

boundaries. These results are shown by a temperature-density plot (Fig 4.8), where 

the approximate phase boundaries are shown in purple.

As can be seen, the size of the nematic range increases at higher pressures, as has 

been shown previously [93,94]. However, although a large nematic range is desirable 

for this work, too high a pressure would result in the density at which nematic 

ordering occurs being too large and inhibiting particle insertion to an intractable 

degree. Some preliminary insertion attempts on configurations produced by the
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Figure 4.8: Approximate phase diagram for 2.5:1 and 2:1 GGB mixture

above runs suggested that using P* =  2.0 would require prohibitively long runs due 

to the large number of attempted insertions required. However no such problems 

were encountered for P* =  1.0, and so this pressure was used for the main Gibbs 

fractionation simulations.

Before commencing these simulations, some short runs using standard N P T -MC 

were carried out on the two corresponding pure systems to find the approximate 

location of the isotropic nematic transition. Although only relatively small numbers 

of particles were used, N  =  200, previous finite size studies (see eg. [90]) indicate 

that the temperature values for the infinite system should be within a few percent. 

By observation of the nematic order parameter, P2 and the potential energy per 

particle, U*, the transition temperatures were found to be TjN ~  0.600 for the 2:1 

system, and T?N ~  1.050 for the 2.5:1 system. Linear extrapolation between these

P =2.0

P =0.5

Vapour-Liquid 
Region ?
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gave an estimate of the transition temperature for the 50:50 mixed system of around 

T* =  0.825. Note that this is consistent with the data shown in Fig 4.8.

The main Gibbs simulations were carried out as follows. A totally homogeneous 

starting system with N  =  500 and Xi  =  0.50 was set up and brought off the lattice 

at a high temperature (T* =  4.00) to remove all traces o f order from the system. This 

was then steadily cooled to a temperature of T* =  1.00 using standard JVPT-MC, 

during which no signs of ordering were observed. The box was then coupled with a 

replica of itself using the Gibbs code and the particle exchange and volume change 

moves were switched on, the former being attempted a sufficient number of times 

to enable at least approximately 0.01% of the particles to be exchanged each step. 

This did not prove to be too computationally expensive; runs of several hundred 

thousand MC sweeps were certainly within reach for each temperature studied. 

Particle exchanges between the boxes were only attempted for the shorter j  particles; 

inter-box identity swap moves [59] were also carried out which proved to be much 

more efficient as a way of allowing the phase space to sampled effectively. Intra-box 

identity swap moves were also attempted in the usual MC fashion, although these 

could only improve the equilibration in each box separately and not for the system  

as a whole. Reasonable success rates 20%) were observed for both these swap 

moves throughout the temperature range studied, and only a few such moves needed 

to be attempted each sweep.

At the initial high temperatures studied, 1.00 >  T* >  0.90, both boxes stayed 

isotropic, with no evidence of fractionation occuring. However, upon cooling to 

T* =  0.900, some marked pre-nematic fluctuations were observed in the nematic
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order parameter, P2, of each box, as shown in Fig 4.9. There was, though, no 

accompanying sign of either of the boxes changing markedly in size, as indicated by 

the box volumes (given in reduced units of oq) (Fig 4.10), and it was concluded that 

the I-N envelope had not yet been reached.

Upon further cooling, orientational ordering was observed over much longer timescales, 

although at temperatures T* — 0.89,0.88,0.87 this did not persist indefinitely, the 

system showing marked long timescale orientational fluctuations. However, upon 

cooling the final T* =  0.90 configuration rather rapidly to T* — 0.850, order devel

oped which was observed to be stable over a much more convincing number of MC 

sweeps. This can be seen by looking at the graphs of the nematic order parameter 

P2 (Fig 4.11) and mole fraction of longer rods, X* (Fig 4.12) in each box. The cor

responding volume evolutions (Fig 4.13) show that this system is still equilibrating 

right up until ~  450,000 sweeps, after which the volume of each box becomes ap

proximately stable. This is confirmed by looking at the potential energy evolution, 

U*} for each box during this run (Fig 4.14). In view of the timescale of fluctuar 

tions observed here even after the system had evolved to a relatively stable state, 

production periods of 200,000 MC sweeps were decided upon. These were typically 

preceeded by equilibration periods of up to 400,000 MC sweeps, although the precise 

number was decided upon by observation of each particular system evolution.

Further simulations were carried out in a strict cooling sequence from the end of 

the T* =  0.850 run, a temperature interval of 0.005 being used. Evolutions of the 

nematic order parameter, P2 (Fig 4.15), mole fraction of longer rods, X t- (Fig 4.16), 

number of particles (Fig 4.17) and potential energy per particle, U* (Fig 4.18), for
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Figure 4.9: Mole fraction and nematic order parameter evolutions for T* =  0.900
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Figure 4.11: Nematic order parameter evolutions for T* =  0.850
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Figure 4.12: Mole fraction evolutions for T* =  0.850
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Figure 4.13: Volume evolutions for T* =  0.850
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Figure 4.14: Potential energy evolutions for T* = 0.850
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each box, are presented for the production runs at T* =  0.850,0.840,0.830. All 

three can be seen to show the characteristic signs of fractionation, namely coex

isting isotropic and nematic boxes with a higher proportion of longer rods in the 

nematic phase. Noticeably larger fluctuations were observed in the nematic order 

parameter of the isotropic box during the T* =  0.830 run, thought to be indicative 

of the bottom of the coexistence envelope being approached.

An attempt was also made to warm the system from T* =  0.850, but even after one 

temperature increase to T* =  0.855, changes in the box identities were observed, 

and it was concluded that the system was too near a phase boundary (ie the top of 

the coexistence envelope) to achieve satisfactory equilibration.

Mean values for each of the observables were compiled over each production run, the 

uncertainties being calculated using a block averaging technique, each production 

run being split into ten blocks of 20,000 sweeps each. These results, being the 

potential energy per particle, U*7 the mole fraction of longer rods, X i7 the nematic 

order parameter, P2? the box volume, V,  in units of ctq, and the number of particles 

per box, N, are presented below (Table 4.6)

The values for T* =  0.855 are included as a guide to what is happening at the 

top of the envelope, although they should be treated with some caution as strictly 

speaking a histogram technique is needed for analysis when the box identities are 

changing. The data from all the other points show, however, that fractionation is 

definitely occuring. What is notable is that although the equilibrium value for X z- 

in the isotropic phase clearly decreases with lowering of temperature, as is predicted 

by mean field theory, no such corresponding trend is observed in X z for the nematic
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rjf* 0.855 0.850 0.845 0.840 0.835 0.830
17* (A) 
V ( B )  
X i(A )
M B )
P M )
M B )
V(A)
V(B)
N(A)
N {B )

-3.82(30)
-3.70(25)
0.51(04)
0.49(04)
0.28(16)
0.21(14)
1563(44)
1334(49)
540(19)
460(19)

-4.21(18)
-3.52(07)
0.55(02)
0.45(02)
0.48(07)
0.12(05)

1361(103)
1519(102)
477(36)
523(36)

-4.08(11)
-3.54(06)
0.53(01)
0.45(01)
0.43(05)
0.14(04)
1803(59)
1066(55)
632(22)
368(22)

-4.33(11)
-3.50(04)
0.55(01)
0.42(01)
0.54(04)
0.16(03)
1733(69)
1106(65)
615(24)
385(24)

-4.36(11)
-3.59(21)
0.54(02)
0.43(03)
0.55(03)
0.21(13)
1736(61)
1092(63)
618(24)
382(24)

-4.42(11)
-3.53(10)
0.54(01)
0.41(02)
0.57(04)
0.19(06)

1921(146)
891(143)
688(51)
312(51)

Table 4.6: Observable averages at various temperatures

box.

To ensure that the boxes were in chemical equilibrium, the reduced chemical poten

tial of the smaller species being inserted was calculated (Eqn 4.7) along with the 

difference in chemical potential values calculated in an analogous fashion from the 

inter-box species swap moves [117], according to

u*- '

kBT
) . (4.7)
box 1

Here U*3- is the potential energy change upon converting a particle of species i into 

one of j ,  that is, a deflation move, with N* and W  the number of particles of species 

i and j ,  respectively, in the box where the swap is occuring. Swapping round the 

i ’s and j ’s gives an equation for Afi jf , calculated from the energy change associated 

with an inflation move. These results are presented below (Table 4.7)

Encouragingly, the values for the reduced chemical potential, /zj, of the smaller 

species j ,  are approximately equal in both phases for each of the temperatures
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rp* 0.855 0.850 0.845 0.840 0.835 0.830

4 ( B )
A i%{A)  
A ^ ( B )  
A pff(A)

0.60(4)
0.58(5)
-0.50(6)
-0.50(6)
1.09(6)
1.07(9)

0.66(7)
0.61(5)
-0.55(5)
-0.55(4)
1.14(9)
1.11(9)

0.65(7)
0.62(5)
-0.58(4)
-0.57(5)
1.16(5)
1.14(6)

0.69(7)
0.66(5)
-0.66(4)
-0.67(3)
1.27(8)
1.23(6)

0.71(6)
0.65(6)
-0.70(3)
-0.69(4)
1.29(7)
1.26(6)

0.77(5)
0.68(5)
-0.75(3)
-0.75(4)
1.34(7)
1.31(4)

Table 4.7: Chemical potentials averages at various temperatures

studied. Also, the difference in excess chemical potentials, are basically the

same for each of the temperatures studied, with A/z^f (A) ~  A/z^f (B) and A/zfJ(A) ~  

A T h i s  would seem to indicate that the system is in chemical equilibrium 

for each of the temperatures studied. However, there is one discrepancy, in that by 

simple reversal of the species types in Eqn 4.7 the equality

A / %  =  (4.8)

should be satisfied, which is clearly not the case here. This suggests that at least 

one of the A //*  calculations is not sampling phase space efficiently, leading to an 

erroneous value. Further analysis of this described in Appendix A, suggests that the 

identity swap move from % to j  ie deflation, which is used in arriving at A/zfJ, gives 

erroneous results.

Attempts were made to cool the system further to T* =  0.820, but problems were 

encountered with the isotropic box becoming so small that the potential cutoff ex

ceeded half the box length, and it was again concluded that the system was too near 

to a phase boundary (this time the bottom of the envelope) for fractionation to be
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observed. Instead a more rapid cooling was attempted, with the temperature being 

lowered first to T* =  0.80, and then to 0.78. At the higher temperature a definite 

increase in the degree of order in the isotropic box was observed, but there was still 

markedly less than in the nematic box, and the mole fractions still showed evidence 

of phase separation. Only at the lower temperature did this difference in the degree 

of nematic order in both of the boxes become negligible, although fluctuations in 

the mole fraction values were still observed. It was concluded however that this 

behaviour was representative of the one-phase nematic region. Evolutions of the 

nematic order parameter and mole fraction per box at these two temperatures are 

shown (Figs 4.19,4.20).

This single phase point along with the one observed at T* =  0.900 were plotted with 

the coexisting mole fraction values to construct a rudimentary phase diagram (Fig 

4.21).

The linear extrapolation on (Fig 4.21) is simply a straight line between the two 

isotropic nematic transition temperatures for the pure systems, which were deter

mined as described earlier. Compared to the generic phase diagram in Chapter 2, 

and reproduced in Fig 4.22, which is predicted by mean field theory [38], the stable 

values for the mole fraction of longer rods, X i , in the coexisting nematic phase do 

not show the expected decreasing trend with lowering of temperature. In seeking 

to explain this discrepancy, we point out that whilst Fig 4.22 relates to two infinite 

bulk phases in coexistence with each other, the system studied here is subject to 

finite size effects due to the periodic boundary conditions imposed. The periodicity 

of the simulation causes the nematic phase to be stabilised which means that it is
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Figure 4.19: Nematic order parameter evolutions for T* =  0.80,0.78
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Figure 4.20: Mole fraction evolutions for T* — 0.80,0.78
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Figure 4.21: Phase Diagram

stable at a lower mole fraction than would be the case in the infinite system. This 

effect is most noticeable at the top of the envelope, where, due to the Lever rule, 

the size of the box containing the nematic phase is at its smallest. The periodicity 

induced enhancement of the nematic phase is, therefore at its largest and the shift 

of this branch to lower concentrations is maximal at the top of the envelope. In the 

isotropic phase, a similar effect can be expected at the bottom of the coexistence 

envelope. The finite size of the isotropic box also promotes orientational order, and 

hence requires a lower concentration of long rods than an infinite system in order 

to stop a nematic forming. As the temperature is lowered the decrease in the size 

of the isotropic box leads to progressively enhanced periodicity, and thus, a growing 

divergence from infinite system behaviour. Applying these arguments leads to the 

modified phase diagram shown schematically (Fig 4.23). Whilst a full study of the 

system size dependence of the I-N coexistence envelope is beyond the scope of this
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thesis, we note that the trends shown by our results are certainly consistent with 

these finite size arguments.

4.3 Conclusions

This section considered two types of simulation, based, respectively, on one and two- 

component Gay-Berne (GB) systems. The GB potential has been extensively studied 

and provides a rich body of previous work for comparison. For the two-component 

system, the interaction between unlike particles was modelled using a recently de

veloped generalisation of the Gay-Berne (GGB), which has been simulated [99] and 

shown to display behaviour in qualitative agreement with that observed experimen

tally for liquid crystal mixtures.

Firstly, the one component coexistence will be considered. This set of results com

pares well with previous studies of isotropic-vapour coexistence for the Gay-Berne 

model using different parameters, showing similar coexisting densities. The addi

tional discovery of nematic-vapour coexistence was an initially unexpected result, 

but in retrospect is consistent with previous results when the relative strengths of 

the various well-depths are taken into account. Unfortunately, equilibration prob

lems were encountered as the temperature was lowered past a certain point in the 

nematic phase, due to the insertion move of the Gibbs ensemble becoming rapidly 

intractable. This meant that stable nematic-vapour coexistence could only be con

firmed in a small temperature range. However, this is still an important result, since 

it shows this GB parameterisation to have a relatively stable nematic phase, and
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opens up the possibility of direct nematic-vapour coexistence simulation, which was 

exploited later in this work.

The results of this work were then used as the basis for the study of two-component 

coexistence at the isotropic-nematic transition. Theoretical predictions [8] have 

suggested that a widened coexistence envelope should exist at this transition for two- 

component systems, and as would be intuitively expected, that the more anisotropic 

particles should occur with a higher concentration in the ordered phase.

Before simulating such a system though, a parameterisation for a suitable two- 

component interaction needed to be arrived at. This was based upon a fitting 

conducted in a previous study [99] of the GGB, where Lennard-Jones jellium lines 

were used to provide the relative strengths of the particle interactions in various 

configurations.

Preliminary simulations were carried out to estimate the region of phase space of 

interest, using a standard one-box technique, and then the main Gibbs simulations 

were initiated. These were relatively expensive computationally, and required con

siderable run times to achieve equilibration. However, in the middle of the temper

ature range where signs of phase separation were observed, stable coexistence was 

indicated by the evolution of the system order parameters, mole fractions and, most 

importantly, the average chemical potential values for each phase. It was there

fore concluded that satisfactory evidence for isotropic-nematic phase separation in 

this mixture had been gathered. Furthermore, the Gibbs technique was found to 

be applicable to coexistence between a judicious choice of moderately dense fluids, 

without recourse to technical refinements, such as an insertion biasing. Here the
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relatively small degree of shape anisotropy enabled particle insertion to be success

ful at high enough densities for an ordered phase to be observed, though the rate of 

insertion was still low enough to cause considerable computational cost.

Upon analysis of the results, a notable shift in the coexistence curves from the form 

predicted by mean field theory was observed, and it is suggested that this is due to 

a finite size effect. This will be very significant when studying the I-N transition 

with the Gibbs ensemble, since the Lever rule dictates that relatively small boxes 

should form at phase points close to the coexistence boundaries. Previous studies 

have shown a small but measurable temperature shift of the order of a few percent 

at the isotropic-nematic transition, on changing the system size by around a factor 

of two (N  =  512 to N  =  1000) [92]. An intuitive discussion of how this finite size 

effect would affect the phase envelope has been given, which is consistent with the 

shift observed here. However, a detailed quantitative analysis beyond the scope of 

this thesis would be required to be verify the argument.

In conclusion, a simulation of fractionation at the isotropic-nematic transition, albeit 

subject to finite size effects, has been achieved, and from a scientific point of view 

the application of the Gibbs ensemble to such a dense system is a notable step 

forward. These results should also prove to be of use in further simulations using 

the generalised Gay-Berne potential, giving an estimate of the degree of fractionation 

expected in such a mixture. However, much remains to be done to achieve a fuller 

understanding of the driving effects in bulk mixtures of liquid crystals, before the 

question of interfacial effects is considered.
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Chapter 5

Thin Film Simulations

5.1 Introduction

In this chapter, the results of computer simulations carried out on thin films of 

Gay-Berne particles, in coexistence with their own saturated vapour, are reported, 

together with appropriate analysis and comparison with existing results in the lit

erature.

The motivation for this work was provided by the discovery of a region of nematic- 

vapour coexistence for a specific parameterisation of the GB model, as detailed in 

Chapter 4. The lack of interfaces in the Gibbs simulations meant that no preferred 

alignment could be induced; instead the nematic director adopted an arbitrary di

rection in the ordered phase.

It is, however, possible to induce a preferred direction by introducing a degree of 

inhomogeneity into the system, such as with an external field [84], presence of sur
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faces [105] or, possibly, the use of an extremely anisotropic simulation box, where 

periodic boundary conditions over different repeat lengths could feasibly result in 

enhanced ordering along some direction. The inhomogeneity in this last case would 

arise due to the non-uniform suppression of the system-disordering fluctuations 

which are limited by the artificial periodicity in such simulations. In the follow

ing sets of simulations, two such aspects are present: a liquid vapour surface and an 

elongated simulation box with a relatively small cross-sectional area. Primarily, this 

work is concerned with the interfacial influence on both alignment and the order

ing regime - it is well established [21,44,45] that in systems involving non-spherical 

molecules, the molecules close to the surface will generally have a preferred lowest 

free energy configuration strongly dependent upon their orientation relative to the 

surface. If the rest of the bulk material is nematic with an arbitrary preferred direc

tion, the system should minimise its energy by forming a nematic monodomain with 

the director dictated by the surface molecules. However, this will not necessarily be 

the case, as will be seen later in this chapter.

Preliminary investigations, conducted with a homogeneous starting system at a re

gion in the phase diagram known (from the Gibbs results) to display isotropic-vapour 

coexistence proved to be unsatisfactory. Although spontaneous phase separation was 

observed after reasonable equilibration times (the order of 1 0 0 0 0 0  MC sweeps for 

500 particles), it was in the form of 2 vapour regions. Both of these were approxi

mately spherical in shape and showed no sign of coalescing even after considerable 

run times, and so it was decided to use a more judicious initial configuration. This 

consisted of a central isotropic liquid region which was equilibrated separately at a 

temperature and density corresponding approximately to that of an isotropic liquid
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phase observed in the Gibbs simulations (T* =  0.550 and p =  0.35). The equili

brated region was then placed in a long thin simulation box and surrounded on both 

sides (in the £ direction) by equilibrated vapour, again at a phase point determined 

by the Gibbs results. A schematic representation of the system is shown in Fig 5.1.

L z

Figure 5.1: Schematic representation of the simulation box

The usual periodic boundary conditions were employed in all three directions. Strictly 

speaking, this periodicity in the £ direction means that the system consists of a se

ries of films, or what might be called a stripe system. The presence of these extra 

films could be argued to affect the behaviour observed. However, the low density 

vapour between the films is always in the isotropic state, and thus will not be able 

to support orientational fluctuations across its width.

As is usual for computer simulations [5], the starting configuration was equilibrated 

for a sufficient length of time for all of the observables to adopt stable values. The 

average values were then calculated over production runs of length such that the 

averages and their errors were stable. The final configuration from one production 

run was then used as the starting one at the next, lower, temperature simulated.

Three such systems were studied, with varying numbers of particles and simulation
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box length to breadth ratios, but all with approximately the same overall density 

(p* «  0  .17) known to be in the coexistence region, and approximately the same 

cross-sectional area.

•  A N = 500; Box 3:1:1; MC simulation

•  B N = 1626; Box 6:1:1; MD simulation

•  C AT=7104; Box 22:1:1; Parallel MD Simulation

The results and subsequent analysis of each of these are reported in the following 

three sections.

5.2 Small System

The first film simulations were carried out using the Monte Carlo technique, which 

had been shown to work efficiently in this region of phase space when used for 

the Gibbs ensemble simulations. Also the code was readily convertible into an 

anisotropic (cuboid) box version (system dimensions used being 34 . 2c t o  : 11.4cro : 

11.4<Jo). The starting temperature was chosen from the bulk phase diagram de

scribed in Chapter 4. The system was slowly cooled until ordering was indicated by 

a few key observables.

The nematic order parameter P2 and the potential energy per particle l7*(both 

defined in Chapter 3) were measured for the system as a whole, i.e. over all particles. 

Although both vapour and liquid regions contribute to these values, the fact that
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the majority of the particles reside in the liquid film (approx. 480 c.f. 20 in the 

vapour) means that they are a reasonable guide to the progress of ordering within 

the film. The integrity of the film was also measured by dividing the system into 

strips in the 2  direction and calculating the density for each of these strips.

The values P2 and U*, along with the equilibration period run lengths (R.L.) required 

for the system to stabilise at each temperature, are given below (Table 5.1). These 

averages were calculated over production runs of 100,000 MC sweeps, divided into 

10 blocks of 10,000 sweeps each to calculate uncertainties. This information is also 

shown in graphical form (Figs 5.2 and 5.3).

rp* u* P2 R.L.
0.500 -2.13(4) 0.07(1) 50
0.490 -2.25(4) 0.08(1) 50
0.480 -2.37(5) 0.09(2) 50
0.470 -2.47(8) 0.15(6) 100
0.460 -2.78(9) 0.29(5) 200
0.450 -3.21(9) 0.56(4) 100
0.440 -3.46(6) 0.64(2) 50
0.430 -3.59(6) 0.66(2) 50
0.420 -4.96(1) 0.89(1) 50
0.410 -5.00(1) 0.90(1) 50
0.400 -5.04(1) 0.91(1) 50

Table 5.1: Observable averages at various temperatures

As can be seen by inspection of the values and graphs, two discontinuities in the po

tential energy occur in the temperature range covered, at T* «  0.465 and T* «  0.425. 

The one at the lower temperature is quite marked, whereas that at T* «  0.465 is 

much weaker. However, 3 distinct regions where the potential energy is linear with 

temperature are clearly visible. Observation of the nematic order parameter for 

these three regions suggests them to correspond to isotropic, nematic and smec-

127



-2

-2.5

-3

-3.5
*

-4

-4.5

-5

Figure 5.2: Average potential energy vs temperature for the 500 particle system

1 

0.8 

0.6
cs CU

0.4 

0.2 

0

Figure 5.3: Average nematic order parameter vs temperature for the 500 particle 
system

i------------- 1------------- 1------------- r

j _ _ _ _ _ _ _ _ _ _ _ _ i_ _ _ _ _ _ _ _ _ _ _ _ i_ _ _ _ _ _ _ _ _ _ _ _ i_ _ _ _ _ _ _ _ _ _ _ _ i_ _ _ _ _ _ _ _ _ _ _ _ L
0.4 0.42 0.44 0.46 0.48 0.5*

T

0.4 0.42 0.44 0.46 0.48 0.5



tic/crystalline phases, in order of decreasing temperature. This agrees with the size 

of the discontinuities since the isotropic-nematic transition is generally much weaker 

than the nematic-smectic.

This was confirmed by observation of configuration snapshots for each of these 

phases, showing definite nematic ordering for the intermediate phase (Fig 5.4) with 

homeotropic (perpendicular) anchoring at the free surfaces. A comparison of the 

density profiles obtained at three temperatures (Fig 5.5), corresponding to the three 

different phases as labelled, also shows a marked difference between the values, in

dicative of phase changes. The additional profile, at T* =  0.460, corresponds to 

the I-N transition region. It is interesting to note that at this temperature a higher 

density is observed at the centre of the film than near to the interfaces, indicating 

orientational ordering occurs in the middle of the film first. It also suggests that 

rather than seeing a sudden discontinuity in the density values at the transition, as 

for the potential energy and nematic order parameter, the high density region of the 

film instead grows slowly from the centre. At this particular temperature, a long

Figure 5.4: Configuration snapshot for T* =  0.440

equilibration period was needed due to long timescale fluctuations observed in the 

order parameter. Initially, insufficient equilibration of the system was suspected,
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Figure 5.5: Density profiles for various temperatures

but the persistence of these oscillations, even after run times of several 100000’s 

of sweeps, indicated that some sort of orientational fluctuations were taking place 

within the film. It was decided to defer in-depth analysis to a wider film, where the 

orientational fluctuations would have a larger length scale over which to occur, thus 

making them easier to quantify and analyse. These fluctuations were observed to 

be much smaller upon cooling below T* =  0.450.

5.2.1 Summary

This first attem pt at reproducing the phase coexistence shown in the Gibbs ensemble 

work has confirmed the validity of those results, in that stable coexistence was 

indeed observed, as well as the expected transition between the isotropic and nematic 

phases of the liquid film. Rather pleasingly, at low enough temperatures in the 

nematic range, homeotropic anchoring was observed at the free interfaces, with this
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alignment being conferred across the whole of the film in the form of a nematic 

monodomain. However, at the onset of nematic ordering, orientational fluctuations 

were observed, suggesting a non-trivial ordering mechanism. In depth analysis of 

these fluctuations within the film and the effects of the interfaces upon them was 

considered inappropriate for this very thin film, and deferred to the next section.

5.3 M edium System

The main series of unconfined simulations were carried out using 1626 GB particles, 

in a 6:1:1 (68.1cro : 11-4< t o  : 11.4cro) box. This resulted in a film which was approx

imately 20cro wide, or 10 molecular lengths. Initial simulations of this system using 

one box MC proved to be inefficient, due to the slow reorientation of ordered do

mains, and the molecular dynamics (MD) technique at constant N V T  was decided 

upon instead. The temperature was kept constant by rescaling the velocities at each

i
timestep, which was fixed to St =  0.0015 (ra<7o/eo)5.

In addition to the overall observables and the density profiles calculated as for the 

smaller system, a qualitative measurement of the interfacial alignment was deter

mined. Since the interfaces had been set up perpendicular to the 2 -axis, and were 

observed to stay roughly in that plane throughout the above simulation, an indicar 

tion of the interfacial alignment could be obtained by measuring the orientation of 

of all molecules with respect to the 2 -axis. This was comparatively easy to calcu

late since the orientations of the molecules are stored in terms of the three director 

cosines. The 2 -axis order parameter Qzz is given by
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This takes similar values to P2 , but is restricted by P2 (i.e. it can never be greater in 

magnitude) so the ratio Qzz/ P 2 is useful in determining the direction of alignment 

for systems displaying intermediate orientational order.

Values for the average densities of the two coexisting phases and the interfacial 

thickness were obtained by fitting the measured density profiles p(z) to hyperbolic 

tangents of the form

p(z ) =  5  (pi +  Pv) +  5  {Pi ~  Pv) tank [(z -  zG) /2 S\ (5.2)

where the adjustable parameters are pi and pv, the densities of the bulk liquid and 

vapour phases; zG the position of the Gibbs dividing surface; and S, the interfacial 

thickness.

As well as calculating the order parameters P2 and Qzz for the system as a whole, 

they were profiled across the system in an analogous fashion to the density profiles 

shown in the previous section, so that the progress of orientational ordering within 

the film could be monitored. The ^ 2 (2 ) values were renormalised using a modified 

eigenvalue calculation due to Wall and Cleaver [112,118], in order to reduce the 

tendency for small numbers of molecules in the vapour phase to give misleadingly 

high values.

Two other quantities were also profiled; the normal and transverse components of the



pressure tensor, which were used to calculate the surface tension for the interfaces. 

These are defined by

(5.3)

> » ( * ) - P W 2 - - 5 t r { | * < g  +  * g )  <M>

where Vc is the volume of each bin and the symbol (k) means that the summation is 

restricted to pairs of molecules of which at least one is in the corresponding bin. The 

surface tension 7 * can be calculated from these by numerical integration [44,119] 

according to the expression

7* =  [  ' \Pn {z ) ~ P t  ( * ) ] d z  (5 -5 )Jzv

where the limits of integration refer to values in the bulk liquid and vapour phases 

far from the interface. In practice the integration was performed over both interfaces 

present in the system, and a value obtained by averaging these two.

Details of the behaviour of these various properties upon cooling are now presented.
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5.3.1 Orientational Order

As the system was cooled down, the average density of the liquid and vapour parts 

of the system and the interfacial thickness were measured, along with the overall 

order parameters discussed in the previous section, and the system potential energy 

per particle. These are displayed along with the length of each equilibration run in 

thousands of timesteps (R.L.) (Table 5.6). Also shown are the potential energies and 

order parameters in graphical form (Figs 5.7 and 5.8). The errors were estimated 

using a block averaging technique, each block consisting of 10,000 MD steps and 

there being at least 2 0  blocks in each production run.

IJl* u* Pv Pi S P I I Qzz Qzz
Pi R.L.

0.520 -2.262(43) 0.035 0.309 1.16 0.041(14) 0.005(24) 0 .1 2 2 2 0 0

0.500 -2.457(42) 0.024 0.329 0.94 0.047(18) 0.004(27) 0.085 2 0 0

0.490 -2.558(36) 0 .0 2 0 0.337 0.82 0.056(22) 0.004(29) 0.071 2 0 0

0.485 -2.630(34) 0.018 0.343 0.81 0.053(19) 0.002(28) 0.038 2 0 0

0.480 -2.701(38) 0.013 0.346 0.84 0.060(23) 0.003(29) 0.050 2 0 0

0.475 -2.750(59) 0.016 0.353 0.83 0.126(58) -0.022(47) -0.175 350
0.473 -2.966(06) 0.015 0.369 0.83 0.286(53) -0.130(37) -0.455 350
0.470 -3.243(06) 0.013 0.382 0.81 0.461(38) -0.016(75) -0.035 1 2 0 0

0.465 -3.412(52) 0 .0 1 2 0.397 0.80 0.549(28) 0.333(84) 0.607 500
0.460 -3.604(46) 0 .0 1 1 0.406 0.73 0.626(23) 0.577(32) 0.922 400
0.455 -3.687(57) 0.009 0.408 0.67 0.643(27) 0.597(52) 0.928 300
0.450 -3.786(42) 0.008 0.412 0.65 0.676(18) 0.634(39) 0.938 2 0 0

0.445 -3.887(45) 0.008 0.418 0.63 0.695(20) 0.591(68) 0.850 2 0 0

0.440 -5.212(31) 0.007 0.475 0.40 0.889(04) 0.819(08) 0.921 350

Figure 5.6: Average observables at various temperatures

At high temperatures, the film remains in the isotropic phase, as can be seen from 

the values for the orientational order parameters. Inspection of the profile and 

snapshot (Figs 5.9 and 5.10) confirms that there is no local nematic order.

Upon lowering the system temperature, there is a large discontinuity in the potential
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Figure 5.8: Average order parameters vs temperature for the 1626 particle system
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Figure 5.9: Order parameter profile at T* =  0.520
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Figure 5.10: Configuration snapshot at T* =  0.520
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energy values around the temperature T* =  0.470, which suggests that a phase 

transition has occured. This is consistent with the corresponding values for the 

overall nematic order parameter, P2 , which increases to a value typical of a nematic 

phase. Progressing further into the nematic range, the values for the 2 -axis order 

parameter, Qzz seem to contradict what would be expected considering that the 

final stable nematic has a positive Qzz value. This can be explained by looking at 

the equilibrium profiles for T* =  0.475 and T* — 0.473 (Figs 5.11 and 5 .1 2 ). It is 

clear that the film has ordered up in the middle first, and that this nematic order 

has spread towards the interfaces as the temperature is lowered. Since there is no 

interfacial ordering at these temperatures, the liquid vapour interfaces can induce no 

preferred direction upon the ordered bulk (though it should be noted that now two 

isotropic-nematic interfaces have been set up, which could be alignment inducing). 

The negative regions in the associated Qzz profiles give a weak indication that 

this nematic domain is tilted with respect to the 2 -axis. This could be attributed 

to a preferred alignment associated with the implicit nematic-isotropic interfaces. 

However, the values of Qzz measured over all particles (Fig 5.8) are zero to within 

error estimates for all but one T* >  0.470. It is suggested, therefore, that the 

alignment adopted at this intermediate temperature is arbitrary and there is no 

preferred direction for the bulk ordering.

At the slightly cooler temperature of T* =  0.470, the nematic order spreads to the 

edges of the film and would be expected to order up perpendicular to the interfaces. 

However, observation of the time evolutions of P2 and Q zz at this temperature 

(Fig 5.13) indicate that although an initial large increase in normal ordering is 

observed, this is a quenching effect caused by cooling the system so close to the
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Figure 5.11: Order parameter profile at T* =  0.475
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Figure 5.12: Order parameter profile at T* = 0.473

138



phase transition; given sufficient time to equilibrate, the system settles into an 

ordered system with a low Q zz. Even in this equilibrated period, oscillations are 

seen to occur on timescales of order 105 timesteps. Animations of the runs in the 

intermediate temperature regime (i.e. 0.460 < T* <  0.475) indicate that at any 

instant, far from there being a single central nematic domain, the system typically 

comprises a series of competing domains. These are commonly seeded near to the 

film centre before propagating towards the interfaces, at which they disperse.

0.8 

0.6 

0.4 

0.2 

0 

- 0.2 

-0.4

Figure 5.13: Order parameter evolutions at T* =  0.470

To demonstrate this process, sub-run averages are presented of the ^ 2 (2 ) and Q zz(z ) 

profiles for T* — 0.470 (Fig 5.14). Compiled over relatively small time periods 

(50,000 timesteps) for consecutive stages of the production run at this temperature, 

these show the existence of different nematic domains as regions with similar Q zz(z) 

values, with changes in the value of Qzz{z) corresponding to the twist that is adopted 

by the film between these domains. The sequence of profiles here show an initial
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two domain arrangement, with a gradual spatial reorientation occuring between 

the domains. In profile (b), the right-hand domain can be seen to have grown 

significantly, whilst profile (c) shows that it goes on to split in two. The final profile 

shows that these domains of positive Q zz then disperse as the centre of the film 

develops a tilted domain. Orientational fluctuations of this type were observed to 

occur continually at these intermediate temperatures.
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Figure 5.14: Sub-run profiles

The corresponding P 2 (z) profiles are relatively insensitive to the domain boundaries 

(note that in calculating these, only the particles within the relevant slice are con

sidered, so the effects of any gradients in the director are not included directly). 

However, they do all show a relative disordering at the liquid-vapour interface. The 

density profiles, p(z) are virtually independent of the changing orientational domain
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Figure 5.15: Order parameter profile at T* =  0.450

structure.

Progressing further into the nematic range, the Q zz values increase, indicating that 

the nematic has a preferred direction of alignment normal  to the free interfaces. This 

can be quite easily verified by looking at the corresponding profiles and configuration 

snapshot (Figs 5.15 and 5.16). It follows that this direction must be induced by the 

interfaces, since there should be no preferred direction in the bulk.

Note that the degree of perpendicular order indicated by the ratio of order param

eters reaches a maximum, at T* ~  0.450. Upon further cooling, this ratio decreases 

slightly, before the system undergoes what appears to be a first order phase tran

sition at T* =  0.440. The high orientational order parameters at this temperature 

(Fig 5.17) indicate a highly ordered system and a layered structure is clearly visible 

from the appropriate snapshot (Fig 5.18), with hexagonal packing evident in the
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Figure 5.16: Configuration snapshot at T* =  0.450

layers. This structure appears to be a crystalline solid whose layers are slightly 

tilted with respect to the interface normal, contrary to the preferred direction in the 

nematic phase. It is suggested that this tilt is due to the box dimensions originally 

chosen being incommensurate with the hexagonal layers, stopping the system from 

ordering perpendicularly and forcing it to adopt a tilted arrangement. This also 

explains why the degree of perpendicular ordering starts to decrease in the nematic 

phase: as the crystal phase is approached, competition develops between the in

terfacial and boundary-condition contributions to the preferred system orientation. 

The boundary conditions also explain the apparent partial layers observable at the 

interfaces (Fig 5.18). It is tempting to suggest that had the box dimensions been 

allowed to change (whilst keeping the overall volume constant) the system would 

have found its truest lowest energy state with perpendicular ordering in the crystal 

phase. However the energy penalty associated with interface formation would have 

most likely resulted in the system tending towards a very long, highly anisotropic 

box, in an attempt to minimise the cross sectional (ie interfacial) area.
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Figure 5.17: Order parameter profile at T* =  0.440

Figure 5.18: Configuration snapshot at T* =  0.440
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5.3.2 Orientational Correlations

Although P2 is useful as an overall guide to the state of the system, as well as 

being particularly convenient here when used to profile the simulation box, a more 

rigourous quantitative measure of orientational order can be made using the second 

rank order pair correlation function, 02 M - This measures how the orientational 

correlations between molecules decay with distance, and is given by

a ( r ) - E „ y  uy) <(■■«-r> (5#)
2-^ij O {Tij T)

where the molecules i and j  are separated by a distance r#. In the isotropic phase, 

02 (r) decays to zero at large r, whereas in the nematic phase it levels out at a value 

equal to the square of P2 . In this case g2(r) has been measured for all pairs of 

molecules where both are within the bulk of the film. This bulk is defined as being 

the central portion of the film, excluding regions within 10  interfacial thicknesses of 

the interfaces (obtained from the hyperbolic tangent fitting). It was observed that 

at the edges of this bulk the density profile was still reasonably flat for all of the 

temperatures at which g2(r) was calculated. The values obtained are shown (Fig 

5.19).

The four temperatures correspond to the range over which orientational order devel

oped within the film, as indicated by the nematic order parameter, P2 (Table 5.6). 

As would be expected, the functions decay to higher values as the temperature is de

creased, due to the increased orientational correlations. Unfortunately, for the three 

lowest temperatures shown, the function is still decaying slightly at the maximum
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Figure 5.19: #2(0 at various temperatures

distance shown, and it is difficult to discern any real difference between the gradient 

of the functions, especially for T* =  0.450 and T* =  0.460. This makes it difficult 

using this function to determine at what temperature a true nematic monodomain 

occurs, since values can only be obtained up to a maximum distance of half the 

box-width in the x and y directions, which is too short for any required levelling out 

of the function to be definitely said to occur. An alternative method of measuring 

the orientational correlations at longer distances is therefore required, two of which 

are presented next. It is worth noting in passing, however, that the values to which 

#2(r) has decayed, even at this relatively short distance, are in good agreement with 

the square of P2 as measured in the centre of the corresponding profiles, not the 

observable over all particles (since #2 (r) has been calculated only in the bulk of the 

film). For T* =  0.475 the profile (Fig 5.11) has a central P2 of ~  0.3, squaring 

to 0.09 cf #2(r =  5<to) ~  0.1; at T* — 0.470 the sub-run profiles (Fig 5.14) have a
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central P2 of ^  0.6, squaring to 0.36 cf g2(r =  5cr0) ~  0.35; and the T* =  0.450 

profile (Fig 5.15) has a central P2 of ~  0.76 squaring to 0.58 cf g2(r =  5<Jo) ~  0.58.

As mentioned previously, orientational fluctuations have been observed in this sys

tem by looking at animations of the simulation. It was clear from these that at 

some intermediate temperatures a number of nematic domains were being formed, 

generally moving from the centre of the film towards the interfaces before dispersing. 

On cooling through the intermediate temperature regime, two trends were apparent 

from the animations: i) an increase in the size and lifetime of the nematic domains 

formed; ii) a decrease in the thickness of the disordered interfacial regions. In an 

attempt to provide a more satisfactory measure of the former, the correlations be

tween the instantaneous nematic directors, d(;z), for each slice of the liquid film (as 

calculated in the P2 (z) routine) have been calculated. Designated D 2{dz), this is 

formally expressed as

D 2(dz) =  {P2 ( d ( z ) - d ( z ± d z) ) ) '  (5.7)

where the prime on the angled brackets denotes an average restricted to the slices 

within the liquid region of the film.

The behaviour of (D2(dz)} for various temperatures around the ordering transition 

is shown (Fig 5.20).

For the highest temperature, T* =  0.500, (D2(dz)) quickly decays to zero and the 

system is clearly isotropic. Correspondingly, at the lowest temperature shown, T* =  

0.450, {D2(dz)} decays slowly, levelling out at a value of approximately 0.85, at
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Figure 5.20: (D2(dz)) at various temperatures

dz ~  15(Jo. This agrees well with the identification in the previous section of this 

phase as a stable nematic monodomain. At the other temperatures shown, (D 2(dz)} 

drops approximately linearly with dz, only levelling off in the cases where it drops 

all the way to zero. This slow decay in orientational correlations is not consistent 

with that seen in simulations of bulk systems, where typically a much shorter decay 

to a limiting value is seen in g2(r) [47,90] suggesting that the disordering interfaces 

present in this system strongly modify the ordering process. Since the correlations 

between molecules in the film can only be measured up to a distance as thick as the 

film itself, the behaviour of (D 2(dz)) at larger values of dz can only be examined 

using a thicker film, which is presented in the next section.

Since (D 2(dz)) gives an indication of the degree of orientational correlations in the 

z direction ie normal to the interfaces, it was decided to obtain a measure of the
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planar order, firstly by dividing the system into 2 0  slices at regular 2  values and 

calculating g2(r) (Eqn 5.6) for each slice (i.e. the sums in eqn(5.6) were restricted 

to pairs of particles within the appropriate slice). This gave the function g2(r, z), 

where r  is the particle-particle separation, and 2: is the location of the slice within 

the film. Since it is calculated in thin slices, (g2(r,z))  provides a useful measure 

of the degree of orientational correlations planar to the interfaces. The number of 

slices was restricted to 20 in order to obtain reasonable statistics. The (g2(r, z))  data 

are shown as surface plots for T* =  0.475,0.473,0.470,0.450 (Fig 5.21). At higher 

temperatures, fa i r ,  z )) was found to decay rapidly to zero at all z, indicating a film 

of isotropic liquid.

Figure 5.21: g2(r,z) at T* =  (a) 0.475; (b) 0.473; (c) 0.470; (d) 0.450
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At the highest temperature shown, {g2(r,z))  decays to values slightly greater than 

zero in the middle of the film, corresponding to a small degree of central nematic 

order (as seen previously in the order parameter profiles). This effect is more notice

able at T* =  0.473, where the magnitude of the limiting value is higher and the width 

of the ordered region is increased. At T* =  0.470 this ordering has spread nearly to 

the edge of the film, but is not quite as wide and is much less sharply defined than 

the equivalent data obtained for the nematic monodomain at T* =  0.450.

It can be seen that for T* =  0.470 that this planar ordering is reasonably stable, 

(g2 ( r , z )) levelling out across much of the film. By contrast, however, (D 2(dz)) at 

this same temperature (Fig 5.20) indicates that orientational correlations normal 

to the interface continue to decay at large dz. Indeed, the behaviour of (D 2(dz)) 

suggests that nematic-like orientational correlations in the z  direction develop only 

for T* <  0.450.

This picture is confirmed by looking at the molecular correlations calculated using 

g2(r) (Eqn(5.6)) in the bulk region of the film, and resolved in the planar g2y(d) 

and normalg2(d) directions. This simply involves replacing the absolute distance r 

(Eqn 5.6) with either the planar or perpendicular distance between the molecules 

under consideration. The planar version is limited to distances of half the box width 

or less, since no two molecules can be a planar distance of more than half a box 

width apart. However the normal values can be calculated for much larger distances, 

since the film is longest in the z  direction. Their behaviour at various temperatures 

around the transition are shown (Fig 5.22) - the shorter ranged function at each 

temperature is the planar resolution.
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At the highest temperature shown, T* =  0.475, it is difficult to tell if g2y {d) has 

levelled out to a positive limiting value, indicative of nematic ordering. The value 

is relatively low compared to that seen in bulk nematics anyway, which would seem 

to indicate that this corresponds to some local orientational ordering rather than 

a true nematic. Certainly though g2(d) decays much faster, eventually tending to 

zero. Thus the difference between the planar  and normal ordering is quite clearly 

illustrated. At lower temperatures, g2y (d) can be clearly seen to have levelled out to 

a positive value, indicating planar nematic ordering, while g2{d) continues decaying 

over unusually long lengths in a similar fashion to (D 2(dz)). What is noticeable is 

that the difference between the two types of ordering decreases as the temperature 

is lowered, until, at T* =  0.450, it is barely significant, corresponding to the normal  

and planar ordering becoming equivalent in the nematic monodomain.

■H
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The perpendicular and parallel components of the orientational ordering were also 

analysed by calculating the two dimensional function gl(dxy, dz), ie #2 as calculated 

in Eqn 5.6 but stored as a function of both planar (xy) and perpendicular (z) dis

tances. This shows the decay of #2 , and so the decay of the orientational correlations 

over all directions - it is best viewed els a contour plot rather then a 3d surfaice, since 

the viewing perspective can make it difficult to see exactly what the function is 

decaying to. However, this can simply be read off from the contours. Two such 

plots are shown, for T* =  0.475 (Fig 5.23) and T* =  0.470 (Fig 5.24). The first 

shows quite clearly that the correlations quickly decay to zero at around 3cr0 in 

all directions, confirming previous evidence that the film is isotropic with respect 

to both normal and planar ordering. However, at the slightly lower temperature of 

T* =  0.470, <72 decays quite clearly to a non-zero value between 0.3 and 0.4 in the xy  

direction, again indicating planar nematic order, whilst correlations in the normal 

direction decay smoothly with distance.

This marked difference between the normal and planar orientational correlations 

is presumably due to the symmetry breaking effect of the interfaces. It appears 

that high temperature nematic growth is stabilised by the in-plane periodicity of 

the system. Longitudinal correlations, conversely, are less easily established due to 

the inherently disordered interfaces: hence the domains of nematic order formed 

through strong transverse correlations fail to spread throughout the system. Only 

at temperatures sufficiently low to stabilise orientational order at the interfaces does 

the system become nematic in all three dimensions.
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Surface Tension

As was stated earlier, the surface tension at each temperature was obtained by 

calculating the normal and transverse components of the pressure tensor (Eqns 

5.3,5.4) and using them in the integral defined in Eqn 5.5. The values for each of 

these pressure tensors, the difference between them and the integral are shown for 

three temperatures in Figs 5.25 Strictly speaking, the normal component should 

fluctuate around the bulk pressure [1 2 0 ] and show no structure apart from these 

fluctuations. As can be seen, this is true for the vapour and liquid regions far from 

the interface; however in the interfacial region a minimum on the vapour side and 

maximum on the liquid are clearly visible. This is attributed to the method used 

to construct the tensor values i.e. Harasima’s definition [119], as has been stated 

elsewhere [44]. From the condition of hydrostatic equilibrium, it follows that the 

two components of the pressure tensor must be equivalent and equal to the bulk 

pressure in the bulk liquid and vapour phases. This is true for all the temperatures 

shown, ignoring local fluctuations. The values for the transverse component have 

the expected structure at the interface, and it is this which is the main contributor to 

the surface tension via the integral expression. The final graph shows the cumulative 

surface tension values; they show a reasonably stable profile across the bulk regions, 

indicating the system has reached equilibrium [100]. The final limiting value is equal 

to twice the surface tension value at each temperature, since the integral occurs over 

two interfaces.

The surface tension values calculated as above for each temperature are shown (Fig 

5.26), along with error-bars at temperature intervals of 0.1. These errors were es-
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Figure 5.25: Pressure tensors, differences and surface tension integrals

timated by using a block averaging technique, each production run consisting of at 

least 2 0  blocks of 1 0 , 0 0 0  timesteps each, as for the bulk observables.

The values in the vapour-isotropic (0.480 < T* <  0.520) and vapour-nematic 

(0.445 < T* <  0.460) regions show the expected inverse correlation with tempera

ture, with {7 *) decreasing linearly as the temperature is increased and the surfaces 

become less rigid. As orientational order grows, a large increase in (7 *) is observed, 

consistent with theoretical predictions for surface disordering systems [32]. The 

temperature dependence of the rapid rise in (7 *) closely matches that of the ne

matic order parameter (P2). Thus, we note that the film’s overall surface tension 

is considerably enhanced even at temperatures (e.g. T* =  0.470) for which there is 

little or no orientational order at the liquid-vapour interface. This enhancement is
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presumably due to the additional N-I interfaces (along with any nematic-nematic 

ones) present at these temperatures, which contribute to the surface tension because 

of the integral nature of the calculation, which is over the whole width of the film. 

Whilst theoretical treatments of this situation attribute the jump from the I-V to 

the N-V branches of the surface tension to such additional interfaces, it cannot be 

used to measure 7 directly; a fuller picture of the wetting behaviour (partial or 

complete) displayed by the system is needed first.

As well as showing the expected temperature dependence, our surface tension data 

compare well with the values obtained in a previous GB thin film simulation [44]. 

Although this used a different parameterisation which will obviously affect the sur

face tension behaviour, the well-depths are still of approximately the same order of 

magnitude, and thus 7 * should also be. The (7 jV) values reported here are slightly
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lower (0.05 - 0.15 c.f. 0.15 - 0.25) but this is to be expected since the particles here 

are shorter and will thus lead to less rigid interfaces. For (7 ^ ) ,  the difference is 

very small (approx 0.3 c.f. 0.25-0.35); it is possible that the presence of orientational 

order is a more predominant factor in the surface tension than the molecular length, 

and as it increases the two systems therefore adopt more equivalent values.

In conclusion, the medium sized system has shown a rich behaviour - in particular 

the decoupling between the normal and transverse correlations was an interesting 

result. Attention will now be switched to the largest system studied, with emphasis 

placed on the system size effects observed.

5.3.3 Summary

The medium sized system has shown a rich behaviour - as expected qualitatively 

similar to the small system, but with a marked shift in the transition temperature 

and ordering regime. Stable isotropic and nematic-vapour coexistence were again 

both seen, with homeotropic anchoring at the nematic free surface and the estab

lishment of a monodomain at lower temperatures in the nematic phase, but whereas 

in the small system a significant rise in the bulk nematic order parameter was not 

seen until T* =  0.460, for the medium system this occured at the higher tempera

ture of T* =  0.470. A much wider temperature range between this onset of nematic 

ordering and the establishment of a nematic monodomain was also observed, during 

which significant orientational fluctuations were seen across the film. These have 

been extensively analysed here, probably the most interesting finding being the de

coupling between the normal and transverse correlations, and the particularly long
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range of the former. This analysis was continued on a larger system, as detailed in 

the next section.

5.4 Large System

The largest system studied consisted of 7104 GB particles in a significantly elon

gated box, having relative dimensions 22:1:1 (262.1<7o:11.9<70:11.9cro). The simula- 

tions were conducted using the parallel Gay-Berne MD code GBMESO [1 2 1 ] which 

was made available by the High Performance Computing Initiative (HPCI) consor

tium on Simulation and Statistical Mechanics of Complex Fluids.

GBMESO uses a replicated data parallel technique, where the force calculation 

and moving routines are split between the nodes equally according to the particle 

number. This was thought to be more appropriate than the domain decomposition 

technique, where the system volume itself is divided up and each node simulates a 

different domain. The large degree of inhomogeneity in the system being studied 

here would result in unequal loading of the processors and thus inefficiency using 

the latter technique.

The initial configuration was prepared in a similar fashion to that described for the 

smaller systems, resulting in a relatively wide liquid film, «  140cro or 70 molecular 

lengths. Simulations were commenced at a temperature of T* =  0.520, which was 

known to be right on the border of the isotropic-nematic transition for the bulk 

system and could be reasonably expected to still be isotropic for the interfacial 

system. The progress of the system was measured in a similar fashion to before,
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various observables being measured over all particles and also profiled across the 

box width to measure the degree of ordering within each part of the film.

The progress of the potential energy per particle and the overall nematic order 

parameter at each temperature is shown (Figs 5.27,5.28). It is clear from the energy 

evolution that even at high temperatures long run times were required to bring 

the system to equilibration; unfortunately, due to the computational cost of these 

simulations, the runs often had to be curtailed before it was certain equilibrium had 

been established. The long timescales associated with orientational ordering seemed 

to be particularly problematic, and it was decided relatively early in this series of 

simulations to quench the system quite quickly down to a low temperature, thought 

to correspond to a nematic monodomain. Once established, this monodomain was 

considered a good starting point when seeking equilibration at higher temperatures. 

The correlation functions were calculated for all equilibrated runs and compared 

with those for the moderate system.

A more detailed description of the simulations undertaken on the cooling run is now 

given. At the starting temperature, T* =  0.520, stable iso tropic-vapour coexistence 

was observed, and the system relatively quickly cooled, with reasonably long runs 

being used in the hope of bringing the system close to equilibrium before proceeding 

to the next, lower temperature. No orientational ordering was observed down to 

T* =  0.485 - a profile of the order parameters for this and the highest temperature 

is shown (Fig 5.29). The profiles were averaged over a relatively short time period 

(100,000 sweeps) and thus are rather noisy. They do, though, quite clearly show 

that the whole of the film was isotropic at these two temperatures.
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Upon further cooling to T* =  0.480, much greater fluctuations were observed in the 

order parameters across the film, accompanied by corresponding density modula

tions. After running for a significantly longer time at this temperature («  1,000,000  

MD timesteps) the potential energy was observed to still be decreasing, and the 

aforementioned large fluctuations to still persist. An illustration of the dynamic 

state of the system at this temperature is provided by the two profiles in Fig 5.30, 

which were averaged over two consecutive blocks of 70,000 steps. The system con

sists of two central orientationally ordered domains, shown quite clearly by the two 

peaks in P2 {z) and having different preferred directions as indicated by the values 

o f  Qzz{z)■ However, after 70,000 steps these Qzz(z) values have reversed, indicating 

these domains to be rapidly changing alignment relative to each other. Attempts 

to slowly cool this system further still resulted in continued significant orientational 

fluctuations. Domains were formed and dispersed as previously and the overall en

ergy dropped very slowly. Abandoning this approach, it was decided instead to 

rapidly cool the system from a judiciously chosen configuration at T* =  0.485, with 

a relatively large degree of positive Qzz ie. perpendicular ordering. This configu

ration was chosen since it offered the system a clear route to the state adopted by 

the smaller systems at a low temperature in the nematic phase of a perpendicularly 

ordered monodomain.

The profile of the configuration at T * =  0.480 used as the starting point for the 

quenched run is shown (Fig 5.31). It comprises three nematic domains, the two 

nearest the interfaces showing a significant degree of perpendicular ordering. It 

was hoped that upon rapid cooling, the interfacial order would increase as for the 

medium sized film, and that this perpendicular ordering would spread to the middle
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of the film. Evolution of the Qzz profile at T* =  0.465 is shown (Fig 5.32), after 

(A) 200,000 and (B) 500,000 MD Steps, along with the starting profile (E). Upon 

first cooling to T* =  0.465, the potential energy dropped quite significantly, and 

the order at the free interfaces did indeed increase. However, this was a short lived 

phenomenon, and after a small time the order at the left hand surface decreased 

again. It is noteworthy, however, that there is relatively little fluctuation with time 

of the Qzz(z) values compared with that witnessed over a much shorter timescale at 

T* =  0.480 (Fig 5.30). This slowing down of the domain fluctuations with decreasing 

temperature was also observed in the medium sized system.

Upon further cooling, relatively little change in the profiles was seen, except for 

these long timescale fluctuations, until T* =  0.450 was reached. Here a very slow 

realignment of the film was observed, occurring over several million timesteps. The 

evolution of the Qzz profile is presented at 500,000 step intervals (Figs 5.33,5.34), 

(shown in alphabetical order) and gives a reasonable indication of how ordering 

within the film actually progressed.

At early times, the most obvious feature is the enhanced perpendicular ordering at 

the interfaces, which slowly spreads in from the left hand side of the film. Rather 

than extending all the way across the film though, this then retreats as order spreads 

in from the right hand side, leaving a domain of parallel ordering within the centre 

of the film. This is then slowly destroyed by both sides as the order moves in once 

more, and the film finally evolves into perpendicularly ordered nematic monodomain 

(at «  8,500,000 steps on Fig 5.27).

The run was continued at this temperature for another 500,000 steps, over which ob-

162



0.6

0.5
7.7.

0.4

0.3

0.2

0.1

-0.1

-0.2

-0.3
0 50 100 150 200 250

z/o0

Figure 5.31: Order parameter profile - start of quenched run

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

- 0.1

- 0.2

-0.3

-0.4
0 50 100 150 200 250

z/o0

Figure 5.32: Qzz(z) behaviour at T* =  0.465, compared with that at final T* =  0.480

163



0.8

D0.6

0.4

S3
S3a 0.2

-0.2

-0.4
0 50 100 150 200 250

z /a0

Figure 5.33: Q zz(z) behaviour at T* =  0.450 (First part)

0.8

0.6

0.4

0.2

0

-0.2

-0.4
0 10050 150 200 250

z/g0

Figure 5.34: Qzz(z) behaviour at T* = 0.450 (Second part)

164



servables were averaged and orientational correlation functions calculated. A series 

of relatively short heating runs were then commenced, in an attempt to achieve more 

accurate values (ie using equilibrated data) for the observables of interest. Typically 

these consisted of equilibration runs of approximately 1 ,0 0 0 ,0 0 0  steps, followed by 

production runs of 500,000 steps. As can be seen from the time evolutions of the po

tential energy (Fig 5.35) and nematic order parameter (Fig 5.36) during the heating 

run, these observables were reasonably stable after the equilibration time allowed.

5.4.1 Orientational Correlations

During the production periods, correlation functions were calculated in an identical 

manner to that for the medium sized system. These were the second rank order 

pair correlation function, g2(r) (Eqn 5.6), calculated for the bulk of the film and 

also in slices at regular 2  values, giving g2(r, z). Also measured were the correlations 

between slice directors, D 2(dz) (5.7), and g2(r) resolved in the planar and normal 

directions, g2y(d) and g2{d). These are presented for all the temperatures in the 

heating run, except for g2{r,z), which is only presented for the highest and lowest 

temperatures, T* =  0.480,0.450. In all cases where functions required splitting of 

the system into slices, the slice width was set to be the same as that in the medium 

film analysis, to enable meaningful comparison.

The behaviour of g2(r) (Fig 5.37) demonstrates quite clearly that the film is orien- 

tationally ordered at all of the temperatures studied, g2(r) decaying to a significant 

non-zero value for even the highest temperature, T* =  0.480. Comparison with the 

medium system results shows that approximately the same limiting value, 0.38, is
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observed for T* =  0.470 instead, suggesting that the diminishing surface disordering 

effect in the larger system has resulted in a temperature shift of T* «  0.01.

D 2(dz) tells a slightly different story (Fig 5.38), in that although nematic type 

ordering is indicated by the behaviour at the three lowest temperatures, at the 

highest, T* =  0.480, a long ranged decay to a value typical of an isotropic phase 

is found. Since D 2(dz) measures the degree of normal orientational correlations, 

this tends to support the evidence of decoupling of normal and parallel orientational 

fluctuations observed in the medium system. However, the length scale of this decay 

can now be seen to extend to much larger distances, again significantly greater than 

that seen in bulk systems. Comparing this T* =  0.480 curve with those obtained for 

the medium system (Fig 5.20) indicates the equivalent temperature in the latter to 

be somewhere between T* =  0.470 and T* =  0.465. This is in reasonable agreement 

with the temperature shift indicated by g2(r) data.

The behaviour of g2(r) resolved in the planar (g2v(d)) and normal (g2(d)) directions 

confirms the existence of nematic ordering in all three dimensions for the lowest 

three temperatures, with the long ranged decay in the normal correlations clearly 

demonstrated. Comparison of the T* =  0.480 data with the medium system results, 

with g2(d) decaying to «  0.31 by d — 10cr0, again shows this degree of ordering to 

be equivalent to that displayed by the medium system for 0.470 >  T* >  0.465.

3d plots of (g2(r,z))  (Figs 5.40,5.41) again show nematic ordering in plane for both 

the highest and lowest temperatures studied, with the expected increase in the 

magnitude of this ordering as the temperature is decreased.
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Finally, a contour plot of g2 {dxy, d z) is again presented, at the intermediate tem

perature of T* =  0.480. The correlations can again be seen to decay quite quickly 

to a value around 0.4 by about 3<Jo in the planar  (x y ) direction, whereas decay in 

the normal (z ) direction occurs to zero over a much longer distance, taking almost 

50cr0. An important point is that the 0.3 contour does not curve round towards the 

x y  axis like the 0.4 and higher ones, indicating that the decay has ceased in the x y  

direction at this point, whilst continuing in the z. This decay to zero of long range 

normal ordering is in agreement with previous results for the D 2(dz) and g2{d) data.
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5.4.2 Summary

The large system displayed qualitatively identical behaviour to both the small and 

medium systems, with a homeotropically anchored nematic monodomain again being 

observed at the lower temperatures. Difficulty was encountered in equilibrating this 

system, especially upon cooling, due to the orientational fluctuations occuring over 

particularly long timescales. However, reasonable analysis of these fluctuations was 

possible, and the heating run provided information about enough temperatures to 

make a fair comparison, both internally and with the medium system results. This 

comparison showed the fluctuations to display a similar behaviour to that presented 

in the previous section, except the larger width of the film made it possible to 

calculate them to larger distances and indeed showed a long ranged decay to be
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occuring. The difference between the two types of behaviour is discussed in more 

detail in the next section.

5.5 System  Size Dependency

The behaviour of the three different sized systems described above has been quali

tatively almost identical, as would be expected since all that has been varied is the 

longest box edge length. However, notable quantitative differences have been ob

served, particularly in the onset temperature of nematic ordering and the behaviour 

of the orientational correlations.

The ordering temperatures for the various film thicknesses, L, are compared with 

each other and the Gibbs results from the previous chapter (which will be roughly 

equivalent to those for an infinite film) below (Tab 5.43). They are also plotted in 

graphical form against 1 /L  (Fig 5.44). For the film results, two temperatures are

Size L/cr0 Tn i M
rn*
1NI

Gibbs 0 0 0.4825 0.4825
Large - 1 3 5 0.480 0.470

Medium — 34 0.475 0.450
Small — 11 0.470 0.450

Figure 5.43: Size dependency of transition temperatures

given. Firstly the highest temperature at which nematic fluctuations were observed 

to be stable across the cross-section of the box ie in plane, denoted T^j(xy).  This 

was indicated by the temperature in the cooling runs at which P2 showed a signifi

cant increase in both average value and error, indicating marked fluctuations to be
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occuring, and was accompanied by notable peaks in the ^2 (2 ) profiles. Secondly 

the temperature at which a true nematic mono domain was established, Tjyj, given 

by a levelling out of the transverse orientational correlations. For the small system, 

where these correlations were not measured, an estimate of this temperature was 

made by looking for a change in the gradient of the potential energy per particle, 

U*} and nematic order parameter, P2. For the Gibbs system these two were assumed 

to be equivalent. The results in Chapter 4 showed the isotropic-nematic transition 

to occur between T* — 0.485 and 0.480 for this system. Here the average of these 

two, T* =  0.4825, is used for comparison purposes.

0.49 ----------------- 1----------------- 1----------------- 1------------- *— 1----------------
T N(fty) +

L.m  *
X * * *

0.48 -..4-.............. !...................... |...................... (....................... (......................-

j  4  |  |  I

0.47 -..X ...............I...................... I...................... (....................... )......+ ............ -

0.46 -.....................j...................... j.......................(....................... }..................... -

0.45 -..................... I..........X .........|.......................j.......................|.......X........... -

O.44  ------------------ i------------------ i------------------ i------------------ i------------------
0 0.02 0.04 0.06 0.08 0.1

<VL

Figure 5.44: Dependency of transition temperatures upon system size

As expected, both transition temperatures are shifted down with decreasing system  

size, since the relative effect of the disordering interfaces increases. The temperature 

at which planar ordering occurs is always higher than that at which perpendicular
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comes in, but still decreases quite notably, indicating that the interfaces have a 

marked effect on this, even though they do not break the planar symmetry. This 

is possibly due to the interfaces enabling larger density fluctuations within the film 

which disrupt the planar ordering process. The temperature at which monodomain 

formation occurs, ie perpendicular ordering becomes truly nematic, is much more 

sensitive to interfacial disordering, as would be expected, and appears to plateau out 

at around T* =  0.450 for systems smaller than L  ~  30cr0. We propose that this ob

servation results from the competition between the relative effect of the disordering 

surfaces increasing with decreasing width, leading to a decrease in the monodomain 

transition temperature, and the fact that a smaller film width means that the range 

of the perpendicular orientational correlations does not have to be as great to cover 

the width of the film, as required for monodomain formation, and thus occurs at 

a higher temperature. Interestingly this suggests that the temperature range over 

which orientational domains are observed has a maximum value at a certain film 

width, which is somewhere in the vicinity of L ~  30<Jo according to this, admittedly 

very approximate, set of results.

An attempt to quantify the perpendicular orientational correlations has been made 

by empirically fitting an appropriate functional form to the g^id) function. The best 

results were obtained using a tanh like function, similar to that for the density pro

files used earlier. This form was chosen because the g^id) functions were frequently 

observed to start off with a slow rate of decay, which increased as the function fell 

rapidly and then went through a point of inflexion before slowing as another plateau 

value was reached at large distances. The exact form used was
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92 (<0 =  \  (9 2  (0) +  fll (oo)) +  i  (s | (0) +  s |  (oo)) tank  [(d -  d.) /2<5] (5.8)

where <?f(0 ) and pfC00) are the limiting values for the function at d =  0  and d =  

oo, di is the position of the point of decay inflexion, and 5 the range over which 

decay occurs. All four values were obtained using a least squares fit to the graphs 

previously obtained (Figs 5.22,5.39). The fits are shown below (Figs 5.45,5.46), 

together with a table of the values obtained for the variables defined in the equation 

above (Tab 5.5)

Considering the large system first, where the fits appear to be the most accurate, 

it is encouraging to note that upon decreasing the temperature the decay becomes 

more short ranged, as indicated by S, due to the increase in perpendicular orienta

tional correlations. The temperature at which the orientational correlations extend 

the furthest without the formation of a monodomain is quite clearly at T* =  0.480, 

with a long ranged decay being observed to a low value indicative of an isotropic 

phase. Whether this decay would go all the way to zero, or to a limiting finite 

value is impossible to say, although the fitting reports p |(°°) 38 0 .0 2 0 , indicating 

that over large enough distances the correlations essentially disappear. At higher 

temperatures this decay would presumably become shorter ranged, as seen in the 

medium system at T* =  0.475 (which relatively speaking is further from the mon

odomain transition temperature), until eventually short decay lengths typical of a 

bulk isotropic are seen.

Unfortunately, the other fitting parameters obtained for the medium system do
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Figure 5.45: g^id) and fittings for medium system
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Figure 5.46: g^{d) and fittings for large system
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Sys Size /ji* - T j r y — ■'

91(0) 02(°°) di S

Medium 0.450 1.00 0.586 0.512 10.1 5.56
Medium 0.460 1.02 0.525 0.306 10.2 3.28
Medium 0.470 1.04 0.391 0.149 9.16 3.36
Medium 0.475 1.06 0.096 0.003 5.04 3.08

Large 0.450 0.96 0.620 0.529 10.7 6.28
Large 0.460 0.98 0.565 0.490 10.0 5.45
Large 0.470 1.00 0.518 0.376 11.4 8.46
Large 0.480 1.02 0.442 0.020 20.62 12.0

not conform to this trend of a maximum range for the decay being seen in the 

middle of the temperature range. Although initially the decay range does increase 

for T* =  0.470,0.460, it does not decrease again at T* =  0.450, where a nematic 

monodomain is formed, as shown by the D 2 {dz) data. It is suspected that this is 

because the range of d covered by the function is not large enough, and if it were 

extended further it would show a levelling out to a relatively high value, indicative 

of a nematic. This is further supported by the fact that the decision to use a tanh  

fitting was based upon the form of the large system functions, which show two 

plateau areas, and that it clearly does not work as well for the medium system 

functions, where the function does not extend to a far enough range to show the 

second plateau.

Attempts were made to find a functional form which fitted the D 2(dz) data, using 

an exponential decay. However this proved to be unable to consistently characterise 

changes in the correlation length, and fitting was abandoned.
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5.6 Conclusions

These simulations have clearly demonstrated the ability of a novel parameterisation 

of the GB to show both isotropic and nematic vapour coexistence, in good quan

titative agreement with both the densities and temperatures shown by the Gibbs 

ensemble results in the previous chapter. In these direct simulations though, the 

presence of two free surfaces has considerably modified the ordering regime, and it 

is to this that attention has primarily been paid.

Three sets of simulations of varying box length were carried out, in an attempt to 

analyse the effect of film thickness upon the observed behaviour. The initial work 

on the smallest system was really just a preliminary study conducted to gain an 

indication of the sort of behaviour obtainable. Pleasingly it displayed homeotropic 

(normal) anchoring in the nematic phase at the free interface. Since the interfaces 

were the only symmetry breaking aspect of this system, the alignment was con

sidered to have been induced by them. The tendency for homeotropic anchoring 

was explained in terms of the relative energies for various cleavage planes of the 

close-packed structures. A decrease in the ordering temperature was also observed, 

which suggested that the interfaces were disordering ie the system showed isotropic 

wetting.

This was confirmed by the study of the medium system, which was wide enough 

to enable observation of orientational order developing in the centre of the film 

and growing out to the edges. At intermediate temperatures, before stable nematic 

ordering had reached the interfaces, orientational fluctuations were observed across
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the width of the film, which lessened with further decreasing of the temperature until 

finally nematic ordering was seen at the surfaces, and a monodomain observed. After 

extensive analysis, using a variety of functions to quantify these fluctuations, it was 

concluded a decoupling of normal and transverse orientational correlations led to 

this effect.

Simulations of a larger system produced qualitatively identical results, although 

it should be mentioned that significant problems in equilibrating the cooling run 

were encountered, and some rapid quenching of the system was required to form 

the expected nematic monodomain. This meant that any analysis of the cooling 

regime would be suspect, and so it was decided to use a heating run, starting from 

this nematic monodomain, to provide comparison with the medium system results, 

(although this of course raises the possibility of hysteresis affecting the results). 

Again decoupling between the normal and transverse ordering was observed, and a 

system size analysis attempted to quantify this effect.

This showed the temperature range associated with this decoupling to vary non- 

monatonically with film thickness, due to the competition between the relative 

strength of the disordering interfaces and the maximum correlation width needed 

to form a monodomain, which, respectively, tend to diminish and enlarge this range 

with increasing width of the film. Empirical fits to the g^id) data have given some 

insight into the nature of the normal orientational correlations, but the functional 

form used did not appear appropriate for all of the data considered. For the largest 

system studied, however, the normal orientational correlation length certainly ap

peared to grow with increasing temperature, whilst the range of transverse correla
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tions remained qualitatively unchanged.

Although this decoupling could, to some extent, be due to the small cross-sectional 

area of the film, meaning greater periodicity and possibly enhanced orientational 

ordering, it is thought that the degree of decoupling observed here is too great for 

this to be the main process at work. Instead it is proposed that it is the symmetry 

breaking aspect of the interfaces which inhibits correlations from growing within the 

film. Although this mainly happens in the normal direction, the interfaces do have 

some effect, possibly through density fluctuations, upon the transverse ordering.

Previous simulation studies have shown various interfacial behaviours to be possible 

with the GB model; parallel alignment was obtained using k =  3.0, k =  1.0 [105], 

whilst an earlier study [104] of the liquid-vapour interface using the standard GB 

parameterisation (k =  3.0, k =  5.0) hinted at perpendicular alignment at the 

free interface, without showing nematic-vapour coexistence. These alignments can, 

again, be accounted for using simple cleavage plane arguments for the closed packed 

crystal structures.

The wetting behaviour is also affected by the parameterisation used, showing per

haps a greater dependency upon the shape anisotropy, k , than the well-depth ratio, 

k . Whereas isotropic wetting has been observed here with k =  2.0, the parallel 

alignment simulations saw nematic wetting with more elongated particles, k =  3.0. 

This is consistent with theoretical predictions [44] showing a crossover from isotropic 

to nematic wetting with increase in anisotropy and experimental observations of the 

cyanobiphenyls, which show an increase in nematic wetting ability with increasing 

molecular length.
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Also, the influence of // and v  on the interaction well-depths and, subsequently, 

the phase behaviour cannot be ignored. Unfortunately, systematic characterisation 

of the effects of // and v  on the behaviour at the free interface is more difficult 

than would be first thought, since nematic-vapour coexistence is only observed for 

a very restricted range of GB parameterisations. A primary cause of this appears 

to be the relative depth of the side-side interaction: if this is made too deep (eg. 

due to high shape anisotropy, or inappropriate choice of the exponents fi and v) 

the isotropic-nematic-smectic triple point temperature goes above that of the liquid 

crystal-isotropic-vapour triple point and the only liquid crystal-vapour coexistence 

possible is with the smectic phase. However, fine-tuning of the parameters, subject 

to careful control of this well-depth, should enable further nematic-vapour coexis

tence regions to be located and thus clarify the effects of the various parameters 

upon the surface phase behaviour.

Experimental systems (see Chapter 2 ) also show all possible types of alignment, 

with the technologically applicable cyanobiphenyls displaying homeotropic anchor

ing [25], and the historically important compound, PAA, planar [23]. MBBA shows 

even more complex behaviour, undergoing a transition from homeotropic to oblique 

anchoring at a temperature slightly below the triple point [24]. The majority of 

experimental free surfaces display nematic wetting. However, some inference of 

isotropic wetting can be made from the surface tension behaviour of p-anisaldazine 

and MBBA.

Clearly, a wide range of behaviour can be seen in these types of experimental sys

tems, and theoretical predictions have proven to be able to capture this behaviour
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given a judicious choice of model system and method of solution. With sufficient 

simulation time, all these sorts of behaviour could be probably be seen. However, the 

challenge is to link the molecular details of the model in question to the behaviour 

displayed, and thus eventually aid in some way the design of these molecules and 

the applications they are to be used in.

It is proposed that the work presented in this chapter has contributed to this, in 

that it has added to the understanding of the GB model and shown an interesting 

region of phase space which is worthy of further investigation. The direct techno

logical relevance of the work is probably not so obvious, but this simulation of a free 

surface serves as essentially a reference to the wall-substrate systems so important 

in display devices. The orientational correlation analysis presented has also been 

particularly thorough, and should be useful to gain some idea of the time and length 

scales associated with simulations of switching of orientational domains, again an 

important consideration in display technology.

How this work relates to the two-component mixture study presented previously, 

and considerations of future work, are presented next in the final chapter.
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Chapter 6

Conclusions and Future Work

In this chapter, the principal results of this thesis are summarised, and suggestions 

for future work are made.

The main aim of this work, as specified in the introduction, was to use computer 

simulations of the GB model, to achieve greater understanding of the effects of poly- 

dispersity and interfacial symmetry breaking upon liquid crystal phase behaviour. 

These two effects are of significant technological importance because of their rele

vance to liquid crystal displays. However, the validity of this work from a purely 

scientific aspect will be considered as well as the question of applicability.

Since the work was composed of two quite different sets of simulations, each is 

summarised and suggestions made for future work separately. Conclusions from the 

two lines of work, and how they relate to each other, are then presented and the 

possibility of incorporating both types of simulation into future studies considered.
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6.1 Bulk Coexistence

In this chapter the phase coexistence behaviour of a relatively short, strongly at

tracting GB particle, both in a pure system and in a mixture with a similar, slightly 

longer particle, was studied and shown to display a number of interesting properties.

The one component system studied in Chapter 4 showed the expected isotropic 

liquid-vapour coexistence, the existence of which was explained due to the competing 

effects of the relative well-depths. These results compared well with previous studies 

of GB isotropic-vapour coexistence, showing similar coexistence densities and the 

same ease of application of the Gibbs ensemble. The further discovery of nematic- 

vapour coexistence, albeit only in a narrow temperature range where equilibrium 

could be definitely achieved, was an exciting result, and was exploited further in the 

thin film work.

Parameterisation of the two component system was achieved without excessive com

putation, and could easily be applied to other generalised GB pairs. Simulation of 

this system proved to be rather difficult, as had been expected from previous work 

in the literature, indicating the Gibbs ensemble to have particular problems at high 

densities. However, reasonably satisfactory indications of equilibrium were achieved. 

This is attributed to the relative small degree of shape anisotropy of the particles 

used making insertion of the smaller particles a tractable operation. The resulting 

phase diagram shows significant deviation from that expected for the infinite system, 

but arguments have been presented explaining this in terms of finite size effects.

In terms of future work, a more in depth analysis of this finite size effect would
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be the first obvious step. This could be done by simulating different system sizes, 

however, systems significantly larger than the one studied here would be beyond 

the bounds of computational practicability with present computers. An alternative 

method of analysing this effect would be to use the same system size but simulate a 

large number of different initial concentrations, such that the area of the coexistence 

envelope explored by each would be overlapped, to a reasonable extent, by those of 

neighbouring runs. This would give a complicated series of finite size curves, which, 

due to the Lever rule, would be shifted by different amounts due to the different 

starting concentrations of each one. Through a complicated numerical analysis it 

might be possible to then extrapolate to the thermodynamic limit, although the 

inherent error in these studies would make this a considerable task.

Less daunting would be the simulation of different GB mixtures, by varying the 

parameterisation of either one or both the components used here. Care would, 

however, need to be taken to ensure that particle insertion could still be achieved, 

and that the area of the phase diagram targeted was not too close to a smectic 

phase.

In conclusion, an intriguing parameterisation for the GB has been studied, which has 

shown a rich phase behaviour and is worthy of further investigation. An important 

application of the Gibbs ensemble to liquid crystal phenomena has also been made, 

which will pave the way for future such studies using judiciously chosen GB mixtures.
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6.2 Thin Film System

This work was again based upon the results of the one-component bulk coexistence 

observed with the Gibbs ensemble, only in this case the system was perturbed not by 

the addition of another particle type, but rather the reproduction of this coexistence 

within one simulation box. The establishment of an interfacial region and its effect 

upon the system were the principal areas of interest.

Firstly, the interfaces were observed to have a disordering effect, with orientational 

ordering starting in the centre of the film and then slowly growing out to the in

terfaces as the temperature was lowered. This was accompanied by a shift in the 

transition to lower temperatures, due to this surface disordering, the relative effect of 

which increased with decreasing film width, leading to a larger shift in temperature.

Once ordering had reached the interfaces, normal alignment or homeotropic anchor

ing was seen at the free surface. This alignment can be readily explained in terms 

of the relative energies for various cleavage planes of the close-packed structures.

At the intermediate temperatures between transverse nematic ordering developing 

in the centre of the film and the formation of a nematic monodomain, orientational 

fluctuations were observed to occur across the width of film, with differently orien

tated nematic domains forming and propagating through the film, before, generally, 

dispersing at the edges. As the temperature was lowered, the lifetime and size of 

these domains increased, along with the orientational correlations between them.

These fluctuations have been extensively analysed for the medium and large sys

tems, using a variety of different correlation functions. In both systems, a marked
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decoupling of the normal and transverse correlations was observed, nematic ordering 

being established in the transverse direction first and a long range decay in correla

tions, quite unlike that seen in bulk systems, occuring in the normal direction. Only 

at much lower temperatures did the normal ordering match up with the transverse, 

at which point a nematic monodomain was established.

A system size analysis showed a definite increase in the range of decay of orien

tational correlations with increasing system size, although this was expected since 

the correlations are bounded by the width of the film. The decreasing size of the 

temperature range over which the orientational fluctuations occurred was also pre

dictable, since as the system becomes more bulk-like the nature of the normal and 

transverse correlations must converge.

Further elucidation of the decoupling effect could be achieved using a much more 

comprehensive system size study. This would need to incorporate different cross- 

sectional areas and lengths of film, as well as comparisons with bulk one phase 

simulations in anisotropic boxes, to distinguish between the degree of decoupling 

due simply to periodicity and that from the interfaces. Attempts to see this effect 

experimentally could also be made, using some form of structural spectroscopy (eg. 

XRD) and Fourier analysis to resolve the data into the appropriate component 

directions.

In conclusion, an important example of GB behaviour at a free surface has been 

presented, the first to show homeotropic ordering at the nematic-vapour interface. 

Essentially, studies of the free surfaces of liquid crystals, as well as being of scientific 

validity in their own right, can be regarded as reference systems for the more techno
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logically important liquid crystal substrate interface. It has been demonstrated here 

that even using a relatively simple mesogenic model, some of the important physics 

of liquid crystals at interfaces can be captured, and thus this potential should con

tinue to have a role in modelling this behaviour.

6.3 Conclusions

When considering this thesis as a whole, it is particularly encouraging to note the de

gree of internal consistency in a number of the values reported. Firstly, the isotropic- 

nematic transition temperature seen in the Gibbs results is in excellent agreement 

with those reported in the film simulations, which are themselves consistent with 

the expected system size trend. In the bidisperse simulations, the transition temper

atures of the pure systems give an excellent estimate of the transition temperature 

for the mixed system, if a linear trend across the concentration diagram is assumed. 

The preliminary one-box mixture simulations also quite nicely tie in with the Gibbs 

results.

The simulations attempted here, both the two-component coexistence and the film 

simulations, have been relatively ambitious in the degree of complexity inherent in 

the system, and thus the run times required to ensure confidence in the results were 

difficult to achieve. However, it is felt that a sufficient degree of internal consistency 

between the observables has been shown for each of the systems such that, when 

coupled with the agreement between the different studies and with previous work, 

the results here can be regarded with credence.
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When considering the question of future work, the two separate studies presented 

could be immediately extended by the consideration of larger systems, as is always 

the case in computer simulations. This would shed some light on the system size 

effects seen in the Gibbs simulations, and also enable the fluctuations seen in the film 

work to be more accurately quantified. Unfortunately this would take a considerable 

amount of computational power, and at present any meaningful simulation of larger 

systems, at least larger Gibbs simulations or wider films, are probably just out of 

reach.

However, it would be possible to investigate a film with a larger cross-sectional area 

and the same width as the medium system, using the same parallel code as for the 

large system. This should provide some information on the disordering strength of 

the interfaces and how the decoupling depends upon them and the periodicity of 

the system.

There also, of course, remains the possibility of modifying the models used here 

and seeing the effect this has upon the observed behaviour. Firstly, changing the 

degree of bi-dispersity in the Gibbs simulations, either by using a concentration 

ratio other than 50:50 or a different mixture of GB types, could yield interesting 

results. An increase in the degree of difference between the two particles has been 

theoretically predicted to result in a wider coexistence envelope, which it should be 

possible to see in a simulation study. Secondly, the use of different GB particle types 

in free interface systems could show a wide variety of both alignment and wetting 

behaviours, although care would have to be taken to tune the well depths so that 

stable nematic vapour coexistence could be simulated. The GB parameterisations
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used here have corresponded to relatively short particles with a strong anisotropy 

in their well-depth functions, which, along with the strong exponents (//, v) have 

helped stabilise the liquid-crystal phases observed. Although this disparity between 

the shape and well-depth anisotropies could be regarded as slightly unrealistic, it 

has been important in enabling the Gibbs simulations, upon which the film study 

was based, to be carried out.

This work has successfully shown how a relatively simple liquid crystal model can 

exhibit a variety of complex and interesting behaviour, all of it in some way relevant 

to device applications in liquid crystal displays. The next step is the incorporation 

these two perturbations of the pure system into a single study ie. interfacial mix

tures. The computational simplicity of the GB model and its generalised form mean 

that a relatively large system could eventually be simulated, in what would amount 

to a markedly more realistic simulation of a display device. The use of parallel 

processing, as in the large film system here, would be important in allowing much 

larger time and length-scales to be accessed, and the parallel GB codes already in 

the public domain would be easily convertible to a generalised form.

Obviously though, the first step would have to be a series of simulations of relatively 

small two-component interfacial systems, with the aim of getting an idea of the sorts 

of phase behaviour to be expected with such systems. There is a strong argument 

for starting these with free surfaces, in order to avoid the extra complexity of a 

wall-particle interaction. The effect of preferential adsorption at the interfaces may 

well enable nematic wetting to be seen with homeotropic alignment, which has not 

been seen with single component GB systems.
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Whatever new studies are conducted in this area, this work has provided a tentar 

tive reference for both the phase separation and free surface (interfacial) aspects 

of the Gay-Berne model and its generalised form. Probably the most encouraging 

point to be demonstrated by this work is that these systems, even though they 

can seem highly idealised and are based upon a simple potential, are capable of 

showing a wide variety of fascinating phenomena. However, the downside of this is 

that it can be easy to be too ambitious too soon by assuming a relatively simple 

model will be easy to simulate, whereas in fact the long time scales associated with 

liquid-crystalline phenomena can make successful equilibration difficult to achieve. 

A cautious, considered approach should, therefore, always be adopted.
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Appendix A

Chemical Potential Calculations

In general, the chemical potential of a particle A in the N V T  ensemble can be split 

into a sum of its ideal (kinetic) and excess (configurational) parts [5]

Ha  =  H*a (p ) +  Ha  (A-l)

The density dependent ideal part can calculated analytically,

f i ( p )  =  - k BT  /n ^ - +^ x 3 (A-2)

A being the thermal de Broglie wavelength. The excess part is usually estimated 

using the classic Widom particle insertion method [6,56],

h7 = —kBT  In ( exp U*A
kBT  J (A.3)
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where U% is the energy associated with inserting a test particle into the system. In 

practice A is usually assumed to be equal to one, and n to be large, so that the ideal 

part is given by kBT  ln(p). When added to the excess part this gives the reduced 

chemical potential

A =  k sT  ln(p) — kBT  In ^exp
m

kBT
(A-4)

which is usually quoted in computer simulation studies.

The reduced chemical potential of a particle in the Gibbs ensemble can be calculated 

using a minor modification of the Widom expression [116], being

Ha  =  ~ k B T  In  l - ^ - e x p  [ - j p p l )  • (A.5)
\  n \  -}~ 1 . k B l . /  \}qx i

where V\ and n\ are the volume and number of particles of type A, respectively, in 

the box of interest. This still incorporates ideal (kinetic) and excess (configurational) 

contributions as in the Widom expression for the N V T  ensemble, only the Gibbs 

expression takes account of fluctuations in the volume and number of particles, and 

is only identical to the N V T  version when these are negligible and the number of 

particles is large.

As well as particle insertion, it is also theoretically possible to calculate the chemical 

potential by particle deletion, using an analogous equation,
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where U*A is now the energy associated with removing a particle from the system. 

However, in practice this method does not not work particularly well, since signifi

cant contributions to the average, arising from configurations which involve particle

removing a test particle from an already relaxed equilibrium distribution where sig

nificant overlaps are highly unlikely.

The difference in the excess chemical potentials of two species can be calculated 

using test moves which involve a change in identity of a particle [6,117], the energy 

difference upon this change, UAB, being used in the analogous equation

This can obviously be done by converting either species A  into H, or B  into A , 

which gives two different methods for calculating this difference (ie contraction and 

inflation respectively, assuming species A  is bigger than B). Simply by inverting the 

two species types in the above equation, the following corollary is obtained

overlap, are not sampled effectively [6]. This is because the deletion move involves

(A-7)

A fifB = (A.8)

Therefore calculations of the chemical potential using both inflation and contraction



trial moves should yield equal and opposite results. However, this was not observed 

in chapter 4.

To investigate this chemical potential behaviour, a series of simulations have been 

performed on the 50:50 mixture considered in Chapter 4, using simple N VT -MC 

at the same pressure, P* =  1.0, and in the temperature range 10.0 > T* >  1.0. 

Relatively short runs (10,000 MC sweeps) were used, the system observables equi

librating after only a few hundred timesteps. During the latter half of each run, 

test particle insertions were made of both species, to calculate /i[ (long particles) 

and (ij (short particles), as well as trial inflations and deflations, to measure the 

difference between the reduced values via Eqn A.7. As shown in Fig A .l, although

2

1

0
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2 3 41 5 6 7 8 9 10

Figure A.l: Chemical potential values.

the identity change moves involving changing species j  to i (inflation) gave values 

for the chemical potential difference in excellent agreement with that obtained from
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the two insertion moves, the reverse (deflation) move systematically underestimated 

the value by around 0.5. Only at higher temperatures was better agreement seen, 

though we note that this is a significant temperature away from that at which the 

isotropic nematic simulations were performed.

It is concluded that the deflation moves result in an erroneous estimate for similar 

reasons to those that cause particle deletion to be inefficient in calculating the re

duced chemical potential for one species, /zr - the initial states considered do not 

sample configurations with a significant degree of overlap. Such configurations im

ply high initial energy, which after contraction would decrease quite significantly 

and lead to large negative U%B-> which would make a significant contribution to the 

average in Eqn A.7. This would result in a higher value for the logarithm, which, in 

turn, would yield a more negative A/z?-, in better agreement with the other points 

on the graph from A/zjf and /zj — ffj. We consider that this effect accounts for the 

inconsistency in the chemical potential differences as measured in chapter 4, and 

that, therefore, the values resulting from inflation moves are the correct ones.

Finally, it should be noted from Fig A .l, that the difference becomes negative as the 

density is increased. This suggests, rather counter-intuitively, that at high enough 

densities particle inflation leads to an overall gain in attractive energy, despite the 

increased risk of overlap. It is proposed that at these densities the local orientational 

order is sufficient that the risk of overlap upon such a modest inflation (2 to 2.5 in 

length) is out-weighed by the gain in attractive energy in the parallel interactions. 

This suggestion is made more plausible when it is remembered that inflation only 

occurs along the length of the molecule, and the width remains the same, mean-
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mg the only overlap that can occur upon inflation is at the ends of the molecule. 

Furthermore, the attractive well-depth for two 2.5 : 1 particles in the side-side con

figuration is 1.36 times that for a 2 : 1 and a 2.5 : 1. This figure is arrived at by 

taking into account e^, ê -, and the difference in strength of the side-side interaction 

relative to the cross well-depth reference for both particle pairs.

A .l Summary

The inconsistency in the chemical potential difference calculation in chapter 4 has 

been shown not to be due to poor equilibration at the isotropic-nematic transition, 

but rather a problem with the algorithm used to calculate this difference using 

particle contractions. A systematic error of approximately 0.5 in these values is 

seen here, and this is consistent with the values reported in chapter 4. It has also 

been demonstrated that the negative values observed for particle inflation are not 

incorrect as would intuitively be expected, but due to the attractive interactions 

gained upon inflation and part of a definite trend seen upon cooling from high 

temperatures.
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