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ABSTRACT
(Peter Alan Mallinder)

Constitutive-based Masonry Vault Mechanisms

The objective of the research programme has been to investigate the behaviour of
masonry arch vault collapse mechanisms in the context of the problems besetting the
national bridge stock. The programme has primarily involved masonry constitutive
theoretical studies, supported by laboratory experimentation, which have led to the
formulation of novel masonry hinge modelling. The modelling has been developed for
practical application in a four hinge masonry vault mechanism analysis and subjected
to testing. The technique has been applied in the field supported by a novel
application of information technology (IT) image processing, reflecting the growing
importance of IT within the construction industry. All theoretical studies have been
mounted as micro-computer software with graphics. The accent is upon engineering
requirements in practice.

Chapter One reviews the context and history of the masonry vault structural form,
whose presence has long been commonplace in the United Kingdom, especially on the
nation's road network. It is noted that elderly arched road bridges are under
continual pressure to carry ever greater loads yet their strength is uncertain.
Historically, structural analysts have attempted to resolve the arch's behaviour but
present methods are still inexact.

Chapter Two describes how, traditionally, masonry has been assumed to possess
either a linear stress-strain property or infinite stiffness and strength. An
alternative, novel equation for modelling masonry stress-strain laws is presented
which may be configured to mimic the behaviour of real materials as well as that of
the infinite strength and linear laws it replaces. A numerical analytical procedure has
been developed to 'solve' rectangular masonry sections under combined bending and
thrust thereby rendering the earlier approximations unnecessary.

Chapter Three develops the theme further leading to the numerical determination of
limit state hinge characteristics which furnish a static limit state axial thrust/bending
moment interaction diagram and a corresponding serviceability limit state, prevention
of cracking interaction diagram. Differentiation is thus made possible between
hitherto identically-treated though varying natural materials and comparisons made.
It is further postulated that any point on a static limit state interaction diagram locus
represents a masonry hinge and an extensive series of laboratory model hinge tests is
undertaken to demonstrate the point by testing the foregoing theoretical studies.

Chapter Four describes the incorporation of the hinge theory into a mechanism-type
computer analytical tool. Crucially, the analysis is different from other mechanism
analyses by virtue of the hinge modelling, enabling the effects of material properties
on arch behaviour to be studied. The software is tested in Chapter Five against
prototype data for laboratory model and full size masonry bridges.

Chapter Six introduces computer vision, an IT technique that is relatively novel to the
structures field. It is adapted to monitor the above laboratory model arch tests and
then extended to the monitoring of a multi-span arch bridge test in the field.
Computer vision permits the formulation of a hypothesis regarding the unusual mode
of failure that occurred and.this is supported by a generalisation of the mechanism
hinge theory, thereby demonstrating the merits of both techniques. Finally, Chapter
Seven draws conclusions on the foregoing and makes suggestions for further work.
Supporting documentation is given in the Appendices.
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CHAPTER ONE

Introduction

"Few of man's inventions are more basic than the bridge. The oldest engineering
work devised by man, it is the only one universally employed in his pre-civilised

state."”

Joseph Gies (Bridges and Men, 1963)

1.1 Context

Just as the bridge is the oldest engineering work known to man, the arch is, after the
simple timber beam, the oldest form of bridge. It was conceived in pre-history and
prevailed until modern times as a unique structural form. Its great virtue lay in its
ability to span without the need for tensile materials. The art (for it was hardly a
science) of arch exploitation reached a zenith in the middle ages with the construction

of monumental cathedrals throughout Europe.

It was not until relatively recently that the world's first significant non-masonry
bridge was built - the cast iron arch at Ironbridge, Staffordshire. Cast iron's lack of
tensile strength initially ensured, just as masonry's did, that the arch shape was still
necessary. However, the rapid progress of the industrial revolution warranted that
by the beginning of the twentieth century the arch form itself was obsolescent, being

gradually replaced by flat spans of reinforced and prestressed concrete, and of steel.

The durability of the masonry arch form is such that, despite virtually none having
been built for sixty or more years (with a few recent notable exceptions(l:2:3), as a
group they still constitute the most numerous form of public road bridge in the
United Kingdom. As such they form a key part of the nation's communications
infrastructure with a substantial capital replacement value, justifying considerable

effort in their proper care and maintenance(*).



This continuing abundance of masonry arch bridges gi'ves rise to serious problems for
several reasons(3). First, they were not "designed” in the modern sense. Most were
probably constructed without calculations to traditional proportions or "rules of
thumb" that were known to give safe results. Second, records of their construction,
especially internally, have rarely survived to the present -day - if they ever existed.
Third, the loading of the day consisted of no more than a laden horse and cart, a far
cry from a modern forty or forty-four tonne multi-axle tractor unit and trailer.
Fourth, they suffer inevitable and progressive deterioration accompanying old age.
Despite their durability, large margin of strength (relative to the loads of their day)
and low maintenance demand, they can and do eventually fail®). The modern
emphasis is therefore the safe load assessment of existing old bridges subjected to

modern traffic loads, rather than of design(7.8),

Figure 1.1 shows the continuing abundance of this structural type in the United
Kingdom bridge stock, and gives some idea of the scale of the structural assessment
task. As the predominant bridge type, the arch is therefore an important national
asset and the need for a good analytical tool, which is sufficiently accurate to be
neither wasteful nor unsafe, is clearly considerable. The mainstream analytical method
of recent years, MEXE, has its origins in the work of Professor Pippard and dates
from the 1930's. The method, which is based on Pippard's model experiments and is
partly empirical, will be considered in some detail in section 1.3.2. later.

The scale of the problem is comparatively greater in the U.K., whose older bridges
have survived in greater numbers by virtue of not having suffered the wartime
ravages as have occurred elsewhere. It is further compounded by continually
increasing traffic loads, both in terms of vehicle weights and numbers.

The structural type is extremely old and its presence commonplace. Plate 1.1 depicts
an ancient United Kingdom example, and Plate 1.2 a more renowned but similarly
ancient Italian counterpart. Until relatively recently, modern structural analysis had
not been applied to such structures. It can be said that it was a surprise to many that
the modern techniques initially only yielded relatively poor results. Faced with these
problems the current interest in masonry arch analysis emerged, stimulated
particularly by the Department of Transport nationally, although arch bridge
ownership in fact extends through local highway authorities, Railtrack and British
Waterways Board. Under this impetus the first contemporary research began
including a series of full scale tests-to-destruction by the Transport Research

Laboratory(9).
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PLATE 1.1

Reputedly the oldest bridge in Derbyshire
(Bakewell, United Kingdom)

PLATE 1.2

Ponte Vecchio (Florence, Italy)



There are two modern schools of thought vis-a-vis arch assessment. The first is
termed "plastic”, or more specifically mechanism analysis, chronologically at least,

attributable to work by Professor Jacques Heyman(10.11,12) of Cambridge University.

This is a limit state approach and deems failure to occur in a doubly encastré single
span when the last of four mechanistic "hinges" forms in the arch vault, reducing it to
a mechanism and permitting collapse. Heyman's approach was to assume infinite
compressive strength for the arch vault material, but others have developed the
method (the "modified mechanism method”) to allow a more realistic treatment(13).

Some full scale load tests-to-destruction exhibited a four hinge mechanistic failure
mode: others do not. Even of those that do, the "prediction” of ultimate loads is
often inexact, though factors other than vault strength modelling must have an

influence.

The second school of thought is essentially concerned with elastic analysis and takes
two forms. One is finite element analysis(!4:15) and the second an arch thinning

approach(16),

There have been several commercial linear analysis finite element packages available
for some time, and a practicing engineer new to the masonry arch analysis field will
often turn first to these. Unfortunately, arch behaviour is non-linear and such an
approach is inappropriate. Non-linear finite element packages are now also available,
but these too have limitations and the creation of a computer model for these one-off
structures can be time consuming. Nevertheless, with the advent of cheap computing

power, this may be where the future lies.

Observation of full scale and model arches, load tested to collapse, reveals several
modes of failure. These include four hinge mechanisms, three hinge snap—ihroughs,
material crushing beneath the live load, punching and even those that are ill-defined.
Skewed arches are yet more complex in this respect(17:18).  The influencing factors
generally will be geometrical and material as will the load type. Whilst broad
categorisation of likely failure modes is possible, this nevertheless remains a difficult
area in which to be precise. It is probable, however, that the four hinge mechanism

is a common or even the most common mode(®).

It is noteworthy that contemporary arch research has been primarily directed towards
the prediction of collapse loads, ie. the ultimate limit state, rather than service loads.

It is true to say that the practising bridge engineer is more interested in the loads his

5



arch bridges can safely carry, rather than ‘the loads they cannot! The apparently
simple remedy of factoring down the collapse live load to arrive at a service load is
credible (although the live/dead load ratio questions proportionality), but the
appropriate factor is unknown and may vary from structure to structure. Elastic
methods can provide a full load path history, but even then the criteria for defining a

service level therein are largely unresearched.

Obvious serviceability limit state candidates exist, such as the onset of tension or the
first hinge. The former is somewhat out of date but many would find the latter
acceptable, assuming that hinge formation is accompanied by material degradation.
However, consider what happens when the centering beneath a newly constructed arch
is struck - on taking up its self weight for the first time, the arch suffers elastic
shortening and its abutments, similarly loaded for the first time, settle and spread
slightly. The arch can only accomodate the increased span by forming hinges, say at
the springings and around midspan. The scenario that in-service arches may be
naturally two or three pinned from new casts doubt on the "first hinge" serviceability

limit proposition.

Such is the background to the author's research programme, and the problem is this.
The large stock of old arch bridges must be structurally assessed for its ability to
carry ever-increasing modern traffic loads. Currently this is done by applying a
method - MEXE - which dates from before the second world war, and which may be
both  nonconservative and  uneconomically ~ conservative  under certain
circumstances(19:29).  Alternative assessment methods are permitted, but these also
possess both merits and drawbacks, and none is acceptable in all circumstances. The
elastic methods require knowledge of material properties which are difficult to obtain,
but do provide a load path history and allow for abutment movement. Plastic
methods say nothing of behaviour before failure and need an allowance for arch-fill
intéraction in deep arches. Thus none of the currently available methods, historical

nor contemporary, is universally applicable nor sufficiently dependable.

This thesis aims to contribute to knowledge in the following areas. First, a
theoretical study of masonry's fundamental properties has been undertaken; this
attempts to minimise the problems associated with (natural) material variability.
Second, a refinement of the "plastic” analysis has been developed which obviates the
non-conservative infinite compressive strength assumption by employing appropriate
masonry properties. ~ Computer software has been developed to automate this
procedure and to provide an ultimate load prediction. Third, information technology

(IT) techniques have been investigated in the monitoring of laboratory model and field

6



arch tests to destruction and have cast light on modes of failure, both qualitatively

and quantitatively.

The analytical developments have been supported by a variety of model, full scale and
computer vision information technology studies, the latter being an innovative
technique 6ffering insights into arch behaviour. Throughout, attention is focused
upon non-skewed single span forms with non-laminated arch vaults. The intention is

to contribute to the ongoing expansion in the database of masonry vault knowledge.

1.2 The Arch Form

The Romans constructed the first proper roads and bridges in the British Isles but of
the latter only piers and foundations have survived. The oldest surviving British
bridges are medizval arched river crossings. A few of these date from the 12th
century but thereafter increasing numbers of arch bridges survive up to the end of
the nineteenth century, and there are some dating from the early twentieth century.

As a construction material, bricks were used by the Romans but were not used again
until their re-introduction in the 13th century. The earliest examples of arch bridges

in Britain are therefore invariably of stone.

The Romans built semi-circular arches (Plate 1.3) in the mistaken belief that only
vertical reactions would occur. However, the most common arch profile is still
segmental, though not necessarily semi-circular. Until the 15th century the pointed
style was common, a product of the gothic school of architecture and thought to have
originated to mimic in stone the even earlier "crucked" timber arch, whereby two
curved timbers, or crucks, are leant together. Many fine examples of gothic
medi@val architecture still exist. One of the most striking in the U. K. is York
Minster - the largest gothic building in Europe and widely considered to be one of the
master works of western architecture. As might be expected, the shape of the gothic
arch was more &sthetic than structurally efficient, with the result that many arches
collapsed on removal of the centering. Figure 1.2 compares some typical arch

profiles.

The sheer diversity of the application of the masonry arch form is remarkable, and
the plates in this chapter show some disparate examples. Aside from arched bridges
carrying vehicular and pedestrian traffic, the form has been employed in a "domestic"
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capacity — shown to sublime effect in Plate 1.4, and in contrasting rudimentary
fashion in Plate 1.5 It can even be naturally occurring, as two of the plates show.
The scale of the task in understanding its behaviour in all its forms is immense -
some of the arches illustrated could be regarded as structural types in their own
right, only coming under the same generic heading by virtue of being compression
only structures with curved thrust lines. '

A further development of the arch principle is the dome. This is effectively a three
dimensional arch, and rather than needing strong abutments to resist the horizontal
thrust, a dome requires a continuous ring beam acting in tension around its base.
- The object of the present study is, however, to consider arches in their more common

form, particularly in their application to bridges.

Figure 1.3 identifies the main structural components of an arch bridge. The
fundamental working component is the ring, barrel or vault, composed of discrete
masonry blocks called voussoirs, be they of stone or of brick, cemented together in a
curved plane. The term "voussoir” is French - many of the early arch studies were
conducted by the French and hence many of the terms are of that language. The
cement between the voussoirs is not essential for strength, but it does provide a
bedding between adjacent members to eliminate point contacts. It also provides a
degree of tensile strength, though this may not be reliable and is usually ignored.

Crucially, the arch vault or ring is a compression only structural member, and indeed
it was the advent of materials possessing tensile strength that heralded the end of the

masonry arch.

A layer of fill material is provided over the arch vault giving a level surface for the
passage of traffic. There may be, in some instances, a waterproofing membrane at
the interface between the arch and the fill. Good fill material is inert and
incompressible. In practice it is often of lesser quality. In addition to levelling up
the top of the structure, it fulfils a second but vital role in providing permanent dead

load to the arch.

To non-engineers, adding more (heavy) fill to increase the arch's strength is counter-
intuitive. Up to a point, the more self-weight an arch possesses the better, and the
more traffic it can safely carry. This is contrary to the needs of other bridge types.
It arises because increasing dead load leads to more pre-compression in the arch
vault, in much the same way as steel tendons provide pre-compression in a

prestressed or post-tensioned concrete beam, and thus the arch is better able to resist

10
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live load bending. With a prestresséd beam, however, limiting compression or
tension in the extreme fibres is quickly reached, but the massive cross sectional area

of most arches provides comparatively greater scope for pre-compression.

There is yet a third benefit in deep fill. It serves to disperse live loads applied at
deck level such that by the time they impinge upon the arch vault, they have become
distributed. All structures find point loads more onerous than distributed loads of the
same magnitude, and this is especially true of arches, the explanation again being
somewhat counter intuitive. For a simple, symmetrical beam, the critical loading
position for bending is midspan. Conversely, the critical position for arch bending is

around quarter span(12), depending upon the span to rise ratio.

In the case of an arch with deep fill, if a load is applied at one quarter point,
distribution through the fill will shed load elsewhere - itself an aid - but in fact load
may even be shed to the opposite side of the crown, where it will act as an opposing,

restoring force.

To properly fulfil its role, the fill material must be contained at the sides of the arch,
and this is the function of the spandrel walls which sit astride the edges of the arch
vault. They (debatably) also stiffen the edges of the vault, but in practice they can
tilt, slide, rotate or split from the vault under the effect of lateral forces (and in
doing so allow the fill to rut and settle), and partly as a consequence it may be unwise

to rely on any theoretical strength contribution they may provide.

The final key component on an arch bridge is the abutment. All arch vaults (even
Roman ones) gain part of their support from large horizontal reactions against the
abutments. The flatter the arch, the greater the horizontal component. ~When
constructed on ground that is less than ideal, the abutments may spread on removal
of the centering. This gives rise to theories that the natural state of a masonry arch
is in fact three pinned, this being the only way the new arch, theoretically encastre,

can accommodate the increased span between its abutments.

The basic masonry arch system described may be further complicated by a number of
additional factors. One of these is skew, which not only presents problems of setting
out for the arch builder but also of analysis. A second problematical subject area is
the behaviour of multi-ring brickwork arches(21), which raise their own questions
concerning the degree of composite action between the rings (a likely function of the
brick bonding adopted) and the practical problem of de-lamination between rings

whilst in service.
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Plate 1.6 illustrates a further type for the analyst to consider - an arch with pierced
spandrels, a rare variant. Plate 1.7 depicts the flat arch - the curvature of the main

structural member not being necessary, only that of the thrust line.

It is not the intention of this thesis to consider any of the above extensions of the

fundamental issue of right, single span, voussoir masonry vaults.

The main structural elements of a masonry arch are simple to describe. They can be
designed without calculation, constructed at worst by unskilled labour, and fashioned
from apparently unsophisticated materials. Nevertheless, the non-linear behaviour of
the resulting deceptively simple structure, and the way in which its basic components

interact, gives rise to a system that is extremely complex.

1.3 Historical Overview

1.3.1 Pre-20th century observers

In the year 1676 Hooke propounded the first theory of arch mechanics. He drew an
analogy between a flexible hanging catenary and a rigid inverted catenary. It was left
to Gregory in 1697 to develop the postulation that an arch would only be "safe" if an

inverted catenary could be included within its thickness.

La Hire (1695) was the next to address the problem. By constructing a force polygon
for the individual voussoir weights he was able to determine the thrust in an arch.
As a result of this he was better able to design adequate abutments to resist this

thrust.

Couplet's memoir of i730 stated that an arch would not collapse if the chord of half
the extrados did not cut the intrados but lay within the thickness of the arch. He
then examined the semi-circular arch subject to self-weight only and assumed that it
collapsed by breaking into four pieces. He developed a cubic equation relating the
ratio of arch depth, d, to the mean radius, r, and postulated that the minimum value
of the ratio d/r was 0.107. Unfortunately, Couplet's work was forgotten but later

much of the same ground was covered by Coulomb.

In the year 1800 Boistard tested a series of model arches featuring dry-jointed
voussoirs. One of the models tested was of the very shallow Pont de Nemours,

possessing a span to rise ratio of no less than sixteen. Boistard observed models of
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failure under various load conditions to determine minimum abutment requirements
for resisting horizontal arch thrust, and to obtain an estimate of forces applied to
centering during construction. During one of his tests on a semi-circular arch of
forty eight voussoirs he observed that it was possible to construct the arch almost up
to the quarter span points without the need for centering. This ability of semi-
circular arches to support themselves may quite possibly have been used by the

Romans and other arch builders of antiquity.

In 1826 Navier was the first to suggest that if the line of thrust lay within the middle
third of the voussoirs then none of the arch would be in tension. Following this,
Professor Moseley showed in 1835 that, if the arch was unable to resist tension, the
line of thrust must lie everywhere within the arch ring. Later, in 1846, Snell was
able to raise the question of the possibility of material failure affecting the position of
the line of thrust.

Still in 1846, Barlow(22) demonstrated, by means of an ingenious model, that Moseley
must be correct. The model employed voussoirs with curved contact faces, such that
only one contact point was possible. When loaded, the voussoirs "rolled” against
each other until equilibrium was reached whereupon the line of thrust could be
observed through the points of contact. Barlow pointed out that, provided the arch
was sufficienty deep to contain the thrust line, then many thrust lines were possible.
He also raised the important point that, because the assumptions of infinite
compressive strength and perfect joints were unrealistic, then the lines of thrust must
not be allowed to approach the edges of the arch ring. This latter observation 1s

highly pertinent to the later work of Professor Heyman and mechanism analysis.

In 1845 Villarceau presented a treatise to the Academie des Sciences, France, in which
he developed a design method which required the centre of the voussoirs to coincide
with one of the possible thrust lines for the load condition, thereby achieving a safe
design. By solving the resulting numerical equations, Villarceau produced the first
definite design tool. In recent times Professor Heyman has suggested that the work

of Villarceau is still valid and would result in an economical and safe design.

In 1879 Castigliano(23) developed the concept of structural analysis by the elastic
strain energy method and was to apply this technique to two bridges, one of them the
Rialto bridge which still crosses the Grand Canal in that city today.

With the gradual introduction of new materials such as cast and wrought iron during

the nineteenth century, however, the era of the masonry arch was drawing to a close
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and with it much of the interest in arch mechanics. Interest would eventually be
rekindled in the 20th century, but it would initially centre upon the analysis of those
old arches for modern day loads. Interest in new arch construction has only recently
emerged(24.25), and this may herald a new era for this durable form of bridge in

locations where the headroom limitations it imposes permits its use.
1.3.2 Professor Pippard and the MEXE method

In the 1930's Professor Pippard(26) conducted model experiments and analyses that
were to form the basis of arch assessment for the next sixty years. What became
known as the "MEXE" method had its origins in this work, and as it has become the
Department of Transport's recommended approach(19-20), Pippard will be considered in

some detail.

Pippard limited his attention to the case of a two-pinned arch, since, he contended,
although constructed as a doubly encastre rib, hinges may form at the abutments very
early in its life due to slight spreading under load. Furthermore, he was only to
consider arches of a parabolic profile with a quarter point rise to crown rise of 3 to
4. The load considered was a simple central point load. The topology is illustrated in
Figure 1.4. Analysis of this singly redundant system was based on strain energy,

(remembering Castigliano's "elastic” work) thus:

Let My denote the bending moment at abscissa x, then the strain energy, U, may be

given as

M, 2 ds
YA X
U =21, 72E (1.1)

where ds denotes an element of arc length of arch ring, EI refers to flexural rigidity

and H denotes the horizontal reaction.

H can be evaluated employing the principle that dU/dH = O, if H does no work, such
that

A MX dMX ds
lo "ETaH =0 (1:2)
To effect a simplification, Pippard adopted the relationship
Io ds
e (1.3)

1/
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where [ represents the second moment of area of the arch ring at x, and lo the same
at the crown (Figure 1.4); this implies that the arch ring thickness increases towards

the springings.

After manipulation, Pippard showed that the bending moment at the crown due to live

load, M, became

-7W1
M, = 7128 (1.4)

On to this must be superimposed the corresponding value arising from the dead loads
due to the arch ring and its fill. Pippard assumed that the effective width of the
bridge was 2h, suggesting a 45° live load dispersal at the crown. He furthermore
assumed that the arch ring and fill have equivalent specific weights (denoted by P),
with the fill possessing zero strength, thereby imposing a purely vertical load on the
arch ring. A second strain energy analysis provided the bending moment at the
crown, M, due to dead load thus

pl2ah
My = 168 (1.5)

Live and dead load effects were superimposed and Pippard went on to suggest two

possible limiting criteria. As W increases, either,

a) the thrust line at the crown rises and tension develops, this tension being limited

by a "middle half" rule such that

320lh( 2a2+4ad+2ld (h+d) )
Wlimiting tension — 21 ( 28a-25d ) (l ~6)

b) or it may be instead that a certain limiting value of compressive stress, f, IS

reached, whereupon

_a_ 1 h+d
256fhd 128010 {3584-27"4a !
Wlimiting compression — 25 42 2 25 42 (1.7)
Ha+d} a *d

Pippard then drew upon his experimental work to conclude that the former approach
(the "middle half") is most appropriate. Based upon this work, Pippard was later to
produce safe load tables for arches. By assuming a parabolic profile with a span to

rise ratio of four and knowing the span, the arch ring thickness and the depth of
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cover to the crown, together with values for the arch ring and fill specific weights, it
was possible to read off the maximum possible safe central point load from the
tables.

During World War I it became necessary to route heavy military traffic, such as
tanks, over public road bridges. Especially in times of emergency, a simple and quick
means of estimating arch bridge carrying capacity was required. The Military
Engineering Experimental Establishment (MEXE) consequently developed a technique
based on Pippard's work. After the war, the MEXE method, as it has come to be
known, was adopted by the Department of Transport and by this stage it had
developed into a nomogram, modified by subjective arch condition factors, to evaluate
its "mathematical” component. (It is interesting to note its basis on a two pinned,
parabolic arch with a central point load. The analysis is elastic, concerned purely with

flexure and provides a serviceability limit by applying a factor of safety to stress).

MEXE is quick and simple to apply, a desirable prerequisite considering the large
number of arch bridges needing assessment. It initially enables a "provisional axle
load" (PAL) to be calculated from data on the span and arch plus fill thickness at the
crown. This is then modified by a seies of factors that are intended to compensate
for differences between the ideal arch and the one in question. They correct for span
to rise ratios other than 4:1: for the shape of the arch; the type of arch; the type of
fill; joint condition and overall condition. The resulting "modified axle load" (MAL)
now represents a permissible axle load for a two-axled bogie. The permissible axle
load for single and tri-axles may also be derived from the MAL, with compensatory
allowances made for axle "lift off” in hump back bridge or surface irregularity
situations. It cannot deal properly with skew nor with multi-span bridges, unless the

individual spans do not interact.

The engineer will compare the MAL with the range of Construction and Use
Regulations (1968)(27) vehicle loading configurations currently permitted, plus,
possibly, some assessment of the arch's capacity to carry abnormal vehicle (HB)
loading. If found wanting, the engineer has a range of both temporary and permanent

measures to apply.

The MEXE method was issued to local authorities in various memoranda over the
years, the current version being BD 21/93(19) with its accompanying advice note, BA
16/93(20). They recommended MEXE as suitable for preliminary assessment, and if
the arch "passes”, no further consideration is necessary. However, if revealed to be

inadequate, the result must be confirmed by a more rigorous method.
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It will be noted that MEXE has a significant subjective element, although the
memoranda do give guidance (including photographs). Nevertheless, in practice
anomalous results can emerge, such as the possibility of "failed" bridges being
brought back to full a C&U rating by, as MEXE would indicate, repointing the mortar
joints or applying a further few millimetres of fill over the crown. In such

circumstances engineering judgement must be exercised.

There is debate regarding whether MEXE is conservative or unsafe. It was
traditionally regarded as over-conservative and therefore wasteful in terms of repair
costs - hence in part the Department of Transport's interest in the subject over the
last ten or more years. A relatively recent result of this debate is that if the depth of
fill at the crown is greater than the thickness of the arch vault, then the result should
again be confirmed by an alternative method, as there is the possibility that MEXE
may be unconservative. This is because the vault thickness does not itself enter
directly into the calculation, only the sum of vault thickness and cover (ie. d+h).
Consequently an extremely thin arch with a great deal of cover, and a thick arch with
little cover may be indicated as having similar strength, which is obviously

irrational.

Despite its shortcomings and recent reservations regarding its safety, it must be said
that as a rudimentary device, originating sixty years ago, MEXE has served

remarkably well.

1.4 Modern Practice

1.4.1 Professor Heyman and the mechanism method

Professor Heyman(12) observes that ’the "plastic” analysis of arches predates elastic
methods. The mechanism method is often termed "plastic", and this may seem
strange considering that the structural material, masonry, is brittle, does not develop
a yield surface and possesses little tensile strength, unlike structural steelwork in
which field the term is usually employed. Plastic methods do not provide a load path
history. Note that MEXE, with its origins in Pippard's work, is by contrast an elastic

method.

Heyman's basic premise is that the arch is doubly encastré (unlike Pippard’s two
pinned assumption) and that failure occurs upon the formation of a fourth and final

plastic hinge. This renders the arch a mechanism, allowing all four hinges to rotate to
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collapse. It is thus an ultimate limit state approach, again in contrast to MEXE which

provides a serviceability limit state.
Heyman makes the following assumptions:

1. The masonry is infinitely strong in compresssion, or the stress levels are
so low that compression failure is unlikely.

2. The masonry has no tensile strength.

3. Shear failure (the sliding of one voussoir past another) is unlikely.

4. Live loads are transmitted from deck level to extrados without

dispersal.

Of course, the first asumption is non-conservative, but more reasonable than it might
at first appear. It implies that the thrust line can approach the very edge of the
voussoirs before failure occurs. The effect will be to overestimate the ultimate

strength of the arch by an unquantified amount.

Other commentators in the field make approximations with stress blocks of various
shape and permissible stresses. Heyman himself neatly avoids the issue by requiring a
"seometrical factor of safety” (GFS) of two - in other words limiting the thrust line
to the middle half of the section. This masks the approximation and the true GFS will
be rather less than two.

A benefit of the approach is that knowledge of the material’s strength is not needed.
A drawback is that it says nothing of the load path history. Both points are in

contrast to elastic techniques.

Heyman's second assumption of zero tensile strength is also untrue, but a common
and conservative one in masonry mechanics(28:29).  Any proponent of utilising
masonry tensile strength in analysis should beware, as in-service arches may contain

imperfections which would render any tensile capacity most unreliable.

The third asssumption concerning shear failure is borne out by observation of both
model and full-scale tests. Local punching shear failure is, however, quite common,
but usually only where traffic loads bear upon a large piece of rock fill over the
crown or perhaps a public utility pipe or duct bears directly on the extrados. It is
certainly quite common for individual pieces of masonry to protrude downwards or to

fall out completely(3%).

22



To ignore load dispersal through the fill (the fourth assumption) appears sweeping.
However, the behaviour of the fill material, and its interaction with the arch ring, is a
complex area in its own right(3!) and a categorical contradiction of the assumption is
impossible given the present state of knowledge. Research to date is not especially
conclusive, and it has been suggested that the amount of dispersal changes with
increasing load(32), becoming more focused (ie. less dispersed) towards collapse.

Heyman's fourth assumption is conservative.

In the analysis proper, Heyman divides the structure into a series of vertical slices
and applies the weight of each slice to the corresponding element of arch ring below.
The live loading is applied as one or more point loads directly to the arch, and the
thrust line computed using a geometrical method. Failure of the arch is deemed to
occur when the thrust line touches the extremities (or factored extremities in the
modified method) of the arch ring in four positions. Each position is a potential

"plastic” hinge.

It is to be noted that a further, not explicitly stated, assumption is the starting
condition of a doubly encastré arch, in marked contrast to Pippard's (and therefore
MEXE's) initial two-pinned topology. What is equally noteworthy is that opinion on

the matter of the natural state of an arch is still divided today!

Figure 1.5 depicts the salient features of the system topology employed by Heyman,
and Figure 1.6 the later so-called "modified” mechanism which crudely allows for

finite compressive strength.

The GFS is an unfamiliar concept to most engineers, and is it not the same as the
usual "factor of safety”. Under limit state design, partial factors of safety are
employed but the overall factor for a structure is about two. Foundation design is a
less certain science and an overall factor of safety of about three normally applies.
Heyman's recommended nominal GFS of two would seem to imply a degree of
accuracy but in fact the live load on a typical arch with a GFS of two would need to
be approximately quadrupled (not doubled) to cause collapse. Thus the overall factor
of safety in a more common sense is about four, and this properly reflects the true

level of uncertainty.

Other authorities and individuals have developed their own mechanism-type
analyses(!3), usually computerised, and with varying details. Generally the method
gives good results under appropriate circumstances, but the variety of arch

configurations is large and the basic method can be inaccurate or even inapplicable.
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For instance, skewed structures are immediately inappropriate; deep fill or low span
to rise ratio structures may not fail as a mechanism, and arch-fill interaction, stiff

spandrel walls and lumpy fill (ie. boulders) can all lead to large inaccuracies.

Despite the shortcomings, mechanism analysis is often the best currently available but
should be seen as one tool in an incomplete kit. Three commercially available

mechanism analysis programmes are known to exist; Archie, Assarc and Arch.
1.4.2 Finite element analysis

This modern approach employs a formal non-linear structural analysis procedure
applicable throughout the loading regime. It allows for the complexities associated
with the lack of tensile strength and crack propagation. Two of the earliest finite
element programmes written were by Dr. Crisfield!4 of the Transport Research
Laboratory, and Professor Sawko and Mr. Towler(33.34) of Liverpool University and

these will be briefly described.

Crisfield’'s programme was a development of earlier work for the analysis of thin
shells. He validated the programme against a published theoretical study due to the
aforementioned Sawko and Towler. The study took the form of the application of
various alternative analytical techniques (MEXE, Pippard, Heyman and Sawko/Towler)
to a series of hypothetical arch bridges. Crisfield adds both his 10 and 20 element
model results to the others. A striking observation is the very wide scatter of
ultimate loads, ranging from 63 kN by Heyman to 119 kN by Sawko and Towler, with
Crisfield between. As the structure under study was purely theoretical, however,
little can be said of the programme's accuracy other than it gave a broadly similar

result to that of other analyses.

Crisfield also applied his programme to the full scale arch bridge test at Bridgemill,
Girvan. It gave ultimate load values ranging from 1500 to 2700 kN, against a true
figure in excess of 3100 kN. These are fair results, but the method offered no

advantage over others that are simpler to apply.

The second finite element programme, due to Sawko and Towler, was novel in so far
as it incorporated parabolic modelling for the stress strain characteristic of the arch
vault material. This non-linear relationship was becoming accepted at the time largely
due to the work of Hodgkinson and Powell who were working in the field of
brickwork. Further development of the non-linear material response forms a later

part of this thesis.
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Sawko and Towler constructed four, four metre span brick arches in the Laboratories
of Liverpool University and loaded these both to "serviceability” and to destruction.
A résumé of the results was published in the Proceedings of the 6th International
Brick Masonry Conference, Rome, 1982. The finite element programme appears to
give quite good results for the two model arches tested to collapse, giving results
within -=13% and +21% of the actual collapse values. However, the results quoted are
very wide of the mark in respect of the serviceability tests, although the nature and

criteria for these tests are not described.

A final point regarding Sawko and Towler's series of model tests is that the arch
vaults were tested in a "pure” form, uncomplicated by load dispersal through fill,
arch-fill interaction or edge stiffening effects due to spandrel walls. The results are
therefore useful in assessing software which takes no account of the latter effects and

because of this their data is used later in this thesis.

Over recent years other finite element programmes have been written, but to date
only one is commercially available, MAFEA, which has been written by British Rail
Research. This programme is non-linear with automatic mesh generation, and defects

and haunching can be modelled.

Recent non-commercially available programmes include those written by Nottingham
University. One of these is three dimensional and employs 8-noded shell elements. It
has been used, rather ironically, to provide guidance to practicing engineers on the
effects of cracking in the arch vault, thus enabling the engineer choose a more rational
condition factor for input to MEXE!

1.4.3 Thinning elastic method

Castigliano(23) derived an elastic analysis which permitted no tension in the arch vault.
A similarly based computer programme has been developed by Hughes, Bridle and
Vilnay(16) at the University of Cardiff, Wales. It utilises a strain energy elastic
analysis coupled to a no-tension model of the section. The model idealises the arch as
a curved beam, simulating the effects of arch cracking, soil pressures and geometry
changes. The programme proceeds to remove or "thin" the arch vault on successive
iterations, removing those portions in tension. The load is carried in compression by

the remaining masonry.

It claims to provide information on cracking, stresses, shear and axial forces, and

deflections at design or ultimate load.
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In 1989 the TRL awarded a contract to Cardiff to develop an assessment tool.
Uniquely, the product which emerged (called CTAP, and is commercially available)
uses a mechanism analysis to quickly determine the critical loading configuration
which is then analysed by the above elastic procedure to give the detailed assessment

data.
1.4.4 Computerised Pippard/MEXE method

Chapter four of BA16/93(20) describes a computerised version of the Pippard/MEXE
method which is said to offer greater flexibility than does MEXE with respect to
geometrical, material and loading parameters. It goes on to recommend that it is used

as an additional tool following a MEXE analysis, especially in marginal cases.
1.4.5 Fuller's construction

A venerable technique still of value is Fuller's(33.36) construction, a graphical method
for calculating the line of thrust in an arch. It is easy to use and is claimed to give an
insight into arch behaviour, being of especial use in the assessment of hump-backed
bridges. The fact that such a technique is still in use is testimony to the state of the

art.

1.5 Summary

Stone imposes severe limitations on the distance it can span as a beam. Perhaps by
observing nature (Plates 1.8, 1.9), this was overcome in antiquity with the
development of the arch. Ancient examples of the utilisation of the arch principle

abound in diverse applications (Plates 1.10, 1.11).

The principal application with which this thesis is concerned is the masonry arch
bridge. This was uniquely and universally employed until the last century, and only in
the early part of the present century was it eventually replaced. Despite being a long
obsolete form, its great durability has ensured that today it is still the most numerous

type of public road bridge in the United Kingdom.

Over the years traffic loads have increased enormously both in magnitude and
frequency. The current maximum vehicle weight permitted in the United Kingdom
under the Construction and Use Regulations(27) is 38 tonnes. This will be increased to

40 tonnes before the end of the century, and 55 tonne vehicles are already permitted
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PLATE 1.8

Naturally occurring masonry arch

PLATE 1.9

"Naturally” occurring masonry arch
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in The Netherlands, underlining the probable future course of events. In order to
ensure continuing public safety, the existing stock of these old bridges must be

structurally assessed for these new loads.

The current first choice assessment tool, MEXE, dates from before the second world
war. It was developed for military use but appears in modified civil form in BD21/93
and BA16/93. It is an elastic method based on a two pinned parabolic arch with a
central point load and yields a serviceability limit state permissible axle load, based

upon a limiting stress. It is inapplicable if:

a) The depth of fill at the crown is more than the vault thickness at the
crown (in which case it may be unconservative).

b) The arch is distorted.

¢) The arch is multi span - unless the piers are sufficiently stocky to enable
each span to act independently, though no advice is given on what
constitutes a sufficiently stocky pier.

d) The arch is appreciably skewed.

e) The span is more than 18 metres.

Current Department of Transport policy, laid down in the above documents, is that if
the application of MEXE provides adequate arch capacity (a "pass”), then the result is
to be accepted. If MEXE suggests insufficient capacity, then the result must be

confirmed by a more rigorous method.

Clearly it is undesirable from a bridge owner's point of view to have to rely upon a
technique that may be either unsafe or uneconomically conservative (or in fact
inapplicable by one or more of the above criteria), and this is the impetus behind the
current research in many quarters to derive a more rational and precise alternative

assessment method.

All the present alternative methods possess both merits and drawbacks, and none is
acceptable in all circumstances. The elastic methods require knowledge of material
properties which are difficult to obtain, and particularly with stone arches these may
vary considerably within a given structure. Elastic methods can, however provide a
load path history and allow for abutment movement. Set against this, they can be
capable of "proving" that an arch fails under temperature loading alone, which we
know to be false. Furthermore, the TRL full scale tests have revealed that masonry
arches do not always behave elastically under load, and certainly not linearly.

Computer programmes in this category are relatively demanding of the hardware.
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The so called plastic methods tell us nothing of behaviour before failure and need an
allowance for the interaction between the arch and the fill if they are to give
reasonable results for deep arches. The contribution of the fill should not be
underestimated - the TRL reports(37) that the response of one bridge was found to
change by a factor of two between warm and freezing temperatures, the freezing of
the water in the fill adding substantially to its strength. Furthermore, not all arches
fail as a four hinge mechanism and a variety of failure modes have been observed in
tests. Mechanism computer programmes are, however, simple and quick to use and

are undemanding of the hardware.

It is true to say that the ideal alternative to MEXE has not yet been found. The aim
of this research programme is to study just one of the contenders - the four hinge
arch vault mechanism and specifically the mechanics of masonry hinges, both

analytically and experimentally.

The theoretrical work is supported by a variety of model, full scale and computer
vision information technology studies, the latter being an innovative technique offering

insights into arch behaviour.

It is hoped that a novel and useful contribution can be made in the broad and complex
masonry arch mechanics debate. The ultimate aim of this and related studies in the
field is to expand the knowledge database to a point where a rational, scientific

alternative to current arch bridge assessment techniques may be developed.
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CHAPTER TWO

The Constitutive Properties

of Masonry

2.1 Synopsis

Masonry materials have traditionally been regarded as either having linear stress-
strain characteristics(28.29) or alternatively (and non-conservatively) infinite stiffness
and compressive strength, the latter having become especially associated with the

work of Professor Heyman(10.11.12),

Relatively recent research(3®) has, however, provided ample evidence that masonry
exhibits softening under increasing stress and a second order parabolic expression has

gained acceptance by providing a basic modelling of this property.

In this chapter a new, unified masonry constitutive theory is put forward which
supersedes all previous models and enables the accurate modelling of any load-

deflection characteristic.

The new expression can model the range of characteristics from infinite stiffness and
compressive strength, through second order parabolic to a linear response, including
an infinite variety between, simply by varying one parameter. The analyst is thereby
able to dispense with the earlier non-conservative or inaccurate assumptions and
indeed to tailor an individual mathematical model to the particular masonry material

under consideration.
The theoretical studies are supported by two series of laboratory tests; ten ultimate

load compression tests on full calcium silicate bricks to BS 187:1978 and ten load-

deflection tests on cores obtained from calcium silicate bricks.
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2.2 Full Brick Compression Tests

The purpose of this initial test series was to explore the suitability, and to gain
experience of, a material for use in later practical and theoretical vault studies. In
particular, a medium with predictable and repeatable physical properties was required,

and hence a class 4 calcium silicate (sand lime) brick to B.S. 187:1978 was chosen.

The merits of this brick type included a reported uniformity both in terms of
dimensions (since it is a cast brick) and also, being synthetic, its composition and

engineering properties.

The actual bricks used were solid commons, without a frog, of nominal size
215x102.5x65 mm. Class 4 bricks (there are seven classes in all) are required to have
a mean compressive strength of not less than 27.5 N/mm? from a sample of ten
bricks, and a predicted lower limit of not less than 21.5 N/mm?2, the predicted lower

limit being defined as the mean strength less the standard deviation.

The standard compressive strength test employed(3%) (the "Flower Test") consists of
taking ten bricks and immersing them in water at 20+5° for 18+2 hours prior to
testing. The bricks are then sandwiched between 4mm plywood sub platens and
loaded at a rate of 36 N/mm? per minute for the first half of the expected load, then
at 18 N/mm?2 per minute for the remainder. The area of loading is taken to be 22000
mm? (ie. ~ 215x102.5mm) and the strength is reported to the nearest 0.1 N/mm?2.

The mean stress at failure is reported, as is the standard deviation on peak stress

which is calculated as

[Xi-Xmean]?

Il M3
[

n-1 (2.1)

and the coefficient of variation, defined as standard deviation/meanx100%, is also

computed.

The results of the ten test series carried out thus in Sheffield Hallam University's
Structures Laboratory, using a standard concrete cube crushing machine, are shown

in Table 2.1 overleaf.
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Sample Peak Load Peak Stress
Number (kN) (N/mm?2)
1 625 28.4

2 615 27.9

3 622 28.2

4 606 27.5

5 617 28.0

6 575 26.1

7 616 27.9

8 606 27.5

9 613 27.8

10 613 27.8

Table 2.1 Full brick load test results

The mean stress at failure was computed to be 27.7 N/mm?; the standard deviation on

peak stress was 0.632 N/mm?2 and the coefficient of variation +2.280%.

This basic series of tests revealed that the bricks exceeded the requirements of the
British Standard and possessed a very low standard deviation, confirming the

suitability of this medium to the further testing and theoretical studies envisaged.

2.3 Brick Core, Stroke-controlled Compression Tests

The object of this series of tests was to obtain a set of masonry load-deflection
curves to assist in the development of a theoretical study of the constitutive

properties of masonry.

The cores, cut from whole bricks, were of 50 mm diameter and 125 mm long giving
the desired aspect ratio*0) of 2.5:1. Coring the bricks proved to be difficult and
resulted in samples that were less than perfect cylinders. The consequences of these
imperfections may well manifest themselves in the slightly greater standard deviation
for the core test series than for the brick test series, albeit in the same material. The
loading was applied in a stiff, servo-controlled testing machine*!) at a rate of
0.0023mm/second.
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A core was loaded by mounting its uncapped base directly on the lower machine
platen, with its top separated from the upper platen by a sandwich of (from top to
bottom) greaseproof paper, plastic padding (an epoxy-type resin), and a sub-platen.
Displacement was measured by a transducer reading from the underside of the top
sub-platen and was plotted automatically against load on an X-Y flat-bed plotter.

Plate 2.1(a) depicts a typical core before loading under this regime; Plate 2.1(b) shows
the same core after failure and Plate 2.1(c) illustrates a typical failure mode (of
another sample) in greater detail.

Capping the core ends, for example with sulphur, was considered but rejected as
earlier experience with sandstone cores(39) had produced an undesirable reverse curve
near the load-deflection plot origin as the caps bedded in. Whilst correction for the
reverse curve by projecting a line back to give an effective origin is reasonable for a
linear plot, it was not considered acceptable for the non-linear plot expected here.

The earlier work with sandstone cores, incidentally, had demonstrated that sandstone

possesses a non-linear stress-strain relationship(39).

The response of each of the ten cores tested was essentially similar and the load-
deflection trace was, as expected, distinctly non-linear from the outset. Figure 2.1
reproduces a typical example of the raw X-Y output. Peak load is just under 70 kN
at a corresponding displacement of about 0.5mm. A small degree of bedding-in is
evident at the origin, as revealed by the slight reverse curve, but it is considered to
be trivial. It was taken out by projecting a short straight line back to the abscissa
and shifting the origin to that point.

An immediate impression was that the curve shape might obey some parabolic power
law to at least maximum load. The great difference in relative stiffness between the
massive stroke-controlled testing machine and the small masonry sample has enabled a
smooth falling branch to be easily traced to a deflection of 1.5 mm and beyond. In
practice the falling branch could be followed as far as desired, and so the tests were
terminated by manual intervention. The smoothness of the rising curve is continued
beyond peak load and down the falling branch for some distance before it is disrupted
by macro cracking in the sample. The possibility of fitting a mathematical model to
the curve to well beyond peak load, ie. to the breakup point, is therefore credible.

The detailed results of the ten core tests are summarised in Table 2.2.
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(a)

Typical core
sample prior to

loading

(b)

Same core

after failure

Typical core sample showing failure mode

in greater detail

PLATE 2.1

Brick core tests
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80 kN— EEE

Deflection (mm)

Load (kN) 1.0 mm

Raw X-Y plotter trace for a brick core sample

Errata: Axes labels require transposition. “
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Sample Peak Load Peak Stress | Peak Strain
Number (kN) (N/mm2)

1 60.00 34.63 0.00480
2 68.80 35.04 0.00406
3 69.40 35.34 0.00408
4 67.60 34.43 0.00400
5 72.27 36.81 0.00344
6 69.69 35.49 0.00412
i 70.41 35.86 0.00400
8 69.28 35.28 0.00404
9 69.28 35.28 0.00344
10 70.40 35.85 0.00396

Table 2.2 Core load test results

The mean peak stress was 35.4 N/mm? (based on the nominal diameter of 50 mm) and

the corresponding mean strain was 0.003994.

For comparison with the earlier whole brick load tests, the standard deviation on

stress was computed at 0.675 N/mm?2, with a coefficient of variation of £1.907%.

A primary purpose of the core load tests was to study the shape of the curve and so
the ten load-deflection curves were non-dimensionalised. At the same time as the
plots were being manually digitised, scaled and replotted in a non-dimensional form,
the minor bedding-in reverse curves were eliminated as previously described. By way
of example, four of the non-dimensionalised curves thus produced are shown in

Figure 2.2, corresponding to samples 4 to 7.

The final task in this practical exercise was to superimpose all the non-dimensional
curves to give the result depicted in Figure 2.3.  Superposition allows direct
comparison of the individual shapes, their scatter and ultimately some engineering
judgement as to a "mean" curve shape for this material. In fact, the curves exhibit a
very similar profile up to failure, with an increasingly widespread scatter beyond.
Reference to this work and the "mean" shape of this load-deflection locus will be made
in the ensuing which deals with the theoretical aspects of masonry constitutive
properties. Further reference will be made in Chapter Three when calcium silicate
bricks are used again in model masonry hinge experiments in validation of further

theoretical studies concerning moment-thrust interaction and the limit state.
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FIGURE 2.2
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FIGURE 2.3

Strain

Stress

Superimposed non-dimensionalised load-deflection plots for

brick cores (with k=3 transparent overlay - see later text)
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2.4 A Theoretical Non-linear Constitutive Model

The initial parabolic non-linear load-deflection expression of recent times takes the

form

2
oOm = ei - (88 ) (2.2)

where 0, and €,, denote the peak stress and corresponding strain, respectively. It is
to be noted that tensile strength is considered to be negligible. Figure 2.4a) shows
the form of this expression, and it has been reported(42.43) that the profile fits well
experimentally with four brick types. However, a novel, alternative and more

sophisticated modelling equation is now introduced(*4):

Oom = kzl [léren - (esm) ] (2.3)
The significance of the introduction of the novel curve shape constant 'k’ is that by
varying its value, a family of curves may be produced to mimic load-deflection
curves, ranging from a 'Heyman' material (k=0) which possesses infinite compressive
strength and stiffness, through to a linear response material with k=« (whilst noting
the singularity at k=1, ie. 0<k<1; l<kse). It will be later shown that k' is in fact a

parameter related to stiffness.

It is apparent that the generally accepted equation 2.2 is in fact a special case of the

above new equation with k=2.

Typical 'real' masonry materials possess values of k in the range 2 to about 12(44). It
is a simple matter to produce a set of k curves on transparencies and to overlay each
in turn upon real masonry stress-strain plots to determine an appropriate k value for

that material. Figure 2.4b) depicts such a set of k curves in the range O to 12, plus

m.

The significance of the new masonry modelling equation is this. Formerly, either a
non-conservative infinite stiffness, infinite compressive strength model, or a linear
model, had been employed. Latterly, a second order parabolic equation has also
become accepted. All of these approaches possess drawbacks and none are able to
represent the full range of masonry material load-deflection responses encountered In

practice.
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FIGURE 2.4
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The new equation can practically 'mimic' all the above approximations, and any
response between, by manipulating one parameter. For real masonry materials, the

range is k>1 and finite.

Referring back to the 'mean' shape of the load-deflection characteristic for calcium
silicate bricks suggested by Figure 2.3, it will be seen that overlaying a k=3 locus
provides a very acceptable fit. Thus it is suggested that substitution of k=3 in
equation 2.3 provides a mathematical expression for modelling this material's response
more accurately than has hitherto been possible. The value of this form of modelling
will become apparent in the next chapter when the concept will be developed further
to derive moment-thrust data, together with limit state characteristics, for masonry
materials possessing any practical load-deflection response. This work will then bear

directly on the study of masonry vault mechanism hinges.

Figure 2.5 illustrates a complete stress-strain locus for a damaged voussoir taken
from Rivelin Mill bridge, Sheffield. The test was undertaken, as before, in a modern,
stiff, servohydraulic testing machine. As with the earlier curves obtained from
calcium silicate bricks, this plot for a sandstone voussoir is non-linear throughout and

exhibits a definitive falling branch and, importantly, is indistinguishable from

o 1 ke € \K
s =17 |l - (&) ] (ean. 2.3) with k=7, 0,,=33 N/mm? and €,,=0.00378
m m

m

Experimentally, fracture does not occur until €=Y€_, while €=A€_ relates to the
maximum strain occurring at the static limit state, termed the hinge limit coefficient;
this latter parameter is of significance and is discussed in the following. In Figure
2.5, Y=1.47 and A=1.16.

Recalling the calcium silicate brick core tests affords interpretations of v and A as
shown in Figure 2.6. As indicated, nine of the ten constitutive loci are
indistinguishable from equation 2.3 with k=3 for €/€ <A (A>1). It is considered that
Figure 2.6 provides excellent data characteristics for €/€_<A=1.227 with experimental
fracture not being completed prior to Y=2.5. Further experimental masonry
constitutive data are available elsewhere(33:46)  relating, for example, to brick pier
testing, and are illustrated in Figure 2.7. A key observation in this instance is that,
practically, for one locus material breakup occurred before the hinge limit coefficient

was reached, ie. T<A.

Finally, Figure 2.8 summarises the key constitutive factors entailed.

43



FIGURE 2.5
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FIGURE 2.6
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Interpretation of brick pier constitutive loci
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FIGURE 2.8
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2.5 Conclusions

The universality of non-linear stress-strain laws for all masonry materials is
considered probable; viz the well known shape of the curve for concrete, the parabolic
shape for sandstone39) and the similar result for calcium silicate brick from the
laboratory tests reported here are all strong evidence in addition to a large volume of
material by others(37.38.42,45),

As a response, a novel equation capable of modelling the stress-strain law for all such

material characteristics has been presented.
The previous simplistic approaches of assuming infinite compressive strength and the
use of either an unrepresentative linear, or second order parabolic stress-strain

relationship have been rendered unnecessary by these studies.

The ability to determine /imit state characteristics using the above approach will be

explored in the next chapter.
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CHAPTER THREE
The Brittle Hinge

3.1 Synopsis

The non-linear constitutive studies of Chapter Two are developed further(#4) and
equations employing the novel 'k’ modelling are derived for a rectangular masonry
section under combined bending and thrust. Numerical solution routines are
developed to solve these expressions and the results are discussed.  Graphical
interpretation of the equations provides two axial thrust-bending moment limit state
interaction diagrams, one for the ultimate limit state and the other for a crack-

prevention serviceability limit state.

The work is extended to consider static limit state properties for a masonry vault and
further novel equations are synthesized which also require recourse to numerical
techniques for their solution. The overall findings support the development of a
masonry arch bridge mechanism model based on proposed, novel finite 'k’ hinge

formulations.

Key inferences are drawn from the interaction diagrams, particularly with respect to
the superiority of the 'k' modelling over traditional methods and the hypothesis that
masonry hinges must be located at the edge of the derived ultimate limit state
envelope. The negation of the traditional middle third rule for crack prevention, and
the development of a 'middle half rule' for bending capacity maximisation, are both

postulated by these non-linear methods.

Model hinge experimentation is undertaken in the laboratory to test the theoretical
studies, and it is considered that overall experimental consistency and good
experimental correlation with the theoretical studies is obtained. Qualitative
conclusions are also drawn from the laboratory tests enabling speculation in the wider

context of masonry arch bridge analysis.
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3.2 Moment and Thrust

3.2.1 The effect of 'k' modelling on moment and thrust

With reference to Figures 3.1a) and 3.1b), for either condition axial thrust P is given
by

d/2
P=7{ " obdy (3.1)
-d/2

where d denotes the section's depth and b its width, and bending moment M is given
by

d/2

M= obydy (3.2)
-d/2
) o 1 ke € \k '
Recalling 5~ = 11 [8 - (Em)] from equation (2.3) and that for plane
m m
sections
€ = ky+kyy (3.3)

it can be shown that

£ = 5 ) + j/d*(al—ez) (3.4)

for the uncracked condition and

€ €,y
€= + 3 (3.5)
for the cracked condition.
Substitution of these expressions, respectively, into equation 2.3 yields,

Om k 81+82 v _1__ 81+82
0= k- ( em[( 2 ) + d (81—82)]~[8m(( 2 )

k
+%—( 81‘82))] ) (3.6)

for the uncracked section and
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FIGURE 3.1
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K€ 1 € 1
o- 13 (71 - (50 [z+a7]) (3.7)
for the cracked section.

After extensive further manipulation

0,,bd? [k( £,-€,) (g & l+e)kel)

M = (k-1)e, 12 - 2(k+#1)e K1 (€,-8;)
( 81k+2_82k+2)
* e L (kel) (k+2) (81—82)2] (3
and
o,,bd k(€,+€,) (K 1-g k1)
P="Tk-1e, [ 2 * T (g-8,) emk-l(k+1)] (3.9)
for the uncracked condition, and,
O bd Kk p
Sty Le(Ga-2a° )(s ) - e (¢-Tee) )] (3.10)
and
0 bd €
7SNk
- [ ( - k+1)\ ) ] (3.11)

for the cracked condition.

Equations 3.8 and 3.9, and 3.10 and 3.11, are key paired relationships. They may be
’ employed to solve any rectangular masonry section under combined bending moment

and thrust.

By varying the parameter 'k', such solutions may be obtained for the practical range
of masonry materials (k>1 and finite), together with a theoretical linear (k=)
response, and a 'Heyman'1?) infinitely strong, infinitely stiff (k=0) theoretical

response.

Furthermore, these solutions give access to limit state moment-thrust interaction

behaviour, again for the full range of 'k', and hence masonry, types.
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3.2.2 Solution of the bending moment and thrust equations

For specified parameters P and M, equations 3.8 to 3.11 must be solved
simultaneously to provide a solution for €, and €, in the case of an uncracked

section, and for €, and d" in the case of a cracked section.

In both cases further manipulation affords a polynomial of degree four in €.
Solution for €, then readily results in the evaluation of €, or d' by back

substitution.

Standard polynomial solution routines were considered for this purpose - for example
those attributable to Bairstow and Newton Raphson - but instead it was decided to
purpose-write software. This brought benefits by helping to develop a feel for the
problem, and it also gave a better understanding of data trends through the use of
graphical output. In addition, non-linear expressions can be sensitive and this was a

further reason for the development of dedicated software.

A pair of software routines was thus developed, one each for the uncracked and
cracked section cases, written in BASIC language and packaged together under the
title PSTRESS1. Appendix 'A' provides a full programme listing. These half interval
search routines output simple graphical representations to the computer monitor
enabling all roots to be seen, considered and evaluated if required. After evaluating
the appropriate root, the routine goes on to plot the stress and strain distributions
for the section in question. The process is properly illustrated by reference to an

example.
3.2.3 Computer programme PSTRESS1

Consider the example of a typical masonry section 0.3 m deep (unit, or one metre,
width assumed) possessing a peak failure stress (0,,) of 16 N/mm? at a corresponding
strain (€.,) of 0.0024. A stroke-controlled load test of a sample has shown the load-
deflection response to be non-linear, and overlaying a set of 'k' curve tranparencies

has revealed that k=2 is most appropriate modelling for this material.

Imagine the section is subjected to an axially applied compressive load of, say, 1200

kN acting in conjunction with a bending moment of 110 kNm.

Figure 3.2 depicts PSTRESS1's uncracked section analysis graphical output for this

example. Clearly there is more than one root, as might be expected, but the leftmost
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FIGURE 3.2
AYIAL FORCE = 1288888 NEWTONS, MOMENT = 118888 HEWTON METRES
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PSTRESS1 graphical output for the example in the text (uncracked section).

The two polynomial roots are indicated: the root on the right is 'correct’.

Please note: excessive decimal detail employed to show mathematical rigour only.
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is trivial in that €, is massively positive, and €, is negative. Considering the
rightmost root, then, it is apparent that whilst both €, and €, have credible absolute
values, €, is slightly negative. This indicates that the section is in fact cracked and

so PSTRESS! automatically proceeds to its cracked section analysis.

Figure 3.3 is similar to before but is the result of the cracked section analysis. Once
more the left root provides a trivial solution (€,=0), but the right root finally affords

the required answer:

£,=0.00133
d " (uncracked section depth) = 0.165 m.

PSTRESS1 completes its run by plotting the resulting stress and strain distributions
across the masonry section and these are shown in Figure 3.4. One will observe the
curved boundary to the stress plot - a direct consequence of the non-linear, k=2

constitutive property.

It is interesting to note that the section is cracked through 45% of its depth and yet is
well below failure in bending. Maintaining the axial thrust constant but increasing the
bending moment eventually produces a bending "failure” at 131.5 kNm for this
particular example. Failure is deemed to occur when no viable polynomial solutions
remain, and in practical terms this means that increasing the externally-applied
moment beyond that point will result in the masonry being unable to internally
generate an equal and opposite reaction. In other words, a limit state has been

reached.

Figure 3.5a) depicts the polynomial just beyond failure (ie. no viable solutions are
depicted), and Figure 3.5b) the stress and strain plots at the limit state condition
shov&;ing cracking extending through almost two thirds of the section. A point of
interest is the separation of maximum effects - the peak stress occurs within the

section whereas the peak strain is at the extreme fibre.

Crucially, since increasing the applied bending moment beyond the limit state
condition (131.5 kNm in this example) would be unopposed by an internal reaction,
the masonry section would rotate uncontrollably It is therefore concluded that the

limit state condition now reached represents a masonry hinge. This interpretation will

be developed in the ensuing.
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FIGURE 3.3
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PSTRESS1 graphical output for the example in the text (cracked section).
The two polynomial roots are again indicated; the root on the right is 'correct’.
(note that the search routine graphical display is inaccurate;

the root has in fact been properly located numerically)
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FIGURE 3.4
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| Crack depth = 8.13442
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Computer programme PSTRESS1 graphical output for the example

in the text showing stress and strain plots across the section.
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FIGURE 3.5a)
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PSTRESS1 graphical output for the example in the text showing

a cracked section analysis post failure (ie. no viable roots exist).

FIGURE 3.5b) P

15.086477 H/sq,mm 8.88298

Crack depth = 8.19693 n

PSTRESS1 graphical output for the example in the text showing

stress and strain plots across the section at the ultimate limit state.
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As would be expected from a fourth order polynomial, there may be up to four roots
but under most circumstances only one of these provides a physically sensible result.
It is interesting to note, however, that close to failure one of the other three roots
may briefly provide an alternative credible answer. This second solution is based
upon different stress and strain blocks and a different crack depth. This implies that,
near failure, the section can theoretically mobilise two alternative internal force
regimes to balance the external one. It is a matter of engineering judgement to assess
these two states; the effect is due to the falling branch providing two strain states for

any given stress level for stresses 'above’ 0" (see Figure 2.8).

3.3 Static Limit State Considerations

3.3.1 The static limit state

Static limit states are determined by obtaining the maximum bending moment that the
section can withstand at any given value of axial compression. The numerical
maximisation procedure, in practice performed by computer, is depicted in Figure
3.6.

An essential outcome is that static limit states occur for €;= A€, and €;=A€,~(A-
1)e, for the cracked and uncracked configurations, respectively, with A>1 being a
constant for any specified k. Given that 0<€,<g€_, and AE <€,_=<E, then the

cracked/uncracked interface will occur when d '=d as €,=0 at €,=A€,.

In other words, for 0<k=<w (k#1), static limit states for the cracked configuration

coincide with the maximum compressive strain obeying

€, = AE, (3.12)
whilst for the uncracked configuration they coincide with

gy = AE;~(A-1)E, (3.13)

with the previously noted hinge limit coefficient, A, a constant for any specified 'k'.
Equations 3.12 and 3.13 represent simulated algebraic expressions deduced from a
considerable numerical database in 'k'. Typical values for 'k’ and A are given in Table
3.1 which follows.

59



FIGURE 3.6

Specify kand ¥

|

Increment P/Ps from zero to acquire d’'/d = f (€i)
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Material Specimen/Data Source k A Y
Calcium Silicate Brick 3 1.227 >2.5
Rivelin Mill Bridge Sandstone(39) 7 1.16 1.23
Hodgkinson & Davies(46) 12 1.139 1.039
Sawko & Towler(33) 2 1.25 1.34

Table 3.1 Limit state parameters
YNote: Y<A

Static limit state values for structural masonry are therefore available from the key
equations 3.8 to 3.11 subject to the conditions given above with, in normalised

terms,

P M
n:.pS andm:M

S

€=AE, E=AE, (3.14)

(where Pg is the squash load and M, is the maximum bending moment available from
the section, equal to P,d/4 - see note (ii) below regarding the middle half rule) for the

cracked configuration 0O<n<n;, as 0=d ' =d and

P M
n:p5 andm:M

S

€,=AE, ~(A-1)E, £,=Ae_-(A-1)g, (3.15)

for the uncracked configuration n;<n<1, as O=d€_ <€ .

3.3.2 A static limit state interaction diagram: cracked masonry sections

Equations 3.14 and 3.15 are represented most conveniently by means of a static limit
state axial thrust/bending moment interaction diagram, and the result is depicted in
Figure 3.7. This illustrates the static limit state interaction loci for k=2,3,7 and 12
with the k=2 locus representing the most enveloping or most resistant case

concerned.
Safe combinations of axial compression and bending moment (sagging, 0<e=<d/2) lie

between the respective 'k’ locus and the abscissa. For hogging moments, -d/2<e=<0,

the interaction loci adopt a mirror image about the abscissa.
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FIGURE 3.7
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Key features to note are:

1) That the sectional resistance is enhanced as the constant 'k' decreases for
k>1.
i) That all loci maxima lie on the middle half rule - this can be demonstrated

numerically by employing PSTRESS1 with typical output given in Table

532

ii1) That all 'real' material loci are inferior to a 'Heyman' idealised material locus

(k=0), and thus a 'Heyman' material is non-conservative.

iv) That any point on a 'k' locus is taken to represent a masonry hinge for that

material.

It should also be observed that since A>1 in all cases, (as shown in Table 3.1) the

falling branch of the load-deflection curve is as a direct consequence crucial to limit

state definition.

By way of an example, consider the following. Let k=2 and n,m=0.464. The effective

depth d" is 0.638d, and not zero as would be the case for an idealised Heyman

material. Remembering that the maximum stress may not occur at the extreme fibre,

then in this example, which corresponds with the middle half rule (see Table 3.2

below), maximum stress occurs at y=0.372d+#d/2#d/4.

Middle half rule Cracked/uncracked

k moment maxima interface state
co-ordinates co-ordinates
(n,m) (n,m)
0.464, 0.464 0.729, 0.312
0.456, 0.456 0.689, 0.336

7 0.436, 0.436 0.618, 0.360

12 0.422, 0.422 0.586, 0.359

127 0.408, 0.408 0.552, 0.358

Table 3.2 Key limit state interaction loci data

YNote: Y-restricted values for Y<A as Table 3.1

The foregoing presumes material integrity is available for strains up to at least A€,

ie. A€, must not exceed fracture strain.

The procedure in Figure 3.1 checks for

this. Being a physical parameter, Y varies independently of 'k' so that masonry

materials sharing a common 'k' value may readily possess individual values of fracture
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strain Y€,,. The k=12 example in Table 3.1 involves the corresponding mathematical
parameter A=1.13, in excess of the physical parameter Y=1.03 for the particular
material under consideration. In such cases, the theoretical static limit state as set
out above is unachievable, and the maximisation procedure must be modified - data
runs show this is achieved simply by replacing A with Y to force a lower practical
hinge coefficient limit, this effectively results in a more restricted or less competent

moment-thrust envelope.

To illustrate the point, two k=12 loci are shown in Figure 3.7; one corresponding to
cases where A=1.13<Y, the other to the particular case where practical fracture

restrictions apply to the static limit state with yY=1.03=<Y.
3.3.3 A static limit state interaction diagram: uncracked masonry sections

The traditional model for prevention of cracking (a defensible serviceability criterion),
based upon a linear stress-strain law, is the middle third rule. This states that while
ever the line of thrust remains within the middle third, or kern, of the section, then
cracking will not occur. An alternative formulation is however obtainable based upon
the more probable non-linear stress-strain law appropriate to most if not all masonry

materials.

Static limit state values in prevention of cracking are available from the key equations

3.10 and 3.11 by substitution of d =d and normalising as previously,

P M
n=Tp and my. = M

. O=n,.=n;

d’=d d’=d (3.16)

a non-linear formulation is available which defines the onset of cracking. Figure 3.8

once more represents the result in n, m space.

It will be noted that Figure 3.8, again depicting k=2,3,7 and 12 loci, is similar to
Figure 3.7 but the areas between the locus and the abscissa in this case denote safe
axial thrust-bending moment pairs without cracking the section. The loci themselves,
therefore, represent the onset of cracking and each is consequently analogous to the
middle third rule for its respective material. It is a key finding that, for any masonry
material possessing a non-linear stress-strain characteristic, the traditional middle
third rule strictly does not apply(*3), and furthermore is non-conservative in respect

of prevention of cracking.
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Figure 3.8 also depicts the middle third rule itself, which, as would be expected,
corresponds precisely with the k=« locus since this represents a linear stress-strain

characteristic which is the basis for the middle third rule itself.

The divergence between the middle third rule and the "real” material 'k' loci can be
seen to become progressively more significant at higher values of 'n'.  The
consequence of this is that the degree of non-conservatism of the middle third rule

becomes progressively greater at increasing strains.

At high values of 'n', dependence upon the middle third rule would result in

premature cracking for a "real” material possessing a non-linear stress-strain law.

In circumstances where a no-tension serviceability criteria is appropriate (questionable

in the case of masonry vaults) the usefulness of the figure should be noted.

Finally, it must be said that the loci corresponding to equation 3.16 theoretically
continue beyond the interface states shown in Figure 3.8. Each locus decays rapidly
'below’ the respective uncracked static limit state locus, with each terminating at an
unshown intersection (eg. 0.75, 0.25 for k=2) with a corresponding kinematic physical
breakdown limit state locus. This latter locus can be derived for any O<k<e, O=n=1,
from the key equations given previously with, typically, A replaced by Y in equations
3.14 and 3.15.

These kinematic physical breakdown loci typified by the k=12 (practical) locus in
Figure 3.7 lie wholly within their static equivalents' envelopes and represent the states
to which the static limit states degenerate as collapse, preceded by local crushing,

finally occurs.

Computer programme PSTRESS1 may be used to derive stress and strain distributions
for various points of interest on an interaction diagram, for example those depicted in
Figures 3.7 and 3.8. Such exemplification serves to cross check between the two
procedures and hence assists in verifying both, but is also helpful in the visualisation

of the physical phenomena involved.
Figures 3.9 and 3.10 reproduce the two aforementioned interaction diagrams but this

time with typical PSTRESS1-produced stress and strain plots (for k=2)

superimposed.
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FIGURE 3.9
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Static limit state interaction diagram with PSTRESS1-produced

stress and strain distributions superimposed (k=2).
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FIGURE 3.10
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3.4 Experimental Masonry Hinge Models

The purpose of this work is to test the foregoing limit state studies in a context of
some relevance to masonry arch vaults. It was therefore decided to attempt to model
masonry hinges of the kind that might occur in an arch bridge four hinge mechanism
failure. The calcium silicate bricks, for which a good deal of background data had
already been gathered, were clearly ideal in both providing a known material and in a
format that could be found in in-service brick barrelled arch bridges. Dry-jointing of

the bricks was chosen to avoid composite material complications.
3.4.1 The testing regime

The loading was applied using the same in-house stroke-controlled rig as before. The
object was to achieve a rotational failure in an eccentrically loaded pair of class 4
calcium silicate bricks, the pair being sandwiched between a further pair of bricks to
minimise end effects. The arrangement was mounted in the testing machine between a
pinned ram at the top and a pin joint at the bottom. The end conditions may not have
been truly symmetrical since a preponderance for lower brick fractures was observed.

Figure 3.11 depicts the arrangement.

Rotation was measured by two pairs of transducers reading from aluminium plates
mounted on and projecting laterally from the brick pair under test. The angle of
rotation for each brick was computed from the transducer pair displacement difference
over the known gauge length. Plate 3.1 shows the transducer set-up from the side of

the rig. Load data was taken directly from the loading machine.

It is generally accepted that stresses are low in traditional masonry structures and
thus it was conjectured that hinges in masonry vaults were most likely to exist in the
low 'n' region of n, m space (this is demonstrated in Chapter Five). Thus it was
decided to bracket this range and to divide the hinge tests into three series of five,
each at a different loading eccentricity, corresponding to three fairly low values of n.
The values chosen were n=0.1, n=0.2 and n=0.3. The notation used was Na/b,
denoting test number 'b' at n=0."a". The necessary offsets for the central brick pair
were calculated and specified as 'e', as shown in Figure 3.11. All brick interfaces
were rubbed together before mounting in the rig and the loading topology was then

carefully set up.
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FIGURE 3.11
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PLATE 3.1

Detail of arrangement for model hinge rotation measurement
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Despite fears that the loading arrangement was potentially unstable, the tests
proceeded well and hinge-type failures were produced in a progressive and predictable
manner. In practice the tests could have been taken as far as required, but were in

fact terminated a reasonable period after peak load.

Appendix 'B' contains Plates B1 to B5 which the five samples tested at n=0.1 either
before or after testing; Plates B6 to B10 similarly show the n=0.2 set, and Plates B11
to B15 the n=0.3 set. Accompanying each plate a corresponding Figure (B1 to B15)
traces the force-rotation curve, respectively, for each test. Note that only the data

points in the figures relate to measured information.

For purity at least, one would wish to produce true moment-rotation curves. The
lack of a simple means to measure the changing ‘e’ as deflections became significant,
however, results in the production of the force-rotation curves presented instead.
Despite this, rotation proved to be slight before peak load and thus the curves may in

practice be regarded as effectively moment-rotation to at least that point.

Table 3.3 which follows gives primary data relating to the hinge tests.

Ecc. Peak Loads Mean Std. Coeff Theo.
e peak dev. var. peak
(n) | ———————- Test number ————————- load (+/-) (%) load?

1/ /2 /3 /4 /5 (kN) (kN)

0.1 84.2 91.9 80.2 89.7 8l.5 85.5 5.108 5.97 70
0.2 137.9 140.2 137.2 143.9 161.1R | 144.1 9.878 6.85 139
0.3 200.1 221.1R214.7 211.8 218.2 213.2 8.112 3.80 209

Table 3.3 Model hinge test data )

YNote: The theoretical peak load employs average O,, from corresponding whole
brick and core tests.

RNote: Replacement test after an originally anomalous result (thought to have arisen

from a defective brick).
3.4.2 Model hinge test results

The theoretical peak load values given in Table 3.3 employ the average of the mean
peak stress data as noted in Chapter Two (ie. 0,,=31.6 N/mm?) in conjunction with
equation 3.14 for k=3 and A=1.227 as stipulated in Table 3.1; it is considered that

experimental consistency and good experimental/theoretical correlation are exhibited.
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The validity of averaging the mean full brick and core values for 0., for use with the
hinge experiments lies with the fact that, while full brick constitutive testing
effectively corresponds to the use of the same prototype model voussoirs as employed
in the hinges, the cores, with their smaller cross-section, are more representative of

the corresponding voussoir strain gradient topology encountered therein.

A graphical interpretation that enables theoretical/experimental correlation to be put in
the context of both flexural and compressive actions is to be seen in Figure 3.12
which superposes experimental data on the appropriate portion of the k=3 interaction

diagram. Good overall experimental/theoretical correlation is again displayed.

Figure 3.12 also includes the corresponding limit state locus based on the linear
elastic constitutive model (‘'Heyman', k=«). The superiority of the proposed non-

linear k=3 modelling over the traditional linear model can be seen.

Such findings support the development of a masonry arch bridge mechanism model
based on the proposed non-zero but finite 'k’ hinge formulations, and this is

undertaken in the next Chapter.

3.4.3 Discussion

It was observed during the laboratory hinge testing that very little distress would
normally occur before maximum load was attained. This was supported by the
smooth nature of the load-deflection response to beyond peak load, and its breakup,
accompanied by cracking sounds, as macro-cracking occurred later. Equally, visible

signs of rotation of the samples were difficult to detect before the peak load.

It is concluded that in-service masonry arch bridges may embody visually

undetectable hinges.

The point is well illustrated in Plate 3.2 which time-lapse traces a complete hinge

test.
The mode of failure of the hinges appears to be a function of 'n'.

Plate 3.3 depicts a typical failure at n=0.1, Plate 3.4 one at n=0.2 and Plate 3.5 one at
n=0.3. Plates 3.6 and 3.7 depict n=0.3 failures viewed from the end.
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FIGURE 3.12
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PLATE 3.2
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This sequence of ten time-lapse photographs traces a masonry model hinge test

under stroke-controlled loading. Note the absence of distress (and rotation)

)
J

visible before the peak load is reached.
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PLATE 3.3
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Typical model hinge failure mode for n=0.1 (compare with Plates 3.4 and 3.5)

PLATE 3.4

Typical model hinge failure mode for n=0.2 (compare with Plates 3.3 and 3.5)

75



PLATE 3.5

Typical model hinge failure mode for n=0.3 (compare with Plates 3.3 and 3.4)



PLATE 3.6

End view of mode of failure for test N3/1

PLATE 3.7

End view of mode of failure for test N3/3



As noted previously, only the data points in the force-rotation plots (Appendix 'B')
relate to measured information. The smooth curve also portrayed is a mathematical

idealisation for that data set. The form of equation employed is

y = C=Cy{x-Cye 0o ‘ (3.17)

where C; to C4 are constants influencing in@g@rﬁlg rate of attack (initial stiffness),
peak value and rate of decay. They were varied by trial and error for each of the
fifteen hinge tests until a good fit was achieved for each. The coefficients were then
averaged for the n=0.1, 0.2 and 0.3 sets to produce an 'average' curve for each data
set. The resulting three curves are superimposed and plotted as Figure 3.13a). It
may be noted from this figure that:

i) The peak loads occur at lower rotations with increasing 'n'.
ii) The rate of attack (rotational stiffness) increases with increasing 'n'.
iii) As a consequence of i) and ii) above, the hinge becomes more brittle with

increasing 'n'.

A conclusion is that, if "large” arch vaults do occupy regions of n, m space further
from the origin than "small" arch vaults, then larger arch vaults may exhibit a more

brittle onset of hinge formation.

Figure 3.13b) shows where on a k=3 interaction diagram the three sets of hinge tests
lie.

It should also be noted that the derived thrust-rotation loci are quite distinct from
their familiar ductile steel counterparts; this is not surprising in view of their lack of
a constitutive yield surface in accordance with Figure 2.8 in the previous chapter.

A key implication with regard to masonry arch bridge mechanism analysis is that
deformations are unlikely to be significant until hinge formation is well advanced and
that any early formed hinge in a four hinge collapse mechanism undergoes fluctuations
in resistance while awaiting development of the fourth, mechanism completing hinge.
Figure 3.13a) is not to suggest, howéver, that eccentricity would remain constant in
the process. Load/deformation path history is not essential to a four hinge
mechanism limit state model; the primary requirement is that, for any particular case

study, the proposed mechanism must be statically admissible.
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Speculation on the relative brittleness of the onset of hinge formation

for mechanism failures for varying sizes of arch vault.
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3.5 Conclusions

The non-linear 'k'-based formulations of the previous chapter have been developed to
provide a set of equations, unamenable to formal computational manipulation, which
have been solved numerically to enable the solution of the state of stress in a masonry
section; to furnish both a static limit state axial thrust/bending moment interaction
diagram, and also a corresponding serviceability limit state, prevention of cracking

interaction diagram.

A key conclusion stemming from the diagrams is that sectional resistance is enhanced
as the constant 'k' decreases. Differentiation is thus now possible between hitherto
identically-treated natural materials, and equally one may now dispense with the
incongruous and non-conservative infinite stiffness/strength model often employed in
the masonry arch field.

A second key finding, of wider "rule-of-thumb” value in its own right, is that all 'k'-
loci maxima lie on the middle half rule. Thus a masonry section's maximum bending
resistance occurs when the thrust line lies at the middle half position. Furthermore,

this is true irrespective of the material's constitutive properties.

A related key implication is that, for any masonry material possessing a non-linear
stress-strain characteristic (possibly all such materials), the traditional middle third
rule strictly does not apply, and additionally is non-conservative in respect of
prevention of cracking.

It is postulated that any point on a static limit state interaction diagram 'k’ locus
represents a masonry hinge for that material. A more sophisticated prediction and
modelling of hinge formation than is presently the norm should be possible, of
especial use in masonry arch mechanism analysis.

An extensive series of model hinge tests has been undertaken in the laboratory to test
the 'k'-hypothsis, and it is considered that overall experimental consistency and good
experimental correlation with the theoretical studies have been obtained. The claim
that masonry hinges are located on the edges of the appropriate 'k' interaction
envelope has been supported, paving the way for its application in masonry arch

mechanism applications.
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CHAPTER FOUR

A Masonry Arch
Mechanism Analysis

Computer Programme

4.1 Synopsis

The findings of Chapters Two and Three are applied practically in purpose-written
computer software, SMARTMEC, which analyses masonry arch vault mechanisms at

the ultimate limit state with allowance for material properties at the hinges.

Briefly, SMARTMEC solves for the value of an external point load, applied at deck
level, by numerical analysis of a metre strip, single span, unskewed masonry vault
with its abutments at the same level and with no allowance for spandrel wall edge
stiffening. The arch profile is described by a quartic equation fitted through five
points symmetrical about the crown. The live load may be distributed down through
the fill and allowance made for lateral earth pressures. An animated computer
monitor display continually updates data for each hinge. When the numerical solution
routine non-closure falls below a small predetermined figure, the programme

terminates and the final value of the external live point load is displayed.

4.2 A Computer Programme: SMARTMEC

4.2.1 Introduction

SMARTMEC, a P.C.-based software package, was written to perform a masonry arch
mechanism analysis of the generic type described in Chapter One. As noted therein,

mechanism analyses have hitherto employed either infinite stiffness/strength
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constitutive properties, or alternatively a finite strength leading to approximate,
linear, compressive stress distributions through reduced sections at the hinge

positions.

SMARTMEC instead employs the ultimate limit state interaction curve studies of

Chapter Three to provide a more refined hinge modelling.

Figure 4.1 depicts the salient differences between the traditional hinge model (Figure
4.1c) against the proposed model (Figure 4.1b) in the context of a four hinge

mechanism arch failure (Figure 4.1a).
4.2.2 SMARTMEC: preliminaries

SMARTMEC evolved substantially during these studies but only the final version will
be described here. As essentially a vehicle for the proposed interaction curve-based
hinge theory, even in its final form it makes no claim to fully cater for other
parameters, eg. differences in horizontal earth pressures for vault segments moving
into and away from the fill, particularly in comparison with commercially available

equivalents, eg. "Archie".

The incorporation of the interaction curve-based hinge theory was crucially dependent
on the hypothesis that hinges lie on the relevant (to that particular masonry type)

static limit state interaction locus.

To simplify programming it was desirable to have available a closed-form expression
for the interaction loci. This was obtained by rearranging equation 3.11 for d " and
substituting into equation 3.10 to yield a closed-form equation between bending
moment (M) and thrust (P). This equation is employed within SMARTMEC.

By expressing M and P in terms of their respective maxima, the closed-form equation
may be further rearranged to afford a general purpose, closed-form equation for a

cracked section in terms of m and n thus

[1-k] [6/\k—kl(k+1)(k+2)]}n]

m = 2“[1‘{3[k+1][k+2} [kA/2-XK/ (k+1)]2 (4.1)

This equation is valuable since it relates 'm' and 'n' directly, enabling the solution of

moment and thrust at a cracked masonry hinge with any characteristic 'k’ value.
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FIGURE 4.1
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Limiting the scope solely to cracked sections is considered justified since, as later
work will show, masonry vault hinges typically form at relatively low values of 'n' in
n, m space. As a consequence, the cracked equations of the last chapter alone suffice

for all practical purposes.
4.2.3 SMARTMEC: assumptions and features
The basic features of SMARTMEC are:

1. The analysis is limited to a metre strip of a single span, unskewed masonry vault
with its abutments at the same level, making no allowance for stiffening effects due

to spandrel or parapet walls.

2. The arch profile is described by a quartic equation fitted through five points
symmetrical about the crown, so various (symmetrical) profiles can be
approximately modelled. Alternatively, a segmental profile can be declared at the

outset and just the span and rise input.

3. Different barrel thicknesses may be specified at the springing and the crown, with
the programme linearly interpolating the thickness between. This feature is needed

to analyse Shinafoot full-scale arch test, to be described in the next chapter.

4. Loading is limited to a single point load (or knife edge load (KEL)) applied in any
position on a half span. In practice the load is usually applied at the quarter point,

being approximately the critical position.

5. The single point load may be transmitted from deck level down through the fill by

any one of four, user-specified, means:

a) A Boussinesq distribution.

b) A 2:1 (vertical to horizontal) distribution applied as a triangular load at
extrados level.

c) A 2:1 distribution applied as a uniformly distributed load at extrados
level.

d) With no distribution at all and the point load applied directly to the

extrados.

6. The vault is divided into fifty elements of equal length when projected onto the

horizontal chord. The weight of the strip of fill above each element is applied as a

84



point load to the element of vault below it.

7. Horizontal forces may be applied to allow for lateral earth pressures by multiplying
each of the fifty vertical loads by a specified earth pressure coefficient to give a
horizontal component. The coefficient is a single value for the entire arch and no
distinction is made between areas of barrel tending to move into the fill and those
tending to move away. An empirical enhancement factor (typical values 1 to 2)
may also be used and is applied to the coefficient linearly from its specified

maximum value at the springings to unity at the crown.

After data input a graphic depiction of the structure and its loading are output to the
computer monitor - see Plate 4.1. An animated display of the load vectors (a
combination of vertical and lateral force components) is shown at the top of the
screen together with continually updated data for each hinge displayed towards the
bottom. The hinge positions are marked by small circles. External reaction values

and the solution routine current measure of closure are also portrayed.

When the numerical solution routine non-closure falls below a small predetermined
figure, the programme terminates and the final value of W is displayed. This will

typically take tens of minutes, depending upon the computer available.
4.2.4 SMARTMEC: algorithm

The aim is to solve for the value of W, the external point load, for which eleven
equations are required (it is implicit in the method that the structure is in horizontal

equilibrium if lateral earth pressures are invoked). The main algorithm is:

1. Define span, rise and quarter point rise. Fit a quartic equation through

these five points (Figure 4.2a).

2. Divide the span into fifty vertical strips based upon equal horizontal

projections (Figure 4.2b).

3. Compute the x and y coordinates at each of the resulting 51 nodes.

Analysis henceforth relates to this structural centreline skeleton.

4. Define the vault thickness at the springings and at the crown. These are
usually the same, but linear interpolation between the two can provide for a

varying vault thickness.
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PLATE 4.1

Typical SMARTMEC computer programme monitor display

The single wheel live load is depicted at deck level and its weight, together with the
dead load due to the arch and fill, are transmitted to the vault by the point load
vectors shown. Their inclination is due to the horizontal earch pressure component.
The current positions of the (moveable) hinges are depicted by the small circles on the
arch. The table at the foot of the display gives data (moment, thrust, n and m) for
each hinge together with the external reactions and the current state of closure of the
numerical routine. The display is refreshed on each cycle of the numerical analysis

until convergence is reached.



FIGURE 4.2

W (external live load)
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a) Topology

Equation 4.1 relating moment and thrust at hinge 1
Equation 4.1 relating moment and thrust at hinge 2
Equation 4.1 relating moment and thrust at hinge 3

Equation 4.1 relating moment and thrust at hinge 4

b) Equations SM1 to SM4

SMARTMEC main algorithm (1)
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10.

11.

12.

13.

14.

15.

Define various physical parameters; depth of fill over crown, a weighted
specific weight value encompassing both fill and masonry, a coefficient of
horizontal earth pressure, an empirical enhancement coefficient to apply to
the latter near the springings, a mode of load dispersal through the fill, and
finally the position of the single point (knife edge) vertical load. The critical
position for the load varies from the third to the fifth span positions
(depending on the vault's span to rise ratio), but commonly a quarter point
load is employed and a hinge will typically form beneath it.

Apply the values from step 5 to obtain vertical and horizontal forces at each

node (Figure 4.2a).

Define the arch vault material parameters O, k and A.

Fix the two outer hinges (hinges 1 and 4) at the springings (nodes 1 and
51). Select trial initial hinge positions for the other two hinges (hinges 2
and 3). See Figure 4.2a.

At hinge 1, apply the moment and axial thrust (M and P) version of
equation 4.1 yielding equation SM1. Repeat for the remaining three hinges

giving equations SM2, SM3 and SM4 (Figure 4.2b).

Resolve vertically and horizontally to yield equations SM5 and SM6 in Vd
and H4. (Figure 4.3a).

Take moments about hinge 1 to yield equation SM7 in Va (Figure 4.3a).

For the left substructure, take moments about hinge 2 to yield equation

SM8 in H, (Figure 4.3b).

Resolve forces at hinge 1 to yield equation SM9 for Pd (the axial component
of thrust) in terms of H, and Vd (Figure 4.3c).

For the right substructure, take moments about hinge 3 to yield equation
SM10 in Va (Figure 4.3d).

Resolve forces at hinge 4 to yield equation SM11 for Pa (the axial

component of thrust) in terms of H, and Va (Figure 4.4a).
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Resolving vertically: Vd = 2Vi-Va
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Resolving horizontally: H4 = H1-YHi
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a) Whole structure: equations SM5, SM6 & SM7
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Taking moments about hinge 3:
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d) Substructure 3-4: equation SM10

SMARTMEC main algorithm (2)
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FIGURE 4.4

Resolving forces at hinge 4:
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c) Substructure 1-2: equation SM13

SMARTMEC main algorithm (3)
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16. For the right substructure, resolve forces at hinge 3, and hence obtain
equation SM12 in Pb (the axial component of thrust at hinge 3). See Figure
4.4b.

17. For the left substructure, resolve forces at hinge 2. This yields equation
SM13 for Pc, the axial component of thrust at hinge 2. Refer to Figure
4.4c.

18. Solve equations SM1 to SMI13, noting that some are non-linear, by a
purpose-written numerical routine and hence derive a solution for W, the
externally-applied knife edge point load, for this system of hinge

positions.

19. Repeat the process for other positions of hinges numbers 2 and 3 to find
the lowest bound value of W and hence the overall solution for the

structure.
4.2.5 SMARTMEC: limitations of model

Known deficiencies of the SMARTMEC model include the rudimentary treatment of
soil-arch interaction. The behaviour is not yet well understood and its effect on the
result can be considerable, sometimes leading to mechanism methods yielding
significant underestimates, especially in cases of low span to rise ratio arches with

substantial cover at the crown.

The distribution of live load through the fill is also a process that is not well
understood, and indeed it may vary during the loading regime and from structure to
structure. It has been observed that SMARTMEC often gives results more faithful to
the prototype when the single point load is taken down through the fill without any
distribution at all (SMARTMEC provides this option). It is also to be noted that
SMARTMEC has difficulty in converging with semi-circular arches and those
approaching these proportions, perhaps due to ill-conditioning of the equations in

such circumstances. This aspect requires further study.

Finally, fixing the two end hinges to the springing points in many instances results in
the hinge positions at variance to those in the prototype under study. A 'bare' arch
with no fill will always form hinges at the springings, but the influence of fill,

especially in deep arches, will tend to displace the springing hinges into the span.
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4.2.6 SMARTMEC: "validation"

SMARTMEC was assessed against prototype arch test data from three sources in

order to test the proposed hinge modelling:

Data Set 1

Data Set 2

Data Set 3

A series of full-scale arch bridge rests commissioned by the Transport
Research Laboratory (TRL). These have the advantage of being full
scale, real structures, but suffer from the disadvantage of being very
highly variable in form, sometimes with features (for example skew)
which are difficult for SMARTMEC to deal with.

Arch model tests by others. These structures are, by definition, small,
and are therefore less representative of 'real’ bridges. Conversely, details
of their construction, properties and materials are more tightly controlled
and are generally quantified and thus fewer assumptions are necessary

than for the case studies in Data Set 1 above.

A series of in-house model tests. Again small scale, but in other

respects they are tailored to the needs of this research programme.

Each of the above will be described at length in the next chapter.
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CHAPTER FIVE

The Application of
a Masonry Arch Mechanism

Analysis Computer Programme

5.1 Synopsis

The masonry arch mechanism analysis computer programme SMARTMEC is applied to
arch collapse test data from three sources; full-scale bridges tested by the Transport
Research Laboratory (TRL) as part of a national programme, to laboratory model
tests by various other bodies, and finally to further models constructed and tested in
the laboratories of Sheffield Hallam University. The results obtained are encouraging

overall.

Parametric studies utilising SMARTMEC enable the effects of both material strength
and 'k' value to be examined and conclusions drawn as to their relevance to arch

analysis.
5.2 Data Set 1 Tests: Against Full Scale Prototypes

5.2.1 Intruduction

The Transport and Road Research Laboratory is conducting research(?) to improve the
present method of assessing the load carrying capacity of masonry arch bridges. This

involves a series of full scale load tests to destruction(?).

Each bridge in the programme is unique (they were chosen to represent the range of

types encountered) and none is ideally suited to these studies. Attention will thus be
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limited to those that failed as four hinge mechanisms, and those with features that the
software does not model (such as skew), as previously noted, will also be excluded.
[t must nevertheless be emphasised that this data set is difficult to make use of as

there is a lack of detailed data relevant to the exercise proposed.

Those TRL tests most nearly meeting the acceptance criteria are the Bridgemill,

Prestwood and Shinafoot bridges.

Since some parameters pertaining to these structures must, of necessity, be estimated
here (having not been measured by TRL), it is proposed to choose highest and lowest
credible values for these. Two SMARTMEC runs will then be made; one combining
the 'high' values (ie. those tending to make the structure stonger), and one combining
the 'low' values (ie. those tending to make the structure weaker). The result will thus

be a predicted collapse load spectrum for each structure.

This approach is similar to the one often followed in practice, where one gains a feel
for the structure's sensitivity to the various input parameters, many (if not more) of
which would be similarly unknown. Clearly, results close to the upper and lower

bound are less probable.

In order to provide an "optimum" SMARTMEC result within the above range, a third
computer run has been made using a combination of the "most probable” input
parameter values. Finally, to set these results in context, an equivalent result derived
from commercial arch mechanism analysis software, called "Archie", is also presented.
The comparison is approximate, however, since the two computer programmes are
somewhat different and some of their features are not comparable. Consequently, the
"most probable” values used for input to SMARTMEC do not necessarily employ
Archie at its best; Archie is not under test. For example, Archie features a "factor
on passive pressure” parameter (set at its default value of 0.1 in this study), which is
not directly equivalent to SMARTMEC's earth pressure enhancement factor.
Furthermore, Archie positions the load at set incremental positions traversing the
span, and so the quarter point load result has been derived in many cases by
averaging two results just to either side of the quarter point. A major difference is
also that Archie always distributes the load through the fill, whereas SMARTMEC has

invariably been used without this feature for its optimum runs.

Despite all these difficulties the comparison is considered worthwhile, but it is
emphasised that it is not claimed that the differences in output arise purely from the
hinge modelling employed by SMARTMEC.
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5.2.2 Bridgemill Bridge

This test

was carried out by the University of Edinburgh on behalf of the TRL(*7).

Bridgemill bridge was built in 1869 with a shape close to parabolic and a span to rise

ratio of 6.4. The topology is illustrated in Figure 5.1.

Under quarter point KEL loading the bridge failed partly as a four hinge mechanism

and partly due to snap through at a load of 3100 kN. The TRL test report shows

stress-strain plots for two stone samples which are rather strange and appear to show

increasing stiffness under load. However, this bridge remains a fair candidate for the

present purposes. The SMARTMEC input parameters relating to this arch are given
in Table 5.1 below.

No. Data Item Value(s) Note

1. Span (m) 18.29

2. Rise (m) 2.84

3 Quarter point rise (m) 2.16

4. Barrel thickness at springing (m) 0.711

5. Barrel thickness at crown (m) 0.711

6. Cover at crown (m) 0.203

7. Mean material specific weight (kN/m3) 21

8. Earth pressure coefficient 0.271 (I)

9. Earth pressure enhancement factor 1-1.1 (I)

10. O, (N/mm?) 5-8 (I)

11. k 2 (V)

12. A 1.25

13. Distance of load from RHS (m) 4.572

14. UDL over whole span (kN, total) 0

155, Live load distribution type KEL-Bous. | (V)
Table 5.1 SMARTMEC input data: Bridgemill Bridge
(1) A typical ® value of 35- has been assumed and a coefficient of active earth pressure

employed.
(I) Experience has shown that a low figure yields best results for shallow arches.
(Ir) This range is quoted in the TRL test report.
(V) Assumed figure for sandstone. It will be shown in later in this chapter that the result is
insensitive to the actual value chosen provided it is finite and greater than unity.

(V) These are the two extremes with respect to distibution through the fill, but experience

shows that no distribution (the KEL option) often yields the best results.
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FIGURE 5.1
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This data provides three SMARTMEC runs; an upper bound (Table 5.1 'high" values),

a lower bound (Table 5.1 'low' values) and an 'optimum’ (using values noted below):

Prototype collapse load 3100 kN

No. Output Item Value

1. Upper bound collapse load, kN, (% of prototype) 4408 (142.2)
2. Optimum collapse load, kN, (% of prototype) 2990 (96.5)
gk, Lower bound collapse load, kN, (% of prototype) 2763 (89.1)
4. 'n' for hinge under load position at optimum 0.179

5 Archie analysis, kN, (% of prototype) 2071 (66.8)

Table 5.2 SMARTMEC output: Bridgemill Bridge
Note: SMARTMEC optimum run is based on 0, = 6 N/mm?2, no earth pressure

enhancement and K.E. loading. Note the comparatively high 'n' value.
5.2.3 Prestwood Bridge

The SMARTMEC input parameters are given in Table 5.3 below.

No. Data Item Value Note
1. Span (m) 6.550

2. Rise (m) 1.428

3. Quarter point rise (m) -

4. Shape segmental (1)
5. Barrel thickness at springing (m) 0.220

6. Barrel thickness at crown (m) 0.220

7. Cover at crown (m) 0.165

8. Mean material specific weight (kN/m?3) 21

9. Earth pressure coefficient 0.271

10. Earth pressure enhancement 1-1.5 (I
11. O, (N/mm?2) 4.5 ()
12. k 2 (IV)
13. A 1.25

14. Distance of load from RHS (m) 1.637

15. UDL over whole span (kN, total) 0

16. Live load distribution type KEL-Bous. | (V)

Table 5.3 SMARTMEC input data: Prestwood Bridge
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(1) The (asymmetric) deformation cannot be taken into account by SMARTMEC and a segmental
shape is assumed.

(I A similar reasoning to Bridgemill applies.

(Im) Quoted in the TRL test report for the brick and mortar together.

(V) The TRL test report quotes a compressive strength plus a secant modulus. It is not
therefore possible to arrive at a 'k’ value and a typical k=2, A=1.25 has been assumed.

V) A similar reasoning to Bridgemill again applies.

Prestwood Bridge did in fact fail as the required classic four hinge mechanism(48).

Figure 5.2 depicts a front elevation of the bridge (a plan view is not available). The
bridge is not skewed. It is, however, quite deformed from its original segmental
shape but in other respects remains a fair candidate for these studies, particularly

given its clear four hinge failure.

The results are again presented in the form of a table, once more with a comparable

Archie analysis to set it in context:

Prototype collapse load 228 kN

No. Output Item Value

1. Upper bound collapse load, kN, (% of prototype) 244 .4 (107.9)
2. Optimum collapse load, kN, (% of prototype) 137.0 (60.1)
3, Lower bound collapse load, kN, (% of prototype) 127.9 (56.1)
4. 'n' for hinge under load position at optimum 0.067

5, Archie analysis, kN, (% of prototype) 104.5 (45.8)

Table 5.4 SMARTMEC output: Prestwood Bridge

Note: SMARTEMEC optimum run is based on an earth pressure enhancement of 1.2
and a knife edge load.

5.2.4 Shinafoot Bridge

Shinafoot bridge is also reported(49) as failing as a four hinge mechanism and is a
good candidate. Its voussoirs tapered towards the crown, and this feature was
specifically incorporated within SMARTMEC to deal with Shinafoot bridge.

The layout of Shinafoot Bridge is shown in Figure 5.3.

The input parameters relating to Shinafoot are given in the following Table 5.5.
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No. Data Item Value Note
L Span (m) 6.160

2. Rise (m) 1.185

3, Quarter point rise (m) -

4, Shape ' Segmental

5, Barrel thickness at springing (m) 0.770

6. Barrel thickness at crown (m) 0.390

7. Cover at crown (m) 0.215

8. Mean material specific weight (kN/m3) 21

9. Earth pressure coefficient 0-0.271 (1)
10. Earth pressure enhancement 1 (I)
11. O, (N/mm?2) 2.5-5.0 (I)
12. k 2 (IV)
13. A 1.25

14. Distance of load from RHS (m) 1.54

15. UDL over whole span (kN, total) 0

16. Live load distribution type KEL-Bous. | (V)

Table 5.5 SMARTMEC input data: Shinafoot Bridge

(D

(1)
(1

W)
(V)

An earth pressure coefficient as low as zero is credible since the arch is reported to have
been haunched with rubble fill.

Due to (I) above.

The range quoted in the TRL report, although the yield stress used in the report's
mechanism analysis is 5 N/mm?2.

In the absence of data a k value of 2 has been assumed with A=1.25.

The full range is again applied for completeness.

Uniquely in these case studies, but notoriously for non-linear studies, a second

solution was found to exist at a KEL of over 7000 kN. This may be a consequence of

the varying vault thickness.

Another consequence appeared to manifest itself in that SMARTMEC's solution routine

had a great deal of difficulty in converging, and some manual intervention proved

necessary.

This was done by choosing different starting values for the numerical

solution routine.

The output for the "correct” solution is given in Table 5.6 together with an Archie

analysis for comparison.
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Prototype collapse load 2524 kN

No. Output Item Value

1. Upper bound collapse load, kN, (% of prototype) 4678 (185.3)
2. Optimum collapse load, kN, (% of prototype) 2362 (93.6)

3. Lower bound collapse load, kN, (% of prototype) 1548 (61.3)

4. 'n' for hinge under load position at optimum 0.213

5. Archie analysis, kN, (% of prototype) 1905 (75.5)

Table 5.6 SMARTMEC output: Shinafoot Bridge
Note: SMARTMEC optimum run is based on an earth pressure coefficient of 0.15, a
0., of 3 N/mm? and a knife edge load.

5.2.5 Discussion on Data Set 1 results

The SMARTMEC results bracket the prototype collapse loads for all three bridges.
This is considered to be a reasonable outcome, and with a realistic choice of input data
- the "optimum" values presented - the programme is capable of giving answers
acceptably close to the prototypes and as such is viable as a basic analytical tool in its
present form. The results compare well with those of Archie, but the latter's

somewhat low results may be due to the aforementioned factors.

It is contended that the hypothesis that hinges lie on interaction loci is justified, and
the general correctness of the interaction data itself is considered to be reasonably

well demonstrated, given the significant assumptions made.

What these results fail to do, however, is to provide a basis for drawing inferences
about the effect of 'k' modelling or employing finite material strength in the place of

an infinite value.

This is partly because the TRL did not require, nor collect, detailed constitutive data,
since current methods do not need it, and so assumptions have been made herein. In
addition, the complexities of these real bridges, many aspects of which are not
modelled by SMARTMEC, may have masked any gains made in refining the hinge

modelling.

Some of these shortcomings will be addressed in the Sheffield Hallam University in-

house series of model arch tests to be described in Section 5.5.
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5.3 Data Set 2 Tests: Against Laboratory' Scale
Models by Others

5.3.1 Dundee. University model arch bridge

This bridge was constructed in the laboratories of Dundee University on behalf of the
TRL(S0) to effectively full-size proportions. Figure 5.4 shows this large model.
Noting the limitations of SMARTMEC set out in the last chapter, it is unsurprising
that this model's semi circular profile makes analysis difficult. Otherwise this bridge
is useable for this study and, in spite of problems with the test configuration, it did

in fact nominally fail as a four hinge mechanism.

The SMARTMEC input parameters are given in Table 5.7 below.

No. Data Item Value Note
1. Span (m) 4.000

2. Rise (m) 2.000

3. Quarter point rise (m) -

4. Shape Semi-circ.

53 Barrel thickness at springing (m) 0.250

6. Barrel thickness at crown (m) 0.250

7. Cover at crown (m) 0.250

8. Mean material specific weight (kN/m?3) 22 (1)
97 Earth pressure coefficient 0.172 (I)
10. Earth pressure enhancement 1-2 (In)
11. O, (N/mm?) ‘ 8-30 (IV)
12. k 2 (V)
13. A 1.25

14. Distance of load from RHS (m) 1.382 (V)
15. UDL over whole span (kN, total) 0

16. Live load distribution type KEL-Bous. | (V)

Table 5.7 SMARTMEC input data: Dundee University model

(1) The measured fill density was a well compacted 21 kN/m3. so a higher overall weighted
value of 22 kN/m3 has been chosen o include masonry.

<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>