

Robustness of power in analysis of variance for various designs.

LIU, Chun K.

Available from the Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/19968/

A Sheffield Hallam University thesis

This thesis is protected by copyright which belongs to the author.

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given.

Please visit http://shura.shu.ac.uk/19968/ and http://shura.shu.ac.uk/information.html for further details about copyright and re-use permissions.

REPRESENDED OF TAKE

6065

Sheffield City Polytechnic Library

REFERENCE ONLY

ProQuest Number: 10697274

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10697274

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.

This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, MI 48106 – 1346

ROBUSTNESS OF POWER IN ANALYSIS OF VARIANCE FOR VARIOUS DESIGNS

bу

LIU, CHUN KIT, B.Sc., M.I.S., F.S.S.

A thesis submitted to the Council for National
Academic Awards in partial fulfilment of the
requirements for the degree of Master of Philosophy.

JULY, 1982

SHEFFIELD CITY POLYTECHNIC

ROBUSTNESS OF POWER IN ANALYSIS OF VARIANCE

FOR VARIOUS DESIGNS

ABSTRACT

Robustness of power of the analysis of variance technique to the departures from the underlying assumptions of homoskedasticity and independence of error has been considered in various designs, including the mixed and non-orthogonal designs. Distribution of the ratio of two independent quadratic forms is modified with arbitrary scale parameter g and has been used extensively. The choice of g is also discussed.

The results, in general, indicate that the power of the test of equal means is seriously affected when the assumption of homoskedasticity is violated, but for moderate degree of heteroskedasticity, the actual type I error is not seriously affected. Also, the power of the test of homogeneity of means is highly sensitive to the departure from the fixed effects model to the corresponding random effects model.

The problem of design of experiments to optimise power of the test under the constraint of cost is discussed with reference to the one-way classification for both cases of homogeneous and heterogeneous group error variances.

C.K. LIU

ACKNOWLEDGEMENTS

The author wishes to thank Dr.G.K.Kanji and Dr.W.G.Gilchrist for their guidance and encouragement throughout this research programme.

CONTENTS

<u> </u>	age No
Abstract	ii
Acknowledgements	iii '
Chapter 1. <u>Introduction</u>	1 :
1.1 Historical Background	1
1.2 Aim of Study	6
Chapter 2. Power Aspects in General Linear model	8
2.1 Estimation of parameter	8
2.2 Test of hypothesis	9
2.3 Distribution of quadratic forms	11
2.4 Noncentrality parameter	13
2.5 Distribution of the ratio of quadratic forms	14
2.6 Power of the test	14
	٠
Chapter 3. Power Aspects in the One-way Layout	17
3.1 Fixed effect model	17
3.2 Random effect model	21
Chapter 4. Power Aspects in the Two-way Layout	25
4.1 Fixed effects model	25
4.2 Random effects model	32
Chapter 5. Power Aspects in Analysis of Covariance	36

			Page No.
	Chapter 6.	Power Aspects in Splot-Plot Design	45
	6.1	For whole-plot treatment comparisons	47
	6.2	For sub-plot treatment comparisons	50
	Chapter 7.	Cost in Relation to Power in the Design of Experiments	55
	Chapter 8.	Results and Conclusions	58
	8.1	Power of the test in general linear model	5 9
	8.2	Power of the test in the one-way layout	59
	8.3	Power of the test in the two-way layout	61
1 - 1	8.4	Power of the test in the analysis of covariance	62
	8.5	Power of the test in the splot-plot design	63
	8.6	Cost in relation to power in the design of experiments	64
	Chapter 9.	Discussion	66
	References		69
	Appendices		·
	I		77
	II		80.
	Figures		82
	Tables		104

CHAPTER 1

1. <u>INTRODUCTION</u>

1.1 HISTORICAL BACKGROUND

The assumptions, on which analysis of variance is based, are that the experimental errors a) have equal variances; b) are statistically independent and; c) are normally distributed.

Like many other fields of statistics, it was

R A Fisher who germinated the idea of robustness in 1935.

In his book, 'The Design of Experiment', he raises for
the first time, the concept of robustness in terms of the
sensitivity of the 't' test to the underlying assumption
of normality.

Stigler (1980) traced back the history of the study of robustness. He described the method of robust estimate of location first proposed by R H Smith, a Professor in Engineering at Mason College (later, the University of Birmingham), in 1888.

Cochran (1947) gave an account on the consequences when the assumptions for the Analysis of Variance are not satisfied. The consequences on the effects of non-normality, gross errors, heterogeneity of errors, correlations amongst the errors and non-additivity were discussed in general terms.

It was Box (1953) who actually introduced the term 'Robust' to denote a statistical procedure which is insensitive to departures from assumptions on which the

model is based. Such procedures are commonly used and studies of robustness have been carried out in the field of 'Analysis of Variance'.

The effects of non-normality in the distribution of error were studied by Pearson (1931), Geary (1947) and Gayen (1950) for the one-way layout. Kanji (1976b, 1977) studied the effects of non-normality on the power in analysis of variance for both one- and two-way layouts by a simulation method (for both fixed and random effects). David and Johnson (1951) considered the extent to which non-normality of the error distribution affects the F-test. It is found that the test, in general, is little affected by non-normality of error.

In the study of statistical independence, Box (1954b) studied the effects of serially correlated errors within rows in the two-way layout. His results indicate that the between-rows comparisons are greatly affected by serial correlation within rows, but that the between-columns comparisons are much less seriously affected. Kanji (1975, 1976a) considered the effects of serial correlation of errors on the power in the general linear model and in the two-way layout like Box. It is found that, in the general linear model and the between-columns comparisons in the two-way layout, the test is not seriously affected by serially correlated errors.

However, Andersen et al (1981) followed the foot-path of Box (1954b) and derived the approximations to the distributions of the usual test-statistics of no column

effect and no row effect. The behaviour of the approximations was studied by simulation in the cases of the first-order autoregressive and first-order moving average models. They found that if the correlations are disregarded, it may lead to seriously mis-leading conclusions.

Numerous studies have been made on the effects of departure from the usual assumption that the error variables have equal variances. Kanji (1975) studied the effects of unequal error variances on the power in the general linear model. He found that the power value is seriously affected when normally and independently distributed error variables have unequal error variances and, wherever error variances are unequal, the power value is greater than for equal error variances. Welch (1938) considered the effect of unequal group variances on the t-test. His results indicate that when the groups are of equal size, the effect is small, but this becomes larger when the groups are of unequal size. Hsu (1938) attempted to find exact probability for this case. Gronow (1951) carried out the investigation using a different approximating method. Both of their investigations supported Welch's finding. Carter et al (1979) also attempted the same problem. Their result indicates that there is no appreciable effect on the significance level even if the ratio of the variances differs from one by as much as 0.4. When this difference exceeds 0.4, the effect starts showing

but can be compensated for if one is permitted to take a larger number of observations from the population with the larger variance than from the one with smaller variance. The effect on power is similar. Murphy (1967) used a simulation method for his study of the two sample test when the variances are unequal. His investigation indicates that the permutation test and the t-test are virtually identical in practice and are fairly robust to inequality of variances as long as sample sizes are equal.

Horsnell (1953) brought David and Johnson's work a step further, and considered the effect of unequal group variances on the power of the test for a special case of the one-way layout. Box (1954a) derived an approximate method to study the effect of unequal group variances in the one-way layout. His results indicate that if the group variances are unequal and the groups are equal, then the test is not seriously affected. However, quite large discrepancies can occur when the groups are unequal for even moderate variations of variance. Kanji (1979) considered the power aspects for the same case using different method. The results he obtained show that the power of the test when the group variance are not equal is larger than when they are equal, and; that the group sizes do not greatly affect the power. In addition, the power will be affected if the group sizes are greatly unequal.

Both Box (1954b) and Kanji (1976a) continued their studies of the effect of unequal error variances in the two-way layout. The results Box obtained are similar to those for equal groups with the one-way classification, i.e., both between-columns and between-rows tests are not seriously affected by inequality of column variances. In contrast, the results of Kanji show that the power of the between-columns test is greatly affected by the unequal column variances.

Ito and Schull (1964) studied the robustness of the T_0^2 test in multivariate analysis of variance when variance and covariance matrices are not equal. Their results show that, for large samples of equal size and moderate inequality of variance and covariance matrices, the test is not seriously affected but, for unequal size, the effects are quite large. Carter et al (1979) extended their study of the effect of inequality of variances on the t-test to the multivariate situation. The results they obtained are similar to those of the univariate case.

The statistically important problem of the distribution of homogeneous positive quadratic forms was discussed in detail by Robbins (1948), Hotelling (1948) and, Robbins and Pitman (1949). The more difficult distribution of non-homogeneous quadratic forms was studied by Solomon (1961). Ruben (1962, 1963) derived the

distribution function of a non-negative quadratic form, both homogeneous and non-homogeneous, in terms of an infinite linear combination of chi-square distribution functions with arbituary scale parameter. Alternative representation of the distribution function of the non-homogeneous form in terms of non-central chi-square distribution functions with arbituary scale parameter was also derived.

1.2 AIM OF STUDY

Following Kanji (1978), a distribution of the ratio of two independent quadratic forms is modified with arbituary scale parameter and has been referred to as a generalised incomplete beta distribution. It is then applied to investigate in detail the effect of unequal error variances and serially correlated errors on the power in the following cases:

- i) the general linear model;
- ii) the one-way layout analysis of variance for fixed and random effect models;
- iii) the two-way layout analysis of variance for fixed and random effects models;
- iv) the fixed effect one-way layout analysis of covariance model with one concomitant variable and;
- v) the fixed effect split-plot design model.

In addition, the cost aspects in relation to power is considered for the unequal error variances situation in the one-way layout.

Although this thesis is an extension to the various work by Kanji, there are many features that differ from its predecessor. For example, different scale parameter and different transformation in the application of Ruben's theorems; different expressions for the variance-covariance matrices in the random effect models are used.

2. POWER ASPECTS IN GENERAL LINEAR MODEL

2.1 <u>ESTIMATION OF PARAMETER</u>

where Y is a (nx1) vector of observation, X is a (nxp) matrix of known coefficients ($p \le n$); $\underline{\beta}$ is a (px1) vector of unknown parameters and $\underline{\varepsilon}$ is a (nx1) vector of 'error' random variables.

In order to investigate the effect of a departure from the usual test assumption on the power in Analysis of Variance, we will consider the vector $\underline{\varepsilon}$ such that $\underline{\varepsilon}$ is distributed as $N(\underline{0}, \sigma^2 \underline{\delta})$ where $\underline{\delta}$ is an $(n \times n)$ unknown positive definite symmetric matrix and σ^2 is an unknown scale factor. This will allow for both heteroskedasticity (unequal diagonal elements of $\underline{\delta}$) and interdependence (non-zero off diagonal elements of $\underline{\delta}$) of the errors. Since the errors are normally distributed with expectation zero and variance-covariance matrix σ^2 $\underline{\delta}$, the likelihood function to be maximized becomes

$$f(\underline{\varepsilon}; \underline{\beta}, \sigma^2 \underline{\delta}) = \frac{(2\pi)^{-n/2}}{\sigma^n |\underline{\delta}|^{1/2}} \quad EXP(\frac{1}{2\sigma^2} (\underline{NY} - \underline{NXB})) \quad (\underline{NY} - \underline{NXB}))$$
(2.1.2)

where $\underline{\delta}^{-1} = \underline{N}'\underline{N}$, since any symmetric matrix can be split up into the product of triangular matrices. The maximum likelihood estimates of β and σ^2 are:

$$\hat{\beta} = (\underline{x}, \delta^{-1}\underline{x})^{-1}\underline{x}, \delta^{-1}\underline{y}$$

and
$$\hat{\sigma}^2 = \frac{1}{n} (\underline{N}\underline{Y} - \underline{N}\underline{X}\hat{\beta}) \cdot (\underline{N}\underline{Y} - \underline{N}\underline{X}\hat{\beta})$$
.

Since $E(\hat{\beta}) = \beta$, then $\hat{\beta}$ is an unbiase estimate of β . It can also be proved that $E(\hat{\sigma}^2) = \frac{n-p}{n} \sigma^2$ and therefore

$$\tilde{\sigma}^2 = \frac{n}{n-p} E(\hat{\sigma}^2) = \frac{1}{n-p} (\underline{NY} - \underline{NXB}) \cdot (\underline{NY} - \underline{NXB})$$

is an unbiased estimate of σ^2 .

2.2 TEST OF HYPOTHESIS

Testing the hypothesis $\underline{\beta} = \underline{\beta}^*$ in the model (2.1.1) is equivalent to testing simultaneously that each β_i equals a given constant β_i^* . In testing the hypothesis $H_0\colon \underline{\beta} = \underline{\beta}^*$, it is essential to devise a test function. For the evaluation of the power of the test, it is also necessary to know the distribution of the test function when the alternative hypothesis $H_1\colon \underline{\beta} \neq \underline{\beta}^*$ is true. Also we can test any sub-hypothesis $\underline{\gamma} = \underline{\gamma}^*$ where the elements of $\underline{\gamma}^*$ are given constants (see, for example Graybill (1961), pp.135). This can be seen in later chapters.

Following Graybill (1961, pp.128-133), the likelihood ratio criterion for the classical case of independent equal error variances that has been used to test the hypothesis can be expressed as

$$L = ((\underline{Y} - \underline{X}\widehat{\beta})!(\underline{Y} - \underline{X}\widehat{\beta})^{n/2}((\underline{Y} - \underline{X}\widehat{\beta})!(\underline{Y} - \underline{X}\underline{\beta}))^{-n/2}$$

$$= (1 + Q_2/Q_1)^{-n/2}$$
where $Q_2 = (\underline{Y} - \underline{X}\underline{\beta})!\underline{A}_2(\underline{Y} - \underline{X}\underline{\beta})$ (2.2.1)

$$Q_{1} = (\underline{Y} - \underline{X}\underline{\beta}^{*})'\underline{A}_{1}(\underline{Y} - \underline{X}\underline{\beta}^{*})$$
and
$$\underline{A}_{2} = \underline{X}(\underline{X}'\underline{X})^{-1}\underline{X}'$$

$$\underline{A}_{1} = \underline{I} - \underline{X}(\underline{X}'\underline{X})^{-1}\underline{X}' = \underline{I} - \underline{A}_{2}$$

$$(2.2.2)$$

are both indempotent matrices.

The rank of \mathbb{Q}_2 , which is also the rank of $\underline{\mathbb{A}}_2$, can be determined by

$$trace(\underline{A}_2) = trace(\underline{X}(\underline{X}'\underline{X})^{-1}\underline{X}') = p.$$

Therefore the rank of \underline{A}_2 is p and similarly, the rank of \underline{A}_1 is n-p. Hence, \underline{Q}_1 and \underline{Q}_2 are positive semidefinite quadratic forms.

To determine whether \mathbb{Q}_1 and \mathbb{Q}_2 are independent, we employ a lemma due to Seber (1966, pp.8) with slight modification as follows:

<u>Lemma</u> (2.2.3)

If \underline{A}_1 and \underline{A}_2 are symmetric idempotent matrices such that $\underline{A}_1\underline{A}_2=\underline{0}$, then $\underline{Y}'\underline{A}_1\underline{Y}$ and $\underline{Y}'\underline{A}_2\underline{Y}$ are statistically independent.

Proof:

$$COV(\underline{A}_{1}\underline{Y}, \underline{A}_{2}\underline{Y}) = E(\underline{A}_{1}\underline{\epsilon}\underline{\epsilon}'\underline{A}_{2})$$

$$= \underline{A}_{1}E(\underline{\epsilon}\underline{\epsilon}')\underline{A}_{2}$$

$$= \sigma^{2}\underline{A}_{1}\underline{\delta}\underline{A}_{2} = \sigma^{2}\underline{A}_{1}\underline{A}_{2}\underline{\delta} = \underline{\Omega}.$$

In our case, we have

$$A_1A_2 = (I - A_2)A_2 = A_2 - A_2 = 0.$$

If $\tau = Q_2/Q_1$, then the numerator and denominator of τ are

mutually independent with rank p and n-p respectively.

2.3 DISTRIBUTION OF THE QUADRATIC FORMS

In order to assess the effects of interdependence and heterogeneity of error variances, we will assume the hypothesis testing procedure for the classical case when the error variances are, in fact, not independent and unequal. From equation (2.2.1), we have

$$Q_2 = (\underline{Y} - \underline{X}\underline{\beta}^*) \cdot \underline{A}_2 (\underline{Y} - \underline{X}\underline{\beta}^*)$$

where Y is distributed as $N(\underline{X}\beta, \underline{V})$ and $\underline{V} = \sigma^2 \underline{\delta} \cdot$ Let $\underline{\Psi} = \underline{Y} - \underline{X}\beta$ and $\underline{\mu}^* = \underline{X}\beta - \underline{X}\beta^*$, then

$$Q_2 = (\psi + \underline{\mu}^*)'\underline{A}_2(\psi + \underline{\mu}^*)$$
 (2.3.1)

and ψ is distributed as $N(\underline{O}, \underline{V})$.

To achieve the required quadratic form for the application of Ruben (1962) theorem 1, the linear transformations

$$\Psi = t'KZ$$
 and $\mu * = -t'Kb$

transform the quadratic form of Q_2 to the canonical form given by $(\underline{Z} - \underline{b}) \cdot \underline{A}(\underline{Z} - \underline{b})$ where \underline{Z} is distributed as $N(\underline{O},\underline{I})$ and \underline{t} is the upper triangular matrix defined by $\underline{V} = \underline{t} \cdot \underline{t}$, and \underline{K} is the orthogonal matrix of eigen-vectors of $\underline{t}\underline{A}_2\underline{t}$. The \underline{a}_i 's are the diagonal elements of the matrix $\underline{A} = \underline{K} \cdot \underline{t}\underline{A}_2\underline{t} \cdot \underline{K}$ and also the eigen-values of $\underline{t}\underline{A}_2\underline{t}$ ', and \underline{b} is a fixed n-dimentsional vector. Since Q_2 is a non-homogeneous quadratic form, Ruben's (1962) theorem 1 can be applied, viz,

$$H_{f_1;\underline{A},\underline{b}}(\alpha) = P(Q_2 \leq \alpha) = \sum_{j=0}^{\infty} c_j X_{f_1 + 2j}^2(\alpha/Q_2) \qquad (2.3.2)$$

where f_1 = p is the rank of $\underline{t}\underline{A}_2\underline{t}'$; and therefore of \underline{A}_2 since \underline{t} is nonsingular; g_2 = a_1 , assuming without loss of generality that $a_1 \leq a_2 \leq \ldots \leq a_p$, which is different from the value 1 as used by Kanji (1975); $X_{f_1+2j}^2(\cdot)$ is a chi-square distribution and the c_j satisfy the recursion relationship

$$c_{j} = (2j)^{-1} \sum_{r=0}^{j-1} h_{j-r} c_{r} \qquad j = 1,2,...$$
 where
$$c_{0} = EXP(-\lambda^{2}) \prod_{i=1}^{f_{1}} A_{i}^{-1/2},$$

$$h_{s} = \sum_{i=1}^{f_{1}} (1 - 1/A_{i})^{s} + s \sum_{i=1}^{f_{1}} (b_{i}^{2}/A_{i})(1 - 1/A_{i})^{s-1},$$
 and

 $A_i = a_i/g_2.$

The noncentrality parameter $\boldsymbol{\lambda}$ can be obtained by using vector b.

And, similarly, the distribution of \mathbb{Q}_1 can be obtained. But in this case, it is a homogeneous quadratic form and theorem 2 can be applied, viz:

$$H_{f_2;\underline{A}},\underline{O}(\alpha) = P(Q_1 \leq \alpha) = \sum_{i=0}^{\infty} d_i \chi_{f_2+2i}^2(\alpha/Q_1)$$
 (2.3.3)

where f_2 = n-p is the rank of \underline{A}_1 , \underline{M} = \underline{K}_1 ' $\underline{t}\underline{A}_1\underline{t}$ ' \underline{K} is a diagonal matrix whose diagonal elements m_j are also the eigenvalues of $\underline{t}\underline{A}_1\underline{t}$ '; \underline{K}_1 is an orthogonal matrix of eigenvectors of $\underline{t}\underline{A}_1\underline{t}$ '; g_1 = m_1 ; \underline{b} = $\underline{0}$ and the d_i satisfy the recursion relationship

$$d_{i} = (2i)^{-1} \sum_{r=0}^{i-1} h_{i-r} d_{r} \qquad i = 1, 2, \dots$$
 where
$$d_{0} = \prod_{j=1}^{f^{2}} M_{j}^{-1/2} ,$$

$$h_{s} = \prod_{j=1}^{f^{2}} (1 - 1/M_{j})^{s}$$
 and
$$M_{j} = m_{j}/9_{1}$$

2.4 NONCENTRALITY PARAMETER

we have
$$b = -K^{-1}(\underline{t}')^{-1}\mu^* = -K'(\underline{t}')^{-1}\mu^*$$
.

where \underline{K} is the orthogonal matrix defined in section 2.3. Again we have $\underline{V} = \underline{t} \cdot \underline{t}$ or $(\underline{t} \cdot)^{-1} = \underline{t} \underline{V}^{-1}$ and $\underline{b} = -\underline{K} \cdot (\underline{t} \cdot)^{-1} \ \underline{\mu}^* = -\underline{K} \cdot \underline{t} \underline{V}^{-1} \underline{\mu}^*$.

Now,
$$\lambda^2 = \frac{1}{2}\underline{b} \cdot \underline{b} = \frac{1}{2} \Sigma \underline{b}_{1}^{2}$$
and
$$\underline{b} \cdot \underline{b} = (-\underline{K} \cdot \underline{t} \underline{V}^{-1} \underline{\mu}^{*}) \cdot (-\underline{K} \cdot \underline{t} \underline{V}^{-1} \underline{\mu}^{*})$$

$$= \underline{\mu}^{*} \cdot \underline{V}^{-1} \underline{t} \cdot \underline{K} \underline{K} \cdot \underline{t} \underline{V}^{-1} \underline{\mu}^{*}$$

$$= \underline{\mu}^{*} \cdot \underline{V}^{-1} \underline{t} \cdot \underline{t} \underline{V}^{-1} \underline{\mu}^{*}$$

$$= \underline{\mu}^{*} \cdot \underline{V}^{-1} \underline{\mu}^{*} .$$

Therefore we obtain $\lambda^2 = \frac{1}{2}\underline{b} \cdot \underline{b} = \frac{1}{2}\underline{\mu}^* \cdot \underline{v}^{-1}\underline{\mu}^*$.

2.5 DISTRIBUTION OF THE RATIO OF QUADRATIC FORMS

Having obtained the distribution of \mathbb{Q}_1 and \mathbb{Q}_2 in the preceding section, the distribution of the ratio of \mathbb{Q}_2 to \mathbb{Q}_1 , i.e. the distribution of τ , is required.

It has been shown that \mathbb{Q}_1 and \mathbb{Q}_2 are independently distributed as mixture of central χ^2 distributions. Therefore the ratio of $\mathbb{Q}_2/\mathbb{Q}_1$ is distributed as a mixture of ratios of central χ^2 distributions (see Appendix I). Thus,

$$P(\tau = Q_2/Q_1 \leqslant \alpha) = \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} c_j d_i F_{p+2j,n-p+2i} \left(\frac{n-p+2i}{p+2j}\alpha_c\right) (2.4.1)$$
 where F_{v_1,v_2} (.) is an F-distribution and $\alpha_c = \alpha_g \sqrt{g_2}$.

2.6 POWER OF THE TEST

As it is more convenient to compute the incomplete beta distribution than the F distribution, the series (2.4.1) is expressed in terms of incomplete beta distribution with the help of the identity

$$F_{v1}, v_2(x) = I_{x/(1+x)}(\frac{1}{2}v_1, \frac{1}{2}v_2)$$

where $I_{\phi}(.)$ is the incomplete beta distribution. Then, the series (2.4.1) (see for example, Kanji (1975)) can be written as

$$p(\tau = Q_2/Q_1 \leq \alpha) = \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} c_j d_i I_{\phi}(\frac{1}{2}p+j, \frac{1}{2}(n-p)+i)$$

$$(2.6.1)$$

where $\phi = \alpha_C/(1+\alpha_C)$.

Let P_{II} be the type II error. Then,

$$P_{II} = P(\tau = Q_2/Q_1 \le \alpha)$$

$$= \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} c_j d_i I_{\phi}(\frac{1}{2}p+j,\frac{1}{2}(n-p)+i) \qquad (2.6.2)$$

is a generalised incomplete beta distribution, where $\alpha = \frac{p}{n-p} \varepsilon_{\epsilon}, \ \alpha_{c} = \alpha \, g_{1}/g_{2} \text{and } \epsilon \text{ is the level of significance.}$ Thus, the power of the test is given by

$$B(\lambda) = 1 - P_{II}$$

$$= \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} c_j d_i I_{\phi} (\frac{1}{2}p+j), \frac{1}{2}(n-p)+i) \qquad (2.6.3)$$

We will consider the cases where the error variances for the observations are not equal (tables 1A) and that the observations are serially correlated (tables 1B) in the manner given in Box (1954b). We consider also that X, as referred in (2.1.1), is a design matrix.

When more than two treatments are involved, like Horsnell (1953), we will consider two cases of divergent mean, namely,

ii)
$$U_1^* = U_2^* = \dots = U_{p-1}^* \le U_p^*$$
, that is divergent mean in the group with largest error variance.

Notice that, when $\lambda=0$, B(0) provides a measure of the effect of departure from the assumptions of homegeneity and independence of error variances on the test when the null hypothesis of equal group means is true.

For practical purposes only the first 26 terms will be considered in all the infinite sums in the actual calculations of power.

CHAPTER 3

POWER ASPECTS IN THE ONE-WAY LAYOUT

3.1 FIXED EFFECT MODEL

Consider a simple experiment, for example in a variety trial, to compare the mean damage of each variety due to a certain disease, using a complete randomised design, where the variabilities of susceptibility to that particular disease for each variety are different. In other words, we wish to compare group to group homogeneity of means while the group to group variances are heterogeneous, in the one-way classification of analysis of variance.

Suppose that there are n_i observations in group i, i=1,2,...k. Denote by y_{ij} the j^{th} observation in group i, by \overline{y}_i . the i^{th} group mean and \overline{y} . the grand mean. Usually we assume the model,

$$y_{ij} = \mu + t_i + e_{ij}$$
 (3.1.1)

where $\mu + t_i$ is the population mean for the i^{th} group; $\sum_{i} t_i = 0 \text{ and } e_{i,j} \text{ are errors distributed normally and independently about zero mean with common variance } \sigma^2.$ In matrix notation, model (3.1.1) becomes,

$$\underline{Y} = \underline{\mu} + \underline{T}\underline{t} + \underline{\varepsilon} \qquad (3.1.2)$$

where Y, µ and E are respectively (Nx1) vectors of observations, expected values of Y and random errors;

T and t are respectively (Nxk) design matrix for the treatments and (kx1) vector of treatment constants. A method

developed in the general linear model has been adopted which provides a more flexible alternative to that suggested by Box (1954a).

We retain the assumptions of homogeneity and independence of the errors but assume variance σ_i^2 for the i^{th} group where the σ_i^2 's are not necessarily equal. The sums of squares involved are

$$Q_2 = \sum_{i} n_i (\overline{y}_i - \overline{y}_i)^2 = \underline{Y} \underline{A}_2 \underline{Y}$$
 (3.1.3)

$$Q_1 = \sum_{i,j} \sum_{j} (\overline{y}_{i,j} - \overline{y}_{i,j})^2 = \underline{Y} \underline{A}_1 \underline{Y}$$
 (3.1.4)

where $\underline{A}_2 = (\underline{T}(\underline{T}'\underline{T})^{-1}\underline{T}' - \frac{1}{N}\underline{1}\underline{1}')$

$$\underline{A}_1 = (\underline{I} - \underline{T}(\underline{T}'\underline{T})^{-1}\underline{T}')$$

are both symmetric idempotent matrix of quadratic forms and I is an $(N\times N)$ identity matrix.

Let $\underline{H}=\underline{A}_2\underline{Y}$ and $\underline{\tau}=\underline{T}\underline{t}$ where $\underline{\tau}$ is an (Nx1) vector with elements t_i . Then Q_2 can be expressed in terms of H, viz,

$$Q_2 = \underline{H}'\underline{A}_2\underline{H} = \underline{Y}'\underline{A}_2\underline{Y}$$

where \underline{H} is distributed as $N(\underline{\tau},\underline{V})$. And, on setting

$$\Psi = \underline{H} - \underline{\tau} ,$$

Q₂ becomes Q₂ = $(\underline{\psi} + \underline{\tau})'\underline{A}_2(\underline{\psi} + \underline{\tau})$ where $\underline{\psi}$ is distributed as $N(\underline{O}, \underline{V})$. With the help of the transformations

$$\psi = N^*Kz$$
 and $\underline{\tau} = -N^*K\underline{b}$

 \mathbf{Q}_2 can be transformed to its canonical form as

$$Q_2 = (\underline{z} - \underline{b})'\underline{A}(\underline{z} - \underline{b})$$

where \underline{z} is distributed as $N(\underline{0}, \underline{I})$; $\underline{A} = \underline{K}'\underline{N}\underline{A}_2\underline{N}'\underline{K}$ is a diagonal matrix with diagonal elements a_i which are also the eigenvalues of $\underline{N}\underline{A}_2\underline{N}'$; \underline{K} is the orthogonal matrix of eigenvectors of $\underline{N}\underline{A}_2\underline{N}'$, and; \underline{N} is the upper triangular matrix defined by $\underline{V} = \underline{N}'\underline{N}$. Thus the quadratic form of the between group sum of squares Q_2 can be expressed as a nonhomogeneous quadratic form. The distribution of Q_2 (see section 2.3) is given by

$$P(Q_2 \le \alpha) = \sum_{j=0}^{\infty} c_j \chi_{f_1+2j}(\alpha/g_2)$$
 (3.1.5)

where $f_1 = k-1$ is the rank \underline{A}_2 ; $g_2 = a_1; \chi_f^2(.)$ is a chi-square distribution, and; the c_j satisfy the recursion relationship

$$c_{j} = (2j)^{-1} \sum_{r=0}^{j-1} h_{j-r} c_{r}$$
 $j = 1, 2, ...$

$$c_{0} = EXP (-\lambda^{2}) \prod_{i=1}^{f} A_{i}^{-\frac{1}{2}}$$

where
$$h_{m} = \sum_{i=1}^{f_{1}} (1 - 1/A_{i})^{m} + m \sum_{i=1}^{f_{1}} (b_{i}^{2}/A_{i})(1 - 1/A_{i})^{m-1}$$

and
$$A_i = a_i/g_2$$
.

Similarly, the quadratic form of Q_1 can be expressed as $\psi'\underline{A}_1\psi$. By the transformation $\psi=N'\underline{K}_1\underline{z}$, Q_1 is reduced to $\underline{z}'\underline{M}\underline{z}$ where $\underline{M}=\underline{K}_1'\underline{N}\underline{A}_1\underline{N}'\underline{K}_1$ is a diagonal matrix with diagonal elements m_j which are also the eigenvalues of $\underline{N}\underline{A}_1\underline{N}'$; \underline{K}_1 is an orthogonal matrix of eigenvectors and \underline{N} is as defined earlier. The distribution of Q_1 is given by

$$P(Q_1 \le \alpha) = \sum_{i=0}^{\infty} d_i \chi_{f_2 + 2i}^2(\alpha/g_1)$$
 (3.1.6)

where $f_2 = N-k$ is the rank of A_1 ; $g_1 = m_1$ and the disatisfy the recursion relationship

$$d_{i} = (2i)^{-1} \sum_{r=0}^{i-1} h_{i-r} d_{r}$$
 $i = 1,2,...$

where
$$d_0 = \prod_{j=0}^{f_2} M_j^{-\frac{1}{2}}$$

$$h_n = \sum_{j=0}^{f_2} (1 - 1/M_j)^n$$

and.

$$M_j = m_j/g_1$$
.

It can be proved, by lemma (2.2.3), that the two quadratic forms \mathbb{Q}_1 and \mathbb{Q}_2 are statistically independent.

The noncentrality parameter λ is given by

$$\lambda = (\frac{1}{2}b'b)^{\frac{1}{2}} = (\frac{1}{2}\sum_{i=1}^{1}b_{i}^{2})^{\frac{1}{2}}$$
 (3.1.7)

where $\underline{b} = \underline{K}'(\underline{N}')^{-1}\underline{\tau}$. Alternatively, $\lambda^2 = \frac{1}{2}\underline{\tau}'\underline{V}^{-1}\underline{\tau}$.

Proceeding as in section 2.6, the distribution of the test criterion U is given by

$$P(U=Q_2/Q_1 \leq \alpha) = \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} c_j d_i I_{\phi} (\frac{1}{2}f_1+j, \frac{1}{2}f_2+i)$$
 (3.1.8)

where $I_{\phi}(.)$ is a generalised incomplete beta distribution; $\phi=\alpha_{c}/(1+\alpha_{c})$ and $\alpha_{c}=\alpha_{1}/9_{2}$. For a chosen level of significance ϵ , α is given by $\alpha=F_{\epsilon}$ f_{1}/f_{2} .

Let P_{II} be the type II error. Then

$$P_{TT} = P(U \leq \alpha)$$

and the power of the test is given by

$$B(\lambda) = 1 - P_{II}$$
or
$$B(\lambda) = 1 - \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} c_{j} d_{i} I_{\phi} \left(\frac{k-1+2j}{2}, \frac{N-k+2i}{2} \right) \qquad (3.1.9)$$

3.2 RANDOM EFFECT MODEL

If the k populations described in the previous section were a random sample drawn from the large (possibly infinite) set of populations, the model described by (3.1.1) becomes a random effect model.

For example, in the determination of fuel consumption for a certain engine capacity, 1300 cc say, k models are randomly selected out of all possible models available in the market within the category. Let y_{ij} be the observed

fuel consumption of the jth car from the ith model after completion of a given route. Then, the model

$$y_{ij} = \mu + t_i + e_{ij}$$
 $i = 1, 2, ..., k$ (3.2.1)
 $j = 1, 2, ..., n_i$

describing the structure becomes a random effect model where t_i and $e_{i\,j}$ are independent normal variables each with zero expectation and with variancés σ_t^2 and σ_i^2 respectively. And the σ_i^2 's are not necessarily equal.

The general procedure for testing a hypothesis, and for estimation, is the same for the random effect model as for the fixed effect model. Sheffé (1959) has discussed the power of the test when the error variances are equal and the layout is balanced. Here we will consider the power of the test in the random effect model when the error variances are not equal and the layout is not balanced.

The sums of squares involved are,

$$Q_{1} = \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (y_{ij} - \bar{y}_{i.})^{2}$$
 (3.2.2)

$$Q_3 = \sum_{i=1}^{k} n_i (\bar{y}_i - \bar{y}_i)^2.$$
 (3.2.3)

Under the present model, the quadratic form of Q_1 ,

$$Q_{1} = \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (y_{ij} - \bar{y}_{i})^{2} = \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (e_{ij} - \bar{e}_{i})^{2},$$

$$(3.2.4)$$

is the same as that for the fixed effect model and so does the distribution of \mathbb{Q}_1 .

Like in the fixed effect model, \mathbb{Q}_3 can be expressed as

$$Q_3 = H_r^{\dagger}A_2H_r$$

where $\underline{H}_r = \underline{A}_2 \ \underline{Y}$ is distributed as $N(\underline{\tau}, \underline{S})$. \underline{A}_2 is given in (3.1.3), and \underline{S} is a variance-covariance matrix with diagonal elements $(n_i \sigma_t^2 + \sigma_i^2)$. Setting $\underline{\Psi}_r = \underline{H}_r - \underline{\tau}$ and following a similar procedure as in the fixed effect model, Q_3 can be reduced to its canonical form $(\underline{z} - \underline{b}_r)'\underline{A}*(\underline{z} - \underline{b}_r)$, where $\underline{A}* = \underline{K}_r'\underline{N}_r\underline{A}_2\underline{N}_r'\underline{K}_r$ and \underline{N}_r is defined by $\underline{S} = \underline{N}_r'\underline{N}_r$. The elements of \underline{z} are standard normal variates. The distribution of Q_3 can then be obtained easily and is given by

$$P(Q_3 \le \alpha) = \sum_{j=0}^{\infty} c_j^2 \chi_{k-1+2j}^2(\alpha/q_3)$$
 (3.2.5)

where $c_j \neq c_j$ and $g_3 \neq g_2$.

The noncentrality parameter λ is then given by

$$\lambda = (\frac{1}{2}b_{r-r}^{\dagger}b_{r-r}^{\dagger})^{\frac{1}{2}} \qquad \text{or} \qquad \lambda^2 = \frac{1}{2}\underline{\tau}^{\dagger}\underline{S}^{-1}\underline{\tau}.$$

To test the hypothesis of equal treatment effect, we proceed as in section 2.6 and the power of the test is given by

$$B(\lambda) = 1 - \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} c_j^i d_i I_{\phi}^i \left(\frac{k-1+2j}{2}, \frac{N-k+2i}{2} \right)$$
 (3.2.6)

where $\phi' \neq \phi$.

Four values of σ_t^2 , or VA as referred in tables 2.1A, 2.1B and 2.2A) namely 0.0, 0.5, 1.0 and 3.0 will be considered. Notice that when $\sigma_t^2 = 0.0$, the random effect model is reduced to the fixed effect model.

Apart from the heterogeneity of error variances, first-order serial correlation within treatment in the fixed effect model will also be considered, for both balanced and unbalanced layouts.

4. POWER ASPECTS IN THE TWO-WAY LAYOUT

4.1 FIXED EFFECTS MODEL

Sometimes, when testing the k treatments in r blocks in two-way layout, circumstances arise where the variances of the k treatments differ from treatment to treatment. Similarly, when the experimental material, which is homogeneous within block, is not homogeneous between blocks changes in variance may occur from block to block.

For example, in an experiment to compare t treatments and n breeds of cow for milk production on the cows having similar characteristics like age, weight and lactation stage, in the two-way layout. The variability for each treatment is homogeneous but may differ for different treatments and so do for breeds.

Consider a simple randomized block design with k columns, r rows, one observation per cell and no interaction. We make the usual assumptions that y_{ij}, the observed value from the ith row and the jth column, may be represented by the linear model

$$y_{ij} = \mu + \beta_i + \gamma_j + e_{ij}$$
 (4.1.1)

where μ , β_i and γ_j are respectively the grand mean, the row constants and the column constants such that $\Sigma\beta_i = \Sigma\gamma_j = 0.$

And the $e_{\mbox{i}\,\mbox{j}}$ are the random errors distributed independently about zero mean with common variance $\sigma^2.$

Like Box (1954b), we retain the assumptions of independence and equal variances but assume $\sigma_{\mathbf{j}}^2$ for the \mathbf{j}^{th} column and that correlations within row may exist while the rows remain statistically independent. But unlike Box, we will use the method developed in Chapter 2 which provides greater scope and flexibility than that suggested by him, so long as normality is assumed.

Alternatively, we can denote the model (4.1.1) in matrix notation as

$$\underline{Y} = \underline{\mu} + \underline{\beta}_{N} + \underline{\gamma}_{N} + \underline{\varepsilon}$$
 (4.1.2)

where $\underline{\beta}_N = \underline{R}\underline{\beta}_\Gamma$, $\underline{\gamma}_N = \underline{C}\underline{\gamma}_k$ and $N = \mathrm{rk}$; \underline{R} is an (Nxr) design matrix for the rows and $\underline{\beta}_\Gamma$ is the corresponding $(\mathrm{rx}1)$ vector of row constants, and similarly, \underline{C} and $\underline{\gamma}_k$ for the columns. $\underline{\gamma}$, $\underline{\mu}$ and $\underline{\varepsilon}$ are, as before, $(\mathrm{Nx}1)$ vectors of observations, expected values of $\underline{\gamma}$ and errors respectively, where $\underline{\varepsilon}$ is distributed as $N(\underline{O},\underline{V})$.

The sums of squares involved in the between-columns and the between-rows tests are

$$Q_3 = r \sum_{j=1}^{k} (\bar{y}_{,j} - \bar{y}_{,.})^2 = \underline{Y} \underline{A}_3 \underline{Y}$$
 (4.1.3)

$$Q_2 = k \sum_{i=1}^{r} (\bar{y}_i - \bar{y}_i)^2 = \underline{Y} \underline{A}_2 \underline{Y}$$
 (4.1.4)

$$Q_{1} = \sum_{i=1}^{r} \sum_{j=1}^{k} (y_{ij} - \bar{y}_{i} - \bar{y}_{j} + \bar{y}_{..})^{2} = \underline{Y}' \underline{A}_{1} \underline{Y}_{(4.1.5)}$$

where
$$\underline{A}_3 = (\underline{C}(\underline{C}'\underline{C})^{-1}\underline{C}' - \frac{1}{N}\underline{1}_N\underline{1}_N') = (\frac{1}{r}\underline{C}\underline{C}' - \frac{1}{N}\underline{1}_N\underline{1}_N')$$

$$\underline{A}_2 = (\underline{R}(\underline{R}'\underline{R})^{-1}\underline{R}' - \frac{1}{N}\underline{1}_N\underline{1}_N') = (\frac{1}{k}\underline{R}\underline{R}' - \frac{1}{N}\underline{1}_N\underline{1}_N')$$

and
$$\underline{A}_1 = (\underline{I}_N - \underline{A}_2 - \underline{A}_3 + \frac{1}{N} \underline{1}_N \underline{1}_N^{\dagger})$$

are all symmetric idempotent matrix of quadratic forms. $\underline{I}_N \text{ and } \underline{1}_N \text{ are respectively the (NxN) identity matrix and}$ the (Nx1) vector of unity elements.

Consider the distribution of Q_3 . Let $\underline{H}_c = \underline{A}_3\underline{Y}$. Then Q_3 can be expressed in terms of \underline{H}_c as

$$Q_3 = H_c A_3 H_c = Y' A_3 Y$$

where \underline{H}_c is distributed as $N(\underline{\Upsilon}_N,\underline{V})$. On setting $\underline{\Psi}_c=\underline{H}_c-\underline{\Upsilon}_N$, Q_3 becomes

$$Q_3 = (\underline{\psi}_c + \underline{\gamma}_N)' \underline{A}_3 (\underline{\psi}_c + \underline{\gamma}_N)$$

where $\underline{\psi}_{\mathtt{C}}$ is distributed as N($\underline{\mathtt{O}},\underline{\mathtt{V}}$) . With the transformations

$$\underline{\Psi}_{\mathbf{C}} = \underline{\mathbf{t}}' \underline{\mathbf{K}} \underline{\mathbf{z}}$$
 and $\underline{\Upsilon}_{\mathbf{N}} = -\underline{\mathbf{t}}' \underline{\mathbf{K}} \underline{\mathbf{b}}$

 Q_3 can be reduced to its canonical form $(\underline{z} - \underline{b}) \cdot \underline{A} (\underline{z} - \underline{b})$ where \underline{z} is distributed as $N(\underline{0},\underline{I})$; $\underline{A} = \underline{K} \cdot \underline{t} \underline{A}_3 \underline{t} \cdot \underline{K}$ is a diagonal matrix with diagonal elements a_i which are also the eigenvalues of $\underline{t} \underline{A}_3 \underline{t} \cdot \underline{t}$; \underline{K} is the orthogonal matrix of eignevectors of $\underline{t} \underline{A}_3 \underline{t} \cdot \underline{t}$. And \underline{t} is the upper triangular matrix defined by $\underline{V} = \underline{t} \cdot \underline{t}$. Thus Q_3 , or the between-columns sum of squares, can be expressed as a non-homogeneous quadratic form. The distribution of Q_3 (see section 2.3) is given by

$$P(Q_3 \le \alpha) = \sum_{j=0}^{\infty} c_j \chi^2 f_{3} + 2j(\alpha/g_3)$$
 (4.1.6)

where $f_3 = k-1$ is the rank of A_3 ; $g_3 = a_1$; $\chi_f^2(.)$ is a chi-square distribution and the c_j satisfy the recursion relationship

$$c_{j} = (2j)^{-1} \sum_{n=0}^{j-1} h_{j-n} c_{n}$$
 $j = 1, 2, ...$

$$c_{0} = EXP(-\lambda_{c}^{2}) \prod_{i=1}^{f_{3}} A_{i}^{-\frac{1}{2}}$$

where
$$h_m = \sum_{i=1}^{f_3} (1 - 1/A_i)^m + \sum_{i=1}^{m} (b_i^2/A_i) (1 - 1/A_i)^{m-1}$$

and $A_i = a_i/g_3$. The noncentrality parameter λ_c is given by

$$\lambda_{\mathbf{c}} = \left(\frac{1}{2}\mathbf{b}^{\mathbf{b}}\mathbf{b}\right)^{\frac{1}{2}} = \left(\frac{1}{2}\Sigma \mathbf{b}_{\mathbf{i}}^{2}\right)^{\frac{1}{2}} \quad \text{or} \quad \lambda_{\mathbf{c}}^{2} = \frac{1}{2}\gamma_{\mathbf{N}}^{\mathbf{i}}\mathbf{b}^{-1}\gamma_{\mathbf{N}}.$$

Similarly, with the help of the transformations

$$\underline{H}_r = \underline{A}_2\underline{Y}$$
, $\underline{\Psi}_r = \underline{H}_r - \underline{\beta}_N = \underline{t}'\underline{K}_2\underline{z}$ and $\underline{\beta}_N = -\underline{t}'\underline{K}_2\underline{b}^*$,

 \mathbb{Q}_2 can be reduced to its canonical form $(z-\underline{b}^*)'\underline{A}^*(z-\underline{b}^*)$ where $\underline{A}^* = \underline{K}_2'\underline{t}\underline{A}_2\underline{t}'\underline{K}_2$ is a diagonal matrix with diagonal elements a_i^* which are also the eigenvalues of $\underline{t}\underline{A}_2\underline{t}'; \underline{K}_2$ is the orthogonal matrix of eigenvectors of $\underline{t}\underline{A}_2\underline{t}'; \underline{z}$ and \underline{t} are as defined earlier. Again \mathbb{Q}_2 , or the between-rows sum of squares, can also be expressed as a non-homogeneous quadratic form. The distribution of \mathbb{Q}_2 is given by

$$P(Q_2 \leq \alpha) = \sum_{j=0}^{\infty} c_j^* \chi_{f_2+2j}^2(\alpha/g_2)$$
 (4.1.7)

where $f_2 = r-1$ is the rank of $\frac{A}{2}$; $g_2 = a_1^*$ and the c_j^* satisfy the recursion relationship

$$c_{j}^{*} = (2j)^{-1} \sum_{n=0}^{j-1} h_{j-n}^{*} c_{n}^{*}$$
 $j = 1, 2, ...$

$$c_{0}^{*} = EXP(-\lambda_{r}^{2}) \prod_{i=1}^{f} 2 A_{i}^{*-\frac{1}{2}}$$

where
$$h_m^* = \sum_{i=1}^{f_2} (1 - 1/A_i^*)^m + m \sum_{i=1}^{f_2} (b_i^{*2}/A_i^*) (1 - 1/A_i^*)^{m-1}$$

and $A_i^* = a_i^*/g_2$. The noncentrality parameter λ_r is given by

$$\lambda_{\mathbf{r}} = (\frac{1}{2}\underline{b}^{*}\underline{b}^{*})^{\frac{1}{2}} = (\frac{1}{2}\Sigma b_{\mathbf{i}}^{*2})^{\frac{1}{2}} \text{ or } \lambda_{\mathbf{r}}^{2} = \frac{1}{2}\underline{\beta}_{\mathbf{N}}^{\mathbf{i}}\underline{V}^{-1}\underline{\beta}_{\mathbf{N}}$$

and likewise, with the transformations

$$H_e = A_1Y = t'K_1Z$$

 \mathbb{Q}_1 can be reduced to its canonical form $\underline{z}' \underline{M} \underline{z}$ where $\underline{M} = \underline{K}_1' \underline{t} \underline{A}_1 \underline{t}' \underline{K}_1$ is a diagonal matrix with diagonal elements m_j which are also the eigenvalues of $\underline{t} \underline{A}_1 \underline{t}'$; \underline{K}_1 is the orthogonal matrix of eigenvectors of $\underline{t} \underline{A}_1 \underline{t}'$; \underline{z} and \underline{t} are as defined earlier. Here, the error sum of squares \mathbb{Q}_1 can be expressed as a homogeneous quadratic form and the distribution is given by

$$P(Q_1 \le \alpha) = \sum_{i=0}^{\infty} d_i \chi_{f_1 + 2i}^2 (\alpha/g_1)$$
 (4.1.8)

where $f_1 = (k-1)(r-1)$ is the rank of A_1 ; $g_1 = m_1$ and the d, satisfy the recursion relationship

$$d_{i} = (2i)^{-1} \sum_{n=0}^{i-1} H_{i-n} d_{n}$$
 $i = 1,2,...$

$$d_0 = \prod_{j=1}^{f_1} M_j^{-\frac{1}{2}}$$

where
$$H_s = \sum_{j=1}^{f_1} (1 - 1/M_j)^s$$
 and $M_j = m_j/g_1$.

The sums of squares Q_1 , Q_2 and Q_3 are mutually independent since, by lemma (2.2.3), $\underline{A}_1\underline{A}_2 = \underline{A}_2\underline{A}_3 = \underline{A}_3\underline{A}_1 = \underline{0}$. This condition allows us to carry out both the between-columns and the between-rows tests at the same time in the usual manner even though the assumptions, apart from normality, are not met.

To test the hypothesis of no column effects, we proceed as in section 2.6. The distribution of the test criterion $\mathbf{U}_{\mathbf{C}}$ is given by

$$P(U_{c} = Q_{3}/Q_{1} \leq \alpha) = \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} c_{j} d_{i} I_{\phi_{c}}(\frac{1}{2}f_{3}+j, \frac{1}{2}f_{1}+i)$$
(4.1.9)

where $I_{\phi}(.)$ is a generalised incomplete beta distribution; $\phi = \alpha_{C}/(1+\alpha_{C})$ and $\alpha_{C} = \alpha g_{1}/g_{3}$. For a certain chosen level of significance ϵ , α is given by $\alpha = F_{\epsilon}f_{3}/f_{1}$. And the power of the test is $B_{C}(\lambda_{C})$,

$$B_{c}(\lambda_{c}) = 1 - P(U_{c} \le \alpha)$$

$$= 1 - \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} c_{j} d_{i} I_{\phi_{c}}(\frac{k-1+2j}{2}, \frac{(k-1)(r-1)+2i}{2}). \tag{4.1.10}$$

Likewise, the power of the corresponding between-rows comparisons is given by ${\bf B_r}(\,\lambda_{\rm r}),$

$$B_{r}(\lambda_{r}) = 1 - \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} c_{j}^{*} d_{i} I_{\phi_{r}}(\frac{r-1+2j}{2}, \frac{(k-1)(r-1)+2i}{2})$$
(4.1.11)

where $\phi_r = \frac{\alpha_r}{(1+\alpha_r)}$, $\frac{\alpha_r}{r} = \frac{\alpha^* g_1/g_2}{2}$ and $\frac{\alpha^*}{r} = F_\epsilon f_2/f_1$ for given level of significance ϵ .

4.2 RANDOM EFFECTS MODEL

If we now consider both treatments and blocks are random samples from their respective populations, then the model (4.1.1) becomes a random effects model.

Consider the two-way layout random effects model where the error variances may not equal and errors are not necessarily uncorrelated. We will assume a model similar to that of the fixed effects one, namely,

$$y_{ij} = \mu + \beta_{i} + \gamma_{j} + e_{ij}$$
 (4.2.1)

Unlike in the fixed effects model, we assume that $\beta_i,~\gamma_j$ and $e_{i\,j}$ are all independent random variables. We further assume that the $^\beta{}_i$ and the $^\gamma{}_j$ are normally distributed with zero expectations and variances σ^2_β and σ^2_γ respectively.

Employing the same notations as in the fixed effects model, we have

$$\underline{Y} = \underline{\mu} + \underline{\beta}_{N} + \underline{\gamma}_{N} + \underline{\varepsilon}. \qquad (4.2.2)$$

The conditions, $\Sigma \beta_i = \Sigma \gamma_j = 0$, concerning the β_i and the γ_j are no longer valid in the random effects model since they are no longer constants but independent random variables.

Owing to the fact that the e_{ij} are independent from both the β_i and the γ_j , the error sum of squares \mathbb{Q}_1 is the same in the random effects model as in the fixed effects case. Hence the distribution of the error sum of squares in the random effects model is the same as that given in (4.1.8).

Consider the distribution of the between-columns sum of squares Q_3 in the random effects model. Again, let $\underline{H}_c = \underline{A}_3\underline{Y}$. Then Q_3 can be expressed in terms of \underline{H}_c as

$$Q_3 = H_c^{\dagger} A_3 H_c = \underline{Y}^{\dagger} \underline{A}_3 \underline{Y}$$

where \underline{H}_c is now distributed as $N(\underline{\gamma}_N,\underline{S})$ and $\underline{S}=(\underline{r}\sigma_{\underline{\gamma}}^2\underline{I}_N+\underline{V})$.

And \underline{V} is the variance-covariance matrix for the $\underline{\varepsilon}$ which is the same as in the fixed effects model. Setting $\underline{\psi}_{c} = \underline{H}_{c} - \underline{\gamma}_{N}$, \underline{Q}_{3} becomes $(\underline{\psi}_{c} + \underline{\gamma}_{N})'\underline{A}_{3}(\underline{\psi}_{c} + \underline{\gamma}_{N})$. With the transformations

$$\frac{\Psi_{C}}{\Psi_{C}} = \frac{t'KZ}{M}$$
 and $\frac{\Upsilon_{N}}{N} = -\frac{t'KD}{M}$

 Q_3 can be reduced to its canonical form $(z - b)'\underline{A}(z - b)$ where z is the standardised normal variate; $\underline{A} = \underline{K}'\underline{t}\underline{A}_3\underline{t}'\underline{K}$ is a diagonal matrix whose diagonal elements a_1 are also the eigenvalues of $\underline{t}\underline{A}_3\underline{t}'$; \underline{K} is the orthogonal matrix of eigenvectors of $\underline{t}\underline{A}_3\underline{t}'$. And \underline{t} is now defined by $\underline{S} = \underline{t}'\underline{t}$. The distribution of the quadratic form Q_3 is then given by

$$P(Q_{3} \leq \alpha) = \sum_{j=0}^{\infty} c_{j}^{*} \chi_{k-1+2j}^{2}(\alpha/9_{3}^{*}). \qquad (4.2.3)$$

where c; and g; are different from c; and g; in the fixed effects model since the variance-covariance matrix V has changed to \underline{S} .

To test the hypothesis of equal treatment effects, we proceed as in section 2.6 and the power of the test is then given by $B_c(\lambda_c)$,

$$B_{c}(\lambda_{c}) = 1 - P(U_{c} = Q_{3}/Q_{1} \leq \alpha)$$

$$= 1 - \sum_{i=0}^{\infty} \sum_{i=0}^{\infty} c_{i}^{i} d_{i}^{i} I_{\phi_{c}^{i}} \left(\frac{k-1+2j}{2}, \frac{(k-1)(r-1)+2i}{2}\right)$$

where $\phi_{C}^{i} \neq \phi_{C}^{i}$.

The distribution of \mathbb{Q}_2 and, hence, the power of the test for the hypothesis of equal row effects in the random effects model can be obtained in a similar way.

Like Box (1954b) and Kanji (1976A, 1978), we will consider the effects of unequal column variances and serial correlation within row on the power of the between-column test in the random effects model. In addition, the effects of serial correlation within row on the power of the corresponding between-row test will also be considered.

Only the effects of unequal column variances on the power for the between-column test will be considered in the random effects model for the three values of $\frac{\sigma^2}{\gamma}$ (VA as referred in the table 3.2A), namely 0.5, 1.0 and 3.0.

Notice that when σ_{γ}^2 = 0.0, or VA = 0.0, the random effects model is reduced to the fixed effects model. And we will refer the fixed effects model by referring VA = 0.0 in random effects model (tables 3.1A, 3.1B and 3.1C).

CHAPTER 5

5. POWER ASPECTS IN ANALYSIS OF COVARIANCE

It sometimes happens that during the carrying out of a carefully designed experiment there is an uncontrollable variable which varies between the runs of the experiment. As well as the individual results, the value of this uncontrollable or concomitant variable is also measured at the time of each run. Before a conventional analysis of variance can be performed, the effect of the concomitant variable, or the covariate, must be removed by a method analogous to the regression analysis. This technique is known as the analysis of covariance.

Consider the simple case of the analysis of covariance with one concomitant variable in, for the general case of, the unbalanaced one-way layout represented by the model

$$y_{ij} = \mu_y + t_i + \gamma (z_{ij} - \mu_z) + e_{ij}$$
 $i = 1, 2, ..., k$
 $j = 1, 2, ..., n_i$
(5.1)

or in matrix notation,

$$\underline{Y} = \underline{\mu}_{y} + \underline{\tau}_{N} + (\underline{Z} - \underline{\mu}_{z})\underline{\gamma} + \underline{\varepsilon} \qquad (5.2)$$

where \underline{Y} and \underline{Z} are (Nx1) vectors of observations and covariate respectively with respective expectations \underline{H}_{y} and $\underline{\mu}_{z}$; $\underline{\tau}_{N} = \underline{T}\underline{\tau}_{k}$ with \underline{T} and $\underline{\tau}_{k}$ being the (Nxk) design matrix for the treatments and the (kx1) vector of adjusted treatment constants respectively, such that $\underline{\Sigma} n_{i} t_{i} = 0$ or $\underline{1}_{N}^{i} \underline{\tau}_{N} = \underline{0}$ and $\underline{1}_{N}$ is an (Nx1) vector of unity elements; $\underline{\varepsilon}$ is an (Nx1) vector of random errors; \underline{Y} is a (1x1) vector of the common regression coefficient of the covariate and $\underline{N} = \underline{\Sigma} n_{i}$.

The usual assumptions associated with the analysis of covariance are that the errors are independently and normally distributed about mean zero with common variance σ^2 , and that the γ_i , the regression slope for the group i, are homogeneous. Here we will consider the effects on power when these assumptions are violated in the sense that the error variances are not equal but with error variance σ^2_i for group i, and that the γ_i are not homogeneous owing to the unequal group variabilities of the covariate.

The least squares estimate of γ is given by

$$\hat{Y} = \sum_{i,j} (z_{i,j} - \bar{z}_{..}) (y_{i,j} - \bar{y}_{..}) / \sum_{i,j} (z_{i,j} - \bar{z}_{..})^{2}$$
or
$$\hat{Y} = (\underline{Z}' \underline{A}_{T} \underline{Z})^{-1} \underline{Z}' \underline{A}_{T} \underline{Y}$$

where $\underline{A}_T = (\underline{I}_N - \frac{1}{N}\underline{1}_N\underline{1}_N)$ is a symmetric idempotent matrix, and \bar{y} and \bar{z} are respectively the grand means of the y's and that of the z's.

The sums of squares involved, see Sheffe (1959, pp.199 - 204), are

$$Q_{1} = \sum_{i,j}^{\Sigma \Sigma} (y_{i,j} - \overline{y}_{..})^{2} - \frac{\left[\sum_{i,j}^{\Sigma \Sigma} (y_{i,j} - \overline{y}_{..})(z_{i,j} - \overline{z}_{..})\right]^{2}}{\sum_{i,j}^{\Sigma} (z_{i,j} - \overline{z}_{..})^{2}}$$

$$= \underline{Y} \cdot \underline{A}_{T} \underline{Y} - \underline{Y} \cdot \underline{A}_{T} \underline{Z} (\underline{Z} \cdot \underline{A}_{T} \underline{Z})^{-1} \underline{Z} \cdot \underline{A}_{T} \underline{Y},$$

$$Q_{2} = \sum_{i,j}^{\Sigma\Sigma} (y_{i,j} - y_{i,j})^{2} - \frac{\left[\sum_{i,j}^{\Sigma\Sigma} (y_{i,j} - \bar{y}_{i,j})(z_{i,j} - \bar{z}_{i,j})\right]^{2}}{\sum_{i,j}^{\Sigma\Sigma} (z_{i,j} - \bar{z}_{i,j})^{2}}$$

$$= \underline{Y} \underline{A}_{\underline{E}} \underline{Y} - \underline{Y} \underline{A}_{\underline{E}} \underline{Z} (\underline{Z} \underline{A}_{\underline{E}} \underline{Z})^{-1} \underline{Z} \underline{A}_{\underline{E}} \underline{Y}$$

and

$$Q_3 = Q_1 - Q_2$$

where \mathbf{Q}_1 , \mathbf{Q}_2 and \mathbf{Q}_3 are respectively the adjusted total sum of squares, the adjusted error sum of squares and the adjusted treatment sum of squares; $\bar{\mathbf{y}}_i$. and $\bar{\mathbf{z}}_i$ are the group means of the y's and that of the z's respectively, and;

$$\underline{A}_{E} = (\underline{I}_{N} - \underline{T}(\underline{T}'\underline{T})^{-1}\underline{T}')$$

is a symmetric idempotent matrix. Let

$$Q_1 = \underline{Y}'\underline{A}_1\underline{Y}$$
 and $Q_2 = \underline{Y}'\underline{A}_2\underline{Y}$

where
$$\underline{A}_1 = (\underline{A}_T - \underline{A}_T \underline{Z} (\underline{Z}' \underline{A}_T \underline{Z})^{-1} \underline{Z}' \underline{A}_T)$$
 (5.3)

$$\underline{A}_2 = (\underline{A}_E - \underline{A}_E \underline{Z} (\underline{Z}^{\dagger} \underline{A}_E \underline{Z})^{-1} \underline{Z}^{\dagger} \underline{A}_E)$$
 (5.4)

then $Q_3 = \underline{Y}^1 \underline{A}_3 \underline{Y}$

where
$$\underline{A}_3 = (\underline{A}_1 - \underline{A}_2)$$
.

It can be seen that \underline{A}_1 and \underline{A}_2 are both symmetric idempotent matrices. In fact, it can be proved that the matrix \underline{A}_3 (see Appendix II) is also symmetric and idempotent.

Let $\underline{H} = \underline{A}_3\underline{Y}$. Then \mathbb{Q}_3 can be expressed in terms of \underline{H} as

$$Q_3 = \underline{H}'\underline{A}_3\underline{H} = \underline{Y}'\underline{A}_3\underline{Y}$$

where \underline{H} is distributed as $N(\underline{\tau}_N,\underline{v})$. Consider the expectation of \underline{H} .

Notice that $E(\underline{H})$ is invariant, under multiplication, to the term $\underline{T}(\underline{T}'\underline{T})^{-1}\underline{T}'$, that is

$$\underline{T}(\underline{T}'\underline{T})^{4}\underline{T}'E(\underline{H}) = \underline{T}(\underline{T}'\underline{T})^{-1}\underline{T}'\underline{\tau}_{N} = \underline{\tau}_{N} = E(\underline{H})$$

or

$$E(\underline{H}) = \underline{\tau}_{N} = \underline{A}_{3}E(\underline{T}(\underline{T}'\underline{T})^{-1}\underline{T}'\underline{Y}) = (\underline{A}_{1}-\underline{A}_{2})(\underline{\mu}_{y}+\underline{\tau}_{0})$$

$$= \underline{\tau}_{0}-\underline{A}_{+}\underline{Z}(\underline{Z}'\underline{A}_{7}\underline{Z})'\underline{Z}'\underline{\tau}_{0}$$
(5.5)

since
$$\underline{A}_{T}(\underline{\mu}_{y} + \underline{\tau}_{0}) = \underline{\tau}_{0}$$
 and $\underline{A}_{E}(\underline{\mu}_{y} + \underline{\tau}_{0}) = \underline{0}$,

where $\underline{Y}_i = \underline{T}(\underline{T}'\underline{T})^{-1}\underline{T}'\underline{Y}$, $\underline{E}(\underline{Y}_i) = (\underline{\mu}_y + \underline{\tau}_0)$ and $\underline{\tau}_0$ is the observed or the unadjusted treatment constants,

and
$$\underline{A}_t = \underline{T}(\underline{T}'\underline{T})^{-1}\underline{T}'\underline{A}_{\overline{T}} = (\underline{T}(\underline{T}'\underline{T})^{-1}\underline{T}' - \frac{1}{N}\underline{1}_{N}\underline{1}_{N})$$

is also a symmetric idempotent matrix. Now, on setting $\Psi=H-\tau_N$, the quadratic form of Q_3 becomes

$$Q_3 = (\underline{\Psi} + \underline{\tau}_N) \cdot \underline{A}_3 (\underline{\Psi} + \underline{\tau}_N)$$

where $\underline{\Psi}$ is distributed as N($\underline{0}$, \underline{V}). With the transformations

$$\underline{\psi} = \underline{N}'\underline{K}\underline{\times}$$
 and $\underline{\tau}_{N} = -\underline{N}'\underline{K}\underline{b}$

 Q_3 can be reduced to its canonical form $(\underline{x} - \underline{b})'\underline{A}(\underline{x} - \underline{b})$ where $\underline{A} = \underline{K'NA_3N'K}$ is a diagonal matrix whose diagonal elements a_i are also the eigenvalues of $\underline{NA_3N'}$; \underline{K} is the orthogonal matrix of eigenvectors of $\underline{NA_3N'}$ and; \underline{N} is the upper triangular matrix defined by $\underline{V} = \underline{N'N}$. Thus the

adjusted treatment sum of squares Q_3 can be expressed as a non-homogeneous quadratic form and the distribution (see section 2.3) is given by

$$P(Q_3 \le \alpha) = \sum_{j=0}^{\infty} c_j \chi_{f_1+2j}^2(\alpha/g_3)$$
 (5.6)

where $f_1 = k-1$ is the rank of A_3 ; $g_3 = a_1$; $\chi_f^2(.)$ is a chi-square distribution and the c_j satisfy the recursion relationship

$$c_{j} = (2j)^{-1} \sum_{r=0}^{j-1} h_{j-r} c_{r}$$
 $j = 1, 2, ...$
 $c_{0} = EXP(-\lambda^{2}) \prod_{i=1}^{f} A_{i}^{-\frac{1}{2}}$

where
$$h_m = \sum_{i=1}^{f_1} (1 - 1/a_i)^m + \sum_{i=1}^{m} (b_i^2/A_i) (1 - 1/A_i)^{m-1}$$

and $A_i = a_i/g_3$. The nuncentrality parameter λ is given by

$$\lambda = (\frac{1}{2}b^{1}b)^{\frac{1}{2}} = (\frac{1}{2}\Sigma b_{1}^{2})^{\frac{1}{2}}$$

where $\underline{b} = \underline{K}'(\underline{N}')^{-1}\underline{\tau}_{\underline{N}}$. Alternatively, $\lambda^2 = \frac{1}{2}\underline{b}'\underline{b} = \frac{1}{2}\underline{\tau}_{\underline{N}}\underline{V}^{-1}\underline{\tau}_{\underline{N}}$. If we express λ in terms of the observed treatment constants $\underline{\tau}_{0}$, then, using (5.5) we have

$$\lambda^2 = \frac{1}{2} (\underline{\tau}_o - \underline{A}_t \underline{z} (\underline{z}' \underline{A}_T \underline{z})^{-1} \underline{z}' \underline{\tau}_o)' \underline{v}^{-1} (\underline{\tau}_o - \underline{A}_t \underline{z} (\underline{z}' \underline{A}_T \underline{z})^{-1} \underline{z}' \underline{\tau}_o)$$

$$= \frac{1}{2} \underline{\tau}_{0} \underline{v}^{-1} \underline{\tau}_{0} - \frac{1}{2} \underline{\tau}_{0} \underline{v}^{-1} \underline{A}_{t} \underline{z} (\underline{z}^{t} \underline{A}_{T} \underline{z})^{-1} \underline{z}^{t} \underline{\tau}_{0}.$$

$$= \frac{1}{2} \tau_{-0}^{1} v^{-1} \tau_{-0} - \frac{1}{2} t_{-0}^{1} v^{-1} A_{t} Z Z' Z_{t} \tau_{-0} (Z' A_{T} Z)^{-1}$$
(5.7)

or
$$\lambda^2 = \sum \left(\frac{n_i t_{oi}^2}{2\sigma_i^2}\right) - \frac{\sum \left(n_i t_{oi} \bar{z}_i\right) \sum_{i} \left(n_i t_{oi} \bar{z}_i\right) / \sigma_i^2}{2 \sum_{ij} \left(z_{ij} - \bar{z}_i\right)^2}$$
(5.8)

where \underline{V} is diagonal and t_{0i} are the elements of $\underline{\tau}_{0}$. Notice that when the error variances are equal, the noncentrality parameter given by (5.8) above is the same as that given by Graybill (1961, pp.392).

Similarly, the adjusted error sum of squares \mathbb{Q}_2 can be expressed in terms of \underline{H}_e as $\underline{H}_e^L\underline{A}_2\underline{H}_e$ where $\underline{H}_e=\underline{A}_2\underline{Y}_e$ is distributed as $N(\underline{O},\underline{V})$. By the transformation $\underline{H}_e=\underline{N}'\underline{K}_e\underline{x}$, \underline{Q}_2 is reduced to its canonical form $\underline{x}'\underline{M}\underline{x}$ where $\underline{M}=\underline{K}_e^L\underline{N}\underline{A}_2\underline{N}'\underline{K}_e$ is a diagonal matrix whose diagonal elements \underline{m}_j are also the eigenvalues of $\underline{N}\underline{A}_2\underline{N}'$; \underline{K}_e is the orthogonal matrix of eigenvectors of $\underline{N}\underline{A}_2\underline{N}'$; \underline{x} and \underline{N} are as defined earlier. The distribution of \underline{Q}_2 is given by

$$P(Q_2 \leq \alpha) = \sum_{i=0}^{\infty} d_i \chi_{f_2+2i}^2(\alpha/q_2)$$
 (5.9)

where $f_2 = N-k-1$ is the rank of \underline{A}_2 ; $g_2 = m_1$ and the d_i satisfy the recursion relationship

$$d_{i} = (2i)^{-1} \sum_{r=0}^{i-1} h_{i-r}^{r} d_{r}$$

$$d_{0} = \prod_{j=1}^{f_{2}} M_{j}^{-\frac{1}{2}}$$

$$i = 1, 2, ...$$

where
$$h_s' = \sum_{j=1}^{f_2} (1 - 1/M_j)^s$$
 and $M_j = m_j/g_2$.

It can be proved, by lemma (2.2.3), that the two quadratic forms \mathbb{Q}_2 and \mathbb{Q}_3 are statistically independent (using the fact that $\underline{\mathbb{A}}_3$ is idempotent).

Proceeding as in section 2.6, the distribution of the test criterion U is given by

$$P(U = Q_3/Q_2 < \alpha) = \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} c_j d_i I_{\phi} (\frac{1}{2}f_1 + j, \frac{1}{2}f_3 + i)$$

where $I_{\phi}(.)$ is a generalised incomplete beta distribution; $\phi = \frac{\alpha}{c}/(1+\alpha_c)$, $\alpha_c = \frac{\alpha g_2}{g_3}$, $\alpha = \frac{k-1}{N-k-1}$ F_{ϵ} and ϵ is the chosen level of significance.

Let P_{II} be the type II error. Then, $P_{II}=P(U\leqslant\alpha)$ and the power of the test of equal adjusted treatment effects is given by

$$B(\lambda) = 1 - P_{II}$$

$$= 1 - \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} c_{j} c_{j} \left(\frac{k-1+2j}{2}, \frac{N-k-1+2i}{2}\right) \qquad (5.10)$$

We will consider the cases where the design is balanced and the group means of the covariate are equal so that $\frac{\tau}{-N} = \frac{\tau}{-0}$. Like the divergent mean, we will consider three cases for the covariate, namely,

- i) $S_1 = S_2 = ... = S_k$, that is the group variabilities of the covariate are homogeneous;
- ii) $S_2 = S_3 = \dots = S_k < S_1$, that is the group variability of the covariate is high in the group with small error variance, and;
- · iii) $S_1 = S_2 = \cdots = S_{k-1} < S_k$, that is the group variability of the covariate is high in the group with large error variance, where $S_i = \frac{\sum (z_{i,j} \bar{z}_{i,j})^2}{(n_i 1)}$.

Apart from heterogeniety of error variances (tables 4A), like in the one-way layouts, first-order serial correlation within treatment (tables 4B) will also be considered.

CHAPTER 6

6. POWER ASPECTS IN SPLIT-PLOT DESIGN

In many experiments where factorial arrangement is desired, it may not be possible to completely randomise the order of experimentation. There are still many practical situations in which randomisation within blocks is not at all feasible. Under certain conditions, these restrictions will lead to a split-plot design.

For instance, the case described by Cochran and Cox (1957, pp.293-294) in which both factors, types of furnace for the preparation of alloy and types of mould into which alloy might be poured, are to be interested. The natural procedure is to take the material prepared in any furnace, and pour some of it into each mould. That is, material prepared in one furnace at any one time provides a complete replicate for the comparisons among moulds, which is a typical feature of a split-plot design.

Consider a simple split-plot design (see, for example, Kempthorne (1973), pp.370-378) with t whole-plots or main-plots, s sub-plots and r replicates represented by the model

$$y_{ijk} = \mu + \gamma_i + \tau_j + \eta_{ij} + \xi_j + \zeta_{jk} + \epsilon_{ijk}$$
 (6.1)

where y_{ijk} is the observed value from the k^{th} sub-plot of the j^{th} whole-plot in the i^{th} replicate. In matrix notation we have

where $\underline{Y} = \underline{R}\underline{Y}_{\Gamma}$, $\underline{T} = \underline{W}\underline{T}_{t}$, $\underline{\xi} = \underline{S}\underline{\xi}_{S}$ and $\underline{\zeta} = \underline{U}\underline{\zeta}_{\Pi}$ with \underline{R} , \underline{W} , \underline{S} and \underline{U} being design matrices for the replicates, whole-plot treatments, sub-plot treatments and the replication whole-plot interaction of dimensionalities (Nxr), (Nxt), (Nxs) and (Nxn) respectively, and \underline{Y}_{Γ} , \underline{T}_{t} , $\underline{\xi}_{S}$ and $\underline{\xi}_{\Pi}$ being the replication, the whole-plot treatment, the sub-plot treatment and the replication whole-plot interaction constants of dimensionalities (rx1), (tx1), (sx1) and (nx1) respectively such that $\underline{1}'\underline{Y} = \underline{1}'\underline{\xi} = \underline{1}'\underline{\zeta} = \underline{1}'\underline{T} = \underline{0}$; \underline{Y} is an (Nx1) vector of observations with expectation \underline{U} ; $\underline{1}$ is an (Nx1) vector of unity elements; $\underline{\eta}$ and $\underline{\varepsilon}$ are (Nx1) vectors of errors distributed normally and independently of one another, both with expectation $\underline{0}$ and variance-covariance matrices $\underline{V}_{\underline{W}}$ and \underline{V}_{S} respectively, and; N = rts and n = rt.

The usual assumptions concerning the errors in the split-plot design are that the errors are normally distributed and that the error variances are homogeneous, i.e. $\underline{V}_{w} = \sigma_{w}^{2}\underline{I}$ and $\underline{V}_{s} = \sigma_{s}^{2}\underline{I}$ where \underline{I} is an (NxN) identity matrix. Like those in previous chapters, we will consider that the error variances are not equal and that the sub-plot errors ε 's are not necessarily uncorrelated while the whole-plot errors η 's remain statistically independent,

in the fixed effects model.

6.1 FOR WHOLE-PLOT TREATMENT COMPARISONS

The sums of squares involved in the whole-plot treatment comparisons are

$$Q_1 = \operatorname{rs} \quad \sum_{j} (\overline{y}, j, -\overline{y}, ...)^2 = \underline{Y} \underline{A}_1 \underline{Y}$$
 (6.1.1)

$$Q_2 = s \sum_{i,j} (\bar{y}_{i,j} - \bar{y}_{i,j} - \bar{y}_{i,j} - \bar{y}_{i,j} + \bar{y}_{i,j})^2 = \underline{Y}^i \underline{A}_2 \underline{Y}$$
(6.1.2)

where $\underline{A}_1 = (\frac{1}{rs} \underline{W} \underline{W}^{\dagger} - \frac{1}{N} \underline{1} \underline{1}^{\dagger})$

$$\underline{A}_2 = (\frac{1}{s}\underline{U}\underline{U}' - \frac{1}{ts}\underline{R}\underline{R}' - \frac{1}{rs}\underline{W}\underline{W}' + \frac{1}{N}\underline{1}\underline{1}')$$

are both summetric indempotent matrix of quadratic forms.

Consider the distribution of Q_1 . Let $\underline{H} = \underline{A}_1\underline{Y}$. Then Q_1 can be expressed in terms of \underline{H} as

$$Q_1 = \underline{H}'\underline{A}_1\underline{H} = \underline{Y}'\underline{A}_1\underline{Y}$$

where \underline{H} is distributed as $N(\underline{\tau}, \underline{\Sigma})$ and $\underline{\Sigma} = (\underline{V}_S + s\underline{V}_W)$. On setting $\underline{\psi}_W = \underline{H} - \underline{\tau}$, Q_1 becomes

$$Q_1 = (\underline{\psi}_{W} + \underline{\tau}) \cdot \underline{A}_1 (\underline{\psi}_{W} + \underline{\tau})$$

where $\psi_{\mathbf{w}}$ is distributed as $N(\underline{0},\underline{\Sigma})$. By the transformations

 $\underline{\Psi}_{w} = \underline{N}'\underline{K}_{1}\underline{z}$ and $\underline{\tau} = -\underline{N}'\underline{K}_{1}\underline{b}$

 \mathbb{Q}_1 can be reduced to its canonical form $(\underline{z} - \underline{b})'\underline{A}(\underline{z} - \underline{b})$ where \underline{z} is distributed as $\mathbb{N}(\underline{0},\underline{I})$; $\underline{A} = \underline{K}_1'\underline{N}\underline{A}_1\underline{N}'\underline{K}_1$ is a diagonal matrix whose elements \underline{a}_i are also the eigenvalues of $\underline{N}\underline{A}_1\underline{N}'$; \underline{K}_1 is the orthogonal matrix of eigenvectors of $\underline{N}\underline{A}_1\underline{N}'$ and \underline{N} is the upper triangular matrix defined by $\underline{\Sigma} = \underline{N}'\underline{N}$. Thus the whole-plot treatment sum of squares \mathbb{Q}_1 can be expressed as a non-homogeneous quadratic form. The distribution of \mathbb{Q}_1 (see section 2.3) is given by

$$P(Q_1 \le \alpha) = \sum_{j=0}^{\infty} c_j \chi_{f_1 + 2j}^2(\alpha/g_1)$$
 (6.1.3)

where f_1 = t-1 is the rank of \underline{A}_1 ; g_1 = a_1 ; $\chi_f^2(.)$ is a chi-square distribution and the c_j satisfy the recursion relationship

$$c_j = (2j)^{-1} \sum_{k=0}^{j-1} h_{j-k} c_k$$
 $j = 1,2,...$

$$c_0 = EXP \left(-\lambda_w^2\right) \prod_{i=1}^{f_1} A_i^{-\frac{1}{2}}$$

where
$$h_{m} = \sum_{i=1}^{f_{1}} (1 - 1/A_{i})^{m} + m \sum_{i=1}^{f_{1}} (b_{i}^{2}/A_{i})(1 - 1/A_{i})^{m-1}$$

and $A_i = a_i/g_1$. The noncentrality parameter λ_w is given by

$$\lambda_{\underline{\underline{\underline{U}}}} = (\frac{1}{2}\underline{\underline{b}},\underline{\underline{b}})^{\frac{1}{2}} = (\frac{1}{2}\Sigma b_{\underline{\underline{i}}}^{2})^{\frac{1}{2}} \quad \text{or} \quad \lambda_{\underline{\underline{U}}}^{2} = \frac{1}{2}\underline{\underline{\tau}},\underline{\Sigma}^{-1}\underline{\underline{\tau}}.$$

Similarly, with the help of the transformations

$$\underline{H}_{e} = \underline{A}_{2}\underline{Y} = \underline{N}^{\dagger}\underline{K}_{2}\underline{z}$$

 \mathbb{Q}_2 can be reduced to its canonical form $\underline{z}'\underline{M}\underline{z}$ where $\underline{M} = \underline{K}_2'\underline{N}\underline{A}_2\underline{N}'\underline{K}_2 \quad \text{is a diagonal matrix whose diagonal}$ elements m_j are also the eigenvalues of $\underline{N}\underline{A}_2\underline{N}'; \ \underline{K}_2$ is the orthogonal matrix of eigenvectors of $\underline{N}\underline{A}_2\underline{N}'; \ \underline{z}$ and \underline{N} are as defined earlier. Here, the whole-plot error sum of squares \mathbb{Q}_2 can be expressed as a homogeneous quadratic form and its distribution is given by

$$P(Q_2 \le \alpha) = \sum_{i=0}^{\infty} d_{iXf_2 + 2i}^2(\alpha/g_2)$$
 (6.1.4)

where $f_2 = (r-1)(t-1)$ is the rank of A_2 ; $g_2 = m_1$ and the d_i satisfy the recursion relationship

$$d_{i} = (2i)^{-1} \sum_{k=0}^{i-1} H_{i-k} d_{k}$$
 $i = 1, 2, ...$

$$d_0 = \prod_{j=1}^{f_2} M_j^{-\frac{1}{2}}$$

where
$$H_{m} = \sum_{j=1}^{f_{2}} (1 - 1/M_{j})^{m}$$
 and $M_{j} = m_{j}/g_{2}$.

The sums of squares \mathbb{Q}_1 and \mathbb{Q}_2 are independent since, by virtue of lemma (2.2.3), they are independent when $\Sigma=\sigma^2\underline{\mathbf{I}}$.

To test the hypothesis of no whole-plot treatment effects, we proceed as in section 2.6. The distribution of the test criterion $\mathbf{U}_{\mathbf{W}}$ is given by

$$P(U_{w} = Q_{1}/Q_{2} \leq \alpha) = \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} c_{j}d_{i}I_{\phi_{w}}^{(\frac{1}{2}f_{1}+j, \frac{1}{2}f_{2}+i)}$$
(6.1.5)

$$B_{w}(\lambda_{w}) = 1 - P(U_{w} \leq \alpha)$$

$$= 1 - \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} c_{j} d_{i} I_{\phi_{w}}(\frac{t-1+2j}{2}, \frac{(t-1)(r-1)+2i}{2}).$$
(6.1.6)

6.2 FOR SUB-PLOT TREATMENT COMPARISONS

The sums of squares involved in the sub-plot treatment comparisons are

$$Q_{3} = \text{rt} \sum_{k} (\bar{y}_{..k} - \bar{y}_{...})^{2} = \underline{Y}^{1}\underline{A}_{3}\underline{Y}$$

$$Q_{4} = \sum_{ijk} (y_{ijk} - \bar{y}_{...})^{2} - Q_{1} - Q_{2} - Q_{3} - SS_{R} - SS_{S\times T}$$

$$= \sum_{ijk} (y_{ijk} - \bar{y}_{ij} - \bar{y}_{.jk} + \bar{y}_{.j})^{2} = \underline{Y}^{1}\underline{A}_{4}\underline{Y}$$

$$(6.2.2)$$

where
$$A_3 = (\frac{1}{rt}SS' - \frac{1}{N}11')$$
,

and
$$\underline{A}_4 = (\underline{I} - \frac{1}{s}\underline{U}\underline{U}' - \frac{1}{r}\underline{X}\underline{X}' + \frac{1}{rs}\underline{W}\underline{W}')$$
;

 SS_R and SS_{SXT} are the replication and the whole-plot sub-plot interaction sums of squares respectively; X is an (Nxv) design matrix for the whole-plot sub-plot interaction and v = ts.

Following a similar procedure as in section 6.1, Q₃ can be reduced to the canonical form $(z - \underline{b}^*)'\underline{A}^*(z - \underline{b}^*)$ by the transformations

$$\underline{H}^* = \underline{A}_3 \underline{Y}$$
, $\underline{\Psi}_s = \underline{H}^* - \underline{\xi} = \underline{L}' \underline{K}_3 \underline{z}$ and $\underline{\xi} = -\underline{L}' \underline{K}_3 \underline{b}^*$

where \underline{z} is distributed as $N(\underline{0},\underline{I})$; $\underline{A}^* = \underline{K}_3^* \underline{L}\underline{A}_3 \underline{L}^*\underline{K}_3$ is a diagonal matrix whose diagonal elements a_1^* are also the eigenvalues of $\underline{L}\underline{A}_3\underline{L}^*$; \underline{K}_3 is the orthogonal matrix of eigenvectors of $\underline{L}\underline{A}_3\underline{L}^*$ and \underline{L} is the upper triangular matrix

defined by $V_s = L^*L$. Thus the sub-plot treatment sum of squares Q_3 can be expressed as a non-homogeneous quadratic form and the distribution is given by

$$P(Q_{3} \leq \alpha) = \sum_{j=0}^{\infty} c_{j}^{*} \chi_{f_{3}+2j}^{2}(\alpha/g_{3}) \qquad (6.2.3)$$

where f_3 = s-1 is the rank of A_3 ; g_3 = a_1^* and the c_j^* satisfy the recursion relationship

$$c_{j}^{*} = (2j)^{-1} \sum_{k=0}^{j-1} h_{j-k}^{*} c_{k}^{*}$$
 $j = 1, 2, ...$

$$c_0^* = EXP(-\lambda_s^2) \prod_{i=1}^{f_3} (A_i^*)^{-\frac{1}{2}}$$

where
$$h_{m}^{*} = \sum_{i=1}^{f_{3}} (1 - 1/A_{i}^{*})^{m} + m \sum_{i=1}^{f_{3}} (b_{i}^{*2}/A_{i}^{*})(1 - 1/A_{i}^{*})^{m-1}$$

and $A_i^* = a_i^*/g_3$. The noncentrality parameter λ_s is given by

$$\lambda_{s} = (\frac{1}{2}\underline{b}^{*}\underline{b}^{*})^{\frac{1}{2}} = (\frac{1}{2}\Sigma b_{1}^{*2})^{\frac{1}{2}} \text{ or } \lambda_{s}^{2} = \frac{1}{2}\xi^{1}\underline{V}_{s}^{-1}\xi.$$

And, likewise, with the help of the transformations

$$\underline{H}_{B}^{*} = \underline{A}_{4}\underline{Y} = \underline{L}^{\dagger}\underline{K}_{4}\underline{z}$$

 \mathbb{Q}_4 can be reduced to its canonical form $\mathbf{z}'\underline{\mathsf{M}}^*\mathbf{z}$ where $\underline{\mathsf{M}}^*=\underline{\mathsf{K}}_4'\underline{\mathsf{L}}_4'\underline{\mathsf{L}}'\underline{\mathsf{K}}_4$ is a diagonal matrix whose diagonal elements \mathbf{m}_j^* are also the eigenvalues of $\underline{\mathsf{L}}_4\underline{\mathsf{L}}'$; $\underline{\mathsf{K}}_4$ is the orthogonal matrix of eigenvectors of $\underline{\mathsf{L}}_4\underline{\mathsf{L}}'$; $\underline{\mathsf{Z}}$ and $\underline{\mathsf{L}}$ are as defined earlier. The sub-plot error sum of squares \mathbb{Q}_4 can now be expressed as a homogeneous quadratic form and its distribution is given by

$$P(Q_{4} \leq \alpha) = \sum_{i=0}^{\infty} d_{i}^{*} \chi_{f_{4}+2i}^{2}(\alpha/g_{4})$$
 (6.2.4)

where $f_4 = (r-1)t(s-1)$ is the rank of A_4 ; $g_4 = a_1^*$ and the d_1^* satisfy the recursion relationship

$$d_{i}^{*} = (2i)^{-1} \sum_{k=0}^{i-1} H_{i-k}^{*} d_{k}$$
 $i = 1, 2, ...$

$$d_0 = \prod_{j=1}^{f_4} (M_j^*)^{-\frac{1}{2}}$$

where
$$H_{m}^{*} = \sum_{j=1}^{f_{4}} (1 - 1/M_{j}^{*})^{m}$$
 and $M_{j}^{*} = M_{j}^{*}/9_{4}$.

The sums of squares Q_3 and Q_4 are also independent since, by virtue of lemma (2.2.3), they are independent when $V_s = \sigma_s^2 I$.

To test the hypothesis of no sub-plot treatment effects, we proceed as in section 2.6. The distribution of the test criterion $\rm U_{\rm S}$ is given by

$$P(U_{s} = Q_{3}/Q_{4} \leq \alpha) = \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} c_{j}^{*} d_{i}^{*} I_{\phi_{s}} (\frac{1}{2}f_{3}+j, \frac{1}{2}f_{4}+i)$$
(6.2.5)

where $\phi_{\rm S}=\alpha_{\rm S}/(1+\alpha_{\rm S})$ and $\alpha_{\rm S}=\alpha g_4/g_3$. For a certain chosen level of significance ϵ , α is given by $\alpha=F_\epsilon f_3/f_4$. And the power of the test is $B_{\rm S}(\lambda_{\rm S})$,

$$B_{s}(\lambda_{s}) = 1 - P(U_{s} \leq \alpha)$$

$$= 1 - \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} c_{j}^{*} d_{i}^{*} I_{\phi_{s}} (\frac{s-1+2j}{2}, \frac{(r-1)t(s-1)+2i}{2}).$$
(6.2.6)

We will consider the effects of heterogeneity of the whole-plot error variances and first-order serial correlation of the sub-plots on power for the whole-plot treatment comparisons. Effects of the heterogeneity of the sub-plot error variances and the first-order serial correlation of the sub-plots on power for the sub-plot treatment comparisons will also be considered.

CHAPTER 7

7. COST IN RELATION TO POWER IN THE DESIGN OF EXPERIMENTS

In many experimental situations, especially in the field of agriculture, where results may take years to yield or when cost is one of the major factors concerned, it is essential to design an experiment not only to test a certain null hypothesis for given situation but also to be able to reject that hypothesis when it is false, with maximum probability.

Overall and Dalal (1970) considered power as a criterion in choosing the best experiment, out of all possible experiments for given cost, in the two-way mixed-model. Here we will consider a procedure using power as a criterion to choose, amongst all experiments within a certain cost limit, the one which maximises power relative to cost in situations where the error variances are not homogeneous but the errors remain normally and independently distributed, in the one-way layout fixed effect model.

Let C_{\max} be the effective cost ceiling for the experiment and \underline{C} be a (tx1) vector whose elements $C_{\underline{i}}$ are the unit cost per observation in the i^{th} treatment. Employing the same notations as in section 3.1, the cost of the experiment represented by the model

$$\underline{Y} = \underline{\mu} + \underline{T}\underline{\tau} + \underline{\varepsilon}$$

is given by C,

$$C = \underline{n} \cdot \underline{C} , \qquad (7.1)$$

subject to the condition

$$C < C_{\text{max}}$$
, (7.2)

where $\underline{n} = \underline{T}'\underline{1}$ is a (tx1) vector of group sizes.

For a nominal level of significance α , the power of the test of equal treatment effects (see section 3.1 for details), is given by B(λ). In particular, when λ =0,B(0) gives the actual probability of committing a type I error, which may be different from α in the presence of heterogeneity of error variances.

Let us define the power index, PI,

$$p_{I} = \frac{B(\lambda) - B(0)}{B(0)}$$
 $0 \le p_{I} < \infty$, (7.3)

as a measure of the relative gain in power and the cost index, CI,

$$CI = \frac{PI}{C/N} \tag{7.4}$$

as an indication of the value of a particular design $\underline{\mathsf{T}}$ of

size N, N = Σ n_i, where C/N is the average cost per observation. The object is to find, for all possible design \underline{T} and all values of N subject to (7.2), a particular design \underline{T} , \underline{T}_{max} say, which maximises CI, provided that the actual level of significance is not seriously affected.

Two illustrative examples can be found in tables 6.1 and 6.2 for homogeneity and heterogeneity of error variances respectively. The minimum group size is 3.

CHAPTER 8

8. RESULTS AND CONCLUSIONS

In this concluding chapter, only results corresponding to the 5% nominal level of significance are quoted, since results corresponding to the 1% level are similar to those for the 5% ones.

Table 7.1 indicates the accuracy of the results for equal error variances obtained by the present method compared with those obtained using Tang's (1938) method.

Table 7.2 shows the effects of heterogeneity of error variances under different choices of g, the arbituary scale parameter in the Ruben's (1962) theorems, on power. It can be seen that the choice of g, except for $g = a_n$, has little effects on the ratio of two independent χ^2 variates. In addition, our choice of $g = a_1$ guarantees the expressions (2.3.2) and (2.3.3) to be mixture representations.

One feature which is common in all analyses is that the power of the test is greater when the divergent mean falls in the group with large variance than when it falls in the group with small variance.

This contradicts with Horsnell's (1953) finding.

8.1 POWER OF THE TEST IN GENERAL LINEAR MODEL

Effects of heterogeneity of error variances on power in the general linear model are shown in Table 1A and figures 1.1 to 1.2. It is seen that the power value is seriously affected when normally and independently distributed error variables have unequal error variances. But for moderate heterogeneity of error variances, the actual type I error, B(0), is not seriously affected. Furthermore, wherever error variances are unequal, the power value is greater than for equal error variances.

Effects of first-order serial correlation on power are shown in table 1A and figure 1.4. It is seen that the power value is greatly affected when the normally distributed error variables are serially correlated. But for moderate serial correlations, the actual type I error is not seriously affected.

8.2 POWER OF THE TEST IN THE ONE-WAY LAYOUT

Effects of unequal group error variances on power in the one-way layout fixed effect model are shown in table 2.1A and figures 2.1.1 to 2.1.6. It is seen that, in general, the power value is seriously affected by the heterogeneity of group error variances.

Figures 2.1.7 and 2.1.8 indicate that the power value is also seriously affected by the group sizes. Wherever large samples are taken from the group with large variance, the power value is lower than for equal groups and the actual type I error is not seriously affected.

Effects of first-order within-treatment serial correlation on power are shown in table 2.18 and figures 2.1.10 to 2.1.12. It is seen that the power value is seriously affected when the error variables are serially correlated within treatments. Under these circumstances, one large group is preferred to equal groups.

Effects of heterogeneity of group error variances on power in the random effect model are shown in table 2.2A and figures 2.2.1 to 2.2.6. It can be seen that the power value becomes less affected by the heterogeneity of group error variances, as the value of σ_t^2 , or VA, increases but the difference between actual and nominal level of significance increases as well.

Figures 2.2.7 shows the extent to which power of the test of equal group means is affected by the value of σ_t^2 in the random effect model when all assumptions hold. It can be seen that the power value is seriously affected by σ_t^2 even at low values.

The results of Carter et al for the

Case
univariate case can be obtained as a special in the
fixed effect model.

8.3 POWER OF THE TEST IN THE TWO-WAY LAYOUT

Effects of unequal column error variances on power in the two-way layout fixed effects model are shown in table 3.1A and figure 3.1.1. It can be seen that the power value is seriously affected by heterogeneity of column error variances, but the actual type I error is not seriously affected. Whenever column error variances are unequal, the power value is greater than for equal column error variances.

Effects of first-order within-row serial correlation on power for the between-columns comparisons in the fixed effects model are shown in table 3.1B and figure 3.1.3. It can be seen that the power value is little affected when the errors within rows are serially correlated. In contrast, table 3.1C and figure 3.1.4 indicate that the power value for the corresponding between-rows comparisons is highly seriously affected by the within-row serial correlation.

Effects of unequal column error variances on power for the between-columns comparisons in the random

effects model are shown in table 3.2A and figures 3.2.1 to 3.2.3. It can be seen that the power value becomes more seriously affected by heterogeneity of column error variances in the random effects model. The actual type I error is the worst affected.

Figure 3.2.4 shows the extent to which power of the test of equal column means is affected by the value of σ_{γ}^2 , or VA, in the random effects model when all assumptions hold. It can be seen that the power value is seriously affected by σ_{γ}^2 even at low values.

8.4 POWER OF THE TEST IN ANALYSIS OF COVARIANCE

Effects of unequal group error variances on power in the balanced one-way layout analysis of covariance with one concomitant variable are shown in table 4A and figures 4.1 to 4.3. Also, effects of within-treatment serial correlation on power are shown in table 4B and figure 4.6. It can be seen that, in general, the effects on power due to heterogeneity of group error variances and that due to within-treatment serial correlation are very much the same as those in the corresponding one-way layout analysis of variance for equal groups.

Effects of unequal group variabilities of the covariate on power are shown in figure 4.4. It is seen that the power value is little affected by heterogeneity of group variability of the covariate.

And, when the group error variances are equal, the power value is not affected at all.

8.5 POWER OF THE TEST IN SPLIT-PLOT DESIGN

Effects of unequal whole-plot error variances on power of the test of equal whole-plot treatment means are shown in table 5.1A and figures 5.1.1 to 5.1.2. It is seen that the power value is seriously affected by the heterogeneity of whole-plot error variances, but the actual type I error is little affected. Wherever the whole-plot error variances are unequal, the power value is greater than for equal whole-plot error variances. It can also be noted that the power of the test of equal whole-plot treatment means is reduced slightly as the sub-plot error variances increase, in the presence of heterogeneity of whole-plot error variances.

Effects of first-order within-wholeplot serial correlation on power of the test of equal whole-plot treatment means are shown in table 5.18. It is seen that the power value is little affected when the errors are serially correlated within sub-plots in the whole-plot treatment comparisons.

Effects of unequal sub-plot error variances on power of the test of equal sub-plot treatment means are shown in table 5.2A and figure 5.2.1. It can be seen that the power value is seriously affected by the heterogeneity of sub-plot error variances, but the actual type I error is little affected.

Effects of first-order within-wholeplot serial correlation on power of the test of equal sub-plot treatment means are shown in table 5.28 and figure 5.2.3. It can be seen that the power value is not seriously affected when the errors are serially correlated within whole-plots in the sub-plot treatment comparisons.

8.6 COST IN RELATION TO POWER IN THE DESIGN OF EXPERIMENTS

Illustrative examples of the use of power as a criterion in the design of experiments in the one-way layouts for a fixed cost ceiling of 19.0 cost units are given in table 6.1 for homogeneous group error variances, and in table 6.2 for heterogeneous group error variances.

For homogeneous group error variances, the power index PI is maximised when $\underline{n}'=(3\ 4\ 8)$ and when $\underline{n}'=(3\ 5\ 7)$, both giving a value of PI = 18.939. If the cost vector \underline{C} is taken into account, $\underline{C}'=(2.0\ 1.2\ 1.0)$, the cost index CI is maximised when $\underline{n}'=(3\ 3\ 9)$.

For heterogeneous group error variances (V=1:2:3), PI and CI are both maximised when $\underline{n}'=(3\ 3\ 9)$, giving an actual type I error of B(0)=0.03120. Still, the choices remain open but the choice of $\underline{n}'=(3\ 3\ 9)$ gives the best return per unit cost in terms of power, or the relative gain in power.

CHAPTER 9

9. <u>DISCUSSION</u>

The method suggested by Tang (1938) for the calculation of the type II error ${\sf P}_{II}$ when all assumptions hold, is valid only for even degrees of freedom. When ${\sf f}_2$, the error degrees of freedom, is odd and ${\sf f}_2$ is greater than 5, Tang remarks that ${\sf P}_{II}$ can be obtained with sufficient accuracy from the tabled values for even ${\sf f}_2$ by interpolation. However, no remark concerning the calculation of ${\sf P}_{II}$ is given when ${\sf f}_1$ is odd. Alternative method for the calculation of ${\sf P}_{II}$ is given by (2.6.2), or (2.6.3) for the power values, which is valid for both even as well as odd degrees of freedom. In this case, the calculation is much simpler since the coefficients in (2.6.2) are Poisson probabilities given by (3.4 3) of Ruben (1962, pp.555). Kanji's (1978) method can also be used in this particular case.

The significance of the arbitrary scale parameter g in the fundamental expansion of the distribution of quadratic forms is discussed in detail by Ruben (1962, pp.562-569). He remarks that $g=a_1$ overestimate while $g=a_n$ underestimate the probability content of the n-dimensional ellipsoid $H_{n;\underline{A},\underline{b}}(\alpha)$, or P_{II} in our context, when approximated by the probability content of an n-dimensional sphere of radii $(\alpha/g)^{\frac{1}{2}}$. He remarks further that when $g=a_g$, the geometric mean of the a_i , the

volume-content of the sphere is equivalent to that of the ellipsoid. However, in the expansion of the distribution of the ratio of two independent quadratic forms, table 7.2 shows that when $g=a_1$, $g=a_g$ or $g=a_h$, the harmonic mean of the a_i , the power value thus yielded are the same, but $g=a_n$ yields higher power value, or lower P_{II} value, when the heterogeneity of error variances is beyond that of V=1:1.2:1.4. And, furthermore, the choice of $g=a_1$ guarantees mixture representations.

In the analysis of covariance model, we have made no postulate about the nature of the covariate \underline{Z} , whether \underline{Z} are fixed values or random variables. Huitema (1980, pp. 110 - 115) has given full discussion in this respect. Due to the nature of the technique used, it is not possible to investigate the effects of departure from the assumption of homogeneity of regression slopes. Three cases that we have considered are merely to specify different fixed quantities for the covariate of each group and the word 'variability' has been used descriptively. Further, the order of these covariate values of each group has no effect on test of homogeneity of treatment means.

Due to various practical problems, all analyses are confined to a total size of 18. This may present ambiguity in the interpretation of the result of no-effect of sub-plot serial correlation on the whole-plot treatment comparisons in the analysis of split-plot design since only 2 subplots

have been used. Further analyses have been carried out with 3 subplots. The result shows that sub-plot serial correlation has, indeed, little effect on the whole-plot treatment comparisons.

The results in table 6.1 and 6.2 are obtained using the fact that the eigenvalues of the distribution of error sum of squares are the error variances themselves (see Box (1954a)). The result given by n' = (3 3 9) in table 6.1 and 6.2 are the same as those given in table 2.1A. In future, whenever the eigenvalues of the distribution of error sum of squares are known, they can be used directly in the calculation of the d; coefficients.

The author suggests the following areas for further research:

- Effects on power when the assumption of additivity of the model is violated.
- 2) Effects on power when the assumption of homogeneity of regression slopes is violated in the mixed model.
- Robustness of power in other non-orthogonal designs.
- 4) Robustness of power in the multivariate analysis of variance and covariance.

REFERENCES -

- 1. ANDERSEN, A.H., JENSEN, E.B. & SCHOU, G. (1981),
 "Two-way analysis of variance with correlated
 errors," International Stat.Review, Vol.49,pp.153-167.
- 2. BOX,G.E.P. (1963), "Non-normality and test on variance," Biometrika, Vol.40, pp.318-335.
- BOX, G.E.P. (1954a), "Some theorems on quadratic forms applied in the study of analysis of variance problems: I.Effect of inequality of variance in the one-way classification," Ann.Math.Stat., Vol. 25, pp. 290-302.
 - 4. BOX, G.E.P. (1954b), "Some theorems on quadratic forms applied in the study of analysis of variance problems: II. Effect of inequality of variance and of correlation of errors in the two-way classification," Ann.Math.Stat., Vol.25, pp.484-498.
 - 5. BOX, G.E.P. & WATSON, G.S. (1962), "Robustness to non-normality of regression tests," Biometrika, Vol.49, pp.93-106.
 - 6. CARTER, E.M., KHATRI, C.G. & SRIVASTAVA, M.S. (1979),
 "The effect of inequality of variances on the t-test,"
 Sankhyā, series B, Vol.41, pp.216-225.

- 7. COCHRAN, W.G. (1947), "Some consequences when the assumptions for the analysis of variance are not satisfied," Biometrics, Vol.3, pp.22-38.
- 8. COCHRAN, W.G. & COX, G.M. (1957), "Experimental Design," 2nd ed., John Wiley & Sons, Inc.
- 9. DAVID, F.N., & JOHNSON, N.L. (1951a), "A method of investigating the effect of non-normality and heterogeneity of variance on tests of the general linear hypothesis," Ann.Math.Stat., Vol. 22, pp.382-392.
- 10. DAVID, F.N. & JOHNSON, N.L. (1951b), "The effect of non-normality on the power function of the F-test in the analysis of variance," Biometrika, Vol.38, pp.43-57.
- 11. FISHER, R.A. (1947), The Design of Experiments, 4th ed., Oliver and Boyd, Edinburgh.
- 12. FISHER, R.A. (1958), Statistical Methods for Research Workers, 13th ed., Oliver and Boyd, Edinburgh, pp.234-235.
- 13. GAYEN, A.K. (1950), "The distribution of the variance ratio in random samples of any size drawn from non-normal universes," Biometrika, Vol. 37, pp. 236-255.

- 14. GEARY, R.C. (1947), "Testing for normality," Biometrika, Vol.34, pp.209-242.
- 15. GRAD, A. & SOLOMON, H. (1955), "Distribution of quadratic forms and some applications," Ann.Math. Stat., Vol.26, pp.464-477.
- 16. GRAYBILL, F.A. (1961), An Introduction to Linear Statistical Models, Vol.1, McGraw-Hill Book Company.
- 17. GRONOW, D.G.C. (1951), "Test for the significance of difference between means in two normal populations having unequal variances," Biometrika, Vol.38, pp.252-256.
- 18. HORSNELL, G. (1953), "The effect of unequal group variances on the F-test for the homogeneity of group means," Biometrika, Vol.40, pp.128-136.
- 19. HSU, P.L. (1938), "Contribution to the theory of students' t-test as applied to the problem of two samples." Statistical Research Memoirs, Vol.2.pp.1-24.
- 20. HSU, P.L. (1941), "Analysis of variance from a power function stand point," Biometrika, Vol.32, pp.62-69.

- 21. HUITEMA, B.E. (1980), The Analysis of Covariance and Alternatives, John Wiley & Sons, Inc.
- 22. HUITSON, A. (1971), The Analysis of Variance: A

 Basic Course, 2nd impression, Charles Griffin & Co.

 Ltd, pp.56-58.
- 23. ITO, K. & SCHULL, W.J. (1964), "On the robustness of the T² test in multivariate analysis of variance when variance covariance matrices are not equal,"

 Biometrika, Vol.51, pp.71-81.
- 24. JOHNSON, N.L. & LEONE, F.C.(1964), Statistics and Experimental Design, Vol.II, John Wiley & Sons Inc., pp.20-22.
- 25. KANJI, G.K. (1975), "Robustness of power in the analysis of variance," J. Statist. Comput. Simul., Vol.4, pp.19-30.
- 26. KANJI, G.K. (1976a), "Sensitivity of the power in analysis of variance to departures from the in-built assumptions," Statistician, Vol.25, No.1, pp.43-48.
- 27. KANJI, G.K. (1976b), "Effect of non-normality on the power in analysis of variance: A simulation study,"

 Int.J.Math.Educ.Sci.Technol., Vol.7, No.2, pp.155-160.

- 28. KANJI, G.K. (1976c), "Permutation theory in the study of robustness of power in the analysis of variance," Int.J.Math.Educ.Sci.Technol., Vol.7, No.4., pp.401-405.
- 29. KANJI, G.K. (1977), "Power aspects of analysis of variance in random effects models: A simulation study,"

 Int.J.Math.Educ.Sci.Technol., Vol.8, No.3, pp.293-297.
- 30. KANJI, G.K. (1978), "Power aspects in analysis of variance in various models," Ph.D. thesis, Sheffield City Polytechnic, England.
- 31. KANJI, G.K. (1979), "Power aspects of analysis of variance in fixed effect model one-way classification,"
 Austral.J.Statist., Vol.21, No.1, pp.36-44.
- 32. KEMPTHORNE, O. (1973), Design and Analysis of Experiments, reprint and published by Robert E.Krieger Publishing Co.Inc.
- on some multivariate tests and robustness to non-normality normality in the linear model, "Biometrika, Vol.58, pp.105-121.

- MURPHY, B.P. (1967), "Some two sample tests when the variances are unequal: A simulation study,"

 Biometrika, Vol.54, pp.679-683.
- OVERALL, J.E. & DALAL, S.N. (1970), "Design of experiments to maximize power relative to cost," Reading in Statistics for the Behavioural Sciences, edited by E.F.Heermann and L.A.Braskamp, Prentice Hall, Inc., Englewood Cliggs, N.J., pp.232-249.
- 36. PATNAIK, P.B. (1949), "The non-central χ^2 and F distributions and their applications," Biometrika, Vol.36, pp.202-232.
- pearson, E.S. (1931), "The analysis of variance in case of non-normal variation," Biometrika, Vol.23, pp.114-133.
- PITMAN, E.J.G.(1937), "Analysis of variance test for samples from any population," Biometrika, Vol.29, pp.322-335.
- 39. ROBBINS, H. (1948), "The distribution of a definite quadratic form," Ann.Math.Stat., Vol.19, pp.266-270.
- 40. ROBBINS, H. & PITMAN, E.J.G. (1949), "Application and method of mixtures to quadratic forms in normal variables," Ann.Math.Stat., Vol. 20, pp. 552-560.

- 41. RUBEN, H. (1960), "Probability content of regions under spherical normal distribution I," Ann.Math. Stat., Vol.31, pp.598-618.
- 42. RUBEN, H. (1962), "Probability content of regions under spherical normal distribution IV: the distribution of homogeneous and non-homogeneous quadratic functions of normal variables", Ann.Math. Stat., Vol.33, pp.542-570.
- 43. RUBEN, H. (1963), "A new result on the distribution of quadratic forms," Ann.Math.Stat., Vol.34, pp.1582-1584.
- 44. SCHEFFE, H. (1959), The Analysis of Variance, John Wiley and Sons, Inc.
- 45. SEBER, G.A.F. (1966), The Linear Hypothesis: A General Theory, Charles Griffin & Co.Ltd., pp.6-8.
- 46. SOLOMON, H. (1961), "On the distribution of quadratic forms in normal variates," Proceedings of the 4th Berkely Symposium on Math.Stat. & Probability, Vol.1, pp.645-653.
- 47. SRIVASTAVA, A.B.I. (1958), "Effect of non-normality on the power function of t-test," Biometrika, Vol.45, pp.421-429.

- 48. STIGLER, S.M. (1980), "Studies in the history of probability and statistics XXXVIII: R.H. Smith, a Victorian interested in robustness," Biometrika, Vol.67, pp.217-221.
- 49. TANG, P.C. (1938), "The power function of the analysis of variance test with tables and illustration of their use," Statistical Research Memoirs, Vol.2, pp.126-169.
- 50. WELCH, B.L. (1938), "The significance of the difference between two means when the population variances are unequal," Biometrika, Vol.29, pp.350-362.
- 51. WELCH, B.L. (1951), "On the comparison of several mean values: An alternative approach," Biometrika, Vol.38, pp.330-336.

APPENDIX I

DISTRIBUTION OF THE RATIO OF TWO QUADRATIC FORMS WITH ARBITUARY CONSTANTS.

From equation (2.3.2) we have

$$P(Q_{2} \leq \alpha) = \sum_{j=0}^{\infty} c_{j} \chi_{f_{1}+2j}^{2}(\alpha/Q_{2})$$
or
$$P(Q_{2}/Q_{2} \leq \alpha) = \sum_{j=0}^{\infty} c_{j} \chi_{f_{1}+2j}^{2}(\alpha)$$
(1)

where g_2 is an arbitrary constant. The condition that $g_2 < 2a_1$ guarantees the convergence of the c_j where we assume $a_1 \leqslant a_2 \leqslant \cdots \leqslant a_n$ without loss of generality. And similarly, from equation (2.3.3), we have

$$P(Q_1/g_1 \leq \alpha) = \sum_{i=0}^{\infty} d_i \chi_{f_2+2i}^2(\alpha)$$
 (2)

Let $q_1 = Q_1/g_1$ and $q_2 = Q_2/g_2$, then the ratio of q_2 to q_1 is distributed as

$$P(q_{2}/q_{1} \leq \alpha) = P(\frac{Q_{2}/q_{2}}{Q_{1}/q_{1}} \leq \alpha)$$

$$= P(Q_{2}/Q_{1} \leq \alpha_{2}/q_{1})$$

$$= P(Q_{2} \leq \alpha_{d}Q_{1}) \text{ where } \alpha_{d} = \alpha g_{2}/g_{1}$$

$$= \int_{Q} P(Q_{2} \leq \alpha_{d}Q_{1}) \text{ f}(Q_{1}) dQ_{1}$$
 (3)

where $f(Q_1)$ is the probability density function of Q_1 , Hence

$$P(q_{2}/q_{1} \leq \alpha) = \int\limits_{0}^{\infty} \int\limits_{j=0}^{\infty} c_{j} \chi_{f_{1}+2j}^{2}(\alpha_{d}Q_{1}|Q_{1}) \int\limits_{i=0}^{\infty} d_{i} \frac{e^{-\frac{1}{2}Q_{1}} Q_{1}^{\frac{1}{2}(f_{2})+i}}{2^{f_{2}+2i}\Gamma(\frac{1}{2}f_{2}+i)} dQ_{1}.$$

Since the two series are uniformly convergent on every finite interval of α , we have,

$$P(Q_{2}/Q_{1} \leq \alpha_{d}) = \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} c_{j}d_{i} \int_{0}^{\infty} \frac{\chi_{f_{1}+2j}(\alpha_{d}Q_{1}|Q_{1})}{2^{f_{2}+2i}\Gamma(\frac{1}{2}f_{2}+i)} e^{-\frac{1}{2}Q_{1}} Q_{1}^{\frac{1}{2}f_{2}+i}$$

$$= \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} c_{j}d_{i} \int_{0}^{\infty} h_{f_{1}+2j}, f_{2}+2i(U = Q_{2}/Q_{1})$$

(4)

where $h_{\nu 1}$, ν_2 (U) denotes the probability distribution function of the ratio of two independent chi-square variates (central) with $\nu 1$ and $\nu 2$ degrees of freedom in the numerator and denominator respectively.

Consider $P(U = u_1/u_2 \le \alpha)$, where u_1 and u_2 are two independent χ^2 (central) variates with v1 and v2 degrees of freedom respectively. Then,

$$P(U \leq \alpha) = \int_{0}^{\alpha} h v_{1}, v_{2} \quad (U) \quad dU$$

as just defined. But,

$$P(U \leq \alpha) = P(\frac{u_1/v_1}{u_2/v_2} \leq \frac{v_2}{v_1}\alpha) = F_{v_1,v_2}(\frac{v_2}{v_1}\alpha)$$

where $F_{v1,v2}(.)$ denotes the cumulative distribution of Fisher's variance ratio (central F).

Hence, returning to equation (4), we have,

$$P(U = Q_2/Q_1 \le \alpha_d) = \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} c_j d_i F_{1+2j}, f_{2+2i} (\frac{f_2+2i}{f_1+2j} \alpha)$$

or
$$P(Q_2/Q_1 \le \alpha) = \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} c_j d_i F_{1+2j}, f_{2+2i} (\frac{f_2+2i}{f_1+2j} \alpha_c)$$

where $\alpha_{c} = \alpha_{9_{1}}/9_{2}$.

APPENDIX II

IDEMPOTENCE OF THE MATRIX (A3) IN ANOCOV

If the matrix A_3 is idempotent, we have

$$\underline{A}_3\underline{A}_3 = \underline{A}_3$$

Proof:

L.H.S. =
$$\underline{A}_3\underline{A}_3$$
 = $(\underline{A}_1 - \underline{A}_2)(\underline{A}_1 - \underline{A}_2)$
= $\underline{A}_1 + \underline{A}_2 - 2\underline{A}_1\underline{A}_2$,

since \underline{A}_1 and \underline{A}_2 are both idempotent. Consider the product $\underline{A}_1\underline{A}_2$.

$$\underline{A}_{1}\underline{A}_{2} = (\underline{A}_{T} - \underline{A}_{T}\underline{Z}(\underline{Z}'\underline{A}_{T}\underline{Z})^{-1}\underline{Z}'\underline{A}_{T}) (\underline{A}_{E} - \underline{A}_{E}\underline{Z}(\underline{Z}'\underline{A}_{E}\underline{Z})^{-1}\underline{Z}'\underline{A}_{E})$$

$$= \underline{A}_{T}\underline{A}_{E} - \underline{A}_{T}\underline{A}_{E}\underline{Z}(\underline{Z}'\underline{A}_{E}\underline{Z})^{-1}\underline{Z}'\underline{A}_{E} - \underline{A}_{T}\underline{Z}(\underline{Z}'\underline{A}_{T}\underline{Z})^{-1}\underline{Z}'\underline{A}_{T}\underline{A}_{E}$$

$$+ \underline{A}_{T}\underline{Z}(\underline{Z}'\underline{A}_{T}\underline{Z})^{-1}\underline{Z}'\underline{A}_{T}\underline{A}_{E}\underline{Z}(\underline{Z}'\underline{A}_{E}\underline{Z})^{-1}\underline{Z}'\underline{A}_{E}.$$

Now consider the product $\underline{A}_T\underline{A}_E$.

$$\underline{A}_{T}\underline{A}_{E} = (\underline{I}_{N} - \underline{1}_{N}\underline{1}_{N}\underline{1}_{N}) (\underline{I}_{N} - \underline{I}(\underline{I}'\underline{I})^{-1}\underline{I}')$$

$$= \underline{I}_{N} - \underline{1}_{N}\underline{1}_{N}\underline{1}_{N} - \underline{I}(\underline{I}'\underline{I})^{-1}\underline{I}' + \underline{1}_{N}\underline{1}_{N}\underline{I}(\underline{I}'\underline{I})^{-1}\underline{I}'$$

$$= \underline{I}_{N} - \underline{1}_{N}\underline{1}_{N}\underline{1}_{N} - \underline{I}(\underline{I}'\underline{I})^{-1}\underline{I}' + \underline{1}_{N}\underline{1}_{N}\underline{1}_{k}\underline{I}'$$

$$= \underline{I}_{N} - \underline{I}(\underline{I}'\underline{I})^{-1}\underline{I}' = \underline{A}_{E}.$$

Therefore,

$$\underline{A}_{1}\underline{A}_{2} = \underline{A}_{E} - \underline{A}_{E}\underline{Z}(\underline{Z}'\underline{A}_{E}\underline{Z})^{-1}\underline{Z}'\underline{A}_{E} - \underline{A}_{T}\underline{Z}(\underline{Z}'\underline{A}_{T}\underline{Z})^{-1}\underline{Z}'\underline{A}_{E}$$

$$+ \underline{A}_{T}\underline{Z}(\underline{Z}'\underline{A}_{T}\underline{Z})^{-1}\underline{Z}'\underline{A}_{E}\underline{Z}(\underline{Z}'\underline{A}_{E}\underline{Z})^{-1}\underline{Z}'\underline{A}_{E}$$

$$= \underline{A}_{2} - \underline{A}_{T}\underline{Z}(\underline{Z}'\underline{A}_{T}\underline{Z})^{-1}\underline{Z}'\underline{A}_{E} + \underline{A}_{T}\underline{Z}(\underline{Z}'\underline{A}_{T}\underline{Z})^{-1}\underline{Z}'\underline{A}_{E} = \underline{A}_{2}.$$

Hence,

L.H.S. =
$$\underline{A}_3\underline{A}_3 = \underline{A}_1 + \underline{A}_2 - 2\underline{A}_1\underline{A}_2$$

= $\underline{A}_1 + \underline{A}_2 - 2\underline{A}_2 = \underline{A}_3 = R.H.S.$

and the idempotence of \underline{A}_3 is proved.

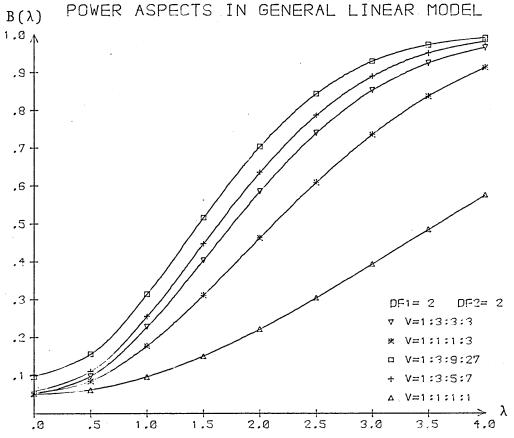


FIG. 1.1 EFFECTS OF UNEQUAL ERROR VARIANCES ON POWER.

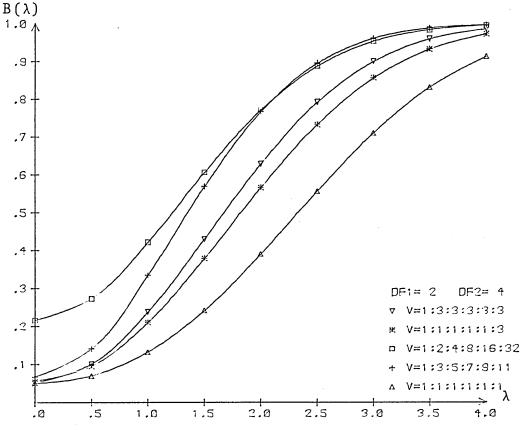


FIG. 1.2 EFFECTS OF UNEQUAL ERROR VARIANCES ON POWER.

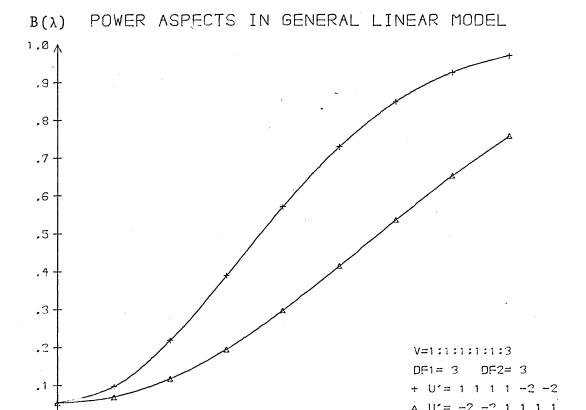


FIG. 1.3 EFFECTS OF GROUP CONTAINING DIVERGENT MEAN ON POWER.

2.0

2.5

3.0

1.5

.[']5

1.0

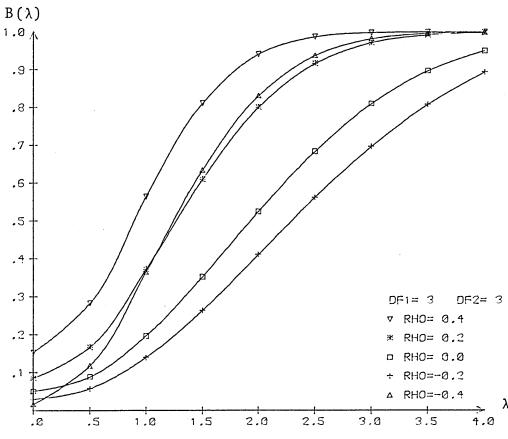


FIG. 1.4 EFFECTS OF SERIAL CORRELATION ON POWER.

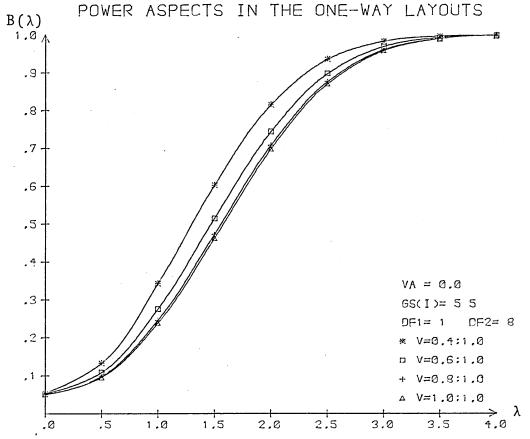


FIG. 2.1.1 EFFECTS OF UNEQUAL GROUP ERROR VARIANCES ON POWER.

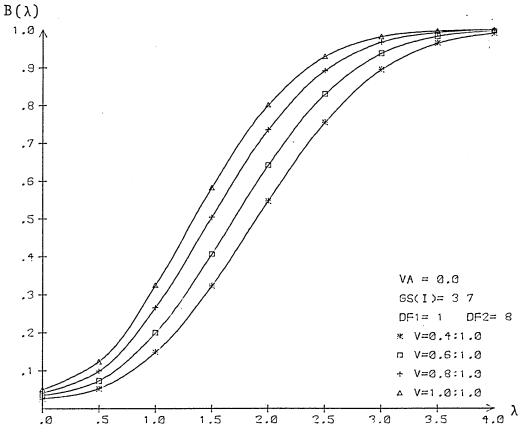


FIG. 2.1.2 EFFECTS OF UNEQUAL GROUP ERROR VARIANCES ON POWER.

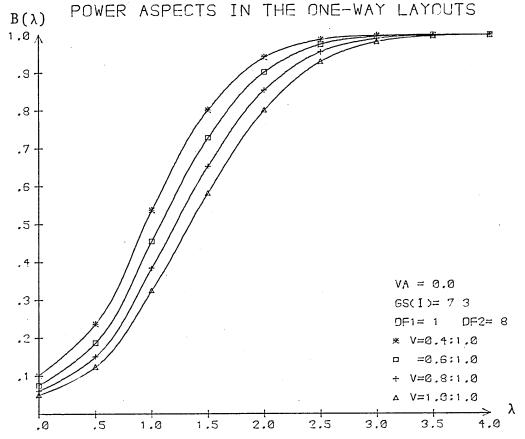


FIG. 2.1.3 EFFECTS OF UNEQUAL GROUP ERROR VARIANCES ON POWER.

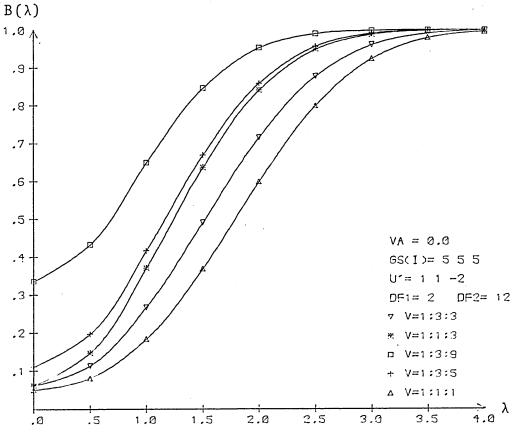


FIG. 2.1.4 EFFECTS OF UNEQUAL GROUP ERROR VARIANCES ON POWER.

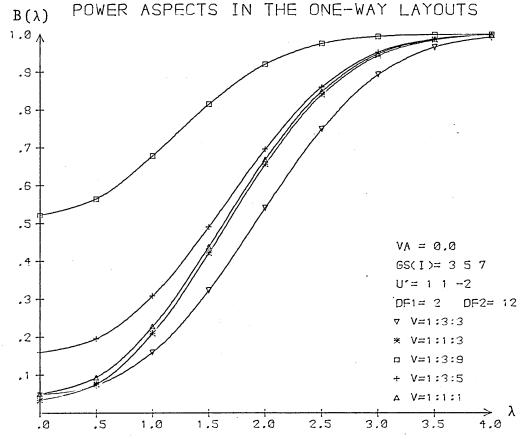


FIG. 2.1.5 EFFECTS OF UNEQUAL GROUP ERROR VARIANCES ON POWER.

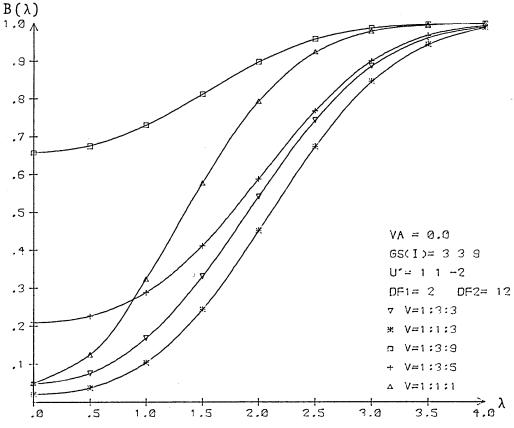


FIG. 2.1.6 EFFECTS OF UNEQUAL GROUP ERROR VARIANCES ON POWER.

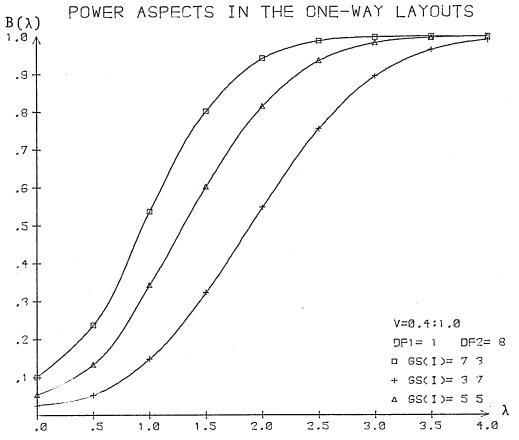


FIG. 2.1.7 EFFECTS OF GROUP SIZES ON POWER.

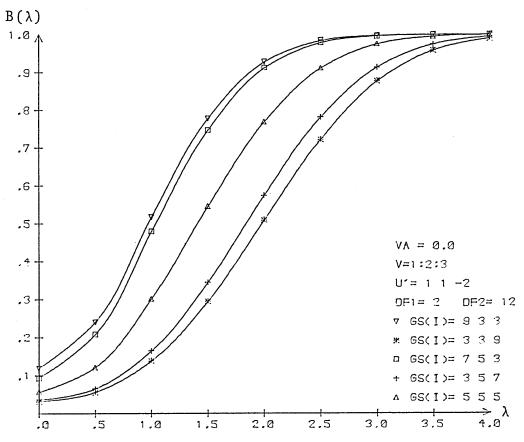


FIG. 2.1.8 EFFECTS OF GROUP SIZES ON POWER.

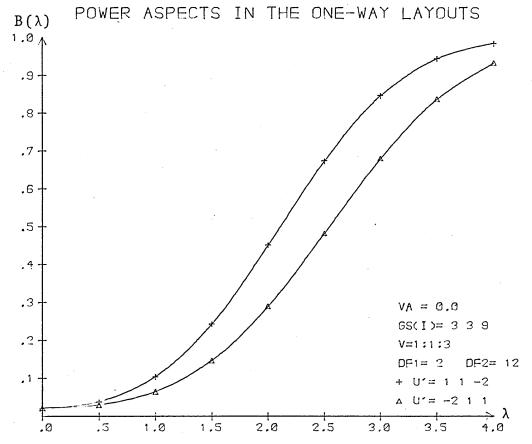


FIG. 2.1.9 EFFECTS OF GROUP CONTAINING DIVERGENT MEAN ON POWER.

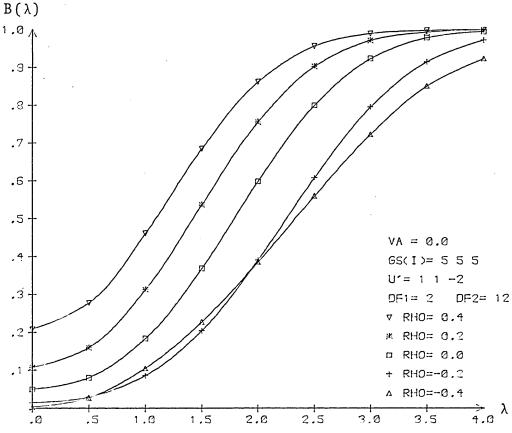


FIG. 2.1.10 EFFECTS OF WITHIN TREATMENT SERIAL CORRELATION ON POWER.

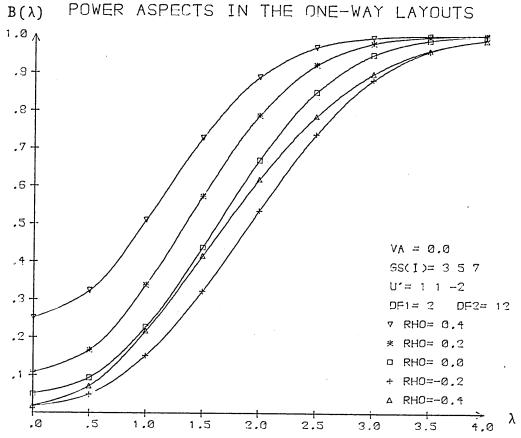


FIG. 2.1.11 EFFECTS OF WITHIN TREATMENT SERIAL CORRELATION ON POWER.

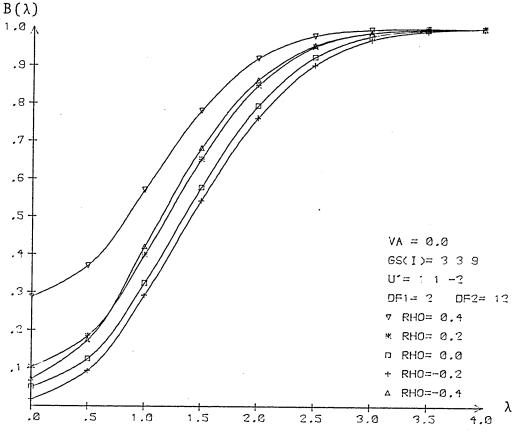


FIG. 2.1.12 EFFECTS OF WITHIN TREATMENT SERIAL CORRELATION ON POWER.

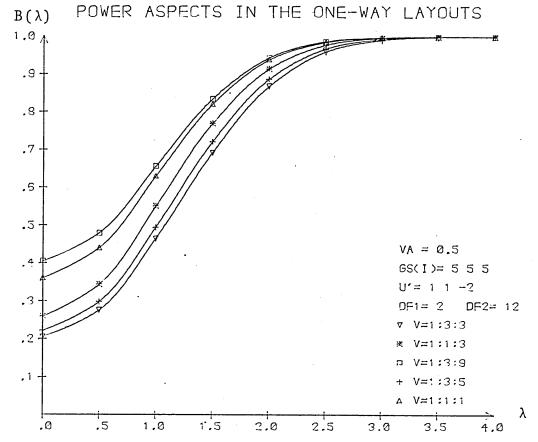


FIG. 2.2.1 EFFECTS OF UNEQUAL GROUP ERROR VARIANCES ON POWER.

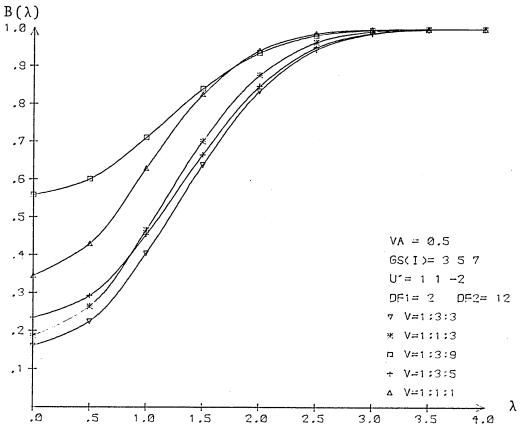
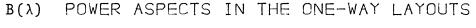



FIG. 2.2.2 EFFECTS OF UNEQUAL GROUP ERROR VARIANCES ON POWER.

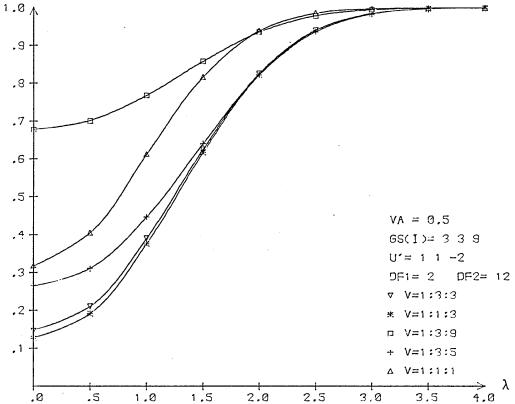


FIG. 2.2.3 EFFECTS OF UNEQUAL GROUP ERROR VARIANCES ON POWER.

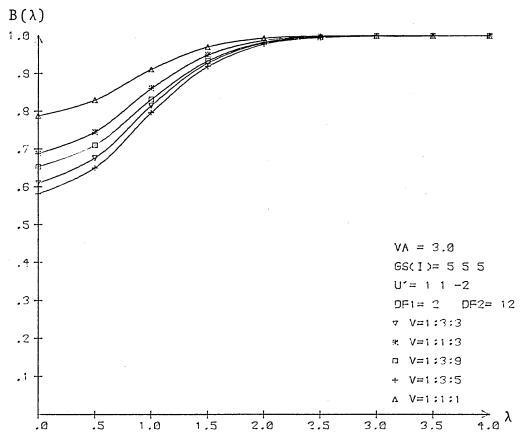


FIG. 2.2.4 EFFECTS OF UNEQUAL GROUP ERROR VARIANCES ON POWER.

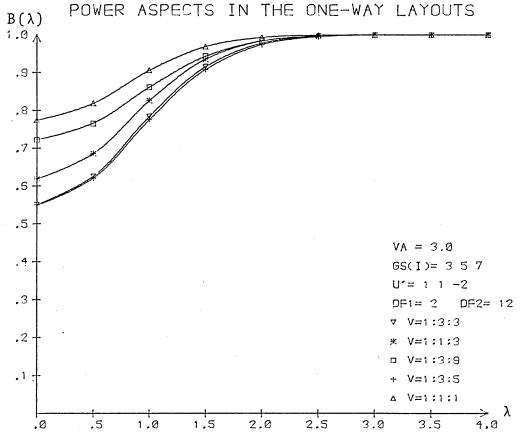


FIG. 2.2.5 EFFECTS OF UNQUAL GROUP ERROR VARIANCES ON POWER.

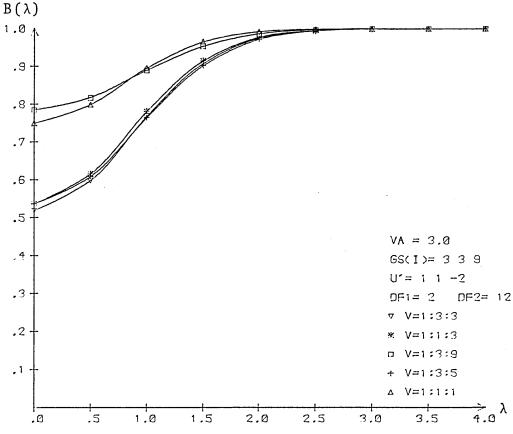


FIG. 2.2.6 EFFECTS OF UNEQUAL GROUP ERROR VARIANCES ON POWER.

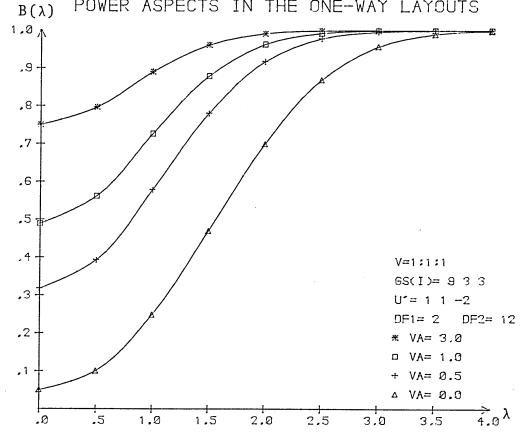


FIG. 2.2.7 EFFECTS OF VARIABILITIES OF TREATMENT MEANS ABOUT THEIR TRUE MEANS ON POWER.

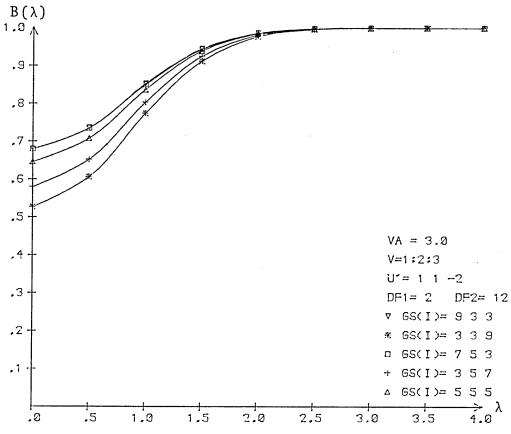


FIG. 2.2.8 EFFECTS OF GROUP SIZES ON POWER.

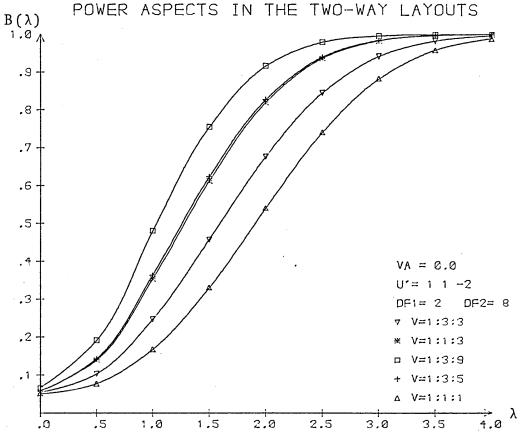


FIG. 3.1.1 EFFECTS OF UNEQUAL ERROR VARIANCES ON POWER.

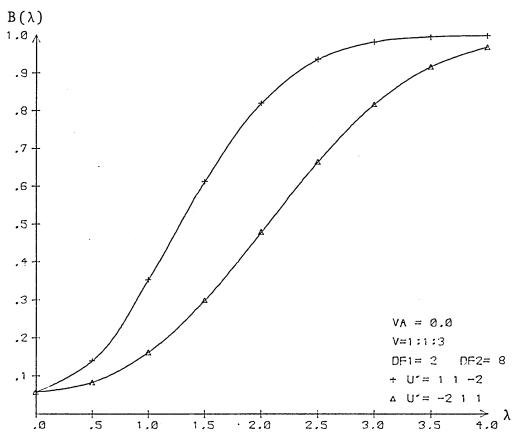


FIG. 3.1.2 EFFECTS OF GROUP CONTAINING DIVERGENT MEAN ON POWER.

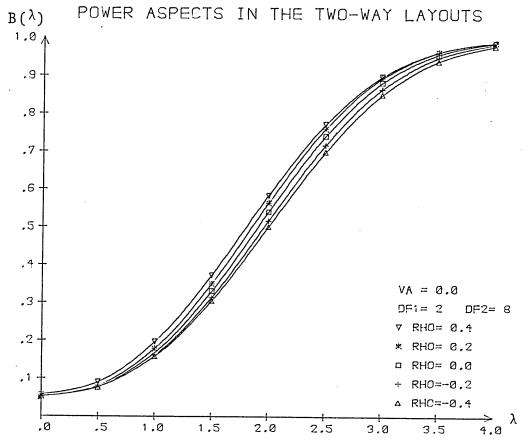


FIG. 3.1.3 EFFECTS OF WITHIN ROW SERIAL CORRELATION ON POWER FOR THE BETWEEN-COLUMNS COMPARISON.

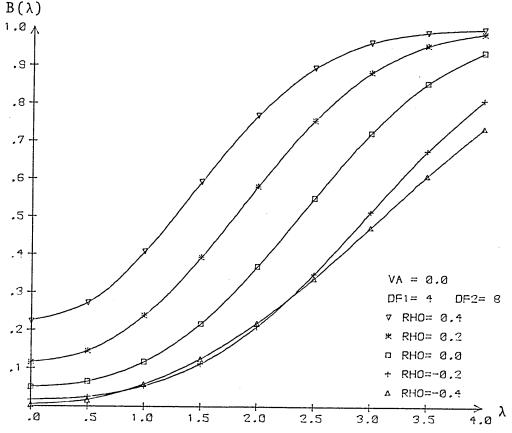


FIG. 3.1.4 EFFECTS OF WITHIN ROW SERIAL CORRELATION ON POWER FOR THE BETWEEN-ROWS COMPARISON.

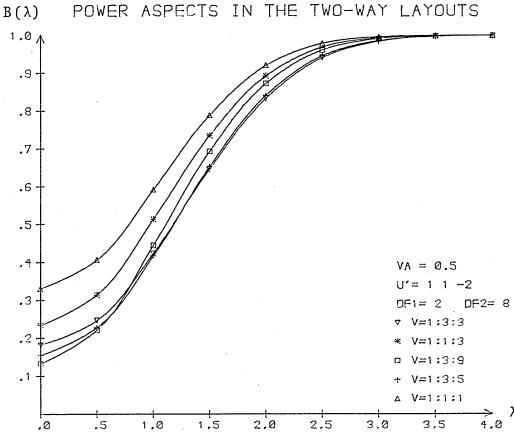


FIG. 3.2.1 EFFECTS OF UNEQUAL ERROR VARIANCES ON POWER.

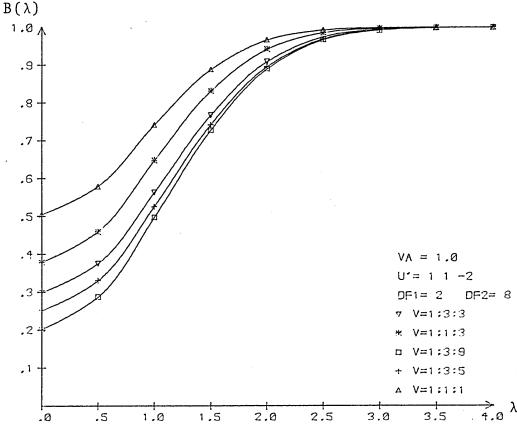


FIG. 3.2.2 EFFECTS OF UNEQUAL ERROR VARIANCES ON POWER.

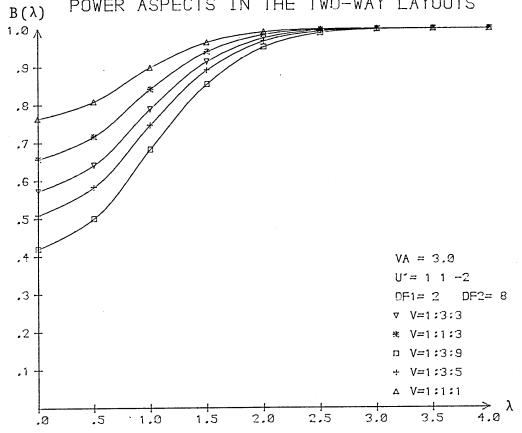


FIG. 3.2.3 EFFECTS OF UNEQUAL ERROR VARIANCES ON POWER.

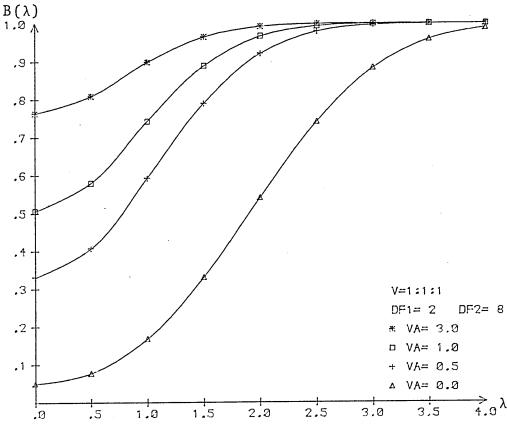


FIG. 3.2.4 EFFECTS OF VARIABILITIES OF TREATMENT MEANS ABOUT THEIR TRUE MEANS ON POWER.

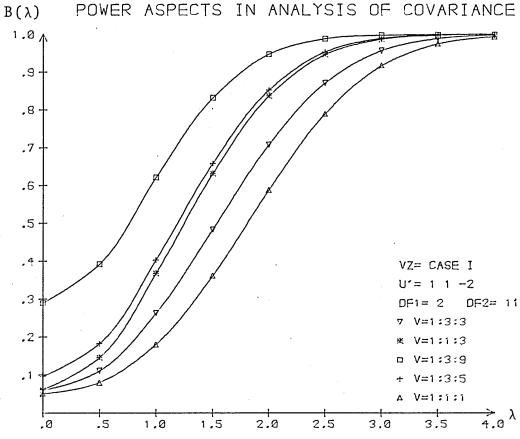


FIG. 4.1 EFFECTS OF UNEQUAL ERROR VARIANCES ON POWER.

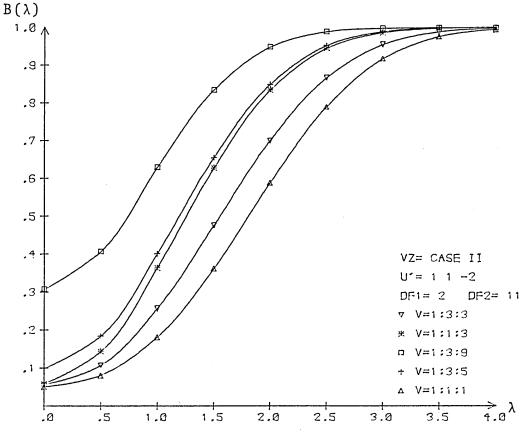


FIG. 4.2 EFFECTS OF UNEQUAL ERROR VARIANCES ON POWER.

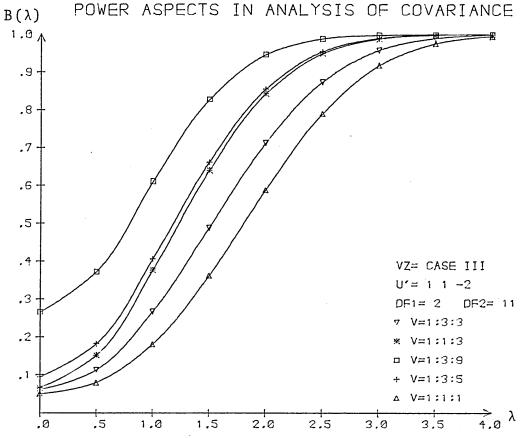


FIG. 4.3 EFFECTS OF UNEQUAL ERROR VARIANCES ON POWER.

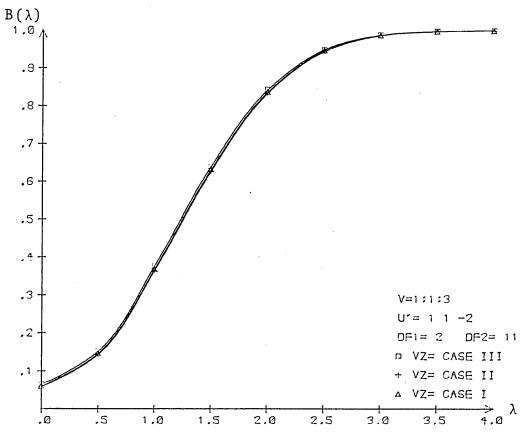


FIG. 4.4 EFFECTS OF UNEQUAL GROUP VARIABILITIES OF COVARIATE ON POWER.

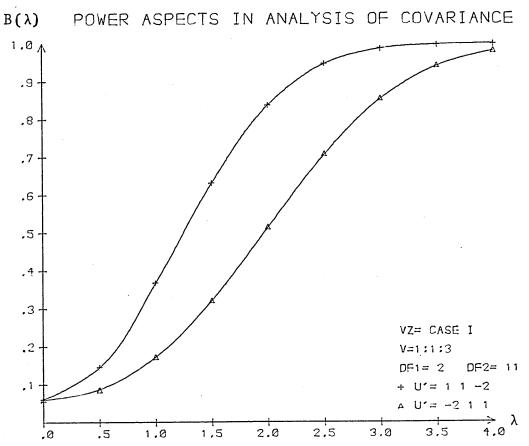


FIG. 4.5 EFFECTS OF GROUP CONTAINING DIVERGENT MEAN ON POWER.

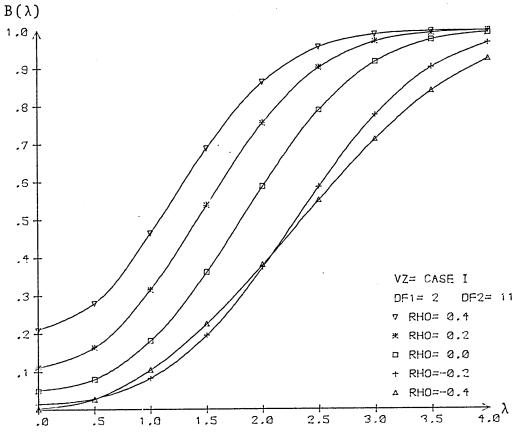


FIG. 4.6 EFFECTS OF WITHIN TREATMENT SERIAL CORRELATION ON POWER.

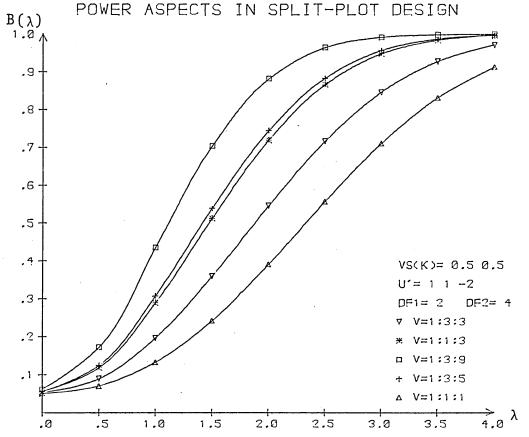


FIG. 5.1.1 EFFECTS OF UNEQUAL ERROR VARIANCES ON POWER.

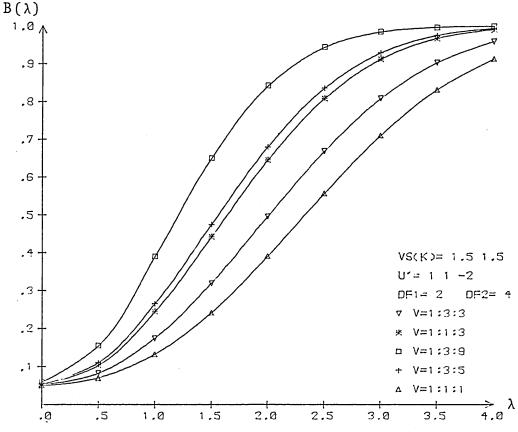


FIG. 5.1.2 EFFECTS OF UNEQUAL ERROR VARIANCES ON POWER.

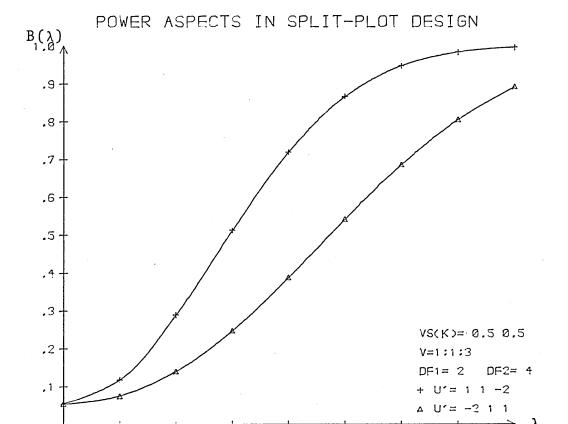


FIG. 5.1.3 EFFECTS OF GROUP CONTAINING DIVERGENT MEAN ON POWER.

2.0

2.5

3.0

1.5

.5

1.0

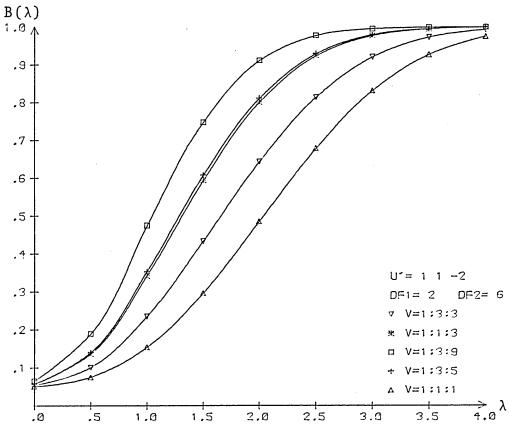


FIG. 5.2.1 EFFECTS OF UNEQUAL ERROR VARIANCES ON POWER.

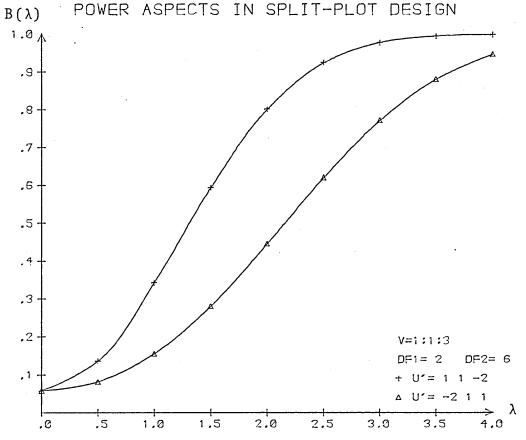


FIG. 5.2.2 EFFECTS OF GROUP CONTAINING DIVERGENT MEAN ON POWER.

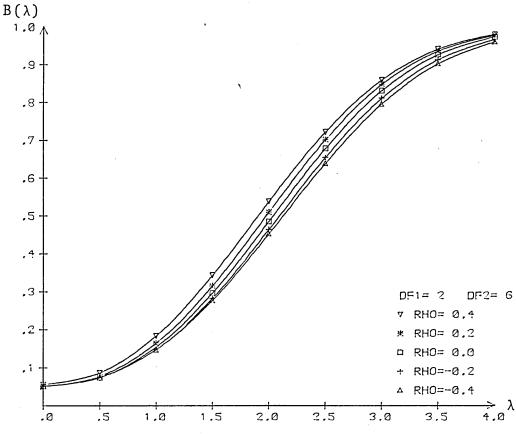


FIG. 5.2.3 EFFECTS OF SUB-PLOT SERIAL CORRELATION ON POWER.

Д	
$\overline{}$	
a	
-	
Д	
a	
Ë	

ANALYSIS OF VARIANCE --- GENERAL LINEAR MODEL

WITH U* = 1.00 1.00 -1.00 -1.00

F1 = 2

DF2

POWER VALUES AT 5% LEVEL OF SIGNIFICANCE

ć			0.00						: : : : : : : : : : : : : : : : : : : :			
T Y	ž	VAKI	タコンピタ				NON CEN	NUN CENIKALIIY PARAMETE	RAMETER			
7	۸5	٧3	٧4			1.0	1.5	2.0	2.5	3.0	3.5	7.
-		<u>.</u>	<u>.</u>			0.09633	0.15108	0.22221	0.30497	0.39426	0.48521	0.5762
-	. 2	м П	4•			0.16667	0.28887	0.43033	0.57196	0.70017	0.80909	0.8965
:	m	5	7.			0.25639	0.44780	0.63601	0.78737	0.89064	0.95142	0.9821
۲.	2.	4.	е Э			0.18763	0.32306	0.47660	0.62665	0.75804	0.86211	0.9346
-	m •	6	27.		0.15682	0.31506	0.51643	0.70419	0.84407	0.92978	0.97336	0.9916
۲.	<u>.</u>		m m			0.17800	0.31161	0.46287	0.60957	0.73632	0.83721	0.9130
-	-	;	5.			0.22892	0.40083	0.57918	0.73339	0.84886	0.92509	1696.0
	m m	ë,	9			0.22863	0.40473	0.58583	0.74017	0.85303	0.92521	0.9663
-	5	5	ις.	1. 5. 5. 5. 0.05140		0.34178	0.58313	0.58313 0.78006 0.90332	0.90332	0.96459	0.98920	0.9972

EX X	20	VARI	ANCES				NON CENT	NON CENTRALITY PARAMETER	RAMETER			
۲,	۸5	٧3	7	0.0	0.5	1.0		2.0	2.5	3.0	3.5	7-4
;			.	0.010.0	0.01247	0,01985	0.03203	0.04882	85690.0	0.09521	0.12446	0.1662
<u>.</u>	2.	М	4.	0.01089	0.03388	0.09970	0.19960	0.32130	0.45211	0.58296	0.71071	
.:	٠ •	'n	۲.	0.01152	0.06241	0.19992	0.38586	0.57628	0.73802	0.85625	0.93173	0.9733
	2.	4.	ө	0.01264	0.04148	0.12322	0.24504	0.38996	0.54136	0.68553	0.81082	0.9060
	3	6	27.	0.04219	0.10311	0.26408	0.47205	0.67021	0.82185	0.91764	16196.0	0.9897
;	-:		М	0.01060	0.03707	0.11230	0.22486	0.35891	0.49810	0.62982	0.74867	0.8533
-	1:		1. 1. 1. 5.	0.01152	0.01152 0.05357	0.16931	0.33174	0.50772	0.66911	0.79943	0.89361	0.9533
<u>.</u>	ň	3.	٠ ش	0.01020	0.05253	0.16897	0.33210	0.50814	0.66810	0.79485	0.88428	0.9418
.:	\$	5	'n	0.01032	0.09092	0.29543	0.53925	0.74577		0.95351	0.98462	0.9957

	I
•	_
(υ
	4
١	2
(ď
۲	-

ANALYSIS OF VARIANCE --- GENERAL LINEAR MODEL

WITH U* = 1.00 1.00 1.00 -1.00 -1.00 -1.00

= 2 DF2

DF1

POWER VALUES AT 5% LEVEL OF SIGNIFICANCE

4.0 0.91328 0.99723 0.99558 0.97281 0.93851 0.98615 0.9980 3.5 0.83191 0.94816 0.98418 0.93279 0.98853 0.96584 0.95968 0.99116 0.71088 0.88228 0.95380 0.96182 0.85669 0.91459 0.90072 0.96792 0.73352 0.76990 0.89614 0.88798 0.79235 0.90644 0.55691 0.39117 0.60895 0.76746 0.77183 0.56656 0.66399 0.62938 0.77953 NON CENTRALITY PARAMETER 0.41830 0.56923 0.43086 0.60659 0.37973 0.46753 0.57745 0.24222 0.23897 0.42228 0.13257 0.23623 0.33571 0.21097 0.26791 0.06978 0.14166 0.09579 0.10593 0.11879 0.10142 0.0 0.05000 0.05882 0.21692 0.05531 0.06367 0.06575 0.05178 0.05285 5----450

POWER VALUES AT 1% LEVEL OF SIGNIFICANCE

0.54105 0.94815 0.99408 0.99332 0.96882 0.90059 0.99416 3.5 0.41778 0.88515 0.92381 0.97907 0.97766 0.81604 0.97989 0.78703 0.94002 0.93896 0.70149 0.84376 0.79380 0.30111 2.5 0.85683 0.86082 0.55932 0.65203 0.72003 0.65929 2.0 0.71130 0.40188 0.48761 0.73104 0.55441 0.71380 NON CENTRALITY PARAMETER 0.49268 0.06394 0.50486 0.55503 0.31358 0.36567 0.24921 0.50506 0.31549 0.03092 0.36530 0.15848 0.27461 0.12287 0.15778 0.27154 0.18792 0.05132 0.04020 0.01469 0.04918 0.21593 0.08341 0.0 0.01000 0.01308 0.15893 0.01766 0.01419 0.01085 0.01053 1 0 H W W W W 9 ٠. ٣. q. 8. - 0 0 0 0 0 0 0

c	3	
•	_	
•		
	_	_
	a)
	_	
r	_	
	C	1
	~	
	σ	J
ŀ	_	

ANALYSIS OF VARIANCE --- GENERAL LINEAR MODEL

TH U* = 1.00 1.00 1.00 1.00 -2.00 -2.00

0F1 = 3

DF2 =

POWER VALUES AT 5% LEVEL OF SIGNIFICANCE

ERF	ROR.	ERROR VARIANCES	INCES					NON CEN	NON CENTRALITY PARAMETE	ARAMETER				
٧١	٧2	٧3	۸4	75	۸6		0.5	1.0	1.5	2.0	2.5	3.0	N. E.	4.0
			• •	-	<u>.</u>		0.06116	0.09571		0.23951	0.34333		0.57418	0.68298
-			.‡	'n	•		0.08304	0.15447		0.41065	0.57516	0.74106	0.87681	0.95790
<u>.</u>	'n	S.	7.	6	11.	0.06404	0.10717	0.22699	0.39795	0.58617	0.75731		0.95782	0.98889
<u>.</u> :			8	16.	32.		0.24740	0.34919		0.65368	0.79521	0.89863	0.95951	0.98751
l.			-	-	٠ ش		0.09795	0.21984		0.57178	0.73082		0.92675	0.97054
				-	5.		0.12486	0.29502		0.70733	0.85065		0.97714	0.99361
-		m,	m •	'n	'n		0.07866	0.15816		0.42544	0.57520		0.82159	0.90711
.		5.	5.	5.	5.		0.09993	0.23146		0.59849	0.75652		0.93960	0.97712

ERR	OR S	ARIA	NCES					NON CEN	NON CENTRALITY PARAMETE!	ARAMETER				
7	V1 V2	V3 V4	۷4	< >	.9/		0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
		۲.	-	!			0.01245	0.02032	0.03492	0.05774	0.08990	0.13183	0.18339	0.25044
: -	2.	м М	4.	'n			0.02856	0.07671		0.27428	0.43527	0.63041	0.81376	0.93358
<u>.</u>	'n	5	۲.	6		0.01537	0.05309	0.16007	0.31991	0.509.05	0.69675	0.84851		0.98438
:	2.	4.	9	16.		0.16510	0.20099	0.30226		0.61609		0.88311		0.98511
	l:	7	:	-		0.01097	0.04819	0.15209		0.46948		0.76387	0.86742	0.93920
. :	-	1:	7	-		0.01263	.0.07305	0.23335		0.64395		0.90586	0.96305	0.98870
	M	3.	e m	3•		0.01028	0.03019	0.08802		0.29147		0.54483	0.67347	0.80443
:	5.	5	ů.	'n		0.01044	0.05295	0.17017		0.51350		0.80454	0.89670	0.95578

- 1	
◁	
-	
~	۰
-	
Œ	
-	
_	
\mathcal{L}	
-	
ď	ļ
-	

ANALYSIS OF VARIANCE --- GENERAL LINEAR MODEL

WITH U* = -2.00 -2.00 1.00 1.00 1.00 1.00 0F2 =

POWER VALUES AT 5% LEVEL OF SIGNIFICANCE

0.68298 0.90079 0.98543 0.79736 0.98102 0.99870 0.75835 0.93291 3.5 0.57418 0.81753 0.65277 0.69569 0.95125 0.99381 0.95909 0.86927 3.0 0.45829 0.70859 0.90367 0.78006 0.53696 0.58106 0.89095 0.97621 2.5 0.34333 0.57717 0.66836 0.80475 0.78613 0.45721 0.92606 NON CENTRALITY PARAMETER 0.43223 0.65490 0.54280 0.29751 0.63139 0.33347 0.15536 0.41745 0.19529 0.44017 0.28947 0.46484 0.22201 0.24829 0.16834 0.30976 0.26942 0.09571 0.11762 0.13433 0.12015 0.10455 0.06980 0.06116 0.08713 0.07878 0.05000 0.05856 0.05856 0.06404 0.21092 0.05982 0.05111 0.05172 V6 1. 6. 5. 5. 5. 200011000

POWER VALUES AT 1% LEVEL OF SIGNIFICANCE

0.25044 0.98076 0.92082 0.52518 0.64792 0.99802 3.5 0.18339 0.74823 0.41229 0.94843 0.84889 0.92437 0.99144 3.0 0.13183 0.62531 0.88404 0.84938 0.41500 0.30906 0.08990 0.49016 0.77450 0.63199 0.23104 0.05774 0.35055 0.61496 NON CENTRALITY PARAMETER 1.0 1.5 2.0 0.02032 0.03492 0.05774 0.10977 0.21878 0.35055 0.21192 0.50119 0.78919 0.15531 0.03492 0.21678 0.41848 0.37293 0.37932 0.12901 0.26410 0.04791 0.06570 0.22052 0.1952 0.07118 0.06012 0.01245 0.03764 0.02024 0.02610 0.01000 0.01240 0.01537 0.16510 0.01097 0.01263 24. 32. 32. 5. 5. 3.60 16. 1 23-1-23-6-6

~	
α	
۲-	
α	۱
u	
_	
•	
_	
π	
1	
•	
Tah	

ANALYSIS OF VARIANCE --- GENERAL LINEAR MODEL

FOR EQUAL ERROR VARIANCES WITH SERIAL CORRELATION

0F1 = 2

DF2 = 2

SIGNIFICANCE
OF
LEVEL
₽
AI
VALUES
POWER

SERIAL	* .3.	! :						٠.	
CORRELATION	٠.			NON CENTR	NUN CENTRALITY PARAMETER	AMETER			
KHO	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3° E	4.0
5.0-	0.02225	0.08243	0.24164	0.44802	0.64643	0.80179	0.90513	0.96359	0.98981
-0.2	0.03400	0.05500	0.11531	0.20738	0.32041	0.44238	0.56262	0.67644	0.78920
0.0	0.05000	0.06180	0.09633	0.15108	0.22221	0.30497	0.39426	0.48521	0.57623
0.2	0.07365	0.10016	0.17520	0.28660	0.41771	0.55145	0.67388	0.77620	0.85545
0.4	0.11442	0.17984	0.34842	0.55582	0.74004	0.86928	0.94347	0.97896	0.99325
			• .:*						
						٠			
			•						: :
		POME	R VALUES	AT 1% LEV	EL OF SIG	POWER VALUES AT 1% LEVEL OF SIGNIFICANCE			
SERIAL		• • • • • • • • • • • • • • • • • • • •						:	
CORRELATION				NON CENTR	NON CENTRALITY PARAMETER	AMETER	٠	. •	
RHO	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
5.0-	0.00436	0.06139	0.21363	0.41454	0.61301	0.77444	0.88740	0.95511	0.98707
-0.2	0.00671	0.02125	0.06358	0.13012	0.21540	0.31291	0.41677	0.52883	0.66685
0.0	0.01000	0.01247	0.01985	0.03203	0.04882	86690.0	0.09521	0.12446	0.16626
0.2	0.01504	0.03087	0.07686	0.14870	0.23998	0.34310	0.45033	0.55480	0.65304
0. 4	0.02435	0.08269	0.23759	0.43983	0.63615	0.79107	0.89393	0.95239	0.98111
				•					

_	
α	
ς-	
•	
_	
a	١
_	
_	١
α	١
-	

ANALYSIS OF VARIANCE --- GENERAL LINEAR MODEL

FOR EQUAL ERROR VARIANCES WITH SERIAL CORRELATION

0F1 = 2

POWER VALUES AT 5% LEVEL OF SIGNIFICANCE

SERIAL									
UKRELATION		•		NUN CENTR	NUN CENTRALITY PARAMETER	AMETER			
RHC	0.0	6.0	0.1	1.5	2.0	2.5	3.0	3.5)• +
. '	0.01004	1004 0.12692	0.40162	0.68208	0.63208 0.86951 0.95878		0.99003	0.99816	1666.0
	0.02511	0.06045	0.16239	0.31635	0.49551			0.89974	0.9551
	0.05000	0.05000 0.06974	0.13257	0.24222	0.39117 0.55691			0.83191	0.9132
	0.08929	0.13406	0.26070	0.44259	0.63558			0.96154	0.9870
	0.15238	0.24156	0.45875	0.69487					9666 0

SERIAL									
CORRELATION				NON CENIR	NON CENIRALITY PARAMETER	AMETER			
RHO	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5)• †
4.0-	0.00172	0.11727	0.38980	0.67045	0.67045 0.86109 0.95435 0.96834	0.95435	0.96834	0.99770	0.9996
-0.2	0.00460	0.00460 0.03211	0.11120	0.23167	0.37753	0.52964	0.67005	0.78665	0.8766
0.0	0.01000	0.01469	0.03092	0.06394	0.11920	0.19912	0.30111		0.5410
0.2	0.02004	0.04691	0.12586	0.24989	0.40372				0.9053
4.0	0.04058	0.12072	0.32483 0.56838		0.77208 0.90130			0.98997	0.9976/

α	
~	
α	
_	
7	Ī
Ë	

ANALYSIS OF VARIANCE --- GENERAL LINEAR MODEL

FOR EQUAL ERRUR VARIANCES WITH SERIAL CORRELATION

. = 3

PUNER VALUES AT 54 LEVEL OF SIGNIFICANCE

CORRELATION 0.0 0.5 1.0 1.5 -0.4 0.01609 0.11837 0.36589 0.63420 0.83095 0.93756 0.98168 -0.2 0.02910 0.05775 0.19680 0.35221 0.52425 0.69373 0.60945 0.0 0.08533 0.16716 0.0 0.08533 0.16716 0.0 0.08533 0.16716 0.0 0.098699 0.99795	SEKIAL									
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.01609 0.11837 0.36589 0.63420 0.83095 0.93756 0.98168 0.02910 0.05775 0.13979 0.26355 0.41100 0.56150 0.69717 0.05000 0.08868 0.19680 0.35221 0.52425 0.68323 0.80945 0.08533 0.16716 0.37209 0.60927 0.80014 0.91630 0.97139 0.15342 0.28312 0.56490 0.81096 0.94129 0.98699 0.49795	CORRELATION			,	NON CENTR	ALITY PAR	AMETER			
0.01609 0.11837 0.36589 0.63420 0.83095 0.93756 0.98168 0.02910 0.05775 0.13979 0.26355 0.41100 0.56150 0.69717 0.05000 0.08868 0.19680 0.35221 0.52425 0.68323 0.80945 0.08533 0.16716 0.37209 0.60927 0.80014 0.91630 0.97139 0.15342 0.28312 0.56490 0.81096 0.94129 0.98699 0.99795	KHO	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	7.4
0.02910 0.05775 0.13979 0.26355 0.41100 0.56150 0.69717 0.05000 0.08868 0.19680 0.35221 0.52425 0.68323 0.80945 0.08533 0.16716 0.37209 0.60927 0.80014 0.91630 0.97139 0.15342 0.28312 0.56490 0.81096 0.94129 0.98699 0.99795	-0-	0.01609	0.11837	0.36589	0.63420	0.83095	0.93756	0.98168	0.99580	6.0
0.05000 0.08868 0.19680 0.35221 0.52425 0.68323 0.08533 0.16716 0.37209 0.60927 0.80014 0.91630 0.15342 0.28312 0.56490 0.81096 0.94129 0.98699	-0.2	0.02910	0.05775	0.13979	0.26355	0.41100	0.56150	0.69717	0.80800	0.89343
0.08533 0.16716 0.37209 0.60927 0.80014 0.91630 0.15342 0.28312 0.56490 0.81096 0.94129 0.98699	0.0	0.05000	0.08868	0.19680	0.35221	. 0.52425	0.68323	0.80945	69968*0	0.94964
0.15342 0.28312 0.56490 0.81096 0.94129 0.98699	0.2	0.08533	0.16716	0.37209	0.60927	0.80014	0.91630	0.97139		0.99820
	0. 4	0.15342	0.28312	0.56490	0.81096	0.94129	0.98699	0.99795		36666.0
							٠			

SERIAL									
CCRRELATION	•			NON CENTR	NON CENTRALITY PARAMETER	AMETER			
RHO	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	
4.0-	0.00303	0.10515	0.35295	0.62317	0.82334	0.93344	0.97998	0.99528	66.0
-0.2	0.00561	0.02977	0.09908	0.20448	0.33274	16891.0	0.59988		0.82
0.0	0.010.0	0.04253	0.13423	0.26893	0.42440 0.57809	0.42440 0.57809 0.71249 0.81309	0.71249	0.81309	0.89
0.2	0.01811	0.01811 0.09727	0.29876 0.54026	0.54026	0.74598	0.88190	0.95387		0.99
0.4	0.03663	0.17712	0.48728	0.76710	766660	0.98144	0.99675		00

Table 2.1A

ANALYSIS OF VAKIANCE --- GNE-KAY LAYOUT

MITH VA = 0.0 AND U* = 1.00 -1.00

DF2 = 8 GROUP SIZES GS(1) =

DF1

POWER VALUES AT 5% LEVEL OF SIGNIFICANCE

GROUP V.	ARIANCES	•		٠.	NON CENTR	NON CENTRALITY PARAMETER	AMETER			
^1	۷۱ ۷2	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
1.0	1.0		0.09595	. 0.23900	0.46272	0.69846	0.87068	0.95867	0.99030	0.99834
6.0	1.0	0.05006	0.09653	0.24068	0.46513	0.70063	0.87200	0.95921	0.99045	0.59837
0.8	1.0		0.09851	0.24643	0.47341	0.70803	0.87644	0.96105	86066*0	0.99848
0.7	1.0		0.10239	0.25774	0.48930	0.72208	0.88477	0.96444	0.99194	0.99867
9.0	1.0		0.10883	0.27617	0.51484	0.74415	0.89754	0.96952	0.99335	0.99894
0.5	1.0		0.11672	0.30387	0.55209	0.77521	0.91483	0.97612	0.99510	0.99927
7. 0	1.0		0.13332	0.34334	0.60279	0.81520	0.93573	0.98359	0.99695	0.99959
0.3	0.1		0.15504	0.39786	0.66/85	0.86227	0.9580.7	0.99078	0.99855	0.99984

	0.4°C	0.96621	0.96719.	0.97038	0.97580	0.98281.	0.98999	0.99563	0.99876
	3.0 . 3.5	0.90337	0.90567	0.91322	0.10331 0.24192 0.43902 0.65023 0.82125 0.92640 0.97580	0.94423	.0.96394	-0.98142	0.99316
	3.0	0.77886	0.78298	0.79671	0.82125	0.85558	0.89728	0.93840	0.97132
AMETER	2.5	0.59070	0.55637	0.61539	0.65023	0.70165	0.76719	0.83975	0.90801
NON CENTRALITY PARAMETER	1.5 2.0	0.37582	0.38172	. 0.40167	0.43902	0.49633	0.57406	0.66878	0.77167
ION CENTRA	1.5	0.19227	0.19682	0.21233	0.24192	0.28888	0.35607	0.44492	. 1.0455.0
	1.0	0.07640	0.07582	0.08716	0.10331	0.12962	0.16889	0.22425	0.29932
	O	0.02359	0.02427	0.02660	0.03117	0.03874	0.05036	0.06749	0.01356 J. 0.09277 J. 0.29932 J. 0.55407 J. 0.77167 J. 0.90801 J. 0.97132 J. 0.99316 J. 0.99876
	0.0	000	. 200	0.010.0	0.01025	0.01051	0.01093	0.01163	0.01356
ANCES	٧2	1.0		1.0	1.0	1.0	1.0	1.0	0.1
GROUP VARIANCES	17	1.0	6.0	8 • 0	1.0	9.0	o•2	0.4	0.3

	1	
	U* = 1.00 -1.60	
		. (
	ŏ	٠,
	- 1	.
	_	. 1
	9	: !
· -	<u>-</u>	
00		•
ΑY.		
_	Š	
N. A.		
L		•
5		•
ŀ	i '	!
i	ON	i
CE	. ₹	
AN		,
AR.	AND	•
>		, :
ANALYSIS GF VARIANCE ONE-MAY LAYOUT		• '
I S	0	
X S	0	
AL		
V		
	<i>></i>	
	11	:
+ 3	Z	
		4.
	•	
		. (
•	1.	٠.
	1.1.	
ble 2.1A	WITH VA= 0.0	
٠ د		
ظ		
ш		

POWER VALUES AT 5% LEVEL OF SIGNIFICANCE

0.9 1.0 0.04592 0.11211 0.29723 0.54656 0.77205 0.91384 0.97608 0.99520 0.9993189 0.8921 0.6759 0.9993189 0.8921 0.26759 0.99520 0.9993189 0.8 1.0 0.04177 0.04938 0.2645 0.50490 0.73592 0.86510 0.96540 0.98540 0.98894 0.99802 0.77 1.0 0.03759 0.08629 0.23361 0.45803 0.66239 0.86510 0.95540 0.988310 0.99802 0.66 1.0 0.002920 0.016940 0.35856 0.58919 0.79013 0.91657 0.998310 0.999408 0.5910 0.998310 0.991052 0.16940 0.35856 0.58919 0.79013 0.91657 0.97454 0.999408 0.991052 0.002920 0.065303 0.14862 0.32352 0.554787 0.775535 0.89541 0.99516 0.999102 0.999102
0.3 1.0 0.02483 0.05634 0.15634 0.03163 0.03163 0.03163 0.03163

										•
GROUP VARIANCES	IRIANCES				NON CENTR	CENTRALITY PARAMETER	AMETER		•	•
. V 1		0.0	0.5	1.0	1.5	2.0	ů	3.0	3.5	4.0
1.0		0.01000	0.05964	0.20222	0.41140	0.63533	0.81641	0.92683	0.97732	0.99460
6.0		0.00880	0.04994	0.17171	0.36099	0.57907	0.77121	0.90010	0.96560	0.99076
8°0 .	÷	0.00783	0.04001	0.13933	0.30462	.0.51182	0.71247	0.86175	0.94673	0.98374
0.7		0.00680	0.03015	0.10611	0.24366	0.43372	0.63795	0.30773	0.91674	0.97092
9.0	1.0	0.00583	0.02100	0.07431	0.18204	0.34876	4 0.34876 0.54911	0.73594	0.87157	0.94866
0.5		0.00492	0.01373	0.04853	0.12921	0.27003	0.45861	0.65427	0.81326	0.91557
. 0 - 4		0.00419	0.01072	0.03794	0.10499	0.22878	0.40419	0.59790	0.76700	.0.88528.
0.3		0.00710		0.06287	0.14871	0.28504	0.46061	0.64319	0.79663	0.90136

Table 2.1A

--- ONE-WAY LAYOUT ANALYSIS OF VARIANCE

0.0 WITH VA=

AND

1.00

GROUP SIZES GS(1) Š

PUMER VALUES AT 5% LEVEL OF SIGNIFICANCE

0.99911 0.99993 1.00000 96666.0 0.99973 95665.0 0.99999 16555.0 0.99984 0.99838-0.99985 0.99725 0.99971 0.99559 0.99946 6.99773 906660 0.99852 0.99330 0.99030 0.98199 0.98653 NGN CENTRALITY PARAMETER 2.5 0.97504 0.98814 0.92987 0.94327 0.95539 0.96603 0.98240 ŀ 0.90203 0.80164 0.82819 0.85414 0.87893 0.92298 -.0.94138 0.95698 0.58239 0.86223 0.61756 0.65371 0.69088 0.72848 0.76585 0.35373 0.38485 0.45568 0.23761 - 0.53758 0.27013 0.58238 0.41884 0.49532 0.18784 0.21066 0.13688 0.15146 0.16831 0.05445 0.05988 0.06661 0.10102 0.07513 0.08620 0 GROUP VARIANC • 9.0 0.5 0.4 1.0 3.0 0.7

POWER VALUES AT 1% LEVEL OF SIGNIFICANCE

0.99690 0.51267 0.73702 0.88845 0.96367 0.99107 0.99836 0.56698 0.78543 0.91803 0.97639 0.99495 0.99495 0.44819__0.13282_0.0.90578_0.97621_00.99576_0.0.99947_0.0.99995_ 0.50274_0.0.78472_0.93454_0.98619_0.99800_0.0.99980_0.0.99999 0.99560....0.99737...0.99965 0.99185 0.99875 0.99986 09566.0 0.46059 -0.68553 -0.81641 -0.92683 -0.97732 0.46059 -0.68655 0.85430 -0.94716 0.98531 0.62253 0.83045 0.94255 0.67830 0.87089 0.96186 NON CENTRALITY PARAMETER 0.05964 0.20221 0.06994 0.23345 0.08198 0.26847 ..0.35038 0.30742 0.39735 0.44819 9096000 0.01000... 0.03774 0.01501 0.01288 0.02199 0.02805 0.01791 0.1 GROUP VARIANCES 1.0 0 0.7 9.0 1.0 0.8

-	-
<	1
	7
_	_
•	
	٠
-	
C	\
•	-
-	
- (n
_	٠
	7
-	_
-1	
_	_
•	U
·	v
•	
۰	-
•	

-	
.AYGUT	
Α	
<u> </u>	
A A	
DNE-WAY	
ວັ	
VAR I ANCE	
I A	
AR	
-	
OF.	
MALYSIS	
Υ.	
MA	
7	
•	

									•				-
	5			`	0.49566	926650	0.94985	0.99977	0.99999	0.99978	1.99997	00000	0.99974
0 -2.00	li L			ر د د	0.97881	0.99492	0.99854	0.99795	0.99988	90856.0	0.99961	0.99062	0.99776
U* = 1.00 1.00 -2.00	GROUP SIZES GS(I) = 5			3-0	0.92438	0.97500	0.99041	0.98755	0.99865	0.98824	0.99653	0.96045	0.98699
n* = 1	GROUP SI	POWER VALUES AT 5% LEVEL OF SIGNIFICANCE	AMFTER	2.5	05661.0	0.91125	0.95628	0.94674	0.99024	0.94894	0.97925	0.87757	0.94706
		EL UF SIG	NOW CENTRALITY PARAMETER	2.0	0.59880	0.76870	0.85899	0.83665	0.95295	0.84086	0.91436	0.71593	0.84559
AND		AT 58 LEV	NON CENTR	1.5	0.36931	0.54567	0.66929	0.63205	0.84592	0.63624	0.75171	0.49117	0.66682
0.0	DF2 =12 .	R VALUES		1.0	0.18439	0.30176	0.41690	0.37108	0.64950	0.37146	0.48314	0.26783	0.44776
WITH VA= 0.0	OF	POWE	:	0.5	0.08077	0.12128	0.19782	0.15233	0.43324	0.14748	0.20852	0.11368	0.26835
35	0F1 = 2			0.0	0.05000	0.05664	0.11157	0.06800	0.33636	0.06078	0.09017	0.06050	0.19980
			VARIANCES	<u>۲</u>	1.0	3.0	2.0	7. 0 0	0.6) 1	2	3.0	ر 0
		•		۲5	1.0	2.0	o :	7.0) ·) ·) ·	3.0	2.0
			GROUP	7	0.1	0 1	0.1) ·) : -	0 1	O .	0.1	1.0

POWER VALUES AT 12 LEVEL OF SIGNIFICANCE

		7	0.95300	000.0	71+66-0	0.99905	0.9987.0		16666.0	O. GGRAG	00000	0.99989	0.98705	
	,	0 1	0.71997	0.91474	7,670 0	11716.0	0.96336	10000	1007.6.0	0.96534	61600	61766.0	0.87459	0 04247
METER	2 2		0.51360	0.79916	770000	00.00.00	0.88678	10100 0	10104 00	0.89059	7670 0	06206.0	0.73053	80008.0
ALITY PARA	2.0		0.30344	0.61000	7472		0.73376	0.928.0	00000	0.73827	F0578-0	00000	0.53270	0.7539R
NON CENTRALITY PARAMFIFR	1.5		705510	0.38648	0.56416	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.50998	0.74851	3000	0.51219	0.68184		0.32477	0.56265
-	1.0	0 06643	000000	0.18754	0.32553		0.27013	0.58942		79/97•0	0.40622		0.15563	0.36176
					0.13738						-			
					0.06638									
VARIANCES	. V3	0.1	, ,	0.0	5.0	7	•	0.6	,) 1	o o		0.0	ۍ دن
VARI	۸5	0.	,		٥ ٥	0,0) ·	D. M	·	•	0	מ	•	٠ 0
GROUP	\	٥٠٢		0	0.1	0,1	•	. · ·	ر د	•	0.1	c -	•	0.1

Ø
~
2
œ
\vdash
Ф
Ø
-

LAYGUT
CNE-WAY
1
VARIANCE
OF.
ANALYSIS

									•				
	5 . 5			4.0	99566	99675	98666	.99704	61666.	.98335	.96783	.99853	0.99986
00•	z,			3.5									0.99873 0
⊣	H				16.0	0.98	66.0	0.98	0.99	0.94	0.91	0.99	66.0
0* = -2.00 1.00 1.00	GROUP SIZES GS(1)			3.0	0.92438				0.99012				
.z.00	1 ZE S	ıμ											
" *	GROUP	NIF ICAN	AMETER	2.5	0.79990	0.85069	0.92954	0.8635	0.96146	0.7164	0.67186	0.8947	0.96479
		EL OF SIG	ALITY PAR	2.0	0.59880	0.68469	0.81438	0.70758	0.88791	0.52259	0.49643	0.75122	0.88634
AND		POWER VALUES AT 5% LEVEL OF SIGNIFICANCE	NOW CENTRALITY PARAMETER	1.5	0.36931	0.46790	0.62141	0.49660	0.75095	0.32665	0.32704	0.53831	0.72634
0.0	0F2 = 12	VALUES A		1.0	0.18439	0.25630	0.38600	0.28196	0.56779	0.17539	0.19544	0.30571	0.49979
O.O HAV HIIM	DF2	POWER		0.5	0.08077	0.10883			0.40320				
Ξ.	DF1 = 2			0.0	0.05000								
			VCE S	٧3	1.0	3.0	2.0	4.0	0.6	3.0	2.0	3.0	5.0
					1.0	-							
			GROUP	۱۸	1.J	1.0	1.0	1.0	1.0	1.0	۱ ٠ ٥	1.0	1.0

POWER VALUES AT 1% LEVEL OF SIGNIFICANCE

GRUUP	VARIA	INCES				NUN CENTR	ALITY PAR.	AMETER			
~ >	. v2 v3	٧3			1.0	1.5	0 1.5 2.0 2.5	2.5	3.0	3.5	4.0
0.1	1.0	0.1			0.05563	0.14462	0.30344	0.51360	0.71997	0.87073	0.95300
0.1	2.0	3.0			0.17385	0.34929	0.54864	0.73173	0.86697	0.94616	0.98249
1.0	3.0	2.0			0.32616	0.55539	0.75662	0.89097	0.96082	0.98892	0.99757
1.0	2.0	4.0			0.20705	0.39715	0.59932	0.77231	0.89185	0.95788	0.93676
1.0	3.0	0.6			0.51986	0.70796	0.85614	0.94330	0.98239	0.99576	0.99922
1.0	1.	3.0			0.07683	0.16494	0.29977	0.47134	0.65001	0.80092	0.90443
1.0	1.0	5.0	0.03999	0.05774	0.11165	0.20273	0.32894	0.48007	0.63627	0.17464	0.87956
1.0	3.0	3.0			0.23373	0.44607	0.65720	0.82254	0.92496	0.97461	0.99324
1.0	2.0	5.0			0.45071	0.68154	0.85363	0.94741	0.98548	16966.0	0.99953

Ø
~
7
œ
Ф
๗
1-

ANALYSIS OF VARIANCE --- ONE-WAY LAYOUT

	2
00.71	e
	**
7	65(1)
7	GROUP SIZES GS(1)
00.1 00.1 - +0	GROUP
_	
•	DF2 =12
1	0
1 4 2 4 5	0F1 = 2
	_

POWER VALUES AT 5% LEVEL (IF SIGNIFICANCE

						•				
-	4.0	0.99763	0.99455	0.99808	0.99704	0.99993	0.99719	0.99955	0.99211	0.99726
	3.5	0.98698	0.97471	0.98861	0.98402	0.99928	0.98524	0.99645.	0.96631	15586.0
	3.0	0.94820	9.616.0	0.95295	0.93873	0.99493	0.94364	0.98079	0.89410	0.94599
METER	2.5	0.84877	0.78130	0.86090	0.82862	0.97590	0.84015	0.92718	0.74925	0.85437
CENTRALITY PARAMETER	2.0	0.66888	0.57469	0.69645	0.049.0	86076.0	0.65593	0.80050	0.54036	0.70605
NON CENTRA	0 1.5 2.0 2.5	0.43831	0.34554	0.49082	0.41162	0.81531	0.42190	0.59149	0.32321	0.53604
	1.0	0.22793	0.16484	0.30894	0.21480	0.67917	0.21009	0.35004	0.10016	10966.0
			0.06525							
			0.03800							
NCES	۸3	1.0	3•0	5.0	4.0	0.6	3°C	2.0	3.0	5.0
VARIA	٧2 ٧3	0.1	5. 0	3.0	2.0	3.0	1.0	1.0	3.0	2.0
GRUUP										

GRUUP	VAR	ANCES				NON CENTR	ALITY PAR	AMETER		٠	
~ >	٧2	۲3	0.0		1.0	1.5 2.0 2	2.0	2.5	3.0	3.5	4.0
1.0	1.0	1.0	0.01000			0.25331	0.44700	0.65488	0.32506	0.92991	0.97819
1.0	2.0	3.0	0.00965	0.01898	0.05025	0.14423	0.29923	0.50474	. •	0.86487	0.95274
1.0	3.0	5.0	0.13666		0.21822	0.33418	0.50051	0.68590	0.84268	0.94055	0.98402
1.0	2.0	4.0	0.03477		0.11508	0.23438	0.41320	0.61884	0.80012	0.91598	0.97713
0•1	3.0	0.6	0.50189		0.62729	0.75085	0.86727	0.94631	0.98426	0.99679	0.99956
0.1	1.0	3.0	0.00772		0.10830	0.24819	0.44242	0.65105	0.82302	0.93073	0.98041
1.0	1.0	5°0	0.06797		0.27609	0.48756	0.69995	0.86122	0.95200	0.98830	0.99810
0.1	3.0	3.0	0.01932		0.05615	0.12911	0.26445	0.45532	0.66052	0.82919	0.93427
0.1	5.0	0 - 9	0.26234		0.31301	0.39228	0.51763	0.47279	0.81940	0 00071	0 67540

	1	
	-	
•	•	
	•	
•	`	
٠,	٠,	
	Œ	
	_	
•		
	_	
	C	
	_	
	α	
	•	
- 3-		
•		

ANALYSIS OF VARIANCE --- ONE-WAY LAYCUT

GROUP SIZES GS(I) = U* = -2.00 1.00 AND DF2 =12 WITH VA= 0.0 DF1 = 2

PUWER VALUES AT 5% LEVEL DF SIGNIFICANCE

								•		
	4.0	0.99825	0.96025	0.98196	0.95308	0.99533	0.95468	0.88511	0.96776	0.99480
	3.5	0.98981	0.89002	0.94214	0.87713	0.98228	0.88208	0.76802	0.90658	0.97863
	3.0	0.95720	0.75870	0.85762	0.74405	0.94945	0.75116	0.61081	0.78773	0.93478
AMETER										
ALITY PAR	2.0	0.69940	0.37110	0.55609	0.37816	15662.0	0.37064	0.29308	0.41645	0.71574
VON CENTR	1.5	0.47008	0.20562	0.39370	0.22532	0.669.0	0.20631	0.18839	0.24565	+2090 0.56209 0.71574 0.84735
	1.0	0.24889	0.10091	0.26581	0.12569	0.60763	0.10048	0.12792	0.12885	0.42090
	0.5	0.10036	0.05021	0.18699	0.07441	0.54443	0.04832	0.09976	.0.06653	0.32321
· e	0.0	0.05000	0.03600	0.16067	0.05916	0.52200	0.03353	0.09190	0.04770	0.28848
INCES	٨3	1.0	3.0	5.0	4.0	0.6	3.0	2.0	3.0	5.0
VARI1	٧2 .٧3	٦ ٠ ٥	5.0	3.0	S•0	3.0	1.0	1.0	9.0 9.0	5.0
GROUP	٧١	າ•ດ	0 • 1	1.0	0.1	1.0	1.0	1.0	1.0	1.0

GROUP	VARI	ANCES				NON CENTR	ALITY PAR	AMETER			
 >	۸5.	٨3		0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
1.0	1.0	1.0		0.04219	0.1403	0.30251	0.50756	0.70962	0.86198	0.94851	96.0
1.0	2.0	3.0		0.01471	0.0328	0.07341	0.15092	0.27622	0.44298	0.62315	
0.	3.0	5.0		0.15814	0.2207	0.31921	0.44530	0.58625	0.72421	0.84010	
J. U	2.0	4.0		0.04291	0.0692	0.11925	0.20135	0.32137	0.47347	0.63637	0.78219
0.1	3.0	0.6		0.52231	0.5794	0.66129	0.75269	0.83864	0.90786	0.95515	0.98196
0.1	1.0	3.0		0.01291	0.0316	0.07388	0.15358	0.27992	0.44483	0.62111	0.77679
1.0	1.0	1.0 5.0	19190.0	0.07005	0.0778	0.09659	7 0.09659 0.13517 0.20414	0.20414	0.31009	0.45076	0.61468
0.1	3.0	3.0		0.03024	0.0647	0.12833	0.22845	0.36746	0.53314	0.69808	0.83293
٦ • ١	2.0	5.0		0.29363	0.3806	0.50532	0.64384	0.77779	0.87456	07 17670	0.97787

-	ľ
<	c
_	_
~	_
	•
_	-
C	V
•	D
-	4
1	J
	4
ι	Ū

ANALYSIS OF VARIANCE --- UNE-WAY LAYOUT

•	(1)
	rv
1.00 -2.00	7
1.00	GROUP SIZES GS(I) =
U* = 1.00	SIZES
# ^	GROUP
AND	
WITH VA= 0.0	DF2 =12
	DF1 = 2

POWER VALUES AT 5% LEVEL OF SIGNIFICANCE

	3.0 3.5 4.0	0.95720 0.98981	0.99635	0.99863 0.99988	0.99830 0.99984	86666 0 69666 0	0.99820 0.99983	96666 0 88666 0	0.99427 0.99923	0.99812 0.99982
AMETER	2.5	0.86868	0.97842	0.98957	0.98768	0.99610	0.98710	0.99420	0.97029	0.98708
JUN CENTRALITY PARAMETER	2.0	0.69940	6 0.91192 0.97842	0.94674	0.94003	0.97356	0.93787	0.96436	0.89143	0.93961
NON CENTR	1.5	0.47008	0.74746	0.81552	0.80052	0.88422	0.79547	0.85572	0.71507	0.80543
•	1.0	0.24689	0.47955	0.55950	0.53877	0.66971	0.53139	0.61190	0.44941	0.55980
4. * 			0.20864							
			0.09263							
VARIANCES	٧3	0.1	3.0	5.0	4.0	0.6	3.0	5.0	3.0	5.0
VARI	۸5	1.0	5.0	3.0	2.0	3.0	1.0	1.0	3.0	2.0
GROUP	٧١	0.1	0.1	1.0	1.0	1.0	0.1	1.0	1.0	1.0

GROUP	VARI	VARIANCES	•			NON CENTR	ALITY PAR	AMETER			
٧1	۸5	۸3	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
1.0	1.0	1.0	0.01000		0.14033	0.30251	0.50756	2	0.86198	0.94851	0.98519
1.0	2.0	3.0	0.02562	0.13057	0.38683	3 0.66476 0.86151 0.9578	0.86151	'n	0.99073	0.99855	0.99984
1.0	3.0	5.0	0.04870		0.48220	0.76166	0.92151	-	0.99708	0.99968	86666 0
1.0	2.0	O•+	0.03567		0.45525	0.73834	0.90902	3	0.99612	0.99954	96666.0
7.0	3.0	0.6	0.14589		.0.60802	0.85303	0.96322		0.99934	0.99995	1.00000
1.0	1.0	3.0	0.03269		0.44594	0.72987	0.90441	S	0.99577	0.99949	98666.0
0.1	1.0	5.0	0.05974		0.54219	0.81581	0.94937	0	0.99883	06666.0	66666 0
0.1	3.0	3.0	0.02491		0.35805	0.62788	0.83272	0	0.98567	0.99737	0.99965
1.0	5.0	5.0	0.09326		0.48656	67.167.0	0.91206	4	000000	000000	70000

_	_
~	-
c	1
	ם
ב	-
'n	1

ANALYSIS OF VARIANCE --- ONE-WAY LAYOUT

·													
	. E			4.0	0.99763	0.99979	96666*0	0.99981	16666.0	19166-0	0.99630	0.99992	66666 0
1.00	2 2 =				0.98698	0.99821	0.99952	0.99843	89666.0	0.98859	0.98489	0.99922	0.99984
U* = -2.00 1.00 1.00	GROUP SIZES GS(I) =			3.0	0.94820	0.98928	0.99617	0.99054	0.99730	0.95739	0.95081	0.99432	0.99837
0* = -2	GROUP SI	POWER VALUES AT 5% LEVEL OF SIGNIFICANCE	AMETER	2.5	0.84877	0.95412	0.97862	0.95879	0.98413	0.87802	0.87207	0.97104	0.98853
		EL OF SIG	NON CENTRALITY PARAMETER	2.0	0.66887	0.85693	0.91564	0.86871	0.93429	0.72913	0.73221	0.89477	0.94486
AND	,	AT 5% LEV	NON CENTR	1.5	0.43831	0.66822	0.76136	0.68844	0.80554	0.52297	0.54227	0.72258	0.81662
0.0	DF2 = 12	R VALUES	• .	1.0	0.22793	0.41266	0.50597	0.43675	0.58321	0.31252	0.34679	0.45800	0.57259
WITH VA= 0.0	DF	POWE		0.5	0.09387	0.18446	0.24222	0.20612		0.16028	0.20213	0.19866	0.29377
32	DF1 = 2			0.0	0.05000	0.09263	0.12737	0.1110	0.23958	0.10567	0.14925	0.08893	0.16591
• -			NCES	٧3	1.0	3.0	5.0	4.0	0.6	3.0	5.0	3.0	2.0
			VARIANCES	۸5	1.0					1.0			
			GROUP	۸۱	1.00	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
								-					

POWER VALUES AT 1% LEVEL OF SIGNIFICANCE

GROUP	VARI	ANCES				NON CENTR	ALITY PAR	AMETER			
۸۱	٧5	V2 V3		0.5	1.0	1.5	0 1.5 2.0 2.5	2.5	3.0	3.5	4.0
1.0	1.0	1.0		0.03449	0.11294	0.25331	0.44700	0.65488	0.82506	0.92991	0.97819
1.0	2.0	3.0		0.11012	0.32519	0.58062	0.79055		0.97519	0.99434	0.99904
1.0	3.0	5.0		0.16385	0.43365	0.70653	0.88495		0.99274	0.99886	0.99987
1.0	2.0	4.0		0.12531	0.34971	0.60802	0.81154	_	0.97949	0.99551	0.99926
1.0	3.0	0.6		0.25717	0.51214	0.75923	0.91139	_	0.99521	0.99931	0.99993
1.0	1.0	3.0		0.07542	0.19731	0.37769	0.57992	_	0.88662	0.95651	0.98659
1.0	1.0	5.0	0.05974	0.10575	0.23366	0.41485	0.60859		0.89064	0.95558	0.98505
1.0	3.0	3.0		0.13050	0.38555	0.65924	0.85387	_	0.98841	0.99792	0.99973
1.0	5.0	2.0		0.22442	0.51546	0.78001	0.92797		0.99722	0.99968	16666.0

⋖
~
•
2
a
\vdash
_
൧
m,
Ø
⊢-
•

ANALYSIS OF VARIANCE --- ONE-WAY LAYOUT

5
m
m
GROUP SIZES GS(I) = 3
GROUP SIZES G
GROUP
DF2 =12
90
DF1 = 2

POWER VALUES AT 5.8 LEVEL OF SIGNIFICANCE

	4.0	0.99947	0.98949	0.99291	0.98880	19666-0	0.98510	0.99506	0.99051	0.99247
	3.5	0.99612	0.95839	0.96864	0.95473	0.99759	0.94455	0.97523	0.96224	6 96849
	3.0	92626*0	0.87697	0.90079	0.86670	0.98798	0.84658	9.91474	0.88756	0.90472
METER	5	0.92446	0.72240	0.76878	0.70530	0.95848	0.67376	0.78854	0.74396	0.78537
LITY PARA	2.0	.79395	.50920	.58813	.49369	87768	.45143	.60347	.54167	.62611
NON CENTRALITY PARAMETER	1.5	0.57755	0.29516	0.41226	0.29426	0.81274	0.24393	0.40885	0.33135	0.47212
4	1.0	0.32487	.0.13825	0.28911	0.15878	0.73049	0.10434	0.25958	0.16860	+ 0.36246 0.47212 0
	0.5	0.12498	0.05527	0.22738	0.09316	0.67613	0.03778	0.17654	0.07619	0.30514
			0.03120							
NCES	. V3	1.0	3.0	5.0	4.0	0.6	3.0	2.0	3.0	5.0
VARIA	۸2	1.0	2.0 3.0	3.0	2.0	3.0	1.0	1.0	3.0	2.0
GROUP										

										18 0.93624
•			0.81073							
	3.0	0.94533	0.64222	0.68722	0.60230	0.95872	0.56747	0.78655	0.68610	0.70655
AMETER	2.5	0.85193	0.44328	0.51328	0.40349	0.90408	0.35950	0.60767	0.49838	0.55226
ALITY PAR	2.0	0.68637	0.26038	0.36411	0.23861	0.82918	0.18885	0.43099	0.31502	0.42007
NON CENTR	1.5	0.46453	0.12903 0.26038 0.44328	0.26645	0.13370	0.75342	0.08090	0.29376	0.17181	0.33218
	1.0	0.23448	0.05426	0.21719	0.08289	0.69476	0.02925	0.20471	0.08054	0.28615
			0.02035							
• .	0.0	0.01000	0.01106	0.19345	0.06027	0.64882	0.00694	0.14214	0.01932	0.26234
VARIANCES	٧3	7.0	3.0	5.0	4.0	9.0	3.0	5.0	3.0	5.0
	٧2	1.0	2.0	3.0	2.0	3.0	1.0	1.0	3.0	5.0
GROUP	۷ ۲	0.1	1.0	1.0	• 0	0.1	1.0	۱ . ن	1.0	1.0

VARIANCE
OF.
ANALYSIS
1A
2
able

WITH VA=

1.00 1.00

U* = -2.00

AND

--- ONE-WAY LAYOUT

			DF1 = 2		0F2 =12			GROUP SI	GROUP SIZES GS(1) =	li U	· 6	6
	٠			POWE	POWER VALUES AT 5% LEVEL OF SIGNIFICANCE	AT 5% LEV	EL OF SIG	NIFICANCE	•			
GROUP	VARIA	INCES				NON CENTR	NUN CENTRALITY PARAMETER	AMETER		•		
۸۱	۸5	V2 V3	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.	0
0•1	1.0	1.0	0.05000	0.10036	0.24889	0.47008	0.69940	0.86868	0.95720	0.98981	0.9982	S
0.1	2.0	3.0		0.04572	0.09672	0.20069	0.36449	0.56469	0.75226	0.88609	0.9585	_
1.0	3.0	5.0		0.23888	0.32286	0.45403		0.76773	0.88665	0.95667	0.98745	S
0.1	2.0	4.0		0.09344	0.15139	0.25785	0.41359		0.76894	0.89278	0.9609	4
1.0	3.0	0.6		0.67920	0.73643	0.81306	0.88837		0.97932	0.99405	0.9987	S.
1.0	1.0	3.0		0.02936	0.06503	0.14697	0.29026	0.48258	0.68057	0.83726	0.9330	~
0.1	1.0	5.0		0.15844	0.18329	0.23642		0.46643	0.62813	0.78136	0.89576	9
1.0	3.0	3.0		0.06657 0.12884	0.12884	0.24565	0.41645	0.61291	0.18773	0.90657	0.9677	9
0.1	5.0	5,0		1.55.55.0	0.42090	0 56200			02770		0.000	_

POWER VALUES AT 1% LEVEL OF SIGNIFICANCE

GROUP	VARI.	ANCES				NUN CENTR	ALIIY PAR	AMETER			
٦ ۲	۸5	٧3	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
1. 0	1.0	1.0	0.01000	0.04219	0.14033	0.30251	0.50756	0.70962		0.94851	0.98519
1.0	7.0	3.0	0.01106	0.01753	0.03939	0.08453	0.16522	0.29063		0.63047	0.78460
1.0	3.0	5.0	0.19345	0.21815	0.28884	0.39617	0.52654	0.66318		0.88470	0.94761
٠.	5.0	4.0	0.06027	0.07269	0.11060	0.17635	0.27326	0.40151		0.70220	0.82967
1.0	3.0	0.6	0.64382	0.66875	. 0.72231	0.79389	0.86565	0.92416		0.98564	0.99545
1.0	1.0	3.0	0.00694	0.00873	0.01669	0.03955	0.09235	0.19052		0.51597	0.69677
1.0	1.0	1.0 5.0	0.14214	0.14537	0.15603	0.17748 0.21617 0.28084	0.21617	0.28084	0.37917	0.51349	0.67480
1.0	3.0	3.0	0.01932	0.03024	0.06475	0.12833	0.22844	0.36745		0.69807	0.83293
1.0	5.0	5.0	0:26234	0.29363	0.38066	0.50532	0.64384	0.77279		0.94170	0.97787

A
~
•
2
œ
\vdash
9
Ø
-

ANALYSIS OF VARIANCE --- CNE-WAY LAYOUT

	m
1.00 -2.00	6
0	11
1.0	GS(I)
U# = 1.00	GROUP SIZES GS(I) =
# *⊃	GROUP
AND	
WITH VA= 0.0	0F2 =12 .
11	J.
> =	٠.
<u>-</u>	
	= 2
	0F1 = 2

POWER VALUES AT 5% LEVEL OF SIGNIFICANCE

GROUP	VARIANCES	ANCES				NON CENTR	NON CENTRALITY PARAMETER	AMETER			
۷۱	٧5	٧3	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
1.0	1.0	1.0	0.05000	0.10036	0.24889	0.47008	0.69940	0.86868	0.95720	0.98981	0.99825
0.1	2.0	3.0	0.11938	0.24105	0.51770	0.77814	0.92775	0.93368	0.99748	92666.0	866660
1.0	3.0	5.0	0.16746	0.30688	0.60136	0.84299	0.95813	0.99253	0.99912	0.99993	1.00000
0.1	2.0	4.0	0.13810	0.27450	0.56932	0.82184	0.94941	0.99028	0.99875	0.99989	56666.0
1.0	3.0	0.6	0.26009	0.40345	0.68768	0.89414	0.97687	0.99676	0.99971	866660	1.00000
1.0	1.0	3.0	0.10567	0.23788	0.53139	0.79547	0.93787	0.98710	0.99820	0.99983	65666.0
1.0	1.0	5.0	0.14925	0.30039	0.61190	0.85572	0.96436	0.99420	0.99938	96666.0	1.00000
0.1	3.0	3.0	0.13482	0.24963	0.51400	0.76921	0.92141	0.98120	0.99689	99666.0	16666.0
1.0	2.0	2.0	0.19770	0.32825	0.60705	0.84085	0.95590	0.99174	0.99897	16666.0	1.00000

GROOF	VAKI	ANCES				NON CENTR	ALITY PAR	AMETER		•,	
	. 75	٧3	0.0	0.5	1.0	1.5	2.0	2.5	3.0		4.0
1.0	1.0	1.0	0.01000		0.14033	0.30251	0.50756	0.70962	0.86198		0.98519
0.1	2.0	3.0	0.03616		0.42057	0.70031	0.88508	0.96805	0.99368		0.99992
1.0	3.0	5.0	0.06455		0.51857	0.79280	0.93760	0.98703	0.99816		0.99999
1.0	2.0	4.0	0.04699		0.48319	0.76356	0.92293	0.98240	0.99722		86666 U
1.0	3.0	0.6	0.14890		0.62284	0.86435	0.96786	0.99502	0.99950		1.00000
1.0	1.0	3.0	0.03269		0.44594	0.72987	0.90441	0.97595	0.99577		0.0000
1.0	1.0 5.0	5.0	0.05974	0.21395	0.54219	9 0.81581 0.94937 0.99060	0.94937	09066.0	0.99883	06666*0	0.0000
1.0	9.0 9.0	3.0	0.04303		0.41183	0.68679	0.87464	0.96310	0.99216		0.99987
0.1	0	2.0	0.08645		0.52045	0.78824	0.93382	0.98555	0.99782		0.99998

A
7
٠.
0
യ
Ä
൧
ผ

ANALYSIS OF VARIANCE --- ONE-WAY LAYDUT

67 67
65(1)
GROUP S12ES GS(1) =
GROUP
DF2 = 12
$0F1 = 2 \qquad 0$

POWER VALUES AT 5% LEVEL OF SIGNIFICANCE

	0	~	6	0	Ó	0	ا	2	6	0
	4.			1.00000						
	3.5	0.99612	0.99978	0.99993	0.99983	96666*0	0.99865	0.99874	0.99989	16666.0
	3.0			91666.0						
AMETER	'n	0.92446	0.98579	0.99289	0.98779	99566.0	0.96207	0.96599	0.99027	0.99521
VON CENTRALITY PARAMETER	2.0	0.79395	0.93496	0.95979	0.94183	0.96805	0.87557	0.88797	0.94972	0.96937
NON CENTRA	1.5	0.57755	0.79291	0.84726	0.80807	0.87296	0.69730	0.72336	0.82304	0.87144
_	1.0	0.32487	0.53413	0.60695	0.55559	0.66123	0.44214	0.48049	0.57057	0.64373
	0.5	0.12498	0.24815	0.30955	0.26902	0.39118	0.20396	0.24720	0.27323	0.34486
										0.19770
NCES	٨3	1.0	3.0	2.0	4.0	0.6	3.0	2.0	3.0	5.0
VARIA	۸5	1.0	2.0	3.0	2.0	3.0	1.0	1.0	3.0	5.0
GROUP										

GROUP	VARI	ANCES			*	NON CENTR	NON CENTRALITY PARAMETER	AMETER		-	
۸1	٧2	V2 V3			1.0	1.5	2.0	2.5	3.0	3.55	4.0
1.0	1.0	1.0		0.07133	0.23848	0.46453	0.68637	0.85193	0.94533	0.98459	0.99674
1.0	5. 0	3.0		0.16532	0.45956	0.74059	0.90884	0.97688	0.99583	196660	6.99995
1.0	3.0	2.0		0.2158+	0.53882	0.81056	0.94600	0.98940	0.99858	18666.0	0.99999
1.0	2.0	4.0		0.18150	0.48270	0.76102	0.92010	0.98088	0.99676	0.99962	16666.0
1.0	3.0	0.6		0.29397	0.59732	0.84251	0.95792	0.99236	90666.0	0.99992	1.00000
1.0	1.0	3.0		0.12661	0.35943	0.62233	0.82380	0.93613	0.98232	0.99632	0.99943
1.0	1.0	2.0	0.05974	0.15888	0.39920	0.65954	0.84843	0.94760	0.98610	0.99720	0.99957
1.0	3.0	3.0		0.18558	0.49919	0.77898	0.93068	0.98472	0.99766	0.99975	0.99998
1.0	5.0	5.0		0.24702	0.57883	0.84063	0.95939	0.99307	0.99921	0.99994	1.00000

	_	_
		_
•	ς-	_
•	c	
	c	וו
	_	_
	1	1
•	0	d
ı	_	_

ANALYSIS UF VARIANCE --- UNE-WAY LAYOUT

FOR EQUAL ERROR VARIANCES AND WITHIN IREATMENT SERIAL CORRELATION

S S 1.00 GROUP SIZES GS(I) 1.00 # * AND DF2 = 120.0 MITH VA= # DF1

POWER VALUES AT 5% LEVEL OF SIGNIFICANCE

0.97318 0.93281 0.99917 0.99985 0.97881 0.91613 0.85130 0.99856 0.92438 70967.0 0.99047 0.72353 0.97227 0.60849 0.19990 0.90363 0.56003 0.95675 NON CENTRALITY PARAMETER 2.0 0.86255 0.39143 0.59880 0.75600 0.38597 0.20530 0.68539 0.36931 0.53703 0.22827 0.18439 0.46160 0.08640 0.10557 0.02820 0.02820 0.03003 0.08071 0.16035 0.27850 0.0 0.00176 0.01478 0.05000 0.10861 0.20944 SERIAL CORRELATION RHO 0.0 -0.2 4.0-

POWER VALUES AT 1% LEVEL OF SIGNIFICANCE

0.98917 0.85753 0.83276 0.95300 0.75809 0.95779 0.87073 0.87559 0.63182 0.49659 0.71997 0.71.903 0.31136 0.51360 0.48897 NON CENTRALITY PARAMETER 0.50325 0.30344 0.34291 0.16631 0.20799 0.28800 1.5 0.14462 0.13268 0.05563 0.09799 0.02816 0.5 0.02572 0.00764 0.05256 0.01891 0.00048 0.01000 0.02985 0.09034 SERIAL CURRELATION RHO -0.4 0.0

C	2	C	
*			
(
	(1)
r		-	1
	١	_	1
	(7	j

ONE-WAY LAYDUT ANALYSIS UF VARIANCE --- FOR EQUAL ERROR VARIANCES AND WITHIN TREATMENT SERIAL CURRELATION

-2.00 1.00 1.00 " *∩ AND 0.0 WITH VA=

GROUP SIZES GS(1)

AT 5% LEVEL UF SIGNIFICANCE PUMER VALUES

= 12 0F2 ~ DF1

Ħ

0.98888 97666.0 0.98742 0.96023 0.98658 0.95851 0.99597 0.99914 0.94820 0.97885 0.88151 0.89822 0.99362 0.73699 0.78517 0.92113 0.96792 NON CENTRALITY PARAMETER 0.61803 0.66888 0.78726 0.53512 0.88903 0.41576 0.43831 0.32281 0.57351 0.72832 1.0 0.21750 0.15227 0.22793 0.33880 0.51128 0.5 0.04939 0.16672 0.09387 0.32423 0.10582 0.01736 0.01596 0.05000 SERIAL CORRELATION RHO -0.4 -0.2

POWER VALUES AT 1% LEVEL OF SIGNIFICANCE

0.97819 0.99381 0.97338 0.94163 0.86258 0.92991. 0.82506 0.73283 0.91284 0.97047 0.56308 0.78364 0.75831 NON CENTRALITY PARAMETER 0.59656 0.44700 0.58394 0.75454 0.40258 0.22219 0.25331 0.35930 0.54462 0.21106 0.10127 0.11294 0.17404 0.02717 0.06646 0.06372 0.18693 0.02878 0.00225 0.01550 0.01000 SERIAL CCRRELATION -0.4

0.97706

0.99392

Table 2.1B

ANALYSIS OF VARIANCE --- ONE-WAY LAYOUT

FOR EQUAL ERROR VARIANCES AND WITHIN TREATMENT SERIAL CORRELATION

		6	
•			
		S	
	0	7 5	
•	2.0	7	
	1	11	
	• 00		
	-	GS (
	: 1.00 1.00 -2.00	GROUP SIZES GS(I)	
		SI	
	В	JUP	
	# *	GRO	
	AND		
	-		
	••		
	0	:12	
	0.0	DF2 =12	
		õ	
	>		
	WITH VA=		
	.ح.	8	
		"	
		DF	

POWER VALUES AT 5% LEVEL OF SIGNIFICANCE

•		4.0	0.99572	0.99439	0.99825	15666.0	0.99992	
:		3.5	0.98223	0.97565	0.98981	-62966*O	91666.0	
		3.0	0.94277 0.98223 0.99572	0.92048 0.97565 0.99439	0.95720	0.980260.99629 0.99951	0.99374 0.99916 0.99992	
	AMETER	3	0.85419	0.80159	0.86868	0.92530	0.96853	
	ALITY PAR	2.0	0.69952	0.61291	0.69940 0.86868	0.79557	0.89083	
	NUN CENTRALITY PARAMETER	1.5	0.48742	0.38976	0.47008	0.58438		
	_	1.0	0.25066	0.06040 0.19081 0.38976 0.61291 0.80159	0.24889 0.47008	0.34738	0.51449	
		0.5	0.08421	0.06040	0.10036	0.16970	0.32552	
		0.0	0.01736	0.01596	0.05000	0.10582	0.25152	
SERIAL	CCRRELATION	RHC	4.0-	-0.2 0	0.0	0.2	0.4	

:							•	1
			4.0	0.99121	0.97155	0.98519	0.8460	11666.0-
		:	3.5	0.97135 0.99121	0.92036 0.97155	0.948510.98519	0.97702 0.99490	0.99426-
:			3.0				0.92262	0.97239
FUNEN VALUES AT IN LEVEL OF STUNIFICANCE		AMETER	5.5	0.82924	0.29739 0.48488 0.67090 0.82219	0.70962	0.80269	0.90575 0.97239 0.994260.99917
מומ בה מומ		NON CENTRALITY PARAMETER	2.0	0.67583	0.48488	0.50756	0.61057	0.76526
71 97 17		NON CENTR	1.5	0.47100	0.29739	0.30251	0.38544	0.55821
VALORS			1.0	.25229	.14082	.14033	.19075	.34339
		٠	0.5	0.01550 0.08033 0	0.03802	0.04219	0.06882	0.19050
			0.0	0.01550	0.00225	0.01000	0.02878	0.13687
	SERIAL	CORRELATION	RHO	-0.	-0-2	0.0	0.2	7. 0

ш

7
യ
\vdash
Ъ
ัต
-

ANALYSIS OF VARIANCE --- ONE-WAY LAYOUT

FOR EQUAL ERRUR VARIANCES AND WITHIN TREATMENT SERIAL CORRELATION

•		
	U* = 1.00 1.00 -2.00	E E = (1)S
	1.00	GROUP SIZES GS(I) =
	# ^	GROUP
	AND	
	WITH VA= 0.0	DF2 =12
	LIM	0F1 = 2
•		ı

0.99311 0.99612 0.99829 0.97005 0.98914 PUWER VALUES AT 5% LEVEL OF SIGNIFICANCE NON CENTRALITY PARAMETER 0.90309 0.95189 0.95470 0.86325 0.84852 0.68145 0.65246 0.39904 0.29251 0.18494 0.09336 0.12494 0.05000 0.10212 0.28841 0.07071 0.01757 SERIAL CORRELATION RHG -0.4

SERIAL									
CURRELATION				NON CENTR	CENTRALITY PARAMETER	AMETER			*
RHC	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
5.0-	0.06799	0.17080	11914.0.	0.67492	0.85709	0.95654	0.98659	0.99717 0.99954	0.99954
-0.2	0.00254	0.07230	0.25532	0.48791	0.70245	0.85672	0.94408	0.98269	0.99582
0.0	0.01000	0.07133	0.23848	0.46453	0.68637	0.85193	0.94533	0.98459	0.99674
0.2	0.02736	0.02736 0.09190	0.26900	0.50721	0.73210	0.88675	0.96384	0.99146	0.99853
0.4	0.17945	0.24717	0.42693	0.65092	0.83710 0.94404	0.94404	0.98631	0.99767	0.99973

ANALYSIS OF VARIANCE --- ONE-WAY LAYOUT

FOR EQUAL ERROR VARIANCES AND WITHIN TREATMENT SERIAL CORRELATION

-2.00	. 9 3 3		
U* = 1.00 1.00 -2.00	GROUP SIZES GS(I) =	SIGNIFICANCE	A A A A B T F B
AND		PUWER VALUES AT 5% LEVEL OF SIGNIFICANCE	NOW CENTRALITY PARAMETER
WITH VA= 0.0	DF2 =12	PUWER VALUES	
WITH	DF1 = 2		
		SER IAI	RRELATION

		4.0	Ċ	0.97594 . 0.99447	0.98981 0.99825	0.99950	0.99994	
		3.0 3.5	0.98556	0.97594	0.98981	0.97990 . 0.99621 0.9950	0.99930	
		3.0	0.95129	0.92127	0.95720	0.97990	0.99457	
	AMETER	2.0 2.5	0.87145	0.80318	0.86868	0.92423	0.97184	
• • • • •	NON CENTRALITY PARAMETER	2.0	0.72793	0.61524	0.69940	0.79333	96668.0	
	NON CENTR	1.5	0.52666	0.39234	0.24889 0.47008 0.69940 0.86868	0.58097	0.74969	
		1.0	0.30801	0.19307	0.24889	0.34343	0.54214 0.74969	
•		0.5	0.13614	0.06221	0.10036	0.16586		
		0.0	0.07071	0.01757	0.05000	0.10212	0.28841	
SERIAL	CURRELATION	RHG	7. 0-	-0-2	0.0	0.2	7. 0	

JEN IAL									
CORRELATION				NUN CENTR	NON CENTRALITY PARAMETER	AMETER			
RHO	0.0	0.5	1.0	1.5	2.0	2.5	3.0	ι.	0 7
5. 0-	0.06799	0.13178	0.29851	0.50934	0.70420	0.84751	0.93357	78280 0 06280	78200 0
-0.2	0.00254	0.03835	0.14128	0.29808	0.48580	0.67187	0 82204	0 0 0 1 2 3	0 07176
0.0	0.01000	0.04219	0.14033	0.30251	0.50756	0.70962	0.32.00	0 84108 0 04081 0 0610	0.116.0
0.2	0.02736	0.06717	0.18852	0-38274	0.507.0	0.80078	0.00100	0.02160 - 0.446210.48319	41004.0°
7.0	0.17945	0.17945 0.23121 0.37873	0.37873	0.58543	0.58543 0.78297 0.91486	0.91486	0.97587	0.97587 0.99519 0.99410	01466-0 01466-0
									とつくいっち

LAYDUT
ONE-WAY
!
VARI ANCE
VAR
9F
2
NALYSIS
MA

	5 5			4.0	0.99998	0.99993	0.99993	0.99993	56666.0	966660	96666.0	0.99987	06666*0
0 -2.00	11 25			3.5	92666.0	0.99918	91666*0	0.99922	61666.0	0.99950	0.99953	0.99872	06866 0
U* = 1.00 1.00 -2.00	GROUP SIZES GS(I) =			3.0	0.99772	0.99395	0.99367	0.99411	0.99798	0.99597	0.99612	0.99132	0.99223
U* = 1.	GROUP SI	VIFICANCE	AMETER	2.5	0.98561	0.96929	0.96783	0.96975	0.98694	0.97770	0.97813	0.95964	0.96313
		EL OF SIGN	ALITY PARA	2.0	0.93884	0.89174	0.88750	0.89241	0.94377	0.91468	0.91500	0.86860	0.87937
AND		POWER VALUES AT 5% LEVEL OF SIGNIFICANCE	NON CENTRALITY PARAMETER	1.5	0.82125	0.72906	0.72183	0.72856	0.83461	00077.0	0.76769	0.69285	0.71938
0.50	DF2 =12	VALUES ,		1.0	0.63054	0.50295	0.49571	0.49845	0.65714	0.55141	0.54118	0.46586	0.51623
WITH VA= 0.50	DF2	PUAE		0.5	0.44102	0.30358	0.29934	0.29355	0.48059				0.35021
3	DF1 = 2	•		0.0	0.36112	0.22508	0.22269	0.21235	0.40611	0.26011	0.23321	0.20529	0.28775
			ARIANCES	٨3	1.0	3.0	2.0	4.0	0.6	3.0	2.0	3.0	2.0
			VARIA	۸5	1.0	2.0	3.0	2.0	3.0	1.0	1.0	3.0	2.0

GROUP V1

POWER VALUES AT 1% LEVEL OF SIGNIFICANCE

	4.0	0.99980	0.99904	0.99913	0.99915	0.99989	0.99950	0.99962	0.99826	0.99870
	3.5	0.99817	0.99367	0.99395	0.99426	0.99884	0.99633	0.99700	0.98978	19166.0
	3.0	0.98843	0.97023	0.97080	0.97238	0.99211	0.98082	0.98356	0.95692	0.96297
AMETER	2.5	0.94949	0.89889	0.90020	0.90450	0.96360	0.92774	0.93575	0.86782	0.88349
ALITY PAR	2.0	0.84485	0.74775	0.75135	0.75785	0.88334	0.80128	0.81751	0.69830	0.73231
NUN CENTRALITY PARAMETER	1.5	0.65581	0.52522 0.74775	0.53564	0.53714	0.73179	0.59248	0.61395	0.47196	0.53269
-	1.0	0.42682	0.29825	0.31620	0.30621	0.53933	0.35537,	0.37134	0.26002	0.34795
	0.5		0.14228							
	0.0	0.18080	0.08938	0.11312	0.08682	0.31986	0.11254	0.10777	0.07986	0.19146
NCES	٧3	1.0	3.0	2.0	4.0	9.0	3.0	2.0	3.0	5.0
VARIANCES	۸5	0.1	5. 0	3.0	2.0	3.0	1.0	1.0	3.0	0
GROUP	۸1	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.1

Þ	
Ñ	
•	
2	
	è
. 0	
, 16	
Н	

ANALYSIS OF VARIANCE --- GNE-MAY LAYOUT

	Ŋ
	,
1.00	ເ
1.00	es(1) =
U* = -2.00	GROUP SIZES GS(1)
" * ⊃	GROUP
AND	
0.50	DF2 = 12
VA=	DF.
WITH VA=	DF1 = 2

POMER VALUES AT 5% LEVEL OF SIGNIFICANCE

GROUP	VARIA	ANCES		•	;	NUN CENTR	ALITY PAR	AMETER			
۸1	۸5	V2 V3		0.5	1.0	0 1.5 2.0 2.5	2.0	2.5	3.0	3.5	4.0
1.0	1.0	1.0		0.44102	0.63054	0.82125	0.93884	0.98561	0.99772	926660	86666.0
1.0	2.0	3.0		0.29280	0.47196	0.69052	0.86373	0.95645	0.99013	0.99844	0.99983
1.0	3.0	5.0		0.28358	0.44879	0.66049	0.84027	0.94485	0.98646	69266.0	0.99973
1.0	2.0	0.4		0.27622	0.44818	0.66500	0.84508	0.94733	0.98718	0.99780	0.99974
1.0	3.0	9.0		0.45355	0.58114	0.74302	0.87962	0.95874	0.066.0	0.99833	0.99981
1.0	1.0	3.0	0.26011	0.32944	0.50888	3 0.72003	0.88063	0.96304	0.99185	0.99873	98666.0
1.0	1.0	5.0		0.29176	0.45081	0.65573	0.83254	0.93890	0.98371	0.99689	0.99958
1.0	3.0	3.0		0.27100	0.44734	0.66836	0.84906	0.94990	0.98818	0.99805	0.99978
1.0	2.0	2.0		0.34662	0.50408	0.70116	0.86367	0.95484	0.98949	0.99832	0.99982

	4.0						0.99812			
	3.5	0.99817	0.98769	0.98360	0.98337	0.98908	0.98982	0.97678	0.98521	0.98884
	3.0						0.95910			
AMETER	2.5	65656.0	0.85864	0.83857	0.83684	0.88554	0.87700	0.81512	0.84365	0.87268
ALITY PAR	2.0	0.84485	0.68869	0.66762	0.66082	0.75947	0.71968	0.64030	0.66762	0.72438
NON CENTRALITY PARAMETER	1.5	0.65581	0.46750	0.45891	0.44340	0.60099	0.50480	0.43447	0.44666	0.53355
	1.0	0.42682	0.26324	0.27229	0.24916	0.45339	0.29692	0.25545	0.24736	0.35390
	0.5	0.24686	0.13224	0.15277	0.12670	0.35408	0.15870	0.14395	0.12108	0.23298
							0.11254			
ANCES	٧2 ٧3	1.0	3.0	5.0	4.0	0.6	3.0	2.0	3.0	5.0
VARI	٧2	1.0	2.0	3.0	5.0	3.0	1.0	1.0	3.0	5.0
GRUUP	٧١ .	1.0	1.0	1.0	1.0	0.1	0.1	1.0	0•1	1.0

•
⋖
2
•
2
Ф
щ
Ф
ช
_

ANALYSIS OF VARIANCE --- ONE-WAY LAYOUT

	1
	S
2.00	m
0.2- 0.1 0.1 = *0	GROUP SIZES GS(1) =
00.1	SIZES (
# 	GROUP
AND	
WITH VA= 0.50	0F2 = 12
	0F1 = 2

POWER VALUES AT 5% LEVEL OF SIGNIFICANCE

-	AMORA			•	0.100	2 × + + + + ×	5 L			
T AND CES					とこと ことこと	NOW DENIKACITY FAKAMETEK	AMELEK			
		0.0	0.5		1.5	2.0	2.5	3.0	3.5	4.0
_	_	0.34575	0.43089	0.63006	0.82557	0.94227	6.98694	0.99802	08666.0	666660
		0.16640	0.23786	0.42920	0.66569	0.85406	0.95424	0.98996	0.99848	0.99984
4.	4.	.23621	0.29397	0.45493	0.66664	0.84727	0.94987	0.98859	0.99824	0.99982
2.0 4.0 0		.16330	0.23110	0.41575	0.65038	0.84340	0.94957	0.98865	0.99825	0.99982
		0.55945	0.60166	0.71164	0.84032	0.93636	0.98232	69966.0	0.99959	166660
		.13747	0.26537	0.46673	0.70176	0.87685	0.96365	0.99250	0.99893	066660
		.18904	0.26122	0.45212	0.68373	0.86449	0.95853	0.99119	0.99873	0.99983
		16055	0.22595	0.40579	0.63825	0.83403	0.94483	0.98713	0.99793	116660
		.34815	0.39365	0.52320	18669.0	1 0.85728 0.95114	0.95114	0.98837	0.99812	0.99980

GROUP		ANCES			-	NON CENTR	ALITY PAR	AMETER			
٧١	٧2	٧3			0.1	1.5	2.0	2.5	3.0	3.5	4.0
1.0	1.0	1.0			0.43329	0.66955	0.85681	0.95559	0.99039	0.99857	0.99986
1.0	2.0	3.0	0.05982	0.10007	0.22833	0.43178	0.67117	0.85245	0.95078	0.98805	0.99792
1.0	3.0	rv Ö			0.29080	0.46248	0.66956	0.84397	0.94574	0.98654	19166.0
1.0	2.0	4.0			0.22832	0.42739	0.65658	0.84138	0.94556	0.98648	0.99762
1.0	3.0	0.6			0.62296	0.74331	0.86433	0.94723	0.98549	0.99726	996660
1.0	1.0	3.0			0.26691	0.49042	0.71936	0.88236	0.96343	0.99171	0.99865
1.0	1.0	2.0			0.28304	0.49043	0.71045	0.87432	3.95978	0.99078	0.99852
1.0	3.0	3.0			0.20975	0.40403	0.63403	0.82560	3.93775	0.98378	16966.0
1.0	5.0	5.0 5.0			0.38060	0 0.51785 0.69252 0.84833 (0.69252	0.84833	0.94470	0.98560	0.99739

2.2A able

ONE-WAY LAYOUI VARIANCE ANALYSIS OF 1.00 -2.00 * AND 0.50 WITH VA=

1.00

n

65(1)

SIZES

GROUP

=12

DF2

SIGNIFICANCE 5% LEVEL OF ΑT PUMER VALUES

NON CENTRALITY PARAMETER 1.5

96666.0 0.99895 0.99822 0.99824 0.99918 0.99744 0.99867 10666.0 0.98639 0.99465 0.98970 0.99956 0.99326 0.98951 0.99432 0.99275 3.0 0.95680 0.94836 0.97492 0.96931 0.97601 0.96825 0.87279 0.92826 3.97965 0.87227 0.91460 0.88616 0.85642 0.90182 0.89927 0.92216 0.69869 0.71539 0.84274 0.78510 0.72341 0.77834 0.79183 0.59039 0.53708 0.51134 0.73559 0.52939 0.61362 1.0 0.59833 0.35037 0.38480 0.33204 0.33275 0.37195 0.32318 0.63984 0.47248 0.5 0.41866 0.21288 0.26931 0.22405 0.23848 0.20272 0.57931 0.37894 0.0 0.34575 0.16640 0.16330 0.16055 0.18904 0.18747 0.23621 V3 1.0 3.0 5.0 VARIANCES 0.1 0000 00 0

AT 1% LEVEL OF SIGNIFICANCE POWER VALUES

98866.0

0.96925 0.97759 0.99954 0.98592 0.97814 0.98934 0.98911 0.93633 0.98261 0.99644 0.96346 0.95962 0.94921 0.92857 0.92724 0.90953 0.93965 0.95141 3.0 0.98091 0.86047 0.90723 0.81944 0.88465 0.79366 0.84111 0.87244 0.82461 0.70264 0.64870 0.92771 0.67519 0.74404 0.74291 0.62441 NUN CENTRALITY PARAMETER 0.49610 0.54445 0.80322 0.48593 0.44714 0.71697 0.59055 0.43634 0.46904 1.5 0.26870 0.62620 0.33924 0.27896 0.60381 0.29694 0.33192 0.27625 0.45174 0.14936 1.0 0.17139 0.15500 0.23003 0.18286 0.35382 0.5 0.22610 0.08113 0.17803 0.08964 0.52671 0.09668 0.11930 0.30006 0.08091 0.05982 0.07268 0.51557 0.07092 0.10452 0.0 0.28342 VARIANCES GROUP 0000 7000

A
7
•
2
œ
ä
۵
ัด

ANALYSIS OF VARIANCE --- ONE-WAY LAYOUT

	က
	S
-2-00	7
U* = I.00 I.00 -2.00	GROUP SIZES GS(I) =
# →	GROUP
AND	
VA= 0.50	DF2 =12
HAV HIIM	DF1 = 2

POWER VALUES AT 5% LEVEL OF SIGNIFICANCE

	0	96	16	86	86	00	9 69	66	93	96
	4.0	0.999	0.999	0.999	0.999	1.000	0.999	0.999	0.999	96666.0
	3.5	0.99956	0.99958	0.99970	0.99972	0.99993	0.99979	0.99988	0.99921	0.99948
	3.0									0.99575
AMETER	2.5	0.97965	0.97989	0.98320	0.98410	0.99295	0.98689	0.99073	0.97100	0.97672
ALITY PAR	2.0	0.92216	0.92113	0.92980	0.93304	0.96231	0.94256	0.95439	0.89779	0.91242
NON CENTR	1.5	0.79183	0.73315	0.79612	0.80388	0.46525	0.82590	.0.84965	0.74291	56 0.76825 0.91242 0.97672
		0.598	0.570	0.5778	0.590	0.6719	0.627	0.651	0.524	0.5546
	0.5	0.41866	0.36616	0.35802	0.37519	0.44615	0.42040	0.42895	0.32824	0.35533
							0.33082			
NCES	٨3	0.1	3.0	5.0	0.4	9.0	3.0	5.0	3.0	2.0
VARIANCES	۸5	1.0	2.0	3.0	5.0	0•E	1.0	1.0	3.0	2.0
GROUP	7 ^	0.1	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0

GROUP	VARI	VACES				NUN CENTR	NUN CENTRALITY PARAMETER	AMETER			
 >	۸5	٧3			1.0	1.5	2.0	2.5	3.0	3.5	4.0
0.1	1.0	1.0			0.38531	0.60332	0.80322	0.92771		779660	75666.0
1.0	2.0	3.0			0.37961	0.61776	0.81940	0.93679		0-99710	0.99963
1.0	3.0	5.0			0.41170	0.65970	0.85117	0.95232		0.99824	0.99980
1.0	2.0	0.4			0.41654	0.66318	0.85331	0.95322		0.99826	0.89980
1.0	3.0	0.6			0.55076	0.78672	0.92788	.0.98304		0.99971	0.99998
0.1	1.0	1.0 3.0	0.16073	0.24178	0.44929	.95689.0	0.86913	0.95994	0.99124	0.99864	0.99985
1.0	1.0	5.0			0.50390	0.74901	0.90723	0.97544		0.99940	0.99994
1.0	3.0	3.0			0.32898	0.55654	0.76934	0.90897		0.99435	0.99914
0.1	S.0	2.0			0.38953	0.61698	0.81365	0.93233		0.99670	0.99958

2.2A Table

ONE-WAY LAYOUT VAR I ANCE ANALYSIS UF 1.00 1.00 -2.00 11 * AND 0.50 ٧A=

GROUP = 12 DF2

2 H DF1

65(1)

SIZES

SIGNIFICANCE A1 5% LEVEL OF PUWER VALUES

66666 *0 9666600 0.99994 966660 0.99995 0.99997 96666.0 66666*0 76666*0 0.99980 0.99951 0.99937 0.99944 0.99962 0.99935 0.99943 0.99927 0.99948 3.0 0.99802 0.99603 0.99520 0.99558 0.99495 0.99505 0.99578 0.99687 / PARAMETER 2.0 2.5 4227 0.98694 0.97805 0.97481 0.97651 0.97750 0.98207 0.97398 969260 0.94227 0.90798 0.91293 0.91802 0.92896 0.91329 0.90498 0.91340 NON CENTRALITY 1.5 0.77510 0.80229 0.78726 0.77083 0.77039 0.75377 0.54559 0.56016 0.59499 0.63006 0.56294 0.60405 0.53387 0.55708 0.58394 0.5 0.43089 0.36326 0.34576 0.36332 0.41127 0.40224 0.33173 0.35637 0.0 0.34575 0.28148 0.26439 0.28293 0.34176 0.32804 0.22997 VARIANCES V2 2.0 2.0 2.0 2.0 3.0 1.0 3.0 GROUP

AT 1% LEVEL OF SIGNIFICANC POWER VALUES

986660 0.99942 0.99962 0.99909 0.99952 986660 0.99953 0.99941 9666.0 3.5 0.99643 0.99593 0.99693 0.99591 0.99661 0.99717 0.99463 0.9955 0.99039 0.97960 0.97765 0.97944 0.98467 0.97631 0.92569 0.92102 2.5 0.92878 0.93983 0.92533 0.93638 NON CENTRALITY PARAMETER 0.80404 0.80044 0.80051 0.82802 0.78740 0.82783 0.79936 0.85681 0.59843 0.59735 0.59688 0.64804 0.60662 0.57698 0.62971 3. 0.66955 0.63432 1.0 0.43329 0.36489 0.36527 0.36622 0.34324 0.39003 0.40521 0.18610 0.19100 0.26700 0.5 0.16831 0.22640 0.18828 0.22521 0.12452 0.12012 0.12738 0.20318 0.16073 0.16515 0.10532 0.14695 0.17009 VARIANCES V2 22.0 22.0 22.0 13.0 3.0 GROUP 700000 0.1

700000000

Table 2.2A

ANALYSIS OF VARIANCE --- UNE-WAY LAYDUT

-2.00 1.00 GS(I) 1.00 SIZES GROUP * =15 0.50 OF2 WITH VA=

POWER VALUES AT 5% LEVEL OF SIGNIFICANCE

6.99999 0.99999 0.99973 0.99975 0.99970 966660 0.99994 91666.0 0.99972 3.5 0.99979 0.99775 0.99770 0.99765 0.99731 16966.0 0.99935 0.99700 0.99790 0.98418 0.98238 0.99550 0.98580 0.98602 ' PARAMETER 2.0 2.5 3916 0.98619 0.93080 0.94124 0.94297 0.93659 0.97938 0.94034 0.94147 0.80749 0.93916 0.82256 0.93557 0.82525 0.80161 0.82276 0.84119 NON CENTRALITY 0.61752 0.61147 0.62548 0.81689 0.62195 0.64076 0.59414 0.85807 0.67905 0.76842 0.40277 0.39098 0.50538 0.38317 0.36799 0.61299 0.44705 0.40614 0.20061 0.31178 0.20631 0.70201 0.38269 0.19284 0.25700 0.21167 0.0 0.31/95 0.13480 0.26587 0.15052 0.67873 0.14691 0.12663 0.20752 VARIANCES V2 V3 1.0 1.0 2.0 3.0 35.0 13.0 3.0 GROUP

POWER VALUES AT 1% LEVEL OF SIGNIFICANCE

0.99520 0.99985 0.99586 0.99640 0.99662 0.99922 0.99547 0.99663 0.99628 3.5 0.99850 0.98235 0.97884 0.97716 0.98237 0.98104 0.97618 0.99506 0.98158 0.98996 0.93356 0.92427 0.91591 0.91932 0.93383 0.93224 0.93178 2.5 0.95380 0.81651 0.79388 0.78346 0.80485 0.81350 0.93591 0.82541 NON CENTRALITY PARAMETER 0.85164 0.61927 0.62505 0.58023 0.86150 0.61514 0.62376 0.60505 1.5 0.36136 0.77420 0.38073 0.39375 0.65396 0.38564 0.43709 0.40584 0.19544 0.18632 0.20120 0.41716 0.19134 0.29955 0.22210 0.07990 0.22952 0.10803 0.66606 0.17998 0.07542 0.29900 0.08907 0.08326 0.14946 0.04639 0.21014 0.15306 0.27983 0.04231 0.05480 - m m 4 p m m m m VARIANCES V2 1.0 2.0 3.0 3.0 0.100 V1 1.0 1.0

- +1
AND
WITH VA= 0.50

σ
. m
3
P SIZES GS(I) =
SIZES
GROUP
•
DF2 = 12
Ω
2
DF1 = 2

POWER VALUES AT 5% LEVEL OF SIGNIFICANCE

	4.0	96666.0	0.99867	0.99830	0.99777	0.99941	0.99841	00966.0	0.99879	0.99903
	3.5							0.98027		
	3.0	90966.0						0.93069		
METER		_	_		_	_		_	_	_
ALITY PARA	2.0	0.91720	0.73036	0.73170	0.68705	0.88862	0.72078	0.65356	0.73788	0.78627
NON CENTRALITY PARAMETER	1.5	0.78029	0.51824	0.55233	0.48010	0.81031	0.50769	0.46747	0.52886	0.62459
	1.0	0.57877	0.31411	0.39459	0.29813	0.73930	0.30436	0.31870	0.32633	0.47281
								0.23359		
								0.20752		
NCES	٨3	1.0	3.0	5.0	0.4	0.6	3.0	5.0	3.0	2.0
VARIA	٧2 ٧3	1.0	2.0	3.0	2.0	.0 %	1.0	1.0	3.0	2.0
Δ.	٧٢									

GROUP	INCES				NON CENTR	CENTRALITY PARAMETER	AMETER			
17	V2 V3		0.5	1.0	1.5	2.0	7 - 5	3.0	. r.	0.4
1.0	1.0		0.20552	0.36604	0.58864	0.79402	0.92364	0.97963	0.99616	67666-0
1.0	3.0		0.06589	0.13452	0.26972	0.46543	0.67576	0.34289	0.94079	0.98300
0.1	5.0		0.22519	0.27570	0.37290	0.51839	0.68773	0.83698	0.93424	0.98018
0.1	4.0		0.09795	0.15030	0.25767	0.42468	0.62255	0.79898	0.91610	0.97334
0.1	0.6		0.6640B	0.69238	0.74131	0.80803	0.88041	0.94056	0.97748	0.99372
1.0	3.0		0.06126	0.12837	0.26141	0.45505	0.66487	0.83395	0.93531	0.98054
0.1	5.0	0.15406	0.16732	0.20176	0.27755	0.40657	0.57701	0.74951	0.88148	0.95671
0.1	3.0		0.07553	0.14690	0.28416	0.47945	0.68685	0.84997	0.94440	0.98442
1.0	5.0		0.29858	0.35815	0.46362	0.60803	0.76175	0.88522	0.95795	0.98867

2.2A able

UNE-WAY LAYOUT 1 ANALYSIS OF VARIANCE -2.00 1.00 1.00 * DNA 0.50 MITH VA=

=12

UF2

7

11

AT 5% LEVEL OF POWER VALUES

NUN CENTRALITY PARAMETER

6S(1) SIZES GROUP

SIGNIFICANCE

0.99606

2.5 0.97816

2.0

0.99996 0.99998 99666.0 0.99952 11666.0

0.99998 0.99975

0.99770

0.99782

0.98610 0.98556 0.99336

0.98256

0.92914

0.91721

0.78029

1.0

0.59154

0.5 0.39300 0.38724 0.59613

0.3 0.31795 0.30134

VARIANCES

0.30282 0.30078 0.35803

4.0 0.0 4.0

42 2.0 2.0 2.0

1.0 0.1 1.0 1.0

0.61116

0.39312 0.46114

0.99999

1.00000 86666.0

96666.0

926660

0.99993

0.99986

0.99953

0.99919

0.99772

99666*0

0.99856

0.99619 0.99706

16666.0

0.99949 0.99985

3.5 0.99616 0.99766

0.97963 0.98651

0.92364

0.99862 0.99846

0.99110 0.99034 0.99740 0.99024

0.94448

0.83523 0.86843

0.63993

0.40155 0.44337 0.43289 0.55875 0.43124

0.21056

0.14946 0.13922 0.14566 0.14125

. V2 22.0 22.0 23.0 1.0

0.22984

0.31605

0.22457 0.25082

0.14468 0.13795

0.15201 0.15763

0000

3.0

0.21061

0.36604

0.20552

VAR I ANCE

GROUP

1.0 1.0 0.1 0.1 0.1 0.1

0.58864 0.68758

0.79402

0.95695

0.86217

0.67746

0.95637 0.97312

0.86044 0.90086

0.67471

0.99971

0.99983

0.99845 0.99654

0.98192

0.93180

0.81167

0.73715

0.38010 0.42483

0.20265

0.48377

0.65846

0.99483

0.99972

0.99983 86666.0 0.99993 0.99952 0.99974

0.98565 0.98985 0.97901 0.98274

0.91977 0.93036

0.78348 0.80310

0.29889

00000

3.0 3.0

0.00

-137-

0.39834

0.30668

0.59988

0.57660

0.37995

0.84110

0.93793 0.96423

0.93960 0.81798 0.81463

0.87091 0.81541 0.60706

0.60934 0.68293

0.39776

0.93818

AT 1% LEVEL OF SIGNIFICANCE

POWER VALUES

NON CENTRALITY PARAMETER

2.0

1.5

А
2
•
2
œ
Н
Ω
Ø

ANALYSIS OF VARIANCE --- ONE-WAY LAYOUT

1.00 1.00 GROUP SIZES GS(I) -2.00 # * AND 0F2 = 12WITH VA= 0.50 DF1

POWER VALUES AT 5% LEVEL OF SIGNIFICANCE

86666.0 0.99998 0.99998 16666.0 0.99993 16666.0 0.99979 0.99973 0.99975 0.99962 0.99930 0.99974 19666.0 0.99982 0.99971 0.99758 0.99775 0.99790 0.99740 0.99509 0.99757 0.99821 0.98306 0.97560 0.98490 61986.0 0.98412 0.98804 0.94171 0.9851 0.9862 NON CENTRALITY PARAMETER 0.93916 0.93698 0.93105 0.94209 0.93352 0.92723 0.91334 0.93585 0.94581 .81376 0.82928 0.77689 0.81689 0.80652 0.80299 0.79666 0.81059 0.83069 0.61299 0.59895 0.59598 0.63977 0.57509 0.60243 0.62739 0.60737 0.59129 0.5 0.38880 0.44334 0.39066 0.38523 0.39472 0.39017 0.39004 0.4094 0.30078 0.30134 0.35803 0.30668 0.30713 0.29889 0.31312 VARIANCES 2.0 SROUP 202000 0. •

GROUP	VARIA	INCES				NON CENTR	NUN CENTRALITY PARAMETER	AMETER			
٠ ٨٦	٧2 ٧3	٨3	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
0.1	1.0	1.0	0.14946	0.22210	0.41716	0.65896	0.85164	0.95380	0.98996	0.99850	0.99985
1.0	5.0	3.0	0.13922	0.21576	0.41639	0.65846	0.84903	0.95115	0.98866	0.99813	0.99978
1.0	3.0	0.0	0.14566	0.23078	0.44507	0.68818	0.86777	0.95877	0.99073	0.99851	0.99983
1.0	7.0	4.0	0.14125	0.21845	0.41925	0.65939	0.84795	0.94976	0.98793	0.99791	0.99974
1.0	3.0	0.6	0.21061	0.29339	0.49901	0.72414	0.88518	0.96474	0.99218	0.99877	0.99986
1.0	1.0	3.0	0.14468	0.21402	0.40061	0.63563	0.83066	0.94166	0.98537	0.99735	696660
1.0	1.0	5.0	0.15201	0.21746	0.39341	0.61747	0.81015	0.92759	90626.0	0.99544	0.99926
0.1	3.0	3.0	0.13795	0.21893	0.42738	0.67182	0.85836	0.95530	0.98989	0.99838	0.99982
0.1	5.0	2.0	0.15763	0.25125	0.47926	0.72337	0.89087	0.96882	0.99368	0.99910	0.99991

ANALYSIS UF VARIANCE --- UNE-WAY LAYOUT

			•										
	S			4.0	1.00000	666660	866660	0.99998	0.99999	0.99999	0.99999	0.99998	16666.0
0 -2.00	ري اا			3.5	0.99995	0.99979	69666.0	0.99975	0.99987	0.99986	0.99980	895660	0.99962
U* = 1.00 1.00 -2.00	GROUP SIZES GS(1) =			3.0	0.99942	96166.0	0.99717	0.99765	0.99861	0.99860	0.99809	0.99715	699660
0* = 1	GROUP SI	POWER VALUES AT 54 LEVEL OF SIGNIFICANCE	AMETER	2.5	0.99522	0.98689	0.98280	0.98529	0.99039	0.99031	0.98755	0.98292	0.98088
		EL OF SIG	NGN CENIRALITY PARAMETER	2.0	0.97407	0.94299	0.92968	0.93757	0.95602	0.95498	0.94510	0.93054	0.92561
AND		AT SE LEV	NGN CENTR	1.5	0.90642	0.82957	0.80154	0.81720	0.86384	0.85696	0.83322	0.80416	91651.0
1.00	DF2 =12	R VALUES		1.0	0.77127	0.64051	0.60128	0.62057					0.61359
WITH VA= 1.00	PO	POWE		0.5	0.61349	0.44811	0.40794	0.42350	0.54396	0.49565	0.44450	0.41355	0.44210
\$	0F1 = 2	•		0.0	0.54068	0.36582	0.32776	16688.0	0.47403	0.41324	0.35866	0.33351	0.37296
			VARIANCES	۸3	1.0	3.0	5.0	4.0	0.6	0.0	2.0	3.0	5.0
			VARI	٧2	1.0	2.0	3.0	2.0	3.0	1.0	1.0	3.0	5.0
			UUP		၁	0	0	2		0	0	၁	0

GROUP	VARI	ANCES				NON CENTR	ALITY PAR	AMETER			
۸ ۲	۸5	٨3		0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
0• -	1.0	1.0		0.42763	0.618	0.81276	0.93482	0.98436	0.99746	0.99973	0.99998
1.0	2.0	3.0		0.25772	0.445	0.67548	0.85791	0.95504	96686.0	0.99844	0.99983
1.0	3.0	5.0		0.23854	0.410	0.63634	0.82989	0.94217	0.98615	0.99771	0.99974
1.0	2.0	4.0		0.24020	0.426	0.65916	0.84739	0.95036	0.98856	0.99817	0.99980
0.1	3.0	ი•6		0.41867	0.573	0.75791	0.89895	0.97021	0.99398	61666.0	0.99993
0.1	1.0	3.0		0.30582	0.502	0.72606	0.88865	0.96754	0.99334	906660	16666.0
0.1	1.0	2.0		0.26848	0.464	0.69471	0.86977	0.95972	0.99118	99866.0	0.99986
0.1	3.0	3.0		0.22685	0.402	0.63126	0.82712	0.94073	0.98554	0.99753	17666.0
1.0	5.0	5.0 5.0	0.24016	0.28989	0.433	17 0.63336 0.81852 0.9344	0.81852	0.93444	0.98331	0.99708 0.99966	0.99966

Table 2.2A

ANALYSIS OF VARIANCE --- ONE-WAY LAYGUI

Š 1.00 Ħ 1.00 GS(I) SIZES -2.00 GROUP * AND = 1.2 1.00 UF2 WITH VA= ~ 11

POWER VALUES AT 5% LEVEL OF SIGNIFICANCE

0.99998 1.00000 966660 96666.0 86666 0 0.99995 999995 16666*0 0.99939 3.5 69666*0 0.99979 0.99947 1766600 15666.0 0.99942 0.99728 0.99524 0.99628 0.99592 0.99801 3.0 0.99590 0.99544 0.99522 0.98751 0.97832 0.97982 0.97496 0.97945 0.97885 0.97597 NON CENTRALITY PARAMETER 0.93438 0.90959 0.92192 0.92514 0.92044 0.94660 0.97407 0.91351 0.77002 1.5 0.79257 0.81479 0.90642 0.84177 0.78159 0.81351 0.77127 0.62634 0.57324 0.60460 0.66028 0.59815 0.59667 0.66734 0.44258 0.39753 0.41435 0.61349 0.40903 0.52647 0.48949 0.42987 0.43656 0.54068 0.36582 0.32776 0.33991 0.35866 0.33351 0.37296 0.47403 0.41324 VARIANCES 3.0 700000000

POWER VALUES AT 18 LEVEL OF SIGNIFICANCE

0.39998 0.99971 0.99933 0.99951 999944 0.99938 18666.0 0.99940 0.9995 0.99835 3.5 0.99759 0.99515 0.99636 0.99570 0.99657 0.99552 0.97574 0.98153 0.99746 0.98608 0.97973 0.97884 0.98993 0.98436 0.91438 0.92856 0.92939 0.95637 0.92505 0.92971 0.9192 NON CENTRALITY PARAMETER 0.78126 0.80658 0.82279 0.80721 0.93482 0.83466 0.86463 0.80452 0.60819 0.81276 0.64605 0.58154 0.60986 0.69312 0.61458 0.66/01 1.0 0.61825 0.42326 0.37354 0.38633 0.50828 0.47570 0.40487 0.5 0.42763 0.25037 0.22698 0.24866 0.22182 0.28582 0.39779 0.29652 0.17624 0.17063 0.35966 0.34790 0.19260 0.16327 0.24016 0.22856 _ 4 w w 4 o w w w w w w w o c o o o o o o o o VARIANCES 00000000

ANALYSIS OF VARIANCE --- UNE-HAY LAYOUT

-2.00 1.00 **6**S(1) 1.00 SIZES GROUP n ***** AND 1.00 =15 0F2 "ITH VA= 11 DF1

POWER VALUES AT 5% LEVEL OF SIGNIFICANCE

86666*0 96666.0 0.99999 1.00000 16666.0 0.99998 96666.0 16666*0 16666.0 0.99956 19666.0 0.99955 96666.0 0.99962 0.99949 0.99951 0.99981 17699.0 0.99947 0.99700 0.99584 0.99624 0.99825 0.99614 77766.0 19966.0 0.99586 0.97833 0.97678 0.99548 0.93194 0.98578 0.98013 197797 0.9776 NON CENTRALITY PARAMETER 0.97469 0.91544 0.95601 0.93868 0.92110 0.91467 0.91832 0.91248 1.5 0.90624 0.79174 0.17039 0.77125 0.77008 0.79286 0.73247 0.81781 0.76608 0.56965 0.55470 0.75733 0.57240 1.0 0.61746 0.62306 0.38969 0.37342 0.59943 0.37728 0.64533 0.41444 0.47042 0.0 0.52175 0.29272 0.31857 0.27178 0.32782 0.29190 0.27395 0.41236 VARIANCES ROUP 0000

POWER VALUES AT 1% LEVEL OF SIGNIFICANCE

0.99998 0.99954 0.99960 0.99987 0.99982 0.99957 0.99967 0.99971 366600 3.5 0.99626 0.99671 0.99873 0.99752 0.99830 0.99718 0.99654 0.99611 0.97945 0.98077 0.99780 0.98525 0.99194 0.98369 0.98923 0.93892 0.92229 0.92725 0.98579 0.93459 0.96548 0.95237 0.92545 0.92484 NOW CENTRALITY PARAMETER 0.93833 0.82078 0.79247 0.79763 0.89803 0.80638 0.85087 0.81419 0.79411 1.5 0.61701 0.59433 0.58759 0.61401 81673 0.78467 0.66132 0.63365 1.0 0.61642 0.38033 0.39013 0.35704 0.42508 0.35112 0.46340 0.38821 0.19998 0.25075 0.19020 0.56709 0.5 0.22036 0.23329 0.35164 0.32970 0.13202 0.53538 0.16152 0.20401 0.16072 0.12584 0.31507 чии4 ф ши ши шооооооооо VARIANCES GROUP 000 V1 L•0 000 00

ď
2
•
2
ω
Н
Д
Ø

ANALYSIS UF VARIANCE --- UNE-WAY LAYDUT

	ر ان	
1.00	E	
1.00 1.00	38(1) =	
U* = -2.00	GROUP SIZES GS(I)	
#)	GROUP	
AND		
WITH VA= 1.00	DF1 = 2	

POWER VALUES AT 5% LEVEL OF SIGNIFICANCE

			•						٠.	
	4.0	1.00000	18666.0	0.99972	0.99978	0.99982	16666.0	0.99972	0.99982	0.99978
	3.5	0.99992	0.99876	0.99761	0.99801	94866.0	60666.0	0.99762	0.99837	0.99802
	3.0	0.99905								
METER										
ALITY PAR	2.0	90996.0	0.88010	0.84424	0.85291	0.90334	0.89913	0.84697	0.86333	0.86545
NON CENTRA	0 1.5 2.0 2.5	0.38832	0.12309	0.68050	0.68378	0.80575	0.75602	0.68108	0.69723	0.72352
~	1.0	0.74614	0.52220	0.49907	0.48394	16001.0	0.56220	0.49042	0.49478	0.56697
	0.5		0.35591	0.36575	0.32865	0.62603	0.39377	0.34481	0.33372	0.45264
	0.0		0.29272							
NCES	٧3	1.0	3.0	5.0	4.0	0.6	3.0	2.0	3.0	5.0
VARIA	٧2 ٧3	1.0	2.0	3.0	. 0.2	3.0	1.0	1.0	3.0	5.0
GROUP	1 ^	1.0	0.1	0.1	1.0	1.0	1.0	1.0	1:0	1.0

	4.0	0.99995	0.99814	0.99595	0.99670	0.99747	0.99871	0.99583	0.99742	0.99678
	10°	0.99941	0.98939	0.97988	0.98313	0.98735	0.99231	0.98003	0.98604	0.98347
	3.0	0.99539	0.95652	0.92912	0.93794	0.95565	0.96684	0.93081	0.94592	0.94037
AMETER	2.5	0.97566	0.86982	0.81794	0.83211	0.88763	0.89496	0.82217	0.84688	0.84467
ALITY PAR	2.0	0.91147	0.70871	0.64704	0.65644	0.78609	0.75134	0.65027	0.67459	96969*0
	1.5	0.77306	0.49740	0.46013	0.44831	0.67855	0.54837	0.45339	0.46228	0.53569
	1.0	0.57637	0.30158	0.31267	0.27137	0.59581	0.34618	0.28921	0.27613	0.40881
								0.19145		
	0.0	0.32970	0.13528	6.20401	0.13202	0.53538	0.16152	0.16072	0.12584	0.31507
	۲3	1.0	3.0	2.0	0.4	0.6	3.0	1.0 5.0	၁ ဗ	5.0
VARI	٧2	1.0	2.0	3.0	2.0	3.0	1.0	1.0	3.0	2.0
GROUP	٧.١	1.0	1.0	1.0	1.0	1.0	0.1	1.0	0.1	0:1

Ø
2
•
7
œ
Ч
D
୕ଘ

ANALYSIS UF VARIANCE --- UNE-WAY LAYDUT

•			•										
	5 3			4.0	1.00000	0.99999	66666.0	66666.0	1.00000	0.99999	66666.0	0.99998	86666*0
-2.00	7			3.5	0.99992	0.99983	0.99981	0.99985	0.99993	16666.0	26666.0	0.99971	0.666.0
U* = 1.00 1.00 -2.00	ES GS(1)			3.0	0.99905							0.99741	0.99728
N* = 1.	GROUP SIZES GS(1) =	11 FICANCE	METER	2.5	0.99304	0.98916	0.98803					0.98455	
=		PUWER VALUES AT 5% LEVEL OF SIGNIFICANCE	NUN CENTRALITY PARAMETER	2.0	90996.0	0.95154	969560	0.95370	0.96557	0.96456	0.96547	0.93697	0.93395
AND		AT 5% LEVE	UN CENTRA	1.5	0.88832	0.85119	0.83832	0.85451	0.87928	0.88203	0.84227	0.82091	0.81415
1.00	DF2 = 12	VALUES A		1.0	0.74614	0.67872	0.65275	0.63001	0.71079	0.12814	0.72240	0.63609	0.62622
wITH VA=	DF	PUWE		0.5	0.59085	0.49861	0.45967	0.49394	0.51697	0.55695	0.53992	0.45401	0.44349
3	0F1 = 2	÷		0.0	0.52175	0.42048	0.37594	0.41217	0.42815	0.47992	0.45653	0.37.746	0.36725
	•		VARIANCES	٧3	1.0	3.0	5.0	4.0	0.6	3.0	2.0	3.0	5.0
•			VARI	٧2	1.0	2.0	3.0	5.0	3.0	1.0	1.0	3.0	5.0
			GROUP \	٧٦	1.0	0.1	0.1	J • U	0.1	1.0	1.0	1.0	1.0

GROUP VARIANCES	VARI	ANCES	•.			NUN CENTRALITY PARAMETER	ALITY PAR	AMETER			
^1 ^	۸5	× 3	0.0		1.0	1.5	2.0	2.5	3.0	3.5	4.0
1.0	1.0	1.0	0.32970	0	0.57637	0.17306	0.91147	0.97566	0.99539	0.99941	966660
1.0	5. 0	3.0	0.23341	ċ	0.49358	0.71339	0.87922	0.96328	0.99211	0.99882	0.99983
1.0	3.0	5.0	0.20049	0	0.47381	0.70255	0.87444	0.96167	941166.0	0.99876	0.99987
1.0	2.0	4.0	0.22748	ċ	0.50257	0.72597	0.88809	0.96708	0.99316	0.99901	066660
1.0	3.0	0.6	9.0 0.26579	ċ	0.57142	0.78887	0.92543	0.98163	16966.0	0.99965	16666.0
1 • 0.	1.0	3.0	0.28937	0	0.56250	0.77121	0.91267	0.97628	0.99549	0.99940	0.99995
1.0	1.0	5.0	0.27201	•	0.56883	0.78293	0.92038	0.97913	0.99614	0.99950	96666.0
1.0	3.0	3.0	0.19804	0	0.43900	0.099.0	0.84332	0.94686	0.98705	0.99777	0.99973
1.0	2.0	2.0	0.20906	ં	0.44360	0.66058	0.84231	0.94636	0.98704	0.99783	0.99975

A
2
2
۵
\boldsymbol{H}
Q
Ø
-

ANALYSIS OF VARIANCE --- ONE-WAY LAYOUT

	e S			4.0	1.00000	66666-0	66666 0	666660	66666.0	1.00000	66666.0	0.99999	0.99998
1.00	= 7 5			3.5	96666*0	0.99988	0.99979	0.99985	0.99979	0.99992	98666.0	0.99981	916660
U* = -2.00 1.00 1.00	GROUP SIZES GS(I) =	-	•	3.0	1,49947	0.99871	0.99798	0.99850		0.99912		0.99817	0.99768
U* = -2.	GROUP SIZ	NIFICANCE	AMETER	2.5	0.99548	98066.0	0.98709	0.98982	0.98748	0.99338	69066.0	0.98797	0.98553
		POWER VALUES AT 5% LEVEL OF SIGNIFICANCE	NON CENTRALITY PARAMETER	2.0	0.97469	0.95678	0.94413	0.95345	0.94677	0.96658	0.95179	0.94673	0.93904
AND		AT 5% LEV	NON CENTR	1.5	0.90624	0.86089	0.83318	0.85403	0.84360	0.88600	0.86744	0.83786	0.82285
1.00	0F2 = 12	R VALUES		1.0	0.76608	0.68860	0.64756	0.67932	0.67367	0.73236	0.70668	0.65251	0.63454
WITH VA= 1.00	0 5	POWE		0.5	0.59543	0.50269	0.45757	0.49364	0.50165	0.55872	0.53333	0.46048	0.44674
. 33	0F1 = 2			0.0	0.52175	0.42048	0.37594	0.41217	0.42815	0.47992	0.45653	0.37746	0.36725
			VARIANCES	٧3	1.0	3.0	5.0	4.0	9.0	3.0	5.0	3.0	5.0
	•			. V2	1.0	2.0	3.0	2.0	3.0	1.0	1.0	3.0	5.0
			GROUP	۲,	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0

POWER VALUES AT 1% LEVEL OF SIGNIFICANCE

GROUP	VARI	ANCES				NON CENTR	ALITY PAR	AMETER			
۸1	۸۶	٧3			1.0	1.5	2.0	2.5	3.0	3.5	4.0
0.1	1.0	1.0		0.41510	0.61642	0.81673	0.93833	_	0.99780	11666.0	86666.0
1.0	2.0	3.0		0.31148	0.50922	0.73269	0.89308		0.99394	0.99917	0.99992
1.0	3.0	5.0		0.27316	0.46274	0.68924	0.86501		0.99047	0.99852	0.99984
1.0	2.0	4.0		0.30377	0.49838	0.72152	0.88537	_	0.99289	96866.0	066660
1.0	3.0	0.6		0.33220	0.50502	0.71162	0.87321	_	0.99079	0.99855	0.99984
0.1	1.0	3.0		0.37038	0.56811	0.77791	0.91723	_	0.99601	0.99949	96666.0
1.0 1.0 5.0	1.0	5.0	0.27201	0.34731	0.53566	0.74557 0.89583 0.96883	0.89583	_	0.99328	96866.0	0.99989
1.0	3.0	3.0		0.27227	0.46545	0.69455	0.86979		0.99129	0.99868	0.99986
1.0	200	, 0		0.27734	0.45793	0.67921	0.85676		0.98937	0.99832	0.99982

Table 2.2A

ANALYSIS OF VARIANCE --- ONE-WAY LAYOUT

0* = 1.00 1.00 -2.00GROUP SIZES GS(I) = AND WITH VA= 1.00 OF2 =12 DF1 = 2

POWER VALUES AT 5% LEVEL OF SIGNIFICANCE

			٠.							٠,
	4.0	1.00000	96666*0	0.99995	0.99995	0.99998	96666.0	0.99994	96666*0	96666.0
	3.5	96666.0	0.99953	0.99935	0.99933	11666.0	0.99955	0.99928	0.99950	0.99941
	3.0	0.99942	10966.0	0.99480	0.99462	0.99807	0.99613	0.99433	0.99582	0.99530
AMETER	2.5	0.99505	0.97718	0.97256	0.97121	0.98917	0.97779	0.97030	0.97640	0.97525
ALITY PAR	2.0	0.97250	0.91145	0.90200	0.89525	0.95942	0.91326	0.89440	0.90955	0.91176
NON CENTR	1.5	4 0.89878 0.97250 0.99505	0.76111	0.75635	0.73393	0.89558	.0.76425	0.73798	0.75865	0.78083
	1.0	0.74884	0.53726	0.56072	0.51032	0.80758	0.54018	0.52772	0.53662	0.60488
	0.5	0.57151	0.32978	0.39521	0.31533	0.73212	0.33062	0.34951	0.33272	0.45573
	0.0	0.48910	_	_	_	_	_		_	0.39864
NCES	٨3	1.0	3.0	5.0	4.0	0.6	3.0	5.0	3.0	5.0
VARIANCES	۸5	1.0	2.0	9°0	5.0	3•0	1.0	1.0	3.0	5.0
GROUP	\ \ \	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0

i L	4.0		0.99955	0.99932	0.99930	0.99980	0.99957	0.99924	0.99952	02000 0
,	3.5	0.99975	0.99641	0.99487	0.99474	0.99831	0.99654	0.99439	0.99620	0.99540
	3.0	0.99758	0.98011	0.97378	0.97296	0.99051	0.98080	0.97178	0.97921	0.97647
AMETER	2.5	0.98454	0.92303	0.90768	0.90326	0.96395	0.92536	0.90163	0.92056	0.91680
CENTRALITY PARAMETER	2.0	0.93360	0.78170	0.76948	0.75291	0.90488	0.79262	0.75556	0.78362	0.79186
NON CENTR	1.5	0.80457	0.57018	0.57556	0.53332	0.81848	0.57660	0.55022	0.56661	0.61587
	1.0	0.59443	0.33359	0.39186	0.31559	0.73485	0.33846	0.35434	0.33332	0.44806
	0.5	0.38532	0.16412	0.27604	0.17195	0.68188	0.16577	0.22961	0.16753	0.34111
	0.0	0.29717	0.10551	0.23928	0.12488	0.66512	0.10557	5.0 0.18969	0.11039	0.30681
NICES	<u>۸</u>	1.0	3.0	5.0	4•0	0.6	3.0	5.0	3.0	2.0
VARIA	۸5	1.0	2.0	3.0	2.0	3.0	1.0	1.0	3.0	0.0
GROUP VARIANCES	۸۲	1.0	1.0	1.0	1.0	0.1	1.0	1.0	1.0	1.0

⋖
$^{\circ}$
•
2
œ
\mathbf{H}
Ω.
Ø
•

ANALYSIS UF VARIANCE --- ONE-WAY LAYOUT

	6	
	æ	•
1.00	m	
U* = -2.00 1.00 1.00	S(I) =	•
-2.00	GROUP SIZES GS(I)	. !
II *	GROUP	
AND		
1.00	DF2 = 12	
WITH VA= 1.00	10	
MIT	2 =	
	UF1	
*		

PUWER VALUES AT 5% LEVEL OF SIGNIFICANCE

	4.0	0.99999	0.99982	0.99970	0.99968	0.99985	0.99981	0.99951	0.99982	0.99980
	ທ _ີ ຄ	0.8866.0	0.99836	0.99743	0.99731	0.99876	0.99831	0.99621	0.99836	0.99814
	3.0	.99893	.98963	98529	095860	.99293	056860	01086	98959	1.98877
AMETER	2.5	0.99227	0.95470	0.94226	0.93892	0.97258	0.95461	0.92748	0.95451	0.95372
ALITY PARA	2.0	0.96277	0.86054	0.84047	0.82837	0.92550	0.86095	0.81112	0.86018	0.86682
NON CENTRA	1.5	0.87877	0.68896	0.67818	0.64679	0.85245	0.69012	0.63542	0.68904	5 0.72250 0.86682 0.95372 0
-	1.0	0.72676	0.47795	0.50254	0.44369	0.77564	0.47912	0.45291	19614.0	0.56076
							0.30904			
	0.0	0.48910	0.24584	0.33209	0.23945	0.70317	0.24536	0.28132	0.25066	0.39864
NCES	٧3	1.0	3.0	2.0	4.0	0.6	3.0	2.0	3.0	2.0
VARIA	٧5	1.0	7.0	3.0	5.0	3.0	1.0 3.0	1.0	3.0	2.0
GROUP	۷۱,	0.1	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0

GROUP	VARI	VARIANCES		• .		NON CENTR	ALITY PAR	AMETER			
۲,	۸5	۲3	0.0		1.0	1.5	2.0	2.5		ω υ.υ.	4.0
1.0	1.0	1.0	0.29717		0.55204	0.75775	0.90436	0.97334	0.99487	0.99933	76666*0
1.0	2.0	3.0	0.10551	0.14360	0.26298	0.45626	0.67405	0.84825	0.94693	0.98639	0.99749
1.0	3.0	2.0	0.23928		0.33768	0.47417	0.65128	0.81724	0.92773	0.97920	0.99576
1.0	2.0	4.0	0.12488		0.24733	0.41223	0.61838	0.80410	0.92366	0.97811	0.99550
1.0	3.0	0.6	0.66512		0.70727	0.76554	0.84242	0.91628	0.96658	0.99037	0.99806
0.1	1.0	3.0	0.10557		0.26627	0.46079	0.67760	0.84975	0.94709	0.98623	0.99740
1.0	1.0	5.0	0.18969		0.28340	0.41794	0.59935	0.77820	0.90553	0.97013	0.99318
1.0	3.0	3.0	0.11039		0.26532	0.45632	0.67285	0.84721	0.94652	0.98633	0.99750
1.0	5.0	5.0	0.30681		0.40711	1 0.53978 0.70450 0.85163 (0.70450	0.85163	0.94440	0.98500	0.99716

Д
2
•
2
٠
O)
Н
൧
Ø

ANALYSIS OF VARIANCE --- ONE-WAY LAYOUT

AND U* = 1.00 1.00 -2.00 GROUP SIZES GS(I) = 9 3 3	
U* = 1.00 1.00 -2.00 GROUP SIZES GS(I) = 9 3	
U* = 1.00 1.00 -2 GROUP SIZES GS(I) =	
•	
•	
•	
•	
2 DF2 = 12	
0F1 = 2	
•	

POWER VALUES AT 5% LEVEL OF SIGNIFICANCE

	4.0	0.99999	666660	56665 0	66666-0	1.00000	0.0000	00000	00000	0.99999
	3.5	066660	18666-0	0.99986	0.99987	96666 0	06666-0	0.9990	0.99982	0.99980
	3.0	0.99893	0.99861	0.99855	0.99866	0.99922	0.99888	0.99895	0.99826	0.99812
AMETER	2.5	0.99227	0.99049	0.99012	11066.0	0.99379	0.99194	0.99234	0.98873	0.98798
ALITY PARA	2.0	0.96277	0.95600	0.95442	0.95681	0.96719	0.96115	0.96231	0.95038	0.94775
NON CENTRA	1.5	0.87877	0.86075	0.35569	0.86158	0.88374	.0.87237	0.87330	0.84921	5 0.84303 0.94775 0.98798
	1.0	0.72676	0.69191	0.67985	00069.0	0.71865	0.70895	0.70453	0.67663	0.66615
										0.48337
			0.43186							
NCES	٨3	0.1	3.0	5.0	4.0	0.6	3.0	5.0	3.0	5.0
VARIANCES	۸5	1.0	2.0	3.0	5.0	3.0	1.0	1.0	3.0	2.0
GROUP										

GROUP	ANCES				NON CENTR	ALITY PAR	AMFTER			
٧1	V2 V3	0.0	0.5	, ,	1.5	2.0	2.5	3.0	, .	0.4
1.0		0.29717	0.36938	0.5520	0.75775	0.90436	0.97334	0.99487	0.99933	76666 0
1.0		0.24475	0.32062	0.5132	0.73213	0.89106	0.96820	0.99346	90666-0	0.99991
1.0		0.22722	0.30733	0.5080	0.73187	0.89168	0.96843	0.99349	906660	0 99991
0.1		0.23731	0.31749	0.5177	0.73964	0.89622	0.97024	95866 0	0.99914	0.0000
1.0		0.27240	0.36442	0.5805	0.19580	0.92871	0.98259	0.99708	17666-0	30000°U
1.0		0.26102	0.34131	0.5400	0.75655	0.90565	0.97392	76766 0	0.99932	70000-0
1.0		0.24738	0.33611	0.5491	0.77010	0.91430	0.97711	0.99568	0.99943	50000 °C
1.0		0.23420	0.30570	0.4909	0.70946	0.87590	0.96151	0.99150	0.99868	0.99986
1.0		0.22837	0.22837 0.30051	0.4866	0.70566	9 0.70566 0.87307 0.96012	0.96012	0.99109	0.99861 0.99985	0.99985

Fable 2.2A

ANALYSIS OF VARIANCE --- ONE-WAY LAYOUT

 $U* = -2.00 \quad 1.00 \quad 1.00$ GROUP SIZES GS(I) = AND WITH VA= 1.00 DF2 = 12

POWER VALUES AT 5% LEVEL OF SIGNIFICANCE

						٠.				٠.
	4.0	1.00000	66666.0	0.99999	0.99999	66666.0	0.99999	66666*0	66666*0	66666 • 0
-	3.5	96666.0	16666.0	19666.0	0.99988	0.99935	16666*0	0.99983	0.99990	0.99988
	3.0	0.99942	16866.0	0.99865	0.99877	0.99853	0.99902	0.99841	0.99888	0.99873
AMETER	2.5	0.99505	0.99235	0.99064	0.99131	0.99016	0.99268	0.98966	0.99180	0.99100
NON CENTRALITY PARAMETER	2.0	0.97250	0.96200	0.95608	0.95852	0.95540	0.96355	0.95396	0.95995	0.95707
NON CENTR	1.5	0.89878	0.87231	0.85886	0.86482	0.86080	0.87703	0.85746	0.86720	0.86040
	1.0	0.74884	0.70409	0.68318	0.69337	0.69428	0.71389	0.68797	0.69523	0.68399
	0.5	0.57151	0.51641	0.49204	0.50527	0.51635	0.53101	0.50691	0.50489	0.49068
	0.0	0.48910	0.43186	0.40702	0.42125	0.43791	0.44840	0.42710	0.41949	0.40435
VARIANCES	۸3	1.0	3.0	5.0	4.0	0.6	3.0	5.0	3.0	2.0
VARI	۸5	1.0	2.0	3.0	2.0	3.0	1.0	1.0	3.0	5.0
GROUP	۸1	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
•										

GROUP	VARIANCES	NCES				NON CENTR	CENTRALITY PARAMETER	RAMETER			
۸۲	۸5	٨3	0.0	0.5	1.0		2.0	2.5	3.0	3.5	4.0
0.1	1.0	1.0	0.29717	0.38532	0.59443	0.8045	0.93360	0.98454	0.99758	0.99975	0.99998
1.0	5.0	3.0	0.24475	0.32862	0.53515	0.7576	0.90824	0.97544	0.99544	0.99942	0.99995
1.0	3.0	5.0	0.22722	0.31002	0.51526	0.7401	0.89719	0.97076	0.99414	0.99918	0.99992
1.0	2.0	4.0	0.23731	0.31951	0.52334	0.7462	0.90073	0.97219	0.99451	0.99924	0.99993
1.0	3.0	0.6	0.27240	0.34929	.0.53987	0.7498	0.89870	0.97031	0.99385	0.99911	0.99991
1.0	1.0	3.0	0.26102	0.34387	0.54721	0.7650	0.91139	0.97634	0.99560	0.99943	0.99995
1.0	1.0	5.0	0.24738	0.32423	0.51707	0.7333	0.88970	0.96655	0.99266	0.99885	0.99987
0.1	3.0	9.0	0.43420	0.31618	0.52557	0.7504	0-90420	0.97389	0.99504	0.99935	0.99994
1.0	5.0	2.0	0.22837	0.31341	0.52218	0.7474	0.90188	4 0.90188 0.97275	0.99471	0.99471 0.99929	0.99994

A
7
2
യ
Н
ab
H

ANALYSIS OF VARIANCE --- DNE-WAY LAYDUT

DF1 = 2		c.	
MITH VA= 3.00 AND 2 DF2 = 1.2	-2.00	5 5	
MITH VA= 3.00 AND 2 DF2 = 1.2	1.00	= (1)59	
WITH V	U* = 1.00	GROUP SIZES	
WITH V	AND		
	WITH VA= 3.00	7	

Ľ	
Z Z	,
<u>د</u>	1
=	
5	
n	1
5	. ; . , j
ب	,
 >	
J	
7	•
POWER VALUES AT 38 LEVEL UP SIGNIFICAND	
α •	. •
ű	
֝֟֝֟֝֟֝֟֝ ֝	
>	
ī,	
5	
_	

								•	
	1.	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
3.5	1.00000	96666.0	76666.0	0.99998	26666.0	0.99999	866660	0.99998	96666*0
3.0	0.99992	0.99974	0.99956	19666.0	0.99965	0.99981	69666.0	99666*0	0.99951
2.5	0.99913	0.99754	61966.0	00.66.0	16966.0	0.99813	0.99715	0.99683	0.99585
2.0	0.99361	0.98484	0.97842	0.98217	0.98229	0.98795	0.98299	0.98161	0.97724
1.5	0.97025	0.93891	0.91926	0.93040	0.93337	0.94946	0.93323	0.92875	0.91745
1.0	0.91127	0.83691	0.79695	0.81873	0.83202	0.86068	0.82517	0.81569	0.19781
0.0	0.78817	0.64579	0.58192	0.61468	0.65382	0.68872	0.62630	0.61065	0.59379
٧3	1.0	3.0	5.0	4.0	o•6	3.0	2.0	၁°၉	5.0
۸5	1.0	2.0	3.0	2.0	3.0	1.0	ր• Դ•	3•0	2•0
٧٢.	ဂ	٠.	0.1	0	0.1	0	0	0.	0
	0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5	0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.78817 0.82952 0.91127 0.97025 0.99361 0.99913 0.99992 1.00000	0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.78817 0.82952 0.91127 0.93801 0.99361 0.99913 0.99992 1.000000 0.64579 0.70795 0.83691 0.93891 0.98484 0.99754 0.99974 0.99998	0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.78817 0.82952 0.91127 0.97025 0.99361 0.99913 0.99992 1.00000 0.64579 0.70795 0.83691 0.93891 0.98484 0.99754 0.99974 0.99998 0.58192 0.65047 0.79695 0.91926 0.97842 0.999619 0.99956 0.99997	0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.78817 0.82952 0.91127 0.97025 0.99361 0.99913 0.99992 1.00000 0.64579 0.70795 0.83691 0.93891 0.98484 0.99754 0.99974 0.99998 0.58192 0.65047 0.79695 0.91926 0.97842 0.999619 0.999956 0.999997 0.61468 0.68053 0.81873 0.93040 0.998217 0.999700 0.999967 0.999998	0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.78817 0.82952 0.91127 0.97025 0.99361 0.99913 0.99992 1.00000 0.64579 0.70795 0.83691 0.93891 0.98484 0.99754 0.99974 0.99998 0.58192 0.65047 0.79695 0.91926 0.97842 0.999619 0.999956 0.999997 0.61468 0.68053 0.81873 0.93347 0.998229 0.999691 0.999967 0.999997	0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.78817 0.82952 0.91127 0.97025 0.99361 0.99913 0.99992 1.00000 0.64579 0.70795 0.83691 0.93891 0.98484 0.99754 0.99974 0.99998 0.58192 0.65047 0.79695 0.91926 0.97842 0.994619 0.999956 0.999997 0.61468 0.68053 0.81873 0.93347 0.998217 0.999691 0.999967 0.999997 0.65382 0.71061 0.886068 0.999466 0.998795 0.999991 0.999991 0.999997	0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.78817 0.82952 0.91127 0.97025 0.99361 0.99913 0.99992 1.00000 0.64579 0.70795 0.83691 0.93891 0.98484 0.99754 0.99974 0.99998 0.58192 0.65047 0.79695 0.91926 0.97842 0.99619 0.99995 0.999997 0.61468 0.68053 0.81873 0.933040 0.998217 0.99910 0.999967 0.999998 0.65382 0.71061 0.83202 0.993337 0.98229 0.999691 0.999996 0.999999 0.668872 0.74522 0.86068 0.94946 0.998795 0.99991 0.999999 0.65330 0.69064 0.82517 0.993233 0.98299 0.999715 0.999969 0.999999	0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.82952 0.91127 0.97025 0.99361 0.99913 0.99992 1.00000 1.0 0.70795 0.83691 0.98484 0.99754 0.99974 0.99996 1.0 0.65047 0.79695 0.91926 0.97842 0.99919 0.99997 1.0 0.68053 0.81873 0.93217 0.99969 0.99997 1.0 0.71061 0.83202 0.98229 0.999691 0.99996 1.0 0.74522 0.86068 0.94946 0.98795 0.99998 1.0 0.69064 0.82517 0.98233 0.98299 0.999968 1.0 0.67667 0.81569 0.92875 0.99968 0.999968 1.0

	4.0	1.00000	666660	0.99999	0.99999	0.99999	1.00000	0.99999	66666 0	66666 0
	3.5	866660	16666 0	0.99982	0.99988	0.99936	76666.0	0.99988	0.99987	0.99978
	3.0	0.99977	00666*0	0.99817	0.99868	0.99858	0.99931	0.99876	09866*0	0.99787
AMETER	• 5	0.99774	0.99259	0.98793	0.99074	0.99039	0.99457	0.99128	0.99021	0.98653
ALITY PAR	2.0	0.98581	0.96349	0.94677	0.95664	0.95700	0.97160	0.95899	0.95490	0.94307
NUN CENIRALITY PARAMETER	1.5	0.94207	0.87855	0.83970	0.86184	0.86957	91006.0	0.86837	0.85779	0.83544
-			0.72119							
			0.54748							
	0.0	0.65836	0.46971	0.40155	0.43397	0.51209	0.52448	0.45122	0.42805	0.42703
VARIANCES	. 43	1.0	3.0	5.0	4.0	9.0	3.0	5.0	3.0	5.0
VARI	۸5	1.0	2.0	3.0	2.0	٦ ٠	0.1	1.0	3.0	2.0
GROUP	~	0.1	1.0	1.0	1.0	1.0	1.0	0•1) 	0.1

a	
O C	j
-	•
0	J
•	•
_	
a	J
_	4
Τ	
σ	1
4	-

ANALYSIS OF VARIANCE --- ONE-WAY LAYOUT

:		Ŋ	
1.00 1.00		S S	
1.00		GROUP SIZES GS(I) =	
-2.00		SIZES	
U* = -2.00 1		GROUP	•
AND	•		
WITH VA= 3.00		0F1 = 2 $0F2 = 12$	

POWER VALUES AT 5% LEVEL OF SIGNIFICANCE.

	4.0	1.00000.	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
	3.5	1.00000	86666.0	96666.0	16666.0	96566*0	666660	266660	16666.0	96666*0
•	3.0	3.99992	3.99972	9.99948	596663	0.88860	08666°0	3.99962	0.99963	0.99943
AMETER	0 1.5 2.0 2.5	0.99913	0.99739	0.99568	0.99670	96566*0	0.99802	0.99672	69966.0	0.99537
ALITY PAR	2.0	0.99361	0.98423	0.97648	0.98099	0.97871	0.98747	0.98130	0.98088	0.97548
NON CENTR	1.5	0.97025	0.93747	0.91500	0.92769	0.92560	0.94827	0.92939	0.92710	0.91367
	1.0	0.91127	0.83514	0.79201	0.81549	0.82309	0.85918	0.82059	0.81371	0.79352
	0.5	0.82952	0.70713	0.64829	0.67907	0. 706 70	0.74452	0.68858	0.67578	0.65632
	0.0	0.78817	0.64579	0.58192	0.61468	0.65382	0.68872	0.62630	0.61065	0.59379
INCES	٧3	1.0	3.0	5.0	4.0	0.6	3.0	2.0	3.0	5.0
	٧2	0.1	2.0	3.0	2.0	3•0	1.0	1.0	3.0	2.0
GRUUP 1	۸۱	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0

GROUP	VARIANCES				NON CENIR	ALITY PAR	AMETER			
۸۱	٧3	0.0	0.5		1.5	1.5 2.0 2	2.5	3.0	3.5	4.0
1.0	1.0	0.65836	0.71884	0.84387	0.94207	0.98581	99774	11666.0	86666.0	1.00000
1.0	3.0	0.4697	0.54577	0.717.09	0.87463	0.96151	0.99198	0.99889	06666.0	666660
1.0	5.0	0.4015	0.47510	0.65052	0.82894	19056.0	0.98581	0.99772	0.99976	0.99998
1.0	4.0	0.4339	0.51030	0.68617	0.85475	0.95282	0.98951	0.99843	0.99984	0.99999
0.1	0.6	0.5120	0.56800	0.70483	0.85009	0.94569	0.98644	0.99773	0.99975	0.99998
1.0	3.0	0.52448	0.59707	0.75655	0.89680	0.97001	0.99412	0.99923	0.99993	1.00000
0.1	2.0	0.4512	2 0.52515 0.69527	0.69527	0.85832	7 0.85832 0.95354	54 0.98951 0.99840 0.99984 0.99999	0.99840	986660	66666*0
7.0	3.0	0.4280	0.50518	0.68300	0.85349	0.95257	0.98951	0.99845	0.99985	66666 0
1.0	20	0.4270	0.49350	0.65550	0.82624	0.93758	0.98456	0.99744	0.99972	0.99998

J
7
2
ω
$\overline{}$
൧
Ø

ANALYSIS OF VARIANCE --- ONE-WAY LAYOUT

0* = 1.00 1.00 -2.00	S 6S(1) = 3 5 7
AND U* = 1.	GROUP SIZES GS(I)
WITH VA= 3.00	DF1 = 2

POWER VALUES AT 5% LEVEL UF SIGNIFICANCE

	_	_	_	_	_	0			0	
	4.	1.00000	1.00000	1.00000	1.00000	1.0000	1.0000	1.00000	1.00000	1.00000
	3.5	1.00000	0.99998	96666*0	16666.0	86666.0	0.99998	16666.0	16666-0	96666*0
			0.99965							
AMETER	2.5	11666.0	0.99681	0.99544	0.986.0	0.99718	0.99745	0.99605	0.99615	0.99562
ALITY PAR	2.0	0.99341	0.98085	0.97490	90116-0	0.98443	0.98411	0.97744	0.97775	0.97642
NON CENTRA	1.5	0.96888	0.92472 0.98085 0.99681	0.90874	0.91334	0.94343	0.93531	0.91501	0.91540	0.91604
•	1.0	0.90618	0.80304	0.77618	0.78050	0.86162	0.82586	0.78509	0.78455	0.79779
			0.65202							
,	0.0	0.77394	0.57996	0.55002	0.54524	0.12289	0.61900	0.55527	0.55146	0.60040
NCLS	٧3	1.0	3.0	5.0	4.0	0.6	3.0	5.0	3.0	2.0
VARIA	۸2	1.0	2.0 3.0	3.0	2.0	0. 8	7.0	1.0	3.0	2.0
			1.0							

	4.0	00000	66666	86666	66666	66666	00000	- 66666	66666	86666
		-	0	0	0	o	1.	0	0	•
	3.5	0.99999	0.99988	77666.0	0.99982	98666.0	166660	0.99982	0.99983	92666.0
J*1 -	3.0	0.99978 0.99999 1.00000	998660	0.99775	0.99816	0.99864	0.99901	0.99818	0.99825	0.99775 0.99976 0.99998
METER	2.5	6 0.99778 0.	0.99042	0.98566	0.98767	0.99123	0.99257	0.98786	0.98816	0.98603
ILITY PARA	2.0	0.98576	0.95447	0.93901	0.94482	0.96252	0.96281	0.94595	0.94643	0.94222
NON CENTRALITY PARAMETER	1.5	0.94059	0.85352	0.82306	0.83177	0.89140	0.70877 0.87457 0.96281	0.83582	0.83511	0.83683
	0.1	0.83726	0.67313	0.63829	0.64079	0.17904	0.70877	0.65025	0.64518	0.67411
	0.5	0.70382	9-47974	0.45804	0.44499	0.67069	0.52372	0.460.17	0.44892	0.51986
	0.0	0.63879	0.39460	0.38299	0.36098	0.62595	0.44036	0.37861	0.36434	0.45671
NCES	٧3	0.1	3.0	2.0	4.0	0.6	3.0	2.0	3.0	5.0
VARIANCES	۸2	1.0	2.0	3.0	2.0	3.0	1.0	1.0	3.0	5.0
α.	۸۱									

ď
$\bar{5}$
•
N
œ
Н
Д
Ø
-

ANALYSIS OF VARIANCE --- ONE-WAY LAYDUT

	2 5			4.0	1.00000	1.00000	66666.0	5666600	0.99999	1.00000	66666*0	1.00000	
1.00	E0 .			W. W.	0.99999	0.99994	0.99988	16666.0	0.99991	966660	06666.0	0.99992	00000
U* = -2.00 1.00 1.00	GROUP SIZES GS(I) =			3.0	0.99989	0.99932	0.99878	0.99903	0.99912	0.99949	0.99897	0.99913	20000
U* = -2	GROUP SI	POWER VALUES AT 5% LEVEL OF SIGNIFICANCE	AMETER	2.5	0.99883	0.99474	0.99163	0.99297	0.99415	0.99588	0.99271	0.99355	00000
		EL UF STG	NGN CENTRALITY PARAMETER	2.0	0.99208	0.97314	0.96200	0.96636	0.97431	0.97804	0.96579	0.96841	37770 0
AND		AI 5% LEV	NGN CENTR	1.5	0.96534	0.90792	0.88295	0.89113	0.92351	0.92166	0.83110	0.89571	04608 0
3.00	0F2 =12	R VALUES		1.0	0.90141	0.18364	0.74840	0.75578	0.84045	19608.0	0.75872	0.76239	0.77310
wITH VA= 3.00	OF	POWE		0.5	0.81619	0.64347			0.75774				0.45100
3	DFI = 2			0.0	0.17394	0.57996	0.55002	0.54524	0.72289	0.619.0	0.55521	0.55146	0.60040
			VARIANCES	٧3	1.0	3.0	5.0	4.0	0.6	3.0	5.0	3.0	3
		·.	VAR	٧2	1.0	2.0	3.0	2.0	3.0	1.0	1.0	3.0	ς, Ο
			GROUP	۲,	D• 1	1.0	1.0	1.0	1.0	0.1	1.0	1.0	7.0

GRUUP	VARI	VARIANCES				NON CENTR	ALITY PAR	NON CENTRALITY PARAMETER		• .	
۸1	۸5	٧3		0.5		1.5	2.0	2.5	3.0	3.5	4.0
1.0	1.0	1.0		0.65805	0.824	0.93024	0.98133	0.99670	0.99962	16666.0	1.00000
٥ ٠ ١	2.0	3.0		0.46337	0.631	0.81066	0.92982	0.98180	0.99677	0.99961	0.99997
1.0	3.0	5.0		0.43850	0.584	0.76196	0.89921	0.96976	0.99376	0.99914	0.99992
1.0	2.0	4.0		0.42602	0.590	0.17733	0.91135	0.97506	0.99517	0.99937	0.99995
1.0	9,0	0.6		0.65647	0.739	0.84515	0.93169	0.97864	0.99542	0.99934	0.99994
1.0	1.0	3.0		0.50919	0.672	0.83897	0.94329	80986.0	99166.0	0.99974	0.99998
1.0	1.0	5.0	0.37861	0.44042	0.597	0.77809	0.90986	0.97399	0.99481	0.99930	96666.0
1.0	3.0	3.0		0.43136	0.595	0.78603	0.91685	0.97727	0.99574	946660	0.99995
1.0	5.0	5.0		0.50312	0.627	0.78247	00906.0	0.97125	0.99397	0.99397 0.99915 0.99992	0.99992

Table 2.2A

ANALYSIS OF VARIANCE --- ONE-WAY LAYOUT

WITH VA= 3.00 AND U* = 1.00 1.00 -2.00

0F2 = 12 GROUP SIZES GS(I) =

DFI = 2

POMER VALUES AT 5% LEVEL OF SIGNIFICANCE.

		1.00000					1.00000			
		0.99999	866660	16666.0	0.99998	0.99998	0.99999	0.99998	16666.0	966660
	3.0	0.99989	41666.0	0.99959	0.99971	99666.0	0.99983	0.99977	0.99962	0.99942
AMETER	2.5	0.99883	0.99761	0.99648	0.99737	0.99695	0.99833	0.99786	0.99670	0.99536
NGN CENTRALITY PARAMETER	2.0	0.99208	0.98562	0.98024	0.98448	0.98221	0.98935	16986.0	0.98143	0.97555
NGN CENTR	1.5	0.96534	0.94319	0.92642	0.93947	0.93169	0.95558	0.94763	0.93053	0.91393
	1.0	0.90141	0.85059	0.81521	0.84228	0.82438	0.87805	0.85997	0.82491	0.79357
	0.5	0.81619	0.73495	0.68178	0.72175	0.69366	0.17754	0.74855	0.69173	0.65532
	0.0	0.17394	0.67956	0.61922	0.66423	0.63085	0.72343	0.69465	0.63808	0.59205
ANCES	٧3	1.0	3.0	5.0	4.0	0.6	3.0	2.0	3.0	5.0
VARIANCES	۸5	1.0	2.0	3.0	2.0	3.0	1.0	1.0	3.0	5.0
GROUP	11	1.0	1.0	1.0	1.0	1.0	1.0	0.1	1.0	1.0

ROUP	VARIA	NUCEN				START MON	GAG VIIIA	ONFINA				1.
	٧2	٧3	0.0	0.5	1.0	1.5	1.5 2.0 2.0	7.5	3.0	, K	•	
	1.0 1.0	1.0	0.63879	0.69805 0.82462	0.82462	0.93024	0.98133	07986.0	29666-0	16666-0	200000 1 26666 0 29666 0 02	
	2.0	3.0	0.51277	0.58264	0.73994	0.88461	0.96442	4 0.88461 0.96442 0.99254	0.99895	0.66660	66666 0	
	3.0	ა.	0.44095	0.51451	0.68534	0.85161	0.95054	0.98863	0.99823	0.99982	0.99999	
	2.0	4.0	0.49420	0.56575	0.72755	0.87763	0.96164	0.99177	0.99881	0.99989	0.99999	
	3.0	9.0	0.46276	0.53674	0.70531	0.86563	0.95706	0.99064	0.99863	18666.0	66666*0	
	1.0	3.0	0.57704	0.64274	0.78605	0.91057	0.97439	0.99506	0.99936	0.99995	1.00000	
	1.0	5.0	0.53497	0.60460	0.75339	0.89548	0.96854	0.99351	60666.0	0.99992	0.99999	
	3.0	3.0	0.46207	0.53324	0.69825	0.85830	0.95303	0.98927	0.99834	0.99983	66666	
	5.0	5.0	0.41579	0.48515	0.65230	0.82577	0.93752	0.98446	0.99738	0.99971	0.99998	

ⅎ
Ñ
•
N
۵
Н
Д
Ø
ü

ANALYSIS OF VARIANCE --- ONE-WAY LAYOUT

		en .
		Ŋ
	1.00	~
	1.00	= (1)\$5
	-2.00	SIZES (
DF2 = 12	# ^	GROUP
DF2 = 12	AND	
٥	3.00	F2 =12
	WITH VA= 3.00	ā
DF1 = 2	3	"
B 	HIIM	"

POWER VALUES AT 5% LEVEL OF SIGNIFICANCE

	4.0	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
	3.5	1.00000	666660	866660	0.99999	866660	666660	666660	0.99998	16666.0
	3.0	0.99992	0.99982	0.99970	0.99979	196660	0.99988	0.99982	0.99975	09566*0
RAMETER	2.5	0.99911	0.99820	0.99722	96186.0	0.99705	0.99870	0.99822	0.99761	64966*0
ALITY PAR	2.0	0.99341	0.98813	0.98315	0.98689	0.98262	86065.0	0.98848	0.98503	0.97978
NON CENTR	1.5	0.96888	0.94926	0.93304	0.94520	0.93261	0.95970	0.95126	0.93885	8 0.92313 0.97978 0.99649
	1.0	0.90618	0.85820	0.82311	0.84936	0.82547	0.88339	0.86450	0.83497	0.80418
							0.78007			
	0.0	0.77394	0.67956	0.61922	0.66423	0.63085	0.72843	0.69465	0.63808	0.59205
NCES	۲3	1.0	3.0	2.0	0.4	0.6	3.0	5.0	3.0	2.0
VARIA	۸5	1.0	2.0	3.0	2.0	3.0	1.0 3.0	1.0	3.0	0.5
GROUP	٠ ۸۲	0.1	1.0	1.0	1.0	1.0	1.0	0.1	1.0	1.0

GROUP	VARI	ANCES			٠	NON CENTR	ALITY PAR	AMETER			•
۲,	٧5	٧2 ٧3	0.0	0.5	1.0	-1	2.0	2.5	3.0	3.5	4.0
1.0	1.0	1.0	0.63879	0.70382	0.83726	0.9405	0.98576	0.99778	0.99978	0.99999	1.00000
1.0	2.0	3.0	0.51277	0.59037	0.75808	0.9012	0.97261	76766.0	0.99938	0.99995	1.00000
0.1	3.0	5.0	0.44095	0.52153	0.70262	0.8686	0.95975	0.99164	0.99884	0.99989	66666.0
1.0	2.0	4.0	0.49420	0.57265 0:74395	0.74395	0.8929	0.96941	0.99412	0.99925	96666.0	1.00000
n•1	3.0	0.6	0.46276	0.53731	0.70730	0.8672	0.95797	98066.0	0.99870	0.99988	66666.0
0.1	1.0	3.0	0.57704	0.64858	0.79932	0.9221	0.97973	0.99651	0.99961	16666.0	1.00000
1.0	1.0	2.0	0.53497	0.60903	0.76879	0.9050	0.97329	0.99493	0.99936	0.99995	1.00000
1.0	3.0	3.0	0.46207	0.54269	0.72118	0.8804	0.96472	0.99299	10.99907	0.99992	1.00000
1.0	2.0	2.0	0.41579	0.49395	0.67474	0.8490	0.95095	4 0.95095 0.98914	0.99839	14 0.99839 0.99984 0.99999	0.99999

Table 2.2A

ANALYSIS OF VARIANCE --- ONE-WAY LAYOUT

	σ
	(F)
-2.00	6 6
00	, II
1.0	68(1)
U* = 1.00 1.00 -2.00	GROUP SIZES GS(1)
ļī	JUP
*	GRC
AND	JF2 =12
WITH VA= 3.00	DF2 =12
A=	J.O.
Z H	
3	7
	0F1 = 2
	·

POWER VALUES AT 5% LEVEL OF SIGNIFICANCE.

			• .							
	4.0	1.00000	1.00000	1.00000	0.99995 1.00000	1.00000	1.00000	1.00000	1.00000	מטטטט נ
AMETER	3.5	1.00000	16666.0	0.99995	0.99995	0.99998	16666.0	0.99995	16666.0	40000
	3.0	26666.0	0.99956	0.99938	0.99940	0.99970	0.99959	0.99936	0.99953	0.99947
	2.5	10666.0	0.99605	0.99488	0.99495	0.99753	0.99631	0.99473	0.99580	0.99526
CENTRALITY PARAMETER	2.0	0.99267	0.97698	0.97253	0.97213	0.98682	0.97822	0.97155	0.97587	0.97445
NON CENTR	1.5	0.96547	0.91179	0.90243	0.89834	0.95365	0.91553	0.89836	0.90867	0.01077
2	1.0	0.89612	0.77396	0.76550	0.74986	0.88880	0.78140	0.75436	0.76833	0.78501
	0.5	0.79932	0.60614	0.60892	0.57590	0.81775	0.61651	0.58862	0.59904	0.64227
	0.0	0.75016	0.52690	0.53756	0.49551	0.78520	0.53824	0.51280	0.51953	0.57735
NCES	٧3	1.0	3.0	5.0	4.0	0.6	3.0	5.0	3.0	5.0
VARIA	٧2 ٧3	1.0	2.0	3.0	2.0	3.0	1.0	1.0	3.0	5.0
۵.	1 ^ 1									

									•		
		4.0	1.00000	66666.0	86666.0	86666.0	0.99999	0.99999	86666.0	0.99999	0.99998
		3.5	86666.0	0.99983	0.99972	92666.0	0.99987	0.99985	0.99972	0.99981	41666.0
		3.0	0.99975	0.99825	0.99737	0.99752	0.99872	0.99841	0.99731	0.99809	0.99755 0.99974 0.99998
	- YULUK	2.5	0.99754	0.98801	0.98375	0.98421	0.99216	0.98891	0.98338	0.98714	0.98489
	ALIIY PAK	2.0	0.98425	0.94525	0.93325	0.93284	90896.0	0.94853	0.93135	0.94228	0.93812
C + 14 C 14 C 14	NON CENTRA	1.5 2.0 2	0.93465	0.83015	0.81270	0.80481	0.91161	0.83780	0.80600 0.93135 0.98338	0.82379	0.82699
	_	1.0	0.82173	0.63236	0.62321	0.60011	0.82731	0.64407	0.61200	0.62369	0.65777
		0.5	0.67647	0.42695	0.45464	0.39981	0.75004	0.43584	0.42740	0.41881	0.49930
•		0.0	0.60583	0.33820	0.38399	0.31626	0.71916	0.35080	0.35170	0.33101	0.43499
	ことに	٧3	1.0	3.0	5.0	4.0	0.6	3.0	2.0	3.0	2.0
VADIA	7 2 4 7	۸5	1.0	2.0	3.0	2.0	3.0	1.0	1.0 5.0	3.0	2.0
01.000	とうことう	\ \	1.0	1.0	1.0	1.0	1.0	1.0	0.1	1.0	1.0

2A
2
<u>1</u> 6
Tab

ANALYSIS UF VARIANCE --- UNE-WAY LAYOUT

• .	0	
2	т В	
•	•••	
00-1 00-1 00-2 0	65(1) =	
00.5-	GROUP SIZES GS(I)	
ii } ⊃	GROUP	
AND		
00.	UF2 =12	
- TA	UF2	
00.00 HAV F1.18	0F.1 = 2	

POWER VALUES AT 5% LEVEL OF SIGNIFICANCE.

•	4.0	1.00000	00000.1	0.99999	666660	66666*0	1.00000	666660	666660	66666 0
•	3.5	0.99999	0.99992 1.00000	0.99986	0.99987	0.99992	0.99993	0.99985	16666.0	0.99988
	3.0	0.99987	60666*0	0.99857	93866.0	0.99921	0.99915	0.99845	0.99902	0.99874
AMETER	2.5	0.99866	3 0.89055 0.96692 0.99326	0.99050	0.99084	0.99492	0.99367	0.98984	0.99286	0.99152
ALITY PAR	2.0	0.99103	0.96692	0.95810	0.95823	0.97844	0.96864	0.95555	0.96541	0.96226
VON CENTR	1.5	0.96113	0.89055	0.87438	0.87057	0.93772	0.89514	0.86736	0.88680	0.8860/
2	1.0	0.89031	0.75003	0.73596	0.71994	0.87334	0.75823	0.72177	0.74388	0.15946
	0.5		0.59575							0.63166
	0.0	0.75016	0.52690	0.53756	0.49551	0.78520	0.53824	0.51280	0.51953	0.57735
NCES	٧3	1.0	3.0	5.0	4.0	0.6	3.0	2.0	3.0	5.0
			2.0 3.0							
			1.0							

		4.0	1.00000	986666	06666.0	0.99991	76666.0	96666.0	0.99989	0.99995	0.99992
•		3.5	16666.0	0.99945	96866.0	0.99908	0.99939	0.99950	0.99885	0*666*0	0.88910
		3.0	0.99955 0.99997 1.00000	0.99565	0.99277	0.99336	0.99594	0.99599	0.99218	0.99529	0.99363
	AMETER	2.5	7 0.92233 0.97892 0.99621	0.97674	0.96616	0.96773	0.98181	0.97835	0.96399	0.97522	42696.0
	ALITY PAR	2.0	0.97892	0.91461	0.89100	0.85169	0.94399	0.91942	0.88510	0.91037	0.90145
	NON CENTR	1.5	0.92233	0.77925	0.75046	0.14170	0.87733	0.78878	0.73800	0.77157	0.71268
		1.0	0.80677	0.58485	0.57587	0.54503	0.79942	0.59775	0.55475	0.57557	0.61198
		0.5	89699.0								
		0.0	0.60583	0.33320	0.38399	0.31626	0.71916	0.35080	0.35170	0.33101	0.43499
	NCES	٧3	1.0	3.0	2.0	4.0	0.6	9°0	2.0	3.0	5.0
	VARIANCES	٧2	1.0	2.0	3.0	2.0	3.0	1.0	1.0	3.0	2.0
	GROUP	^ 1	0.1	ი.1	1.0	0.1	1.0	1.0	1.0	1.0	1.0

_	
20	
S	
C	١
	•
u	
0	
7	
π	١

:		m
•	-2.00	6
	U* = 1.00 1.00 -2.00	GROUP SIZES GS(1) =
	1.00	SIZES
WE-WAY LAYOU	∥ * ⊃	GROUP
ANALYSIS UF VARIANCE ONE-WAY LAYOUT	AND	
ANALYSIS UF	WITH VA= 3.00	DF1 = 2
e 2.2A		

POWER VALUES AT 5% LEVEL OF SIGNIFICANCE

d D	VARIL	NCES				NON CENIR	CENIRALITY PARAMETER	AMETER			
	۸5	V2 V3	0.0	5.0	1.0	1.5	2.0	2.5		3.5	4.0
	1.0	1.0	0.75016	0.79650	0.89031	0.96113	0.99103	0.99866	0.99987	6666660	1.00000
9	2.0	3.0	0.6429.0	0.73611		0.94476	0.98626	0.99776	0.99976	0.99998	1.00000
	3°0	5.0	0.63359	0.69554		0.93236	0.98234	56966*0	0.99965	16666 0	1.00000
1.0	2.0	4.0	0.66226	0.72035		0.94038	0.98491	0.99748	0.99973	86666*0	1.00000
0	3.0	0.6	0.62886	0.69219		0.93262	0.98263	0.99704	0.99967	0.99998	1.00000
0	1.0	3.0	0.70151	0.75501	0.86494	0.95036	0.98796 0.99809	0.99809	0.99980	66666.0	0.99999 1.00000
0	1.0	2.0	0.66613	0.72450		0.94172	0.98532	0.99756	0.99973	0.99998	1.00000
	3.0	3.0	0.66108	0.71528		0.93915	0.98444	0.99738	0.99971	866660	1.00000
	2.0	2.0	0.61545	0.67845		0.92524	0.97980	0.99637	0.99957	16666.0	1.00000

POWER VALUES AT 1% LEVEL OF SIGNIFICANCE

							1	!			
GKOOF	VAKIA	いいしに				NON CENTR	ALITY PAR	AMETER			
۲,	۸5	۲ ۲	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
1.0	1.0	1.0	0.60583	0.66968	0.80677	0.92230	0.97892	0.99621	0.99955	16666.0	1.00000
0.1	2.0	3.0	0.51401	0.58572	0.74536	0.88928	0.96670	0.99320	0.99907	0.99992	0.99999
0.1	3.0	2.0	0.45926	0.53425	0.70492	0.86533	0.95678	0.99045	0.99857	98666.0	0.99999
1.0	2.0	0.4	0.49300	0.56644	0.73094	0.88110	0.96339	0.99229	0.99890	0.99990	66666.0
1.0	3.0 9.0	0.6	0.46125	0.53732	0.70932	0.86909	0.95875	0.99110	0.99871	0.99988	0.99999
0.1	1.0	3.0	0.54215	0.61224	0.76601	0.90105	0.97123	0.99435	0.99926	766660	1.00000
1.0	1.0	5.0	0.50013	0.57384	0.73761	0.88514	0.96489	0.99263	0.99895	06666.0	0.99999
1.0	3•0	3.0	0.49079	0.56312	0.72642	0.87754	0.96174	0.99183	0.99882	68666*0	66666.0
1.0	2.0	5.0	0.43929	0.51284	0.68366	0.85017	996560	66 0.85017 0.94966 0.98829 0.99815 0.99980	0.99815	0.99980	66666.0

ANALYSIS OF VARIANCE --- UNE-WAY LAYOUT Table 2.2A

٠													
	m M			4.0	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
1.00	6			3.5	1.00000	0.99999	86666.0	66666.0	86666.0	66666.0	66666*0	0.99999	86666.0
U* = -2.00 1.00 1.00	GROUP SIZES GS(I) =			3.0	0.99992	0.99984	0.99975	0.99981	69666*0	0.99986	0.99980	0.99981	11666.0
U* = -2.	GROUP SIZ	VI F I CANCE	AMETER	2.5	0.99901	0.99832	09166.0	0.99805	0.99718	0.99854	86166.0	0.99808	0.99728
	:	POWER VALUES AT 5% LEVEL OF SIGNIFICANCE	NON CENTRALITY PARAMETER	2.0	0.99267	0.98868	0.98500	0.98730	0.98319	0.98992	90186.0	0.98739	0.98339
AND		AT 52 LEV	NON CENTR	1.5	0.96547	0.95071	0.93853	0.94610	0.93389	0.95527	0.94585	0.94622	0.93338
3.00	DF2 =12	R VALUES		1.0	0.89612	0.86017	0.83354	0.85006	0.82662	0.87125	0.85076	0.84990	0.82264
WITH VA=	90	POWE		0.5	0.19932	0.73963	96869.0	0.72415	0.69288	0.75799	0.72686	0.72335	0.68282
35	DF1 = 2	•		0.0	0.75016	06619.0	0.63359	0.66226	0.62886	0.70151	0.66613	0.66108	0.61545
			VARIANCES	٧3	1.0	3.0	5.0	4.0	0.6	3.0	5.0	3.0	o. v.
			VARI	٧5				2.0				3.0	
			GROUP V	۸۱	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0

ш	ı
ت	
Z	
٧	
ပ	
Η	ļ
u	
7	
3	
S	
OF	
0	
٠.	
VEL	
111	
ш	
<u>ت</u>	
99	
-	
A	
<	
S	
UES	
5	
$\vec{\Box}$	
⋖	
>	
ER	
3	
ô	
۲	
_	

on Uat	VAPIA	טעטע				OTATO MOM	2 2 2 2 4 4 4 4	: L : .			
	1 1 1 1 1					MIN CENT	4111 FAK	AMELIER			
\ \ \	۸5	٧3		0.5	1.0	1.5 2.0 2.	2.0	2.5	3.0	3.5	4.0
1.0	1.0	1.0	0.6058	0.67647	0.82173	0.93465	0.98425	0.99754	0.99975	86666.0	1.00000
1.0	7.0	3.0	0.5140	0.59340	0.76317	0.90529	0.97443	0.99541	946660	96666.0	1.00000
1.0	0.0	5.0	0.4592	0.54115	0.72155	0.88120	0.96508	0.99306	0.99908	0.99992	1.00000
1.0	2.0 4.0	4.0	0.4930	0.57337	0.74727	0.89614 0.97090 0.99453 0.99932 0.99994 1.00000	0.97090	0.99453	0.99932	966660	1.00000
1.0	3.0	0.6	0.4612	0.53845	0.71210	0.87184	0.96024	0.99159	0.99881	0.99989	0.99999
1.0	1.0	3.0	0.5421	0.61886	0.78115	0.91435	0.97748	80966*0	0.99955	16666.0	1.00000
1.0	1.0	5.0	0.5001	0.57860	0.74886	0.89559	0.97019	0.99424	.0.99925	. 0.99994	1.00000
1.0	3.0	3.0	0.4907	0.57178	0.74685	0.39639	0.97117	0.99464	0.99934	0.99995	1.00000
0.1	2.0	2.0	0.4392	0.52155	0.70505	0.87116	0.96102	0.99200	06866*0	0.99990	0.99999

ANALYSIS OF VARIANCE --- THO-WAY LAYOUT

FOR BETWEEN-COLUMNS COMPARISON

1.00 1.00 -2.00	DF1 = 2
# >	
AND	
WITH VA = 0.0	ROW = 5 CCL = 3

POWER VALUES AT 5% LEVEL OF SIGNIFICANCE

•									٠.	
	4.0	0.98852	0.99837	09666.0	0.99950	16566.0	0.99958	0.99995	0.99627	0.99895
	3.5	0.95850	0.99111	0.99708	0.99650	0.99961	0.99692	0.99942	0.98322	0.99389
	3.0						0.98369			
AMETER		_			_					
ALITY PAR	0 1.5 2.0 2.5	0.54052	0.73681	0.82732	0.81323	0.91687	0.82026	0.90285	0.67708	0.78098
NON CENTR	1.5	0.33068	0.51623	0.62351	0.60472	0.75533	0.61292	0.73171	0.45802	0.57030
	1.0	0.16816	0.28404	0.36402	0.34865	0.48095	0.35466	0.45853	0.24755	0.32579
	. 0.5	0.07734	0.11446	0.14315	0.13753	0.19224	0.13997	0.18441	0.10350	0.13022
	0.0	0.05000	0.05376	0.05673	0.05649	0.06557	0.05728	0.06722	0.05368	0.05600
NCES	¥3	1.0	3.0	5.0	4.0	o•6	3.0	2.0	3.0	5.0
VARIA	V2 V3	1.0	5. 0	3.0	2.0	3•0	0.1	1.0	3°0	5.0
							1.0	_ '	_	

Z	VARIANCES	ANCES				NON CENTR	NON CENTRALITY PARAMETER	AMETER			
٧١	٧5	٨3	0.0	0.5		1.5	2.0	2.5	3.0	3.5	0.4
	1.0	1.0	0.01000	0.01744		0.11453	0.23648	0.40781	0.59788	0.76557	0.88418
	2.0	3.0	0.01166	0.05334		0.35838.	0.56778	0.75468	0.88552	0.95718	0.98769
	3.0	2.0	0.01303	0.08500	0.27520	0.51722	0.73541	0.88339	0.95958	0.98928	16266.0
	2.0	4.0	0.01291	0.07717		0.48241	0.70277	0.86178	0.94926	0.98577	0.99709
	3•0	9.0	0.01806	0.13697		0.69933	0.88388	0.96701	0.99327	0.99904	1666600
	1.0	3.0	0.01329	0.07830		0.48602	0.70934	0.86725	0.95261	0.98728	0.99756
	1.0	2.0	0.01928	0.12555		9.66095	0.85773	0.95565	90066.0	0.99846	0.99984
	3.0	3.0	0.01162	0.04395		0.29497	0.48583	0.67541	0.82668	0.92340	0.97291
	5.0	5.0	0.01268	0.07427		0.46207	0.67721	0.83925	0.93483	0.97891 0.99471	0.99471

Table 3.1A

ANALYSIS OF VARIANCE --- TWO-WAY LAYDUT

FOR BETWEEN-COLUMNS COMPARISON

U* = -2.00 1.00 1.00	DF1 = 2 DF2 = 8
AND	
WITH VA = 0.0	כפר = 3
IM	ROW = 5

POWER VALUES AT 5% LEVEL OF SIGNIFICANCE

•	4.0	0.98852	0.99398	0.99877	0.99476	0.99923	0.96866	0.94547	0.99742	89666*0
	3.5	0.95850	991664	0.99342	0.97953	0.99561	0.91703	0.87869	0.98801	0.99773
	3.0	0.88309	0.92854	0.97311	0.93653	0.98074	0.81777	0.76945	0.95692	0.98790
AMETER	2.5	0.74086	0.82617	0.91499	0.84260	0.93446	9 0.66528	0.62012	0.87528	0.95181
ALITY PAR	2.0	0.54052	0.65896	0.78966	0.68378	0.82544	0.47919	0.45048	0.73243	0.85504
NON CENTRALITY PARAMETER	1.5	0.33068	0.44889	0.58632	0.47573	0.63225	0.29943	0.29084	0.52175	0.66599
		0.16816	0.24666	0.34146	0.26614	0.38026	0.16240	0.16720	0.29413	0.40201
	0.5	0.07734	0.10436	0.13680	0.11251	0.15623	0.08264	0.09205	0.11909	0.15713
	0.0	0.0500	0.05376	0.05673	0.05649	0.06557	0.05728	0.06722	0.05368	0.05600
NCES	۲3	1.0	o m	5.0	4.0	0.6	3.0	5.0	3.0	5.0
VARIANCES	۸5	1.0	2.0	3.0	2.0	3.0	1.0	1.0	3.0	2.0
COLUMN	۸ ۲	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0

ULUMN	VARIL	ANCES				NON CENTR	ALITY PAR	AMETER			
۲,	۸5	٨3	0.0	0.5	0.1	1.5	2.0	2.5	0.0	3.5	4.0
1.0	1.0	1.0	0.01000	0.01744	0.04660	0.11458	0.23648	0.40782	0.59788	0.76557	3.88
1.0	.5.0	3.0	0.01166	0.05269	0.16842	0.33763	0.52829	0.70496	0.84076	0.92694	0.97181
1.0	3.0	2.0	0.01303	0.68900	0.28475	0.52464	0.73472	0.87697	0.95311	0.98547	0.99637
1 · O	2.0	4.0	0.01291	0.06152	0.19538	0.38236	0.58042	0.75136	0.87335	0.94525	0.98014
1.0	3.0	0.6	0.01806	0.10820	0.33248	0.58925	0.79309	0.91516	0.97137	0.99251	0.99841
1.0	1.0	3.0	0.01329	0.02671	0.06928	0.14643	0.26167	0.40927	0.57080	0.72155	0.84252
1.0	1.0	1.0 5.0	0.01928	0.03639	0.08781	0.17313	03639 0.08781 0.17313 0.28939 0.42829	0.42829	0.57551	0.71435 (0.83130
1.0	3.0	3.0	0.01162	0.06971	0.22619	0.43539	0.64294	0.80720	0.91248	0.96704	0.98982
1.0	5.0	5.0	0.01268	0.11207	0.35488	0.62266	0.82334	0.93432	0.98077	0.99561	0.99922

ANALYSIS OF VARIANCE --- TWO-WAY LAYOUT

BETWEEN-COLUMNS COMPARISON

FUR EQUAL ERKUR VARIANCES AND WITHIN ROW SERIAL CORRELATION

	3	WITH VA =	0.0	Κ	AND	# ^	1.00	1.00 1.00 -2.00	0
	R()W = 5	ວ	. e = 100				DF1 = 2	. 2	DF2 = 8
	,							1	
		PUME	POWER VALUES AT 5% LEVEL OF SIGNIFICANCE	AT 5% LEV	EL OF SIG	NIFICANCE			
SERIAL									
CCRRELATION				NON CENTR	NON CENTRALITY PARAMETER	AMETER			•
RHO	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
-0.4	0.05199	41910.0	0.15841	0.30552	0.50142	0.69919	0.85121	0.94058	0.98100
-0.2	0.05062	0.07604	0.16077	0.31427	0.51712	0.71751	0.86624	0.94957	0.98500
0.0	0.05000	0.07734	0.16816	0.33068	0.54052	0.14086	0.98309	0.95850	0.98852
0.5	0.05106	0.08113	0.17932	0.35031	0.56409	0.76110	0.89572	0.96429	0.99049
5. 0	0.05600	0.09028	0.19733	0.37365	0.58425	0.77259	0.89965	0.96473	0.99033
									•.
	•	POWE	POWER VALUES AT 1% LEVEL OF	AT 1% LEV	EL OF SIG	SIGNIFICANCE		**************************************	
SER I AL	-								
URRELATION				NON CENTR	NON CENTRALITY PARAMETER	AMETER			
KHC	0.0	0.5	1.0	1.5	2.0	2.5	3.0		4.0
-0.4	0.01087	0.01916	0.04906	0.11333	0.22417	0.37992	0.55798		0.85153
-0.2	0.01027	0.01743	0.04493	0.10812	0.22166	0.38380	0.56871	0.73819	0.86410
0.0	0.01000	0.01744	0.04666	0.11458	0.23648	0.40781	0.59788	0.76557	0.88418
0.2	0.01046	0.01956	0.05408	0.13130	0.26416	0.44327	0.63358	0.79434	0.90380
0.4	0.01268	0.02707	9.07604	0.17178	0.31876	0.50040	0.68214	0.83075	0.92907

Table 3.1C

ANALYSIS LF VARIANCE --- ThO-MAY LAYOUT

BETWEEN-ROWS COMPARISON

FOR EQUAL ERROR VARIANCES AND WITHIN ROW SERIAL CORRELATION

	•					•			
	.₹	WITH VA =	0.0	AND	# ^	1.00	1.00.1	1.00 1.00	1.00 -4.00
	ROW = 5	ככר	ا ا ا				DF1 =	4	DF2 = 8
		POWE	R VALUES	POWER VALUES AT 5% LEVEL OF		SIGNIFICANCE			:
SERIAL CCRREIATION	21			ALL IV ALEED. NOW		DABAMETER			
RHG	0.0	0.5	1.0	1.5		2.5	3.0	3.5	0-4
5.0 -	0.00311	0.01668	0.05744	0.12545	0.22017	0.33862	0.47298	0.61036	0.73629
-0.2	0.01636	0.02470	0.05345	0.11225	0.21088	0.34991	0.51401	0.67594	0.80982
0.0	0.05000	0.06545	0.11775	0.21852	0.36952	0.55018	0.72298	0.85529	0.93663
0.2	0.11557	0.14604	0.23977	0.39330	0.58045	0.75613	0.88353	0.9549B	0.98605
9. 0	0.22401	0.27301	0.40846	0.59259	0.76941	0.89538	0.96259	0.98957	0.99774
									•
		POWE	R VALUES	POWER VALUES AT 1% LEVEL OF		SIGNIFICANCE			
SERIAL									
COFRELATION				NON CENTR	CENIRALITY PAR	PARAMETER			•
RHG	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
4.0-	0.00041	0.01294	0.04978	0.10893	0.18739	0.28146	0.38667	0.49760	0.60953
-0.2	0.00264	0.00617	0.01783	0.04103	0.08154	0.14612	0.23912	0.35865	0.49676
0.0	0.010.0	0.01394	0.02880	0.06333	0.12930	0.23499	0.37710	0.53792	0.69239
0.2	0.02929	0.04145	0.04269	0.16385	0.29149	0.45612	0.63017	0.78098	0.88835
5°D	0.07433	0.10501	0.19784	0.34788	0.53208	0.71105	0.84933	0.93446	0.97636

	⋖
	N
	•
	M
	œ
	$\overline{}$
	Д
	Ø
٠	_

ANALYSIS UF VARIANCE --- TWO-WAY LAYOUT

FOR BETWEEN-COLUMNS COMPARISON

-2.00		DF2. = 8
1.00		DF1 = 2
U* = 1.00 1.00 -2.00		DFJ
# *		
AND		
0.50		
_ VA =		כנר
HILH		ROM = 5

PUNER VALUES AT 5% LEVEL OF SIGNIFICANCE

SH UNI	.,				NON CENTS	0.0 271	AMATOR			
					X C C C C C C C C C C C C C C C C C C C	NON CENTRALITY PARAMETER	שתוחשש			
၁•၀ ၁•၀	၁• ၁•		0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.
0.33089	0.33089	4.0	0693	0.59231	0.7891	0.92065	0.97884	80966.0	0.99950	96666.0
0.20328	0.20328	0.2	7568	0.46408	0.6886	0.86318	0.95581	0.98970	0.99829	
0.15575	0.15575	0.22	148	0.41969	0.6531	0.84106	0.94569	0.98640	0.99753	
2.0 4.0 0.18450 0.26	0.18450	0.26	200	0.45518	0.6853	0.86247	8 0.86247 0.95569	99686.0	0.99827	
	0.13254	0.22	2.36	0.44514	0.6935	0.87260	0.96105	0.99138	0.99863	0.99985
0.23507	0.23507	0.31	414	0.51377	0.7350.	0.89265	0.96846	0.99339	0.99902	
0.19440	0.19440	0.28	9808	0.49424	0.72720	0.89046	0.96798	0.99330	10666.0	
0.18196	0.18196	0.24	148	0.42371	0.6462	0.83275	0.94087	0.98467	0.99712	
0.13639	0.13639	0.19	788	0.36737	0.5916	0.79242	0.91933	0.97646	0.99490	

COLUMN	VARI	ANCES				NON CENTR	CENTRALITY PARAMETER	AMETER	+ *,		
٧١	٧2.	٨3	0.0	0.5	1.	1.5	2.0	2.5	3.0	3.5	0.4
0.1	1.0	1.0	0.14598	0.20132	0.3585	0.57608	0.77953	0.91285	0.97442	0.99450	0.99914
1.0	2.0	3•0	0.07065	0.11384	0.2447	0.44143	0.66768	0.84117	0.94097	0.98314	0.99632
1.0	3.0	5.0	0.04914	0.09389	0.2273	0.43078	0.65162	0.82828	0.93319	0.97971	0.9952
1.0	2.0	4.0	0.06233	0.10972	0.2500	0.46013	0.68110	0.85020	0.94513	0.98450	0.99664
0.1	3•0	0.6	0.04243	0.11072	0.2954	0.53620	0.75386	0.89726	0.96687	0.99188	0.99852
1.0	1.0	3.0	0.08894	0.14297	0.2983	0.51889	0.73468	0.88583	0.96236	0.99059	0.99822
0.1	1.0	1.0 5.0	0.07148	0.13491	0.3097	0.54299	0.75729	2 0.54299 0.75729 0.89928	8 0.96789 0.99224 0.99859	0.99224	0.99859
0.1	3.0	3.0	0.06013	0.09554	0.2069	0.39076	0.60715	0.79456	0.91480	0.97233	0.99301
0.1	2.0	5.0	0.04067	0.07448	0.1799	0.35437	0.56516	0.75729	0.89009	0.96012	0.98851

Table 3.2A

ANALYSIS CF VARIANCE --- TWO-WAY LAYOUT

FOR BETWEEN-COLUMNS COMPARISON

-2.00 1.00 1.00 0F1 = 2# * AND 0.50 CCL = 3 WITH VA = ROW = 5

POWER VALUES AT 5% LEVEL OF SIGNIFICANCE

	4.0	966660								0.99880
	3.5	0.99950	99966.0	0.99330	0.99501	0.96788	0.99739	0.99271	0.99571	0.99325
	3.0	80966.0	0.98311	0.97171	0.97734	0.95711	0.98623	0.97040	0.97952	0.97153
AMETER	2.5	0.97884	0.93743	71606.0	0.92314	0.88126	0.94692	0.90874	0.92787	0.90924
ALITY PARA	2.0	0.92065	0.82862	0.78040	0.80354	0.74006	0.84895	0.78334	0.81051	0.77882
VON CENTRA	1.5	0.78916	7 0.64612 0.82862 0.93743	0.58468	0.61472	0.54265	0.67726	0.59690	0.62130	0.58026
.	1.0	0.59231	0.43247	0.37206	0.40344	0.33759	0.46807	0.39653	09904.0	0.36214
			0.26513							
	0.0	0.33389	0.20328	0.15575	0.18450	0.13254	0.23507	0-19440	0.18196	0.13639
NCES	٨3	1.0	3.0	2.0	4.0	0.6	0°°	5.0	3.0	2.0
VARIA	۸5	0.1	2.0	3.0	2.0	3.0	1.0	1.0	3.0	5.0
COLUMN VARIANCES	۸1	0.1	0.1	1.0	1.0	1.0	0.1	1.0	0.1	0.1

LUMN	INCES			•	NGN CENTR	ALITY PAR	AMETER			
۸1	٧3		0.5	1.0	1.5	2.0	2.5	3.0	3,5	4.0
0.	1.0		0.20132	0.35858	0.57608	0.77953	0.91285	0.97442	0.99450	0.99914
0.	3.0		0.10557	0.21420	0.39185	0.60179	0.78663	0.90851	0.96901	0.99176
.	5.0		0.08463	0.19163	0.36208	0.56436	0.74983	0.88165	0.95444	0.98581
0.	4.0		0.09542	0.19814	0.36719	0.57139	0.75839	0.88898	0.95888	0.98779
0.	0.6		0.08147	0.19444	0.36493	0.55981	0.73737	0.86730	0.94381	0.98020
ာ	3.0		0.12607	0.24039	0.42332	0.63254	0.80948	0.92118	0.97424	0.99337
0	1.0 5.0		0.10084	0.19287	0.34720	0.53937	0.72378	0.86168	0.94279	0.98063
0	3.0		0.09456	0.20102	0.37495	0.58275	0.76994	0.89759	0.96368	0.98981
٠.	5.0	0.04067	0.08256	0.20421	0.38746	0.59324	0.38746 0.59324 0.77312	0.89586	0.96118	0.98833

ANALYSIS OF VARIANCE --- THO-WAY LAYOUT

FOR BETWEEN-COLUMNS COMPARISON

-2.00	DF2 = 8
U* = 1.00 1.00 -2.00	= 1
1.00	DF1 =
" *	
AND	
1.00 /	col = 3.
VA ==	50
WITH VA =	<u>.</u>

POWER VALUES AT 5% LEVEL OF SIGNIFICANCE

	4.0	1.00000	96666.0	0.6666.0	0.99995	0.99989	0.99998	966660	0.99993	0.99978
	3.5	0.99992				0.99898				
******						0.99317				
AMETER	.5	0.99321	0.98095	0.96961	0.97793	0.96765	0.98623	0.98109	0.97451	0.95528
ALITY PAR	2.0	09996.0	0.92650	70968.0	0.91787	80068-0	0.94245	0.92665	0.90920	0.86359
NON CENTRALITY PARAMETER	1.5	0.88846	0.79923	0.74251	0.78193	0.72783	0.83153	0.79772	0.76799	0.69238
_						0.49748				
٠	0.5	0.57923	0.41282	0.33118	0.38237	0.28748	0.45984	0.39512	0.37588	0.28916
						0.20262				
NCES	٧3	1.0	3.0	5.0	4.0	0.6	3.0	5.0	3.0	2.0
VARIANCES	۸5	1.0	2.0	3.0	2.0	3.0	1.0	0.1	3.0	5.0
COLUMN	٧٦	1.0	0.1	1.0	1.0	0•1	1.0	0·1	1.0	1.0

											٠,
		4.0	0.99993	0.99931	0.99825	0.99908	0.99847	986660	.0.99939	69866*0	0.99592
		3.5	0.99923	0.99548	0.99073	0.99439	0.99174	0.99740	0.99594	0.99249	0.98203
		3.0	0.99444	0.97829	0.96280	0.97458	0.96639	0.98598	0.98035	7 0.96805 0.99249 0.99869	0.93886
1	METER	2.5	0.97235	0.92334	0.88695	0.91430	0.89596	0.94497	0.92976	0.89847	0.83881
	NON CENTRALITY PARAMETER	2.0	0.90325	0.79875	0.73708	0.78274	0.75214	0.84134	0.81194	2 0.54736 0.75605 0.89847	0.66702
	NON CENTRA	1.5	0.75742	0.59953	0.52330	0.57836	0.53781	0.65811	0.61622	0.54736	0.45025
•		1.0	0.55146	0.37698	0.30522	0.35453	0.30736	0.43398	0.38705	0.33222	0.25099
		0.0	0.36609	0.20979	0.15209	0.18862	0.15651	0.25279	0.20673	0.17965	0.12204
	-	0.0	0.29198	J. 14956	0.09395	0.12924	0.07494	0.18457	0.13965	0.12659	0.07938
	AMCES	٧3	1.0	3.0	5.0	4.0	0.6	3.0	5.0	3.0 3.0	5°C
	ことのとい	۲,	ი•1	1.0	1.0	0.1	1.0	0.1	1.0	1.0	1.0

Table 3.2A

ANALYSIS OF VARIANCE --- TWO-WAY LAYOUT

FOR BETWEEN-CULUMNS COMPARISON

-2.00 1.00 AND WITH VA = 1.00

C = 300

POWER VALUES AT 5% LEVEL OF SIGNIFICANCE

	7.0	1.00000	56666 0	0.99975	0.99988	0.99914	96666-0	0.99985	066660	0.99961
	3.5			0.99806						
	3.0	0.99908	0.99532	0.98907	0.99319	0.97747	0.99668	0.99221	0.99359	0.98557
AMETER										
ALITY PAR	2.0	0.96660	0.91494	9425 0.70252 0.86632 0.95531	0.89659	0.81065	0.93106	0.89191	0.89851	0.84422
NON CENTRA	1.5	0.88846	0.78143	0.70252	0.75075	0.62892	0.81280	0.14672	0.75264	0.66894
	1.0	0.74231	0.53695	0.49425	0.55033	0.42228	0.63010	0.55095	0.55081	0.45594
			0.40693	0.32003						
	0.0	0.50579	0.33370	0.25300						
NCES	٧3	0.1	3°0	2•ე	4.0	9.0	3.0	5.0	3.0	2.0
VARIA	. 7.5	1.0	2.0	3.0	2.0	3.0	1.0	1.0	3•0	2.0
COLUMN VARIANCES				1.0						1.0
						•				

CULUMN VARIANCES	VARI	ANCES				NON CENTR	ALITY PAR	AMETER		•	
۲,	۸5	٧3	0.0	0.5	0.1	1.5	2.0		3.0	3.5	0.4
1.0	0.1	1.0	96162.0	0.36609	0.55146	0.75742	0.90325		0.99444	0.99923	0.99993
٥٠١	2.0	3.0	0.14956	0.20288	0.35462	0.56614	0.76769		0.97002	0.99300	0.99878
1.0	3.0	5.0	66860.0	0.14183	0.26955	0.46376	0.67339		0.93810	0.98130	0.99561
0.7	5. 0	4.0	0.12924	0.17767	0.31847	0.52271	0.72864		0.95797	0.98888	92266-0
0.1	3.0	0.6	0.07494	0-11244	0.22462	0.39971	0.60074		0.89805	0.96192	0.98849
0.1	1.0	3.0	0.18457	0.24330	0.40493	0.61787	0.80718	_	0.97852	0.99538	0.99926
1.0	1.0	2.0	0.13965	0.18670 0.32292	0.32292	2 0.52020 0.72075 0.87010	0.72075	_	0.95257	7 0.98658 0.99709	0.99709
1.0	3.0	3.0	0.12659	0.17543	0.31780	0.52430	0.73190		0.96005	0.98977	0.99803
1.0	5.0	5.0	0.07938	0.12059	0.24368	0.43327	0.64351	_	0.92543	0.97597	0 00303

ANALYSIS OF VARIANCE --- TWO-WAY LAYOUT

FOR BETWEEN-CULUMNS COMPARISON

DF2 = 8
ā
DF1 = 2
0F1
ιι Θ
COL = 3
il N

POWER VALUES AT 5% LEVEL OF SIGNIFICANCE

	:										
COLOMN	VAKI	ANCES				NON CENTR	ALITY PAR	AMETER			
V1 V2 V3	۸5	٧3		6.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
1.0	0.1	1.0	0.7	0.80872	0.89	16596.0	0.99214	0.95887	06666.0	66666.0	1.00000
1.0	2.0	3.0	0.6	0.67711	0.81	0.92727	0.58079	0.99663	0.99961	16666.0	1.00000
1.0	3.0	5.0	0.5	0.58330	0.74	0.89145	0.96780	0.99350	0.99912	0.99992	1.00000
1.0	2.0	4.0	0.5	0.64311	0.79	0.91537	69916.0	0.99569	0.99947	96666.0	1.00000
2.1	3.0	0.6	0.4	0.50026	0.68	0.85415	0.95253	0.98926	0.99833	0.99982	.0.99999
1.0	1.0	3.0	0.65721	0.71708	0.84	0.94012	0.98492	0.99750	0.99973	0.99998	1.00000
1.0	1.0	5.0	0.5	0.64779	0.79	0.91706	0.97723	0.99580	0.99949	96666*0	1.00000
1.0	3.0	3.0	0.5	0.64166	0.78	0.91417	0.97620	0.99557	0.99945	96666 0	1.00000
.1.0	5.0	5.0	0.4	0.53257	0.10	0.86625	520 0.86625 0.95730 0.99059	0.99059	0.99859	98666.0	0.99999

COLUMN	VARI	ANCES				NON CENTRALITY PARAMETER	ALITY PAR	AMETER			
\ \ \	7 .	۸3	0.0		1.0	1.5	2.0	2.5	3.0	3.5	4.0
1.0	1.0	1.0	0.60228	0.66803	0.80785	0.92380	19616.0	0.99637	0.99958	166660	0.99997 1.00000
1.0	2.0	3.0	0.40660		0.66452	0.84049	0.94598	0.98725	0.99793		86666.0 77666.0
1.0	3.0	5.0	0.29794		0.56233	0.76684	0.90831	0.97403	0.99478	0.99926	0.99993
٠٠١	2.0	4.0	0.36502		0.62824	0.81579	0.93409	0.98334	10166.0	496660	16666.0
1.0	3.0	0.6	0.22089		0.48217	0.70173	0.86942	0.95762	76686.0	0.99829	0.99979
0.1	1.0	3.0	0.46155		09601.0	0.86901	0.95848	0.99092	0.99865	0.99986	0.99999
1.0	1.0	5.0	0.37376		0.63631	. 96028*0	0.93626	0.98393	0.99717	996660	16566.0
1.0	3.0	3.0	0.36281	0.43990	0.62379	0.81200	0.93211	0.98270	76966.0	29666*0	16666.0
1.0	5.0	5.0 5.0	0.24832		0.50278	0.71631 0.87801	0.87801	0.96150	0.99123	0.99857	0.99983

Table 3.2A

ANALYSIS OF VARIANCE --- TWO-WAY LAYDUT

FOR BETWEEN-COLUMNS COMPARISON

DF.2 -2.00 1.00 1.00 DF1 = 2 # * ONA . WITH VA = 3.00 . COL = 3

KO* = 5

POWER VALUES AT 5% LEVEL OF SIGNIFICANCE

:					. :					
	4.0	1.00000	1.00000	666660	1.00000	16666.0	1.00000	1.00000	1.00000	56666.0
	3.5	66666.0	16666.0	0.99990	0.99995	19666.0	86666 0	96666.0	0.99995	0.99982
	3.0		0.99957							
AMETER	2.5	0.99887	0.99640	0.99247	0.99520	0.98486	0.99732	0.99507	0.99528	0.98929
ALITY PAR	2.0	0.99214	0.97992	0.96448	0.97494	0.94041	0.98424	0.97467	0.97515	0.95347
NON CENTRA	0.5 1.0 1.5 2.0 2.5	16496.0	0.92536	0.88501	0.91171	0.83341	0.93854	0.91171	.0.91197	0.85935
	1.0	0.89854	0.31230	0.73988	0.78676	0.66266	0.83951	0.78827	0.18668	0.69830
٠	0.5	0.80872	0.67611	0.58044	0.64131	0.49239	0.71621	0.64519	0.64058	0.52978
			0.61209							
NCES	٨3	1.0	3.0	2.0	4.0	0.6	3.0	ກ. ວ	3.0	5.0
VARIA	۸5	1.0	2.0	3:0	2.0	3.0	1.0	1.0	3.0	2.0
 COLUMN	V1 V2 V3	1.0	1.0	1.0	1.0	0.1	ი•1	1.0	1.0	1. 0

Z		ANCES				NUN CENTR	NUN CENTRALITY PARAMETER	AMETER			
17	٧2	V2 V3		0.5		1.5	2.0	2.5	3.0	3.5	7.0
	1.0	7.0		0.668.03	0.30785	0.92380	0.97961	0.99637	0.99958	.26666.0	1.00000
	2.0	3.0		0.48212	0.65922	0.83498	0.94276	0.98609	0.99767	0.99973	86666.0
	3.0	2.0		0.36930	0.54874	0.75067	0.89705	0.96902	0.99332	0.99898	98666
	2.0	4.0		0.43959	10619.0	0.80570	0.92778	0.98088	0.99645	0.99954	96666.0
	ე•6	9.0		0.28273	0.44810	0.65643	0.83273	0.93793	0.98275	0.99645	0.99947
	1.0	3.0		0.53573	0.70478	0.86426	0.95587	0.99005	0.99846	0.99984	566660
	0.1	S.U		0.44692	0.62285	0.80622	0.92697	0.98025	0.99623	0.99950	0.9999
	3°0	3.0		0.43782	0.61833	0.80630	0.92836	0.98123	0.99657	15666.0	0.99996
	5.0	5.0	0.24832	0.31557	0.49085	0.70094	0.86618	0.95560	0.98926	0.99813 0.99976	0.99976

Tab]	1e 4A			ANAL	ANALYSIS GF C	COVARIANCE	1	ONE-WAY LAYOUT		Case I	•
				W (1) W (1) = VZ(2) = VZ(3) =	WITH U# = 2.500 = 2.500 = 2.500	1.00 1.1)2 ((1,1) 2(2,1) 2(3,1)	.00 -2.00 = 3.00 = 3.00	4.00 4.00 4.00	5 00 5 00 5 00	6.00 7 6.00 7 7 00.0	7.00 7.00 7.00
			0F1 = 2	JU	:2 = 11			GROUP SI	SIZES 65(1)	- A	5
				POWER	R VALUES	AT 5% LEVEL	P.	SIGNIFICANCE			
<u>ن</u>	>	ANC		0.5	1.0	NON	CENTRALITY PAR	PARAMETER •0 2.5	3.0	3. • Jī	. 4•0
1.00	1.0	3.0	0.05007	0.08020	0.18141		0.58829	0.78977	0.91781	0.97591	0.99477
0:	0.0	5.0	60.	0.18376	0.40414		, 1	0.95322	0.98941	0.99832	9666
20	2 Y C	0.6 0.0	29	0.14869	0.46626	0 0	ω v	0.94424	0.98662	0.99772	7666
•	0.1	3.0	90.	0.14627	0.36858	0		0.94692	0.98749	0.99790	1666.
20		יט גי	80.	0.20221	0.47737	0.74	2, 1	0.97837	0.99631	156660	.9999
2.0		n.c	.16	0.23694	0.42089		- 8	0.94121	0.98500	0.99730	99666*0
		•									
		•									
		•		POWER	VALUES	AT 1% LEVEL	0 F	SIGNIFICANCE			
	P VA	ANCE			. •	NUN CENTR	ENTRALITY PAR	PARAMETER			
1.00			00.	0.01858	0.05370	1.5	2.0	2.5	3.0	3.5	4.0
0	2.00	3.00	0.01309	0.05669	0.18482	ורוו	0.60165	0.79071	9127		31
, 0	? 0	20		0.08601	0.31265	ຽ	0.76574	0.90412	0.97018	•	9988
?		2	.24	0.33789	0.56041	~	0.92089	0.97951	0.99630		9666.
.	0,0	<u>.</u> د	.01	0.08224	0.26515	un v	0.73271	0.88625	0.96306	•	.9984
	? 0	20	50.	0.04947	0.15200	0.31830	0.86893	0.71964	0.99171	0.99878	.9998 .9847
0	0	0	• 12	0.17924	0.33395	ועון	0.73749	0.88001	0.95740	• •	.9977
	•						٠				

	7.00 7.00 7.00	5		4	0.99647	9966	9997	9636	0.99835					0.98061	0.99733		0.89375		. •
Case I	6.00 7. 6.00 7.	اا د	:	W .	0.98326	0.99530	0.99782	0.90845	0.99111	***			3.5	0.94253	0.98817	0.99523	0.78643	0.97312	69966*0
L	5.00 5.00 5.00	SIZES GS(I)	•	3.0	0.94214	0.94758	0.98877	0.80836	0.99128	•			3.0	0.86180	0.95907	0.98062	0.63489	0.92240	0.98445
GNE-WAY LAYOUT	4.00 4.00 4.00	GROUP SI	SIGNIFICANCE	4ETER 2.5	0.84624) 85948) 85948	0.95730 0.70743	0.66138).96216).96216		SIGNIFICANCE	IETER	2.5	72629	0.88766	.93852	.45914	. 81929	94448
GNE-W	.00 1.00 = 3.00 = 3.00	J	UF	ITY PARI	86619.0	.70282	.81189	448674	.87964	•	OF	ILITY PARAM		.54445	0.75119 0 0.59507 0	.84540	.29219	.65406	0.84674 0
COVARIANCE	-2.00 1, 2(1, J) 2(2, J) 2(2, J) 2(3, J)		AT 5% LEVEL	NON CENTRAL 1.5	0.46446	0.49222	0.32195	0.31885	0.71337		AT 1% LEVEL	NON CENTRA	1.5	0.34686	0.54/81	0.68771	0.16125	0.44355	0.66793
ANALYSIS UF (MITH U* = 2.500 = 2.500 = 2.500	2 =11	R VALUES		0.25500	1 60 0	` ;	7.7	7		R VALUES		1.0	0.17266	0.20386	0.48785	0.07532	0.23171	0.42848
ANAL	WI V2(1) = V2(2) = V2(3) =	01.	PONER	0.08020	0.10809	0.12176	0.08732	0.10964	0.25775		POWER		0.01858	0.05467	0.06832	0.31290	0.05138	0.07396	71117.0
		0F1 = 2		0.0	• •	90.	90.	00	•16				.00	10.	0.01995	•24	• 10 • • 033	10.	.122
			•	ANCES V3 1.00	3.00	• •	•	• •	•	•		ANCES	1.00	3.00	• •	•		3.00	•
1e 4A		÷.		VARI V2 1.00	3.00	00	0	20	0			VARI		0.0		0,0		0.0	•
Tab				GROUP V1 1.00	1.00	30	0		0			GROUP		0.3	C	ဂ္ င		0,0	

	9.00 7.00 7.00	5 5	-	•	-	_		_	_		-	0.4440				٠.					٠	_		U	0.98371	
Case II	7 00° 7 6 00° 7 7 00° 9 7	11		بى ق	0.97591	7686600	0.99758	0.99935	0.99779	0.99955	0.98873	0.37161		•	-			Ū	Ŭ	_	Ŭ	Ŭ	_	_	0.94590	
11	5.00	SIZES GS(1			0.91781	98418		•	.9870	0.99619	0.95503						3.0	0.69779	0.90951	0.96927	0.95927	0.99632	0.96204	0.99152	0.86030	
WAY LAYOUT	3.00 0 3.00 0 4.00	GROUP SI	SIGNIFICANCE	AM.	0.78977	0.95189	0.94229	0.98903	0.94548	0.97784	0.86678	1			SIGNIFICANCE	AMFTER		0.49291	0.78545	0.90226	0.87893	0.97976	0.88416	603	0.71223	
ONE-WAY	.00 -2.00 = 1.00 = 3.00 = 3.00		O.F	ALITY PAK, 2.0	0.58829	0.84974	0.82819	0.94853	0,83437	0.91059	0.76090				0F	IIY PAR	2.0	0.28970	0.59558	0.76336	0.72327	0.92224	0.72977	0.86772	0.51550	
COVARIANCE	1.00 1 2(1,1) 2(2,1) 2(3,1)		AT 5% LEVEL	NUN CENTRAL	36	١w	S	·······································	v		0.47640	• • •			AT 1% LEVEL	NON CENTRAL		•	•	•	•	•		0.67565	•	
ANALYSIS UF C	IN U* = 10.0002.500	.2 =11.	R VALUES	1.0	0.18141	0.40224	0.36133	0.63034	0.36489	0.47504	0.42524				PUWER VALUES	•	1.0	.0.05370	0.18136	0.31383	0.26327	0.57123	0.26321	0.39978	0.14911	
ANAL	WZ(1) = VZ(2) = VZ(3) =	90	POWER	0.5	0.03020	0.18452	0.14558	0.40762	0.14574	0.20101	0.24553				PUWE		0.5	0.01858	0.05537	0.12709	0.08540	0.35543	0.08129	0.14168	0.04843	
•		0F1 = 2			0.05007	(A)	S 1	\sim $^{\circ}$	Λ.	Y 1.	۱ ~							00.	10.	30.	• 02	97.		<u> </u>	0.01515	
				VRI ANCES	3.00	5.00	4.00	9.00	0 0	000	5.00		•			ANCES	۸3	1.00	3.00	2.00	4.00	00.0	000	00.0	000	
4 4 A	•			> _	2.00	•	•	., .	• `	•						VARI	٧2	٠, د	<u>.</u> د	? (<u>ء</u> د	ף ר	•	? <		
Table				GROUP V1	1.00	0	0,0	•	? ?	9 0	9					GROUP	1 ×	٠	•	•	•	•	•	•	00.1	4

ANALYSIS OF COVARIANCE ONE-WAY WITH U* = -2.00 1.00 1.00	ANALYSIS OF COVARIANCE ONE-WAY WITH U* = -2.00 1.00 1.00	ONE-WAY		00T	r C	Case	н ?
~ 60	(1) = 10.000 $Z(1, J)(2) = 2.500$ $Z(2, J)(3) = 2.500$ $Z(3, J)$		3.00 3.00 3.00	3.00 4.00 4.00	5.00 5.00 5.00	7.00 9. 6.00 7. 6.00 7.	9.00 7.00 7.00
DF1 = 2 DF2 = 11	F2 =1			GROUP SIZE	ES 65(1)	ii 2	5 . 5
POWER VALUES AT 5% LEVEL	VALUES AT 5%		OF SIGN	SIGNIFICANCE			- 1
.0 0.5 1.0 1.5	NUN CENTRALI	4AL 1	PAR	AMETER 2.5		<u>ر</u> ب	·
.00 0.05007 0.08020 0.18141 0.36219 0.	08020 0.18141 0.36219 0.	Ö	58859	1.18977	0.91781	16526.0	12466.0
.00 0.05342 0.10481 0.25026 0.45838 0.	10481 0.25026 0.45838 0.	o	67392	•	•	0.98233	•
.00 0.09920 0.17646 0.37424 0.61099 0.	17646 0.37424' 0.61099 0.	0 1	80654	•	٠	0.99510	•
0.30844 0.37731 0.54714 0.48694 0	11903 0.27427 0.43694 0 37731 0.54714 0.73438 0	0 0	69756	သောင	0.94550	0.98405	0.99643
.00 0.05839 0.08493 0.16942 0.31610 0	08493 0.16942 0.31610 0	0		•	•	0.99782	•
.00 0.08333 0.10869 0.18602 0.31434 0	10869 0.18602 0.31434 0	0	48026		• •	0.90430	
.00 0.05595 0.12177 0.29865 0.52957	12177 0.29865 0.52957		.74268	•	•	0.99061	
•00 0•1/1/20 0•26654 0•482/9 0•/1513 0	20054 0.48279 0.71513 0	0	.87974	0.96193	91166.0	0.99853	0.99983
		. •					
POWER VALUES AT 1% LEVEL	ER VALUES AT 1% LEVEL	* LEVEL	OF SIGN	SIGNIFICANCE			
VON	O NON	CENTRAL	ITY PARAM	1ETER			
V3 0.0 0.5 1.0 1.5	0.5 1.0 1.5	1.5	7		3.0	3.5	4.0
•••• ••••••• ••••••• •••••• ••••• ••••• ••••	01858 0.05370 0.13830 0	3830 0	.28971	•	0.69779	0.85354	0.94325
. 0.04465 0 15080 0.17090 0.34300 0	12950 0.1772 0.54590 0	O		•	0.85838	0.94045	0.97964
0 00000 0 77770 0 77700 0 000000 0 000000	15473 0.51112 0.54860 U	o :	2012	•	0.95847	0.98789	0.99724
.00 0.26307 0.43339 0.50286 0.59143 0	06861 0.20286 0.39143 0	o :	9204	•	0.88553	0.95389	0.98485
.00 0.01440 0.03454 0.03384 0.14838	00100 0.00100 0.09000 00865 0.07200 0.16030		16840.	•	0.98091	0.99527	016660
.00 0.03507 0.05252 0.10536 0.10536	02049 0.07364 0.19838 08282 0.10838 0.1081E	300	21697	• .	0.62753	0.77993	0.88921
0-23030 0-44119	07328 0.23030 0.4413	071	.51080	407	0.61753	0.75655	0.86554
•00. 0-13556 0-22298 0-43659 0-67211	22298 0.43659 0.67211	•	944819		0.98444	91716.0	0.99966
		_) }	۰

		z		0	77	75	96	97	17	• ;		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
H	7.00 7.00 9.00	M		4,00	0.99921	666.0	666.0	666.0	0.99817	•		4.0 0.94325 0.99357 0.99838 0.99896 0.99996 0.99989 0.99889
II	7.	5		3. 5. 5.	470	789	985	1961	98930		:	3.5 3.54 3.26 3.354 1.342 1.34
Case	6.00 6.00 7.00	11		Ç		6.0	0 0	0	00			3.5 0.85354 0.97326 0.99342 0.99084 0.999177 0.998177 0.998177
-	5.00 5.00 5.00	S12ES 65(1		3.0	0.97447	0.98742	0.99843	0.99658	0.95844 0.98524			3.0 0.69779 0.91605 0.97110 0.99628 0.99628 0.99216 0.96815
N LAYOUT	4.00 4.00 3.00	GROUP SI	SIGNIF ICANCE	1ETER 2.5	0.91062	94672	98884	97956).87434).94189		SIGNIFICANCE	2.5 2.5 2.49291 2.79600 2.90605 3.97921 3.97921 3.96248 3.72355
ONE-WAY	3.00 3.00 1.00		SIGNI								IGNI	PAKAME .0 .70 .70 .73 .0 .23 .0 .65 .0 .10 .0 .19 .0 .17 .0 .17 .0 .12 .0
-	0 11 11 11		OF	Nα	0.7688	0.8373	0.9460	0.9154	0.71264		OF	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
COVARIANCE	1.00 2(1,1) 2(2,1) 2(3,1)		AT 5% LEVEL	NGN CENTRALITY 1.5	0.54731	0.63363	0.82803	0.75356	0.48921 0.64754		AT 1% LEVEL	NUN CENTRALITY 1.5 0.13429 0.28 0.38596 0.60 0.55440 0.76 0.50898 0.73 0.77551 0.91 0.51399 0.73 0.68139 0.87
ANALYSIS OF C	#ITH U* = 2.500 = 2.500 = 10.000	2 =11	R VALUES	1.0	0.30440	0.37271	0.61112	0.48444	0.26726		VALUES	1.0 0.05370 0.18784 0.31169 0.26862 0.54542 0.649368 0.15380
ANAL	WZ(1) = VZ(2) = VZ(3) =	DF2	PUWER	0.08020	.12	0.15287	0.37303	0.20758	0.11356		POMER	0.5 0.01858 0.05885 0.11931 0.08731 0.31341 0.08459 0.14159
		UF1 = 2		0.0	• •	.067	• 266 • 064	.087	.060			0.00 0.00998 0.01386 0.04741 0.02012 0.21382 0.01641 0.03340
				ANCES V3	3.00	4.00	3.00	5.00	3.00			ANCES V3 V3 1.00 3.00 9.00 9.00 9.00 9.00 9.00
4 H				~	2.00	2.00	3.00°1	1.00	5.00			VARIANCE V2 1.00 1.00 2.00 3.00 3.00 4.00 1.00 1.00 3.00 3.00 5.00 6.00
Table			٠	GROUP V1 1.00	1.00	1.00	1.00	0.	1.00		•	6860UP V1 1.00 1.00 1.00 1.00 1.00 1.00

Table	4 A		-	ANALYSIS	Ü	CUVARI ANCE	UNE-WAY	WAY LAYOUT	ļ.	Case	III	
				WI (1) = VZ(1) = VZ(2) = VZ(3)	1TH U# = 2.500. 2.500 2.500 10.000	-2.00 1. Z(1,1) Z(2,1) Z(3,1)	.00 1.00 = 3.00 = 3.00 = 1.00	10 4.00 10 4.00 10 3.00	5.00 5.00 5.00	6.00 7 6.00 7	7.00 7.00 9.00	
			DF1 = 2	0.52	2 =11			GROUP SI	SIZES GS(1)	્રા	5 5	
				POWER	VALUES	AT 5% LEVEL	0 F	SIGNIFICANCE				
ROUP V1	VARI V2	ANCES.	0.0	0.5 0.5	1.0	~	ALITY PARAM 2.0	AMETER 2.5	3.0	m		-
000	2.00	3.00	0.05888	0.11144	0.25982	0.47061	0.68609	0.85073	0.91/81	0.98419	996.	
၁ ဂ	0	5.00 4.00	0.09530	0.17412	0.37544		\sim	0.92792	0.97911	9954 9858	9992	•
00.	0.	9.00	0.26651	0.34032	0.52200	•	. :::	0.95672	0.98872	97.66	.9997	
000	0.0	3.00	0.06478	0.09295	0.18212	•	un 4	0.72197	0.86508	3470	.9833	
00.	· .	3.00	0.06037	0.12705	0.30584		· -	0.89348	0.96505	3913 3913	.9984	
>	•	2.00	0.16333	0.25498	0.47639	•	30	0.96241	0.99138	3985	.9998	,
				POWER	VALUES	AT 18 LEVEL	UF.	SIGNIFICANCE				
						NON CENTRALITY		PARAMETER				
7 0	7 7	> 0	0.0	0 • 0 0 • 0		_	,	2.5	3.0	3.	4	
000	2.00		0.01386	0.05570	•	- ;··,	• •	090810	0.86525	.8535	• 9432 • 9815	
0	3.00	0	0.04741	0.12156	.e	21	~	0.88853	0.95970	.9884	4266	
00.	2.00	0,0	0.02012	0.06933	2	(7)	S.	0.77197	0.89126	0.95728	9863	
20	1.00		0.01641	0.03116		,	ייי פ	0-47400	0.65070	1666.	9696.	
9	1.00	0	0.03340	0.05161	7	1.7		0.48195	0.63864	.7762	.8801	
000	3.00	W .00	0.01599	0.07452	0.23268	0.44502	0.65580	0.82084	0.92342	.97	0.99279	
,) •	•	6011.	· · · · · · · · · · · · · · · · · · ·	•	9	ລ •	76446.0	76494.0		•	
,												

-2.00			5				0 • 4	92504	98684	12466	60666	0.99984
1.00	7.00	•	5 5				.5				_	
00.9	90.9						•	0.840	0.903	0.975	0.993	0.99849
U* = 1 5.00	5.00 0.00	0	ES 6S(1)				3.0	0.71280	0.77646	0.91781	0.97145	0.99032
4.00	4.00	•	SROUP SIZ	FICANCE		1ETER	2.5	0.55173				0.95681
3.00	3.00	•		SIGNI		PARAM	2.0	3120 0	7483 0			0.86375 0
ELATIGN	* "	1		VEL OF		RALITY		0.38	0.37			
L CURRE	2(2).	117		1 5% LE		UN CENT	-	0.22620	0.19621	0.36219	0.5386	0.66839
MENT SERIA 2.500	2.500		2 = 11	R VALUES A		Z	1.0	0.10495	0.08289		0.31683	0.46509
HIN 1REAT VZ(1) =	V2(2) = V7(3) =		10	POWE			0.5	0.02805	0.02910	0.08020	0.16406	.0.28047
NITH KII	•		DF1 = 2				0.0	0.00169	0.01439	0.05007		0.21029
			•		SERIAL	CCRRELATION	RHO	-0.4	-0.2	0.0	0.5	7. 0
	KITHIN TREATMENT SERIAL CURRELATION VZ(1) = 2.500 Z(1, J) =	WITHIN TREATMENT SERIAL CURRELATION VZ(1) = 2.500 Z(1,J) = VZ(2) = 2.500 Z(2,J) = VZ(3) = 2.500 Z(2,J) =	WITH FITHIN TREATMENT SERIAL CURRELATION AND U* = 1.00 1.00 -2.00 VZ(1) = 2.500 Z(1,J) = 3.00 4.00 5.00 6.00 7.00 VZ(2) = 2.500 Z(2,J) = 3.00 4.00 5.00 6.00 7.00 VZ(3) = 2.500 Z(3,J) = 3.00 4.00 5.00 6.00 7.00	H KITHIN IREATMENT SERIAL CURRELATION V2(1) = 2.500 Z(1,J) = VZ(2) = 2.500 Z(2,J) = VZ(3) = 2.500 Z(3,J) = = 2 DF2 = 11	WITH WITHIN TREATMENT SERIAL CURRELATION VZ(1) = 2.500 Z(1,J) = VZ(2) = 2.500 Z(2,J) = VZ(3) = 2.500 Z(3,J) = DFI = 2 DFZ = 11 POWER VALUES AT 5% LEVEL OF	WITH WITHIN TREATMENT SERIAL CURRELATION VZ(1) = 2.500 Z(1,J) = VZ(2,J) = VZ(3) = 2.500 VZ(3) = 2.500 Z(3,J) = DFI = 2 DFI = 2 POWER VALUES AT 5% LEVEL OF	H WITHIN IREATMENT SERIAL CURRELATION V2(1) = 2.500 V2(2) = 2.500 V2(3) = 2.500 V2(3) = 2.500 FOUR ELATION V2(3) = 2.500 V2(3, J) = 3.500 V2(3, J) =	WITH WITHIN TREATMENT SERIAL CURRELATION VZ(1) = 2.500 Z(1,J) = VZ(2) = 2.500 Z(2,J) = VZ(3) = 2.500 Z(3,J) = DF1 = 2 DF2 = 11 POWER VALUES AT 5% LEVEL OF 0.0 0.5 1.0 1.5 Z	WITH WITHIN TREATMENT SERIAL CURRELATION VZ(1) = 2.500 Z(1,J) = VZ(2) = 2.500 Z(2,J) = VZ(3) = 2.500 Z(3,J) = DF1 = 2 DF2 = 11 POWER VALUES AT 5% LEVEL OF NUN CENTRALITY 0.0 0.0 0.5 1.0 1.5 0.00169 0.02805 0.10495 0.22626 0.381	WITH WITHIN TREATMENT SERIAL CURRELATION V2(1) = 2.500 V2(2) = 2.500 V2(2,J) = V2(3) = 2.500 V2(3,J) = DF1 = 2 DF2 = 11 POWER VALUES AT 5% LEVEL OF 0.00 0.0 0.0 0.5 1.0 1.5 0.00169 0.02805 0.01439 0.02910 0.08289 0.19621 0.374	WITH WITHIN TREATMENT SERIAL CURRELATION V2(1) = 2.500 V2(2) = 2.500 V2(2,J) = V2(3) = 2.500 V2(3,J) = DF1 = 2 DF2 = 11 POWER VALUES AT 5% LEVEL OF 0.00 0.0 0.5 1.0 1.5 0.00169 0.02910 0.08029 0.019507 0.08020 0.18141 0.36219 0.588	WITH WITHIN TREATMENT SERIAL CURRELATION VZ(1) = 2.500 Z(1,J) = VZ(2) = 2.500 Z(2,J) = VZ(3) = 2.500 Z(3,J) = DF1 = 2 DF2 = 11 POWER VALUES AT 5% LEVEL OF 0.00169 0.02805 0.10495 0.22626 0.381 0.01439 0.02910 0.08289 0.19621 0.379 0.05007 0.08020 0.18141 0.36219 0.588 0.11217 0.16406 0.31683 0.53864 0.755

SEKIAL					•				
CORRELATION				NON CENTR	CENTRALITY PARAMETER	AMETER			*
RHO	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
5.0-	0.00045	0.02569	0.09791	0.20768	0.34199	0.48662	0.62753	0.75200	0
-0.5	0.00199	0.00746		0.07164	0.15644	0.29180	0.46763		0.80472
0.0	0.00998	0.01858	0.05370	0.13830	0.13830 0.28971 0.49291	0.49291	0.69779	0.85354	0.94325
0.2	0.03088	0.05359		0.28608 0.49779	0.49779	0.71153	0.86904	0.95398	0.98763
0.4	0.08445	0.12841	0.26186	0.46805	0.68938	0.85888	0.95157	0.98772	0.99774

Table 5.1A

ANALYSIS OF VARIANCE --- SPLIT-PLOT DESIGN

FOR MAIN-PLUT TREATMENTS COMPARISON

U* = 1.00 1.00 -2.00	0F2 = 4
1.00	DF1 = 2
# ^	Ĭ
AND	
0.50 0.50	
0.50	
/ARIANCES ==	S = 2
ERROR	3.
MITH SUBPLOT ERROR VARIANCES =	KEP = 3

POWER VALUES AT 5% LEVEL OF SIGNIFICANCE

	4.0	0.91328	0.98596	0.99715	0.99614	0.99986	0.99631	0.99971	0.97205	0.99291
	3.5	0.83191	0.95688	0.98730	0.98368	92866.0	0.98398	0.99772	0.92821	0.97523
	3.0	0.71089	0.89357	0.95690	0.94769	0.99218	0.94798	0.98745	0.84634	0.93053
AMETER	2.5	.55691	.77989	.84361	.86613	.96467	.86625	.95020	.71682	.83863
NON CENTRALITY PARAMETER	2.0	0.39118	0.61261	0.74450	0.71959	0.88211	91 0.51258 0.71937 0	0.85210	0.54571	0.68574
NON CENTR	1.5	0.24222	0.41401	0.53898	0.51315	0.70432	0.51258	0.66294	0.35984	0.48261
		0.13257	0.22780	0.30820	0.29045	0.43587	0.28991	0.40116	0.19728	0.27203
	0.5	0.06978	0.09829	0.12472	0.11874	0.17300	0.11863	0.16009	0.03962	0.11329
	0.0	0.05000	0.05248	0.05488	0.05448	0.06144	0.05466	0.06102	0.05251	0.05446
VARIANCES	٧3	J. U	3.0	ي. ت	4.0	9.0	3.0	0.5	3.0	2.0
M-PLOT	1 ^	1.0	1.0	1.0	1.0	1.0	1.0	0.1	1.0	1.0

M-PLOT	VARIA	INCES				NON CENTR	ALIIY PAR	AMETER			
۲ ۲	۸5	۷3		0.5	1.0	1.5	2.0	2.5	3.0	ν,	7
1.0	1.0	1.0		0.0	0.03092	0.06394	0.11920	0.19912	0.30112	0 41770	0 1 7 4 0
1.0	2.0	3.0		0.04143	0-13001	0.26538	0.42780	0.59266	73001	0 0 0 0 0	0.000
0.1	3.0	5.0		0.04910	2002	070270	0 42400	20207		2000000	4106.0
	, (70177	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	77660.0	00000		0.96451	0.990I
2	7.0	4.	0.01144	0.06180	0.1999	0.39085	0.58946	0.75807		0.95120	0.9856
1.0	3.0	0.6	0.01392	0.11813	0.37029	0.64286	0.84077	0.94526		0.99744	9666
0.1	1.0	3.0	0.01150	0.06082	0.19660	0.38541	0.58346	0.75343		0.95119	0.4861
1.0	1.0 5.0	2.0	0.01375	0.10252	0.32518	3 0.58364 0.79211 0.91828	0.79211	0.91828	0.97583	0.99493	2666-0
1.0	3.0	3.0	0.01079	0.03369	0.10130	0.20898	0.34617	0.49654		0.77315	0.8809
1.0	2.0	5.0	0.01143	0.05923	0.1906	0.37352	0.56646	0.73376		0.03462	0 0761

ANALYSIS OF VARIANCE --- SPLIT-PLOT DESIGN

FOR MAIN-PLOT TREATMENTS COMPARISON

1.00	DF2 = 4
1.00	۵
-2.00 1.00	DF1 = 2
# *0	io
AND	
	٠.
0.50	
. = 0.50	2
LOT ERKOR VARIANCES	S
ERKOR	1 = 3
HITH SUBPLOT	m H
WITH	KEP = 3

PUWER VALUES AT 5% LEVEL OF SIGNIFICANCE

	• •	0.00	07070	90696	• 99445	-97685	10000	66166	.89166	88318	07700	74004	.99862
	بر بر	יין פונים	י ננייני נ	0 22026 0	0.98062 0	3.94150 0	00000	0 07604	7.80528 0	0 129531 0	0 06/00	0	3.99337 0
	3,0		2071.0										
METER	2.5	0.55691											
NON CENTRALITY PARAMETER	2.0	0.39117											
NON CENTRA	1.5	0.24222	0.37133	770140	01010.0	0.40412	0.57637	27.446	01147.0	0.25856	0.44465	0 40755	00000
•	1.0	0.13257	0.20592	CK700 0	761170	0.22624	0.33954	0.40.71	0.14030	0.15101	0.24914	0.35250	
	0.5	0.06978									0.10530		
· .	0.0	0.05000	0.05248	0.05488		7.02448	0.06144	05466	001.00	70100.0	0.05251	0.05446	}
M-PLOT VARIANCES	٧3	1.0	3.0	5.0		•	0.6	3.0		0	3.0	2.0	
OT VAR	ا ۸2	0 1 0) 2.0	3.0		0 • 7	3.0	0 7 (0.1	3.0	5.0	
M-P	>	7•(1.	, ,	-	₹ .) • T	, T	-	• •) • 1	7•1	

M-PLOT	VARI	ANCES			• •	MON CENTR	2 × × × ×	: :			
) (,			TON CENTRALILI PAKASELEK	AMELICK			
7 >	7 /	۲۶	0.0	0.0	1.0	1.5	2.0	7.5	٥		`
1.0	0.1	1.0	0.01000		0.0309	0.06394	0.11920	0 19912			7
0•1	2.0	3.0	0.01078		0 1210	0.5550	0 4 2 2 2 2 2 2	77.67.0	21100.0	8 / 1 t • 0	0.54105
-						600000	740740	0.186.0	0. (2055	0.82500	0.90476
) ·	0	0.0	0.01157		0.2399	0.45405	0.65796	0.81369	0.91204	0.96411	0.48730
0.1	2.0	4.0	0.01144		0.1572	0.31210	0.48528	0.64843	0.78166	0 87720	50000
0.1	3.0	3.0 9.0	0.01392	0.09112	0.2886	0.52782	0.73668	0.87407	207070	00000	00000
٦ .	1.0	3.0	0.01150		0.0548	0.11002			0044400	0.48008	0.44525
) u	2000			70077.0	\$006T.0	0.68994	0.40320	0.52497	0.65496
	•	•	0.010.0		20.0	6/551.0	0.24043	0.35345	0.47626	0.60286	0.73010
0.1	2	3.0	0.01079		0.1831	0.35924	0.54657	0.71173	0.83609	0.91689	0.96255
1.0	2.0	2.0	0.01143		0.3099	8 0.56062 0.76720 0.89763	0.76720	0.89763	0.96273	0.98880	0.99722

Table 5.1A

ANALYSIS UF VARIANCE --- SPLII-PLOT DESIGN

FOR MAIN-PLOT TREATMENTS COMPARISON

1.00 -2.00	DF2 = 4
U* = 1.00	0F1 = 2
AND	
WITH SUBPLOT ERROR VARIANCES = 1.50 1.50	REP = 3

POWER VALUES AT 5% LEVEL OF SIGNIFICANCE

	.5 4.0		19 0.97589							
	m	0.831	0.93519	0.975	3696.0	0.997	0.967	0.993	0.9034	0.954
	3.0	0.71089	0.85634	0.92978	0.91782	0.93520	0.91304	0.97364	0.80845	0.89110
AMETER	2.5	0.55691	0.72806	0.83580	0.81615	0.94463	0.80840	0.91665	0.66878	0.77818
CENTRALITY PARAMETER	2.0	0.39117	0.55530	0.68010	0.65511	0.84210	0.64535	0.79362	0.49637	0.61299
NUN CENTR	1.5	0.24222	0.36562	.0.47521	0.45149	0.65021	0.44223	0.59172	0.32038	0.41656
	1.0	0.13257	0.19925	0.26586	0.25055	0.39053	0.24460	0.34562	0.17479	0.23083
	0.5	0.06978	0.08938	0.11056	0.10547	0.15506	0.10348	0.13856	0.08266	0.10012
		0.05000	0.05164	0.05361	0.05310	0.05904	0.05288	0.05743	0.05175	0.05347
VARIANCES	23	1.0	3.0	5.0	4.0	0.6	3.0	S.	3.0	2.0
I VARI	۸5		. 2.0							
M-PL01	· 1 ^	1.0	0.1	1.0	1.0	1.0	1.0	1.0	0.1	1.0

M-PLOT		NCES				NON CENTR	ALITY PAR	AMETER			
17.		Ś		9.0	1.0	1.5	2.0		3.0	3,5	0.4
0.1		1.0	0.01000	0.01469	0.03092	0.06394	0.11920	_	0.30112	0.41779	0.54105
1.0		3.0	0.01052	0.03245	91160.0	0.20316	0.33932		0.63819	0.77148	0.88763
1.0		5.0	0.01115	0.05412	0.17409	0.34542	0.53379		0.83592	0.92441	72000
1.0		4.0	0.01098	0.04824	0.15401	0.31010	0.48834		0.79897	0.90111	0.64313
0.1		9.0	0.01301	0.09906	0.31607	0.57065	0.17932		0.97090	0.00310	
1.0		3.0	0.01091	0.04582	0.14565	0.29500	0.46870		0.78205	0.0000	0.05822
0.1	1.0 5.0	5.0	0.01244	0.08078	0.26046	0.48907 0.70013 0.85360	0.70013		0.94304	0.200.0	0.99670
1.0		3.0	0.01055	0.02645	0.07487	0.15628	0.26751		0.53945		0.80852
1.0		2.0	0.01110	0.04490	0.14129	0.28520	0.45304	_	0.75992		0.94153

Table 5.1A

ANALYSIS OF VARIANCE --- SPLIT-PLOT DESIGN

FUR MAIN-PLOT TREATMENTS COMPARISON

1.00 1.00	0F2 = 4
U* = -2.00	0F1 = 2
AND	٠.
1.50	
ARIANCES = 1.50	S = 2
WITH SUBPLOT ERROR VARIANCES = 1.	$REP = 3 \qquad \qquad \Gamma = 3$
WITH	KEP

PUWER VALUES AT 5% LEVEL OF SIGNIFICANCE

	0.4	8	060	7	00	2 6	30	56	27	37
	4						0.89539			
	3,5	0.83191	0.89233	0.95909	0.90862	0.97518	0.80946	0.80024	0.93009	0.98292
	3.0						0.68944			
AMETER	5	16					0.54185			
ALITY PAR	1.5 2.0 2	0.39117	0.49080	0.63789	0.52305	0.70010	0.38513	0.39152	0.56115	0.73028
NON CENTR	1.5	0.24222	0.32003	0.44197	9.34646	0.50145	0.24354	0.25310	0.37572	0.52815
	1.0	0.13257	0.17659	0.24821	0.19235	0.28836	0.13681	0.14557	0.20789	0.30277
	0.5	0.06978	0.08351	0.10585	0.08912	0.12207	0.07345	0.07944	0.09254	0.12256
							0.05288			
NCES	٧3	1.0	3.0	2.0	6.0	0.6	3.0	2.0	3.0	2.0
VARIA	۸5	1.0	2.0	3.0	2.0	3.0	1.0	1.0	0°0	٠ <u>٠</u>
M-PLOT VARIANCES		1.0	1.0	0.1	1.0	1.0	0.1	1.0	1.0	0.1

I-PLOT	VARI	ANCES				NON CENTR	ALTIY PAR	AMETER			
۸1	۸5	٧3	0.0			1.5	1.5 2.0 2	5	3.0	K	•
. 0.1	1.0	1.0	0.01000	0.01469		0.06394	0.11920	0.19912	0.30111	0.41779	0 54.106
0.1	5.0	3.0	0.01052		0.09572	0.19607	0.32363	0-46452	0.60308	0 72575	00100
1.0.	3.0	5.0	0.01115		0.18255	0.35784	0.54450	0.70944	0-83397	0.91530	0.06161
0.1	2.0	4.0	0.01093		0.11619	0.23546	0.38026	0.53161	0.67141	0.787 0	10106.0
1.0	3.0	0.6	0.01301		0.23044	0-43741	0.63849	0.79660	OHOOR O	0.06707	*00.00 C
1.0	0.1	3.0	0.01091		0.04756	0.09660	0-16848	0.26183	0.37165	0.000	0.50414
1.0	1.0 5.0	2.0	0.01244	0.02525	0.06382	0.12793	0.21560	0.32207	0.44036	0.56477	0.69626
1.0	3.0	3.0	0.01055		0.13373	0.26961	0.42888	0.58796	0.72698	0.83451	0.90866
1.0	5.0	2.0	0.01110		0.24586	0.46402 0.66918	0.66918	0.82328	0.91856	0.96771	0.98902

10
'n.
le le
Tab

ANALYSIS OF VARIANCE --- SPLIT-PLUT DESIGN

FOR MAIN-PLOT TREATMENTS COMPARISON

hITH EQUAL MAINPLOT ERROR VARIANCES = 0.50

AND SUBPLOTS SERIAL CORRELATION WITHIN MAIN-PLOT

0.0 0.0 0.6978 0.13257 0.24222 0.39118 0.55691 00.05000 0.06979 0.13257 0.24222 0.39118 0.55691 00.05000 0.06979 0.13257 0.24222 0.39118 0.55691 00.05000 0.06979 0.13257 0.24222 0.39118 0.55691 00.05000 0.06979 0.13257 0.24222 0.39118 0.55691 00.05000 0.06979 0.13257 0.24222 0.39118 0.55691 00.05000	
NON CENTRALITY P 1.0 1.5 2. 0.13257 0.24222 0.3911 0.13257 0.24222 0.3911 0.13257 0.24222 0.3911	POWER
1.0 1.5 2. 0.13257 0.24222 0.3911 0.13257 0.24222 0.3911 0.13257 0.24222 0.3911 0.13257 0.24222 0.3911	
0.13257 0.24222 0.3911 0.13257 0.24222 0.3911 0.13257 0.24222 0.3911 0.13257 0.24222 0.3911	.5
0.13257 0.24222 0.3911 0.13257 0.24222 0.3911 0.13257 0.24222 0.3911	0 81
0.13257 0.24222 0.3911 0.13257 0.24222 0.3911	0. 64
0.13257 0.24222 0.3911	0 61
	79 0
0.13257 0.24222 0.3911	0 . 62

		227	K VALOES	A 1 16 LEV	PUMER VALUES AT 14 LEVEL UP STUDIFICANCE	N I I I V			
SERIAL									
CORRELATION				NON CENTR	NON CENTRALITY PARAMETER	AMETER			
RHC	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	7
+0-	0.01000	01000 0.01469	0.03092	0.06394	0.11920	0.19912	0.30112	0.41779	5
-0-2	0.01000	0.01469	0.03092	0.06394	0.11920	0.19912	0.30112	0.41779	0 5410
0.0	0.010.0	01000 0.01469	0.03092	0.06394	0.11920	0.19912	0.30112	0.41779	
0.2	0.01000	.01000 0.01469	0.03092	0.06394	0.11920	0.19912	0.30112	0-41779	0.5410
4.0	0.01000	01000 0.01469	0.03092	0.06394	0.06394 0.11920 0.19912	0.19912	0.30112	2 0-30112 0-41779	0.5410

ANALYSIS OF UARIANCE --- SPLIT-PLOT DESIGN

FOR MAIN-PLOT TREATMENTS COMPARISON

...

WITH EDUAL MAINPLOT ERROR VARIANCES = 0.50

AND SUBPLOTS SERIAL CORRELATION WITHIN MAIN-PLOT

10

		4	44.07	9149	10.0	9149	.0197
		15 10	0.72358 0.84178 0.9197	0.83433 0	0.831.910		0.84175 0
	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	0.5	0.72358	0.71398	0.71089	0.71399	0.72359
POWER VALUES AT 5% LEVEL OF SIGNIFICANCE	AMETER	io Ci	0.57075	0.56029	0.35691	0.56029	0.57075
EL 0F \$10	NON CENTRALITY PARAMETER	1.0 1.0 2.0 2.0	0.40363	0.13369 0.24438 0.39420	0.39118	0.39420	0.40363
AT 52 LEV	REALD NON		0.25115	0.24458	0.24223	0.24438	0.25115
R VALUES-		0.1	0.13721	0,13369	0.13257	0.13369	0.13721
iano _a		0.0	05000 0.07105	05000 0.02009	0.06979	0.07009	0.07105
		0.0	0.05000	0.050.0	0.05000	000.0.0	0.05000
SER161	CORRELATION	RHO	4.0-	-0-2	0.0	0.2	4.0

出してくりませんの		SEASTHER.	3.0	1000 0.01613 0.03653 0.07602 0.13916 0.25708 0.33567 0.45639 0.58001	1000 0.01504 0.03227 0.06687 0.12406 0.20596 0.30958 0.42729 0.55074	1000 0.01469 0.03092 0.06594 0.11920 0.19912 0.30111 0.41779 0.54105	000 0.01504 0.03227 0.06687 0.12406 0.20596 0.30957 0.42731 0.55075	0.22708 0.33569 0.45639 0.58002
POWER VALUES AT 1% LEVEL OF SIGNIFICANCE		CHLUXGEGA XII TOCHNIC NON	0.5 1.0 1.0	0.01613 0.03653 0.07602 0.1391	0.01504 0.03227 0.06687 0.1240	0.01469 0.03092 0.06394 0.1192	0.01504 0.03227 0.06687 0.1240	0.01613 0.03653 0.07602 0.1391
	3-K.P.	CORRELATION	RH0 0.0	-0.4	-0.2	0.0	0.01000	0.01000

*JOB CPU TIRE COM: 209

-181 -

d	c
C	
	•
L	١
0	n
_	1
2	3
a	j
۲	-

ANALYSIS OF VARIANCE --- SPLIT-PLOT DESIGN

FOR SUB-PLOI TREATMENTS COMPARISON

-2.000 1.000 1.000 = *U HIIM

REP

POWER VALUES AT 5% LEVEL OF SIGNIFICANCE

	4.0	0.97408	0.99673	0.99931	0.99910	96666.0	0.99924	0.99993	0.99262	0.99822
	3.5	0.92716	0.98541	0.99570	0.99462	0.99950	0.99523	0.99923	76276.0	0.99120
	3.0	0.83180	0.94970	0.98002	0.97621	10966.0	0.97808	0.99440	0.92119	0.96640
AMETER .	5	0.67866	0.86386	0.92994	0.92023	0.97774	0.92449	0.97140	0.81452	0.89977
ALITY PARA	2.0	0.48578	0.70727	0.81195	0.79441	0.91177	0.80131	0.89555	0.64399	0.76401
NON CENTRALITY PARAMETER	1.5	0.29682	0.49193	0.60826	0.58653	0.74806	0.59419	0.72187	0.43375	0.55548
	1.0	0.15434	0.27141	0.35460	0.33778	0.47469	0.34328	0.45052	0.23598	0.31756
	0.5	0.07442	0.05361 0.11117	0.14032	0.13435	0.10942	0.13661	0.18081	0.10064	0.12789
	0.0	0.05000	0.05361	0.05652	0.05627	0.06459	0.05706	0.06583	0.05353	0.05579
NCES	٧3	1.0	3.0	2.0	4.0	9.0	3.0	2.0	3.0	5.0
VARIANCES	۸5	1.0	2.0	3.0	2.0	3∙ი	1.0	1.0	3.0	5.0
S-PLOT	1 ^	1.0	1.0	1.0	0.1	1.0	1.0	1.0	1.0	1.0

-PL01	VARIL	NCES				NON CENTR	ALITY PAR	AMETER			
۸۱,	۸5	٧3			1.0	1.5	2.0	2.5	3.0	3.5	7
0.	1.0	1.0		0.0	0.03987	0.09243	0.18545	0.32004	0.48133	0.64317	0.7808
9	2.0	3.0	0.01140	0.05153	0.1668	0.33947	0.53628	_	0.85333	0.93731	0.9792
0.	3.0	5.0	0.01259	0.08316	0.2690	0.50512	0.71975	_	0.95106	0.98572	0.4969
٠ •	2.0	4.0	0.01249	0.07515	0.2439	0.46747	0.68240		0.93698	0.98042	0.9955
0	3.0	0.6	0.01644	0.13430	0.41132	0.69319	0.87900		0.99247	0.99888	8000
0	1.0	3.0	0.01281	0.07609	0.24656	0.47204	0.68802		0.94040	0.98250	0 0063
٠ •	1.0	1.0 5.0	0.01720	0.12216	0.3768	0.65240	5 0.65240 0.85045 0.95172		0.98873	0.99818	0.9998
0	3.0	3.0	0.01137	0.04242	0.1338	0.27753	0.45379		0.78339	0.89093	0.4553
0	5.0	5.0	0.01229	0.07282	0.2355	0.45155	0.66192		908660	0.97261	0000

5.2A able

SPLIT-PLOT DESIGN ANALYSIS GF VARIANCE

FUR SUB-PLOT TREATMENTS COMPARISON

1.000 -2.000 11

DF2

ij

DF 1

1.000 #D HIIM

3

li

S

REP

POWER VALUES

SIGNIFICANCE AT 5% LEVEL

4.0 0.97408 90066.0 0.99206 0.99908 0.94627 0.92305 0.99831 0.99603 09666.0 0.92716 0.96735 0.99193 0.97305 0.99508 0.88062 0.84732 0.98405 0.99734 0.96956 0.92488 0.97941 0.77154 0.83180 0.98668 0.91201 0.9486 0.80452 0.67866 0.82714 0.93208 0.94920 0.59026 0.86672 0.61991 NON CENTRALITY PARAMETER 0.48578 0.63853 0.78257 0.66899 0.82243 0.44556 0.43034 0.71904 0.85126 0.29682 1.5 0.46583 0.62956 0.28120 0.53064 0.28033 0.51196 0.66239 0.16274 0.15434 0.15556 0.33853 0.26174 0.37843 0.39986 0.11138 0.13592 0.07442 0.10297 0.08111 0.09009 0.11790 0.15640 0.0 0.05652 0.05706 0.06583 0.05353 0.05579 0.05361 0.06459 0.05627 V3 1.0 5.0 9.0 9.0 5.0 VARIANCES V2 2.0 2.0 2.0 2.0 3.0 1.0 S-PLOT

POWER VALUES AT 1% LEVEL OF SIGNIFICANCE

0.78084 0.96118 99566.0 0.99826 0.97447 0.77994 0.79832 0.98672 0.99911 0.65222 3.5 0.98377 0.99208 0.96109 0.99524 0.91052 0.93587 3.0 0.48133 0.82097 0.95008 0.51031 0.86130 0.90375 0.97988 0.97094 0.68656 0,87298 0.91369 0.79759 0.32004 0.73947 0.36688 0.40567 0.93278 CENTRALITY PARAMETER 0.51535 0.57153 0.79129 0.23801 0.18544 0.27599 0.63513 0.82148 0.52196 0.37739 0.58744 1.5 0.09243 0.33092 0.13606 0.16613 0.43081 0.62107 NON 0.19328 0.28335 0.06573 0.22428 0.35390 0.03987 0.16592 0.08413 0.5 0.06913 0.08835 0.06076 0.10653 0.02568 0.03400 0.05201 0.01720 0.01140 0.01259 0.01249 0.01644 0.01229 0.01000 0.01281 ~ www.4 o www.w v o o o o o o o o o VARIANCES V2 1.0 2.0 3.0 3.0 S-PLOT 7

	ANA
•	
	nz.
ι	Ų.
•	970
ŀ	a_

LYSIS OF VARIANCE --- SPLIT-PLOT DESIGN FOR SUB-PLOT TREATMENTS COMPARISON WITH SUBPLUIS SERIAL CORRELATION WITHIN MAIN-PLOT

DF1 =

		アント	K VALUES	AI 5% LEV	PUWER VALUES AI 5% LEVEL OF SIGNIFICANCE	NIFICANCE			
SERIAL				!					
CORRELATION				NON CENTR	ALITY PAR	AMETER			
RHG	0.0	0.5	1.0	1.5	1.5 2.0 2	2.5	3.0	3.5	**
4.0 -	0.05190	0.07447	0.14759	0.27770	0.45329 0.63967	0.63967		0.90305	0.9610
-0.2	0.05059	0.07344	0.14836	0.28296	0.46458	0.65503		0.91418	0.9674
0.0	0.05000	0.07442	0.15434	0.29682	0.48578	0.67866	0.83180	0.92716	0.9740
0.2	0.05101	0.05101 0.07794	0.16477	0.31534	0.51031	0.70221	0.84901		0.9784
4.0	0.05579	0.08718	0.18421	0.34367	0.53846	0.72289			0.9804

SEKIAL		·			ē				
CCRRELATION				NON CENTRALITY PARAMETER	ALITY PAR	AMETER			
RHO	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
-0-4	0.01073		0.04402	0.09682	0.18515	0.30995	0.45976	0.61383	0.75260
-0.2	0.01022	0.01642	0.03911	0.08877	0.17610	0.30318	0.45781	0.61682	0.75740
0.0	0.01000	0.01630	0.03987	0.09243	0.18545	0.32004	0.48133	0.64317	0.78084
0.2	0.01038	0.01814	0.04637	0.10701	0.21036	0.35442	0.52058	0.68190	0.81797
5.0	.0.01229	0.02521	0.06789	0.14865	0.27134	5 0.27134 0.42741	0.59726	0.75818	0.75818 0.88610
				•	-				

COST IN RELATION TO POWER IN THE DESIGN OF EXPERIMENTS Table 6.1

CCSI(I)= 2.00 1.20 1.00 V(I)= 1.00 1.00 1.00 MUSTAR'(I)= 1.00 1.00 1.00 1.01 MUSTAR'(I)= 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0											
1 N2 N3 PER UNIT ERRUR LAMBDA PUWER LAMBDA PER UNIT ERRUR LAMBDA PUWER LAMBDA PER UNIT ERRUR LAMBDA PUNER LAMBDA D.05000 3.000 0.83180 1.360 0.05000 3.074 0.87854 1.460 0.05000 3.074 0.87854 1.365 0.05000 3.074 0.87854 1.365 0.05000 3.133 0.97854 1.364 0.05000 3.133 0.97854 1.418 0.05000 3.133 0.97841 1.509 0.05000 3.133 0.97546 1.317 0.05000 3.674 0.97859 1.350 0.05000 3.674 0.96331 1.350 0.05000 3.674 0.92983 1.447 0.05000 3.464 0.92983 1.447 0.05000 3.464 0.92983 1.447 0.05000 3.464 0.92983 1.550 0.05000 3.162 0.92983 1.550 0.05000 3.162 0.92983 1.550 0.05000 3.162 0.92983 1.550 0.05000 3.162 0.92983	=(1)1800	2.00	1.20			= (1) ^			MUSTAR.	(1)= 1.00	1.00 -2.00
3 1.400 0.05000 3.000 0.91762 3 1.360 0.05000 3.074 0.87854 1.460 0.05000 3.074 0.87854 1.460 0.05000 3.074 0.87854 1.345 0.05000 3.503 0.95881 4 1.345 0.05000 3.384 0.94611 3 1.345 0.05000 3.133 0.90916 4 1.418 0.05000 3.133 0.90916 5 1.418 0.05000 3.133 0.90916 3 1.509 0.05000 3.133 0.978461 4 1.317 0.05000 3.623 0.97846 5 1.317 0.05000 3.623 0.97846 6 1.333 0.05000 3.464 0.96331 6 1.333 0.05000 3.464 0.96331 7 1.483 0.05000 3.464 0.96331 1 1.483 0.05000 3.464 0.925983 1 1.483 0.05000 3.182 <t< td=""><td>TOTAL</td><td>ľ</td><td>2 N</td><td><u>د</u> ع</td><td></td><td>C0S1 UNI T</td><td>TYPE I ERRUR</td><td>LAMBDA</td><td>POWER</td><td>6</td><td>15</td></t<>	TOTAL	ľ	2 N	<u>د</u> ع		C0S1 UNI T	TYPE I ERRUR	LAMBDA	POWER	6	1 5
4 1.360 0.05000 3.286 0.91762 3 1.380 0.05000 3.074 0.87854 1.460 0.05000 3.074 0.87854 1.345 0.05000 3.503 0.95881 4 1.345 0.05000 3.384 0.964611 3 1.345 0.05000 3.133 0.90916 4 1.418 0.05000 3.133 0.90916 3 1.436 0.05000 3.133 0.90916 4 1.509 0.05000 3.133 0.97846 5 1.317 0.05000 3.674 0.97846 6 1.333 0.05000 3.623 0.97846 6 1.333 0.05000 3.464 0.97846 7 1.383 0.05000 3.464 0.97846 8 1.400 0.05000 3.464 0.92983 1.467 0.05000 3.464 0.92983 1.483 0.05000 3.182 0.92983 1.483 0.05000 3.182 0.92983	6	m	m		. —	• 400	0.050.0	3.000	0.83180	15.636	11.169
3 1.380 0.05000 3.074 0.87854 1.460 0.05000 3.074 0.87854 0.87854 1.345 0.05000 3.503 0.95881 1.345 0.05000 3.384 0.90916 1.345 0.05000 3.133 0.90916 1.418 0.05000 3.133 0.90916 1.509 0.05000 3.133 0.90916 1.509 0.05000 3.674 0.97845 1.317 0.05000 3.674 0.97845 1.313 0.05000 3.623 0.97545 1.313 0.05000 3.623 0.97546 1.400 0.05000 3.623 0.97546 1.400 0.05000 3.464 0.96331 1.417 0.05000 3.464 0.96331 1.467 0.05000 3.464 0.96331 1.467 0.05000 3.182 0.92983 1.550 0.05000 3.182 0.92983 1.550 0.05000 3.182 0.92983	10	33	m	4	~	.360	0.05300	3.286	0.91762	17.352	12.759
3 1.460 0.05000 3.074 0.87854 4 1.327 0.05000 3.384 0.96611 1.345 0.05000 3.384 0.90916 1.418 0.05000 3.133 0.90916 1.436 0.05000 3.133 0.90916 1.509 0.05000 3.133 0.90916 6 1.300 0.05000 3.674 0.97859 5 1.317 0.05000 3.623 0.97546 1.383 0.05000 3.623 0.97546 1.400 0.05000 3.623 0.97546 1.467 0.05000 3.464 0.96331 1.467 0.05000 3.464 0.96331 1.467 0.05000 3.464 0.96331 1.550 0.05000 3.182 0.92983 1.550 0.05000 3.182 0.92983	01	3	.	m	1	.380	0.05000	3.074	0.87854	16.571	12,008
5 1.327 0.05000 3.503 0.95881 1 1.345 0.05000 3.384 0.94611 1 1.345 0.05000 3.133 0.90916 1 1.418 0.05000 3.133 0.90916 1 1.509 0.05000 3.133 0.90916 1 1.509 0.05000 3.133 0.90916 1 1.317 0.05000 3.674 0.97859 1 1.350 0.05000 3.623 0.97546 1 1.383 0.05000 3.623 0.97546 1 1.383 0.05000 3.623 0.97546 1 1.400 0.05000 3.464 0.96331 1 1.417 0.05000 3.464 0.96331 1 1.467 0.05000 3.464 0.96331 1 1.467 0.05000 3.464 0.95383 1 1.467 0.05000 3.182 0.92983 1 1.550 0.05000 3.182 0.925883 1 1.550 0.05000 3.182 0.925883 1 1.550 0.05000 3.182 0.925883 1 1.550 0.05000 3.182 0.925883 1 1.550 0.05000 3.182 0.925883 1 1.550 0.05000 3.182 0.925883 1 1.550 0.05000 3.182 0.925883 1 1.550 0.05000 3.182 0.925883 1 1.550 0.05000 3.182 0.925883 1 1.550 0.05000 3.182 0.925883 1 1.550 0.05000 3.182 0.925883 1 1.550 0.05000 3.182 0.925883 1 1.550 0.925883 1 1.550 0.05000 3.182 0.925883 1 1.550 0.05000 3.182 0.925883 1 1.550 0.925883 1 1.550 0.925883 1 1.550 0.925883 1 1.550 0.925883 1 1.550 0.925883 1 1.550 0.925883 1 1.550 0.925883 1 1.550 0.925883 1 1.550 0.925883 1 1.550 0.925883 1 1.550 0.925883 1 1.550 0.925883 1 1.550 0.925883 1 1.550 0.925883 1 1.550 0.925883 1 1.550 0.925883 1 1	10	. .	n	რ	-	.460	0.05000	3.074	0.87854	16.571	11,350
4 1.345 0.05000 3.384 0.94611 1 1.364 0.05000 3.133 0.90916 1 1.418 0.05000 3.133 0.90916 1 1.436 0.05000 3.133 0.90916 1 1.509 0.05000 3.674 0.97859 1 1.317 0.05000 3.674 0.97546 1 1.333 0.05000 3.664 0.96331 1 1.417 0.05000 3.623 0.97546 1 1.483 0.05000 3.464 0.96331 1 1.467 0.05000 3.464 0.96331 1 1.467 0.05000 3.464 0.96331 1 1.467 0.05000 3.464 0.96331 1 1.467 0.05000 3.464 0.96331 1 1.550 0.05000 3.182 0.92983 1 1.550 0.05000 3.182 0.925883 1 1.550 0.05000 3.182 0.925883 1 1.550 0.05000 3.182 0.925883 1 1.550 0.05000 3.182 0.925883 1 1.550 0.05000 3.182 0.925883 1 1.550 0.05000 3.182 0.925883 1 1.550 0.05000 3.182 0.925883 1 1.550 0.925883	11	n	m	r.	_	.327	0.05000	3.503	0.95881	.17	13.695
3 1.364 0.05000 3.133 0.90916 1 1 1.418 0.05000 3.133 0.90916 1 1 1.436 0.05000 3.133 0.90916 1 1 1.509 0.05000 3.133 0.90916 1 1 1.509 0.05000 3.674 0.97546 1 1.333 0.05000 3.674 0.97546 1 1.350 0.05000 3.674 0.96331 1 1.417 0.05000 3.464 0.96331 1 1.467 0.05000 3.464 0.96331 1 1.467 0.05000 3.464 0.92983 1 1.467 0.05000 3.464 0.92983 1 1.550 0.05000 3.182 0.925883 1 1.550 0.05000 3.182 0.925883 1 1.550 0.05000 3.182 0.925883 1 1.550 0.05000 3.182 0.925883 1 1.550 0.05000 3.182 0.925883 1 1.550 0.05000 3.182 0.925883 1 1.550 0.925883 1 1.550 0.05000 3.182 0.925883 1 1.550 0.05000 3.182 0.925883 1 1.550 0.925883 1 1.550 0.925883 1 1.550 0.05000 3.182 0.925883 1 1.550 0.925883 1 1.550 0.925883 1 1.550 0.925883 1 1.550 0.925883 1 1.550 0.925883 1 1.550 0.925883 1 1.550 0.925883 1 1.550 0.925883 1 1.550 0.925883 1 1.550 0.925883 1 1.550 0.925883 1 1.550 0.925883 1 1.550 0.925883 1 1.550 0.925883 1 1.550 0.925883 1 1.550 0.925883 1 1.550 0.925883 1 1.550 0.925883 1 1.550 0.925883 1 1.5	11	m	+	. 7	-	• 345	0.0500	3.384	0.94611	17,923	13.321
4 1.418 0.05000 3.364 0.94611 1 3 1.436 0.05000 3.133 0.90916 1 5 1.509 0.05000 3.674 0.97859 1 5 1.317 0.05000 3.674 0.97546 1 3 1.350 0.05000 3.464 0.96331 1 5 1.417 0.05000 3.464 0.96331 1 6 1.467 0.05000 3.464 0.96331 1 7 1.483 0.05000 3.464 0.96331 1 8 1.483 0.05000 3.464 0.96331 1 8 1.483 0.05000 3.464 1.96331 1 8 1.550 0.05000 3.182 0.92983 1	1	m	ر ح	ω,	7	• 364	0.05000	3.133	0.40916	17.184	12.601
3 1.436 0.05000 3.133 0.50916 1 1.509 0.05000 3.674 0.97859 1 5 1.317 0.05000 3.674 0.97546 1 1.350 0.05000 3.664 0.96331 1 5 1.417 0.05000 3.664 0.96331 1 1.467 0.05000 3.464 0.96331 1 1.467 0.05000 3.464 0.96331 1 1.467 0.05000 3.464 0.96331 1 1.483 0.05000 3.464 0.96331 1 1.483 0.05000 3.464 1.96331 1 3 1.550 0.05000 3.182 0.92983 1		4	m	4	-	.418	0.05333	3.364	0.94611	17.923	12.638
3 1.509 0.05000 3.133 0.30916 1 6 1.300 0.05000 3.674 0.97859 1 5 1.317 0.05000 3.664 0.96331 1 33 0.05000 3.664 0.96331 1 4 1.400 0.05000 3.464 0.96331 1 4 1.467 0.05000 3.464 0.92983 1 5 1.483 0.05000 3.464 0.92983 1 7.483 0.05000 3.464 1.96331 1 7.483 0.05000 3.464 1.96331 1 7.483 0.05000 3.464 1.96331 1 7.483 0.05000 3.464 1.96331 1 7.483 0.05000 3.464 1.96331 1 7.483 0.05000 3.464 1.96331 1 7.483 0.05000 3.464 1.96331 1 7.483 0.05000 3.464 1.96331 1 7.483 0.05000 3.464 1.96331 1 7.483 0.05000 3.464 1.96331 1 7.483 0.05000 3.464 1.96331 1 7.483 0.05000 3.464 1.96331 1 7.483 0.05000 3.464 1.96331 1 7.483 0.05000 3.464 1.96331 1 7.483 0.05000 1 1 7.483 0.05000 1 1 7.483 0.05000 1 1 7.483 0.05000 1 1 7.483 0.05000 1 1 7.483 0.05000 1 1 7.483 0.05000 1 1 7.483 0.0	Ξ	4	\$	3	7	• 436	0.05000	3.133	91606.0	17.184	11,963
6 1.300 0.05000 3.674 0.97859 1 5 1.317 0.05000 3.623 0.97546 1 1.33 0.05000 3.464 0.96331 1 1.383 0.05000 3.623 0.92983 1 1.400 0.05000 3.464 0.96331 1 1.417 0.05000 3.464 0.92983 1 1.483 0.05000 3.464 0.92983 1 1.550 0.05000 3.182 0.92983 1	=	.v	m	m	-	• 509	0.050.00	3.133	91606.0	17.184	11.387
5 1.317 0.05000 3.623 0.97546 1.333 0.05000 3.464 0.96331 1.350 0.05000 3.182 0.92983 1.383 0.05000 3.623 0.97546 1.400 0.05000 3.464 0.96331 1.417 0.05000 3.464 0.92983 1.463 0.05000 3.182 0.92983 1.550 0.05000 3.182 0.92983 1.550 0.05000 3.182 0.92983 1.550 0.05000 3.182 0.92983 1.	12	. " 	. .	9		.300	0.05000	3.674	0.97859	18.572	
4 1.333 0.05300 3.464 0.96331 1 3 1.350 0.05000 5.182 0.92983 1 5 1.383 0.05000 3.623 0.97546 1 4 1.400 0.05000 3.464 0.96331 1 3 1.417 0.05000 3.464 0.92983 1 4 1.467 0.05000 3.464 0.92983 1 3 1.550 0.05000 3.182 0.92983 1	12	M	4		7	.317	0.0500	3.623	0.97546	18.509	
3 1.350 0.05000 3.182 0.92983 5 1.383 0.05000 3.623 0.97546 4 1.400 0.05000 3.464 0.96331 3 1.417 0.05000 3.464 0.92983 4 1.467 0.05000 3.464 0.96331 3 1.483 0.05000 3.182 0.92983 1.550 0.05000 3.182 0.92983	12	e.	ហ	4	1	.333	0.05000	3.464	0.96331	18.266	
5 1.383 0.05000 3.623 0.97546 4 1.400 0.05000 3.464 0.96331 3 1.417 0.05000 3.182 0.92983 4 1.467 0.05000 3.464 0.96331 3 1.483 0.05000 3.182 0.92983 3 1.550 0.05000 3.182	12	n	9	ო		• 350	0.0500	5.182	0.92983	17.597	13,035
4 1-400 0.05000 3.464 0.96331 3 1-417 0.05000 3.182 0.92983 4 1.467 0.05000 3.464 0.96331 3 1.483 0.05000 3.182 0.92983 3 1.550 0.05000 3.182 0.92983	15	4	M	ភ		• 383	•	3.623	0.97546	18,509	13,390
3 1.417 0.05000 3.182 0.92983 4 1.467 0.05000 3.464 0.96331 3 1.483 0.05000 3.182 0.92983 3 1.550 0.05000 3.182 0.92983	12	4	4	4	-	• 400	•	3.464	0.96331	18,266	13.047
4 1.467 0.05000 3.464 0.96331 3 1.483 0.05000 3.182 0.92983 3 1.550 0.05000 3.182 0.92983	12	4	S.	m	-	.417	•	3.182	0.92983	17.597	12.421
3 1-483 0-05000 3-182 0-92983 1 3 1-550 0-05000 3-182 0-92983 1	12	ις i	m	7		.467	•	3.464	.9633	18.266	12.454
3 1.550 0.05000 3.182 0.92983 1	77	3	4	m		.483	0.05000	3.182	.9298	17.597	11,863
	71	9	ന	<u>ო</u>		. 550	•	3.182	.9298	17.597	11,353

COST IN RELATION TO POWER IN THE DESIGN OF EXPERIMENTS Table 6.1

TEST= .050	1.00 -2.00		14.697	•	13.968	•	•	•				~			14.987	.83	.65	44.44	•	.59	C	.03	•		-	6.4
SIZE OF	1.00	P.1	18.767	18-634	18,481	17.884	18.767	18.694	.48	88.	69.	•	888	e e	.84	.85	.84	.77	18.595	•06	.85	.84	18.776	18.921	18,939	18.939
COST = 19.0	MUSTAR (1)=	POWER	9883	0.98473	.9740	0.94421	0.93334				•	0.97405	0.94421		0.99336				0.98105		466		0.99010	0.99602	0.99694	96966.0
15 MAX.	1.00	LAMBDA	3.813	c ~	2	\sim	\boldsymbol{x}	~	S	~:	7	Š	2	·.	.928	696	. 928	.803	3.586	. 251	696.	. 928	803	4.025		4.099
MAX. SAMPLE SIZE=	V(I)= 1.00 1.00	TYPE I CRRDR	0.05000	0.050.0	Ç	_	Э,		0500	บริมย	\Box	050	0.05000		0.05007	.0500	.050	•	0.05007	•	٠	.050	0.05007	0.05000	0.050.0	0.050.00
3 MAX. S	*(1)^	AV. CGSI PER UNIT	1.277	1.308	1.323	1.338	1.354	1.369	1.385	1.400	1.431	1.446	1.462		\sim	1.271	1.286	1.300	1.314	1.329	~	1.343	1.357	1.240	1.253	1.257
S12E=	1.00	ñ	7	'n	4	m	· ·	ۍ	4 (m m	S	4	m		ဆျ	•	د	.c	.	m		ç	w	6	က	_
Скоир	1.20	N 2	n 4	v	9	7	m ·	.	ζ.	•	m	4	เก	1	η.	3 :	'n	9	· -	∞ :	~	4	'n	m	4	က
· NI E	2.00	ž	. ህ ແ	m	C.		,	.	4	5	เก	.U.	ι.	•	:	√ 1	.	M I	m (4	4	4	m	m	.
ROUP= 3	=(1)1800	TOTAL	13	13	£ .	£ ;	7.	<u>?</u> :	٦.	٤٦.	F	. I 3	13	•	*	+ -	57	14	51	51	51	14	51	15	15	15

COST IN PELATION TO PUNER IN THE DESIGN OF EXPERIMENTS Table 6.2

TES1 = .050	1.00 -2.00	13	5.954	8.724	669.9	5.411	11 737	9.534	7.298	7.774	5.985	4.303		13 708	10-139	7.780	12.327	8.388	6.472	926.9	5.377	4.462
S12E 0F			8.336	11.864	9.245	7.899	17 270	12.828	9.952	11,025	8.597	7.399		527° 51	13.519	10,503	14.286	11.743	9.168	10.159	7.975	916.9
MAX. CUST= 19.0	MUSTAR (1) = 1.00	POWER	0.52779	0.60403	0.57334	0.60965	0.64554	0.65446	0.60948	0.68433	0.64049	0.67203	0 2 2 2	0.71759	0.69400	0.63348	0.74225	0.71925	0.65530	0.74448	0.69242	0.71969
	3.00	LA"9DA	1.919		1.936	•		2.176					,	2.372								
MAX. SAMPLE SIZE= 12	V(I)= 1.00 2.00	IYPE I ERRUR	0.05653	0.04096	0.05596	0.06851	0.04015	0.0+733	0.05565	0.05691	0.06674	20080.0	0.71.0	0.04111	0.04730	0.05551	0.04556	0.05644	0.05543	0.06672	0.07715	0.09091
m.	(1)	AV. COST PER UNIT	1.400	1.360	1.380	1.460	1.327	1.345	1.364	1.418	1.436	1.509	7 23.00	1.317	1,333	1.350	1.383	1.400	1.417	1.467	1.483	1.550
\$12E=	1.20 1.00	N 3	m	4	m	m	ហ	4	С	4	<u>.</u> ش	m	4	<u>ب</u> د	4	m	S.	4	ωį.	4	m	m
GRUUP	1.20	1 N2	3	3 3	4	m	3	.+	3 5	ლ :	*		,	, ~	3	9	m -	4	in.	m	4	m
MIN.	2.00	. Z				7	•				•			ויז נ		(')	7	4	4	un.	5 1	9
GROUP= 3	COST(1)=	TOFAL	6	100	10	10	11	-	1	11	11	=	12	71	71	1.2	12	12.	71	12	1.2	12

COST IN RELATION TO PUACE IN THE DESIGN OF EXPERIMENTS Table 6.2

TEST= .050	1.00 -2.00	1 5	· • .	. v	10.587	8.168	Ġ	ώ			•	5.793	19.543	17.792	15.620	13.2%6	10.903	3.473	15.317	13.320	11.282	20.179	19.387	17.73
S12E 0F	1.00	1 d	72.406	19.994	14.007	10.932	14.910	•	9.637	13,010	10.745	8.466	24.568	22.621	20.033	17.272	14.330	11.257	20.349	17.837	15.312	25.270	24.298	22.449
MAX. COST= 19.0	MUSTAR! (1)=	PUWER	0.75659	75761	1.72536	0.66206	1.7819	0.74693	·	0.73847	1.76836	• 109	1.79103	0.80710	.30645	. 78913	. 75079	.68174	. 82452	.82331	.80639	-81962	0.83845	.84398
15	3.00	LAMBDA	630 534	999	912.	. 975	423	.231	. 984	.443	.245	•	74.5	2.576 0	569 . (453 (231	984	715	598	443		2.197 0	٠
SAMPLE SIZE=	1.00 2.00	TYPE 1 EKKUR	0.03233		•	0.05548		7	٠	•	G.	9	0.03094	0.03416	0.03425	0.04319	0.04898	0.05562	.038	0.04359	• 040	0.03120	0.03316	0.03599
3 MAX. S	={ 1 }^	AV. COST PER UNIT	1.277	1.308	1.323	1.354	1.369	1.385	1.400	•	4	1.452	1.257	•	•	•	1.314	•	•	1.343	1.357	•	1.253	•
S12E=	1.00	8 3	~ 5	in N	.	n vo	ស	4	m	'n	4	LL J	æ	7	9	เภ	4	m i	_	၁	ۍ د	6		_
• GROUP	0 1.20	N1 N2	ю с с				5 5	. 1 .2	9 +	5	ر ا	5	<u>ب</u>	ώ 4	 	3	<u>, </u>	20 e	4 3	7	4 5	E .	4. 6	
NIW E	(1)= 2.00	TOTAL	13	13	ជ.	13	13	13	£1.	:a	5.	13	14	14	т .	7.	+1	-1	51	٠ <u>٠</u>	1 4	15	15	5
GRCUP=	0081	.10																						

>		
w		
ن		
7.		
5.0	١	
ī		
_	•	
Ė		
333	٠	
\supset		
J		
⋖		
>		
1-		
œ		
ш	٠	
3	:	
2		
()		
≅		
~		
-		
-		
্ৰ		
·		
っ		
Ç		
_		
⋖		
ப்		
_		
:		
щ		
P.		
-0F		
0-0F.		
00-0F.		
HÖD-OF.		
THÖD-OF.		
ETHÔO-OF:		
METHOD-OF:		
METHOD-OF		
S-METHOD-OF		
S METHOD-OF		
S'S METHOD-OF		
46 S-METHOD-OF		
NG S. METHOD-OF		
ANG'S METHOD-OF		
TANG!S METHOD-OF		
-TANG'S METHOD-OF		
TANG'S METHOD-OF		
TANG'S METHOD-OF		
TANG'S METHOD-OF		
TANG'S METHOD-OF		
TANG'S METHOD-OF		
TANG'S METHOD-OF		
TANG'S METHOD-OF		
TANG'S METHOD-OF		
TANG'S METHOD-OF		
TANG'S METHOD-OF		
TANG'S METHOD-OF		
TANG'S METHOD-OF		
TANG'S METHOD-OF		
TANG'S METHOD-OF		
TANG'S METHOD-OF		
1 TANG'S METHOD-OF		
1 TANG'S METHOD-OF		
.1 TANG'S METHOD-OF		
7.1		
7.1 TANG'S METHOD-OF		
.8-7.1		

Tabl

		F1 = .2		F2 =	.2				= X1		
TANG'S LIU'S	METHOD METHOD	0.05000	0.06180 0.06180	0.09633 0.09633	NON CENTRAL 1.5- 0.15108 0.15108	11Y 0.22 0.22	PARAMETER 2.0 2.5 221 0.30497 221 0.30497	3.0 0.39425 0.39426	3.5 0.48511 0.48521	4.0 0.57314 0.57623	
		F1 = -2		F2 =	7				XI	-176390	
TANG'S LIU'S	METHOD METHOD	0.05000	0.06979 0.06978 0.06978	1.0 0.13258 0.13257	NDN CENTRALITY 1.5 0.24222 0.3 0.24222 0.3	PARA 2.0- 9118 9117	AETER 2.5 -0.55692 0.55691	3.0 0.71089 0.71088	3.5 0.83191 0.83191	4.0 0.91321 0.91328	
		F1 = 2.		F2 =	9				# X1	.631600	
TANG'S LIU'S	METHOD METHOD	0.05000	0.07441 0.07442	1.0 0.15433 0.15434	NDN CENTRAL 1.5 0.29682 0.29682	LITY PARAMET 2.0 0.48578 0.0.48578 0.	METER 2.5 0.67866 0.67866	3.0 0.83160 0.83180	3.5 0.92716 0.92716	4.0 0.97407 0.97403	
		F1 = 2		F2 =	12				= X1	.393040	
TANG'S LIU'S	METHOD	0.05000	0.0 0.08077 0.08077	1.0 0.18439 0.18439	NDN CENTRA 1.5 0.36931 0.36931	LITY PARAMET 2.0 0.59879 0.0.59880 0.	METER 2.5 0.79990 0.79990	3.0 0.92437 0.92438	3.5 0.97881 0.97881	4.0 0.99566 0.99566	in the second of
		F1 = 4		F2 =	; ©				×	.657410	
TANG'S LIU'S	METHOD METHOD	0.05000	0.5 0.06545 0.06545	0.11775 0.11775 0.11775	NON CENTRALITY 1.5 0.21851 _ 0.3 0.21852 _ 0.3	LITY PARAM 2.0 2.0 0.36951 0.36952	WETER 2.5 0.55017 0.55018	3.0 0.72297 0.72298	3.5 0.85528 0.85529	4• 9366 9366	

000066•	4.0 0.15638 0.1662e	0000006•	4.0 53847 · 54105	4560	4.0 0.78046 0.78084	5840	4.0 0.95300 0.95300	7930	4.0 0.69167 0.69239
	0.13		0.0	.784	0.78	.5358	0.99	•777930	4.0 0.69167 0.69239
×I	3.5 0.12414 0.12446	×	3.5 0.41770 0.41778	= ×1	3.5 0.64316 0.64317	= X]	3.5 0.87073 0.87073	×I	3.5 0.53788 0.53792
	3.0 0.09521 0.09521		3.0 0.30111 0.30111		3.0 0.48133 0.48133		3.0 0.71997 0.71997		3.0 .0.37708 0.37710
	PARAMETER 2.0 2.5 882 0.06998 882 0.06958		PARAMETER 2.0 2.5 920 0.19912 920 0.19912		PARAMETER 2.0 544 0.32004 544 0.32004		PARAMETER 2.0 2.5 344 0.51361 344 0.51360		PARAMETER 2.0 2.5 929 0.23498 930 0.23499
	0.04 0.04		· , ~ , ~		တဘ		00		0.12 0.12
2	NON CENTRA 1.5 0.03203 0.03203	4	NON CENTRALITY 1.5 0.06394 0.1 0.06394 0.1	• •	NUN CENTRALITY 1.5 0.09243 0.1 0.09243 0.1	12	NON CENTRALITY 1.5 0.14462 0.3	89	NGN CENTRALITY 1.5 1.0.06332 0.1
F 2	0.01985 0.01985	F2 =	1.0 0.03692 0.03092	F2 =	0.1 0.03587 0.03987	F.2 ::	0.05563 0.05583	F2 =	1.0 0.02880 0.02880
	0.5 0.01247 0.01247		0.5 0.01469 0.01469		0.01630 0.01630		0.5 0.01891 0.01891		0.01394 0.01394
F1 = 2	0.0 0.01000 0.01000	F1 = 2	0.0000000000000000000000000000000000000	F1 = 2	0.0 0.01000 0.01000	F1 = 2	0.0 0.01000 0.01000	F1 = 4	0.01000
	METHOD METHOD		METHGD METHGD		METHOD METHOD		METHOD METHOD		METHOD
	TANG'S LIU'S		TANG'S LIU'S		TANG'S LIU'S		TANG'S LIU'S		TANG'S LIU'S
	4.4						•		

LAYBUT	
ONE-WAY	
-	
ANALYSIS OF VARIANCE	
OF.	
ANALYSIS	
7.2	!
l e	1

	. •
	Ŋ
-2.00	ហ
1.00	, in
U* = 1.00 1.00 -2.00	= (1)
Ħ	65
څ	SIZES
AND	GROUP SIZES GS(I) =
0.0	
VA = 0.0	
G = SMALLEST OF A(I)	2 DF2 =12
WITH G	DF1 = 2

POWER VALUES AT 5% LEVEL OF SIGNIFICANCE

	4.0	0.99566	0.99712	0.99803	0.99882	96966 0
•	3.5	0.97881	0.98464	0.98874	0.99249	0.98425
	3.0	0.92438	0.94062	0.95333	0.96582	0.94024
AMETER	2.5	0.19990	0.83134	0.68126 0.85870	0.88726	0.83223
NON CENTRALITY PARAMETER	2.0	0.59880	0.64075	0.68126	0.72580	0.64450
NON CENTR	1.5	0.36931	0.40733	0.44792	0.49442	0.41356
	1.0	0.18439	0.20657	0.23260	0.26321	0.21234
	0.5	0.08077	0.08742	0.09605	0.10609	0.09048
	0.0	0.05000	0.05064	0.05188	0.05296	0.05216
VARIANCES	٨3	1.00	1.40	1.80	1.80	1.80
	۸5	1.00	1.20	1.40	1.00	1.80
GROU	7 N	1.00	1.00	1.00	1.00	1.00

GROUP	VARI	ANCES				NON CENTR	ALITY PAR	AMETER			
7	۸5	۸3		0.5	1.0	1.5	1.5 2.0 2	2.5	3.0	3.5	4.0
00•1	00.1	1.00	0.0	0.01891	0.05563	0.14462	0.30344	0.51360	0.71997	0.87073	o
00.	1.20	1.40	0.0	0.02390	0.07494	0.18590	0.36546	0.58223	0.77634	0.90518	0.96871
00•1	1.40	1.80	0.0	0.03188	0.10346	0.24090	0.43895	0.65413	0.82842	0.93318	0.97994
00.1	1.00	1.80	0.01	0.04121	0.13656	0.30260	0.51739	0 0.51739 0.72611	0.87677	0.87677 0.95706	0.98864
00•	1.80	1.80	0.0	0.02722	0.08480	0.20245	0.38425	0.59728	0.78479	0.90838	0.96947

ONE-WAY LAYOUT	
VARIANCE	
ANALYSIS OF VARIA	
ole 7.2	

-2.00	5 5		4.0 0.99566 0.99712 0.99803 0.99882	96966*0	4.0 0.95300 0.96868 0.97985 0.98852
1.00 -2.00	H TV	•	•	0.98425	3.5 0.87073 0.90517 0.93315 0.95699
U* = 1.00	GROUP SIZES GS(I) =		3.0 0.92438 0.94062 0.95333	0.94024	3.0 0.71997 0.77634 0.82841 0.87675
AND UN	GROUP SI	VI F I CANCE	AMETER 2.5 0.79990 0.83134 0.85869	0.83223 11FICANCE	AMETER 2.5 0.51360 0.58223 0.65412 0.72610
7 0.0		EL OF SIGN	ALITY PARA 2.0 0.59880 0.64075 0.68125 0.72580	0.64450 EL OF SIGN	11 IY PARA 2.0 0.30344 0.36545 0.43895 0.51738
VA = (VALUES AT 5% LEVEL OF SIGNIFICANCE	NON CENTRALITY PARAMETER 1.5 2.0 2 0.36931 0.59880 0.799 0.40733 0.64075 0.831 0.44791 0.68125 0.858 0.49441 0.72580 0.487	04/ 0.21233 0.41356 0.64450 0.83223 POWER VALUES AT 1% LEVEL OF SIGNIFICANCE	NON CENTRALITY PARAMETER 1.5 2.0 2.0 14462 0.30344 0.513 0.18589 0.36545 0.582 0.24089 0.43895 0.654 0.30260 0.51738 0.726
MEAN	2 = 12	NALUES A		U.ZIZ33	1.0 0.05563 0.07493 0.10345 0.13655
= HARMONIC	DF2	POWER	0.5 0.08077 0.08741 0.09604 0.10608	0.09047	0.5 0.01891 0.02389 0.03188 0.04121
#ITH G =	0F1 = 2		0.0 0.05000 0.05063 0.05188	V	0.0 0.01000 0.01029 0.01087 0.01137
			VARIANCES V2 V3 000 1.00 .20 1.40 .40 1.80	00	ANCES V3 V3 1.00 1.40 1.80 1.80
				0 0	GROUP VARIANCES V1 V2 V3 .00 1.00 1.00 .00 1.40 1.80 .00 1.80 1.80
			GROUP V1 1.000 1.000 1.000		GROUP V1 1.00 1.00 1.00 1.00
			<u>.</u>		•

α
•
~
œ
\vdash
Ω
Ø
Ë

ANALYSIS OF VARIANCE --- ONE-WAY LAYOUT

00	. 10
-2-	Ŋ
0 1.00 -2.00	5.
1.00	S(I) =
*	GROUP SIZES GS(I) =
AND .	GROUP
••	
0.0	
VA =	
MEAN	DF2 =12
G = GEOMETRIC MEAN	0.52
9	2
HIIM	DF1 = 2
	•

POWER VALUES AT 5% LEVEL OF SIGNIFICANCE

	4.0	0.99566	0.99712	0.99803	0.99832	96966*0
	3.5	0.97881	0.98464	0.98874	0.99249	0.98425
	3.0	0.92438	0.94062	0.95333	0.96582	0.94024
AMETER	2.5	0.19990	0.83134	0.85869	0.88725	0.83223
NON CENTRALITY PARAMETER	2.0	0.59880	0.64075	0.68125	0.72580	0.64450
	1.5	0.36931	0.40733	16744-0	0.49441	0.41356
	1.0	0.18439	0.20656	0.23260	0.26320	0.21233
	0.5	0.08077	0.08741	0.09604	0.10608	0.09047
	0.0	0.05000	0.05063	0.05188	0.05295	0.05215
ANCES	٨3	1.00	1.40	1.80	1.80	1.80
P VARIANCE			1.20			
GROUP	۸۱	1.00	1.00	1.00	1.00	1.00

KOU	VARI	KOUP VARIANCES				NON CENTR	NON CENTRALITY PARAMETER	AMETER			
7	٧2	۲3	0.0	0.5	1.0	1.5	2.0	2.5	3.0		. 0. 4
00	1.00	1.00		1.01891	0.05563	0.14462	0.30344	0.51361	0.71997	0.87073	0.95300
00	1.20	1.40	0.01029	0.02390	0.07493	0.18589	0.36545	0.07493 0.18589 0.36545 0.58223 0.77634 0.90517 0.96868	0.77634	0.90517	0.96868
00	1.40	1.80	0.01087	0.03188	0.10345	0.24089	0.43895	0.65412	0.82841	0.93315	0.97985
00	1.00	1.80	0.01138	0.04121	0.13655	0.30260	0.51738	0.72610	0.87675	669560	0.98852
00	1.80	1.80	0.01101	0.02722	0.08479	0.20244	0.38424	0.59728	0.78479	0.90835	0.96937

i	
VARIANCE	
6	
ANALYSIS	
<u>ر</u>	ı
,	•
a:	

U* = 1.00 1.00 -2.00	5 5 5 = (1)5
AND U* =	GROUP SIZES GS(I) =
VA = 0.0	: '
LARGEST OF A(1)	DF2 =12
7 = 9 H11M	DF1 = 2

-- UNE-WAY LAYOUT

POWER VALUES AT 5% LEVEL OF SIGNIFICANCE

	0.4	0.99566	0.99712	1.24075	***	1.07580
	3.5		0.98464	1.30626	***	1.08342
•	3.0	0.92438	0.94062	1,33154	**	1.05359
METER	2.5	0.19990	3 0.64075 0.83135	1.28671	***	0.95546 1.05359
NON CENIRALITY PARAMETER	2.0	0.59880	0.64075	1.15146	***	0.77525
NON CENTR	1.5	0.36931	0.40733	0.95302	***	0.55017
	1.0	0.18439			***	0.35325 0.55017
	0.5	0.08077	0.08742	0.64402	**	661 0.23404
	0.0	0.05000	0.05065		***	0.19661
VARIANCES	۸3	1.00	1.40	1.80	1.80	1.80
		1.00				
GROUP	۷۱	1.00	1.00	1.00	1.00	1.00

	0.4	0.95300	0.96867	1.26622	***	1.06596
	3.5		0.90518	1,26911	***	0.72101 0.90036 1.01489 1.06596
-	3.0	0.71997	0.77634	1.21213	**	0.90036
AMETER	2.5	0.51360	0.58223	1.08332	***	0.72101
NON CENTRALITY PARAMETER	2.0	0.30344	0.36546	0.90934 1.08332	***	0.51507
	1.5	0.14462	0.18590	0.74602 0.90934	***	0.33906
	1.0	0.05563	0.07494	0.63497	***	0.22572
	0.5	0.01891	0.02390	0.57988	***	0.17079
	0.0	0.01000		0.56448	**	0.15547 0.17079
VARIANCES	٨3				1.80	1.80
		1.00				
GROUP	٧٦	1.00	1.00	1.00	1.00	1.00