
Reference architecture for configuration, planning and control of 21st century
manufacturing systems.

LASSILA, Anna-Maija.

Available from the Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/19943/

A Sheffield Hallam University thesis

This thesis is protected by copyright which belongs to the author.

The content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title, awarding
institution and date of the thesis must be given.

Please visit http://shura.shu.ac.uk/19943/ and http://shura.shu.ac.uk/information.html for
further details about copyright and re-use permissions.

http://shura.shu.ac.uk/information.html

n u se u s centre City Cam pus
Sheffield S i 1WB

1 0 1 8 7 6 0 5 7 1

Sheffield Hailam University
Learning and IT Services

Adsetts Centre City Campus
Sheffield SI 1WB

REFERENCE

Return to Learning Centre of issue
Fines are charged at 50p per hour

ProQuest Number: 10697249

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10697249

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Reference architecture for configuration, planning and

control of 21st century manufacturing systems

Anna-Maija Lassila

A thesis submitted in partial fulfilment of the requirements of

Sheffield Hallam University

for the degree of Doctor of Philosophy

June 2007

Collaborating organisation: EPSRC

Preface

Preface

This thesis is presented as part of the requirements for the award of the degree of Doctor

of Philosophy from Sheffield Hallam University in the UK. It reports on the research

work carried out by the author under the supervision of Prof. Sameh Saad in the Faculty

of Arts, Computing, Engineering and Sciences at Sheffield Hallam University between

October 2001 and June 2007. The research was financially supported by the UK

Engineering and Physical Sciences Research Council (EPSRC) under the research grant

GR/R00432/01.

The oral examination of the thesis was conducted by Prof. Nabil Gindy from the

University of Nottingham and Prof. Terrence Perera from Sheffield Hallam University

on 26 July 2007.

Candidate’s declaration of originality:

This thesis is my own work and contains no material which has been accepted for the

award of any other degree or diploma in any university and, to the best of my

knowledge and belief, it contains no material previously published by any other person

except where due acknowledgement has been made.

Anna-Maija Lassila

June 2007

i

Acknowledgements

Acknowledgem ents

I have received invaluable support, encouragement and guidance from many people

during the lengthy period of preparing this thesis. The enthusiasm of colleagues, family

and friends towards my research was a vital source of motivation on those moments

when frustration and discontent threatened the progress of this project. I would like to

express my gratitude for everybody who has supported me during this momentous

phase in my life. I would have never been able to do this without you.

The support and guidance of my project supervisor Prof. Sameh Saad has been a key to

the success in completing this thesis. His critical and constructive advice throughout the

project has been significant for the progress and quality of this research. I would also

like to thank him for the many opportunities he has offered me to improve my academic

record in terms of publications, attending international conferences and working in

national and international academic and industrial projects. Furthermore, I express my

gratitude to the UK Engineering and Physical Sciences Research Council (EPSRC) for

funding this research programme.

Finally, I would like to thank my entire family for their encouragement and

understanding. I would especially like to thank my husband Benjamin, who will

probably be more proud of my new academic title than I will, for his love, friendship

and support. You have brought sunshine to my life. I would also like to express my

appreciation to my parents for their support throughout my life and dedicate this thesis

for them.

Tama vaitdskirja on omistettu

Aidille ja Isalle

kiitokseksi saamastani tuesta ja kannustuksesta.

Abstract

Abstract

Today's dynamic marketplace requires flexible manufacturing systems capable of cost-

effective high variety - low volume production in frequently changing product demand

and mix. Several new paradigms, e.g. holonic, fractal, biological and responsive

manufacturing, have recently been proposed and studied in the academic literature.

These 'next generation of manufacturing systems' have been especially designed to meet

the requirements of an unstable and unpredictable marketplace. However, very little in-

depth research of the configuration, planning and control methodologies of these new

concepts has been conducted. This research aims to improve the comprehension and

implementation of these 21st century manufacturing systems by developing an

integrated reference architecture from the combination of their distinctive features that

would enable manufacturing enterprises to handle successfully the

configuration/reconfiguration, planning and control activities under the conditions of

uncertainty and continuous change.

In the course of the research, a detailed investigation into the fractal, biological and

responsive manufacturing systems is conducted in order to identify the strengths and

weaknesses of each concept. The common and distinctive features of the paradigms are

then used to merge them to create an integrated reference architecture. The fractal

configuration, biological scheduling and 'resource element' representation of resource

capabilities and product processing requirements are selected as the major elements of

the new system. A detailed study of fractal layout design resulted in seven distinctive

methods for structuring and managing fractal cellular systems. A design methodology

that supports three types of dynamic scheduling is developed for biological

manufacturing systems. Resource elements are used with fractal layouts and biological

scheduling to enhance performance and to enable an integration of the concepts. The

proposed reference architecture is modelled and evaluated using object-oriented

programming, computer simulation and heuristic algorithms. The research results

indicate that the performance of systems that employ biological scheduling and fractal

layouts can be improved by using the concept of resource elements to utilise any hidden

capabilities of resources and to achieve an optimal distribution of resources on the shop

floor.

Publications from the thesis

Publications from the thesis

Saad, S. M. and Lassila, A. M., 2006, An integrated approach for shop floor

configuration in fractal manufacturing systems. International Journal o f Services and

Operations Management, 2, 2, 109-123.

Saad, S. M. and Lassila A. M., 2005, Configuration of manufacturing resources using

the fractal cell concept. Proceedings o f the 3rd International Conference on Responsive

Manufacturing (ICRM2005). 12-14 September 2005, Guangzhou, China.

Saad, S. M. and Lassila, A. M., 2005, Decentralised scheduling in biological

manufacturing systems. Proceedings o f the 15th International Conference on Flexible

Automation & Intelligent Manufacturing (FAIM2005). 18-20 July 2005, Bilbao, Spain.

Saad, S. M. and Lassila, A. M., 2004, Methodology for distributed real-time scheduling

and control in biological manufacturing systems. Proceedings o f the 8th International

Conference on Manufacturing & Management (PCMM2004). 8-10 December 2004,

Gold Coast, Australia.

Saad, S. M. and Lassila, A. M., 2004, Flexibility study of fractal layouts - Part 2.

Proceedings o f the 2nd International Conference on Manufacturing Research

(ICMR2004). 7-9 September 2004, Sheffield, UK, pp. 209-215.

Saad, S. M. and Lassila, A. M., 2004, Layout design in fractal organizations.

International Journal o f Production Research, 42,17, 3529-3550.

Saad, S. M. and Lassila, A. M., 2004, Flexibility study of fractal layouts - Part 1.

Proceedings o f the 14th International Conference on Flexible Automation & Intelligent

Manufacturing (FAIM2004). 12-14 July 2004, Toronto, Canada.

Saad, S. M. and Lassila, A. M., 2003, Layout design in fractal organisations.

Proceedings o f the 17th International Conference on Production Research (ICPR-17).

3-7 August 2003, Blacksburg, Virginia, USA.

Table of contents

Table o f contents

Preface..i

Acknowledgements... ii

Abstract... iii

Publications from the thesis...iv

Table of contents...v

List of tables... viii

List of figures.. ix

Nomenclature...xii

Chapter One - Introduction..1

1.1 Background and rationale ..2

1.2 Purpose ... 4

1.2.1 Research objectives....................... 5

1.2.2 Expected outcomes...5

1.3 Research questions... 6

1.4 Outline of the thesis...6

Chapter Two - Literature review.. 9

2.1 Evolution of manufacturing systems...10

2.2 Present and future challenges in manufacturing...................................... 13

2.3 Reference architectures..16

2.4 Traditional manufacturing systems........................ 18

2.4.1 Process structures..19

2.4.2 Layout types.. 20

2.4.3 Production planning and control....................... 23

2.5 Emerging manufacturing paradigms...26

2.5.1 Agile manufacturing................... 26

2.5.2 Holonic manufacturing.. 31

2.5.3 Fractal manufacturing.. 34

2.5.4 Biological manufacturing... 38

2.5.5 Responsive manufacturing... 41

2.5.6 Virtual cellular manufacturing...42

2.5.7 Next generation manufacturing systems...43

2.5.8 Other emerging manufacturing concepts..44

v

Table of contents

2.6 Comparison of the emerging manufacturing concepts..45

2.6.1 Organisational features.. 46

2.6.2 Operational features... 48

2.6.3 Integration of the concepts................................. 48

2.7 Research focus... 49

Chapter Three - Research methodology...52

3.1 General approach... 53

3.2 Research process.. 54

3.3. Deployed tools and techniques...55

3.3.1 Mathematical and conceptual modelling ...55

3.3.2 Heuristic algorithms... 56

3.3.3 Computer simulation.. 57

3.3.3.1 General-purpose object-oriented programming languages...................... 57

3.3.3.2 Special-purpose simulation languages and software packages................57

3.4 Hypothetical case study... 58

Chapter Four - Responsive module development...60

4.1 Manufacturing flexibility and responsiveness...61

4.2 Resource elements and flexibility...62

4.3 Proposed self-organisation-based scheduling using resource elements.................63

4.4 Implementation and results... 64

4.5 Conclusions.. 66

Chapter Five - Fractal module development... 67

5.1 Layout design... 68

5.2 Layout design in fractal organisations... 69

5.3 Proposed fractal layout configuration methods..71

5.4 Developed integrated methodology for fractal shop floor configuration...............76

5.4 Simulation of the fractal design methodology ..82

5.5 Results of layout optimisation for a known product mix.. 85

5.6 Flexibility of optimised fractal layouts...94

5.7 Conclusions...98

Chapter Six - Biological module development.. 99

6.1 Scheduling and control...100

6.2 Scheduling and control in biological manufacturing systems...............................101

Table of contents

6.3 Proposed methodology for dynamic biological scheduling and control..............102

6.4 Simulation of biological scheduling methodology..112

6.5 Computational results and discussion...115

6.6 Conclusions...117

Chapter Seven - Developed integrated reference architecture 118

7.1 Generalised reference architecture..119

7.2 Integration of responsive, fractal and biological concepts.................................... 120

7.3 Simulation and discussion......................... 122

7.4 Conclusions...124

Chapter Eight - Conclusions...126

8.1 Review of conducted research.. 127

8.2 Discussion...129

8.3 Limitations..130

8.4 Research contributions..130

8.5 Future work...131

References..................... 133

Appendices... 152

Appendix A: Responsive methodology modelled in Siman language....................... 152

Appendix B: Fractal layout design methodology modelled in C++ language...........158

List of tables

List o f tables

Table 2.1 Principles of lean manufacturing and product development............................12

Table 2.2 Attributes of an agile organisation.. 29

Table 2.3 Features and benefits of holonic manufacturing systems................................ 32

Table 2.4 Basic features of fractal manufacturing systems.. 36

Table 2.5 Organisational features of holonic, fractal and biological concepts...............47

Table 2.6 Operational features of holonic, fractal and biological concepts ~......49

Table 3.1 Product demands and processing sequences and times in the case study 58

Table 4.1 Machine capabilities in the case study using resource elements.....................64

Table 5.1 Fundamental design parameters of fractal cell configuration......................... 72

Table 5.2 Sample product flow ...92

Table 6.1 Contract cancellation rules for different types of biological scheduling 104

List of figures

List o f figures

Figure 2.1 Main drivers of change in manufacturing enterprises.................................... 14

Figure 2.2 Relationship between reference architecture and system architecture..........17

Figure 2.3 Product-process matrix... 20

Figure 2.4 Arrangement of facilities in different layout types... 21

Figure 2.5 Volume-variety characteristics of different process and layout types.......... 21

Figure 2.6 Basic production planning and control framework... 24

Figure 2.7 Timescale for emerging manufacturing concepts... 27

Figure 2.8 Core concepts of agile manufacturing...27

Figure 2.9 Agile manufacturing reference m odel............. 28

Figure 2.10 Methodology for agility.. 30

Figure 2.11 Holonic system..31

Figure 2.12 General architecture of a holon.. 32

Figure 2.13 Basic structure of a holonic manufacturing system......................................33

Figure 2.14 Holonic control mechanism... 33

Figure 2.15 Conceptual structure of fractal manufacturing system.................................34

Figure 2.16 Operation of fractal entities..35

Figure 2.17 Self-similar fractals with different internal structures..................................36

Figure 2.18 Fractal architecture..37

Figure 2.19 Basic properties of biological manufacturing system...............38

Figure 2.20 Similarity of biological and manufacturing structures.................................38

Figure 2.21 Concept of biological manufacturing system..39

Figure 2.22 Concept of self-organisation...40

Figure 2.23 Representation of manufacturing facility using resource elements.............42

Figure 2.24 Integration framework for fractal, biological and responsive concepts 50

Figure 3.1 Research process..54

Figure 4.1 Matching product requirements and machine capabilities.............................63

Figure 4.2 Throughput times in machine and resource element-based systems.............65

Figure 4.3 Lead times in machine and resource element-based systems..................... ...65

Figure 4.4 Utilisation in machine and resource element-based systems..........................65

Figure 5.1 Fractal cell configuration methods...73

Figure 5.2 Allocation of machines and products to fractal cells...................................... 74

Figure 5.3 Integrated fractal shop floor configuration procedure.................................... 77

ix

List of figures

Figure 5.4 Sample fractal layout... 81

Figure 5.5 Logical flowchart of fractal layout design procedure 82

Figure 5.6 Permutation of products for optimisation of product distribution.................85

Figure 5.7 Performance of the heuristic search algorithm... 86

Figure 5.8 Product allocation optimisation process - first stage.....................................86

Figure 5.9 Product allocation optimisation process - final stage.....................................87

Figure 5.10 Optimised fractal layouts for four fractal cells... 88

Figure 5.11 Percentage increase in capacity... 89

Figure 5.12 Average number of machines in a cell...90

Figure 5.13 Total internal and cooperative travelling distances......................................91

Figure 5.14 Number of cooperative routings.. 91

Figure 5.15 Sample cell dimensions and layout..92

Figure 5.16 Percentage improvement in processing distances...93

Figure 5.17 Material handling distance for two fractal cells with similar composition. 95

Figure 5.18 Routings in each sample...95

Figure 5.19 Improvement for varying amounts of fractals with similar compositions.. 97

Figure 6.1 Process and transport contracts in biological scheduling.............................103

Figure 6.2 Basic procedure for biological scheduling..105

Figure 6.3 Transport contracts in fixed-contract scheduling.. 106

Figure 6.4 Process contracts in fixed-contract scheduling... 107

Figure 6.5 Transport contracts in flexible-contract scheduling (active partner)...........108

Figure 6.6 Transport contracts in flexible-contract scheduling (passive partner)........ 109

Figure 6.7 Process contracts in flexible-contract scheduling (active partner)..............110

Figure 6.8 Process contracts in flexible-contract scheduling (passive partner)............I l l

Figure 6.9 Communication paths in continuous-matching scheduling..........................112

Figure 6.10 Snapshot of the biological simulation model...113

Figure 6.11 Transporter travelling network...114

Figure 6.12 Deadlock avoidance mechanism for transporters....................................... 114

Figure 6.13 Throughput time for biological scheduling...116

Figure 6.14 Lead time for biological scheduling ...116

Figure 6.15 Machine utilisation for biological scheduling...116

Figure 7.1 Generalised integration framework for manufacturing concepts...........119

Figure 7.2 Fractal cells for biological scheduling............... 120

List of figures

Figure 7.3 Attraction fields in fractal layouts with resource elements.......................... 121

Figure 7.4 Shop floor layout in the integrated system..122

Figure 7.5 Throughput time in the integrated system model... 123

Figure 7.6 Lead time in the integrated system model...123

Figure 7.7 Throughput time under changed product mix..124

Nomenclature

Nom enclature

cf fractal cell f

Cs specialised fractal cell,

D total demand,

D j demand of product type j ,

D f demand at fractal cell f

Di demand at any fractal cell z,

D j} demand of product type j at fractal cell f

d single product,

F number of fractal cells,

F r number of non-specialised fractal cells,

G sample difference,

J number of different product types,

h number of leftover products of type j allocated to fractal c e ll/

Iftn number of leftover machines of type m allocated to fractal cell f

M number of different machine types,

m machine type m,

ms machine in the specialised fractal cell cs,

N total number of machines,

N m number of machines of type m,

Nf number of machines in fractal cell f

Nfe number of empty machine fields in fractal cell f

Nt number of machines in any fractal cell z,

N s number of machines in specialised fractal cell cs,

Nfm number of machines of type m in fractal cell/

r total number of routing events between machines to process D

% size of fractal ce ll/in number of machine fields,

s total travelling distance (S = *S’int+ S C00p),

Scoop total cooperative travelling distance,

Scoop,d cooperative travelling distance for product d,

Sint total internal travelling distance,

Sint/ internal travelling distance for all products in fractal cell/

Sint/d internal travelling distance for product d in fractal c e ll/

xii

Nomenclature

‘S 'proc total internal and cooperative travelling distance (S p r0c = S i n t + S c o o p) ,

Sw weighted total travelling distance to reflect statistical differences in r

Tjm processing time of a product type j at machine m,

Um time availability of machine m,

x horizontal dimension of a cell (in machines) or the shop floor (in cells),

Xf horizontal dimension of cell Cf

y vertical dimension of a cell (in machines) or the shop floor (in cells),

yy vertical dimension of cell Cf

ZA size of tabu search neighbourhood.

Chapter One - Introduction

Chapter One - Introduction

This chapter introduces the research problem to be addressed. It

includes a review of the research background, rationale and

purpose. It also summarises the research objectives and the

expected outcomes. Later in the chapter, the research questions

that form the foundation for the investigation are formulated.

The chapter closes with an outline of the thesis.

1

Chapter One - Introduction

1.1 Background and rationale

The social, political and economic changes of the last two decades have resulted in an

increasingly volatile and unpredictable business environment characterised by a

shortening of product life cycles, diversified customer taste, increasing demand for

customised products, global competition and frequent changes in fashion and

technology (Clark and Fujimoto 1991, Levary 1992, Sharifi and Zhang 1999).

Manufacturing in this dynamic environment can be a challenging task as it requires

constant adaptation and rapid response (Balasubramanian et al. 2001). The traditional

manufacturing systems designed for stable long-term production of only a few product

variants are often unable to cope efficiently with the frequent changes in process

requirements and production orders (Bongaerts et al. 1997a, Kor’en et al. 1998). On the

other hand, the capabilities of lean manufacturing to handle disturbances have lately

been questioned in the academic literature, e.g. Suda (1989), Cusumano (1994),

Katayama and Bennett (1996) and Gould (1997). In addition, Small and Downey (1996)

and Yang et al. (2004) noted that turbulent times and uncertainty in the business

environment are the main causes of failure in manufacturing industry. Hence, new more

flexible manufacturing systems capable of cost-effective high variety and low volume

production with frequently changing product demand and mix are required.

As a result, several new paradigms for the design, planning and control of

manufacturing systems have recently been proposed and studied in the academic

literature. They include some acclaimed concepts such as agile (e.g. Gunasekaran 1998,

Sharifi and Zhang 2001), holonic (e.g. Van Brussel et al. 1998, McFarlane and

Bussmann 2000), fractal (e.g. Wamecke 1993, Venkatadri et al. 1997), biological (e.g.

Ueda et al. 1997b, Ueda et al. 2001a), virtual (e.g. Irani et al. 1993) and responsive (e.g.

Gindy et al. 1996, Saad and Gindy 1998) manufacturing. These theories possess many

similar features such as autonomy of their basic units, distributed structures and

cooperation (Tharumarajah et al. 1996). These 'next generation manufacturing systems'

(also known as '21st century manufacturing systems') have been specifically designed to
•

meet the requirements of an unstable and unpredictable marketplace (Wyns 1999). They

have been claimed to offer more flexible, responsive and adaptable structures and

processes than the traditional manufacturing approaches (Tharumarajah et al. 1996,

Sousa et al. 1999). Although the demand for and the potential of these new theories

2

Chapter One - Introduction

have been widely recognised in the academic literature, very little in-depth research of

their design methodologies and capabilities have been conducted (Sun and Venuvinod

2001). In addition, their deployment in the industry is almost nonexistent due to the

abstract nature of the concepts and the lack of clear implementation procedures. Thus, it

is time to investigate the features and processes of these emerging manufacturing

systems.

So far, the reported research on 21st century manufacturing systems has predominantly

addressed the paradigms in isolation focusing each time on only one specific area of

operations management. Examples of this are shop-floor configuration in fractal (e.g.

Venkatadri et al. 1997, Montreuil et al. 1999) and biological (e.g. Vaario and Ueda

1997) organisations and scheduling in holonic (e.g. Bongaerts et al. 1997b, Sousa and

Ramos 1998), biological (e.g. Vaario and Ueda 1998a) and agile (e.g. He et al. 2001)

manufacturing systems. This approach has lead to a fragmented research with partly

incompatible views on the basic characteristics of the concepts and their application.

The reference architectures proposed by Wyns (1999) for holonic and Ryu and Jung

(2003) for fractal manufacturing systems provide more comprehensive visions of these

theories but lack clear implementation procedures. The ongoing intelligent

manufacturing system (IMS) research programme, of the next generation of

manufacturing systems (NGMS) differs from any previous and subsequent research in

its strategy of studying multiple concepts simultaneously, namely agile, fractal,

biological, and autonomous & distributed manufacturing. It attempts to merge them into

a unified framework that covers all product-related functions of a global enterprise from

production to logistics and post-sales services (NGMS-IMS consortium 2000).

Although the idea of integrating multiple concepts into a single system in order to

utilise the most innovative features of various theories simultaneously is viable and

promising, the extensive scope of the NGMS-IMS project complicates the resulting

system and limits the level of detail it can contain. In addition, an integration of the

paradigms takes place on operative borders only, which simplifies the application of the

concepts but prevents full exploitation of their capabilities. To truly benefit from the

distinctive features of several paradigms, the integration of concepts should occur at the

functional level, for example in factory floor operations. Up until now only a few

research papers with limited scope have addressed this issue, e.g. Saad (2003) merged

3

Chapter One - Introduction

virtual and responsive concepts to develop a procedure for the reconfiguration of

cellular manufacturing systems.

The idea of constructing a new system by combining several highly advanced concepts

is appealing as it potentially offers a simple and fast approach to system development

and enables the simultaneous exploitation of distinctive beneficial features of several

concepts. However, for the integration to succeed it is important to first carefully define

the scope of the new system and the performance objectives. The mix of concepts to be

merged- should then be selected so that i) they have similarities that enable the

integration, ii) they posses one or more distinctive features that support the objective

and are applicable within the scope of the system, and iii) when combined they cover all

areas within the scope of the system. As this requires detailed knowledge about the

strengths and weaknesses of each concept and their common and distinct features, a

comprehensive analysis and comparison of the emerging manufacturing paradigms is

vital. The assessment of fractal, holonic and biological concepts has been conducted by

Tharumarajah et al. (1996, 1998), Kadar et al. (1998), Sousa et al. (1999) and Ryu and

Jung (2003), who noted that the underlying principles of the paradigms are very similar.

Based on these reports and the studies by Venkatadri et al. (1997), Montreuil et al.

(1999) and Askin et al. (1999) in the fractal layouts, by Vaario (1996), Ueda et al.

(1997b, 1998), Fujii et al. (1997), Vaario et al. (1997) and Vaario and Ueda (1998a) in

the dynamic scheduling in biological organisations, and by Gindy et al. (1996, 1999),

Gindy and Saad (1998) and Saad and Gindy (1998) in the responsive manufacturing

concept of presenting machine capabilities and product processing requirements as

resource elements, fractal, biological and responsive paradigms are chosen in this

research for integration within the scope of shop floor operations, i.e. layout design,

scheduling and control. The objective of the integrated system is to enable rapid and

cost-effective response to changes in the manufacturing environment.

1.2 Purpose

The purpose of this research is to develop an integrated reference architecture for

configuration, planning and control of the 21st century manufacturing systems in order

to facilitate efficient production in today's volatile and unpredictable business

environment. In this context, a reference architecture can be defined as a generalised

4

Chapter One - Introduction

model or template that outlines the principles and rules for system development in a

specific domain (Wyns et al. 1996).

1.2.1 Research objectives

The principle aim of this research is to enable manufacturing enterprises to adapt and

find a rapid and balanced response to customer requirements under conditions of

uncertainty and continuous change. To meet this challenge a number of specific

objectives are identified and summarised as follows:

a) to identify the features of emerging manufacturing concepts,

b) to provide a comprehensive comparison of the design, operational and

organisational characteristics of these paradigms (namely fractal, holonic and

biological manufacturing systems) in order to identify the common and

distinctive features of the concepts,

c) to develop a new integrated reference architecture from the combination of

responsive, biological and fractal concepts to successfully handle the

configuration/reconfiguration, planning and control activities, and

d) to evaluate the proposed architecture using modelling and computer simulation

1.2.2 Expected outcomes

This research is expected to yield a significant contribution to the design,

implementation and integration of fractal, biological and responsive manufacturing

systems. The expected outcomes can be summarised as follows:

a) a report on the characteristics of the 21st century's manufacturing systems,

b) a comprehensive comparison of the design, organisational and operational

features of these concepts,

c) a framework for the integration of fractal, biological and responsive

manufacturing systems,

d) a methodology for shop floor configuration in fractal manufacturing systems,

e) a procedure for real-time scheduling in biological manufacturing systems,

f) a process for representing resource capabilities and product processing

requirements as resource elements,

g) a mechanism for incorporating resource elements into fractal layout design and

biological scheduling, and

5

Chapter One - Introduction

h) an evaluation of the proposed integrated reference architecture using

experimental data obtained through computer simulation

1.3 Research questions

The main issues addressed in this study can be summarised in three questions, which

form the basis of the research:

Question 1:

What are the distinctive and common features o f the emerging manufacturing

concepts?

Question 2:

What benefits can be achieved through the application o f these new paradigms?

Question 3:

To what extent is it possible and beneficial to integrate some o f these concepts in

order to exploit their distinctive characteristics regarding the production

planning and control activities, and how could this be done?

In order to answer these research questions the study concentrates on identifying and

exploiting the capabilities of the new manufacturing theories. The research focus will be

defined in more detail at the end of the next chapter after relevant literature has been

reviewed.

1.4 Outline of the thesis

The conducted research can be divided into three main phases: i) review and

comparison of the emerging manufacturing systems, ii) development of an integrated

reference architecture, and iii) evaluation of the proposed reference architecture. This

work is documented and presented in this thesis in eight chapters as follows:

Chapter 1 introduces the research problem that is to be addressed. It includes a review

of the research background, rationale and purpose. It also summarises the research

objectives and the expected outcomes. Later in the chapter, the research questions that

form the foundation of the study are formulated. Finally, an outline of the different

chapters in the thesis is provided.

6

Chapter One - Introduction

Chapter 2 provides an overview of the theory and recent academic research regarding

the traditional manufacturing systems and the emerging manufacturing paradigms. The

chapter begins with a short review of the history of manufacturing management and an

assessment of the reasons behind today's volatile business environment. Next, reference

architectures are introduced and the traditional manufacturing layouts and production

planning and control techniques are discussed. The later half of the chapter is dedicated

to the review and analysis of the next generation of manufacturing systems. Finally, a

comprehensive comparison of the design, operational and organisational features of

fractal, biological and holonic manufacturing concepts is conducted. The chapter

concludes with the formulation of the research focus.

Chapter 3 describes the methodology employed to answer the research questions. First,

the general approach for solving the research problem is determined and justified. Next,

the major steps in the research process are summarised. The most important tools and

techniques deployed during the study, including mathematical and conceptual

modelling, heuristic algorithms and computer simulation are reviewed and evaluated.

Finally, a hypothetical case study for the implementation, testing and analysis of the

developed reference architecture is introduced.

Chapter 4 reports on the development and application of the responsive manufacturing

paradigm in the context of dynamic self-organisation-based scheduling systems. First,

the relationship between manufacturing flexibility and responsiveness is examined.

Then the potential for flexibility in the resource-element-based representation of

machine capabilities and product processing requirements are investigated.

Subsequently, a procedure for the application of resource elements in self-organisation-

based scheduling is proposed. The methodology is then modelled and simulated using

Arena simulation software. Finally, a number of experiments are conducted based on

the hypothetical case study.

Chapter 5 proposes a methodology for shop floor configuration in fractal manufacturing

systems. It includes an overview of the layout design process and a discussion on

system re-configurability. It also summarises the existing fractal layout design

approaches. The chapter goes on to propose seven distinct fractal cell configuration

7

Chapter One - Introduction

methods for different system design objectives and constraints, and to develop an

integrated design methodology. In addition, mathematical models applicable to the

different design stages are presented. The procedure is modelled and simulated with

heuristic algorithms deployed using C + + programming language. Finally, the procedure

is applied to the hypothetical case study. The quality of the resulting layouts is assessed

and compared against a random arrangement of machines. The chapter ends with a

study on the flexibility of these layouts.

Chapter 6 suggests a methodology for dynamic self-organisation-based distributed

scheduling and control in biological manufacturing systems. First, the static and

dynamic scheduling approaches and centralised and distributed control techniques are

reviewed. Then the exiting biological scheduling methods are summarised. This is

followed by a proposal for a biologically-inspired decentralised real-time scheduling

methodology. Three types of dynamic scheduling are then identified and operational

procedures are developed. Finally, the proposed methodology is modelled and

simulated using Arena simulation software and applied to the hypothetical case study.

Chapter 7 develops an integrated reference architecture for the configuration, planning

and control of the 21st century manufacturing systems. A framework for the integration

of fractal, biological and responsive concepts is developed based on the conducted

research into fractal layouts, biological scheduling and control, and resource elements.

The interconnections between these concepts under a unified framework are

investigated and defined. After that, the proposed framework is generalised to formulate

a universally applicable reference architecture for shop floor operations. Then the

proposed architecture is modelled and simulated using Arena simulation software.

Finally, the architecture is evaluated by applying it to the hypothetical case study.

Chapter 8 provides the concluding discussions of the research. It includes a review of

the relevant literature and the conducted research. It also comprises a discussion of

research findings and their broader implications. The limitations of the research

methods and findings are then discussed. Next, the contributions of the research to

knowledge in the field of the 21st century manufacturing systems are summarised. The

chapter ends with some suggestions for the future work.

Chapter Two - Literature review

Chapter Two - Literature review

In this chapter, an overview of the theory and recent academic

research regarding the traditional layout design and production

planning and control methodologies and the next generation of

manufacturing systems is presented. The chapter starts with a

short review of the history of manufacturing and operations

management. The ongoing debate over the lean manufacturing

methods and the rapidly changing global business environment

are identified as the main reasons behind the emergence of new

manufacturing concepts. Next, the reference architectures are

introduced and the limitations of the traditional manufacturing

layouts and production planning and control techniques are

discussed. The later half of the chapter is dedicated to the review

and analysis of the 21st century manufacturing concepts, which

are often referred to in the academic literature as the next

generation of manufacturing systems. Finally, a comprehensive

comparison of fractal, biological and holonic manufacturing

concepts is carried out in order to identify the distinctive and

common features among these paradigms that might enable their

integration. The chapter ends with the formulation of the

research focus.

9

Chapter Two - Literature review

2.1 Evolution of manufacturing systems

The Industrial Revolution is generally regarded as the beginning of modem-style

manufacturing. Prior to it, production was predominantly conducted by hand on a small

scale for limited markets. The transformation from traditional handicraft production to

modem industrial systems started in the English textile industry in the mid eighteenth

century when a series of technological innovations was introduced in favourable socio­

economic conditions (Mathias 1983). The innovations that enabled the substitution of

labour for machinery generated for the first time economies of scale that made large-

scale production in centralised locations attractive i.e. creating the factory system (Hopp

and Spearman 2000). Amongst the most important innovations of the early industrial

development were the steam engine, the notion of division of labour, and the concept of

interchangeable parts. Yet, the full potential of the latter two concepts was not utilised

until one hundred years later when the manufacturers in the United States embraced the

concept of mass production.

Over the course of the nineteenth century industrialisation spread from England to

continental Europe and North America. In the United States the rapid expansion of the

transportation network, e.g. railway and steamship, created a mass distribution system

that in the end of the century stimulated a revolution in mass production technology

(Hopp and Spearman 2000). As the volume of production and the size of factories grew,

the complexity of problems in the organisation, coordination and control of the

manufacturing processes increased (Duguay et al. 1997). This resulted in the rise of

scientific management (Taylor 1911), a managerial approach that focused on the

systematic organisation, optimisation and standardisation of work. In 1913 the

introduction of the moving assembly line extended the benefits of high-speed mass

production from process industries to the manufacturing of complex mechanical

products such as cars (Hopp and Spearman 2000). Duguay et al. (1997) summarised the

main characteristics of the traditional mass producers as follows: i) cost reduction is

obtained by increasing the volume of production, ii) the production system is improved

through major innovations, iii) direct labour executes tasks under the supervision of

managers, and iv) suppliers are made to compete against each other.

10

Chapter Two - Literature review

The American system of mass production was the leading market force until the 1970's

when finally the European and Japanese manufacturers had fully recovered from the

Second World War and were able to compete with American companies. The new

competitive pressures exposed limitations of traditional mass production, i.e.

inflexibility, large inventories, long output times, process instability, and extensive

quality assurance (Bullinger et al. 1995), and led to a decline of American industry. To

reverse this trend a number of technological, organisational and managerial innovations

were proposed. They included concepts such as lean manufacturing, total quality

management, concurrent engineering, business process reengineering, management by

objectives, world class manufacturing, manufacturing resource planning, statistical

quality control, computer aided design and manufacturing, computer integrated

manufacturing, intelligent manufacturing systems, flexible manufacturing systems, just-

in-time, etc. Although the value of some of these innovations have been questioned in

the academic literature (e.g. Sharifi and Zhang 1999, Hopp and Spearman 2000), in

general, their positive influence on the development of the mass production paradigm

have been recognised (e.g. Doll and Vonderembse 1992, Bartezzaghi 1999).

In the 1950's the Toyota Motor Company started to develop a distinctive style of

manufacturing. Instead of obtaining low costs through high volume, which was not an

option on the limited Japanese domestic market, the company focused on enabling high

model variety production through flexible processes (Hopp and Spearman 2000). The

new technique involved creating a smooth production flow, use of self-monitoring

machines, a flexible workforce, and the elimination of inventories, rework and set-up

times by implementing just-in-time and continuous improvement methods. During the

next two decades most Japanese companies adopted a similar system and by 1980 their

products dominated the world market. The performance gap between the Japanese and

Western manufacturers was highlighted by Womack et al. (1990). After surveying

about half of the world's car assembly capacity, they claimed that the productivity and

quality of the American and European car manufacturers was less than half of that of

the average Japanese company. Western plants also carried much higher inventories.

According to Womack et al. (1990) this performance difference was due to Japanese

'lean' manufacturing method. The principles of the concept are summarised in table 2.1.

11

Chapter Two - Literature review

Production (Toyota model) Product development (Honda model)
• Just-in-time small-lot production
• Minimal in-process inventories
• Geographical concentration of assembly

and parts production
• Manual demand-pull with kanban cards
• Production levelling
• Rapid setup
• Machinery and line rationalisation
• Work standardisation
• Foolproof automation devices
• Multi-skilled workers
• High level of subcontracting
• Selective use of automation
• Continuous incremental process
improvement

• Rapid model replacement
• Frequent model-line expansion
• Overlapping and compressed
development phases

• High levels of supplier engineering
• "Heavyweight" project managers
• Design team and manager continuity
• Strict engineering schedules and work
discipline

• Good communication mechanisms and
skills

• Multi-skilled engineers and design teams
• Skilful use of computer-aided design tools
• Continuous incremental product
improvements

Table 2.1 Principles of lean manufacturing and product development (Cusumano 1994)

The debate over lean production practices dominated the last decade of the twentieth

century. Western companies generally regarded the concept as a valuable tool for

improving their performance and competitiveness (e.g. Chase and Aquilano 1992,

Oliver et al. 1994, Spear and Bowen 1999). However, criticism started to emerge when

the manufacturers experienced difficulties in adopting the Japanese management style.

Reservations were expressed concerning the existence of a unified system (Wamecke

and Huser 1995, Muffatto 1999), the transferability of the concept to other countries

(Spina et al. 1996), the differentiation from the mass production paradigm (Ellegard et

al. 1992, Willis 1998, Bartezzaghi 1999, Katayama and Bennett 1999), the social and

economic implications (Cusumano 1994, Berggren 1994, Katayama and Bennett 1996,

Bartezzaghi 1999), and the robustness and viability of the concept to cope with changes

in the'marketplace (Suda 1989, Katayama and Bennett 1996, Gould 1997, Griffiths et

al. 2000, McCurry and Mclvor 2002). According to Katayama and Bennett (1999) the

success of Japanese companies during the 1980's was mainly due to the favourable

economic and social conditions that sustained the lean manufacturing strategy of

constant market share expansion via cost reduction and increasing product variety. The

economic crisis of the 1990's broke this cycle and brought about a more competitive

environment where the stable demand required by profitable lean production was more

difficult to obtain. On one hand this lead to attempts to modify the concept (e.g.

Muffatto 1999, Hines et al. 2004) and on the other to calls to develop a new more

adaptable paradigm (e.g. Katayama and Bennett 1996, Kidd 2000).

12

Chapter Two - Literature review

2.2 Present and future challenges in manufacturing

The 1990’s were characterised by an increasing speed of technological innovations and

social, political and economic changes (Kidd 2000). New developments in

communication and transportation technologies improved the speed and cost-efficiency

of information exchange and the movement of people and goods (Featherston 1999).

This facilitated the integration of national economies and dramatically increased

international trade. Moreover, the technological advancements made physical locations

of management and manufacturing facilities less important and enabled companies to

relocate their production operations to countries with lower labour costs (Hughes 1997).

Featherston (1999) also pointed out that the general trend at the time towards

democratic and liberal economies and global free-trade policies opened up new markets

and exposed the already saturated and stagnant domestic markets to competition from

abroad. The new competitors introduced product variety to markets previously

controlled by few domestic producers. At the same time, the increasing standard of

living, growing individualism and the emergence of new social groups diversified the

demand and helped to fragment the stable and homogenous mass market that had

dominated most of the twentieth century (Featherston 1999). Hughes (1997)

summarised the drivers of change within manufacturing as i) ubiquitous availability and

distribution of information, ii) accelerating pace of change in technology, iii) rapidly

expanding technology access, iv) globalisation of markets and business competition, v)

global wage and job skills shift, vi) environmental responsibility and resource

limitation, and vii) increasing customer expectations. Clark and Fujimoto (1991), Nagel

and Dove (1991), Doll and Vonderembse (1992) and Levary (1992) were some of the

first authors to identify the emergence of a new dynamic manufacturing environment.

More recently several other authors including Wamock (1996), Bongaerts et al.

(1997a), Gunasekaran (1998), Featherston (1999), Koste and Malhotra (1999), Sharifi

and Zhang (1999), Hitt (2000), Kidd (2000), St. John et al. (2001) and Manzini et al.

(2004) have made similar observations. Figure 2.1 illustrates the main forces in the

post-2000 marketplace.

The effects of these emerging and continuing trends are more demanding customers,

greater competitive intensity, and increased complexity in production technology and

coordination (St. John et al. 2001). Today’s highly informed, sophisticated and

13

Chapter Two - Literature review

Manufacturing
enterprise

Technological
• Emerging technologies
• Pace of change
• Potential for substitution
• Technology as an enabler

for new enterprise practices
• Environmentally friendly

technologies

Environmental
• Recycling
• Remanufacturing
• Reducing consumption
• Safe waste management

and disposal
• Process safety
• Global environment and

planetary management
• Development of non-fossil

fuel based society

Social
• Changing values and norms
• Changing population mix
• Demographics
• Labour supply
• Growing readiness of

ordinary citizens to engage
in direct action

• Quality of life
• Growing disillusionment

with materialism, science
and technology

Economic and market
• Regionalisation and

economic integration
• Globalisation
• Sustainable growth
• Emerging markets
• Shift of economic power to

Asia-Pacific region
• Diversity of global markets
• Niche markets
• Customisation and customer

choice
• Increasing competition

Political
• Basic human rights (health,

food, shelter)
• Democratisation of the

world
• Distribution of resources
• Emergence of participatory

democracy in Western
nations

• Peacemaking and
disarmament

• Relevance of nation states
• Re-emergence of local

cultural identities
• Re-emergence of federalism

Changing perceptions of
product
• Merging of goods and

services
• Green and safe products
• High value added products
• Individual customisation
• Shorter life cycles
• Reconfigurable products to

meet changing needs
• Multi-technology products
• Information and knowledge-

based products
• Substitution of services

for goods

Figure 2.1 Main drivers of change in manufacturing enterprises (Kidd 2000)

demanding consumers expect companies to continuously deliver lower prices, better

quality, a wider range of products, and a faster and better service (Wamock 1996). The

outcome is a growing demand for customised products, faster delivery time and time to

market, and rapid changes in order quantity and specification (Sharifi and Zhang 1999).

With companies facing aggressive competition on a global scale, the ability to rapidly

identify and satisfy the specific and individual needs of customers is becoming critical

to competition in many industries (Doll and Vonderembse 1992). Consequently, the

lines of competition have moved from the ability to supply the demand to product price,

quality, delivery time, after-sales service, and customer choice i.e. customer satisfaction

(Jin-Hai et al. 2003). Furthermore, operational capabilities to provide flexibility, speed

14

Chapter Two - Literature review

and responsiveness to customers are quickly replacing the traditional product

characteristics of quality, price and design as the order-winning criteria (Willis 1998).

To comply with these new requirements, manufacturing systems need to be able to cope

efficiently with large fluctuations in product demands, increasing product variety, and

shortening product life cycles (Koren et al. 1998, Sharifi and Zhang 1999). McFarlane

and Bussmann (2000) summarised the challenges faced by manufacturers as more

complex products, faster changing products, faster introduction of products, a volatile

output, and reduced investment. Thus, companies now compete in a climate of

uncertainty, unpredictability and highly turbulent market conditions (Esmail and Saggu

1996) characterised by continuous change (Koste and Malhotra 1999). Sharifi and

Zhang (1999) pointed out that the market changes are occurring faster and more

unexpectedly than ever before. Moreover, Davis (1995) identified the ability to adapt to

and-manage change as the most common problem facing organisations today, while

Small and Downey (1996) noted that turbulent times and uncertainty are the main

causes for failure in the manufacturing industry.

To stay competitive in this new dynamic and uncertain environment, manufacturing

companies need to be able to respond quickly and efficiently to unexpected changes and

disturbances (Ramasesh et al. 2001). Traditional manufacturing systems based on mass

production principles and designed for long-term, high-volume production of only a few

standardised products are often unable to cope under dynamically changing

circumstances, e.g. frequent changes in process requirements and production orders

(Koren et al. 1998, McCarthy and Tsinopoulos 2003). This is due to their structural

rigidity, deterministic approach to decision making in a stochastic environment,

hierarchical allocation of competencies, and insufficient communication and

exploitation of expertise (Sluga and Butala 2001). While in the past the ability to cost-

effectively produce a single product was enough for market success today it requires

flexibility, agility and versatility i.e. ability to handle continuous improvements and

change (Jin-Hai et al. 2003). Hence, there is a growing demand for more flexible,

autonomous, adaptable, reconfigurable and reliable production solutions (Ryu and Jung

2003, Simsek and Albayrak 2003). According to Benjaafar and Sheikhzadeh (2000),

today’s manufacturing systems should at foremost be designed to accommodate the

simultaneous production of several part types in varying quantities, and rapid and

15

Chapter Two - Literature review

smooth product line shifts without major retooling, resource reconfiguration or

equipment change. To handle the complexity and dynamism in the manufacturing

environment, several new paradigms have recently been proposed and studied in the

academic literature. Wyns (1999) noted that the novel concepts such as agile (e.g.

Gunasekaran 1998, Sharifi and Zhang 2001), holonic (e.g. Van Brussel et al. 1998,

McFarlane and Bussmann 2000), fractal (e.g. Wamecke 1993, Venkatadri et al. 1997)

and biological (e.g. Ueda et al. 1997b, Ueda et al. 2001a) manufacturing have been

especially designed to meet the requirements of an unstable and unpredictable

marketplace. They also offer more flexible, responsive and adaptable structures and

processes than the traditional manufacturing approaches (Tharumarajah et al. 1996,

S o u sas al. 1999).

2.3 Reference architectures

The first solution to a sufficiently difficult task can often be adopted as template to

resolve future problems of the same kind. A specific architecture or model in any

domain can be referenced to by others working in the same domain for comparison and

to emphasise shared characteristics (Wyns 1999). The copies and adaptations of the

architecture normally differ in some respects but adhere to a set of coherent

fundamental design principles (Kidd 2000). Hence, the specific reference model can set

a common language in the domain if it is used by a large amount of people working in

the field. This simplifies communication and facilitates a conceptual understanding

through direct comparison with it (Williams et al. 1994).

In most domains no single specific architecture could satisfy all requirements of any

arbitrary design problem. Specific factors attributed to a variety of case related

characteristics need to be taken into account to define a suitable system architecture

(Wyns 1999). Kidd (2000) refers to these parameters as case sensitive complexity

factors caused by unique characteristics of each business sector and company which in

turn cause system architectures to differ. A reference architecture can provide a

framework where some of its features are universally valid and present useful solutions

for a large number of design problems (Wyns 1999). A system architecture would then

be a composite of well-known elements from a reference architecture and necessary

adaptations to cater for the specific requirements (Wyns 1999), as illustrated in figure

16

Chapter Two - Literature review

2.2. Where specific system architectures tend to be fairly dissimilar due to case sensitive

factors, a reference architecture would benefit from ignoring any features that are

strongly dependent on local factors to reduce system complexity by removing these. In

such a scenario a reference architecture would be more useful as theoretical model with

a high level of abstraction. It would need to be generic and may not need to exist as a

proven and functional system to serve as a template. Williams and Vosniakos (1996)

recommend generic and reusable reference models to support companies as foundation

for design or comparison. Burkel (1991) describes reference architecture as a

framework to guide the project during design and implementation by the means of a

structured methodology, the formalisation of operations and the support tools.

Reference I------\ System
architecture 1------}/ architecture

System
implementation

Case sensitive
complexity factors

(Kidd 2000)

Product Manufacturing Supply chain M arket
characteristics characteristics characteristics characteristics
• Product • Manufacturing • Number of • Intensity of

technologies processes and companies competition
• Product technologies involved • Degree of market

complexity • Complexity of • Position in fragmentation
• Capital intensity manufacturing supply chain • Type of market

of new product • Customer • After market (commodity etc.)
development decoupling point needs • Global diversity

• Time scales for (assemble-to- • Nature of of markets
new product stock, assemble- transactions • Opportunities
development to-order, etc.) for greater

• Importance of • Production segmentation
customers' volumes and • Customer
perception of batch sizes expectations
product integrity • Production mix • Regulatory

• Product • Lead times constraints
modularity

• New or
established
product concepts

• Services or
goods or a
mixture

Enterprise
characteristics
• Company size
• Resources

available
• Geographic

distribution
• Degree of

specialisation
• Ownership
• Organisation

Figure 2.2 Relationship between reference architecture and system architecture

17

Chapter Two - Literature review

With regard to reference models, Buchel et al. (1984) stress the importance of

conceptual architectures to the design process of manufacturing planning and control.

The emergent manufacturing methodologies may serve as guiding design principles

rather than exact blueprint for possible implementation in specific system architectures.

Perry and Wolf (1992) recognise the reference architecture as architectural style that

describes well-known elements and their functions, interactions, dependencies and

constraints, which the designer can use in ways that are appropriate to relevant case

sensitive factors. On this basis a generic and theoretical reference architecture can be

developed as a design guide to manufacturing systems (Chalmeta et al. 2001). Elements

and functions of new and emerging manufacturing paradigms can be incorporated and a

common language and taxonomy can be developed to emphasise commonality and

shared features among various theoretical manufacturing methodologies and any

specific system architectures.

2.4 Traditional manufacturing systems

Manufacturing is the process of converting raw material into finished products

(Kalpakjian and Schmid 2001). It is generally a complex activity, which in addition to

the direct production functions include a variety of operations such as product design,

process development, plant design, capacity management, product distribution, plant

scheduling, quality control, workforce organisation, equipment maintenance, strategic

planning, supply chain management, etc. (Hopp and Spearman 2000). These operations

form the managerial system, which support and control the manufacturing activities and

ensure that the system achieves its principle objectives, i.e. to produce the specified

products on schedule and at a minimum cost (Chase and Aquilano 1992).

Simultaneously, for a company to be successful in the long term, the customer service

objectives have to be satisfied with efficient operations, i.e. efficient use of resources

(Wild 1993). However, as it is not usually possible to maximise performance on all

aspects of both objectives, companies must balance and prioritise them to achieve a

satisfactory performance and to distinguish themselves from others in the marketplace

(Wild 1993). The chosen strategy influences the design, planning, operation and control

of the manufacturing system resulting in a unique production scenario for each

company (Wild 1993).

18

Chapter Two - Literature review

Traditional manufacturing systems refer to the production concepts developed

immediately after the Second World War to satisfy a high demand for low-cost

standardised products (Doll and Vonderembse 1992). At that time, large extensively

automated factories with complex organisational structures were used to obtain the

economies of scale associated with mass production (Jin-Hai et al. 2003). The aim was

to achieve low unit cost by spreading fixed costs over the largest possible volume of

output (Willis 1998). Although the demand has since diversified, mass production based

systems are still dominant manufacturing concepts (Gunasekaran 1998). Traditionally,

manufacturing systems have been categorised in terms of the manner in which materials

move through the plant, i.e. process structures, or in terms of the physical arrangement

of manufacturing resources, i.e. facility layouts. Both of these classifications focus on

the movement and flow of materials and the volume and variety capabilities of the

systems.

2.4.1 Process structures

The term process structure refers to the manner and nature of the flow of materials

through a plant, i.e. the routes, flow rate and throughput time of the products (Wild

1993). In general, this flow can be continuous, repetitive or intermittent. Krajewski and

Ritzman (2005) classified the manufacturing systems by process type into five

categories, namely project, job, batch, line and continuous processes. Figure 2.3

illustrates the different process structures in relation to product types, i.e. the volume-

variety characteristics of the product demand. The figure indicates that increasing

volume and decreasing product variety correspond to lower unit costs, more specialised

equipment and standardised material flows (Chase and Aquilano 1992).

Project processes are used to manufacture expensive and highly customised or one-of-a-

kind products, such as construction, airplanes and ships, in low volume and high variety

(Chase and Aquilano 1992). Job processes (job shops) provide maximum flexibility for

the production of low-volume highly customised items using shared resources and a

high variety of routings through the plant (Chase and Aquilano 1992). In batch

production products are processed in small lots according to customer specification

using disconnected flow lines with a limited number of identifiable routings (Hopp and

Spearman 2000). In mass or line production a narrow variety of items with similar work

contents are produced in large lots over a significant period of time using connected

19

Chapter Two - Literature review

Less customisation, less variety, higher volume and lower unit costs

Product characteristics

Process
characteristics

One-of-a-kind
products, made

to customer
order

Low volume,
low

standardisation

Multiple
products,
moderate
volume

Few major
products,

higher volume

High volume,
high

standardisation,
commodity

products

Complex and
highly customised
process, unique
sequence of tasks

Project
process

Jumbled flows,
complex work
with many
exceptions

x

Job
process

x

Disconnected line
flows, moderately
complex work ; x x

Batch
process

\

Connected line,
routine work

: x

Line
process

\

Continuous flows,
highly repetitive
work x x

Continuous
process

£oC<D
<L>
1-1OsT3aC3aoC<u
t>0
i- i<D
'O
coco0̂>

£
X<u
foo
<D

Figure 2.3 Product-process matrix (Krajewski and Ritzman 2005)

flow lines (Wild 1993). Finally, continuous processes deal with non-discrete products

that automatically flow down a fixed route for an extensive period of time (Hopp and

Spearman 2000). These processes are typically found in process industries.

2.4.2 Layout types

The study of facility layout relates to the arrangement of physical production resources

within a productive facility (Chase and Aquilano 1992). Its general objectives are to

minimise the physical movement and handling of materials, to maximise the capacity

utilisation (Wild 1993) and to ensure a smooth work flow (Chase and Aquilano 1992) in

accordance with the system objectives. Four basic types of shop floor configurations

can be identified, namely fixed position, process, cellular and product layouts (Chase

and Aquilano 1992). Figure 2.4 illustrates the arrangement of resources in each layout

type, while figure 2.5 shows the volume-variety characteristics of the different process

20

Chapter Two - Literature review

A -

B

1
+■ Work area •+- D

C

0 0
0 0

0 0 0
0 0 0

c c 0 0 0
a) fixed position layout b) process/functional layout

T] D

| C B |

000
000

00 000
c) cellular layout d) product layout

Figure 2.4 Arrangement of facilities in different layout types

High

"C«>

Low

Project High

Job

Batch

Line/
Mass

Continuous

Low Volume High

a) process types

Fixed position

Process/
Functional

Cellular

Product
Low

Low Volume High

b) layout types

Figure 2.5 Volume-variety characteristics of different process and layout types

structures and layout types. The latter figure suggests that each layout type is suitable

for a particular form of manufacturing, depending on the volume and the variety of

products involved (Wild 1993).

In a fixed position layout the product remains at one location while manufacturing

equipment moves to the product (Chase and Aquilano 1992). These configurations are

mainly used in civil engineering projects and the manufacture of large items such as

ships and aircraft (Wild 1993). With a process or functional layout all operations of a

similar nature are grouped together in the same department (Wild 1993), as illustrated in

21

Chapter Two - Literature review

figure 2.4b. Since the products in this layout travel from department to department for

processing, the functional areas are arranged on the shop floor according to the main

flow patterns in order to minimise routing distances (Chase and Aquilano 1992). These

functional layouts enable a high degree of production flexibility, but suffer from high

levels of work-in-progress, long throughput times, and excessive material handling

costs, and are therefore best suited for low volume-high variety manufacture (Wild

1993).

To achieve a cellular or group layout functionally dissimilar machines are grouped

together into cells and dedicated for the processing of a family o f parts, i.e. parts with

similar processing requirements (Farrington and Nazemetz 1998). The objective is to

streamline material flows and to minimise the setups in the batch manufacture of

products (Co and Araar 1988). Cellular layouts are considered a feasible option when

distinctive part families exist, multiple copies of each type of machine are available, and

if the machines are easily movable (Chase and Aquilano 1992). The procedure used to

specify part families and cell contents is referred to as group technology (Wild 1993). It

consists of three phases: i) development of a classification and coding system for items,

ii) grouping parts into families with similar processing requirements and routings, and

iii) creating the physical layout by positioning machines into cells and by positioning

cells relative to each other (Chase and Aquilano 1992). The benefits of these cellular

configurations are summarised by Sarker and Li (2001) as reduced setup times,

improved throughput times, reduced work-in-process inventories, reduced material

handling costs, and improved material flow and machine utilisation. However, due to

their fixed structure and limited routing flexibility, group layouts are often unable to

respond to changes in demand patterns (Kochikar and Narendran 1998) without

expensive and time-consuming physical reconfiguration (Sarker and Li 2001). The

layout design problem in cellular manufacturing has been widely studied in the

academic literature, e.g. Agarwal and Sarkis (1998), Akright and Kroll (1998), Billo

(1998), Wang et al. (2001) and Molleman et al. (2002).

The last type of product layouts envisions facilities to be arranged in line with the

processing sequence required by the product and linked by a material handling device

(Chase and Aquilano 1992). These configurations are generally appropriate for high

22

Chapter Two - Literature review

volume-low variety manufacturing of complex standardised products, i.e. mass

production (Wild 1993). Traditionally, the flow lines were designed to handle only one

type of product or model (Bukchin 1998). The goal was to minimise the production

costs by maximising the volume (Wild 1993). However, the changing customer demand

has increased the variety of models of each product that needs to be assembled (Duplaga

and Bragg 1998). This has resulted in the development of multi-model and mixed-

model flow lines to coincide with the single-model lines. The cost-effective production

of more than one product on a single line has been made feasible by flexible

manufacturing systems (Bard et al. 1992). However, the improvements in dealing with

product variety are limited to manufacture of products with similar work content (Wild

1993). An important drawback of product layouts is that a single machine breakdown

can stop whole line (Wild 1993). To improve system reliability, Koren et al. (1998)

proposed the use of parallel and hybrid configurations instead of the standard serial

layout. In general, product layouts are relatively inflexible, but can in a stable high

demand environment provide minimum work-in-progress, low, throughput times,

minimum material handling costs, and high machine utilisation, i.e. low unit costs (Wild

1993).

2.4.3 Production planning and control

The production planning and control (PPC) function and its associated systems are

responsible for the planning and control of manufacturing activities with the aim of

satisfying the production requirements as effectively as possible (Bonney 2000). It is a

hierarchical procedure where different levels operate in different time scales, i.e. with a

long-term, medium-term or short-term planning horizon (Chase and Aquilano 1992).

Although the production planning and control systems vary among different companies

and production scenarios (i.e. the range of products to be produced, production volume

requirements, product due-date requirements, the production system capacity, the

management and production strategies adopted, and the part transfer approach to be

used), the basic structure and components of the system remain the same (England

2004). This basic framework is illustrated in figure 2.6.

Traditionally, in a mass production environment products are produced according to the

demand forecast (England 2004). This production strategy, known as make-to-stock,

focuses on ensuring the product availability by carefully managing the stock levels

23

Chapter Two - Literature review

(Wild 1993). However, the growing demand for customised products has resulted in a

shift towards more customer focused approaches, namely make-to-order, where

products are produced only after an order request has been received from a customer

(England 2004). Although this strategy reduces the storage costs and increases

flexibility, the time from order to delivery is longer (England 2004). Hence, it is only

suitable for manufacture where customers are willing to wait longer for the delivery.

The lack of information on the short-term planning horizon makes inventory planning

and production scheduling difficult, especially where the system was designed for stable

make-to-stock environment (England 2004). Thus, it is likely that unpredictable demand

patterns result in high variations in system utilisation (Rahimifard et al. 1999). Yeh

(2000) and England (2004) noted that the make-to-order production strategies can yield

great benefits in supporting modem order requirements; however better planning and

control techniques are required. In addition to the make-to-stock and make-to-order

strategies, several other approaches that offer varying levels of customer service have

recently been proposed in the academic literature, e.g. assemble-to-order (Inman and

Schmeling 2003) and engineer-to-order (Little and Rollins 2000).

Long-term
planning horizon

ERP
JIT

Medium-term i
planning horizon [

Short-term
planning horizon

Aggregate
Production
Planning

Capacity
Requirements

Planning

Vendor
Requirements

Planning

Production
Activity Control

Inventory
Planning

Resource
Requirements

Planning.

Demand
Management

Master
Production
Scheduling

Production
Scheduling

Figure 2.6 Basic production planning and control framework (England 2004)

24

Chapter Two - Literature review

Demand management, resource requirement planning and aggregate production

planning are based on long-term decisions performed at the highest level of the.

production planning and control hierarchy, as illustrated in figure 2.6. Planning requires

an estimated forecast of the future product demand, calculation of the level of capacity

required to meet this demand in a cost-efficient way, and a specification of the optimal

combination of production rates, work force levels, and inventory holdings to meet

expected fluctuations in the demand (Wild 1993). Together these activities help to

formulate the master production schedule that identifies over a medium time period (i.e.

weeks) what will be produced and when (Chase and Aquilano 1992). The function of

production scheduling then divides the master production schedule up into a short-term

(i.e. days and hours) schedule by considering the capacity requirements, vendor

requirements and inventory plans (England 2004). The production schedule includes

information about when each product is to be processed on which machine and in which

order (Hopp and Spearman 2000). Its main objective is to generate a feasible work plan

for the shop floor operations that meets the order due dates and optimises resource

utilisation (England 2004). Traditionally, scheduling has been performed prior to

production using rigid and static plans (England 2004). However, the recent changes in

customer expectations have created a demand for more dynamic and flexible scheduling

approaches that enable frequent re-scheduling based on the latest system status i.e.

changes in production orders and resource availability (e.g. Alvarez and Diaz 2004,

Babiceanu et al. 2005). The execution of production schedules on the shop floor on a

day-to-day basis is the responsibility of production activity control (England 2004). Its

major functions are shop planning (to ensure resource availability), order dispatching,

lot control, managing changes to shop orders (e.g. rework), and providing feedback of

operational performance (Chase and Aquilano 1992). Brennan and Norrie (2001) and

Maione and Naso (2001) noted that the traditional shop floor control systems lack the

flexibility required by today’s dynamic environment.

Materials requirements planning (MRP), manufacturing resources planning (MRP2),

enterprise resource planning (ERP), just-in-time (JIT) and optimised production

technology (OPT) are production planning and control systems that link scheduling and

inventory systems together enabling companies to manage their inventories and

resources more efficiently in a stable and predictable manufacturing environment

25

Chapter Two - Literature review

(England 2004). The MRP system uses the master production schedule, the bill-of-

materials and inventory data to identify detailed materials requirements and production

plans to satisfy demand (Wild 1993). As this plan is created without considering the

capacity constraints of the production system, its feasibility needs to be evaluated. This

is the activity of capacity requirements planning. MRP2 and ERP are extended versions

of MRP and are known as ‘push’ systems, while the OPT and JIT are ‘puli’ systems

(England 2004). These traditional production planning and control systems have

received extensive criticism in recent years due to their rigid hierarchical structures and

downstream information flows that restrict system reconfiguration, reliability and

expansion i.e. reactivity to disturbances (e.g. Gou et al. 1998, Giebels et al. 1999,

Bongaerts et al. 2000, Wang 2001). In addition, Hopp and Spearman (2000) highlighted

problems with long lead times and capabilities to implement changes, i.e. small changes

in the demand can cause major changes in the shop floor, hence changes are avoided.

2.5 Emerging manufacturing paradigms

The inability of the traditional manufacturing systems to adapt to changing market

conditions have been widely recognised (e.g. Gunasekaran 1998, Katayama and Bennett

1999, Sharifi and Zhang 1999). As a result, several new production theories that go

beyond the conventional models of manufacturing have recently been proposed and

studied in the academic literature, e.g. agile (e.g. Gunasekaran 1998, Sharifi and Zhang

2001), holonic (e.g. Van Brussel et al. 1998, McFarlane and Bussmann 2000), fractal

(e.g. Wamecke 1993, Venkatadri et al. 1997) and biological (e.g. Ueda et al. 1997b,

Ueda et al. 2001a) manufacturing. The fundamental problem these emerging paradigms

face is how to achieve the cost-efficiency of mass production systems in a rapidly

changing high variety and low volume production environment. Figure 2.7 summarises

some of the most promising and best known new concepts.

2.5.1 Agile manufacturing

Agile manufacturing was one of the first new paradigms to emerge. It was proposed by

Nagel and Dove (1991) as a tool for restoring the competitiveness of the American

industry. The researchers defined agile manufacturing as “the ability of an organisation

to thrive in the competitive environment of continuous and unanticipated change and to

respond quickly to rapidly changing markets driven by customer based valuing of

26

Chapter Two - Literature review

products and services”. Thus, agility comprises two main factors: i) responding to

changes (anticipated or unexpected) in a proper way and in due time, and ii) exploiting

changes and taking advantage of them as opportunities (Sharifi and Zhang 2001). The

concept builds on four underlying principles, namely delivering value to customers,

being ready for change, valuing human knowledge and skills, and forming virtual

partnerships (Goldman et al. 1995), as illustrated in figure 2.8. Yusuf et al. (1999)

described agility as “the successful exploration of. competitive bases, i.e. speed,

flexibility, innovation, reactivity, quality and profitability, through the integration of

reconfigurable resources and best practices in a knowledge-rich environment to provide

customer-driven products and services in a fast changing market environment”. Sanchez

and Nagi (2001) noted that “agility is characterised by cooperativeness and synergism,

by a strategic vision that enables thriving in face of continuous and unpredictable

— Virtual cellular manufacturing (USA)

— Holonic manufacturing (Japan)

i— Agile manufacturing (USA)

r— Biological (bionic) manufacturing (Japan)

?— Fractal manufacturing (Germany)

r— Responsive manufacturing (UK)

= 4= - — 1 -■ ->
1982 1989 1991 1992 1993 1995

Figure 2.7 Timescale for emerging manufacturing concepts

Agile
manufacturing

Core competence
management

Knowledge-driven
enterprise

Virtual enterprise Capability for
reconfiguration

Figure 2.8 Core concepts of agile manufacturing (Yusuf et al. 1999)

27

Chapter Two - Literature review

change, by the responsive creation and delivery of customer-valued, high quality and

mass customised goods and services, by nimble organisation structures of a

knowledgeable and empowered workforce, and facilitated by an information

infrastructure that links constituent partners in a unified electronic network”. Hence,

agility is: i) a response to change and uncertainty, ii) the building of core competencies,

iii) the supply of highly customised products, iv) the synthesis of diverse technologies,

and v) intra-enterprise and inter-enterprise integration (Jin-Hai et al. 2003). In effect,

agility is the capability to respond flexibly and respond speedily (Conboy and Fitzgerald

2004).

To realise the strategic and operational benefits of agile manufacturing Meredith and

Francis (2000) proposed an agile manufacturing reference model, illustrated in figure

2.9, which provides an integrated definition of the components of agility. They also

identified the following attributes of an agile manufacturing facility i) it produces

products to order, ii) it meets the customer’s specific needs, iii) it achieves a speed and

flexibility in its functioning that equals the speed and flexibility of its technologies, iv)

it mobilises and manages knowledge intelligently, v) it adopts new ways of working,

Flexible
assets
and

Agile
.scoreboard

Full
deployment

Fast
new product

^ • ^ /a c q u is i t io n
Rapid

problem
solving

He \ ,
Rich

information
systems

Strategic
commitment

Agile
strategy

Agile
processesWide-deep

scanning

Agility
Agile benchmarking
linkages y iR)

Deep
I I I c / \ . customer

Hid \ insight

Aligned
suppliers

Continuous
learning

Rapid, able
decision
m ak in g / Multi­

skilled/
flexible
people /Adaptable

structure
Performing
partnerships

Figure 2.9 Agile manufacturing reference model (Meredith and Francis 2000)

28

Chapter Two - Literature review

e.g. team working, and vi) it creates virtual projects and temporary organisations to add

capabilities when needed. Yusuf et al. (1999) recognised similar attributes in other

decision domains. Their summary of agile practices is presented in table 2.2. Likewise,

Willis (1998) noted that the operational competitive requirements of agile

manufacturing, i.e. speed, flexibility, and responsiveness to customer, can be achieved

by streamlining the operational functions of a company, namely customer order and

delivery process, product development, production process, and supplier network. In

essence, this involves i) horizontal and parallel business processes, ii) close

relationships between management and the customer, iii) functional jobs in a flexible

focused factory environment, iv) fewer management levels, v) the rapid response to new

market opportunities and threats, vi) uniformity with flexibility, vii) fast development,

production, and release of products, viii) the ability to rapidly modify products and

change output volumes, and ix) fast delivery of customised products (Willis 1998). The

implementation of a system using agile manufacturing requires capabilities for virtual

enterprise formation, physically distributed teams and manufacturing, rapid partnership

formation, concurrent engineering, integrated product/production/business information

Integration attributes:
Concurrent execution of activities
Enterprise integration
Information accessible to employees
Team building attributes:
Empowered individuals working in teams
Cross functional teams
Teams across company borders
Decentralised decision making
Welfare attributes:
Employee satisfaction

Partnership attributes:
Rapid partnership formation
Strategic relationship with customers
Close relationship with suppliers
Trust-based relationship with
customers/suppliers

Education attributes:
Learning organisation
Multi-skilled and flexible people
Workforce skill upgrade
Continuous training and development

Competence attributes:
Multi-venturing capabilities
Developed business practice difficult to copy

Technology attributes:
Technology awareness
Leadership in the use of current technology
Skill and knowledge enhancing technologies
Flexible production technology
Change attributes:
Continuous improvement
Culture of change
Market attributes:
New product introduction
Customer-driven innovations
Customer satisfaction
Response to changing market requirements

Quality attributes:
Quality over product life
Products with substantial value-addition
First-time right design
Short development cycle times

Table 2.2 Attributes of an agile organisation (Yusuf et al. 1999)

29

Chapter Two - Literature review

systems, rapid prototyping, and electronic commerce so that the physically distributed

companies can be integrated and managed effectively (Gunasekaran 1998).

Several other authors have studied and further developed the concept of agility and its

applications. Moskal (1995) and DeVor et al. (1997) found that real industry projects

which adopted agility did primarily focus on business practices, processes and

technology. Rigby et al. (2000) studied the inter-organisational relations in agile

networks. Esmail and Saggu (1996), Gunasekaran (1998), Willis (1998), Sharifi and

Zhang (1999, 2001), Yusuf et al. (1999) Meredith and Francis (2000) Christian et al.

(2001) and Jin-Hai et al. (2003) developed frameworks and methodologies for

achieving agility in manufacturing organisations. Figure 2.10 illustrates one of the

suggested methodologies. Jackson and Johansson (2003) and Arteta and Giachetti

(2004) proposed methodologies for measuring a company’s level of agility. Ramasesh

et al. (2001) proposed a quantitative analysis framework and a simulation methodology

to explore the value of agility in financial terms. Wadhwa and Rao (2003) investigated

the relationship between flexibility and agility and concluded that flexibility enables

agility. Yusuf et al. (2003) studied the flexibility of agile organisations and suggested

the use of virtual cells as the means of improving volume flexibility. Finally, He et al.

(2001) developed a heuristic algorithm for solving scheduling problems in agile

manufacturing systems, while Quinn et al. (1997) examined the design of agile work

cells.

Agility Drivers
Changes/pressures in:
- market place
- competition basis
- customer requirements
- technology
- social factors

Assessment of
Agility Level

/ \
Assessment of
Agility Needs

[Analysis

Implementation

Performance
measurement

Identification of
Agility Providers

Strategy Formulation
Identification of

missing capabilities

Figure 2.10 Methodology for agility (Sharifi and Zhang 2001)

30

Chapter Two - Literature review

2.5.2 Holonic manufacturing

The concept of holonic manufacturing was proposed by Suda (1989, 1990). It is based

on the work by Koestler (1967) who first suggested the term ‘holon’ to describe a basic

structural unit in social systems and living organisms. He noted that these systems

evolve to satisfy changing needs by creating stable and self-reliant intermediate forms in

dynamic hierarchical structures. The word ‘holon’ originates from Greek word holos,

which means whole; the suffix ‘on’ refers to a particle or part (Tharumarajah et al.

1996). Hence, a holon is simultaneously a whole (e.g. a machine) and a part of the

whole (e.g. a manufacturing system) and has both autonomous and cooperative

characteristics (Tharumarajah et al. 1996), as illustrated in figure 2.11. The autonomy of

the holons is based on their operational features, individual goals and the ability to

define their own tasks and execution plans. However, holons cooperate with their lateral

partners to combine their competencies and to achieve both, individual and system goals

(Sousa et al. 1999). The performance of holons is defined by fixed rules that determine

their static structural and functional configurations and flexible strategies that define the

holons’ authorised activities in accordance with the changes in the environment

(Tharumarajah et al. 1996). Although the holons have a degree of independence that

enables them to survive disturbances, they are still subject to control from higher

authorities, which ensures that they provide accurate functionality for the bigger whole

(Bongaerts et al. 1997a). When holons cooperate to achieve a goal or objective, they

form a holarchy i.e. a system of holons that enables the construction of complex

systems that are efficient in the use of resources, highly resilient to external and internal

disturbances and adaptable to changes (Akturk and Turkcan 2000). Sousa et al. (1999)

summarised the properties of holons as i) autonomous and cooperative nature, ii) to

Holon
Holarchy

Holon

Holon

'Autonomou!
V JIolon^

Holarchy

Cooperative

Figure 2.11 Holonic system (Tharumarajah et al. 1998)

31

Chapter Two - Literature review

hold information about themselves and the environment, iii) to be composed of other

holons to form a holarchy, iv) to dynamically belong to multiple holarchies, and v)

fixed rules and directives.

For manufacturing applications a holon can be defined as “an autonomous and

cooperative building block of a manufacturing system for transforming, transporting,

and storing physical and information objects” (McFarlane and Bussmann 2000). Figure

2.12 illustrates the general architecture of a sample holon that consists of a control part

and an optional physical processing part. A combination of different holons can support

the entire production operation, as holons i) support all production and control functions

required to complete production tasks, and ii) manage the underlying equipment and

systems (McFarlane and Bussmann 2000). Table 2.3 summarises the features and

benefits of holonic manufacturing systems. Valckenaers et al. (1998), Van Brussel et al.

(1998) and Wyns (1999) proposed a reference architecture for holonic manufacturing

systems to realize the benefits of holons in manufacturing, namely the stability in the

face of disturbances, adaptability and flexibility in the face of change, and the efficient

use of available resources. The architecture consists of three types of basic holons,

namely order holons, product holons, and resource holons, as illustrated in figure 2.13.

Inter-holon Decision Human
interface making interface

Information
processing part

Physical control

Physical processing

Physical processing
part (optional)

Figure 2.12 General architecture of a holon (Bussmann 1998)

Features of holonic manufacturing Benefits of holonic manufacturing
• Bottom up development
• Autonomous operation of subordinate
holons

• Distributed database containing goals for,
and state of, all holons updated in real
time

• Communication network to allow
information exchange with neighbouring
and remote holons

• Drastic reduction of cost of changes
• Reduction of lead times
• Better use of human skills and thus better
system performance and higher job
satisfaction

• Higher variability of products
• Greater ability to recover automatically
from unplanned production stops

• Re-usability of automation equipment

Table 2.3 Features and benefits of holonic manufacturing systems (Hopf 1994)

Chapter Two - Literature review

Holonic manufacturing system

Production
knowledge

Process \
execution
knowledge

Process
knowledge

Order
holon

Resource
holon

Product
holon

Figure 2.13 Basic structure of a holonic manufacturing system (van Brussel et al. 1998)

Resource 1

Planning

Product 1Scheduling

PlanningExecution

Machine control Scheduling

Device control Execution

Product 2Resource 2

Planning Planning

Scheduling Scheduling

Execution Execution

Machine control

Device control

Figure 2.14 Holonic control mechanism (McFarlane and Bussmann 2000)

Valckenaers et al. (1998) explained that this structure reflects the three major concerns

in manufacturing i.e. resource aspects, product and process related technological

aspects, and logistical concerns. In addition, several other reference architectures for

holonic control have been illustrated in the academic literature. Balasubramanian et al.

(2000, 2001) described an event-driven control architecture for reconfigurable holonic

systems. Wang (2001) proposed holonic reference architecture based on a design-to-

control concept. Arai et al. (2001) studied the architecture of a holonic assembly

system. Bongaerts et al. (1997b) presented an architecture for reactive scheduling that

enables concurrent scheduling and schedule execution in a holonic manufacturing

environment, while Sousa and Ramos (1998, 1999) suggested a holon-based negotiation

33

Chapter Two - Literature review

protocol for dynamic scheduling. Similarly, Markus et al. (1996), Gou et al. (1998) and

Toh et al. (1999) proposed methodologies for scheduling in a holonic environment.

Fischer (1999), Rahimifard et al. (1999) and Wullink et al. (2002) considered planning

and control issues in holonic organisations. McFarlane and Bussmann (2000) presented

a holonic control mechanism that supports comprehensive manufacturing holons by

integrating all control functions into their operations, as illustrated in figure 2.14. In

contrast, Sun and Venuvinod (2001) discussed the human side of holonic manufacturing

systems, while Akturk and Turkcan (2000) considered cell formation using a holonistic

approach. Askin et al. (1999) designed and evaluated holonic layouts, where each

machine is considered being a holon and randomly distributed throughout the entire

facility with no departmental organisations i.e. cells.

2.5.3 Fractal manufacturing

A fractal factory, first proposed by Wamecke (1993), applies the theory of fractal

geometry to the organisation. The word ‘fractal’ originates from the Latin word fractus,

which means broken or fragmented. In mathematics, the term is used to describe objects

Control

Fractal
manufacturing

system

OutputsInputs

Mechanism

Control

Inputs Outputs
Fractal 1 Fractal 2

”7---- *?-----/ Mefchanism

Control/

Inputs lutputs
Fractal 2-i>Fractal 2-1

Mechanism

Super-unit
level

Current
level

Sub-unit
level

Figure 2.15 Conceptual structure of fractal manufacturing system (Ryu and Jung 2003)

34

Chapter Two - Literature review

that replicate their whole structure in each detail when the resolution is increased.

Similarly, according to Wamecke (1993), a manufacturing system can be structured

using ‘fractal units’ as basic building blocks of the whole system. In the resulting

hierarchical structure a fractal can represent an entire manufacturing system at the

highest level or a single machine at the lowest level (Ryu and Jung 2003), as illustrated

in figure 2.15. Hence, fractal units are self-similar, self-organising, self-optimising and

dynamic ‘factories within a factory’ (Wamecke 1993). They have the freedom to

organise and execute their tasks and select their own methods for problem solving and

process improvement. However, at the same time fractals are guided by the same goals,

which are generated through coordination between fractals and supported by an

inheritance mechanism (Tharumarajah et al. 1996). Conflicts are solved through

coordination and negotiation, while the dynamic restructuring of processes enables

rapid adaptation to changes in the environment (Ryu and Jung 2003). The performance

of each fractal is assessed constantly, compared against the target and if a difference is

observed necessary adjustments are made (Wamecke 1993). The operation of fractal

entities is illustrated in figure 2.16.

Self-similarity is one of the most significant features of fractals as this property defines

the structural and operational characteristics of the organisational design (Wamecke

1993). It describes the manner in which fractals perform services, formulate and pursue

goals and stmcture their operations. However since fractals have freedom of execution,

the implementation of their goals may differ. This can result in fractals with different

internal structures. Nevertheless, fractals are considered to be self-similar if they can

Notes:
FE = Fractal entity

FEs have similar goals, but may be
internally differentiated

Goal coordinationFE FE

Vitality to monitor their,
environment & adapt

Navigate to get
information &
check progress FE

Figure 2.16 Operation of fractal entities (Tharumarajah et al. 1998)

35

Chapter Two - Literature review

OutputsInputs Inputs Outputs
Internal structure Internal structure

Fractal A Fractal B

Figure 2.17 Self-similar fractals with different internal structures (Wamecke 1993)

Characteristic Description
Self-similarity Fractals are self-similar and perform services

Self-organisation Fractals practice self-organisation:
operatively: procedures are optimally organised by applying suitable
methods

Self-optimisation tactically and strategically, fractals determine and formulate their
goals in a dynamic process and decide upon internal and external .
contacts. Fractals restructure, regenerate and dissolve themselves

Goal-orientation The system of goals that arises from the goals of the individual
fractals is free from contradictions and must serve the objective of
achieving corporate goals

Dynamics Fractals are networked via an efficient information and
communication system. They themselves determine the nature and
extent of their access to data
The performance of a fractal is subject to constant assessment and
evaluation

Table 2.4 Basic features of fractal manufacturing systems (Wamecke 1993)

produce the same output with the same input regardless of their internal stmctures (Ryu

and Jung 2003), as illustrated in figure 2.17. The characteristic of self-organisation

enables the self-optimisation and dynamic restructuring of fractals. Self-optimisation

refers to the control of processes and optimisation of composition, while dynamic

restructuring facilitates the reconfiguration of fractals and their networks (Ryu and Jung

2003). Goal-orientation, dynamics and vitality are other important features of fractals.

The basic features of the fractal factory are summarised in table 2.4.

To realise the benefits of a fractal factory, Ryu et al. (2000, 2001, 2003) and Ryu and

Jung (2002, 2003, 2004) proposed a fractal manufacturing system based on the concept

of autonomous cooperating agents i.e. basic fractal units. The architecture of a basic

fractal unit is illustrated in figure 2.18. It consists of five functional modules, namely

36

Chapter Two - Literature review

Observed
information

Requests
Analyser Orgamser

Fractal information

Alternative \ \ P l an Fractal
p l a n s \ \ resu^ s update

Fractal
addresses

Fractal
status and

configuration

Plans/decisionsDeliver messages
Observer Resolver Reporter

Status
reports

Knowledge
request/update

Knowledge
invocation

Command
actionsKnowledge

DB
Inner Fractal

Sensors Actuators
Outer Fractal

ActionsEvents

Environment

Figure 2.18 Fractal architecture (Ryu and Jung 2003)

observer, analyser,resolver, organiser and reporter that coordinate and cooperate in

order to perform operations in accordance with the fractal goals. Ryu and Jung (2003)

designed the basic fractal unit specifically as a general model that corresponds to the

elements at any level of the system hierarchy. However, the disturbances in the system

and environment can change the system goals. To enable efficient and effective

operation under these conditions, Ryu and Jung (2004) developed a methodology for

dynamic goal formation in fractal manufacturing systems. An earlier adaptation of a

fractal architecture was proposed by Tirpak et al. (1992). Other research interests in

fractal manufacturing include supply chain management (Noori and Lee 2000, Brehmer

and Martinetz 2001, Markfort et al. 2000) and layout design (Askin et al. 1999, Debnar

et al. 2001). Venkatadri et al. (1997) and Montreuil et al. (1999) proposed the concept

of the fractal cell, a set of neighbouring workstations on the shop floor, as the basic unit

of the organisation for layout design purposes. Sihn and von Briel (1997) examined the

process cost and product pricing issues in the control and restructuring of fractal

organisations. Kuehnle (1995), Sihn (1995), Strauss and Hummel (1995), Wamecke and

Huser (1995) and Klopp et al. (1997) focused on promoting the concept of fractal

manufacturing, while Tharumarajah et al. (1996, 1998) compared the design and

operational features of the emerging manufacturing systems, namely fractal, bionic

(biological) and holonic, with little contribution to the theory itself. The first application

37

Chapter Two - Literature review

of the fractal theory was reported by Kimberley (2001) with deployment in a European

car company.

2.5.4 Biological manufacturing

Biological (or bionic) manufacturing systems were proposed by Okino (1992) and Ueda

(1992). The concept aims to apply the structures and behaviour of natural organisms to

manufacturing organisations in order to transfer the inherited flexibility and adaptability

of life forms to industrial operations. The concept derives from the basic properties of

biological systems, i.e. autonomous and spontaneous behaviour, self-development and

social harmony within hierarchically ordered relationships (Tharumarajah et al. 1996),

as illustrated in figure 2.19. The concurrent presence of these properties (in terms of

time and location) increases flexibility of system elements towards changes in the

environment e.g. diversification of products and abnormal events (Ueda 1992). All

biological structures are hierarchically formed with cells as the basic units at the lowest

level before ascending to organs, lives and society (Tharumarajah et al. 1996). Hence,

cells can be seen as the building blocks of biological systems. In addition, all cells have

Harmonised
integration Concurrent/

Localised

Autonomous
distribution

Self-growth

Localised

Figure 2.19 Basic properties of biological manufacturing system (Ueda 1992)

Environment (chemical) Environment (information & material)

Chemical flow □
Policies,
strategiesHormones

I | Enzymes C L Coordinators

a) cells in biology b) production units in manufacturing

Figure 2.20 Similarity of biological and manufacturing structures

(Tharumarajah et al. 1998)

38

Chapter Two - Literature review

similar structures but different functions and are capable of multiple operations

(Tharumarajah et al. 1998). Cells exist in a chemical environment which stability is

maintained by enzymes and regulated by hormones (Tharumarajah et al. 1998). These

properties correspond closely to autonomously operating production units on the shop

floor, as demonstrated in figure 2.20. The units obtain the inputs from the shop floor,

perform operations and return outputs back to the environment. The tasks are specified

in a top-down process, while the units’ actions at the lower levels support the operation

of the whole system in the bottom-up process (Tharumarajah et al. 1996).

The ability to adapt to environmental changes and to sustain their own life by functions

such as self-organisation, self-recognition, self-growth, self-recovery, learning and

evolution are important characteristics of biological systems (Ueda et al. 2000). To

realise these functions, organisms utilise two types of biological information, i.e.

genetic information (DNA-type) and individually learned information (BN-type) (Ueda

et al. 2000). The biological manufacturing systems employ both types of information to

produce products from raw materials, as illustrated in figure 2.21. Vaario and Ueda

(1996a) recognised two fundamental approaches of biological manufacturing systems,

namely production-oriented and product-oriented. A production-oriented approach

views the manufacturing system as a society of individual cells or organisms that

collectively respond to environmental stimuli by producing products (Vaario and Ueda

1996a). In a product-oriented view products are seen as organisms that live in the

Product;
DNAj+BNj

Material;
DNA;Material;

DNA;

M: Machine tool
R: Robot
T: T esting instrument
V: Vehicle
To: Tool
O: Operator

Figure 2.21 Concept of biological manufacturing system (Ueda et al. 2000)

39

Chapter Two - Literature review

Local

Global dynamics

matching

^attraction sensitivity/
Virtual space

Local
dynamics Interpreted Interpreted dynamics

Model

Self-modifies

U
Transporter with

^ a product j

Attributes

Manufacturing
cell

Self-modifies

Attributes

Problem
Capabilities < ----------- > Requirements

Figure 2.22 Concept of self-organisation (Vaario and Ueda 1998a)

environment and compete against each other by means of their characteristics

determined by genetic information (Vaario and Ueda 1996a).

The most recent research on biological manufacturing systems has focused on realising

the self-organising capabilities by proposing dynamic shop-floor configuration (Vaario

and Ueda 1996b, 1998b, Fujii et al. 1997, Ueda et al. 2001b, 2002), reconfiguration

(Ueda et al. 1997b) and scheduling (Vaario 1996, Ueda et al. 1997a, Vaario and Ueda

1998a) methods controlled by a ‘self-organisation simulator’ demonstrated in figure

2.22. This directs factory operations in real-time by continuously calculating the local

potential fields of the machines and transporters on the shop floor (Vaario and Ueda

1998a). According to (Vaario and Ueda 1997) this bottom-up approach leads to a local

optimisation with unpredictable global results and enables dynamic and continuous

adaptation to disturbances. The problem of scheduling in biological manufacturing

systems has been considered by Vaario (1996) and Vaario and Ueda (1998a). They

applied the concept of local attraction fields to match and direct jobs to capable and

available machines in real-time, creating a dynamic but not necessarily optimal

schedule. Vaario and Ueda (1998a) argued that the dynamic scheduling method, which

provides real-time control for the shop-floor operations, is competitive in a turbulent

environment, because the optimal schedule using global information can be difficult to

calculate and maintain. Simsek and Albayrak (2003) summarised the characteristics of a

living factory as highly scalable, reconfigurable, flexible, autonomous, cooperative,

40

Chapter Two - Literature review

intelligent, optimising and reliable. Other research in the area includes modelling of

biological adaptation (Vaario 1994a, 1994b) and a reinforcement based learning

approach that optimises both, local and global objectives (Ohkura et al. 1999, Ueda et

al. 2000, Fujii et al. 2004). Ueda et al. (1998) considered the human aspects in

biological manufacturing systems, while Brezocnik and Balic (2001), Sluga and Butala

(2001), Katalinic and Kordic (2002) and Katalinic et al. (2002) proposed alternative

models for biological self-organisation. Mill and Sherlock (2000) and Demeester et al.

(2004) discussed biological analogies in manufacturing. McCormack (2000) reported on

an application of a biological manufacturing system that had significantly reduced the

operational costs.

2.5.5 Responsive manufacturing

The concept of responsive manufacturing refers to the methodology proposed by Gindy

et al. (1996) for representing product processing requirements and machine capabilities

with generic capability units called resource elements to support cell formation.

Traditionally, manufacturing cells were formed according to component similarity in

terms of the sequence of machines required for the manufacture of the parts (Gindy et

al. 1996). However, recent improvements to the capabilities of modem machines allow

some machines to perform many different operations (Baykasoglu and Gindy 2000).

Since the traditional methods of cell formation do not consider these capabilities, Gindy

et al. (1996) proposed the concept of resource elements (RE) to represent the unique

and shared capabilities of machines. The resource element can be described as a

collection of form-generating schemata (FGS) that express the basic capability patterns

of machining operations regardless of the machine tools used for their execution (Gindy

et al. 1996). These are formulated by i) identifying the general form-generating

capabilities of machining processes (form generating schema), ii) allocating the form-

generating schemata to machine tools, and iii) relating the form-generating schemata

and machine tools to the specified processing system to form unique resource elements

(Gindy et al. 1996), as illustrated in figure 2.23. Baykasoglu (2003) summarised the

main features of resource elements as i) resource elements being mutually exclusive, i.e.

there is no overlap between resource elements, ii) resource elements uniqueness, i.e. sets

of FGS in each resource element are different and each FGS can belong to only one

resource element, iii) capability to perform all tasks within a resource element available

on a resource, iv) ability of a resource to provide one or more resource elements, v) a

41

Chapter Two - Literature review

Machine-2

, f R E 3 ^ s
)((fgs)C fgs>

Machine-3
RE1
FGSRE4

FGS
'achine-1

RE2
FGS

Manufacturing
facility

Machine-4
Machine-5

^ (m s)
RE6
V Cf g s j

Figure 2.23 Representation of manufacturing facility using resource elements

component requiring a resource element may access all resources that provide that

resource element, and vi) resource elements being unique planning and control entities.

Once the machine capabilities and product processing requirements are mapped as

resource elements, component groups and cells can be formulated. Gindy et al. (1996)

claimed that the use of resource elements resulted in a better matching of cells and

component groups.

Resource elements were originally designed for component grouping in cellular

manufacturing (Gindy et al. 1996, Gindy and Ratchev 1997, Baykasoglu and Gindy

2000). However, the recent research has extended the application of the concept to

scheduling (Gindy and Saad 1998, Saad and Gindy 1998, Gindy et al. 1999, Saad et al.

2002), layout design (Baykasoglu 2003) and reconfiguration of virtual cells (Saad et al.

2002, Saad 2003). Saad and Gindy (1998) studied the responsiveness of a resource

element-based machining facility to disturbances in the environment. They concluded

that significant improvements in the system performance can be achieved by

representing the machine shop as a set of resource elements. In addition, resource

elements enable a manufacturing system to cope with different types of disturbances.

2.5.6 Virtual cellular manufacturing

Virtual cellular manufacturing was proposed by McLean et al. (1982). This is based on

the theory that hierarchical structures that are capable for dynamic reconfiguration of

42

Chapter Two - Literature review

their sub-systems are able to adapt to changes in the environment (Baykasoglu 2003).

The concept combines the benefits of process layouts and traditional cellular

manufacturing by creating temporary logical manufacturing cells over functional

layouts (Sarker and Li 2001). These virtual cells are formulated in a computer system

by allocating machines to logical cells without altering their physical proximity (Sarker

and Li 2001). Hence, a virtual cell is not identifiable on the shop floor as a fixed group

of machines as it exists only in the system control software as a flexible routing

mechanism (Kannan and Ghosh 1996). Virtual cells enable machine sharing between

cells that produce different part families with overlapping resource requirements

resulting in higher machine utilisations (Irani et al. 1993). In addition, the logical nature

of the cells enables rapid and flexible reconfiguration of the manufacturing facilities and

makes it suitable for a dynamic environment (Baykasoglu 2003). Yusuf et al. (2003)

noted that virtual cells evolve and dissolve naturally in response to changes in demand

mix and volume. They can also reduce production lead times and enhance product

customisation (Yusuf et al. 2003).

The recent research in virtual cellular manufacturing has focused on cell formation,

scheduling and layout design, e.g. Irani et al. (1993), Sarker and Li (2001), Baykasoglu

(2003) and Ko and Egbelu (2003). Sarker and Li (2001) noted that scheduling in virtual

cells is a complex task due to the potential of bottleneck machines overlapping across

cells. Mertins et al. (2000) made similar observations concerning the capacity

assignment of shared resources, while Kannan and Ghosh (1996) studied the influence

of shop configuration, set-up time and part mix variability for virtual cell performance.

Yusuf et al. (2003) analysed the capabilities of virtual cells to handle volume variety.

Finally, Saad et al. (2002) and Saad (2003) investigated the use of virtual cells for

reconfiguration of cellular manufacturing systems. They concluded that the application

of the virtual cell concept can improve the performance of cellular manufacturing

systems.

2.5.7 Next generation manufacturing systems

The next generation manufacturing systems (NGMS) refer to the intelligent

manufacturing system (IMS) research programme to develop a global concept on the

future of advanced manufacturing systems. The project investigated agile, fractal,

biological and autonomous & distributed manufacturing concepts and aimed to integrate

43

Chapter Two - Literature review

them into a unified framework that supports all aspects of the product related business

processes of the future manufacturing enterprise. The NGMS-IM consortium (2000)

identified the capability to rapidly manage change through flexible, adaptable, variable,

globally-oriented and distributed systems as the most important requirement for the next

generation manufacturing systems. They summarised that future organisations would

have the key characteristics to i) provide support for virtual enterprises, ii) be

reconfigurable, flexible and adaptable in response to customers, iii) be focused on

delivering value, iv) be information and knowledge based, but also human intelligence

oriented, and v) be modular to support distribution and autonomy, and cooperate to

achieve enterprise goals. To meet these requirements NGMS-IMS consortium (2000)

proposed the virtual enterprise architecture that is divisible into three layers, namely

floor level, factory level, and enterprise level. At the enterprise level, agile

manufacturing is employed to provide the vision, while the concepts of fractal factory

and biological manufacturing are adopted as implementation methodologies at the

factory level. Finally, autonomous & distributed manufacturing systems define the

operational building blocks at the floor level, supported by the knowledge and

information infrastructure and human resources that form the foundations of the

architecture (Choi and Kim 2000). The implementation of the architecture requires i)

workforce flexibility, ii) knowledge-based supply chain, iii) rapid product/process

realisation, iv) innovation management, v) change management, vi) next generation

manufacturing processes and equipment, vii) pervasive modelling and simulation, viii)

adaptive, responsive information systems, ix) extended enterprise collaboration, and x)

enterprise integration (Choi and Kim 2000).

2.5.8 Other emerging manufacturing concepts

Several other less well-known concepts have also been proposed in the academic

literature for 21st century manufacturing. They include concepts such as random, multi­

channel and reconfigurable manufacturing. Random manufacturing was proposed by

Iwata et al. (1994) to realise flexible and adaptive production for dynamically changing

orders. Its basic characteristics can be summarised as i) autonomous machine system, ii)

dynamic machine grouping, iii) tender-based task allocation, and iv) shop floor control

through a reward and penalty system. In the random manufacturing system individual

machines placed in the same group cooperate to complete tasks while machine groups

compete for survival in the environment (Iwata et al. 1994). Multi-channel

44

Chapter Two - Literature review

manufacturing systems were proposed by Meller (1997). These can be understood as a

linear formation of fractal cells (Ozcelik and Islier 2003). The approach formulates

parallel flow lines with similar and dissimilar machine sequences in order to create

alternative routes for significant parts. During production, products can then choose the

line that leads to the greatest system efficiency at that time (Meller 1997). Hence, the

systems compromise compatibility and specialisation to produce a specific range of

products (Ozcelik and Islier 2003). Finally, reconfigurable manufacturing systems were

suggested by Koren et al. (1999). These are designed for rapid adjustment of production

capacity and functionality in response to new circumstances by rearrangement or

change of their components (Mehrabi et al. 2000). This is achieved through modular

structures, rapid integration, quick changeovers, matching system capability to demand,

and rapid identification of problems (Mehrabi et al. 2000). Reconfigurable

manufacturing systems offer a middle ground alternative between volume-orientated

dedicated transfer lines and variety-focused flexible manufacturing systems (Mehrabi et

a l 2000).

2.6 Comparison of the emerging manufacturing concepts

All recently proposed manufacturing paradigms aim to solve the same problem, i.e. to

enable manufacturing systems to efficiently survive and adapt to a rapidly changing

environment (Wyns 1999). However, due to the different origins of the concepts, the

approaches and methods they employ to achieve this goal are different (Sousa et al.

1999). In addition, some of the concepts have attracted more research than others and

include methods and procedures that have been widely accredited in the academic

literature. Furthermore, the focus of the research has varied; for example agile

manufacturing is mainly a managerial concept that provides vision and strategy for

future organisations, while responsive and virtual cellular manufacturing are applied at

the shop floor level. Holonic, fractal and biological manufacturing paradigms are more

general concepts that can be implemented at all levels of the organisations. Therefore,

they can also be comprehensively compared to each other. Several authors have

previously compared the design and operational features of holonic, fractal and

biological concepts, e.g. Tharumarajah et al. (1996, 1998), Sousa et al. (1999) and Ryu

and Jung (2003). They noted that the underlying principles of these concepts are very

similar. Tharumarajah et al. (1996) concluded that they all advocate an organisation of

45

Chapter Two - Literature review

distributed autonomous modules capable of self-organisation to carry out required

functions.

2.6.1 Organisational features

The holonic, fractal and biological manufacturing systems support both, hierarchical

structures and distributed autonomous entities. The hierarchical structure maintains the

overall system coherence and objectivity and helps to resolve any possible conflicts

between the entities (Sousa et al. 1999), while autonomous entities are able to react to

unexpected events without assistance from higher levels (Wyns 1999). Hence,

hierarchical control in fractal, holonic and biological systems is limited to setting goals

and general guidelines, while autonomous entities have the freedom to select their own

methods for achieving these goals. In addition, the hierarchical structure itself is not

fixed but can evolve with respect to its partners and the environment (Ryu and Jung

2003). Furthermore, the level of autonomy held by the basic units varies between the

concepts. Tharumarajah et al. (1998) noted that holons and biological cells can self-

manage, but their capabilities for self-design or self-governance are limited. Fractal

entities on the other hand can be seen as self-governing units that set their own goals

and adapt to the environment through dynamic reconfiguration. However, these

capabilities can be translated in many different ways for manufacturing applications.

According to Tharumarajah et al. (1998), fractal systems often apply technology to

achieve flexibility, while holonic and biological concepts develop technology to make

the devices display autonomous behaviour.

The design of fractal, holonic and biological systems aim for highly flexible and

dynamic structures with recurring part-whole relations (Tharumarajah et al. 1998). Each

basic unit and its functions are predefined at the beginning stage (Ryu and Jung 2003).

The function of a holon is formed by dividing the functional requirements of the system

into basic holons that maintain their roles throughout system lifetime (Tharumarajah et

al. 1996). Cell functions in biological systems are formed similarly to holons by using

DNA information, but they can be divided into smaller or merged into larger functions

during their lifetime as long as the main purpose of the cell remains the same (Ryu and

Jung 2003). The creation of a fractal function is more complicated, because in addition

to the role of the entity it also includes the immediate environment that it interacts with

(Tharumarajah et al. 1996). Hence, the functions of fractals can be dynamically changed

46

Chapter Two - Literature review

i.e. reconfigured or restructured at any time according to the goals of the environment.

In fractal manufacturing systems a reconfiguration requires a change to the fractal

structure, while a system based on holons re-allocates resources and biological systems

System
parameter

Holonic
Manufacturing

Fractal
manufacturing

Biological
manufacturing

Basic unit

Autonomy of
unit

Flexibility
of unit

Creation
of unit

Unit function

Definition
of group

Autonomy of
group

System re­
configuration

Shop floor
layout

Holon: autonomous and
cooperative entity

Highly autonomous:
negotiate and cooperate
to set goals and tasks,
limited by rules
React to changes in
other holons through
cooperation and
negotiation

Predefined and dynamic:
limited to rules and
functional
decomposition at design
time
Predefined: holons with
required functions can
be defined at design
time

Holarchy: predefined set
of holons to support
specific functions

Flexible strategies, fixed
rules and stable forms

Change of resources by
reallocation

Holons are spread
throughout the facility,
no departmental
organisation

Fractal: autonomous and
self-similar entity,
includes the
environment
Highly autonomous:
define individual goals,
adaptable

React to changes in
environment through
dynamic restructuring,
self-optimisation and
self-organisation
Predefined: dynamically
reproduced or
reorganised by self­
organisation

Initially predefined: can
be dynamically
reassigned during
operation

Cell: multifunctional and
self-organising entity

Highly autonomous:
define operations in
response to changes in
environment
React to changes in
environment through
self-organisation

Predefined: dynamically
reproduced by evolution
and self-organisation

Predefined: cells with
required functions can
be defined at design time
or divided or merged
during operation

Fractal: predefined set of Organ: dynamically
similar fractals, can be
dynamically redefined

Inheritance and
autonomy of goals,
dynamic restructuring
Change of fractal
structure by forming
new fractals or
reassigning functions
Fractal cells: a
combination of fractals
proportional to whole
system

defined through cell
division to support
required functionality
Predefined functions and
operational autonomy

Change of process flows

Dynamic self­
organisation of cells

Table 2.5 Organisational features of holonic, fractal and biological concepts

(modified from Tharumarajah et al. 1996 and Ryu and Jung 2003)

47

Chapter Two - Literature review

apply changes to the process flows. At the shop floor level, holonic layouts are

formulated by distributing the machines randomly throughout the facility without

departmental boundaries (Askin et al 1999). In fractal layouts machine types are

allocated to a fractal cell in proportion to their quantity in the whole facility (Askin et al

1999), while biological layouts are dynamically self-organising (Vaario and Ueda

1996b). Table 2.5 summarises the organisational features of fractal, holonic and

biological manufacturing concepts.

2.6.2 Operational features

The system elements in holonic, fractal and biological organisations interact with each

other both lateral and across hierarchical levels (Tharumarajah et al. 1998). Since the

systems operate without centralised control these interactions need to be regulated to

ensure harmony between autonomous units. All concepts support functional unity

through coordination, but they employ different approaches to achieve this. Biological

cells use a top-down approach for task specification, while decisions concerning the

execution of the tasks follow a bottom-up pattern (Ryu and Jung 2003). For lateral

communication and coordination, the cells use their shared environment and

coordinators (Tharumarajah et al. 1998). The actions are defined by the inputs and

outputs of other cells in their environment. Fractals, on the other hand, continuously

redefine their goals through the inheritance of global goals and coordination with other

fractals using a goal formation process (Tharumarajah et al. 1996). They communicate

and cooperate with other fractals directly to resolve conflicts and monitor the

performance through navigation. Holons formulate broad-spectrum plans (process plans

and schedules) at higher levels to ensure the hierarchical coordination of the actions,

while the holons at the lower levels make detailed decisions about the execution of the

plans by coordination with other holons and provide feedback to higher levels (Ryu and

Jung 2003). Table 2.6 summarises the basic operational features of holonic, fractal and

biological manufacturing systems.

2.6.3 Integration of the concepts

Until now, the majority of research on emerging manufacturing paradigms has

considered each concept separately. The first and most extensive project to integrate

several concepts has been the intelligent manufacturing system research programme of

the next generation manufacturing systems (IMS-NGMS). The project aimed to employ

48

Chapter Two - Literature review

System Holonic Fractal Biological
parameter Manufacturing_______ manufacturing________ manufacturing
Autonomy Handle independently Individual goals, Handle independently

disturbances, cooperate cooperate for mutual disturbances, cooperate
for m utual benefits, benefits for m utual benefits,
governed by fixed rules interact w ith

environment

Hierarchical Top-down as partial task Top-down and bottom- Top-down as task
coordination specification and up as iterative and specifications and

bottom-up as decisions concurrent goal bottom-up as decisions
and feedback coordination

Lateral Communication and Communication, Indirect com m unication
cooperation cooperation among cooperation and through a common

holarchies navigation among space, coordination
fractals among cells

Planning, General planning at Continuous and dynamic Hierarchical planning,
scheduling higher level, dynamic through negotiation dynamic and adaptive
and control and concurrent scheduling and control

‘ scheduling and control

Table 2.6 Operational features of holonic, fractal and biological concepts

(modified from Tharumarajah et al. 1996 and Ryu and Jung 2003)

different concepts at different levels of the organisation. However, there was no

integration of multiple concepts at the shop floor level. Few research papers have

considered using more than one concept to optimise factory floor operations. Saad et al.

(2002b) and Saad (2003) applied responsive manufacturing to virtual cellular systems to

develop a framework for rapid reconfiguration. They concluded that the system

performance can be improved by including virtual cells to the reconfiguration

procedure. However, Sousa et al. (1999) noted that merging several paradigms into one

system should be possible since conceptually different paradigms can cooperate and

compliment each other.

2.7 Research focus

The conducted review and the comparison of the emerging manufacturing paradigms

have provided a detailed account of the state of the research in each concept, its strength

and weaknesses and any common and distinctive features. Based on this information,

fractal, biological and responsive manufacturing have been identified and selected as the

key concepts of the new 21st century manufacturing system. The research focus

includes the basic shop floor operations i.e. layout design, scheduling and control. The
49

Chapter Two - Literature review

notion of fractals is used for system configuration since fractal cells provide an easily

definable unit for shop floor fragmentation. Fractal units simplify product routings and

reduce lead times, while maintaining flexibility through machine sharing. In addition,

smaller units decrease system variability and uncertainty (Ozcelik and Islier 2003).

Fractal cells are also multifunctional, flexible and scalable i.e. reconfigurable.

Biological self-organisation is used for dynamic shop floor scheduling and control. It

enables any decisions concerning the product dispatching, allocation and routing to be

made in real-time. Hence, the system can react instantaneously to any internal or

external disturbances (Fujii et al. 1997). Finally, in order to utilise the full capabilities

of the system and improve its flexibility to changes, responsive manufacturing is used

for representing both machine capabilities and product processing requirements.

Responsive manufacturing is included in the layout design process and shop floor

scheduling. Gindy and Saad (1998) supported this approach by stating that the system’s

performance and its ability to cope with disturbances can be significantly improved if

manufacturing facilities are represented and scheduled using the resource element

concept.

Together these three concepts create a system, which potentially exhibits the efficiency

of fractal layouts, the responsiveness of biological scheduling and the flexibility of

resource elements. These capabilities were also emphasised by Ryu and Jung (2003),

who noted that the next generation manufacturing system should be an intelligent,

autonomous, and distributed system with independent function modules, and have a

structure that is flexible, highly configurable and easily adaptable to a changing

environment. The proposed framework for the integration of fractal, biological and

Shop floor
Fractal

Machine Products

Capabilities in
resource elements

Requirements in
resource elementsBiological scheduling

stations
cells

Figure 2.24 Integration framework for fractal, biological and responsive concepts

50

Chapter Two - Literature review

responsive concepts for the 21st century manufacturing system is illustrated in figure

2.24. To enable the integration, each concept needs to be further developed regarding

the specific functions assigned for them, i.e. fractal layouts, biological scheduling and

control, and resource element representation of machine capabilities and product

requirements.

51

Chapter Three - Research methodology

Chapter Three - Research m ethodology

This chapter describes the methodology employed to answer the

research questions. First, the general approach for solving the

research problem is determined and justified. Next, the major

steps in the research process are summarised. Later in the

chapter, the most important tools and techniques deployed

during the study, including mathematical and conceptual

modelling, heuristic algorithms and computer simulation are

reviewed and evaluated. Finally, a hypothetical case study for

the implementation, testing and analyses of the developed

reference architecture is introduced.

52

Chapter Three - Research methodology

3.1 General approach

This research investigates the novel manufacturing paradigms recently proposed in the

academic literature. So far, the literature review presented in the previous chapter has

revealed that very little in-depth research into these new paradigms has previously been

conducted. Hence, the concepts are still relatively abstract in nature with no clear

procedure for industrial implementation. This study aims to further develop both, the

conceptual framework and the practical applicability of the selected emerging concepts

within manufacturing shop floor operations. New procedures and hypotheses are

derived from the existing theory and are modelled, simulated and tested using computer

simulation techniques. Thus, this study is mainly about testing and applying theories by

generating and evaluating quantitative data. This research approach is called deduction.

However, the investigation also includes an analysis of the developed system and

produced data in order to modify the proposed hypotheses and to generate new theories.

Therefore, it also includes inductive characteristics. According to Saunders et al.

(2003), the adoption of both, deductive and inductive approaches is both common and

advantageous in most research projects.

The research is neither a comparative study, nor is it principally about testing existing

theories. Instead, a holistic view is taken to find an efficient, responsive and flexible

overall structure that employs each of the selected theories or most of their

characteristics in different aspects of shop floor operations where they are most suitable.

The integrated framework can be understood as a layered model, see figure 2.24, that

takes advantage of each manufacturing concept seemingly individually in a single

discipline of shop floor operations, whilst other methodologies are built around or on

top of it. The general approach aims to reduce the amount of complexity of the

experimental research by analysing manufacturing concepts in isolation, each for a

different aspect of shop floor operations. However, the research then goes on to

integrate the characteristics of each manufacturing concept by building on the results

and conclusions of previous experiments. The end result is a combined reference

architecture that plays to the strengths of each of the new manufacturing paradigms, and

which is supported by objective deductive experimental research. As the generalised

theoretical models operate on a high level of abstraction, the experimental research is

conducted on a system architecture delivered from a hypothetical case study.

53

Chapter Three - Research methodology

3.2 Research process

This research aims to identify and where possible merge the most advanced and

distinctive characteristics of fractal, biological and responsive manufacturing systems in

order to create an integrated reference architecture for the 21st century manufacturing

systems. To meet this objective a specific sequence of activities is performed. Figure

3.1 outlines the major steps of the research process employed in this project. The

research starts with a basic review of the academic literature related to the

manufacturing systems and operations management to identify research gaps and decide

the specific research topic. This is followed by a formulation of the research questions

- - - ►

- - - ►

- - - ►

- - - ►

- - - ►

- - - ►

- - - ►

- - - ►

- - - ►

Chapter 2

Chapter 8

Chapter 1

Chapter 1

Chapter 2

Chapters 4, 5 and 6

Chapter 7

Chapters 4, 5 and 6

Chapter 3

Chapter 7

Formulation of research focus

Conclusions

Answer to research
question 1

Answer to research
question 2

Answer to research
question 3

Modelling, simulation and testing
of the developed architecture

Modelling, simulation and testing
of the developed procedures

Formulation of research methods and
familiarisation with tools

Development of the integrated
reference architecture

Basic review of manufacturing
related literature to identify

research topic

Development of the selected
concepts in the specific areas of

manufacturing management

Detailed review of academic
literature on areas related to research
questions & comparison of concepts

Formulation of research framework
(aim, objectives and research

questions)

Figure 3.1 Research process

54

Chapter Three - Research methodology

that form the foundation of the study. Next, a detailed review of the related literature is

performed and a comprehensive comparison of the emerging manufacturing paradigms

is conducted. Based on the obtained information the research focus is determined and

the research methodology decided. After that, the responsive, fractal and biological

concepts are studied independently within the context of selected areas of shop floor

operations. For each concept procedures are developed, modelled, simulated and tested.

Finally, the integration of the concepts is investigated and a reference architecture for

the 21st century manufacturing systems is proposed and analysed. The research

concludes with proposals for future research.

3.3. Deployed tools and techniques

A sample system architecture is selected and modelled with the aim to be representative

of real-live scenarios. Experiments are conducted with the aid of computer simulation to

evaluate the system when different features of the new manufacturing paradigms are

applied to shop floor design and operations.

3.3.1 Mathematical and conceptual modelling

Mathematical models are constructed in order to understand some behaviour or

phenomenon in the real world, make predictions about that behaviour in the future and

analyse the effect various situations have on it (Giordano et al. 2003). Ravindran et al.

(1987) defined a model as a simplified representation of something real. Giordano et al.

(2003) divided the mathematical models into analytic (symbolic) and replication

models. Analytic models use functions and equations to describe a particular

phenomenon while replication models attempt to replicate the system behaviour either

directly by conducting experimental trials or indirectly by using simulation. Most

scheduling problems are NP-hard and it is unlikely to find suitable polynomial

algorithms.

Instead, operational research questions regarding layout and scheduling can often be

reduced to combinatorial optimisation problems based on replication models. Different

combinations or permutations, i.e. in the placement of machines on the shop floor or in

the sequence of product dispatch or processing, can be tested and compared to each

other in terms of a score to meet an objective function. The evaluation of a specific

55

Chapter Three - Research methodology

layout or schedule is subject to simulation on a modelled system aided by a computer

program and results in a numeric value that the system is to be optimised for. The

optimisation function is a search conducted on a higher level across a large number of

individual simulations with the aim to find the scenario with the lowest or highest result.

3.3.2 Heuristic algorithms

An exhaustive search to try all combinations is usually impossible as the complexity of

the problem tends to grow exponentially with the amount of elements in the

permutation. To find a solution to these problems in a reasonable amount of time a

heuristic algorithm can be employed to perform a search to produce good solutions,

which are however not necessarily provable to be correct or optimal. The main

difficulty of heuristic searches is their inability to escape from infinite loops and to find

improved solutions that are significantly different from a locally optimal sequence.

Tabu, search is a meta-heuristic method developed by Glover (1989, 1990) and used

mainly to solve combinatorial optimisation problems. It is widely used for machine and

job scheduling in manufacturing environments (Koylu 2000). The distinctive feature of

this higher-level method is its ability to escape a local optimum and guide the lower-

level heuristic search algorithm into new areas in order to find the best global solution.

This is achieved by allowing moves to neighbouring solutions that are worse than the

current solution. Since this can cause a cycling problem to arise, moves to previously

visited solutions are forbidden for a certain period of time. These not-allowed moves are

recorded in a tabu list. The search process starts from a randomly generated initial

solution. Then a neighbourhood of adjacent permutations is generated for the solution

using conventional heuristic swap or insert methods. Once solutions are evaluated using

the objective function, a move is made to the best admissible solution in the

neighbourhood. The search continues until the stopping criterion is satisfied. If several

consecutive moves have been performed without improving the best solution, the search

can be restarted, either from a known local optimum or from a completely new and

random location. Csaszar et al. (2000) refer to these two higher-level strategies as

intensification or diversification. In contrast to stochastic meta-heuristic methods like

simulated annealing and genetic algorithms, tabu search follows a deterministic

algorithm, but employs random diversification techniques as a last resort.

56

Chapter Three - Research methodology

3.3.3 Computer simulation

The purpose of simulation is to understand the behaviour of a real world system that is

captured in a representative but simplified model. Simulation languages can be classed

into two major types. Continuous simulation models constantly adjust to dynamic

parameters. Discrete-event simulations on the other hand examine a chronological

sequence of events that enter a model, and are therefore more suitable for simulations of

shop floor operations. These events can be random to introduce the model variability

needed to investigate system flexibility, adaptability and control. The introduction of

random elements causes non-deterministic results, but most languages allow values to

be within fixed limits and proportions.

3.3.3.1 General-purpose object-oriented programming languages

General-purpose programming languages offer the good amount of flexibility, but

program development is a slow and highly complicated process and logical errors are

hard to avoid completely. It was necessary to use a flexible programming language to

optimise a simulated shop floor layout through heuristic search over permutations,

because no suitable special-purpose language was available. C++ as general-purpose

object-oriented programming language was selected for experiments on shop floor

layout optimisation using fractal cells. It offered the needed flexibility to run heuristic

searches and the ability to closely model elements such as machines and cells with their

associated functions to abstract objects defined in class structures.

3.3.3.2 Special-purpose simulation languages and software packages

Special-purpose programming languages dedicated to simulation provide a high-level

framework with which a designer can build specific modelled architectures in a short

space of time. Much of the complexity of programming languages remains hidden from

the user, but the level of flexibility is severely reduced. The ARENA simulation

package as the most widely used sequential simulation tool for this application (Yapa

2003) was selected for most of the experiments on scheduling and control. It is based on

the discrete-event simulation language SIMAN and offers a limited programming

interface where increased flexibility is needed.

57

Chapter Three - Research methodology

3.4 Hypothetical case study

For the implementation, testing and analysis of the developed methodologies and the

proposed reference architecture a hypothetical case study was introduced. The case

study involved an industrial company that manufactured a high variety of products in

low quantities in a highly competitive business sector. Consequently, the company had

to cope with frequent and unpredictable small batch size orders from various customers

that required short delivery times, customised products and low prices. The demand for

the company’s products together with their processing times and sequences are

summarised in table 3.1. It shows a total demand of 200 products in 10 different

varieties for a period of 100 time units. All orders were assumed to arrive

simultaneously in a batch size of one unit at the beginning of the time period (at time

zero) and were set to have the same priority and due date of 100 time units. In addition,

all products were assumed to be approximately of the same physical size, requiring the

same effort when handled.

To meet the demand the case study used five different types of machine tools (A, B, C,

D and E) that performed a wide variety of machining operations. The availability of

each machine was assumed to be 90% of the total period of 100 time units. In addition,

it was assumed that the setup of machines between different product types required no

time delays or operator intervention. To satisfy the demand and due date requirements,

the functionally arranged shop floor required a total minimum of 32 machines of types

A, B, C, D and Ewith individual quantities of 6, 8, 2, 5 and 11, respectively. All

Product Sequence
Processing times in machines

Demand A B C D E
1 A,E,B 25 7 3 10
2 A,C,E 15 3 2 11
3 E,D,B,A,C 40 2 9 1 2 5
4 B,D,A 10 5 8 6
5 C,D,B,A,E 15 4 2 3 6 3
6 B,C,E,D 15 3 1 5 2
7 D,E,B 30 2 1 3
8 A,B,E,D 5 8 2 3 6
9 E,A,B,C,D 30 2 2 1 3 1
10 C,E,A 15 1 1 5
Total 200 525 720 175 440 915

Table 3.1 Product demands and processing sequences and times in the case study

58

Chapter Three - Research methodology

replicates of the same machine type were assumed to be identical and therefore any

product could be processed at any machine instance with the same efficiency. Each

machine had an input and output queue size of one product and occupied the same

physical dimensions on the shop floor. Moreover, it was assumed that the system

required no operators, resource breakdowns never happened and that the quality of the

finished products was perfect (no rework required).

The products were transported in the system using a maximum of 25 automated guided

vehicles or AGVs, each capable of carrying one product at a time with a speed of up to

40 network zones per hour. The parts were dispatched to the system in a random order

as soon as an AGV became available for pick-up. Loading or unloading of products

caused no time delay. The transporters moved to parking areas located at the dispatcher

and exit to recharge batteries when not needed.

59

Chapter Four - Responsive module development

Chapter Four - Responsive module developm ent

This chapter reports on the development and application of the

responsive manufacturing paradigm in the context of dynamic

self-organisation based scheduling systems. First, the

relationship between manufacturing flexibility and

responsiveness is examined. Then the flexibility capabilities of

the resource element based representation of machine

capabilities and product processing requirements are

investigated. Subsequently, a procedure for the application of

resource elements in the self-organisation based scheduling is

proposed. The methodology is then modelled and simulated

using Arena simulation software. Finally, a number of

experiments are conducted using the hypothetical case study.

60

Chapter Four - Responsive module development

4.1 Manufacturing flexibility and responsiveness

In today’s unpredictable and rapidly changing marketplace an organisation’s ability to

respond to changes in customer demand has become the key for market success

(Vokurka and O’Leary-Kelly 2000). Manufacturing flexibility has been widely

recognised as the critical component in achieving this. The flexibility can be defined in

many different ways, but in the short-term it means the ability to adapt to changing

conditions using the existing set and amount of resources (D’Souza and Williams 2000),

where changes include both external factors e.g. demand variations, and internal

disturbances e.g. machine breakdowns (Kochikar and Narendran 1998). Several authors

have attempted to define the dimensions of manufacturing flexibility with varying

results, e.g. Koste and Malhotra (1999) identified ten dimensions of flexibility, Vokurka

and O’Leary-Kelly (2000) suggested 15 dimensions, whereas Zhang et al. (2003)

proposed seven elements of manufacturing flexibility. Some of the most commonly

quoted flexibility types are machine, routing, mix, volume and product flexibilities.

D’Souza and Williams (2000) categorised manufacturing flexibility elements into an

externally-driven and an internally-driven dimension, while Yusuf et al. (2003) argued

that there are only two principle dimensions of flexibility in manufacturing, product mix

and product volume, while any other types of flexibility are merely derived from them.

On the other hand, Pagell and Krause (2004) argued that there is no evidence that higher

levels of flexibility in a volatile environment improve system performance.

Routing, machine and material transfer flexibilities have been identified as being critical

to system operation (Kochikar and Narendran 1998). Routing flexibility is the ability to

process a given set of products using multiple alternative routes (Zhang et al. 2003). It

can be improved by increasing the number of identical machines in the system,

employing multipurpose machines or extending the material handling system (Tsubone

and Horikawa 1999). The availability of alternative routings have been recognised to

enhance a system’s flexibility towards changes in product mix and disturbances as it

enables products to be processed at alternative machines in the case of machine

breakdowns (Zhang et al. 2003). In addition, Kochikar and Narendran (1998) noted that

routing flexibility may improve system throughput, utilisation and load balancing and

reduce product transfers. However, there has been disagreement concerning its impact

on scheduling. Tsubone and Horikawa (1999) noted that routing flexibility allows for

61

Chapter Four - Responsive module development

efficient scheduling, while Koste and Malhotra (1999) argued that a greater variety of

routing options complicates scheduling. Another important dimension of flexibility

from an operative point of view is machine flexibility. It can be defined as the capability

of a machine to perform different operations (Tsubone and Horikawa 1999), and is often

a key variable in shop scheduling (Koste and Malhotra 1999). Changeovers between

operations normally require a penalty e.g. machine setup.

4.2 Resource elements and flexibility

The application of the concept of resource elements to a manufacturing system aims to

utilise any hidden capabilities of machines and improves machine and routing

flexibility. The recent increase in the scope of capabilities of modem machines has

made the resource element-based approach viable to many manufacturing systems

(Gindy et al. 1999). The traditional approach that described component processing

requirements as a sequence of machines required for their manufacture is unable to

utilise multiple capabilities of machines. Hence, the resource element-based

representation of exclusive and shared capabilities of a system’s resources can increase

the number of alternative routings available in the system and improve resource

utilisation. Gindy et al. (1996) noted that the flexibility of a manufacturing system is

determined through the number of duplicate resources and the similarity and uniqueness

of the resources in the system, while Gindy et al. (1999) argued later that system

responsiveness can be improved by maximising the utilisation of any flexibility inherent

in its available resources.

Scheduling in resource element-based systems has been considered by Gindy and Saad

(1998), Saad and Gindy (1998), Gindy et al. (1999) and Saad et al. (2002). They

employed a simulation optimisation model to find a satisfactory schedule for cellular

manufacturing systems. The procedure used dynamic shop floor information during the

optimisation and a schedule based on the global view of the system resources was

developed. Saad and Gindy (1998) concluded that significant improvements in system

performance can be achieved if machine capabilities are represented as resource

elements. However, the application of resource elements in recently introduced self­

organisation based scheduling approaches that employ only local information has not

been investigated.

62

Chapter Four - Responsive module development

4.3 Proposed self-organisation-based scheduling using resource elements

Self-organisation refers to the bottom-up approach to generate individual systems and

independent behaviour through interaction of basic components at the lower levels

(Vaario and Ueda 1998a). Within scheduling it means that machines, transporters and

orders negotiate to determine the product routings based on local conditions on the shop

floor at that moment. No advanced scheduling or sequencing of orders takes place.

Traditionally this idea was implemented according to machine type information.

However the lack of precise, advance information may lead to temporary uneven

demand of resources due to the sequence of products not being optimised. The

introduction of resource elements would enable a more even distribution of load across

a larger number of capable resources, as illustrated in figure 4.1, thus avoiding

temporary bottlenecks. It would also increase a system’s ability to cope with internal

and external disturbances by introducing alternative routings. However, resource

elements introduce an additional setup delay to the system when processing

requirements at the machine change, whereas setup delays traditionally only occurred

when a product of a different type entered the machine. Hence, there might be a need to

restrict the use of hidden machine capabilities. Basic rules need to be formulated to

reach a decision in this trade-off scenario of bottleneck avoidance against setup delays.

The following rules have been established to guide the use of hidden capabilities of

machines as represented by resource elements.

1. Always route the product to a machine of required type if available.

2. If no machine with the required resource element is available, then

2.1 route to the machine with the required resource element that has the shortest

2.2 wait until a machine with the required resource element becomes available.

queue, or

Product
requirements Machine types

Product
requirements

Machine capabilities
type hidden

Ml

M6

M4

*► M6

>► Ml

RE4

RE1 -ft

RE6
<

7 * RE1 RE6, RE4

^ RE4 RE1

^ RE6 RE1

a) machine types b) resource elements

Figure 4.1 Matching product requirements and machine capabilities

63

Chapter Four - Responsive module development

4.4 Implementation and results

The proposed approach to resource element-based self-organisation in scheduling was

applied to the hypothetical case study introduced in chapter 3. The purpose was to

evaluate the performance of the resource element-based approach to disturbances and to

compare it to a traditional machine-based scheduling system. Table 4.1 summarises the

randomly selected machine capabilities as represented by resource elements. The

simulation model was developed using Arena simulation software. The program code

for the model is presented in appendix A. The model assumes no setup delays or

product transport delays. The following experiments were conducted.

1. Steady state (no changes to product inputs or machines).

2. One replicate of machine type C becomes unavailable throughout the simulation.

3. Minor changes in the input product demand (demand for product type 1 was set to

zero and the demand for product type 2 was doubled to 40).

The outcome of the experiments indicated that the resource element-based self­

organisation system was able to cope better with changes to machine availability and

demand mix than the traditional machine-based system. Under stable conditions both

systems performed well and were able to comply with the due date requirements as

indicated in figure 4.2. However, when internal or external conditions changed, the

resource element-based self-organisation was able to adapt to the new circumstances

while the machine-based self-organisation could not. This is due to the fact that the

machine-based system was not able to utilise the hidden capabilities of resources.

Figures 4.3 and 4.4 illustrate similar performance in terms of the average product lead

times and resource utilisation. The resource element-based system has a longer lead

Machine-based
system

Resource element-
based system 1

Resource element-
based system 2

A(RE1) RE1, RE2 RE1, RE2, RE3
B (RE2) RE2, RE 3 RE2, RE3, RE4
C (RE3) RE3, RE4 RE3, RE4, RE5
D (RE4) RE4, RE5 RE4, RE5, RE1
E (RE5) RE5, RE1 RE5, RE1, RE2

Table 4.1 Machine capabilities in the case study using resource elements

64

Chapter Four - Responsive module development

2000

■ Machine-based
system

El Resource element-
based system 1

□ Resource element-
based system 2

1 2 3

Experiment number

Figure 4.2 Throughput times in machine and resource element-based systems

800

T3re_0)
<uD)
20)z

400
1 2 3

Experiment number

■ Machine-based
system

□ Resource element-
based system 1

0 Resource element-
based system 2

Figure 4.3 Lead times in machine and resource element-based systems

100

1 2 3

Experiment number

■ Machine-based
system

□ Resource element-
based system 1

□ Resource element-
based system 2

Figure 4.4 Utilisation in machine and resource element-based systems

65

Chapter Four - Responsive module development

time in a steady state system, but once the internal conditions vary from the optimum or

demand mix changes from the values originally used for system design, it outperforms

machine-based systems. The ability of the resource element-based system to exploit the

hidden capabilities of resources improved average utilisation, as illustrated in figure 4.4.

These results indicate that resource elements can be applied successfully to self­

organisation systems.

4.5 Conclusions

The results of the experimental study indicate that resource elements are applicable to

dynamic self-organisation scheduling systems. The proposed approach successfully

balanced the load among all capable machines when a machine breakdown or changes

in the demand mix lead to higher demand on some resources. It also enabled the system

to meet the due date requirements. Hence, resource elements can improve system

flexibility and responsiveness in the conditions of dynamic self-organisation and are

suitable for 21st century manufacturing systems.

66

Chapter Five - Fractal module development

Chapter Five - Fractal m odule developm ent

This chapter proposes a methodology for shop floor

configuration in fractal manufacturing systems. It includes an

overview of the layout design process and a discussion on the

system re-configurability. It also summarises the existing fractal

layout design approaches. Later in the chapter, seven distinct

fractal cell configuration methods for different system design

objectives and constraints are proposed and an integrated design

methodology is developed. In addition, mathematical models for

the different design stages are presented. The procedure is

modelled and simulated using heuristic algorithms and C + +

programming language. Finally, the procedure is applied to the

hypothetical case study. The quality of the resulting layouts is

assessed and compared against the random arrangement of

machines. The chapter ends with a flexibility study.

67

Chapter Five - Fractal module development

5.1 Layout design

The discipline of layout design in manufacturing is concerned with the determination

and allocation of the available space to a given number of resources (Azadivar and

Wang 2000). It is a complex task that can significantly affect the efficiency of the

resulting manufacturing system in terms of shop floor control, materials handling,

materials management, equipment utilisation, and worker productivity (Co and Araar

1988). Traditionally, layout design has focused on minimising the amount and distance

of material transportation due to the relatively high costs of material handling (Gau and

Meller 1999) and on maximising the capacity utilisation (Wild 1993). It involves

consideration of the demand, capacity, work methods, resource requirements, handling

and movement, departmental area requirements, and shape and location restrictions

(Wild 1993, Gau and Meller 1999). Koren et al. (1998) summarised the parameters of

manufacturing configurations as i) the system initial cost, ii) quality, iii) reliability and

throughput, iv) scalability i.e. the cost of adding capacity to adapt to market demand, v)

the number of product types that the system can produce, and vi) the system conversion

time between products. In the design of conventional layouts such as product, process

and cellular layouts, the product mix, volume and routings are generally assumed to be

known and valid for a long period of time (Benjaafar et al. 2002). In addition, the

employed algorithms focus solely on material handling efficiency and ignore the

flexibility and re-configurability of the ensuing layouts.

Recent changes in customer demand patterns have increased the pressure on

manufacturers to produce a wider variety of products with shorter cycle times. This

requires resource configurations that can either function efficiently over many different

production scenarios or that can easily be reconfigured (Benjaafar et al. 2002). Meng et

al. (2004) classified the layout problems into traditional, robust, dynamic and

reconfigurable according to the availability of production data for single or multiple

production periods. Robust layouts have been designed to operate efficiently in multiple

production scenarios, while dynamic layouts balance the costs of material handling and

reconfiguration over a sequence of layouts designed for multiple planning periods

(Meng et al. 2004). The reconfigurable layout approach assumes that resources can be

easily moved around the shop floor, thus making frequent relocation of resources

feasible (Baykasoglu 2003). Baykasoglu (2003) considered four types of layout

68

Chapter Five - Fractal module development

strategies, namely modular, reconfigurable, agile and distributed (scattered) layouts.

Modular layouts group machines according to a subset of operations in different

routings, while agile layouts are designed according to agility criteria e.g. throughput,

cycle time etc. In distributed layouts the machines are scattered throughout the shop

floor to improve the accessibility from different areas of the layout (Baykasoglu 2003).

Fractal and holonic layouts can be considered as different types of distributed layouts.

Askin et al. (1999) developed machine distribution and product routing methods for

holonic layouts, where each machine is considered as an independent entity and the

resources are scattered around the borderless shop floor to provide efficient product

routings for any product type. The methodologies proposed by Benjaafar and

Sheikhzadeh (2000) and Urban et al. (2000) optimise the machine arrangement in a

distributed holonic layout for a known product demand. A system with a fractal layout,

on the other hand, uses cells to group machines together and to control and limit product

routings. Although the fractal layout can be seen as an extension of a cellular layout

(Askin et al. 1999) due to the structure of the shop floor, fractal cells are multifunctional

and able to process most of the product types routed into the system. Multi-channel

layout studied by Ozcelik and Islier (2003) can be seen as the linear formation of fractal

cells. Benjaafar and Sheikhzadeh (2000) explored the design of flexible layouts i.e.

layouts capable of a cost-effective operation over a number of demand scenarios, by

creating replicates of the same department and distributing them throughout the shop

floor. They discovered that having duplicate departments strategically located around

the facility can simultaneously reduce material handling costs and improve

responsiveness towards demand fluctuations. The facility layout optimisation problem

has been widely reported in the academic literature and many different optimisation

procedures have been proposed e.g. Lacksonen (1997), Balakrishnan and Cheng (1998),

Azadivar and Wang (2000), Lee et al. (2001) and Urban et al. (2000).

5.2 Layout design in fractal organisations

The first methodology for applying the theory of the fractal factory to facility layout

design was proposed by Venkatadri et al. (1997) and Montreuil et al. (1999). The

authors suggested the use of a ‘fractal cell’, a set of neighbouring workstations on the

shop floor, as the basic unit of the organisation. In their approach, all fractal cells had

roughly the same composition of machines and were capable of processing most of the

69

Chapter Five - Fractal module development

demanded products; hence system flexibility was believed to increase. The proposed

method first determined the required capacity levels for each machine type and the

number and composition of fractal cells. Then ah iterative algorithm was employed,

which continuously optimised the layout and flow assignment according to the

performance of the system under these parameters. The objective was to create a

workstation layout that minimises the capacity requirements and material travelling

distances for a known product mix and demand. The computational results indicated

that unrestricted product flows offer the best flow scores in a fractal layout. Venkatadri

et al. (1997) argued that independent cells would be competitive only if product

specialisation was allowed. On the other hand, if the products were to be distributed

evenly among cells, free routings over cell borders would be required for the

minimisation of material handling distances. The authors claimed that in an agile

environment similar cells would offer several advantages, such as easy control and

expansion, and operational flexibility, but would suffer either from excess capacity or

long product travelling distances.

Askin et al. (1999) used a slightly different approach to the fractal layout design. In

their experiments all fractal cells were identical, fully independent, and capable of

processing all products. In addition the machines were located randomly within each

fractal, e.g. cells were not specialised for any product. The fractal layouts for a different

number of machines and processes were developed and simulated in a chaotic

environment with randomly generated processing sequences and times and varying

product inter-arrival times. When the authors compared the results to holonic and

process layouts, they concluded that the fractal layout, which used the total workload of

relevant machines for a fractal selection, had both the smallest cycle time and material

handling distance. This supports the main objective of fractal layout, which is to reduce

material movements by forming small multifunctional cells with short part routes

(Askin et al. 1999).

While Askin et al. (1999) presented an overall convincing case for independent and

similar fractals, they only considered a situation where all cells had exactly the same

composition of machines. This rarely exists in a manufacturing system and is likely to

require resource duplication. On the other hand, the methodology proposed by

70

Chapter Five - Fractal module development

Venkatadri et al. (1997) created layouts using known product demand and mix.

Unfortunately, in an agile environment the exact product mix and demand levels are

very difficult to predict. Therefore, the created layout could quickly become ineffective

and might require reconfiguration. In addition, the material flows in the resulting

layouts are very complex and difficult to control. Since the authors (Venkatadri et al.

1997) maintained the cellular separation of fractal cells only during the initial system

design, virtual manufacturing was suggested for the actual system operation and control.

Although allowing free or almost free product routings .over cell borders can reduce the

product travelling distances, many significant features of fractal manufacturing are

consequently lost.

Montreuil et al. (1999) discussed product distribution and routing for identical and for

different fractal cells. The authors recognised that identical cells with the same machine

compositions and layouts enable the processing of all products in all cells with the same

efficiency. They also noted that for identical cells the material travelling distances can

be reduced by optimising the layout in each cell according to the allocated share of the

product mix. The third layout option Montreuil et al. (1999) considered allowed

different cell compositions, which they claimed would generally require inter-cell flows

to enable the processing of all product types in all cells.

5.3 Proposed fractal layout configuration methods

Fractal cells can take many different forms, as illustrated in the review of fractal cell

layouts. This is due to the multitude of interdependent design parameters, such as the

level of interaction between cells, the similarity of cells in terms of machine types and

quantities, the system capacity level and the distribution of product types among the

cells. A comprehensive review of the fundamental design parameters is presented in

table 5.1. Since many of the design parameters have a fundamental influence on the

structure and operation of the system, they have to be in line with the strategic goals of

the organisation. Accordingly, no single type of fractal layout can be recognised as an

optimal solution for every organisation and tradeoffs may have to be made. From all

possible combinations of the fractal cell parameters only seven distinct cell

configuration methods were identified to be useful from a business perspective and

selected for experimental analysis.

71

Chapter Five - Fractal module development

Design parameter Key issue Options
Cell autonomy Can products be routed

between cells?
• Autonomous cells
• Semi-autonomous cells (cooperation
allowed on pre-defined routes only)

• Cooperative cells

System capacity Can the number of
resources in the system
exceed the minimum
quantity required by the
demand?

• Minimum capacity
• Limited resource duplication allowed
(for performance improvement only)

• No capacity restrictions

Similarity of cell
compositions

Can all cells process all
products?

• Identical cell compositions
• Similar cells compositions (machine
quantity not divisible by number of
cells)

• Different cell compositions (optimised
for a fraction of the demand)

Similarity of cell
layouts

Can all cells process all
products with the same
efficiency?

• Identical cell layouts
• Similar cell layouts (slightly different
cell compositions)

• Different cell layouts (optimised for a
fraction of the demand)

Demand allocation Can any product be
allocated to any cell?

• Even distribution of demand to cells
• Optimised distribution of demand to

cells (according to cell compositions
and/or layouts)

Number and size
of cells

Which cell quantity
results in an optimal cell
size? (small cell quantity
= large size cells, and
vice versa)

• Suggested range: any cell quantity
between one and the largest number of
machines of one type 1 < F < max(Nm)

• Approx. all machines divided by the
number of machine types (N/M)

• Smallest number of machines of one
type min(Nm) (allows full capabilities in
all cells without duplication)

Shape of cells
and shop floor

Which cell and shop floor
shape offers minimal
material handling
distances?

• Square-shape
• Rectangle-shape
• L-shape
• Any other shape

Table 5.1 Fundamental design parameters of fractal cell configuration

The first fundamental design classification as illustrated in figure 5.1 follows the

decision of how to distribute products to the cells. In methods 1 to 3 the products are

assigned to the cells as evenly as possible to facilitate easy control and responsiveness

to disturbances. Conversely, in methods 4 to 7 the products are assigned to cells

according to cell capabilities in order to minimise capacity increase or the number of

72

Chapter Five - Fractal module development

external material flows. In method 7 only the capabilities of non-specialised cells are

considered during the product assignment.

The allocation of machines to fractal cells is a more complex issue relating to capacity

planning, cell similarity and cell autonomy. In terms of cell compositions, the proposed

methods 1, 2 and 3 are directly comparable to methods 4, 5 and 6 (identical,

similar/optimised, minimal). Resource allocation is simplest in methods 3 and 6, for

which merely the minimum required machine quantities, as defined by assuming a one

cell system, are distributed as evenly as possible to all cells. Configuration methods 1

and 2 base the allocation of machines strictly on each cell’s resource requirements as

defined by the products assigned to it. Since the product distribution in these methods is

similar, the cell compositions tend to be similar as well. Methods 4 and 5 start with

minimal resource allocations analogous to methods 3 and 6. However, if no means of

product allocation can be found in which all cells are able to independently process the

assigned demand, then machines are added as required. Resources are additionally

duplicated in methods 1 and 4 to achieve identical cell compositions. In method 7 a

specialised cell is first created to contain specialised or scarce resources which

quantities are smaller than the number of fractal cells. Then the remaining resources are

assigned evenly among the normal cells. As in methods 5 the number of these resources

is then increased until all products can be distributed without requiring cross-cell flows

Product
distribution

Cell
composition

Product
routing

External
layout

Internal
layout

Design
method

Similar Different

Identical Similar Minimal Identical Optimised Minimal Specialised

Autonomous Autonomous Cooperative
(free)

Autonomous Autonomous Cooperative
(free)

Cooperative
(restrictive)

Optimised Optimised Optimised

Optimised Optimised Optimised Optimised Optimised Optimised Optimised

Figure 5.1 Fractal cell configuration methods

73

Chapter Five - Fractal module development

to occur between normal cells. Machine and product allocations in the proposed fractal

cell configuration methods are illustrated in figure 5.2.

The composition of fractal cells is strongly affected by capacity planning, which must

balance investment cost against operational benefits. In general, excess capacity should

be avoided and machines should only be added if a significant improvement on the

performance or processing capability of the system can be gained. Forcing identical cell

compositions by resource duplication, as required in methods 1 and 4, may result in a

high degree of overcapacity on some resources, while the utilisation of others might

remain high. If different cell compositions are allowed, they often occur as a

consequence of varying processing requirements and machine quantities, even though

they are generally not aimed for. In any case, the available resources should be

distributed as evenly as possible among the cells to increase system flexibility,

robustness, adaptability and capability. In some instances the business structure may

favour layouts with different cell compositions, i.e. if group technology can be applied

or if machine requirements make the formation of efficient identical cells difficult or

infeasible. When c.ells are similar, product re-distribution in the case of cell malfunction

is easier. If cells are independent, it is important to consider the cell capabilities before

products are routed to cells.

1 2 3 4 5 6 7

Distribute demand
evenly among all cells

Distribute minimum
required resources

evenly among all cells

Distribute demand to
cells according to cell

resources

Add resources until all
cells have identical

compositions

Distribute minimum
required resources

evenly among all cells

Allocate resources
with low demand to a

specialised cell

Add resources until all
cells have identical

compositions

Distribute remaining
resources evenly

among the other cells

Distribute demand to
normal cells according

to cell resources

Add resources until all
cells are able to

independently process
the assigned demand

Define for each cell
the resources required

for independent
processing of the
assigned demand

Add resources to
normal cells until

external routings exist
only with the

specialised cell

Figure 5.2 Allocation of machines and products to fractal cells

74

Chapter Five - Fractal module development

The third major issue in the design of fractal cells is the level of cell autonomy labelled

in figure 1 as product routing. Inter-cell product flows can either be prohibited,

unconstrained or restricted to occur only if the required resource is unavailable within a

cell. Montreuil et al. (1999) argued that the objectives of resource utilisation, flow

reduction, and system flexibility are in favour of non-independent fractal cells.

Conversely, they noted that the material flows in autonomous cells are easier to control.

In the proposed autonomous methods 1, 2, 4 and 5 no product routings between the cells

are allowed at all. Methods 3 and 6, on the other hand, allow material flows between the

cells, if the local cell has no remaining capability for the required resource. In figure 5.1

this routing approach is called cooperative (free) as opposed to the cooperative routing

in method 7 where inter-cell flows are restricted to occur only between a normal cell

and the specialised cell. The normal cells route products to the specialised cell when its

resources are required. After processing in the specialised cell the product will return to

the original cell for completion.

Overall, allowing cooperative cells increases system flexibility and resource utilisation,

but would also complicate the material flows. Since internal flows are still given

priority, the majority of material flows occur within a cell, which simplifies control. In

the case of a machine breakdown, the products can be routed to other cells. Adding

extra machines may improve material flows and system flexibility towards increases in

demand. With autonomous cells, on the other hand, a machine breakdown can bring a

whole cell to a standstill, since cells have to operate independently. Finally, capacity

requirements are generally higher in autonomous cells.

The optimal number and size of fractal cells and the arrangement of the machines on the

shop floor are design issues that will be discussed briefly. However, in the proposed

methods these issues are the result of cell configuration rather than pre-selected design

parameters. The number of fractal cells is decided after evaluating the performance of

the system simulation using different cell quantities. Montreuil et al. (1999) suggested

setting the number of fractal cells to equal either the smallest number of machines of

one type or to the average number of machines. To achieve an even machine

distribution they suggested using an ordered machine list. If identical cells are desired,

the number of fractal cells may be selected so that all available machine types can be

75

Chapter Five - Fractal module development

equally distributed among all cells without significant growth in capacities. In any of

the proposed fractal design methods the resulting cell size needs to be considered when

selecting the number of fractal cells. The advantages of a square arrangement of

machines in an agile environment were recognised by Askin et al. (1996). Venkatadri et

al. (1997) recommended a value of 5 to 15 machines per cell.

The external layout defining the positions of the cells in relation to each other, referred

to as global layout by Venkatadri et al. (1997), needs to be considered if cell

cooperation is allowed. If the formation of a specialised cell is desired, this cell should

then be located in the middle of the shop floor so that the travelling distances from all

other cells is minimised. If the specialised machines are placed within normal cells, then

cells holding replicates of the same specialised machine type should be placed on

opposite sides of the shop floor for optimal distribution and flow distance.

The issue of internal cell layout is significant, because it affects the product flows and

travelling distances within the cells where the majority of material flows occur. An

identical cell layout can be created for all fractal cells if they have exactly the same

internal resources. If the difference in cell composition is only marginal, very similar

layouts may be created. The cell layout design is generally more complex in cooperative

cells if inter-cell material flows are taken into account as demonstrated by Venkatadri et

al. (1997). The machine assignment in each cell is mainly influenced by the resulting

number of intra-cell flows that would take place, but the direction from which externally

routed products flow in and out of the cell is also taken into account during the layout

optimisation process.

5.4 Developed integrated methodology for fractal shop floor configuration

For the implementation of the proposed fractal cell configuration methods an integrated

procedure illustrated in figure 5.3 was developed. The suggested methodology

summarises the main characteristics of the proposed layouts and their design processes

and indicates the relevant mathematical formulas at each stage. The notation used is

listed in the nomenclature.

76

Chapter Five - Fractal module development

Demand forecast 4 -- > Product design & Process plan

Calculate minimum capacity requirements
for all machine types (1)

Select fractal cell quantity F with \ < F < max(N)
according to fractal cell size requirements

Define strategic parameters for system
control, structure and load distribution

Method 1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7
• Autonomous • Autonomous • Cooperating • Autonomous • Autonomous • Cooperating • Semi-

cells cells cells cells cells cells autonomous
• Identical cell • Similar cell • Similar cell • Identical cell • Similar cell • Similar cell cells

compositions compositions compositions compositions compositions compositions • Similar cell
• Even product • Even product • Even product • Optimised • Optimised • Optimised compositions

distribution distribution distribution product product product • Optimised
• Minimum distribution distribution distribution product

capacity • Minimum distribution
levels capacity

levels
• Specialised

cell (c,)

Distribute demand evenly among all cells (2)

Define separately for each cell
the resources required for

autonomous processing of the
assigned demand (8)

Add resources
until all cells
have identical
compositions

(9)

Allocate
resources with
low demand to

specialised
cell cs (4,5)

+
Distribute minimum required resources Nm(jn &ms) evenly among cells(c ^ c) (3)

If demand
exceeds

availability,
route products
between cells

(7)
+

Distribute demand to cells (according to cell resources (6)

Add resources until all cells are
able to autonomously process

the assigned demand (7)

Optimise
external cell
arrangement

(10)

Add resources
until all cells

have identical
compositions

(9)

If demand
exceeds

availability,
route products
between cells

(7)

Add resources
to normal cells
(cf * c s) until

cooperative
routings exist
only with the

specialised cell
(7)

Optimise external cell
arrangement (10)

Optimise internal machine arrangement (11)

Figure 5.3 Integrated fractal shop floor configuration procedure

For all fractal configuration methods, the initial stage in the design process is the

insertion of the demand and processing data, as illustrated in figure 5.3. As one of the

few phases in the procedure that require human input, the stage is highlighted in the

diagram. The data is used in the next phase to calculate the minimum machine

quantities of each type with formula (1) as suggested by Venkatadri et al. (1997):

77

Chapter Five - Fractal module development

=

y J (d . - t .)Z-iy = 1V j j m) , where/w = 1,...,M (1)

Human judgment is also required for the selection of the appropriate fractal cell quantity

and the design method. To support these strategic decisions the key design parameters

and options have been summarised in table 5.1. Montreuil et al. (1999) suggested that

the number of fractal cells should equal either the smallest number of machines of any

one type or the average number of machines per type. However, the issue is more

complicated in the proposed procedure since for most methods the final number of

machines is not known at this stage yet. Therefore, it is recommended that all fractal

cell quantities within the range of one and the largest number of machines of one type

l<F<max(7Vm) are evaluated, and that the cell quantity with the best capacity-

efficiency ratio is selected. Method 7 is only applicable for fractal cell quantities where

the required quantity for at least one machine type is smaller than F-1, or 3Nm < F - 1.

The design parameters governing the strategic features in the control, structure and load

distribution of the fractal layouts include cell autonomy, system capacity, cell

composition and demand allocation to cells. Table 5.1 lists the main options in these

categories. The interdependency of the parameters complicates the system planning i.e.

the choice made in one category limits the options in others. If autonomous cells are

chosen, a duplication of resources is often necessary and cell capacities have to be

carefully considered when products are allocated to cells. The seven proposed fractal

configuration methods represent different combinations of the design parameters that

seem sensible from a business point of view (figure 5.3).

Meeting another design parameter listed in table 5.1, the fractal configuration procedure

always aims for a square-arrangement of machines and cells following the

recommendation of Askin et al. (1996). The design criterion y < x < y + l directs the

shape of both the cells and the shop floor by restricting the difference between the

horizontal and vertical dimensions to one machine or cell. Likewise, no similarity is

required among the cells in terms of machine arrangement. For every method the layout

in each cell is optimised separately for the demand assigned.

78

Chapter Five - Fractal module development

Two main approaches amongst the design methods in figure 5.3 can be identified i.e.

cell capacities are based on the evenly distributed demand or demand is allocated to

cells according to their resources. In methods 1, 2 and 3 the demand D is first

distributed evenly among all cells, limiting the quantitative difference between the cells

to one unit in terms of both the total demand D f and any product type Djj when product

demand is not divisible by F with formula (2):

D* = + 1$ (2)

where ls =
1, when < D j m odF a D f < D t +1 for i = 1

0 otherwise
andy = 1,...^/.

Similarly, in methods 3, 4, 5 and 6 the minimum machine quantities Nm are distributed

evenly among all cells c/with:

*1
Fd

+ 1fin

where F„ =
\ F - 1, i f3 c s
F otherwise

and

1, when^ f=l/fm < N mmo&FR a N f <W,.+1 for/ = !,...,FR

(3)

*f
0 otherwise

for

For method 7, the machine types m for which condition (4) is true are allocated to the

specialised cell cs if the resulting number of machines Ns in the specialised cell is within

the limits of condition (5). The remaining machines m ^ m s are then allocated evenly

among the other cells cf ^ cs using formula (3).

N m < F - 1, wherem =

max(Nf) > N S - 2

(4)

(5)

79

Chapter Five - Fractal module development

To minimise the number of additional machines required in autonomous/ semi-

autonomous methods 4, 5 and 7 and to minimise the number of cooperative routings

between the cells in method 6, the products are distributed to cells according to their

resources. This objective is expressed in (6).

If the demand in methods 4, 5 and 7 at any machine type in any cell exceeds the

availability, then the cell capacities are increased accordingly. In the fully cooperative

methods 3 and 6 products that can not be processed internally due to a lack of resources

are routed between the cells to utilise the available capacity in other cells. This is

performed until condition (7) is satisfied for every machine type m and every cell Cf. For

method 7 the number of non-specialised resources m ^ m s in regular cells cf ^ cs is

increased until cooperative routings exist only with the specialised cell.

YfJJ D r TJJ < N fm-Um,wheiem=h...M3nd^K..^ (7)

In methods 1 and 2 the resources for each cell are defined separately with formula (8)

according to the processing requirements of the assigned demand. Since the demand

was distributed evenly among the cells, similar cell compositions are expected.

N fm =
y J D f -t ,Z-f j =i JJ Jm

u i
where m = l,...,M and/ = 1,...,F. (8)

Finally identical cells are created in methods 1 and 4 by increasing the number of

machines of type m in every cell to equal the largest quantity in any cell max.(Nfm)

following formula (9):

N fm = max(/V/OT) , where m = l,...,M and / = 1,...,F. (9)

Chapter Five - Fractal module development

Once the number and type of cooperative routings required in methods 3, 6 and 7 are

identified following the condition (7), the cells can be arranged on the shop floor so that

the total cooperative routing distance Scoop over all products is minimised as indicated in

formula (10):

Minimise . (10)

At the final stage of the fractal configuration procedure illustrated in figure 5.3 the

machine arrangement is optimised separately in every cell for all methods with the

objective to minimise the total internal travelling distance Sjnt, given by formula (11):

Minimise | , w here/= 1 (11)

The quality of a given global and internal layout for a given product demand and mix is

a function of the total material handling distance S, with S = Smt + Scoop. The deliverable

of the procedure includes the capacity requirements, cell and machine layouts and

product allocation lists for the selected fractal cell quantity and design method. A

sample layout is illustrated in figure 5.4. The usefulness of the different configurations

can be evaluated by comparing their capacity requirements and material travelling

distances. While some formulas are directly applicable to case studies, meeting the

objectives (6), (10) and (11) requires an iterative and in most situations a heuristic

approach. To achieve better results, the heuristic search can be complemented with a

tabu-search based procedure as a guiding mechanism towards an optimal solution.

000 yr 00 000
000 000 000
0 0 000 0 0

----------------►
xf

000 000 00
00 000 000
000 0 0 0

— ►
X

Figure 5.4 Sample fractal layout

81

Chapter Five - Fractal module development

5.4 Simulation o f the fractal design methodology

A computer program was designed to efficiently carry out all design and optimisation

tasks shown in figure 5.3 after human input had been collected. Figure 5.5 depicts a

logical flow chart of the fractal configuration for all of the 7 proposed methods. A C++

program, presented in appendix B, has been developed to define cell objects that could

be manipulated in terms of global layout, number and types of machines, allocated

product demand and mix, and ingress of cooperative material flow. Based on their

configurations, the cell objects could in turn evaluate internal and to some extent

cooperative material flow distance.

The most fundamental difference between the various configuration methods is the

order in which product and machine distribution occur with respect to each other.

Methods 1, 2 and 3 first distribute the product demand and mix evenly across the cells

and then determine and allocate the machines required to process the assigned products

within a given time frame. Conversely, methods 4, 5, 6 and 7 initially distribute merely

Force L
identical

cells i

Add machines as
required by demand

Define and create fractal
cell data types

Read product demand
and sequence

Allocate machines evenly
among all cells

Optimise product
distribution

Add machines to avoid
cell cooperation

Optimise internal
machine layout

Allocate demand evenly
among all cells

Identify and create
specialised cell

Optimise external cell
arrangement

Calculate min. required
amount of machines
(assuming one cell)

Figure 5.5 Logical flowchart of fractal layout design procedure

82

Chapter Five - Fractal module development

the minimum number of machines across the cells as defined in formula (1). The

allocation of product demand and mix is then unconstrained and can be optimised to

reduce the number of machines or cooperative material flow. Three heuristic algorithms

were needed in the simulation program. One tabu-search algorithm was used for all

configuration methods to optimise the internal machine layout within cells. Two simpler

heuristic methods iteratively searched a neighbourhood for optimal permutations of

external cell layout for methods 3 and 6 and for optimal solutions to the product

distribution problem in methods 4 to 7.

Starting with the internal layout problem, the positional two-dimensional matrix of

machine types in a cell with size R f = Xf -jy is represented by a one-dimensional

permutation that is filled row by row, in order to create a neighbourhood for a specific

cell layout. The neighbourhood represents all possible permutations that differ from the

original layout by exactly one swap move. The formula proposed by Saad and Lassila

(2002) for calculating the size of this tabu-search neighbourhood ZA can be adapted for

the tabu-search algorithm on machine layout optimisation as follows:

position these empty fields N/e occupy in the Xf ■yf cell matrix influences the flow

distances and must therefore be represented in the creation of the permutation. The

neighbourhood size for the heuristic search needs to be extended from formula (12) to:

where Nfe = R f- N/m for any fractal cell Cf.

The proposed tabu-search algorithm assesses the quality of a selected permutation (a

given cell layout) by simulating the flow of products assigned to a cell and summing up

(12)

If the number of machines N f in cell Cf is not equal to the size R f of the rectangular­

shaped fractal cell, some positions on the two-dimensional grid will be left empty. The

, R f - (R f ~ 1) N f e < N f e - V
L A - ry 2 L t O 0

Z m=l \ Z J Z

(13)

83

Chapter Five - Fractal module development

the resulting distance S{ntf these have travelled. The permutation’s neighbourhood is

iteratively searched for the non-tabu solution that resulted in the lowest material

travelling cost. In addition to machine locations, the material flow simulation takes into

account the processing requirements and sequences of allocated products and the

availability and capacity levels of the machines. All products are assumed .to enter the

cell on one side and exit on completion to the opposite direction. These routing

distances together with the travelling distances of any cooperatively routed inter-cell

product flows are added to provide a more realistic evaluation of the influence a given

cell layout has on material handling distances. The external arrangement of the cells is

evaluated in a similar manner, but this algorithm did not employ the additional

complexity of tabu-search, since the neighbourhood of possible cell positions is

significantly smaller.

The combinational optimisation algorithm for product allocation as required for

methods 4 to 7 uses a heuristic method similar to tabu search. As experimental results

indicated, the maintenance of a tabu list was not required and simple swap search

through the neighbourhood of adjacent permutations sufficed. The quality of each

permutation is assessed in terms of the number of products that can not be allocated to

any cell without exceeding the cell’s processing capabilities. Figure 5.6 shows a sample

permutation containing all products D. The first products in the permutation are

allocated to fractal 1 until a product is encountered that can not be processed given the

remaining levels of resource availabilities. This mapping of a permutation of products

against cell capabilities is continued for all four fractals used in the example. Leftover

products to the right of the permutation are those, which the last fractal could not

process under the given time constraints.

The heuristic search is executed until changes to the permutation fail to yield any further

reduction in leftover products. At this stage the autonomous and semi-autonomous

configuration methods 4, 5 and 7 add one machine to increase the capability of one cell

depending on where it can make the most difference to leftover quantity. This process

iteratively alternates with the combinatorial optimisation process until no leftovers

remain and all products have been allocated to capable and autonomous cells. The

method places a high burden on computational resources if the number of products is

84

Chapter Five - Fractal module development

Permutation of all products to be distributed on 4 cells

18271591284212 518274 162 421264168514 212248 12753251 15256341873

~ Y ~
cell 1

A
y
cell 2

A y
cell 3

Y
cell 4 leftovers

Figure 5.6 Permutation of products for optimisation of product distribution

large. This corresponds to the number of neighbours that the heuristic search needs to

evaluate before committing a combinational swap operation for a given permutation.

The neighbourhood size for the optimisation of product distribution can be obtained

from:

5.5 Results of layout optimisation for a known product mix

The proposed fractal cell configuration procedure was applied to the hypothetical case

study introduced in chapter 3 using the developed tabu-search based computer program.

The purpose was to validate the effectiveness of the proposed methodology and to

evaluate the quality of the different layout design methods in terms of material

travelling distances and capacity requirements. Several experiments were conducted for

each layout configuration method and a different number of fractal cells. Since the

heuristic search could not be expected to yield the optimal solution at the first go,

several runs were required, and the results that closest met the layout design objectives

presented in the previous section were recorded.

Figure 5.7 illustrates the performance of the proposed heuristic search methodology for

an optimal product distribution (method 5). In method 5 and 7 the reduction in leftover

products is partly achieved by product distribution and partly by adding further

machines at the instance where combinatorial changes in product demand and mix fail

(14)

j
where D is the total number of products, D =

7=1

85

Chapter Five - Fractal module development

to produce any improvement. As figure 5.7 shows, the process is moving asymptotically

towards its objective to distribute all products to capable cells. Towards the end of the

procedure, less improvement can be made by changes in the permutation and resource

capacities. Figures 5.8 and 5.9 illustrate the machine and demand allocations to cells

after the first and last stage of the optimisation process. In figure 5.8 the minimum

machine quantities (from formula 1) have been evenly distributed to cells and the

demand has been allocated to cells according to these resources following formulas (3)

and (6) respectively. However, due to the property of cell autonomy and the limitation

that machine type C was presented only in two out of four cells, not all products could

be processed with the existing minimal resources. These unallocated products accounted

160

140 -

o 120 -

s. 100 -

80 -

60 -

40 -

20 -

1 41 81 121 161 201 241 281 321 361 401 441 481 521 561

 Run 1

 Run 2

 Run 3
+ Add machine

Move number

Figure 5.7 Performance of the heuristic search algorithm

360

Required
□ Available

E 180 -

a
A B C D E

Cell 1
A B C D E

Cell 2
A B C D E A B C D E

Cell 3 Cell 4
A B C D E
Unallocated

Figure 5.8 Product allocation optimisation process - first stage

86

Chapter Five - Fractal module development

360

270 -

■ Required
□ Available

Cell 1 Cell 2 Cell 3 Cell 4 Unallocated

Figure 5.9 Product allocation optimisation process - final stage

for more than a third of the total demand. It was not possible to allocate many of these

leftover products to cells one and two due to the lack of resource C. Using formula (7)

duplicate resources needed to be added in conjunction with the optimisation process

aiming towards formula (6) to allocate all of the demand D across capable cells. The

resulting cell requirements and capabilities are illustrated in figure 5.9, which

demonstrates the effectiveness of the procedure to balance the process load with

minimum excess capacities.

The external cell and internal machine layouts produced by the heuristic search

procedures for all seven methods for a quantity of four fractal cells is shown in figure

5.10. The first observation is that the recommendation of Askin et al. (1996) on the

basic square-like shape of shop floor and cell dimensions were met. Further, it is noted

that the cell sizes vary among the different design methods chosen (between 32 and 44).

For methods 3 and 6 only the minimal amount of machines are placed on the shop floor.

However, the full cooperation required between the cells seems to have had a negative

impact on the overall product handling distances. These methods may also be more

complex to handle from a control point of view. Method 7 provides a trade-off, for

which control of material flow is simpler. The design method with the specialised cell

also shows the lowest amount of resource duplication above the minimal quantities, but

exhibits the heaviest cost in terms of material handling distance. The autonomous

design methods on the other hand may be easiest to control but have the largest amount

of excess capacity. These conclusions are valid for all fractal cell sizes as can be seen

87

Chapter Five - Fractal module development

from figure 5.11, which plots the percentage increase in capacity for all feasible fractal

cell sizes in all methods using the data of the hypothetical case study. As a general rule

the number of machines in the system grew considerably when the number of fractal

cells increased. The excess capacity in methods 1, 2 and 4 exceeded 50% at seven

fractal cells. Only the cooperative methods 3 and 6 operated without any extra resources

at each fractal cell quantity.

0000
0000
0 00

0000
0000
0 00

000
0000
0000

0000
0000
0 00

Method 1, N= 44,5^=1084

00
000
000

00
000
000

000
00

000

000
00

000

0000
0000
0 00

0000
0000
0 00

000
0000

000

00 0
0000
0 00

Method 2, N=42, Sproc= 1085

000
0000

000

000
0000

000
000
0000

000

00 0
0000
0 00

Method 3, N= 32,5'„roc=1420

000
000
000

000
000
000

00
000
000

0000
0000

00
Method 5 ,7V=36,5^=1074

Method 4, JV=40,Sproc= \ m

000
00

000

0 0
000
000

00
000
000

000
000
00

Method 6 ,7V=32, ̂ = 1 2 7 5

0000
0000

00

000
0000
0000

0000
0000
0 00

00

Method 7 ,7V=34,5^=1745

Figure 5.10 Optimised fractal layouts for four fractal cells

88

Chapter Five - Fractal module development

3 “ 100 -
0s

t 80 -ro
co 60 - o
c
<d 40 -
CO
CD

§ 20 - c

6 71 2 3 4 5 8 9 10 11

Number of fractal cells (F)

—A - -Method 1
— ©—- Method 2

■ -Method 3

-Method 4
— e—-Method 5

-Method 6

-Method 7

Figure 5.11 Percentage increase in capacity

Although the difference in the system capacity requirements between the cooperative

and autonomous design methods grew rapidly with the quantity of fractal cells, the size

of the cells (expressed by the number of machines in each cell) did not change as

dramatically. This can be observed from figure 5.12, which plots the average number of

machines in a cell for a variety of fractal cell quantities in methods 1 to 7. A gap in

fractal cell sizes between the methods establishes at a quantity of four fractal cells. Once

the number of fractal cells reaches seven, the average number of machines in each cell

for methods 3, 6 and 7 fall below the number of different machine types and continue to

decrease reaching as low as 2.9 at the experimental limit of 11 cells. Only 60% of the

different machine types are represented in these cells, causing them to rely heavily on

cooperation to process a product mix where all products require operations on at least

three different machines. Thus, the cell resources do not represent the overall system

capacities, and the usefulness of these layouts may be questionable.

Looking closer at the internal cell layout design in figure 5.10, the autonomous cells

exhibit a high degree of similarity to each other, even though this was not explicitly

aimed for in the optimisation procedure. This apparent similarity can also be found to

some extent when comparing the internal cell layouts of different design methods. For

method 1 the program produced an almost identical layout to method 2, since both

methods have the same distribution of products across cells. Taking cooperation into

account for methods 3 and 6, the layout optimisation resulted in very dissimilar internal

89

Chapter Five - Fractal module development

20 -

O)

2 4 6 8 9 10 111 3 5 7

- i t— Method 1
-«— Method 2
-■— Method 3

Method 4
-e— Method 5
-©— Method 6
—— Method 7

Number of fractal cells (F)

Figure 5.12 Average number of machines in a cell

cell layouts. This reflects strategic machine placements towards cell borders to facilitate

smaller travelling distances for cooperatively routed products.

The actual performance of the layout can be evaluated by comparing the capacity

requirements illustrated in figure 5.11 and the travelling distances shown in figure 5.13.

For the case study the methods requiring autonomous cells offered the lowest overall

flow distances, but required a large amount of machines. Conversely, by allowing

cooperative material flows, all products could be processed using only the minimum

number of machines as identified with formula (1). However, the material handling

distances were consistently larger. The performance of method 7, which allowed

cooperative material flows to occur to and from the specialised cell, further supported

the claim that a reduction in cell autonomy is generally unfavourable with regard to

material travelling distance, even if product distribution, global layout and cell layout

are highly optimised.

In the conducted experiments, internal material handling distances Sint are considered

only for flows that occur inside the cell from the moment a product enters the cell from

the left until it exits the cell to the right. Therefore the theoretical minimum travelling

distance min(Sintid) for every product d equals the width Xf of the cell. The difference in

cell sizes is most notable between one and two cell systems where the number of

machines per cell is effectively halved. This is the reason for the apparent reduction in

90

Chapter Five - Fractal module development

CD CD

O E 1800

? -o 1600
(0c 1400 -
© >ro_c ■*= 1200 -
ao1- 1000 -

800 4

4 5 6 7 8 9
Number of fractal cells (F)

10 11

—• — Method 1

—c — Method 2

■ A - Method 3
—e— Method 4
■ x - Method 5
—©— Method 6

— -— Method 7

. Figure 5.13 Total internal and cooperative travelling distances

300

100 -

8

Number of fractal cells (F)

10 11

•Method 3
Method 6
Method 7

Figure 5.14 Number of cooperative routings

material travelling distances for all layouts when moving from a single-cell layout to

two fractal cells, as shown in figure 5.13. Since a layout with just one cell is not

considered to be a fractal system, the single-cell layout is only included for referencing

purposes. However, a further increase in the number of fractal cells does not appear to

have influenced the overall material travelling distances, even though the capacity

requirements grew in most of the configuration methods.

91

Chapter Five - Fractal module development

The benefits of the optimisation process can be evaluated from figure 5.14, which

indicates on average a 16 percent reduction in the number of cooperative material flows

between method 6 with optimised distribution and method 3 without optimised

distribution of product demand and mix. The effect of the reduction in cooperative

routings shown in figure 5.14 becomes visible in figure 5.13, which demonstrates a

consistently better performance of method 6 when compared against method 3.

Table 5.2 provides an excerpt of sample data for the product flow through one cell

optimised for design method 2. The relevant cell is illustrated in figure 5.15. The layout

also presents a key for converting the machine position data in table 5.2 to the relevant

cell locations. Generally, the procedure was observed to arrange the machines in the

cells so that any product movements backwards to left are minimised. This is beneficial

(1,0)(0,0)

(0,1) (2,1)

(3,0)

(1,1) (3,1)

(3,2)(0,2)

Fractal cell 1

Figure 5.15 Sample cell dimensions and layout

Product Process 1 Process 2 Process 3 Process 4 Process 5
1.1* fl:l,0(A)** fl:l,1(E) fl:2,l(B)
2.1 fl :2,2(A) fl:3,0(C) fl :3,2(E)
3.1 fl :0,2(E) fl:0,l(D) fl:0,0(B) fl:l,0(A) fl:3,0(C)
4.1 fl :2,0(B) fl:3,l(D) fl :2,2(A)
5.1 fl:3,0(C) fl:3,l(D) fl:2,l(B) fl:2,2(A) fl:3,2(E)
6.1 fl:2,l(B) fl:3,0(C) fl:3,2(E) fl:3,l(D)
7.1 fl:0,l(D) fl:l,l(E) fl:2,l(B)
8.1 fl:l,0(A) fl:0,0(B) f l : 1,1 (E) fl:0,l(D)
9.1 fl :0,2(E) fl :2,2(A) fl:2,l(B) fl:3,0(C) fl:3,l(D)
10.1 fl:3,0(C) fl:3,2(E) fl :2,2(A)

* product type.replicate ** fractal cell numbenx^machine type)

Table 5.2 Sample product flow

92

Chapter Five - Fractal module development

to the travelling distance since all products are required to exit the cell to the right.

Therefore, any movement aims to respect the direction of the main material flow.

When the material travelling distances in the optimised fractal layouts are compared to

the cells with a random arrangement of machines, a significant reduction is observed.

However, the improvement varies notably between the methods and fractal cell

quantities as figure 5.16 illustrates. The random data has been averaged over 5000

experiments to reduce statistical variation. Generally, the improvement in material

handling distances is more significant the larger the cell size is (i.e. small F). This is due

to the longer distances between the positions on the opposite sides of the cell in large

cell sizes and the susceptibility of larger cells to layout optimisation. In addition, the

performance of autonomous cells seems to benefit more from layout optimisation than

cooperative cells. One possible explanation to support this finding is the difference in

excess capacity as shown in figure 5.12. The cooperative methods 3, 6 and 7 require

fewer resources and result in smaller cell sizes, which offer less room for improvement

for layout optimisation. On average, layout optimisation improves processing distance

by around 20% with a range of 8% to 38% when compared to completely random

machine arrangements, with larger cells exhibiting better results.

O)

20
CL

2 41 3 5 6 7 8 9 10 11

-a—Method 1
- e — Method 2
-«— Method 3

Method 4
-e— Method 5
-4 — Method 6
 Method 7

Number of fractal cells (F)

Figure 5.16 Percentage improvement in processing distances

93

Chapter Five - Fractal module development

5.6 Flexibility of optimised fractal layouts

Resource layout optimisation yields a notable reduction in material handling costs when

compared to the statistically averaged performance of a completely random placement

of resources. However, this result is only valid in strict reference to a known set of

product demand and mix as pre-defined in the case study. For the investigation on the

flexibility of such a layout the resource locations remained fixed according to the

arrangements recommended by the previous computational results. A large number of

sample orders were then created with the same total demand D but with random demand

levels Dj for each product of type j . Sample orders that would lead to an excess in

capacity levels were discarded. Valid samples were assessed for their degree of

similarity to the initial case study, which was expressed as sample difference G.

j
^ ^ j , i n i t i a l |

G ---- (15)
D

100.000 valid sample orders were created and evaluated for material handling distances

for each sample when simulated on cells that were optimised for the initial case study

and again when simulated against a background of cells with completely random

internal layout. Each case was classified and recorded on a discrete scale of 0 to 199

according to their sample difference multiplied by D. The simulation results were

averaged over all samples that achieved the same sample difference from the initial state

in order to reduce the impact of any statistical variance.

The first experiment was conducted under a system designed for fractal layout method 2

with homogeneous product distribution and similar, but not identical cell composition to

reduce the occurrence of resource duplication. Figure 5.17 shows the material handling

distances as simulated on a system with two fractal cells. The results of the experiment

indicated an increase in material handling distance as the samples deviated further from

the case study for which the cell layout was optimised. As figure 5.17 also

demonstrates, the handling distance on the optimised cell layout is always lower than on

the statistically averaged random cell layout, regardless of the demand levels in the

input product mix.

94

Chapter Five - Fractal module development

For the generation of valid samples with high sample difference, the constraints under

which the computer program generated the random demand levels tended to favour a

high demand for products that required a smaller number of processing stages. This

trend can be observed from figure 5.18, which illustrates the averaged sum over the

number of machines visited by all products to complete the input batch. To make the

handling distance S obtained from the samples directly comparable with each other, the

results were weighted to eliminate variation caused by differences in the amount r of

routings that take place to process the demand D.

S = S • initial

sample

(16)

2200 -

■© 2000 -

K5 1800 -
O)
■g 1600 -

1400 -

1200
0.60 0.2 0.4 0.8 1

 Result optimised
—o— Result random
 Weighted optimised
—•—Weighted random

Sample difference

Figure 5.17 Material handling distance for two fractal cells with similar composition

800 i

S> 775 -

o 750 -

725 -

=2 700 -

675
0.2 0.4 0.6 0.8 10

Sample difference

Figure 5.18 Routings in each sample

95

Chapter Five - Fractal module development

The data obtained from weighting the results indicates that material traveling distance

Sw over all samples remained constant when simulated on a statistically averaged

random cell layout for any comparable random demand levels Dj. As shown in figure

5.17 for the optimised layout, Sw increased at a faster rate than S with intensified sample

difference, but was still noticeably lower than on the averaged random layout for any

sample. Generally, it was observed that the benefits of having an optimised internal cell

layout did not deteriorate as quickly as expected when altering the demand levels of

input orders for a known mix of products. The plotted graph in figure 5.17 showing the

performance of samples on the optimised layout is not entirely linear, suggesting that

the flexibility of optimised layouts to changed demand levels is high towards samples

that are very similar to the initial case, before results start to deteriorate in strict linear

regression.

Since the random samples are organised according to their similarity to the initial set of

demand levels, the sample density for each discrete value in sample difference followed

a normal distribution. As the amount of data collected for largely dissimilar samples

was small, the results of the experiments started to fluctuate around a sample difference

of 0.7, because the effect of the variance in random demand levels could not be

sufficiently suppressed by averaging over multiple samples. Hence the curves in Figures

5.17,5.18 and 5.19 oscillate for highly different samples.

When comparing the percentage improvement in material travelling distances for

system organisations with different numbers of fractal cells, an almost straight

downward trend for organisations with 1 to 4 fractal cells was observed for the selected

case study and all its permissible variations in demand levels, as illustrated in figure

5.19. The drop in performance was steeper for systems with 3 and 4 fractal cells than for

systems with only 2 cells or no fractal boundary at all. Hence, the layout optimisation

for 3 and 4 fractal cells was less flexible towards changes in demand levels than

organisations with fewer fractal cells. A fractal system with 2 cells would be expected

to exhibit a higher difference between optimised and random layouts for the initial case,

because fewer cells with a larger number of resources offer a finer granularity for

combinatorial optimisation. This is the reason for the measurements for 5 fractals to

start off from a lower percentage improvement between random and optimised layouts.

96

Chapter Five - Fractal module development

^ 40 n

■o
D)

20 -

Q.

0.4 0.60.2 0.8 10

■ 1 fractal
2 fractals

•3 fractals
•4 fractals

5 fractals

Sample difference

Figure 5.19 Improvement for varying amounts of fractals with similar compositions

The data produced by simulating a system with 5 fractal cells indicates that cell layout

optimisation yielded an improvement in handling distances that was constant at around

28 per cent regardless of the distribution in demand levels in the input product mix.

With 5 fractal cells, the number of resources in each cell for the case study was fairly

small, 9 machines in a 3x3 square shaped matrix. Therefore, the granularity in

combinatorial layout optimisation was so coarse that it did not reflect differences in

demand levels, but instead optimised for the known and static processing sequences in

the given product mix. For instance, if many product types required processing to

commence at machine type A, then heuristic layout optimisation would have located a

machine of type A strategically close to the point where products entered the cell, and a

difference in demand levels between these products would only be of secondary

importance. It was observed from figure 5.19, that the 5-fractal system with the smallest

cells could not reflect and model against demand levels at the optimisation process, but

instead changed the layout to generally perform well for a given mix of products and the

sequence in which they had to be processed. Experiments with fractals that have

identical cell compositions (method 1) produced very similar results and merely

reinforced the validity of the data.

97

Chapter Five - Fractal module development

5.7 Conclusions

It was generally possible to reduce material travelling distances by increasing the degree

of optimisation of machine layout and product distribution for a specific product

demand and mix. Further experiments indicate that arranging the position of resources

to meet the requirements for a specific product demand and mix can significantly reduce

material travelling distances even if the demand for the different products is

unpredictable or chaotic. This observation is valid if the known types of products and

their processing sequence remain unchanged. Theoretically the performance of the

system with completely dissimilar input parameters, where both demand and mix are

altered, should approach the baseline of random cell layouts. In practice, there is reason

to believe that although products change over time, their processing sequences may be

much more stable. Hence there is merit in optimising the layout of fractal cells for

expected input demand and mix. Although the demand for product types may be

unpredictable and although products evolve, in practice a noticeable reduction in

handling distances of 15 per cent at the very least can be expected when compared to

completely random cell layouts. Larger fractal cells benefited more from layout

optimisation and a design with smaller more numerous fractal cells resulted in higher

inter-cell routings if cooperation was allowed. The benefit of using fractal layouts as

opposed to layouts without arbitrary boundaries for a static known product mix was

difficult to determine. Where comparable, a small reduction in handling distance was

observed when moving from a borderless 32-machine layout to two fractal cells with 16

machines. Fractals do however promise simplified control, the flexibility that all cells

are capable to process all product types and some flexibility to changes in product mix.

The efficiency of an optimised fractal layout design is a cornerstone for the integrated

reference architecture.

98

Chapter Six - Biological module development

Chapter Six - Biological m odule developm ent

This chapter suggests a methodology for dynamic self­

organisation based distributed scheduling and control in

biological manufacturing systems. First, the static and dynamic

scheduling approaches and centralised and distributed control

techniques are reviewed. Then the exiting biological scheduling

methods are summarised. Later in the chapter, a biologically

inspired decentralised real-time scheduling methodology based

on the continuous communication between machines and

transporters is proposed. In addition, three types of dynamic

scheduling are identified and the operational procedures are

developed. Finally, the proposed methodology is modelled and

simulated using Arena simulation software and applied to the

hypothetical case study.

99

Chapter Six - Biological module development

6.1 Scheduling and control

Scheduling can be defined as “the process of allocating a limited number of resources to

a usually greater number of tasks” (Babiceanu et al. 2005). It aims to generate a feasible

work plan, i.e. what is to be processed where, when and at which order, for the shop

floor operations that meets the order due dates and optimises resource utilisation

(England 2004). The control function is responsible for the execution of the schedule

while taking into consideration the shop floor conditions. The major functions of shop

floor control are to ensure resource availability, order dispatching, lot control, managing

changes to shop orders, and providing feedback of operational performance (Chase and

Aquilano 1992). Traditional hierarchical and sequential production planning and control

systems, such as MRP and MRP2, and their limitations were discussed in chapter 2. The

need for more flexible and responsive scheduling and control approaches that enable

frequent re-scheduling based on the latest system status i.e. changes in production

orders and resource availability has been widely recognised in the academic literature,

e.g. Brennan and Norrie (2001), Maione and Naso (2001), Alvarez and Diaz (2004) and

Babiceanu et al. (2005). In addition, Babiceanu et al. (2005) noted that determining the

optimal production sequences and schedules in a real-world manufacturing environment

with resource, precedence and timing constraints is a difficult task.

Dynamic scheduling aims to create more realistic and reactive plans by scheduling

operations opportunistically on a real-time basis, contrary to the traditional static way

(Kochikar and Narendran 1998). An efficient dynamic scheduler can provide shorter

product throughput times, improved machine utilisation and better customer service

(Alvarez and Diaz 2004). Kochikar and Narendran (1998) summarised the advantages

of dynamic scheduling as better workload balance, improved resource utilisation and

greater protection from machine breakdowns. In order to achieve this a dynamic

scheduler requires i) a short reaction time, ii) the capability to handle unforeseen and

urgent conditions, iii) integration with shop floor control, iv) integration with static

scheduling, and v) human participation in the decisions (Alvarez and Diaz 2004). The

manner in which the schedule is obtained depends on the structure of the control

system. Under centralised scheduling techniques global information is used in order to

achieve an optimal schedule, whereas distributed systems rely on local information and

negotiations to obtain a flexible and acceptable rather than an optimal schedule (Wang

100

Chapter Six - Biological module development

et al. 2004). In distributed control architectures the schedule is normally determined

through a bidding process (Brennan 2000). Dynamic scheduling in manufacturing has

been considered by many authors, e.g. Selladurai et al. (1995), Brennan (2000), Alvarez

and Diaz (2004), Lim and Zhang (2004), Babiceanu et al. (2005) and Bastos et al.

(2005).

6.2 Scheduling and control in biological manufacturing systems

Scheduling in biological manufacturing systems was considered by Vaario (1996) and

Vaario and Ueda (1998a). They proposed a dynamic scheduling approach based on self­

organisation. The system used only local information to dynamically adapt to changing

conditions on the shop floor without seeking the global system optimum. Vaario and

Ueda (1998a) argued that in a turbulent environment global information is not necessary

because the global optimum is difficult to calculate and maintain due to i) a lack of

information, ii) too many influential factors, iii) unknown optimisation algorithm, or iv)

rapid and unexpected changes in information. Hence, they suggested a real-time

simulation-based control for shop floor operations in a virtual factory. The products and

machines were matched and a schedule was created with a ‘self-organisation simulator’

that directed factory operations in real-time by continuously calculating the local

potential fields of the machines and transporters on the shop floor. An attraction field

contained information about machine capabilities or product requirements. The

transporters were attracted by the potential field and guided to the right machine.

According to Vaario and Ueda (1997), this bottom-up approach to scheduling lead to a

local optimisation with unpredictable global results and enabled dynamic and

continuous adaptation to disturbances. Vaario (1996) claimed that the initial results of

implementing the self-organisation simulator on a virtual factory were promising. They

indicated that the system was capable to adapt to abnormal situations. However, before

the virtual factory can be replaced by a real factory, the behaviour of transporters needs

to be controlled better to prevent collisions and competition (Vaario and Ueda 1998a).

Vaario and Ueda (1998a) also noted that a communication mechanism among the

transporters could prevent situations of competition, but might leave the system

vulnerable if a transporter failure occurs.

101

Chapter Six - Biological module development

The real-time scheduling methods in both centralised and decentralised systems have

been criticised for their lack of a system-wide view and their inability to determine

globally optimal solutions (Wang et al. 2004). Although the 'one-stage at the time'

scheduling approaches might result in longer material flows and lower resource

utilisations, their main strength is the ability to rapidly respond to dynamic events and

disturbances without complex re-scheduling. The traditional approach in real-time

scheduling is to assign a resource for the next stage immediately after processing at a

previous stage has been completed according to the conditions at the shop floor at that

time. In biological manufacturing systems, on the other hand, the schedule for the next

processing stage is not finalised until the product has reached the closest available

machine capable of processing the following step (Vaario and Ueda 1998a). This

approach ensures that any event that occurs during product transportation is considered.

In addition, the size of machine input and output queues and the time they are available

for products are limited (Vaario and Ueda 1998a).

6.3 Proposed methodology for dynamic biological scheduling and control

An integrated shop floor scheduling and control mechanism for dynamic self­

organisation in biological manufacturing systems was developed based on the work of

Vaario and Ueda (1998a). The main differences between the proposed system and the

biological scheduling method introduced in Vaario (1996) and Vaario and Ueda (1998a)

are the system control, the type of transportation devices used and the presentation of

machine and product attractions for matching requirements and capabilities.

The proposed decentralised system removes the need for a centralised scheduler and

controller. Scheduling decisions are made in real-time by active components in the

system, consisting of one product dispatcher and a number of machine stations and

automated guided vehicles (AGVs) that have easy access to all stations on the shop

floor. Each of the these components is equipped with a wireless communication device,

i.e. wireless local area network (LAN), to transmit and receive data needed for product

scheduling, as well as some basic computing device for decision making. The

fundamental idea is that machine stations request the transporting service from AGVs

whenever products are waiting in the output queue and AGVs request from all machine

stations the permission to unload products to their input queue. Capable and available

102

Chapter Six - Biological module development

active components reply to these service requests. The requestor then selects the most

suitable device from all replies received according to parameters such as the distance

between the components and the estimated time of AGV arrival (ETA) and then signals

a message of acceptance to the designated unit. Since the final selection of the service

provider is taken by the requestor, there is no negotiation or competition for resources.

Figure 6.1 illustrates the process and transport contracts the shop floor elements can

form.

Once the processing or transportation contract has been formed, the AGV moves

towards the station. Whether the AGV and the station that have agreed on a contract can

cancel the agreement during the time it takes for the transporter to reach the station

depends on the type of dynamic scheduling used. In table 6.1 three different types of

real-time scheduling approaches and the conditions that allow some or all of the parties

to break the established contract are listed. In a traditional real-time scheduling situation

the transportation and processing contracts for the next stage are formed immediately

after processing has completed at the previous station on the basis of the system

conditions at that time. No party can break the contract later (referred to as fixed-

contract in table 6.1). The other two types of dynamic scheduling contracts listed in the

table (flexible-contract and continuous-matching) enable the system to consider and

react to events that occur during transporter movement, thus increasing system

adaptability. With continuous-matching of contracts both parties continue to look for a

better match after the initial contract has been established and can cancel the existing

contract as long as the transporter has not arrived at the station. In the flexible-contract

model the right to cancel the established contract is granted only to the resource that is

‘empty’, i.e. empty AGV or machine input control. This stabilises the system while

Machine

Busy AGV

&
A
G
V S

In

Dispatcher r -7 1 r- 7

Out

Notes: PC = Process contract. TC = Transport contract.

Figure 6.1 Process and transport contracts in biological scheduling

103

Chapter Six - Biological module development

D ynam ic scheduling type

System com ponen t F ixed -con trac t F lex ib le-contract C o n tinuous-m atch ing

Dispatcher* Cancellation Cancellation not Cancellation allowed i f
not allowed allowed closer A GV available

M achine in-queue** Cancellation Cancellation allowed Cancellation allowed
not allowed i f product with higher

priority available
i f product w ith higher
priority available

M achine out-queue* Cancellation Cancellation not Cancellation allowed if
not allowed allowed closer AGV available

Idle AGV** Cancellation Cancellation allowed Cancellation allowed
not allowed i f product with higher

priority available
i f product w ith higher
priority available

Busy AGV* Cancellation Cancellation not Cancellation allowed if
not allowed allowed closer m achine available

Notes: *Active component. **Passive component.

Table 6.1 Contract cancellation rules for different types of biological scheduling

ensuring that the highest priority product is always processed first. In flexible-contract

scheduling the passive component (empty resource) can cancel the contract if a higher

product requires processing or transport. In continuous-matching scheduling the same

rule is valid for passive components, while the active components (busy resource) can

form new contracts if a closer AGV or required machine type becomes available.

The communication on the shop floor can either be multicast (one to many) or unicast

(one to one). Multicasting is used by the dispatcher and the station output controllers to

request empty transporters to move the products currently in their queues. It is also used

by product carrying AGVs to find the closest capable and available machines to process

the transported product. The transporters and machines that are available and capable

reply directly to the requestor (unicast). The requestor evaluates the replies and selects

and acknowledges acceptance to the best resource (unicast). The contract has now been

established and the AGV moves towards the station. If cancellations are allowed, the

resource will acknowledge to the other party when it has received a better offer

(unicast). For a rejected party the process starts again either by sending a request or

waiting for a new request (multicast). This process is illustrated in figure 6.2.

104

Chapter Six - Biological module development

Machine m

Notes:
m = l,...,V andg =

 Product/AGV movement
 Resource status data
 Unicast/Multicast

Idle

Busy

Busy

IdleBusy

Busy

Idle

Idle

Idle IdleBusy

Process

Wait AGV

Upload

Unload

Wait AGV

Upload

Wait AGV

Unload

Read next
requirement

Transport to
exit

Move to
dispatcher

Product exit
shop floor

Form
process
contract

Form
transport
contract

Form
process
contract

Wait until
machine

idle

Wait until
out-queue

idle

Form
transport
contract

Transport to
machine
in-queue

Form
transport
contract

Move to
machine

out-queue

Form
transport
contract

Product released
to dispatcher

Exit

Figure 6.2 Basic procedure for biological scheduling

105

Chapter Six - Biological module development

The manufacturing instructions needed to complete the whole product (presented in the

form of DNA code) are passed between the machine and AGV each time a product is

loaded or unloaded. However, only the processing requirements for the next stage (a

gene) are multicasted to machines by the AGV when looking for a capable resource.

Machines compare the gene data against their own capabilities and either accept or

reject the processing request.

The scheduling procedure is simplest for flxed-contracts since no cancellations are

allowed. Figures 6.3 and 6.4 illustrate the communication paths between the machine

Product released
to system

Product exit
machine m

1 +
Busy dispatcher Busy machine m

out-queue

Multicast transport
request with priority

and location data to all
AGVs

Wait for offers .

F o f f e r s ^ \ .^
" ^ ^ ^ e i v e d T ^ ^ ’’̂

Select from offers the
closest AGV

Unicast reservation

Contract formed

Wait for the AGV to
arrive

♦
Upload product to

AGV

Idle dispatcher /
idle machine m

out-queue

my requests
jeceivedjU-

.eservation
received?-

Wait for reply

Contract formed

Idle AGV g

Move towards
closest parking

Listen for transport
requests

Move to product
location

Select a product
from dispatcher

with highest priority

Unicast an offer with
AGV location data to

selected product

Select a product from
machine out-queues
with highest priority

Upload product from
machine out-queue/
dispatcher to AGV

Busy AGV g

a) active partner b) passive partner

Figure 6.3 Transport contracts in fixed-contract scheduling

106

Chapter Six - Biological module development

controllers and AGVs, and the appropriate decisions and actions that are being taken.

Figure 6.3 shows the attraction of idle AGVs to machine output queues or dispatcher to

pick up the processed products or a new order, while figure 6.4 illustrates the matching

of the products carried by the transporters to the closest capable and available machines.

Each component has two different states, namely idle and busy, which dynamically

change according to product movements in the system. Busy AGVs and busy machine

output queues are active elements that initiate the scheduling processes, while idle

machine input queues and idle AGVs are passive and only act when requested to do so.

Busy machine input queues and idle output queues are inactive (neither active nor

passive) until actions from machines change their states to idle or busy respectively.

Any offers
.received1?

Wait for offers

Busy AGV g

Unicast reservation

Idle A G V g

Contract formed

Move towards
closest parking

Unload product to
machine in-queue

Select from offers the
closest machine

Read next processing
requirement for the

product

Transport product to
reserved machine

in-queue

Multicast process
request with machine

requirement and
product priority data to
all machine in-queues

.ny requests
received'?---'

Is machine
^apable2--

.eservation
received2 --

Contract formed

Wait for reply

Idle machine m
in-queue

Listen for process
requests

Wait for the AGV and
product to arrive

Select a product with
highest priority

Busy machine m
in-queue

Unicast an offer with
machine location data

to selected product

Unload product from
AGV to machine

in-queue

a) active partner b) passive partner

Figure 6.4 Process contracts in fixed-contract scheduling

107

Chapter Six - Biological module development

Product released
to system

i

Product exit
machine m

Busy dispatcher Busy machine m
out-queue

Multicast transport
request with priority

and location data to all
AGVs

Wait for offers

Any offers
received?

T
Select from offers the

closest AGV

Unicast reservation

Contract formed
IT

Wait for the AGV

GV at produc
ocation?

Listen for Upload product to
cancellations AGV

Cancellation
eceived?

T
No contract

Idle dispatcher /
idle machine m

out-queue

Figure 6.5 Transport contracts in flexible-contract scheduling (active partner)

The fixed-contract scheduling method is a reasonably stable process compared to the

procedures for flexible-contracts (figures 6.5 to 6.8) and continuous-matching (figure

6.9). Flexible-contract and continuous-matching scheduling methods are complicated

due to the presence of possible third parties that compete for the same resources. In

flexible-contract scheduling, illustrated in figures 6.5 to 6.8, the passive component,

which also makes the final decision on the contract, is given the right to cancel the

agreement if a product with a higher priority multicasts a request for the resource. Since

108

Chapter Six - Biological module development

Move towards
closest parking

Select a product
from machine

out-queues with
highest priority

Select a product
from dispatcher

with highest
priority

Unicast an offer with
AGV location data to

selected product

machine out-queues
with highest priority

Wait for reply

eservation
eceived?

Contract formed

Unicast an offer with
AGV location data to

selected product
3~

Wait for reply

eservation
eceived?

T
New contract formed

 ..
Unicast cancellation

to old contract partner

Idle AGV g
1

Listen for transport
requests

Move towards
closest parking

ny requests
eceived?

F AGV under T
contract?

Any
requests from

achines?

Any
requests from

achines? AGV under
contract?

T

requests with higher
non

Move towards the
location of product

under contract

GV at produc
ocation?

T
Upload product from
machine out-queue/
dispatcher to AGV

Busy AGV g

Figure 6.6 Transport contracts in flexible-contract scheduling (passive partner)

the passive component continues to listen for new multicast requests until the

transporter arrives at the station, any new contract can again be cancelled under the

109

Chapter Six - Biological module development

Busy AGV g
+ —

Read next processing
requirement for the

product

Multicast process
request with machine

requirement and
product priority data to
all machine in-queues

Move towards
closest parking

Wait for offers

Any offers
received?

T
Select from offers the

closest machine

Unicast reservation

Contract formed
+

Transport product
towards the reserved

machine in-queue

GV at machine
in-queue?

Listen for
cancellations

Cancellation
eceived?

T
No contract Unload product to

machine in-queue
31

Idle A G V #

Figure 6.7 Process contracts in flexible-contract scheduling (active partner)

same conditions. Allowing contract cancellations on the basis of product priority is

justified to facilitate due-date completion.

When the right for cancellation in the continuous-matching strategy is extended to

active components, cancellations of contracts can occur when a resource at a closer

distance is found. This can have either a positive or a negative impact on the overall

stability and performance of the system. It enables last minute decisions and the
no

\

Chapter Six - Biological module development

immediate employment of resources. In theory this should improve resource utilisation

and throughput time. However, the continuous cancellation of contracts can leave

products with lower priorities circulate around the system, causing AGVs to be reserved

for longer than necessary and lead to congestion. To prevent this, the products should be

Idle machine m
in-queue

Listen for process
requests

ny requests
eceived?

Is machine
capable*?

achme under
contract?

T

achine under
ontract?

F Any
requests with higherSelect a product with

highest priority non

Select a product with
highest priority

Unicast an offer with
machine location data

to selected product
Unicast an offer with
machine location data

to selected product
Wait for reply

eservation
eceived?

T

Wait for reply

eservation
eceived?

T
Contract formed

New contract formed

Unicast cancellation
to old contract partner

Wait for the AGV
and product

GV at produc
ocation?

T
Unload product from

AGV to machine
in-queue

Busy machine m
in-queue

Figure 6.8 Process contracts in flexible-contract scheduling (passive partner)

111

Chapter Six - Biological module development

Machine
input Q

Machine Inputs

Input Queue
available
{NIQ = Oa
MTL < MWT)

Input Queue
unavailable
(NIQ = l v

MTL > MWT)

AGV Parking

When
NTS < TNT

NC(2)

MR(1)

Machihe

AG Vs

Empty
unreserved
AGV (Idle)

±L
Empty

reserved
AGV

I l~
AGV

carrying a
product
(Busy)

Machine
output Q

js L

Machine Outputs
MR(l)
NC(2)

NC(2)

NC(2)

MR(1)

Output Queue
active
(NOQ = lv
MTL < MWT)

Output Queue
inactive
(NIQ = 0 A
MTL > MWT)

Dispatcher

Notation:
NIQ = Number in input queue
MTL = Machine time left
MWT = Maximum waiting time
NTS = Number of transporters

at parking
TNT = Total number of

transporters in system
NOQ = Number in output queue
NI = Number of products in
NO = Number of products out
MIS = Maximum number of

products in system
MR = Multicast request
NC = Negotiate contract
CC = Cancel contract
L = Location data

Exit System

When
NI - NO < MIS

NO When
NO + 1

Figure 6.9 Communication paths in continuous-matching scheduling

sequenced at the dispatcher. Due to the complexity of continuous-matching scheduling

the flowcharts for its exact procedures for establishing process and transport contract

have not been included. However, figure 6.9 illustrates the communication paths

between system elements in continuous-matching scheduling. The figure also presents

the conditions that initiate the multicast at each resource. When an AGV in the system

is not needed (idle) it moves to the parking area, if the lowest priority attraction from

parking becomes the only one affecting the transporter.

6.4 Simulation o f biological scheduling methodology

For evaluation purposes the proposed dynamic biological scheduling and control

methodology for fixed-contract scheduling was implemented using Arena simulation

software. The model and layout presented in figure 6.10 was developed using the data

from the hypothetical case study introduced in chapter 3. The program code is omitted

due to its size. To transport products on the shop floor, the system uses AGVs together

with a complex network of unidirectional travelling paths that provide transporters with

short-distance access to any machine on the shop floor, illustrated in figure 6.11. All

paths are unidirectional with two types of intersections. At major intersections multiple

112

Chapter Six - Biological module development

Arena - [Fixed-contract_basfc.doe - Run Mode] Q 1M
(g f F te EcEt View Tools A rra n g e O b je c t R un W indow Help _ l&] X :

| ! O G S- f i i f s P !S* I & Q i | •!> : i S [■k'"5 H I P i s * . . . i i m « ! * ?

f ' > ! ? ^ A A .7 | = m - | | | o w | W e i : .

Shop floor

di 3B1

B3

U n p ro c es sed o rd e rs

E6[i B4 \c E5C l

Enter Ex*rz.
D3

E9 3 B7

E l l 3D5B8E10
9 10

P roduc t ty p e

0<i • , ;... :::..... 0
F or Help, p re s s F I __ 1/1 (68.0813 H o u rs)Sa tu rd a y , Ju n e 30,2007 'U ser in te r ru p te d -{23740, - 32158)

Figure 6.10 Snapshot of the biological simulation model

travelling paths converge and AGVs can change their direction. Minor intersections are

used to load and unload products at machines. Each transporter can carry only one

product at the time. Similarly, each machine input and output queue can hold only one

product. This can cause starvation and blockage on the machines if products are not

moved immediately according to the demand and supply. Therefore, the number of

AGVs on the shop floor can be a critical factor for the performance of the system.

The AGVs decide their direction of travel after establishing a contract with a machine

based on the priority status of the product in question and/or their current location

relative to the destination. Since the AGVs can travel only along the defined routes, a

simple control logic together with a communication device enables each AGV to

determine its location on the shop floor, decide the travelling direction and prevent

collisions by exchanging position data with other transporters. The AGVs detect any

possible deadlocks in the system by comparing the current and next positions of the all

AGVs on the shop floor. If such a conflict is predicted, the AGV that caused the

113

Chapter Six - Biological module development

f Arena • (f tx#A<finli*r t_b*stc Am - Run U*<k]

>}j D cf 1*1 i CP £+ ? & Qt ‘/ 3«3| ►

4(E)^ " aT J] [■ 63]

cfeTh *HlTb

ai 3

4(A)

Figure 6.11 Transporter travelling network

No

No

YesAvailable now?

.--'''"Is a n y '" - \^
other exit intersection
'^^available?^-^'

No

At major
intersection?

y"^es

Is n e x t ^ ^ ^
intersection occupied?.

j^Yes

Decide direction of move

Move

Wait x time and check for
availability of intersection

Request and receive location
data from all AGVs

Select available intersection
with shortest distance to

destination

Figure 6.12 Deadlock avoidance mechanism for transporters

114

Chapter Six - Biological module development

gridlock changes its direction of travel to break the deadlock. The deadlock problem in

AGV systems was discussed by Wu and Zeng (2002) who concluded that the only way

of avoiding deadlocks when AGVs are used, is to ensure that the circular wait condition

never occurs. A mechanism illustrated in figure 6.12 was developed to prevent AGVs

from entering into circular-wait gridlocks in the proposed system. In this procedure,

transporters are not allowed to move from one intersection to the next if this next zone

is already occupied. If this situation persists over a pre-defined period of time, the AGV

will examine the availability of zones in the other three general directions of movement

and will select from these the route which results in the shortest distance to the AGV’s

destination.

6.5 Computational results and discussion

The developed system considers several critical parameters that significantly influence

its performance. Among others these include the number of transporters in the system as

discussed earlier as well as the speed of AGVs. From the order arrival point of view, the

quantity and mix of products on the shop floor influence both, AGV and machine

utilisation and product flow. If the number of products is too high machines and

transporters may become blocked, while too low a number causes starvation and low

resource utilisation. In the proposed model, the number of products in the system was

controlled by prioritising any products at machine output queues over the newly arrived

products at the dispatcher. In addition, the product mix on the shop floor at any given

time should be a combination of different orders in proportion to the total demand, in

order to ensure a better balance in terms of work load between resources.

As described an idle AGV transports a product from a dispatcher to the shop floor only

if there are no products in the out-queues of any machine. Hence, the number of

products in the system varies according to shop floor conditions. This explains the

growth of the lead time in figure 6.14 when the total throughput time reduces, as

illustrated in figure 6.13. In general, systems with faster AGVs had better throughput

times, lead times and machine utilisations as illustrated in figures 6.13 to 6.15.

Similarly, an increase in the number of AGVs improved throughput time and utilisation,

but slightly increased lead times as explained earlier. In overall, the dynamic scheduling

115

Chapter Six - Biological module development

600

500
©

| 400 H

£O)
2 200 -I £H*

100 H

12 17

Number of AGVs
22

—♦ -AGV speed =3
—■—-AGVspeed =5
— Jk— -AGVspeed =7
—X—-AGVspeed =10
—X—-AGVspeed =15

-AGVspeed =20
—1—-AGVspeed =25

■AGVspeed =30
•AGVspeed =35

—#— AGVspeed =40

Figure 6.13 Throughput time for biological scheduling

60

40 -

T3ro
J 20

7 12 17

Number of AGVs

22

-♦— AGV speed =3
-m AGVspeed =5

— AGVspeed =7
-x— AGVspeed =10
-x— AGVspeed =15

 AGVspeed =20
h—— AGV speed =25

AGVspeed =30
 AGVspeed =35

— AGVspeed =40
 Processing time

Figure 6.14 Lead time for biological scheduling

0.8 -

cosa
V)

i 0.4 -

0.2 -

2 7 12 17 22

Number of AGVs

- Machine A,
AGV speed=30

-Machine B,
AGV speed=3G

- Machine C,
AGV speed=30

- Machine D,
AGV speed=3C

-Machine E,
AGV speed=30
Machine A,
AGV speed=10
Machine B,
AGV speed=10
Machine C,
AGV speed=1G
Machine D,
AGV speed=10
Machine E,
AGV speed=10

Figure 6.15 Machine utilisation for biological scheduling

116

Chapter Six - Biological module development

methodology performed very well and the system was able operate close to the due date

target of 100 time units with reasonable lead times.

6.6 Conclusions

The aim of this study was not to develop an optimal schedule, but to enable a flexible

and responsive reaction to any internal or external disturbances on the shop floor. The

inherent dynamic nature of the system that evaluates the situation on the shop floor at

any given time achieves the required responsiveness to these changes in product

demand and mix and any machine breakdowns. This is due to continuous

communication between the elements in the system, which enables all parties that form

a contract to request a new resource if the contact is lost. No competition for resources

occurs, since transporter movements are based on the contracts. The disadvantages of

this concept include the restricted ability of movement of the AGVs and the

complicated network of travelling paths required that increase the likelihood of the

system deadlocks and the complexity for deadlock resolution and avoidance.

117

Chapter Seven - Developed integrated reference architecture

Chapter Seven -

Developed integrated reference architecture

This chapter develops an integrated reference architecture for

the configuration, planning and control of the 21st century

manufacturing systems. First, a framework for the integration of

fractal, biological and responsive concepts is developed based

on the conducted research into the fractal layouts, biological

scheduling and control, and resource elements. Next, the

detailed procedures for the conceptual interactions are

formulated. After that the proposed framework is generalised to

formulate the universally applicable reference architecture for

shop floor operations. Then the proposed architecture is

modelled and simulated using Arena simulation software.

Finally, the architecture is evaluated by applying it to the

hypothetical case study.

118

Chapter Seven - Developed integrated reference architecture

7.1 Generalised reference architecture

The framework illustrated in figure 7.1 was briefly introduced at the end of chapter 2. It

shows a logical and physical hierarchy of manufacturing capabilities in the shop floor.

Capabilities in resource elements reside on machines that are placed in fractal cells on

the shop floor. Scheduling occurs at the lowest level of the hierarchy to match the

requirement of products with available processing capacities in the system. This

integrated framework serves as reference architecture that is applicable to most

manufacturing systems. It was developed to capture the features of new manufacturing

paradigms, but the architecture remains universally valid to describe more traditional

methodologies. For instance a design without hidden machine capabilities would

directly map resource elements to machines. A shop floor layout without fractal

organisation could be considered as a system with only one fractal cell without a

distinction between a fractal and the shop floor. Finally, any advanced scheduling

method would primarily aim to match the specific requirements of products to available

capacities in the system.

To increase robustness, flexibility and responsiveness to internal and external

disturbances multiple new manufacturing methodologies can be deployed

simultaneously. Figure 7.1 suggests how integration can be achieved on an abstract

level. The reference architecture captures the relationship of the features proposed in the

emerging methodologies with respect to the overall system. It supports the claim that

amalgamation of the various methodologies is feasible once the described relationships

are understood.

Shop floor
Cell

Machine Products

Capabilities in
resource elements

Requirements in
resource elementsScheduling

Figure 7.1 Generalised integration framework for manufacturing concepts

119

Chapter Seven - Developed integrated reference architecture

7.2 Integration of responsive, fractal and biological concepts

A hypothetical model is developed to illustrate how the integration of fractal, biological

and responsive methodologies can be achieved and implemented in practice on a lower

level. To integrate cellular structured layouts or fractal cells into biological scheduling,

the system entities of dispatcher and exit point are joined to be member of every cell

simultaneously, see figure 7.2. Logical membership of a fractal cell is designated as

important parameter to attraction fields, and the entry and exit points to the shop floor

must belong to every cell for scheduling purposes. For the sake of simplification the

dispatcher can be understood as a machine out-queue that is located in the boundaries of

every cell. Similarly the exit point where completed products are queued to leave the

shop floor can be regarded as a machine in-queue that is part of every cell. Using this

simplification, attraction fields can be defined between the following parties, i) an

empty transporter and the out-queue of a machine and ii) a product-carrying transporter

and the in-queue of a machine.

An empty transporter will prioritise product collection using an objective function based

on i) product due dates and ii) the cell associated with the machine out-queue where the

product is held relative to its own position. A transporter would be strongly attracted to

waiting products in the same cell where it currently resides in order to emphasise intra­

cell routings. A product-carrying transporter will also be strongly attracted to resources

in the current cell and would only be attracted to in-queues at other cells as last resort.

Product-carrying transporters would also include metrics to avoid unloading to busy

input-queues. Attraction fields could only be established with a machine in-queue if the

i--------------- i----------------* i----------------* i

Fractal 1 Fractal 2 Fractal 3 Fractal 4
Dispatcher

Exit

Figure 7.2 Fractal cells for biological scheduling

120

Chapter Seven - Developed integrated reference architecture

machine offers the resource elements sought by the carried product. To avoid

unnecessary setup time on machines, a final metric is determined by the current

machine setup, or the processing setup needed to complete the last product in the in­

queue if this is occupied. Machine in-queues could optionally be modelled to attract

transporters that carry products with a more urgent due date.

Figure 7.3 illustrates the resulting relationships by means of attraction fields. Dynamic

biological scheduling builds on this model to enhance system responsiveness and to

avoid the complexity and rigidity associated with centralised control. Internal

disturbances such as machine break downs are reacted to immediately without the need

for complex re-scheduling. This type of scheduling introduces the element of

competition i) between machines to attract transporters and ii) between transporters over

machine capacities. To resolve these contention issues in favour of one particular actor

over another, attraction fields are formed with different strengths, represented by a

numerical value. This value is based on a composite metric governed by the parameters

outlined in figure 7.3. These parameters can be weighted according to business

requirements. For instance the importance of cell autonomy or the focus on machine

types to avoid set up delays could be adjusted to find a solution that is appropriate for

any set of circumstances. Products take no part in scheduling decisions. Instead,

Machine Resource

Out-queue
i
i Processmg resources C T ^In-queue

■ Cell membership i
i ■ RE capabilities * Cell membership

■ Product DNA i ■ Current setup ■ Queue status/length
o Due date i

Attraction Attraction

Empty Transporter

■ Current location

Transporter with product

Current location
Product DNA
o next RE requirement
o Due date

Figure 7.3 Attraction fields in fractal layouts with resource elements

121

Chapter Seven - Developed integrated reference architecture

transporters and machines use the notion of product DNA, which carries instructions on

processing in sequential order and due dates.

7.3 Simulation and discussion

This integrated model with resource elements and biological scheduling on an optimised

layout that was based on a fractal cell organisation was simulated in the Arena software

environment. Figure 7.4 shows a system where all machines offer the capabilities of two

different resource elements. The speed of transport and handling of material is

positively correlated against i) the number of AGVs and ii) the speed of these AGVs in

relation to the processing time at machines. The speed and number of AGVs can be

crucial to the system throughput time if the level of processing capacity is constant, as

shown in figure 7.5. As described in chapter 6, the lead time is a function of the speed

of the AGVs, but does not decrease with the number AGVs in the system as

demonstrated in figure 7.6 as resource bottlenecks at machines are accentuated. The

ideal number of AGVs in the system balances capacities between transport agents and

Number on ihop floor

Shop floor AGV parking -

i-GC— -
RE5 .
RE1 ■

Enter Exit

Output

RE1
RE2

RE2
RES

RE4
RES

RE4
RES

RES
RE1

RE2
RES

RES
RE1

RE5
RE1

RE4
RE5

RE5
RE1

RE5
RE1

RE2
RE3

RES
RE1

RES
RE1

RE2
RES

RE3
RE4

RE4
RES

RE1
RE2

RE1
RE2

RE2
RE3

RE5
RE1

RE4
RE5

RE3
RE4

RE2
RE3

RES
RE1

RE1
RE2

RE2
RE3

RE1
RE2

RE2
RES

RE5
RE1

RE1
RE2

Figure 7.4 Shop floor layout in the integrated system

122

Chapter Seven - Developed integrated reference architecture

resource elements and can be expressed as a function comprising machine quantities,

average processing time, AGV speed and average handling distance.

To test the responsiveness of the developed integrated system model changes to the

product mix were applied to the simulation. The performance differences in terms of

throughput were examined between a biological system without the extended

capabilities of resource elements and the proposed system that builds on all three

manufacturing methodologies. The results of the simulation runs are illustrated in

figures 7.7. The intensity of changes to product mix is plotted in terms of sample

£ 400 -

£ 300 -O)
S 200 -

7 12 17

Number of AGVs

—♦ --A G V speed=3

-A G V speed=5

—-hr--A G V speed=7

—X--A G V speed=10

—X--A G V speed=15

—• - -A G V speed=20

— 1— AGV speed=25

-A G V speed=30

-A G V speed=35

-A G V speed=40

Figure 7.5 Throughput time in the integrated system model

60 n

50 -

a, 4 0 -
E
~ 3 0 -•ototo

20 -

10 -

2 12 17 227

—♦— AGV

- b — AGV

—it—-AGV

—x— AGV

—x— AGV

—• — AGV

— I— AGV

 AGV

— AGV

—♦— AGV

speed=3

speed=5

speed=7

speed=10

speed=15

speed=20

speed=25

speed=30

speed=35

speed=40

Number of AGVs

Figure 7.6 Lead time in the integrated system model
123

Chapter Seven - Developed integrated reference architecture

1400 -|

1350 - [—|o
e n n

'Z 1300 -
o. — r~i

SZ -----O) —
s 1250 ■ -1

- C —H
1200 -

1150 M , i ‘ * i i ------
0 25 50 75 100

Sample difference

□ Biological
system

□ Integrated
system

Figure 7.7 Throughput time under changed product mix

difference that in this instance relates to a difference in the nominal value in product

demand for each type in a batch of 2000 total products.

A four to eight per cent improvement to system throughput time can be observed when

biological scheduling is permitted to consider hidden resource capabilities. Biological

scheduling displays a high degree of flexibility even to the most significant disturbances

in product demand levels, whereas the integrated system follows the same trend, but

offers a further marginal enhancement in throughput time. The differences between a

biological methodology with and without resource elements are expected to be greater

when internal disturbances, i.e. machine breakdowns, are considered.

7.4 Conclusions

The successful integration of three emerging manufacturing concepts within the same

architecture supports the validity of the reference architecture presented in this chapter.

The interaction of the inherent features of these concepts corresponds closely to the

higher level view provided in the reference architecture. Material handling was

improved in multiple ways, i) through an optimised fractal layout of machines, ii) with

decentralised self-organisation scheduling that is responsive to changes, iii) with the

introduction of attraction fields to replace advanced control and negotiation, and iv)

124

Chapter Seven - Developed integrated reference architecture

with an approach centred around resource-elements that takes advantage of hidden

machine capabilities to reduce the effect of resource bottlenecks.

The experiments primarily demonstrate that the integration of fractal, biological and

responsive manufacturing methodologies is feasible in the theoretical space of computer

simulation.

125

Chapter Eight - Conclusions

Chapter Eight - Conclusions

This chapter provides the concluding discussions of the

research. It includes a review of the relevant literature and

conducted research. It also comprises a discussion of research

findings and their broader implications. Later in the chapter, the

limitations of the research methods and findings are discussed.

Next, the contributions of the research to knowledge in the field

of the 21st century manufacturing systems are summarised. The

chapter ends with some suggestions for the future work.

126

Chapter Eight - Conclusions

8.1 Review of conducted research

Since the 1990's the rapidly changing business environment has forced manufacturing

organisations to look for radical new methods to improve the performance and cost-

effectiveness of their processes. As a result of this growing interest many new

organisational concepts especially designed to meet the requirements of an unstable and

unpredictable marketplace have emerged. Among the most promising and well-known

new concepts are agile, holonic, fractal, biological and responsive manufacturing

systems. Although the potential of these new theories have been widely recognised in

the academic literature only a handful of research papers have been published in the

area. In view of that, this research aimed to improve the comprehension and

implementation of these 21st century manufacturing systems by conducting a

comprehensive comparison of the concepts and developing an integrated reference

architecture by merging the distinctive and most advantageous features of the paradigms

within the scope of manufacturing shop floor operations. Based on the collected

information about the strength and weaknesses of each concept, fractal configuration,

biological scheduling and the responsive manufacturing concept of presenting machine

capabilities and product processing requirements as resource elements were selected as

the key concepts of the new 21st century manufacturing system. To enable the

integration, each concept required further development regarding the specific functions

assigned to them.

Since its introduction by Wamecke (1993), the research efforts into the concept of

fractal manufacturing have focused on layout design using “fractal units” as self-similar

and dynamic building blocks of the system. Leading research in this area has been

conducted by Venkatadri et al. (1997), who proposed a methodology for fractal cell

design. However, the authors failed to clearly define the multiple design parameters

involved in the fractal cell configuration. This significantly restricted the application of

their methodology. In this thesis, various fractal cell configuration methods for different

system design objectives and constraints were proposed. Number of parameters that

determine the level of interaction between the cells, the distribution of different product

types among the cells and the similarity of cell capabilities were discussed and

simulated. Layout optimisation through the used meta-heuristic procedures yielded a

noticeable reduction in handling distances. The experiments indicated that arranging the

127

Chapter Eight - Conclusions

position of resources to meet the requirements for a specific product demand and mix

can significantly reduce material travelling distances even if the demand for the

different products is unprdictable. Fractal layouts also provided simpler material flows

and system control.

The biological manufacturing concept, as proposed by Ueda (1992), aims to imitate the

adaptable structures and behaviour of biological organisms in manufacturing systems.

The self-organisation simulator suggested by Ueda et al. (1997b) and Vaario and Ueda

(1998a) was designed to direct configuration, reconfiguration and scheduling activities

in real-time by continuously calculating the local potential fields of the machines and

transporters on the shop floor. However, the continuous competition between system

elements resulted in a chaotic behaviour. This research proposed a new approach to

biological manufacturing based on wireless communication between system

components to facilitate better control. The methodology enabled a flexible and

responsive reaction to any disturbances on the shop floor. The proposed strategies for

product routing and deadlock-avoidance proved to be feasible under simulation

condition and did respond extremely well to disturbances.

The responsive manufacturing concept (Gindy and Saad 1998) includes a framework for

representing manufacturing resources and their capabilities using resource elements in

process planning and scheduling. In this thesis, new rules were proposed in order to

integrate the resource elements with the proposed biological self-organised secheduling

and fractal layouts. The conducted experiments confirm that resource elements are

applicable to dynamic scheduling systems. Internal disturbances through machine

breakdown events were balanced out efficiently. Hence, it was established that resource

elements can improve system flexibility and responsiveness in the conditions of

dynamic self-organisation and are suitable for 21st century manufacturing systems.

These new concepts reshape our understanding of the manufacturing process. Each

methodology offers benefits in key areas, but limitations in their application are

recognised. A combined model incorporating key aspects and advantages of all three

concepts, biological, fractal and responsive manufacturing was put forward and the

resulting system was simulated.

128

Chapter Eight - Conclusions

8.2 Discussion

The principle objective of this work was to research the emerging manufacturing

systems, namely fractal, biological and responsive manufacturing, and to develop an

integrated reference architecture that achieves a combination of their distinctive

features. This would enable manufacturing enterprises to successfully handle the

configuration/reconfiguration, planning and control activities under conditions of

uncertainty and continuous change. The new system would allow manufacturing

organisations to adapt and to find a rapid and balanced response to changing customer

requirements.

In the course of the research, a detailed investigation of fractal, biological and

responsive manufacturing systems was conducted. It provided a clear account of the

strengths and weaknesses of each concept. A comparison of these new approaches

identified a number of common and distinct features that would enable the integration

of the concepts and the creation of an adaptive reference architecture for the 21st

century manufacturing systems. The concept of fractal configuration, biological

scheduling and the 'resource elements' representation of resource capabilities and

product processing requirements were selected as the major elements of the new system.

A detailed study of fractal layout design resulted in seven distinctive methods for

structuring and operating fractal cellular systems. A methodology was developed for

scheduling and control in biological manufacturing systems. Three options were

presented to achieve varying levels of responsiveness to disturbances and complexity of

control. Resource elements were used in both fractal layouts and biological systems to

optimise the resource utilisation and to improve the system performance. The integrated

system was based on an optimised shop floor layout taken from the study of fractal cells

and used dynamic self-organisation scheduling to match the processing requirements

and capabilities using resource elements.

Experimentation with computer simulation representative of manufacturing systems

indicated an improvement in system throughput each time one of the features of the new

manufacturing methodologies was added on top of the architecture. The resulting

architecture responded extremely well to disturbances in the system.

129

Chapter Eight - Conclusions

8.3 Limitations

The developed methodologies and the integrated framework were implemented and

experimented using one case study. Although the hypothetical case study was selected

to reflect the requirements assumed for emerging manufacturing organisations with

multiple product types and varying order quantities, the results of this study should be

viewed with this limitation in mind. In addition, several assumptions were made during

the implementation and experimentation of the methodologies, which have been

discussed in the relevant sections on the thesis. Moreover, the implementation of the

proposed procedures and the reference model in a real factory system would require

significant investments in terms of technology and training on work practices. Hence, it

can be recognised that the primary achievement of this work is the provision of ideas for

future development in the academic space.

8.4 Research contributions

The research has established a reference architecture that merges the features and

benefits of fractal layouts with biological scheduling that considers the responsive

manufacturing concept of resource elements. The research results indicate that the

performance of the biological -scheduling system can be improved by using hidden

capabilities of resources as represented by resource elements. The procedure for

optimising resource arrangements in fractal layouts reduced material travelling

distances. The integration of the resource elements concept enabled a better distribution

of processing capabilities in the system.

The key achievements of the research are:

a) An analysis of the strength and weaknesses of the next generation of

manufacturing systems

b) A comprehensive comparison of the design and operational and organisational

features of fractal, holonic, biological and responsive manufacturing concepts

c) A methodology for designing fractal layouts with different organisational

objectives

d) A mathematical model and the implementation of the seven fractal cell

configuration methods in C++ using tabu-search

e) A flexibility study of fractal layouts

130

Chapter Eight - Conclusions

f) The development and implementation of a distributed real-time scheduling and

control methodology for biological manufacturing systems with deadlock

avoidance using Arena simulation software

g) A procedure for representing resource capabilities and product processing

requirements as resource elements in biological systems

h) A procedure for matching capabilities and requirements in biological

manufacturing systems using resource elements

i) The proposal of an integrated reference architecture that incorporates fractal,

biological and responsive manufacturing concepts

j) A working software model that simulates the implementation of this reference

architecture

8.5 Future work

In the course of the research project it became apparent that only a limited amount of

research into the emerging manufacturing systems had previously been conducted.

Thus, many of the new approaches are still fairly abstract concepts. This research has

considered only three of the new paradigms within a limited scope of manufacturing

shop floor layout design and scheduling. However, it was still possible to identify

several areas for future research within the scope of this research. Some of the most

significant topics are discussed next.

a) Work on the flexibility of fractal layouts to react to changes in product types

needs to be continued.

b) The responsiveness of fractal layouts to random machine breakdowns or

changes to the overall order volume can be evaluated.

c) Fractal machine layout on the shop floor could consider hidden capabilities, but

this is expected to reduce the importance of layout optimisation.

d) A comparative study with simulation between fractal layouts and other layouts

can be conducted to more precisely determine the merit of arbitrary cell

boundaries in terms of controllability and flexibility to disturbances.

e) Resource utilisation could be further improved through the development of

control techniques for sequencing of products at the input dispatcher when

biological scheduling is used. However, this approach requires knowledge of the

131

Chapter Eight - Conclusions

overall system state and in principle conflicts with some of the design goals of

this methodology.

f) A formula to compute the optimal number of AGVs in biological scheduling can

be created, but the development could be complex due to the number of

variables involved.

g) The performance of the identified different types of dynamic biological

scheduling approaches need to be evaluated and compared.

h) A methodology for preventing system blockage ever occurring in biological

systems need to be developed. This could be achieved by controlling the number

of products in the system or having an emergency AGV.

i) To include setup delays to resource element based scheduling and to determine

the performance difference between a system with resource elements and setup

delays and a system with low resource utilisation due to hidden underutilised

capabilities.

j) Development of a methodology to minimise resource element setups in dynamic

biological scheduling.

k) To investigate if any benefits can be obtained by considering the hidden

resource capabilities (presented as resource elements) during the fractal layout

design.

1) To study the impact of machine layout on system performance when biological

scheduling is used.

m) To conduct more experiments for different case studies to add further weight to

the conclusions that were reached.

132

References

References

Agarwal, A. and Sarkis, J., 1998, A review and analysis of comparative performance

studies on functional and cellular manufacturing layouts. Computers & Industrial

Engineering, 34, 1, 77-89.

Akright, W. T. and Kroll, D. E., 1998, Cell formation performance measures -

Determining when to change an existing layout. Computers & Industrial

Engineering, 34, 1, 159-171.

Akturk, M. S. and Turkcan, A., 2000, Cellular manufacturing system design using a

holonistic approach. International Journal o f Production Research, 38, 10, 2327-

2347.

Alvarez, E. and Diaz, F., 2004, An application of a real-time scheduling system for

turbulent manufacturing environments. Robotics and Computer-Integrated

Manufacturing, 20, 485-494.

Arai, T., Aiyama, Y., Sugi, M. and Ota, J., 2001, Holonic assembly system with plug

and produce. Computers in Industry, 46,289-299.

Arteta, B. M. and Giachetti, R. E., 2004, A measure of agility as the complexity of the

enterprise system. Robotics and Computer Integrated Manufacturing, 20, 495-503.

Askin, R. G., Ciarallo, F. W. and Lundgren, N. H., 1999, An empirical evaluation of

holonic and fractal layouts. International Journal o f Production Research, 37, 5,

961-978.

Askin, R. G., Lundgren, N. H. and Ciarallo, F., 1996, A material flow based evaluation

of layout alternatives for agile manufacturing. In R. J. Graves, L. F. McGinnis, D. J.

Medeiros, R. E. Ward and M. R. Wilhelm (eds.), Progress in material handling

research (Braun-Brumfield), pp. 71-90.

Azadivar, F. and Wang, J., 2000, Facility layout optimization using simulation and

genetic algorithms. International Journal o f Production Research, 38, 17, 4369-

4383.

Babiceanu, R. F., Chen, F. F. and Sturges, R. H., 2005, Real-time holonic scheduling of

materials handling operations in a dynamic manufacturing environment. Robotics

and Computer-Integrated Manufacturing, 21, 328-337.

Balakrishnan, J. and Cheng, C. H., 1998, Dynamic layout algorithms: a state-of-the-art

survey. Omega - The International Journal o f Management Science, 26, 4, 507-521.

133

References

Balasubramanian, S., Brennan, R. W. and Norrie, D. H., 2001, An architecture for

metamorphic control of holonic manufacturing systems. Computers in Industry, 46,

13-31.

Balasubramanian, S., Zhang, X. and Norrie, D. H., 2000, Intelligent control for holonic

manufacturing systems. Proceedings o f the Institute o f Mechanical Engineers - Part

B - Journal o f Engineering Manufacture, 214, 953-961.

Bard, J. F., Dar-El, E. and Shtub, A., 1992, An analytic framework for sequencing
i

mixed model assembly lines. International Journal o f Production Research, 30, 1,

35-48.

Bartezzaghi, E., 1999, The evolution of production models: is a new paradigm

emerging? International Journal o f Operations & Production Management, 19, 2,

229-250.

Bastos, R. M., de Oliveira, F. M. and de Oliveira, J. P. M., 2005, Autonomic computing

approach for resource allocation. Expert Systems with Applications, 28, 9-19.

Baykasoglu, A., 2003, Capability-based distributed layout approach for virtual

manufacturing cells. International Journal o f Production Research, 41, 11, 2597-

2618.

Baykasoglu, A. and Gindy, N. N. Z., 2000, MOCACEF 1.0: multiple objective

capability based approach to form part-machine groups for cellular manufacturing

applications. International Journal o f Production Research, 38, 5, 1133-1161.

Benjaafar, S. and Sheikhzadeh, M., 2000, Design of. flexible plant layouts. HE

Transactions, 32, 4, 309-322.

Benjaafar, S., Heragu, S. S. and Irani, S. A., 2002, Next generation factory layouts:

research challenges and recent progress. Interfaces, 32, 6, 58-76.

Berggren, C., 1994, Nummi vs. Uddevalla. Sloan Management Review, Winter issue,

37-45.

Billo, R. E., 1998, A design methodology for configuration of manufacturing cells.

Computers & Industrial Engineering, 34,1, 63-75.

Bongaerts, L., Jordan, P., Timmermans, P., Valckenaers, P. and Wyns, J., 1997a,

Evolutionary development in shop floor control. Computers in Industry, 33, 295-

304.

Bongaerts, L., Monostori, L., McFarlane, D. and Kadar, B., 2000, Hierarchy in

distributed shop floor control. Computers in Industry, 43, 123-137.

134

References

Bongaerts, L., van Brussel, H., Valckenaers, P. and Peeters, P., 1997b, Reactive

scheduling in holonic manufacturing systems: architecture, dynamic model and co­

operation strategy. Proceedings o f advanced summer institute o f the network o f

excellence on intelligent control and integrated manufacturing ASI97, Budapest,

Hungary, 14-17 July.

Bonney, M., 2000, Reflections on production planning and control (PPC). Gestao &

Producao, 7, 3, 181-207.

Brehmer, N. and Martinetz, J., 2001, Conceptual model of information navigation in

networked organisations, (available at: http://www.adrenalin-company.de/images/

pdf/adrenalin_e200l_paper.pdf) (accessed on July 2002).

Brennan, R. W., 2000, Performance comparison and analysis of reactive and planning-

based control architectures for manufacturing. Robotics and Computer Integrated

Manufacturing, 16, 191-200.

Brennan, R. W. and Norrie, D. H., 2001, Evaluating the performance of reactive control

architecture for manufacturing production control. Computers in Industry, 46, 235-

245.

Brezocnik, M. and Balic, J., 2001, A genetic-based approach to simulation of self­

organizing assembly. Robotics and Computer Integrated Manufacturing, 17, 113-

120.

Buchel, A., Breuil, D. and Doumeingts, G., 1984, Comparison of design methodologies,

characteristics and deficiencies. Production Management Systems: Strategies and

Tools for Design.

Bukchin, J., 1998, A comparative study of performance measures for throughput of a

mixed model assembly line in a JIT environment. International Journal o f

Production Research, 36, 10, 2669-2685.

Bullinger, H. J., Fremerey, F. and Fuhrberg-Baumann, J., 1995, Innovative production

structures - precondition for a customer-oriented production management.

International Journal o f Production Economics, 41, 15-22.

Burkel, J., 1991, Applying CIM for competitive advantage. Proceedings o f autofact’91,

Chicago, USA.

Bussmann, S., 1998, An agent-oriented architecture for holonic manufacturing control.

Proceedings o f IMS ’98-ESPRIT workshop in intelligent manufacturing systems,

Lausanne, Switzerland.

135

http://www.adrenalin-company.de/images/

References

Chalmeta, R., Campos, C. and Grangel, R., 2001, References architectures for enterprise

integration. The Journal o f Systems and Software, 57,175-191.

Chase, R. B. and Aquilano, N. J., 1992, Production & operations management - A life

cycle approach, 6th Ed. (Irwin: Boston, Massachusetts, USA).

Choi, B. K. and Kim, B. H., 2000, Human-centred virtual manufacturing systems for

next generation manufacturing. Proceedings o f 2000 international CIRP design

seminar, Haifa, Israel, May 16-18, 169-174.

Christian, I., Ismail, H., Mooney, J., Snowden, S., Toward, M. and Zhang, D., 2001,

Agile manufacturing transitional strategies. Proceedings o f the 4th SMESME

international conference, Aalborg, Denmark, 14-16 May.

Clark, K. B. and Fujimoto, T., 1991, Product development performance: strategy,

organization and management in the world auto industry (Harvard University

Publications, Cambridge, Massachusetts, USA).

Co, H. C. and Araar, A., 1988, Configuring cellular manufacturing systems.

International Journal o f Production Research, 26, 9, 1511-1522.

Conboy, K. and Fitzgerald, B., 2004, Towards a conceptual framework of agile

methods: A study of agility in different disciplines. Proceedings o f the WISER'04

conference, Newport Beach, California, USA, 5 November, pp. 37-44.

Csaszar, P., Tirpak, T. M. and Nelson, P. C., 2000, Optimization of a high-speed

placement machine using tabu search algorithms. Annals o f Operations Research,

96, 125-147.

Cusumano, M. A., 1994, The limits of "lean". Sloan Management Review, Summer

issue, 27-32.

Davis, E., 1995, What’s on American managers’ minds? Management Review, 4,14-20.

Debnar, R., Kosturiak, J. and Matuszek, J., 2001, A methodology for design of fractal

company, (available at: http://www. iizp.uz. zgora. pi/ zlsi / data / mim / debnar. zip)

(accessed on April 2003).

Demeester, L., Eichler, K. and Loch, C. H., 2004, Organic production systems: what the

biological cell can teach us about manufacturing. Manufacturing & Service

Operations Management, 6,2, 115-132.

DeVor, R., Graves, R. and Mills, J. J., 1997, Agile manufacturing research:

accomplishments and opportunities. HE Transactions, 29, 813-823.

136

http://www

References

Doll, W. J. and Vonderembse, M. A., 1992, The evolution of manufacturing systems:

towards the post-industrial enterprise. In Manufacturing strategy - process and

content, Voss, C. A. (ed.) (London: Chapman & Hall), pp. 353-370.

D’Souza, D. E. and Williams, F. P., 2000, Towards a taxonomy of manufacturing

flexibility dimensions. Journal o f Operations Management, 18, 577-593.

Duguay, C. R., Landry, S. and Pasin, F., 1997, From mass production to flexible/agile

production. International Journal o f Operations & Production Management, 17, 12,

1183-1195.

Duplaga, E. A. and Bragg, D. J., 1998, Mixed-model assembly line sequencing

heuristics for smoothing component parts usage: a comparative analysis.

International Journal o f Production Research, 36, 8, 2209-2224.

Ellegard, K., Jonsson, D., Engstrom, T., Johansson, M. I., Medbo, L. and Johansson, B.,

1992, Reflective production in the final assembly of motor vehicles - an emerging

Swedish challenge. International Journal o f Operations & Production Management,

12,7/8,117-133.

England, D., 2004, Operational planning o f discrete component manufacturing lines.

PhD thesis. Loughborough University, UK.

Esmail, K. K. and Saggu, J., 1996, A changing paradigm. Manufacturing Engineering,

75, 6, 285-288.

Farrington, P. A. and Nazemetz, J. W., 1998, Evaluation of the performance domain of

cellular and functional layouts. Computers & Industrial Engineering, 34, 1, 91-101.

Featherston, S., 1999, Study of reasons for the adoption of lean production in the

automobile industry: questions for the AEC industries. Proceedings o f the 7th annual

conference o f the international group fo r lean construction (IGLC-7), Berkeley,

California, USA, 26-28 July.

Fischer, K., 1999, Agent-based design of holonic manufacturing systems. Robotics and

Autonomous Systems, 27, 3-13.

Fujii, N., Hatono, I. and Ueda, K., 2004, Reinforcement learning approach to self­

organization in a biological manufacturing system framework. Proceedings o f the

Institute o f Mechanical Engineers - Part B - Journal o f Engineering Manufacture,

218,6,667-673.

137

References

Fujii, N., Vaario, J. and Ueda, K., 1997, Potential field based simulation of self­

organization in biological manufacturing systems. Proceedings o f manufacturing

system design '97, Magdeburg, Germany, 14-16 May.

Gau, K. Y. and Meller, R. D., 1999, An iterative facility layout algorithm. International

Journal o f Production Research, 37, 16, 3739-3758.

Giebels, M., Kals, H. and Zijm, H., 1999, Building holarchies for concurrent

manufacturing planning and control. Proceedings o f the 2nd international workshop

on intelligent manufacturing systems, Leuven, Belgium, 22-24 September.

Gindy, N. N. Z. and Ratchev, T. M., 1997, Cellular decomposition of manufacturing

facilities using resource elements. Integrated Manufacturing Systems, 8, 4, 215-222.

Gindy, N. N., Ratchev, T. M. and Case, K., 1996, Component grouping for cell

formation using resource elements. International Journal o f Production Research,

34, 3, 727-752.

Gindy, N. N. and Saad, S. M., 1998, Flexibility and responsiveness of machining

environments. Integrated Manufacturing Systems, 9,4, 218-227.

Gindy, N. N., Saad, S. M. and Yue, Y., 1999, Manufacturing responsiveness through

integrated process planning and scheduling. International Journal o f Production

Research, 37, 11,2399-2418.

Giordano, F. R., Weir, M. D. and Fox, W. P., 2003, First course in mathematical

modeling, 3rd Ed. (Brooks Cole).

Glover, F., 1989, Tabu search Part I. ORSA Journal on Computing, 1, 190-206

Glover, F., 1990, Tabu search Part II. ORSA Journal on Computing, 2 ,4-31

Goldman, S., Nagel, R. and Preiss, K., 1995, Agile competitors and virtual

organizations (Van Nostrand Reinhold: New York).

Gould, P., 1997, What is agility? Manufacturing Engineer, 76, 1, 28-31.

Gou, L., Luh, P. B. and Kyoya, Y., 1998, Holonic manufacturing scheduling:

architecture, cooperation mechanism, and implementation. Computers in Industry,

37,213-231.

Griffiths, J., James, R. and Kempson, J., 2000, Focusing customer demand through

manufacturing supply chains by the use of customer focused cells: An appraisal.

International Journal o f Production Economics, 65, 111-120.

Gunasekaran, A., 1998 Agile manufacturing: enablers and an implementation

framework. International Journal o f Production Research, 36, 5, 1223-1247.

138

References

He, D., Babayan, A. and Kusiak, A., 2001, Scheduling manufacturing systems in an

agile environment. Robotics and Computer Integrated Manufacturing, 17, 87-97.

Hines, P., Holweg, M. and Rich, N., 2004, Learning to evolve - A review of

contemporary lean thinking. International Journal o f Operations & Production

Management, 24, 10, 994-1011.

Hitt, M. A., 2000, Transformation of management for the new millennium.

Organizational Dynamics, 28, 3, 7-16.

Hopf, M.,1994, Holonic manufacturing systems (HMS) - The basic concepts and a

report of IMS test case 5. (available at: http://hms.ifw.uni-hannover.de/public/

Feasibil/holo2.htm) (accessed on August 2003).

Hopp, W. J. and Spearman, M. L., 2000, Factory physics. 2nd Ed. (New York:

McGraw-Hill).

Hughes, J. J., 1997, Views of the future. In Wolkoff, R. L. (ed.), Next-generation

manufacturing: A framework for action. The Agility forum, Bethlehem, PA, USA.

Inman, R. R. and Schmeling, D. M., 2003, Algorithm for agile assembling-to-order in

the automotive industry. International Journal o f Production Research, 41, 16,

3831-3848.

Irani, S. A., Cavalier, T. M. and Cohen, P. H., 1993, Virtual manufacturing cells:

exploiting layout design and intercell flows for the machine sharing problem.

International Journal o f Production Research, 31, 4, 791-810.

Iwata, K., Onosato, M. and Koike, M., 1994, Random manufacturing system: a new

concept of manufacturing systems for production to order. Annals o f the CIRP, 43,

1, 379-383.

Jackson, M. and Johansson, C., 2003, An agility analysis from a production system

perspective. Integrated Manufacturing Systems, 14, 6, 482-488.

Jin-Hai, L., Anderson, A. R. and Harrison, R. T., 2003, The evolution of agile

manufacturing. Business Process Management Journal, 9, 2, 170-189.

Kadar, B., Monostori, L. and Szelke, E., 1998, An object-oriented framework for

developing distributed manufacturing architectures. Journal o f Intelligent

Manufacturing, 9, 173-179.

Kalpakjian, S. and Schmid, S. R., 2001, Manufacturing engineering and technology. 4th

Ed. (New Jersey: Prentice-Hall).

139

http://hms.ifw.uni-hannover.de/public/

References

Kannan, V. R. and Ghosh, S., 1996, Cellular manufacturing using virtual cells.

International Journl o f Operations & Production Management, 16, 5, 99-112.

Katalinic, B. and Kordic, V., 2002, Bionic assembly systems: Autonomous agents in

self-organising complex flexible assembly system in CIM environment.

Proceedings o f the 4th international workshop on emergent synthesis (I WE S'02),

Kobe, Japan, 9-10 May.

Katalinic, B., Visekruna, V. and Kordic, V., 2002, Bionic assembly systems: design and

scheduling of next generation of self-organising complex flexible assembly system

in CIM environment. Proceedings o f the 35th CIRP international seminar on

manufacturing systems, Seoul, Korea, 12-15 May.

Katayama, H. and Bennett, D., 1996, Lean production in a changing competitive world:

a Japanese perspective. International Journal o f Operations & Production

Management, 16,2, 8-23.

Katayama, H. and Bennett, D., 1999, Agility, adaptability and leanness: a comparison of

concepts and a study of practices. International Journal o f Production Economics,

60/61,43-51.

Kidd, P. T., 2000, Next generation manufacturing enterprise model, (available at:

http://www.cheshirehenbury.com/agility/ngemodel.html) (accessed on September

2005).

Kimberley, W., 2001, Skoda: An eastern European success. Automotive Manufacturing

& Production, 113, 6, 26-28.

Klopp, M., Kissling, W. and Spiewack, M., 1997, Fractal lines. Manufacturing

Engineer, 16, 2, 82-85.

Ko, K. C. and Egbelu, P. J., 2003, Virtual cell formation. International Journal o f

Production Research, 41, 11, 2365-2389.

Kochikar, V. P. and Narendran, T. T., 1998, Logical cell formation in FMS, using

flexibility-based criteria. The International Journal o f Flexible Manufacturing

Systems, 10,163-182.

Koestler, A., 1967, The ghost in the machine (London: Hutchinson).

Koren, Y., Heisel, U., Jovane, F., Moriwaki, T., Pritschow, G., Ulsoy, G. and Van

Brussel, H., 1999, Reconfigurable manufacturing systems. Annals o f CIRP, 48, 2,

527-540.

140

http://www.cheshirehenbury.com/agility/ngemodel.html

References

Koren, Y., Hu, S. J. and Weber, T. W., 1998, Impact of manufacturing system

configuration on performance. Annals o f the CIRP, 47, 1, 369-372.

Koste, L. L. and Malhotra, M. K., 1999, A theoretical framework for analyzing the

dimensions of manufacturing flexibility. Journal o f Operations Management, 18,

75-93.

Koylu, R., 2000, Tabu search. Proceedings o f IE572 production planning systems

design conference. Spring 2000.

Krajewski, L. J. and Ritzman, L. P., 2005, Operations management: Processes and

value chains. (New Jersey: Pearson Prentice Hall).

Kuehnle, H., 1995, Guidelines for future manufacturing - Necessity of a change of

organizational structures in industry and ways to the "fractal company". Web

Journal, (available at: http://fstroj.utc.sk/joumal/engl/papers.html) (accessed on July

2002).

Lacksonen, T. A., 1997, Preprocessing for static and dynamic facility layout problems.

International Journal o f Production Research, 35, 4, 1095-1106.

Lee, S. D., Huang, K. H. and Chiang, C. P., 2001, Configuring layout in unidirectional

loop manufacturing systems. International Journal o f Production Research, 39, 6,

1183-1201.

Levary, R. R., 1992, Enhancing competitive advantage in fast-changing manufacturing

environment. Industrial Engineering, 24, 12, 21-28.

Lim, M. K. and Zhang, D. Z., 2004, An integrated agent-based approach for responsive

control of manufacturing resources. Computers & Industrial Engineering, 46, 221-

232.

Little, D. and Rollins, R., 2000, Integrated planning and scheduling in the engineer-to-

order sector. International Journal o f Computer Integrated Manufacturing, 13, 6,

545-554.

Maione, B. and Naso, D., 2001, Evolutionary adaptation of dispatching agents in

heterarchical manufacturing systems. International Journal o f Production Research,

39,7,1481-1503.

Manzini, R., Gamberi, M., Regattieri, A. and Persona, A., 2004, Framework for

designing a flexible cellular assembly system. International Journal o f Production

Research, 42,17, 3505-3528.

141

http://fstroj.utc.sk/joumal/engl/papers.html

References

Markfort, D., Martinetz, J.,Klostermeyer, A. and Brehmer, N., 2000, Advanced fractal

companies use information supply chains (ADRENALIN), (available at:

http://www.adrenalin-company.de/images/pdf/paper_e2000_madrid.pdf) (accessed

on July 2002).

Markus, A., Kis Vancza, T. and Monostori, L., 1996, A market approach to holonic

manufacturing. Annals o f the CIRP, 45,1,433-436.

Mathias, P., 1983, The first industrial nation: An economic history o f Britain 1700-

1914. 2nd Ed. (London: Routledge).

McCarthy, I. and Tsinopoulos, C., 2003, Strategies for agility: an evolutionary and

configurational approach. Integrated Manufacturing Systems, 14, 2,103-113.

McCormack, R., 2000, Honda reduces manufacturing costs by 87 percent with

prototype biological manufacturing system. Manufacturing News, 1, 9.

McCurry, L. and Mclvor, R., 2002, Agile manufacturing: 21st century strategy for

manufacturing on the periphery? Irish Journal o f Management, 23, 2, 75-93.

McFarlane, D. C., and Bussmann, S., 2000, Developments in holonic production

planning and control. Production Planning and Control, 11,6, 522-536.

McLean, C. R., Bloom, H. M. and Hopp, T. H., 1982, The virtual cell. Proceedings o f

4th IFAC/IFIP conference on information control problems in manufacturing

technology, Gaithersburg, MD, October, 207-215.

Mehrabi, M. G., Ulsoy, A. G. and Koren, Y., 2000, Reconfigurable manufacturing

systems: Key to future manufacturing. Journal o f Intelligent Manufacturing, 11,

403-419.

Meller, R. D., 1997, Multi-channel manufacturing. Technical report (Auburn:

Department of industrial and systems engineering, Auburn university).

Meng, G., Heragu, S. S. and Zijm, H., 2004, Reconfigurable layout problem.

International Journal o f Production Research, 42, 22,4709-4729.

Meredith, S. and Francis, D., 2000, Journey towards agility: the agile wheel explored.

The TQM Magazine, 12, 2,137-143.

Mertins, K., Friedland, R. and Rabe, M., 2000, Capacity assignment of virtual

manufacturing cells by applying lot size harmonization. International Journal o f

Production Research, 38, 17,4385-4391.

Mill, F. and Sherlock, A., 2000, Biological analogies in manufacturing. Computers in

Industry, 43, 153-160.

142

http://www.adrenalin-company.de/images/pdf/paper_e2000_madrid.pdf

References

Molleman, E., Slomp, J. and Rolefes, S., 2002, The evolution of a cellular

manufacturing system - a longitudinal case study. International Journal o f

Production Economics, 75, 305-322.

Montreuil, B., Venkatadri, U. and Rardin, R. L., 1999, Fractal layout organization for

job shop environments. International Journal o f Production Research, 37, 3, 501-

521.

Moskal, B. S., 1995, Son of agility. Industry Week, 244, 10, 12-17.

Muffatto, M., 1999, Evolution of production paradigms: the Toyota and Volvo cases.

Integrated Manufacturing Systems, 10, 1, 15-25.

Nagel, R. N. and Dove, R., 1991, 21st century manufacturing enterprise strategy: an

industry-led view o f agile manufacturing. (Iacocca Institute, Lehigh University,

Bethlehem, PA, USA).

NGMS-IMS consortium, 2000, NGMS-IMS project - Interim report (CAM-I Inc.,

Bedford, Texas, USA).

Noori, H. and Lee, W. B., 2000, Fractal manufacturing partnership: exploring a new

form of strategic alliance between OEMs and suppliers. Logistics Information

Management, 13, 5, 301-311.

Ohkura, K., Sera, K. and Ueda, K., 1999, A learning multi-agent approach to dynamic

scheduling for autonomous distributed manufacturing systems. Proceedings o f 15th

international conference on computer-aided production engineering (CAPE99), pp.

325-330.

Okino, N., 1992, A prototyping of bionic manufacturing system. Proceedings o f an

international conference on object oriented manufacturing systems, Calgary,

Canada, 297-302.

Oliver, N., Delbridge, R., Jones, D. and Lowe, J., 1994, World class manufacturing:

further evidence in the lean production debate. British Journal o f Management, 5,

53-63.

Ozcelik, F. and Islier, A. A., 2003, Novel approach to multi-channel manufacturing

system design. International Journal o f Production Research, 41, 12, 2711-2726.

Pagell, M. and Krause, D. R., 2004, Re-exploring the relationship between flexibility

and the external environment. Journal o f Operations Management, 21, 629-649.

Perry, D. E. and Wolf, A. L., 1992, Foundations for the study of software architecture.

ACMSIGSOFT, 17, 4, 40-52.

143

References

Quinn, R. D., Causey, G. C., Merat, F. L., Sargent, D. M., Barendt, N. A., Newman, W.

S., Velasco, V. B., Podgurski, A., Jo, J. Y., Sterling, L. S. and Kim, Y., 1997, An

agile manufacturing workcell design. HE Transactions, 29, 901-909.

Rahimifard, S., Newman, S. T. and Bell, R., 1999, Distributed autonomous real-time

planning and control of small to medium enterprises. Proceedings o f the Institute o f

Mechanical Engineers - Part B - Journal o f Engineering Manufacture, 213, 475-

489.

Ramasesh, R., Kulkami, S. and Jayakumar, M., 2001, Agility in manufacturing systems:

an exploratory modeling framework and simulation. Integrated Manufacturing

Systems, 12, 7, 534-548.

Ravindran, A., Phillips, D. T. and Solberg, J. J., 1987, Operations research principles

and practice, 2nd Ed. (Wiley: New York).

Rigby, C., Day, M., Forrester, P. and Bumett, J., 2000, Agile supply: rethinking systems

thinking, systems practice. International Journal o f Agile Management Systems, 2,

3, 178-186.

Ryu, K. and Jung, M., 2002, Dynamic modeling of fractal-specific characteristics in

fractal manufacturing systems. Proceedings o f the 35th CIRP international seminar

on manufacturing systems, Seoul, Korea, 12-15 May.

Ryu, K. and Jung, M., 2003, Agent-based fractal architecture and modelling for

developing distributed manufacturing systems. International Journal o f

Production Research, 41, 17, 4233-4255.

Ryu, K. and Jung, M., 2004, Goal-orientation mechanism in a fractal manufacturing

system. International Journal o f Production Research, 42, 11, 2207-2225.

Ryu, K., Shin, M. and Jung, M., 2001, A methodology for implementing agent-based

controllers in the fractal manufacturing system. Proceedings o f the 5th international

conference on engineering design and automation (EDA 2001), Las Vegas, Nevada,

USA, 5-8 August, pp.91-96.

Ryu, K., Shin, M., Kim, K. and Jung, M., 2000, Intelligent control architecture for

fractal manufacturing system. Proceedings o f the 3rd Asia-Pacific conference on

industrial engineering and management systems (APIEMS'2000), Hong Kong, 20-

22 December, pp. 594-598.

Ryu, K., Son, Y. and Jung, M., 2003, Modeling and specifications of dynamic agents in

fractal manufacturing systems. Computers in Industry, 52, 2, 161-182.

144

References

Saad, S. M., 2003, The reconfiguration issues in manufacturing systems. Journal o f

Materials Processing Technology, 138,277-283.

Saad, S. M., Baykasoglu, A. and Gindy, N. N. Z., 2002a, A new integrated system for

loading and scheduling in cellular manufacturing. International Journal o f

Computer Integrated Manufacturing, 15, 1, 37-49.

Saad, S. M., Baykasoglu, A. and Gindy, N. N. Z., 2002b, An integrated framework for

reconfiguration of cellular manufacturing systems using virtual cells. Production

Planning & Control, 13, 4, 381-393.

Saad, S. M., and Gindy, N. N., 1998, Handling internal and external disturbances in

responsive manufacturing environments. Production Planning & Control, 9, 8, 760-

770.

Saad, S. M. and Lassila, A. M., 2002, Sequencing for mixed-model assembly lines with

bottleneck resources using tabu search. Proceedings o f the 12th International

Conference on Flexible automation & Intelligent Manufacturing (FAIM2002), 15-

17 July, Dresden, Germany, pp. 664-673.

Sanchez, L. M. and Nagi, R., 2001, A review of agile manufacturing systems.

International Journal o f Production Research, 39, 16, 3561-3600.

Sarker, B. R. and Li, Z., 2001, Job routing and operations scheduling: a network-based

virtual cell formation approach. Journal o f the Operational Research Society, 52,

673-681.

Saunders, M., Lewis, P. and Thornhill, A., 2003, Research methods fo r business

students, 3rd Ed. (Pearson Educational Ltd.: Essex).

Selladurai, V., Aravindan, P., Ponnambalam, S. G. and Gunasekaran, A., 1995,

Dynamic simulation of job shop scheduling for optimal performance. International

Journal o f Operations & Production Management, 15, 7, 106-120.

Sharifi, H. and Zhang, Z., 1999, A methodology for achieving agility in manufacturing

organisations: An introduction. International Journal o f Production Economics, 62,

7-22.

Sharifi, H. and Zhang, Z., 2001, Agile manufacturing in practice - Application of a

methodology. International Journal o f Operations & Production Management, 21,

5/6, 772-794.

Sihn, W., 1995, Re-engineering through natural structures: the fractal factory.

Proceedings ofSPIE - The International Society fo r Optical Engineers, 2620, 62-69.

145

References

Sihn, W. and von Briel, R., 1997, Process cost calculation in a fractal company.

International Journal o f Technology Management, 13, 68-77.

Simsek, B. and Albayrak, S., 2003, Living factory: Back to Koestler in holonic

manufacturing. Proceedings o f the INDIN-2003 workshop on innovative production

machines and control systems, Banff, Alberta, Canada, 21-24 August.

Sluga, A. and Butala, P., 2001, Self-organization in a distributed manufacturing system

based on constraint logic programming. Annals o f the CIRP, 50, 1, 323-326.

Small, A. W. and Downey, A. E., 1996, Orchestrating multiple changes: a framework

for managing concurrent changes of varied type and scope. Proceedings o f the

IEM C1996 conference on managing virtual enterprise, Canada, pp. 627-634.

Sousa, P. and Ramos, C., 1998, A dynamic scheduling holon for manufacturing orders.

Journal o f Intelligent Manufacturing, 9, 107-112.

Sousa, P. and Ramos, C., 1999, A distributed architecture and negotiation protocol for

scheduling in manufacturing systems. Computers in Industry, 38, 103-113.

Sousa, P., Silva, N., Heikkila, T., Kollingbaum, M. and Valckenaers, P., 1999, Aspects

of co-operation in distributed manufacturing systems. Proceedings o f the 2nd

international workshop on intelligent manufacturing systems, IMS Europe'99,

Leuven, Belgium, 22-24 September.

Spear, S. and Bowen, H. K., 1999, Decoding the DNA of the Toyota production system.

Harvard Business Review, 11, 5, 97-106.

Spina, G., Bartezzaghi, E., Bert, A., Cagliano, R., Draaijer, D. and Boer, H., 1996,

Strategically flexible production: the multi-focused manufacturing paradigm.

International Journal o f Operations & Production Management, 16, 11, 20-41.

St. John, C. H., Cannon, A. R. and Pouder, R. W., 2001, Change drivers in the new

millennium: implications for manufacturing strategy research. Journal o f

Operations Management, 19,143-160.

Strauss, R. E. and Hummel, T., 1995, The new industrial engineering revisited -

Information technology, business process re-engineering, and lean management in

the self-organizing "fractal company". Proceedings o f the 1995 IEEE annual

international engineering management conference, Singapore, June 1995, 1, 2, 287-

292.

Suda, H., 1989, Future factory system formulated in Japan. Techno Japan, 22, 10, 15-

25.

146

References

Suda, H., 1990, Future factory system formulated in Japan (2). Techno Japan, 23, 3, 51-

61.

Sun, H. and Venuvinod, P. K., 2001, The human side of holonic manufacturing systems.

Technovation, 21, 353-360.

Taylor, F. W., 1911, The principles o f scientific management. (London:

Harper&Brothers).

Tharumarajah, A., Wells, A. J. and Nemes, L., 1996, Comparison of the bionic, fractal

and holonic manufacturing system concepts. International Journal o f Computer

Integrated Manufacturing, 9, 3, 217-226.

Tharumarajah, A., Wells, A. J. and Nemes, L., 1998, Comparison of emerging

manufacturing concepts. Proceedings o f 1998 IEEE international conference o f

systems, man & cybernetics, San Diego, CA, USA, 11-14 October, 1, 1, 325-331.

Tirpak, T. M., Daniel, S. M., Lalonde, J. D. and Davis, W. J., 1992, A note on a fractal

architecture for modelling and controlling flexible manufacturing systems. IEEE

Transactions on Systems, Man, and Cybernetics, 22, 3, 564-567.

Toh, K. T. K., Harding, J. A. and Thompson, D., 1999, An holonic approach for the

modelling of enterprise functionality and behaviour. International Journal o f

Computer Integrated Manufacturing, 12, 6, 541-558.

Tsubone, H. and Horikawa, M., 1999, A comparison between machine flexibility and

routing flexibility. The International Journal o f Flexible Manufacturing Systems, 11,

83-101.

Ueda, K., 1992, A concept for bionic manufacturing systems based on DNA-type

information. Proceedings o f the 8th international PROLAMAT conference: Human

aspects in computer integrated manufacturing, Tokyo, 853-863.

Ueda, K., Fujii, N. and Vaario, J., 1997a, Animation of biological manufacturing

system. Proceedings o f the 8th DAAAM international symposium, Dubrovnik,

Croatia, 22-25 October.

Ueda, K., Fujii, N., Hatono, I. and Kobayashi, M., 2002, Facility layout planning using

self-organization method. Annals o f the CIRP, 51,1, 399-402.

Ueda, K., Hatono, I., Fujii, N. and Vaario, J., 2000, Reinforcement learning approach to

biological manufacturing systems. Annals o f the CIRP, 49, 1, 343-346.

Ueda, K., Hatono, I., Fujii, N. and Vaario, J., 2001a, Line-less production system using

self-organization: A case study for BMS. Annals o f the CIRP, 50, 1, 319-322.

147

References

Ueda, K., Markus, A., Monostori, L., Kals, H. J. J. and Arai, T., 2001b, Emergent

synthesis methodologies for manufacturing. Annals o f the CIRP, 50, 2, 535-551.

Ueda, K., Vaario, J. and Fujii, N., 1998, Interactive manufacturing: Human aspects for

biological manufacturing systems. Annals o f the CIRP, 47,1, 389-392.

Ueda, K., Vaario, J. and Ohkura, K., 1997b, Modelling of biological manufacturing

systems for dynamic reconfiguration. Annals o f the CIRP, 46, 1, 343-346.

Urban, T. L., Chiang, W. C. and Russell, R. A., 2000, The integrated machine allocation

and layout problem. International Journal o f Production Research, 38, 13, 2911-

2930.

Vaario, J., 1994a, Modeling adaptive self-organization. Proceedings o f the 4th

international workshop on the synthesis and simulation o f living systems - Artificial

life IV, July, pp. 313-318.

Vaario, J., 1994b, Modeling biological adaptation. Proceedings o f the 1994 Japan-USA

symposium on flexible automation, July, pp. 1257-1262.

Vaario, J., 1996, Emergent scheduling based on the method of local attraction fields.

Proceedings o f the third 'Biological engineering systems' group meeting,

Miyashima, Japan, 24-26 November.

Vaario, J., Fujii, N., Scheffter, D., Mezger, M. and Ueda, K., 1997, Factory animation

by self-organization principles. Proceedings o f international conference on virtual

systems and multimedia, VSMM'97, Geneva, Switzerland, 10-12 September.

Vaario, J. and Ueda, K., 1996a, Self-organization in manufacturing systems.

Proceedings o f the 1996 Japan-USA symposium on flexible automation, Boston,

MA, USA, 7-10 July.

Vaario, J. and Ueda, K., 1996b, Biological concept of self-organization in flexible

automation systems. Proceedings o f the advanced product management systems

conference (APM'96), Kyoto, Japan, 4-6 November, pp. 33-38.

Vaario, J. and Ueda, K., 1997, Biological concept of self-organization for dynamic

shop-floor configuration. In Advances in production management systems -

Perspectives and future challenges (Chapman & Hall).

Vaario, J. and Ueda, K., 1998a, An emergent modeling method for dynamic scheduling.

Journal o f Intelligent Manufacturing, 9, 2, 129-140.

148

References

Vaario, J. and Ueda, K., 1998b, Intelligent manufacturing by simple robots.

Proceedings o f the third international symposium on artificial life and robotics

(AROB III), pp. 93-96.

Valckenaers, P., van Brussel, H., Wyns, J., Bongaerts, L. and Peeters, P., 1998,

Designing holonic manufacturing systems. Robotics and Computer Integrated

Manufacturing, 14, 455-464.

van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L. and Peeters, P., 1998,

Reference architecture for holonic manufacturing systems: PROSA. Computers in

Industry, 37, 255-274.

Venkatadri, U., Rardin, R. L. and Montreuil, B., 1997, A design methodology for fractal

layout organization. HE Transactions, 29, 911-924.

Vokurka, R. J. and O’Leary-Kelly, S. W., 2000, A review of empirical research on

manufacturing flexibility. Journal o f Operations Management, 18,485-501.

Wadhwa, S. and Rao, K. S., 2003, Flexibility and agility for enterprise synchronization:

Knowledge and innovation management towards flexagility. Studies in Informatics

and Control, 12, 2, 111-128.

Wang, L., 2001, Integrated design-to-control approach for holonic manufacturing

systems. Robotics and Computer Integrated Manufacturing, 17, 159-167.

Wang, K. J., Veeramani, D. and Chen, J., 2004, Distributed production planning using a

graph-based nedotiation protocol. International Journal o f Production Research, 42,

15,3077-3099.

Wang, T. Y., Wu, K. B. and Liu, Y. W., 2001, A simulated annealing algorithm for

facility layout problems under variable demand in cellular manufacturing systems.

Computers in Industry, 46,181-188.

Wamecke, H. J., 1993, The fractal company - A revolution in corporate culture (Berlin:

Springer).

Wamecke, H. J. and Huser, M., 1995, Lean production. International Journal o f

Production Economics, 41, 37-43.

Wamock, I., 1996, Manufacturing and business excellence: strategies, techniques and

technology (Englewood Cliffs, New Jersey: Prentice-Hall).

Wild, R., 1993, Production and operations management. 4th Ed. (Cassell: London)

Williams, M. and Vosniakos, G., 1996, On reference modelling of integrated

manufacturing systems using OOA. Proceedings o f international conference on

149

References

design o f information infrastructure systems fo r manufacturing DIISM’96,

Eindhoven, Netherlands, 15-18 September.

Williams, T. J., Bemus, P., Brosvic, J., Chen, D., Doumeingts, G., Nemes, L., Nevins, J.

L., Vallespir, B., Vlietstra, J. and Zoetekouw, D., 1994, Architectures for integrating

manufacturing activities and enterprises. Computers in Industry, 24, 111-139.

Willis, T. H., 1998, Operational competitive requirements for the twenty-first

century. Industrial Management & Data Systems, 2, 83-86.

Womack, J. P., Jones, D. T. and Roos, D., 1990, The machine that changed the world.

(New York: Rawson Associates).

Wu, N. and Zeng, W., 2002, Deadlock avoidance in an automated guidance vehicle

system using a coloured Petri net model. International Journal o f Production

Research, 40,, 1, 223-238.

Wullink, G., Giebels, M. M. T. and Kals, H. J. J., 2002, A system architecture for

holonic manufacturing planning and control (EtoPlan). Robotics and Computer

Integrated Manufacturing, 18,313-318.

Wyns, J., 1999, Reference Architecture fo r holonic manufacturing systems - The key to

support evolution and reconfiguration. Ph.D. thesis (Katholieke Universiteit

Leuven, Leuven, Belgium).

Wyns, J., van Brussel, H., Valckenaers, P. and Bongaerts, L., 1996, Workstation

architecture in holonic manufacturing systems. Proceedings o f the 28th CIRP

international seminar on manufacturing systems, Johannesburg, South Africa, 15-17

May, pp. 220-231.

Yang, B., Bums, N. D. and Backhouse, C. J., 2004, Management of uncertainty through

postponement. International Journal o f Production Research, 42, 6,1049-1064.

Yapa, S. T. W. S., 2003, A structured approach to rapid simulation model development.

Ph.D. thesis (Sheffield Hallam University, Sheffield, UK).

Yeh, C. H., 2000, A customer-focused planning approach to make-to-order production.

Industrial Management and Data Systems, 4,180-187.

Yusuf, Y. Y., Adeleye, E. O. and Sivayoganathan, K., 2003, Volume flexibility: the

agile manufacturing conundmm. Management Decision, 41, 7, 613-624.

Yusuf, Y. Y., Sarhadi, M. and Gunasekaran, A., 1999, Agile manufacturing: the drivers,

concepts and attributes. International Journal o f Production Economics, 62, 33-43.

150

References

Zhang, Q., Vonderembse, M., A. and Lim, J. S., 2003, Manufacturing flexibility:

defining and analysing relationships among competence, capability, and customer

satisfaction. Journal o f Operations Management, 21, 173-191.

151

Appendices

Appendices

Appendix A: Responsive methodology modelled in Siman language

; Model statements for module: Create 11

49$ CREATE, 25,HoursToBaseTime(O.O),Entity l:HoursToBaseTime(40),l:NEXT(50$);

50$ ASSIGN: Create Product l.NumberOut=Create Product l.NumberOut + 1:NEXT(0$);

; Model statements for module: Assign 2

0$ ASSIGN: Product Index=l:
Step Number=l:
Next Requirement=DNA(Product Index):
Entity.Picture=Product Pictures(Product Index):
Processing Time=Times(Product Index):
Due Date=100:NEXT(10$);

; Model statements for module: Decide 22

10$ BRANCH, 1:
If,Next Requirement=l,30$,Yes:
If,Next Requirement==2,33$,Yes:
If,Next Requirement=3,36$,Yes:
If,Next Requirement=4,39$,Yes:
If,Next Requirement=5,42$,Yes:
Else,28$, Yes;

; Model statements for module: Assign 43

28$ ASSIGN: Number out=Number out+l:NEXT(29$);

; Model statements for module: Dispose 1
9

29$ ASSIGN: Dispose 1 .NumberOut=Dispose l.NumberOut + 1;
55$ DISPOSE: Yes;

; Model statements for module: Hold 1

30$ QUEUE, Hold 1.Queue;
SCAN: NQ(Seize 1 .Q ueue)=0 || NQ(Seize 2.Queue) = 0:NEXT(32$);

; Model statements for module: Decide 23

32$ BRANCH, 1:
If,NQ(Seize l.Queue)=0,56$,Yes:
Else,57$,Yes;

56$ ASSIGN: Decide 23.NumberOut True=Decide 23.NumberOut True + 1 :NEXT(11$);

57$ ASSIGN: Decide 23.NumberOut False=Decide 23.NumberOut False + 1:NEXT(15$);

; Model statements for module: Seize 1

11$ QUEUE, Seize 1.Queue;
SEIZE, 2,Other:

SELECT (Machine 1 ,POR, Machine copy),l:NEXT(59$);

59$ DELAY: 0.0„VA:NEXT(13$);

152

Appendices

; Model statements for module: Process 2

13$ ASSIGN: Process 2.NumberIn=Process 2.NumberIn + 1:
Process 2.WIP=Process 2.WIP+1;

61$ DELAY: Processing Time„VA;
108$ ASSIGN: Process 2.NumberOut=Process 2.NumberOut + 1:

Process 2.WIP=Process 2.WIP-1:NEXT(14$);

; Model statements for module: Release 1

14$ RELEASE: Machine 1 (Machine copy), 1:NEXT(27$);

; Model statements for module: Assign 42

27$ ASSIGN: StepNumber=StepNumber+l:
Next Requirement=DNA(Product Index):
Entity.Picture=Product Pictures(Product Index):
Processing Time=Times(Product Index) :NEXT(10$);

; Model statements for module: Seize 2

15$ QUEUE, Seize 2.Queue;
SEIZE, 2,Other:

SELECT(Machine2,POR, Machine copy), 1:NEXT(112$);

112$ DELAY: 0.0„VA:NEXT(17$);

; Model statements for module: Process 3

17$ ASSIGN: Process 3.NumberIn=Process 3.Num berIn+1:
Process 3.WIP=Process 3.WIP+1;

114$ DELAY: Processing Time,,VA;
161 $ ASSIGN: Process 3 .NumberOut=Process 3 .NumberOut + 1:

Process 3.WIP=Process 3.WIP-1:NEXT(18$);

; Model statements for module: Release 2

18$ RELEASE: Machine2(Machine copy),l:NEXT(27$);

; Model statements for module: Hold 2

33$ QUEUE, Hold 2.Queue;
SCAN: NQ(Seize 2.Queue)=0 || NQ(Seize 3.Queue) = 0:NEXT(35$);

; Model statements for module: Decide 24

35$ BRANCH, 1:
If,NQ(Seize 2.Queue)=0,164$,Yes:
Else, 165$, Yes;

164$ ASSIGN: Decide 24 .NumberOut True=Decide 24.NumberOut True + 1 :NEXT(15$);

165$ ASSIGN: Decide 24.NumberOut False=Decide 24.NumberOut False + 1 :NEXT(19$);

; Model statements for module: Seize 3

19$ QUEUE, Seize 3.Queue;
SEIZE, 2,Other:

SELECT(Machine3,POR, Machine copy), 1 :NEXT(167$);

153

Appendices

167$ DELAY: 0.0„VA:NEXT(21$);

; Model statements for module: Process 4

21$ ASSIGN: Process 4.NumberIn=Process 4.NumberIn + 1:
Process 4.WIP=Process 4.WIP+1;

169$ DELAY: Processing Time,,VA;
216$ ASSIGN: Process 4.NumberOut=Process 4.NumberOut + 1:

Process 4.WIP=Process 4.WIP-1 :NEXT(22$);

; Model statements for module: Release 3

22$ RELEASE: Machine3(Machine copy),l:NEXT(27$);
5

; Model statements for module: Hold 3

36$ QUEUE, Hold 3.Queue;
SCAN: NQ(Seize 3.Queue)=0 || NQ(Seize 4.Queue) = 0:NEXT(38$);

; Model statements for module: Decide 25

38$ BRANCH, 1:
If,NQ(Seize 3.Queue)=0,219$,Yes:
Else,220$,Yes;

219$ ASSIGN: Decide 25.NumberOut True=Decide 25.NumberOut True + 1:NEXT(19$); *

220$ ASSIGN: Decide 25.NumberOut False=Decide 25.NumberOut False + 1 :NEXT(45$);

; Model statements for module: Seize 4

45$ QUEUE, Seize 4.Queue;
SEIZE, 2,Other:

SELECT(Machine4,POR, Machine copy),l:NEXT(222$);

222$ DELAY: 0.0„VA:NEXT(47$);

; Model statements for module: Process 5

47$ ASSIGN: Process 5.NumberIn=Process 5.NumberIn + 1:
Process 5.WIP=Process 5.WIP+1;

224$ DELAY: Processing Time,,VA;
271$ ASSIGN: Process 5.NumberOut=Process 5.NumberOut + 1 :

Process 5.WIP=Process 5.WIP-1:NEXT(48$);
5

; Model statements for module: Release 4

48$ RELEASE: Machine4(Machine copy),l:NEXT(27$);
J
; Model statements for module: Hold 4

39$ QUEUE, Hold 4.Queue;
SCAN: NQ(Seize 4.Queue)=0 || NQ(Seize 5.Queue) = 0:NEXT(41$);

; Model statements for module: Decide 26

41$ BRANCH, 1:
If,NQ(Seize 4.Queue)=0,274$,Yes:
Else,275$,Yes;

274$ ASSIGN: Decide 26.NumberOut True=Decide 26.NumberOut True + 1 :NEXT(45$);

154

Appendices

275$ ASSIGN: Decide 26.NumberOut False=Decide 26.NumberOut False + 1 :NEXT(23$);

; Model statements for module: Seize 5

23$ QUEUE, Seize 5.Queue;
SEIZE, 2,Other:

SELECT(Machine5,POR, Machine copy),l:NEXT(277$);

277$ DELAY: 0.0„VA:NEXT(25$);

; Model statements for module: Process 6

25$ ASSIGN: Process 6 .NumberIn=Process 6 .NumberIn + 1:
Process 6 .WIP=Process 6.WIP+1;

279$ DELAY: Processing Time,,VA;
326$ ASSIGN: Process 6 .NumberOut=Process 6 .NumberOut + 1:

Process 6 .WIP=Process 6.WIP-1:NEXT(26$);

; Model statements for module: Release 5

26$ RELEASE: Machine5(Machine copy),l:NEXT(27$);

; Model statements for module: Hold 5 .

42$ QUEUE, Hold 5.Queue;
SCAN: NQ(Seize 5.Queue)=0 || NQ(Seize 1 .Queue) = 0:NEXT(44$);

; Model statements for module: Decide 27

44$ BRANCH, 1:
If,NQ(Seize 5.Queue)=0,329$,Yes:
Else,330$,Yes;

329$ ASSIGN: Decide 27.NumberOut True=Decide 27.NumberOut True + 1 :NEXT(23$);

330$ ASSIGN: Decide 27.NumberOut False=Decide 27.NumberOut False + 1 :NEXT(11$);

; Model statements for module: Create 12

331$ CREATE, 15,HoursToBaseTime(O.O),Entity 2:HoursToBaseTime(40),l:NEXT(332$);

332$ ASSIGN: Create Product 2.NumberOut=Create Product 2.NumberOut + 1 :NEXT(1$);

; Model statements for module: Assign 3

1$ ASSIGN: Product Index=2:
Step Number=l:
Next Requirement=DNA(Product Index):
Entity.Picture=Product Pictures(Product Index):
Processing Time=Times(Product Index):
Due Date=100:NEXT(10$);

; Model statements for module: Create 13

335$ CREATE, 40,HoursToBaseTime(O.O),Entity 3:HoursToBaseTime(40),l:NEXT(336$);

336$ ASSIGN: Create Product 3.NumberOut=Create Product 3.NumberOut + 1 :NEXT(2$);
9
; Model statements for module: Assign 4
2$ ASSIGN: Product Index=3:

Step Number=l:

155

Appendices

Next Requirement=DNA(Product Index):
Entity. Picture=Product Pictures(Product Index):
Processing T ime=T imes(Product Index):
Due Date=100:NEXT(10$);

; Model statements for module: Create 14

339$ CREATE, 10,HoursToBaseTime(0.0),Entity 4:HoursToBaseTime(40),l:NEXT(340$);

340$ ASSIGN: Create Product 4.NumberOut=Create Product 4.NumberOut + 1 :NEXT(3$);

; Model statements for module: Assign 5

3$ ASSIGN: Product Index=4:
Step Number=l:
Next Requirement=DNA(Product Index):
Entity.Picture=Product Pictures(Product Index):
Processing Time=Times(Product Index):
Due Date= 100:NEXT(10$);

; Model statements for module: Create 15

343$ CREATE, 15,HoursToBaseTime(O.O),Entity 5:HoursToBaseTime(40),l:NEXT(344$);

344$ ASSIGN: Create Product 5.NumberOut=Create Product 5.NumberOut + 1 :NEXT(4$);

; Model statements for module: Assign 18

4$ ASSIGN: Product Index=5:
Step Number=l:
Next Requirement=DNA(Product Index):
Entity.Picture=Product Pictures(Product Index):
Processing Time=Times(Product Index):
Due Date=100:NEXT(10$);

; Model statements for module: Create 16

347$ CREATE, 15,HoursToBaseTime(O.O),Entity 6:HoursToBaseTime(40),l:NEXT(348$);

348$ ASSIGN: Create Product 6 .NumberOut=Create Product 6 .NumberOut + 1:NEXT(5$);

; Model statements for module: Assign 19

5$ ASSIGN: Product Index=6 :
Step Number=l:
Next Requirement=DNA(Product Index):
Entity.Picture=Product Pictures(Product Index):
Processing Time=Times(Product Index):
Due Date=100:NEXT(10$);

; Model statements for module: Create 17

351$ CREATE, 30, HoursToBaseTime(O.O), Entity 7:HoursToBaseTime(40),l:NEXT(352$);

352$ ASSIGN: Create Product 7.NumberOut=Create Product 7.NumberOut + 1:NEXT(6$);

; Model statements for module: Assign 20

6 $ ASSIGN: Product Index=7:
Step Number=l:

156

Appendices

Next Requirement=DNA(Product Index):
Entity. Picture=Product Pictures(Product Index):
Processing Time=Times(Product Index):
Due Date=l 00:NEXT(10$);

; Model statements for module: Create 18

355$ CREATE, 5, HoursToBaseTime(O.O), Entity 8:HoursToBaseTime(40),l:NEXT(356$);

356$ ASSIGN: Create Product 8 .NumberOut=Create Product 8 .NumberOut + 1 :NEXT(7$);

; Model statements for module: Assign 21

7$ ASSIGN: Product Index=8 :
Step Number=l:
Next Requirement=DNA(Product Index):
Entity.Picture=Product Pictures(Product Index):
Processing Time=Times(Product Index):
Due Date=100:NEXT(10$);

; Model statements for module: Create 19

359$ CREATE, 30, HoursToBaseTime(O.O), Entity 9:HoursToBaseTime(40),l:NEXT(360$);

360$ ASSIGN: Create Product 9.NumberOut=Create Product 9.NumberOut + 1:NEXT(8$);

; Model statements for module: Assign 34

8 $ ASSIGN: Product Index=9:
Step Number=l:
Next Requirement=DNA(Product Index):
Entity.Picture=Product Pictures(Product Index):
Processing Time=Times(Product Index):
Due Date=l 00:NEXT(10$);

; Model statements for module: Create 20
5

363$ CREATE, 15,HoursToBaseTime(O.O),Entity 10:HoursToBaseTime(40),l:NEXT(364$);

364$ ASSIGN: Create Product 10.NumberOut=Create Product lO.NumberOut + 1:NEXT(9$);

; Model statements for module: Assign 35

9$ ASSIGN: Product Index=10:
Step Number=l:
Next Requirement=DNA(Product Index):
Entity.Picture=Product Pictures(Product Index):
Processing Time=Times(Product Index):
Due Date=l 00:NEXT(10$);

157

Appendices

Appendix B: Fractal layout design methodology modelled in C++ language

Fractal.h

// Program for fractal layout simulation
// Anna M. Lassila, Sheffield Hallam University, September 2003

#ifndef FRACTAL_H
#define FRACTAL_H

#define LIMIT 20
#define MAXF 11
#define MAXMT 6

#define PERIOD 100
#define MU 0.9
#defme RANDCASES 100000
#define STATFILE "output.txt"

// GLOBAL DEFINITIONS
enum compositions {none,identical,similar,minimal,idopt,optimal,minopt,special};
enum direction {left,right,up,down};

#include "tabu.h"
#include "products.h"

void showoptions();
void assdem(int, const Product*, Cells*);
void assmacheven(int, int, int*, Cells*);
void assdemopt(int,int,int,const Product*,Cells*,compositions,bool sample=false);
void assdemminopt(int, int, int, const Product*, Cells*);
void forceidentical(int,Cells*);
int printcaseeval(int,int,const Cells*,bool,int specialmt=-l); // print evaluation of case

class Location} // all inline
public:

int a;
intb;
void operator =(const Location& source)

{ a = source.a; b = source.b; }
friend bool operator ==(const Location& x, const Location& y)

{ return (x.a = y.a && x.b = y.b); }
};

struct cases {
int amount;
int results;
int randres;
double sdev;
long unsigned int visits;

};

struct traffic {
char mtype;
int pt; // process time if ingress, product type if egress
direction edge;
Location peer;
Location cmachpos;
bool done;

};

// maximum internal size of cells 2 0 x2 0

// maximum number of cells
// maximum number of different machine types

158

Appendices

class Routes { // all inline
public:

Routes() { for (int i=0; i<MAXF; i++) amountfi] = 0; }
int amount[MAXF];

};

struct machine {
char type;
int avail;

};

#include "problems.h"

class Cells { \
public:

// basic functions
Cells();
~Cells();
void clearcell();
void operator =(const Cells& source);

// position & size
void setpos(int,const Location*);
void getcellpos(Location& x) const { x.a = pos.a; x.b = pos.b;}
int getsizea() const { return size.a; }
int getsizeb() const { return size.b; }
int neighsize() const;

// product demand
void adddemand(int,int,const Product*);
void rmdemand(int,int,const Product*);
void cleardemand();
int getdemand(int ptype) const { return demand[ptype]; }

// machine demand
int getmachdem(int mtype) const { return machdem[mtype]; }
void decmachdem(int mtype, int amount) { machdem[mtype] -= amount; }
void resetmachdem(const Product*);
bool ability(bool special = false, int specialmt=-l) const;
int getexcess(int, int* n=NULL, bool special = false, int specialmt=-l) const;
bool routeprod(int,int,bool,int period=PERIOD);

// machines
int gettotalmach() const { return totalmach; }
void addmach(int,int);
void rmmach(int,int);
int getmnum(int mtype) const { return machnum[mtype]; }
int findmach(char,int,Location*) const;

// permutation
int makepermut(Permutation*) const;
void writepermut(int,const Permutation*,int period=PERIOD);
void randomise();
void quickdraw(bool disk=false,FILE *outf=NULL) const;
int simulate(const Product*);

// problems
int routed(machine*, int) const;
int countr(int,Problems*,const Product*) const;

159

Appendices

// external routing
int ingress; // number of products externally coming in
int egress; // number of products leaving
void allocingress() { in = new traffic [ingress];}
void allocegress() { out = new traffic [egress];}
void addingress(int,char,Location*);
void addegress(int,char,Location*);
void resettraf(bool);
void setdone(bool,int);
void copytraf(bool,int,traffic&) const;

private:
void setsize(int);
Location pos;
Location size;
int demand[MAXPT];
int machnum[MAXMT];
int machdem[MAXMT];
int totalmach;
machine m[LIMIT] [LIMIT];
traffic* in;
traffic* out;

// position of cell on shop floor
// internal size of cell
// demand in cell for each product
// number of machines of type in cell
// processing demand on each machine type

void calcsq(int, Location*); // get dimensions of shop floor
void getpos(int, const Location*, Location*);
void rsequence(Location*,Location*,int,int*&,Cells* c);
int evalroutes(int, int, Cells*, const Product*,bool,int);
int optextpos(int, int, Cells*, const Product*,int period=PERIOD);
void countexta(Cells*,int,int,int,int&,int&);
int countextir(int, Cells*);
int findcell (int, Cells*, const Location*);
void msort(int,int*&,const int*);
#endif

Fractal, cpp

// Program for fractal layout simulation
// Anna M. Lassila, Sheffield Hallam University, September 2003

#include "fractal.h"
#include <stdio.h>
#include <assert.h>
#include <time.h>
#include <stdlib.h>

// compositions can be identical,similar,minimal,idopt,optimal,minopt,special

int main(int argc, char *argv[]){
compositions comp;
int i, j, total, f, currentf, period;
int inttime = 0 , exttime = 0 , extitime = 0 , extrtime = 0 , extritime = 0 ;

// Initialisations
srand((unsigned)time(NULL));

// read product demand and sequence
Product P[MAXPT];
int maxp = P->readprods();

160

Appendices

if(maxp = 0) return 1 ; // zero value is error in readprods

// get option from user
comp = none;
if (argc > 1) i = strtol(argv[l],NULL,10);
comp = compositions(i);
if (comp < 1 || comp > 7) {

showoptions();
do {

printf("\nEnter the desired option -> ");
scanf("%i",&comp);

} while (comp < 1 || comp > 7);
}

// calculate required machines
int nummt[MAXMT]; // number of machines required of each type
int maxm = P->getmtdem(maxp,&nummt[0]);
assert(maxm <= MAXMT);

// define number of cells
if (argc > 2) f = strtol(argv[2],NULL,10);
else {

do {
printf("\nEnter the number of cells [max %i] -> ",MAXF);
scanf("%i",&f);

} while (f<l || f>MAXF);
}
assert(f>0 && f<=MAXF);

Location lim;
calcsq(f,&lim);
if (f = 1) { comp = similar; printf("\nSetting method to similar");} // for safety

char layoutfile[1 2] = "lyt .txt";
layoutfile[3] = char(int(comp))+'0';
layoutfile[4] = char(f/10)+'0';
layoutfile[5] = char(f%10)+'0';

FILE *outf;
outf = fopen(layoutfile,"w");

// create cells
Cells* c = new Cells[f];
for (i=0 ; i<f; i++) c[i].setpos(i,&lim);
bool specialdone = false;
int specialmt = - 1 ;

// Add machines and demand according to option

if (comp = identical || comp = similar) {
assdem(f, P, c); // allocate demand to cells
// calculate required machines per cell
for (i=0 ; i<f; i++) {

P->getmtdem(maxp,&nummt[0],&c[i]);
for (j=0 ; j<maxm; j++)

c[i].addmach(j,nummt[j]);
//c[i].quickdraw();

}
}

161

Appendices

if (comp = minimal || comp == minopt || comp — optimal || comp == idopt)
assmacheven(f, maxm, nummt, c);

if (comp — identical || comp = idopt) forceidentical(f,c);

if (comp = special) {
total = 0 ;
for (i=0 ; i<maxm; i++) total += nummt[i];
int* snummt = new int [maxm];
msort(maxm,snummt,&nummt[0]);
for (i=0 ; i<maxm; i++)

if (nummt[snummt[i]] < f-1) {
j = int((total-nummt[snummt[i]]) / (f-1)); if ((total-

nummt[snummt[i]]) % (f-1) > 0) j++;
if (c[f-l].gettotalmach() + nummt[snummt[i]] <= j + 2) // wouldn't be

too big
{

c[f- 1] .addmach(snummt[i],nummt[snummt[i]]);
total -= nummt[snummt[i]];
specialmt = snummt[i];
nummt[snummt[i]] = 0 ;
specialdone = true;

}
}

// assign the rest
if (specialdone = true) {

assmacheven(f-l,maxm,nummt, c);
printf("Created specialised cell\n");

}
else {

assmacheven(f,maxm,nummt, c);
printf("Couldn't create specialised cell from list of required machines\n");

}
// delete [] snummt; // line will crash - dunno why

if (comp == optimal || comp == idopt || comp = special) {
if (specialdone = true) {

for (i=0 ; i<maxm; i++)
if (c[f-l].getmnum(i) > 0)

for (j=0 ; j<f-1 ; j++)
c[j].addmach(i,c[f-l].getmnum(i));

assdemopt(f-l ,maxp,maxm,P,c,special);
for (i=0 ; i<maxm; i++)

if (c [f- 1] .getmnum(i) > 0)
for 0 =0 ; j< f-l; j++)

c[j].rmmach(i,c[f- 1] .getmnum(i));
}
else assdemopt(f,maxp,maxm,P,c,optimal);

if (comp = idopt) forceidentical(f,c);
for (i=0 ; i<f; i++) {

//c[i].quickdraw();
//for(j=0 ; j<maxp; j++) printf("prod %i has demand of

%i\n",j,c[i].getdemand(j));
}

}

if (comp == minimal || comp == minopt || comp — special) {
if (comp = minopt) assdemopt(f,maxp,maxm,P,c,comp);

162

Appendices

if (comp = minimal) assdem(f, P, c);
if (f > 2)

extrtime = 2 * optextpos(f,maxm,c,P); // tabu search
else

extrtime = 2 * evalroutes(f,maxm,c,P,true,PERIOD);

Location x;
for (i=0 ; i<f; i++) {

c[i].getcellpos(x);
//c[i] .quickdraw();
//printf("\nLocation of cell %i: a=%i,b=%i",i,x.a,x.b);
//for(j=0 ; j<maxp; j++) printf("\nprod %i has demand of

%i",j,c[i].getdemand(j));
// printf("\ningress: %i: ",c[i].ingress); printf("\negress: %i: ",c[i].egress);

}
}

// Internal layout optimisation ■ 1 === === ====== == = = = =====------------------ ■=
for(currentf=0 ; currentf<f; currentf++) {

printf("\nFractal number %i:",currentf);
fprintf(outf,"\nFractal number %i:",currentf);
inttime += tabusearch(P,&c[currentf],PERIOD);
c[currentf] .quickdraw(true,outf);

}

printf("\ntotal internal distance through all %i cells is: %i moves\n",f,inttime);
fprintf(outf,"\ntotal internal distance through all %i cells is: %i moves\n",f,inttime);
for (currentf = 0 ; currentf<f; currentf++)

countexta(c,currentf,f,lim.a,exttime,extitime);
extritime = countextir(f,c);
printf("\ninput output routing distance is %i moves equivalent to %i internal

moves", exttime,extitime);
fprintf(outf,"\ninput output routing distance is %i moves equivalent to %i internal

moves",exttime,extitime);
printf("\nco-operative external routing distance is %i moves equivalent to %i internal

moves",extrtime,extritime);
fprintf(outf,"\nco-operative external routing distance is %i moves equivalent to %i internal

moves",extrtime,extritime);
total = 0 ; for (i=0 ; i<f; i++) total +=c[i].egress;
printf("\n%i co-operative routings took place, ",total);
fprintf(outf,"\n%i co-operative routings took place, ",total);
total = 0 ; for (i=0 ; i<f; i++) total += c[i].gettotalmach();
printf("\n%i machines were on the shop floor",total);
fprintf(outf,"\n%i machines were on the shop floor",total);
printf("\ntotal ext distance outside cells is %i moves equivalent to %i internal

moves\n",exttime+extrtime,extitime+extritime);
fprintf(outf,"\ntotal ext distance outside cells is %i moves equivalent to %i internal

moves\n",exttime+extrtime,extitime+extritime);

fclose(outf);
if (comp = special) return 0; // flexibility test crashes for method 7
if (argc > 2) return 0 ; // no flexibility test with program

parameters

// Resource capability testing for sample cases = = = = -= — ■========== = = — - - - -

char statfile[1 2] = "out .txt";
statfile[3] = char(int(comp))+'0';
statfile[4] = char(f/10)+'0';
statfile[5] = char(f%10)+'0';

163

Appendices

printf("\n\nFlexibility tests can take a long time, i.e. hours");
printf("\nOutput will be written to %s",statflle);

char answer;
do {

scanf("%c",&answer);
printf("\nRun flexibility test [Y/N] -> ");
scanf("%c",&answer);

} while (answer!=rN' && answer!='Y');
if (answer='N ') return 0;

int iterations, ITERATIONS = 50;
int values[9];
Product RCase[MAXPT];
total = 0 ;
for (i=0 ; i<f; i++) total += c[i].gettotalmach();
printf("\nCreating sample case...");
outf = fopen(statfile,"w");
// Print first lines to file
fprintf(outf, "Method = %i - Fractals = %i - Total number of machines = %i\n\n", comp, f, total);
f^rintf(outf,"Sdiff\tMachVis\tTnone\tSnone\tTcoop\tScoop\tRcoop\tToptPd\tSoptPd\tRoptPd\n")

// Run flexibility test
for (int sdiff=0; sdiff <= 160; sdiff+=4) {

for (i=0; i<9; i++) values[i] = 0;
printf("\nSDIFF = %i\n",sdiff);
for (iterations = 0; iterations < ITERATIONS; iterations++) {

RCase->createcase(maxp,sdiff,P);
for(currentf=0 ; currentf<f; currentf++) c[currentf].cleardemand(); // also

clears machdem
values[0] += RCase->mvisited(maxp);
period = PERIOD;
if (comp == identical || comp = similar || comp = minimal) {

// MODIFYING ORIGINAL CELL CONFIGURATION !!!
assdem(f, RCase, c); // allocate demand to cells
if (comp = identical || comp = similar) {

period = printcaseeval(f,maxm,c,false);
values[l] += period;
inttime = 0 ;
for(currentf=0 ; currentf<f; currentf++) {

c [currentf]. writepermut(c[currentf] .getsizea() *c[currentf] .getsizeb(),NULL,period);
c[currentf].ingress = 0 ; c[currentf].egress = 0 ;
inttime += c[currentf].simulate(RCase);

}
printf("\nlritemal routing distance = %i",inttime);
values[2] += inttime;
printf("\nTuming cooperation on...");

}
if (f > 1) {

period = printcaseeval(f,maxm,c,true);
values[3] += period;
for(currentf=0 ; currentf<f; currentf++)

c[currentf].writepermut(c[currentf].getsizea()*c[currentf].getsizeb(),NULL,period);
extrtime = 2 * evalroutes(f,maxm,c,RCase,true,period);
printf("\n%i product routings occurred",extrtime);
values[5] += extrtime;
inttime = 0 ;

164

Appendices

for(currentf=0 ; currentf<f; currentf++)
inttime += c[currentf].simulate(RCase);

printf("\nlntemal routing distance = %i",inttime);
values[4] += inttime;
printf("\nTuming optimised distribution on...\n");
for(currentf=0 ; currentf<f; currentf++)

c[currentf].cleardemand();
assdemopt(f,maxp,maxm,RCase,c,comp,true);
if (comp != minimal) {

period = printcaseeval(f,maxm,c,false);
values[6] += period;

}
for(currentf=0 ; currentf<f; currentf++)

c[currentf].writepermut(c[currentf].getsizea()*c[currentf].getsizeb(),NULL,period);
extrtime = 2* evalroutes(f,maxm,c,RCase,true,period);
printf("\n%i product routings occurred",extrtime);
values[8] += extrtime;
inttime = 0 ;
for(currentf=0 ; currentf<f; currentf-H-)

inttime += c[currentf].simulate(RCase);
printf("\nlntemal routing distance = %i",inttime);
values[7] += inttime;

}
} else { // comp = idopt, optimal, minopt, special

// MODIFYING ORIGINAL CELL CONFIGURATION !!!
if (comp = special) {

c[f-l].resetmachdem(P);
assdemopt(f-l,maxp,maxm,RCase,c, comp, true);

}
else

assdemopt(f,maxp,maxm,RCase,c,comp,true);
period = printcaseeval(f,maxm,c,false,specialmt);
values[6] += period;
for(currentf=0; currentf<f; currentf-H-) {

c[currentf].ingress = 0 ; cfcurrentf].egress = 0 ;

c[currentf].writepermut(c[currentf].getsizea()*c[currentf].getsizeb(),NULL,period);
}

if (comp = minopt) evalroutes(f,maxm,c,RCase,true,period);

inttime = 0 ;
for(currentf=0 ; currentf<f; currentf++)

inttime += c[currentf].simulate(RCase);
printf("Intemal routing distance = %i\n",inttime);
values [7] += inttime;

if (comp != minopt) {
printf("\nTuming cooperation on...");
i = printcaseeval(f,maxm,c,true);
values[3] += i;
if (period > i) period = i;

}
extrtime = 2 * evalroutes(f,maxm,c,RCase,true,period);
printf("\n%i product routings occurred\n",extrtime);
values[8] += extrtime;
if (comp != minopt) {

for(currentf=0 ; currentf<f; currentf++)

165

Appendices

c[currentf].writepermut(c[currentf].getsizea()*c[currentf].getsizeb(),NULL,period);
inttime = 0 ;
for(currentf=0 ; currentf<f; currentf++)

inttime += c[currentf].simulate(RCase);
printf("Intemal routing distance = %i\n",inttime);
values[4] += inttime;

}
}
if (sdiff = 0) break;

}
fprintf(outf,"%i\t", sdiff);
if (sdiff = 0)

for (i=0;i<9;i++) fprintf(outf,"%.2f\t",double(values[i]));
else

for (i=0;i<9;i++) fprintf(outf,"%.2f\t",double(values[i])/ITERATIONS);
fprintf(outf,"\n'’); fflush(outf);

}
fclose(outf);

// Assess flexibility
printf("\nDo you want to run a flexibility test (y/n)? -> ");
char question;
do { scanf("%c",&question);} while (question != 'y' && question != 'n');
if (question == 'y') {

cases samples [MAXPROD];
int casepos;

// create random cells
Cells* randc = new Cells[f];
for (i=0 ; i<f; i++) randc[i] = c[i];

for (i=0; i<=MAXPROD; i++) {
samples[i].amount = 0 ; samples[i].results = 0 ;
samples [i].randres = 0 ;
samples[i]. visits = 0 ;

}
/ / Product RCase[MAXPT];
for (i=0; i<MAXPT; i++) RCase[i] = P[i]; // make copy o f products

for (i=0; i<=RANDCASES; i++) {
if (i % int(RANDCASES / 100) = 0) printf(".");
j = i % 140; if (j > 120) j = 1; if (j > 100) j = 99; // emphasize

sides
casepos = RCase->createcapable(j,maxp,P);
samples [casepos].amount++;
//samples[casepos] .visits += casemvistited(maxp,RCase);
samples[casepos].visits += RCase->mvisited(maxp);

// eval fixed distribution
for(currentf=0; currentf<f; currentf-H-) c[currentf].cleardemand();
assdem(f, RCase, c);
inttime = 0 ;
for(currentf=0 ; currentf<f; currentf++) {

c[currentf].writepermut(c[currentf].getsizea()*c[currentf].getsizeb(),NULL);
inttime += c[currentf].simulate(RCase);

}

166

Appendices

samples [casepos] .results += inttime;

// eval random distribution
for (j=0 ; j<f; j++) randcjj] .randomise();
for(currentf=0 ; currentf<f; currentf++) randc[currentf].cleardemand();
assdem(f, RCase, &randc[0]);
inttime = 0 ;
for(currentf=0 ; currentf<f; currentf++) {

randc[currentf].writepermut(randc[currentf].getsizea()*randc[currentf].getsizeb(),NULL);
inttime += randc[currentf].simulate(RCase);

}
samples [casepos] .randres += inttime;

// printf("\n%i: %i",i,inttime);
createcase(i,maxp,P,RCase);
printf("\nCase %i: ",i);
for (j=0; j<maxp; j++) printf("%i,",RCase[j].demand);
inttime = 0 ;
for (j=0; j<maxp; j++) inttime += RCase[j].demand;
printf(", %i products",inttime);

}
FILE *outf;
outf = fopen(STATFILE,"w");
fprintf(outf,"Dist.\tSamples\tS_opt\tS_md\tVisits");
for (i=0 ;i<MAXPROD; i++) {

j = samples[i].amount;
if (J > 0) {

fprintf(outf,"\n%i\t%i\t%i\t%i",i*2 ,j,int(samples[i].results
j),int(samples[i].randres / j));

fprintf(outf,"\t%f1', double(samples[i].visits) / j);
}

}
fclose(outf);
printf("\nOutput written to %s\n",STATFILE);
delete [] randc;

}
*/

// clean up and return
delete [] c;
return 0 ;

H = = = = = = ; , = r , . , , , = = = ,

void assdem(int f, const Product* P, Cells* c){
int i j,k,l,min,minp,temp;
// first evenly
for (i=0; i<MAXPT; i++)

for G=0;j<f;j++)
c[j].adddemand(i,int(P[i].demand / f),P);

// now leftovers
for (i=0; i<MAXPT; i++)

for G=P[i]-demand % f; j> 0 ; j —) {
min=0 ; minp=0 ;
for (1=0; 1<MAXPT; 1++) min += c[0].getdemand(l);
for (k= 1 ;k<f;k++) {

167

Appendices

temp = 0 ;
for (1=0; 1<MAXPT; 1++) temp += c[k].getdemand(l);
if(temp<min) {

min=temp; minp=k;
}

}
c[minp].adddemand(i,l,P);

}
}
//s,=i=L======= ======== m ^ -----------------_ ^ = ^ = = = = = = = = = = = = ^ - - ; : - ^ = = = =

void assmacheven(int f, int maxm, int* nummt, Cells* c) {
int i,j,l,k,nun,minp,temp;
// distribute machines except for leftovers
int total = 0 ;
for (i=0 ; i<maxm; i++) total += nummt[i];
for (i=0 ; i<f; i++)

for (j=0 ; j<maxm; j++)
c[i].addmach(j,int(nummt[j]/f));

// now leftovers
for (i=0 ; i<maxm; i++)

for (j=nummt[i] % f; j> 0 ; j —) {
min=0 ; minp=0 ;
for (1=0 ; l<maxm; 1++) min += c[0].getmnum(l);
for (k=l;k<f;k++) {

temp = 0 ;
for (1=0 ; l<maxm; 1++) temp += c[k].getmnum(l);
if (temp<min) {

min=temp; minp=k;
}

}
c[minp] .addmach(i, 1);

}
}
H = = = = = = = = = = ----------------------------------= = = = = = = = = = = = = = := = = = = = = = = = = = = = = = = = : , . , . , = = =

void assdemopt(int f, int maxp, int maxm, const Product* P, Cells* c, compositions comp, bool sample) {
int i,j,k,l,m;
int testmach;
bool flag = false;
Permutation pi;
int total = pi.drand(maxp,P);
dtabu(f,total,maxp,pi,P,c,comp);
int* leftos;
int* temp = new int[maxp];

while (flag = false) {
pi.distribute(f,total,P,c,comp);
leftos = new int[pi.time];
printf("\n%i leftovers",pi.time);
if (pi.time = 0) flag = hue;
else { // no optimal solution found!

// find leftovers
for (j=0; j<maxp; j++) temp[j] = P[j].demand;
for (j = 0 ; j< f; j++) {

//printfC'cell %i: ",j);
for (i = 0 ; i<maxp; i++) {

temp[i] -= c[j].getdemand(i);
//printf("%i,",c[j].getdemand(i));

}

168

Appendices

//printf("\n");
}
k = 0 ;
for (j=0 ; j<maxp; j++)

if(temp[j] > 0) {
for(i=0 ; i<temp[j]; i++) {

lefitos[k] = j;
k++;

}
}

if ((comp = optimal || comp = special) && sample = false) {
// check if adding 1 machine works
k = pi.time;

• 1 = - 1;
for(j=0 ; j<f; j++)

for(i=0 ; i<maxm; i++) {
c[j].addmach(i,l);
pi.distribute(f,total,P,c,comp);
//fprintf(stream,"adding machine %c to cell %i

resulted in %i leftovers\n",'A'+i,j,pi.time);
if (pi.time < k) {

k = pi.time;
i = j ;
testmach = i;

}
c[j].rmmach(i,l);

}
if(l != - 1) { // found improvement with 1 machine

printf("\nadding excess machine %c to cell
%i\n",'A'+testmach,l);

c[l] .addmach(testmach, 1);
pi.distribute(f,total,P,c,comp);

} else { // no improvement with just 1 machine
m=0xFFFFFFF;
for(j=0 ; j<f; j++) {

k = 0 ;
for (i=0 ; i<maxm; i++)

k += c[j].getmachdem(i);
i f (k < m) { m = k; l = j ; }

}
k=0xFFFFFFF;
for (j=0 ; j<maxm; j++)

if (c[l].getmnum(j) < k) {
k = c[l].getmnum(j);
testmach = j;

}
printf("\nno improvement, but adding excess machine %c to

cell %i\n",'A'+testmach,l);
c[l] .addmach(testmach, 1);

}
//tabu search again unless done
if (pi.time > 0) dtabu(f,total,maxp,pi,P,c,comp);

}
if (comp == minopt || sample == true) {

// find out where to put leftover demand
int best;
if (comp = minopt) {

// Minimise external routing events
for (i=0 ; i<pi.time; i++) { // for each leftover

best = OxFFFFFFF;

169

Appendices

for (j=0 ; j<f; j++) {
c[j].adddemand(leftos[i],l,P);
k = c[j].routed(NULL,PERIOD);
c[j].rmdemand(leftos[i],l,P);
if (k < best) {

best = k;
i = j ;

}
}
c[l] .adddemand(leftos[i], 1 ,P);

}
} else {

// Minimise time unit excess
for (i=0 ; i<pi.time; i++) { // for each leftover

best = OxFFFFFFF;
for (j=0 ; j<f; j++) {

c[j].adddemand(leftos[i], 1 ,P);
if (best > c[j].getexcess(maxm)) {

best = c[j].getexcess(maxm);
i= j ;

}
c[j].rmdemand(leftos[i], 1 ,P);

}
c[l].adddemand(leftos[i],l,P);

}
}
flag = true; // escape from loop, we don't do tabu search again

}
delete [] leftos;

}
}
delete [] temp;

}
1 1 = ^ ^ = =

void countexta(Cells* c,int currentf,int f,int lima,int& exttime,int& extitime) {
int total = 0 ,i,j;
Location src, transpos;
int transit;
c[currentf] .getcellpos(src);
for(i=0; KMAXPT; i++) total += c[currentf].getdemand(i);

for(i=0 ; i < src.a; i++) { // left cells same row
exttime += total;
for(j=0 ; j < f; j++) {

c[j].getcellpos(transpos);
if (transpos.a = i && transpos.b = src.b) transit = j;

}
extitime += c[transit].getsizea() * total;

}
for(i=src.a; i < lima-1 ; i++) { // right cells 1 st row

exttime += total;
for(j=0 ; j < f; j++) {

c[j].getcellpos(transpos);
if (transpos.a = i && transpos.b = 0) transit = j;

}
extitime += c[transit].getsizea() * total;

}
}

170

Appendices
// ,_^= _ =====;===rS==:=̂ ==.-===_ == ===S:. . ■■■■ = = = =====m ^ . _ , -: = = =
int countextir(int f, Cells* c) {

int total =0 ,i,j,k,x;
int dstcell;
// first reset all traffic undone, count total routes
for (i=0 ; i<f; i++) {

c[i] .resettraf(true);
c [i] .resettraf(false);
total += c[i].egress;

}
if (total = 0) return 0 ;
// create data structures
struct paths {

Location srcint;
Location dstint;
Location srcext;
Location dstext;

};
paths* route = new paths[total];
traffic stemp, dtemp;
Location ltemp;
// find route paths
x = 0 ;
for (i=0 ; i<f; i++)

for (j=0 ; j<c[i].egress; j++) {
c[i].copytraf(false,j,stemp);
c[i].getcellpos(route[x].srcext);
route[x].srcint = stemp.cmachpos;
route[x]. dstext = stemp.peer;
dstcell = findcell(f,c,&stemp.peer);
for(k=0 ; k<c[dstcell].ingress; k++) {

c[dstcell].copytraf(true,k,dtemp); // copy ingress traffic from dstcell
if(dtemp.done = false && dtemp.mtype = stemp.mtype &&

dtemp.peer = route[x].srcext) {
route[x].dstint = dtemp.cmachpos;
c [dstcell] .setdone(true,k);
break;

}
}
//printf("\n%0 2 .i) route product %i from machine %i:%i in cell %i:%i(%i) to

cell %i:%i(%i) for machine %c at
%i:%i",x,stemp.pt,route[x].srcint.a,route[x].srcint.b,route[x].srcext.a,route[x].srcext.b,i,route[x].dstext.a,r
oute[x] .dstext.b,dstcell,stemp.mtype,route[x] .dstint.a,route[x] .dstint.b);

x++;
}

// count travelling distances
x = 0 ;
for (i=0 ; i<total; i++) {

// first cells between to be jumped over
j = 1;
while (route[i].srcext.a + j < route[i].dstext.a) { // left to right

ltemp.a = route[i].srcext.a + j; ltemp.b = route[i].srcext.b;
x += 2 * c[findcell(f,c,<emp)].getsizea();
j++;

}
j = i;
while (route[i].srcext.a > j + route[i].dstext.a) { // right to left

ltemp.a = route[i].dstext.a + j; ltemp.b = route[i].dstext.b;
x += 2 * c[findcell(f,c,<emp)].getsizea();
j++;

171

Appendices

}
j = i;
while (route[i].srcext.b + j < route[i].dstext.b) { // up to down

ltemp.a = route[i].srcext.a; ltemp.b = route[i].srcext.b + j;
x += 2 * c[flndcell(f,c,<emp)].getsizeb();
j++;

}
j = i;
while (route[i].srcext.b > j + route[i].dstext.b) { // down to up

ltemp.a = route[i].dstext.a; ltemp.b = route[i].dstext.b + j;
x += 2 * c[findcell(f,c,<emp)].getsizeb();
j ++;

}
// then simple cross border distance
x += 2 ; // it's one move in and out in any case
if (route[i].srcext.b = route[i].dstext.b) // same row

x += 2 * abs(route[i].srcint.b - route[i].dstint.b);
if (route[i].srcext.a = route[i].dstext.a) // same column

x += 2 * abs(route[i].srcint.a - route[i].dstint.a);
if (route[i].srcext.a != route[i].dstext.a && route[ij.srcext.b != route[i].dstext.b) {

if (route[i].srcext.b < route[i].dstext.b) { // diagonal from top
x += 2 * (c[findcell(f,c,&route[i].srcext)].getsizeb() - route[i].srcint.b

+ route[i].dstint.b);
} else { // diagonal from bottom

x += 2 * (route[i].srcint.b +
c[fmdcell(f,c,&route[i].dstext)].getsizeb() - route[i].dstint.b);

}
}
//printf("\n%0 2 .i) increased moves to %i",i,x);

}
delete [] route;
return x;

}

/ / = = = = = = = = ..^ = ^ : =r ^ = = = = = - = = = = s = = = =- . ^ = = = = =

void msort(int max,int*& dst,const int* src){
// finds positions in src that the list would have if it was sorted

int j, lowest, current = - 1 , x, pos - 0 ;
while (pos <= max) {

x = OxFFFFFF;
for (j=0 ; j<max; j++)

if (src[j] > 0 && src[j] < x && src[j] > current) {
lowest = src[j];
x = lowest;

}
current = lowest;
for (j=0 ; j<max; j++)

if (src[j] = current) {
dst[pos] = j;
pos++;

}
}

}
/ / = = = = = = = = = = = = = = ^ : ; : z ; : ^ - r - . . , . ; ^ = = = = = = = = = = = = = = = : = = = = = = . , ; . , , . r= 7 m = = = = = = = = =

void forceidentical(int f,Cells* c) {
int nummt[M AXMT];
// get largest number of machine type in any cell

172

Appendices

int total = 0 , i,j;
for (i=0; i<MAXMT; i++) {

nummt[i] = 0 ;
for (j=0 ; j<f; j++) if(nummt[i] < c[j].getmnum(i)) nummt[i] = c[j].getmnum(i);
total+= nummt[i];

}
// add machines to make fractals identical
for (i=0 ; i<f; i++)

for (j=0; j<MAXMT; j++)
if(nummt[j] > c[i].getmnum(j))

c[i] .addmach(j,nummt[j]-c[i] .getmnum(j));

II

int printcaseeval(int f,int maxm,const Cells* c,bool coop,int specialmt) {
// specialised cell present if specialmt is NOT default -1
int n, resultn;
int j = 0, result = -0x7FFFFFFF;
double divresult;
if (coop = false) {

for(int currentf=0 ; currentf<f; currentf++) {
printf ("\n%i: ",currentf);
for (int i=0 ; i<maxm; i++)

printf ("%i, ", c[currentf].getmachdem(i));
if (specialmt != - 1) j = c[currentf].getexcess(maxm,&resultn,true,specialmt);
else j = c[currentf].getexcess(maxm,&resultn);
printf ("excess by %i time units", j);
if (result < j && (specialmt == - 1 || currentf != f-1)) result = j;

}
printf("\nSample requires %i time units more\n", result);
result += PERIOD;
divresult = double(result) / double(resultn);
result = int(divresult);
if (divresult > result) result++;
printf("so the real result should be %i.\n", result+PERIOD);

} else {
for (int i=0 ; i<maxm; i++) {

j = 0 ; n = 0 ;
for(int currentf=0; currentf<f; currentf-H-) {

j += c[currentf].getmachdem(i);
n += c[currentf].getmnum(i);
//j -= int(c[currentf].getmnum(i) * MU * PERIOD);

}
divresult = double(j) / (double(n) * MU);
j = int(divresult);
if (j < divresult) j++;
printf ("\n%i time units required on machine type %c", j, i+'A');
if (result < j) result = j ;

}
printf("\nSample requires %i time units", result);
// printf("\nso the real result should be %i.", result+PERIOD);

}

if (result < PERIOD) return PERIOD;
return result;

}

// — ===— ' '

173

Appendices

void showoptions() {
printf("\n 1. Similar product distribution, identical cell composition");
printf("\n 2. Similar product distribution, similar cell composition");
printf("\n 3. Similar product distribution, minimal cell composition");
printf("\n 4. Different product distribution, identical cell composition");
printf("\n 5. Different product distribution, optimal cell composition");
printf("\n 6 . Different product distribution, minimal cell composition");
printf("\n 7. Different product distribution, specialised cell if possible\n");

}

Tabu.h

/ / Tabu Search Program by Anna-Maij a Lassila
// Sheffield Hallam University, Sep. 2001
// Header file tabu.h

#ifndef TABU_H
#defme TABU_H

#define MAXPROD 400 // how many items maximal?
#define MAXMOVES 1800 // total number of moves
#define MAXRMOVES 0 // randomize moves when optimising product distribution
#define MAXNOIMP 15 // max number of consecutive moves w/o improvement
#define TABUSIZE 10 // length of tabu list
#define TABUCSIZE 2 // size of tabu list when optimising external cell layout
#define TABURESTART 0 // can start this many times from the same point

#include "buffer.h"
enum compositions;

class Cells; // cross-header-file prototypes
class Location;
class Product;
class Routes;

struct positions { // data type that will hold move positions
int a;
int b;

};

class Tabulist{ // defining the tabu list data type
public:

void list_clear() { a.clear_fifo(); b.clear_fifo(); }
void listjpush(positions& move)

{ a.push_fifo(TABUSIZE,move.a); b.push_fifo(TABUSIZE,move.b); }
void list_pop() { a.pop_fifo(TABUSIZE); b.pop_fifo(TABUSIZE);}
int list_size() { return a.getsize(); }
bool list_find(positions&) const;

private:
Buffer a; // fifo buffer storing position A in an A->B swap
Buffer b; // fifo buffer storing position B in an A->B swap

};

class Permutation { // defining the Permutation data type
public:

void display(int) const; // displaying Permutation and time value
int create_neigh(int,Permutation*,Cells*,Product*,int); // creating neighbourhood
void poisonQ { time *= 1 0 ; } // make neighbour unattractive

174

Appendices

int makedneigh(int,int,Permutation*,Cells*,const Product*,compositions);
int drand(int,const Product*);
int cposneigh(int,int,Location*,Permutation*,Cells*,const Product*,int);
void distribute(int,int,const Product*,Cells*,compositions);

// Operators
void operator =(const Permutation&);
friend bool operator <(const Permutation& p i, const Permutation& p2)

{ return (pi.time < p2 .time);}
friend bool operator <=(const Permutation& p i, const Permutation& p2)

{ return (pi.time <= p2 .time);}
friend bool operator = (const Permutation& p i, const Permutation& p2)

{ return (pi.time = p2 .time); }
friend positions compare(int, const Permutation&, const Permutation&);

int time; // time value of Permutation
int perm[MAXPROD]; // list of integers to make up Permutation

};

// Non-Members
int find_best(int, int, Permutation*); // find best value in neighbourhood table
int tabusearch(Product*,Cells*,int period);
void dtabu(int,int,int,Permutation&,const Product*,Cells*,compositions);
int dneighsize(int,int,const Product*);

#endif

Tabu.cpp

// Tabu Search Program by Anna-Maija Lassila
// Sheffield Hallam University, Sep. 2001
// Main program file tabu.cpp

#include <stdio.h>
#include <string.h> // for strlen
#include <stdlib.h> // for rand
#include <time.h> // for time, needed for srand
#include "tabu.h"
#include "fractal.h"

int tabusearch(Product* P,Cells* c,int period) {
int neighlen, total;
Permutation pi; // current Permutation
Permutation best; // best Permutation found
Permutation localbest; // best Permutation in area
int solution;
int noimpmoves;
int restartmoves;
positions move;
Tabulist tabu;
bool allowed;
bool flag = hue;
positions lbest_exit[TABURESTART+lj; / / first moves after localbest
int moves = 1 ;
int tabusz = TABUSIZE;

// Initialise tabu search
total = c->makepermut(&pi);
pi.time = c->simulate(&P[0]);

// best solution in neighbourhood
// number of moves w/o improvement

// how often did we go back to local best?
// pair of numbers showing swap move

// declare tabu list
// 2 internal flag variables
// true if just left a local best

175

Appendices

best = pi;
localbest = pi;
neighlen = c->neighsize();
if (neighlen = 0) moves = MAXMOVES; // don't do silly tabu search
if (tabusz > neighlen/4) tabusz = int(neighlen/4);
tabu.list_clear(); // empty tabu list

Permutation* neigh = new Permutation[neighlen];
noimpmoves = 0 ; restartmoves = 0 ;

//pi.display(total);
printf("\nnow optimising...");

while (moves < MAXMOVES) {
moves++;
c->makepermut(&pi);
solution = pi.create_neigh(total,&neigh[0],c,&P[0], period);

// = is this solution allowed? :=======-:: ' :' ■ •
do {

move = compare(total,neigh[solution],pi); // what move was made?
allowed = true; // assume that move is allowed
if (tabu.list_fmd(move)) // is move tabu?

if (best <= neighjsolution]) { // aspiration criterium
neigh[solution].poison(); // make this move unattractive
// find solution again with previous best being poisoned
solution = find_best(solution, neighlen, &neigh[0]);
allowed = false; // we have to repeat this

}
} while(allowed = false); // until move is allowed
// = = is this move just after a local best? .======== -:i.-.==
if (flag = hue) {

lbest_exit[restartmoves] = move;
flag = false;

// === is this a local best? ==========.-...■■■. ■■■■.
if (neigh[solution] < localbest) { // new local best found

localbest = neigh[solution]; // set local best
flag = true;
noimpmoves = 0 ; // be patient
restartmoves = 0 ; // allow all restart attempts

} else noimpmoves++; // otherwise lose some patience
// = is this even the best? ;;i- : :====- z r r =
if (neigh[solution] < best) { // new best found

best = neigh[solution]; //se t new best
printf(".");
//c[currentf] ,quickdraw();
//pi.display(total);

}

// = = Did we exceed MAXNOIMP?----^ ----- ===-.- - - - - .-~ = t=z=
if (noimpmoves > MAXNOIMP) {

tabu.list_clear(); // clear tabu list
noimpmoves = 0 ; // be patient again
// = Restart, if restarting is still allowed ======="-- - - = - = ===== =
if (restartmoves < TABURESTART) {

restartmoves++; // Remember that we restarted
// fill the tabu list with lbest_exit and print it to screen
p r in tf (" \n = RESTART No. %i = tabu: ", restartmoves);
for (int x = 0 ; x < restartmoves; x++) {

176

Appendices

// tabu move that left local best last time
tabu.list_push(lbest_exit[x]);
printf("(%i,%i) ",lbest_exit[x].a,lbest_exit[x].b);

}
//printf("\n");

// the move we are going to make should be appended to lbest_exit
flag = true;
pi = localbest; // go back to local best
//printf("move %.3i: ", moves);
//pi.display(total);

}
// = Restarted too often, randomising - ■ ;= =
else {

//p r in tf (" \n = RANDOMISING = \ n ") ;
//printf("move %.3i: ", moves);
c->randomise();
c->makepermut(&pi);
pi.time = c->simulate(&P[0]);
localbest = pi; // reset localbest
restartmoves = 0 ; // allow restarts again

}
}
// = MAXNOIMP not exceeded yet, making the move = ;-:
else {

pi = neigh[solution]; // make move
//printf("move %.3i: ", moves);
//printf("swapping %.2 i with %.2 i -> ",move.a,move.b);
//pi.display(total);

// = update tabu list = = = = = = - = =— - - - - - — '■ —
if (tabusz > 0) {

if (tabu.list_size() = tabusz)
tabu.list_pop(); // remove oldest move from tabu list

tabu.list_push(move); // insert move into tabu list
}

}
}
c->writepermut(total,&best,period);
c->quickdraw();
best.display(total);
c->simulate(P); // to get traffic data right
delete [] neigh;
return best.time;

// Displaying Permutation and Permutation time to screen
void Permutation: :display(int total) const{

printf("distance %i - ", time);
for (int i=0; i<total; i++) printf("%c", perm[i]+'A');
printf("\n");

}

// Creating neighbourhood and reporting position of best neighbour found
int Permutation: :create_neigh(int total, Permutation* neigh, Cells* c, Product* P,int period) {

int x = 0 ; // how many neighbours did we find?
int i, j;
int besttime = OxFFFFFFF, bestx;
for (i = 0 ; i < total-1 ; i++) {

for (j = i+ 1 ; j < total; j++) {

177

Appendices

if (perm[i] != perm[j]) { // swap made a difference?
for (int z = 0 ; z < total; z++)

neigh[x].perm[z] = perm[z]; // copy Permutation
neigh[x].perm[i] = perm[j]; // swap products

neigh[x].perm[j] = perm[i];
c->writepermut(total,&neigh[x],period);
neigh[x].time = c->simulate(P);

if (besttime > neigh[x].time) {
besttime = neigh[x].time;
bestx = x;

}
x++;

}
}

}
c->writepermut(total,&neigh[bestx],period);
time = neigh[bestx].time;
return bestx;

}

// Compare two Permutations and return swap move
// Information for inserting to or finding from Tabu list
positions compare(int total, const Permutation& p i, const Permutation& p2){

int i = 0 ;
positions move;
move.a = - 1 ; move.b = - 1 ;
while (i < total && move.b < 0) {

if (pl.perm[i] != p2 .perm[i]) {
if (move.a < 0) move.a = i;
else move.b = i;

}
i++;

}
return move;

// Overloaded = operator to assign Permutations
void Permutation: :operator =(const Permutation& source) {

time = source.time;
for (int i = 0; i < MAXPROD; i++) perm[i] = source.perm[i];
return;

}

// Finding a certain move in the Tabu list
bool Tabulist::list_find(positions& move) const{

int end = a.getsize();
for (int i = 0 ; i < end; i++)

if (a.getprod(i) = move.a && b.getprod(i) = move.b)
return true;

return false;
}

// finding the best solution in the neighbourhood
int find_best(int start, int neighlen, Permutation* neigh) {

int best = start;
int bests = 0 ;
int* temp = new int[neighlen];
for (int i = 0 ; i < neighlen; i++) {

if (neigh[i] < neigh[best]) {
best = i;

178

Appendices

bests = 0 ;
}
else if (neigh[i] = neigh[best]) {

temp [bests] = i;
bests++;

}
}
if (bests > 0) best = temp[rand() % bests];
delete [] temp;
return best;

Products.h

// Program for fractal layout simulation
// Anna M. Lassila, Sheffield Hallam University, September 2003

#ifndef PRODUCTSH
#define PRODUCTS H

#define PRODFILE
#define MAXPT 12

#include "fractal.h"
#include "stdio.h"

"products.txt" // prod input data file
// maximum number of different product types

// for "NULL" word

struct producttimes{
char type;
int time;

};

class Product {
public:

// Single Processing instruction
// Machine type

// Time at machine

Product(); // Clearing constructor
int readprods(); // Read product data from file
void operator =(const Product&); // Copy operator
unsigned int mvisited(int) const; // sum over array of machs visited
int createcapable(int,int,const Product*); // Create a random case that can be processed
void createcase(int,int,const Product*); // create any case with constant D
void randproctime(); // randomise processing times
void randsequence(); // change processing sequence
void printdata(int max=MAXPT) const; // print product table (for debugging)
int getmtdem(int maxp, int* nummt, const Cells* c=NULL) const; // calculate Nm or Nmf

int number;
int demand;
int machneeded;
producttimes ptime[MAXMT];

// Type number, not really used
// Demand for this type

// Number of machines needed for processing
// Matrix of sequence and duration for processing

#endif

Products.cpp

// Program for fractal layout simulation
// Anna M. Lassila, Sheffield Hallam University, September 2003

#include <stdio.h>

179

Appendices

#include <string.h>
#include <stdlib.h>
#include <math.h>
#include "products.h"
#include "fractal.h"

// Read products from file
int Product: :readprods(){

FILE *pfile;
char line[80];
int lpos, length;
int readlines = 0 ;
int prod = 0 ;

if((pfile = fopen(PRODFILE, "r")) = NULL) {
fprintf(stderr, "Cannot open products file\n"); retum(O);}

while(fgets(line,80,pfile)) {
length = strlen(line);
readlines++;
if(line[0]>-0' && line[0]<=,9') {

if (prod>MAXPT) {
fprintf(stderr, "Too many different product types\n");
return 0 ;

}
// product number
lpos = 0 ; this[prod].number = 0 ;
do {

this [prod] .number*=1 0 ;
this[prod].number+=line[lpos]-'0 ';
lpos++;

} while (line[lpos]>-O' && line[lpos]<-9');
while (lpos<=length && (line[lpos]<'0' || line[lpos]>'9')) lpos++;
// demand
this[prod].demand=0 ;
do {

this[prod] .demand*=l 0 ;
this [pro d]. demand+=line [lpos]-'O';
lpos++;

} while (line[lpos]>-O' && line[lpos]<-9');
if (this [prod]. demand<=0) {

fprintf(stderr, "Error in product file on line %i\n",readlines-l);
return (0);

}
// product times
this[prod] .machneeded=0 ;
while (lpos<=length) {

if (line[lpos]>='A' && line[lpos]<='Z') {
if(line[lpos]>'A'+MAXMT-1) .{

fprintf(stderr, "Too many machine types in product
file on line %i\n",readlines-l);

%i\n",readlines-l);

return (0);
}
this[prod].ptime[this[prod].machneeded].type = line [lpos];
lpos++;
if(line[lpos]!=':') {

fprintf(stderr, "Error in product file on line

return (0);
}
lpos++;

180

Appendices

if(line[lpos]<'0' || line[lpos]>'9') {
fprintf(stderr, "Error in product file on line

%i\n",readlines-l);
return (0);

}
this[prod].ptime[this[prod].machneeded].time = 0 ;
do {

this[prod] .ptime[this[prod] .machneeded] .time*= 1 0 ;

this[prod].ptime[this[prod].machneeded].time+=:line[lpos]-,0 ';
lpos++;

} while (line[lpos]>-O' && line[lpos]<-9');
this[prod].machneeded++;

}
else lpos++;

}
prod++;

}
}
printf("Product file %s successfully read\n",PRODFILE);
return prod;

II
I I Constructor - resetting all values

Product: :Product() {
number = 0 ;
machneeded = 0 ;
demand = 0 ;
for(int i=0; i<MAXMT; i++){

ptime[i].type = '
ptime[i].time = 0 ;

}
}

H= = = ._..= . = = r = = . = : = = r - = = . = = . ;= = = = == = = = = r = i L = = _

// Overloaded operator - duplicate values except for demand

void Product:roperator =(const Product& src) {
int j;
number = src.number;
machneeded = src.machneeded;
for (j=0 ; j<machneeded; j++) {

ptime[j].time = src.ptime[j].time;
ptime[j].type = src.ptime[j].type;

}
}

U = r . , „ = = = ! . = = 5 . = = - . = = = = = = ^ = = ^ = = = v = = ^ _ J = _ _ J ^ _ _ - = = = = = = =

// If cell = NULL (default) calculating all Nm and writing them into nummt, returning M
// Else calculates Nmf required in certain cell c

int Product: :getmtdem(int maxp, int* nummt, const Cells* c) const {
int machdem, maxm = 0 ;
for(int i=0;i<MAXMT;i++) {

machdem=0 ;
for(int j= 0 ; j<maxp; j++)

for(int k=0 ; k<this[j].machneeded; k++)
if(this[j].ptime[k].type = ’A'+i)

181

Appendices

if (c==NULL)
machdem += this[j].demand*this[j].ptime[k].time;

else
machdem += c->getdemand(j)

this[j].ptime[k].time;
nummt[i] = int(float(machdem)/(PERIOD*MU));
if(nummt[i]<float(machdem)/(PERIOD*MU)) nummt[i]++;
if(nummt[i]>0) maxm++;

}
return maxm;

}

H ======:,. s===.,,. — • ==.-=======
// Calculate total number of machines visited over all products

unsigned int Product: :mvisited(int maxp) const {
unsigned int value = 0 ;
for (int i=0 ; i<maxp; i++)

value += this[i].machneeded * this[i].demand;
return value;

}

H . =======:„ , ==sr,. ====L, = ============ = = m ,=======
// Create random case that is feasible to create
// similarity to case study is 0 to 1 0 0

int Product::createcapable(int similarity,int maxp,const Product* P) {
int i,j,prod,addednum,total;
bool excess;
int nummt[MAXMT], testmt[MAXMT]; // machines required of each type
int variance =0 ;

// reset demand and find out D
total = 0 ;
for (i=0; i<MAXPT; i++) {

this[i].demand = 0 ;
total += P[i]. demand;

}

// get limits from original case
P->getmtdem(maxp,&nummt[0]);

// Have similar starting condition
i = 0 ;
for (j=0 ; j<maxp; j++) {

this[j].demand = int(similarity * P[j].demand / 100);
i += this[j].demand;

}

// Fill up the rest
while (i < total) {

excess = false;
prod = rand() % maxp; // pick random product
addednum = 1 + rand() % 5;
if (addednum > total-i) addednum = 1 ;
this[prod].demand += addednum;
i += addednum;

this->getmtdem(maxp,&testmt[0]);
for (j=0; j<MAXMT; j++) if (testmt[j] > nummt[j]) excess = true;

182

Appendices

if (excess = true) {
this[prod].demand -= addednum;
i -= addednum;
do { prod = rand() % m axp;} while (this[prod].demand <= 0);

// addednum = rand() % this[prod].demand;
// this[prod].demand -= addednum;
// i -= addednum;

this[prod] .demand—;
H

}
}

return (variance/2);

// Create random case with no feasibility check, constant D

void Product::createcase(int maxp, int sdiff, const Product* P) {
int i, variance;
int total;
sdiff *= 2 ; // so we don't have to devide variance by 2 all the time
// copy demand and find out D
total = 0 ;
for (i=0; i<MAXPT; i++) {

this[i].demand = P[i].demand;
this[i] = P[i];
total += P[i]. demand;

}
if (sdiff < 1) return;
do {

do i = rand() % maxp; while (this[i].demand < 1);
this[i].demand—;
i = rand() % maxp;
this[i] .demand-H-;
variance = 0 ;
for (i=0 ; i<=maxp; i++)

variance += abs(P[i].demand - this[i].demand);
} while (variance != sdiff);

// — ■ ■ ==========: - ::
// Randomise processing times (not working yet)

void Product: :randproctime(){
int i j ;
int mlimits[MAXMT];

do {

// Get initial limiting values
this->printdata();

for (i=0; i<MAXMT; i++) mlimits[i] = 0;

for (i=0; i<MAXPT; i++)
for (j—0 ; j<this[i].machneeded; j++)

mlimits[this[i].ptime[j].type-'A'] += this[i].ptime[j].time * this[i].demand;

183

Appendices

for (i=0; i<MAXMT; i++) printf("%i,", mlimits[i]); printf("\n");

// Randomize and modify class ptime parameters.
for (i=0; i<MAXPT; i++)

for (j=0 ; j<this[i].machneeded; j++) {
if (mlimits[this[i].ptime[j].type-'A'] <= 0 || this[i].demand == 0)

this[i].ptime[j].time = 0 ;
else {

this[i].ptime[j].time = randQ % (1 + int(mlimits[this[i].ptime[j].type-
'A'] / this[i].demand));

mlimits[this[i].ptime[j].type-'A'] -= this[i].ptime[j].time *
this[i].demand;

//printfi["%i:%i\n",i,this[i].ptime[j].time);
}

}

scanf("%c",&i);
} while(l);

}

// Randomise processing sequence (verified)

void Product: :randsequence() {
int i,j,r;
producttimes temp[MAXMT];
for (i=0; i<MAXPT; i++)

if(this[i].machneeded > 1) { // only run if more than 1

for(j=0y<MAXMT;j++) temp[j].type = '
for(j=0 :j<this[i].machneeded;j++) {

do r = rand() % this[i].machneeded;
while(temp[r].type != '');
temp[r].type = this[i].ptime[j].type;
temp[r].time = this[i].ptime[j].time;

}
for(j=Oy<this[i].machneeded;j++) {// commit changes

this[i].ptime[j].type = temp[j].type;
this[i].ptime[j].time = temp[j].time;

}
}

}

// Print out product data (for debugging)

void Product: :printdata(int max) const {
for(int i=0 ; i<max; i++) {

printf("prod %i = %i,",i,this[i] .demand);
for(int j= 0 ; j<this[i].machneeded; j++)

printf("%c:%i ",this[i].ptime[j].type,this[i].ptime[j].time);
printf("\n");

}
}

184

Appendices

Buffer.h

// Program for fractal layout simulation
// Anna M. Lassila, Sheffield Hallam University, September 2003

#ifndef BUFFER_H
#define BUFFERH
#include "tabu.h"

// defining a FIFO buffer
class Buffer {
public:

void clear_fifo(); // clear FIFO buffer
void push_fifo(int,int); // push on buffer
int pop_fifo(int); // pop from buffer
int getsize() const { return size;}
int getprod(int x) const { return prod[x];}

private:
int size; // number of items currently in buffer
int last; // pointing to new location in circular buffer
int prod[MAXPROD]; // list of products in buffer

};

#endif

Buffer, cpp

// Program for fractal layout simulation
// Anna M. Lassila, Sheffield Hallam University, September 2003
// subroutines to implement the FIFO buffer

#include <assert.h>
#include "tabu.h"

// Clearing the fifo buffer
void Buffer: :clear_fifo(){

size = 0 ;
last = 0 ;
return;

}

// Putting new item into fifo buffer
void Buffer: :push_fifo(int max, int item){

assert(size < max);
size++;
prod[last] = item;
last++;
if (last >= max) last = 0 ;
return;

}

// Removing oldest item from fifo buffer and returning value of that item
int Buffer: :pop_fifo(int max){

int i;
assert(size > 0);
i = last - size;
if (i < 0) i += max;
size--;
return prod[i];

185

Appendices

}

Cells.h

// Program for fractal layout simulation
// Anna M. Lassila, Sheffield Hallam University, September 2003

#ifiidef CELLS_H
#define CELLS_H

#include "fractal.h"
#include "products.h"

//NOT USED YET

/* Cross-header prototypes
struct machine;
struct traffic;
class Location;
class Problems;

*/

#endif

Cells.cpp

// Program for fractal layout simulation
// Anna M. Lassila, Sheffield Hallam University, September 2003

#include "fractal.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>

// Constmctor
Cells::Cells(){

clearcell();
totalmach = 0 ;
ingress = 0 ; egress = 0 ;
in = NULL; out = NULL;
for(int i=0; i<MAXMT; i++) machnum[i] = 0;
cleardemand();

}

// Destructor
Cells: :~Cells(){

if (in != NULL) delete [] in;
if (out != NULL) delete [] out;

}

void Cells: roperator =(const Cells& source) {
inti,j;
pos = source.pos;
size = source.size;
totalmach = source.totalmach;
for (i=0; i<MAXPT; i++) {

186

Appendices

demand[i] = source.demand[i];
machnum[i] = source.machnum[i];
machdem[i] = source.machdem[i];

}
for (i=0; i<LIMIT; i++)

for (j=0; j<LIMIT; j++)
m[i][j] = source.m[i][j];

}

void Cells: :cleardemand(){
for(int i=0; i<MAXPT; i++) demand[i] = 0;
for(i=0; i<MAXMT; i++) machdem[i] - 0;

}

void Cells: :resettraf(bool direct) {
int i;
if (direct = true) // inwards

for (i=0 ; icingress; i++) in[i].done = false;
else // outwards

for (i=0 ; i<egress; i++) out[i].donfe = false;
}

void Cells::clearcell(){
for (int i=0; i<LIMIT; i++)

for (int j=0; j<LIMIT; j++) {
m[i][j]-type = ";
m[i][j]. avail = 0 ;

}
}

void Cells: :setsize(int s){
calcsq(s,&size);
assert (size.a <= LIMIT);
assert (size.b <= LIMIT);

}

void Cells: :addmach(int mtype, int amount) {
totalmach += amount;
setsize(totalmach);
machnum[mtyp e] += amount;
for (int b=0 ; b<size.b; b++)

for (int a=0 ; a<size.a; a++)
if(amount > 0 && m[a][b].type = ") {

m[a][b].type = 'A'+mtype;
m[a][b].avail = PERIOD;
amount--;

}
}

void Cells::rmmach(int mtype, int amount) {
totalmach -= amount;
machnum[mtype] -= amount;
setsize(totalmach);
randomise();

}

int Cells ::makepermut(Permutation* pi) const {
int x = 0 ;
for (int b=0 ; b<size.b; b++)

for (int a - 0 ; a<size.a; a++) {

187

Appendices

pi->perm[x] = m[a][b].type - 'A';
x++;

}
return x;

}

void Cells: :writepermut(int total,const Permutation* pi, int period) {
// Re-new capacity and if Permutation != NULL update machine layout

int x = 0 ;
for (int b=0 ; b<size.b; b++)

for (int a=0 ; a<size.a; a++)
if (x < total) {

if (pi != NULL) m[a][b].type = 'A' + pi->perm[x];
m[a][b].avail = period;
x++;

}
}

int Cells::fmdmach(char mtype, int needed, Location* pos) const{
int a,b, avail = -OxFFFFFFF, dist = -1;
Location temp;

// Product has no start location (new incoming or routed in)
if(pos->a < 0 || pos->a >= size.a || pos->b < 0 || pos->b >= size.b) {

// searching for machine with highest availability
for(b=0 ; b<size.b; b++)

for(a=0 ; a<size.a; a++)
if(m[a][b].type = mtype)

if(m[a][b].avail > avail) {
avail = m[a][b].avail;
temp.a = a;
temp.b = b;

}

//assert (temp.a != - 1);
if (pos->a < 0) dist = temp.a;
if (pos->a >= size.a) dist = size.a - temp.a
if (pos->b < 0) dist = temp.b;
if (pos->b >= size.b) dist = size.b - temp.b
if (avail < 1) { //needed) {

printf("\nCapacity error finding
needed\n",mtype,avail,needed);

exit(l);
}

//pos->a = temp.a; pos->b = temp.b;
*pos = temp;
return dist;

}

// product has a start Location
// searching for closest machine that has availability
int mindist = OxFFFFFFF;
//temp.a = pos->a; temp.b = pos->b;
temp = *pos;
for(b=0 ; b<size.b; b++)

for(a=0 ; a<size.a; a++)
if(m[a][b].type = mtype) {

if (m[a][b].avail >= needed) {
dist = abs(pos->a - a) + abs(pos->b - b);

// product entered from the left
- 1 ; // product entered from the right

// product entered from up
- 1 ; // product entered from down

%c with avail, of only %i when %i was

188

Appendices

// option uncommented: force the flow to the right
if (dist < mindist && (mindist = OxFFFFFFF || a >=

temp.a)) {
mindist = dist;
temp.a = a;
temp.b = b;

}
}

}
//pos->a = temp.a; pos->b = temp.b;
*pos = temp;
if (mindist = OxFFFFFFF) {

printf("\nCapacity error, cannot find %c with needed avail, of %i\n",mtype,needed);
exit (1);

}

//printf("\n%i finding %c at %i-%i which has avail, of %i",mindist,mtype,pos->a,pos->b,m[pos-
>a] [pos->b] .avail);

return (mindist);
}

void Cells::setpos(int currentf, const Location* lim){
pos.b = int(currentf / lim->a);
pos.a = currentf % lim->a;

}

void Cells: :adddemand(int ptype,int amount,const Product* P) {
demand[ptype] += amount;
for (int i=0; i<P[ptype].machneeded; i++)

machdem[P[ptype].ptime[i].type -'A'] += amount * P[ptype].ptime[i].time;
}

void Cells: :rmdemand(int ptype,int amount, const Product* P) {
demand[ptype] -= amount;
for (int i=0; i<P[ptype].machneeded; i++)

machdem[P[ptype].ptime[i].type -'A'] -= amount * P[ptype].ptime[i].time;
}

void Cells ::resetmachdem(const Product* P) {
int ij ;
for(i=0; i<MAXMT; i++) machdem[i] = 0;
for (i=0; i<MAXPT; i++)

for (j=0; j<P[i].machneeded; j++)
machdem[P[i].ptime[j].type -'A'] += demand[i] * P[i].ptime[j].time;

}

int Cells::neighsize() const {
int J = size.a * size.b;
intx = J * (J - l) / 2 ;
for (int i=0; i<MAXMT; i++)

if (machnum[i] > 0)
x -= machnum[i] * (machnum[i] - 1) / 2 ;

x -= (J - totalmach) * (J - totalmach -1) / 2;
return x;

}

void Cells ::quickdraw(bool disk,FILE *outf) const {
printf("\n");
int a,b;
for (b=0 ; b<size.b; b++) {

189

Appendices

printf("\n");
for (a=0 ; a<size.a; a++) printf("%c ",m[a][b].type);

}
if (disk) {

for (b=0 ; b<size.b; b++) {
fprintf(outf,"\n");
for (a=0 ; a<size.a; a++) fprintf(outf,"%c ",m[a][b].type);

}
}

void Cells: :randomise(){
clearcell();
Location pos;
int total = totalmach;
int temp[MAXMT];
int mach = 0 ;
for (int i=0; i<MAXMT; i++) temp[i] = machnum[i];
while(total > 0) {

do {
pos.a = rand() % size.a;
pos.b = randQ % size.b;,

} while (m[pos.a][pos.b].type != '');
m[pos.a] [pos.b]. avail = PERIOD;
while(mach < MAXMT && temp[mach] = 0) mach++;
m[pos.a] [pos.b] .type = A ' + mach;
temp[mach]~;
total—;

}
}

int Cells::simulate(const Product* P){
int i,j,k;
bool route;
Location border;
int tdist = 0 ;
int totaldem = 0 ;
int tempdem[MAXPT]; // don't want to change real demand
for (int prod=0; prod<MAXPT; prod++) {

tempdem[prod] = demandfprod];
totaldem += demandfprod];

}
resettraf(false);
//for (i=0 ; i<egress; i++) out[i].done = false;

Location pos;
for (i=0 ; i<totaldem; i++)

for (prod=0; prod<MAXPT; prod++)
if(tempdem[prod]>0) {

pos.a = - 1 ; pos.b = 0 ; // products coming in from the left
for (k=0; k<P[prod].machneeded; k++) {

route = false;
for (j=0 ; j<egress; j++) {

if (out[j].done == false && out[j].pt = prod &&
out[j].mtype — P[prod].ptime[k].type) {

if (pos.a = - 1) pos.a = 0 ; // routing on first
machine type

out[j].cmachpos = pos;
out[j].done = true;

190

Appendices

route = true;
switch (out[j].edge) {

case left: tdist += pos.a; pos.a = -
1 ; break;

case right: tdist += size.a - pos.a -
1 ; pos.a = size.a; break;

case up: tdist += pos.b; pos.b =
- 1 ; break;

case down: tdist += size.b - pos.b
- 1 ; pos.b = size.b; break;

}
break;

}
}
if (route == false) {

tdist +=
fmdmach(P[prod].ptime[k].type,P[prod].ptime[k].time,&pos);

m[pos.a][pos.b].avail -= P[prod].ptime[k].time;
}

}
tdist += size.a - pos.a - 1 ; // move out on the right
//printf("\n%i leaving cell",size.a - pos.a - 1);
tempdemfprod]—;

}

// incoming products
for (i=0 ; i<ingress; i++) {

switch (in[i].edge) {
case left: border.a = - 1 ; border.b = 0 ; break;
case right: border.a = size.a; border.b = 0 ; break;
case up: border.a = 0 ; border.b = - 1 ; break;
case down: border.a = 0 ; border.b = size.b; break;
}
tdist += 2 * findmach(in[i].mtype,in[i].pt,&border); // count twice
in[i].cmachpos = border;
m[border.a] [border.b]. avail -= in[i].pt;

}
return tdist;

}

void Cells: :addingress(int proctime,char mtype,Location* src){
if (src->a < pos.a) in[ingress].edge = left;
if (src->a > pos.a) in[ingress].edge = right;
if (src->a = pos.a) {

if (src->b < pos.b) in[ingress].edge = up;
if (src->b > pos.b) in[ingress].edge = down;
if (src->b = pos.b) return;

}
in[ingress].peer = *src;
in[ingress].pt = proctime;
in[ingress].mtype = mtype;
ingress++;

}

void Cells::addegress(intptype,char mtype,Location* dst){
if (dst->a < pos.a) out[egress].edge = left;
if (dst->a > pos.a) out[egress].edge = right;
if (dst->a = pos.a) {

if (dst->b < pos.b) out[egress].edge = up;
if (dst->b > pos.b) out[egress].edge = down;

191

Appendices

if (dst->b = pos.b) return;
}
out[egress].peer = *dst;
out[egress].pt = ptype;
out[egress].mtype = mtype;
egress++;

}

void Cells: :copytraf(bool path,int pos,traffic& copy) const {
if (path — false) { // outwards

copy.mtype = out[pos] .mtype;
copy.pt = out[pos].pt;
copy.edge = out[pos].edge;
copy .peer = out[pos] .peer;
copy.cmachpos = out[pos].cmachpos;
copy.done = out[pos].done;

} else { // inwards
copy.mtype = in[pos] .mtype;
copy.pt = in[pos].pt;
copy.edge = in[pos].edge;
copy, peer = in[pos]. peer;
copy.cmachpos = in[pos].cmachpos;
copy.done = in[pos].done;

}
}

void Cells: :setdone(bool direct,int pos) {
if (direct=true)

in[pos].done = true;
else

out[pos].done = true;
}

bool Cells::ability(bool special, int specialmt) const {
// returns whether a cell is able to process all allocated demand

for (int i=0; i<MAXMT; i++)
if (machdem[i] > machnum[i] * MU * PERIOD)

if (special = false || i != specialmt)
return false;

return true;
}

int Cells::getexcess(int maxm, int* n, bool special, int specialmt) const {
int temp, result = - 1 0 0 0 0 ;
double divresult;

for (int i=0 ; i<maxm; i++) {
if (n = NULL) {

divresult = machdem[i] / double(machnum[i] * MU);
temp = int(divresult);
if (temp < divresult) temp++; // round up
if (result < tem p) // (machdem[i] - machnum[i] * MU * PERIOD))

if (special = false || i != specialmt)
result = temp; // int(machdem[i] - machnum[i] * MU *

PERIOD);
} else {

if (result < (machdem[i] - machnum[i] * MU * PERIOD))
if (special = false || i != specialmt) {

result = int(machdem[i] - machnum[i] * MU * PERIOD);
*n = machnum[i];

192

Appendices

}
}
return result;

int Cells::routed(machine* problem, int period) const {
// returns number of problematic machines and returns list of machine types and overcapacity
// just number of routings if problem = NULL

int x = 0 ;
for (int i=0; i<MAXMT; i++)

if (machdem[i] > machnum[i] * int(MU * period)) {
if (problem != NULL) {

problem[x].type = 'A'+i;
problem[x].avail = machdem[i] - machnum[i] * int(MU * period);

}
x++;

}
return x;

}

bool Cells ::routeprod(int mach, int amount, bool force, int period) {
// if forced increases machdem, otherwise checks whether there is enough capacity first

if (force = false)
if (machdem[mach] + amount > machnum[mach] * int(MU * period)) return false;

machdem[mach] += amount;
return true;

}

int Cells::countr(int pos, Problems* rp, const Product* P) const {
int j,k,l,m;
// need to copy demand numbers
int tempdem[MAXPT];
for (j=0; j<MAXPT; j++) tempdem[j] = demand[j];
int choice, lowestover, routed = 0 ;
int largest, best;
int e = rp->excess[pos]. avail;
int mtype = rp->excess[pos].type;

while (e > 0) {
routed++;
// look for perfect fit first
for (j=0; j<MAXPT; j++)

if (tempdem[j] > 0 && e > 0)
for (k=0; k<P[j].machneeded; k++)

if (P[j].ptime[k].type = mtype)
if (P[j].ptime[k].time = e) {

e = 0 ;
rp->incprod(pos,i);
//printf("%i,",j);

}
// look for 1 product
lowestover = OxFFFFFFF;
for 0=0; j<MAXPT; j++)

if (tempdem[j] > 0 && e > 0)
for (k=0; k<P[j].machneeded; k++)

if (P[j].ptime[k].type = mtype)
if (P[j].ptime[k].time >= e)

if (P[j].ptime[k].time < lowestover) {
lowestover = P[j].ptime[k].time;

193

Appendices

choice = j;
e -= lowestover;

}
if (e < 0) rp->incprod(pos,choice); //printf("%i,",choice);
// need to route more than 1 product
if (e > 0) {

// look for largest Aj
largest = 0 ;
for (j=0; j<MAXPT; j++)

if (tempdem[j] > 0)
for (k=0; k<P[j].machneeded; k++)

if (P[j].ptime[k].type == mtype)
if (P[j].ptime[k].time > largest) {

largest = P[j].ptime[k].time;
choice = j;

}
// perfect fit lookahead
if (e < 2 * largest) {

best = OxFFFFFFF;
for (j=0; j<MAXPT; j++) {

if (tempdem[j] > 0)
for (k=0; k<P[j].machneeded; k++)

if (P[j].ptime[k].type == mtype) {
lowestover = OxFFFFFFF;
for (1=0; KMAXPT; 1++)

if (tempdem[j] > 0 && e
>0)

for (m=0 ;
m<P[l].machneeded; m++)

if
(P[l].ptime[m].type == mtype)

if (P[l].ptime[m].time >= e-P[j].ptime[k].time) // enough

if (abs(e - P[j].ptime[k].time - P[l].ptime[m].time) < lowestover)

lowestover = abs(e - P[j].ptime[k].time - P[l].ptime[m].time);
}

if (lowestover < best) {
choice = j;
best = lowestover;

}
}

}
tempdem[choice]~;
//printf("%i,",choice);
rp->incprod(pos,choice);
for (k=0; k<P [choice] .machneeded; k++)

if (P[choice].ptime[k].type = mtype)
e -= P[choice].ptime[k].time;

}
}
rp->excess[pos].avail += abs(e);
return routed;

}

// = non-member cell functions
void calcsq(int f, Location* lim){

int x = int(sqrt(double(f)));
if (x*(x+l) < f) lim->b = x+ 1 ;

194

Appendices

else lim->b = x;
x = int(float(f)/float(lim->b));
if (x < (float(f)/float(lim->b))) x++;
lim->a = x;

}

void getpos(int x, const Location* lim, Location* target) {
target->b = int(x / lim->a);
target->a = x % lim->a;

}

int findcell(int f, Cells* c, const Location* pos) {
Location temp;
for (int i=0 ; i<f; i++) {

c[i].getcellpos(temp);
if (temp = *pos) return i;

}
return - 1 ;

}

Problems.h

// Program for fractal layout simulation
// Anna M. Lassila, Sheffield Hallam University, September 2003

#ifiidefPROBLEMS_H
#define PROBLEMS_H

#include "fractal.h"

class Problems {
public:

Problems();
void clearprobs();
void incprod(int,int);
void showprod(int);
void allocrp(int,int,int,Cells*,const Product*,Routes*,int*,bool,int);
int probs; // number of problem machine type
int routeps[MAXMT]; // how many products need to be routed
machine excess[MAXMT]; // how much excess at which machine type

private:
int prods[MAXMT][MAXPT]; // which are the products?

};

#endif

Problems.cpp

// Program for fractal layout simulation
// Anna M. Lassila, Sheffield Hallam University, September 2003

#include "fractal.h"
#include "tabu.h"
#include <stdio.h>
#include <math.h>

Problems::Problems() {
probs = 0 ;

195

Appendices

clearprobs();
}

voidProblems::clearprobs() {
for (int i=0; i<MAXMT; i++) {

routeps[i] = 0 ;
for (int j-0 ; j<MAXPT; j++)

prods[i][j] = 0 ;
}

}

void Problems::incprod(int pos, int ptype) {
prods[pos][ptype]++;

}

void Problems ::showprod(int pos) {
for (int i=0; i<MAXPT; i++)

if (prods [pos] [i] > 0)
printf("%i of type %i,",prods[pos][i],i);

printf("\n");
}

void Problems::allocrp(int pos,int startc,int f,Cells* c,const Product* P,Routes* route,int* total,bool
final,int period) {

Location lim,src,dst;
calcsq(f,&lim);
c[startc].getcellpos(src);
int i,j,k,choice;
bool fit;
int* sequence = new int[f];
rsequence(&src,&lim,f,sequence,c);
//for (i=0 ; i<f; i++) printf("%i,",sequence[i]);

for (i=0; i<MAXPT; i++) {
while (prods[pos][i] > 0) {

j = 1 ; fit = false;
do {

for(k=0; k<P[i].machneeded; k++)
if (P[i].ptime[k].type = excess[pos].type) {

fit = c[sequence[j]].routeprod(excess[pos].type-
'A',P[i].ptime[k].time,false,period);

if (fit = true) {
route[startc].amount[sequence[j]]++;
c[sequence[j]].getcellpos(dst);
*total += abs(src.a-dst.a) + abs(src.b-

dst.b);
if (final = true) {

c[startc].addegress(i,excess[pos].type,&dst);

c[sequence[j]].addingress(P[i].ptime[k].time,excess[pos].type,&src);
}

}
}

j++;
} while (fit = false && j < f);
if (fit = false) { // product didn't fit anywhere

// look for largest capability
k = -0x7FFFFFF;
for (j=0;j<f; j++)

196

Appendices

if (c[j].getmnum(excess[pos].type-'A') > 0)
if ((c[i].getmnum(excess[pos].type-'A') * int(MU *

period) - c[j].getmachdem(excess[pos].type-'A')) > k) {
k = c[j].getmnum(excess[pos].type-'A') *

int(MU * period) - c[j].getmachdem(excess[pos].type-'A');
choice = j;

}
// force route to cell with largest capability
for(k=0; k<P[i].machneeded; k++)

if (P[i].ptime[k].type = excess [pos] .type)
c[choice].routeprod(excess[pos].type-

'A',P [i] .ptime[k] .time,true,period);
route[startc] .amount[choice]++;
//getpos(choice,&lim,&dst);
c[choice].getcellpos(dst);
*total += abs(src.a-dst.a) + abs(src.b-dst.b);
if (final == true) {

c [startc] .addegress(i,excess [pos] .type,&dst);
for(k=0; k<P[i].machneeded; k++)

if (P[i].ptime[k].type = excess[pos].type)

c[choice] ,addingress(P[i] .ptime[k] .time,excess[pos] .type,«fesrc);
}

}
prods [pos] [i]—;

}
}
delete [] sequence;

}

// = = non-member =

void rsequence(Location* src, Location* lim,int f, int*& target, Cells* c) { // get a sequence of cells to
test for routing

int ij ;
Location dst;
int currentd;
int* distance = new int[f];
for (i=0 ; i<f; i++) {

c[i].getcellpos(dst);
distancefi] = abs(src->a-dst.a) + abs(src->b-dst.b);

}
currentd = 0 ; j = 0 ;
while(j < f) {

for (i=0 ; i<f; i++)
if (distance [i] = currentd) {

target[j] = i;

}
currentd++;

}
delete [] distance;

}

int evahoutes(int f, int maxm, Cells* c, const Product* P, bool final, int period) {
int total = 0 , i, j;
if (f < 2) return 0 ;
Routes* route = new Routes[fj;
Problems* rp = new Problems[f];

// for (i=0 ; i<f; i++) {

197

Appendices

// c[i].resettraf(true);
// c[i].resettraf(false);
// c[i].ingress = 0 ; c[i].egress = 0 ;
// }

for (i=0 ; i<f; i++) {
//c[i] .quickdrawQ;
//for(j=0 ; j<maxp; j++) printf("prod %i has demand of %i\n",j,c[i].getdemand(j));
rp[i].probs = c[i].routed(&rp[i].excess[0],period);
//printf("%i machine types are problematic\n", rp[i].probs);
//for(j=0; j<maxm; j++) printf("Machine type %c has demand of %i\n", 'A'+j,

c[i] .getmachdem(j));
for(j=0 ; j<rp[i].probs; j++) {

rp[i].routeps[j] = c[i].countr(j,&rp[i],P);
//printf("%i products routed to meet type %c excess of

%i\n",rp[i].routeps[j],rp[i].excess[j].type,rp[i].excess[j].avail);
}

}
for (i=0 ; i<f; i++)

for(j=0 ; j<rp[i].probs; j++) {
c[i].decmachdem(rp[i].excess[j].type - 'A',rp[i].excess[j].avail);
rp[i].allocrp(j,i,f,c,P,route,&total,false,period);

}
//for (i=0 ; i<f; i++)
// for(j=0; j<maxm; j++) printf("Machine type %c has demand of %i\n", 'A'+j,

c [i] .getmachdem(j));

if (final == true) {
for (i=0 ; i<f; i++) {

for(j=0 ; j<rp[i] .probs; j++)
c[i].egress += rp[i].routeps[j];

for(j=0 ; j<f; j++)
c[i]. ingress += route[j].amount[i];

c[i].allocingress(); c[i].allocegress(); // Allocate memory
c[i].ingress = 0 ; c[i].egress = 0 ;
//c[i].cleardemand();
rp[i].clearprobs(); rp[i].probs = 0 ;

}
//assdem(f,P,c);
total=0 ;
for (i=0; i<f; i++) c[i].resetmachdem(P);
// Set traffic information
for (i=0 ; i<f; i++) {

rp[i].probs = c[i].routed(&rp[i].excess[0],period);
for(j=0 ; j<rp[i] .probs; j++)

rp[i].routeps[j] = c[i].countr(j,&rp[i],P);
}
for (i=0 ; i<f; i++)

for(j=0 ; j<rp[i].probs; j++) {
c[i].decmachdem(rp[i].excess[j].type - 'A',rp[i].excess[j].avail);
rp[i].allocrp(j,i,f,c,P,route,&total,true,period);

}
}
delete [] rp;
delete [] route;

// for (i=0; i<f; i++) printf("\ncell %i: I=%i, E=%i",i,c[i].ingress,c[i].egress);
return total;

}

int optextpos(int f, int maxm, Cells* c, const Product* P,int period) {

198

Appendices

int i, solution;
int neighlen = f * (f-1) / 2 ;
Location lim;
calcsq(f,&lim);
Permutation pi;
for (i=0 ; i<f; i++) pi.perm[i] = i;
//for (i=0 ; i<f; i++) c[i].cleardemand();
// assdem(f, P, c); MUST NOT USE
for (i=0; i<f; i++) c[i].resetmachdem(P);
pi.time = evalroutes(f,maxm,c,P,false,period);
printf("optimising external layout: %i,",pi.time);
Permutation* neigh = new Permutation[neighlen];
Permutation best = pi;
bool allowed; // internal flag variable
positions move; // pair of numbers showing swap move
Tabulist tabu; // declare tabu list
tabu.list_clear(); // empty tabu list

for (i=0; i<4*f*f; i++) { // moves
solution = pi.cposneigh(f,maxm,&lim,&neigh[0],c,P, period);

// = is this solution allowed?; ======= --======
do {

move = compare(f,neigh[solution], pi); // what move was made?
allowed = true; // assume that move is allowed
if (tabu.list_fInd(move)) // is move tabu?

if (best <= neigh[solution]) { // aspiration criterium
neigh[solution].poison(); // make this move unattractive
// find solution again with previous best being poisoned
solution = find_best(solution, neighlen, &neigh[0]);
allowed = false; // we have to repeat this

}
} while(allowed == false); // until move is allowed

if (neigh[solution] < best) { // new best found
best = neigh[solution]; // set new best
printf("%i,",best.time);

}

pi = neigh[solution];
//pi.display(f);
// = update tabu list = ------------ ====-r============= ■
if (tabu.list_size() = TABUCSIZE)

tabu.list_pop(); // remove oldest move from tabu list
tabu.list_push(move); // insert move into tabu list

}
pi = best;
//for (i=0 ; i<f; i++) c[i].cleardemand();
//assdem(f, P, c);
for (i=0; i<f; i++) c[i].resetmachdem(P);
for (i = 0 ; i < f; i++) c[i].setpos(pi.perm[i],&lim);
pi.time = evalroutes(f,maxm,c,P,true, period);
delete [] neigh;
return (pi.time);

199

Appendices

Dtabu.cpp

// Program for fractal layout simulation
// Anna M. Lassila, Sheffield Hallam University, September 2003

#include "fractal.h"
#include "tabu.h"
#include <stdio.h>
#include <stdlib.h>

void dtabu(int f, int total, int maxp, Permutation& pi, const Product* P, Cells* c, compositions comp) {
Permutation best; // best Permutation found
Permutation localbest; / / best Permutation in area
int solution; // best solution in neighbourhood
int noimpmoves; // number of moves w/o improvement

// Initialise tabu search
pi.distribute(f,total,P,c,comp);
best = pi;
localbest = pi;

int neighlen = dneighsize(total,maxp,P);
//printf("size = %i\n", neighlen);
Permutation* neigh = new Permutation[neighlen];
noimpmoves = 0 ;
printf("optimising product distribution: ");
int rmoves = 0 ;
do {

solution = pi.makedneigh(f, total, &neigh[0],c,P, comp);
solution = find_best(solution, neighlen, &neigh[0]);

// = is this a local best? = —-
if (neigh[solution] < localbest) { // new local best found

localbest = neigh[solution]; // set local best
noimpmoves = 0 ; // be patient
printf("%i,",localbest.time);

} else noimpmoves++; // otherwise lose some patience
// = is this even the best? ======---■■■ ======= ======
if (neigh[solution] < best) { // new best found

best = neigh[solution]; // set new best
//printf("%i,",best.time);
//best.display(total);

}
// = Did we exceed MAXNOIMP? ======-==------
if (noimpmoves > MAXNOIMP && rmoves <= MAXRMOVES) {

//printf("\nrandomizing");
rmoves++;
noimpmoves = 0 ; // be patient again
pi.drand(maxp,P);
pi.distribute(f,total,P,c,comp);
localbest = pi; // reset localbest

}
// = = MAXNOIMP not exceeded yet, making the move ========
else {

pi = neighfsolution];

//printf("%i,",pi.time);
}

} while (pi.time > 0 && rmoves <= MAXRMOVES);
pi = best;

200

Appendices

delete [] neigh;
}

int Permutation: :makedneigh(int f, int total, Permutation* neigh, Cells* c, const Product* P,compositions
comp){

// return as soon as better solution is found
int x = 0 ;
int i, j;
int besttime = OxFFFFFFF, bestx;
for (i = 0 ; i < total-1 ; i++) {

for (j = i+1 ; j < total; j++) {
if (perm[i] != perm[j]) { // swap made a difference?

for (int z = 0 ; z < total; z++)
neigh[x].perm[z] = perm[z]; // copy Permutation

neigh[x].perm[i] = perm[j]; // swap products
neigh[x].perm[j] =perm[i];

neigh[x].distribute(f,total,P,c,comp);
// if (neigh[x].time < time) {
// return x;
// }

if (besttime > neigh[x].time) {
besttime = neigh[x].time;
bestx = x;

}
x++;

}
}

}
return bestx;

}

int Permutation: :drand(int maxp, const Product* P){
// randomise demand Permutation, return length
int* temp = new int[maxp];
int total = 0 , i,j,x,y,z;
for (i=0 ; i<maxp; i++) {

temp[i] = P[i].demand;
total += P[i].demand;

}
for (i=0 ; i< total; i++) {

x = rand() % (total - i);
y = 1 ; z = 0 ;
for (j=0 ; j<=x; j++) {

while (y > temp[z]) {
z++; y = 1 ;

}
y++; •

}
temp[z]--;
perm[i] = z;

}
delete [] temp;
return total;

201

Appendices

int Permutation: :cposneigh(int f,int maxm,Location* lim,Permutation* neigh,Cells* c,const Product*
P,int period) {

int besttime = OxFFFFFFF, bestx;
int i,j,x=0 ,z;

for (i=0 ; i<f-l; i++) {
for(j= i+ l;j< f;j+ +) {

for (z = 0 ; z < f; z++)
neigh[x].perm[z] =perm[z]; / / copy Permutation

neigh[x].perm[i] = perm[j]; // swap products
neigh[x].perm[j] = perm[i];

for (z = 0 ; z < f; z++) {
c[z].setpos(neigh[x].perm[z],lim);
//c[z].cleardemand();

}
//for (z=0 ; z<f; z++) c[z].cleardemand();
//assdem(f,P,c);
for (z=0; z<f; z++) c[z].resetmachdem(P);
neigh[x].time = evalroutes(f,maxm,c,P, false, period);

/*for (z = 0 ; z < f; z++) {
//printf("%i,",neigh[x].perm[z]);
c[z].getcellpos(pos);
printf("%i: %i,%i, ",z,pos.a,pos.b);

}
printf("-> %i\n",neigh[x].time); */

if (besttime > neigh[x].time) {
besttime = neigh[x].time;
bestx = x;

}
x++;

}
}
for (i=0 ; i<x; i++) {

printf("\n");
for (j=0 ; j<f; j++)

printf("%i,",neigh[i].perm[j]);
}

return bestx;

void Permutation: :distribute(int f, int total, const Product* P, Cells* c, compositions comp) {
for (int i=0 ; i<f; i++) c[i].cleardemand();
bool flag;
int specialmt, j = 0 ;
if (comp = special) // find special machine type

for (int i=0; i< MAXMT; i++)
if (c[f].getmnum(i) > 0) { specialmt = i; break;}

for (i = 0 ; i<total; i++) {
c[j] .adddemand(perm[i], 1 ,P);
if (comp = special) flag = c[j].ability(true,specialmt);
else flag = c[j].ability();
if (flag = false) {

c[j].rmdemand(perm[i], 1 ,P);
j++; i—; // redo with different cell

202

Appendices

}
if(j >= f) { i++; break;}

}
time = total - i;

}

/ / ^ ========^ ===============m ==

int dneighsize(int total,int maxp,const Product* P) {
int x = total * (total - 1) / 2;
for (int i=0; i<maxp; i++)

x -= P[i].demand * (P[i].demand -1) / 2;
return x;

}

Flexi2.cpp

// Program for fractal layout simulation
// Anna M. Lassila, Sheffield Hallam University, March 2004

#include "fractal.h"
#include <time.h>
#include <stdio.h>
#include <stdlib.h>
// similarity to case study is 0 to 1 0 0

void copyproddefs(int maxp,const product* P, product* RCase) { // operator would have been nicer
int ij ;
for (i=0; i<MAXPT; i++) {

RCasefi]. number = P[i].number;
RCase [i].machneeded = P[i].machneeded;
for (j=0; j<P[i].machneeded; j++) {

RCase[i].ptime[j].time = P[i].ptime[j].time;
RCase[i].ptime[j].type = P[i].ptime[j].type;

}
}

}

void createcase(int sdev,int maxp,const product* P, product* RCase) {
int i,total=0 ;
int chnum, sprod, tprod, chnump;

bool excess;
int nummt[MAXMT], testmt[MAXMT]; // machines required o f each type

// reset demand
for (i=0; i<MAXPT; i++) {

RCase[i].demand = P[i].demand;
total += P[ij.demand;

}

// get limits from original case
P->getmtdem(maxp,&nummt[0]);

// how many changes?
chnum = int(sdev * float(total/1 0 0));

while (chnum > 0) {
do { sprod = randQ % m axp;} while (RCase[sprod].demand = 0);

203

Appendices

// do { tprod = rand() % m axp;} while (tprod = sprod);
tprod = rand() % maxp;
if (RCase[sprod].demand > chnum) chnump = 1 + rand() % chnum;
else chnump = 1 + rand() % RCase [sprod].demand;
chnum -= chnump;
RCasefsprod] .demand -= chnump;
RCase [tprod].demand += chnump;

}

// make sure we can do the job
do {

RCase->getmtdem(maxp,&testmt[0]);
excess = false;
for (i=0; i<MAXMT; i++) if (testmt[i] > nummt[i]) excess = true;
if (excess == true) {

do { sprod = randQ % maxp; } while (RCase[sprod].demand == 0);
RCase[sprod].demand

}
} while (excess = true);

}

Products.txt

Table containing product sequence and demands
Use the following format
Product, demand, 1st machine: time at 1st machine, 2nd machine: time at 2nd machine, etc...
#
1,25,A:7,E:10,B:3
2.15,A:3,C:2,E:11
3,40,E:5,D:2,B:9,A:2,C: 1
4,10,B:8,D:6,A:5
5.15,C:3,D:6,B:2,A:4,E:3
6.15,B:3,C:1,E:2,D:5
7.30,D:1,E:3,B:2
8,5,A:8,B:2,E:6,D:3
9.30,E: 1 ,A:2,B:2,C: 1 ,D:3
10.15,C:1,E:5,A:1

204

