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ABSTRACT

The statistical 1literature contains a wide variety of
reports on procedures for discriminant analysis. They range
from the classical linear discriminant and logistic model
at one end of the spectrum through to the recent recursive
partitioning and neural network based procedures in the
field of pattern recognition at the other extreme. By
contrast the 1literature offers 1little advice concerning
choice of procedure especially for discrete data. This
thesis therefore addresses the problem of selection of
optimal discriminant procedures for discrete data.

The problem is approached by identifying key determinants
of procedure choice such as prior information about the
data, sample size and the performance expected of the
procedure. Two new ways o0f assessing performance of a
discriminant are suggested for the discrete data situation.
The first of these, the m—-criterion, is a weighted sum of
posteriors for correctly allocated and misallocated
objects. The second consists of analysing performance in
relation to the distribution of relative differences
between the two largest posteriors. A selection tree is
constructed on the basis of these two approaches.

The results indicate that the m —criterion exhibits 1low '
variance as well as low bias but also has the ability to
differentiate better than the customary error rate. The use
of classification thresholds proves particularly useful in
the detection of optimal procedures for discrete data. A
structured approach using a selection tree is demonstrated
and evaluated.

Integration of the developed techniques 1nto statistical
software packages is recommended.
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Chapter 1 - Summary

"The problem of discriminant analysis may be subdivided
into three categories depending wupon the degree of
information available about the class specific
distributions F;. These are: (1) F; completely known which
is rarely the case, (2) the usual case in which the F; are
known to belong to some parametric class of distributions
so that F;(x) = F;(x,8;) where the distributions F, are now
known but 6; are unknown and require estimation and,
finally, (3) a similarly not unrealistic situation in which
the F; are completely unknown. The basic' problem in
discriminant analysis may then be described as finding
suitable means for estimating the class specific densities,
fi(xlei), and then using these to derive allocation rules".

1.1 Introduction

It is no coincidence that the above quote dates back over
40 years which may surprise in the context of the present
thesis. However it has been selected because few authors
have since been able to state the discriminant problem as
succinctly as Fix and Hodges did in 1951!. These authors
addressed the problem of estimating unknown probability
distributions which laid the foundations for a technique
later to become known as nearest neighbour procedure. They
also used these density estimates to obtain allocation
rules for discriminating among different populations.

Unlike many other areas in statistics the subject of
discriminant analysis - not necessarily restricted to
discrete data - draws simultaneously on several basic
statistical techniques. These include estimation theory,
distributional theory, sampling theory and decision theory.
Thus any more than cursory treatment of discriminant

1 Fix, E. and Hodges, J.L. (1951). “Non-parametric
discriminant analysis-, United . States Air Force School of
Aviation Medicine, Project Number 21-49-004, Reports. 4 &
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analysis claiming to be exhaustive will tend to be
expansive. The recent book by McLachlan (1992) - frequently
referred to as the standard text on discriminant analysis -
is a good case 1in point. Yet even his comprehensive
treatment including a bibliography of more than 1200
references only partially deals with the recent recursive
partitioning procedures and gives little structural help in
selecting optimal procedures. The present thesis on
discriminant analysis is, therefore, restricted to
discriminant analysis specifically applied to discrete
datasets. Emphasis has been placed on the mechanics of
deriving a structured approach to selection of optimal
procedures rather than on the issues of missing data
estimation and selection or transformation of variables.

The work presented in the following deals with the
situation where the data are exclusively of a discrete
nature, where prior information about the data
distributions is only partially given, scant or not
available at all and where a choice has to be made among a
range of discriminant procedures not necessarily all
specifically designed for discrete data.

In the published literature there are not many guides to
selection of discriminant procedures. This is especially so
in the field of discrete data where often no data model
exists thus making density estimation a crucial step. A
further difficulty arises because for datasets with few
discrete multivariate states, estimates of the
misallocation error will also tend to be unstable. As these
depend on the posterior probabilities of population
membership the problem is thus reduced to finding realistic
estimates of the posteriors.

This problem is addressed and also extended to an
investigation of the entire posterior distribution. The
results show that extracting information from the
posteriors readily 1lends itself to constructing useful
criteria for performance assessment of a° discriminant

19



procedure. Two new tools are introduced for this purpose.
Firstly, a variable classification threshold is
constructed, and in order to qualify for allocation an
object's posterior probability must exceed this 1local
threshold. Secondly, the distribution of relative
differences between the first two largest posteriors is
derived empirically and then used as an additional
evaluator of the performance of a discriminant rule. Next
the crucial determinants of procedure choice are identified
and based upon these a suitable selection tree |is
constructed. A structufed approach to procedure selection
is developed.

The results from applying this approach to a range of "real
data" taken from the published 1literature as well as
results obtained from artificially generated data using
Monte Carlo techniques indicate that the suggested
performance criterion may suitably augment the common
misallocation error. The computational method is

straightforward and readily implemented on a small
microcomputer using assembled FORTRAN code. The inputs
required for the programs are the posterior probabilities
of population membership which can also be supplied by most
professional statistical software. Possible extensions of
the suggested method to datasets with continuous or mixed
data structures are also straightforward. Artificial
datasets, expectation, bias and variance of performance
estimators as well as estimates of the empirical
distribution of the relative difference of maximal
posteriors were generated using bootstrap technigques. The
procedure selection approach is demonstrated using real and
artificial data. The structured approach and use of the new
performance criteria enables choice of reliable procedures.

1.2 Layout of thesis

The entire thesis comprises all the parts shown in fig.
1.2-1
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I. INTRODUCTION

II. REVIEW
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IV. RESULTS

V. DISCUSSION

- Appendices

Figure 1.2-1: Layout of thesis

The main body of the thesis breaks down further into 5
major parts following the classical layout: (1)
Introduction, (II) Review, (III) Method, (IV) Results and
(V) Discussion. These parts are emphasised in bold type in
Fig.1l-1. The following briefly describes parts I to V.

2. Introduction and Aim of Thesis

Figure 1.2-2: Part I: Introduction
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A non technical introduction to the subject is given using
a series of examples which illustrate a variety of data
situations. The examples show all of the key issues
addressed later: the data dimension ranging from continuous
to discrete, linear and curvilinear sepération lines, the
effects of scaling of variables, overfitting and
parsimonious models, sampling effects, pattern recognition,
interactions between variables, partitioning techniques and
selective discrimination. This part ends with a

specification of the research aims.

3. General Issues

4. Direct 5. Nonparametric 6. Indirect
Procedures Density Procedures

Estimation

7. Performance Evaluation

Figure 1.2-3: Part II: Review

This part begins with a coverage of general issues in
discriminant analysis (chapter 3). Next direct discriminant
procedures that use the posteriors explicitly in allocation
are treated separately (chapter 4) from indirect procedures
that use other techniques such as interpopulation distances
(chapter 6). As the distribution of posterior probabilities
across discrete datasets depends on the respective
population specific densities their estimation is vital to
the success of a discriminant procedure. In the case of
discrete data a parametric model may not always exist. An
entire chapter has therefore been devoted to the review of
nonparametric density estimation (chapter 5). The review
ends with a chapter on the evaluation of performance of a
given discriminant procedure (Chapter 7).
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8. Performance 9. Classification
Criteria Thresholds

10. Technical Issues

11. Data Sets

12. Construction of Selection Rules

Figure 1.2-4: Part III: Method

The review (part 1II) indicates that improvements on
performance evaluation are needed for establishing a useful
selection guide. Hence the first two chapters deal with
construction of suitable performance criteria (chapter 8)
and classification thresholds (chapter 9) respectively. The
use of classification thresholds, i.e. the specification of -
a minimum threshold to be exceeded by the posterior
probability, is new and non standard practice. For this
reason it is treated in a chapter on its own. The next two
chapters describe necessary technical refinements and
adjustments to procedures (chapter 10) and also give an
overview of the real and artificial datasets used in the
examples (chapter 11). Finally the construction of
selection rules is developed in chapter 12.

13. Analysis of 14. Analysis of
Performance Classification
Criteria Thresholds

15. Application of Selection Rules

Figure 1.2-5: Part IV: Results
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The results are threefold and are presented in separate
chapters: the analysis of performance criteria (chapter
13), the analysis of classification thresholds (chapter 14)
and application of the selection rules (chapter 15).

16. Discussion

17. Further Studies

18. Conclusions

Figure 1.2-6: Part V: Discussion

The final part begins with a detailed discussion of all the
results (chapter 16). Here the starting points are the aims
as specified initially at the end of chapter 2. Set against
these, the results are evaluated to determine whether the -
aims have been achieved. Chapter 17 1lists the areas not
covered at all or only partly covered in the present
thesis. Areas of possible future or related research that
are seen to go beyond the scope of this thesis are
suggested. The main conclusions to be drawn from the
research are presented in a short final chapter 18 for

quick reference.

All chapters within parts I to V are structured similarly,
in that they begin with a diagram similar to the above
indicating placement of the chapter within the thesis.
Where appropriate final sections within chapters contain
short summaries. A comprehensive list of all references is
given in the chapter 19 just before the appendix. The
appendix contains detailed results not =suitable for
inclusion in the main results chapters 13, 14 and 15.
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"Can you please tell me where I ought
to go?" asked Alice. '"Well it all
depends on where you want to get to."
replied the cheshire cat.

Chapter 2 - Introduction

This chapter introduces the main issues of discriminant
analysis when applied to discrete data. It has been kept
non technical, but, nevertheless, intends to introduce the
main issues of discriminant analysis when applied to
discrete data. 1Initially the chapter gives a cursory
overview of classification problens comparing and
contrasting the fields of discriminant analysis, cluster
analysis and pattern recognition in the way of a general
introduction to the subject. Some essential basic notation
is introduced where required. Formal definitions follow
later in the review and method chapters. The introduction
is practically void of any references. The main body of
references with particular emphasis on recent work is given
in the literature review in part II. For completeness the
review also includes references to areas not directly
covered in the thesis such as some o0f the indirect
procedures and selected features of nonparametric density
estimation. The central discriminant problem is illustrated
by way of examples using artificial data. Consideration of
these examples leads to the core issues to be addressed in
the research. These are conveniently phrased in terms of a
check~list of gquestions. The introduction ends with a
specification of the research aim.

2.1 Discriminant analysis and classification

An interest in classification permeates many scientific
studies and also arises in the contexts of many
applications. For problems such as speech and speaker
recognitidn in acoustics, numerical taxonomy in biology,
the detection of diseases by symptoms in health sciences,
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the classification of articles in archaeology, the
identification of market segments in market research - the
central interest is in classifying objects, subjects, or
entities of some kind. When the classification is based on
measurements of a set of characteristics or variables,
statistical techniques are available to aid the

classification process.

One may distinguish two broad categories of classification
problems. In the first, one has data from known or
prespecified groups as well as observations from entities
whose group membership, in terms of the known groups, 1is
initially unknown and must be determined through the
analysis of the data. For instance, one may have several
repeated utterances of a specific word by different
persons, and acoustic parameters extracted from each
utterance labelled by the particular speaker would
constitute the known replicate representations (also called
training samples). In such a situation, if some additional .
utterances of the same word become available but one does
not know from which person these utterances arose, one may
need to make such an assignment statistically. This is an
example of the so called speaker recognition problem where
classification 1is with respect to the known speakers
(groups). In the pattern recognition literature reviewed by
Duda and Hart (1973) this type of classification problem is
referred to as supervised pattern recognition or learning
with a teacher. In statistical terminology it falls under
the heading of discriminant analysis.

On the other hand there are classification problems where
the groups themselves are a priori unknown. The primary
purpose of the analysis is to determine the groupings from
the data so that entities within the same group are in some
sense more similar or homogeneous than those that belong to
different groups. Many problems of numerical taxonomy, as
well as market segments that are determined on the basis of
demographics and psychographic profiles of people, provide
examples of this second type of classification problem
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where the groups are data dependent and not prespecified.
This type of classification problem is referred to as
unsupervised pattern recognition or Jlearning without a
teacher, and in statistical terminology falls under the
heading of cluster analysis or latent structure analysis
rather than discrimination.

Although discriminant analysis and cluster analysis
constitute a useful dichotomy of classification approaches,
there are many real life problems that combine the features
of both situations. One might have some preliminary or
imprecise idea of the groups from which the data arise but
may seek corroborating evidence of the meaningfulness of
the prespecified groups in certain problems. Some
combination of the tools from the two types, or perhaps
entirely different and as yet unavailable tools, may be
appropriate for these situations.

The discriminant analysis situation is characterised by the .
following: one has two types of multivariate observations -
the first, called training samples, are those whose group
identity (i.e. membership in a specific one of say g given
groups is known a priori), and the second type, referred to
as test samples, consists of observations for which such a
priori information is not available and which have to be
assigned to one of the g groups.

The variables constituting the multivariate observations
and the "groups" involved will depend on the particular
application. For instance, in anthropometry, the variables
might be different measurements on fossils and the groups
might be a known taxonomy of the fossils (e.g. different
races or different stages of evolution). In a medical
application, the variables could be the results of various
clinical tests and the groups could be collections of
patients known to have different diseases. In an acoustical
application, the variables might be a set of acoustical
parameters extracted from the utterance of a specific word
by an individual whereas the groups are repeated utterances
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of the same word by different individuals. In each of these
cases, there are observations whose group identity is known
(the training samples) but there will also be some
observations whose classification is unknown (e.g. a fossil
whose race group is unknown, a patient whose disease
category is unknown or an utterance whose source speaker is

unknown) .

In thinking of the more numerically oriented methods of
discriminant analysis, it 1is useful to distinguish two
stages of the analysis, although not all of the available
statistical methods either make such a distinction or are
equally useful for the two stages. The first stage,
concerned solely with the training samples, is to find a
representation of these observations so as, in some sense,
to clearly separate the g groups. The resulting
representation, usually a spatial one, is often called the
discriminant space. Such a representation when presented
graphically has major descriptive and diagnostic wvalue in .
analysing data.

The second stage of a discriminant analysis is concerned
with assigning the test samples (i.e. those observations
whose group identity is initially unknown) to one of the g
specified groups. At this stage, the focus is on correct
classification. Some measure of correct classification,
using the training samples and not the test samples, is
often used to evaluate the performance of discriminant
analysis methods. An important scientific consideration,
sometimes not emphasised adequately 1in the statistics
literature on discriminant analysis, is that in the real
world it may turn out that an item whose classification is
unknown may not belong to any of the prespecified groups
but indeed be a member of an entirely different or hitherto
unknown group (see Rao, 1960, 1962; Andrews, 1972).

Statistical considerations in discriminant analysis have to
do with distributional assumptions concerning the
observations, measures of separation among groups,
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algorithms for carrying out both stages of the discriminant
analysis and the study of the properties of proposed
algorithms. Historically Fisher (1936) was the first to
propose a procedure for the two-group (g=2) case based on
maximising the separation between the groups in the spirit
of analysis of variance. This procedure is equivalent to
the likelihood ratio procedure that arises if one assumes
multivariate normality with a common covariance matrix for
the observations from both groups. Initial extensions were
concerned with multiple groups and with heterogeneous
covariance matrices across more than three "groups, but
still retained the assumption of multivariate normality.
These normality based methods are the ones most widely used
in practice. Provided the measured variables are not
constrained to take on only a few distinct values, as in
the case of binary variables, transformations of them might
enhance their normality and enable the more sensible use of
the normality based procedures. An example of this is the
frequently skewed (Poisson) distribution of counts that may
be "normalised" by either a logarithmic or a sgquare root
transformation. There are real situations involving
variables, such as binary or categorical ones, that are not
sensibly transformed. Distribution free and nonparametric
methods, which move away from the normality assumption,
have been developed relatively recently to handle such data
(see Lachenbruch, 1975; Hand, 1981).

2.2 Typical examples of discriminant analysis

~To illustrate the discriminant situation consider first the
simplified case of objects belonging to either of two
populations from whom continuous measurements on two
variables have been obtained. An often used model is to
assume that the Jjoint distribution of the independent
variables is normal. This is the case in the first example
(figure 2.2-1). The data were generated artificially by
independent sampling from two bivariate normal
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distributions with different means and identical wvariances
and covariances.
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Figure 2.2-1: Continuous data discrimination

Figure 2.2-1 shows simulated bivariate normally
distributed data in two populations. The obvious
discriminant rule 1is: "Allocate any new object whose

population membership is unknown to population 2 if 1its
coordinates for X, and X, lie in the region above the
broken (discriminant) line."

The two populations are clearly visible and a best
separation boundary can be specified in terms of a simple
straight line in the plane defined by the two independent
variables X, and X,. Frequently in situations such as this
a straight line provides optimal separation. Occasionally
further improvement may be achieved by using curved lines
generally described mathematically in terms of polynomial
functions. A well known such example is the so called
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guadratic discriminant function. The variances are small
compared with the differences in means for the variables X,
and X, and so the resulting scatters fall into almost
distinct groups. An arbitrarily <chosen straight 1line
enables almost complete separation with only 3 observations
incorrectly allocated to the other group. Misallocations
are points belonging to population 1 yet falling in the
region assumed for population 2 and vice versa. Figure
2.2-2 shows the data from <figure 2.2-1 after a
discretising transformation of X, and X,.
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Figure 2.2-2: Discrimination with discrete data

The transition from continuous to discrete data may lead to
a loss of information. For the data above no straight line
can be found that separates both populations as well as in
figure 2.2-1. Medical and survey data frequently take this
discrete shape. Small circles resemble 1 observation, large
ones 2 observations. To enable distinction observations
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from population 1 are displaced to the right of grid
intersections and observations belonging to population 2 to
the left. The broken discriminant line has been retained
from figure 2.2-1. Discretising means that the formerly
continuous variables X; and X, are now only allowed to take
on certain discrete values. Here this is achieved by
rounding X; and X, to the nearest 0.5 - other values are of
course also possible. As a résult of discretisation
observations from both populations may coincide. To enable
identification of observations from both populations the
circles corresponding to population 1 have been slightly
displaced to the right of grid intersections and those
belonging to population 2 to the 1left. The area of the
circles is proportional to the number of observations with
coincident coordinates. The dotted line has been retained
from figure 2.2-1. The misallocation errors appear larger
with the discretised data. Even other 1lines would not
substantially improve separation. The transition from
figure 2.2-1 to figure 2.2-2 demonstrates the potential
loss of information when dealing with discrete as opposed
to continuous data. This is mainly due to the observations
from population 2 with coordinates (1.0, 1.5), (1.0, 1.0)
and (1.5, 1.0) 1lying well inside the area dominated by
population 1. A common example of suchl information
reduction 1is the transformation of continuous assessment
scores out of a hundred to k-category examination grades.

Typically a large number of questions in medical research
revolve around detection of a suspected disease given
observed clinical or laboratory data. Common multivariate
approaches to the problem of predicting among several
outcomes are multiple regression and discriminant analysis.
Statisticians are notorious for pointing out that the
assumptions for application of classical discriminant
analysis are rarely met under such circumstances,
particularly in the fields of medical, social and
psychological research. In early years when alternative
tools were not as established this used to be a serious
issue. However, with the advent of other sophisticated
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nonparametric procedures such as recursive partitioning and
neural networks in recent years - made possible largely by
the ever increasing improvement of hardware and software
capabilities - the resistance by some statisticians towards
applications of discriminant analysis for discrete data
needs reconsidering. With readily available software for
nonparametric discriminant analysis violation of the
stringent normality assumptions of classical discriminant

analysis can be more easily avoided.

The use of classical linear discriminant analysis can be
demonstrated by means of literature search. This was done
for a sample of recent articles published in the medical
field. The MEDLINE literature search program provided by
the SILVER PLATTER company to large university 1libraries
gives access to all papers referenced by the INDEX MEDICUS
and as such has become a standard reference in medicine.
This index was inspected for publications in the years
1989, 1991 and 1993 using the search expression

("discriminant analysis" and either "linear" or
"stepwise"). Of the approximately 1000 references on
"discriminant analysis" 230 included references to either
"linear"  or "stepwise". In 148 of these, further
information on the type of analysis conducted could be
gleaned from the abstracts. On average the number of
observations per analysis was 416 with a mode around 100.
Generally the number of variables considered initially (9.3
on average) was larger than the number of variables finally
considered to be related to the outcome event (5.2 on
average). From the information given in the abstracts the
type of variable was classified on a dimension ranging from
continuous through ordinal and unordered categorical or
nominal to dichotomous as shown in table 2.2-1.
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type of typical examples
variable

temperature

reaction times
weight, height
continuous
percentages

blood cell counts

total scores
(questionnaire)

age
ordinal examination grades

n-point scale
(questionnaire)

oininal blood group

colour, race

binary sex

ves/no

Table 2.2-1: The data type dimension

The second column of the table gives typical examples for
each type of variable. The boundaries between variable
types are deliberately not sharply defined. For instance
while temperature clearly is a continuously measured
quantity examination grades could be viewed as either
continuous or ordinal depending on the underlying data
model. When grade is expressed as a percentage it is
reasonable to view grade as a continuous variable. However,
when grades are expressed as codes ranging from A through
to F they will generally be seen as ordinal. Blood group or
sex on the other hand are clearly identified as being of
unordered categorical or nominal and dichotomous or binary

respectively.

The above classification was used to classify the 148
abstracts according to the types of vari