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Abstract

Among many photovoltaic (PV) technologies polym er-fullerene based inverted bulk 
heterojunction (BHJ) solar cells have drawn lot attention in recent years due to low cost 
fabrication over a large area by using simple solution-processed methods. This thesis 
presents a study o f inverted organic solar cells (OSCs) on indium tin oxide (ITO) coated 
glasses and metal substrates using spin coating technique. Zinc oxide (ZnO) and poly(3,4- 
ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) were used as the electron 
transport layer (ETL) and hole transport layer (HTL) respectively. Poly(3- 
hexylthiophene):[ 6,6]-phenyl C61-butyric acid methylester (P3HT:PCBM ) was used as an 
active layer. The ZnO layers deposited using nanoparticles (NPs) and sol-gel route at a 
tem perature o f  150 °C. The poor wettability o f aqueous PEDOT:PSS on the hydrophobic 
P3HT:PCBM  layer was improved with the addition o f  surfactant Triton X-100. The 
P3HT:PCBM  photoactive layer was optimised in terms o f solvents, concentrations and 
layer thickness. However, the thickness o f  the active layer in BHJ devices need to be very 
thin (~ 200 nm) which causes poor light absorption and low carrier m obilities. Therefore, it 
is important to introduce new approaches to enhance the photon absorption efficiency o f 
the active layer under the film thickness limitation. Among all the approaches plasm onic 
nanostructures have recently emerged as an expanding area to enhance light absorption in 
organic photovoltaic (OPV) devices.

A low vacuum Plasma assisted physical vapour deposition (PAPVD) method was used to 
deposit Gold (Au) NPs thin film onto the PEDOT:PSS layer in the inverted P3HT:PCBM  
OSC devices. The Au NPs incorporated into the PEDOT:PSS layer and reaching the active 
P3HT:PCBM  layer can provide a significant plasmonic broadband light absorption 
enhancem ent to the active layer. An improvement in the short circuit current density o f  50- 
90% has been achieved compared with those OSC devices w ithout the plasm onic light 
absorption enhancem ent. The enhanced current density is directly related to the 
enhancem ent o f  light absorption in the active P3HT:PCBM  layer due to the creation o f  
localized surface plasm onic resonance (LSPR) by Au NPs or nanom eter-sized Au clusters. 
OSC devices were fabricated with various thicknesses o f  Au NPs films; the OSC device 
with -5 .0  nm Au NPs film exhibited an efficiency o f  -  5.01% with a fill factor o f -66 .61% . 
The obtained im provem ent in power conversion efficiency (PCE) is m ainly assigned to the 
noticeable increase o f  photocurrent and the improvement in the fill factor.

Top illuminated inverted OSC devices were fabricated on metal substrates, namely: 
polished stainless steel (SS), titanium coated steel (Ti-S), chromium coated alum inium  (Cr- 
Al) and polished aluminium (Al). OSC devices on metals had the simple structure o f (M etal 
substrate/sol-gel ZnO/P3HT:PCBM /PED OT:PSS/hcPEDOT:PSS). Good perform ance OSC 
devices were achieved on both the SS and Cr-Al substrates with an efficiency o f  -3 .1 0 %  
while no effective devices were produced on Ti-S and Al substrate. Electrical im pedance 
spectroscopy experim ents showed that the native oxide layer on top o f  different metal 
substrates causes significantly different performance in PCE for the inverted OSC devices.
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Chapter 1: Motivation and Outline

1.1 Combustion of fossil fuels

The global energy dem and is increasing dram atically  at an alarm ing rate. Fossil fuels 

are our society's m ain sources for energy, accounting for 87%  o f  w orld energy 

consum ption in 2012. It is foreseeable that these resources are lim ited and cannot 

provide enough energy to m eet the increasing needs by the w orld in the future [1-3]. 

N uclear energy can play an im portant role on supplying the pow er; how ever, it has its 

lim itations on the supply o f  raw m aterials and the long-term  safety for storage o f  w aste 

m aterials. The w aste m aterials generated by the nuclear pow er plant are radioactive and 

has a lifespan o f  m ore than ten tim es the half-life o f  the used m aterials [4]. Currently, 

the carbon dioxide (C O 2) em ission has reached to 34.5 billion tonnes per in 2012 [5] 

m ainly due to the burning o f  fossil fuels based energy sources including petroleum  and 

coal. As a result, the CO 2 concentration in the atm osphere continues to m ount and has 

reached to approxim ately 393.31 ppm by volum e in Septem ber 2013 [6]. This m assive 

am ount o f  C O 2 and other greenhouse gases create harmful effects on the delicate 

balance o f  nature. The rising o f  sea level and global surface m ean tem perature have 

already increased the frequency and severity o f  natural disasters [7]. It is likely to  have 

m ore devastating effects on hum an beings and other life form s in the future tim e. 

Therefore, renew able energy sources are urgently required to play a prom inent role in 

coping with this challenge.

1.2 Energy requirement issues

A ccording to International Energy A gency (2012), it is very difficult to lim it the global 

w arm ing w ithin 2°C and becom es m ore expensive with each year that passes [8]. All



the perm issible C O 2 em issions would be locked-in by the existing energy infrastructure, 

if  there is no action before 2017 [9]. The w orld energy dem and has increased about 26%  

from 2000 to 2010 and a further growth o f  47%  has been predicted up to 2020. From 

1973 to 2010 the annual grow th was 3.4%  and it is estim ated to grow  89%  from 2010 to 

2035 [10]. In 2010 the global consum ption was 18,443Teraw att-hour (TW h) and 

predicted to grow  to 35,000 TW h in 2035. United N ations has predicted that the w orld 

population grow  from 6.6 billion in 2007 to 8.7 billion by 2035 [11,12] and the dem and 

for energy also increases substantially over this period. Energy is a basic need 

underlying all aspects o f  the global econom y. C urrently  som e tw o billion people have 

no access to electricity and in future tim e it is a high priority  to address this issue.

As outlined above, the grow th in population associated w ith the increased living 

standard pattern in m ost developing countries will lead to a big increase in energy 

consum ption. The increased share in the global energy dem and can reach up to 70%  for 

the developing countries, led by India and China [13]. Security concerns are also 

driving the pursuit o f  renew able energy sources. A large portion o f  oil based fossil fuels 

have been found to exist in regions w here are politically  instable and som etim e create 

disturbances in regular supplies. Such disturbances can be serious issues for one 

individual country securing its energy supply. Furtherm ore, the security concerns are 

not lim ited to supplies only, but also associated w ith the electric pow er blackout; 

exam ples are the "August 2003" blackout in N orth A m erica and the "July 2012" 

blackout in India that affected over 620 m illion peoples, caused enorm ous econom ic 

losses and presented serious national security concerns. A ccording to the W orld Energy 

Outlook 2012 new policies scenario, the global energy dem and w ill increase rapidly due 

to increased urbanisation and the lim ited supply o f  carbon based fossil fuels, w hich has 

m otivated the w orld to pursue for new  energy sources [14].
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1.3 Solar energy

A solution to the twin problem s o f  getting exhausted conventional fossil fuels and their 

environm ental im pacts is to explore the renew able energy sources. The Sun is the m ain 

energy source on earth and direct conversion o f  solar energy into electricity  is a very 

appealing w ay to satisfy the future energy needs in the m odern w orld creating the 

m inim al im pact on the ecosystem . The Sun can deliver enough energy to  m eet the 

global energy dem and. The total solar flux intercepted by the earth is called "solar 

constant" that is equal to 1.37 kilow att/square m eter (kW /m 2). The tim e-and-space- 

averaged solar flux striking the outer atm osphere o f  the earth is one quarter o f  this, ie.

342.5 W /m . O ut o f  it, nearly about 19% o f  this flux is absorbed by the atm osphere 

including clouds while 30%  o f  this flux is scattered (W allace 1977, pp. 320-321). 

Therefore, the average striking flux tow ards the ea rth ’s surface is 174.7 W /m 2. The total 

theoretical potential o f  solar pow er (integral o f  this average flux over the ea rth ’s surface 

area) is 89,300 TW . This theoretical potential could be used to generate 15 TW  o f  solar
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pow er from the 10% pow er conversion efficiency solar-conversion system s covering 

only 0.17%  o f  the earth ’s surface area (15 TW  / 89,300 TW ) / (0.1)= -.0 0 1 7 ) that is

2 2 858,792 km “. This is roughly equal to the land area o f  N am ibia (825,418 km ) or

V enezuela (882,050 km 2) [15].

The solar pow er can be exploited in several different ways. F irstly, solar pow er can be 

used directly for buildings heating. There are m assive efforts being taken place to 

integrate the passive solar energy captures into the building architecture. Secondly, the 

energy associated with solar radiation can also be used to heat w ater for household or 

dom estic use. This water heating technology has been adopted in m any regions o f  the 

w orld like Israel w here nearly 90%  o f  the household utilize solar pow er for w ater 

heating [16]. Thirdly, solar pow er can also be used directly to generate electricity.

There are two prim ary m ethods for generating electricity  through solar power. One is 

the solar therm al way and another is the direct conversion o f  solar pow er into electricity  

using the photovoltaic effect. Total global operating capacity o f  solar PV has reached 

the 100 gigaw att (G W ) m ilestones [17]. The m ost o f  the installed capacity is in Europe 

with significant additions in A sia in the latest year. As prices are going dow n, solar 

pow er is expanding to new m arkets, from A frica and the M ENA  region to A sia and to 

Latin Am erica.

Interests in the com m unity-ow ned and self-generation system s continued to grow  in

2012, while the num ber and scale o f  large solar pow er projects also increased. The first

com m ercial concentrated solar pow er plants w ere developed in the 1980s. The M ojave

(located at California, United States) 354 m egaw att (M W ) SEGS com m ercial

concentrated pow er (CSP) installation is currently the largest solar pow er plant in the

world [19]. The Solnova solar pow er station (150 M W ) and the A ndasol solar pow er

station (150 M W ), both in Spain are other CSP based pow er plants. The 250+ M W
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Agua caliente Solar Project in the United States and the 221 M W  Charanka Solar 

Park in G ujarat, India, are the w orld ’s largest photovoltaic pow er stations [19].

Table 1.1 Electricity generation from solar pow er [18]

Year Energy (TW h) (%) o f  Total

2005 3.7 0.02%

2006 5.0 0.03%

2007 6.7 0.03%

2008 11.2 0.06%

2009 19.1 0.09%

2010 30.4 0.14%

2011 58.7 0.27%

2012 93.0 0.41%

2013 124.8 0.54%

In 2013, solar pow er supplied a very small portion o f  the w orld 's energy and about

0.54%  (Table 1) o f  the total energy and the total non-hydro- renew able energy share 

was 5.2%  [17]. This small m arket share is due to the high m anufacturing and installing 

cost o f  photovoltaics (PVs), but it has been predicted that in future decade fossil fuels 

based pow er conversion will lose their shares and renew able energy starts to penetrate 

at large scale. Reductions in the production costs and governm ental subsidies are 

necessary if  PVs are to com pete with the fossil fuels.
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1.4 Motivation behind the thesis

Extensive research in photovoltaic (PV) technologies has been carried out since 

discovery o f  the PV effect in silicon (Si) diodes in 1954 [20]. In recent decades, am ong 

m any PV technologies, considerable efforts have been focused on the study o f  organic 

photovoltaic (O PV ) devices due to their advantages o f  relative ease low tem perature 

fabrication, w ith a good m echanical flexibility, and potential cost-effective production 

rate com pared to crystalline Si and various inorganic thin film  solar cells [21-24].

The efficiency and lifetim e o f  organic solar cells are low er as com pared to Silicon and 

various inorganic (CdTe, CIGS) thin film  solar cells. Thus, investigation o f  new 

m aterials w hich could fulfil the m ultiple param eters for O PV s and the sim ple cost 

efficient production process m ust be carried out in order to lead to the com m ercialised 

organic solar cells in the near future. The research dem onstrated in this thesis is to 

investigate different device architectures for enhancem ent o f  the pow er conversion 

efficiency (PCE). In this thesis, tw o kinds o f  approaches have been studied to increase 

the solar cell PCE and to understand fundam ental principles w hy the PC E has been 

im proved.

The first approach is to study the devices with inverted PV structures on ITO coated

glasses. Enhancem ent in optical absorption and device efficiency o f  poly (3-

hexylthiophene) (P3H T) and [6,6]-phenyl C61-butyric acid m ethylester (PC B M ) based

inverted organic solar cells has been achieved through the incorporation o f  Au

nanoparticles (NPs) in the hole transport layer and the m odification o f  active layer using

the high boiling point m aterial additive. D ifferent noble m etallic N Ps and their positions

w ith different concentrations, shapes and sizes have been review ed [25-27]. It is usually

recognized that m etallic N Ps em bedded inside the active layer cannot im prove the

device perform ance due to the loss m echanism  including non-irradiative decay and
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charge carrier recom bination that can lead to a decrease o f  charge carriers [28]. 

A lthough deposition o f  noble m etallic N Ps on ITO electrodes or poly (3,4- 

ethylenedioxythiophene): poly(styrenesulfonate) (PED O T:PSS) HTL layers has been 

w idely studied and som e good enhancem ent in efficiency and fill factor has been 

achieved [27, 29], C om pared with the incorporation o f  periodic nanostructures in the 

devices that leads to a narrow  spectral enhancem ent, physical m echanism  that received 

m uch attention is the random ly distributed N Ps w ith varying shapes and sizes ow ing to 

that broadband light absorption enhancem ent can be realised [30]. The second approach 

is to study the inverted organic solar cells on flexible metal substrates using high 

conducting organic as the top anode.

Currently m ost o f  the reported inverted OPV devices have been fabricated on either 

glasses or transparent plastic substrates coated w ith ITO. G lasses are rigid, w hich is not 

com patible w ith roll-to-roll processing unlike highly flexible plastic substrates. 

However, the sheet resistance o f  ITO film s obtained on flexible plastic substrates is 

relatively high, which decreases short circuit current and fill factor o f  the O PV  devices. 

Therefore, metal substrate is a potential alternative o f  producing flexible OPV  devices 

via the inverted structures [31, 32]. The opposite charge collection m echanism  o f  the 

inverted configuration also allows the use o f  the high w ork function m etal as the 

substrate and highly stable transparent m aterials as the hole collecting electrode, w hich 

can increase the overall stability o f  the devices.

Furtherm ore, com pared to the plastics, m etal has high conductivity  and has the 

advantages o f  cost-effective, excellent m echanical flexibility  and therm al stability  in the 

industrial fabrication processes at the required elevated tem perature. Several different 

techniques are used to characterise electrical, optical, structural and m orphological 

properties o f  the devices. M ultiple techniques allow  for independent confirm ation o f  the



results, and provide further understanding to optim ise the devices and to achieve high 

PCE.

1.5 Thesis objectives

The overall aim o f  this study is to fabricate high-efficiency (-5 .0 % ) inverted top 

illum inated organic solar cells on ITO coated glass and m etal substrates using all 

solution processed techniques by the spin coating method. The fabricated thin film s and 

devices will be characterised by various techniques. The optical properties o f  the 

deposited layers and devices will be studied by the U V -V IS/N IR  spectrophotom eter and 

the ellipsom etry, respectively. X -ray diffraction and electrical im pedance spectroscopy 

will be used to investigate the structural and the interlayer resistance o f  the deposited 

thin film s, respectively. M orphologies o f  the thin film s will be observed by the scanning 

electron m icroscope (SEM ) and the atom ic force m icroscope (A FM ) to understand the 

m echanism  for achieving high-efficiency devices. C urren t-voltage characteristics and 

external quantum  efficiency o f  the produced devices will be studied to determ ine their 

photovoltaic properties.

The point w ise objectives are described as follows:

1. To study the dispersion o f  zinc oxide nanoparticles in different solvents and the 

deposition o f  the sol-gel derived zinc oxide thin films below  200 °C on glass and m etal 

substrates to obtain an optim ised electron transport layer.

2. To study the deposition o f  the active layer based on the blend o f  the P3H T as a donor 

and the PCBM  as an accepter and to optim ise the param eters o f  the active layer for the 

best perform ance.
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3. To study the incorporation o f  Au nanoparticles in the hole transport layers to enhance 

light absorption o f  the active layer through the plasm onic effect in organic solar cells.

4. To study the perform ance o f  organic photovoltaic devices based on the ITO coated 

glasses.

5. To study the fabrication m ethods and the perform ance o f  the top illum inated inverted 

organic solar cells on different flexible m etal substrates using the high conducting 

organic m aterial as the top anode.
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Chapter 2: Literature review on "organic solar cells"

2.1 Introduction

The discovery o f  the PV effect can be traced back to 1839 when a French physicist A. E. 

Becquerel perform ed his pioneering studies in liquid electrolytes [1]. Smith and A dam s 

m ade their first report on photoconductivity  o f  selenium  in 1873 and 1876, respectively 

[2,3]. After that, A lbert Einstein explained the photoelectric effect in 1905 and received 

the Physics Nobel prize for it in 1921. Studies on electrical conducting organics started 

when Pochettino in 1906 [4] and V olm er in 1913 [5] observed photoconductiv ity  in 

A nthracene. The potential use o f  organic m aterials as photoreceptors in im aging 

system s was recognized in the late 1950s and 1960s [6]. In 1954, the d iscovery o f  high 

electrical conductivity  in perylene brom ine attracted m uch scientific interests in organic 

sem iconductors [7]. In the early 1960s it was discovered that m any com m on dyes, such 

as m ethylene blue, had sem iconducting properties [8]. In the later days these organic 

m aterials exhibited the PV effect.

The research on organic solar cells had started since Terenin et al. d iscovered the 

photovoltaic behaviour o f  chlorophyll in 1959 [9]. A m aturity on studies o f  organic 

solar cells cam e when Tang et al. and M orel et al. dem onstrated the first organic light 

em itting diode (O LED ) and a photovoltaic device based on the Schottky junction  o f  

alum inium  and a m erocyanine dye that showed an overall pow er conversion efficiency 

o f  1% in 1987 and 1978, respectively [10,11].

In the last decades organic based solar cells have attracted significantly  scientific and

industrial attention so that a m assive research has been undertaken by m any researchers

all over the w orld [12-16]. Solar cell m anufacturing com panies like H eliatek has also

invested heavily in this area for developm ent o f  OSCs. Progress in organic so lar cells
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has been m ade trem endously  in very recent years [17]. For P3H T:PCBM  solar cells G. 

Li et al. in 2005 studied the growth conditions o f  the active layer w ith different 

annealing tem peratures and reported an efficiency o f  4 .4%  for the slow ly dried active 

layer.

The perform ance o f  O SCs was further im proved by the interfacial m odification w ith a 

fullerene self-assem bled m onolayer that im proved the coupling o f  the organic /inorganic 

interface through the process o f  the photo induced charge transfer. The PCE has 

increased m ore than 20%  higher com pared to the unm odified devices, giving the highest 

PCE o f  4.9% . Kim et al. studied the efficient use o f  the thicker absorbing layers and 

reported a trem endous gain in the overall perform ance w ith the external pow er 

efficiency exceeding 6%. In 2010 Zhao et al. reported a 6.5 %  efficient OSC w ith the 

indene-C6o bisadduct (ICBA) as an acceptor m aterial. The obtained Voc was 0.84 V 

because the LUM O energy level o f  ICBA is - 3.74 eV  w hich is 0.17 eV  higher than that 

o f  PCBM . In 2011 Price et al. reported a new  organic incorporating benzo-dith iophene 

(BnD T) as the donor and either benzotriazole (H TAZ) or its fluorinated analog (FTA Z) 

as the acceptor. Both organics show an optical gap o f  2.0 eV, w hich is even slightly  

bigger than that o f  P3H T (1.9 eV). The obtained efficiency w ith the 250 nm thick 

PBnD T-FTA Z active layer was 7.1 %. H owever, the 1 pm thick active layers are also 

able to achieve an efficiency o f  6%.

Small et al. in 2012 dem onstrated that the inverted organic solar cells based on a low-

band gap organic with an alternating d ith ienogerm ole-th ienopyrro lodione (P D T G -

TPD ) repeat unit received the certified pow er conversion efficiency o f  7.4% . R ecently,

He et al. reported the inverted organic solar cells w ith a pow er conversion efficiency o f

9.2 %  w here the active layer was sandw iched betw een the Al, A g and PFN -m odified

ITO electrodes [18]. Currently, Heliatek, Dresden, Germ any, reported that it has pushed
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the conversion efficiency o f  its standard size tandem  organic solar cells to 12%. 

A ccording to H eliatek, the unique behaviour o f  organic solar cells at high tem peratures 

and low light conditions m akes it one o f  the m ost potentially prom ising candidates for 

satisfying the future energy needs [19].

In the organic photovoltaics, the bulk hetero-junction device configuration is achieved 

by a facile m ethod o f  blending the n-type and p-type m aterials. The blending processing 

increases the num ber o f  interfaces between the donor and the acceptor, w hich provides 

m ore exciton dissociation/charge separation sites for the generation o f  m ore charge 

carriers. The separated charges then need to travel to the respective electrodes, i.e. holes 

to the anode and electrons to the cathode, to provide voltage and to be available for 

injection into the external circuit. The solar cell devices in the current thin film 

technologies are very expensive and high em bedded energy, that gives a high energy 

payback period and hence results in the high capital cost [20]. A m ongst various thin 

film techniques, the solution processed organic solar cells have one o f  the highest 

potentials for becom ing a true low -cost technology since their production dem ands only 

the solution based deposition m ethods at low processing tem perature [21-26]. The 

advantage o f  all solution processed routes m akes it possible to produce PV structures 

continuously on plastics or the metal sheets by the roll-to-roll process and thus greatly 

to m inim ize the fabrication cost in the future [27-32].

2.2 Fundamental of organic photovoltaics

2.2.1 Organic semiconductor

The study o f  organic sem iconductors is not new. In the early 20th century, the dark and

photoconductivity  o f  anthracene crystals have been studied [4,5]. The

electrolum inescence o f  organic sem iconductors was discovered in 1960s [33]. The
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successful synthesis o f  conjugated organics in 1970s [10] is an im portant m ilestone for 

organic sem iconductors w hich was honoured w ith the C hem istry Nobel prize in 2000. 

Organic sem iconductors are alternating single and double bond carbon based m aterials 

that present electrical sem iconducting characteristics. A tom s inside an organic 

sem iconductor m olecule have the conjugated 7i-bond system  w ith different bonding 

configurations as show n in Figure 2.1. The m olecules o f  organic sem iconductors are 

bonded by a w eak van der W aals force that is opposite to the covalent structure o f  

inorganic sem iconductor m aterials. M acroscopically, the band structures o f  organic and 

inorganic sem iconductors are relatively sim ilar. The H ighest O ccupied M olecular 

Orbital (H O M O ) and the Lowest U noccupied M olecular Orbital (LU M O ) in organic 

sem iconductors are the corresponding valence band and the conduction band in 

inorganic sem iconductors, respectively.

A

n *  # . —  LUMO

n * * HOMO

Figure 2.1 Bonding and antibonding interaction betw een HOM O and LU M O  o f  an 

organic sem iconductor [34].

The ^-conjugated system  o f  organic m olecules is form ed by the Pz-orbitals o f  sp2 

hybridized carbon atom. The 7i-bonding is relatively w eaker than that o f  the o-bond ing  

with the neighbour atom s [35]. The different energy levels o f  an organic sem iconductor

16



correspond to the different hybridisation states o f  7i-bonds (i.e. n  and 7t*). The energy 

difference between HOM O and LUM O is know n as the energy band gap (E g).

W hen an electron is excited from HOM O  to the LUM O o f  an organic sem iconductor, 

the m olecule itself is excited into the higher energy state, w hile in inorganic 

sem iconductor the free electron will excite from the valence band to the conduction 

band. The charge transportation m echanism s o f  organic sem iconductors are also 

different from inorganic sem iconductors. The form ation o f  photo excited excitons 

(bound electron-hole pairs) in m olecular m aterials, rather than free electrons and holes, 

is a fundam ental difference betw een solar cells based on organic sem iconductors and 

the corresponding inorganic counterparts. The photo excited exciton separation and the 

charge transportation all occur w ithin organic sem iconductors [36], w hich leads to low 

m obility o f  organic sem iconductors w hen com pared w ith their inorganic counterparts. 

The electron and hole m obility o f  small m olecule organic sem iconductors has reached 

to ~1 x 10° m 2 V '1 s’1 and ~  1.5 x 10'3 m2 V '1 s’1 [37-40], w hile silicon has m uch higher 

electron and hole m obility o f  up to -0 .1  x 10~2 m 2 V ’1 s ’1 and ~4.5 x 10"2 m 2 V ’1 s ’1 [41], 

respectively. The electron and hole m obility  o f  the com m only studied P3H T:PC B M  

blend film s is o f  the order o f  ~10‘7-10 '8 m 2 V '1 s _1 [42]. As com pared to inorganic 

sem iconductors, the low electron and hole m obility  o f  organic sem iconductors is a 

m ajor challenge and focused studies are needed tow ards new  m aterials developm ent in 

order to overcom e these issues.

2.2.2 Polarons and polarons excitons

A polaron is a quasi-particle and considered as a "charge". C harge m eans an electron or

a hole plus a distortion o f  the charge’s surroundings. In 1933, Lev Landau first

proposed the concept o f  polaron that is used to understand the electron interaction w ith
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atom s in a solid m aterial [43]. The associated charge creates lattice polarisations that 

decrease the electron m obility  and increase the effective m ass o f  electrons [44]. The 

polaron form ation decreases the m obility o f  electrons in sem iconductors. O rganic 

m aterials are very sensitive to polaronic effects because o f  the conjugated system  in 

organic sem iconductors that exhibits m assive electron- lattice coupling effects 

com pared to the inorganic sem iconductor. The strong electron-lattice coupling is 

responsible for the existence o f  the quasi-particles such as polarons and polaron 

excitons in the conjugated organic system s.

2.2.3 Operation of organic solar cells

Perform ance o f  organic solar cells can be characterised by considering the below  four 

steps:

2.2.3.1 Exciton generation

In an organic sem iconductor, an electron is excited from  HOM O to the LU M O  after the 

absorption o f  incident photon. The generated electron-hole pairs are bounded by the 

C oulom b force because o f  the low er dielectric constant o f  organic sem iconductors [45]. 

The bound electron-hole pair is know n as an exciton w ith a binding energy o f  0 .1-1.4 

eV [46]. The photon absorption depends on the product o f  the absorption coefficient 

and the film thickness. H ow ever, it has been studied that the absorption coefficient o f  

organic m aterials is high at - 1 0 3 c m '1 [47] and the thickness o f  the active layer are 

lim ited by the electrical conduction. Therefore, few  hundred nanom eters (m ainly  100- 

200 nm ) thick active layer should be enough to absorb the required incident light. The 

m ost studied m aterial for organic solar cells is P3H T that has a band gap o f -1 .9  eV  

w hile m ost o f  the sem i-conducting organics have band gaps o f  -2 .0  eV [47]. The large
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band gap is the m ain concern for organic solar cells, w hich limits the m axim um  

absorption o f  incident photon to less than 30%.

2 .2 3 .2  Exciton diffusion an d  dissociation

The generated photo excited excitons need to be separated into free charges to generate 

electricity. For an efficient dissociation, Tang et al. dem onstrated heterojunction 

structures in the form o f  bilayer solar cells [48] w here tw o different organic m aterials 

m ake heterojunction as shown in Figure 2.2. The heterojunction has becom e a basis o f  

organic photovoltaic devices. Out o f  these tw o different m aterials, one is called donor 

(D) and the second is acceptor (A). W hen an exciton is generated in the donor m aterial, 

it drifts tow ards heterojunction. W hen the potential difference betw een the HO M O  o f  

donor m aterial and the LU M O  o f  the acceptor m aterial is low er than the potential 

difference o f  the bound electron-hole pair, the exciton dissociates efficiently.

LUMO'A

HOMQd +0
HOMOa

D onor A cceptor

Figure 2.2 D onor and acceptor band alignm ent o f  a heterojunction

To achieve an efficient dissociation, the active layer thickness should be o f  the order o f  

the exciton diffusion length (keeping the surface for absorption), because radiative 

recom bination occurs at a tim e scale o f  -  1.0 ns [49]. Because the exciton diffusion



length is in the range o f  few tens o f  nanom eters [50] in organic sem iconductors, the 

phase separation betw een the donor and acceptor needs to be w ithin the exciton 

diffusion length for the efficient charge dissociation. This process can be realised in the 

bulk heterojuuction organic solar cells.

2.2.3.3 C arrier Transport

The dissociated excitons generate electrons and holes, however, they still form charge 

pairs called "gem inate pairs" that bound via the Coulom b force and need an internal 

electric field to separate them . The difference o f  the work function betw een the cathode 

and the anode can create a built-in electric field for their separation inside the solar cells. 

W hen carriers diffuse aw ay from  the heterojunction, a current is generated called 

"diffusion current". Due to applied external field across the sem iconductor m aterial, the 

charge carriers attain a certain drift velocity and this m ovem ent o f  the charge carriers 

constitutes a current known as "drift current".

A fter separation, the drift current and diffusion current m otivate separated charges to 

transport tow ards respective electrodes [51]. U nder the external bias, there is a change 

in the internal electric field that changes the drift current. The change in drift current 

encourages charges to m ove tow ards respective electrodes for collection. The 

concentration o f  electrons and holes is high nearby the heterojunction. This is also 

another m echanism  to support charge transport. Both o f  the currents are dom inants in 

different regim es. W hen the internal electric field is large, drift will dom inate w hile 

diffusion dom inates in the case o f  the zero internal electric field (w ith the external bias). 

The charge transport in organic solar cells is also limited by the low intrinsic m obility  o f  

organic m aterials, im purities (e.g. oxygen), and defects.
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2.2.3.4 C harge collection at electrodes

To achieve m axim um  charge collection efficiency at the electrode, it is required that the 

transit tim e o f  charges drifting through the inter-electrode distance under the influence 

o f  an electric field is shorter than the life tim e o f  a charge carrier [52]. W hen the HOM O 

o f  donor and the LU M O o f  acceptor nearly m atch the corresponding electrodes' w ork 

function, the contacts are ohm ic in nature and the difference betw een the donor HOM O  

and the acceptor LUM O represents the open circuit voltage (V oc). For inverted organic 

solar cells on glasses, the indium  tin oxide (ITO) thin film  is the com m on m aterial for 

cathode w hile high w ork function m etals (e.g. Au) are used as anode. The interlayers 

(e.g. ZnO, TiOx, PED O T:PSS, and M oO x) between the active layer and the electrodes 

can enhance the charge collection efficiency through a better alignm ent o f  the electrode 

w ork function w ith H O M O  o f  the donor and LU M O o f  the acceptor [53-56]. The 

increased roughness o f  the interfacial area by changing the work function o f  electrodes 

creates a bigger area for more efficient charge collection.

2.2.4 Loss mechanism

Two key loss m echanism s o f  organic solar cells are gem inate pair losses and

bim olecular recom bination losses [57]. A fter the exciton dissociation at heterojunction

interface, the dissociated electron-hole pairs still rem ain bound at the interface due to

the electron-hole C oulom bic attraction called "gem inate pair". In order to reach to the

respective electrodes, the bound pair m ust therefore overcom e this bound energy barrier.

W hen the gem inate pair does not dissociate com pletely they will recom bine w ith other

gem inate pairs. A fter the com plete dissociation o f  gem inate pairs into free charges,

there is also a probability  o f  electron and hole collision and recom bination before

collected at their respective electrode, w hich is called bim olecular recom bination loss.
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O ther loss m echanism s are due to low  m otility  o f  electrons and holes in organic 

sem iconductors and m obility  m ism atch that also limits the collection efficiency by the 

space charge recom bination.

2.3 Types of organic solar cells

2.3.1 Single layer solar cells

Single layer organic solar cells are the sim plest structure o f  organic solar cells. These 

types o f  solar cells are fabricated by sandw iching a layer o f  the conjugated organic 

between tw o m etallic (or conducting) electrodes. The basic structure o f  the device is 

shown in Figure 2.3. The device consists o f  an organic active layer sandw iched betw een 

a high-w ork-function indium  tin oxide (ITO) electrode and a low -w ork-function 

alum inium  (Al) electrode. The main draw back for this type o f  structure is its small 

thickness o f  the active layer at approxim ately -1 0 -2 0  nm, therefore only a small portion 

o f  the visible light is absorbed by the solar cell for the pow er conversion. Furtherm ore, 

the electric field generated between two electrodes is insufficient to dissociate the 

excitons. Photo induced electrons and holes will recom bine before reaching the 

electrodes. The reported pow er conversion efficiency was in the range o f  only 10" to 

I0 -2 %  [58-59].

M etal electrode

tA ctive layer

ITO

Substrate

Figure 2.3 Schem atic diagram  o f  a single layer organic solar cells
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2.3.2 Bi-layer solar cells

A bilayer solar cell includes tw o different organic layers sandw iched between the 

electron collecting layer and the hole collecting layer follow ed by the conducting 

electrodes. Figure 2.4 shows the basic structure o f  the device. This type o f  solar cell is 

also called as the planar-donor-acceptor-hetero junction  solar cell. The donor and 

acceptor planar interface acts the location for the exciton dissociation. The electron 

collecting layer and the hole collecting layer m odify the w ork function o f  the respective 

electrodes to form the ohm ic contacts. A cceptors have higher electron affinity  and 

ionisation potentials than the donors. Incident light is absorbed by the donor layer and 

electrons in the donor m aterial are excited from HO M O level to LU M O level, form ing 

excitons. If an acceptor m olecule is in proxim ity o f  this exciton, the exciton can transfer 

to the LUM O o f  the acceptor and then be dissociated at the interface.

Al

D-D onor
A

A -A cceptor D

ITO

Substrate

Figure 2.4 Schem atic diagram  o f  Bi- layer organic solar cells

The m ain advantage o f  the bi-layer structure is in m inim isation o f  the recom bination  

losses. The disadvantage o f  the bi-layer structure is the short exciton diffusion length 

that lim its the thickness o f  the donor and acceptor layers and provides sm all interfacial 

area for excitons dissociation. In 1986, Tang reported a pow er conversion efficiency o f  

-1 %  for a bi-layer structure device [48].
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2.3.3 Bulk hetero-junction (BHJ) solar cells

In this type o f  photovoltaic structures, the donor and acceptor m aterials are m ixed 

together to form an organic blend. A facile m ethod o f  blending the donor and acceptor 

m aterials achieves the bulk hetero-junction device configuration. The blending 

processing increases the num ber o f  interfaces between the donor and the acceptor, 

which provides m ore exciton dissociation/charge separation sites for the generation o f  

m ore charge carriers. The m ain challenge in fabrication o f  such type o f  solar cells is to 

obtain the interpenetrating and bi-continuous netw ork between the acceptor and the 

donor phases.

Al

ITO

Substrate

Figure 2.5 Schem atic o f  bulk heterojunction organic solar cells

If  the phase separation w ithin the film  is the sam e as the diffusion length o f  excitons

(-1 0 -2 0  nm), m ost o f  the generated excitons can reach the donor and acceptor interface

and a nearly unity internal quantum  efficiency can be realised [60]. Figure 2.5 show s a

basic structure o f  this type o f  PV device. E lectrodes have to be chosen so that the w ork

function o f  one electrode is close to the LU M O  level o f  the acceptor and the other

electrode form s good contact w ith the H OM O  level o f  the donor m aterial. The

m axim um  voltage obtained for this type o f  device is the energy difference o f  LU M O  o f

the acceptor and HOM O o f  the donor. Various com binations o f  the donor and the
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acceptor m aterials have been used as a sandw iched layer in the bulk heterojunction solar 

cells. One o f  the m ost significant com binations o f  this structural device is based on 

P3H T as a donor and PCBM  as an acceptor. The achieved m axim um  PCE for the 

P3HT: PCBM  based organic solar cells has been reached over 5.0%  [61].

2.3.4 Tandem solar cells

To overcom e the limit o f  w eak absorption and narrow  absorption range o f  organic solar 

cells from the active layer, the w ell-know n concept o f  tandem  solar cells has been 

proposed for the first tim e in 1990 [62], The tandem  structure is a series stacking o f  

solar cells that absorb light over a w ide range and produce higher V oc than other types o f 

solar cells. The tandem  organic solar cell structure com prised o f  tw o different devices 

stacked on top o f  each other (Figure 2.6) and the active layer o f  each stack is based on a 

blend o f  the donor-acceptor m aterials.

M etal

D+A
Interm ediate layer

D +A

ITO

Substrate

Figure 2.6 Schem atic o f  tandem  organic solar cells

The top and the bottom  cell can be connected in either series (2 -term inal structure) or

parallel (3-term inal structure) [63,64]. Light that is not absorbed in the bottom  cell can

be further absorbed by the top solar cell. In tandem  devices the use o f  d ifferent band gap

m aterials reduces the therm al losses. Out o f  all these advantages, the tandem  organic

solar cells suffer difficulty in m atching their sub cells. Current m atching betw een the
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top and bottom  has to be achieved to overcom e the charge accum ulation on subs cells 

and extra care is needed in fabrication to prevent the dam age o f  successive layers. 

Recently, the pow er conversion efficiency o f  standard tandem  organic solar cells has 

been reached up to 12.0% as reported by H eliatek [19].

2.4 Inverted organic BHJ solar cells

2.4.1 Device structures

The solution processed O SCs have one o f  the highest potentials due to the possibility  o f  

low cost fabrication over large areas at low processing tem perature. The m ajority o f  

organic solar cells are fabricated in the conventional configuration; i.e. 

substrate/transparent anode/hole collector/active layer/electron collector/cathode show n 

in Figure 2.7a. The transparent ITO thin film is used as the hole collecting electrode that 

is able to let sunlight pass through. The conducting organic o f  PED O T:PSS is then 

deposited onto the ITO thin film to sm ooth its surface and w orks as a hole transport 

layer. The photo active layer o f  organic solar cells is situated betw een the hole- 

transporting layer (PED O T:PSS) and the electron transport layer (ETL). The ETL is 

used to collect electrons and is connected to the low -w ork-function m etal electrode 

(cathode) [65]. M etals with the low w ork function are not very stable as the top 

electrodes due to their sensitivity to oxygen and m oisture in air. In order to protect the 

top electrode, bi-layered m etals have been used as the com posite top electrode [66]. 

How ever, the top m etal electrode usually requires to be deposited at high vacuum  

instrum ent in the conventional configuration for fabrication o f  solar cells, w hich 

increases the m anufacturing cost.

Com pared with the conventional one, the inverted type o f  solar cell w here the nature o f

charge collection is reversed was proposed as a good device alternative [67]; i.e.
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substrate (glasses, plastics or M etals)/cathode contact/electron collector/active 

layer/hole collector/anode contact shown in Figure 2.7b and c. This type o f  device 

configuration has recently gained considerable attention due to its advantages o f  better 

device stability and potential low-cost processing com pared to the conventional 

configuration. The inverted configuration can be further classified as bottom  illum inated 

in Figure 2.7b or top illum inated in Figure 2.7c according to the direction o f  the 

incom ing light illum ination to the device. The top illum inated configuration utilizes a 

reflective buried bottom  electrode and a transparent top electrode w hereas the bottom - 

illum inated-type inverted architecture configuration uses a reflective and high-w ork- 

function electrode as the top hole-collecting contact and a transparent conducting 

electrode at the bottom  for the collection o f  electrons.

w m
Al Al Transparent 

Tod Electrode
ETL

HTL
HTL

D+AP wW m ™  :
r  W  W

D +A
f  w  J r

HTL ETL ETL

ITO ITO ITO

G lass/Plastic Substrate
a

G lass/Plastic Substrate
b

G lass/P lastic/M etal
Substrate

Figure 2.7 Schem atic o f  the bulk hetero-junction device structures; (a) conventional (b) 

inverted bottom  illum inated (c) inverted top illum inated

dem onstrated in literatures, there have been far few er studies focused on the top-

illum inated-type inverted solar cells w here the requirem ents are that the top electrode

needs to be transparent or sem i-transparent so that light can reach the active layer.

However, it is alw ays a big challenge in finding a suitable transparent conducting
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m aterial as the top electrode for the top illum inated devices. As m entioned previously, 

the top-illum inated inverted configuration o f  organic solar cells has the advantage o f  

stable devices because the low w ork function metal (e.g. alum inium ) as the cathode and 

the high w ork function metal (ITO, Ag, Au and m odified PED O T:PSS) as the anode 

can effectively avoid the device degradation that is induced by the environm ent and 

contam ination o f  the metal cathode. Furtherm ore, the perform ance o f  O SCs is closely 

affected by the blends o f  n-type and p-type m aterials (e.g. P3H T:PC B M ). In norm al 

configuration OSCs, the blends o f  P3H T:PCBM  are usually inhom ogeneously 

distributed due to the vertical phase separation [68] that is attributed to the surface 

energy difference betw een the donor and acceptor com ponents and their interactions 

w ith the substrates. This inhom ogeneous distribution o f  the donor and acceptor 

com ponents significantly affects norm al configuration OSCs perform ance and m akes 

the inverted configuration O SCs as a prom ising choice.

Hence, the inverted configurations O SCs have a chance to be one o f  the best candidates 

in the developm ent o f  novel organic photovoltaics to m eet the requirem ents for 

applications including high efficiency, stability, low -cost, and high-speed production. 

Very recently, the inverted device configuration has also been investigated as a suitable 

configuration tailoring for the solution processing, w hich allow s various cell layers to 

be deposited onto the flexible substrates and shows very prom ising for the scale-up 

production via industrial roll-to-roll fabrication [69,70].

2.4.2 Selection of substrates

The advantage o f  all solution processed routes m akes it possible to produce PV

structures continuously on different substrates and thus greatly to m inim ize the

fabrication cost in the future. As discussed above, the inverted structure has m any
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advantages over the conventional structures. The top illum inated inverted organic solar 

cells structure can be produced on a flexible substrate; e.g. m etal foils and plastics. 

A ccording to the literatures, up to now only a few researchers have used the metal 

substrate for the fabrication o f  organic solar cells and dem onstrated som e prom ising 

results w ith different substrate structures [27-32]. The top illum inated inverted 

configuration was also m anufactured onto a flexible polym er substrate [71,72]. For the 

fabrication o f  top illum inated inverted organic solar cell structures, m ost o f  the 

researchers used the m etal grid as the top contact layer. Jianyong el al. presented a 

lam inated organic light em itting diode (O LED ) using the glass as the substrate and ITO 

coated polyethylene tere-phthalate (PET) as a lam inated electrode [73]. In this thesis, 

ITO coated glasses and different metal substrates nam ely: stainless steel (SS), titanium  

coated steel (Ti-S), chrom ium  coated alum inium  (Cr-A l) and alum inium  (Al) have been 

chosen as the substrates for inverted solar cell devices.

2.4.3 Working principle o f BHJ solar cells

In organic solar cells, absorption o f  photon leads to the creation o f  bound electron and 

hole pairs (excitons) rather than free-photo induced charge carriers. These excitons 

dissociated at the donor-acceptor interface under the influence o f  a strong electric field. 

The separated charges then need to travel to the respective electrodes, holes to the anode 

and electron to the cathode, to provide voltage and be available for injection into an 

external circuit. In sum m ary, the overall operation o f  a good organic solar cell follow s 

the below  four steps as also illustrated in Figure 2.8.

(1) Photo induced exciton generation

(2) Exciton diffusion at the donor-acceptor interface

(3) Exciton dissociation and the form ation o f  gem inate pairs

(4) C harge carrier transport and collection
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Figure 2.8 Schem atic o f  w orking principle o f  organic solar cells [34]

2.4.4 Current-voltage characterisation

C urrent-voltage (I-V ) m easurem ent o f  organic solar cells are usually carried out under 

AM  1.5 solar spectrum  with an intensity o f  100 m W /cirf. The m agnitude o f  current 

flow  depends on the biasing voltage. W hen the applied bias voltage (i) is less than zero, 

the device is operated in the reverse bias, w hich enhances the internal electric field or 

built-in electric field. This operation enhances the exciton dissociation efficiency and 

the separated charge carriers drift tow ards the respective electrodes those results in a 

large photo current. For the zero bias (ii), the built-in electric field due to the w ork 

function difference between the electrodes drifts the separated charges tow ards the 

electrodes. The current flow  in the device under zero bias condition is called the short 

circuit current (lsc). W hen the bias voltage increases in the positive direction, the built in 

electric field opposes by the positive bias voltage that can reduce the m agnitude o f  the 

output current. In this case, a point cam e w here (iii) the applied field is equal to the built



in electric field and the applied voltage is called "open circuit voltage" (V oc)- A t this 

point, the dom inated current is due to the diffusion current. W hen the external bias is 

higher (iv) than V oc (forw ard bias), the applied field is higher than that o f  the built in 

field. The excess value o f  the applied field reverses the potential gradient and tunnelling 

is the m echanism  for the large positive current.

2.4.5 Primary challenges limiting device efficiency

The perform ance o f  organic photovoltaic is limited by m aterials and fabrication 

challenges. The first key issue is the low pow er conversion efficiency betw een light 

absorption and exciton diffusion. The efficiency o f  photon absorption is not uniform  

across the solar spectrum  because the active layers do not efficiently harness the red and 

infrared region photons o f  the solar spectrum . Except intrinsic properties o f  m aterials, 

the lim ited thickness o f  the active layer is also a barrier to overcom e these issues. As we 

have discussed above, the diffusion length o f  excitons w ithin organic m aterials is only 

few tens o f  nanom eters and the tim escale o f  the charge transfer process is m uch shorter, 

being o f  the order o f  -4 5  fs [52].

If  the active layer thickness increased, photo induced excitons need to travel further to

get dissociated that increases the possibility  o f  radiative recom bination o f  excitons,

occurs at a tim escale ~1 ns [49]. The second issue is that the V oc o f  organic solar cells is

relatively low and is one o f  the reasons for high efficiency loss. The reason for low Voc

is due to the recom bination o f  separated charges at the donor-acceptor interface [74].

The exciton dissociation follow ed the form ation o f  gem inate pairs and the efficient

separation o f  gem inate pairs is required for high Voc organic photovoltaic device. The

third factor is the fill factors (FF) o f  the organic photovoltaic devices that need to be

increased com parable to their inorganic counterparts. Typically, organic solar cells have
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lower FF com pared w ith the conventional p-n junctions. This is due to high series 

resistance and low er m obility o f  charge carriers in organic thin film s that increase the 

recom bination rate [75,76].

2.4.6 Potential routes to enhance the device performance

The large band gap o f  organic sem iconductors is com m only the key concern for small 

absorption range w hich limits the light absorption efficiency o f  longer w avelength 

photon. It has been reported that -7 7 %  o f  solar light will be absorbed by a H O M O - 

LUM O difference o f  1.1 eV [50]. There are also m any other concerns as described in 

section 2.4.5 for the com m ercial use o f  OSCs. Therefore, potential routes that are 

considered for enhancing the perform ance o f  O SCs can be as follows:

(1) to im prove the light harvesting;

(2) to im prove the charge carrier generation;

(3) to im prove the charge transport;

(4) to im prove the stability o f  devices;

In the past decade m uch attention has been paid to the conducting polym er and PCBM

based devices. One o f  the m ost studied m aterials is P3H T with a band gap o f -1 .9  eV

[47]. For P3H T active m aterials, a large portion o f  energy cannot be utilised due to lack

o f  light absorption in the long w avelength region (>700 nm). Therefore (1) broad

absorption bands and appropriate energy level are the first requirem ent. In order to

utilize m ore sunlight, the absorption edge o f  the conducting organic should be extended

to the near-infrared region o f  the optical spectrum . Therefore, the tuning o f  the band gap

for organic photovoltaic m aterials is a w ay for enhancem ent o f  the absorption efficiency.

Since the band gap and the m olecular energy levels o f  a conjugated organic are closely

related to the m olecular w eight, m olecular configuration and conform ation,
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interm olecular interaction, effective conjugation length, and so on. Therefore, synthesis 

o f  low band gap polym er m aterials needs to be designed on these param eters.

As well know n, the thin active layer lim its the light absorption efficiency, and thereby 

the pow er conversion efficiency o f  the OSCs. Therefore, the use o f  light trapping 

techniques such as folded configuration [77], diffraction grating [78], photonic crystal 

[79], and surface plasm on resonance (SPR) [80] are another w ay to im prove the 

absorption efficiency (1) and charge carrier generation (2). The m orphologies o f  the 

active layer also affect the generation and the transportation (3) o f  the charge carriers. 

D ifferent approaches including annealing tem peratures [81], post annealing [82], 

various growth processes (slow  or fast) [75,83], solvent annealing [84], additives in the 

active blend [85] are further routes to im prove the generation and the transportation o f  

charge carriers.

The im provem ent in the m obility (3) o f  organic sem iconductors is another route to 

enhance charge transportation. The organic sem iconductors have m uch low er m obility  

than inorganic sem iconductors because in organic sem iconductors charges are localized 

due to their low dielectric constant. For the efficient charge transportation, both inter- 

and intra-m olecular charge transfer properties o f  organic sem iconductor are im portant. 

In organic sem iconductors, m olecules are stacked together by w eak forces, like van der 

W aals force, and the charges transported through the hopping m ode, so the enhanced 

interm olecular stacking (com pact stacking) m ight be an effective w ay to facilitate the 

inter-m olecular charge transport. Therefore, how to im prove the hole and electron 

m obility is one o f  the critical objectives that needs to be resolved. Besides (4) the 

absorption band, m olecular energy levels (H O M O  and LUM O), m obility, o ther issues 

like solubility in different solvents and chem ical stability, should also be considered in
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the m olecular design for developm ent o f  an ideal photovoltaic m aterial w ith the better 

stability.

In addition to the above m entioned, the use o f  fullerene derivative acceptors including 

Indene-fullerene M onoadduct (ICM A), Indene-fullerene B isadduct (ICBA), PC84BM  

and endohedral fullerenes other than PC 6 0 BM is also a w ay to enhance the perform ance 

o f  the OSC devices [86-89]. LUM O levels o f  ICM A and ICBA are -3.86 and -3.74 eV 

respectively [86], w hich is higher than that o f  PCBM . Therefore, IC M A :P3H T and 

ICB A :P3H T based devices showed higher V oc than that o f  P3HT:PCBM  based devices 

[86], ICM A has the poor solubility in CB or DCB, which limits the photovoltaic 

perform ance o f  the devices; ICBA can be easily dissolved into CB or DCB, and its 

LU M O  level was higher than that o f  ICM A and PCBM  and a Voc o f  0.84 V can be 

obtained w ithout changing other param eters like Jsc and FF.

2.4.7 Physics o f plasmonic effects

The typical thickness o f  the active layer lim its its absorption efficiency and hence the

pow er conversion efficiency o f  the devices. The tunable resonance plus unique near

field concentration o f  plasm on m akes it enabling technique for light m anipulation and

m anagem ent for enhancem ent o f  optical absorption in the active layer [80,90]. A m ong

the m etals that can support plasm onic resonances (PRs) m odes, noble m etals (Au, Ag

and Cu) present resonances in the visible or near infrared (IR) region o f  the

electrom agnetic spectrum . For the excited plasm ons, the surface plasm on resonance

(SPR) and localised plasm on resonance (LPR) are denoted for planer surfaces and

nanom eter sized m etallic structures, respectively [91,92]. These novel plasm onic

nanostructures significantly im prove the absorption efficiency o f  the active layer and

have em erged as an expanding area to increase the perform ance o f  OSC devices. T here
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are three principles to enhance the perfonnance o f  thin film solar cells by altering 

plasm onic nano structures. The first w ay is to create the surface plasm on resonance by 

m etallic gratings fabricated on the top or bottom  o f  the active layer [93-95]. The second 

approach is to generate the local plasm on resonance by m etallic nanostructures 

incorporated into or near to the active layer [96-101] and the third m ethod is to achieve 

the scattering from m etal nanoparticles at the surface o f  the solar cells w here m ultiple 

and high-angle scattering increases the effective optical path length in the cell [102-104]. 

Figure 2.9 shows the schem atic diagram  o f  these m echanism s.

Figure 2.9 D ifferent plasm onic light trapping techniques, (a) Surface plasm on 

resonance by m etallic gratings and propagation o f  photonic m odes will be in the 

plane o f  the sem iconductor, (b) localised surface plasm on resonance by m etallic 

nanostructures incorporated into or near to the active layer, (c) scattering o f  light by 

m etallic nanostructures [80].

The incorporation o f  plasm onic nanostructures allow s us to enhance light absorption by 

scattering o f  incident light into waveguide m ode in the active layer w hile the effect o f  

the localised surface plasm on resonance (LSPR) is achieved by m ixing the p lasm onic 

nano-particles with different layers o f  OSC devices. The plasm onic nanoparticles then 

act as an effective ‘an tenna’ for the incident sunlight that stores the incident energy in a 

localized surface plasm on m ode (Figure 2.10). The surface plasm on resonance (SPR ) o f
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m etallic nano-structured electrodes is another effective w ay to enhance optical 

absorption o f  the active layer by increasing the field near to the dielectric/m etal 

interface. The incorporation o f  m etallic nanostructures into the active layer, the hole 

transport layer, and the electron transport layer has their potential to im prove the 

absorption and hence the efficiency o f  the organic solar cells. Incorporation o f  m etallic

E
c

s - /
C
o

o
CL

50

0

■50

i
O

A = 850 nm

-50  0 * 50
x position (n m )

Figure 2.10 Intensity enhancem ent around a 25-nm -diam eter Au particle em bedded in 

a m edium  w ith index n = 1.5 (plasm on resonance peak at 500 nm). L ight w ith a 

w avelength X -  850 nm is incident with a polarization indicated by the vertical arrow  

[105].

nanostructures into the PED O T:PSS hole transport layer is the sim ple approach o f  

taking advantage o f  plasm onic effects. In this case, light-trapping can be achieved by 

scattering incident light at w ide angles into the active layer. It is also possible for this 

scattered light to excite surface plasm on polaritons (SPPs) and other photonic m odes 

into the active layer. However, the degree o f  contribution o f  LSPR effects is still unclear.
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2.4.7.1 Incorporation of plasmonic nanostructures into PEDOT:PSS HTLs

It has show n that the incorporation o f  ~ 1 8 nm Au N Ps into the PED O T:PSS layer o f  the 

P3H T:PCBM  based OSC leads to an efficiency enhancem ent o f  13% [106]. 

Im provem ents originate from the increase in FF and J sc from 58.0%  to 62.0%  and 8.50 

to 9.40 m A /cm  , respectively. Furtherm ore, the sim ultaneous incorporation o f  Au N Ps 

into the PEDPT:PSS layer and the active layers, respectively, leading to an 

im provem ent o f  PCE by -2 2 %  com pared to the control device [ 107]. Figure 2.11 show s 

the absorption spectra o f  the active layers w here device A has no N P doping, while 

devices B, C, and D have N Ps doped into the PED O T:PSS, the P3H T:PC B M , and both 

o f  the layers, respectively. The incorporation o f  N Ps into the active layer and both the 

PED OT:PSS and active layers shows an enhanced absorption.

1.2

Q> l.U 
Oc
rc
■e o.8
o8
nre 0.6 
■o8
</>
7§ 0.4
£

£ 0.2

0.0
400 500 600 700 800

Wavelength (nm)

Figure 2.11 A bsorbance o f  the active layer for different N P doping structures, (A) 

no N Ps, (B) N Ps in PED O T:PSS only, (C) N Ps in P3H T:PCBM  only, (D) N Ps in 

both P3HT:PCBM  and PED O T:PSS [107].



This is good agreem ent with our reported result [101] where w e incorporated the Au 

N Ps into the PED O T:PSS layer using the plasm a assisted physical vapour deposition 

m ethod and claim ed that the N Ps can also reach the surface o f  the P3H T:PC B M  active 

layer or m aybe be slightly em bedded into the active layer because the thickness o f  the 

nanocavities form ed in the PED O T:PSS layer is w ithin the range o f  several nanom eters. 

As the N Ps reaches the active layer, the strong near field around the em bedded Au NPs 

due to the localized surface plasm on resonance (LSPR) distributes laterally along the 

P3H T:PCBM  active layer. There are m any plasm onic nanostructures em bedded in the 

PED O T:PSS HTL o f  OSCs that have been reported [108]. A nother study reported a 

m ono-dispersed octahedral 45 nm Au N Ps w ere blended into the PED O T:PPS 

layer [109]. In this study, an efficiency enhancem ent o f  19% was observed due to the 

LSPR absorption enhancem ent and the LSPR induced reduction o f  the exciton lifetim e 

that facilitated the charge transfer processes.

The size effect o f  ch e m ic a lly . synthesized Au nanospheres (N Ss) em bedded in 

PED O T:PSS layer has also been investigated [110]. It was found that the efficiency 

enhancem ent strongly depended on the sizes o f  N Ps. Furtherm ore, Au nanostructures o f  

various sizes and shapes (nanospheres (NSs) and nanorods (N Rs)) w ere m ixed w ith the 

PED O T:PSS buffer layer [111] for investigation. Since N Ss and N R s exhibited different 

absorption bands, the presence o f  a com bination o f  N Ss and N R s enhanced absorption 

as a result o f  LSPR and scattering effects, leading to the increased efficiency by 24.0%  

com pared to that o f  the reference devices.

J. Yang et. al. reported that Au N Ps w ere successfully incorporated into the

PED O T:PSS film, [112] w hich was used as the interconnecting layer for connecting  tw o

sub-cells in an inverted tandem  OSC device. The addition o f  Au N Ps im proved both the

top and bottom  sub ce lls’ efficiency sim ultaneously via the LSPR enhancem ent to their
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optical absorption. An efficiency enhancem ent o f  20%  was achieved. Plasm onic effects 

o f  the size-controlled silver nanoparticles (A g N Ps, diam eter: 10-100 nm ) that w ere 

incorporated into the PED O T:PSS layer has also been studied [113]. Because electrical 

conductivity o f  the PED OT:PSS film was unchanged after the incorporation o f  A g N Ps, 

the enhanced perform ance was only due to the optical effect. The PCE increased from 

6.4%  to 7.6%  in poly[N -9-hepta-decanyl-2,7-carbazolealt- 5 ,5 -(4 ,7-d i-2-th ienyl-2 ,l,3 - 

benzothiadiazole)] (PC D TB T):[6,6]-phenyl C71-butyric acid m ethyl ester (PC 70BM ) 

based-O SCs and from 7.9%  to 8.6%  in polythieno [3,4-b] th iophene/ benzodithiophene 

(PTB7):PC 70B M  based-O SC s respectively upon em bedding the Ag N Ps into the 

PED O T:PSS layer.

M ahm oud et al. studied the perform ance o f  the P3H T:PCBM  solar cells after the 

incorporation o f  Au nanorods (Au N R s) into the PEDO TPSS layer [114]. The resulting 

devices showed a significant enhancem ent o f  21.3%  in the pow er conversion efficiency 

and a 13.0% enlargem ent in Jsc. This enhancem ent was attributed to the localized 

transverse and longitudinal plasm on resonance m odes in the m etallic nanostructures that 

increased the light absorption to the active layer. Incorporation o f  m etallic 

nanostructures also induced m orphological and/or chem ical changes in the PED O T:PSS 

layer [115]. Such m orphological and/or chem ical effects m ay contribute to  the overall 

perform ance o f  OSCs w hen incorporating N Ps into or in contact w ith the PED O T:PSS 

layer.

2.4.7.2 Incorporation of plasmonic nanostructures into photoactive layers

Dispersion o f  m etallic N Ps into the photoactive layers o f  OSC devices can also enhance

the optical absorption due to the excitation o f  LSPR m odes w hen less than 10 nm N Ps

are used. Kim and Carroll et al. reported the addition o f  sm all am ounts o f  Au and A g

39



N Ps into the photoactive layer [116]. N Ps with a diam eter o f  5 -6  nm were stabilised 

w ith a ligand shell o f  dodecylam ine and reported the enhancem ent o f  m ore than 70%  in 

PCE that was m ainly attributed to the introduction o f  the dopant states in the active 

layer. The enhancem ent o f  light absorption due to the scattering w as reported to be a 

m inor effect. Because the presence o f  the surfactant decreased the plasm onic 

im provem ent effect due to non-radiative energy transfer betw een the N Ps and the active 

layer. M. Xue et. al. revealed that the dispersion o f  chem ically  synthesized A g N Ps in 

the active layer enhanced the local absorption and also increased the carrier m obility 

[117]. H owever, the overall PCE was not im proved ow ing to the increased carrier 

recom bination at A g N Ps that acted as traps.

The effect o f  poly (ethylene glycol) and dodecylam ine capped A u N Ps have also been 

investigated by M. X ue and K. Topp et al. It has been show n that the LSPR introduced 

by the m etallic N Ps enhanced the light absorption in the active layer. H ow ever, the 

inferior electrical properties o f  N Ps-based blends com pared to the N Ps-free ones gave 

rise to the reduced overall perform ance [118]. In order to prevent N Ps acting as traps, 

the insulating m aterial capped N Ps were recom m ended [119]. N evertheless, the 

plasm onic efficiency and thus absorption enhancem ent declined w ith the increased 

thickness o f  the insulating coating [ 1 2 0 ].

Thus, the use o f  bare, uncoated N Ps can be a solution to m itigate the proposed adverse

effect o f  the capped N Ps [121]. For this purpose, surfactant and passivation free N Ps

have been used as additives in the active layer o f  the OSC devices. G. Spyropoulos et al.

studied the incorporation o f  surfactant-free Au N Ps in the active layer that significantly

enhanced the device perform ance by 40%  (Figure 2.12 a) due to LSPR and the

scattering effects o f  Au N Ps in the active layer [121]. The enhancem ent in incident

photon to charge carrier efficiency (IPCE) in Figure 2.12 (b) was also found to com ply

40



Prs-tir*

V oltage (V)

60

UC-

300 *00 500 600 roo

*
u
wfi.
“

*a> 600 700

W aveleng th  (nm ) Wavelength (nm)

Figure 2.12 (a) J -V  characteristics o f  the OSC devices with Au N Ps em bedded in the 

photoactive layer, (b) C orresponding IPCE curves o f  these OSC devices, (c) 

C om parison betw een the curve o f  the increase in IPCE (AIPCE) after incorporating Au 

N Ps and the calculated extinction spectrum  o f  the Au N Ps in the P3H T:PC B M  m edium  

[121].

w ith the theoretically  predicted extinction spectra o f  Au N Ps (Figure 2.12 c), suggesting

that LSPR effects w ere prim arily responsible for the efficiency enhancem ent. Therefore,

the incorporation o f  surfactant free N Ps seem s to be an effective way to enhance the

optical absorption and the exciton dissociation to the organic active layers. The

incorporation o f  70 nm octahedral Au N Ps and 40 nm Ag N Ps clusters in the

P3F1T:PC70BM and PCD TBT:PC70BM  photoactive layer has also been studied by

W ang et al. For the Au N Ps-incorporated P3H T/PC 70B M  devices, the PCE increased
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from  3.54%  to 4.36%  [122], w hile for Ag N Ps-based PCD TBT/PC 70BM  devices the 

enhancem ent w as 6.30%  to 7.11%  [123], respectively. In case o f  Au NPs, the efficiency 

enhancem ent was attributed to the im proved light absorption due to scattering from  N Ps 

LSPR modes. In a different way, the efficiency enhancem ent o f  A g N Ps based devices 

was due to the im proved charge transport w ithin the active layer. The shapes o f  the N Ps 

also influence the perform ance o f  plasm onic OSC devices. A com parison study betw een 

the Ag N Ps and N W s was perform ed by C. H. Kim et al. Com pared to the reference 

device (3.31% ), the efficiency o f  Ag N Ps based OSC device was 3.56% , while the OSC 

device com posed o f  A g N W s exhibited a PCE o f  3.91% . The enhancem ent o f  m etallic 

N W s was higher than that o f  N Ps due to the im proved electron transport that was 

exhibited by the respective devices [124].

D. H. W ang et.al com pared A g N Ps w ith A g nano plates as additives in the P3HT- 

PC 7 1 BM OSC devices. Results showed an efficiency enhancem ent o f  3.2 to 4 .0%  for 

N Ps and 3.2 to 4 .4%  for nano plates, respectively. These results attributed to the fact 

that the shape o f  a metal NP is an im portant factor in m axim ising the light 

trapping [125]. Li et al. com pared the incorporation o f  A g N Ps w ith nano prism  into the 

P3H T:PCBM  active layer [126]. The incorporation different shaped nano structures that 

exhibited the varied LSPR and scattering region into the active layer resulted in the 

broadband absorption enhancem ent. The enhancem ent in the photocurrent for A g nano 

particles, A g nano prism s, and the blended Ag N Ps plus Ag nano prism s w as 

approxim ately 9.0% , 10.1%, and 17.91%, respectively, com pared to the optim ised 

control OSC sam ple. Therefore, OSC devices w ith the Ag NPs show ed a high PCE o f  

4.3% . The reported results anticipated that the m ixing o f  nanostructures in O SC s can 

attribute to the broadband light absorption enhancem ent due to the sim ultaneous 

excitation o f  versatile plasm onic resonances o f  different nanostructures.
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2.4.7.3 Incorporation of plasmonic nanostructures at the interfaces

M etal N Ps are also incorporated in the interfaces betw een the blend and ITO or the 

PED O T:PSS layer in the OSC devices. In this way, it is possible to excite both LSPRs 

at their vicinity and SPPs along the intervening planar surfaces. Therefore, the 

incorporation o f  m etallic N Ps at the interfaces enhances the perform ance in tw o ways; 

the first route is to enhance light absorption o f  the active layer and the second is to 

im prove the efficient charge collection at the corresponding interface.

The first report cam e in 1995 w hen Stenzel et al. studied the incorporation o f  Ag, Au 

and Cu nano clusters at the ITO -CuPc (copper phthalocyanine) interface. The 

incorporation o f  metal nano clusters at the ITO -CuPc interface led to a significant 

enhancem ent in photocurrent w hich was a factor o f  1.3 for A g clusters, 2.2 for Au 

clusters, and 2.7 for Cu clusters separately [127]. The enhancem ents w ere assigned to 

both local plasm on excitation and inter band transitions in the metal clusters. H ow ever, 

W estphalen et al. reported the incorporation o f  Ag nanocluster at the ITO -ZnPc (zinc 

phthalocyanine) interface for a ZnPc based OSC devices. They argued that a plasm on 

enhanced excitation o f  an electron took place inside the m etal cluster. The electron w as 

transferred to the ITO electrode w hile it w as replaced by an electron from  the valence 

band o f  the ZnPc. This charge separation process w as driven by the static electric field 

o f  the depletion layer [128].

In 2004, Rand et al. reported a break through by the incorporation o f  A g nano clusters

as the interm ediate layer in the tandem  OSCs [129] w ith a tw o-fold efficiency

enhancem ent. The enhancem ent was attributed to both LSPR and scattering supported

by clusters. Kulkarni et al. dem onstrated that charge carrier generation could be

enhanced m ore than three tim es if  a thin film  o f  A g nano prism s was introduced under

the photoactive layer [130] and the excitation enhancem ent could in principle be used to
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enhance the photocurrent o f  OSCs. Such nano structures m ight be particularly attractive 

for the low-band gap organics that have red and near-IR  absorption w ith the low 

absorption coefficient [131]. M ore recently, Kym akis et al. explored the effect o f  

surfactant-free A u-N Ps-induced surface plasm ons on the perform ance o f  the 

P3H T:PCBM  photovoltaic devices, utilizing single-w alled carbon-nanotube (SW N T) 

film s as the transparent electrode, instead o f  ITO [132]. The N P incorporation led to a 

70%  enhancem ent in PCE due to an enhanced exciton generation rate o f  the photoactive 

layer caused by localized surface-plasm on resonances o f  the conduction electrons 

w ithin the NPs.

One m ore approach was the incorporation o f  irregular N Ps structures at various 

interfaces o f  OSCs by different vacuum  deposition techniques. In this respect, Chen at 

el. reported the therm al assisted deposition o f  a discontinuous thin Au layer betw een the 

P3H T:PCBM /LiF interface [133]. The OSC device with the P3H T :PC B M /A u/L iF  

configuration show ed a 20% -30%  im proved both the short-circuit current density  and 

the PCE com pared w ith the devices w ithout the Au layer. The photocurrent 

enhancem ent was ascribed to the plasm on enhanced absorption due to the presence o f  a 

nano textured Au layer.

Kim et al. follow ed the w ork w ith the placem ent o f  pulse-current electrodeposited

uniform  sized Ag N Ps between the ITO electrode and the PED O T:PSS HTL [134] and

observed a PCE enhancem ent o f  20% . A nother interrelated w ork reported by

Kalfagiannis et al. w here they studied a direct com parison o f  the P3H T:PC B M  OSC

device perform ance with the electron beam  evaporated A g N Ps. The N Ps w ere

incorporated either between the ITO electrode and the PEDO T:PSS buffer layer or

between the P3HT:PCBM  and the Al electrode [135] in the conventional structural

devices. N Ps on top o f  the ITO led to the im proved perform ance with an efficiency
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enhancem ent o f  2.4 p re fe ren ce  device) to 2.82% , being equal to an increm ent o f  17%. 

Both light scattering and LSPR effects contributed to the im provem ent o f  the device 

perform ance. W hen the N Ps were placed on top o f  the P3H T:PC B M  active layer, the 

devices exhibited an efficiency enhancem ent o f  2 .41-2.65% , i.e. an increase o f -1 0 % . 

They attributed this enhancem ent to the im proved perform ance o f  the PEDOTrPSS 

layer due to a significant reduction in series resistance.

Lee et al. studied the effect o f  Au nano dots (Au N D s) betw een the ITO and the 

PED O T:PSS layer. Initially, Au nano structures were deposited through the layer-by- 

layer deposition onto the ITO substrates and then transform ed into Au N D s through a 

therm ally induced shape transition m ethod [136]. The efficiency increased from  3.04%  

to 3.65%  w hich was m ainly due to the presence o f  the plasm on field in the vicinity o f  

the Au N D s that enhanced the overall absorption to the P3H T:PCBM  photoactive layer. 

M ore recently, solution processed ultrafine Au N W s have also been successfully 

exploited as the plasm onic antennae in organic photovoltaic devices [137]. The 

reduction o f  the spacer layer thickness enhanced the far-field scattering  and the 

localized plasm on excitation field to the P3HT:PCBM  photoactive layer. Both 

m echanism s led to the absorption enhancem ent in the P3H T:PCBM  photoactive layer, 

resulting in the increased photocurrent o f  7.87 to 9.02 m A /cm 2. The pow er conversion 

efficiency has increased from 2.44 to 2.72% .

2.4.7.4 Incorporation of dual plasmonic nanostructures at different layers

C om bination o f  the distinct nanostructures in tw o different layers o f  OSC devices has

recently been explored to successfully extend the w avelength region o f  enhanced light

absorption. In this study, dual plasm onic nanostructures com posed o f  Au N Ps

em bedded in the active layer and an Ag nano grating electrode as the back reflector in
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inverted OSC devices has been fabricated [138]. A PCE increase from 7.59%  to 8.79%  

attributed to broadband absorption enhancem ent due to sim ultaneous excitation o f 

hybridized LSPRs from the Ag nano grating and Au N Ps, respectively. It also 

dem onstrated that A u-Cu alloy N Ps w ere able to be incorporated betw een the ITO and 

the PED O T:PSS layer o f  the OSC devices. A polystyrene- block -poly (2-vinylpyridine) 

(PS-b-P2V P) copolym er tem plate was used to m ake arrays o f  metal nano particles [139]. 

It was found that, due to LSPR effects in bim etallic N Ps, light absorption o f  the organic 

thin layer was enhanced, resulting in the im proved efficiency o f  3.35%  com pared to the 

conventional OSC devices w ith the PCE o f  2.90% .

M oreover, Fan et al. reported the incorporation o f  the solution processed Au N Ps and 

graphene oxide (GO) into the PED O T:PSS layer [140]. The incorporation o f  the GO 

tem plate is helpful to avoid the aggregation o f  the blended Au N Ps during the form ation 

o f  the PED O T:PSS layer and to prom ote the plasm onic effect w ithout dram atically  

sacrificing the electrical properties. The efficiency o f  the optim ised devices increased to 

3.55%  from  a value o f  3.27%  for the reference device w ithout the A u-G O s addition. 

The enhancem ent is m ainly ascribed to the increase o f  light absorption and exciton 

generation rate in the active layer caused by the plasm onic near-field effect.

2.4.8 Stability issues o f OSCs (conventional and inverted)

The pow er conversion efficiency o f  organic solar cell devices has been increased from

1 %  in 1999 to 9.2 %  in 2013 [18,48]. H owever, it is still far aw ay to com m ercialise

OSCs. The reason for this is that OSC devices have to satisfy m any requirem ents in

term s o f  cost, efficiency, and operation stability. The low production cost and easy

fabrication process on glass, plastic, and metal substrates provide a strong im pact on

pursuing this technology. How ever, one o f  the com m ercial unviable factors is the
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environm ental degradation or the short life o f  the OSC devices. A lthough studies on 

stability and degradation o f  OSCs can be found in the early  1990s [141], this issue has 

not been paid m uch attention during the early developm ent stage. Recently enorm ous 

studies have been carried out tow ards the device stability and som e im provem ents have 

been achieved. Cum pston and N eugebauer et al. studied the photo-oxidation behaviour 

o f  O SCs and found that the organic m olecules reacted w ith oxygen and w ater, form ing 

new  com pounds with inferior optical and electrical properties [142,143]. Som e organics 

can degrade slow ly w hereas others degrade quickly. For exam ple, P3H T is 

com paratively stable than M EH -PPV  and M D M O -PPV .

Krebs and N orrm an have reported a lifetim e o f  up to 10,000 hours for poly(3- 

carboxydithiophene (P3C T) and C60 based heterojunction devices [144]. A fter that 

Hauch et al. reported an outdoor life tim e o f  m ore than one year for the P3H T:PC B M  

based OSCs in 2008 [145]. For degradation studies, the devices were packed w ith 

transparent barrier film s with the w ater vapour transm ission rate o f  0.03 g /(m 2 day) at 

38 °C /100%  relative hum idity, w hich was estim ated to be roughly equivalent to one- 

year outdoor exposure as the accelerated lifetim e testing. Therefore, com pared w ith 

inorganic counterparts, instability o f  OSC devices is still a key issue for future 

applications. The factors affecting the device stability  are m ainly due to oxygen, w ater, 

and reaction o f  the electrode m aterial w ith the photoactive layer [145-150]. It is well 

know n that low w ork function m etals (Ca, M g and Al) are used as a cathode [151-154] 

in the conventional device structures. The strong oxidation nature o f  these m etals is a 

route for diffusion o f  oxygen and water into the photoactive layer, w hich leads to the 

chem ical degradation.

A lum inium  has very high tendency o f  electrochem ical reaction w ith oxygen and w ater

to form  an insulating metal oxide layer betw een the active layer and the electrode
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m aterial. The form ing metal oxide layer degrades the perform ance o f  the OSC devices 

[32, 146]. De Bettignies et al. carried out the tem perature dependence lifetim e 

m easurem ents on the optim ised P3H T:PCBM  solar cells [155]. A significant difference 

w as noted in the degradation w ith the C a/A g and LiF/Al electrodes. For the initial 25 h, 

the degradation was independent on the nature o f  the cathode, but after, the LiF/Al 

cathode led to a faster degradation o f  the devices in perform ance (Figure 2.13). The ITO 

thin film is used as the anode m aterial in m ost conventional OSC devices and the 

PED O T:PSS is utilised as the com m only used anode buffer layer betw een the ITO and 

the photoactive layer. The use o f  the PEDOTrPSS as an anode buffer layer for hole 

collecting is to prevent oxygen penetration, to m anage the w ork function o f  the ITO 

film , and to prevent the indium  diffusion into the active layer.
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Figure 2.13 Efficiency degradation data up to 100 h ageing for the P3H T:PC B M  solar 

cells w ith tw o types o f  cathodes LiF/AI (square) and C a/A g (stars) under a 

100 m W /cm 2, AM 1.5 illum ination at 60 °C [155].
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It has been reported that the PEDO T:PSS itself creates the interface instability because 

o f  its strong acidic property o f  the PED O T:PSS solution [156]. Study disclosed that in 

the preparation o f  glass/ITO /PED O T:PSS sam ples, the concentration o f  indium  in the 

PED O T:PSS film was 0.02 at. %  due to etching o f  the ITO film in the spin-coating 

process o f  the PED OT:PSS film. A nnealing in nitrogen at 100 °C for 2500 h increased 

the indium  concentration to 0.2 at. %. M uch faster degradation happened w hen exposed 

to air. The am ount o f  indium reached a saturation concentration o f  1.2 at. %  after 

several days kept in air. That m eans the interface between the active layer and the ITO 

electrode is a m ajor cause for degradation in the P3H T:PCBM  based conventional OSC 

devices is also reported by Reese at al. [157]. Hence, replacem ent o f  the PED O T:PSS 

film  by choosing other interface m aterials such as transition metal oxides (e.g. M 0 O 3 , 

V 2 O 5  and W O 3 ) has been w idely explored for potential prom ising alternatives in order 

to im prove the interface stability o f  the conventional OSC devices [ 158-161].

In this concern, inverted organic solar cell devices have been suggested as a feasible 

approach to increase the stability o f  OSC devices. In the inverted configuration, the ITO 

electrode w orks as the electron collecting electrode (cathode) and the high w ork 

function m etals as the hole collecting electrode (anode). W ork function o f  ITO thin 

film s is m odified to w ork as the electron collecting cathode. M etal oxide layers such as 

ZnO, T i0 2  and som e alkali m etal com pounds like CS2 C O 3 have been studied to m odify 

the work function o f  the ITO film  as the electron collecting layer [162-167]. A m ong all 

these selections, the ZnO film has been found to be one o f  the m ost prom ising w ays that 

can be easily used in the roll to roll processing. Hau et al. reported the environm ental 

stability o f  the inverted devices based on the ZnO nanoparticles as the electron transport 

layer and the PED O T:PSS/A g as the hole transport layer and top anode, respectively  

[162].
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Figure 2.14 (a) J-V  characteristics o f  unencapsulated conventional P3H T:PC B M  OSCs 

over a period o f  four days in air under am bient conditions, (b) J-V  characteristics o f  un

encapsulated inverted P3H T:PCBM  OSCs (ZnO N Ps on ITO -coated plastic substrate) 

over a period o f  40 days in air under am bient conditions. (Inset show s unencapsulated 

dark current device characteristics at 0 and 40 days in air under am bient conditions) 

[162].

Com pared to the conventional structures, inverted structures retained over 80%  o f  its 

original efficiency after 40 days (Figure 2.14). The conventional O SC device using 

LiF/A l as the electrode was extrem ely unstable as its PCE was reduced to less than h a lf 

o f  its original value after one day o f  storage and totally  degraded after 4 days. The V oc, 

Jsc and FF decrease dram atically  after one day o f  air exposure due to the interface 

instability o f  the electrode from  oxidation o f  the alum inium . The key param eters (PCE, 

Jsc, V oc and FF) dependence on the storage tim e is shown in Figure 2.15. The im proved 

stability was attributed to both the PED O T:PSS layer and A g electrode. The A g 

electrode in air can form a layer o f  silver oxide w hich increases its effective w ork
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function to -5.0 eV. This m atches well w ith the PED O T:PSS HOM O  o f  5.25 eV and 

hence im proves its electrical coherence at the interface [168]. In addition, the 

PED O T:PSS film acts as a barrier for oxygen penetration into the active layer. A nother 

study has reported the increased stability in the inverted OSC devices by using T i0 2  as 

the ETL and sulfonated poly(diphenylam ine) (SPD PA ) as the HTL [164].
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Figure 2.15 Device perform ance o f  un-encapsulated conventional and inverted solar 

cells stored 40 days in air under am bient conditions, (a) N orm alized PCE, (b) J sc, (c) V oc, 

(d) FF [162]
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The PCE o f  the inverted devices was 3.91% , w hich was the sam e as that for the 

conventional devices with an ITO /PED O T:PSS/ P3H T:PCBM  /Ca/A l structure. 

Inverted OSC devices m aintained a PCE o f  2.82%  after 400 h o f  air-storage (Figure 

2.16), w hile the conventional devices rapidly declined due to the oxidization o f  Ca and 

its poor protection to the active layer. The enhanced stability o f  inverted OSC devices 

attributed to both T i0 2  and SPDPA layers, w here the T i0 2  layer provided an 

appropriate work function to form an ideal contact w ith the active layer and a sm ooth
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Figure 2 .16 PCE param eters as a function o f  storage tim e for a conventional device (□ )  

and an inverted device ( A )  [ l 64]

surface over the ITO film , avoiding pinholes and the SPDPA film im proved the 

interfacial dipole effect between the metal and the photoactive layer. In the inverted 

structures, the PCE has also been significantly im proved by the use o f  the PED O T:PSS 

and/or other transition metal oxides (e.g. M 0 O 3 , V 2 O 5 and W O 3 ) as the hole transport 

layer betw een the active layer and the high w ork function anode. Jang et al. reported the 

stability o f  the inverted (ITO/CS2 C O 3 /P 3 H T:PC B M /M o 0 3  /A l) and conventional



(ITO /PED O T:PSS/P3H T:PC B M /LiF/A l) OSCs in air for 40 days [169]. The inverted 

O SCs showed better stability than the conventional OSCs in am bient air at 295 K for 40 

days. The PCE o f  the inverted OSCs dropped to about 93.5%  o f  the initial value, while 

the efficiency o f  the conventional OSCs decreased to 87.7%  (Figure 2.17).
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Figure 2.17 PCE param eters as a function o f  storage tim e in am bient air, Solid sym bols 

represent the param eters o f  inverted O SCs and open sym bols represent that o f  

conventional O SCs (the param eters are norm alized to initial values) [169].

This m ay be due to reduced effect or dam age to the ITO film  by the acidic property  o f  

the PED O T:PSS in the inverted configuration OSCs because there is no process o f  

depositing the PEDOT:PSS film and replacem ent o f  a thin M 0 O 3 film  has im proved the 

carrier extraction. In addition to investigating the am bient device stability, Z hang et al. 

reported therm al studies o f  organic-based solar cells. [170] The phase separated 

m orphologies o f  the blends are not very therm odynam ically  stable, w hich m eans that 

the blend still has a certain degree o f  freedom  to diffuse or segregate into larger phases,
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leading to reduction in the num ber o f  interfaces and thus causing degradation in the 

device perform ance. In the study, they used am orphous fullerene derivatives as the 

electron accepting m aterial in the P3HT:fullerene based inverted OSCs. The am orphous 

fullerenes w ere based on m odification to the PCBM  by replacing the planar phenylene 

ring with a bulky triphenylam ine (TPA ) or 9,9-dim ethylfluorene (M F).

P3HT: PCBM 
P3HT : TPA-PCBM 
P3HT : MF-PCBM

4 0

3 0

^  2 S
-4

— P3HT : PCBM 
—•HP3HT : TPA-PCBM 
— P3HT : MF-PCBM

-12 0 0
DC-0.2 00 0.2 O B 100 2 0 0  3 0 0  4 0 0

A nn ea l in g  t ime (min)

5 DO0 .4 6 0 0

V oltage (V)

Figure 2 .18 (a) J-V  characteristic o f  PC B M -,TPA -PCB M -,and M F-PCB M - based OSC 

devices, (b) Plot o f  PCE vs annealing tim e o f  PCBM -, TPA -PC BM -, and M F-PCB M - 

based devices annealed at 150° C [170]

The m odified am orphous fullerenes suppress the crystallisation-induced m orphological 

changes that cause the device degradation. The PCE o f  the O SCs fabricated w ith the 

TPA -PCBM  and M F-PCBM  were 4.0%  and 3.8% , respectively, w hich is com parable to 

those fabricated w ith the PCBM  as the electron acceptor (4.2% ). Slight differences in 

PCE attributed to the low er m obility o f  the tw o am orphous fullerenes as com pared to 

the PCBM . The therm al stability o f  these O SCs has exam ined by a typical post

treatm ent tem perature o f  150° C for a tim e period o f  10 min to 10 hours. F igure 2.18 

shows the J-V  curve and dependence o f  the PCE on the annealing tim e o f  the three
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different OSC devices. The PCE o f  the PCBM  based device w as 4.2%  after 10 min o f  

annealing and gradually decreased to 1.8% after annealing for 10 hours. H ow ever, both 

the TPA -PCBM  and M F-PCBM  showed a significantly  higher therm al stability, 

presenting negligible PCE loss even after 10 hours o f  annealing. C om paratively  less 

stability o f  the PCBM  based devices w as due to severe aggregation and m icro 

crystallites in the P3H T:PCBM  film s after annealed for 10 hours w hereas both the TPA - 

PCBM  and M F-PCBM  film s show ed no signs o f  severe phase segregation even after 10 

hours o f  annealing. Therefore, the use o f  am orphous fullerene acceptors m ight be a 

prom ising w ay for im proving the long-term  therm al and m orphological stability o f  the 

inverted OSCs.

2.5 Development of OSCs

In the last decade, O SCs have attracted a significant am ount o f  academ ic and industrial 

attentions due to their advantages o f  being less expensive and using the solution 

processable fabrication m ethod. C. Tang dem onstrated a 1% efficient organic solar cell 

w ith the use o f  perylene pigm ent com bined w ith C uPc in 1986 [48]. M eissner et al. 

produced m ore than 1 %  efficient organic solar cell structures in mid 1990s w ith the C- 

60 doped ZnPc layer [171]. H eterojunction based devices were found to be m ore 

efficient and the first heterojunction based device was fabricated w ith M EH -PPV  and C- 

60 conjugated polym ers [172-175].

Furtherm ore, the P3H T:PC B M  blend was found to be the m ost deliberate active

m aterial for fabrication o f  the photoactive layers. Schilinnsky generated the highest

short circuit current o f  8.7 m A /cm 2 using the P3HT:PCBM  blend [176] in 2002.

Padinger et al. illustrated a 3.5 % efficient device by a postproduction treatm ent in 2003

[177]. A fterw ard, P3H T:PCBM  came under the intense investigation by m any groups

55



all over the world. The m obility and the crystallisation o f  the P3HT thin film  were 

continually  im proved by different grow th conditions and annealing treatm ents. The 

im proved regioregularity also increased the perform ance o f  OSCs and obtained a PCE 

o f  4.4% , even w ithout optim isation o f  electrodes [178]. The enhanced perform ance was 

attributed to enhanced optical absorption and im proved carrier transport due to better 

organisation o f  the P3H T chains via the better stacking in their structures [22]. The ratio 

o f  P3H T and PCBM  in the blend has been studied and the best perform ance o f  PCE up 

to 3.85%  was achieved for the device w ith the 1:1 ratio o f  P3HT and PCBM  due to 

better absorption and carrier transport in the active layer [179]. For the conventional 

structures Y ang et al. has reported an efficiency o f  -4 .4 %  using the solvent annealing 

approach to change the P3H T:PCBM  m orphology [75,180]. D ifferent additives in the 

H TL have also been studied including glycerol, graphene oxide and fluoro surfactant. 

The reported PCEs were 4.32% , 3.80%  and 3.10% , respectively [181-183].

The buffer layers are im portant in OSCs. Kim et al. introduced an optical spacer layer o f  

titanium  oxide (T iO x), inserted between the organic active layer and the m etal cathode 

as the ETL in 2006 [184]. U nder AM  1.5 illum ination, an efficiency enhancem ent o f  

2.3%  to 5.0%  has been dem onstrated w ith the application o f  T iO x as an optical spacer. 

W. M a et al. studied the different post-production annealing o f  the photoactive layer and 

the PCE reached to 5 .0 %  [61]. However, the stability and life tim e o f  these devices 

w ere very poor due to the etching o f  the acidic PED O T:PSS to the ITO film  and the 

high oxidation nature o f  top low w ork function metal electrode. Therefore, a novel 

O SCs structure w ith the high work function m etal or metal oxide as the top electrode 

and low w ork function metal as the bottom  anode has proposed and nam ed as the 

inverted OSCs. For inverted organic solar cells, ZnO and T iO x thin film s are the m ost 

com m only used ETLs on top o f  the ITO film  w hile the PED O T:PSS film  is the m ost



studied HTL. The reported efficiency for the ZnO  and TiO x film s as the ETL and the 

PED O T:PSS as the HTL are 3.78%  and 3.81% , respectively [162,185]. Som e other 

HTLs (e.g. M 0 O 3 , V 2 O 5  and graphene oxide film s) w ith the ZnO film  as the ETL have 

also been studied and show ed prom ising results w ith PCEs o f  4.18% , 3.90%  and 3.61%  

respectively [186-188]. Afterw ard, S. K. Hau and Hsieh et al. dem onstrated the 

interfacial m odification o f  the ETL using self-assem bled m onolayer (SA M ) and cross- 

linked-[6 ,6 ]-phenyl-C 6 i-butyric styryl dendron ester (C-PCBSD ). The m odified OSC 

devices show ed higher PCE o f  4.90 %  and 4.4 %, respectively as com pared to 

unm odified devices [189, 56].

Recently, T. K uw abara et. al. studied the effect o f  UV light on the ZnO ETL and the 

reported PCE was 3.0%  [190]. The addition o f  a high boiling point solvent like 1,8- 

diiodooctane and 1 ,8 -octanedithiol has also been studied for optim isation o f  the 

m orphology o f  the active layer. Y. Kim et. al. and H. Kim et. al. reported an electro

spray coated and spin coated P3HT:PCBM  O SCs with the 1,8-diiodooctane and 1,8- 

octanedithiol additives [191-192]. The obtained PCE was 3.08 %  and 3.46 %  

respectively. X. Han et. al. published their inverted O SCs w ith an fluorinated acceptor- 

doped P3HT:PCBM  layer and reported the PCE o f  4.22%  [193]. 1,8-diiodooctane 

additives were also used in other types o f  OSCs. Recently, J. Huang et. al. has published 

a solution-processed diketopyrrolopyrrole (D PP) based small m olecule O SC s with 

5.29 %  efficiency by the addition o f  1,8-diiodooctane into the active layer [194]. M any 

different solvent additives including 1,8-octanedithiol (O D T) [195], 1-

chloronaphthalene (CN ) [196], 1,8-diiodooctane (DD) [197], 2 ,3 ,5 ,6-tetrafluoro-7,7,8, 

8 -tetracyanoquinodim ethane (F4-TC N Q ) [198] and nitrobenzene (N B) [199] have also 

been investigated. Due to the thin active layer and the narrow absorption range o f  the

P3HT, the device efficiency is still very low com pared to that o f  o ther types o f  PV
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devices. Therefore, the incorporation o f  random  and periodic plasm onic metallic 

nanostructures into ETLs, active layers and HTLs has also been w idely studied, which 

dem onstrated the im proved perform ance in term s o f  the enhancem ent o f  optical 

absorption, fill factor and current density in the devices w ithout changing the thickness 

o f  the active layer [80,101,182]. Section 2.4.7 has described the detailed discussions on 

the incorporation o f  different m etallic nanostructures into ETLs, active layers and HTLs. 

A dditionally; the effects o f  d ifferent m etallic nanostructures on the properties o f  O SCs 

are listed in Table 2.1 [200].

Table 2.1 Device characterisation data o f  O SCs w ith N Ps em bedded in d ifferent layers

Geometry Photoactive layer *1

(% )

±

(% )

M echanism Ref.

NPs dispersed into the 

active layer

20 nm Ag N Ps P3HT:PCBM 2.06 96 LSPR  + 

m orphology

[201]

110 nm Ag N W s P3H T:PCBM 3.91 18 LSPR + 

scattering

[124]

Ag N Ps P3H T/PC 7 iBM 4.0 25 Scattering [125]

1.5-20 nm Au N Ps P3H T:PCBM 3.71 41 LSPR + 

scattering + 

m orphology

[121]

3.7 nm Au N Ps P3H T:PCBM 1.5 -6 7 Exciton

quenching

[120]

40 nm Ag clusters PCD TBT :PC70BM 

P3H T/PC 70BM

6.45

4.36

16

23

C harge

transport

[122]

70 nm Au N Ps PCD TBT :PC70BM 7.1 13 Scattering [202]

4.8-7.4 nm Au NPs P3O T-C 60 1.9 73 Electrical [116]

NPs dispersed into the
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HTL (PEDOT:PSS)

15 nm Au N Ss M EH -PPV :PC B M 2.36 19 LSPR [ 1 1 0 ]

3 0 -4 0  nm Au N Ps P3HT:PCBM 4.19 2 0 LSPR [182]

45 nm Au N Ps P3H T:PCBM 4.24 19 LSPR [203]

18 nm Au N Ps P3HT:PCBM 3.51 13 LSPR,

charge

transport

[106]

15 nm Au N Ps P3HT:PCBM 4.05 90 LSPR,

electrical

[ 1 0 1 ]

Au 55 nm N Ss + 12 nm N Rs P3H T:PCBM 4.28 24 LSPR [127]

60 nm A g N Ps P3H T:PCBM 2.75 64 LSPR

7 0 -8 0  nm Au N Ps in 

PED O T interm ediate layer

Tandem

P 3H T :IP C A -

PSB TB T:PC 70BM

6.24 19 Strong local 

near-field

[204]

NPs dispersed into the 

ETLs

CS2 C O 3 +45 nm Au N Ps P3HT:PCBM 3.54 13 LSPR [205]

TiC>2 + (40+5) nm Au N Ps 

TiC>2 + (50+5) nm Ag N Ps

PTB7:PC 7]BM 7.02

7.52

1 2

2 0

LSPR [206]

ZnO +24 nm Au N Ps+16 nm 

ZnO

P3H T:PCBM 2.35 4 C harge

transport

[207]

NPs dispersed between 

interfacing layers

13 nm A g N Ps at the 

ITO /PED O T:PSS interface

P3HT:PCBM 3.61 2 0 LSPR [134]

1 nm thick A g N Ps film at 

the ITO /PED O T:PSS 

interface

P3H T:PCBM 2 . 2 69 Plasm on [208]

30 nm Au nanodots at the 

ITO /PED O T:PSS interface

P3HT:PCBM 3.65 2 0 Plasm on [136]

12.5 nm A g N Ps between 

ITO /PED O T:PSS interface

P3HT:PCBM 2.82 17 Scattering [135]
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l l O n m  Au N PY s 

(nanopyram ids) at the 

ITO /PED O T:PSS/interface

P3HT:PCBM 1 . 1 2 0 0 N ear field 

plasm onic

[209]

5 -1 0  nm Au N Ps at the 

PED O T:PSS/active layer 

interface

P3HT:PCBM 3.36 - 8 R ecom binat

ion

[2 1 0 ]

7 -9  nm Au N W s 

(nano w ires) at the 

ITO /PED O T :PSS/interface

P3HT:PCBM 2.72 1 2 Far field 

scattering

[137]

40 nm Ag N Ts 

(nanotriangles) at the 

ITO /PED O T :PSS/interface

PC D TBT:PC 6 iBM 4.52 7 LSPR + sea 

ttering

[2 1 1 ]

NPs combinations

1 8 n m Au N Ps in PED OT 

and 35 nm Au N Ps in active 

layer

P3H T:PCBM 3.85 2 2 LSPR [107]

50 nm Au N Ps into the 

active layer and A g back 

grating with 750 nm period

PBD TTT-C- 

T:PC70 BM

8.79 16 LSPR + SP 

P

[138]

4 0 -5 0  nm Au and Ag N Ps 

into the PED O T:PSS layer

PTB7:PC70BM 8.67 2 0 LSPR [2 1 2 ]

25 nm A u -C u  N Ps alloy 

betw een the ITO and 

PED O T:PSS layers

P3HT:PCBM 3.35 14 LSPR [139]

10 nm Au-G O into 

PED O T:PSS layer

P3H T:PCBM 3.55 1 0 LSPR [140]

2D arrays o f NPs

Periodic Ag nanotriangle 

array on ITO

PCD TBT:PCBM 4.52 7 LSPR [2 1 1 ]

Periodic Au nanopyram ids 

on ITO

(P3):PCBM 1 . 1 205 LSPR [213]
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Studies about fabrication o f  the OSC devices on m etals have also been published based 

on the m ostly popular active blend o f  P3H T:PCBM  [27-32]. Y. Galagan et al. and Y.M. 

C hang et al. reported their inverted OSC devices on the stainless steel substrate [27, 28]. 

the reported PCE was 1.30% and 0.97% , respectively. B. Z im m erm ann et al. 

investigated the top illum inated inverted OSC devices directly on the vacuum  deposited 

and stored Ti/A l/Ti or Cr/A l/Cr coated glass substrates, obtaining the PCE at 3.1%  [29]. 

T.S. Kim et al. presented the inverted OSC devices on the copper sheets w ith PCE at ~ 

2.5%  [30]. D. Angm o et al. reported the R2R processed large area OSC devices w ith Ag 

coatings as back electrodes with the best PCE at 1.61 %  [31]. PCE o f  the OSC devices 

on m etals is related to m any factors; e.g. surface properties o f  m etals including 

roughness, the passive layer, w ork function and the transparency o f  top electrode, etc.

[214]. Y. Zhou et al. presented PCE o f  2.4%  for the bottom  illum inated OSC devices 

w ith the conducting organic top transparent anode [215].

G enerally, the obtained PCE for the devices using the P3H T:PCBM  based photoactive

layer rem ains lim ited (~5%). However, significant strides have been m ade in the last

few years by the developm ent o f  low band gap organics that can harvest energy in the

long w avelength region. Liang et al. dem onstrated 7% and lately above 8 %  PCE o f  the

OSC devices w ith the PTB 7 :PC 7 iBM  photoactive layer in 2010 [216]. Two N R EL

certified devices have been reported to break the 8 %  PCE m ark [217, 218]. The

Solarm er C om pany (2009) has achieved a device that exhibits 8.13%  PCE [217] and

K onarka’s dem onstrated a w orld-record breaking efficiency o f  8.3% . Both w ere

certified by N R EL [218]. Konarka C om pany also developed the encapsulated device

with a ro o f top life span o f  more than tw o years. Heliatek GmbH and the Institute o f

A pplied Photophysics at Dresden University have reported a standard 1.1 cm 2 organic

solar cell w ith an efficiency o f  8.3%  [219]. The claim ed efficiency was m easured by
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Heliatek and independently confirm ed by the Fraunhofer ISE CalLab. For the tandem  

OSC devices, Y ang’s group has announced PCE o f  8 .6 %  [220].

A fterw ard, J. You et al. reported the efficiency o f  10.60% using the P3H T:IC B A /PD TP- 

D FBT (poly[2 ,6-(4 ,4-bis-(2-ethylhexyl)-4H -cyclopenta[2 ,1 -b;3,4-b ']-dithiophene)-alt- 

4 ,7-(2 ,l,3-difluoroben-zothiadiazole):PC 61B M  based tandem  O SCs [16]. Recently, an 

efficiency o f  12.0 %  has also been reported by H eliatek and they expect to reach the 

15% efficiency by 2016 [19].

Conclusions are made; i.e. the incorporation o f  m etallic N Ps can enhance the optical 

absorption w ithout increasing the thickness o f  the active layer. By controlling the shape, 

the size, the concentration and the place o f  incorporation o f  the N Ps, it is possible to 

enhance the overall PCE in these so-called “plasm onic devices” . The top illum inated 

OPV decices on flexible metal substrates is also a potential alternative o f  producing 

flexible OPV devices via the inverted structures with a transparent top anode.

In this context, it is still quite a long way to go for realising the real com m ercial 

products in term s o f  the PCE and device stability for OSCs w hen com pared w ith 

inorganic PV devices.
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Chapter 3: Experimental

3.1 Materials selection

3.1.1 Active layer materials

Bulk heterojunction organic solar cells consist o f  an organic photovoltaic active layer 

sandw iched between tw o electrodes. The active layer material is a blend o f  the donor 

and the acceptor sem iconductors. The donor is a conjugated organic and the acceptor is 

a small m olecular m aterial. The donor and acceptor blend is a key factor and has a great 

im portance for the fabrication o f  high perform ance organic solar cell devices. A num ber 

o f  donor and acceptor m aterials have been developed in the last decades. The blend o f  

P3HT and PCBM  is one o f  the m ost studied photoactive m aterials [1] for application in 

OSCs, organic light em itting diodes (O LED s), [2,3] and field effect transistors (FETs) 

[4-6].

The perform ance o f  the PV device depends on degree o f  crystallin ity  and the

regioregularity o f  the donor organic m aterial [7,8]. P3H T is a conjugated organic w ith a

thiophene backbone that is coupled between the 2- and 5-positions (2-position is know n

as head, and the 5-position is known as tail). The presence o f  the alkyl-group enhances

the solubility o f  P3H T that causes the high potential o f  crystallinity  [9]. P3H T usually

has a regioregularity  o f  m ore than 90%  and higher regioregularity  provides higher

crystallinity. In this study, the blend o f  the active m aterials is based on. the P3HT and

PCBM . The P3HT for our PV devices is from M erck (L isicon SP001) and has a

regioregularity  o f  m ore than 94%  and the PCBM  is from Solenne BV w ith a purity  o f

99.5% . The PCBM  is n-type fullerene based m aterials and contains a buckyball (C 60)

with a solubility enhanced m ethyl-ester group. Fullerene and its derivatives are w idely

used as the electron acceptor m aterials in the organic PV technology. H um m elen and
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W udl et al., reported synthesis o f  m ost successful fullerene derivatives w ith excellent 

photovoltaic properties as the electron acceptor in 1995 [10]. The H OM O and LUM O 

energy level o f  the P3H T:PCBM  blend are shown in Figure 3.1.

-2.74 eV

AE

-3.91 eV
P3HT

H O M O d O C H
-4.76 eV

AE

h o m o a
-5.93 eV

Figure 3.1 M olecular structures and the HOM O and LUM O energy level o f  the 

P3H T:PCBM  blend system s [11]

This P3H T:PCBM  based photoactive layer absorbs incident light and generates excitons. 

The excitons then diffuse at the donor-acceptor interface and dissociate into electrons 

and holes. The dissociated electrons and holes m ove tow ards the respective electrodes 

by the influence o f  the built-in electric field and then are collected by the electrodes. 

The P3HT:PCBM  absorbs light in the range o f  380-670 nm, w hich m eans that excitons 

generated by the absorption o f  photons have the bandgap energies betw een 2.0 to 3.3 

eV. The energy difference between the LUM O and HOM O o f  the donor and acceptor 

separate the excitons into free electrons and holes. The electrons and holes will transport 

tow ards respective electrodes through the LUM O o f  PCBM  and the H O M O  o f  P3HT,
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respectively. W hen the HOM O and LUM O o f  the donor m aterial is higher (0 .2 -0 .3  eV) 

than that o f  the acceptor m aterial, the charge separation is efficient (Figure 3.1). 

How ever, when photons have energies greater than 2.0 eV, it can only be absorbed by 

the P3H T:PCBM  m eans a m ore than 70%  energy loss taking place during the 

photoelectric conversion. Therefore, it is required to tune the H OM O  and LU M O  levels 

o f  the donors and the acceptors in order to m inim ise this loss.

3.1.2 Electron transport layer (ETL)

The w ork function o f  the electron collecting electrode affects the photovoltaic

perform ance o f  the organic solar cells devices and the m axim um  perform ance can be

achieved w hen the w ork function o f  the electron collecting electrode is aligned

ohm ically  w ith the LU M O  level o f  the acceptor. The role o f  the electron transport layer

is to im prove the electron collection efficiency by providing an ohm ic contact betw een

electron collecting electrode and the acceptor m aterial. The electron affinity needs to be

high enough to block the positive charge carriers. An efficient electron transport layer

needs to be stable and should not increase the device series resistance. High

transparency is also an im portant param eter for the inverted device configuration.

To be used in organic solar cells, the devices need to be processed under low

tem perature using the sim ple m ethod, m aintaining flexibility  and retaining a thin form

factor. These requirem ents can be easily fulfilled by the inverted device architecture

with the low tem perature solution-processed n-type m etal oxide layer w ith high electron

m obility for transportation o f  electrons. In the inverted organic solar cell configuration,

ZnO  and TiO x are the m ost studied electron transport layers. The high electron m obility

o f  ZnO com pared to titanium  oxide m akes it the ideal electron selective contact layer in

organic solar cells [12]. The solution-processed ZnO electron transport layer or zinc
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oxide nanoparticles (ZnO N Ps) layer has been shown to be produced via a spin-coating

technique at room  tem perature [13]. The ZnO  N Ps derived layer exhibits good electron

• 2 • m obility (-0 .0 6 6  cm /V s) w ithout the need o f  an additional post-therm al treatm ent

[14].

A dditionally, the zinc oxide layer has m any other properties; e.g. low -cost, non-toxicity, 

good substrate adherence, and excellent chem ical and therm al stability [15]. A w ide 

variety o f  techniques for the fabrication o f  high quality ZnO thin film s have been 

reported so far, including m ist pyrolysis chem ical vapor deposition (M PC V D ) [16], 

pulsed laser deposition (PLD) [17], so l-gel m ethod (18), plasm a sputtering [19], and 

electrochem ical deposition [20]. The sol gel technique is one o f  the sim ple low- 

tem perature m ethods for the deposition o f  ZnO thin film s on flexible substrates. W hen a 

ZnO buffer layer is inserted between the organic active layer and the electron collecting 

electrode in organic solar cells, efficient electron transfer at the PCB M /ZnO  interface is 

achievable [21] because the energy level o f  the conduction band o f  ZnO  is very close to 

that o f  the LUM O o f PCBM  and is well suited to the w ork function o f  ITO electrode. 

Hence, a low tem perature solution-processed thin layer o f  ZnO has been chosen as the 

electron transport layer in this study to fabricate an environm entally  stable inverted 

organic solar cell on ITO coated glass or m etal substrates. The solution-processed ZnO  

electron transport layer effectively blocks holes and collects electrons from  the PCBM . 

It requires no vacuum  processing and is fabricated from inexpensive m aterials. 

Furtherm ore, the device perform ance can be im proved because the ZnO layer provides 

the advantages o f  high quality surface o f  thin film s, good w ettability, and adhesion w ith 

the photoactive layer.
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3.1.3 Hole transport layer (HTL)

The direct deposition o f  high w ork function metal electrode on top o f  the photoactive 

layer can reduce the photovoltaic perform ance due to the poor charge selectivity. For an 

efficient hole transport layer, the w ork function need to be large enough so that the 

Fermi levels o f  the interlayer m atch the HOM O  levels o f  the active layer. The best hole 

transport layer material m ust provide an ohm ic contact w ith the donor m aterial for an 

efficient hole transport and have a strong electron blocking potential. The ideal hole 

transport layer needs to be stable and should not increase the device series resistance

(Rs).

For top illum inated inverted organic solar cells devices on glasses or m etal substrates, 

the hole transport layer needs to be optically  transparent. There are several high w ork 

function m aterials including M 0 O 3 [22], W O 3  [23,24], V 2 O 5  [25] and PED O T:PSS 

[26,27] that have been utilized as a hole transport layers. In the literature, com paratively  

PED O TiPSS is the w idely used hole transport layer because o f  its easy fabrication w ith 

all the known solution processed techniques. The PED O T:PSS is the m ixture o f  tw o 

ionom ers. One is the PED O T w hich is a conjugated polym er and carries positive 

charges and the second is polystyrene sulfonate (PSS) that carries negative charges. The 

PED O T:PSS is an aqueous dispersion and is difficult to form a thin film  on top o f  the 

P3H T:PCBM  active layer because o f  the hydrophobic property o f  the photoactive layer. 

The addition o f  co-solvent [26] and surfactant [28,29] is used to overcom e this problem  

to obtain the interfacial com patibility. In this study, the H eraeus-C levios PED O TiPSS 

(HTL Solar) with a solid content percentage o f  1.0-1.2 was chosen as the HTL layer 

m aterial. The w ork function o f  the PED O TiPSS is -5 .1  eV that m akes it form  an ohm ic 

contact between the photoactive organic and the high w ork function metal electrode.
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3.1.4 Electrodes

Electrodes are the layers that deliver the photo-generated charges to the external circuit. 

The stability and the high conductivity  are the key properties for the electrodes. In 

organic solar cells devices, one electrode m ust be optically transparent so that the solar 

radiation can reach to the photoactive layer. In m ost organic solar cells, the ITO thin 

film  is used as the transparent conductive electrode w hile the conductive metal layer (Al, 

Au and Ag) is utilised as the rear electrode. The choice o f  the best electrode m aterials 

depends on the configuration and the energy band diagram  corresponding to the active 

layer o f  the devices. Conventional and inverted configuration o f  organic solar cells 

needs different electrode m aterials for an efficient charge collection.

As com pared to the conventional structure, the inverted structure uses a reflective and 

high-w ork-function electrode as the top hole-collecting contact and a transparent 

conducting electrode at the bottom  for the collection o f  electrons. In this study, ITO 

coated glass substrates have been used electron collecting electrodes and the vacuum - 

deposited high w ork function metal (Au) is used as hole collecting electrodes. For an 

inverted device that is fabricated on non-transparent substrates (m etal or g lass/m etal) 

substrates, finding the high w ork function optically  transparent electrode w ith good 

properties is a challenge. In this study, the PED O TiPSS in its high conductiv ity  form 

has been selected as the hole collecting electrode for inverted organic solar cells that are 

fabricated on metal substrates [30,31], H eraeus-C levios high conducting PED O TiPSS 

known as PH 1000 is obtained from O ssila Lim ited UK.

3.2 Preparations

3.2.1 Solution preparation

10 w t%  zinc oxide dispersion was obtained by m ixing -3 5  nm zinc oxide nanoparticles
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(Sigm a A ldrich) in a m ixture (10:0.7) o f  m ethanol and dichlorom ethane (Sigm a 

A ldrich). The ZnO colloid for the deposition o f  the electron collecting layer w as 

prepared using the ball m ill technique. For the sol gel based zinc oxide electron 

transport layer, 0.1M -0.4 M zinc acetate dihydrate (Sigm a A ldrich) w as dissolved in a 

m ixture o f  2 -m ethoxyethanol and then ethanolam ine was added as the stabilising agent. 

For the active layer deposition, different concentration e.g. 20 m g/m l, 30 m g/m l, 35 

mg/ml and 40 m g/m l o f  P3H T (M ER C K -Lisicon SP001) and PCBM  (Solenne b.v.) 

were dissolved in d ifferent solvents such as chlorobenzene and dichlorobenzene. The as 

received dispersion o f  PED O TiPSS from H eraeus-Clevios was used for deposition o f  

the hole collecting layer. Triton X -100 (Sigm a A ldrich) was added (-0 .0 5 % ) to the 

PEDOTiPSS dispersion to increase the w ettability  on the active layer. Thin film s w ere 

deposited using the spin coating technique.

3.2.2 Cleaning the substrates

Prior to the deposition o f  the thin film s, rigorous cleaning o f  the substrate is essential 

for rem oving detrim ental organic and inorganic im purities from the substrate. All 

m etals and glass substrates were first cleaned w ith a liquid soap solution and then 

w ashed thoroughly w ith deionised water. The substrates were finally  degreased 

ultrasonically  in acetone and then isopropyl alcohol for 1 0  m in at room  tem perature. 

Finally, the substrates w ere dried w ith either heating on hot plate or nitrogen-blow ing.

3.2.3 Deposition o f the thin films via spin coating

The spin coating m ethod was used for the thin film deposition in this study. The spin

coating equipm ent is the Sheen film fuge-1110N spin coater. A coating process involves

dropping a small am ount o f  a solution ( 1 0 0  p i) at the centre o f  the 2  cm x 2  cm substrate
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and then spinning the substrate at a given speed to get the required thickness. 

Centrifugal acceleration will cause the solution to spread first and then eventually  o ff  

through the edge o f  the substrate leaving a thin film  o f  solution on the substrate surface. 

F igure 3.2 shows the different steps involved in the spin coating process. Film 

properties and th icknesses depend on the nature o f  the solution (V iscosity, drying rate, 

solid content, surface tension, etc.) and the param eters o f  the spin process (rpm and 

spinning tim e).

I  H i t
T + *

Figure 3.2 D ifferent stages involved in spin coating, deposition o f  the solution, spin 

up, spin o ff  and evaporation o f  the solvent

Factors o f  the spinning speed, acceleration, and the solvent evaporation rate contribute 

to how  the properties o f  the form ed film are defined. O ne o f  the m ost im portant factors 

in the spin coating is its reproducibility. Slight variation in the spin process param eters 

can result in the drastic variation in the form ed thin film . Spin coating technique has 

been w idely used in m any aspects as m entioned below  [32]:

>  O rganic thin film s for solar cells, light em itting diode, flat panel displays and 

sensors.

>  Photo-resist for defining patterns in m icrocircuit fabrication.

>  D ielectric/insulating layers for m icro electric fabrication.
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>  Flat screen display coating-antireflection coating, conductive oxide etc.

3.2.4 Deposition o f the vacuum-technology-based electrodes

The top m etal electrode is norm ally deposited by the vacuum  m ethod. One o f  the m ost 

com m on m ethods is therm al evaporation w here the substrate is placed inside a vacuum  

cham ber w ith the source m aterial. The source m aterial is heated to a point w here it gets 

evaporated and condensed on the substrate to form  a film . In this study, we used the 

plasm a assisted physical vapour deposition m ethod (PA PV D ) to produce our electrodes. 

An im portant advantage o f  PA PV D  is that the high m elting point m aterials (Au, Pt and 

A g) can sim ply be produced. The gold electrode w as deposited onto the hole transport 

layer by the PAPVD  instrum ent. The 99.99%  pure gold target was used for Au 

deposition. The deposition cham ber is equipped w ith a rotated sam ple holder to obtain 

the uniform  film at a base pressure o f  1 x 1 0 ' mbar.

The deposition m ethod includes the strong electric and m agnetic field close to  the 

surface o f  the target. The intensity o f  the electric field can be adjusted by changing the 

deposition current that controls the deposition rate. The carrier gas is A rgon w ith a flow  

rate o f  18 psi. U nder the electric field, the gas atom s becam e positively charged due to 

the escape o f  outer shell free electrons. These gas ions accelerate tow ards the negatively 

charged gold target and excite the gold target to inject the neutral particles. These 

particles travel tow ards the substrate to form  the thin film  o f  gold as the hole collecting 

electrode.
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3.3 Characterisation techniques

3.3.1 UV-VIS-NIR spectrophotometer

A double beam Varian Inc. - Cary 50 UV-VIS spectrophotom eter was used to m easure 

the optical properties o f  the organic and other oxide thin films. The operating range o f  

the spectrophotom eter is from 190 nm to 1100 nm. A schem atic diagram  show ing the 

principle o f  the UV-VIS spectrophotom eter is given in Figure 3.3. The light source in 

this instrum ent is the xenon lamp and the resolution o f  the instrum ent is 1.5 nm in the 

UV -V IS region. In this instrum ent, light em itted from the source passes through a 

grating m onochrom ator (for creating the m onochrom atic beam ) and the beam  passes

Sam ple

Xe Flash lamp 
Light source

Figure 3.3 Experim ental setup o f  UV-VIS Spectrophotom eter

through the sam ple substrate. A fter passing through the sam ple com partm ent, the 

m onochrom atic beam gets converged and is converted into the electrical signal by the 

silicon diode detector. The electrical signal is then am plified and converted into the 

digital signal to obtain the optical spectra. Thin film s o f  photoactive layers, ETLs and

Detector

M onochrom ator 
Select W avelength
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HTLs on 2cm  x 2cm glass substrate used for the characterisation o f  optical properties in 

the range o f  300-800 nm. Baseline correction m ade with bare glass substrates.

3.3.2 Attenuated total reflectance- Fourier transform infrared spectroscopy (ATR- 

FTIR)

A ttenuated total reflection spectroscopy (A T R-FTIR) is also referred as internal 

reflection spectroscopy (IRS). The principle o f  attenuated total reflection spectroscopy

T ran sm issio n

R efracted

a : e < e

rEvanescent
w aveS am ple

T otal
reflection

Figure 3.4 Schem atic diagram  o f  the behaviour o f  electrom agnetic w aves at the 

interface o f  two phases [33].

or internal reflection spectroscopy is that w hen a propagating wave o f  radiation 

incidents from an optically denser m edium  to an optically rarer m edium , both o f  w hich 

are in contact, and then this vane undergoes the total internal reflection. The schem atic 

diagram  o f  the phenom enon internal reflection spectroscopy is shown in Figure 3.4.
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W hen light propagates through the denser m edium  o f  the refractive index (r|i) to a rarer 

m edium  o f  the refractive index (rp), the total internal reflection occurs at the interface o f  

the denser and the rarer m edium  if the angle o f  incidence (0 ) is greater than the critical 

wave angle (0C). E vanescent wave that arises at the interface o f  the denser and the rarer 

m edium  penetrates into the rarer m edium  (sam ple). The evanescent field generated by 

this wave decays exponentially  into the rarer m edium  and has a com ponent in all special 

directions. In case o f  ATR, the inform ation obtained from a sam ple sitting on the top o f  

A TR  crystal is only up to 10 m icrons as the penetration depth o f  the evanescent w ave is 

assum ed to be about 8-10 m icrons. High reflective index m aterials (diam ond, zinc 

selenide, silicon and germ anium ) are usually  used to m ake the A TR  crystal. A  single 

reflection tem perature controlled diam ond A TR  cell (G raseby Specac, UK) that is 

coupled to a Therm o N icolet N EX U S FTIR spectrom eter is used for this study.

The setup has a trade nam e as “G olden G ate” as shown in Figure 3.5. The headings 1 to 

5 on the Figure show various parts o f  the golden gate. The sam ples are placed on the 

A TR crystal area and are fixed by a lim iter torque head screw  for the intim ate contact 

betw een the sam ple and the A TR  crystal. The clam p bridge is used to  tight the torque 

head screw  over the right place. The lens barrel is used to focus the 1R beam  over the 

entire A TR crystal face. The m irrors reflect the infrared radiation (IR) com ing in from  

the IR source. A fter the internal reflection from the A TR crystal, the beam  incident on 

the m irror and the reflected beam goes into the detector to get an interferogram , w hich 

is converted into a spectrum . Dry pow der obtained by rem oving the film  from  the glass 

substrates used for the investigation o f  the FTIR.
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Figure 3.5 Schem atic diagram  o f  side view  o f  the “G olden G ate” :( l)  torque head 

screw with lim iter screw; (2) A TR crystal area; (3) clam p bridge; (4) lens barrel; 

(5) m irrors [33].

3.3.3 Electrical impedance spectroscopy (EIS)

Princeton Applied Research PA R STA T 2273 A dvanced E lectrochem ical System  w as 

used to perform  the electrical im pedance spectroscopy (EIS) m easurem ent o f  the O PV  

devices. The term im pedance is the opposition to the flow  o f  alternating current (AC) 

w ithin the system. This technique is used to m easure the frequency dependence o f  

resistances, capacitances or constant phase elem ents and inductances that m ay be acting 

w ithin the device. In the organic photovoltaic devices, the use o f  EIS is to m easure the 

interface resistance betw een the photoactive layer and the electrodes. The experim ent 

carried out by applying an AC test signal to the device w ith the direct current (D C ) bias 

voltage under the dark condition. The value o f  the testing signal and the DC bias 

voltage are 100 mV and 0.6 V respectively with a frequency range o f  1.0 Hz to 1.0 M Hz.

102



The typical EIS data, as the so-called N yquist plots, are analysed by the ZSim p 3.10 

fitting softw are w ith an equivalent circuit to fit the experim ental data. Each equivalent 

circuit is a parallel com bination o f  resistance (R) and capacitance (C) as shown in 

Figure 3.6. In the equivalent circuit, Rs represents series resistance that arose due to the 

connection leads, m etallic contact, etc and co is the angular frequency w hich decreases 

from left to right.

Figure 3.6 Exam ple o f  equivalent circuit to fit the experim ental data and the 

corresponding N yquist plots

3.3.4 Scanning electron microscopy (SEM)

The scanning electron m icroscope (SEM ) uses electrons rather than light to  form  an 

image o f  the surface. The com bination o f  higher m agnification, larger depth o f  focus 

and greater resolution m akes the SEM  one o f  the m ost w idely used instrum ents. In a 

typical SEM , an electron gun produces an electron beam  w here electrons are accelerated 

w ith the potential o f  5-20 kV and m agnification can go up to m ore than 300,000 tim es. 

A fully com puterised FEI N ova N ano 200 SEM  is used for studying the m orphological 

properties o f  the thin film s. The electron beam produced by the electron gun is focussed 

by the lens m echanism  onto a fine spot (diam eter ~ 1  nm ) on the specim en surface.
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Figure 3.7 Schem atic diagram  o f  the im aging com ponent o f  SEM

Electron beam

Sam ple surface

5-50nm  ^Secondary electron

50-300 nm
B ackscattered <r 
electron

Characteristic <■ 
X -rays

Figure 3.8 The interaction zone o f  electrons and sam ple atom s below  a sam ple surface [34]
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The schem atic diagram  show ing the principle o f  SEM  is given in Figure 3.7. Som e 

electrons accelerate beyond the anode dow n the evacuated colum n tow ards the sam ple. 

The electron beam  is then collim ated by the condenser lens and is focused by the 

objective lens on the sam ple. The scan coils are energized by varying the voltage 

produced by the scan generator for creating a m agnetic field, w hich deflects the electron 

beam  back and forth in a controlled m anner. The electron beam  hits the sam ple, 

producing a w ide variety o f  em issions as illustrated in Figure 3.8.

The secondary electrons from the sam ple are collected by a secondary electron detector 

or a backscatter electron detector. The secondary electron detector produces a voltage 

signal w hich gives the output at the PC after am plification provides the standard 

topographic image. The backscattered electrons that produced by the elastic interactions 

with the nuclei o f  the sam ple atom s provide inform ation about the chem ical 

com position o f  the m aterials. For SEM  characterisation ~5m m  x 5 mm sam ple stick to 

the metal disc by double sided tape. A very thin film  o f  gold was deposited using 

Q uorum  gold coater to avoid the charging problem  for nonconductive thin film s and 

then Silver paste used to connect the top gold surface to the metal disc. W e tested the 

surface m orphologies o f  ETLs, active layer and m etal substrates using SEM .

3.3.5 Atomic force microscopy (AFM)

A tom ic force m icroscope (AFM ) is a very high resolution type o f  instrum ent. An A FM  

has a very sharp tip, a few  atom s w ide at the end, attached to a m icro-cantilever arm  

(Figure 3.9) that has the length at the order o f  100-250 m icrons. A fully com puterised  

digital instrum ent N anoscope Ilia A tom ic Force M icroscope is used for studying the 

sam ple surface.
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Detector

CantileverSample

Figure 3.9 Schem atic diagram  o f  the operation o f  AFM

The basic objective o f  the operation o f  AFM  is to  m easure forces (at the atom ic level) 

between the sharp tip and the sam ple surface. The im ages are taken by scanning the 

sam ple relative to the probing tip and m easuring the deflection o f  the cantilever as a 

function o f  lateral position. The typical force between the sam ple and the tip ranges 

from  0.5 to 1 nN. Am ong the various operating m odes o f  AFM , the tapping  m ode w as 

used for experim ents because the tapping m ode provides high resolution w ithout 

inducing the destructive frictional force [34]. For AFM  characterisation ~5m m  x 5 m m  

sam ple stick to the m etal disc by double sided tape. The metal disc placed on the 

m agnetic substrate holder o f  AFM  for m orphological characterisation. W e tested  the 

surface m orphologies o f  ETLs, HTLs and active layers using AFM .

3.3.6 X-ray diffraction (XRD) measurement

It is a non-destructive characterisation technique based on the elastic scattering o f  X- 

rays at a lattice and is used to study the structural properties o f  m aterials including
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pow ders and thin films. The schem atic diagram  show ing the principle o f  the glancing 

angle diffractom eter (G A X R D ) is given in Figure 3.10.

M onochrom ator

Soller Slit

Detector
Slit

Source
Sam ple

Figure 3.10 Schem atic diagram  o f  the G lancing angle X-ray diffraction

X -rays are generated w hen a high energy electron beam bom bards on a copper target, 

em itting 8 keV X -rays, corresponding to a w avelength o f  0.154 nm. C hoosing a fixed, 

low angle o f  incidence (G lancing angle geom etry) for the X -ray beam  m akes the 

analysis m ore sensitive to the m axim um  sam ple area and helps m inim ise the 

contribution from the substrate. In glancing angle X -ray  diffraction geom etry, the 

incident angle a is fixed and 20 arm will rotate on the goniom eter circle. If  w e consider 

the parallel lattice planes spaced d apart, the constructive interference o f  the radiation 

from  the successive planes occurs when the path difference is an integral num ber ‘n ’ o f  

X -ray w avelength X, so that 2dhki Sin(0) = nX, w here 2dhki Sin(0) is the path d ifference 

for X -rays reflected from  the adjacent plane as illustrated in Figure 3.11. In th is study, 

Philips X ’Pert X RD is used to study the thin film  sam ples. The characteristics o f  X -rays 

generated from  the X -ray source are narrow ed by a vertical divergence slit and then 

m ade incident on sam ples at a fixed glancing angle. The diffracted X -rays from  the 

sam ple are allowed to pass through the parallel soller slit assem bly.
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Figure 3.11 Schem atic representation o f  X-ray diffraction in a crystalline lattice

The parallel beam  o f  X -rays is further reflected by a m onochrom ator to allow  only Cu 

K a radiation to reach the detector and diffraction pattern is then obtained that is directly 

related to the atom ic spacing. The electronic signal from the detector is connected to the 

personal com puter w hich provides the data output [34]. We studied the structural 

characterisation o f  P3H T:PCBM  photoactive layer on glasses in the 20 range o f  4 to 14° 

with a step size o f  0.017°.

3.3.7 Contact angle measurement

Contact angle m easurem ent studies usually involve the m easurem ent o f  contact angles 

when a solid and liquid com es into interaction. If  the contact angle is sm all ( « 9 0 ° )  

m eans w ettability w ill be high, while for large contact angles ( » 9 0 ° )  w ettability  w ill be 

low. The intersection o f  the liquid-solid and the liquid-vapor interfaces is defined as the 

contact angle. The contact angle is determ ined by a com bination o f  surface tension and 

external forces (usually gravity). The shape o f  the droplet depends on the contact angle 

w hich is m easured by Y oung’s relation [35].

Yiv cos 0 = ysv - Ysi
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W here yjv, ysv, and ysi represent the liquid-vapor, solid-vapor, and solid-liquid interfacial 

tensions, respectively, and 0 is the contact angle.

Vapor

Liquid

Solid

Figure 3.12 Schem atic representation o f  the contact angle m easurem ent m ethod

In this m ethod we used dataphysics OCA 15EC contact angle m easurem ent w here 

horizontal cam era capture the im age o f  the droplet and 0 will be calculated by the slope 

o f  the droplet tangent as illustrated in Figure 3.12. For this experim ent we m easured the 

contact angle o f  PED O T:PSS on top o f  P3H T:PCBM  photoactive layer.

3.3.8 Current voltage characteristics

C urrent-voltage (I-V) characteristics reveal how  solar cells w ould operate under solar 

illum ination as shown in Figure 3.13. I-V characterisation setup has a sam ple stage, a 

source m eter and a calibrated light source w hich provides an illum ination intensity o f  

100 m W /cm  . The source m eter provides the bias voltage and records the corresponding 

current when the device is illum inated by the calibrated light source. Solar cells output 

the pow er w hen the applied bias and current are opposite in directions and the detailed 

analysis has already explained in 2.4.4.

The m ost im portant param eter o f  OSCs is the pow er conversion efficiency, w hich is 

determ ined as
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p c e  cn)
V q c  x Jsc x FF

P light

V oc - Open circuit voltage, Jsc- Short circuit current density, FF- Fill factor and Plight 

Intensity o f  light. FF is calculated by the follow ing equation.

V m a x  X  J r
Fill factor (FF)

max ^  •'max

V o c  X  Js

W here V max and Jmax are the value o f  voltage and current density at m axim um  power.
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Figure 3.13 Schem atic representation o f  I-V curve under illum ination

The J-V  characteristic o f  the inverted OSC devices was recorded w ith K eithley source 

m eter and Bentham  solar sim ulator. For bottom  illum inated inverted OSC devices on 

ITO coated glass substrates, incident light reached to the P3H T:PCBM  photoactive 

layer through glass side. W hereas for top illum inated inverted OSC devices on m etals,
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light reaches to the P3HT:PCBM  photoactive layer through hcPED O T:PSS side, which 

is w orking as the hole collecting anode. The tested active area o f  the OSC devices 

decided w ith help o f  metal shadow  mask.

3.3.9 External quantum efficiency

External quantum  efficiency (EQ E) is the ratio o f  the num ber o f  charge carriers 

collected by the solar cell to the num ber o f  photons o f  a given energy incident on the 

solar cells. Therefore, EQ E depends on both the absorption o f  light and the collection o f  

charges. Once the photo-induced electron-hole pairs have been generated, these charges 

m ust be separated and then collected at the respective electrodes w ithout recom bination. 

C harge recom bination is the m ain cause to decrease the EQE.

The external quantum  efficiency (t|eq e)  o f  organic solar cells is given by

r |E Q E  = qA x r |D iff x q Diss x q c

W here r\A~ efficiency o f  incident photon absorption

r|Diff ■ efficiency o f  the photo-induced exciton diffusion at heterojunction

Poiss -efficiency o f  the exciton dissociation at heterojunction to form gem inate pairs

qc -efficiency o f  the carrier transport and the carrier collection at electrodes

The internal quantum  efficiency ( t| iqe)  can be w ritten as

tIeqe
q ,nF = --------------  = riDiff x r|Diss x q c

Igb qA
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Chapter 4: Fabrication of ETLs, active layers and HTLs

4.1 Introduction

This chapter describes the preparation and optim isation o f  different layers: i.e. ETLs, 

P3H T:PCBM  active layers, HTLs and their applications in the bulk heterojunction 

OSCs. O SCs com pose o f  the active layer (P3H T:PC B M ) that is sandw iched betw een 

the transparent metal oxide (ITO ) electrode and the metal thin film electrode. In the 

inverted OSC devices, the ITO electrical conducting film works as electron collecting 

electrode (cathode) and the metal thin film w orks as hole collecting electrode (anode).

In principle, ITO can collect either electrons or holes because its w ork function lies 

between the typical H O M O s and LUM Os o f  the com m on OSC m aterials. How ever, the 

polarity o f  ITO needs to be m odified for an efficient collection o f  electrons. In the 

inverted OSC devices, the low work function ETL is deposited on top o f  the ITO film  to 

m odify the ITO interface for the efficient electron collection. ZnO thin film  has been 

one o f  the m ost com m only utilised ETL m aterials in the inverted O SCs. D ifferent 

approaches have been studied to optim ise the ZnO  ETL. In general, there are tw o w ays 

to deposit the ZnO layer via the solution-based process. The straight w ay is to use the 

ZnO  N Ps dispersion in either the w ater-based or organic solvent based solution. The 

NPs based ZnO dispersion is very unstable if  w ithout an appropriate additive. H ow ever, 

adding the additives in the solution m ay affect the electrical property o f  the ZnO film 

when the form ed ZnO thin film  is only cured at low tem perature. H ence, the sol-gel 

processed ZnO ETL was further studied and deposited at low tem perature o f  ~150°C. 

The devices fabricated from the sol-gel based ZnO ETL on the ITO coated glass show ed 

a PCE o f  1.8% that is nearly the sam e as that obtained from the ZnO N Ps based ETL on 

the ITO coated glass with an efficiency o f  1.85%.
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In order to achieve high efficiency inverted OSC devices, optim isation o f  the 

P3H T:PCBM  active layers is very im portant. The param eters like concentrations, 

m aterial ratios, solvents used, and film th icknesses play a m ajor influence on the device 

perform ance for an efficient OSC. The active layer is deposited inside the glove box 

using the spin coating m ethod to prevent oxidation. In the inverted configuration, the 

HTL is deposited on top o f  the active layer for an efficient hole transportation to the 

m etal electrode. The electrical conducting organic PEDO T:PSS was chosen in our 

studies. The PED O T:PSS solution is an aqueous dispersion and very difficult directly to 

coat the hydrophobic active layer o f  the P3H T:PCBM  thin film that presented very high 

contact angle. Thus, the PED O T:PSS solution w as m odified by adding a sm all am ount 

o f  surfactant, w hich significantly reduced the contact angle. All these w ork w ere 

divided into different sections below  according to the fabricated device configuration. 

Finally, the inverted OSC device after optim isation has reached a PCE o f -2 .3 % .

4.2 Solution preparation for thin films of the ETLs, active layer and HTLs

4.2.1 Preparation of the NPs and sol gel based solutions for the ZnO layer

In this study, dispersion o f  the ZnO N Ps in the solution is a big challenge because 

nanoparticles can agglom erate together due to their high surface energy. The alcoholic 

solvents (e.g. ethanol or m ethanol) are the w idely used dispersion m edium  for the ZnO  

N Ps because o f  their high vaporisation rate. W ater can also be used as the dispersion 

m edium ; how ever, dispersing the ZnO N Ps in w ater is m ore difficult than that in the 

solvent-based solution. It has also been found that agglom eration o f  ZnO N Ps is m uch 

faster in w ater than that in the alcoholic solvents [1]. We studied different solvents for 

the ZnO N Ps (size <35 nm) dispersion as described in Table 4.1.
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Table 4.1 Solution details o f  the ZnO N Ps thin films

Solution nam e C oncentration Solvents Properties

ZNP1 10 w t.% C hlorobenzene Very poor stability

ZNP2 10 w t.% A m m onium  hydroxide N o dispersion

ZNP3 10 w t.% M ethanol Poor stability

ZN P4 10 w t.% M ethanol and dichlorom ethane Stable for 1 -2 days

ZNP5 10 w t.% M ethanol and dichlorom ethane 

by the ball mill

Stable for 2 w eeks

ZN P6 10 w t.% M ethanol and dichlorom ethane 

with a 3%  PEO additive

Stable for 2 w eeks

ZN P7 10 w t.% M ethanol and dichlorom ethane 

with a 3%  GPTS additive

Stable for 2 w eeks

ZNP8 10 w t.% M ethanol and dichlorom ethane 

w ith a 3%  M PTS additive

Stable for 2 w eeks

ZN P9 10 w t.% M ethanol and dichlorom ethane 

with 3%  PEO plus 3%  M PTS

Stable for 2 w eeks

ZN P10 50 w t.% W ater w ith APTS Stable

PEO- polyethylene oxide 
G PTS- glycidoxy-propyl-trim ethoxy-silane 
M PTS- m ethylpropyl try  ethoxy si lane 
A PTS-3-A m inopropyl triethoxysilane

A 10 w t%  dispersion o f  ZnO N Ps in chlorobenzene (ZNP1), am m onium  hydroxide

(ZN P2) and methanol (ZN P3) was obtained respectively by a continuous stirring for 24

hrs. The stability o f  these dispersions was very poor. D ispersion ZN P4 was achieved by

a com bination o f  m ethanol and dichlorom ethane (at the ratio o f  10:0.7) under a

continuous stirring for 24 hrs. ZNP4 w as used to m ake the ZnO N Ps th in  film  by the
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spin-coating m ethod on the glass substrates and then annealed at tem perature o f  150 °C 

for 10 min on a hot plate. ZNP5 w as obtained via further m odification to the ZN P4 

using the ball mill technique where the ZnO N Ps were first dispersed in the solvent 

m edium , stirred, and then ball- m illed for 48 hrs. The final dispersion ZNP5 was stable 

for 2 weeks.

This fabricating procedure was also used to m ake ZNP6, ZN P7, ZN P8, and ZN P9, 

separately. A num ber o f  stabilising agents like PEO (in ZNP6), GPS (in ZN P7), M PTS 

(in ZN P8) and their com bination (in ZN P9) have been studied to increase the stability 

o f  the N Ps solution. For a com parative study, the com m ercially available aqueous 

dispersion o f  ZnO  N Ps supplied by the Sigm a A ldrich was also used to deposit the 

electron transport layer ; i.e. ZN P10 w here 3-am inopropyl triethoxysilane was used as 

the additive. For deposition o f  the very thin film , the ZNP10 dispersion was further 

diluted to 20 tim es by deionised w ater under the vigorous stirring. The ZnO  film s w ere 

deposited using the spin coating m ethod and then annealed at tem perature o f  150 °C for 

10 min. For the sol gel based ZnO thin film , the initial ZnO sol was m ade by d issolving 

zinc acetate dehydrate in 2-m ethoxyethanol and then ethanolam ine w as added as the 

stabilising agent. The m olar ratio o f  zinc acetate to ethanolam ine is at 1:1. D ifferent 

concentrations o f  zinc acetate dehydrate were used to optim ise the ZnO  thin film s. 

Details o f  different ZnO sols are listed in Table 4.2.

Table 4.2 Solution details for the sol gel based ZnO  thin films

Sam ple name Concentration Solvents

ZSG1 0.1M 2-m ethoxyethanol and ethanolam ine

ZSG2 0.2M 2-m ethoxyethanol and ethanolam ine
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ZSG3 0.3M 2-m ethoxyethanol and ethanolam ine

ZSG4 0.4M 2-m ethoxyethanol and ethanolam ine

4.2.2 Preparation of the P3HT:PCBM  blend solution for the active layer

4.2.2.1 Selection of the solvent for the P3HT:PCBM blend

Am ong several conjugated organics, P3H T and fullerene PCBM  are the m ost studied 

donor and acceptor m aterials. The blend o f  P3H T and PCBM  form  the active layer o f  

the OSC devices w ith a com m on solvent. M ost o f  the OSCs devices consist o f  a single 

BHJ active layer. The m orphology o f  the active layer depends m ainly on tw o factors: 

the first is the m olecular organisation betw een the donor and the acceptor phase; the 

second is the nano scale phase separation betw een the donor and acceptor w hich affects 

the m obility o f  charge carriers and influences exciton dissociation and charge 

transportation.

The im pact on m orphologies using different solvents including chlorobenzene (CB),

trichlorobenzene (TCB), chloroform  (C H C f), toluene (T), ortho-dichlorobenzene

(O D CB) and tetrahydronaphthalene (TH N) has been w idely investigated by researchers

[4]. The evaporation rate o f  the solvent is very im portant to the m orphology o f  the

active layer, w hich depends on the boiling point o f  the solvent. A low evaporation  rate

o f  the solvent leads to high carrier m obility due to the enhancem ent o f  the segregated

bi-continuous netw ork o f  the P3H T and PCBM  blend. H ow ever, the reported efficiency

w hen using the high boiling point solvents; e.g. THN and TCB is not very high, w hich

is attributed to the d ifficulty  on rem oving the residual solvent in the active layer that can

affect the nano scale interpenetrating networks w ithin the photoactive layer [4]. The

com m only used solvents were CB and ODCB in the literatures for the preparation o f  the

active layer blend. Both solvents (CB and O D C B ) were studied for the preparation o f
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active layers. Figure 4.1 (a &b) show s the photos o f  the deposited film s using ODCB 

and CB as the casting solvent by the spin-coating m ethod. The film  deposited by the 

ODCB casting blend shows a non-uniform  surface, w hile the film  m ade using the CB 

casting blend is very uniform  and sm ooth. Furtherm ore, the boiling point o f  OD CB is 

higher at 182.0°C than that o f  CB at ~ 1 31.0 °C, w hich m akes it difficult to rem ove from 

the active layer. In contrast to in O DCB, the solubility o f  the P3HT w as not as good as 

in CB. Therefore, CB was chosen as the casting solvent for our studies.

Figure 4.1 Photos o f  the deposited active layers using d ifferent casting solvents; 

(a) OD CB, (b) CB.

4.2.2.2 Preparation of the CB-based P3HT:PCBM  blend solution

The active layer is affected by various param eters like m aterials, m aterial ratios, drying

conditions, and annealing procedures at different tem peratures. One o f  the critical

param eters that significantly affect the device perform ance is the thickness o f  the active

layer. The preparation m ethod and procedure for the P3H T and PCBM  also play an

im portant role in affecting the film structure o f  the P3H T:PCBM  blend. In this study,

P3HT and PCBM  m ixture was stirred overnight at tem perature o f  70 °C using the
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m agnetic stir bar on the hotplate at the w eight ratio o f  1:1. [5] The thicknesses o f  the 

active layers were optim ised by altering the concentrations o f  the P3H T and PCBM  in 

the solvent. D etails o f  different concentrations o f  the P3H T:PCBM  in CB are listed in 

T able 4.3.

Table 4.3 Solution details for different P3H T:PCBM  thin film s

B lend solution nam e P3H T:PCBM  concentration (m g/m l) Solvent

CB1 10:10 C hlorobenzene

CB2 15:15 C hlorobenzene

CB3 17.50:17.50 C hlorobenzene

CB4 20:20 C hlorobenzene

4.2.3 Preparation of the PEDOT:PSS solution for the hole transport layer

The co-organic PED O T:PSS is an electrochem ically stable conjugated organic and

w idely used as HTL in the OSC devices. The oxidised (doped) state o f  the PED O T:PSS

presents very high electrical conductivity (< 100 £2/square) and can be used as the hole

collecting electrode as well. In the inverted configuration, a thin film  o f  the

PED O T:PSS is deposited on top o f  the organic active layer as the HTL for im provem ent

o f  the anode contact. This process elim inates the direct contact betw een the active layer

and the electrode for prevention o f  the inter-diffusion. H ow ever, the com m ercial

PEDO T:PSS form ulation (H.C. Starck CLEV IO S) is an aqueous dispersion and exhibits

very poor w ettability  on the hydrophobic organic active layer o f  the P3H T:PC B M . Thus,

the com m ercial aqueous PEDOT:PSS solution cannot be directly applied on the surface

o f  the P3H T:PCBM  by the spin-coating technology. M any m ethods have been reported

to solve this problem , including treatm ent o f  the active layer using m ild p lasm a etching,
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insertion o f  an interlayer between the active layer and the PED O T:PSS layer, and 

m odification o f  the w ettability o f  the PED O T:PSS layer by doping surfactants in the 

solution; e.g. Triton X-100, Zonyl, D-sorbital, isopropanol and n-butyl alcohol [6-12]. 

P lasm a treatm ent o f  the P3H T:PCBM  layer m akes the surface becom ing hydrophilic 

w hich needs to be carefully controlled w ithout dam aging the surface o f  the 

P3H T:PC B M  film  and unsuitable for large scale industrial applications. The insertion o f  

an interlayer increases one m ore step in the fabrication process and alters the interfacial 

property between the PED O T:PSS and the active layer. Doping the surfactant into the 

solution is the sim plest way to change the w ettability  o f  the PED O T:PSS solution to the 

organic active layer.

Triton X -100 and Zonyl FS 300 does not change the concentration o f  PED O T:PSS 

solution because o f  very low volum e o f  surfactant addition (-.05% ). T riton X -100 was 

selected and used as the surfactant in our PED O T:PSS solution. Very small volum e o f  

the surfactant (-0 .0 5 % ) was added in the PED O T:PSS aqueous solution, w hich had a 

negligible effect on the property o f  the PED O T:PSS solution. The PED O T:PSS thin 

film  was deposited by the spin-coating m ethod. D etails o f  different solutions w ith and 

w ithout the added surfactants are listed in Table 4.4. C ontact angle m easurem ents o f  the 

PDS1 and PDS2 on the P3H T:PCBM  layer w ere carried out. Figure 4.2 show s the 

tested results.

T able 4.4 Solution details for the preparation o f  HTLs.

Solution nam e PEDOT:PSS solid content Surfactant additive

PDS1 1-1.2% No additive

PDS2 1-1.2% -.0 5 %
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The contact angle for PDS1 is near to 74.8 ± 4.0° in Figure 4.2 (a), m aking it very 

d ifficult to obtain a uniform  film on top o f  the P3HT:PCBM  active layer. The PDS2 

shows a significantly low er contact angle at 39.0 ±  3.0° in Figure 4.2 (b). The im proved 

w ettability  o f  the PED O T:PSS solution on top o f  the hydrophobic P3H T:PC B M  active 

layer can allow  the uniform  PED OTrPSS thin film prepared .

Figure 4.2 Contact angle m easurem ents o f  a droplet o f  the PEDOTrPSS solution on 

the surface o f  the P3H T:PC B M ; (a) by PD S1; (b) by PDS2.

4.3 Results and discussion

4.3.1 M orphologies o f the ZnO and P3HT:PCBM thin films

4.3.1.1 Morphologies o f the ZnO NPs thin films

Zinc oxide is one o f  the m ost w idely used electron transport m aterials in the inverted

organic solar cells. The dispersion properties o f  the ZnO N Ps in ZNP1 and ZN P2 w ere

very poor as shown in Figure 4.3 (a) & (b). The ZnO N Ps quickly settled dow n in the

bottom  and showed a shelf-life o f  only a few  hours. The stability o f  the dispersion

ZNP3 (Figure 4.3 (c)) w as slightly better than that o f  the ZNP1 and ZN P2; how ever,

som e ZnO N Ps aggregates can be observed in the bottom  o f  the dispersion solution after

settlem ent for a few  hours. The com bination o f  m ethanol and dichlorom ethane solvents

under the vigorous stirring produced the w ell-dispersed solution ZN P4 as show n in

Figure 4.3 (d); how ever, the stability was still not very good. Figure 4.4 (a) show s the

SEM  image o f  the Z N P4-deposited thin film w here the ZnO N Ps did not form a uniform
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distribution, illustrating very high porosity. The non uniform  and very porous film  may 

affect the properties o f  the ZnO thin film by reducing the shunt resistance o f  the OSC 

device. Therefore, further m odification is required to achieve a stable dispersion for 

producing a uniform  thin film . The high surface energy o f  the sm all sized particles 

needs to be overcom e to obtain the stable dispersion o f  nanoparticles in solutions. 

Figure 4.4 (b) presents the SEM  im age o f  the ZnO N Ps thin film  deposited by the 

dispersion ZNP5 as shown in Figure 4.3 (e). The deposited thin film is still porous and 

show s different sizes and shapes o f  nanoparticles; however, the Z nO  N Ps were 

uniform ly distributed in the thin film .

A potential benefit from the porous enhances the charge collection efficiency due to the 

reduced distance to the electron collecting layer. H ow ever, there w ere som e pores 

show ing big sizes around 50-100 nm. Very big sized pores can cause the active layer 

directly being contacted by the ITO electrode. In this case, it had disadvantages o f  

reducing the hole blocking potential o f  the ZnO thin film. Therefore, the size o f  the 

pores required to be further m odified via the dispersion route by adding the stabilizing 

(or binding) agent into the dispersion m edium  for obtaining m ore uniform ly distributed, 

stable N Ps dispersion. Figure 4.5 show s the SEM images o f  the ZnO  thin film s on the 

glass substrate with different additives. Figure 4.5 (a) show s the SEM  im age o f  the ZnO  

N Ps thin film by the ZN P6 dispersion. The m orphology o f  the form ed film  is close to 

that from ZNP5. Very sim ilar m orphological results were observed for the ZN P7 and 

ZNP8 formed thin film s as shown in Figure 4.5 (b) and 4.5 (c). In F igure 4.5 (d), a 

slightly different m orphology o f  the ZN P9 dispersion was presented. In the ZN P9 

sam ple, an equal volum e o f  two different surfactants was added into the d ispersion 

solution. The m orphology o f  the ZN P9 form ed thin film is denser than that o f  o ther
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sam ples m entioned above. H ow ever, som e big pores existed in the film , w hich has 

detrim ental effects for the use o f  the film  as the electron transport layer.

a b e d  e

Figure 4.3 ZnO  N Ps dispersion in different solvents, (a) ZNP1, (b) ZN P2, (c) ZN P3, 

(d) ZnP4, (e) ZNP5

spot mode WD mag HV det 
3 0  : SE  4 9 m m  1 0 0 COO»115 0 0 kV TLD

Lens Mode
Im m ersion

Figure 4.4 SEM  im ages o f  the ZnO N Ps thin film  using, (a) ZN P4 dispersion, (b) 

ZNP5 dispersion
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Figure 4.5 SEM  im ages o f  the ZnO N Ps thin film s, (a) w ith ZN P6 dispersion, (b) w ith 

ZN P7 dispersion, (c) w ith ZN P8 dispersion, (d) w ith ZN P9 dispersion

4.3.1.2 M orphologies o f the NPs formed ZnO thin films from the commercial 

ZNP10

For a com parative study, the ZnO N Ps thin film from the com m ercial d ispersion Z N P10

w as investigated. Figure 4.6 show s the highly dense SEM  m orphology o f  the ZnO  N Ps

film  surface with som e different shapes o f  the ZnO N Ps. The size, shape, and

distribution o f  particles were also exam ined by the atom ic force m icroscope. F igure 4.7
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Figure 4.6 SEM  im age o f  the ZnO N Ps thin film deposited by the Z N P10 dispersion.

loonm

Figure 4.7 AFM  surface m orphologies o f  ZnO thin film s; (a) by ZN P10 dispersion, 

(b) by ZNP5 dispersion.
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shows the captured real space tapping m ode surface m orphology o f  the ZnO N Ps thin 

film s on the glass substrate. Figure 4.7 (a) & (b) present the AFM  m orphologies and 

roughness o f  the dense ZnO N Ps thin film s by the ZN P10 and the porous thin film by 

the ZNP5, respectively. The surface o f  the nanoparticles in Figure 4.7 (a) and Figure 4.6 

has a root m ean square roughness o f  4.614 nm while the surface o f  the nanoparticles in 

Figure 4.7 (b) and Figure 4.4 (b) show s a root m ean square roughness o f  11.407 nm.

4.3.1.3 M orphologies o f the sol-gel based ZnO ETLs

As discussed previously, dispersion o f  ZnO  nanoparticles in the solution is a difficult 

process and the use o f  surfactant additives for enhancem ent o f  the colloid solution 

stability m ay affect the electrical property o f  the ZnO  film  when the form ed ZnO  thin 

film is cured at low tem perature. Therefore, the inexpensive sol-gel technique is a 

prom ising inexpensive route to deposit the ZnO ETLs. The solution processed sol-gel 

technique is a convenient way for the deposition o f  ZnO thin film s at low processing 

tem perature for low cost and large-scale production. This technique is based on the 

transform ation o f  the m olecular precursors into the oxides by hydrolysis and 

condensation reactions.

The prepared ZnO sols described in Table 4.2 w ere used to produce the am orphous ZnO 

layer w hich acted as the ETL in OSCs to m odify the w ork function o f  the ITO electrode. 

F igure 4.8 shows the SEM  images o f  the sol-gel derived ZnO thin film  on glass 

substrates w ith different concentrations o f  zinc acetate dihydrate (Table 4.2). The 

m orphologies o f  the thin film s were different w ith the changing concentrations o f  zinc 

acetate dihydrate. The surface m orphology (Figure 4.8a) o f  the ZnO thin film  by the 

ZSG1 sol presents an am orphous structure with sm ooth and continuous surfaces. Figure 

4.8 (b) shows the m orphology o f  the ZnO film using the ZSG 2 sol.
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Figure 4.8 SEM  im ages o f  the sol-gel ZnO thin film; (a) by the ZSG1 sol, (b) by the 

ZSG 2 sol, (c) by the ZSG3 sol, (d) by the ZSG 4 sol.

It presented a continuous film  but som e big sized crystallites on top o f  the surface. The 

surface m orphologies o f  the ZnO thin film s by the ZSG3 and ZSG4 sols w ere uniform  

but illustrating very high porosity  (Figure 4.8 c &d). The adhesion o f  the ZSG 2, ZSG3 

and ZSG 4 based ZnO ETLs with the ITO thin film  was very poor. U n-bonded 

nanoparticles on top o f  the surface can be observed, w hich can affect the efficient
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electron transport. The AFM  im age in Figure 4.9 shows the surface m orphology o f  the 

ZSG1 ZnO thin film also shown in Figure 4.8 (a), disclosing the uniform ly covered 

sm ooth surface with an average roughness below  5 nm.

Figure 4.9 AFM  im age o f  the sol-gel ZnO thin film by the ZSG1 sol

4.3.1.4 Morphologies o f the active layers on top of the ZnO NPs thin films

M orphologies o f  the active layer were affected by the ZnO  N Ps thin film s. F igure 4.10

(a) & (b) show  the SEM  im ages o f  the P3H T:PC B M  film  on top o f  the ZnO  N Ps thin

film deposited by the ZN P10 and ZNP5 dispersion respectively. The P3H T:PC B M  thin

film on top o f  the ZN P10 ZnO layer is sm oother and less feature than that o f  the

P3H T:PCBM  thin film  on top o f  the ZNP5 ZnO layer Figure 4.10 (c) & (d) are the A FM

im ages o f  the P3HT: PCBM  film s on top o f  the ZN P10 and ZNP5 ZnO layers deposited

on the glass substrates separately. Both show a well interconnected sm ooth surface with

a root mean square roughness o f  1.237 nm and 1.984 nm respectively. M orphologies o f
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the active layers on top o f  the sol-gel ZnO  thin films will be discussed in detail in 

C hapter 6.

2.5 urn X 2.5 urn

Figure 4.10 (a) SEM  im age o f  the P3H T:PC B M  film  deposited on top o f  the ZN P10 

coated glass substrate; (b) SEM  im age o f  the P3H T:PCBM  film deposited on top o f  

top o f  the ZNP5 coated glass substrate; (c) AFM  im age o f  the P3H T:PC B M  film  

deposited on top o f  the ZN P10 coated glass substrate; (d) AFM  im age o f  the 

P3H T:PCBM  film deposited on top o f  the ZNP5 coated glass substrate.
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4.3.2 Optical absorption of the P3HT:PCBM  active layer on the sol-gel derived 

ZnO layer

The thin films o f  the P3H T:PCBM  were spin-coated using CB1, CB2, CB3, and CB4 

solution at the sam e spining rate, separately. The absorption spectra o f  the P3H T:PC B M  

active layer w ith the varying concentrations o f  the P3H T and PCBM  in the solvent are 

plotted in Figure 4.11. It exhibited the w ell-know n absorption band o f  the P3H T:PCBM  

blend in the spectral range o f  350-650 nm. O ptical absorption increased with the 

increasing concentrations o f  the P3H T:PCBM  (i.e. C B 1<C B 2<C B 3<C B 4). W hen 

com pared w ith the CB1 active layer, the enhancem ent o f  the m ain absorption peak 

around 510 nm was -2 3 .0 %  for CB2, -4 8 .0 %  for CB3, and -6 9 .0 %  for CB4 

respectively. The enhancem ent in the absorption peak and the vibronic shoulder at -6 1 0  

nm, indicating strong inter chain interactions am ong the regioregular P3H T chains.
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Figure 4.11 A bsorption spectra o f  the active layer with various concentrations o f  

P3H T:PC B M , (a) CB1, (b) CB2, (c) CB3, (d) CB4
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4.3.3 Performance of OSC devices

4.3.3.1 Performance o f OSC devices by the ZnO NPs ETLs and CB1 P3HT:PCBM  

active layers

In order to exam ine the property o f  the electron transporting ZnO layer, OSC devices 

were fabricated w ith and w ithout the ZnO ETLs. Figure 4.12 shows the J-V  curve o f  the 

OSC devices w ith and w ithout the ZnO  ETL. The results from  Figure 4.12 are 

sum m arized in Table 4.5. The OSC device w ithout using the ETL show s poor 

perform ance due to low V oc at 0.24 V and low fill factor at 0.30. The reason o f  low Voc 

was due to non ohm ic contact betw een the active layer and the electron collecting 1TO 

electrode. C om pared w ith the perform ance o f  the OSC devices w ith the ZNP5 electron 

transport layer, the pow er conversion efficiency o f  the OSC devices with the ZN P10 

ETL increased to 1.85 %  appreciably w hile the PCE o f  the OSC devices w ith the ZNP5 

ETL was only at 0.37% . The Voc o f  the device with the ZNP5 ETL w as at 0.28 which is 

close to the device w ithout using the ETL layer. The reason was due to the big sized 

pores in the ZNP5 thin film w hich caused the direct contact o f  the active layer to  the 

ITO electrode. The perform ance o f  OSC devices w ith the ZN P10 HTL had the 

significantly increased V oc o f  0.56V and fill factor o f  0.58.

Table 4.5 Sum m ary o f  photovoltaic param eters o f  the cham pion OSC devices w ith and 

w ithout hole transport layers (ETLs)

Device V oc (Volt) Jsc (m A/cm  ) FF h (% )

W ithout ETL 0.24 5.01 0.30 0.36

W ith ZNP5 ETL 0.28 3.46 0.38 0.37

W ith ZN P10 ETL 0.56 5.69 0.58 1.85
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Figure 4.12 J-V  characteristics o f  the OSC devices w ith and w ithout ETLs

The increased Voc is due to higher shunt resistance in com parison w ith other tw o types 

o f  devices as can be observed from  the J-V  curves o f  the OSC devices. The current 

density o f  the OSC device w ith the ZN P10 ETL is higher than that o f  the OSC device 

w ith the ZNP5 ETL, w hich also explains that the dense uniform  film  o f  the ZN P10 ETL 

provided the better ohm ic contact between the active layer and the electron collecting  

electrode.

4.3.3.2 Performance o f the OSC devices by the sol-gel derived ZnO ETLs and CB1 

P3HT:PCBM  active layers

For the com parative study, the fabricated devices with the sol-gel based ZnO  as ETLs 

were com pared with the O SCs devices with the ZN P10 as the ETLs. Figure 4.13 show s
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the J-V  characteristics o f  the OSC devices with the ZN P10 and the ZSG1 ETLs. The 

PCE o f  both types o f  the devices is nearly the sam e. Table 4.6 sum m arised the 

perform ance o f  both types o f  the devices. H ow ever, the reference device w ith the 

ZN P10 based ETL exhibited an average PCE o f  1.85% with V oc at 0.56V , Jsc at 5.69 

m A /cm 2, and FF at 58%.
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Figure 4.13 J-V  characteristics o f  the inverted OSC devices, (a) w ith the ZN P10 

N Ps thin film  as ETL, (b) w ith the ZSG1 ZnO thin film as ETL.

Table 4.6 Sum m ary o f  photovoltaic param eters o f  the cham pion OSC devices w ith the

N Ps and sol-gel based ETL layers

Device Voc (V olt)
.. . .

Jsc (m A /cm  ) FF ti (% )

W ith ZN P10 ETL 0.56 5.69 0.58 1.85

W ith ZSG1 ETL 0.60 6.06 0.50 1.80
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The O SCs device using the ZSG1 based ETL presented a PCE 1.80% but a higher V oc at 

0.6V, a higher Jsc at 6.06 m A /cm 2 and lower FF at 50%. The difference o f  V oc, Jsc, and 

FF can be assigned to the work function m odification o f  the ITO with different ZnO 

ETLs. This result dem onstrated that the sol-gel ZnO is suitable for use as the ETL for 

the fabrication o f  OSC devices in our further studies. Therefore, ZSG1 has been chosen 

as the ETL for all devices in our further work. The thicknesses o f  the sol-gel ZnO  layer 

w ere optim ised w ith the variation o f  the spinning rate, w hich was found to be at around 

35 to 50 nm.

4.3.3.3 Performance o f the OSC devices by different P3HT:PCBM  blends

Figure 4.14 show s the J-V  characteristics o f  the OSC devices using d ifferent blend 

solutions o f  the P3H T:PCBM . The V oc o f  all the devices presented the sam e value at 

0.60V as listed in Table 4.7. The overall perform ances o f  all the devices are 

sum m arized in Table 4.7. The OSC device (a) by the CB1 active layer exhibited a PCE 

o f  1.60% with Jsc at 5.25 m A /cm 2 and FF near to 51%. The PCE o f  device (b) using

Table 4.7 Sum m ary o f  photovoltaic param eters o f  the cham pion OSC devices w ith 

varying concentration o f  P3H T:PCBM

Device Voc (Volt)
_ . ,  

J sc (m A /cm  ) FF (%) 1 (% )

a 0.60 5.25 51 1.60

b 0.60 5.40 61 1.98

c 0.60 6.71 58 2.30

d 0.60 5.91 56 1.99
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Figure 4.14 J-V  characteristics o f  inverted OSC devices with varying concentrations 

o f  P3H T:PCBM  active layer: (a) w ith CB1; (b) w ith CB2; (c) CB3; (d) w ith CB4.

the CB2 blend active layer increased to 1.98% w ith a slightly h igher J sc at 5.40 m A /cm

and FF at 61%. The PCE o f  device (c) by the CB3 active layer increased further and

revealed the continuing enhancem ent in PCE, reaching 2.30%  with a current density  at

6.71 m A /cm 2 and FF at 58%. A lthough the P3H T:PC B M  concentration o f  the CB4

active layer further increased, the PCE o f  the device (d) in fact dropped to 1.99%  w ith a

current density at 5.91 m A /cm 2 and FF at 56%. These results are consistent w ith the

optical absorption properties o f  the P3H T:PCBM  blend as previously show n in Figure

4.11 except the CB4 blend. The thickness o f  the active layer for device (c) w as analysed

by surface profiler, presenting the result in the range o f  150-180 nm. Since device (d)

has higher concentration o f  the P3HT:PCBM  in the solvent, the th ickness o f  the

obtained active layer from the CB4 will be greater than 150-180 nm. This can explain
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the dropped perform ance o f  device (d) com pared to device (c). Since the PCE results 

revealed that device (c) is the best am ongst four types o f  blends listed in Table 4.7, the 

CB3 blend was chosen as the blend for depositing the active layer for all devices.

4.4 Summary

(1) V arious zinc oxide N Ps dispersions in different solutions w ere investigated. The 

results showed that the ZNP5 has the best stability and the uniform  thin film s w ere 

produced using the spin coating technique from  the ZNP5. How ever, there are still som e 

big sized pores existed in the film  deposited from  the ZNP5, w hich lim ited its use as the 

efficient ETL layer. As a com parative study, com m ercial ZN P10 dispersion w as also 

investigated, w hich form ed a m oderately dense structure. The OSC devices using the 

ZN P10 ZnO layer as the ETL perform ed better than that o f  the devices using the ZNP5 

ZnO layer as the ETL. Hence, sol-gel technology was further used to produce the stable 

ZnO sol that was used to fabricate the ZnO ETL layer in the devices. The perform ance 

o f  the OSC devices using the sol -gel (S G I) based and ZN P10 based ZnO  ETL 

presented nearly the sam e results in the PCE; i.e. 1.85% and 1.80%, respectively.

(2) The P3HT:PCBM  blend was investigated by using tw o different solvents (i.e. CB 

and OD CB). Since the blend from  the CB can produce m ore uniform  thin film  than that 

from  the ODCB, different concentrations o f  the P3HT:PCBM  in CB solvent was further 

studied. The P3H T:PC B M  concentration was optim ised to 35 m g/m l (CB3 blend 

solution) w ith a w eight ratio o f  1:1, w hich presented the best perform ance in the OSC 

devices. The pow er conversion efficiency o f  the OSC devices from the optim ised active 

layer o f  CB3 has reached to 2.3% .
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(3) The PEDOTrPSS layer was chosen to be as the HTL. However, the aqueous solution 

o f  the PEDOTrPSS exhibited poor w ettability on the hydrophobic organic active layer 

o f  the P3H T:PCBM . The w ettability  o f  the PEDOTrPSS solution was im proved by 

adding the surfactant o f  Triton X -100 into the PEDOTrPSS aqueous solution. A fter the 

addition o f  ~ 0.05%  Triton X -100 into the PEDOTrPSS solution, contact angle o f  the 

PEDOTrPSS solution on the P3HTrPCBM  thin film  surface reduced from  74.8 ±  4.0° to 

39.0 ± 3.0° w hich im proved the wettability. The uniform  PEDOTrPSS thin film  was 

then successfully produce on the hydrophobic surface o f  the P3HTrPCBM  active layer.

141



4.5 References:

[1] ] H. W ang, H. N akam ura, K. Yao, M. Uehara, S. N ishim ura, H. M aeda, E. Abe, 

Effect o f  Polyelectrolyte D ispersants on the Preparation o f  Silica-Coated Zinc O xide 

Particles in A queous M edia, J. Am. Ceram. Soc., 85 (2002) 1937-1940.

[2] W. J. E. Beek, M. M. W ienk, M. Kem erink, X. Yang, R. A. J. Janssen, Hybrid Zinc 

Oxide C onjugated Polym er Bulk H eterojunction Solar Cells, J. Phys. Chem ., B 109 

(2005) 9505-9516.

[3] S. K. Hau, H. L. Yip, N. S. Baek, J. Zou, K. O ’M alley, K. Y. A lex Jen, High 

perform ance am bient processed inverted polym er solar cells through interfacial 

m odification w ith a fullerene,self-assem bled m onolayer, Appl. Phys. Lett., 93 (2008) 

25330.

[4] M. T. Danga, G. W antz, H. Bejbouji, M. Uriena, O. J. Dautel, L. V ignaua, L. 

Hirscha, Polym eric solar cells based on P3H T:PCBM : Role o f  the casting solvent, Sol. 

Energy M ater. Sol. Cells., 95 (2011) 3408-3418.

[5] F. C. Chen, C. J. Ko, J. L. Wu, W. C. Chen, M orphological study o f  P3H T:PC B M  

blend film s prepared through solvent annealing for solar cell applications, Sol. Energy 

M ater. Sol. Cells., 94 (2010) 2426-2430.

[6] M. M. Voigt, R. C. I. M ackenzie, C. P. Yau, P. A tienzar, J. Dane, P. E. K eivandidis, 

D. D. C. Bradley, J. N elson, G ravure printing for three subsequent solar cell layers o f  

inverted structures on flexible substrates, Sol. Energy M ater. Sol. Cells., 95 (2011) 731- 

734.

[7] Q. Dong, Y. Zhou, J. Pei, Z. Liu, Y. Li, S. Yao, J. Zhang, W. Tian, A ll-spin-coating 

vacuum -free processed sem i-transparent inverted polym er solar cells w ith PED OTrPSS 

anode and PAH-D interfacial layer, Org. Electron., 11 (2010) 1327-1331

142



[8] W. R. Wei, M. L. Tsai, S.T. Ho, S. H. Tai, C. R. Ho, S. H. Tsai, C. W. Liu, R. J. 

Chung, J. H. He, A b o v e-11% -Efficiency O rgan ic-Inorgan ic  Hybrid Solar Cells w ith 

O m nidirectional H arvesting C haracteristics by Em ploying H ierarchical Photon- 

T rapping Structures, N ano Lett., 13 (2013) 13 3658-3663.

[9] M. K altenbrunner, M. S. W hite, E. D. G low acki, T. sekitani, T. som eya, N . S. 

Sariciftci, S. Bauer, U ltrathin and lightw eight organic solar cells w ith high flexibility, 

N at. C o m m u n , 3 (2012) 770.

[10] J. S. Huang, G. Li, Y. Yang, A Sem i-transparent Plastic Solar Cell Fabricated by a 

Lam ination Process, A dv. M ater., 20 (2008), 415-419.

[11] S. K. Hau, H. L. Yip, J. Zou, A. K. Y. Jen, Indium  tin oxide-free sem i-transparent 

inverted polym er solar cells using conducting polym er as both bottom  and top 

electrodes, Org. E lectron., 10 (2009)1401-1407.

[12] R. J. Peha, Y. Lua, F. Zhao, C. L. K. Lee, W. L. Kwan, V acuum -free processed 

transparent inverted organic solar cells with spray-coated PEDOTrPSS anode, Sol. 

Energy M ater. Sol. Cells., 95 (2011) 3579-3584.

143



Chapter 5: Influence of the Plasmonic Gold (Au) Nanoparticles Interfacial Layer 

on the Device Performance

5.1 Introduction

Organic photovoltaic based on sem iconducting organics as the donor and soluble 

fullerene derivatives as the acceptor has great potential to becom e a low cost solar cell 

technology. A m ong m any PV technologies, considerable efforts have been focused on 

the study o f  OSCs devices due to their advantages o f  relative ease fabrication at low 

tem perature, sm all am ount o f  organic m aterials required for the cells, good m echanical 

flexibility, and potential cost-effective devices [1,2]. This is ow ing to the developm ent 

o f  PV devices for conversion o f  solar energy into electricity that has attracted a great 

attention in recent years because o f  the environm ental concern and the depletion o f  

fossil fuels. The active layer o f  such devices typically  has to be very thin, w hich leads to 

poor light absorption.

Therefore, an efficient light-trapping technique is necessary for im proving the light 

absorption efficiency and effective optical path length. P lasm onic nanostructures have 

recently em erged as an expanding area to enhance light absorption in OSC devices [3,4] 

by encapsulating metal N Ps in the layers or fabricating gratings on the back contact 

metal surface. M any studies have been carried out to incorporate A u or A g N Ps into the 

hole transport layer (HTL), active layer, electrode layer, or all organic layers o f  sing le

junction  OSCs devices, the interconnecting layer o f  tandem  structures in O SC s devices 

in order to achieve the plasm onic light enhancem ent by various m ethods including high 

vacuum  therm al evaporation, high vacuum  electron beam evaporation, or o ther m ethods 

[5-16]. However, enhanced light absorption was usually realised w ithin a relatively

narrow  w avelength range by using above m ethods. Currently the broadband light
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absorption enhancem ent published in OSC devices could only be achieved by using 

com plicated dual plasm onic nanostructures [17]. C om pared to other inorganic- 

sem iconductor solar cells, OSC devices have very low efficiency w hich limits their 

feasibility  for their com m ercial use. Except im proving open circuit voltage (V oc), one 

m ain lim itation o f  OSC devices is their spectrally narrow  absorption o f  the donor 

organic m aterial [18,19].

A bsorption o f  OSC devices can be spectrally extended by introducing low band gap 

m aterials into the active layer form ing the ternary sem iconductor blends and/or using 

tandem  structures, w here the new  com ponents, the second donor, or the new  layer w ith 

a com plem entary absorption spectrum  is added. Spectrally extended bulk hetero

junction  OSC devices have reported a PCE o f  -7 -8 %  [20-22]. Since sunlight is a 

broadband light source, plasm onic nanostructures in OSC devices that can be fabricated 

to enhance light absorption in a w ide spectral range o f  350 to 1000 nm could be one o f  

the m ost potential routes to further increase PCE o f  OSC devices beyond the 10% 

threshold for their com m ercial use.

A m ong the m etals that can support plasm onic resonance (PRs) m odes, noble m etals (Au,

Ag and Cu) present resonances in the v isible or near infrared (IR) region o f  the

electrom agnetic spectrum . Thus, dual plasm onic nanostructures that are com posed o f

Au N Ps em bedded in the active layer and an A g nano grating electrode as the back

reflector in inverted OSC devices have recently been explored to successfully  extend the

w avelength region o f  enhanced light absorption [17]. However, using dual p lasm onic

nanostructures needs to precisely and controllably fabricate each nanostructure in

different layer o f  OSC devices to match the theoretically  sim ulated structures w ithout

interfering one another. Overall, current techniques for metal plasm onic N P s did not

dem onstrate a sim ple processing o f  obtaining enhanced broadband optical absorp tion  in
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OSC devices. PA PV D is a m ature and w ell-established technique [23]. It does not 

require high vacuum  system  to produce m etal N Ps thin films.

This chapter explore the application o f  a sim ple one-nanostructure PA PV D  coated thin 

A u N Ps film in solution processed single junction  P3HT: PCBM  inverted OSC devices. 

This sim ple Au N Ps film  was able to provide a significant broadband light absorption 

enhancem ent to the OSC devices. W e dem onstrate that plasm onic resonances from  the 

PA PV D thin Au N Ps film have greatly enhanced optical absorption o f  OSC devices in a 

w ide w avelength range o f  350 to 1000 nm. The advantage for this technique is that it 

can be adopted and easily fit into m ost OSC device fabrication processes w ithout 

changing other layers' m anufacturing m ethods, m orphologies and properties except 

providing the functionality o f  enhancing device broadband light absorption.

5.2 Device structure and experimental methods

The inverted OSC devices are fabricated on pre-patterned ITO coated glass substrates

(12-15 ohm s/sq. from V isionTek System s Ltd. UK) that w ere ultrasonically  cleaned in

acetone, isopropyl alcohol and deionised w ater for 10 min, respectively. A fter drying

with nitrogen, the substrates w ere spin-coated w ith the SGI ZnO  sol o f  zinc acetate

dihydrate in 2-m ethoxyethanol and then ethanolam ine was added as described in section

4.2.1 o f  chapter 4. The prepared SGI ZnO sol produced a -3 5  nm thick am orphous ZnO

layer and acted as the electron transport layer on the ITO bottom  electrode. The

deposited ZnO  layer was annealed on a hot plate at 150° C for 10 m in and then cleaned

with deionised w ater and acetone to rem ove any residual from the top surface. Then the

sam ples were transferred into a nitrogen-filled glove box. On top o f  the ZnO  layer, a

-1 5 0  nm thick active layer was spin-coated from  the CB3 chlorobenzene solution  o f

P3HT (M erck):PCBM  (Solenne b.v.) and then was annealed at 140°C for 10 m in on a
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hot plate.A fterw ards, the sam ples were rem oved out o f  the glove box, follow ed a -2 5  

nm thick PDS2 derived PED OT: PSS (HTL Solar) layer on top o f  the active layer as the 

HTL. The sam ples w ere then transferred again into the nitrogen-filled glove box for 

heat treatm ent at 110°C for 10 min. Finally, an Au layer was deposited as top electrode 

by PA PV D at base pressure o f  lx lO ' m bar and was then annealed under the am bient air 

condition at 110°C for 10 min.

The thickness o f  the Au layer is at an approxim ately 40 nm. Two types o f  sputtered Au 

thin film s were separately produced for OSC devices. One is the -4 0  nm thick Au film 

form ed by the Au N Ps w ith an approxim ately size o f  50 nm in d iam eter (labelled as T1 

devices). A nother is also the -4 0  nm thick Au film  com posed o f  the Au N Ps w ith an 

approxim ately size o f  15 nm in diam eter (labelled as T2 devices). The schem atic 

diagram  o f  ITO /ZnO /P3H T:PC B M /PED O T:PSS/A u device processing structures is 

shown in Figure 5.1a. N evertheless, the finally created real structure o f  OSC devices 

may be schem atically shown in Figure 5.1b and lc  for T1 and T2 devices, respectively. 

The tested active area o f  the final OSC devices was 6.0 m m 2.

a b c

PEDOT:PSS

P3HT:PCBM

ZnO

Glass

PEDOT:PSS 
P3HT:PCBM

ZnO
ITO

Glass

[  Au AuTJFs J

PEDOT:PSS 
P3HT:PCBM

ZnO
ITO

Glass

Figure 5.1 Schem atic diagram  o f  cross section for inverted OSC devices, (a) the 

processed structure, (b) the inferred structure for T1 devices w here the size o f  the 

sputtered Au N Ps was 50 nm, (c) the inferred structure for T2 devices w here the size 

o f  the sputtered Au N Ps was 15 nm. (Note: not to scale).
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Sam ples o f  the SGI derived ZnO layer and the CB3 based P3HT:PCBM  active layer 

w ere respectively prepared on glasses for characterisation o f  m orphologies. OSC 

devices w ere produced w ithout applying top Au electrode for the investigation o f  

PEDO TrPSS thin film m orphologies. OSC T2 devices after applying Au thin film s at 

d ifferent thicknesses o f  approxim ately 6, 13, 20, and 40 nm were respectively fabricated 

for their characterisation o f  m orphologies. Sputtered Au thin film s (for T2 devices) on 

glasses at different thicknesses o f  approxim ately 5, 11, and 16 nm w ere separately 

prepared for characterisation o f  light absorption. The — 150 nm thick  P3H T:PC B M , the 

~ 2 5  nm thick PED O T:PSS, and the double-layer (defined as the -1 5 0  nm thick 

P3H T:PC B M  layer plus the ~  25 nm thick PED O T:PSS layer) thin film s on glasses 

were separately produced for the analysis o f  light absorption. For com parative studies, 

the above three types o f  thin film s on glasses after applying Au thin film s at different 

thicknesses o f  approxim ately 5, 11, and 16 nm were also respectively prepared for the 

testing o f  light absorption. The film s w ith the plasm onic Au N Ps on top were all 

annealed at 110°C for 10 min.

5.3 Results and discussion

5.3.1 M orphologies o f the ETLs, P3HT:PCBM  active layer, HTLs and Au NPs thin 

films

5.3.1.1 Surface morphologies o f ZnO and P3HT:PCBM  active layers

The sol gel deposition o f  ZnO thin film s is a convenient m ethod for fabrication o f  the 

electron transport layer for OSC devices at a low er processing tem perature, w hich 

guarantees for low cost and large-scale production. Figure 5.2 (a) shows the SEM  image
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o f  the sol gel derived ZnO thin film  on ITO coated glasses. It show s a sm ooth and 

uniform  surface.

Figure 5.2 M orphologies o f  sol-gel derived ZnO  thin film s on ITO coated glasses, (a) 

SEM  im age presenting an am orphous structure, (b) AFM  im age indicating a very 

sm ooth surface

Figure 5.3 AFM  m orphologies o f  the P3H T:PCBM  thin film
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The AFM  image in Figure 5.2 (b) shows the uniform  coverage over the w hole surface 

o f  the ITO thin film  and disclosed its depth roughness below  5 nm. The AFM  

m orphology o f  P3H T:PC B M  blends is showed in Figure 5.3 and the blend was 

com posed o f  two contrast phases w ith an average roughness o f  2.4 nm w ith a m axim um  

o f  10.0 nm in depth. It indicated that the blend was reasonably separated w ith the 

donor/acceptor interfaces for charges separation and transport.

5.3.1.2 Surface morphologies o f the PEDOT:PSS HTLs

Figure 5.4 presents the PED O T:PSS AFM  image. The thin PED O T:PSS film show ed -5  

nm roughness but random ly distributed som e -4 0  nm sized hole-like nanocavities or 

nanodents w ith a -2 0  nm low-depth and an average distance o f  -2 5 0  nm in Figure 5.4 

(a), and consisted o f  -1 5  nm featured N Ps that interconnected together form ing 

aggregates or clusters w ith island structures. M ore details are shown in Figure 5.4 (b). 

Since the Au N Ps had the sam e size o f -1 5  nm as the PEDO T:PSS N Ps, it can be

Figure 5.4 AFM  im ages o f  PED O T:PSS thin film s, (a) m orphologies o f  PED O T:PSS 

and (b) m agnified m orphologies o f  the PED O T:PSS film  show ing -1 5  nm NPs.
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inferred that Au N Ps will easily fit into these low -depth nanocavities or nanodents by 

the PAPVD m ethod in the initial deposition stage, form ing the dispersed Au N Ps w ithin 

the PED O T:PSS layer. It will also reach the surface o f  the P3H T:PCBM  active layer or 

perhaps be slightly em bedded into the active layer because the thickness o f  these 

nanocavities is w ithin the range o f  several nanom eters.

5.3.1.3 Surface morphologies o f Au thin films

M orphologies o f  the PA PV D  coated thin Au film are shown in Figure 5.5 w here Figure 

5.5 (a) is a scanning electron m icroscope (SEM ) im age o f  the PAPVD  coated thin Au 

film  w ith the relatively large size o f  Au N Ps for T1 devices. This Au film  presented 

random  round N Ps w ith ~  50 nm in diam eter. H ow ever, it dem onstrated a limited

Figure 5.5 SEM  m orphological im ages o f  the PA PV D coated Au thin film s, (a) the 

initial PAPVD  Au film  presenting -5 0  nm nanom eter-sized Au N Ps for T1 devices 

and (b) the m odified fine structural Au film show ing -1 5  nm nanom eter-sized Au 

N Ps for T2 devices.
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enhancem ent o f  light absorption by plasm onic resonances in the OSC devices that will 

be discussed in OSC perform ance section. To achieve a strong light absorption 

enhancem ent, a m orphologically m odified thin Au film i.e. for T2 devices, was then 

produced by PAPVD as shown in Figure 5.5 (b). This m odified Au film  presented m uch 

finer nanostructures than the previous Au film  in Figure 5.5 (a). The size o f  Au NPs 

decreased to be around -1 5  nm that can be observed more clearly in the atom ic force 

m icroscope (A FM ) im ages below. Enhancing light absorption via plasm ons to the 

active P3H T:PCBM  layer can be expected here via the w ay w here Au N Ps or nanom eter 

sized Au clusters created localized surface plasm onic resonances (LSPR s) [3,4] if they 

can penetrate the PED O T:PSS layer and reach to the surface o f  the P3H T:PC B M  layer.

To better understand how the thin Au N Ps film  form ed on the -2 5  nm thick

PED O T:PSS layer can provide plasm onic resonances, surface m orphologies o f  T2

devices after being coated by the PED O T:PSS and/or Au film s with d ifferent deposition

tim e (5, 10, 15 and 30 s) corresponding to different thicknesses (approxim ately 6, 13, 20,

and 40 nm thick) were analysed by the atom ic force m icroscope separately. F igure 5.6

(a) shows the m orphology o f  the - 6  nm thick Au N Ps film  on T2 devices. The Au film

was in its early processing stage, presenting dispersed or island structures. The island

structures expanded after 10 s deposition for the -1 3  nm thick Au N Ps film and started

to touch with each other. This is evident in the AFM  im age as shown in Figure 5.6 (b).

Figure 5.6 (c) presents that the island structures nearly connected together to form  a

uniform  film  after 15 s deposition for the -2 0  nm thick Au N Ps film. The AFM  im age

o f  the 40 nm thick integrated Au thin film is then show n in Figure 5.6 (d). Thus, we can

infer a com posite interfacial layer that actually form ed between the P3H T:PC B M  active

layer and the integrated Au top electrode. The interfacial layer contained tw o types o f
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N Ps; i.e. PED O T:PSS and Au N Ps w hich were surrounded by each other. D ispersed Au 

N Ps or nanom eter- sized Au clusters in the interfacial layer can perform  plasm onic 

resonances. LSPRs created by those Au N Ps or nanom eter-sized Au clusters that 

directly contacted w ith the P3H T:PCBM  active layer can be absorbed by this layer, 

providing enhanced light absorption.

Figure 5.6 AFM  m orphological images o f  Au thin film s on the PED O T:PSS layer 

dem onstrating the form ation o f  Au NPs film ; (a) - 6  nm thick Au film  by 5 s 

deposition; (b) ~13 nm thick Au film by 10 s deposition; (c) -2 0  nm  th ick  A u film  by 

15 s deposition and (d) -4 0  nm thick Au film by 30 s deposition, respectively.
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5.3.2 Performance of OSC devices

Perform ance o f  two types o f  OSC devices (T1 and T2 as shown in Figure 5.1b and 5.1c) 

w as investigated, respectively. Typical results o f  illum inated current-voltage 

characterisation o f  OSC devices T1 and T2 are shown in Figure 5.7. The perform ance 

param eters o f  fabricated T1 devices are sum m arized in Table 5.1. O btained PCE o f  the 

fabricated devices was in average 2.07 %  with short circuit current density (Jsc) o f  6.60 

m A /cm  . The perform ance param eters o f  OSC T2 devices are listed in Table 5.2.

o  -10

-12

- 1 4
- 0.2 0 0.2 0 . 4 0.6 0 8

Voltage (Volt)

Figure 5.7 J-V  characterisation under illum ination o f  inverted OSC devices, (a) T1 

devices by the 40 nm thick Au film  com posed o f  50 nm sized A u N P s as top 

electrode, (b) T2 devices by the 40 nm thick Au film  but com posed o f  15 nm sized 

Au N Ps as top electrode
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Table 5.1 Summary o f  the performances o f  the T1 devices

Device
no.

Voc
(V olt)

Jsc
(m A /cm 2)

PCE
(% )

FF R s
(Q .cm 2)

Rsh
(Q .cm 2)

N o .l 0.60 6.80 2.08 0.51 17.02 380.95

N o .2 0.60 6.48 2.10 0.54 16.66 320.00

N o .3 0.60 6.52 2.02 0.52 17.31 275.86

A verage 0.60 6.60 2.07 0.53 17.00 325.60

Table 5.2 Sum m ary o f  the perform ances o f  the T2 devices

Device
no.

Voc
(Volt)

Jsc
(m A /cm 2)

PCE
(%)

FF R s
(fT cm 2)

Rsh
(fT cm 2)

N o .l 0.60 12.69 3.83 0.51 14.05 357.14

No.2 0.60 12.61 3.87 0.53 13.30 370.15

N o .3 0.60 12.14 3.91 0.54 13.57 357.68

N o.4 0.60 12.26 4.05 0.55 13.24 357.14

N o .5 0.60 11.80 4.01 0.57 14.18 416.66

N o .6 0.60 11.80 3.98 0.56 14.25 400.00

N o .7 0.60 13.40 3.80 0.47 16.30 270.07

A verage 0.60 12.38 3.92 0.53 14.13 361.26

Device short circuit current density has reached in average 12.38 m A /cm  with a 

m axim um  at 13.40 m A /cm 2. PCE on average has obtained the value o f  3.92 %  w ith the 

highest at 4.05% . Series resistance (R s) and shunt resistance (R Sh) calculated from  dark 

and illum inated J-V  curves o f  all devices are also listed in Table 5.1 and 5.2. Rs

2 9
exhibited a small decrease on average from  17.00 f2 .cn r o f  T1 devices to 14.13 £2.cm 

o f  T2 devices. Rsh was w ithin the same range o f  values for both devices. Thus, a 50 to
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90%  im provem ent o f  OSC T2 devices in current density and PCE com pared to that o f 

OSC T1 devices was m ainly attributed to plasm on-enhanced optical absorption by 

sm aller Au N Ps as seen in Figure 5.7. Som e contributions may also be related to a slight 

decrease o f  series resistance (R s) in the T2 devices.

5.3.3 Optical properties o f ETL and P3HT:PCBM active layer

5.3.3.1 Transmission spectra of the ZnO ETL

The incident light reaches to the P3H T:PCBM  active layer through ZnO ETL. Therefore, 

Figure 5.8 illustrates the transm ission spectra o f  the sol-gel ZnO  thin film  on glass 

substrates. The deposited film shows high transm ittances over the entire v isible range 

with more than 95%  transm ittance at a w avelength o f  550 nm.
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Figure 5.8 T ransm ission spectrum  o f  the sol gel deposited ZnO electron transport layer
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5.3.3.2 Analysis o f enhanced light absorption to the P3HT:PCBM  active layer

O ptical ab so rp tio n  o f  d iffe ren t sam ples w as ana lysed  to ev a lu a te  en h an ced  light 

absorption by the Au N Ps. In order to explore w hether and how m uch light absorption 

was actually  absorbed by the active P3H T:PC B M  layer, the absorbance o f  various 

sam ples as p rep ared  in sec tio n  5.2 w ere stud ied  re sp ectiv e ly . R esu lts  o f  op tica l 

absorption for the sputtered Au thin film s used for T2 devices on glasses at different 

thicknesses o f  approxim ately 5, 11, and 16 nm are presented respectively in Figure 5.9. 

P la sm o n ic  re so n a n c e s  o f  A u N P s are  v ery  se n s itiv e  to the  s iz e s , sh a p e s , and 

arrangem ents o f  N Ps as well as the surrounding environm ent. The localized absorption 

characteristic o f  our Au film s was found to be the sam e as those o f  the sputtered Au 

film s published by Siegel et al. [24]. An absorption m inim um  around 500 nm was
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Figure 5.9 Optical absorption spectra o f  Au thin film s on glasses, (a) ~ 5  nm thick 

Au film , (b) — 11 nm thick Au film, (c) ~  16 nm thick Au film , respectively.
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presented in the spectra, w hich is slightly red-shifted with increasing film thickness. As 

the thickness becom es greater, the absorption band is broadened due to a w ider particle 

size distribution. The exhibited behaviour o f  the PAPVD sputtered Au film  in the 

absorbance is due to the surface plasm on [25]. Optical absorption o f  the single 

PED O T:PSS layer after encapsulating the Au N Ps was then studied. W hen obtained 

optical absorption o f  the PED O T:PSS layer w ith different thicknesses Au layers (show n 

in Figure 5.10) deducted optical absorption o f  the sputtered Au thin film at the 

corresponding thickness (shown in Figure 5.9), the net absorbance o f  the PED O T:PSS 

layer w ith the incorporated Au plasm onic N Ps was obtained as shown in Figure 5.11

0.7

/ "

O

350 450 650550 750 850 950

Wavelength (nm)

Figure 5.10 Optical absorption spectra o f  the '"-'25 nm PED O TiPSS layer w ith or 

w ithout Au N Ps film s, (a) w ithout Au film, ( b) w ith ~-5 nm thick Au film , (c) w ith 

11 nm thick Au film , (d) w ith ~  16 nm thick Au film.
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Figure 5.11 N et optical absorption spectra o f  the -2 5  nm thick PED O T:PSS layer 

w ithout Au N Ps and com bined with Au N Ps obtained after applying the 5, 11, and 16 

nm thick Au N Ps film s, (a) the PED O T:PSS film only, (b) the PED O T:PSS film  

com bined w ith Au NPs from - 5  nm thick Au film , (c) the PED O T:PSS film com bined 

w ith Au N Ps from -11  nm thick Au film , (d) the PEDOTrPSS film com bined w ith Au 

N Ps from  -1 6  nm thick Au film , respectively.

respectively. No enhanced light absorption was exhibited for the PED O T:PSS layer 

after coated by the 5 nm thick Au film w hile a slight enhancem ent in the absorbance 

was observed for the PED O T:PSS layer coated by the 11 and 16 nm thick Au film 

respectively in the red and near IR spectral range. A fterw ards, optical absorption o f  the 

single active P3H T:PCBM  layer directly coated by different thicknesses Au N Ps film s 

was then analysed respectively. Sim ilarly when optical absorption o f  the -1 5 0  nm thick



P3HT:PCBM  layer with different th icknesses Au N Ps film s (show s in Figure 5.12) Au 

N Ps was also shown in Figure 5.13. It exhibited its w ell-know n absorption band in the 

spectral range o f  3 5 0-650  nm [26]. Unexpectedly, net optical absorption o f  the active 

P3H T:PCBM  layer with different thicknesses Au N Ps film s significantly decreased in 

the w avelength range except a small increase for the active layer coated by the 16 nm 

thick Au N Ps film  in the UV spectral range and a slight enhancem ent for all sam ples in 

the near IR spectral range. This result m ay be assigned to the reason that the 

m orphology o f  the P3H T:PCBM  blend was greatly altered by the directly  sputtered Au
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Figure 5 .12 O ptical absorption spectra o f  the -1 5 0  nm P3H T:PC B M  layer w ith or 

w ithout Au N Ps films, (a) w ithout Au film , (b) w ith -5  nm thick Au film , (c) w ith 

-11  nm thick Au film , d) w ith -1 6  nm thick Au film.
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Figure 5.13 N et optical absorption spectra o f  the -1 5 0  nm thick P3H T:PC B M  layer 

w ithout Au N Ps and com bined w ith Au N Ps obtained from directly applying the 5, 

11, and 16 nm thick Au N Ps film s, (a) the P3H T:PCBM  film  only, (b) the 

P3H T:PCBM  film com bined with Au N Ps from  - 5  nm thick A u film , (c) the 

P3H T:PCBM  film com bined with Au N Ps from -1 1  nm thick Au film  and (d) the 

P3H T:PCBM  film com bined with Au N Ps from -1 6  nm thick Au film , respectively

NPs. Furtherm ore, the absorbance o f  the active P3H T:PCBM  layer w as investigated 

after coated by the PED O T:PSS and then follow ed the Au N Ps film s at d ifferent 

thicknesses o f  5, 11, and 16 nm, respectively. N et optical absorption was presented in 

Figure 5.14 when optical absorption o f  the double-layer film with d ifferent th icknesses 

Au N Ps film s (Figure 5.15) deducted optical absorption o f  the PED O T:PSS film  with
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the correspondent thickness Au NPs film respectively (as shown in Figure 5.10). For the 

com parison study, net absorbance o f  the -1 5 0  nm thick P3HT:PCBM  layer w ithout Au 

N Ps was also plotted in Figure 5.14 by deducting optical absorption o f  the PED O T:PSS 

layer from  optical absorption o f  the double layer.
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Figure 5.14 Plasm on enhanced net optical absorption spectra o f  the -1 5 0  nm  thick 

P3H T:PCBM  layer obtained from applying the 5, 11, and 16 nm thick  Au N Ps 

film s on the double-layer film , (a) the P3H T:PCBM  film only, (b) the P3H T:PC B M  

film by the enhancem ent o f  Au N Ps from  the - 5  nm thick Au film , (c) the 

P3HT:PCBM  film by the enhancem ent o f  Au N Ps from the -11  nm thick Au film  

and (d) the P3H T:PCBM  film by the enhancem ent o f  Au N Ps from the - 1 6  nm 

thick Au film , respectively.
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Enhanced broadband optical absorption for the active layer coated by the 5 nm thick Au 

N Ps film was observed in the w hole range spectra o f  350-1000  nm. Enhanced light 

absorption was also m aintained for the active layer coated by the 11 and 16 nm thick Au 

N Ps film s separately in the spectral range o f  4 5 0 -6 5 0  nm and 750-1000  nm. G iven the 

fact that the size o f  these Au N Ps is -1 5  nm, this increase was attributed to LSPRs o f  

Au N Ps that touched directly w ith the active blend or probably em bedded slightly into 

the active layer. As described in Section 5.6 about the form ation processing o f  the Au 

N Ps in the PED OT:PSS layer, the initial deposition stage seem s m ost im portant to 

achieve enhanced light absorption in the active layer. Since the best plasm onic light
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Figure 5.15 O ptical absorption spectra o f  the -1 5 0  nm P3H T:PCBM  and -2 5  nm 

PED O T:PSS layer with or w ithout Au N Ps film s, (a) w ithout Au film , (b) w ith - 5  nm 

thick Au film, (c) with -11  nm thick Au film , (d) with -1 6  nm thick Au film .
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Figure 5.16 N orm alised absorption spectra o f  the P3H T:PCBM  layer as show n in (a) 

relative absorption ratios o f  the P3HT:PCBM  film by the enhancem ent o f  Au N Ps 

from the - 5  nm thick Au film , (b) relative absorption ratios o f  the P3H T:PC B M  film 

by the enhancem ent o f  Au N Ps from the -1 1  nm thick Au film and (c) relative 

absorption ratios o f  the P3HT:PCBM  film by the enhancem ent o f  Au N Ps from  the 

-1 6  nm thick Au film to that o f  the P3H T:PCBM  film w ithout Au N Ps, respectively.

absorption enhancem ent am ongst three different thicknesses sam ples was obtained by 

the thinnest Au N Ps film, an ideal device structure suggested would be that o f  ITO/ 

ZnO /P3H T:PC B M /PED O T:PSS/thin Au N Ps/H T L/other type o f  electrode for further 

investigation w hich will be discussed in later chapter. Figure 5.16 presents the ratios o f  

light absorption o f  the active layer by the Au N Ps enhancem ent to that o f  the active 

layer w ithout Au N Ps in the spectral range o f  350-650 nm. An -2 0 %  increase on
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average o f  total optical absorption in this spectral range was observed although some 

small decrease for the active layer w ith the 11 and 16 nm thick Au N Ps film s was 

exhibited in the UV spectral range o f  3 5 0-400  nm. Enhanced light absorption in the 

w avelength range o f  4 0 0 -6 5 0  nm where the P3H T:PCBM  active layer is absorbing was 

fully contributed to the im provem ent o f  PCE o f  our OSC devices. It is not clear w hether 

enhanced optical absorption in the spectral range o f  750 -1000  nm was also attributed to 

the PCE. How ever, enhanced light absorption in this spectrum  is anticipated to be very 

useful on the im provem ent o f  PCE if  it is applied on OSC devices fabricated by an 

active blend w ith spectrally extended light absorption band to red and near IR [22]. 

Overall from the above, the sputtered Au N Ps were not able to provide either a 

significant light enhancem ent to the PED O T:PSS layer or any light absorption increase 

to the active P3H T:PCBM  layer w hen the Au NPs film was directly  applied on the 

single layer film. However, enhanced broadband light absorption realised on the active 

P3HT:PCBM  layer when the Au N Ps film  was coated on the double-layer film . The 

PED O T:PSS layer seems playing an im portant role on providing the bridge as the buffer 

layer for the sputtered Au N Ps reaching the active layer w ithout causing its alteration in 

the m orphology.

5.4 Summary

(1) Surface m orphologies o f  the sol-gel derived ZnO ETL, P3H T:PC B M  active layer

and PED OT:PSS HTL were investigated by the SEM and tapping m ode A FM . The

uniform  surface o f  ZnO film revealed its depth roughness below  5 nm. The AFM

m orphology o f  P3H T:PCBM  blends com posed o f  two contrast phases w ith an average

roughness o f  2.4 nm. The surface m orphology o f  the PED O T:PSS layer show ed less

than 5 nm roughness w ith som e -4 0  nm sized nanocavities or nanodents, w hich are
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random ly distributed at an average distance o f  250 nm. We concluded that the PAPVD 

deposited Au N Ps can be easily fit into these low-depth nanocavities and form the 

dispersed layer o f  Au NPs w ithin the PED O T:PSS layer that enhanced the absorption to 

the P3HT:PCBM  active layer by LSPR and scattering. The m orphologies o f  the Au N Ps 

thin film s were also investigated w ith a featured N Ps size using the SEM ; i.e. - 5 0  nm 

and -1 5  nm, respectively. D ifferent thicknesses (approxim ately 6, 13, 20, and 40 nm) o f  

-1 5  nm sized Au N Ps thin film s on top o f  -2 5  nm thick PED O TiPSS layer w ere 

analysed by the atom ic force m icroscope separately and the m orphological result 

inferred a com posite interfacial layer w hich contained two types o f  NPs; i.e. 

PED O TiPSS and Au N Ps surrounded by each other. The interfacial N Ps or nano cluster 

perform  plasm onic resonances that can be absorbed by the P3H T:PCBM  active layer, 

providing enhanced light absorption.

(2) The perform ances o f  two types o f  single junction  inverted OSC devices (T1 and T2) 

were investigated, respectively. The devices T2 revealed the average PCE o f  3.92%  

with the highest at 4.05% , w hereas, the average PCE o f  T1 devices was at 2.07% . The 

significantly im proved PCE (-9 0 % ) for T2 devices was assigned to the noticeable 

increase o f  photocurrent due to plasm on-enhanced optical absorption by sm aller (-1 5  

nm )Au N Ps em bedded into the PEDOTiPSS layer w here some contribution m ay also 

com e from a small decrease o f  Rs.

(3) W e dem onstrated that PCE o f  a single junction  inverted P3HT:PCBM  O SC  device

was im proved by applying a PAPVD Au N Ps film  on the thin PED O TiPSS film  after

the active layer. D ifferent sam ples such as P3H T:PC B M /PE D O T :PSS,

P3H T:PC B M /A u N Ps em bedded PED OTiPSS and Au N Ps thin film s were analysed to

evaluate enhanced light absorption by the Au N Ps. The thicknesses o f  the em bedded Au

N Ps thin film s were approxim ately 5, 11, and 16 nm, respectively. Through the
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incorporation o f  these thicknesses o f  -1 5  nm thick Au NPs into the PED OTiPSS layer, 

-2 0 %  increase in the overall absorption to the P3HT:PCBM  active layer was observed 

although some small decrease for the active layer w ith the 11 and 16 nm thick Au N Ps 

film s was exhibited in the UV spectral range o f  3 5 0 -4 0 0  nm. The P3H T:PCBM  active 

layer coated by the 5 nm thick Au N Ps film was dem onstrated enhanced broadband 

optical absorption in the w hole spectral range o f  3 5 0 -1000  nm. The enhanced light 

absorption in the w avelength range o f  4 0 0-650  nm w here the P3HT:PCBM  active layer 

is absorbing was fully contributed to the im provem ent o f  PCE o f  the OSC devices. In 

contrast, no enhanced light absorption was realised when the PAPVD Au N Ps film  was 

directly applied on the P3HT:PCBM  active layer. This result m ay be assigned to the 

reason that the m orphology o f  the P3HT:PCBM  blend was greatly altered by the 

directly sputtered Au NPs.
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Chapter 6: Effect of the active layer morphologies and device structures on their 

performances

6.1 Introduction

Extensive studies in photovoltaic (PV) technologies have been carried out in the past 

decade to achieve cost efficient high perform ance devices [1-4]. A lthough significant 

w ork on single bulk hetero-junction (BH J) OSCs has doubled their pow er conversion 

efficiency from  ~  4%  [5,6] to ~  8-10 %  for the latest devices,[7-10] com petition with 

other m ature PV technologies is still not reachable directly in the current m arket. 

M axim um  PCE that could be achieved on the single BHJ O SCs m ay be lim ited to 

~ 1 5 %  through optim isation o f  the blend o f  the active m aterials with an appropriate 

band gap, energy levels, and carrier m obility [11-15],

One o f  the key barriers in enhancing the PCE o f  O SCs except intrinsic properties o f

m aterials is their lim ited thin active layer in the devices leading to low light absorption.

In recent years, introducing novel plasm onic nanostructures into the devices for

enhancem ent o f  light absorption has em erged as an expanding area to increase the

perform ance o f  OSC devices [16]. M any studies have been carried out to incorporate

random  and periodic nanostructures o f  m etallic nanoparticles (NPs) into various layers

o f  organic solar cells w here some have dem onstrated prom ising results in term s o f

enhancem ent o f  optical absorption, fill factor (FF), and current density in the devices

w ithout changing the thickness o f  the active layer [17-26]. M etals that support

plasm onic resonances (PRs) m odes and have resonances in the visible or near infrared

region o f  the electrom agnetic spectrum  are used to constitute metal nanostructures in

order to achieve strong plasm onic effects. D ifferent noble m etallic N Ps and their

positions with different concentrations, shapes and sizes have been review ed [27-29].
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Synthesis o f  plasm onic N Ps is relatively sim ple; however, the control over their shapes, 

sizes and distributions in the devices presents a big challenge by various chem ical or 

vacuum -based deposition m ethods. It is usually recognized that m etallic N Ps em bedded 

inside the active layer cannot im prove the device perform ance due to the loss 

m echanism  including non-radiative decay and charge carrier recom bination that can 

lead to a decrease o f  charge carriers [20].

A lthough deposition o f  noble m etallic N Ps on indium tin oxide electrodes or 

PED O TiPSS hole transport layers has been w idely studied and som e good enhancem ent 

in the PCE and FF has been achieved ,[21,29] the m etallic N Ps were relatively far from 

the active layer and showed the absorption enhancem ent either by light scattering or 

only w eak light effects from plasm onic N Ps. C om pared with the incorporation o f  

periodic nanostructures in the devices that leads to a narrow  spectral enhancem ent, 

physical m echanism  that received m uch attention is the random ly distributed N Ps with 

varying shapes and sizes ow ing to that broadband light absorption enhancem ent can be 

realised [16].

This chapter presents further im proved PV structures o f  the inverted O SCs w here the 

thin film  o f  Au N Ps was sandw iched between the PED O T:PSS and highly conducting 

PED O TiPSS (hcPED O TiPSS) layers. The Au N Ps film was deposited by plasm a 

assisted physical vapour deposition (PA PV D ) in the OSC devices w here Au N Ps 

provided a significant plasm onic broadband light absorption enhancem ent to the active 

layer. The addition o f  the high boiling point substance o f  1,8 diiodooctane (D D ) was 

also used to im prove the active layer, enabling to slow  dow n the deposition drying rate 

and thus increasing the crystallinity o f  the organic blend active layer.

172



6.2 Device structures and experimental methods

The OSCs were fabricated on patterned ITO coated glass substrates (12 -15  ohm s/sq. 

from V isionTek System s Ltd., UK). The OSC device structures as shown in Figure 6.1 

are ITO /ZnO /P3H T:PC B M /PED O T:PSS (plus em bedded Au N Ps)/A u top electrode 

(labelled as Device ID1), ITO /ZnO /P3H T:PC B M /PED O T:PSS (plus em bedded Au 

N Ps)/A u NPs film /hcPED O T:PSS (high conducting PED O T:PSS)/A u top electrode 

(labelled as Device ID2) and ITO /ZnO /P3H T:PC BM  with D D /PED O T:PSS (plus 

em bedded Au NPs)/A u N Ps film /hcPED O T:PSS/A u top electrode (labelled as D evice 

ID3).

The em bedded Au N Ps in the PEDOTiPSS layer were obtained through penetration o f  

Au N Ps by the PAPVD sim ultaneously w hen either depositing the top Au electrode for 

ID1 or the thin Au N Ps film s between the PED O TiPSS and hcPED O T iPSS layers for 

ID2 and ID3, respectively. The ITO patterned glass substrates were ultrasonically  

cleaned in acetone, isopropyl alcohol and deionised w ater for 10 m in, respectively. 

A fter drying with nitrogen, the substrates w ere spin-coated with a -3 5  nm thick 

am orphous SGI sol-gel derived ZnO layer as explained in C hapter 5. Then the sam ples 

w ere transferred into a nitrogen-filled glovebox. On top o f  the ZnO layer, a -1 5 0  nm 

thick active layer w ith and w ithout the additive o f  DD was spin-coated from  the 111 

CB3 chlorobenzene solution o f  P3HT:PCBM . The solution was stirred for m ore than 12 

h at 70°C and then passed through 0.2 m icron filter. A fter that the blend w as divided 

into tw o equal parts w ith one part follow ing the addition o f  3.0 %  DD. Equal volum e o f  

chlorobenzene was also added to free-D D part in order to m aintain the sam e level o f  

concentration. The active layers with and w ithout DD were annealed at 80 °C and 

140 °C for 10 min on a hot plate, respectively.
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Figure 6.1 Schem atic diagram  o f  cross sections for inverted OSCs, (a) the processed 

reference structure for devices 1D1 w ithout the hcPED O TiPSS layer, (b) the inferred 

real structure for ID2 devices w here thin AU N Ps film was sandw iched between two 

PED O TiPSS layer, (c) the structure for ID3 devices w here the active layer has 3.0 %  DD 

as a high boiling point additive. (Note: not to scale).

Afterw ards, the sam ples were rem oved out o f  the glove box, follow ed a PDS2 based 

~25 nm thick PEDOTiPSS layer spin-coated on top o f  the active layer as the HTL. The 

sam ples were then transferred again into the nitrogen- filled glove box for heat 

treatm ent at 110 °C for 10 min. For Device ID 1, ~80-nm -thick Au electrode was 

directly deposited onto the PED O TiPSS layer by PAPVD  at base pressure o f  lx lO '2 

m bar [36]. Au N Ps were em bedded into the PED O TiPSS layer through penetration in 

this process, providing plasm onic light absorption enhancem ent to the active layer. For 

D evices ID2 and ID3, ~5-nm -thick Au N Ps thin film s were deposited onto the 

PED O TiPSS layer via the PAPVD at base pressure o f  lxlO"2 m bar and follow ed a -4 0 -  

nm -thick thin film  o f  the hcPED O TiPSS deposited by the spin coating m ethod and then 

annealed outside at 110 °C for 10 min. Sim ilarly, in this process Au N Ps w ere at the 

sam e w ay encapsulated into the PED O TiPSS layer through penetration. F inally, Au top 

electrode was deposited by the PAPVD at base pressure o f  l x l 0 ‘2 m bar and w as then

174



annealed in air at 110 °C for 10 min. The thickness o f  the Au electrode layer is 

approxim ately at 80 nm. D uring this process, Au N Ps m ay penetrate into the 

hcPED O T iPSS layer; how ever, these Au N Ps did not m ake their contributions via 

p lasm on to light absorption enhancem ent o f  the active layer because they w ere far aw ay 

from the active layer. The active area o f  PSCs was 4.0 m m 2 and the tested active area 

w ith m ask was 3.2 m m 2.

Sam ples o f  the spin-coated P3H T:PC B M  layer were prepared on pure glass slides 

w ithout ITO thin film s for characterisation o f  optical, m orphological and structural 

properties, respectively. ID2 and ID3 sam ples after applying the 5-nm -thick  Au NPs 

film s were respectively produced, enabling to investigate their m orphologies. For 

com parative studies o f  optical, m orphological and structural properties, th in  film s o f  the 

active P3H T:PCBM  layer w ith and w ithout DD were also deposited on the pure glass 

slides. Dry pow der sam ples o f  the P3H T and PCBM  blends with and w ithout DD was 

respectively obtained by rem oving the annealed thin films from pure glass substrates for 

FTIR analyses.

6.3 Results and discussion

6.3.1 Morphologies of the PEDOTiPSS, P3HT:PCBM  and Au thin films

6.3.1.1 Surface morphologies of PEDOTiPSS and hcPEDOTiPSS layers

The surface m orphologies o f  the PEDOTiPSS film s were analysed using the tapping 

m ode AFM . Figure 6.2 represents the surface m orphologies o f  the PED O TiPSS, Au 

N Ps film on top o f  the PED O TiPSS, and the hcPED O TiPSS film deposited on top o f  

the PED O T:PSS/A u N Ps thin film . Figure 6.2 (a) shows the surface m orphology o f  the 

PED O TiPSS thin film with an average roughness o f  nearly 5 nm. The m orphology 

consists o f  uniform ly interconnected structures o f  aggregates or clusters w ith island

175



20.0 nm
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Figure 6.2 AFM  m orphological images o f  different thin film s o f  : (a) PED O TiPSS 

on glasses; (b) ~5 nm thick Au film  on top o f  PEDOTiPSS film; (c) hcPED O T iPSS 

film on top o f  PED O T:PSS/A u N Ps film; (d) m agnified image o f  6.2(c).

structures. The m orphology o f  the ~5 nm Au N Ps thin film  on top o f  the PED O TiPSS 

was presented in Figure 6.2 (b). The Au film was in its initial processing stage, 

presenting dispersed structures according to the surface pattern o f  the PED O TiPSS film .

In order to m ake a sandw iched structure o f  the Au N Ps film , a hcPED O T iPSS film  was 

then deposited on top o f  the dispersed Au N Ps thin film. Figure 6.2 (c) show s the 

m orphology o f  the deposited film. The thin PED O TiPSS film showed (Figure 6.2 a) the
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nanosized interconnected structure while the hcPED O T iPSS film exhibited a slightly 

coarser nanosized interconnected structure as m ore clearly  observed in the m agnified 

image o f  Figure 6.2(d).

6.3.1.2 M orphologies o f the P3HT:PCBM and Au NPs thin films

A tom ic force m icroscopy (A FM ) was used to investigate the m orphologies o f  the active 

layers. Figure 6.3 (a & b) shows the AFM  tapping-m ode height im ages o f  the 

P3H TiPCBM  active layers produced with and w ithout DD, respectively. A coarser 

m orphology is observed for the active layer w ith DD in Figure 6.3 (b) com pared to that 

o f  w ithout DD as seen in Figure 6.3 (a). The coarser surface is related to the bigger- 

sized organic aggregates o f  m ore crystallinity o f  the P3H TiPC B M , w hich favours a 

stronger interaction betw een the active layer and the hole transport layer.

Low voltage scanning electron m icroscopy (LV SEM ) was used to im age the 

nanostructures o f  the P3H TiPCBM  blend thin-film  as shown in Figure 6.3 (c & d). A 

significant difference in m orphologies has been observed. The m orphology o f  the active 

layer w ithout DD exhibits m uch less contrast, w ith contrast variations on different 

length scales, (Figure 6.3 c) com pared to the active layer w ith DD that contains large 

contrast variations on the length scale o f  hundreds o f  nanom eters. The latter reveals 

interconnected w ell-ordered aggregates that appear w hite in Figure 6.3 (d) in the 

P3H TiPCBM  with DD. The high contrast could be an indication o f  a relatively pure or 

rich P3H T phase w ith high crystallinity, as any incorporation o f  PCBM  w ould lead to a 

reduction in contrast.

Therefore the w hite aggregates m ay be beneficial to the dissociation o f  the generated

excitons w hile their connection and the im proved crystallinity  m ay provide a w ell-

form ed carrier transport pathway. The latter w ould enable the enhanced efficiency o f
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the carrier collection follow ing the dissociation o f  excitons at the interface o f  the 

P3H T:PC B M . The m orphologies in Figure 6.3 (c & d) correspond to the results 

obtained by AFM  in Figure 6.3 (a & b).

20.0 nm

10.0  nm

0.0 nm

Figure 6.3 M orphological im ages o f  P3H T:PCBM  thin film s, (a) AFM  m orphological 

im ages o f  P3HT:PCBM  w ithout DD, (b) with DD, (c) LVSEM  im age o f  the 

P3H T:PCBM  blend w ithout DD, (b) w ith DD,
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LVSEM  was also used to investigate the m orphology o f  the Au coated P3H T:PCBM  

sam ple (see Figure 6.4). Figure 6.4 reveals a w ell-defined m orphology o f  the Au N Ps. 

The Au N Ps are present in circular oblong-shaped structures extending over a few 

nanom etres. M orphologies observed in LVSEM  can be further analysed by using A uto

correlation Functions (A CF) [30]. The ACF com pares the image w ith itself when it is 

shifted by a certain distance. If the A C F-curve has a m inim um , it m eans that it is 

unlikely to find structures with such a separation distance. A peak in the ACF curve 

m eans that it is very likely to find the sam e feature repeated at this distance. Figure 6.5 

contains the A CFs for Au N Ps and P3H T:PCBM  active layers (w ith and w ithout DD) 

w hich can be used to characterise their typical dim ensions.

Figure 6.4 Low voltage scanning electron m icroscope im ages o f  the thin Au N Ps.

For Au N Ps a clear m inim um  is observed at 9 nm followed by a m axim um  at 17 nm. 

Thus, it can be inferred that the radius o f  the Au N Ps is on average ~  8 nm or less. The 

observed shape and size o f  Au NPs explain the enhanced broadband light absorption in



our OSCs [31-33]. Furtherm ore, the ACF curve derived from the Au-coated 

P3H T:PCBM  in Figure 6.5 shows a m axim um  at the same location as that derived from 

the P3HT:PCBM  (without DD) m orphologies (with 17 nm at high m agnification), 

w hich im plies that Au N Ps may be preferentially  found on top o f  one o f  the phases. 

Figure 6.5 also contains A CFs from the low m agnification images shown in Figure 6.3. 

It is clear by com paring the A CFs for the DD -free P3H T:PCBM  with that for the DD- 

doped P3H T:PCBM  that the latter is heavily dom inated by a very clear m inim um  at 250 

nm follow ed by a clear m axim um  at 460 nm indicating the typical size o f  200 nm o f  the 

highly rich P3H T aggregates. The latter is also observed for the DD -free P3H T: PCBM  

but the peak is very weak (note the logarithm ic scale) and only one o f  a num ber o f  

peaks presents in the ACF, including one at 17 nm. From this analysis it appears that
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• P3HT:PCBM p lu s  DD L ow  M a g  

4  P3HT:PCBM w i t h o u t  DD L o w  M a g
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>
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Figure 6.5 A uto-correlation-functions derived curves for the LVSEM  im age analyses.
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the addition o f  DD favours the form ation o f  a particular type o f  structure that is also 

present in the free-D D P3H T:PCBM  but not dom inating.

6.3.2 Properties o f the P3HT:PCBM  active layers with and without additives

6.3.2.1 Visible light absorption and structural properties

Figure 6.6 presents the light absorption spectra o f  the P3HT:PCBM  film produced from  

the blend with and w ithout the DD additive, respectively. The n-n* absorption band o f  

the active layer w ith DD shifts tow ard the red, distinguishing from  three dom inant 

features in absorption; i.e. one peak at 510 and tw o shoulders at 550 nm and 610 nm 

separately in com parison w ith that w ithout the addition o f  DD. The vibronic shoulders 

o f  the active layer w ith DD near the w avelengths o f  550 nm and 610 nm becom e w ider 

and m ore clearly defined in the spectra, show ing a strong interchain interaction. The 

red-shift in the absorption spectrum  m eans a high degree o f  crystallin ity  o f  the 

P3H T:PCBM  blend, indicating an enhanced interaction between the organic chains.

The X -ray diffraction (X RD ) patterns w ere further perform ed to characterise the 

structures o f  the active layers. Figure 6.7 shows the X RD  pattern o f  the P3H T:PC B M  

films. A m uch stronger peak at around -5 .4 5 °  is presented for the fabricated 

P3H T:PCBM  when the DD w as added in the blend. A slight shift o f  the peak position is 

also observed from ~ 5.28° o f  the active layer w ithout DD to -5 .4 5 °  o f  the P3H T:PC B M  

with DD. The significantly increased peak intensity and the reduced full w idth at h a lf  

m axim um  (FW H M ) o f  the active layer with DD again confirm  the highly oriented 

structures or crystallinity. The addition o f  the high boiling point DD additive in the 

blend leads to the much slow evaporation rate o f  solvents when fabricating the active 

layer, which enables that the organic had enough tim e to form more ordered structures.
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Figure 6.6 Optical absorption spectra o f  the -1 5 0  nm thick P3H T:PC B M  layer, (a) 

w ithout DD, (b) w ith DD.
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Figure 6.7 XRD patterns o f  the P3H T:PCBM  layers, (a) w ithout DD, (b) w ith DD.
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6.3.2.2 ATR-FTIR analysis of the P3HT:PCBM  active layers with and without 

additives

The FTIR spectra o f  the P3HT:PCBM  film with and w ithout the DD are separately 

presented in Figure 6.8. The characteristic bands o f  the P3HT:PCBM  film  are observed 

at 1510-1440 c m '1 (ring stretch), 1375 c m '1 (m ethyl deform ation), and 820 c m '1 

(arom atic out o f  plane vibrations) respectively w hile the C = 0  stretching vibration in the 

P3H T:PC B M  film  appears at 1735 c m '1. The arom atic =C-H out o f  the plane vibrations 

at 820 c m '1 represents the characteristic o f  P3HT.

The tw o peaks in the band betw een 1510 and 1440 c m '1 are associated with the 

stretching vibration o f  the thiophene ring. The concerned two peaks at 1509 and 1448 

c m '1 characterise the asym m etric C=C stretching and the sym m etric stretching 

vibrations o f  the P3H T:PCBM  because their relative ratio o f  the intensities can be used 

to probe the average conjugation o f  the P3HT in the P3HT:PCBM  blend [34,35]. The 

reason is attributed to the preferential orientation o f  the organic chains or som e 

variations in the conjugation length. C hanges o f  the intensity and the ratio betw een 

these tw o peaks can be observed after the addition o f  DD into the P3FIT:PCBM  blend in 

Figure 6.9.

A nother tw o fullerene peaks located at 1184 c m '1 and 1428 c m '1 are related to the 

PCBM . The intensities o f  these tw o characteristic peaks are im proved after the addition 

o f  the DD, endorsing the enhanced m ixing o f  PCBM  with P3HT. Thus, FTIR results 

further exhibit the changes o f  the active layer by the addition o f  DD in the conjugated 

nature o f  the P3H T and the com bination o f  P3H T and PCBM .
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Figure 6.8 FTIR  spectra o f  the P3HT:PCBM  layers, (a) w ithout DD, (b) w ith DD

6.3.3 Performance of OSC devices

6.3.3.1 Performance o f OSC devices by extra hcPEDOTiPSS layer

In order to exam ine the influence o f  the extra hcPED O T iPSS layer, F igure 6.9 

illustrates the J-V  characteristics o f  the devices ID1 and ID2. The open circuit voltages 

and current densities o f  both the devices are nearly sam e w ith a value o f  0.62 V and 

~ 1 1.80 m A /cm  , respectively. The PCE has increased from a value o f  4 .0%  for device 

ID1 to 4 .5%  for device ID2. Table 6.1 and 6.2 sum m arised the perform ance param eters 

o f  device ID1 and ID2. The results revealed that the extra hcPED O TiPSS layer has no 

influence on Vocand Jsc o f  the inverted OSC devices ID1 and ID2. The enhancem ent in 

PCE is due to the enhanced fill factor for device ID2 after the deposition o f  the extra
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hcPED O T:PSS layer and some contributions m ay also be related to the im proved values 

o f  Rs and Rsh.
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Figure 6.9 J-V  characteristics o f  inverted OSC devices, (a) ID l, (b) ID2.

Table 6 .1 Sum m ary o f  photovoltaic param eters o f  OSC devices ID1

Device no. Voc Jsc FF PCE R s Rsh

(V ) (m A /cm 2) (% ) (% ) (Q -cm 2) (O -cm 2)

N o .l 0.62 11.76 54 3.94 14.28 406.00

N o.2 0.62 11.96 54 3.99 13.46 353.66

N o .3 0.62 11.80 55 4.00 14.35 415.76

N o.4 0.62 12.10 53 3.85 16.07 313.86
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Table 6.2 Summary o f  photovoltaic parameters o f  OSC devices 1D2

Device no. Voc Tc FF PCE Rs Rsh

(V ) (m A /cm 2) (% ) (% ) (Q -cm 2) (Q -cm 2)

N o .l 0.62 12.10 59 4.40 12.86 688.66

N o.2 0.62 11.81 62 4.51 11.80 727.27

N o .3 0.62 11.60 61 4.36 11.90 713.16

N o.4 0.62 11.74 56 4.10 13.02 657.68

6.3.3.2 Performance o f OSC devices with and without the additives to the 

P3HT:PCBM active layer

Perform ance o f  three types o f  O SCs labelled as ID 1, ID2 and ID3 show n in Figure 6.1 

were investigated, respectively. Figure 6.10 show s J-V  curves o f  the ID 1, ID2 and ID3 

OSCs and their perform ance results are sum m arized in Table 6.3 and 6.4. D evice 1D1 

had a generally inverted structure and obtained ~  4%  PCE. The sam e inverted O SC s as 

1D1 from previous chapter dem onstrated that PCE were ~  2.5 to 3 %  if w ithout any Au 

N Ps plasm onic light absorption enhancem ent [36]. The thin Au N Ps film  by PA PV D  

presents broadband light absorption behaviour in the PED O T:PSS layer as show n in 

previous chapter. Sm all-sized Au N Ps produced by PAPVD can penetrate through the 

PED O T:PSS layer to top o f  the active layer show n in Figure 6.1(a), w hich creates 

enhanced light absorption to the active layer due to plasm onic effects and leads to the 

increased PCE o f  ~ 4%. PCE o f  the OSC device ID2 further increased up to 4.51 %  by 

form ing a sandw iched PEDOTiPSS HTL structure in Figure 6.1 (b) where the very thin 

Au N Ps film  by the PAPVD was deposited betw een the general PED O TiPSS and the 

high conducting PED OTiPSS layer. This result confirm ed that Au plasm onic light 

absorption enhancem ent can lead to an im proved device perform ance in PCE.
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Figure 6.10 J -V  characteristics under illum ination o f  the inverted O SCs, (a) ID1 

devices processed w ithout the hcPED O TiPSS layer, (b) 1D2 devices w here thin Au 

N Ps film was sandw iched between two PED O TiPSS layers, (c) ID3 devices where 

the active layer has 3.0 %  DD as a high boiling point additive.

Table 6.3 Sum m ary o f  photovoltaic param eters o f  OSC devices ID3

Device no. Voc Jsc FF PCE R s Rsh

(V ) (m A /cm 2) (% ) (% ) (O -cm 2) (O -cm 2)

N o.l 0.62 12.12 67 5.01 09.13 889.00

N o.2 0.62 12.25 65 4.95 09.80 857.88

N o .3 0.62 12.74 61 4.80 11.16 796.38

N o.4 0.62 11.96 66 4.90 9.16 888.66
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Table 6.4 Summary o f  photovoltaic parameters o f  the best inverted OSC devices

Device Voc Jsc FF PC E Rs Rsh

(V ) (m A /cm 2) (%) (%) (Q -cm 2) (Q -cm 2)

1D1 0.62 11.80 55 4.00 14.35 415.76

ID2 0.62 11.81 62 4.51 11.80 727.27

ID3 0.62 12.12 67 5.01 09.13 889.00

Surface plasm ons produce large local electrom agnetic fields near to Au N Ps surfaces, 

w hich are proposed to increase light absorption in organic m aterials causing the overall 

im proved efficiency [16]. Local surface plasm on resonance (LSPR) excitation from  Au 

N Ps not only enhances absorption o f  the photoactive conjugate organic, but also raises 

probability o f  excitons being dissociated into free charge carriers w hich leads to the 

reduced recom bination loss [16,26]. If com pared the device ID1 w ith ID2 in 

perform ance param eters shown in Table 6.1, the main cause for the increased PCE 

com es from the im proved FF from  55%  to 62%.

Series resistance (R s) and shunt resistance (R Sh) o f  OSCs calculated from  dark and 

illum inated I-V curves are also listed in Table 6.1. R s exhibits a sm all decrease on

9  9
average from  14.35 O .cnT  o f  the device ID1 to 11.80 O .cm  o f  the device ID2 and RSh

2 2 shows a nearly double increase from 415.76 O .cm  o f  the device ID1 to 727.27 Q .cnT

o f  the device ID2. All these changes provide their contributions for the im provem ent o f

FF. The PCE o f  the inverted O SCs was further increased by adding a high boiling

additive o f  DD in the blend o f  P3H T:PCBM  as shown in Figure 6.1(c). The PCE o f  the

• • • • 2 
inverted device ID3 has reached to 5.01%  with the increased current o f  12.12 m A/cirT

and FF 67%. Rs and Rsh were also optim ised as 9.13 O .cm 2 and 889.00 O .cm 2,

respectively.
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6.3.3.3 External quantum efficiency measurements

Results o f  external quantum  efficiency (EQ E) spectra w ere m easured for the three types 

o f  OSCs, w hich further evidences the im provem ent o f  PCE. Figure 6.11 presents the 

obtained EQE o f  the inverted devices. EQE o f  the devices ID2 and ID3 is higher in the 

whole visible spectral range than that o f  the device ID 1, w hich is in correspondence
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Figure 6.11 EQ E m easurem ent o f  the inverted OSCs, (a) 1D1 devices processed 

w ithout the hcPED O TiPSS layer, (b) ID2 devices w here thin Au N Ps film  w as 

sandw iched betw een tw o PEDOTiPSS layers, (c) ID3 devices where the active layer 

has 3.0 %  DD as an additive.

w ith their increased PCE as shown in Table 6.4. The EQE is defined as the ratio

between the num ber o f  electrons flow ing out o f  the device and the num ber o f  photons

incident upon it, representing proportionally the efficiency o f  light absorption in the

active layer. Previous chapter has dem onstrated that the optical absorbance o f  the active
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P3H T:PCBM  layer was increased by depositing Au NPs in the PED O TiPSS layer. 

Hence, the achieved high current density in the device 1D3 is m ainly ow ing to the 

com bined effect o f  plasm onic near-field light absorption enhancem ent by Au N Ps and 

the highly oriented structures o f  the active layer by the slow  dry process due to the 

addition o f  DD.

6.4 Summary

(1) Surface m orphologies o f  the PED O TiPSS, PED O TiPSS/A u N Ps thin film s, and 

PED O TiPSS/A u N Ps film  /hcPED O TiPSS film s were investigated by the tapping m ode 

A FM . The uniform ly interconnected structure o f  the PED O TiPSS w as different from  

the hcPED O T iPSS, w hich exhibited a slightly coarser nanosized interconnected 

structures. The m orphology o f  the ~5 nm Au N Ps thin film on top o f  the PED O TiPSS 

film  was also investigated with a dispersed structure that was affected by the form ed 

pattern o f  the PED O TiPSS film . As a com parative study, the m orphologies o f  the 

P3H T:PCBM  active layer were studied with and w ithout the addition o f  DD using AFM . 

The coarser surface with bigger-sized organic aggregates leads to m ore crystallin ity  o f 

the P3HT:PCBM  active layer com pared to that o f  w ithout DD, w hich w as also 

confirm ed by LVSEM . LVSEM  was further used to investigate the m orphology o f  the 

Au coated P3H T:PCBM , w hich reveals a w ell-defined m orphology o f  the Au N Ps w ith 

circular oblong-shaped structures extending over a few  nanom etres. ACF was also used 

to analyse the LVSEM  m orphologies, w hich inferred that the radius o f  the Au N Ps is on 

average ~ 8 nm or less and preferentially found on top o f  one o f  the phases. The ACF 

analysis o f  the P3HTiPCBM  active layer with and w ithout DD dem onstrates that the 

addition o f  DD favours the form ation o f  a particular type o f  structure that is also present 

(but not dom inant) in the DD free P3HT:PCBM .
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(2) Fabrication o f  the P3HT:PCBM  active layer by the addition o f  DD w hich reduces its 

drying rate in the fabrication process led to a red shift o f  optical absorption. The 

vibronic shoulders at 550 nm and 610 nm in the spectra illustrated an enhanced 

interaction between the organic chains after the addition o f  DD. Furtherm ore, the 

enhanced XRD peak intensity at around 5.45° and the reduced full w idth at ha lf 

m axim um  (FW H M ) o f  the active layer w ith DD again confirm  the highly oriented 

structures. The FTIR spectra o f  the P3F1T:PCBM film with and w ithout the DD was 

also studied separately and the observed results further exhibited the changes in the 

conjugated nature o f  the P3H T and the com bination o f  P3HT and PCBM  by the 

addition o f  DD.

(3) Finally, the perform ances o f  three types o f  OSC devices (ID 1, ID2 and ID3) w ere 

investigated, respectively. The device ID3 revealed the PCE o f  5.01%  com pared to 

devices ID1 and ID2. The PCEs o f  ID1 and ID2 were ~4.0 and -4 .5 1 % , respectively. 

The significantly im proved PCE was due to the Au plasm onic effect w hich was created 

by sandw iching the thin PA PV D Au N Ps film  between tw o PED O T:PSS H TL layers 

and also contribution from the addition o f  DD into the P3H T:PCBM  active layer. The 

presence o f  Au N Ps provide broadband light absorption enhancem ent, leading to the 

increased EQE. The m odified P3H T:PCBM  structure by the addition o f  DD can be 

beneficial to the dissociation o f  excitons and provide a w ell-form ed pathw ay for carrier 

transportation. The obtained im provem ent in PCE was m ainly  assigned to the noticeable 

increase o f  the photocurrent and the fill factor. The changes in Rs and RSh also provide 

their contributions in the overall enhancem ent in the perform ance.
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Chapter 7: Inverted organic solar cell devices on metal substrates

7.1 Introduction

A m ong m any PV technologies, organic sem iconducting organics are potentially 

appropriate m aterials for achieving the low-cost production o f  large area PV cells 

because they are solution processable and can be deposited by various conventional 

coating m ethods including spin-coating, doctor-blading, spray-coating, slot-die coating, 

and ink-jet printing [1-5]. Various technologies o f  m anufacturing large area OSC 

devices by the roll-to-roll (R2R) processing technique have been review ed recently by 

F.C. Krebs' group [6]. The advantages o f  high m echanical flexibility  o f  organics for the 

R2R processing technique have assisted its fast progress tow ards fabricating large area 

OSC devices on flexible substrates [7-13]. As discussed in C hapter 2 (Section 2.4), 

com pared to the conventional configuration, OSC devices with the inverted structures 

have gained m ore and m ore academ ic and industrial attention ow ing to that the inverted 

configuration has an opposite charge collection m echanism  that can allow  the use o f 

high w ork function metal as the substrate and highly stable transparent m aterials as hole 

collecting electrode. However, currently m ost o f  the reported inverted OSC devices 

have been fabricated on ITO coated glasses or transparent plastics. G lasses are very 

rigid and not com patible with the roll-to-roll processing. Plastic substrates are highly 

flexible; nevertheless, the resource o f  indium  is scarce on earth and sheet resistance o f  

ITO film s obtained on flexible plastic substrates via the deposition m ethod under the 

vacuum  condition is relatively high, w hich decreases short circuit current and fill factor 

o f  the OSC devices [14].

The metal substrate is a potential alternative o f  producing flexible OSC devices via the 

inverted structures. Com pared to the plastics, metal has the advantages o f  cost-effective,
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excellent m echanical flexibility and therm al stability in the industrial fabrication 

processes, [15] delivering good am bient interfacial device stability and also providing 

an opportunity to use non-vacuum  solution-processed top electrode w hich can further 

reduce the fabrication cost. Furtherm ore, m etal has high conductivity and good 

dim ensional stability during the processing at elevated tem perature.

In this chapter, we investigated top illum inated inverted OSC devices on metal 

substrates nam ely: polished stainless steel 304 (SS), titanium  coated steel (Ti-S), 

chrom ium  coated alum inium  (Cr-A l), polished alum inium  (Al). E lectrons in the OSC 

devices were collected by the bottom  m etal electrode and holes transported through the 

transparent PED O T:PSS to the hcPED O T :PSS top electrode. M etal stored in air can 

naturally form a passive oxide layer w hich has a significant effect on the perform ance o f  

the inverted OSC devices. Good perform ance OSC devices were achieved on both the 

SS and Cr-Al substrates while no effective device was produced on the Al substrate. We 

then used the electrical im pedance spectroscopy (EIS) to investigate the electrical 

properties o f  the fabricated OSC devices on various substrates. The fitting results 

disclosed the reasons why different m etal substrates can provide significantly  d ifferent 

perform ance in PCE for the inverted OSC devices.

7.2 Device structures and experimental method

The top illum inated inverted O SCs w ere fabricated on different m etal substrates. The 

cross sectional view  o f  the studied device structures (i.e. M etal substrate 

/ZnO /P3H T :PC B M /PE D O T :PSS/hcPE D O T :PSS) is schem atically shown in Figure 7.1 

(a) and photos o f  a pair o f  fabricated real devices on five different substrates are 

sim ultaneously presented in Figure 7.1 (b). All the substrates w ere cut in a size o f  2 x

1.5 cm and ultrasonically cleaned in acetone, isopropyl alcohol, and then deionised
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PEDOT:PSS (-25 nm)
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Figure 7.1 (a) Schem atic diagram  o f  cross section for top illum inated inverted OSC 

devices on metal substrates, (b) photos o f  a pair o f  real devices on ITO -coated glasses, 

SS, Cr-A l, Ti-S, and pure Al, from top to bottom . (Note: not to scale).
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w ater for 10 min, respectively. A fter drying with nitrogen, the substrates w ere spin- 

coated w ith a ~  50 nm thick am orphous ZnO layer by SGI sol-gel m ethod and then 

annealed on a hot plate at 150° C for 15 min.

The sam ples were transferred into a n itrogen-filled glove box. On top o f  the ZnO layer, 

a ~  250 nm thick active layer was spin coated from  CB4 active layer blend and then was 

annealed at 140 °C for 10 min on a hot plate. M ore detail about the preparation o f  ZnO 

sol and the active layer we have already discussed in chapter 4. A fterw ards, the sam ples 

w ere rem oved out o f  the glovebox, follow ed a ~  25 nm thick PDS2 (PED O T: PSS) 

layer spin-coated on top o f  the active layer and was annealed at 120 °C for 5 min. To 

com plete the device stack ~ 90 nm thick hcPED O T:PSS layer with 6%  dim ethyl 

sulfoxide (D M SO ) was spin coated on top o f  the PEDOT:PSS layer w hich will w ork as 

a hole collecting electrode. Finally, the com plete device annealed under the am bient air 

condition at 120 °C for 10 min. The tested active area o f  the OSC devices w as 7.0 mm .

7.3 Flexible metal substrates

Selection o f  electron contact metal substrates for top illum inated inverted O SC s is a 

challenge, as the w ork function o f  the electron contact m ust be close to the LU M O  level 

o f  the acceptor (3.7-4.3 eV) [25,26]. To achieve this requirem ent, the electron contact 

m ust be low work function m aterials w hich com ply with the follow ing points regarding 

the m echanical, optical, electrical and electronic properties:

>  The work function m ust be in the range o f  the electron acceptor LU M O  level.

>  The material m ust be econom ic and should be resistant to corrosion.

>  The top surface should be m irror finished and have good w etting properties.

>  The electrical conductivity m ust be very high for an efficient charge transport.
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These requirem ents can be fulfilled by the use o f  alloys or a com bination o f  different 

layers. Thin metal substrates provide the excellent barrier to w ater and oxygen, which is 

one o f  the most critical properties affecting the lifetim e o f  organic solar cells [27,28]. 

A dditionally, the substrates like stainless steel have superior chem ical resistance to m ost 

o f  the chem icals used during OSC device fabrication. The top surface can be optim ised 

by polishing w ith excellent dim ensional stability at the elevated tem perature. The 

conductivity o f  metal substrates can be considered as another advantage for an efficient 

charge transport w hich m ade them  very durable for applications. To find a suitable 

m etal substrate for the electron contact, we studied different m etals as substrate 

m aterials. W e used 0.5 m m  thick polished stainless steel (grade 304) w afers w ith an 

average roughness o f  less than 5.0 nm, brought from  V alley D esign C orporation. 520 

nm thick titanium  coated steels were received from  Sidrabe Inc. Polished alum inium  

alloys were supplied by Backer Industrial Coating LTD. 100 nm thick chrom ium  thin 

film s on the polished Al were deposited in our lab by plasm a assisted physical vapour 

deposition (PAPV D). ITO coated glass substrates (12-15 ohm s/sq.) w ere purchased 

from  V isionTek System s LTD to fabricate the reference device.

7.4 Results and discussion

7.4.1 Surface morphologies of metal substrates

The surface m orphologies were investigated in order to identify w hether they have an

effect on the perform ance o f  the OSC devices on m etals. Figure 7.2 show ed the SEM

surface m orphologies o f  various metal substrates. Figure 7.2 (a) presented a very

sm ooth surface o f  the SS substrates with average roughness o f  less than 5 nm and no

clear features or crystalline structures w ere observed. Figure 7.2 (b) illustrated the

smooth surface m orphology o f  the Cr-Al substrates. A regularly ordered crystalline
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structure was observed in the inserted high-m agnification im age in Figure 7.2 (b). 

Figure 7.2 (c) illustrated the m orphology o f  the Ti-S substrate, show ing a structure with 

larger sized crystallities and grater surface roughness than that o f  the Cr-Al substrates. 

The m orphology o f  the polished Al was shown in Figure 7.2 (d), revealing a sm ooth and 

fine crystalline structure with the defect-free surface in the subm icron range.
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Figure 7.2 SEM m orphological im ages o f  metal substrates, (a) the polished stain less 

steel, (b) the chrom ium  coated alum inium  (the inset shows the m agnified im age), (c) 

the titanium  coated steel, (d) the polished alum inium .
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7.4.2 Optical properties o f the hcPEDOT:PSS

Since incident light reaches to the active layer through the top transparent organic 

electrode in top illum inated inverted OSC devices, the transm ittance spectrum  o f  the 

PED O T:PSS and hcPED O T:PSS thin film s on glasses were investigated shown in 

Figure 7.3. The 25 nm thick PEDOT: PSS thin film  on glasses (Figure 7.3 a) is highly 

transparent w ith -9 6 %  transm ittance over the w hole spectral range. The hcPED O T :PSS 

layer on top o f  the norm al PED O T:PSS film that was deposited using the spin coating 

m ethod at 2000 rpm, presented a thickness o f  around 45 nm as shown in Figure 7.4,

100

9 0

8 0

6 0

5 0

3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0

Wavelength (nm)

Figure 7.3 Transm ittance spectra o f  the PED O T:PSS and hcPED O T :PSS film s on 

glasses, (a) PED O T:PSS film , (b) PED O T:PSS plus one layer hcPE D O T :PSS film , 

(c) PED O T:PSS plus bi-layer hcPED O T:PSS film, (d) PED O T:PSS plus tri-layer 

hcPED O T:PSS film.
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Section AnalysisBottom
surface

Coating

Figure 7.4 Thickness o f  the one-layer hcPED O T:PSS film  on glasses

w here left red triangle belong to PED O T:PSS coating and right red triangle belongs to 

non-coated bottom  surface. The thicknesses o f  double or trip le-coatings o f  the 

hcPED O T:PSS were estim ated to be -9 0  nm and -1 3 5  nm, respectively. The increased 

thickness o f  the hcPED O T:PSS film reduced the transm ittance o f  the film  as show n in 

Figure 7.3 (b-d). The 45 nm thick hcPED O T:PSS film shows a transm ittance o f  m ore 

than 90%  in the full spectral range. The transm ittance o f  double layer -9 0  nm thick 

hcPED O T:PSS is -8 7 %  at 550 nm and the m ore than 83%  in the spectral range from  

350 to 650 nm. The triple layer -1 3 5  nm thick hcPED O T :PSS show s low transm ittance 

o f -8 0 %  at 550 nm w hereas from 400 to 500 nm the transm ittance is m ore 85%.

The transm ittance spectrum  o f  the hcPED O T :PSS plus the PED O T:PSS thin film s on 

glasses are presented in Figure 7.5. The transm ittance spectrum  o f  the ITO film  is also 

shown in Figure 7.5 as the baseline for com parison. The double-layered 90 nm thick 

hcPED O T:PSS plus the 25 nm thick PED O T:PSS thin film illustrated the transm ittance 

greater than 80%  over the full spectral range.
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In detail, the double-layer organic film  revealed higher transm ittance (as show n in 

Figure 7.5 c) in the range o f  350-450 nm and lower transm ittance in the range o f  450- 

650 nm than that o f  the -1 0 0  nm thick ITO thin film  (as shown Figure 7.5 b). The 

overall transm ittance in the range o f  400 to 650 nm is above the average o f  84%  that is 

close to that o f  the ITO thin film . The absorption spectrum  o f  the active P3H T:PC B M  

layer was also plotted in Figure 7.5 (d), show ing its w ell-know n absorption band in the 

spectral range o f  40 0 -6 5 0  nm [29].
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Figure 7.5 (a) Transm ittance spectra o f  the PED O T:PSS film s on glasses, (b) 

Transm ittance spectra o f -1 0 0  nm thick ITO film  on glasses, (c) T ransm ittance 

spectra o f  double-layer o f  the 90 nm thick hcPED O T :PSS plus the 25 nm thick 

PED O T:PSS thin film s, (d) A bsorption spectra o f  P3HT:PCBM  film  on glasses
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7.4.3 Performance o f the inverted OSC devices by hcPEDOT:PSS top anode

Device perform ances o f  top illum inated inverted OSCs fabricated on the Cr-Al 

substrates w ith different thicknesses o f  the hcPED O T:PSS layer w ere studied as shown 

in Figure 7.6. The top hole collecting electrode o f  the hcPED O T:PSS had different 

thicknesses o f  -4 5 n m , -9 0  nm and -1 3 5  nm respectively. Table 7.1 sum m arized the 

perform ances o f  the fabricated devices on Cr-Al substrates. The OSC device w ith the 

-9 0  nm thick top anode presented the highest PCE am ongst three types o f  OSC devices. 

The FF o f  the OSC device with the -1 3 5  nm top anode is higher than that o f  the OSC 

device w ith the -9 0  nm top anode w hile the short circuit current o f  the -1 3 5  nm top 

anode device is lower than that o f -9 0  nm top anode device. This was attributed to the 

low transm ittance o f  the top anode for the -1 3 5  nm top anode device as show n in Figure

7.3 (d). Hence, the -9 0  nm thick hcPED O T:PSS top thin film  will be chosen as the hole 

collecting electrode for all OSC devices on other different metal substrates. The PCE 

results confirm  that the hcPED O T:PSS thin film can be an alternative for replacem ent 

o f  the transparent ITO thin film s as the top electrode in the inverted OSC devices.

Table 7.1 Sum m ary o f  photovoltaic param eters o f  the inverted OSC devices

hcPED O T:PSS V 0C Jsc FF PCE

thickness (nm) (V) (m A /cm 2) (% ) (% )

45 0.60 7.91 41.50 1.97

90 0.62 10.62 40.40 2.66

135 0.62 9.09 44.53 2.51
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Figure 7.6 J-V  characteristics o f  the top illum inated inverted OSC devices on Cr-Al 

metal substrates w ith hcPED O T:PSS top anode, (a) w ith -4 5  nm thick top anode, 

(b) w ith -9 0  nm top anode, (c) w ith -1 3 5  nm top anode.

7.4.4 Surface morphologies o f ETLs, active layers, HTLs and hcPEDOT:PSS

electrodes on metal substrates

7.4.4.1 M orphologies o f the ZnO layer

The SEM  im ages are shown in Figure 7.7 for the typical surface m orphologies o f  the 

sol-gel (S G I) derived ZnO electron transport layer on different metal substrates using 

spin coating m ethod. All the sam ples w ere prepared follow ing the sam e procedure as 

that in fabrication o f  the OSC device. The m orphologies were hom ogeneous and sm ooth 

on all the substrates except the Ti-S substrates. The m orphology o f  the ZnO  film  on the
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Ti-S substrates (Figure 7.7 c) reveals a coarser structure because o f  the effect o f  the 

surface m orphology by the Ti-S substrate as shown in Figure 7.2 (c).
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Figure 7.7 SEM  m orphological im ages o f  ZnO thin film on different metal 

substrates, (a) on polished stainless steel, (b) on chrom ium  coated alum inium , (c) on 

titanium  coated steel, (d) on polished alum inium .
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7.4.4.2 Morphologies of the active layer

A fter deposition o f  zinc oxide thin film s by the sol-gel m ethod on the metal substrates, 

the active P3HT-PCBM  layer was then spin-coated on top o f  the annealed ZnO layer. 

Significantly different surface topographies o f  the P3HT-PCBM  layer w ere revealed 

using AFM  as shown in Figure 7.8 with a lx l  pm 2 scale range. The AFM  topography o f  

the P3H T-PCBM  layer on the ITO coated glass was also presented in Figure 7.8 (a), 

show ing two contrast phases with an average roughness o f  0.76 nm and m axim um  at 

7.30 nm. The appearance o f  two colour contrasts in the AFM  image was due to the 

varied m aterial interaction w ith the AFM  tip. There were no regular nano-sized 

particulates for the P3H T-PCBM  layer on glasses. However, the surface o f  the P3HT- 

PCBM  thin film on the SS substrate illustrated a quite different m orphology from that 

o f  the active layer on glasses. Except tw o contrast phases, nano-sized elongate 

particulates w ith an orientation like organic dom ain structures were observed as shown 

in Figure 7.8 (b), presenting an average roughness o f  0.84 nm and m axim um  at 7.43 nm. 

The elongate particle has a w idth o f  ~  40 nm.

The AFM  surface topography o f  the P3HT:PCBM  thin film on the C r-A l substrate was 

also presented in Figure 7.8 (c). It did not reveal a regular m orphology form ed by the 

oriented nano-sized particulates com pared to the AFM  topography o f  the active layer on 

the SS substrate. It is m uch closer to the m orphology o f  the P3H T:PC B M  thin film  on 

glasses as shown in Figure 7.8 (a) except possessing larger sized nano clusters w ith an 

average ~  50 nm in diam eter and average roughness o f  1.03 nm with m axim um  at 10.37 

nm .Figure 7.8 (d) presented the AFM m orphology o f  the P3H T:PCBM  thin film  on the 

Ti-S substrate, illustrating the sim ilar organic dom ain structure as that o f  the active 

layer on the SS substrate. Nevertheless, nano-sized elongate particles w ere m uch 

sm aller w ith an average roughness o f  0.77 nm and m axim um  at 8.07 nm.
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20nm

Figure 7.8 lx l  pm 2 scale tapping m ode AFM  topographic im ages o f  the P3H T:PC B M  

blend deposited on the so l-gel ZnO coated (a) ITO glass substrate, (b) polished SS 

substrate, (c) Cr-Al substrate, (d) Ti-S substrate, (e) polished Al substrate.
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Furtherm ore, organic dom ain structures w ith the oriented nano-sized elongate 

particulates was m ore clearly obtained for the P3H T:PCBM  thin film  on the Al 

substrate as show n in Figure 7.8 (e). A verage roughness o f  the thin film  is 0.75 nm with 

m axim um  at 6.44 nm. These results dem onstrated that different metal substrates can 

significantly affect the m orphologies o f  the active P3H T:PC B M  layer that would 

influence the perform ance o f  the OSC devices on m etals. In fact, this effect does not 

play a key part on determ ining w hether the OSC structures can effectively provide the 

solar energy conversion that will be discussed in Section 7.4.4.

7.4.4.3 Morphologies of the PEDOT:PSS

The surface o f  the PED O T:PSS and hcPED O T:PSS film  on top o f  the active layer w ere 

also observed by the A FM . Their differences in the m orphology w ere presented in 

Figure 7.9. The thin PED O T:PSS film presented an uniform  fine nanosized 

interconnected structure with an average roughness o f  1.05 nm and m axim um  at 12.50

• 2 • •Figure 7.9 lx l  pm “ scale tapping m ode AFM  topographic im ages o f  (a) the

PED O T:PSS on top o f  the P3HT:PCBM  thin film , (b) the hcPED O T :PSS on 

top o f  the PED O T:PSS thin film.



nm as shown in Figure 7.9 (a) w hile the hcPED O T :PSS film  exhibited an coarser 

nanosized interconnected structure with an average roughness o f  1.18 nm and m axim um  

at 14.21 nm as show n in Figure 7.9 (b).

7.4.5 Performance o f the inverted OSC devices on metal substrates

Top illum inated inverted OSC structures on five different substrates (ITO /glass, SS, Cr- 

Al, Ti-S, and polished Al) were fabricated to explore their device perform ances. Five or 

six devices for each substrate were produced separately. Perform ance o f  all OSC 

devices by J-V  characterisation is listed in Table 7.2 to 7.6. The results for the best 

device in each group w ere illustrated by J-V  characterisation as shown in Figure 7.10 

w hile J-V  characteristic o f  the OSC device on the Al substrate was inserted on the top 

left.

The top illum inated device based on the ITO coated glass substrate exhibited m axim um

PCE o f  2 .02%  with short circuit current density (Jsc) at 7.83 m A /cm 2 and fill factor

(FF) at 43% . Highest PCE am ongst the investigated OSC devices on the polished SS

and the Cr-Al substrates was revealed, respectively reaching 3.11%  w ith Jsc at 10.31

m A /cm 2 and FF at 49%  for the SS and 3.10%  with Jsc at 10.74 m A /cm 2 and FF at 47%

for the Cr-Al; However, the OSC devices on the Ti-S substrate presented a very low  FF

at 27% , leading to low PCE o f  1.48% w ith Jsc at 8.95 m A /cm 2. N o PCE o f  the OSC

devices fabricated on the polished Al substrate was achieved, show ing a neglig ib le Jsc

at 2.55x 10'4 m A /cm 2 although an open circuit voltage o f  0.58 V w as obtained.

All param eters o f  the best OSC devices for each group were listed in Table 7.7. T here

were also som e small changes o f  open circuit voltage (Voc) for the O SC devices

fabricated on the different substrates in Table 7.7, which could be assigned to the effect

o f  w ork function o f  the substrates used for OSC devices. The PCE results exhibited  that
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the perform ance o f  the OSC devices on different m etals could m ainly be due to the 

passive layer (oxidation layer) form ed on the top surface o f  metals.

Table 7.2 Sum m ary o f  photovoltaic param eters o f  the inverted OSC devices on ITO- 
glass substrates

Glass/ITO substrate Voc Jsc FF PCE

(as ref.) (V olt) (m A /cm 2) (% ) (%)

N o .l 0.60 7.89 42 1.97

N o .2 0.60 7.83 43 2.02

N o .3 0.60 8.42 39 1.98

No.4 0.60 7.86 41 1.92

N o .5 0.60 7.25 38 1.63

Table 7.3 Sum m ary o f  photovoltaic param eters o f  the inverted OSC devices on SS 
substrates

Polished SS substrate Voc Jsc FF PCE

(Volt) (m A /cm 2) (%) (% )

N o .l 0.62 10.99 42 2.86

N o .2 0.62 10.69 45 2.98

N o .3 0.62 10.31 49 3.11

N o.4 0.62 9.92 47 2.90

N o .5 0.62 10.25 46 2.90

N o.6 0.62 10.93 45 3.06
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Table 7.4 Summary o f photovoltaic parameters o f the inverted OSC devices on Cr-Al
substrates

Cr-Al substrate Voc Jsc FF PCE

(Volt) (mA/cm ) (%) (%)

N o.l 0.62 10.62 40 2.66

No.2 0.62 10.96 44 3.00

No.3 0.62 10.75 47 3.10

No.4 0.62 10.44 • 46 2.99

No.5 0.62 10.92 45 3.03

No.6 0.62 11.01 43 2.94

Table 7.5 Summary o f  photovoltaic parameters o f the inverted OSC devices on Ti-S 
substrates

Ti-S substrate Voc Jsc FF PCE

(Volt) (mA/cm2) (%) (%)

N o.l 0.62 8.36 24 1.22

No.2 0.62 8.95 27 1.48

No.3 0.62 7.77 . 28 1.37

No.4 0.62 9.50 25 1.49

No.5 0.62 6.99 24 1.03
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Table 7.6 Summary o f  photovoltaic parameters o f  the inverted OSC devices on polished
Al substrates

Polished Al substrate Voc Jsc FF PCE

(Volt) (m A /cm 2) (% ) (%)

N o .l 0.58 9 .2 0 x 1 0 -4 - -

No.2 0.58 4 .0 4 x 1 0 -4 - -

No.3 0.58 4 .5 0 x 1 0 -4 - -

No.4 0.58 4 .1 2 x 1 0 -4 - -

No.5 0.58 2 .5 5 x 1 0 -4 - -

Table 7.7 Sum m ary o f  the photovoltaic param eters o f  the inverted OSC devices on the 

metal substrates

Substrates Voc Jsc FF PCE

(Volt) (m A /cm 2) (% ) (%)

Glass/ITO  (as ref.) 0.60 7.83 43 2.02

Polished SS 0.62 10.31 49 3.11

Cr-Al 0.62 10.74 47 3.10

Ti-S 0.62 8.95 27 1.48

Polished Al 0.58 2.55x 10'4 - -
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Figure 7.10 J -V  curves o f  the top illum inated inverted best OSC devices on different 

metal substrates under the condition o f  100 m W /cm 2 AM  1.5G spectra

It is w ell-know n that there is alw ays a thin chrom ium  oxide film at several nano-m eters 

thick on the very top surface o f  the SS w hich protects the SS from  oxidation. This 

explained why the OSC devices on the SS and Cr-Al substrates obtained the sam e value 

o f  PCE, m eaning that the thin CrxOy is favourable for the transport o f  generated 

electrons by the active P3HT:PCBM  layer to the metal electrode. In contrast, the thin 

oxide layer (A lxOy) on the surface o f  the Al substrate presented as an insulating layer 

with high contact resistance for the electron transport w hile the thin T iO x on the Ti-S 

substrate can provide the capability as a sem iconducting layer for conducting electrons. 

Some details will be further discussed in Section 7.4.6.
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7.4.6 Device properties by the electrical impedance spectroscopy

The perform ance param eters o f  the OSC devices on different m etals and their 

m orphologies o f  the active layers revealed that the variation in PCE was m ainly related 

to the interfacial resistance between the P3HT:PCBM  layer and the corresponding metal 

electrode. Thin oxide layer form ed on very top o f  m etals has an effect on PCE o f  the 

inverted OSC devices. It has been reported that the interface betw een the P3H T:PCBM  

active layer and the ETL (ZnO ) layer does not play an im portant influence on the 

electrical properties, w hich behaves as an ohm ic contact [30].

Hence, the m ain contribution to block the transport o f  electrons cam e from the 

interfacial resistance betw een the ZnO thin film  and the metal electrode due to a passive 

layer form ed on the very top surface o f  the corresponding metal substrate. In order to 

further disclose the interfacial resistance that affected the perform ance o f  the OSC 

devices, AC im pedance spectroscopy were m easured for the best OSC devices 

fabricated on different m etals respectively.

The N yquist plots o f  d ifferent OSC devices w ere shown in Figure 7.11(a) and (b), 

revealing the variation in the value o f  im pedance by the shape and sizes o f  sem icircles. 

The main feature in the N yquist plot is a com bination o f  two sem icircles that w ere m ore 

or less depressed for the OSC devices on the different m etal substrates, a large one at 

low frequencies (right part o f  the curves) and a very small one at high frequencies (left 

part and inserted on left top in Figure 7.11 for the m agnified curves). The change o f  

sem icircle shapes was clearly observed w ith the different metal substrates. The low 

frequency sem icircle in the right part becam e larger and the high frequency one in the 

left part changed their depressed shapes and turned into larger with the changing 

substrates o f  SS, Cr-Al, Ti-S and Al. The overall im pedance varied in the range o f  16 to 

250 kQ -cm 2.
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Since the shape o f  the im pedance curves presented two sem icircles in the N yquist plots, 

different equivalent electrical circuits including the basic RC series m odel, the G arcia- 

Belm onte [31] series model and the Mani parallel [32] m odel for tw o sem icircles curves 

were considered for the use to fit the im pedance curves by using ZSim p 3.10 software. 

The basic RC series m odel was shown in Figure 7.12 (a), w here each RC parallel 

elem ent is attributed to a sem icircle. If the capacitance C behaves as an ideal capacitor, 

the im pedance is presented as

Z c =  1/ icoC (7.1)

However, when using an ideal capacitor in the basic RC series m odel, it d idn't fit our 

im pedance curves very well. The reason is that the blocking interfacial layer in the OSC

devices was not perfectly hom ogeneous and it can be affected by defects (e.g.

porosities) generated from the fabricating processes. In this circum stance, a constant 

phase elem ent CPE is usually adopted to replace the ideal capacitor in the m odel circuit, 

leading to the depressed sem i-circle in the N yquist plots. A constant phase elem ent CPE 

is then w ritten as

ZCPE= 1/ C PE (ico) n (7.2)

W hen n equals to 1, CPE becom es C and the equation (7.2) will be the sam e as the 

equation (7.1).
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Figure 7.11 Electrical im pedance the N yquist plots o f  the inverted best OSC 

devices, (a) the Cr-Al and SS based devices, (b) the Al and Ti-S based devices. 

Solid lines indicate the fitting curves.

219



The fitting results dem onstrated that only this m odified basic RC series m odel as shown 

in Figure 7.12 (b) can give the perfect fitting for the devices on the SS, C r-A l, and Ti-S 

substrates except fitting the im pedance curve for the OSC devices on the Al substrates. 

The fitting results w ere shown as the solid line in Figure 7.11 (a) and (b) for the OSC 

devices on the SS, Cr-A l, and Ti-S substrates, respectively. As observed in Figure 7.11 

(b), the N yquist plot for the device on Al presented a depressed small circle and an 

unfinished large circle, m eaning tow ards potentially infinite im pedance. This feature 

can be related to system s w here carrier transport is limited by diffusion-recom bination. 

Hence, w hen W arburg im pedance (Zvv) was introduced into the equivalent electrical 

circuit as shown in Figure 7.12(c), the perfect fitting for the device on Al susbstrates 

was achieved as shown the solid line in Figure 7.12 (b).

In the equivalent circuits, Rs represents series resistance that arose due to connection 

leads, m etallic contact, etc. R | corresponds to resistance betw een the m etal and the 

P3H T:PCBM  and R2 is assigned to resistance betw een the P3H T:PCBM  and the 

hcPED O T:PSS layer. As m entioned above, the interface betw een the P3H T:PC B M  

active layer and the ETL (ZnO ) layer behaves as an ohm ic contact, hence the variation 

in Ri was m ainly related to the interfacial layer betw een the ETL and the m etal; i.e. the 

metal oxide layer. Table 7.8 list the resistance from the fitting results. In Table 7.8, R s 

varies in the range o f  13 to ~17 O for all the devices. Ri and R2 w ere obtained at 36 O -

9  9  9
cm ' and 17 k Q -c n r for the devices on the SS substrates while they w ere 54 O -cm  and 

25 k Q -c n r for Cr-Al substrates, respectively. These results clearly evidenced that there 

existed only small resistance between the metal and P3HT: PCBM  layer for the OSC 

devices on the SS and Cr-Al substrates, dem onstrating why high perform ance in PCE 

on these devices was achieved.
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Figure 7.12 (a) The basic RC circuit, (b) the R CPE based equivalent circuit used to 

fit the im pedance curves o f  the SS, Cr-A l, and Ti-S based devices, (c) the RCPE 

based equivalent circuit w ith the introduced W arburg im pedance used to fit the 

im pedance curves o f  the Al based device.

Table 7.8 R esistance o f  the devices from the EIS fitting results

Devices R s Ri r 2

(O ) (kf2-cm2) (kfT-cm2)

Polished SS 13.00 0.036 17.00

Cr-Al 15.23 0.054 25.00

Ti-S 16.70 147.90 11.00

Polished Al 14.03 3829.00 5.80
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R-2 changed in the sam e range o f  values from 17 to 25 kQ -cm 2, w hich can be attributed 

to slightly changing surface m orphologies and phase contrast o f  the P3H T:PCBM  blend 

as previously discussed in section 7.4.3. Ri obtained from the fitting results for the 

devices on the Ti-S and A1 substrates were respectively 147.9 kQ -cm  and 3829 kQ-cirT, 

revealing significantly high resistance betw een the metal and P3H T:PC B M  layer. This 

w as the reason why low FF and PCE for the devices on the Ti-S substrates were 

obtained and no PCE was realised besides an open circuit voltage for the devices on A1 

substrates. R.2 for the devices on the Ti-S and A1 substrates was separately, 11.0 kO -cm  

and 5.8 kf2-cm2. Again, this difference in R2 was affected by the m orphologies o f  the 

P3H T:PCM  blend. Overall, the fitting results from  the N yquist plots illustrated that the 

passive layer on m etals played an im portant part on the inverted OSC devices for 

achieving high PCE. M etals w ith the C rxO y layer are m ostly suitable substrates for the 

inverted OSC devices am ongst investigated m etals and high PCE o f  3.11%  was 

obtained.

7.5 Summary

(1) Surface m orphologies o f  metal substrates were investigated for the fabrication o f

com pletely solution-processed inverted OSC devices. The results show ed that the

variable roughness o f  the metal surfaces under the subm icron range did not play a main

role on the perform ance o f  the OSC devices. In the top illum inated inverted OSC

devices light reaches to the active layer through the top transparent organic electrode.

Therefore the transm ittance spectrum  o f  the various thicknesses o f  hcPED O T :PSS thin

film s on glasses were investigated. The optim ised double-layered 90 nm thick

hcPED O T:PSS plus the 25 nm thick PED OT:PSS thin film illustrated the transm ittance

greater than 80%  over the full spectral range. The PCS device using -9 0  nm thick
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hcPED O T :PSS top anode perform ed better than that o f  the devices using the -4 5  nm 

and -1 3 5  nm thick top anode, respectively. Hence, the -9 0  nm thick hcPED O T :PSS top 

thin film  was chosen as the hole collecting electrode for all OSC devices on other 

different metal substrates.

(2) The different surface m orphologies o f  the metal substrates and the active layers on 

top o f  SGI derived ETL did not present a large difference on the perform ance o f  the 

OSC devices. H ighest PCE o f  3.11%  was obtained on the SS substrate. S im ilar 

perform ance o f  the OSC devices on the Cr-Al substrate was also achieved. W e inferred 

that this result was due to low resistance caused by the C rxOy layer betw een the ETL 

layer and the SS or C r-A l substrates. C om pared with the SS and Cr-Al substrate, the 

perform ance o f  the OSC device on Ti-S and A1 substrates w as poor. Therefore, the 

passive layer (oxides) on the very top surface o f  Ti-S and A1 substrates was taken as the 

key factor that influenced PCE o f  the OSC devices by blocking the transport o f  

electrons.

(3) The OSC devices on different metal substrates were investigated by EIS technique 

to revealed the interfacial resistance between the P3HT:PCBM  layer and the 

corresponding metal electrodes. High resistance o f  the interface derived from  the EIS 

curves between the P3HT:PCBM  layer and the metal substrates led to very low FF and 

PCE for the devices on Ti-S and no PCE for the devices on the Al, respectively. The 

PCE results exhibited that the perform ance o f  the OSC devices on different m etals 

could m ainly be due to the passive layer (oxidation layer) form ed on the top surface o f  

metals.
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Chapter 8: Conclusion and future scope

8.1 Conclusions

A fter the developm ent o f  bulk heterojunction concept by Tang et al. in 1986, the PCE o f  

organic solar cells have increased several orders o f  m agnitude. C om pared to the 

conventional device structure, the inverted device structures is a prom ising alternative 

w ay for fabrication o f  organic based solar cells. This type o f  device structure has 

recently gained considerable attention due to its advantages o f  device stability and 

potentially low -cost processing route. In this context, the m ajor outcom es o f  the present 

thesis can be enlisted as follows:

(1) In the inverted device structure, the electron transport layer was investigated by 

various deposition m ethods including the ZnO nanoparticles-dispersion and sol-gel 

derived ZnO films. For the nanoparticles route, zinc oxide N Ps o f  ZNP5 w ere dispersed 

in a com bination o f  methanol and dichlorom ethane (10:0.7) using the ball mill m ethod. 

The deposited film was porous, lim iting its use as an electron transport layer. For a 

com parative study, ZnO com m ercial dispersion o f  ZN P10 w as also used to deposite the 

ZnO  film  on the substrates, w hich form ed a m oderately dense structure. The OSC 

device w ith the ZN P10 derived ETL perform ed better w ith a PCE o f  1.85% as 

com pared to that o f  the ZNP5 created ETLs w ith 0.37% . W ith regard to the sol-gel 

route, the ZnO  sol was m ade by dissolving zinc acetate dehydrate in a com bination o f  2- 

m ethoxyethanol and then ethanolam ine. The perform ance o f  OSC devices using the sol- 

gel based ZnO ETL o f  SGI was closely the sam e as that o f  the ZN P10 nanoparticcle- 

derived ZnO ETL; i.e. 1.85% and 1.80%, respectively.
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(2) The P3H T:PCBM  active layer deposited on top o f  the ZnO  layer w as studied for 

optim isation. It was found that the CB3 (35m g/m l) in chlorobenzene with a w eight ratio 

o f  1:1 presented good properties as the active layer o f  our photovolataic devices. The 

AFM  m orphological characteristic revealed a nano-scale phase separation between the 

donor and acceptor m aterials. O ptim isation o f  the P3H T:PCBM  active layer was also 

studied by doping high-boiling point solvents in the blend in order to reduce its drying 

rate in the fabrication process, w hich led to high crystallinity  o f  the active layer in 

m orphologies, contributing to the im provem ent o f  the device perform ance.

(3) Poor w ettability o f  the aqueous PED O T:PSS solution on the hydrophobic 

P3H T:PCBM  active layer was im proved by adding the surfactant triton X -100 into the 

solution. The contact angle o f  the PED O T:PSS droplets has reduced from 74.8 ± 4.0° to 

39.0 ± 3 .0 ° .

(4) The inverted OSC device on the ITO coated glass with big-sized Au nanoparticles 

form ed anode (w ithout plasm onic effects) revealed a PCE o f  2.30% . As the active layer 

o f  OSC devices typically is very thin, leading to poor light absorption. Therefore, for an 

efficient light-trapping purpose, we used a low vacuum  PA PV D m ethod to deposit the 

fine Au nanoparticles thin film onto the PED O T:PSS layer in inverted P3H T:PCBM  

OSC devices. The Au N Ps incorporated into the PED O T:PSS layer and reached to the 

active P3H T:PCBM  layer. Two types o f  the Au N Ps deposited on top o f  PED O T:PSS 

layer w ere com pared one with a diam eter o f  nearly 50 nm in size and another w ith a 

diam eter o f  -1 5  nm, respectively. The obtained PCE o f  the fabricated devices w ith -5 0  

nm Au nano particles was in average 2.07 %  with short circuit current density (Jsc) o f

2  i  • •6.60 m A/cm  . H owever, the short circuit current density  o f  the devices w ith -1 5  nm Au
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• • 2 2 nano particles has reached in average 12.38 m A/cm  with m axim um  at 13.40 m A /cm  .

The obtained PCE on average was 3.92 %  w ith m axim um  at 4.05% . An approxim ately

50 to 90%  im provem ent in short-circuit current density and in pow er convention

efficiency has been achieved com pared w ith those OSC devices w ithout the plasm onic

light absorption enhancem ent.

(5) N o enhanced light absorption was obtained when the PAPVD  Au N Ps film was 

directly applied on the active layer.

(6) W e also dem onstrated a further enhancem ent in the efficiency and fill factor o f  the 

inverted OSC devices by sandw iching a thin film  o f  Au nano particles between two 

PED O T:PSS layers. The Au N Ps film  was deposited by PAPVD on top o f  the first low 

conductive PED O T:PSS layer and follow ed a high conductive PED O T:PSS layer, 

which provided a significantly plasm onic broadband light absorption enhancem ent to 

the active layer. High efficient inverted organic solar cells were obtained w ith a PCE up 

to 5.01 %. Broadband light absorption enhancem ent was achieved due to Au N Ps that 

presented the circular oblong-shaped structures.

(7) M etal substrates with excellent m echanical flexibility  and therm al stability are also a 

potential alternative for producing top illum inated inverted OSC devices High 

conductivity and good dim ensional stability during the processing at elevated 

tem perature is their advantages for the use o f  metal substrates.

We investigated som e typical m etals and produced the top illum inated inverted OSC

devices on these substrates namely: polished stainless steel (SS), titanium  coated steel

(Ti-S), chrom ium  coated alum inium  (Cr-A l), and polished alum inium  (Al). The inverted
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OSC devices on different metal substrates were fabricated w here the hcPED O T:PSS 

was used as a sem i-transparent top electrode for hole collection. The inverted OSC 

devices fabricated on different m orphologies o f  SS and Cr-Al m etals did not present a 

large difference in term s o f  PCE. High PCE o f  3.11%  was obtained on the SS substrate 

w hile the PCE o f  the reference devices on the ITO coated glass was -2 .0 % . Sim ilar 

perform ance o f  the OSC devices on the Cr-Al substrate was also achieved w ith a PCE 

o f  3.10% . O ur studies showed that the results was due to low resistance caused by the 

chrom ium  oxide layer between the ETL layer and the SS or Cr-A l substrates and 

concluded that the variable roughness o f  the metal surfaces under the subm icron range 

did not play a main role on the perform ance o f  the OSC devices. Com pared with the SS 

and Cr-Al substrate, the passive layer (oxides) on the very top surface o f  Ti-S and A1 

substrates was taken as the key factor that influenced PCE o f  the OSC devices by 

blocking the transport o f  electrons. The PCE o f  the inverted OSC devices on Ti-S 

substrate was 1.48% while no PCE was observed on polished A1 substrates.

(8) EIS was used to characterise the interfaces between the P3H T:PCBM  active llayer 

and metal substrates. High resistance o f  the interface derived from the EIS curves 

between the P3HT:PCBM  layer and the metal substrates led to very low FF and PCE for 

the devices on Ti-S and no PCE for the devices on the Al, respectively.

In conclusion, this thesis presents findings o f  novel inverted structure w here application 

o f  plasm onic metal nano particles provides an optional route for achieving high 

perform ance OSC devices. For the OSC devices on m etal substrates, interfaces betw een 

the active layer and metal substrates play an im portant role due to the naturally form ed 

oxide layer on top o f  metal substrates.
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8.2 Future Scope

(1) Present work deal w ith nanoparticle based or sol gel based ZnO thin film s for 

electron transportation. Recently, it is observed that sol gel based zinc oxide nanow ire 

(ZnO -N W ) structures have better device efficiency. Therefore, it w ould be interesting to 

extend this w ork w ith the ZnO -N W  electron transport layer and to further im prove the 

charge collection efficiency and the overall efficiency o f  the discussed inverted 

structure devices. The m orphology o f  ZnO  N W s need to be long enough w ith small 

spacing between the w ires. The longer N W  can provide the larger interface for charge 

collection and continuous pathw ays for charge transport and the sm all spacing close to 

the diffusion length m ay enhance the exciton dissociation rate. A nother interesting 

subject for exploration could be the use o f  a low band gap and high m obility  organic 

m aterial for the active layer to enhance the range o f  the light absorption band.

(2) The use o f  plasm onic N Ps with various sizes and shapes and hence d ifferent LSPR 

bands can be placed into different layers (e.g. ETLs and HTLs) and/or the interfaces o f 

the OSC devices can provide sim ultaneous benefits for light absorption enhancem ent 

and has the potential to further enhance the pow er conversion efficiency

(3) A nother direction is to further develop the technologies for fabrication o f  large-area 

top illum inated inverted OSC devices on flexible metal substrates. For this type o f  

devices, the key issue is to look for m oisture and chem ical resistant m aterials for 

fabricating the low cost and long term  stable photovoltaic devices. Experim ents on these 

directions are currently underw ay and work will continue after this thesis.
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