Factors affecting the magnetic properties of alloys fine dispersions of cobalt.

JOHNSON, Richard E.

Available from Sheffield Hallam University Research Archive (SHURA) at:
http://shura.shu.ac.uk/19877/

This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it.

Published version

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html
Books must be returned promptly, or renewed, on
or before the last date stamped above.

FAILURE TO DO SO WILL INCUR FINES
FACTORS AFFECTING THE MAGNETIC PROPERTIES
OF ALLOTS CONTAINING FINE DISPERSIONS OF COBALT

A thesis submitted to the Council for
National Academic Awards for the Degree
of doctor of Philosophy

Richard Ernest Johnson
The properties of many permanent magnet materials are due to the presence of a finely divided ferromagnetic phase which, in some cases, contains a substantial proportion of cobalt. The most important examples are the alnico alloys, deriving permanent magnet properties from a fine dispersion of a ferromagnetic, b.c.c. phase rich in cobalt and iron.

This thesis is concerned with the magnetic properties of alloys in which the ferromagnetic dispersion is essentially pure cobalt. A large part of the work consists of an examination of an established group of permanent magnet materials, the binary cobalt aluminium alloys known as Malcolloy, in which cobalt is precipitated from super-saturated solid solution during heat treatment. The properties of an alloy in the cobalt titanium system, in which a cobalt precipitate can be induced by a similar process, are also considered and the possibility of producing sufficiently fine dispersions by the eutectic and eutectoid reactions occurring in several binary cobalt alloy systems is examined.

In the course of the investigations various magnetic parameters have been studied and it is perhaps useful, at this stage, to define these and to comment on their significance. Much more detailed discussions of the fundamental basis from which magnetic quantities and properties are derived, the units in which they are measured and the symbols by which they are conventionally represented have been presented by a number of authors. The reviews of McCaig, ("Permanent Magnets and Magnetism", ed. D. Hadfield, Iliffe Books Ltd., p.13, 1962) and Gould ("Cobalt Alloy Permanent Magnets", Cobalt Monograph Series, Centre d'Information du Cobalt, p.1, 1971) are particularly comprehensive. Despite its acceptance in the field of scientific education, the S.I. (or M.K.S.A.) system of units is not yet consistently used in the permanent magnet industry and the majority of current publications continue to express magnetic properties in C.G.S. units. The C.G.S. system has been used
^caeaatic aa\&ttisatla* \textit{snl} aenauaetiaatiua \textit{cirve} (ty\&bo)i basal \& \&. *7«ImO
throughout the thesis but the corresponding S.I. units and the factors by which the C.G.S. units must be multiplied in order to convert to S.I. are given in this summary.

The properties, definitions etc., (largely from the work of Gould), are tabulated below and are best understood by reference to the accompanying diagram.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Quantity</th>
<th>Units and Relationships C.G.S.</th>
<th>S.I.</th>
<th>C.G.S/S.I. ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Magnetic flux density</td>
<td>gauss, G</td>
<td>tesla, T</td>
<td>10^{-4}</td>
</tr>
<tr>
<td>H</td>
<td>Magnetic field strength</td>
<td>oersteds, Oe</td>
<td>ampère/mètre, A/m</td>
<td>10^{3}</td>
</tr>
<tr>
<td>J</td>
<td>Intensity of magnetisation</td>
<td>e.m.u. = G/4π</td>
<td>T</td>
<td>4π</td>
</tr>
<tr>
<td>J_{s}</td>
<td>Intrinsic flux density</td>
<td>G</td>
<td>T</td>
<td>10^{4}</td>
</tr>
<tr>
<td>J_{s}</td>
<td>Intrinsic flux density at saturation</td>
<td>G</td>
<td>T</td>
<td>10^{4}</td>
</tr>
<tr>
<td>σ</td>
<td>Specific saturation density</td>
<td>e.m.u.^{-1} = dyn/cm^2 Oe</td>
<td>Tm^3/kg</td>
<td>4π</td>
</tr>
<tr>
<td>B_r</td>
<td>Remanence = flux density at zero H after saturation</td>
<td>G</td>
<td>T</td>
<td>10^{-4}</td>
</tr>
<tr>
<td>H_c</td>
<td>Coercivity or normal coercivity = H value to reduce B to zero after previous saturation</td>
<td>Oe</td>
<td>A/m</td>
<td>10^{3}</td>
</tr>
<tr>
<td>J^{H}</td>
<td>Intrinsic coercivity = H value to reduce B to zero after previous saturation</td>
<td>Oe</td>
<td>A/m</td>
<td>4π</td>
</tr>
<tr>
<td>H_r</td>
<td>Remanence coercivity = H value after the application of which B_r recoils to zero</td>
<td>Oe</td>
<td>A/m</td>
<td>4π</td>
</tr>
<tr>
<td>(BH)_{max}</td>
<td>Maximum product in the demagnetising quadrant of the hysteresis loop</td>
<td>mega gauss</td>
<td>oersteds, HGO or 10^6 G Oe kJ/m^3 or kAT/m</td>
<td>4π</td>
</tr>
</tbody>
</table>
Saturation magnetisation (σ or B_i) is clearly one of the most important parameters in the study of any magnetic material. As a matter of convenience, the measurement of σ rather than B_i has been preferred in this work because σ is easily determined using small irregular samples or powders. σ, which is related to composition, can be used, providing certain information regarding the magnetic properties of the phases present is available, as the basis of magnetic phase analysis techniques, (Hoselitz, K., "Ferromagnetic Properties of Metals and Alloys", Oxford, Clarendon Press, 1952). σ may be quoted as σ_N, T, i.e., σ at temperature T^0K in field H. Alternatively, (as in this thesis) σ without subscripts is used together with a statement of temperature and magnetising field.

The most significant difference between soft and hard (or permanent) magnet materials is the magnitude of the coercivity, (H_c, J_c, or H_r).

Thus in a soft magnetic material J_c may be of the order 10^{-3} Oe whereas permanent magnets with J_c of the order 10^4 Oe are known. The most frequently quoted measure of coercivity is H_c. (H value to reduce B to zero). However, since $B = B_i + H$ (in C.G.S.), H_c (in oersteds) cannot exceed B_r (in gauss) and if B_r is low or J_c is high the value of H_c may bear no relationship to the field necessary to reverse the magnetisation of the material. In a sample in which the magnetisation of the total volume of magnetic material is reversed at a particular applied field, J_c and H_r are equal and represent the fundamental coercivity of the material. In practice, reversal of magnetisation almost invariably occurs over a range of applied fields so that in the presence of a field equal to J_c or after the application and removal of a field equal to H_r, the magnetisation of a sufficient volume of material has been reversed to make B_i equal in both directions giving a net flux density of zero. When the demagnetising field is removed, the negative contribution to B_i of the lower coercivity volume fraction is reduced and as a result H_r is always greater than J_c. Neither property
indicates the maximum coercivity present although H_x is clearly closer to the maximum and some information regarding the range of coercivity can be obtained from the ratio H_x / H_c. In practice, coercivity is important in governing the performance of a magnet in the presence of a demagnetising field, (the self demagnetising field and any externally applied field), and in this respect H_c is a more useful parameter and is more frequently quoted than H_x.

Although the factors influencing coercivity are quite well understood in principle, the coercivity of real systems, where several factors act in combination, is not normally predictable with any accuracy and the mechanisms through which known permanent magnet materials derive high coercivity are not always obvious. Remanence (B_r) and maximum energy product (BH_{max}) are of equal importance to coercivity but the factors controlling these properties are clearly defined and there is normally little difficulty in understanding the level of B_r and BH_{max} in terms of saturation magnetisation, coercivity and certain metallurgical factors such as particle orientation. Thus fundamental research into permanent magnets is normally concentrated primarily on coercivity with work at a more practical level endeavouring to combine the conditions necessary to achieve high coercivity with those required to give useful values of B_r and BH_{max}.
Preface I

CHAPTER 1

1.1 Sources of Coercivity in Magnetic Materials I
 1.1.1. Ferromagnetic domains and domain wall movements I
 1.1.2. Coercivity due to restricted domain boundary movement I
 1.1.3. The coercivity of single domain particles 2
 1.1.4. Factors affecting the properties of single domain particles 3
 1.1.5. The properties of significant permanent magnets 7

1.2 Magnetic Properties of Finely Divided Cobalt 10
 1.2.1. Potential properties 10
 1.2.2* Properties observed in practice 13

1.3 The Allotropic Transition in Cobalt 11

1.4 Present Work 1B

CHAPTER 2

2.1 (General 20

2.2 Magnetic Testing 20
 2.2.1. Saturation magnetisation 20
 2.2.2. Intrinsic coercivity (Hc) and reference coercivity 21
 2.2.3. Properties determined using a recording hystereelgraph 21
 2.2.4. Reproducibility of magnetic tests 21

2.3 X-ray Diffraction Examination 2i

2.4 Other Techniques 22
2.4.1. K*taligraphic examination
2.4.2. Determination of particle i^*c

CM ffilt, 3 A STUDY Of TutK 9BMJY

3.1 Preparation and Heat Treatment of the Alloys 24
3.2 Structure and Sttagaeti Properties at hoo Temperature 25
 3.2.1. The as cast condition 25
 3.2.2. The solution treated condition 25
 3.2.3. The effect of ageing 24
3.3 The Influence of the Crystal Anisotropy of s on the Coercivity of olcolloy 33
 3.3.1. Introduction 33
 3.3.2. The variation of the crystal anisotropy of c trill temperature 33
 3.3.3. The variation of the M of aicoiloy with temperature 34
 3.3.4. Coepariaon of the aapari^ntal temperature dopedtaca of f_c with theory 35
3.4 The Formation of the riotastable e precipitate in halcolloy 41
 3.4.1. Introduction 41
 3.4.2. Growth of e from. a.c.p. nuclei! produced on quenching 41
 3.4.3. The formation of e due to the eryatellograpiiic relationship between precipitate and matrix 42
3.5 The lietaatable Co-Al Fdaae Diagram 34
 3.5.1. Introduction 5b
 3.5.2. The composition of the c precipitate 3b
 3.5.3. The composition of S in netastable equilibrium with c 57
 3.5.4. the metatable phase diagram 59
3.6 The Influence of the Magnetisation of the Matrix Phase £ on the- Properties of Halcollay 40
 3.6.1. Introduction 60
 3.6.2. Experimental relationship between Ωx weight fraction r and $J C$ 62
3.6.3. The theoretical influence of magnetic £ 64
3.6.4. The influence of local fields 69
3.6.5. The relationship between J/k and on $A_g(\gamma)$ 72
3.6.6. The coercivity of $\tau\rightarrow\tau$ precipitate during ageing 73

3.7 The Relationship Between the Kindtlee of the Precipitation Process and Coercivity 75
3.7.1. The relevance of kinetic considerations 73
3.7.2. The activation energy of the precipitation process 77
3.7.3. Relationship between activation energy and coercivity 79

chaptsk 4 $^m c m < *$ to the castimc m m i o i jo
HUT Y1&KXT OF MASQUULOr

4.1 Introduction 81
4.1.1. Comparison of the properties of Hale*Hoy with confirm permanent magnet materials 81
4.1.2. Possibility of increasing coercivity 61
4.1.3. Possibility of increasing remanece 83

4.2 Modifications Aimu to Increase Coercivity 83
4.2.1. Effect of solution treatment time and temperature 83
4.2.2. The addition of third c l t a n t t 86

4.3 Modifications to Increase nmane&ce 88
4.3.1. The addition of iron 88
4.3.2. Attempts to induce particle alipment 90
4.3.3. Increased B due to the presence of M gaelic 3 93

5.1 Introduction 95
5.2 Preparation and Beet Treatment of the Alloys 96
5.2.1. Preparation of the alloys 96
5.2.2. Beet treatment of the alloys 96
5.3 Results and Discussion 97
CHAPTER 6 EUTECTIC ALLOYS

6*1 Introduction 100

6*2 Structure and Mspiltit Properties of the Eutectic Alloy# 101
 6.2*1. Alloy composition and preparation 101
 6.2*2. Structure and properties of the as-cast eutectic alloys 102
 6.2*3. Structure of the eutectic alloy# after heat titthdit 103

6.3 Structure and Magnetic Properties of the Cobalt Silicon Lutectic/Lutectoid Alloy 104
 6.3.1. The ee*ait~ailico« phase diagram 104
 6.3.2. Structure and properties of aa-east cobalt allicon alloys 105
 6.3.3. Structure and properties of heat treated cobalt silicon alloys 105
 6.3.4. Iwmiify 109

6.4 The Properties of Cobalt 2aedd Eutectic Alloys After C M aissstios 111

6.5 Temperature Dependence of of Eutectic Alloys 113

CHAPTER 7 SCMKART MS COHCLUSKnS 115

7.1 The HalCOilo Alloy Alloys 113

7.2 Cobalt, 17,51 Ti Alloy 119

7.3 Eutectic and lutectoid Alloys 119

7.4 General Conclusions 121

Aefcaovledgesaeo.ti 123

References 124

Appendix I The Allotropee and Aliotropic Transformation of Cobalt AI-1

Appendix II Summary of a recent Iv-ray Diffraction itudy of islcolloy Alt-1
1.1. Sources of Coercivity in Ferromagnetic Materials

1.1.1. Ferromagnetic domains and domain boundaries.
In ferromagnetic materials the very large internal field, first postulated by Weiss\(^1\), results in domains, spontaneously magnetised to saturation, with magnetisation vectors distributed in a random manner but capable of being aligned on application of an external magnetising field. Between adjacent domains are domain boundaries, otherwise known as domain or Bloch walls, across which the direction of magnetisation changes from that of one domain to that of the other.

Ferromagnetic crystals are strongly anisotropic with respect to ease of magnetisation; iron for example is most easily magnetised along [100]\(^2\) whilst in nickel\(^3\) and f.c.c. cobalt\(^4\) [111] directions are preferred. Lattice strain can also give rise to some degree of anisotropy. Domains in ferromagnetic materials are spontaneously magnetised in preferred directions but this is not possible within domain boundaries where rotation of the direction of magnetisation takes place. Domain boundaries are therefore regions of high energy. Boundary energy is further increased because exchange forces, tending to make neighbouring spins parallel have to be overcome as rotation is achieved.

1.1.2. Coercivity due to restricted domain boundary movement.
Theories attempting to account for coercivity in terms of restricted domain boundary movement have been reviewed by various authors including Hoselitz\(^9\) and Stoner\(^10\).

The application of an external field normally leads to domain boundary movement such that the volume of domains favourably oriented with respect to the applied field increases at the expense of those less favourably oriented. If this movement is hindered in any way the external field necessary to bring about a change in the overall magnetisation of the material is increased. Various mechanisms have been proposed to
account for the coercivity of permanent magnet materials on this basis.

If a boundary intersects a number of non-magnetic inclusions its area and consequently its energy is reduced. It is feasible that the increase in energy involved in moving such a boundary so that it intersected fewer inclusions would result in high coercivity. Similarly in a crystal containing inhomogeneous strains the contribution of strain anisotropy to boundary energy would vary depending on boundary position. An increased external field would be necessary to move a boundary from a low energy site.

Some early attempts were made using both the above mechanisms to account for the coercivity of ferromagnetic materials including the Alnico permanent magnet alloys in which Bradley and Taylor using X-ray techniques, detected the presence of both strains and precipitate particles. Kersten dealing with non-magnetic inclusions and Becker et al considering the strain mechanism, showed that coercivities of the right levels could be predicted but in both cases a plane domain boundary was assumed together with a regular distribution of either precipitate particles or strains. These assumptions were criticized by Néel who pointed out that an overestimate of coercivity was likely. Thus in Kersten's model a plane boundary intersecting a large number of inclusions was displaced to a position where it intersected none. If the boundary could bend or if the inclusions were less regularly arranged, the variation in the number of inclusions intersected as the boundary moved would be reduced with a consequent reduction in coercivity. The calculations of Becker et al dealing with strain are subject to similar criticism. As an alternative, Néel suggested that if a domain boundary intersected a region of magnetic poles associated with non-magnetic or weakly magnetic inclusions or strains the energy of the fields connected with the poles would be reduced. An increased applied field would thus be required to move the boundary away from this region.

1.1.3. The coercivity of single domain particles

The magnetic energy of a ferromagnetic particle uniformly magnetised
The production or output of a given quantity of a good is referred to as the marginal product of the good. This can be calculated by dividing the change in output by the change in input. However, it is important to note that the marginal product of the good is not directly proportional to the price of the good. The price of the good affects the marginal revenue, which in turn affects the decision of the producer to produce more or less of the good.

In economics, the concept of marginal cost is closely related to marginal product. The marginal cost is the cost of producing one additional unit of output. It is typically calculated by dividing the change in total cost by the change in output. However, it is important to note that the marginal cost is not directly proportional to the price of the good. The price of the good affects the marginal revenue, which in turn affects the decision of the producer to produce more or less of the good.

In summary, the marginal product of the good and the marginal cost of the good are important concepts in economics. They help producers make decisions about how much to produce in order to maximize profits.
as a single domain is \(-\frac{1}{2}H_d J_s\) per unit volume of the particle, where
\(H_d\) is the self demagnetising field and \(J_s\) is saturation magnetisation.
The subdivision of the particle into a number of domains reduces \(H_d\)
which, if the domains form a complete magnetic circuit within the
particle, may, ideally, approach zero. The formation of domain boundaries
thus results in a lowering of particle energy. Domain boundary energy,
as discussed above, is however introduced.

Particle energy is proportional to particle volume and, therefore,
decreases as the cube of the particle radius, whereas domain boundary
energy, which is proportional to boundary area and, therefore, roughly
speaking, to particle cross section area, varies with \(r^2\). Thus as the
size of a particle is reduced a point is reached at which the reduction
in particle energy due to the appearance of a boundary is less than the
energy of the boundary. Consequently the total energy is less if the
particle remains as a single domain. Went et al\(^{11}\), using formulae for
particle and boundary energy produced by Kittel\(^{12}\), derived the following
expression for the particle diameter at which particle and boundary energy
are equal in isolated, single-crystal, spheres, i.e. the critical diameter
for single domain behaviour (\(d_c\)).

\[
d_c = \frac{9}{K} \left(\frac{k T_c}{J_s} \right) \left(\frac{k T_c}{a J_s^2}\right)
\]

\(K\) = crystal anisotropy constant
\(J_s\) = saturation magnetisation
\(J_o\) = saturation magnetisation at 0\(^0\)K
\(k\) = Boltzmann's constant
\(T_c\) = Curie temperature
\(a\) = lattice constant

In the absence of domain boundaries, changes in the magnetisation
of a single domain particle can only occur by rotation of the magnetisation
direction. This must take place in opposition to the anisotropy forces
and the coercivity of the particle is therefore dependent on the nature
and magnitude of these forces.
Anisotropy can arise from crystal structure, strain or particle shape, the preferred direction of magnetisation in the latter case being parallel to the axis of elongation. Stoner and Wohlfarth13 derived expressions for the coercivities of single domain particles exhibiting crystal, shape or anisotropy as follows.

For a spherical particle exhibiting uniaxial crystal anisotropy -

\[
J_c^H = \frac{2K}{J_s}
\]

where \(K\) is the crystal anisotropy constant (see section 3.3) and \(J_s\) is saturation magnetisation.

For a prolate ellipsoid with only shape anisotropy -

\[
J_c^H = (N_b - N_a) J_s
\]

where \((N_b - N_a)\) is the difference in the two principal demagnetising factors for a prolate ellipsoid.

For a spherical particle subjected to uniaxial stress

\[
J_c^H = \frac{3 \lambda T}{J_s}
\]

where \(\lambda\) is the saturation magnetostriction i.e. the change in length per unit length on magnetisation to saturation and \(T\) is the longitudinal strain.

It is clear that the coercivity of an assembly of such particles can only approach the optimum value indicated by these formulae if all the particles are aligned with their easy directions of magnetisation parallel. Stoner and Wohlfarth proceed to show that in a random assembly of particles coercivity is reduced by a little more than half, so that the above expressions become -

\[
H_c = \frac{0.958K}{J_s}, \quad H_c = 0.479 (N_b - N_a) J_s, \quad H_c = \frac{1.437 \lambda T}{J_s}
\]

The hysteresis curves calculated by Stoner and Wohlfarth also indicate that remanence, which in a fully aligned assembly is equal to saturation magnetisation, is reduced by half if the orientation is random.
Fig. 1 - a Spin rotations during winding, tension 15
b Vector rotations during winding, tension 15
c Spin rotations during winding, tension 15
d Spin rotations during winding, tension 15
1.1.4. Factors affecting the properties of single domain particles

The single domain hypothesis accounts for the coercivity of many of the more important permanent magnet materials, (e.g. Alnico, barium ferrite). In general, however, properties measured in practice are considerably less than those predicted by theory and a number of factors must be considered to account for these discrepancies.

(a) Mechanisms for incoherent rotation. The expressions derived by Stoner and Wohlfarth deal with particles or assemblies or particles which are anisotropic single domains in which coherent rotation of the magnetisation vector takes place uniformly in opposition to the anisotropy forces. There are, however, alternatives to uniform rotation which in certain circumstances may require less energy and thus lead to lower coercivity. Bean and Jacobs showed that elongated iron particles, with coercivity less than half that predicted on the basis of uniform rotation, were, in fact, chains of spheres in which rotation occurred by a fanning mechanism such that the magnetisation of adjacent spheres rotated in different directions and to differing extents (Figure 1.b). In regular particles Frei, Shtrickman and Treves proposed two processes by which rotation could occur at lower fields than those necessary to cause coherent rotation. These were buckling, (a similar mechanism to fanning) and curling. The spin rotations occurring in both are shown in figures 1.c. and 1.d. The fields necessary to bring about the onset of buckling and curling are dependent on various factors including particle size. Calculations show that, in a sufficiently small particle, uniform rotation and buckling are nucleated by similar fields and are energetically preferred to curling. As particle size increases, however, the energy to bring about buckling and curling decreases until the first buckling and then curling are favoured. Thus except in the case of extremely small particles coercivity is likely to be considerably lower than that predicted by Stoner and Wohlfarth. Furthermore, any irregularity in particle shape is likely to facilitate the onset of non-uniform rotational processes such as fanning and buckling and lead to further reduction in coercivity.
Mixed anisotropies. The formulae of Stoner and Wohlfarth deal individually with the three types of anisotropy. In practice, one type may predominate but some influence from the others is likely and if this acts in a different direction, rotation will be easier and coercivity reduced. The properties of particles with mixed anisotropies have been considered by Wohlfarth and Tonga.

Various authors, including Rathenau and Brown, have shown that the reduced anisotropy associated with crystalline imperfections would lower the coercivity of ferromagnetic particles. In general this may be due either to the nucleation of domain boundaries in what otherwise would be a single domain, or to the encouragement of the incoherent rotational processes discussed above. In either case coercivity would be reduced.

Mixed coercivities. When an assembly of ferromagnetic particles is produced, either by powder metallurgical techniques or as a component of a multi-phase alloy, some variation in particle size and shape and in the nature and concentration of defects is inevitable. Variations in the coercivities of the particles are therefore likely. The effect on the coercivity of the assembly is clearly dependent on the range of coercivities and on the coercivity distribution. Wohlfarth reviews a number of attempts to understand the properties of assemblies with varying coercivities. The main conclusion to be reached is that the mixture coercivity is lower than a simple mean and that it falls rapidly as the amount of lower coercivity material increases. This matter has been considered more recently by McCurrie in connection with cobalt rare-earth alloys and is discussed in more detail elsewhere in the present work. It is sufficient at this stage to point out that the coercivity of particle assemblies and therefore of real permanent magnets is always likely to be considerably lower than that predicted by theory for a single particle.
Packing density. Another important consideration in connection with the properties of shape anisotropic particle assemblies is the packing density. As such particles are brought closer together interaction leads to a reduction in anisotropy and therefore in coercivity. Méel22 suggested the relationship \[H_{c(p)} = H_{c(o)} (1-p) \]
where \(p \) is the packing factor (\(\frac{\text{total volume of particles present}}{\text{volume occupied by the dispersion}} \)).

This was in reasonable agreement with some of the effects observed in practice. Wohlfarth20 modified this formula as follows:
\[H_{c(p)} = H_{c(o)} - A \rho \]
where \(A \) depends on particle distribution and may be of either sign. Thus certain distributions may be envisaged in which particle interaction would increase coercivity. A simple example is a chain of spheres tending to act as an elongated particle. In general, however, a reduction in coercivity of the order indicated by Méel's formula is more likely. In addition to high coercivity a permanent magnet ideally requires the highest possible saturation and remanent magnetisation and thus a high degree of packing.

In practice a compromise between perfect packing, to give maximum magnetisation, and infinite dilution, to give maximum coercivity, is necessary so that reasonable values of each property and, therefore, of maximum energy product \((BH)_{max}\), are obtained. The coercivity of particles with high uniaxial crystal anisotropy are unaffected by packing because the anisotropy is inherent in their structure. Packing density may, therefore, approach 100% without loss of coercivity providing the single domain character of the particles is preserved.

\subsection*{1.1.5. The properties of some significant permanent magnet materials.}

Amongst the most important and best known permanent magnet materials are the Alnico alloys. Some indication of the range of compositions and properties is given in Table 1. In these alloys, suitable heat treatment leads to spinodal decomposition into two b.c.c. phases; one, rich in iron and cobalt, is ferromagnetic, the other, rich in nickel and aluminium, is not. Many authors notably de Vos23 have published photomicrographs of this
<table>
<thead>
<tr>
<th>Mist</th>
<th>Commodity</th>
<th>Al</th>
<th>Mn</th>
<th>Co</th>
<th>Cr</th>
<th>Mo</th>
<th>Ti</th>
<th>Si</th>
<th>Fe</th>
<th>(%)</th>
<th>(\text{fc})</th>
<th>(\text{d}^*)</th>
<th>(n_c)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alai*</td>
<td>12.5</td>
<td>25.5</td>
<td>4.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>0000</td>
<td>1.25</td>
<td>4500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alaco*</td>
<td>9*2</td>
<td>16.4</td>
<td>12.3</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.2</td>
<td>12600</td>
<td>5.4</td>
<td>650</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcona*</td>
<td>1X1</td>
<td>1.0</td>
<td>13.5</td>
<td>24.5</td>
<td>3.0</td>
<td>0.6</td>
<td>0.2</td>
<td>0.2</td>
<td>1</td>
<td>16000</td>
<td>6.0</td>
<td>1600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liye**</td>
<td>7.0</td>
<td>14.5</td>
<td>35.5</td>
<td>3.0</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10400</td>
<td>6.0</td>
<td>1600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tycomax**</td>
<td>7.0</td>
<td>14.5</td>
<td>35.5</td>
<td>3.0</td>
<td>5.2</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* isotropic properties, all ethmr* aiaotropic

** cast with columnar crystal structure

*** aiaigie crystal
structure showing elongated particles of about the right size for single domain behaviour (shortest axis \(\approx 200 \) \(\text{\AA} \)). There is no doubt that these particles act as shape anisotropic single domains and are responsible for the permanent magnet properties of the alloys. Elongation of the ferromagnetic particles occurs parallel to \(<100>\) directions in the matrix and if a magnetic field is applied during heat treatment, those \(<100>\) directions most nearly parallel to the field direction are preferred. A considerable degree of anisotropy is, therefore, induced with superior properties in the field direction. The effect is even more marked if the alloy is prepared with a columnar crystal structure such that the \(<100>\) directions in all the crystals are parallel and if during heat treatment a magnetic field is applied parallel to the columnar axis.

Using a carefully controlled process, Luborsky et al.\(^{24}\) prepared elongated single domain (E.S.D.) particles of iron and iron cobalt alloy. The particles, produced by electrodeposition into a liquid mercury cathode, had diameters between 100 and 200 \(\text{\AA} \) and length much greater than diameter although electron micrographs showed chains of spheres rather than regular cylinders. Aligned compacts of these powders, bonded with plastic or lead or tin alloys, are produced commercially in the U.S.A. and are known as Lodex. The best reported properties are:

\[
B_r = 9,050 \, \text{G}, \quad (BH)_{\text{max}} = 5,040 \, \text{K.G.O.,} \quad H_C = 1,025 \, \text{Oe.}
\]

Although having only limited application, these materials are of interest as examples of permanent magnets based on shape anisotropic single domain particles and were developed as a direct result of the theoretical work of Stoner and Wohlfarth\(^{13}\) and others, referred to earlier.

Barium ferrite (BaFe\(_{12}\)O\(_{19}\)) is the most important of the ceramic or oxide permanent magnet materials. This group characteristically has low value of saturation and remanent magnetisation coupled with relatively high coercivity. Typical properties of a barium ferrite magnet are as follows:

\[
B_r = 3,500 \, \text{G}, \quad (BH)_{\text{max}} = 3.0 \, \text{K.G.O.,} \quad H_C = 2,500 \, \text{Oe.}
\]
The ferrites have hexagonal crystal structures with strong uniaxial crystal anisotropy such that the c axis ([001]) is the preferred direction of magnetisation. Went et al11 calculate d_0 (single domain diameter) as 1.2 μm. Magnets are prepared by compacting and sintering particles of about this size to about 90\% of theoretical density. The properties are attributed to the single domain behaviour of these highly crystal anisotropic particles. Particle alignment so that the easy directions of magnetisation are parallel is normally achieved by the application of a magnetic field during compaction.

Permanent magnets based on the compound $R\text{Co}_5$, where R is a rare earth metal, notably samarium, are at present the subject of a great deal of research throughout the world. The best properties are obtained on aligned sintered compacts of powdered material; $(BH)_{\text{max}}$ values of around 20 MGO, B_r in excess of 9000 G and B_c around 9000 Oe, have been reported by a number of workers including Buschow et al25, Tsui and Strnat26, Benz and Martin27 and the present author in collaboration with Fellows28. The intrinsic coercivity of powdered and compacted material is around 30 - 40 kOe. The precise mechanism by which these alloys derive their properties is not clear at present. The compounds are hexagonal with extremely high crystal anisotropy. The anisotropy field (i.e. that necessary to cause uniform rotation) is in excess of 300 kOe which is an order of magnitude greater than the observed intrinsic coercivity. Furthermore, the best properties are achieved when particle size is much greater than any reasonable estimate of d_0. It seems likely therefore, that in this case we are not dealing with single domain particles. Zijlstra29, on the basis of hysteresis measurements carried out on a single particle of $Sm\text{Co}_5$ only a few microns in diameter, suggested that domain boundaries are present and that movement is restricted, particularly close to the particle surface. This view is supported by Schweizer et al30 working with material slightly removed from the stoichiometric composition.
K Co₅, who found that phase changes occurring at the particle surface during sintering could result in lattice strain and the pinning of domain boundaries. Thus in these materials it appears that a mechanism based on restricted boundary movement is responsible for an extremely high level of coercivity.

Another alloy in which a very high coercivity is attributed to restricted domain boundary movement is the equiatomic cobalt platinum alloy. Its properties are inferior to those of 8Co₅ but have the advantage of being isotropic. By suitable heat treatment it is possible to produce in this alloy a partially ordered structure consisting of a mixture of disordered face centred cubic and ordered face centred tetragonal lattices. The two are coherent but the degree of disregistry involved leads to strain which is thought to be responsible for the development of a high coercivity.

1.2. Magnetic Properties of Finely Divided Cobalt.

1.2.1. Potential properties.

In an ideal permanent magnet the value of J_c^H (intrinsic coercivity) is equal to or greater than $4\pi J_s$ (saturation magnetisation), B_r (remanence) is equal to $4\pi J_s$ and the intrinsic demagnetisation curve is square. i.e. on application of a demagnetising field there is no reduction in intrinsic magnetisation until the applied field exceeds the value of B_r. In such a magnet B_r is equal to H_c (coercivity) and $(Bl)_{\text{max}}$ is given by $B_r F/4$. Only in the cobalt rare-earth alloys is this ideal achieved in practice and in most materials, particularly those based on shape anisotropic particles, properties are much less than the ideal. It is useful, however, to begin this account of the properties of finely divided cobalt by assessing the maximum properties which can be anticipated.

The $4\pi J_s$ value of cobalt is 17,500 G; maximum possible $(Bl)_{\text{max}}$ is therefore about 77.0 k.G.O. Both a, f.c.c. cobalt and c, h.c.p. cobalt
Fig. 2 - Variation of the anisotropy constants K_1 and K_2 for cobalt.
can exist at room temperature, and there is little difference in $4\pi J_0$ but a large difference in crystal anisotropy. The mechanisms leading to a high coercivity in each are therefore quite different and they must be considered separately in making a more realistic estimate of potential magnetic properties.

Consider first a (f.c.c.) cobalt. The magnetocrystalline anisotropy is low with <111> preferred. A high coercivity is most likely to be achieved therefore if single domain particles with shape anisotropy are produced. Single domain size is similar to that of iron, i.e. around 200 \AA. If an assembly of perfect ellipsoids with an axial ratio greater than 10 are assumed to undergo uniform rotation the coercivity, according to the formula of Stoner and Wohlfarth,

$$H_C = J_0 \chi \left(O(h-k) \right)$$

is around 8000 Oe, if alignment is perfect. However, it has already been shown that the coercivity of shape anisotropic particles is reduced by about half at a packing density of 50%. Maximum $4\pi J_0$ and J_0 of an aligned compact with 50% packing are therefore 8750 G and 4600 Oe respectively. Disregarding any further reduction in J_0 due to non-uniform rotation ($H_{(0)}$) is given by ($8750 - 4600$) = 4150 Oe. Such a material would be an extremely useful permanent magnet but the value of $(H_{(0)}$) for b.c.c. iron worked out on a similar basis is 3350 Oe. There is thus no obvious advantage in the use of f.c.c. cobalt as compared to iron, particularly since the former is more expensive.

The situation is quite different in the case of c(b.c.c. cobalt), the permanent magnet properties of which have been discussed by McClear. c has high crystal anisotropy and the energy of magnetisation is given by

$$E = K_1 \sin^2 \theta + K_2 \sin^4 \theta$$

where θ is the angle between the magnetisation vector and the easy direction of magnetisation [320]. Values of the anisotropy constants K_1 and K_2 have been determined at various temperatures by Bonda and Nasumoto and are shown in Figure 2. Stoner and Wohlfarth, using K_1
calculate a value of about 6,000 Oe for the coercivity of single domain particles of Co. Because coercivity is based on crystal anisotropy, packing density of the particles can approach 100%. Assuming perfect packing and alignment therefore $B_t = 17,500$ G, $H_c = 6,000$ Oe and $(BB)_{max} = 69.0$ MGO. Using similar reasoning to that of McCaig, it is possible to assess the properties if packing and alignment are not perfect. Suppose the packing density was only 50%, as might be the case in an unsintered powder compact or if cobalt was precipitated from a solid solution. The values of $4\pi J$ and B_t would be reduced to 8,750 G, and since H_c is greater than $\frac{1}{2} B_t$, $(BB)_{max} = B_t^2/4 = 19.2$ MGO. If, at the same time, alignment was random B_t would be reduced to 4,375 G and J^H_c (intrinsic coercivity) would become 2,500 Oe. H_c, which in an imperfectly aligned assembly is less than J^H_c, and $(BB)_{max}$ can be estimated from a curve given by Stoner and Wohlfarth as about 1,600 Oe and 2.0 MGO, respectively. Gerling derived a rather more accurate relationship for the coercivity of randomly oriented crystal anisotropic particles. Using this, $J^H_c = 3,330$ Oe, $E_c = 2,600$ Oe and $(BB)_{max} = 2.25$ MGO. Finally, if J_c was further reduced, due to the various factors discussed in section 1.14, to say 1,500 Oe, B_t would remain at 4,375 G, H_c would be about 1,250 Oe and $(BB)_{max}$ about 1.4 MGO.

From these results it can be seen that h.c.p. cobalt is, potentially, a useful permanent magnet material providing that a high degree of alignment and packing can be achieved. Because they have high crystal anisotropy, particles of cobalt need not be elongated, as in the case with cubic iron or cobalt, and single domain size is, according to West et al. about 0.25 μm, i.e., an order of magnitude greater than that of the cubic materials. Particles with high coercivity should therefore be more easily produced.
Properties observed in practice.

The magnetic properties of finely divided cobalt, both a and c, as powders and as components of two phase alloys, have been reported by various workers.

Keidlejohn examined particles of iron and cobalt, produced by electro-deposition into mercury. Coercivity was dependent on particle size with, for both metals, a peak of 1,000 Oe (measured at liquid nitrogen temperature) at about 200 °. The stable crystal structure of cobalt below about 400°C is b.c.c. (c) and d, according to theory in about 2,500 °. Keidlejohn comments on the fact that peak coercivity and presumably single domain size for the cobalt powder occurred at a particle size an order of magnitude smaller than this. It does not appear, however, to establish the hexagonal nature of the particles and, as discussed in section 1.3 and in Appendix 1, it is quite possible for cobalt, particularly if it is finely divided, to have the cubic structure at temperatures far below the equilibrium transformation temperature. It may be that in this case the cobalt particles had a largely f.c.c. structure. Behaviour similar to that of iron would then be expected.

Cobalt powders with coercivity up to about 600 Oe were examined by Wall. In this case the cobalt was hexagonal, as was expected for a material with high crystal anisotropy packing density had no effect on coercivity. Furthermore, although coercivity was an order of magnitude less than that calculated from 2K/J, it was shown to vary in a logical manner as K and J were altered by varying the temperature, (the effect of temperature on the anisotropy of a f.c.c shown in Figure 2).

More recently Leving reported the preparation, by an evaporation technique, of cobalt fibres, with coercivity as high as 2,200 Oe. Electron microscopy showed these to be chains of spheres, not unlike those produced by Luborsky et al. The crystal structure was largely f.c.c. and it was thought that a trace of h.c.p. cobalt detected by X-ray and electron diffraction was due to stacking faults in the f.c.c. structure. Thus the
Coercivity was assumed to be due to shape rather than crystal anisotropy.

Date et al. and Bucksmith measured the properties of copper cobalt alloys in which a precipitate of cobalt was produced by heat treatment. The alloys were rich in copper with cobalt between 0.7% and 4.0%. After solution treatment and quenching the alloys were aged to bring about precipitation of cobalt. Although the highest H_C measured did not exceed 250 Oe, various other observations indicated that a certain amount of material with a much higher coercivity was present. For instance saturation magnetization is normally achieved in an applied field of the order 3 - 5 times greater than the coercivity; in these alloys no approach to saturation was observed in fields up to 15,000 Oe. Measurements were also made of the field necessary to reduce remanent magnetization to zero (H_r). This is normally not much greater than H_C but in these alloys values of H_r/H_C approaching 50 were obtained. These results were taken to indicate the presence of a large range in the coercivity of the precipitate with maximum values in excess of 1,500 Oe. It was not possible to determine the crystal structure of the cobalt. It was pointed out, however, that the matrix was f.c.c. and that there is a tendency for finely divided cobalt to retain the f.c.c. structure. It is likely, therefore, that the precipitate was f.c.c.

A considerable amount of work has been reported dealing with the possibility of producing elongated single domain particles by the controlled directional solidification of eutectic alloys. In most cases the ferromagnetic component was iron rich, although in a few cases alloys with nickel or cobalt have been examined. This work has been reviewed by Galasso. In most cases H_C was low, frequently around 20 Oe, but in the work of Livingston a more useful level of properties was achieved. Livingston found that the coercivity of a directionally solidified gold cobalt eutectic alloy increased with increased growth rate and related this to a finer eutectic structure. The best H_C, as grown, was 330 Oe using a growth rate of $2.1 \times 10^{-4} \text{cm/sec}$. A specimen grown at $3.3 \times 10^{-5} \text{cm/sec}$ had H_C
Fig. 3 - Cobalt-Aluminium Phase Diagram (After Scarazzini)
of 200 Oe but this was increased to 925 Oe by cold drawing to reduce the sample diameter from 0.177 in to 0.010 in. The increase in coercivity was attributed to a reduction in particle diameter and to particle elongation. In the as grown condition the cobalt precipitate was shown by X-ray diffraction to be f.c.c. After drawing, however, the temperature dependence of the coercivity was consistent with the presence of h.c.p. cobalt with its easy axis of magnetisation (\([0001]\)) inclined to the axis of elongation of the particles. It was suggested that coercivity after drawing could be to some extent reduced due to the formation of h.c.p. cobalt because its crystal anisotropy, acting at an angle to shape anisotropy, would reduce the overall anisotropy of the particles.

In 1965 Masumoto et al.\(^{41-49}\) reported permanent magnet properties of a group of cobalt aluminium alloys which they named 'Malcolloy' (magnetic Al Co alloy). After heat treatment to produce a precipitate of cobalt, coercivity (H\(_c\)) was between 600 and 1,200 Oe, dependent on composition and heat treatment, and (BH)\(_{\text{max}}\) values up to 2.11 M.G.O. were achieved. The authors concluded that the observed properties were due to the single domain behaviour of the precipitate particles. The properties of Malcolloy are far superior to those of any other material based on finely divided cobalt and since a study of these alloys constitutes a large part of the present work the results of Masumoto et al. will be discussed in some detail.

The Malcolloy alloys have compositions between 20 and 40 wt % (10-25 wt %) aluminium. The phase diagram after Schramm\(^{50}\) (Figure 3) shows that alloys within this range can be solution treated at temperatures up to 1400\(^\circ\)C and, if cooling is sufficiently rapid to retain the solution, subsequently aged to precipitate a cobalt rich phase. Masumoto et al.\(^{41}\) showed that a water quench after solution treatment was necessary in order to obtain the highest coercivity on ageing. The effect on coercivity (H\(_c\))
Fig. 4 - Effect of ageing on the properties of a 282 (15 wt.%) Incoloy alloy after quenching from 1380°C according to Asano et al. 41
Table 2

The Properties of Binary NiAl Alloy Alloys

(from Nasuoto et al. 41)

All samples water quenched from 1350°C

<table>
<thead>
<tr>
<th>Al wt.%</th>
<th>Ageing</th>
<th>Magnetic Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Temp. °C</td>
<td>Time hrs.</td>
</tr>
<tr>
<td>11.32</td>
<td>550</td>
<td>4</td>
</tr>
<tr>
<td>12.64</td>
<td>550</td>
<td>6</td>
</tr>
<tr>
<td>15.02</td>
<td>500</td>
<td>30</td>
</tr>
<tr>
<td>17.99</td>
<td>500</td>
<td>30</td>
</tr>
<tr>
<td>22.00</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

Treatment described as that giving maximum coercivity
of ageing an alloy containing 25 wt% (15 wt%) aluminium at various temperatures is shown in Figure 4. Peak coercivity was achieved more quickly at higher ageing temperatures but above 525°C the peak reduced with increasing temperature. In general coercivity increased and remanence decreased as the cobalt content was reduced. The best properties and optimum heat treatments for various compositions are shown in Table 2. Best (BH)\text{max} values were observed at intermediate levels of remanence and coercivity.

In the as cast condition a Widmanstätten structure was observed; its components were identified by X-ray diffraction as the b.c.c. Co Al phase, B, and the f.c.c. cobalt rich solid solution α. Solution treatment produced entirely B and ageing resulted in the appearance of a precipitate identified as a mixture of α and ε cobalt. It was suggested that the coercivity was due to single domain particles with a combination of crystal and shape anisotropy.

In further work by the same authors the effect of additions of other elements was investigated. The results are summarized in Table 3, which includes the best (BH)\text{max} and coercivity associated with each addition. With the exception of manganese, all the additions had the effect of increasing coercivity (Hc) and reducing saturation magnetization (4πJ₀) and remanence (B₀). For a given aluminium content the decrease in B₀ was sometimes offset by the increase in Hc to give a small improvement in (BH)\text{max}. The highest values of Hc observed, however, were associated with inferior values of (BH)\text{max}. The general effect of manganese was to increase B₀ at the expense of Hc giving some improvement in (BH)\text{max} at the optimum composition. In a patent specification dealing with these alloys the effect of additions of iron, copper, tin, antimony and zinc are mentioned. Only copper gave an improvement in comparison with the binary alloys. Its effect was similar to that of manganese and it gave a (BH)\text{max} of 2.6 k.G.O., the best reported value on this type of alloy.
The Effect of the Addition of Third Elements on the Magnetic Properties of Malcolloy (From Nasuoto ET AL. 42-66)

<table>
<thead>
<tr>
<th>Composition</th>
<th>Addition</th>
<th>% Al</th>
<th>Solution</th>
<th>Ageing</th>
<th>Magnetic Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2.63</td>
<td>1360-1400</td>
<td>550</td>
<td>5</td>
</tr>
<tr>
<td>12.79</td>
<td>Mn</td>
<td>19.60</td>
<td>1360-1400</td>
<td>550</td>
<td>6</td>
</tr>
<tr>
<td>12.14</td>
<td>Mn</td>
<td>1.58</td>
<td>1360-1400</td>
<td>550</td>
<td>12.5</td>
</tr>
<tr>
<td>13.96</td>
<td>Cr</td>
<td>5.53</td>
<td>1360-1400</td>
<td>600</td>
<td>20</td>
</tr>
<tr>
<td>13.21</td>
<td>Cr</td>
<td>0.52</td>
<td>1300-1400</td>
<td>550</td>
<td>8</td>
</tr>
<tr>
<td>13.42</td>
<td>Cr</td>
<td>4.65</td>
<td>1300-1400</td>
<td>550</td>
<td>15</td>
</tr>
<tr>
<td>12.30</td>
<td>Ti</td>
<td>1.52</td>
<td>1120-1360</td>
<td>550</td>
<td>8</td>
</tr>
<tr>
<td>14.92</td>
<td>Ti</td>
<td>4.63</td>
<td>1120-1360</td>
<td>550</td>
<td>20</td>
</tr>
<tr>
<td>13.01</td>
<td>Cr</td>
<td>1.98</td>
<td>1350-1400</td>
<td>525</td>
<td>10</td>
</tr>
<tr>
<td>14.12</td>
<td>Cr</td>
<td>3.77</td>
<td>1350-1400</td>
<td>550</td>
<td>15</td>
</tr>
<tr>
<td>12.29</td>
<td>Ni</td>
<td>0.97</td>
<td>1350-1400</td>
<td>550</td>
<td>6</td>
</tr>
<tr>
<td>13.55</td>
<td>Ni</td>
<td>16.56</td>
<td>1350-1400</td>
<td>525</td>
<td>150</td>
</tr>
<tr>
<td>15.99</td>
<td>Sn</td>
<td>1.02</td>
<td>1300-1380</td>
<td>525</td>
<td>15</td>
</tr>
<tr>
<td>12.81</td>
<td>Sn</td>
<td>4.60</td>
<td>1300-1380</td>
<td>525</td>
<td>20</td>
</tr>
</tbody>
</table>
Also quoted in the patent are coercivities of 1,650 Oe for alloys containing molybdenum and a (80)MAX of 2.34 H.C.O. for a binary alloy containing 27.6 at% (14.5 wt%) aluminium.

An interesting feature of these results is the high value of $B_r/4\pi r_c$. According to Stoner and Wohlfarth, in a random assembly of particles $B_r/4\pi r_c = 0.5$. Manmoto et al do not claim to have induced any alignment but their quoted results give $B_r/4\pi r_c$ always greater than 0.5 and sometimes approaching 0.8. Another comment which can be made is in connection with particle size. The authors state that each particle diameter was around 300 μ. Examination of the published photo micrographs, however, indicates a particle diameter closer to 1,000 μ and length 2 or 3 times greater. The difference is important because, whereas a f.c.c. particle with a diameter of 300 μ might approach single domain behaviour, one of 1,000 μ diameter could only be single domain if its structure was b.c.c. Discrepancies of this kind can arise due to enlargement or reduction of photographs for publication. In the present case, however, the magnification of one of the photographs 46 is indicated by a superimposed scale which eliminates this possibility.

1.3 The Allotropic Transformation in Cobalt.

Because of the importance of the crystal structure of cobalt in relation to its magnetic properties, the nature of the allotropic transformation and any influencing factors must be considered in endeavouring to understand the properties of magnets based on cobalt. The literature dealing with the allotropes and the transformation is reviewed in Appendix 1 but it is useful at this stage to emphasise certain significant points.

The thermodynamically stable crystal structure at room temperature is b.c.c. (c). There is, however, considerable hysteresis and the transformation is influenced by various factors. The extent of sub-division into grains or discrete particles is one such factor, the f.c.c. form (c) being likely to be present at room temperature in increasing amounts as the
degree of subdivision is increased. Owen and Medoc-Jones\(^51\) consider \(\alpha\) to be the stable form at room temperature if the particle size is very fine. Knoke and Geissler\(^52\), however, conclude that \(\alpha\) is retained as a metastable phase on cooling if the particles are sufficiently small to inhibit the transformation mechanism. Since it has been shown that the best potential magnetic properties are associated with small particles of \(\alpha\) this matter is obviously of considerable importance.

Hess and Barrett\(^53\) investigated the effect of mechanical work on the transformation. A small amount of deformation reduced the amount of hysteresis between the heating and cooling transformation giving a transformation temperature of 417 ± 7°°. Severe deformation lowered the \(\alpha - \epsilon\) transformation temperature, whilst moderate deformation at room temperature was found to convert retained \(\alpha\) to \(\epsilon\).

The structure of cobalt produced by electrolysis is affected by the nature of the electrolytic cell and particularly by the pH of the electrolyte. For instance according to Rohden\(^54\) cobalt deposited from the sulphate was h.c.p. at high pH with increasing amounts of f.c.c. as the pH was lowered.

The complex effects of impurities and alloy additions on the stability of the allotropes have been reviewed by Krajewski et al\(^55\). In general a majority of elements tend to restrict the \(c\) field giving \(c\) at room temperature.

1.4 Present Work

From the foregoing it can be seen that only in the case of the Malcolloy alloys has any real success been achieved in the preparation of permanent magnets based on finely divided cobalt. Although an extensive empirical examination of the effects of heat treatment and compositional variations has been reported by Kasumoto et al\(^41\)-\(^49\) the observed properties are understood only in that they can be attributed to the presence of a cobalt precipitate exhibiting crystal or shape anisotropy or a mixture of the two. In the present work the alloys are examined in some detail.
and the mechanisms responsible for the permanent magnet properties are evaluated.

A number of methods by which the properties of Malcolloy might be improved are investigated and the properties of a cobalt titanium alloy, in which a cobalt precipitate can be induced by a similar process to that used for Malcolloy, are examined.

The work has been extended to include a study of a number of cobalt-based eutectic and eutectoid alloys. Properties in the bulk condition and after comminution are considered in terms of the crystal structure and particle size of the cobalt-rich component.
2.1. General

The alloys studied in this work were, in most cases, prepared and heat treated by conventional methods, details of which are included in the account of the work carried out on each alloy. A description of the techniques used for testing and examination of the alloys is, however, conveniently presented at this stage.

2.2. Magnetic Testing

2.2.1. Saturation magnetisation

Saturation magnetisation was measured as specific saturation c. Values at room temperature were obtained in a magnetising field of about 10k Oe, provided by a large permanent magnet. The intensity of magnetisation was determined from the deflection on a ballistic galvanometer as the sample was pulled out of the magnetising field through a special search coil as described by Kittel. A Sucksmith ring balance, in which the force acting on a sample in a field gradient is related to intensity of magnetisation, was used to determine c at elevated temperatures.

The magnetising field was about 10k Oe. Using this apparatus, it was possible to determine c at intervals of 5°C whilst heating, under vacuum, from room temperature to the Curie temperature.

Because ferromagnetic crystals are anisotropic with respect to magnetic properties c is most accurately determined on powdered samples such that each particle is a single crystal free to move in the magnetising field. Thus each particle rotates until an easy direction of magnetisation is parallel to the field. In the present work, however, it was found that, in the case of the Millelloy alloys, changes in the amount and composition and, therefore, the magnetic properties of the phases present, were induced by the process of powdering, and it was necessary to measure c on small solid samples.
2.2.2. Intrinsic coercivity \((J^c)\) and remanence coercivity \((H_r)\)

\(J^c\) and \(H_r\) were determined by similar techniques. Prior to
testing, samples were magnetised in the highest available field which
was a pulse of about 50 kOe with a duration of 0.01 sec. Increasing
demagnetising fields were then applied, and using an oil cooled
solenoid, until there was no deflection on a ballistic galvanometer
as the sample was pulled out of a search coil.

\(J^c\) is the demagnetising field in the presence of which the
intrinsic magnetisation of the sample is reduced to zero. When this
property was required, therefore, the applied fields were maintained
while deflection was measured and the field corresponding to zero
deflection was equal to \(J^c\). After the application and removal of a
field equal to \(H_r\) the magnetisation of the sample recoils to zero. To
obtain \(H_r\), therefore, deflections were measured after the removal of
the demagnetising field.

By incorporating, inside the solenoid, a small non-inductively
wound furnace, it was possible to measure \(J^c\) at temperatures up to 600°C.

2.2.3. Properties determined using a recording hysteresiograph

A recording hysteresiograph, as described by Scholes 55, was
used to determine remanence \((B_r)\), maximum energy product \((BH)_{max}\),
ceocivity \((H_c)\) and, occasionally intrinsic coercivity \((J^c)\). This
instrument provides magnetising fields of the order of 20 kOe.

Applied field \((B)\) is measured by a Hall probe and flux density \((B)\) by
an air flux compensated search coil. The magnetic properties are
recorded as a demagnetisation curve, plotted by an X-Y recorder.

2.2.4. Reproducibility of magnetic tests.

Magnetic measurements were reproducible to better than 2% except in the case of \((BH)_{max}\) where results could vary by up to 5%.

2.3. X-ray diffraction Examination

X-ray phase analysis of conventional powder samples was carried
out in a 9 cm Unicam camera. Alternatively a Debenham camera, shown
in Figure 5 was used. This instrument, by providing facilities for the
suowitiv with c y l i n d r i c a l f i l m c a s s e t t e
for the production of powder
specimen uoiacr
* type patterns

a

b

showing
specimen holder

with cylindrical film cassette
for the production of powder

specimen holder

(type patterns)

1. specimen
2. furnace
3. thermocouple
4. refractory cement
5. water cooling
6. brass support

c

with plate cassette
for back reflection
technique

d

heated specimen holder
(/ actual size)
1. specimen
2. furnace
3. thermocouple
4. refractory cement
5. water cooling
6. brass support
rotation and oscillation of the sample, enables powder type diffraction photographs to be obtained from solid samples. The main advantage of this technique was that the risk of phases observed in powder samples failing to be representative of those present in the bulk material was avoided. This was particularly important because of the effect of particle size on the allotropic transformation in cobalt (see section 1.3 and Appendix I). Surfaces for examination were normally prepared by mechanical polishing followed by chemical etching although on a few occasions exactly similar results were obtained from electropolished and fracture surfaces.

By constructing a special specimen holder incorporating a small heater and thermocouple (Figure 5d) it was possible to adapt the Beaumaris camera for elevated temperature work. The technique was used only for the Kelcolloy alloys (Chapter 3) the very high oxidation resistance of which allowed the production of satisfactory diffraction patterns up to 550°C without atmospheric protection.

The Beaumaris camera was also used to determine precipitate orientation in the Kelcolloy alloys. The technique, which resembled the rotating crystal method is described in section 3.4.3.

2.4. Other Techniques

2.4.1. Metallographic examination

Samples for both optical and electron microscopy were ground on emery paper and polished using 1μm diamond paste. The Kelcolloy samples and the eutectic alloys were etched using a mixture of 4-5 parts ethanol, 5 parts concentrated HCl, and 1 part Br, and the cobalt titanium alloy in a mixture of 3 parts 30% HCl, 1 part HNO₃. Electron metallography was carried out using conventional carbon replica techniques.

2.4.2. Determination of particle size

The particle size of powder materials was determined using optical microscopy. The powders were mixed with metallurgical mounting
plastic and ground and polished as micro samples. Average particle
diameter was assessed by the standard technique, i.e. all the particles
in a particular field of view were compared with a calibrated eye-piece
graticule and the number of particles in each of a series of size ranges
was counted. From these counts average particle diameter in terms of
frequency of occurrence was calculated. For each sample several fields
of view were examined and the values quoted are the overall average
diameters.
3.1. Preparation and Heat Treatment of the Alloys

Two series of cobalt aluminium alloys were prepared covering the range of Malcolloy compositions (see section 1.2.2.) For the first series, three casts of 500 g were prepared from materials of commercial purity (cobalt 99.5 wt.% , aluminium 99.9 wt.%) Melting was carried out by induction heating under a slight positive pressure of argon. After solidification each cast was broken up and re-melted to ensure adequate mixing. Table 4 shows the analysed compositions, including the amount of iron which is seen to be the major impurity. The homogeneity of these casts was established magnetically as described in 3.2.2. The alloys are conveniently identified by their nominal aluminium contents, i.e. 23, 28 and 38 at.%, (in this work atomic % is subsequently used unless otherwise stated.) The second series of alloys consisted of a number of small castings, also made from commercial purity materials, which were prepared by non-consumable arc melting at a pressure of half an atmosphere of argon. Compositions were as shown in Table 5 and Figure 6. These alloys were used only to determine the variation of saturation magnetisation with aluminium content. To check important observations on such features as the crystal structure of the cobalt precipitate a further alloy, with a nominal composition of 26% Al was prepared, from higher purity materials (cobalt 99.9 wt.%, aluminium 99.995 wt.%), by induction melting under argon. The analysed composition is in Table 4 with iron again the major contaminant.

Samples (about 5 x 5 x 10 mm) from each of the casts were solution treated for 30 minutes at 1300°C under purified hydrogen and water quenched. Those from the 23, 28 and 38 % Al casts and from the higher purity 28% Al cast, (materials are of commercial purity unless otherwise stated), were then aged isothermally for various times at
Table 4

ANALYSED COMPOSITIONS OF THE BINARY CALCOLOY ALLOYS USED IN THE INVESTIGATIONS

<table>
<thead>
<tr>
<th>Aluminium</th>
<th>Iron (impurity)</th>
<th>Cobalt (by difference)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wt. %</td>
<td>At. %</td>
<td>Wt. %</td>
</tr>
<tr>
<td>12.1</td>
<td>23.1</td>
<td>0.3</td>
</tr>
<tr>
<td>14.3</td>
<td>27.7</td>
<td>0.3</td>
</tr>
<tr>
<td>22.5</td>
<td>38.2</td>
<td>0.2</td>
</tr>
<tr>
<td>15.0</td>
<td>27.85</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Table 5

SATURATION MAGNETISATION (gs) OF ARC MELTED COBALT-ALUMINIUM ALLOYS AFTER SOLUTION TREATMENT AT 1350°C AND WATER QUENCHING

<table>
<thead>
<tr>
<th>Aluminium</th>
<th>g s</th>
</tr>
</thead>
<tbody>
<tr>
<td>at. %</td>
<td>cm³/g</td>
</tr>
<tr>
<td>59.1</td>
<td>0</td>
</tr>
<tr>
<td>48.8</td>
<td>0</td>
</tr>
<tr>
<td>47.5</td>
<td>0</td>
</tr>
<tr>
<td>45.0</td>
<td>0</td>
</tr>
<tr>
<td>43.4</td>
<td>0</td>
</tr>
<tr>
<td>41.5</td>
<td>15.6</td>
</tr>
<tr>
<td>39.2</td>
<td>36.0</td>
</tr>
<tr>
<td>37.6</td>
<td>38.3</td>
</tr>
<tr>
<td>36.1</td>
<td>47.2</td>
</tr>
<tr>
<td>34.2</td>
<td>59.1</td>
</tr>
<tr>
<td>31.3</td>
<td>72.9</td>
</tr>
<tr>
<td>28.7</td>
<td>82.3</td>
</tr>
<tr>
<td>27.0</td>
<td>92.2</td>
</tr>
<tr>
<td>24.6</td>
<td>102.2</td>
</tr>
</tbody>
</table>

Table 6

MAGNETIC PROPERTIES OF CALCOLOY ALLOYS IN THE AS CAST CONDITION

<table>
<thead>
<tr>
<th>Alloy</th>
<th>g s</th>
<th>Hc</th>
</tr>
</thead>
<tbody>
<tr>
<td>23% Al</td>
<td>92.0</td>
<td>98</td>
</tr>
<tr>
<td>28% Al</td>
<td>73.5</td>
<td>110</td>
</tr>
<tr>
<td>33% Al</td>
<td>29.6</td>
<td>163</td>
</tr>
<tr>
<td>28% Al (higher purity)</td>
<td>74.3</td>
<td>140</td>
</tr>
</tbody>
</table>
Fig. 6 - Variation of the Saturation Magnetisation (σ) of β with composition

σ (emu g$^{-1}$) vs At. $\%$ Al

At. $\%$ Al: 20, 30, 40, 50

σ: 120, 100, 80, 60, 40, 20, 0
temperatures between 450°C and 750°C. Ageing was carried out either in air, with no appreciable sign of oxidation or, for treatments of less than 30 minutes, where rapid heat transfer was important, in a salt bath. Ageing temperatures were controlled to ± 2°C and the cooling was done in either in air, with no appreciable sign of oxidation or, for treatments of less than 30 minutes, where rapid heat transfer was important, in a salt bath. Ageing temperatures were controlled to ± 2°C and the solution treatment temperature to ± 5°C. Powder samples for X-ray examination were solution treated either in sealed, evacuated silica tubes or under pure hydrogen, as above. In either case, subsequent ageing was carried out in evacuated silica tubes. All samples were quenched to room temperature after ageing.

3.2. Structure and Magnetic Properties at Room Temperature

3.2.1. The as-cast condition

In the as-cast condition α and γ, of the 23, 26 and 28% Al alloys and the higher purity 28% Al alloy are shown in Table 6.

Samples from each cast were examined metallographically and by X-ray diffraction. The latter was carried out using bulk samples in the Debye-Scherrer camera with filtered cobalt radiation. In all the casts a Widmanstätten precipitate of a cobalt was present in a b.c.c. matrix. The lattice parameter of the matrix in the 23, 26 and 33% Al casts was 2.855 Å, 2.857 Å and 2.858 Å respectively. This phase was identified as the Co Al intermetallic compound of the Co-Mg-Mn type, with the lattice parameter of which, according to Cooper, first increases with increasing aluminium content, reaching a peak of 2.851 Å at about 49% Al, and then decreases. The amount of the observed was fairly constant within individual casts but decreased with increasing aluminium content. The microstructure of the 28% Al alloy is shown in Figure 7a.

3.2.2. The solution treated condition

Examination, using the Debye-Scherrer camera, of bulk samples solution treated for 30 minutes at 1300°C and water quenched, indicated for all the alloys complete solution of α and retention of supersaturated γ at room temperature. The single phase nature of these samples was confirmed metallographically (Figure 7b). Powder samples, which were heat treated in sealed evacuated silica tubes, prior to X-ray examination.
Fig. 7 - 28% Al Kelcolloy Alloy

a

as cast

x 200

b

solution treated \(\frac{1}{2} \) hour 1300°C
and water quenched

x 200
a and e after similar ageing treatments. The observation was, therefore, confined using bulk and powder X-ray diffraction satopies from the eo'resereial and higher purity alloys. Identical results were obtained in each case.

The absence of a was surprising since, according to the phase diagram (Figure 3), this transformation is the stable form for precipitation above $500 \degree$C. The possibility that the precipitate forced initially as a and underwent complete transformation to e on cooling was unlikely. In view of the extreme sluggishness of the reaction, particularly in finely divided cobalt, (see section 1.3. and Appendix 1). This was, however, checked using the high temperature specimen holder in the Beaumaris causera. Solution treated samples from each cast were heated to 530 C in the causera. This temperature was maintained for 16 hours. In the case of the 23% Al ana 2Si Al alloys (both con&aarcial and higher purity) and for 48 hours in the case of the 38% Al alloy. A diffraction pattern was then obtained with the specimen still at the ageing temperature. In each case, only s and 0 were detected.

Two samples from the 25% Al cast were subjected to prolonged ageing, treatments one at $500 \degree$C and one at $600 \degree$C. So a was detected at $500 \degree$C after 2000 hours but at $600 \degree$C a trace of a was observed after 400 hours and after 2000 hours the aHotropes were estimated to be present in approximately equal quantities.

It was concluded, therefore, that e formed as a metastable phase on precipitation from 5 under conditions for which a wo therrsodynaKically stable.
in the Unicam camera, showed a tendency for α to reprecipitate on quenching. This occurred even when the silica tube was broken during the quench. The supersaturated solid solution was, however, fully retained in powder samples, solution treated, as was the bulk material, in refractory boats under a stream of purified hydrogen and water quenched. Specimens treated in this manner were used for investigating the effects of subsequent heat treatments.

Figure 6 shows the relationship between α and analysed aluminium content for the series of arc melted alloys after solution treatment to give a β structure. These alloys became non-magnetic at room temperature above about 43% aluminium which is in fair agreement with the magnetic transformation for β shown in Figure 3. Values of α were also obtained for ten samples from each of the 23, 28 and 38% Al casts in the solution treated condition. The range of values, indicated on Figure 6, proves the maximum composition variation within any alloy to be ± 0.2% aluminium. In each case α was significantly greater than that observed in the as cast condition (Table 6). A of all the alloys was reduced, by solution treatment, to a level too low to be measured using available apparatus, i.e. less than 2.0.

3.2.2. The effect of ageing
a. Structure: Precipitates of a cobalt-rich phase with crystal structure varying with ageing time and temperature were obtained in all the alloys and identified by X-ray diffraction using bulk samples in the Unicam camera.

Aging isothermally at 650°C, 700°C and 750°C resulted initially in the precipitation of α mixture of α and β. The amount of α increased as the ageing time or temperature was increased and after one hour at 750°C only α was detected.

After ageing within the range 450°C - 600°C for less than about 400 hours only α precipitation was detected. This was not in agreement with the results of Osumoto et al. who reported a mixture of
Fig. 3 - 28% Al Malcolloy Alloy

a

\(\frac{1}{2} \) hour 1380°C \\
water quench \\
aged 1\(\frac{1}{2} \) hours 450°C \\
\times 40,000

b

\(\frac{1}{2} \) hour 1380°C \\
water quench \\
aged 4 hours 500°C \\
\times 40,000

c

\(\frac{1}{2} \) hour 1380°C \\
water quench \\
aged 12\(\frac{1}{2} \) hours 500°C \\
\times 40,000

d

\(\frac{1}{2} \) hour 1380°C \\
water quench \\
aged 17 hours 500°C \\
\times 40,000
Fig. 8 - 28% Al Nialcolloy Alloy

c

½ hour 1350°C
water quench
aged 10 minutes 700°C

x 10,000

f

½ hour 1350°C
water quench
aged 1 hour 700°C

x 2,000
Some degree of line broadening was observed in the diffraction of both \(\alpha \) and \(\beta \). This effect was not present in the lines representing \(\alpha \) and \(\beta \). When only \(\alpha \) and \(\beta \) were detected, the \(\beta \) lines were also relatively sharp.

Electron micrographs, obtained by a normal carbon replica technique, of the precipitate in the 28% Al alloy after various ageing treatments are shown in Figure 8. Figures 6a and 6b show the precipitate in the early stages of ageing at 450°C and 500°C respectively, 6c and 6d show later stages at 500°C, in these four samples the precipitate was \(\alpha \). 6a and 6f show early and late stages at 700°C; the precipitate in 6e was a mixture of \(\alpha \) and \(\beta \), while that in 6f was entirely \(\alpha \). There is a tendency in Figures 6c (12½ hours at 500°C) and 6d (17 hours at 500°C) for the precipitate particles to be elongated. This is, however, not particularly evident in any other case. As might be expected particle size tends to increase as ageing time and temperature are increased.

b. Magnetic properties: The effect of ageing on \(J_K \) and \(\sigma \) of the 23, 28 and 36% Al alloys is shown in Figures 9 - 13 and Tables 7, 8 and 9. Each experimental value shown represents one sample aged continuously for the time and at the temperature indicated. In every case ageing caused a decrease in \(\sigma \) and an initial increase in \(J_K \), which in most cases reached a peak value and subsequently decreased. In the case of the 28% Al alloy the properties at each temperature were confirmed after several ageing times using the higher purity material. No significant difference was observed.

It is at first sight surprising that \(\sigma \) should decrease during the precipitation of the ferromagnetic cobalt rich phase. It has been shown, however, that these alloys are strongly magnetic in the solution treated (\(\delta \)) condition with \(\sigma \) of \(\delta \) decreasing as its cobalt content decreases (Figure 6). The \(\sigma \) of supersaturated \(\beta \) is greater than that of material of the same composition after full precipitation of cobalt.
Fig. 2 - The effect of ageing on J_C and σ of the 23% Al alloy.

Time hrs.
<table>
<thead>
<tr>
<th>T<5°C</th>
<th>Of &Q&XUG QU ,k</th>
<th>OY Titii</th>
<th>234</th>
<th>aU,OS</th>
<th>.898?</th>
<th>* 7oottC</th>
</tr>
</thead>
<tbody>
<tr>
<td>450°C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>500°C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>of wut</td>
<td>Tin</td>
<td>J#</td>
<td>3</td>
<td>¥is*</td>
<td>.ii</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>at*</td>
<td>0$</td>
<td>NMS'</td>
<td>to i.</td>
<td>JoS</td>
<td>iXm</td>
</tr>
<tr>
<td><2</td>
<td>105</td>
<td>0</td>
<td><2</td>
<td>105</td>
<td><2</td>
<td>105</td>
</tr>
<tr>
<td>2M</td>
<td>93.0</td>
<td>i</td>
<td>150</td>
<td>85</td>
<td>325</td>
<td>92.1</td>
</tr>
<tr>
<td>31</td>
<td>sa.a</td>
<td>i</td>
<td>375</td>
<td>37.1</td>
<td>410</td>
<td>87.8</td>
</tr>
<tr>
<td>49</td>
<td>35.3</td>
<td>2</td>
<td>459</td>
<td>—</td>
<td>45u</td>
<td>87.5</td>
</tr>
<tr>
<td>105</td>
<td>34.9</td>
<td>4</td>
<td>330</td>
<td>85.1</td>
<td>600</td>
<td>65.0</td>
</tr>
<tr>
<td>573</td>
<td>34.0</td>
<td>7</td>
<td>583</td>
<td>84.9</td>
<td>649</td>
<td>63.5</td>
</tr>
<tr>
<td>643</td>
<td>33.9</td>
<td>9</td>
<td>618</td>
<td>84.0</td>
<td>580</td>
<td>64.0</td>
</tr>
<tr>
<td>650</td>
<td>33.4</td>
<td>11</td>
<td>636</td>
<td>84.9</td>
<td>350</td>
<td>84.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>849</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>84.1</td>
</tr>
<tr>
<td>15</td>
<td>631</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>84.6</td>
</tr>
<tr>
<td>13</td>
<td>643</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>84.5</td>
</tr>
</tbody>
</table>

* treatsieat ia salt 8&t8
Fig. 10 - The effect of ageing on the μ_0 and c of the 26% Al alloy
(see also Fig. 11)
Fig. 11 - The effect of ageing between 450°C and 750°C on μ of the 28% Al alloy (as Fig. 10 but with expanded time scale)
<table>
<thead>
<tr>
<th>Time (min)</th>
<th>450°C</th>
<th>500°C</th>
<th>550°C</th>
<th>600°C</th>
<th>650°C</th>
<th>700°C</th>
<th>750°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>J_H GPa</td>
<td>σ GPa</td>
<td>J_H GPa</td>
<td>σ GPa</td>
<td>J_H GPa</td>
<td>σ GPa</td>
<td>J_H GPa</td>
</tr>
<tr>
<td>0</td>
<td><2</td>
<td><2</td>
<td><2</td>
<td><2</td>
<td><2</td>
<td><2</td>
<td><2</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>8</td>
<td>17</td>
<td>110</td>
<td>125</td>
<td>1126</td>
<td>1215</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>86.6</td>
<td>252</td>
<td>77.3</td>
<td>399</td>
<td>75.3</td>
<td>363</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>85.6</td>
<td>280</td>
<td>78.0</td>
<td>-</td>
<td>75.0</td>
<td>691</td>
</tr>
<tr>
<td>30</td>
<td>9</td>
<td>86.0</td>
<td>363</td>
<td>77.2</td>
<td>-</td>
<td>74.6</td>
<td>700</td>
</tr>
<tr>
<td>1</td>
<td>40</td>
<td>82.8</td>
<td>524</td>
<td>75.0</td>
<td>613</td>
<td>73.9</td>
<td>1031</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>82.0</td>
<td></td>
<td></td>
<td>1126</td>
<td>66.0</td>
<td>300</td>
</tr>
<tr>
<td>3</td>
<td>256</td>
<td>81.0</td>
<td>935</td>
<td>73.8</td>
<td>1140</td>
<td>66.0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>346</td>
<td>79.0</td>
<td>1140</td>
<td>73.9</td>
<td>1193</td>
<td>69.0</td>
<td>926</td>
</tr>
<tr>
<td>6</td>
<td>635</td>
<td>76.7</td>
<td>1172</td>
<td>66.2</td>
<td>1252</td>
<td>66.2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>69.0</td>
<td>1250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1040</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15*</td>
<td>1215</td>
<td>67.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1104</td>
<td>73.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1260</td>
<td>67.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1226</td>
<td>72.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1230</td>
<td>66.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1037</td>
<td>66.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1220</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>1280</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>1293</td>
<td>70.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 8

THE EFFECT OF AGING ON THE J_H AND σ OF THE 28% Al ALLOY

a) Commercial Purity
TABLE 8 continued

a) Commercial Purity

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>450°C</th>
<th>500°C</th>
<th>550°C</th>
<th>600°C</th>
<th>650°C</th>
<th>700°C</th>
<th>750°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>1270</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>1305</td>
<td>69.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>1260</td>
<td>67.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>141</td>
<td></td>
<td></td>
<td>1230</td>
<td>66.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>162</td>
<td>1330</td>
<td>69.5</td>
<td></td>
<td>1250</td>
<td>65.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>169</td>
<td></td>
<td></td>
<td>1250</td>
<td>65.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b) Higher Purity (287.61)

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>450°C</th>
<th>500°C</th>
<th>550°C</th>
<th>600°C</th>
<th>650°C</th>
<th>700°C</th>
<th>750°C</th>
</tr>
</thead>
<tbody>
<tr>
<td><2</td>
<td>90</td>
<td><2</td>
<td>90</td>
<td><2</td>
<td>90</td>
<td><2</td>
<td>90</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2½</td>
<td>123</td>
<td>82.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>950</td>
<td>78.1</td>
<td>1125</td>
<td>67.1</td>
<td>1235</td>
<td>67.0</td>
<td></td>
</tr>
<tr>
<td>7½</td>
<td></td>
<td></td>
<td>1255</td>
<td>66.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>1295</td>
<td>58.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* treatment in salt bath
Fig. 12 - Effect of aging on J_c and σ of the 30% Al alloy
<table>
<thead>
<tr>
<th>Time (hrs)</th>
<th>(J_H) (Oe)</th>
<th>(\sigma) (emu)</th>
<th>Time (hrs)</th>
<th>(J_H) (Oe)</th>
<th>(\sigma) (emu)</th>
<th>Time (hrs)</th>
<th>(J_H) (Oe)</th>
<th>(\sigma) (emu)</th>
<th>Time (hrs)</th>
<th>(J_H) (Oe)</th>
<th>(\sigma) (emu)</th>
<th>Time (hrs)</th>
<th>(J_H) (Oe)</th>
<th>(\sigma) (emu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>32.5</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>32.4</td>
<td>10</td>
<td>100</td>
<td>29.8</td>
<td>1 (\frac{1}{2})</td>
<td>18</td>
<td>30.2</td>
<td>1</td>
<td>67</td>
<td>30.2</td>
<td>1</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>31.6</td>
<td>23</td>
<td>300</td>
<td>23.4</td>
<td>8</td>
<td>170</td>
<td>28.5</td>
<td>2</td>
<td>290</td>
<td>29.8</td>
<td>2</td>
<td>24</td>
<td>31.5</td>
<td>2</td>
</tr>
<tr>
<td>27</td>
<td>30.3</td>
<td>69</td>
<td>1095</td>
<td>-</td>
<td>18</td>
<td>1048</td>
<td>27.6</td>
<td>4</td>
<td>992</td>
<td>29.0</td>
<td>4</td>
<td>28</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>29.2</td>
<td>93</td>
<td>1349</td>
<td>28.3</td>
<td>33</td>
<td>1462</td>
<td>27.7</td>
<td>6</td>
<td>1137</td>
<td>27.9</td>
<td>20</td>
<td>116</td>
<td>30.9</td>
<td>21</td>
</tr>
<tr>
<td>72</td>
<td>28.5</td>
<td>150</td>
<td>1873</td>
<td>28.1</td>
<td>48</td>
<td>1516</td>
<td>27.5</td>
<td>24</td>
<td>1238</td>
<td>28.3</td>
<td>24</td>
<td>161</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1340</td>
<td>28.0</td>
<td>180</td>
<td>1930</td>
<td>28.1</td>
<td>100</td>
<td>1005</td>
<td>27.0</td>
<td>41</td>
<td>1070</td>
<td>27.9</td>
<td>30</td>
<td>280</td>
<td>30.0</td>
<td>37</td>
</tr>
<tr>
<td>1470</td>
<td>28.3</td>
<td>211</td>
<td>1680</td>
<td>28.1</td>
<td>143</td>
<td>573</td>
<td>27.8</td>
<td>37</td>
<td>340</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>27.5</td>
<td></td>
<td></td>
<td>52</td>
<td>340</td>
<td>29.0</td>
<td></td>
<td></td>
<td></td>
<td>120</td>
<td>-</td>
<td>29.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1760</td>
<td>27.8</td>
<td></td>
</tr>
<tr>
<td>1970</td>
<td>27.9</td>
<td></td>
</tr>
<tr>
<td>1673</td>
<td>28.2</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 13 - Effect of ageing 23%, 28% and 38% Al alloys at 500°C.

- 38% Al
- 28% Al
- 23% Al

Jc Oe

Time hrs.
to give a non-magnetic β matrix. A progressive decrease from the
β of super-saturated β to that of diluted cobalt is therefore observed
on ageing. With regard to the effect of ageing on \(J_C \), the 23 and 28% Al
alloys responded in a similar manner but the peak values of \(J_C \) in the
latter were about twice as great as those in the former. In both alloys,
increasing the ageing temperature caused peak \(J_C \) to be reduced and
the peaks to be achieved more quickly. This effect was particularly
marked above 600°C. The 38% Al alloy reached significantly higher
values of \(J_C \) than the other materials. Peak \(J_C \) in this alloy again
decreased as ageing temperature increased but the approach to the peak
was very slow in comparison with the other alloys. The change in both
\(\sigma \) and \(J_C \) on ageing the 38% Al alloy at 700°C was somewhat anomalous
in that the initial decrease in \(\sigma \) and increase in \(J_C \) were slower than
at the lower temperatures.

Values of \(B_r \), \(J_C \) and \((B_r)_{\text{max}} \) were measured on samples from
each cast after ageing to maximum coercivity at 500°C; these are shown
in Table 10 together with comparable figures from the work of Masumoto
et al. \(^{41}\) The high values of \(B_r / 4\pi M_s \) obtained by these authors have
been mentioned in section 1.2.2. From Table 10 it can be seen that
similarly high values were obtained in the present work in the case of
the 23 and 38% Al alloys, although a ratio much closer to the expected
value of 0.5 was observed for the 28% Al material. In general, properties
obtained in the present work were rather lower than those reported by
Masumoto et al.

c. Relationship between properties and structure: In general the
association of a large increase in \(J_C \) over a range of compositions
and ageing treatments, with the appearance of a finely divided cobalt
precipitate, clearly supports the conclusion of Masumoto et al.\(^{41}\) that
the coercivity of these alloys is derived from single domain particles
of this precipitate.
Table 10

Permanent Magnet Properties of Halcolloy - Comparison of the Present Results with Those of Nishimoto et al.

<table>
<thead>
<tr>
<th>Composition</th>
<th>Treatment</th>
<th>Source</th>
<th>Saturation Magnetisation σ</th>
<th>$4\pi J_s$</th>
<th>$4\pi J_s$</th>
<th>$(BH)_{max}$</th>
<th>H_c</th>
<th>J_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>α Al</td>
<td></td>
<td></td>
<td>B_T</td>
<td>B_T</td>
<td>(RH)_{max}</td>
<td>H_c</td>
<td>J_c</td>
<td></td>
</tr>
<tr>
<td>23.1</td>
<td>30 mins. 1380°C W.Q. + 14 hrs. 500°C</td>
<td>Present</td>
<td>85</td>
<td>7500</td>
<td>0.73</td>
<td>3450</td>
<td>0.9</td>
<td>620</td>
</tr>
<tr>
<td>23.3</td>
<td>7 mins. 1380°C W.Q. + 30 hrs. 500°C</td>
<td>Nishimoto et al.</td>
<td>92</td>
<td>8500</td>
<td>0.67</td>
<td>5700</td>
<td>1.5</td>
<td>600</td>
</tr>
<tr>
<td>27.7</td>
<td>30 mins. 1350°C W.Q. + 1 hrs. 500°C</td>
<td>Present</td>
<td>75</td>
<td>6900</td>
<td>0.62</td>
<td>4300</td>
<td>0.82</td>
<td>400</td>
</tr>
<tr>
<td>27.7</td>
<td>30 mins. 1380°C W.Q. + 12 hrs. 500°C</td>
<td>Present</td>
<td>67.5</td>
<td>6200</td>
<td>0.57</td>
<td>3550</td>
<td>1.33</td>
<td>1100</td>
</tr>
<tr>
<td>27.7</td>
<td>30 mins. 1380°C W.Q. + 70 hrs. 500°C</td>
<td>Present</td>
<td>66</td>
<td>6350</td>
<td>0.58</td>
<td>3450</td>
<td>1.25</td>
<td>1125</td>
</tr>
<tr>
<td>27.7</td>
<td>30 mins. 1380°C W.Q. + 169 hrs. 500°C</td>
<td>Present</td>
<td>65.2</td>
<td>6100</td>
<td>0.56</td>
<td>3400</td>
<td>1.16</td>
<td>1100</td>
</tr>
<tr>
<td>27.9</td>
<td>7 mins. 1380°C W.Q. + 30 hrs. 500°C</td>
<td>Nishimoto et al.</td>
<td>69</td>
<td>6250</td>
<td>0.67</td>
<td>4200</td>
<td>1.71</td>
<td>1200</td>
</tr>
<tr>
<td>36.2</td>
<td>30 mins. 1360°C W.Q. + 180 hrs. 500°C</td>
<td>Present</td>
<td>28</td>
<td>2250</td>
<td>0.69</td>
<td>1550</td>
<td>0.40</td>
<td>1030</td>
</tr>
</tbody>
</table>

$4\pi J_s$ calculated from σ using the relationship, $4\pi J_s = 4\pi \rho$. Using ρ (density) as given by Nishimoto et al. 41.
The present work has shown that the highest values of J_{lc} (up to 1970 Oe in the 38% Al alloy) are obtained when the precipitate is c and that the appearance of c is associated with significantly reduced J_{lc}, (360 Oe in the 38% Al alloy). Reference to the electron micrographs in Figure 8 shows that in the 28% Al alloy maximum coercivity at 500°C, achieved after about 17 hours (6d), was associated with precipitate particles, showing some tendency to be elongated, with a mean length of the order 0.3µ and mean thickness around 0.1µ. This is in good agreement with the published photo-micrographs of Ikemoto et al although not with the values they quote in the text. (see section 1.2.2.). Furthermore, since the precipitate has been shown by X-ray diffraction to have the h.c.p. c structure (3.2.3a), particles of this size should, according to Vent et al, be single domain and exhibit high J_{lc}. The properties of this sample can, therefore, be readily understood in general terms as arising from the presence of single domain particles of c. Such particles will derive high coercivity from the crystal anisotropy of the h.c.p. structure.

The position is less straightforward when the properties and structures of samples in the early stages of ageing are considered. The particles in these samples, Figures 8a (1½ hours at 450°C), 8b (½ hour at 500°C), 8c (1½ hours at 500°C) are smaller than those in 6d (17 hours at 500°C) and should, therefore, be single domains and have coercivities at least as high as those in the 17 hour sample. In fact, the coercivities of these samples are lower.

If particles of ferromagnetic materials are sufficiently small, their direction of magnetisation is influenced by thermal agitation. The properties of such particles are similar to those of paramagnetic materials and the condition is known as super-paramagnetism. According to Noé 22b
Fig. 16 - Ideal Variation of Coercivity with Particle Size

- a. Particles super paramagnetic
- b. Particles single domain, coercivity maximum and constant
- c. Particles exceed single domain size, coercivity falls
the critical volume below which a particle becomes super-paramagnetic is given by:

\[\frac{1}{r_c} = f_0 \exp \left[\left(\frac{\frac{3}{2}}{kT} \right) \right] \]

where \(r_c \) is relaxation time, i.e. the time required for thermal agitation to rotate the magnetisation of the particle into a preferred direction.

- \(K \) is the anisotropy energy
- \(T \) is absolute temperature
- \(k \) is Boltzmann's constant
- \(V \) is particle volume
- \(f_0 \) is a frequency factor of the order of \(10^9 \)

Using this relationship, the critical radius for super-paramagnetic behaviour in \(\varepsilon \) is about 30 \(\text{nm} \). In the present case, therefore, where particle radius is of the order of 100 \(\text{nm} \), it is clear that super-paramagnetism cannot be responsible for the low values of coercivity observed.

The type of variation of coercivity with particle size which might be expected, in principle, is shown in Figure 14. Coercivity rises suddenly from a low value to the maximum for single domain behaviour as the material passes from the super-paramagnetic to the ferromagnetic condition. It subsequently remains constant until single domain size is exceeded after which domain wall events lead to a substantial reduction. It is obvious that in practice only an approximation to this curve should be anticipated because, at any stage, considerable variation in particle size is likely. In the present case, however, the observed relationship between particle size and coercivity is difficult to understand unless some other factor is involved. Section 3.6 deals with this problem and shows that coercivity is influenced by the magnetic properties of the matrix phase \(\beta \).
After ageing for 1 hour at 700°C (Figure 8c) the crystal structure of the precipitate was almost entirely f.c.c. (c) with only a trace of a. The particle size was too large for single domain behaviour to occur in either phase and the observed low coercivity \(J_c = 301 \text{ Oe} \) was thus to be expected. After only 10 minutes at 700°C a much greater coercivity \(J_c = 670 \text{ Oe} \) was associated with a mixture of a and c, with a the majority component. It is possible that the coercivity of this sample was due to c. The particle diameter (Figure 8c) however, can be estimated at about 0.1µ which is of the right order for single domain behaviour in a but much too large for c. It seems likely, therefore, that the coercivity arises in this case from the minority component, c.

Two tentative conclusions can be drawn at this stage:

1. It is likely that the coercivity of these alloys is derived from the crystal anisotropy of a metastable precipitate of c, the particles of which exist as single magnetic domains. This may apply even if the precipitate is, in part, a.

2. Coercivity does not vary in a completely logical manner with particle size and some other factor or factors must be considered before the relationship can be understood.

Note:
An investigation of the crystallography of this type of alloy was reported by Arbuzov et al (Fizika Metally i Metallovedenie 29 1969 (21)) and came to the attention of the present author when published in English translation in 1971, at which time the present work was largely completed. This study, which is discussed in Appendix II, completely confirms the above findings relating to the crystal structure of the precipitating phase.
3.3. The Influence of the Crystal Anisotropy of α on the Coercivity of Malcolloy

3.3.1. Introduction

From the fact that high coercivity in these alloys is associated with the presence of a precipitate of α or α + γ with particle size too great for single domain behaviour in α it has been inferred that the crystal anisotropy of the h.c.p. α structure has a significant influence on the observed properties. For a complete understanding of the behaviour of the alloys it is necessary to evaluate this influence.

3.3.2. The variation of the crystal anisotropy of α with temperature

The crystal anisotropy energy in a hexagonal structure is given by

\[E = K_0 + K_1 \sin^2 \theta + K_2 \sin^4 \theta \]

where \(K_0, K_1 \) and \(K_2 \) are anisotropy constants

and \(\theta \) is the angle between the magnetization vector and [0001].

If the magnetization vector is parallel to [0001] the energy required to magnetize to saturation is

\[E = K_0 \]

but during reversal of magnetization the magnetization vector must, at some stage, be perpendicular to [0001]. The energy is a maximum at this point and is given by

\[E = K_0 + K_1 + K_2 \]

Since \(K_0 \) is constant regardless of the direction of magnetization the energy required to bring about reversal is

\[E = K_1 + K_2 \]

It can be seen from Figure 2 that \(K_1 \) and \(K_2 \) for α are dependent on temperature, their sum falling from about \(6 \times 10^6 \) erg cm\(^{-3}\) at 20°C to zero at 250°C and becoming negative at higher temperatures. These values...
are due to Honda and Gesuwa32 who also show that above about 250\(^\circ\)C the principal directions in the basal plane of the \(\alpha\) structure ([112\(\bar{0}\)]) and [1010]) are more easily magnetised than [000\(\bar{1}\)]. The structure becomes increasingly anisotropic as the temperature is raised to 400\(^\circ\)C. It is clear, therefore, that coercivity arising from the crystal anisotropy of \(\alpha\) must have a strong reversible temperature dependence.

This was demonstrated in practice by Keli et al35,60 using cobalt powders with varying mixtures of \(\alpha\) and \(\alpha\). In some of the powders tested only a trace of \(\alpha\) was present and coercivity decreased from about 350 Oe at room temperature to between 100 and 200 Oe at about 200\(^\circ\)C. There was a substantial increase in coercivity below room temperature and a small increase above 200\(^\circ\)C. The authors commented on the difference between the temperature at which minimum coercivity was observed (200\(^\circ\)C) and the temperature at which, according to theory, the anisotropy of \(\alpha\) is zero (250\(^\circ\)C). This they attributed to the presence of impurities in the cobalt powder.

3.3.3. The variation of the \(j_{\text{c}}^\text{II}\) of Nikolloy with temperature

The temperature dependence of \(j_{\text{c}}^\text{II}\) of a number of Nikolloy samples was determined, as part of the present work, as follows.

The measurements were carried out using the apparatus described in 2.2.2. The samples were magnetised at the test temperature before progressive demagnetisation as described for room temperature measurements. The magnetising field was about 5000 Oe. The samples tested and the results obtained are shown in Table 11 and in Figures 15 (commercial and high purity 28\% Al alloys) and 16 (23\% Al and 38\% Al alloys).

With the exception of the sample from the 28\% Al alloy aged for 1 hour at 750\(^\circ\)C, (Figure 15), the results obtained showed \(j_{\text{c}}^\text{II}\) to vary significantly with temperature. The extent to which the changes were reversible was established by subsequent tests at room temperature as shown in the table. In more than half the samples temperature dependence
Fig. 15 - Variation of j_H with temperature of samples from the commercial and high purity 262 Al alloys

- 138 hours at 450°C
- 1 hour at 500°C
- 3 hours at 500°C
- 69 hours at 550°C
- 7½ hours at 550°C
- ½ hour at 650°C
- ½ hour at 750°C
- 7½ hours at 550°C (high purity alloy)
Fig. 10 - Variation of J_{He} with temperature of samples from the 23% and 38% Al alloys
<table>
<thead>
<tr>
<th>23% Al Alloy</th>
<th>15 hours at 500°C</th>
<th>15 hours at 500°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 (RT)</td>
<td>651</td>
<td>456</td>
</tr>
<tr>
<td>70</td>
<td>510</td>
<td>480</td>
</tr>
<tr>
<td>120</td>
<td>440</td>
<td>525</td>
</tr>
<tr>
<td>300</td>
<td>252</td>
<td>560</td>
</tr>
<tr>
<td>350</td>
<td>220</td>
<td>600</td>
</tr>
<tr>
<td>370</td>
<td>220</td>
<td>640</td>
</tr>
<tr>
<td>400</td>
<td>225</td>
<td>20 (RT)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>28% Al Alloy</th>
<th>138 hours at 450°C</th>
<th>1 hour at 500°C</th>
<th>3 hours at 500°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 (RT)</td>
<td>1280</td>
<td>20 (RT)</td>
<td>479</td>
</tr>
<tr>
<td>80</td>
<td>965</td>
<td>60</td>
<td>475</td>
</tr>
<tr>
<td>220</td>
<td>555</td>
<td>120</td>
<td>475</td>
</tr>
<tr>
<td>250</td>
<td>424</td>
<td>200</td>
<td>430</td>
</tr>
<tr>
<td>300</td>
<td>351</td>
<td>250</td>
<td>453</td>
</tr>
<tr>
<td>350</td>
<td>319</td>
<td>300</td>
<td>402</td>
</tr>
<tr>
<td>410</td>
<td>350</td>
<td>350</td>
<td>351</td>
</tr>
<tr>
<td>460</td>
<td>455</td>
<td>390</td>
<td>325</td>
</tr>
<tr>
<td>490</td>
<td>574</td>
<td>440</td>
<td>297</td>
</tr>
<tr>
<td>20 (RT)</td>
<td>1285</td>
<td>450</td>
<td>297</td>
</tr>
<tr>
<td></td>
<td>475</td>
<td>395</td>
<td>20 (RT)</td>
</tr>
<tr>
<td></td>
<td>20 (RT)</td>
<td>493</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>69 hours at 500°C</th>
<th>7½ hours at 550°C</th>
<th>1 hour at 650°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 (RT)</td>
<td>1240</td>
<td>20 (RT)</td>
</tr>
<tr>
<td>120</td>
<td>781</td>
<td>90</td>
</tr>
<tr>
<td>250</td>
<td>375</td>
<td>140</td>
</tr>
<tr>
<td>290</td>
<td>300</td>
<td>220</td>
</tr>
<tr>
<td>340</td>
<td>311</td>
<td>340</td>
</tr>
<tr>
<td>360</td>
<td>327</td>
<td>390</td>
</tr>
<tr>
<td>20 (RT)</td>
<td>1230</td>
<td>420</td>
</tr>
<tr>
<td>400</td>
<td>360</td>
<td>20 (RT)</td>
</tr>
<tr>
<td>450</td>
<td>432</td>
<td>500</td>
</tr>
<tr>
<td>500</td>
<td>504</td>
<td>575</td>
</tr>
<tr>
<td>550</td>
<td>544</td>
<td>650</td>
</tr>
<tr>
<td>600</td>
<td>550</td>
<td>20 (RT)</td>
</tr>
<tr>
<td>650</td>
<td>488</td>
<td></td>
</tr>
<tr>
<td>20 (RT)</td>
<td>1168</td>
<td></td>
</tr>
<tr>
<td>26% Al Alloy</td>
<td>Temp. °C</td>
<td>J in C</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>20 (RT)</td>
<td>272</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>279</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>295</td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>303</td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>287</td>
<td></td>
</tr>
<tr>
<td>340</td>
<td>247</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>231</td>
<td></td>
</tr>
<tr>
<td>475</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>20 (RT)</td>
<td>278</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>26% Al High Purity Alloy</th>
<th>Temp. °C</th>
<th>J in C</th>
<th>71 hours at 550 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 (RT)</td>
<td>1255</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1083</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>792</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>445</td>
<td></td>
<td></td>
</tr>
<tr>
<td>320</td>
<td>352</td>
<td></td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>320</td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>355</td>
<td></td>
<td></td>
</tr>
<tr>
<td>455</td>
<td>410</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 (RT)</td>
<td>1262</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>36% Al Alloy</th>
<th>Temp. °C</th>
<th>J in C</th>
<th>150 hours at 550 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 (RT)</td>
<td>1872</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>1472</td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>992</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>740</td>
<td></td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>340</td>
<td>384</td>
<td></td>
<td></td>
</tr>
<tr>
<td>480</td>
<td>288</td>
<td></td>
<td></td>
</tr>
<tr>
<td>520</td>
<td>304</td>
<td></td>
<td></td>
</tr>
<tr>
<td>550</td>
<td>320</td>
<td></td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>326</td>
<td></td>
<td></td>
</tr>
<tr>
<td>630</td>
<td>312</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 (RT)</td>
<td>1504</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
was completely reversible. When permanent differences were observed they were small and could be attributed to predictable changes in the nature of the precipitate taking place during testing. For example, the sample from the 26% Al alloy aged for 1 hour at 500°C was effectively aged for a further time of about 1 hour at temperatures between room temperature and 475°C during testing. As might be expected from the curves in Figure 10 this resulted in a small increase in J_{H_C}. On the other hand the sample from the same alloy aged for 138 hours at 450°C underwent no significant permanent change; presumably because the additional heat treatment during testing was insignificant in comparison with the previous ageing treatment. The irreversible changes observed in samples which were tested up to 650°C were probably associated with the change in the crystal structure of the precipitate from c to $c+a$ the occurrence of which above 600°C has been described in section 3.2.3.

3.3.4. Comparison of the experimental temperature dependence of J_{H_C} with theory

The curves obtained for the 26% Al alloy aged for 3 hours and 69 hours at 500°C and those from the 23 and 38% Al alloys aged for 15 hours and 169 hours respectively at 500°C are compared in Figure 17 with the relationship which can be predicted from the temperature dependence of the crystal anisotropy of c. The theoretical curve is derived for randomly oriented single crystal spheres acting as single domains using the expression of Stoner and Wohlfarth [13] (see section 1.3.3.),

$$J_{H_C} = \frac{0.958k}{J_s}$$

This expression assumes that magnetisation changes take place by coherent rotation of the magnetisation vector. The crystal anisotropy constant, k, was taken as the sum of K_1 and K_2 the variation with temperature of which is shown in Figure 2. Values of J_s (saturation magnetisation) were taken from a curve shown by Besnath [61]. Above 250°C the calculated change in coercivity is shown as a broken line. The nature of the anisotropy of c above 250°C is such that $[1120]$ and $[1010]$ are mutually preferred directions.
FIG. 17 - Temperature dependence of J_H of nickelloy samples and calculated temperature dependence of J_H of k.c.p. cobalt.

A calculated from theory
B 35% Al 150 hours at 500°C
C 28% Al 63 hours at 500°C
D 25% Al 3 hours at 500°C
E 23% Al 15 hours at 500°C
of magnetisation; i.e. the anisotropy is not uniaxial. The preferred
directions lie in the (0001) plane of the c structure. The magnetisation
of a single domain particle exhibiting this type of anisotropy can, therefore,
rotate quite easily within (0001). There is thus no necessity for the
anisotropy forces involved in rotation through the $[0001]$ direction to be
overcome. The broken line in the Figure was calculated using the above
expression for J_c, based on uniaxial anisotropy, i.e. neglecting the
assumption that the magnetisation vector must pass through $[0001]$. For
the reasons outlined above this assumption is not believed to be valid
but the change in coercivity calculated on this basis was, to some extent
compaticble with that observed in practice.

a. Qualitative similarities between experimental and theoretical
temperature dependence of J_c

From Figures 15, 16 and 17 it is clear that the experimental
results differ considerably from the ideal relationship. Nevertheless,
in the case of the samples from the 28% Al alloy aged for 136 hours at
450°C, 69 hours at 500°C and 71 hours at 550°C and those from the 23% Al and
38% Al alloys aged for 15 hours and 150 hours at 500°C respectively all
containing $c + @$, a substantial continuous decrease in J_c with increasing
temperature was observed. A reversible temperature dependence of this
magnitude is explicable only in terms of crystal anisotropy and it must be
concluded that these samples derived their coercivity from this factor.
The decrease in J_c with temperature of the 28% Al alloy aged for 3 hours
at 500°C (containing $c + @$) is similarly difficult to understand unless
crystal anisotropy is involved but the form of curve differs from that
of the previous group of samples. This curve and those for the samples
aged for 1 hour at 500°C (containing $c + @$), and 1 hour at 650°C (containing
$a + \epsilon + @$) are discussed in section 3.6, and are found to be influenced
by the magnetic properties of β. Allowing for this influence the curves
are shown to be consistent with a coercivity derived from the crystal
anisotropy of c, a result which is particularly interesting in the case of
the sample aged at 650°C which contained both c and a. In every case, therefore, except the sample aged for 1 hour at 750°C (containing a + b and a trace of c), where the change in J_c was small and inconclusive, it is possible to conclude that coercivity arose largely from the crystal anisotropy of c.

b. Departure of the experimental temperature dependence of J_c from that predicted by theory.

The difference between the experimental and theoretical results can be considered under three headings:

1) The magnitude of J_c between room temperature and about 200°C

2) The increase in measured J_c in the higher temperature range (above about 350°C)

3) The magnitude of the minimum J_c and the temperature at which the minimum occurs.

i) The difference between theoretical and measured J_c between room temperature and 200°C is not surprising. Various factors which can account for the reduced values obtained in practice, (e.g. incoherent rotation of magnetization, particle size variation, structural defects, etc.), are outlined in section 1.1.4. Furthermore, it is shown in section 3.6 that the J_c at room temperature of the samples from the 28% Al alloy aged for 1 and 3 hours at 500°C and for 1 hour at 650°C is reduced by the influence of the matrix phase b which is magnetic in samples aged for short times.

ii) According to theory the crystal anisotropy of c approaches zero at 250°C. At higher temperatures the structure becomes anisotropic but, as pointed out earlier, the anisotropy is essentially planar rather than uniaxial. The broken line in Figure 17, representing calculated coercivity above 250°C, was derived on the assumption that the anisotropy was uniaxial. This assumption is clearly invalid and yet a corresponding increase in measured coercivity was observed at temperatures above about 350°C. It is
possible that there might be a small increase in coercivity as the
material passes from the isotropic state at 250°C to the planar anisotropic
state at higher temperatures but the small effect observed for the
35% Al alloy (Figure 16) is more easily explained on this basis than the
such greater increases occurring in the 23% and 28% Al alloys (Figures 15
and 16).

The increases are even more difficult to understand when the
effect of the change in crystal anisotropy on single domain size is
considered. According to Went et al.11 (section 1.1.3.) single domain
size is proportional to $\sqrt{K/J_s}$ where K is the crystal anisotropy constant
and J_s is saturation magnetization. On heating to 250°C, K approaches
close to zero while there is only a small decrease in J_s. Single domain size
is, therefore, reduced and if, as a result, some of the particles
become multi-domain there will be a tendency for coercivity to be
reduced which will be additional to the straightforward influence of
decreasing crystal anisotropy. Above 250°C anisotropy increases but
because rotation of the magnetisation vector between adjacent domains
can occur easily in the basal plane, the energy of domain boundaries
will be low. The formation of boundaries will thus be energetically
favoured in relatively small particles (see section 1.1.3.). It is
likely, therefore, that multi-domain particles would be present above
250°C in a precipitate which at room temperature consisted largely of
single domains.

It is possible that particles which have planar crystal
anisotropy might exhibit uniaxial anisotropy due to their shape. Single
domain, shape anisotropic particles have high coercivity, but there is
no reason why this effect should vary with temperature and the coercivity
of such particles would, of course, be low if the particles were multi-
domain due to low crystal anisotropy.

It is difficult, therefore, to account for the increasing
coercivity of Melcolloy above 350°C. However, in section 3.4 it is
shown that the crystallographic relationship between the c precipitate and the α matrix is such that both are likely to be subjected to coherency strains. (Note that line broadening, in the X-ray diffraction patterns of the two phases, which was mentioned in section 3.2.3., can be attributed to mutual strain). Elastic strain could influence the anisotropy of the precipitate in two ways. The distortion of the crystal structure of the particles might significantly alter the crystal anisotropy and, possibly the variation of crystal anisotropy with temperature. In addition, some degree of strain anisotropy may be introduced. The combined influence of these effects on the coercivity and the temperature dependence of coercivity of the precipitate is impossible to predict. It can be suggested, however, that some directions in (0001) might, due to distortion of the crystal structure, become preferred directions of magnetization relative to others in the same plane, at temperatures when the unstrained structure has planar anisotropy (above 250°C). Rotation of the magnetization vector within (0001) would thus be hindered, resulting in increased domain boundary energy and single domain size and in increased coercivity. Since this effect would be due to the crystal anisotropy of the distorted structure some variation with temperature might be anticipated. The observed increase in J_{c} at temperatures above about 350°C may, therefore, be explicable in these terms.

It should also be noted that h.c.p. cobalt is not normally stable above about 420°C. Data relating to the anisotropy at higher temperatures is consequently not available. It has been assumed in the above discussion that the observations of Honda and Inoue regarding the anisotropy of c between 250 and 400°C, can be extrapolated to higher temperatures. It is conceivable that this might not be true in which case the increased J_{c} in the higher temperature range might be associated with some unexpected form of anisotropy in the c precipitate.
iii) At 250°C c is isotropic (Figure 2). Since single domain size decreases with anisotropy on c dispersion which was a system of anisotropic single domains at room temperature would consist largely of isotropic multi domain particles at 250°C. The coercivity of such a system would clearly be low. In Figure 17 coercivity at 250°C, calculated purely from crystal anisotropy, is zero; this would not be the case in practice because even when domain boundaries are present some energy is required to bring about magnetisation changes by domain boundary movement. The coercivity of such a system is impossible to predict but the coercivity of c particles on heating would be expected to reach a minimum value when anisotropy was a minimum i.e. at 250°C. The results obtained for the Halcolloy alloys give minima at higher temperatures varying, depending on composition and heat treatment, between 300°C and 450°C.

Neil et al\(^{60}\) attributed similar effects to the presence of impurities. In the present case, however, no difference was observed between the high purity and commercial purity 28\% Al alloys (Figure 15). It seems likely that the difference between the observed and theoretical minima can be attributed to the unpredictable effect of coherence strains on the anisotropy of c as discussed above.

C. Conclusions

With the exception of the sample from the 28\% Al alloy aged 1 hour at 750°C, the \(J^c\) of the Halcolloy alloys has been found to be extremely temperature dependent. After ageing for 1 hour at 750°C the precipitate was largely c and the change in coercivity with temperature was small and inconclusive. In all the other samples tested the precipitate consisted either entirely of c or of a plus a substantial proportion of a; the reversible temperature dependence of \(J^c\) of these samples is explicable only in terms of the crystal anisotropy of c.

The change in coercivity with temperature differed considerably from the theoretical relationship. The differences are not understood but it may be that coherence strains in the c precipitate might have some influence.
3.4. The Formation of the Metastable c Precipitate in Hulcolloy

3.4.1. Introduction

It has been shown that the c precipitate, present in the Hulcolloy alloys, is a metastable constituent produced under conditions for which c is the stable allotrope. The properties of the alloys have been shown to arise from the crystal anisotropy of the c particles and when c was present the coercivity was reduced. It is clear, therefore, that the mechanism by which c is formed and retained is of some interest and an investigation of the nature of the precipitation process has been carried out.

Experiments to examine two possible processes by which c might be precipitated are described below.

3.4.2. Growth of c from h.c.p. nuclei produced on quenching

In section 3.2.2. it was stated that in encapsulated powder samples there was some difficulty in completely retaining cobalt in solid solution by water quenching from the solution treatment temperature. This problem was easily overcome but it was possible that even in bulk samples there might be some undetected precipitation occurring during quenching which might take place, in part, at temperatures at which c was the stable modification of cobalt. It was feasible, therefore, that h.c.p. nuclei could be produced and that, on subsequent ageing, growth of these nuclei would result in the development of an c precipitate.

In examining this possibility a sample from the 26% Al alloy was solution treated for half hour at 1380°C and quenched into molten tin at 500°C. The sample was then transferred directly to a furnace, already at the ageing temperature of 500°C, and aged for 20 hours. Thus the temperature of the sample was never allowed to fall below that at which c becomes stable in this system (300°C). X-ray examination at room temperature showed that, as with the water quenched and aged samples, the precipitate was c.
It has been shown previously that \(\alpha \) was not produced by transformation from \(\gamma \) on cooling from the ageing temperature. Thus \(\alpha \) was both nucleated and grown at temperatures for which \(\alpha \) was the equilibrium phase and it was not possible that the precipitate developed from h.c.p. nuclei produced as a thermodynamically stable component during quenching.

3.4.3. The formation of \(\epsilon \) due to the crystallographic relationship between precipitate and matrix

It was possible that the \(\epsilon \) precipitate was nucleated and grown due to a more favourable lattice correspondence, between \(\epsilon \) and the matrix, on certain crystallographic planes, than existed with equilibrium \(\alpha \); i.e. the surface energy was lower if the precipitate was \(\epsilon \) than if it was \(\alpha \). In this case \(\epsilon \) could be described as a transition phase analogous to the coherent or semi-coherent metastable precipitates found in various age hardening alloys, (e.g. Suraluminium).

a. Determination of the crystallographic relationship

To evaluate the above hypothesis it was first necessary to determine the orientation relationship between \(\epsilon \) and \(\beta \).

The 60Co alloy alloys are extremely brittle and attempts to prepare thin foils, from which the precipitate orientation could have been determined by electron diffraction, were unsuccessful. The grain size of the material was sufficiently large (1-2 mm diameter) for Laue back reflection photographs to be obtained from single grains in aged samples. These photographs, although revealing clear patterns representing the \(\beta \) matrix, contained no reflections arising from the \(\epsilon \) precipitate and thus gave no indication of the relationship between the two phases. It was concluded that the \(\epsilon \) particles were oriented at a variety of angles to the incident beam; and a number of different Laue patterns should, therefore, have been produced but presumably these multiple reflections were too weak to be recorded. This view was substantiated when the orientation relationship was successfully
Fig. 16 - Exothermic Mould and Chill Assembly
established using the Debye-Scherrer X-ray camera as described below.

I. Preparation of samples with known matrix orientation

A cast of commercial purity, with an analysed composition of 27.7% Al, was poured into a mould and chill assembly as shown in Figure 18. The mould, prepared by the CO₂ technique, consisted of the following mixture of materials and reacted exothermically upon ignition.

70 wt% silica sand
15 \% aluminium powder
7.5 \% sodium nitrate
2.5 \% sodium silico-fluoride
5 \% sodium silicate

After ignition was complete the molten alloy was poured into the mould and allowed to solidify. The mould temperature immediately prior to casting was estimated to be in excess of 1500°C. There was thus little tendency for heat extraction except in the direction of the chill and the result was a columnar crystal structure with the long axes of the crystals perpendicular to the chill face. This technique of exothermic casting is used commercially in the preparation of crystal oriented permanent magnets.

A sample (1 cm x 1 cm x 2 cm) from this cast was solution treated at 1350°C and water quenched to retain \(c \). It was then sectioned perpendicular to the columnar axis and etched to reveal cross sections through about 50 crystals. The orientations of 10 crystals near the centre of the section were determined by Laue back reflection (see Figure 5c) to show that in every case \(<100>\) was within 2° of the normal to the section. The sample was next aged at 500°C for 15 hours to induce precipitation of \(c \). After ageing \(J_h \) was 1250 Oe (the magnetic properties of columnar Malcolloy samples are examined in Chapter 4).
The orientation relationship commonly observed between h.c.p. and b.c.c. structures, the Burgers relationship, is for the closest packed planes and directions in each structure to be parallel; i.e., (0001) h.c.p. parallel to (110) b.c.c. and <1120> h.c.p. parallel to <111> b.c.c.

Assuming that the Burgers relationship existed between the h.c.p. precipitate and b.c.c. matrix in the alloy, it was possible, using the stereographic camera and the columnar specimen of known matrix orientation, to establish conditions for diffraction, from a particular plane in the particles, such that if the assumption was valid, diffraction from the selected plane only would be recorded on the film.

The camera was set up so that the normal to the columnar specimen cross section (i.e., <001>) of the incident beam of monochromatic chromium Kα radiation and a cylindrical film strip, were in the same plane, which can be described as the plane of the camera. The c plane selected for study in the first instance was (1011)c. Figure 19 shows the anticipated relationship between (001)b (the specimen section), (011)b, (0001)c, and those (1011)c poles associated with (0001)c parallel to (011)b. Since (011) planes contain two <111> directions there are, in each (011)b plane, two possible orientations for <1120>c and, therefore, two possible positions in the stereographic projection for each (1011)c pole. There are thus 24 possible positions for (1011)c poles associated with each (0001)c pole, (only 12 are shown in the figure, a further 12 are on the reverse side of the projected sphere). The broken line in the figure represents the plane of the camera and it can be seen that if the specimen rotates about [001]b (1011)c poles move through this plane.

Using Cr Kα radiation the Bragg angle 0 for (1011)c is 37°. The two possible positions of (1 101)c poles in figure 19 are at 18° to the pole of the specimen section (i.e., (001)b). Therefore, if the incident beam makes an angle of 19° (i.e., 37° − 18°) to the specimen section (i.e., 71° to the (001)b pole in the figure), and if the assumed orientation relationship exists, conditions are established for diffraction from (1 101)c.
Fig. 19 - (001)β projection with (0001)c and (1011)c poles superimposed according to the Burgers relationship (only those (1011)c poles associated with (0001)c parallel to (011)β are shown).

The broken line represents the plane of the camera, as defined in the text, and the point marked X is the position of the X-ray beam incident on (001)β at 19°. The circles show the movement of (1011)c poles on rotation about [001]β.
Fig. 20 - (001)c projection with (0001)c and (1120)c poles superimposed according to the Burgers relationship (only those (1120)c poles associated with (0001)c parallel to (101)c are shown)

The broken line represents the plane of the camera, as defined in the text. The point marked X is the X-ray beam incident on (001)c at 55°. The circles show the movement of the poles on rotation of the specimen.
as the normal to this plane rotates into the plane of the camera. The diffracted beam will also be in the plane of the camera and will be recorded on the film. There are twelve possible orientations of (0001)c planes; i.e. parallel to (011)c (only eight are shown in the figure, four being on the reverse side of the projected sphere). On rotation, four of these move into positions such that diffraction, in the plane of the camera, from two of the associated (1011)c planes will occur. Assuming that all the possible orientations described by the Burgers relationship are present, conditions for diffraction from (1011)c are thus established eight times during rotation through 360°. (Those (1011)c planes associated with the (0001)c planes whose poles are on the reverse of the projected sphere, and those associated with (0001)c planes which are at 90° to (001)c make angles with the incident beam which do not approach the Bragg angle in or near the plane of the camera).

A diffraction pattern was, therefore, obtained with the incident beam at a constant angle of 19° to the specimen section and with the specimen rotating about the columnar axis in order to obtain diffraction from (1011)c. Rotation was eccentric with respect to the point of incidence with the X-ray beam so that a number of grains were irradiated. The area examined was near the centre of the section and contained those grains, the matrix orientation of which had been determined as described earlier. Only one line from the diffraction pattern of c appeared on the film, the anticipated (1011)c reflection at a c value of 1.91a.

The angle between the incident beam and the specimen section was then adjusted to 57° in order to establish conditions for diffraction from (1120)c, (θ = 66.5°), as shown in Figure 20. The resulting diffraction pattern contained a single line which was the anticipated (1120)c reflection.

III Discussion of the technique

The fact that the anticipated reflections appeared in both
experiments is consistent with the existence of the Burgers relationship.
It could be argued, however, that these reflections might conceivably
occur even if some other orientation relationship existed. If the
precipitate was oriented in some unexpected manner the incident beam
would be incident on planes in the precipitate at a variety of angles
and conditions for diffraction from some c planes, including those
sought, might be established by chance. We are concerned only with
diffraction occurring when the normal to the diffracting plane and,
therefore, the diffracted beam, is in the plane of the camera. The
possibility of such reflections occurring by chance is clearly dependent
on the number of different angles which the plane makes with the
incident beam within the plane of the camera. This number can, in these
experiments, be quite large; for example, it is easily shown that (1010)c
planes make 24 different angles with the incident beam within the plane
of the camera when the precipitate is oriented according to the Burgers
relationship. In either of the experiments it is, therefore, conceivable
that the plane sought might be detected, by chance, in the absence of
the anticipated orientation relationship. It is extremely unlikely,
however, that coincidence could be responsible for the appearance of
reflections from the selected planes in both experiments. Diffraction
from both selected planes could only be expected if the orientation vas,
either as anticipated or was such that c planes made a great many angles
with the incident beam in the plane of the camera. In the latter case,
reflections would inevitably be recorded from planes other than those
sought in the experiments. Such additional reflections were not observed
and it can be concluded, therefore, that the results of the two
experiments confirm an approximate correspondence with the Burgers
relationship.

Because the experiments were designed to promote diffraction
only when the normal to the anticipated planes end, therefore, the
The broken line is the plane of the camera and X marks the incident beam. The circles A and B show the possible spread of (001)θ and (110)θ poles respectively.

The arc C shows the movement of the most extreme (110)θ pole on rotation about (001)θ and the points D show the stages during rotation at which diffraction from (110)θ will take place, i.e. about 90° above and below the plane of the camera.
Displaced beams were in the plane of the camera, the reflections should have been detected as a spot. In fact a line was recorded in both cases. Figure 21, using the first experiment as an example, shows that this can be attributed to the fact that on rotation a number of grains in the specimen were irradiated. As shown earlier, the \(<001> \parallel \) axes of the columnar grains could deviate by up to \(2^\circ \) from the normal to the surface. The position of \(\{001\} \parallel \) poles is, therefore, more correctly represented, as in Figure 21 within a circle of radius equivalent to \(2^\circ \), than as in Figure 19 where the deviation of \(<001> \parallel \) from the specimen normal has been disregarded. It can be seen from Figure 21 that due to the deviation of \(<001> \parallel \) axes the Bragg condition could be satisfied when the normals to \(\{10\overline{1}1\} \parallel \) \(c \) up to about \(9^\circ \) above or below the plane of the camera. By plotting the diffracted beam on the stereographic projection it can be shown that the resulting reflection could be up to \(11^\circ \) above the plane of the camera. By simple trigonometry, therefore, the reflection recorded on the cylindrical film strip (radius 5.73 cm) could be elongated by up to about 1.1 cm on either side of this plane; i.e. to give a line 2.2 cm long bisected by the centre line of the film strip.

Because of the differences in the orientations of the matrix grains the technique is not sensitive to small deviations from the anticipated orientation relationship. The extent to which deviation could occur while the observed lines were produced is examined below.

Consider the first experiment. In Figure 19 the specimen is positioned so that the normal to \(\{1\overline{1}01\} \parallel \) \(c \) lies in the plane of the camera. If the orientation of \(c \) deviated from that anticipated so that \(\{0001\} \parallel \) \(c \) was not parallel to \(\{011\} \parallel \) but was rotated towards \(\{\overline{1}1\} \parallel \) \(b \), so that at this stage of rotation the pole of \(\{1\overline{1}01\} \parallel \) \(c \) was above or below the plane of the camera, conditions for diffraction in the plane of the camera would not exist. Figure 22 (neglecting the spread of \(<001> \parallel \) poles) shows the position if \(\{0001\} \parallel \) \(c \) is inclined at \(10^\circ \) to \(\{011\} \parallel \) \(b \) so that, at the stage of rotation shown in Figure 19, the \(\{1\overline{1}01\} \parallel \) \(c \) pole is 10 \(\overline{10} \) above
Fig. 22 - Stereographic projection on axis y so that, at the stage of rotation shown in Fig. 19, (110) is 10° above the plane of the camera. The arc x is 3x that of Fig. 19.

The broken line is the plane of the camera and x is the incident beam.

The arc A shows the movement of the (110) pole on rotation about (001) and the points B show the stages during rotation at which diffraction from (110) will take place, i.e. about 8.5° above and below the plane of the camera.
the plane of the camera. As rotation proceeds it can be seen that in
the plane of the camera the angle between (1101) c and the beam is less
than 0 but that when the normal to (1101) c is 8.5° above or below the
plane of the camera, conditions for diffraction are established. Thus
the diffracted beam will intersect the film at positions about 1.1 cm
above and below the centre line. Due to the deviation of (001) β planes
from the specimen section, as discussed earlier, the points of intersection
will be elongated to give lines about 2.2 cm in length. These reflections
will, therefore, meet at the centre of the film giving a continuous line.
If (001) c rotated by more than 10° towards (111) β, the line would be
discontinuous at the centre of the film. Since no such discontinuity was
observed, it follows that this angle was not exceeded.

Similar analysis of the effect, on the result of the first
experiment, of the rotation of (0001) c away from (011) β towards (1101) β,
(110) β, (001) β or (010) β, shows that the observed pattern would not
have been obtained if rotation exceeded 3°. According to the Burgers
relationship <1120> c should be parallel to <111> β. Consideration of
the influence on the diffraction pattern obtained in the first experiment
of variation from this directional relationship shows that deviation of
up to 10° was possible. Thus deviations of up to 10° from both the planar
and directional aspects of the Burgers relationship could not be excluded.

Analysis of the extent to which deviation from the Burgers
relationship could occur while producing the line observed in the second
experiment ((1120)c) shows that rotation of (0001) c towards (110) β,
(110) β, (100) β or (001) β could be up to 5°, i.e. a little more than
in the first experiment. All other deviations, however, including the
rotation of (0001) c towards (111) β and the rotation of the directional
relationship, both of which could approach 10° in the first experiment,
were restricted to less than 3° in the second.

It is clear that the accuracy of the technique would be
improved if the X-ray beam was incident on only one matrix grain so that the spread of matrix orientations was eliminated. As stated earlier, the matrix grain size was sufficiently large (diameter around 1 - 2 mm) for Laue photographs to be obtained from individual grains, i.e. for single grains to be irradiated. For this purpose, however, the incident beam was perpendicular to the specimen surface and the specimen was stationary. In order to determine the precipitate orientation it was necessary, for the reasons described above, to rotate the specimen and to set the incident beam at an angle to the specimen surface. As a result the cross section of the incident beam, at its intersection with the specimen surface, was an ellipse with a principal axis of length similar to a grain diameter. On rotation of the specimen it did not prove possible to restrict irradiation to a single grain and a diffraction pattern, obtained with the incident beam at 59° to the specimen surface (as in the second experiment described above), consisted of a line, (the (1120) reflection as in the second experiment). If only one grain had been irradiated, this reflection should have been recorded as a spot. It was not possible, therefore, to improve the sensitivity of the technique by this approach.

From the combined results of the experiments discussed above it follows that the orientation relationship between the precipitate and the β matrix did not deviate by more than 5° from that anticipated. It can be concluded, therefore, that the Burgers relationship or a close approximation to it existed; i.e. (0001) c approximately parallel to (110) β and <1120> c approximately parallel to <111> β.

b. The formation of the h.c.p. c precipitate

Having established the approximate orientation of the c precipitate in the β matrix it is possible to consider whether the nature of the orientation relationship might be expected to favour the formation of an h.c.p. rather than an f.c.c. structure.

It can be suggested that nucleation of the precipitate occurs in small regions of the matrix which, due to micro-inhomogeneity or
agglomeration prior to precipitation, are rich in Co. The structural
difference in such regions is, therefore, essentially the transition of
"b.c.c. cobalt" to h.c.p. cobalt. Burgers, in a study of zirconium
crystals, shows that the b.c.c. to h.c.p. transition, leading to the
orientation relationship observed in the present work, can occur by a
series of shear operations. It may be useful to relate this type of
mechanism to the precipitation of cobalt in Inconelloy.

Burgers' mechanism involves three basic steps:

1. A shear along an(112) b.c.c. plane parallel to [111] b.c.c.
directions in this plane, such that the angle of 70° 32' between
[111] b.c.c. directions in the (110) b.c.c. plane which is perpendicular
to the plane of the shear is changed to the angle between [1120] h.c.p.
directions (60°) (Figure 23a).

2. The movement of the central atom of the resulting unit
cell over $\frac{1}{6}$ of the length of the long diagonal of the base of the unit
cell, to give a lattice approximating to h.c.p. (Figure 23 b).

3. Alterations in the dimensions of the lattice obtained in
1 and 2 to give the exact parameters of the new h.c.p. structure.

Of these three steps the second is the most difficult to
accomplish because this involves the movement of every atom in alternate
(110) b.c.c. or (0001) h.c.p. planes. Burgers shows that the necessary
movement can be accomplished in two further shearing operations.

2a. A shear parallel to (011) b.c.c. planes in the direction
of the long diagonal of the base of the cell produced in step 1 above,
(see Figure 23b) so that successive planes are moved with respect to
each other over $\frac{1}{6}$ of the length of the diagonal.

2b. A shear in the same plane as 2a and in exactly the
opposite direction, such that pairs of planes move simultaneously,
successive pairs moving relative to each other over $\frac{1}{3}$ of the length
of the diagonal.
Fig. 23a - First shear in Burger's mechanism for the transition of b.c.c. to a.c.p.

O = atoms in (011) b.c.c.
• = atom after shear to change the angle between [111] from 70° 32' to 60°

a, b, c, d indicate the atoms in the base of the unit cell shown in Fig. 23b

(112) b.c.c. perpendicular to paper
Fig. 235 - The second step in Burger's mechanism for the transition of b.e.c. to b.c.p.
The significant point is that step 2a results in a structure containing a face centred unit cell. Small alterations to the dimensions of this lattice would give a face centred cubic cell and Burgers suggests that the b.c.c. to h.c.p. transition in zirconium might proceed via an intermediate f.c.c. structure. (Note that the mechanism embodied in steps 1 and 2a to transform b.c.c. to f.c.c. is the reverse of the well known Kurdjumov and Sachs mechanism for the transition of austenite to martensite in carbon steel.)

In the case of the precipitation of cobalt in Hécolloy the stable form of the precipitate is f.c.c. α and we are attempting to account for the appearance of h.c.p. c. Since the mechanism outlined above produces an intermediate structure approximating to f.c.c. it would, presumably, result in the formation of stable f.c.c. α as a precipitate in Hécolloy. It is interesting, however, to consider the nature of the interface between a transforming region and the matrix, as the steps outlined above take place. Step 1 results in a region with crystal structure differing from that of the matrix but (112) matrix planes form a coherent interface with the sheared region. If step 2 proceeds indirectly via step 2a this coherency is destroyed, resulting in an increase in interfacial energy. If, on the other hand, the necessary movement of alternate planes of atoms (step 2) takes place directly, it is possible for atoms of the undisturbed planes to maintain complete coherency with the matrix. After the adjustments to the parameters of the transformed lattice, step 3, to give a h.c.p. c nucleus in a b.c.c. β matrix, the planes at the coherent interface are (1100) c and (112) β. Figure 24 shows that the atomic arrangements on (112) β and (1100) c planes are similar; mismatch does not exceed 2%. The persistency of the coherent interface when a h.c.p. nucleus is established is therefore likely. Thus if nucleation is considered to occur by a shear process it is reasonable to suggest that the mechanism leading to the f.c.c. structure would be inhibited due to the necessity for creating an
Fig. 24 - Comparison of the atomic arrangement on \{\overline{1}00\}\varepsilon and \{112\}\beta
incoherent interface and that the process leading to an h.c.p. nucleus would be preferred.

The above discussion shows that at least one mechanism can be envisaged by which the formation of metastable c can be understood. It cannot be assumed, however, that the postulated shear mechanism is in fact responsible for nucleation of the precipitate. It may be, for example, that nucleation takes place simply by the assembly of Co atoms in the form of an h.c.p. structure, the necessary re-arrangement of atoms occurring simultaneously with the migrations of cobalt and aluminium atoms needed to establish the change in composition from β to c. For any nucleation mechanism, however, the argument regarding coherency between (1100) c and (112) β is valid. It is reasonable to suggest, therefore, that a particle of c could exist with a partially coherent and low energy interface with the β matrix, and thus have low surface energy.

As particle size increases surface energy increases as the square of the radius while bulk free energy increases as r^3. Thus the importance of surface energy relative to the total energy associated with a precipitate particle decreases with increasing radius. Nevertheless, surface energy is significant in small particles where the surface to volume ratio is high and the structure of a small particle or nucleus may well be influenced by surface energy considerations. As a result, the formation of a metastable but coherent c structure might be favoured. Examination of the atomic arrangement on planes of low indices, (up to (221)), and, therefore, high reticular density in f.c.c. c and b.c.c. β shows that in no case is mismatch less than about 12%. The possibility of the existence of coherency planes with higher indices than (221) cannot be excluded but because the packing density of atoms on such planes is low the advantage in terms of surface energy would be less than that associated with coherency between (1100) c and (112) β.
It can thus be concluded that whatever the nucleation mechanism, the metastable c precipitate in Al alloy is probably produced because of the ability of the h.c.p. structure to form a partially coherent and low energy interface with the β matrix.

c. c to a transition

It has been shown, in section 3.2.3., that initially the precipitate was completely or partially c at all the ageing temperatures studied (450 ~ 750°C). Ageing above 600°C, or for prolonged times at 600°C, however, resulted in transformation of c to α. If, as concluded above, metastable c is produced because it is partially coherent with β, transformation to stable c will eventually occur when one of the following criteria is satisfied.

It has been pointed out that the relative contribution of surface energy to the total energy of a precipitate decreases as the particle size increases. During growth of the precipitate, therefore, a stage may be reached where the increased bulk free energy, associated with the presence of the metastable structure, outweighs the decrease in surface energy due to the existence of the low energy interface. At this stage the total energy of the system will be reduced by transformation to the stable phase. It may be, on the other hand, that the c → α transition begins when, due to increasing particle size, coherency strains in either β or c become intolerable. The coherent interface will then be destroyed with a consequent increase in surface energy. Total energy will thus be reduced by transformation to stable α.

Both these possibilities assume that transition will take place at some critical particle size. The much more rapid transition of c to α at temperatures above 600°C, however, is attributed to the greater rate of particle growth during ageing in the higher temperature range. Furthermore, as the ageing temperature is increased the difference between the free energies of the allotropes becomes greater. The driving force
for transition is, therefore, increased and after either of the above
criteria is satisfied, the transformation will proceed more rapidly
than at temperatures just above the equilibrium transition temperature
d. **Particle shape and lattice strain**

If the ε precipitate is coherent with {112} β planes the
particles would be expected to form thin plates extending parallel to
{112} β in order to minimise surface energy. The electron-micrographs
in Figure 8 show signs of particle elongation and to some extent support
this view. If this is the case it follows since {1100} ε is the coherent
plane in the precipitate, that this plane and, therefore, <0001> ε
directions (the preferred direction of magnetisation with respect to
crystal anisotropy) will be parallel to the plane of the plate. In a
plate-like particle, in the absence of any crystal anisotropy, directions
lying in the plane of the plate are more easily magnetised than the
perpendicular direction, but rotation of the magnetisation vector within
the plane of the plate is easily accomplished. Since, in the present case,
the easy direction of magnetisation with respect to crystal anisotropy,
(<0001> ε) lies in the plane of the plate, the shape anisotropy of the
particle will have little influence on coercivity.

More important with respect to coercivity is the fact that
coherency will result in some degree of strain in the lattices of either
the ε precipitate or the β matrix or both. The X-ray diffraction patterns
of both phases (see section 3.2.3.) showed some degree of line broadening
which could be interpreted as indicating the existence of strain. Since
this was observed in both the ε and β patterns, it could not be a particle
size effect and the fact that broadening disappeared from both the precipitate
and matrix patterns when the precipitate was entirely ε strongly suggests
that coherency strains between ε and β were responsible. Distortion of
the ε lattice would affect the anisotropy of the structure and, therefore,
the coercivity. The existence of coherency strains might, therefore,
account to some extent for the various departures from theoretical coercivity,
both at room temperature and at elevated temperatures, discussed in section 3.3.

c. Conclusions.

It can be concluded that the observed orientation relationship,
(0001) \(\approx \) parallel to \(\{110\} \beta, \langle 11\overline{2}0 \rangle c \approx \) parallel to \(\langle 11\overline{1}1 \rangle \beta \), is compatible with the existence of a partially coherent interface between the \(c \) precipitate and \(\beta \) matrix. It is probable that the lower interfacial energy associated with \(c \) results in the nucleation of \(c \) rather than thermodynamically stable \(\beta \).

Presumably transformation from \(c \) to \(\beta \) takes place either when coherency is lost or the particle size is such that the total energy of the system is reduced by the transformation.

If the coherency hypothesis is accepted it follows that the particles will take the form of thin plates in order to minimize surface energy. The proposed crystallographic orientation of the particles with respect to their shape is, however, such that shape anisotropy will have little influence on coercivity, although this property might be affected by coherency strains within the particles.

FOOTNOTE: Subsequent to the completion of this work, a study of the crystallography of cobalt-aluminium alloys (Arkunov et al, Metallovedenie, 28, 21, 1969) came to the attention of the present author when published in an English translation in 1971. This work, referred to at the end of section 3.2, and discussed in Appendix II, confirms the orientation relationship established above and reports the existence of strain in the matrix lattice. The latter point supports the hypothesis postulated in the present work regarding probable coherency between \(c \) and \(\beta \).
3.5. The Metastable Co-Al Phase Diagram

3.5.1. Introduction

In attempting to understand the magnetic properties of any alloy it is obviously desirable that the compositions and amounts of the phases present should be predictable. This information can normally be derived from the equilibrium phase diagram. In the case of the Malcolloy alloys, however, ageing below 600°C results in the precipitation of ε as a metastable constituent and it is possible that the equilibrium phase diagram for the cobalt-aluminium system (Figure 3) will not accurately represent either the proportions or the compositions of the phases present after heat treatment in this temperature range. It was necessary, therefore, in studying the properties of the Malcolloy alloys, to establish the nature of the metastable equilibrium between ε and β.

3.5.2. The composition of the ε precipitate.

According to the equilibrium phase diagram (Figure 3) ε, when present as a thermodynamically stable phase below about 400°C, contains little or no aluminium in solid solution. Bradley and Seager state that the solubility of aluminium in ε is negligible. The solubility of aluminium in α is, on the other hand, quite significant, increasing from 2% at 300°C to 15.5% at 1400°C. Within the range 450-600°C, shown in the present work to give metastable ε, the solubility of aluminium in stable α is between 4 and 6%. The first requirement, therefore, was to determine the solubility of aluminium in metastable ε at these temperatures. This was conveniently carried out by measuring the variation of specific saturation (σ) with temperature (σ, T curves).

Figure 25 shows three σ, T curves. Curve A is the relationship for pure cobalt (according to Bozorth) reduced by 60%; this can therefore be regarded as the curve for pure cobalt in the presence of 60% by weight of non-magnetic material. Curves B and C are heating.
curves determined using a Sucksmith balance, and show the change in ε
with temperature for two samples from the 25% Al alloy. One of these
samples (B) had previously been aged for 169 hours at 500°C to precipitate
ε. The other (C) contained substantially ε precipitated at 500°C and
brought into equilibrium at 500°C by subsequent ageing for 70 hours at
that temperature. In both cases the matrix phase, α, was non-magnetic
at and above room temperature. The difference between curves B and C
cannot be attributed directly to the crystal structure of the cobalt
precipitate because the change in ε associated with the allotropic
transformation is very small. (James and Sucksmith detected a 1.5% increase in ε during the h.c.p. to f.c.c. transition in pure cobalt).
It can be assumed, however, that in the case of the sample represented
by curve C, aluminium is in solution in the ε precipitate causing sub-
stantial deviation from curve A (pure cobalt). It follows, since curve B
(ε precipitate) and curve A (pure cobalt) are identical up to 600°C,
that the ε precipitate did not contain a significant amount of aluminium
in solution. At temperatures above 600°C the precipitate has been shown
to become a mixture of α and ε (section 3.2.3.) and the observed deviation
of curve F from curve A at these temperatures can be attributed to the
solution of aluminium in ε. The variation of ε with temperature was also
determined for a sample from the 25% Al alloy aged for 28 hours at 600°C.
The resulting α, ε curve was virtually identical to curve A. It can be
concluded, therefore, that aluminium displays little or no solubility
in ε at temperatures up to 600°C.

3.5.3. The composition of ε in retraceable equilibrium with č

From the equilibrium phase diagram (Figure 3) it can be seen
that the composition of ε in equilibrium at 600°C is such that the phase
is magnetic at room temperature with Tc (Curie temperature) of about 100°C.
The presence of magnetic ε would have resulted in an inflection in the ε,
T curve (as in Figures 29 and 30) but the measurements discussed above showed no inflection, indicating \(\beta \) in metastable equilibrium with \(\epsilon \) at 600\(^\circ\)C to be non-magnetic at room temperature (i.e. \(T_c \) less than room temperature). Furthermore, the amount of cobalt precipitated at 600\(^\circ\)C should, according to the equilibrium phase diagram, be less than that produced at 500\(^\circ\)C. After ageing at 600\(^\circ\)C, therefore, \(\epsilon \) of the alloy at room temperature should, if \(\beta \) is non-magnetic, be lower than after ageing at 500\(^\circ\)C. In fact, the \(\sigma \), \(T \) curves for samples aged at 500\(^\circ\)C and 600\(^\circ\)C were identical suggesting the presence of similar quantities of precipitate. The implications are that \(\beta \) in metastable equilibrium with \(\epsilon \) at 600\(^\circ\)C has a composition richer in aluminium than that predicted by the equilibrium phase diagram, (i.e. the position of the \(\beta \) phase field boundary is shifted towards higher aluminium contents), the composition of \(\beta \) in equilibrium with \(\epsilon \) at various temperatures was determined by X-ray diffraction techniques as follows.

a. The effect of composition on the lattice parameter of \(\beta \)

First the variation in the lattice parameter of \(\beta \) with composition was determined. Samples from several of the arc melted casts referred to in section 3.1. were crushed to -200 mesh powder, solution treated for 4 hour at 1350\(^\circ\)C and water quenched to retain \(\beta \). The lattice parameter 'a' of \(\beta \) was then measured, for each sample, from X-ray diffraction patterns obtained in the Debye camera. Unfiltered chromium radiation was used and lattice parameters, derived by extrapolation against the Nelson-Hiley-Taylor-Sinclair function, were reproducible to within \(\pm 0.0005\)\(^\circ\). The relationship between lattice parameter and composition is shown in Figure 26 and in Table 12, (values of 'a' are quoted to the nearest \(0.0005\)\(^\circ\)). In Figure 26 the results obtained are compared with those reported by Bradley and Seager\(^65\) and Cooper\(^59\). The differences observed may be attributable to impurities in the material used in the present work (see section 3.1.).
Fig. 26 - Variation of the lattice parameter (a) of β with composition.
TA6LS 12

<table>
<thead>
<tr>
<th>T</th>
<th>m</th>
<th>C * > e</th>
<th>i l</th>
<th>2.654</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>450</td>
<td>30.1</td>
<td>2.654</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>503</td>
<td>47.5</td>
<td>2.654</td>
<td></td>
</tr>
<tr>
<td>ISO</td>
<td>525</td>
<td>43.4</td>
<td>2.654</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>600</td>
<td>31.3</td>
<td>2.654</td>
<td></td>
</tr>
</tbody>
</table>

Table Content

<table>
<thead>
<tr>
<th>T</th>
<th>m</th>
<th>C * > e</th>
<th>i l</th>
<th>2.654</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>450</td>
<td>30.1</td>
<td>2.654</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>503</td>
<td>47.5</td>
<td>2.654</td>
<td></td>
</tr>
<tr>
<td>ISO</td>
<td>525</td>
<td>43.4</td>
<td>2.654</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>600</td>
<td>31.3</td>
<td>2.654</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>m</th>
<th>C * > e</th>
<th>i l</th>
<th>2.654</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>450</td>
<td>30.1</td>
<td>2.654</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>503</td>
<td>47.5</td>
<td>2.654</td>
<td></td>
</tr>
<tr>
<td>ISO</td>
<td>525</td>
<td>43.4</td>
<td>2.654</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>600</td>
<td>31.3</td>
<td>2.654</td>
<td></td>
</tr>
</tbody>
</table>

Table Content

<table>
<thead>
<tr>
<th>T</th>
<th>m</th>
<th>C * > e</th>
<th>i l</th>
<th>2.654</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>450</td>
<td>30.1</td>
<td>2.654</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>503</td>
<td>47.5</td>
<td>2.654</td>
<td></td>
</tr>
<tr>
<td>ISO</td>
<td>525</td>
<td>43.4</td>
<td>2.654</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>600</td>
<td>31.3</td>
<td>2.654</td>
<td></td>
</tr>
</tbody>
</table>
The lattice parameter of \(\beta \) in the presence of the cobalt precipitate

small solid samples from the 706 Al cast were solution treated

at 1030°C and water quenched. The lattice parameter of the retained \(\beta \),
determined using the Debye-Scherrer camera, was 2.69 \(\AA \) which is in good
agreement with an extrapolation of the previous results as shown in

Figure 2b. Samples were then aged to allow \(\beta \) to core into metastable
equilibrium with \(\alpha \) and water quenched. Ageing temperatures and times
are shown in Table 13, (note that ageing time was more prolonged at
the lower ageing temperatures in order to ensure complete precipitation).

The lattice parameter of the \(\beta \) present in each sample was measured and
the composition of \(\beta \) was determined by reference to the curve shown in

Figure 2b. Lattice parameters and the derived compositions of \(\beta \) are
shown in Table 13. Lattice parameter values were again reproducible to
within \(\pm 0.0005 \) \(\AA \), giving a possible variation in the derived composition
of \(\beta \) of about \(\pm 0.5 \) aluminium (see Figure 26).

Thus the lattice parameter and, by implication, the composition
of \(\beta \) in metastable equilibrium with \(\alpha \) (aged between 300°C and 600°C) did
not vary (within the accuracy of the technique) with ageing temperature.
At higher ageing temperatures when the precipitate was in the lattice
parameter and the aluminium content of \(\beta \) decreased with increasing ageing
temperature.

3.5.4. The metastable phase diagram

In Figure 27 the compositions of precipitate and matrix,
derived above, are superimposed on the equilibrium cobalt-aluminium phase
diagram. The metastable \(\beta \) phase field boundary is shown at 60°C at all
temperatures between 300°C and 600°C. Because of the possible error in
composition determination this boundary could be moved to higher or lower
aluminium contents, within the range shown and the solubility of cobalt
in \(\beta \) might vary with temperature. It should also be noted that work
described in section 3.4.3. suggests that \(\alpha \) and \(\beta \) are partially coherent.
Fig. 27 - Compositions of \(\alpha \) and \(\beta \) in the 2014 Al alloy aged at various temperatures (superimposed on the phase diagram according to Schramm 50).

- Composition of metastable \(\varepsilon \) derived from \(\alpha \), \(\beta \) measurements.
- Feasible range of metastable \(\beta \) compositions from lattice parameter measurements.

![Phase Diagram](image-url)

- \(\alpha \) phase
- \(\beta \) phase
- Magnetic transformation of \(\beta \)

Temperature vs. Aluminium at.\%
and are thus subjected to some degree of residual strain which tends to expand the C lattice parallel to <211> B, (Figure 24). To what extent this elastic strain influences the lattice parameter of B and, therefore, the accuracy of the positioning of the metastable boundary in Figure 27, is difficult to assess. However, the vertical boundary shown is compatible with the c, T curves referred to earlier, in that c of the composition which is in metastable equilibrium at 600°C would have Tc below room temperature while the amount of a precipitated at 600°C would be similar to that present at 550°C.

Aging at temperatures above 600°C to give a precipitate resulted in c with composition in fair agreement with the phase boundary in the equilibrium phase diagram.

3.6. The Influence of the Magnetization of the Lattice Phase B on the Properties of a Microlayer

3.6.1. Introduction

From the equilibrium phase diagram (Figure 2) and from the variation of the saturation magnetization of B (B_s) with composition (Figure 6) it can be seen that T_c and B_s decrease with increasing aluminium content. On aging to precipitate cobalt, a is enriched in aluminium and, therefore, B_s (at room temperature) decreases. According to the metastable B boundary, derived in section 3.5. (Figure 27) aging at temperatures below 600°C to precipitate C will result, then the reaction is complete, in which C, below room temperature and, therefore, B_s at room temperature of zero. However, in samples in which precipitation is incomplete, the cobalt precipitate is in the presence of magnetic B. The influence of the magnetization of this phase on the permanent magnet properties of such samples must be considered.

When coercivity arises from elongated particles with low crystal anisotropy, the presence of a magnetic matrix effectively reduces the shape anisotropy and, therefore, the coercivity of the particles. 57
Fig. 26 - Schematic hysteresis loops of two materials with widely differing coercivities (solid lines) and the resulting loop if the two materials are mixed in equal proportions (broken line).
Crystal anisotropy, on the other hand, is inherent in the structure of the material and the coercivity of crystal anisotropic single domain particles is not affected by a magnetic matrix phase.

It is clear, however, that the properties of a mixture of magnetic phases must be influenced by the properties of all the constituents. It is necessary, therefore, to examine the effect of mixing phases of differing individual properties.

Gerlach, Heiklejohann, Kohlfarth, and other authors have discussed the properties of ferromagnetic materials containing a range of coercivities. The principle is summarised by Bean who states that the method of calculating the hysteresis loop of a mixture is to add the magnetisations of the components for a given field, weighting them in proportion to their fraction of the total.

The total intensity of magnetisation of a mixture of \(r \) and magnetic \(s \) is the sum of their individual contributions, each being dependent on the intensity of magnetisation and the fraction of the phase present. Figure 2 shows schematically the hysteresis loop (broken line) of a mixture of two phases, 50% of each, with coercivities differing by an order of magnitude (solid lines). It can be seen that the coercivity of the mixture is determined not only by individual coercivities of the phases present but also by the contribution of each phase to the total magnetisation. In the case of the Halcocloy alloys the coercivity of \(r \) in the solution treated condition is \(<2 \text{ Oe} \) (section 3.2.1.). Assuming the coercivity of the matrix does not change significantly during precipitation this phase will probably be saturated in a field of 3 to 5 \(x \) coercivity, i.e. \(<10 \text{ Oe} \). The contribution of magnetic \(s \) in any applied field greater than a few oersteds can, therefore, be regarded as \(\sigma_s \times \text{weight fraction} \, \beta \). In studying the properties of samples containing magnetic \(s \) it is useful, therefore, to determine \(\sigma_s \) and weight fraction \(\beta \) and to relate the product of these factors to the coercivity of the
Fig. 29 - o, T curve (heating and cooling) for the 25% Al alloy after ageing 3 hours at 500°C.
3.6.2. Experimental relationship between $\sigma \beta$, weight fraction β and J^H_c

a. Determination of $\sigma \beta$ and weight fraction in variously aged samples

Weight fraction β and $\sigma \beta$ of samples from the 28% Al alloy aged for various times at 500°C were derived using σ, T curves. These were determined by first heating to 500°C (the previous ageing temperature) and cooling to room temperature, this process being complete in about 1 hour, followed by reheating either to 600°C or the Curie temperature (about 900°C). No difference in the heating, cooling, and reheating curves over the first 500°C was observed, even for the sample previously aged for only 1 hour at 500°C. When samples were reheated to the Curie temperature and then cooled, however, the cooling curve deviated from the heating curve. Figure 29 shows heating and cooling curves between room temperature and T_c, for the sample aged 3 hours at 500°C and is typical of the effect observed. The difference was largely due to the transition of the α precipitate to α at temperatures above about 600°C, and the consequent solution of aluminium in α (see sections 3.2.3. and 3.5.2.). In general, since the structure and composition of the phases present in the higher temperature range were not representative of the as-aged condition, measurements were discontinued after heating to 600°C. Heating curves between room temperature and 600°C are shown in Figure 30. The curve for the sample aged for 169 hours at 500°C is typical of a material with only one magnetic phase, i.e. the α precipitate in the presence of non-magnetic β. In all other cases an inflection in the curve showed both the precipitate and the matrix to be magnetic.

In a mixture of phases σ of the mixture is given by:

$$\sigma = \sigma_A \omega_A + \sigma_B \omega_B$$

where ω_A and ω_B are the weight fractions of phases A and B respectively.

Therefore, if β is non-magnetic ($\sigma_\beta = 0$) and σ of the precipitate is known, the weight fractions of the phases present can be readily determined. In
Fig. 30 - σ, T curves (heating, room temperature to 600°C) for samples from the 28% Al alloy.
all the curves in Figure 30, \(T_c \) of \(\beta \) is below about 300°C thus, at
any higher temperature, \(\sigma_\beta \) is zero. The \(\sigma \) of the \(\epsilon \) precipitate has been
shown in section 3.5.2. to be equal to that of pure cobalt at temperatures
up to 600°C. Therefore, analysis of the curves in Figure 30 to find \(\sigma_\beta \)
and the weight fractions of \(\beta \) and \(\epsilon \) was easily carried out.

Consider the \(\sigma, T \) curve for the sample previously aged for 1
hour at 500°C. At a temperature of 500°C, \(\sigma \) of the sample is 51.5 emu\(^{-1}\).
(This temperature is high enough to ensure that \(\beta \) is non-magnetic but low
enough to avoid the appearance of \(\epsilon \) precipitate with consequent solution
of aluminium.) At the same temperature \(\sigma \) for pure cobalt is 144 emu\(^{-1}\).61
The weight fraction of \(\epsilon \) present is, therefore, 0.358 and, by difference,
the fraction of \(\beta \) is 0.642. At room temperature \(\sigma \) of pure cobalt is
161 emu\(^{-1}\) and \(\sigma \) of the sample is 74 emu\(^{-1}\). Using the fractions of the
phases present it is easily shown that \(\sigma_\beta \) at room temperature is 25 emu\(^{-1}\).

The various curves in Figure 30 were analysed in the same manner
giving fractions of \(\beta \) and \(\sigma_\beta \) at room temperature as shown in Table 14. \(\sigma_\beta \)
at various elevated temperatures was also calculated. The results obtained
for the sample aged for 3 hours at 500°C, are typical and are plotted in
Figure 29. The resulting curve does not have the form of a normal \(\sigma, T \)
relationship (c.f. Figure 25) but can be understood on the assumption
that \(\beta \) was inhomogeneous, as might be expected when precipitation is
incomplete, so that the observed \(\sigma_\beta \), \(\epsilon \) curve is the sum of a family of
curves with a range of Curie temperatures. Since \(\beta \) was apparently
inhomogeneous \(\sigma_\beta \) at room temperature, derived from the \(\sigma, T \) curves,
can only be an approximate mean value.

b. The observed relationship between \(J_H \) and \(\sigma_\beta W_\beta \).

In Figure 31 the contribution of \(\beta \) to the total magnetisation
of the material (\(\sigma_\beta \times \text{weight fraction } \beta \)) is plotted against \(J_H \) (the
figure also includes a calculated relationship, the derivation of which is
described later). It was, unfortunately, not possible to obtain further
<table>
<thead>
<tr>
<th>Time aged at 500°C hours</th>
<th>Weight fraction β</th>
<th>σ_n at room temperature</th>
<th>Weight fraction $\beta \times \sigma_n$ cm^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.662</td>
<td>25.0</td>
<td>16.2</td>
</tr>
<tr>
<td>3</td>
<td>0.640</td>
<td>18.8</td>
<td>12.0</td>
</tr>
<tr>
<td>12$\frac{1}{2}$</td>
<td>0.629</td>
<td>12.3</td>
<td>7.7</td>
</tr>
<tr>
<td>25</td>
<td>0.610</td>
<td>6.5</td>
<td>4.0</td>
</tr>
<tr>
<td>169</td>
<td>0.600</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Fig. 31 - Variation of J_{Fe} of the 287 Al alloy with magnetic contribution of β ($\sigma_p \times$ weight fraction β)

Calculated

Experimental

J_{He} (Oe) vs $\sigma_p \times$ weight fraction β
points representing samples aged for shorter times where the contribution of β was greater. Such samples were subject to phase changes during the course of the σ, T test and meaningful values of c_β and fraction β could not be obtained. According to the extrapolation in Figure 31, j^{H}_c begins to increase only when c_β, weight fraction β is below about 22 cm$^{-1}$. Since prior to ageing c_β, weight fraction β was about 90 cm$^{-1}$ the implication is that j^{H}_c began to increase only in the latter stages of the precipitation process.

In the very early stages of ageing the precipitate would be superparamagnetic and have low coercivity. Using Néel's relationships22, however, it was calculated, in section 3.2.3, that particles of ϵ would pass from the superparamagnetic to the ferromagnetic state when particle diameter exceeded about 60 Å. Since particle diameter, after ageing the 26% Al alloy for 17 hours at 500°C to give maximum j^{H}_c at that temperature, was of the order of 2000 Å (Figure 3d) it is reasonable to suggest that during most of the precipitation process the majority of the ϵ particles were too large for superparamagnetic behaviour. The particles were therefore, ferromagnetic single domains. It must be concluded that the associated high coercivity was suppressed, according to the principle summarised in Figure 28, by the presence of the low coercivity magnetic β matrix. The effect would, of course, disappear in the later stages of precipitation as c_β approached zero.

3.6.3. The theoretical influence of magnetic β

In order to confirm the coercivity of the ϵ precipitate is suppressed by magnetic β and to ensure that no other factor is involved, it is necessary to determine the exact manner in which magnetic β would be expected to influence the properties and to compare the results with the experimental observations.

Consider a fully magnetised sample containing ϵ and magnetic β.
If a demagnetising field of about 10 Oe is applied, 0 is saturated in the opposite direction to make a negative contribution to the total magnetisation which can be expressed as x weight fraction 3. This small demagnetising field will not significantly affect the high coercivity precipitate, the magnetisation of which will, therefore, remain approximately at remanence. In a randomly oriented system of particles exhibiting uniaxial anisotropy remanent magnetisation is approximately half saturation magnetisation 13. A close approximation to the contribution of the precipitate is, therefore, $\alpha Co \times$ weight fraction cobalt, i.e. 80 emu/g \times weight fraction cobalt. In practice local fields due to each phase will influence the magnetisation and, therefore, the contribution of the other phase. For the purpose of a simple analysis, however, it can be assumed that the phase distribution is such that these local fields are equal in all directions and thus have no net effect. How closely the real system approximates to this ideal is difficult to predict but it is interesting to compare results derived making this simplifying assumption with those observed in practice.

If, as in the early stages of ageing, a_p and the amount of 8 present are large so that the contribution of 8 is greater than that of the precipitate, the total magnetisation will be reversed in a field of less than 10 Oe (i.e. the field required to magnetise 8 to saturation). The sample as a whole thus has a coercivity of less than 10 Oe despite the fact that the cobalt precipitate remains magnetised to remanence in the original direction. If, as ageing proceeds, the amount of cobalt precipitate increases, its contribution to the total magnetisation increases. At the same time, the contribution due to 0 decreases, since not only is the amount of 8 less but, due to its lower cobalt content, α_p is reduced. A point is reached at which the contribution due to the precipitate exceeds that due to 8. If a sample in this condition is subjected to a demagnetising field of about 10 Oe, (i.e. the magnetisation of 8 is reversed) the greater contribution of the precipitate will cause the overall
Fig. 32 - Calculated magnetic contributions of β and ε as precipitation proceeds.

A contribution due to β
(≈ 0 weight fraction β)

B contribution due to precipitate
($60 \times$ weight fraction precipitate)
magnetisation to remain in the original direction. A considerably higher field will have to be applied before the magnetisation of the cobalt particles starts to reverse, i.e. there is an increase in coercivity. The stage at which J_c begins to increase can thus be regarded as that at which the contribution from the cobalt precipitate becomes equal to that from β.

The calculated change in the contributions from the two phases as precipitation proceeded in the 26% Al alloy are plotted against weight fraction of precipitate in Figure 32. The contribution due to β was obtained as follows. The change in the composition of β, as cobalt precipitated, was calculated and σ_β was derived according to the relationship between composition and σ_β given in section 3.1. (Figure 6). Contribution was then $\sigma_\beta \times$ weight fraction β. The contribution of the precipitate was calculated as $\sigma_{Co} \times$ weight fraction Co, i.e. $60 \times$ weight fraction of precipitate.

In Figure 32, the two contributions are equal at a value of 25 cm^3g^{-1} when the cobalt precipitate fraction is 0.315. Thus at this stage of precipitation an increase in coercivity may be anticipated. This is shown in Figure 31 to be in reasonable agreement with the measured results where J_c begins to increase when the contribution from β is 22 cm^3g^{-1}. According to Figure 32, this value corresponds to a precipitate fraction of 0.33.

Thus, almost complete suppression of the coercivity of the β particles until late in the precipitation process can be satisfactorily understood in terms of the influence of magnetic β.

If the β precipitate was an ideal single domain system, in which the same field was required to reverse the magnetization of every particle, the true coercivity of the precipitate would be exhibited as soon as the contribution due to β exceeded that from β; i.e. the coercivity would rise immediately from less than 10 Oe to a value equal to the coercivity of the β particles and would remain at that level.
Fig. 33 - Intrinsic demagnetisation curve for the 20% Al alloy after ageing for 100 hours at 500°C.
throughout the remainder of the precipitation process until single domain size was exceeded. In practice, the c dispersion is likely to contain a minority of very small (superparamagnetic) and large (multi domain) particles which will have low coercivity. Furthermore, according to Stoner and Wohlfarth, the field required to rotate the magnetisation of an anisotropic single domain particle is dependent on the orientation of the easy direction of magnetisation with respect to the field. Thus, since the c precipitate is, in a poly-crystalline sample, oriented at random, it follows that some particles, either because of their low coercivity or because of their orientation, will be reversed by a lower field than the coercivity of the c dispersion as a whole. Their contribution will be additive to the reverse contribution from b and at some field less than the coercivity of the c precipitate the overall magnetisation will be reversed. Therefore, as ageing proceeds and the contribution from b is reduced, the coercivity of the material as a whole will rise at a rate dependent on the demagnetisation characteristics of the precipitate.

The rate of this increase can only be predicted accurately using the demagnetisation curve for the c dispersion in the presence of magnetic b, i.e. while precipitation remains incomplete. The form of this curve is not known but it is possible to obtain some indication of the rate of increase using the demagnetisation curve for the c dispersion after complete precipitation, i.e. the curve for a sample aged to give non-magnetic b.

Figure 33 shows the intrinsic demagnetisation curve determined using the recording hysteresisgraph as described in section 2.1., for the sample from the 28% Al alloy aged at 500°C for 169 hours to give non-magnetic b. The remanence of this sample was 3,500 G but if the curve is assumed to represent the properties of the cobalt dispersion throughout the precipitation process remanence will increase from zero to 3,500 G as
precipitation proceeds. It is convenient, therefore, to use a reduced
scale so that, as in Figure 33, remanence is unity. The contribution
of \(\delta \) expressed in the same terms as \(\alpha \) therefore

\[
\alpha = \frac{\text{weight fraction } \delta}{\text{weight fraction } \alpha}
\]

\(60 \times \text{weight fraction } \delta \)

When the \(\delta \) contribution in these terms is less than 1, a field sufficient
to saturate \(\delta \) will not bring about reversal of the overall magnetisation
because of the greater contribution from the precipitate. As the field
is increased the magnetisation of low coercivity and badly oriented
precipitate particles will begin to reverse, making a negative contribution
to the overall magnetisation so that the total contribution of the
precipitate decreases along the demagnetisation curve shown in Figure 33;
when the precipitate contribution becomes less than the contribution from
\(\delta \) the overall magnetisation will be reversed. Thus, coercivity is that
field which reduces the precipitate contribution to equal that of \(\delta \). To
determine coercivity at any stage of precipitation it is necessary,
therefore, to calculate contribution due to \(\delta \), as above, the coercivity
can then be derived from Figure 33 as the \(\alpha \) co-ordinate corresponding to
a \(\delta \) value equal to the \(\delta \) contribution.

The calculated curve in Figure 31 was derived using this approach
and it can be seen that the form of the measured curve is similar to that
obtained from theory. The difference between the two curves is not
surprising in view of the simplifying assumptions made in deriving the
theoretical curve, i.e. that local fields associated with each phase do
not influence the magnetisation of the other and that the curve in Figure
33 represents the demagnetisation curve of \(\varepsilon \) throughout the precipitation
process. Furthermore, the accuracy of the measured values of \(\alpha \), \(\varepsilon \) weight
fraction \(\delta \) is limited due to the inhomogeneity of \(\delta \) during precipitation.

It can be concluded, therefore, that the presence of magnetic \(\delta
suppresses the coercivity of the \(\varepsilon \) precipitate so that the coercivity of
Fig. 34 - Intrinsic demagnetization curves (B-H vs. H) for the 25% Al alloy aged 1 hour (curve A) and 168 hours (curve B) at 500°C.

A aged 1 hour 500°C

B aged 168 hours 500°C
the material as a whole does not begin to increase until the later stages of precipitation. The rate of increase is then dependent on the form of the demagnetisation curve of the precipitate.

3.6.4. The influence of local fields

a. The influence of local fields on the form of the demagnetisation curve

As discussed in section 3.6.1, the magnetisation of β will be reversed by demagnetising fields of only a few oersteds and the phase will probably be saturated in fields greater than 10 Oe, giving a contribution to the overall magnetisation which is negative with respect to that of the precipitate. Thus, the demagnetisation curve for a sample in which β is magnetic, but where the contribution of the precipitate to the total magnetisation is greater than that of β, should show a rapid decrease in magnetisation as the applied field is increased from 0 to 10 Oe, followed by a much slower decrease as the field is further increased to reverse the magnetisation of the high coercivity precipitate. The intrinsic demagnetisation curve (H_{in} vs B) in Figure 34 for a sample from the 26% alloy aged at 500°C for 1 hour (containing α and magnetic β) is not of this form, a continuous decrease in magnetisation being observed between a positive field of 100 Oe and the intrinsic coercivity of about 500 Oe.

Furthermore, comparing this curve with that from a sample aged for 169 hours at 500°C to give non-magnetic β, (Figure 34), it is seen that, in the presence of demagnetising fields up to 300 Oe, the magnetisation of the sample aged for 1 hour is greater than that of the sample aged for 169 hours. Since after aging for 1 hour a smaller volume fraction of precipitate is present than after aging for 169 hours (Table 14), it must be concluded that the greater magnetisation of the sample aged for 1 hour is due to a positive contribution from magnetic β. This can be understood if the assumption made earlier, that local fields associated with each phase do not influence the magnetisation of the other, is taken to be invalid.

Thus, if the fields due to the α particles tend to magnetise the matrix
in the same direction as the magnetisation of the particles the contributions of c and b will be additive.

b. The influence of local fields on coercivity

When a demagnetising field is applied to a sample containing c and magnetic b its influence on the magnetisation of the b will, in the absence of any effect due to local fields, be in the opposite direction to that of the c particles. The theoretical variation of coercivity with b contribution (Figure 31) was derived on this basis and agrees reasonably well with the experimental results. Presumably, therefore, during that part of the precipitation process covered by these results, i.e. the later stages, the fields due to the c particles are overcome by low applied fields and have little effect on coercivity.

In the early stages of ageing, when the b contribution to the total magnetisation outweighs that of the precipitate the simple model (neglecting local fields) predicts that J_{c} will be $< 10 \text{ Oe}$ and remain at this level, as precipitation proceeds, until the contribution of the precipitate becomes greater than that of b. Thus, during precipitation, a delay would be expected before any increase in J_{c} was observed. In practice it was possible, for all the tests at all the ageing temperatures explored, to extrapolate a plot of J_{c} v.s. ageing time to approximately zero J_{c} at zero time (Figures 10, 11 and 12). Even during ageing at the lowest temperature (450°C), when there was, for all the alloys, a sigmoidal relationship between J_{c} and time, a continuous increase in J_{c} was indicated. Thus, no significant delay, prior to the increase of J_{c} on ageing, was detected. Since, particularly at the higher temperatures, the decrease in c on ageing was quite rapid, it may be that the anticipated delay, prior to the increase in J_{c}, was masked by an initially high rate of precipitation. In addition, however, it seems likely that, because of the influence of local fields, the simple model is not applicable in the initial stages of ageing when the contribution of b to the magnetisation is greater than
Fig. 35 - σ, T curve for the 382 Al alloy aged for 150 hours at 500°C
that of the precipitate. A continuous increase in J_c from zero time can be understood qualitatively if it is supposed that the volume of β influenced by local fields increases with the volume fraction of precipitate. Thus, as the amount of precipitate increases, larger applied demagnetising fields are necessary to give a negative contribution from β equal to the positive contribution of the high coercivity precipitate plus that from a certain volume of β which remains magnetised in a positive direction due to the influence of local fields.

c. The influence of local fields in remanence

In section 1.2.2. it was pointed out that the ratio of B_r to $4\pi J_s$ (saturation magnetisation), obtained by Masumoto et al. for Malcolloy was much higher than would be expected for isotropic material. ($B_r/4\pi J_s$ for isotropic material should be approximately 0.5 but Masumoto et al. reported values up to 0.8). Similarly, as shown in Table 10, $B_r/4\pi J_s$ for samples from the 23% and 38% Al alloys, examined in the present work, was around 0.7. It may be possible to explain these results in terms of the influence of local fields on the magnetisation of β. If it is assumed that ageing was discontinued while $\sigma\beta$ remained greater than zero at room temperature and if, as suggested above, the net magnetisation of β by local fields, is in the same direction as that of the ϵ particles then, when the sample is at remanence the magnetisation of β may be greater than half saturation. As a result $B_r/4\pi J_s$ for the sample as a whole will be greater than 0.5. Clearly this mechanism can only apply while β is magnetic. σ, T measurements carried out on the 38% Al alloy after ageing 180 hours at 500°C, ($B_r/4\pi J_s = 0.69$, see Table 10), showed β to be weakly magnetic at room temperature (Figure 35, $\sigma\beta$ being about 5 emu/g). It is also consistent with the hypothesis that the sample from the 28% Al alloy aged for 1 hour at 500°C which had $\sigma\beta$ of 25 emu/g (Figure 30 and Table 14) had $B_r/4\pi J_s$ of 0.62 while a sample from the same cast aged for 169 hours at 500°C to give $\sigma\beta$ of zero had $B_r/4\pi J_s$ rather closer to that expected for isotropic material, ie. 0.56.
Fig. 34 - Relationship between J_C and σ in the 23, 28, and 38% Al alloys after ageing at 500°C.
The relationship between J^M and σ on ageing

Although the majority of the foregoing results deal with the
influence of magnetic β on the properties of the 20% Al alloy it is
reasonable to suppose that the mechanisms indicated are applicable to all
alloys of the Koelloy type. That this is the case can be deduced from
the relationship between J^H and σ of the 22%, 26% and 38% Al alloys on
ageing. This relationship, during ageing the three alloys at 500°C, is
shown in Figure 36. It can be seen that decreasing σ is always accompanied
by increasing J^H, but that late in the precipitation process, there is
a large increase in J^H associated with only a small fall in σ, this effect
becoming less obvious as the aluminium content decreases. The initial
increase in J^H, occurring while the majority of the decrease in σ takes
place, must be induced while the amount and σ of β present are such that
the β contribution outweighs that of the precipitate. Increasing J^H at
this stage can be understood in terms of the influence of local fields
as discussed in 3.6.4. (b). The final increase in J^H, associated with only
small changes in σ, is compatible with the simple model in section 3.6.3.
if it is assumed to be initiated when the contribution of the precipitate,
($(\sigma_{Co} \times \text{weight fraction cobalt}) \times \frac{1}{2}$), exceeds that of β, ($\sigma_{\beta} \times \text{weight fraction } \beta$).

It is interesting to compare the σ of each alloy at the point
during ageing when the final increase in J^H begins, (i.e. points designated
$\sigma_{exp.}$ in Figure 36), with values of σ derived from theory, at which
the contribution from precipitate and matrix should be equal (see section 3.6.3.).
Figure 37 shows the calculated contributions due to precipitate and β in the
three alloys as precipitation proceeds and includes calculated curves for
the change in σ of each alloy. (Contributions of the two phases were
calculated as for Figure 32, section 3.6.3., while σ of the alloys is given
by $\sigma_{\beta} \times \text{weight fraction } \beta + \sigma_{Co} \times \text{weight fraction cobalt}$). Values of σ
corresponding to the stage of precipitation at which the contributions
of precipitate and β are equal (designated $\sigma^{calc.}$ in Figure 37) are
compared below with values of $\sigma^{exp.}$ from Figure 36.
Fig. 37 - Calculated variation of σ and the magnetic contributions of δ and precipitate as precipitation proceeds in the 23%, 28% and 38% Al alloys.
28% Al alloy, \(\sigma_c(\text{calc.}) = 55 \text{ emu}^{-1} \), \(\sigma_c(\text{exp.}) = 91 \text{ emu}^{-1} \)
28% Al alloy, \(\sigma_c(\text{calc.}) = 77 \text{ emu}^{-1} \), \(\sigma_c(\text{exp.}) = 76 \text{ emu}^{-1} \)
38% Al alloy, \(\sigma_c(\text{calc.}) = 27 \text{ emu}^{-1} \), \(\sigma_c(\text{exp.}) = 29 \text{ emu}^{-1} \)

There is thus good agreement between theory and practice in the 28% and 38% Al alloys while the discrepancy in the case of the 23% Al material may arise because of the form of the \(J^H \) versus \(\sigma \) curve which makes the precise value of \(\sigma_c(\text{exp.}) \) difficult to estimate for this alloy.

3.6.6. The coercivity of the \(\alpha \) precipitate during ageing

a. Deductions from the temperature dependence of \(J^H_c \)

The cobalt precipitate will have maximum coercivity at some stage during ageing but there is no reason to suppose that this stage will correspond to complete demagnetisation of \(\beta \). Thus maximum coercivity of the cobalt dispersion may be suppressed by magnetic \(\beta \). That this is the case in the 28% Al alloy aged at 500°C can be deduced from the temperature dependence of \(J^H_c \), shown in Figure 15. After ageing for 3 hours at 500°C \(\beta \) remained magnetic and \(J^H_c \) at room temperature was lower than after more prolonged ageing to give non-magnetic \(\beta \). As the temperature of the 3 hour sample was raised the magnetisation of \(\beta \) decreased according to the \(\sigma \), \(T \) curve in Figure 30. The influence of magnetic \(\beta \) on coercivity was, therefore, reduced until at \(T_c \) of \(\beta \) (about 250°C, see Figure 30) the true coercivity of the \(\alpha \) precipitate was exhibited. The form of the \(J^H_c \), \(T \) curves for the sample aged for \(\frac{1}{2} \) hour at 650°C and 1 hour at 500°C can also be explained in this way. The sample aged for 3 hours at 500°C is particularly interesting because at temperatures above about 125°C, \(J^H_c \) is greater than that of the sample aged for 69 hours at 500°C to give non-magnetic \(\beta \). The inference is that in the absence of magnetic \(\beta \), \(J^H_c \) of the precipitate was higher after ageing for 3 hours at 500°C than after ageing for 69 hours. Extrapolation of the curve for the 3 hour sample from temperatures above 250°C suggests that \(J^H_c \) of the precipitate at room temperature was in excess of 1500 Oe.
Fig. 3B - Variation of \(H_c \) and \(r \) on ageing the 28% Al alloy at 500°C.
<table>
<thead>
<tr>
<th>Time Aged</th>
<th>(J)</th>
<th>(K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>hours</td>
<td>(\text{Oe})</td>
<td>(\text{Oe})</td>
</tr>
<tr>
<td>1</td>
<td>368</td>
<td>603</td>
</tr>
<tr>
<td>2</td>
<td>524</td>
<td>1316</td>
</tr>
<tr>
<td>3</td>
<td>935</td>
<td>1770</td>
</tr>
<tr>
<td>5</td>
<td>1240</td>
<td>1960</td>
</tr>
<tr>
<td>7(\frac{1}{2})</td>
<td>1172</td>
<td>2020</td>
</tr>
<tr>
<td>12(\frac{1}{4})</td>
<td>1215</td>
<td>1962</td>
</tr>
<tr>
<td>17</td>
<td>1260</td>
<td>1764</td>
</tr>
<tr>
<td>20</td>
<td>1250</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1230</td>
<td>1762</td>
</tr>
<tr>
<td>39</td>
<td>1220</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>1240</td>
<td>1717</td>
</tr>
<tr>
<td>93</td>
<td>1249</td>
<td></td>
</tr>
<tr>
<td>141</td>
<td>1230</td>
<td>1700</td>
</tr>
<tr>
<td>162</td>
<td>1250</td>
<td></td>
</tr>
<tr>
<td>169</td>
<td>1250</td>
<td></td>
</tr>
</tbody>
</table>
It has been shown that the coercivity of a mixture of c and magnetic d is reduced when d is saturated by the applied field, in the reverse direction to the magnetisation of c. During the measurement of J_{Hc}^c (see section 2.2.2.), the total magnetisation remaining after the application of a demagnetising field, is measured while the field is maintained, i.e. while d is saturated in the reverse direction to the original magnetisation. If the applied field is removed, the magnetisation of d will be reduced and in the absence of local fields associated with the precipitate particles the self demagnetising field of d would cause the magnetisation of d to approach zero. In practice, local fields are thought to have some influence but it is likely that the magnetisation of d can be reduced in the absence of the applied field. Therefore, if H_T is determined i.e., if the magnetisation at each step is measured after the demagnetising field is switched off (see section 2.2.2.), a closer approximation to the coercivity of the c precipitate will be obtained. Values of H_T for the 26% Al alloy aged for various times at 500°C are shown in Table 15 and Figure 3b along with corresponding J_{Hc}^c measurements.

It can be seen that during ageing peak H_T is achieved before peak J_{Hc}^c. Large differences between J_{Hc}^c and H_T can arise due to particle size variation within a ferromagnetic dispersion if some particles are larger than single domain size. Such particles influence J_{Hc}^c and H_T in much the same way as a low coercivity magnetic matrix as discussed above.

The significance of the H_T measurements is, therefore, difficult to assess but the results are consistent with the conclusion that the coercivity of the dispersion is a maximum early in the precipitation process while d is still magnetic and coercivity of the material as a whole is lost.
Fig. 39 - Particle size distribution necessary to give a single domain dispersion of a fcc (cobalt) matrix.

- **Sp** = superparamagnetic behaviour
- **H_{c_t}** = ideal variation of intrinsic coercivity of a single particle
- **SD** = particle size distribution to give single domain behaviour

a.
- $d_0 = 0.2 \mu m$

b.
- $d_0 = 0.02 \mu m$
3.7. The relationship between the kinetics of the precipitation process and coercivity

3.7.1. The relevance of kinetic considerations

The permeant magnet properties of any magnetic dispersion are dependent on particle size. In practice a range of particle sizes is always likely and for optimum properties all particles must be sufficiently large to be outside the superparamagnetic range and small enough to be single domains. According to Neat et al.\(^\text{11}\) (section 1.1.3.), the critical size for single domain behaviour, \(d_c\), is given by:

\[d_c = 9 \frac{J}{x^2} \frac{1}{\tau} \sqrt{\frac{K_T}{\nu \mu}} \]

whilst according to Neat\(^\text{22}\) (section 3.2.3.) the conditions for superparamagnetic behaviour are given by:

\[\frac{1}{d_c} = \frac{J}{x} \exp \left(-\frac{\nu}{K_T} \right) \]

where a particle with volume smaller than \(V\) will be superparamagnetic.

Therefore, as the crystal anisotropy \(K\) is increased the critical size for single domain behaviour increases while the size at which superparamagnetic behaviour occurs is reduced. Thus, the range of particle size over which ferromagnetic single domain exist is increased. Figure 39 shows schematically the ideal variation in \(J^c\) with particle size for h.c.p. (c) cobalt (39a) and f.c.c. (c) cobalt (39b), with high and low crystal anisotropy respectively, and the type of particle size distribution which would give optimum permanent magnet properties in each case. Clearly, the conditions for the formation of a high coercivity precipitate of a are far more flexible in terms of both particle size and particle size distribution than if the precipitate is a. In either case, however, it can be seen that assuming a normal size distribution of the type shown in the figure, the majority of particles must be appreciably smaller than maximum single domain size if the presence of a certain number of multi
Fig. 40 - Schematic representation of the proposed changes in composition of B and particle size of cobalt on ageing the 23 and 38% Al alloys.
domain, low coercivity particles, is to be avoided. If the size range is narrow, the majority of the particles need only be a little smaller than maximum single domain size whereas if there is a wide range the majority must be much smaller to exclude the presence of a low coercivity fraction. Thus both particle size and size distribution are of fundamental importance in determining the properties of fine particle permanent magnets. If the magnetic dispersion is produced as a precipitate in an alloy by heat treatment, both factors are influenced by the kinetics of the precipitation reaction.

In the case of the nickel alloy alloys, the variation of particle size and size distribution during ageing is particularly important because of the influence of magnetic h. It has been shown in section 3.2.3. that the maximum coercivity of the three alloys examined increases substantially as aluminium content is increased. Thus on ageing at 500°C (Figure 13) maximum coercivity of the 23% Al alloy was 651 Oe, that of the 28% Al alloy was 1260 Oe and that of the 35% Al alloy was 1930 Oe. Further results in section 3.6. indicate maximum coercivity of the alloys to be the resultant of two effects. The c dispersion achieves optimum particle size at some stage during ageing but, if c_β is high the alloy at a whole exhibits low coercivity. Further growth may result in particle growth beyond optimum size and thus a fall in the true coercivity of the precipitate but at the same time the reduction in c_β will tend to increase the coercivity of the alloy. At some stage the resultant coercivity in c_β maximum but the maximum true coercivity of the precipitate may never be exhibited. It has been shown that maximum coercivity of the c dispersion is never exhibited in the 28% Al alloy (3.6.6.) and it is reasonable to suggest that the difference in the maximum coercivity of the three alloys is largely due to differences in the relationship between the precipitate particle size and c_β during ageing.

Figure 40 demonstrates this effect schematically. In the lower (23%) aluminium alloy, the availability of a large amount of cobalt for
precipitation will lead to rapid growth and thus the development of a precipitate of optimum size and size range while the cobalt content and \(\sigma \) of \(\beta \) are still high. By the time the cobalt content of \(\beta \) is reduced sufficiently for \(\sigma \) to approach zero, the particle size of the precipitate has grown to such an extent that optimum coercivity can no longer be expected. When the amount of precipitating cobalt is less, as in the 38% Al alloy, the tendency for precipitate growth is reduced and the achievement of optimum precipitate size will correspond more closely to the approach of \(\sigma \) to zero.

Thus the variation in \(J_{c} \), with composition can be understood in general terms but it is interesting to examine the relationship between the kinetics of the precipitation reaction and coercivity.

3.7.2. The activation energy of the \(c \) precipitation process

Approximate values of activation energy, \(E_{a} \), for the precipitation of \(c \) in the three alloys were obtained from plots of \(\log t \) (logarithm of the time to precipitate a given fraction) versus \(1/T_{0} \) (reciprocal of the absolute ageing temperature). \(\sigma \) and \(J_{c} \) during ageing (Figures 9-12 and Tables 7-9), were used as a measure of the fraction of precipitate present. Thus in each alloy \(t \) was first taken as the time for about half the total decrease in \(\sigma \) to take place, i.e. the time for \(\sigma \) to fall to 94 cm\(^{-1}\) in the 23% Al alloy, to 77 cm\(^{-1}\) in the 28% Al alloy and to 35 cm\(^{-1}\) in the 38% Al alloy. The value of \(E_{a} \) obtained was checked taking \(t \) as the time for \(J_{c} \) to rise to about half the maximum value observed for each alloy, i.e. \(J_{c} \) values of 325 Oe, 650 Oe and 1000 Oe in the 23%, 28% and 38% Al alloys respectively. The resulting plots of \(\log t \) versus \(1/T_{0} \) shown in Figure 41 (a), (b), (c).

Using \(\sigma \) as an indication that the same fraction of precipitate was present, the graphs are linear between 450\(^{\circ}\)C and 600\(^{\circ}\)C (the temperature range studied) for the 23% and 38% Al alloys (Figures 41 (a) and (c)) and between 500\(^{\circ}\)C and 600\(^{\circ}\)C for the 28% Al alloy (Figure 41 (b)). The departure from a linear relationship in the 28% Al alloy below 500\(^{\circ}\)C is surprising
Fig. 41a- log t vs 1/°K for the 23% Al alloy

$E_A = 14 \text{ kcal/mole}$

$E_A = 9.5 \text{ kcal/mole}$
Fig. 41b - log t vs 1/T°K for the 285 Al alloy

$E_A = 19 \text{ k cal/mole}$
Fig. 41c - log t vs 1/T for the 35% Al alloy

- ■: t = time for \(\frac{d}{\dot{c}} \) to reach 1000 cc
- □: t = time for c to reach 30 cc/m^2

- \(E_A = 25 \text{ k cal/mole} \)
- \(E_A = 24 \text{ k cal/mole} \)
and infers that E_A below 500°C differs from that at higher temperatures. This seems unlikely but it is clear from the changes in σ and the J_{c}^H of the alloy with ageing that precipitation proceeds much more slowly at 450°C than at higher temperatures (Figures 9 and 10). Unlike σ which is determined by the amounts and J_{c}^H values of the phases present, J_{c}^H is influenced by particle size and thus would be expected to give a less accurate indication of the stage to which the reaction had progressed than one based on σ. However, it has been shown in section 3.6 that providing the particle size of the precipitate does not exceed single domain size, J_{c}^H is primarily controlled by the amount and σ of β present which are directly related to the stage reached in the precipitation process. In the Malcolloy, therefore, the use of J_{c}^H as an indication of fraction transformed is believed to be justified. It can be seen from Figure 41 that the values obtained basing t on J_{c}^H can be interpreted as linear but with a greater scatter than in the case using σ. The plots are linear over the full temperature range (450-600°C) in the 28% and 36% Al alloys (Figures 41 (b) and (c)) and between 500°C and 600°C in the 23% Al alloy, (Figure 41 (a)).

Values of E_A (activation energy), calculated from Figure 41 as gradient $\times 2.3$ R (R = the gas constant) were as follows:

- 23% Al alloy E_A (based on σ) = 9,500 cal/mole
- E_A (based on J_{c}^H) = 14,000 cal/mole
- 28% Al alloy E_A (based on σ) = 19,000 cal/mole
- E_A (based on J_{c}^H) = 19,000 cal/mole
- 36% Al alloy E_A (based on σ) = 24,000 cal/mole
- E_A (based on J_{c}^H) = 25,000 cal/mole

Thus, for the 28% and 36% Al alloy, the data derived from J_{c}^H could be
interpret to give values of very similar to those based on a Co the 23t 41 alloy there was e difference between the two values obtained. The figure derived using e (9,300 cal/ïew) wee, however, surprisingly low for e reaction occurring in a solid natal end, since it was not inferred by the based ea inability i suspect.

3*7*3# relate between notveion energy and coeivivity

Frcns the relatively small particle site of the precipitate in these alloy* end the very rapid decrease in » early In the ageing process, it can be deduced that nucleation of the precipitate cakes place easily, i.e. the activation energy of nucleatieu is low. Xhie view is consistent with the hypothesis presented in section 3.3. regarding partially coherent nucleation. It la reasonat)la to surest* therefore, that observed differences in & are due to variations in the activation energy associated with precipitate growth rather then nucleation, (i.e. variations In the Activation energy of diffusion through the matrix or across the $atrix~precipitate interface).

It is significant that the increase in nexissMft Jc of the three alloys as alut.uiuijn content is increased correspond# to an increase In I . Is m alloy in which E^ for growth is high it can be suggested that particle growth would he restricted and that the formation of fresh nuclei would be favoured. The resulting precipitate would, therefore, have a nail particle size and a narrow si** range. It I is low, growth would be less restricted and a relatively large particle size with a wide size distribution would result. Thus* in the Haleelley alloys, high 8 favours the retention of a dispersion with optimum properties until late in the precipitation process when e is reduced. When 8 is lover the greater tendency for particle coarsening will result in a wide sis* range and a reduction in the coereivity of the precipitate before a is sufficiently reduced for a high coereivity to be exhibited.

The extent to which the properties of Halcolioy are, in fact,
influenced by E_A, it is difficult to determine, and the amount of cobalt available for precipitation, m diaeooaad earlier, may be a significant factor. Kavartkalaee, it emr* certain that high values of & will tend to favour the retention of a finely divided dispersion and thus the development of high coercivity.
CHAPTER 4 MODIFICATIONS TO THE CASTING, COMPOSITION AND HEAT TREATMENT OF NALCOLOY

4.1. Introduction

4.1.1. Comparison of the properties of Nalcoloy with common permanent magnet materials

Although Nalcoloy is the best known magnet material based on finely divided cobalt, the properties of the alloy are poor when considered in relation to those of other materials at present in commercial production.

Thus, Nalcoloy (Tables 2, 3 and 10) compares unfavourably with barium ferrite ($H_f = 3,500$ G, $H_c = 2,500$ Oe, $B_{max} = 1,000$) and with most of the Alnico alloys (Table 1). Because of their high cobalt content the Nalcoloy alloys are relatively expensive; it seems unlikely, therefore, that these materials will become commercially useful unless considerable improvement in their properties can be achieved.

4.1.2. Possibility of increasing coercivity

It has been shown in section 3.3. that the energy to rotate the magnetisation vector of a single domain particle through 180$^\circ$ is given by:

$$ E = K_1 + K_2 $$

where K_1 and K_2 are crystal anisotropy constants, values for which at various temperatures have been determined by Honda and Mashimo (Figure 2).

Stoner and Wohlfarth used K_1 as a first approximation for K in the relationship:

$$ J^c_c = \frac{2K}{J^c} $$ (see section 1.2.1.)

to calculate a value of 0.6000 Gc for the J^c_c of an assembly of spherical single domain particles of 1 aligned with their [0001] axes parallel. If as in section 3.3., K is taken to be the sum of K_1 and K_2, J^c_c (at 20$^\circ$C) according to the above expression is 9,000 Oe in a fully aligned dispersion and about 6,300 Oe if alignment is random.

Thus the coercivity of the Nalcoloy alloys is much lower than
that predicted by theory. It has been shown that in these alloys coercivity is influenced not only by the properties of the c dispersion but also by the presence of magnetic δ (section 3.6.). The highest coercivity observed was in the 38% Al alloy with J_{c}^{R} approaching 2,000 Oe. Whether this represents the maximum J_{c}^{R} of the c dispersion has not been determined but it is thought that the coercivities of the 23% and 28% Al alloys are reduced relative to the 38% Al alloy by the influence of magnetic δ. It is likely, therefore, that at some stage during ageing, the coercivity of the precipitate in the lower aluminium contents was at least as high as 2,000 Oe (the maximum J_{c}^{R} of the 38% Al alloy) which is about half the ideal coercivity for random c particles predicted above.

It would seem on this basis, that there is considerable scope for improving the coercivity of the c dispersion. It is known, however, that coercivity is always much less than the ideal value. There are many possible reasons; the expressions of Stoner and Wohlfarth 13, which predict the coercivity of single domain particles (see section 1.1.2.) assume coherent rotation of the magnetisation vector, whereas in practice rotation can take place by lower energy processes such as curling and buckling (section 1.1.4.). A small number of large, multi domain particles may be present, the existence of structural or surface defects may lead to the nucleation of domain boundaries in particles smaller than theoretical single domain size and various factors such as strain or stacking faults may reduce the crystal anisotropy of the material. These, and other factors, reduce the measured coercivity of barium ferrite to less than half, and that of the cobalt rare-earth permanent magnet alloys to one tenth of the ideal value. It must be concluded that there is little possibility of significantly improving the coercivity of the c dispersion in melenloy. It may, however, be possible to increase the coercivity of the material as a whole if optimum properties of the precipitate can be made to coincide with, or be preceded by, the approach of σ_{p} to zero.
4.1.3. Possibility of increasing remanence

In the 38% Al alloy $4\pi J_m$ (saturation magnetisation) and B_T are low (2250 Oe and 1550 Oe respectively, see Table 10) so that despite the high J_{c} of the material (1930 Oe) the overall properties are poor

$(B_r = 1550$ Oe, $H_c = 1030$ Oe, $(BH)_{max} = 0.40$ kJ/m3) in comparison with those of the 28% Al alloy $(B_r = 3550$ Oe, $(BH)_{max} = 1.3$ kJ/m3, $H_c = 1215$ Oe). In order to improve the overall properties of the alloys it is necessary, therefore, to increase the coercivity of the higher remanence compositions as discussed above. However, even if the coercivity of the 23% Al alloy (with remanence about 5500 Oe, Table 10) was increased to 2000 Oe the properties would remain inferior to the cheaper Hycorex alloys (Table 1).

It is clear, therefore, that B_r as well as J_{c} must be increased if the Halcolloy alloys are to become useful permanent magnet materials.

Various modifications to the preparation, treatment and composition of Halcolloy, aimed at improving these properties are discussed below.

4.2. Modifications aimed to increase coercivity

4.2.1. Effect of solution treatment, time and temperature

It has been shown (section 3.2.) that the maximum J_{c} attained on ageing the Halcolloy alloys decreases with decreasing aluminium content. In the as-cast condition, Halcolloy contains a coarse Widmanstätten precipitate of cobalt (Figure 7a) which is dissolved during solution treatment. All the samples previously discussed were solution treated for 1 hour at 1380°C. It is possible that this treatment, although resulting in the solution of the cobalt precipitate, is not sufficient to homogenise the alloy completely; i.e. regions with high cobalt content may exist in the single phase γ. In such regions, therefore, conditions similar to those in a higher cobalt alloy would exist and the γ precipitate would grow rapidly on ageing so that when ϕ approached zero, the precipitate size would be large and coercivity would be low. Some
Fig. 42 - Effect of Solution Treatment Temperature on J_c after subsequent ageing at 450°C (28.3% Al alloy)
Table 16

The effect of aging the 28.5% Al alloy at 450°C after various solution treatments.

<table>
<thead>
<tr>
<th>Time at 450°C Hours</th>
<th>1/2 hour at 1220°C</th>
<th>1 hour at 1300°C</th>
<th>1/2 hour at 1400°C</th>
<th>1 hour at 1450°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jc</td>
<td>Jc</td>
<td>Jc</td>
<td>Jc</td>
</tr>
<tr>
<td></td>
<td>Oe</td>
<td>cm³</td>
<td>Oe</td>
<td>cm³</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td><2</td>
<td>90</td>
<td><2</td>
<td>90</td>
</tr>
<tr>
<td>1/2</td>
<td>5</td>
<td>81</td>
<td>5</td>
<td>81</td>
</tr>
<tr>
<td>4</td>
<td>60</td>
<td>75</td>
<td>70</td>
<td>75</td>
</tr>
<tr>
<td>6</td>
<td>624</td>
<td>77</td>
<td>932</td>
<td>75</td>
</tr>
<tr>
<td>9</td>
<td>932</td>
<td>75</td>
<td>1035</td>
<td>75</td>
</tr>
<tr>
<td>11</td>
<td>1121</td>
<td>74</td>
<td>1136</td>
<td>74</td>
</tr>
<tr>
<td>13</td>
<td>1235</td>
<td>74</td>
<td>1225</td>
<td>72</td>
</tr>
<tr>
<td>19</td>
<td>1385</td>
<td>70</td>
<td>1415</td>
<td>69</td>
</tr>
<tr>
<td>24</td>
<td>1380</td>
<td>67</td>
<td>1400</td>
<td>67</td>
</tr>
<tr>
<td>30</td>
<td>1375</td>
<td>67</td>
<td>1425</td>
<td>67</td>
</tr>
<tr>
<td>42</td>
<td>1380</td>
<td>68</td>
<td>1410</td>
<td>67</td>
</tr>
</tbody>
</table>

1 hour at 1300°C:

<table>
<thead>
<tr>
<th></th>
<th>Jc</th>
<th>Jc</th>
<th>Jc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Oe</td>
<td>cm³</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td><2</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>5</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>60</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>624</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>932</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1121</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1235</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1385</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1380</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1375</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>1380</td>
<td>68</td>
<td></td>
</tr>
</tbody>
</table>

2 hours at 1300°C:

<table>
<thead>
<tr>
<th></th>
<th>Jc</th>
<th>Jc</th>
<th>Jc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Oe</td>
<td>cm³</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td><2</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>5</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>60</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>624</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>932</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1121</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1235</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1385</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1380</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1375</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>1380</td>
<td>68</td>
<td></td>
</tr>
</tbody>
</table>

16 hours at 1220°C:

<table>
<thead>
<tr>
<th></th>
<th>Jc</th>
<th>Jc</th>
<th>Jc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Oe</td>
<td>cm³</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td><2</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>5</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>60</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>624</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>932</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1121</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1235</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1385</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1380</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1375</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>1380</td>
<td>68</td>
<td></td>
</tr>
</tbody>
</table>
indication that the form of a precipitate can be influenced by the previous solution treatment is contained in the results of Varian et al. These authors showed that the mechanical properties attainable on ageing aluminium-copper alloys, with around 4% copper, were increased if the solution treatment temperature was as high as possible. An investigation of the effect of solution treatment temperature and time on the \(J_c \) of Helecolloy, after subsequent ageing was, therefore, worthwhile.

Insufficient of the original alloys remained for this work to be carried out; a new cast was, therefore, prepared. As with the previous casts, the constituents were of commercial purity (Cobalt 99.6 wt%, aluminium 99.9 wt%), and melting was carried out by induction heating under argon. The aimed composition was 28% Al, but in order to distinguish this material from the earlier 26% Al alloy it will be referred to by the analysed Al content of 28.3% Al. The analysed composition was as follows -

\[
\begin{align*}
\text{Co} & \quad 71.5\% \text{ (by difference)} \\
\text{Al} & \quad 26.3\% \\
\text{Fe} & \quad 0.2\% \text{ (impurity)}
\end{align*}
\]

Groups of samples were solution treated for \(\frac{1}{2} \) hour at different temperatures, \((1220^\circ C, 1300^\circ C, 1400^\circ C \text{ and } 1450^\circ C) \) and water quenched. Measurements on five samples from each group showed that there was no consistent variation in \(\sigma \) with solution treatment temperature, the total range in \(\sigma \) was from 59.5-91. The samples were aged for various times at \(450^\circ C \) to give \(J_c \) and \(\sigma \) values as shown in Table 16 and Figure 42. The Figure also includes the variation of \(J_c \) on ageing at \(450^\circ C \) of the original 26% Al alloy (broken line).

It can be seen that as solution treatment temperature was increased from \(1220^\circ C \) to \(1300^\circ C \) the maximum \(J_c \) on ageing increased from 1086-1380 Oe. Further increase in solution treatment temperature, however, resulted in a decrease in maximum \(J_c \). The change in \(\sigma \) on ageing did not vary with solution treatment temperature.

Two further groups of samples were solution treated at \(1300^\circ C \). Treatment was prolonged for two hours in one case and for 16 hours in the other. The results of subsequent ageing at \(450^\circ C \) are shown in Figure 43.
The material solution treated for 2 hours is seen to have a slightly higher maximum J_c than that treated for 1 hour but after 16 hours maximum J_c decreased. Again, J_c during ageing was not dependent on solution treatment.

Thus maximum J_c attainable on ageing first increased and then decreased as both solution temperature and time were increased. This effect can be understood as follows. As solution treatment temperature and/or time is increased, the β phase becomes more homogenous and J_c is increased due to elimination of regions with high cobalt content as discussed above. It is known, however, that the equilibrium vacancy concentration increases with temperature and that the activation energy for precipitation is reduced when vacancy concentration is high. Thus, as solution treatment temperature is increased, the number of vacancies retained on quenching will increase and diffusion and particle growth on ageing will be easier. The coercivity of the α dispersion will, therefore, be reduced.

At higher temperatures, vacancy concentration will be higher and subsequent coercivity will be less. At lower temperatures, the vacancy concentration will be less and the time required to reach equilibrium will be increased.

A short solution treatment time may, therefore, result in a low, non-equilibrium vacancy concentration and a higher maximum J_c on ageing. From this hypothesis optimum solution treatment temperature can be understood as the resultant of two opposing effects. Treatment must be sufficiently prolonged and at a high enough temperature to homogenise the β phase but for as short a time and at as low a temperature as possible to minimise the vacancy concentration.

Solution treatment conditions could be optimised by carrying out a detailed examination of different combinations of time and temperature but it seems doubtful, in view of the relatively small effect observed, whether any great benefit in terms of maximum J_c would arise from such a study.
4.2.2. The addition of third elements

Hasegawa et al. succeeded in increasing the coercivity of Fe-Co alloy by making additions of third elements. One such alloy had the composition:

Co 67.6% (69.55 wt%), Al 27.4% (14.62 wt%), Ti 5.0% (4.63 wt%),

and properties, after solution treatment at 1365°C and ageing 20 hours at 550°C:

\[B_r = 2850 \text{ G}, \quad H_c = 1550 \text{ Oc}, \quad (B_H)_{\text{max}} = 1.40 \text{ kOe} \]

This alloy is typical of the various high coercivity ternary alloys described by Hasegawa et al in that the increase in coercivity is accompanied by a decrease in \(B_r \) and \((B_H)_{\text{max}} \) (Table 3). An alloy of similar composition has been examined as part of the present work to determine the reason for the increased coercivity.

The material was prepared from constituents of the following purity:

- Cobalt 99.5 wt%, aluminium 99.9 wt%, and Ti 99.9 wt%.

Melting was carried out by induction heating under argon. After solidification, the cast was broken up and re-melted to ensure adequate mixing. The analysed composition including iron, present as impurity, was:

- Co 67.5% (by difference), Al 27.3%, Ti 5.0%, Fe 0.2%.

A number of samples were solution treated at 1365°C, under a protective atmosphere of hydrogen, and water quenched. In this condition \(\sigma \) ranged between 65.4 emu -1 and 66.6 emu -1, indicating a fair degree of homogeneity, and \(J_r \) was too small to be measured, i.e., <2 Oe. X-ray diffraction examination, using the transmitted beam, and optical metallography revealed a single phase structure which was identified as h.c.p.\(\delta \).

Samples were aged at temperatures between 450°C and 700°C. As with the binary alloys, the precipitate was found to be \(\delta \) on ageing up to 600°C and a mixture of \(\alpha \) and \(\delta \) at 700°C. During ageing at the latter temperature the amount of \(\delta \) increased until after 12 hours only a trace of
Fig. 64 - Effect of aging on J_{c} and σ of the Co-Al-Ti alloy
Table 17

Effect of Ageing on \(J_c \) and \(\sigma \) of the Co-Al-Ti Alloy

<table>
<thead>
<tr>
<th>450°C</th>
<th>500°C</th>
<th>550°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>(J_c)</td>
<td>(\sigma)</td>
</tr>
<tr>
<td>hrs.</td>
<td>emu/</td>
<td>emu/</td>
</tr>
<tr>
<td>0</td>
<td><2</td>
<td>66</td>
</tr>
<tr>
<td>2</td>
<td><2</td>
<td>66.2</td>
</tr>
<tr>
<td>7</td>
<td><2</td>
<td>63.0</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>59.2</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>63.9</td>
</tr>
<tr>
<td>24</td>
<td>94</td>
<td>55.5</td>
</tr>
<tr>
<td>50</td>
<td>44</td>
<td>32.3</td>
</tr>
<tr>
<td>75</td>
<td>502</td>
<td>51.6</td>
</tr>
<tr>
<td>112</td>
<td>913</td>
<td>50.2</td>
</tr>
<tr>
<td>143</td>
<td>1123</td>
<td>49.5</td>
</tr>
<tr>
<td>204</td>
<td>1604</td>
<td>49.1</td>
</tr>
<tr>
<td>240</td>
<td>1647</td>
<td>48.2</td>
</tr>
<tr>
<td>267</td>
<td>1656</td>
<td>48.5</td>
</tr>
<tr>
<td>284</td>
<td>1677</td>
<td>47.5</td>
</tr>
<tr>
<td>303</td>
<td>1660</td>
<td>-</td>
</tr>
<tr>
<td>380</td>
<td>1664</td>
<td>-</td>
</tr>
<tr>
<td>492</td>
<td>1662</td>
<td>47.9</td>
</tr>
<tr>
<td>444</td>
<td>1662</td>
<td>48.2</td>
</tr>
</tbody>
</table>

700°C

<table>
<thead>
<tr>
<th>Time</th>
<th>(J_c)</th>
<th>(\sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>hrs.</td>
<td>emu/</td>
<td>emu/</td>
</tr>
<tr>
<td>0</td>
<td><2</td>
<td>66</td>
</tr>
<tr>
<td>1</td>
<td>36</td>
<td>56.2</td>
</tr>
<tr>
<td>2</td>
<td>102</td>
<td>59.5</td>
</tr>
<tr>
<td>6</td>
<td>603</td>
<td>49.1</td>
</tr>
<tr>
<td>8</td>
<td>1005</td>
<td>47.9</td>
</tr>
<tr>
<td>24</td>
<td>1532</td>
<td>46.1</td>
</tr>
<tr>
<td>32</td>
<td>1550</td>
<td>47.7</td>
</tr>
<tr>
<td>46</td>
<td>1553</td>
<td>48.2</td>
</tr>
<tr>
<td>72</td>
<td>1455</td>
<td>47.9</td>
</tr>
</tbody>
</table>
Fig. 45 - Variation of peak J_H and minimum σ with atomic cobalt content for the binary helcolloy alloys and the Co-Al-Ti alloy.
It was detected. The variation of σ and J_c on ageing is shown in Figure 44 and Table 17. Peak J_c was 1680 Oe (267 hours at 450°C) and σ reached a minimum value of around 40 emu⁻¹.

It is interesting to compare maximum J_c and minimum σ of this alloy with those from the original binary alloys (section 3.2.3.). These values are plotted against cobalt content in Figure 45. It can be seen that the point representing σ of the ternary alloy falls exactly on the straight line connecting the points for the binary alloys, while a smooth curve can be drawn joining all four J_c points. Thus, in the present work, the addition of titanium at the expense of cobalt resulted in increased coercivity but the effect on both coercivity and σ was not significantly different from that which might be anticipated if aluminium content was increased to a similar extent, i.e. to give a 32.5% Al binary alloy.

It has been suggested that J_c is influenced by activation energy. If, therefore, the Co-Al-Ti alloy is assumed to be equivalent to a 32.5% Al binary alloy, E_A for the reaction might be expected to be intermediate between the values for the 26% and 33% Al alloys (19,000 and 25,000 cal/mole respectively). E_A was determined for the Co-Al-Ti alloy by plotting $\log t$ versus $1/T^0$, where t was the time for σ to fall to 57 emu⁻¹ (Figure 46). The relationship was approximately linear and from the slope, E_A was calculated as 27,500 cal/mole, which is higher than anticipated.

In contradiction to the present work, Yasumoto et al. showed that there was considerable benefit, in terms of coercivity due to the addition of titanium. The Co-Al-Ti alloy with the highest coercivity is that stated earlier, i.e. 67.6% Co (89.55 wt.%), 27.4% Al (14.62 wt.%), 5.0% Ti (4.6 wt.%). This can be compared with a binary alloy with the same atomic cobalt content, i.e. 67.6% Co (82 wt.%), 32.4% Al (18 wt.%). The properties of these alloys after heat treatment to give maximum coercivity were given by Yasumoto et al. as follows.
$t = \text{time for } g \text{ to fall to 57 cm}^{-1}$

$T = \text{absolute gain, temperature}$

$E_A = 27.5 \text{ k cal/mole}$
Fig. 47 - Derived demagnetisation curves for a 32.4% Al binary Palclloy alloy (based on the results of Hamasato et al. 41)
J_c^H of the binary alloy is not stated but in Figure 47 a demagnetisation curve, (B v.s. H), with E_r, H_c and $(EH)_{max}$ as given by Kusumoto et al for the binary alloy, is constructed. From this an intrinsic demagnetisation curve (B v.s. H) has been derived and this can be extrapolated to give a J_c value of about 1350 Oe. The value may not be accurate because the precise form of the demagnetisation curve is not known. It is clear, however, that J_c^H of the binary alloy must have been considerably lower than that of the alloy with titanium. As noted above, activation energy derived in the present work was rather higher, in the presence of titanium, than would be expected for the equivalent binary alloy. No corresponding activation increase in J_c^H was observed but it is possible that increased energy due to the presence of titanium might be responsible for the increased J_c^H obtained by Kusumoto et al.

4.3. Modifications to Increase Remanence

4.3.1. The addition of Iron

The saturation magnetisation of iron at room temperature is greater than that of cobalt ($\sigma_{Fe} = 217$, $\sigma_{Co} = 161$). The partial replacement of the cobalt content of the alloy by iron might be expected, therefore, to increase σ of the precipitate and, consequently E_r of the material after ageing.

A cast of commercial purity constituents was induction melted under argon as described previously. Analysed composition was -

- Co 65.2% (by difference), Al 30.2%, Fe 4.6%

The composition is marked on the Co-Al-Fe phase diagram in Figure 48. The phase boundaries shown are those at 800°C derived by Edwards et al. whose
Fig. 48 - Aluminium Cobalt Iron phase diagram at 800°C (after Edwards 73).
The asterisk marks the composition of the alloy discussed in the script.
Table 10

The Effect of Ageing on μ and σ of the Co-Al-Fe Alloy

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Time (hrs.)</th>
<th>μ (Oe)</th>
<th>σ (emu/g)</th>
<th>Time (Hrs.)</th>
<th>μ (Oe)</th>
<th>σ (emu/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>450°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td><2</td>
<td>86.0</td>
<td></td>
<td>0</td>
<td><2</td>
<td>86.0</td>
</tr>
<tr>
<td>20</td>
<td>127</td>
<td>84.1</td>
<td></td>
<td>6</td>
<td>401</td>
<td>82.4</td>
</tr>
<tr>
<td>50</td>
<td>56</td>
<td>83.5</td>
<td></td>
<td>7</td>
<td>401</td>
<td>82.4</td>
</tr>
<tr>
<td>60</td>
<td>219</td>
<td>79.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>345</td>
<td>77.7</td>
<td></td>
<td>144</td>
<td>386</td>
<td>76.1</td>
</tr>
<tr>
<td>135</td>
<td>335</td>
<td>77.5</td>
<td></td>
<td>162</td>
<td>328</td>
<td>76.5</td>
</tr>
<tr>
<td>160</td>
<td>535</td>
<td>76.6</td>
<td></td>
<td>161</td>
<td>525</td>
<td>76.9</td>
</tr>
<tr>
<td>190</td>
<td>530</td>
<td>76.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>526</td>
<td>76.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td><2</td>
<td>86.0</td>
<td></td>
<td>0</td>
<td><2</td>
<td>86.0</td>
</tr>
<tr>
<td>1</td>
<td>88</td>
<td>-</td>
<td></td>
<td>10 min 150</td>
<td>-</td>
<td>81.5</td>
</tr>
<tr>
<td>2</td>
<td>341</td>
<td>82.4</td>
<td></td>
<td>15 min 243</td>
<td>15</td>
<td>78.8</td>
</tr>
<tr>
<td>3</td>
<td>323</td>
<td>-</td>
<td></td>
<td>15 min 143</td>
<td>15</td>
<td>78.8</td>
</tr>
<tr>
<td>4</td>
<td>326</td>
<td>77.6</td>
<td></td>
<td>15 min 143</td>
<td>15</td>
<td>78.8</td>
</tr>
<tr>
<td>6</td>
<td>321</td>
<td>77.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>245</td>
<td>76.6</td>
<td></td>
<td>25</td>
<td>101</td>
<td>76.5</td>
</tr>
<tr>
<td>550°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td><2</td>
<td>86.0</td>
<td></td>
<td>0</td>
<td><2</td>
<td>86.0</td>
</tr>
<tr>
<td>5 min 120</td>
<td>105</td>
<td>76.6</td>
<td></td>
<td>10 min 105</td>
<td>77.6</td>
<td></td>
</tr>
<tr>
<td>15 min 105</td>
<td>77.6</td>
<td>76.6</td>
<td></td>
<td>15 min 105</td>
<td>77.6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>85</td>
<td>76.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>85</td>
<td>76.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td><2</td>
<td>86.0</td>
<td></td>
<td>0</td>
<td><2</td>
<td>86.0</td>
</tr>
<tr>
<td>1</td>
<td>88</td>
<td>-</td>
<td></td>
<td>10 min 150</td>
<td>-</td>
<td>81.5</td>
</tr>
<tr>
<td>2</td>
<td>341</td>
<td>82.4</td>
<td></td>
<td>15 min 243</td>
<td>15</td>
<td>78.8</td>
</tr>
<tr>
<td>3</td>
<td>323</td>
<td>-</td>
<td></td>
<td>15 min 143</td>
<td>15</td>
<td>78.8</td>
</tr>
<tr>
<td>4</td>
<td>326</td>
<td>77.6</td>
<td></td>
<td>15 min 143</td>
<td>15</td>
<td>78.8</td>
</tr>
<tr>
<td>6</td>
<td>321</td>
<td>77.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>245</td>
<td>76.6</td>
<td></td>
<td>25</td>
<td>101</td>
<td>76.5</td>
</tr>
<tr>
<td>650°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td><2</td>
<td>86.0</td>
<td></td>
<td>0</td>
<td><2</td>
<td>86.0</td>
</tr>
<tr>
<td>5 min 120</td>
<td>105</td>
<td>76.6</td>
<td></td>
<td>10 min 105</td>
<td>77.6</td>
<td></td>
</tr>
<tr>
<td>15 min 105</td>
<td>77.6</td>
<td>76.6</td>
<td></td>
<td>15 min 105</td>
<td>77.6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>85</td>
<td>76.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>85</td>
<td>76.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>700°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td><2</td>
<td>86.0</td>
<td></td>
<td>0</td>
<td><2</td>
<td>86.0</td>
</tr>
<tr>
<td>5 min 120</td>
<td>105</td>
<td>76.6</td>
<td></td>
<td>10 min 105</td>
<td>77.6</td>
<td></td>
</tr>
<tr>
<td>15 min 105</td>
<td>77.6</td>
<td>76.6</td>
<td></td>
<td>15 min 105</td>
<td>77.6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>85</td>
<td>76.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>85</td>
<td>76.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>750°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td><2</td>
<td>86.0</td>
<td></td>
<td>0</td>
<td><2</td>
<td>86.0</td>
</tr>
<tr>
<td>5 min 120</td>
<td>105</td>
<td>76.6</td>
<td></td>
<td>10 min 105</td>
<td>77.6</td>
<td></td>
</tr>
<tr>
<td>15 min 105</td>
<td>77.6</td>
<td>76.6</td>
<td></td>
<td>15 min 105</td>
<td>77.6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>85</td>
<td>76.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>85</td>
<td>76.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
work shows that this alloy will contain two phases, \(\alpha + \beta \), at temperatures below 800°C and only \(\beta \), at temperatures above 1300°C. Solution treatment and ageing to precipitate cobalt was therefore feasible.

Samples were solution treated at 1380°C to give \(\alpha \) between 85.5 and 87\% and \(J_{c}^{H} < 2 \text{ Gc} \). Metallographic and X-ray diffraction examination revealed the anticipated single phase \(\beta \) structure. The change in \(J_{c}^{H} \) and \(\sigma \) on ageing at temperatures between 450°C and 750°C is shown in Figure 49 and Table 18. As with the binary alloys the precipitate was \(\epsilon \) below 650°C and \(\alpha + \epsilon \) at higher temperatures. Comparing the properties with those for the binary alloys (Figures 9-12) it is seen that, in the alloy with iron, maximum \(J_{c}^{H} \) is lower and more dependent on ageing temperature in the range 450-500°C than was the case for the binary materials. Also, the minimum value of \(\sigma \) (about 76\% \text{ max}^{-1}) is rather higher than would be expected for a corresponding binary alloy. Thus, \(\sigma \) was increased by the addition of iron but only at the expense of \(J_{c}^{H} \).

The reason for the reduced \(J_{c}^{H} \) was easily established. In Figure 50 \(\alpha, \beta \) curves for Co-Al-Fe samples aged for various times at 450°C are plotted. These were produced as described in section 3.6, and indicate clearly the presence of two magnetic phases (\(\alpha \) and \(\beta \)) in all cases. Thus even after 162 hours at 450°C \(\beta \) remained strongly magnetic at room temperature. From Table 18 it can be seen that more prolonged ageing at 450°C did not result in any significant change in \(J_{c}^{H} \) or \(\sigma \). It must be concluded, therefore, that the precipitation reaction was essentially complete after 162 hours and that the magnetic \(\beta \) present was in metastable equilibrium with the \(\epsilon \) dispersion.

Analysis of the curves in Figure 50 using the approach described in section 3.6, is possible. The results can only be approximate, however, for two reasons. First, the composition and, therefore, the \(\sigma \) of the dispersion is not known. Second, the Curie temperature of the \(\beta \) present is much higher than was the case for the binary samples studied.
Fig. 5. - v, T curves for Co-Al-Te samples after ageing at 450°C
As a result it is not possible to select a temperature at which the influence of β on the magnetisation is negligible without moving into the range where the γ to α transition, with consequent solution of aluminium is likely. Assuming the CoFe dispersion contains about 5% Fe, σ would be about 165 emu$^{-1}$ at room temperature (σ Co at room temperature is 161 emu$^{-1}$) and 146 emu$^{-1}$ at 500°C (σ Co at 500°C is 144 emu$^{-1}$). It can be calculated, as in section 3.6., that in the case of the sample aged 162 hours at 450°C the weight fractions of precipitate and β present are approximately 0.3 and 0.7 respectively. σ of β is then 34 emu$^{-1}$. The contribution of β to the total magnetisation (at saturation) is, therefore, about 24 emu$^{-1}$ while that of the precipitate (at resonance) is about 26 emu$^{-1}$.

According to the discussion in section 3.6, an even lower coercivity than that observed might be anticipated because of the relatively large ratio of the β and precipitate contributions. However, in view of the various inaccuracies involved in calculating the contributions it seems unwise to draw more than the general conclusion that the low J^Hi_c can be attributed to the persistence of the magnetic β matrix.

4.3.2. Attempts to induce particle alignment

As stated earlier, the remanent magnetisation (S_r) of a permanent magnet consisting of randomly aligned single domain particles is approximately equal to half the saturation magnetisation, the properties being equal in all directions. If the particles are aligned with their easy axes of magnetisation parallel, however, the properties of the assembly are anisotropic and in the direction parallel to the preferred axes of the particles, S_r is equal to saturation magnetisation. Thus, although in other directions properties are reduced relative to those of a randomly aligned system, there is a great improvement in B_r and, therefore, ($B_r^\text{Hi} \max$) in the preferred direction.

A number of experiments were, therefore, carried out with the aim of inducing some degree of alignment in the γ precipitate in CoAlloy.
In the Alnico alloys (see Table 1) a high coercivity is derived from a magnetic, single domain precipitate with a b.c.c. structure, present in a non-magnetic, b.c.c. matrix; the precipitate particles are elongated parallel to <001> matrix directions and thus exhibit shape anisotropy. The two phase structure is produced by spinodal decomposition during heat treatment, the precise nature of the treatment being dependent on the composition of the alloy. If the reaction is initiated in the presence of a magnetic field, elongation of the magnetic component along those <001> matrix directions which are parallel to the field direction is favoured. If the material has a randomly oriented grain structure it is unlikely that many grains will have <001> matrix directions parallel to the field, elongation thus takes place along those <001> directions most nearly parallel and a limited degree of alignment is obtained. Greater alignment and superior anisotropic properties are achieved if the matrix grains are oriented with <001> axes parallel and if the field during heat treatment is applied in this direction. The Alnico alloys, with either randomly oriented (equiequaxed) or oriented (columnar) grain structures (the latter produced by exothermic casting as described in section 3.4.) are almost invariably manufactured as anisotropic field treated magnets.

In the case of Nalcolloy the precipitate is h.c.p. in which the preferred direction of magnetisation at room temperature is <0001>. Superior anisotropic properties would, therefore, be induced if the <0001> axes of the particles were parallel. Unfortunately the results of Honda and Kasumoto indicate that at temperatures above 23°C the anisotropy of the structure changes so that the principal directions in the basal plane become preferred directions of magnetisation. The variation of J_c with temperature of Nalcolloy (section 3.2.) is not entirely consistent with these observations but it seems likely that within the range of temperature used for ageing these alloys (450-600°C) <001> will not be the preferred direction of magnetisation.
There is no reason to suppose, therefore, that field heat treatment would favour precipitation with <0001> c (directions) parallel to the field.

Assuming that the type of anisotropy detected by Honda and Kaneko between 250°C and 400°C also exists at higher temperatures, the most likely effect of aging in a field is that precipitation with <0001> c (planes) parallel to the field would be encouraged.

In section 3.4, the crystallographic orientation relationship between c precipitate and c matrix was defined as [0001] c parallel to (011)β. In the same section it was shown that in castings consisting of columnar crystals the <001> β was approximately parallel to the columnar axis. It follows that (011) β (planes) were parallel, perpendicular or at 45° to this axis. On application of a field parallel to the columnar axis during aging, two of the (011) β planes in each crystal would be approximately parallel to the field; precipitation of c with <0001> c parallel to these (011) β planes would, therefore, be favoured. Since the columnar grains were, apart from the correspondence of <001> β axes, randomly oriented, the <0001> c directions would lie in a plane perpendicular to the field direction.

The effect in terms of magnetic properties would be to decrease B_r, $(BH)_{max}$ and H_c in the field direction, which would contain no <0001> c directions, but to give some improvement in all directions perpendicular to the field. Since <0001> c directions would be distributed at random within the plane perpendicular to the field only a small improvement would be anticipated.

In equixed castings (with randomly oriented grains) few (011) β planes would be parallel to the field and any anisotropy arising from field heat treatment would be less marked than for columnar samples.

In fact, as shown in Table 19, the properties of equixed and columnar samples, aged in a magnetic field, showed no sign of anisotropy and were identical to those of samples aged without a field. The equixed
TABLE 12

The properties of equiaxed and columnar Malcolloy after aging for 6 hours at 550°C with and without the application of a magnetic field.

<table>
<thead>
<tr>
<th>Crystal Structure</th>
<th>Test Direction</th>
<th>H_r G</th>
<th>$(BH)_{max}$ kG</th>
<th>H_c Oe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equiaxed</td>
<td></td>
<td>3400</td>
<td>1.26</td>
<td>1110</td>
</tr>
<tr>
<td>Equiaxed</td>
<td>perpendicular to above</td>
<td>3350</td>
<td>1.25</td>
<td>1125</td>
</tr>
<tr>
<td>Columnar</td>
<td>parallel to columnar crystals</td>
<td>3300</td>
<td>1.20</td>
<td>1120</td>
</tr>
<tr>
<td>Columnar</td>
<td>perpendicular columnar crystals</td>
<td>3400</td>
<td>1.24</td>
<td>1120</td>
</tr>
<tr>
<td>Equiaxed</td>
<td>parallel to field</td>
<td>3350</td>
<td>1.22</td>
<td>1125</td>
</tr>
<tr>
<td>Equiaxed</td>
<td>perpendicular to field</td>
<td>3450</td>
<td>1.25</td>
<td>1115</td>
</tr>
<tr>
<td>Columnar</td>
<td>parallel to field</td>
<td>3400</td>
<td>1.21</td>
<td>1115</td>
</tr>
<tr>
<td>Columnar</td>
<td>perpendicular to field</td>
<td>3350</td>
<td>1.25</td>
<td>1120</td>
</tr>
</tbody>
</table>
material was from the 28% Al alloy and the columnar samples (also nominally 28% Al) were from the cast described in section 3.4. All samples were solution treated at 1300°C for 1 hour and water quenched. Magnetic field ageing, for 6 hours at 550°C, was carried out in a small furnace inside a water cooled solenoid which provided a field of about 6000 Oe. In the case of the columnar samples, the field was applied parallel to the columnar axis.

Since no anisotropy whatsoever was detected after field heat treatment, it must be concluded that the increase in magnetic energy associated with a particle forming with unfavourable orientation relative to the field was insufficient to inhibit nucleation and growth.

b. Mechanical work

It is well known that plastic deformation can induce preferred orientation and it seemed worthwhile as part of the present work to examine the effect of mechanical work on the Alcalloy alloys.

This approach was completely unsuccessful. Attempts were made to forge samples from the 23%, 28% and 38% Al alloys at all stages of the heat treatment process, i.e. before and after solution treatment and after ageing. The samples were pre-heated to various temperatures up to 1400°C, and forged by hand using a hammer and an anvil. In every case, the first blow of the hammer shattered the specimen and only in those samples heated to either 1200°C or 1400°C were signs of plastic deformation observed. The alloys were thus found to be unforgeable. This is not in agreement with Inoue et al. who reported alloys containing between about 20% and 25% Al to be "forgeable", those between about 25% and 30% Al to be "comparatively forgeable" and only those above 30% to be "unforgeable".

4.3.3. Increased h_p due to the presence of magnetic μ

It has been suggested in section 3.6.4, that because of the influence of local fields, the ratio $h_p/4\pi\chi_p$ for Alcalloy samples may be increased to considerably greater than 0.5 (the expected value for isotropic materials) if the matrix phase μ is magnetic. It may be that the properties obtained
by Masumoto et al. who reported B_r and $(\tilde{B}_H)_{\text{max}}$ rather higher than those measured in the present work (Table 10) were influenced by magnetic β in this way. In 3.6.2. and 3.6.3., however, it has been shown that the main effect of magnetic β is to reduce $J_{H_c}^r$. It is nevertheless possible that some increase in $(\tilde{B}_H)_{\text{max}}$ could be obtained if heat treatment was carefully controlled so that the effect of magnetic β on $J_{H_c}^r$ was minimised while retaining some improvement in B_r. The limited scope of this possibility is demonstrated by the demagnetisation curves in Figure 34 for samples from the 28% Al alloy aged for 1 hour and 169 hours respectively at 500°C. In the sample aged for 1 hour σ_r was 25 emu$^{-1}$ and after 169 hours σ_r was zero (Table 14). B_r was higher after 1 hour and $B_r/4\pi J_B$ was reduced to 0.56 in the 169 hour sample. At the same time, however, the presence of magnetic β has restricted $J_{H_c}^r$ of the sample aged for 1 hour, to 524 Oe (Table 8). Clearly, therefore, since σ_r must be very low in order to give high $J_{H_c}^r$, any improvement in B_r due to this mechanism is likely to be small. No experiments specifically aimed at exploring this effect have been carried out. Nevertheless, it can be seen from the results in Table 10 for the 28% Al alloy aged at 500°C that optimum B_r and $(\tilde{B}_H)_{\text{max}}$ do not correspond to maximum $J_{H_c}^r$. Thus, the best $(\tilde{B}_H)_{\text{max}}$ (1.30 kG) was obtained after 121 hours at 500°C when $J_{H_c}^r$ was only 1215 Oe, σ_r (Table 14) was 12.3 emu$^{-1}$ and $B_r/4\pi J_B$ was 0.57.
Fig. 51 - Co/Ti phase diagram. According to Fountain and Forgan.
5.1. Introduction

The high cold section of the cobalt titanium phase diagram, according to Fountain and Forbeng, is shown in Figure 51. It can be seen that, as with the Co-Al system, it is possible to take a certain amount of the primary, cobalt rich phase (ε) into solution in an intermediate phase which in this case is f.c.c. γ.

Thus, alloys containing between about 17 and 20% Ti should be amenable to solution treatment within the γ phase field, at temperatures between about 1050 and 1175°C, followed by ageing in the two phase, ε + γ, field to precipitate α. The fraction of the cobalt rich phase available for precipitation in these alloys is much less than in the two lower aluminium (28% and 23% Al) Monelloy alloys; saturation magnetisation will, therefore, be lower and B_r (BR)$_{max}$ and H_c will be inferior to those of the Monelloy alloys. In the context of the present work, however, Co Ti alloys are of interest because of the similarity between the crystal structures of the intermediate phase γ and the f.c.c. allotrope of cobalt, ε. Thus, f.c.c. ε cobalt has a lattice parameter of 3.5441Å, while that of f.c.c. γ was shown by Fountain and Forbeng to vary between 3.604Å (20% Ti) and 3.614Å (24% Ti). In view of the similarity between the two structures and bearing in mind the sluggish nature of the f.c.c. to h.c.p. transition in cobalt (Appendix I), it seems inevitable that on ageing at temperatures above the transition temperature, the cobalt rich precipitate will form as the stable f.c.c. allotrope and that this structure will be retained on cooling to room temperature. The CoTi alloys thus provide an opportunity to examine the properties of a f.c.c. cobalt precipitate produced under similar conditions to those under which the h.c.p. precipitate is formed in Monelloy.

5.2. Preparation and Heat Treatment of the Alloys
5.2.1. Preparation of the alloys

Two casts were prepared from commercial purity constituents (99.5 wt.%) by melting procedure was identical to that used for the Malcolloy alloys i.e. under half an atmosphere of argon, in a pure alumina crucible contained in an induction heated graphite susceptor. The casts were allowed to solidify in the crucible end, after solidification, were re-melted to ensure satisfactory mixing. Nominal Ti contents were 17.5\% and 20\%, analyzed compositions, including Fe present as impurity were as follows.

<table>
<thead>
<tr>
<th>Ti at (%)</th>
<th>Fe at (%)</th>
<th>Co (by difference) at (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.3</td>
<td>0.2</td>
<td>82.5</td>
</tr>
<tr>
<td>20.1</td>
<td>0.25</td>
<td>79.65</td>
</tr>
</tbody>
</table>

The 17.5\% Ti alloy was subsequently used for solution treatment and ageing experiments. The 20\% Ti material was aimed to give single phase \(\gamma\) approximately of the composition which, according to the phase diagram (Figure 51), would come into equilibrium with \(\alpha\) in the 17.5\% Ti alloy on ageing at temperatures below 900\(^\circ\)C. Thus it was possible to assume that the structure and magnetic properties of the 20\% Ti alloy were similar to those of the matrix in the 17.5\% Ti alloy after ageing to give complete precipitation of \(\alpha\).

5.2.2. Heat treatment of the Alloys

Both alloys were initially subjected to a homogenising treatment of 6 hours at 1160\(^\circ\)C, (i.e. within the \(\gamma\) phase field in both cases, see Figure 51), followed by water quenching. Atmospheric protection was provided by a continuous flow of purified hydrogen. Subsequent examination of both casts by optical microscopy showed the 20\% Ti material to be single phase but revealed a multi-phase structure of cored dendrites in a eutectic matrix in the 17.5\% Ti alloy. Unlike the Malcolloy alloys both CoTi casts were found to be forgeable and a single phase structure was ultimately achieved in the 17.5\% Ti alloy by forging prior to solution treatment.
Forging was carried out by hand after pre-heating to 1160°C. Metallographic examination after forging to give about 60% reduction showed the dendritic structure to be heavily deformed but indicated no sign of re-crystallization. Subsequent solution treatment at 1160°C followed by water quenching produced the desired single phase structure.

No further treatment was applied to the 26% Ti material but samples from the 17.5% Ti cast were subjected to a variety of ageing treatments at temperatures between 450°C and 750°C as shown in Table 20. Ageing at all temperatures was carried out without atmospheric protection and the samples were quenched to room temperature after ageing.

5.3. Results and Discussion

Both alloys were examined by X-ray diffraction in the single phase condition. In both cases the structure was identified as f.c.c. γ, with lattice parameter of 3.608Å in the 26% Ti alloy and 3.600 Å in the 17.5% Ti alloy. These values are in good agreement with those of Fountain and Forgeng. During ageing of the 17.5% Ti alloy, at all the temperatures shown in Table 20, lines appeared representing f.c.c. α. These were weak, due to the small amount of the phase available for precipitation (see Figure 51) and were positioned close to the γ lines. This was to be expected in view of the similarity between the two crystal structures.

Some line broadening was observed in the patterns of both phases. It seems likely in view of the crystallographic similarity between α and γ that this was due to mutual strain and that the two structures were completely or partially coherent.

J_c and σ were determined for both casts in the single phase condition. The 20% Ti material had σ of 47.5 emu$^{-1}$ while that of the 17.5% Ti alloy was 60.5 emu$^{-1}$. In each case, these values are the mean of ten determinations where the range was about 11 emu$^{-1}$. As with Alcolloy σ was measured on small solid samples. J_c ranged from 45 to 56 Oe with a mean of 49 Oe for the 20% Ti alloy and from 50 to 67 Oe with an
Table 20

Variation of \(J_c \) and \(\sigma \) of the 17.5\% Ti Alloy on Aging

<table>
<thead>
<tr>
<th>Time hrs.</th>
<th>(J_c) ((0.1))</th>
<th>(\sigma)-1</th>
<th>Time hrs.</th>
<th>(J_c) ((0.1))</th>
<th>(\sigma)-1</th>
<th>Time hrs.</th>
<th>(J_c) ((0.1))</th>
<th>(\sigma)-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>66</td>
<td>60.5</td>
<td>0</td>
<td>60</td>
<td>60.5</td>
<td>0</td>
<td>60</td>
<td>60.5</td>
</tr>
<tr>
<td>5</td>
<td>69</td>
<td>60.2</td>
<td>2</td>
<td>71</td>
<td>60</td>
<td>1</td>
<td>69</td>
<td>61.0</td>
</tr>
<tr>
<td>10</td>
<td>77</td>
<td>62.1</td>
<td>5</td>
<td>82</td>
<td>60</td>
<td>5</td>
<td>101</td>
<td>60</td>
</tr>
<tr>
<td>20</td>
<td>89</td>
<td>61.9</td>
<td>10</td>
<td>101</td>
<td>60.0</td>
<td>24</td>
<td>154</td>
<td>60</td>
</tr>
<tr>
<td>60</td>
<td>140</td>
<td>60.7</td>
<td>23</td>
<td>135</td>
<td>60</td>
<td>48</td>
<td>160</td>
<td>60</td>
</tr>
<tr>
<td>90</td>
<td>195</td>
<td>61.3</td>
<td>47</td>
<td>129</td>
<td>60</td>
<td>86</td>
<td>231</td>
<td>60.3</td>
</tr>
<tr>
<td>114</td>
<td>229</td>
<td>60.4</td>
<td>71</td>
<td>201</td>
<td>61.1</td>
<td>162</td>
<td>232</td>
<td>60.0</td>
</tr>
<tr>
<td>138</td>
<td>229</td>
<td>61.1</td>
<td>95</td>
<td>233</td>
<td>60.5</td>
<td>126</td>
<td>202</td>
<td>60.0</td>
</tr>
<tr>
<td>101</td>
<td>239</td>
<td>60.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time hrs.</th>
<th>(J_c) ((0.1))</th>
<th>(\sigma)-1</th>
<th>Time hrs.</th>
<th>(J_c) ((0.1))</th>
<th>(\sigma)-1</th>
<th>Time hrs.</th>
<th>(J_c) ((0.1))</th>
<th>(\sigma)-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>700°C</td>
<td></td>
<td></td>
<td>750°C</td>
<td></td>
<td></td>
<td>700°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>60</td>
<td>60.5</td>
<td>0</td>
<td>60</td>
<td>60.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>154</td>
<td>60.1</td>
<td>1</td>
<td>114</td>
<td>60.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>174</td>
<td>60.1</td>
<td>1</td>
<td>185</td>
<td>60.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>223</td>
<td>60.1</td>
<td>2</td>
<td>190</td>
<td>60.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>223</td>
<td>60.1</td>
<td>5</td>
<td>170</td>
<td>61.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>207</td>
<td>60.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
com of 60 Oe for the material with 17.5% Ti. In each case the Jc of
five different samples was determined. During ageing Jc and σ of the 17.5% Ti
alloy varied as shown in Table 20.

It can be seen that there was no significant change in σ during
ageing. Jc increased and then decreased reaching a peak value of about
230 Oe at all temperatures except 750°C where the peak value was 190 Oe.

The lack of variation in σ can be explained as follows.

According to the phase diagram the weight fraction of α after full
precipitation in the 17.5% Ti alloy, is about 0.13. σ of the precipitate
will be a little lower than that of pure cobalt because of about 2%
titanium in solution, 158 cmug⁻¹, is a reasonable estimate based on a linear
dilution law. Assuming σ of the matrix phase γ to be equal to that of the
20% Ti alloy, i.e. 45.5 cmug⁻¹ it is easily shown that σ of the 17.5% alloy
after full precipitation of α should be about 63 cmug⁻¹, i.e. very similar
to the solution treated value.

The relatively low level of Jc achieved is not surprising in
view of the magnetic matrix. Furthermore, if coercivity was due to the
presence of the α precipitate which is f.c.c. and thus has low crystal
anisotropy, a very small particle size of less than 200° would be necessary
to give single domain behaviour and high coercivity (see section 3.7.1. and
Figure 39).

Unlike the NiColloy alloys, where Jc in the solution treated
condition was too small to be measured, (<2 Oe), both the cobalt-titanium
alloys exhibited significant coercivity, (>45 Oe), after solution treatment
to give single phase γ. It cannot be assumed, therefore, that the coercivity
of γ, after precipitation of α in the 17.5% Ti alloy, was insignificant in
relation to the coercivity of the α particles. Indeed, since lattice strain
can hinder domain boundary movement and thus increase coercivity (section 1.2),
it is conceivable that coherency strain, which it has been suggested above,
is induced in γ during precipitation, might result in the coercivity of γ
increasing during ageing. It would not be impossible, therefore, for the
coercivity of the γ matrix to be greater than that of the upper precipitate if the letter were larger than single domain sites.

Unfortunately, therefore, because of the presence of the magnetic γ matrix and the uncertainty regarding the precise γ source of the coercivity, it is difficult to interpret the properties of the cobalt-titanium alloys in the same terms as the Xejloy alloys and no useful parallels can be drawn.
6.1. Introduction

A finely dispersed mixture of phases can be obtained in alloys of eutectic or eutectoid composition. Lamellar spacings of less than 1 \(\mu m \) are frequently observed. Tiller\(^7\) and Chilton and Vineyard\(^7\) have shown that lamellar spacing in eutectics decreases as solidification rate increases. Thus, in the lead tin eutectic Chilton and Vineyard observed a spacing of 1.5 \(\mu m \) in a directionally solidified sample, grown at 1.5 \(\mu m \) per minute; this spacing decreased to 0.5 \(\mu m \), when the growth rate was increased to 18 \(\mu m \) per minute. Such a dispersion would be too coarse for single domain behaviour in either f.c.c. cobalt \((d_o = 0.02 \mu m)\) or h.c.p. cobalt \((d_o = 0.2 \mu m)\), but by suitable control of solidification conditions it is feasible that some approach to a single domain system might be achieved particularly in the case of the h.c.p. allotrope.

A number of workers\(^7\) have reported the magnetic properties of eutectic alloys containing a ferromagnetic phase. The magnetic component, frequently iron but in some cases nickel or cobalt, was produced as elongated particles by directional solidification. The aim was to obtain shape anisotropic particles, approximating to single domains, and thus having high coercivity, but in most cases coercivity was low, i.e. <25 \(Oe \). Exceptional results were those of Livingston\(^4\), who achieved a coercivity of 925 \(Oe \) in the gold cobalt eutectic by cold drawing a directionally solidified sample (see section 1.2.2.), and those quoted in a patent specification\(^6\) by Magnetfabrik Bonn where coercivities up to 700 \(Oe \) were reported for various, directionally solidified iron based eutectics. Much of this work has been reviewed by Galasso\(^3\). In every case, the observed coercivity was attributed to shape anisotropic particles and there was no suggestion, even when the magnetic component of the eutectic was cobalt, that crystal anisotropy might be primarily responsible.
la th« case of thu iron based eutectics patented by Mageeferifc
the lroa aapatftit of the tultetie structure mmt» presumably, have bee* sufficiently finely divided to tppvmU to a sittgle dormin aystea in order to give the reported coercivity* aieea iron baa law crystal anisotropy single domain sir* is l u l l, i.e. around 200A end hi$h coercivlty i« only achieves tritt elongated particles* If a eutectic structure with this decree of sub-division, together with particle elongation, can be obtained, it seers likely that the conditions accessory to give nigh coercivlty in a
dispersion of h.c.p. cabalt, i.e. particles with diameter about 2000A should be fairly easily achieved. Since the partielea need not ha
elongated there should be no necessity for directionaI solidification.

lit the majority of eutectic and eutoctoid structures, the
phase# are distributed with & lawellar or rod-like structures this is
not ideal for high coercivlty behaviour in a material with high crystal
anisotropy because shape anisotropy my oppose crystal anisotropy and thus
reduce coercivlty. Furthermore, although lamella thickness *ajr approach
the dies*ter of a sinfla domain particle, the discusions in the perpeudicular
directions will be very teach greater and the fenaatiou md laoveeeet of
domain boundaries within tm lamellae seems likely. Nevertheless., in view
of the high levels of coercivlty reported by Livingstee40 and Haguelfabrik41,
an exaaiaatioa of cobalt baaed eutectic and eutoctoa alloys was thought
to be votllMiU.i.

4.2 Structure and Magnetic froprtyee of the Eutectic Alloys

4.2.1. Alloy composition and preparation

Eutectic alloys o«ro prepared to several compositions.

(i) The eutectic in the cobalt antitoo? system (Figure 52a b2)
at 252 (41 vt«£) Sb*

(ii) That in the cobalt niobium system (Figure 52b d3) at 152

(iill) The cobalt carbon eutectic (Figure 52c £4) at 12.51 W*# W*.
a

Co Sb eutectic

× 1,500

b

Co C eutectic

× 1,500

c

Co C eutectic + 0.5% Fe/Si

× 1,500
Tour alloy and s approximates to the Co C eutectic but containing 0.25, 0.5, 1.0 and 2.0 wt.% ferro-silicon, (70 wt.% Si) respectively.

The alloys, of commercial purity (about 99.5 wt.%) were melted by induction heating under argon. The addition of Fe-Si to four of the Co C cases was based on the fact that Fe-Si has the effect of refining the iron graphite eutectic in grey cast iron. It was possible that a similar effect might result from the addition of Fe-Si to the Co C eutectic alloy.

Because solidification rate was expected to influence the nature of the eutectic structure, samples of each molten alloy were allowed to solidify under different conditions. One sample from each was poured into a sand mould, another was chill cast in a small steel ingot mould and the third was shotted by pouring into water. The average cooling rates induced by sand and chill casting were measured as 4°C per second and 26°C per second, respectively. The shotted material, which was obtained by pouring into water with a depth of 90 cm from a height of 60 cm above the water surface, consisted of spheroidal granules ranging in diameter from 1 cm to 0.1 cm. The cooling rate was not measured but was certainly much greater than 500°C per second. The alloys were not analyzed but metallographic examination confirmed that in each case the structure consisted almost entirely of the eutectic.

6.2.2. Structure and properties of the as cast eutectic alloys

The micro structures of the Co Sb and Co Nb alloys were normal eutectic structures; that of the Co Sb alloy after chill casting is shown in Figure 53. The phases appeared to be in the form of lamellae or plates rather than rods. The Co C and Co C + Fe-Si alloys had an anomalous eutectic structure consisting of graphite flakes in a cobalt matrix; Figures 53b and 53c show the chill cast structures of the Co C and the Co C + 0.5% Fe Si alloys.

Using a calibrated eye-piece graticule it was possible to
<table>
<thead>
<tr>
<th>Alloy</th>
<th>Condition</th>
<th>Send Cast</th>
<th></th>
<th>Chill Cast</th>
<th></th>
<th>Shotted</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>c</td>
<td>J_{c}</td>
<td>c</td>
<td>J_{c}</td>
<td>c</td>
<td>J_{c}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mrem</td>
<td>Oe</td>
<td>mrem</td>
<td>Oe</td>
<td>mrem</td>
<td>Oe</td>
</tr>
<tr>
<td>Co Sb</td>
<td>as cast</td>
<td>55.9</td>
<td>42</td>
<td>56.4</td>
<td>66</td>
<td>56.0</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>30 hr. 375°C</td>
<td>56.1</td>
<td>43</td>
<td>56.2</td>
<td>73</td>
<td>57.0</td>
<td>109</td>
</tr>
<tr>
<td>Co Nb</td>
<td>as cast</td>
<td>72.1</td>
<td>38</td>
<td>71.6</td>
<td>49</td>
<td>71.0</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>30 hr. 375°C</td>
<td>70.9</td>
<td>44</td>
<td>70.9</td>
<td>54</td>
<td>70.3</td>
<td>79</td>
</tr>
<tr>
<td>Co C</td>
<td>as cast</td>
<td>152.1</td>
<td>4</td>
<td>146.0</td>
<td>12</td>
<td>155.4</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>30 hr. 375°C</td>
<td>153.0</td>
<td>6</td>
<td>150.2</td>
<td>15</td>
<td>153.0</td>
<td>15</td>
</tr>
<tr>
<td>Co C+</td>
<td>as cast</td>
<td>155.1</td>
<td>9</td>
<td>158.3</td>
<td>11</td>
<td>153.0</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>0.25 wt.% FeSi</td>
<td>30 hr. 375°C</td>
<td>-</td>
<td>19</td>
<td>-</td>
<td>18</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>154.0</td>
<td>15</td>
<td>146.0</td>
<td>18</td>
<td>156.1</td>
<td>20</td>
</tr>
<tr>
<td>Co C+</td>
<td>as cast</td>
<td>154.0</td>
<td>15</td>
<td>146.0</td>
<td>18</td>
<td>156.1</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>0.5 wt.% FeSi</td>
<td>30 hr. 375°C</td>
<td>-</td>
<td>23</td>
<td>-</td>
<td>35</td>
<td>154.7</td>
</tr>
<tr>
<td>Co C+</td>
<td>as cast</td>
<td>151.7</td>
<td>18</td>
<td>149.3</td>
<td>19</td>
<td>150.2</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>1.0 wt.% FeSi</td>
<td>30 hr. 375°C</td>
<td>-</td>
<td>29</td>
<td>-</td>
<td>22</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2.0 wt.% FeSi</td>
<td>30 hr. 375°C</td>
<td>-</td>
<td>31</td>
<td>-</td>
<td>19</td>
<td>-</td>
</tr>
<tr>
<td>Co C+</td>
<td>as cast</td>
<td>154.0</td>
<td>14</td>
<td>150.7</td>
<td>7</td>
<td>150.9</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>2.0 wt.% FeSi</td>
<td>30 hr. 375°C</td>
<td>-</td>
<td>31</td>
<td>-</td>
<td>19</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37</td>
</tr>
</tbody>
</table>
obtain an approximate measure of the degree of sub-division in the various structures. In the lamellar Co Sb and Co Nb eutectics lamellar thickness decreased from an average of about 2μm in the sand cast samples to about 1μm in the shot.

In the case of the Co C and Co C + Fe-Si alloys average spacing between graphite flakes was measured. It can be seen from Figure 53 that the spacing within individual samples was very variable. The measurements are, therefore, regarded as giving only approximate indication of the degree of sub-division. As with the lamellar eutectics, the structure became finer as cooling rate increased. Thus in the Co C material (without Fe-Si) flake spacing decreased from about 8μm in the sand casting to about 4μm in the chill cast sample. There was, however, little or no difference between the chill cast and shotted structure. Fe Si had the anticipated effect of refining the structure. The average spacing was reduced by about a half at each of the cooling rates regardless of the size of the Fe Si addition. An additional effect was the appearance of clearly defined eutectic colonies (Figure 53c), flake spacing within the colonies was much lower than the average and in the shotted and chill cast samples was estimated as about 1μm.

J_c and σ of all samples were determined and are shown in Table 21. Neither cooling rate nor the addition of Fe-Si had a consistent effect on σ but there was some variation in J_c. In general, this property increased as the structures became finer, but the highest value obtained was 78 Oe (Co Sb shot).

X-ray diffraction examination showed the cobalt rich phase in all the alloys to be a mixture of c and a; c predominated but the amount of c increased with cooling rate.

6.2.3. Properties of the eutectic alloys after heat treatment

Since the single domain size for c is greater than that for a it was likely that J_c might be increased if the cobalt rich components
Fig. 24 - Co-Si phase diagrams
(a) Vogel and Koseithal 87 and Hashimoto 88
(b) Koster and Schmid 89
of the structures could be transformed entirely to \(\varepsilon \). All the samples were, therefore, heat treated for 30 hours at 375°C and furnace cooled. Only very small traces of \(\varepsilon \) were detected after heat treatment and as shown in Table 21 there was an increase in \(J_{\varepsilon} \) giving in the best case, the Co 53 shot, \(J_{\varepsilon} \) of 109 Oe.

6.3. Structure and Magnetic Properties of the Cobalt Silicon Eutectic/Eutectoid Alloy

6.3.1. The cobalt-silicon phase diagram

The earliest version of the cobalt-silicon phase diagram; derived by Lewkonja \(^{65}\) (1906), indicates a eutectic reaction at 1205°C in which liquid containing 28.5% Si solidified to give \(\alpha \) (i.e., cobalt rich solid solution) plus the intermetallic compound \(\text{Co}_2\text{Si} \). Later workers \(^{67,68,69}\) obtained similar temperatures for the reaction but placed the eutectic composition between 22.0 and 24.0% Si and detected a second isothermal reaction at 1160°C. The form of the diagram according to Vogel and Rosenthal \(^{67}\) and Hashimoto \(^{66}\) is shown in Figure 54a. According to these authors, the eutectic reaction produces \(\alpha \) and the intermetallic compound \(\text{Co}_3\text{Si} \), the latter decomposing eutectoidally to \(\alpha \) and \(\text{Co}_2\text{Si} \) at 1160°C. Vogel and Rosenthal \(^{67}\) observed the phase \(\text{Co}_3\text{Si} \) in quenched samples but do not report its crystal structure. Küster and Schmid \(^{85}\) did not detect \(\text{Co}_3\text{Si} \) and interpreted the isothermal reaction at 1160°C as the peritectoid transformation of \(\alpha \) + \(\text{Co}_2\text{Si} \) to \(\varepsilon \) (Figure 54b).

In the context of the present work, the reactions proposed by Vogel and Rosenthal \(^{67}\) and Hashimoto \(^{66}\) (Figure 54b) are of particular interest. If, as they suggest, the eutectic reaction is followed by eutectoid decomposition of one of the components of the eutectic it is possible that the resulting structure may be sufficiently fine for an approach to be made to single domain behaviour in the cobalt rich phase.
Fig. 55 - Co Si Eutectic/Eutectoid Alloys

a

x 60
sand cast
x 1,500

b

shotted
x 1,500

x 56 hours aged 56 hours aged 166 hours
at 800°C at 800°C
x 1,500 x 1,500

c
d

sand cast
aged 56 hours
at 800°C

shotted
aged 166 hours
at 800°C

x 1,500 x 1,500
6.3.2. Structure and properties of as cast cobalt silicon alloys

The casts were prepared using the technique described in section

6.2.1. One was sand cast and the other shot cast. The analysed silicon content of the sand cast sample was 23.6% Si while that of the shot was
24.1% Si. The microstructure of the two casts are shown in Figures 55a (sand cast) and 55c (shot). The eutectic structure in the sand casting
was much coarser than that of the shot but eutectoid decomposition of
one of the eutectic phases was visible in the sand cast alloy. The
eutectoid structure was clearly lamellar but the eutectic phases appeared
to be rather more red-like. (In Figure 55c the section photographed at
high magnification was perpendicular to that at low magnification and a
number of apparently equiaxed particles are present which may be sections
through elongated rods). The phases present in both casts were identified
by x-ray diffraction as cobalt (predominantly c with only traces of a)
and Co$_2$Si. (The latter was shown by Callo30 to be orthorhombic with the
following parameters, \(a = 7.095\), \(b = 4.908\), \(c = 3.730\)).

\[J_c \text{ and } J_e \text{ were 69.0} \text{ ecm}^{-1} \text{ and 56.2} \text{ ecm}^{-1} \text{ respectively in the sand casting, and 93.0} \text{ ecm}^{-1} \text{ in the shot.} \\

6.3.3. Structure and properties of heat treated cobalt silicon alloys

(a) Structure

From the microstructures it appeared that eutectoid decomposition
was incomplete in the sand cast material and completely suppressed in
the shot (Figure 55a and c). Both casts were, therefore, heat treated at
830°C with the aim of bringing the eutectoid reaction to completion. The
couples were quenched to room temperature periodically for magnetic testing
and metallographic examination. In the sand casting an increasing amount
of eutectoid decomposition was observed metallographically during heat
treatment; the reaction appeared to be complete after 56 hours at 830°C
(Figure 55b). The eutectoid structure did not appear in the shotted alloy
but as treatment progressed, the eutectic phases became rather coarser.
TABLE 22

The Effect of Aging at 800°C on the Properties of Cobalt Silicon Eutectic/Exolctoid Alloys

<table>
<thead>
<tr>
<th>Heat treatment hrs. at 800°C</th>
<th>Sand cast</th>
<th></th>
<th></th>
<th>Shotted</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>J/oe</td>
<td>(\sigma) cm⁻¹</td>
<td></td>
<td>J/oe</td>
<td></td>
<td>(\sigma) cm⁻¹</td>
</tr>
<tr>
<td>0</td>
<td>62</td>
<td>56.2</td>
<td>0</td>
<td>93</td>
<td>58.2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>73</td>
<td>55.9</td>
<td>1</td>
<td>137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>86</td>
<td>55.8</td>
<td>8</td>
<td>112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>84</td>
<td>56.3</td>
<td>32</td>
<td>88</td>
<td>57.8</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>82</td>
<td>56.0</td>
<td>64</td>
<td>85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>81</td>
<td>55.8</td>
<td>128</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>78</td>
<td>56.0</td>
<td>168</td>
<td>70</td>
<td>58.4</td>
<td></td>
</tr>
</tbody>
</table>
and the colony structure was lost (Figure 55b). J_C at various stages during heat treatment are shown in Table 22. Little variation in a was observed but in both alloys J_C initially increased and then decreased as treatment was continued. It can be seen that J_C of the shot was higher and showed a greater initial increase during heat treatment than that of the sand cast alloy. Since the eutectoid structure in the sand casting was finer than the eutectic in the shot, these results are not consistent with the degree of subdivision of the phases. This is not particularly surprising since, at such relatively low levels of coercivity, other factors, such as strain and particle shape may have a significant influence.

X-ray diffraction examination after heat treatment indicated the phases present in both alloys to be α (plus traces of β) and Co$_2$Si. There were no lines which could be attributed to the compound Co$_3$Si. In the as cast condition Co$_2$Si was the predominant phase but during heat treatment the intensity of the α lines increased while that of the Co$_2$Si pattern decreased. It was concluded that the amount of α increased at the expense of Co$_2$Si during heat treatment. This suggests that Co$_2$Si, supersaturated with cobalt, was retained on casting, and that cobalt was precipitated during subsequent heat treatment. A reaction of this type is not predicted by either of the phase diagrams in Figure 54 and is difficult to reconcile with the apparently eutectoid structure in the sand cast material.

The samples from the shotted alloy were heat treated for 1 hour at 1175$^\circ$C under argon and quenched. One sample, containing granules up to 1 cm in diameter was water quenched and the other, consisting of smaller granules between 0.1 and 0.5 cm diameter, was quenched in liquid nitrogen to give a very rapid cooling rate. According to Vogel and Procunier and Sakirato (Figure 55a) the structure of the alloy at 1175$^\circ$C should be largely Co$_2$Si which would be expected either to be retained by quenching
water quenched

\((\text{Co}_2\text{Si})\)

x 500

quenched into

liquid nitrogen \((\text{Co}_2\text{Si} + \text{Co}_3\text{Si})\)

x 500
or to 4nc<apeM to giv* the eutectoid of cobalt and Co^Sl. It was yo&iulle
Chet if a single phase could be retained by ^matklag, the eutectoid comp-
onents might be produced as a flue dispersion tm subsequent hast treatmet.

The structures produced by quenching were quite intprliiiiig. Thm
water quenchad syterrial contained isolated pools of a light etching phase
in a natrix which appeared to have foraed by a isasive trm fom k ion,
(Figure 56a). Electron smitellogrephy using carbon replicas shoed the tsstrix
to be a single phase- I-ray diffraction indicated tm presence of a small
oaoust of U.e.p. and f.c.c. cobalt (prestmed to be the light etching phase)
but Che predominant pattern was alnear identical to that of Co.,Si. This
phase, which could not be stoichiometric Co.,Si will be referred to as Co2^i .
It is interesting to note that the phase thought by Yogel and Rosenthal
to be Co^Si was described as WS giey phase*1, this way well have been Co,si .
The structure at the centre of the small granule quenched into liquid nitrogen
was identical to that of the water quenched samples but nearer the surface
the structure was as shewn in Figure 56b. This photograph can be Interpreted
as shoving the growth of Cs.li fro©; another phase partially retained by the
quench. Using the beau&aria camera it was possible to obtain a diffraction
pattern fro© the surface of one of the granules* The existence of a assail
ahsount of Co,si was putlits»4 but a m*Nbe* of other lines weto preseat which
presumably represented the new phase. A certain saemt of line broadening
made precise analysis of the unknown pattern difficult but it was possible
to index all the lines as a tetragonal phase with the approximate parameters
a* 8.41X, c » 5.61A. it is reasonable to suppose that this phase was Ce^Sl
partially retained at roou temperature by the very rapid quench, ho
previous reference to the structure and lattice parameter of Co 51 has been
found.

(b) lianastic propsrties alt<q quenching

Jc were reassured on granules from both saniples. The water
quenched sat.rial (lrg.Vy Co2Sl) bad relatival/ hi<h Ja< with mb* variation
between U b n M grumle*, values ranging b«(v*.a ISO and 245 0*.
\textbf{TABLE 23}

\textbf{THE EFFECT OF AGEING ON THE PROPERTIES OF COBALT SILICON SHOT QUENCHED FROM 1175°C}

\textit{Water Quenched (to give Co$_2$Si)}.

<table>
<thead>
<tr>
<th>Time (hrs)</th>
<th>450°C</th>
<th>500°C</th>
<th>550°C</th>
<th>650°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>190</td>
<td>58.1</td>
<td>245</td>
<td>58.7</td>
</tr>
<tr>
<td>10</td>
<td>206</td>
<td>-</td>
<td>4</td>
<td>266</td>
</tr>
<tr>
<td>50</td>
<td>214</td>
<td>-</td>
<td>9</td>
<td>226</td>
</tr>
<tr>
<td>90</td>
<td>215</td>
<td>58.4</td>
<td>17</td>
<td>226</td>
</tr>
<tr>
<td>150</td>
<td>220</td>
<td>-</td>
<td>40</td>
<td>236</td>
</tr>
<tr>
<td>198</td>
<td>202</td>
<td>-</td>
<td>64</td>
<td>239</td>
</tr>
<tr>
<td>136</td>
<td>221</td>
<td>-</td>
<td>116</td>
<td>120</td>
</tr>
</tbody>
</table>

\textit{Quenched into Liquid Nitrogen (to give predominantly Co$_2$Si)}.

<table>
<thead>
<tr>
<th>Time (hrs)</th>
<th>300°C</th>
<th>400°C</th>
<th>500°C</th>
<th>600°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>111</td>
<td>66.0</td>
<td>109</td>
<td>66.2</td>
</tr>
<tr>
<td>1</td>
<td>190</td>
<td>56.0</td>
<td>256</td>
<td>55.2</td>
</tr>
<tr>
<td>2</td>
<td>194</td>
<td>57.7</td>
<td>256</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>207</td>
<td>-</td>
<td>255</td>
<td>56.1</td>
</tr>
<tr>
<td>20</td>
<td>215</td>
<td>57.2</td>
<td>260</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The properties of Co* sample %mncmd into liquid nitrogen were even more variable. Out was consistently lower (between 80 atm and 140 Oa) and «coist toaday higher (twttwitt 42 and 72 **a& *) a v u
nighest ana f lowest i toe sealUit granules which contained a si&iiAtt of Co^AI . It was conducted that the a of Co .Si WAS «ra*idtri>ly greater lba*
ktl of Co^Si . ji of Co^Si WAS relatively high ana it is likely that tow
eoordiui of the iiquif nitrogen quenched series, vbice contained both
pusses, WAS Cue to £e4£f i Aui to At Ji of Co~Si WAS CUtO low.

(c) iffAct oc ageing quenched cobalt silicon sanies

easbies coBiiftBi of the scaliest liqvU aitreo&ea ^ueacnea
gTtsUf Uieacai' less lfaï< 0.2 css), containing largely CsJi, «o>4
samples of toe water quencaed material (Co $i ^), were aged at various
temperature* oetwees 300°C and 65&C* Sarnies were water ^eucued to
rooo teuperature periodically for asgaaite testing and ratalograpdie
iai»iaati*a. Values of o and J c obtained are shows in labia 1). la cue
case of tm material Mtlsiaisg Ce.?Si (water quenched) there was uo
variation ia o but ji. first increased and taea Cacreasau at oil temperature*.
After 44 door* at 650°C ana &S hours at SSuC the first signs of eutectoid
dece*ition to Co.bi ana t were observed by optical aetallegrapAy ift4
X-ray diffraction. 4a the suctectoid reaction progressed during further
treatseat there was a rapid decrease in ,h . *he properties of the co pi
#a*$-les.(nitrogen quenched) changed, alter only 1 user at all tee
temperatures explored, to value* typical of Ce^Si i.e. o decreased ana there
was A substantial iMiraaoo in . a*tellegraphic ana x-ray exautnation
after 1 hour at 300°C euuiirated tuat transformation to Ce^bi ^ dad taeuu
place. Ourlag subsequet ageing cue propaerties varied ia a similar sttttasr
to that observed for the water quotiente waterial.
6.3.4. Summary

In general values of J_c associated with the eutectic and cutectoid structures in cobalt silicon alloys were at a similar level to those measured on the cobalt antimony eutectic discussed earlier. It was, however, possible to achieve a much higher J_c up to 285 Oe, by quenching from 1175°C and ageing. The effect of quenching from this temperature was either to produce a phase with a crystal structure similar to Co$_2$Si but containing excess cobalt (Co$_3$Si), or, if the quench was sufficiently rapid, to retain a different phase thought to be tetragonal Co$_3$Si. The J_c of Co$_3$Si was lower than that of Co$_2$Si but J_c of Co$_2$Si was relatively high (up to 245 Oe in the quenched condition).

On heat treatment Co$_2$Si transformed very readily to Co$_3$Si and the J_c of Co$_2$Si increased slightly giving the best values observed for this system, (up to 285 Oe). This increase was not associated with the appearance of the cutectoid constituents. The cutectoid reaction did not occur until much later in the heat treatment process and resulted in a decrease in J_c.

The reason for the relatively high J_c of Co$_2$Si has not been established. Since, this material was shown to have a single phase structure it is clear that single domain particle processes are not involved. Presumably, therefore, the coercivity must arise due to inhibited domain boundary movement. Various factors such as inhomogeneous strain, the presence of structural defects, etc., could be responsible (see section 1.1.2.) It should also be pointed out that the orthorhombic crystal structure of Co$_2$Si might well exhibit significant magneto-crystalline anisotropy. If this is the case, domain boundary energy would be high relative to that in a cubic structure and a boundary would have a greater tendency to remain at a low energy site. Coercivity would, therefore, be relatively high if boundary 'pinning sites' were present.
The results in section 6.3.3.(c) which confirm the existence of a compound Co₃Si are substantiated in recent work by J. Van den Bougaard and F. H. A. Carpay, *Acta Met.* 20 473 (April) 1972. These authors did not observe either Co₂Si or Co₃Si but inferred the existence of the latter from eutectic plus eutectoid structures similar to those shown in Figures 52a and 52b of this Thesis.

Thermal analysis showed Co₃Si to form, on cooling, by a peritectic reaction at about 1210°C followed by eutectoid decomposition at about 1170°C.
Apart from the relatively high J_c of the Co_2Si phase in quenched cobalt silicon samples, the properties of the eutectic and cutectoid alloys studied were disappointing, with J_c not exceeding about 100 Oe. The Co C and Co C + Fe-Si alloys were particularly poor with J_c not exceeding 50 Oe. In addition to being too coarse for single domain behaviour to occur, it is significant that the Co C eutectic consisted of a continuous cobalt matrix only partially divided by graphite flakes. From the observed coercivity, it is clear that the formation and movement of domain boundaries were largely unrestricted in this type of structure. It was possible, however, that if the continuity of the cobalt matrix could be reduced, domain boundaries would move less freely and coercivity would be increased. This was easily achieved by taking advantage of the brittleness of the graphite flake structure. A sample was crushed and milled with the aim of causing fractures associated with the graphite flakes and thus obtaining discrete cobalt particles at least as small as the flake spacing in the bulk material. The alloy used was the Co C + 0.5% Fe-Si shot after 30 hours at 375°C. Samples from the Co Si shot after 30 hours at 375°C, and the sand cast Co Si alloy after 64 hours at 600°C (cutectoid decomposition complete) were subjected to the same treatment with the similar aim of breaking up the lamellae in the eutectic and cutectoid structures. In addition, a sample of Co Si shot after water quenching from 1175°C (Co_2Si) was milled. In this case, the aim was to examine the properties of Co_2Si in finely divided form.

Crushing was carried out by hand, in a hardened steel pestle and mortar, until the material would pass a 200 mesh sieve (particles about 80 μm diameter). Further size reduction was achieved in an attrition mill in which the powder, mixed with a large number of 3 αm diameter,
Table 24

Properties of Eutectic and Eutectoid Alloys after Condensation

Co + 0.5% Fe-61 shot

Condition	J/Ec	ceq	size		Condition	J/Ec	ceq	size
-----------------	------	-----	------		-----------------	------	-----	------
Bulk	44	154.7	-		Bulk	109	57.0	-
Crushed	212	153.0	-200 mesh		Crushed	187	56.1	-200 mesh
Milled 8 hrs.	165	110	4.5		Milled 4 hrs.	317	46.0	1.8
" 16 hrs.	213	103	2.5		" 16 hrs.	435	19.2	1.0
" 24 hrs.	263	84	2.0		" 24 hrs.	335	74	1.7
" 32 hrs.	386	56	1.0		" 32 hrs.	458	40	1.5
" 48 hrs.	469	36	1.0		" 48 hrs.	572	21	1.0

Co-Sb shot

Condition	J/Ec	ceq	size		Condition	J/Ec	ceq	size
-----------------	------	-----	------		-----------------	------	-----	------
Bulk	109	57.0	-		Bulk	165	52.6	-
Crushed	187	56.1	-200 mesh		Crushed	323	65.3	-200 mesh
Milled 4 hrs.	317	46.0	1.8					
" 14 hrs.	203	47.8	1.4					
" 30 hrs.	236	10.5	1.0					

Co-Si sand cast

Condition	J/Ec	ceq	size		Condition	J/Ec	ceq	size
-----------------	------	-----	------		-----------------	------	-----	------
Bulk	78	56.0	-		Bulk	115	52.0	-
Crushed	261	56.2	-200 mesh		Crushed	323	65.3	-200 mesh
Milled 1 hr.	263	55.5	12		Milled 4 hrs.	245	50.6	1.5
Milled 3 hrs.	259	54.6	8		" 14 hrs.	203	47.8	1.4
" 5 hrs.	259	54.2	6		" 30 hrs.	236	10.5	1.0
" 13 hrs.	272	45.9	3		" 13 hrs.	300	51.6	5
" 20 hrs.	282	39.7	2		" 20 hrs.	321	53.0	4

Co-Si shot

Condition	J/Ec	ceq	size		Condition	J/Ec	ceq	size
-----------------	------	-----	------		-----------------	------	-----	------
Bulk	165	52.6	-		Bulk	236	54.3	12
Crushed	323	65.3	-200 mesh		Crushed	331	53.0	4
Milled 4 hrs.	245	50.6	1.5					
" 14 hrs.	203	47.8	1.4					
" 30 hrs.	236	10.5	1.0					

Co-Si sand cast

Condition	J/Ec	ceq	size		Condition	J/Ec	ceq	size
-----------------	------	-----	------		-----------------	------	-----	------
Bulk	236	54.3	12		Bulk	239	54.2	7
Crushed	331	53.0	4		Crushed	350	51.6	5
Milled 4 hrs.	245	50.6	1.5					
" 14 hrs.	203	47.8	1.4					
" 30 hrs.	236	10.5	1.0					

Co-Si shot

Condition	J/Ec	ceq	size		Condition	J/Ec	ceq	size
-----------------	------	-----	------		-----------------	------	-----	------
Bulk	239	54.2	7		Bulk	266	59.1	4
Crushed	350	51.6	5		Crushed	369	48.6	2
Milled 4 hrs.	245	50.6	1.5					
" 14 hrs.	203	47.8	1.4					
" 30 hrs.	236	10.5	1.0					

Properties of size fractions

<table>
<thead>
<tr>
<th>Milled 3 hours</th>
<th>J/Ec</th>
<th>ceq</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>coarse fraction</td>
<td>236</td>
<td>54.3</td>
<td>12</td>
</tr>
<tr>
<td>fine fraction</td>
<td>321</td>
<td>53.0</td>
<td>4</td>
</tr>
<tr>
<td>very fine fraction</td>
<td>341</td>
<td>50.7</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Milled 5 hours</th>
<th>J/Ec</th>
<th>ceq</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>coarse fraction</td>
<td>239</td>
<td>54.2</td>
<td>7</td>
</tr>
<tr>
<td>fine fraction</td>
<td>350</td>
<td>51.6</td>
<td>5</td>
</tr>
<tr>
<td>very fine fraction</td>
<td>343</td>
<td>45.3</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Milled 13 hours</th>
<th>J/Ec</th>
<th>ceq</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>coarse fraction</td>
<td>266</td>
<td>59.1</td>
<td>4</td>
</tr>
<tr>
<td>fine fraction</td>
<td>369</td>
<td>48.6</td>
<td>2</td>
</tr>
<tr>
<td>very fine fraction</td>
<td>372</td>
<td>38.4</td>
<td>1.5</td>
</tr>
</tbody>
</table>
hardened steel balls was stirred at 250 rpm by a stainless steel paddle. The mixture of balls and powder, together with petrol ether as a milling medium were contained in a 600 ml stainless steel beaker. Argon was passed into the beaker during milling to minimise oxidation of the powder.

Milling was interrupted periodically for the determination of σ, J_{c}, and particle size. The technique used for estimating average particle size on counted powder samples has been described in section 2.4.2. The values obtained together with magnetic properties are shown in Table 24.

In all the alloys there was a large decrease in σ during milling, which could only be attributed to oxidation of cobalt. The presence of large amounts of Co$_3$O$_4$ was detected by X-ray diffraction in extensively milled samples and a very fine black constituent, assumed to be oxide, was observed metallographically. The water quenched Co Si shot differed from the other alloys in that there was an initial increase in σ. This could not be correlated with any phase change detectable by X-ray diffraction and, apart from the appearance of the oxide, no phase changes were observed in any of the alloys during milling. There was, however, increased line broadening as milling progressed, this was presumably due to mechanically induced strain. Quite large increases in J_{c} were induced by crushing alone and, with the exception of the water quenched Co Si sample, J_{c} continued to rise during milling. The atypical behaviour of the water quenched Co Si alloy in terms of both σ and J_{c} was not surprising since this material had the orthorhombic Co$_2$Si structure whereas the magnetic component in the other alloys was h.c.p. cobalt. In all cases particle size was reduced by milling and in the Co + 0.5% Fe-Si alloy, which was subjected to the most prolonged milling treatment, the ultimate value was much lower than the flake spacing in the bulk alloy. It is possible that the extensive oxidation, indicated by X-ray diffraction and by the very marked fall in σ was a contributory factor in reducing the size of the metal particles.
Fig. 2: Intrinsic coercivity vs particle size of milled eutectic and eutectoid alloys.
In the early stages of milling a wide range of particle sizes was observed. This was particularly true in the case of the sand cast CoSi powder and an attempt was made to separate this material into size fractions in order to obtain a more realistic relationship between particle size and coercivity. This was achieved by stirring the powder into a fairly viscous mixture of equal parts of ethanol and glycerol. The powder was allowed to settle for a few seconds after which the liquid, along with a fine fraction of the powder, was decanted. The liquid and fines were then re-stirred and held for a rather longer period before the liquid containing the finest fraction was again decanted. By selecting suitable settling times it was thus possible to obtain three approximately equal fractions. Particle size, \(\sigma \) and \(J_C \) of fractions from samples milled for 3, 5, and 13 hours are shown at the end of Table 24.

In Figure 57 values of \(J_C \) for the CoSi sand cast size fractions, the CoC + 0.5% Fe-Si shot and the CoSb shot, are plotted against average particle diameter. It can be seen that the results show a logical trend with \(J_C \) increasing rapidly as particle diameter falls below about 2\(\mu \)m.

6.5. Temperature Dependence of \(J_C \) of Eutectic Alloys

In the case of the Malcolloy alloys, discussed earlier, it was possible to evaluate the influence of the crystal anisotropy of \(\sigma \) on the permanent magnet properties by measuring the reversible temperature dependence of \(J_C \), (section 3.3.). The results of similar measurements made on some of the eutectic and eutectoid alloys are shown in Table 25 and Figure 58. It can be seen that in all cases \(J_C \) varied with temperature and that the changes were largely reversible. With the exception of the water quenched CoSi alloy, which consisted largely of the phase Co\(_2\)Si, the magnetic component in the samples tested was cobalt, with the h.c.p. (c) structure predominating. The influence of the crystal anisotropy of this phase was indicated by the continuous decrease in \(J_C \) with increasing
Fig. 58 - Temperature dependence of J_C of eutectic and eutectoid alloys

- CoSi + 0.5% FeSi shot
 30 hours 375°C, milled 72 hours

- CoSi sand cast
 64 hours 500°C milled 13 hours
 (very fine fraction)

- CoSi shot water quenched
 1175°C bulk (Co$_2$Si)

- CoSi sand cast
 64 hours 600°C bulk

- CoSi + 0.5% FeSi shot
 30 hours 375°C bulk

J_C Oe

Test temperature 0°C

0 100 200 300

Test temperature 300°C
Table 25

Temperature Dependence of J_c of Eutectic and Eutectoid Alloys

<table>
<thead>
<tr>
<th>Temp. (°C)</th>
<th>J_c Co<sub>Bulk</sub></th>
<th>Milled 72 hours</th>
<th>Temp. (°C)</th>
<th>J_c Co<sub>Bulk</sub></th>
<th>Milled 13 hours (very fine fraction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 (RT)</td>
<td>44</td>
<td>572</td>
<td>20 (RT)</td>
<td>78</td>
<td>372</td>
</tr>
<tr>
<td>100</td>
<td>34</td>
<td>460</td>
<td>100</td>
<td>69</td>
<td>360</td>
</tr>
<tr>
<td>200</td>
<td>10</td>
<td>280</td>
<td>200</td>
<td>54</td>
<td>243</td>
</tr>
<tr>
<td>300</td>
<td>4</td>
<td>-</td>
<td>300</td>
<td>48</td>
<td>-</td>
</tr>
<tr>
<td>20 (RT)</td>
<td>45</td>
<td>567</td>
<td>20 (RT)</td>
<td>72</td>
<td>371</td>
</tr>
</tbody>
</table>

CoSi shot, water quenched 1175°C (Co₂Si)

<table>
<thead>
<tr>
<th>Temp. (°C)</th>
<th>J_c Co<sub>Bulk</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>20 (RT)</td>
<td>198</td>
</tr>
<tr>
<td>100</td>
<td>127</td>
</tr>
<tr>
<td>20 (RT)</td>
<td>193</td>
</tr>
<tr>
<td>200</td>
<td>120</td>
</tr>
<tr>
<td>20 (RT)</td>
<td>195</td>
</tr>
<tr>
<td>300</td>
<td>118</td>
</tr>
<tr>
<td>20 (RT)</td>
<td>168</td>
</tr>
</tbody>
</table>
temperature. Even in the case of the Co C + 0.5% Fe-Si alloy, where
\(J_c\) at room temperature was only 44 Oe, the observed temperature dependence
can be interpreted in terms of the anisotropy of \(c\).

It has been suggested that the orthorhombic structure of
\(Co_2Si\) (water quenched Co Si alloys) might exhibit significant crystal
anisotropy and that this may be, in part, responsible for the relatively
high \(J_H \) (up to 285 Oe) of this phase. The crystal anisotropy of
magnetic materials other than \(c\) is known to be temperature dependent.
The nature of the dependence in the case of \(Co_2Si\) is unpredictable but
the fact that there was a reversible decrease in \(J_H \) between room
temperature and 100\(^\circ\)C supports the possibility that \(J_H \) was influenced by
crystal anisotropy.
7.1. The Ualcollory Alloys

A large part of this thesis (chapters 3 and 4) has dealt with a detailed examination of the Ualcollory alloys. Experiments aimed at improving the permanent magnet properties of these materials were largely unsuccessful but the mechanisms responsible for the observed properties and the main factors affecting the coercivity are now understood.

The work confirms the general conclusion of Masumoto et al. that the high coercivity induced in the Ualcollory alloys during ageing is due to the precipitation of a fine dispersion of cobalt. In all the alloys (Figures 9-13, 44 and 49), the highest values of J_c were obtained by ageing at temperatures below 600°C. The cobalt precipitate present at room temperature after ageing at these temperatures was ε, and high temperature X-ray diffraction showed that this phase was precipitated at the ageing temperature despite the fact that ε was the thermodynamically stable form. Prolonged ageing of the 28% Al alloy at 600°C resulted in the eventual transition of an initially ε precipitate to α and in the higher temperature range, 650-750°C, both allotropes were precipitated with the amount of α increasing as ageing time and temperature were increased. Thus, in all the alloys the highest values of J_c were observed when the precipitate was entirely ε. Electron metallography (Figure 5) showed the ε particle size in samples with high J_c to be of the right order for single domain behaviour (less than 0.2 µm), and the reversible temperature dependence of J_c, although influenced by other factors which are not fully understood, was found to be roughly compatible with the variation of the crystal anisotropy of ε with temperature. It was concluded, therefore, that the coercivity of these alloys is due to the presence of a fine dispersion of ε approximating to a single domain system and exhibiting high crystal anisotropy.
The possibility of deriving high coercivity from the crystal anisotropy of α has been recognised for many years and was discussed in some detail by McCaig. The Halcolloy alloys are, however, the only permanent magnet materials known to derive their properties from this factor. The properties of the 28% Al binary alloy are a little lower than those calculated in section 1.2.1. for randomly aligned, single domain particles of α with about 50% volume packing. This is consistent with the phase diagram of the Co-Al system which indicates a precipitate volume fraction of around 0.4 in the 28% Al alloy, (Figures 3 and 27). Maximum H_c achieved in practice, (approaching 2000 Oe in the 38% Al alloy), was much lower at room temperature than predicted by theory for single domain particles of α (in excess of 4000 Oe, Figure 17). Several reasons for this (non-coherent rotation of magnetisation, presence of multi-domain particles, particle imperfection, etc.), have been discussed and in fact, the approach to the theoretical level is probably as close as that achieved in any known permanent magnet material.

Because the properties of these alloys depend on the formation of a metastable precipitate of ϵ rather than stable α, the mechanism by which the h.c.p. allotrope is formed is of interest. Using an X-ray technique similar to the rotating crystal method it was possible to show that the ϵ precipitate was oriented relative to the h.c.c. (β) matrix in a manner approximating to the Burgers relationship, i.e. {0001} ϵ approximately parallel to {110} β and $<$1100$>\epsilon$ approximately parallel to $<$111$>$.β.

One feature of this relationship is that {1100} ϵ is parallel to {112}$_\beta$, and Figure 24 shows that the atomic arrangements on these two planes are similar with mismatch less than 2%. It would thus be possible for {1100}ϵ and {112}$_\beta$ to form a partially coherent interface between precipitate and matrix. Examination of the atomic arrangement in planes of low indices (up to {221}) in α and β shows that in no case is mismatch less than about 12%. Coherency between α and β is, therefore, unlikely. Since surface energy makes an important contribution to the total energy of small particles
it is concluded that metastable α forms preferentially to stable α because of the lower surface energy associated with a partially coherent interface.

The effect of metastable precipitation on the compositions and amounts of phases produced during ageing was explored using magnetic and X-ray phase analysis. It was shown that the α precipitate was essentially pure cobalt and that β in metastable equilibrium with α had a higher aluminium content than that predicted by the equilibrium phase diagram for β present after precipitation of stable α, (Figure 17). In the solution treated condition (single phase β) the alloys were strongly magnetic at room temperature. During ageing T_c of β approached room temperature and $\alpha\beta$ at room temperature decreased. Thus during precipitation the high coercivity cobalt dispersion was in the presence of a low coercivity magnetic β matrix. It was shown, using magnetic analysis, (σ, T curves, Figure 30), that the effect of this phase was to suppress the high coercivity of the α dispersion until later in the precipitation process when $\alpha\beta$ was very low. The observed relationship between $J_{\alpha\beta}$ and $\alpha\beta$ x weight fraction β was explicable in terms of a simple model based on the mixing of phases with widely differing coercivities, (Figure 31). Because the α dispersion might reach optimum particle size and maximum coercivity at an early stage of precipitation when β remained strongly magnetic it was possible that a reduced $J_{\alpha\beta}$ would be detected as an apparent maximum later in the process when $\alpha\beta$ had decreased but particle size had increased. That this was the case in the 28% Al binary alloy was inferred from the nature of the temperature dependence of $J_{\alpha\beta}$ of a sample aged for 3 hours at 500°C, (Figure 15), and from the fact that M_r of this alloy reached a peak much earlier than $J_{\alpha\beta}$ during ageing at 500°C. The variation in peak $J_{\alpha\beta}$ with composition of the binary alloys is thought to be due to the varying influence of the magnetic matrix rather than any fundamental difference in the properties of the cobalt dispersion, (Figure 40).
Clearly the small amount of cobalt available for precipitation in alloys with low cobalt content would restrict particle growth and, therefore, increase the possibility of optimum particle size corresponding to the approach of ϕ_0 to zero. It was also noted that activation energy for precipitation decreased as cobalt content increased. If it is assumed that this implies increased activation energy of diffusion it follows that the tendency for precipitate growth to occur will increase with increasing cobalt content.

The replacement of about 5% of the cobalt content of the 26% Al alloy by iron resulted in S remaining magnetic after ageing (Figure 50); there was a corresponding decrease in peak coercivity relative to that of the binary alloy, (Figure 49). The addition of titanium at the expense of cobalt, which according to Hayness et al, has the effect of increasing coercivity, was, in the case of the particular alloy examined, almost exactly equivalent, in terms of the effect on J_c, and σ, to a similar increase in aluminium content (Figures 44 and 45). There was, however, a small increase in activation energy and it is possible that the beneficial effects reported by Hayness et al for various ternary additions are due to restricted particle growth associated with increased activation energy of diffusion.

In an examination of the influence of solution treatment on maximum J_c achieved during ageing at 450°C, it was found that the maximum value first increased and then decreased as solution treatment temperature and time were increased (Figures 42 and 43). The improvement was attributed to increased homogeneity which eliminated regions with high cobalt content in which relatively rapid particle growth could occur. At the same time, however, since equilibrium vacancy concentration increases with temperature, the number of vacancies retained on quenching could be increased so that diffusion and particle growth on ageing would be easier. The observed effects can be understood in terms of these two conflicting influences.
Attempts to induce anisotropic permanent magnet properties by means of field heat treatment of equiaxed and columnar samples were completely unsuccessful as were experiments aimed to give preferred orientation through mechanical work. The latter resulted in shattering of the specimens during forging at temperatures up to 1600°C.

It was noted that in the work of Masumoto et al. and to a lesser extent in the present work, the ratio $E_p / 4\pi J_c$ was frequently greater than the value of 0.5 expected for random assemblies of anisotropic single domain particles. This is thought to arise when the matrix phase is slightly magnetic and is magnetized by local fields associated with the cobalt particles. The result was that the maximum $(E_p)_{max}$ during ageing occurred while the matrix was still weakly magnetic and before peak J_c.

7.2. Cobalt, 17.5% Ti alloy

The 17.5% Ti alloy, which was the subject of a brief examination, was similar to Malcolloy in that cobalt can be precipitated from solid solution by a suitable heat treatment process. In this case, however, the precipitate was a and the J_c was low. It is probable that the a particles were too large for single domain behaviour, i.e., greater than 200 \AA, although this has not been confirmed. The matrix in this alloy remained magnetic throughout the ageing process, but, after solution treatment, had a J_c much greater than that of the matrix phase in Malcolloy. Since J_c of the matrix may have increased during ageing it was difficult to define the influence of this phase on the magnetic properties of the material as a whole.

7.3. Eutectic and Eutectoid Alloys

In general, quite low values of coercivity were associated with the eutectic and eutectoid structures in the bulk condition but J_c could, to some extent, be correlated with the degree of subdivision of the cobalt rich component of the structure and in some of the alloys.
(Co 3b, Co iSb and Co C) there was a significant increase in $^\wedge$ when this
phtit was traifomii, during boat treatsaant at 375°C, fros* a mixture of
c and & to give largely e* {Tables 21 and 22}. TU« Kmp«Vttsi« d#s>œdfUica
§(-HU of th* Co C * 0.5% FeSi +hot (anew■lens tutoetit) and ti» Cedi sand
casting (euteetoid), (Figure 56) was eeffiieietiy marked to suggest th#
influence of th* crystal anisotropy of t.

The highest levels of eereivity (20050? Oe) were achieved
by quenching CoSi sauplea of eutectoid composition to give a phase (Co.,Si)
with the crystal structure of the compound Co*Si but with composition
closer to Co^Si. It a sufficiently rapid quench was employed, th# phase
retained was tetragonal CsJi which had low coercivity but this transformed
readily to Co.,Si ~ on heat treatment at temperatures as low as 300 C° The
reason for th# restively high $J\&$ of Co.,Si is not clear but it is pointed
out that the orthorho&bie strwett.ir* of tide phase is likely to exhibit sow
versa of mgnate-crystalline anisotropy. There was a reversible decrease
in $^\wedge$ on heating from room temperature to 100°C, (Figure 38) which might
be interpreted as indicating the isfbanca of this factor.

Substantial improvement in the H_C of eutectic m d eutectoid
alloys was achieved by ipwianllw (able 24). Initial increase*, giving
y* between 200 m d 500 Oe* which war# induced by crushing to *200 mesh,
were attributed to a reduction in the continuity of the cobalt rich component
of the sir* tares, further gains after prolonged tailline *.* associated
with decreasing particle size*, (figure 57). but were only achieved at th#
expense of ?. The fall in $^\wedge$ was due to oxidation ot the cobalt rich phase
and it in probable that particle ais# reduction was facilitated by the
oxidation process. Aa with the bulk materials, the H_C of the powdered
alloys was found to vary with temperature in a rumour compatible with the
influence of the crystal anisotropy of s.
7.4. General Conclusions

It is clear from this work that particles of ε approximating to single domains can be utilised as the basis of permanent magnet materials. However, magnets primarily based on cobalt must, because of the relatively high cost of this metal, have properties which are in some respect superior to those of existing materials if they are to be of practical use. In this respect the properties of finely divided ε dispersions present in high cobalt alloys have proved disappointing. Thus, in Malcolloy alloys, although H_c approached 2000 Oe, B_r, $(BH)_{max}$ and H_c were low. These properties are related to $4\pi J_s$ which is dependant upon the volume fraction of precipitate present. In the highest cobalt Malcolloy alloy volume fraction of precipitate is limited to about 0.5 and even if the high B_r of such an alloy could be combined with the high H_c associated with low cobalt contents, the overall isotropic properties would be inferior to those of a number of cheaper materials. The material would be greatly improved if these particles were aligned with <0001> axes parallel, giving anisotropic properties. Field heat treatment with this aim proved completely ineffectual and, because the crystal anisotropy of ε at elevated temperatures is quite different from that exhibited at room temperature, this technique would, at best, give <0001> ε directions parallel to a plane rather than inducing full alignment and the benefit in terms of magnetic properties would be small. The two problems of particle packing and particle alignment appear to set a limit to the properties of Malcolloy and no approach by which significant improvement might be achieved is obvious.

In the eutectic and eutectoid alloys J_c^H was relatively low. Only a small number of alloys were studied and it is possible that other materials might have superior properties. It is likely, however, that even if J_c^H was high the difficulties encountered in Malcolloy, i.e., particle packing and alignment, would arise. It may be that, if oxidation was avoided, powders with high J_c^H and σ could be prepared by milling
eutectic or cutectoid alloys. In this respect the Co C (or Co C + FeSi) alloys would be the most useful since the carbon content in terms of weight is only 2.5% and C is only a little lower than that of pure cobalt. Furthermore, the brittle graphite flake structure of these materials enables comminution to be more easily accomplished than would be the case for pure cobalt.

Whether produced by milling a eutectic alloy or by some other powder metallurgical technique, it seems that high coercivity C powders in the form of aligned compacts with high density are more likely to give useful permanent magnet properties than are bulk alloys. The process used for powder preparation would need to be such as to favour the h.c.p. rather than the f.c.c. form of cobalt and in this respect milling is attractive since mechanical work tends to induce transition of f.c.c. to h.c.p. C. Probably other techniques such as electrodeposition or oxide reduction could be controlled to give the required crystal structure. If high coercivity C powder could be obtained it is reasonable to hope that aligned, pressed compacts could be prepared by field pressing techniques of the type used for barium ferrite and rare-earth cobalt permanent magnets. Sintering to increase densification would probably not be possible because of the C to a transition and the fact that fine particles of C do not transform readily to a on cooling. Nevertheless, the introduction of a suitable bonding material should enable mechanically strong compacts to be produced. On this basis useful permanent magnets based on finely divided cobalt remain a distinct possibility.
This work is connected with four programmes of research into cobalt permanent magnets, which is sponsored by the Centre for Information. Cobalt ana is currently in progress at the Central Research Laboratory of the Ferriu B I Magnet Association.

I would like to express my gratitude to the Ferriu B I Magnet Association and in particular Mr. J. H. Could, Director of Research, for generously allowing a great deal of time to be spent both on the experimental work and on the preparation of the thesis. It also gives me great pleasure to thank Dr. U. W. Haysee of Sheffield University and Mr. W. Wright of the International Magnet Association, Central Research Laboratory, for invaluable advice and encouragement throughout, and to acknowledge the many helpful discussions with Dr. M. MeCeig and Mr. J. fellows, both of the International Magnet Association, Central Research Laboratory.
IttSf., 3. Hr/*., 6* 461 <1807>

M M, K» 8AXA, S., $ci«;3p. IKt«k« lap. Univ., IS, 721 <1926>

UtA(S., lei* a@p. TSuoku lap. Univ., 17, 638 (1828)

«IX3Ut»$ra, V* a@d TH0HPS08, JUJU, Proc, toy, 8 n., 22S, (A)* 362 (IV54)

SSASXT, A.J* md TAAttOt, A.» Anfceuro, 140, 1012 (1937)

H i m , H»» rkys.E., 44, 63 <1941>

HCKIt, & sad OORHC, If., nf*rr9mm8*mtl*mm% Spragpr, Btflift (1939)

NSftL, L., Amu Uauv. Or*t«obl«, 22- 299 (1966)

i o r.im , if., "Itm HifMtic Tnpnctriis of $£»t*18 m4 Allays*,
Oxfsrl University Trtl (1952)

iiWHil, S*C., 'yirfoiiim til® MAGMllstloB Curves"*, Sprurts an
Pfft|FM1 itt ffeyftim XXX, 83 (1830)

18 ff, J.J., iATH&KAU. 6.if., ODXXSt, KvW, a@d VII OUSTHKWT, «*#.m i. lech. Rev., 13, 196 (1932)

a r m , c., #v. «*. m* *. 21. 541 a n n

8TC8K& I.C* And tD1HLYABÌR, S.?., Phil, firm#., 240, 399 (1946)

SEA8, C.f. as*4 JAC08S, I.S., J.App. Pby*. 27, 1448 (1936)

r a x, l.8., ssrmam, s. »4 nsvis, a., m«* 8*v. _u#. 448 (its?)

WOHLFAOT, I.r*, and fO5GZ, S.CU, mi*Mft*» 2, 1333 (1857)

9StUOUS}, C.W., S1f1, 3. end 8T8XJT8, A,U# X.Plays., U S, 230 (1932)

4848881, A., J. App. Ffeye., SO, 70 3 (1939)

I80UV* V.7., 'liicromi.;@tics' (Inr York* latersecieue Publishers),
66 (188S)

ueiLTAat*, E.t., Hari KigMtie ft*terialsft, fbil.Hag., S$pp«, 6
$7 (1959)

a s c u m i. »a., m i. nag., 22, iois usso)

22 a EfcL, L., C.L, AMM, Set., t*H*, 224, 1330 (1947)

22b N^EL, L., C.R.,Acad. Sc.i.,Paris 228, 664 (1949)

USOSSKT, f l„ PAifE, T.G., and &Qff*LS0», Ul 1«, Povaer 9 (4), 37 (1959)

TSUI, J. *nd ST®fXAT,Pays. Letters, 16* 107 (1971)

SAKSZX, D.L. «&4 m 2, H.C., Cobalt, 30 11 (1971)

JOBUOS* 1*1. and fSLLOtff, C.J., Cobalt, *©,33, 191 <1571)

1U S fl1, S., J* App.Pbys., 41, 4S61 <11703

WiCAIC, M* Cobalt* 34, S3 (1966)

UO'M* K, and HASC®IJ® a., 3ci.»«p. Tehektt lap, Univ.,20, 323 (1931)

MgUUJOIM, ft.*., 2<o, Mod. Ffcya*# 25, 302 (1953)

WEIL, L*, J. rhyys., Xediua, 12, 437 (1951)

MV2B, P , Cobalt, 43, 57 (1969)

MU, C.* SOB7XSLO, 0. ana SUoSMiTH, f©% m i.Hap., 46, 621 (19SS)

«S dB m, J.Fbys. ladiaB, 20, 290 (1939)

CALASSO, t. Sm J.Metals, 19, 17 (1567)

UYflCSTOa* 3.1#.* J.A.F., 41, 197 (1970)

riS'MO, ft,* XOSAYaitfl, T.AM® WTEKABE, K., dap. Xnet.ttetale., 4, 1S7 (1965)

KASUH3T0, ft., KOMYASiU. T., and WATWAM* 2., ibid, 7, 206 (1966)

mSVimo» ft., XOftATASfl, T. * ana MASftfAlfl, K., ibid* «, 6 (1947)

m#mmt h.# xaiAUStfx, t., «ad ham iam, su# ibid, 4,100 (1967)
MASUMITO, fa., KUMYAAttX, T. * smfl WAWWAS, *.*. ibid, 8, 167 (1947)

m $ m m 9 a., mm rhm t, «»d m m m m, k., ibid, s f a s i < m 7)

ittimo. musium i, t., ati o * mun, ivu > 9, i <i96a>

NUMOMowl, 8., KOIAtASBZ, T., «4 WATKMAII, It*, ibid, 9, 6 (1M4)

Biritich F«t«al, i,087»084

SOWAHK. J., g.KttAlfc** J3, 303 (1941)

m m $ £.A., and fcASOCjattSS, B., Proo.Phys.foo., &7, (*), 45b (1954)

faStHm, i.4. and €8X$SU&., A.M.* Act* Mit., i. 454 (1953)

8X«8, J.®* sad IASXSTT, C.3., Tr*a».84™. Iast.Hia.Hot.Eng., 194, b4s (m i)

II*, ray*i«»» a, 274 (1*32)

KKAJKtiikL, W., miCSl, J. and tfmSUUOU, H.t Cobalt, 47* 51 (197<>) sad 48* 120 (1970)

KLIIZlSK., Z.Xnst., 85, 4 (1957)

4WXSHXTH. W., Proc. Hoy. tec., 170, 351 (1939)

iCKOLtl* J.5«i!.***., 1, 1014 (1946)

em s. r., rhix. *mg,# «, aos (m i)

tkXL* U., H&QKRM* i and warALT, P., J.rfeyRadium, 9, 203 (194a)

lOtkTH, flUfa., "Perteiiisgwitiee", B.Vsn tioctraod Co.Ltd., 243 (1951)

iWi4X4» ATOUACH, fa.L. and CQXW, S., ACtt j, S1 (1940)

BWtCEU, W.C., Physic*, 1, 361 (1934)

Kif*SJUM« C. and lAClfl, C., 2.S. I.Pfeyc.. £4, 325 (193u)

BfADFLY, A.i. m4 SSSAOfL, C.C., J.Inst.Metals., 94, 81 (1939)

W , U.P. aad iPCKSXTH. tf., 207A, 427 (1939)

BeCAIC, H., !P<r"iBioat Xepwts and HcgMtica*, (Id. & 1-nafield.), London (1Uffti Bop*a Ltd.) 47 (1942)
CHILACK, W., "Probleme der Technischen Magnetisierungscurve" (Ed. F. Becker) Berlin (Verlag Julius Springer) 141 (1930)

VOELKERT, E.P., Research, 7, 41 (1954)

EDWARDS, G.S., J. Inst. Met., 67, 68 (1941)

TILLER, W.A. 'Liquid Metals and Solidification' Cleveland Ohio (Amer. Soc. Met.) (1950)

ALBRIGHT, D.L., Thesis Lehigh Univ. (1965)

ALBRIGHT, D.L., and KMET, A.W., Trans. A.I.M.E., 236, 998 (1966)

E.P. 1,116, 348

ROSENQUIST, T., Acta Met., 1, 761 (1953)

ROSTER, W. and WIPFINGER, W. Z. Metallkunde 30, 348 (1938)

RASHIPTO, T., KINZOKU no KENNSHI, 9, 57 (1922)

LEFKOSIA, K., Z. Anorg. Chem. 59, 327 (1906)

VOCHEL, H., and ROSENTHAL, K., Arch. Eisenhuttenw, 7, 689 (1924)

RASHIPTO, T., Nippon Kinzoku Gakkai-Shi 1, 135 (1937)

KOSTER, W., and Schmid, K., Z. Metallkunde 29, 232 (1937)

CALLO, S., La Metallurgia Italiana, Jan. 1936 p.15
THE ALLOTROPES AND ALLOTROPIC TRANSFORMATION OF COBALT

The Allotropes of Cobalt

The fact that cobalt can exist in two allotropic forms, close packed hexagonal and face centred cubic, was first discovered by Hull in 1921. Since then a great deal of work has been published aimed at measuring accurately the lattice parameters of the allotropes and establishing their stability relative to temperature.

The lattice parameters suggested by "Cobalt Monograph" as being probably the most accurate are as follows, for the low temperature h.c.p. modification (c) a = 2.5071 Å, c = 4.0666 Å, c/a = 1.6228 Å, for the high temperature f.c.c. form (a) a = 3.5441 Å. It is interesting to note that several authors have obtained consistently high values around 3.56 Å for a. Owen and Kadoc-Jones found that annealing cobalt filings caused a progressive increase in lattice parameter from about 3.55 Å up to about 3.56 Å after 86 hours at 595°C and 14 hours at 636°C. Further treatment at 836°C produced no further increase, but 1 hour at 966°C caused reversion to the smaller lattice. They conclude that the large lattice is some type of metastable constituent. It seems likely that this phenomenon is partly responsible for the large range of published values.

The transformation on heating and cooling is subject to considerable hysteresis and is influenced by the history of the materials. A precise transformation temperature cannot be defined but it is now accepted that c is stable below about 400°C and a is stable at higher temperatures up to the melting point. Various workers have made the comment that the X-ray diffraction pattern of the c.p.h. form shows signs of line broadening. Edwards, Lipson and Wilson explained this by suggesting the presence of faults in the
hexagonal atomic arrangement resulting in a sequence of planes such as ABABACBCBCABC etc. Edwards and Lipson \(^{17}\) were able to show that a structure containing a small number of faults would have a slightly lower free energy than the perfect structure, and that, providing the change in free energy on transformation was very low, this may become a significant factor in determining the atomic arrangement.

In a more recent investigation, Houska et al. \(^{18}\) describes two types of fault, growth faults and deformation faults, which they depict as follows:

\[
\begin{align*}
\text{c.p.h.} & \quad \text{c.p.h.} \\
\langle--------
angle & \quad \langle--------
angle \\
A & B & C & B & C & A & C & A \\
\langle-----\rangle & \quad \langle-----\rangle \\
\text{f.c.c.} & \quad \text{f.c.c.}
\end{align*}
\]

Growth Fault Deformation Fault

Both may be produced by the growing together of two out of phase c.p.h. lattices, while the deformation fault may also form by partial slip converting A planes into C planes and B planes into A planes. They find these faults not to be distributed randomly but to form regions such that, while some regions contain both types, others contain only deformation faults. It is postulated that the latter represent those areas of c.p.h. material which form in the early stages of transformation when transformation strains are readily accommodated by deformation faulting in both phases. During the later stages of the transformation, the growth of c.p.h. areas is more restricted resulting in the appearance of growth and deformation faults where out of phase c.p.h. lattices grew together.

The Allotropic Transformation

Although not completely suppressed in coarse grained material, the transformation f.c.c.\(\rightarrow\)h.c.p. on cooling is sluggish and is subject to the influence of a number of metallurgical variables. This can be
accounted for in terms of the low driving force which in turn is associated with the free energy change involved in the reaction. Hildenreich and Shockley \(^{19}\) estimated from the transition temperature a free energy change, \(\Delta G\), of 100 cal/mole. Other investigations \(^{19,20,21}\) have obtained values between 105 and 108 cal/mole at 700°K, although Adams and Altstatter \(^{22}\) go on to show that in single crystals the value is variable dependent on the history of the material, and suggest that the number and type of defects has a significant effect.

Hysteretic Effects

Huse and Barrett \(^{ \text{A9} }\) showed that by lightly deforming the metal it was possible to bring about the \(a \rightarrow c\) transformation at similar temperatures, 417 ± 7°C, on heating and cooling. This is unusual in that the transformation is generally subject to considerable hysteresis \(^{12,22,23}\). Typical results are those of Sebilleau and Bibring \(^{22}\) who carried out a series of dilatometric experiments on cold worked cobalt. They found that a number of cycles through the transition temperature were necessary before a stable dilatometric curve was produced. This stabilization corresponded to the completion of re-crystallization. The form of the stable curve, as shown in Figure A1, indicates transformation temperatures of 430°C on heating, and 390°C on cooling. These temperatures were independent of heating and cooling rates, but the range of temperature over which transformation took place (\(\Delta T1\) and \(\Delta T2\)) were reduced by reduced heating and cooling rates. If heating or cooling was stopped within a transition range, the transformation stopped. If the direction of treatment was then reversed, the reverse change did not occur until the normal transformation temperature was reached.

Effect of Grain Size and Particle Size

The extent to which cobalt is sub-divided into grains or discrete particles has an important effect on the incidence of the transformation.
OWM and Hijir Jam report la* rtUltlea of a in finely dividti cob411 after annealing end quenehing fi«a temperature* op Co 400 C, end note the ipf«ia68 of C After quenching 1t ot higher teiaperatures. fteu result* are i*iTa r to those ef a mnbtt of ether workers and sofeo authors kilt suggested the existence of & second elletrepie Change if*c«e*h«e*p*) between 966 C end 11S0°C. However, Hewirh end weissier \| showed that, Although both alletropee were produced on quenching froei 1220 C, the f.e.c. fern alone was present when exaadned in a high tesssatafcur X-ray diffraction cataara at a liallAf temperature, it scene, therefore, that tim e-e tree#formation, which is aleggiah in bulk material is eenplately suppressed in fine grained weepies but that aetsiiiaq at high teuperature* causes sintering and grain growth, thus producing suitable conditions for the appearance of a certain awewet of c on cooling, the sajority of the results concern eoaplee quenched free the annealing temperature, hut it has also bees ohovu Ad that similar suppression of the reaction occurs on furnace cooling.

the &ffeet *f Hechanical work

lie*a and Becrett \| have above that a n a i l amount of deformation ha*
the afect of decreasing the vm m t of.hysteresis between the heating end cooling reactions, fbey $0 on to shew, however, that severe deformation of the cubic form produced considerable lowering of the f»e*c* ♦ h.c.?. transformation tea^eratura, possibly due to the hindering affect of the increased number of dislocations on the growth of b»e.p. nuclei.

It is well established that moderate deformation at root temperature will convert retained f.e.c* materiel to h.c.p. Sykes A24 reports that h.c.p. material ae forced persists even after prolonged treatment at 1000°C, but this seer* unlikely and is not substantiated by froiauo and Xokich A11, who found tat the amount of the f.e.c. phase began to increase on treatment at 320 C, and tuat samples hzezm- entirely cubic at 475°C.
babilleau and tUrU showed that* after severe cold working of the hexagonal structure, recrystalallisation began around 350 C, and that aUttUtI at 300°C resulted only in the recovery of the a>i^qriq* Scoplea previously allowed to recover at 300 € were found o* recrystalallisation at 350°C to be entirely h.c.p. while tMI^aUItatiiis without prior recovery produced a certain amount of the f a* for®* Apart ft—la assail difference in tewynreture, this effect is similar to that observed by Troiano and Tokitth and is thought, according to Sebilieau and librim*, to be connected with the energy introduced Into t® total by plastic deforaatioa, which may be close to the free energy difference between the two phases, and which would be reduced by recovery prior to recrystalfixation.

Cobalt Produced by Electralysis and Qaida IsAntiwi

hull 41 was able to show that cobalt produced by electrolysis of the sulphate contained both types of lattice while KeretMl found that at values of pil around 3Hb, the cobalt deposited was couplately isea^onal, and that reducing the pE by the addition of f®S® resulted in the appearance of incroaea> amounts of the f.t.c. lattice.

several workers, including Kendrick* at al ^* and Sykes ^, have found that the crystal fora of the cobalt produced by the reduction of CoU^ is dependent on the temperature such that c.p.h. km present below 400°C f.c.c. up to about 1000°C, and h.c.p* above 1500°C. Since 400aC is below the equilibrium transformation temperature the appearance of c.p.h* material is straightforward^ the presence of the cubic fora between 400 C and 1000 C is probably due to the suppression of the transformation on cooling, while the re-appearance of the hexagoual form above 1500°C can oe attributed to grain growth as discussed earlier.

Influence of Alloy Addltioa and hpsfitita

Claani at ai discuss the allotropic transforuation in cobalt rich solid solutions. They first consider the tran*formation as ©artea&itic
occurring at temperature K_γ on cooling and A on beating*. These temperatures can be affected in three possible ways, as represented in Figure A2. It should be stressed that these temperatures are influenced by variables such as grain size and previous history, and should not be included as part of an equilibrium phase diagram with regard to the stability of the allotropes, two basic possibilities exist, these being as shows in Figure A3, the constriction or enlargement of the $i'c.c.$ field.

Considering the possible combinations of these $i'g r a u$ in real systems, it is pointed out that the H temperature swat always lie within the equilibrium h.c.p. (c) field and A within the f.c.e. (a) field. Thus a type I equilibrium diagram may appear in conjunction with type b or c $M_a^d m_d^s A$ temperatures, mid typo IX with type a or c M_a^d and A_a temperatures. In most practical cases the reaction will take place at S at the H or A temperature, but this is not necessarily the case, particularly in type I equilibrium when the transformation temperatures are increased and a diffusion type mechanism may take precedence. Two schematic representations of equilibrium $i'g r a u$ plus end A transfer reactions are presented by Cianni et al as shown in Figure M.

A recent review of the effect of alloy additions on the transformation in cobalt has been published by Krajewski et al.

The $r<e u s e$ of cooling is characterised by a number of features which have led to its being classified as martensitic; these may be summarised as follows;*

(i) The transformation is, under most circumstances, athermal in nature;

(ii) retained $S_{unitar} i a l$ is inverted to h.c.p. on moderate deformation at or below room temperature.
(iii) the reaction temperature is not lowered by increasing the cooling velocity.

(iv) the saturation of the material retained at the reaction temperature is dependent on the time and temperature of heat treatment (therefore effectively on the grain, or particle size) not on the cooling velocity.

(v) transformation marking indicating surface tilt and upheaval associated with shear are coarsely observed in pure cobalt.

The crystallographic relationship between the two allotropes is given by Christian as

\[A_{S} \]

\[a \{0001\} e, \{111\} s \]

The era as for the f.c.c. * h.c.p. can be brought about by simple shear in the \{111\} planes of the f.c.c. structure such that every alternate atomic plane is displaced through a distance \(a/\sqrt{3} \) in the \(^{111} \) direction where \(a \) is the lattice parameter of the f.c.c. unit cell.

Various authors have discussed the transformation in detail.

Christian considers the reaction to be nucleated on a dislocation in the \{111\} plane with Burgers vector \(a/2 \{110\} \) which splits into the two partial dislocations \(*/6 \{112\} \). These are mutually repulsive, and on moving apart produce a small region of atoms with the h.c.p. structure. If the temperature is such that the f.c.c. is stable, the width of this extended dislocation will be restricted and will have an equilibrium width dependent on temperature. As the temperature is lowered toward the transformation temperature, the residual forces approach zero and the width of the dislocation will...
tend to increase. Below the equilibrium transformation temperature, assuming the absence of other restraining force associated with structural imperfections, the partial will start to steadily apart, under a driving force associated with the lower free energy of the h.c.p. They will thus ultimately arrive at a grain boundary or free surface, at which point reflection will occur.

Christian gee to point that, due to the involved not being a lattice vector, reflection back along the slip plane would result in an energetically unfavourable proclivity between adjacent atoms, however, atoms in neighbouring slip planes which also tend to everthooth are not restrained in this way, and reflections on the same he possible. In fact, reflection on the next (111) plane would disturb the stable, atomic arrangement produced by the passage of the original dislocation, and is thus unfavourable, while reflection on the next but one plane would near increase in the a.c.p., eterial and propagation of the transformation.

It is thus possible to envisage complete transformation on this basis. The pretense of faults may be accounted for by the reflection of partial dislocations along the next, instead of the next but one, plane to the original slip plane. The aeraeaei nature of the transformation is explained since the transformation, once initiated, will proceed until halted by force fields associated with stationery dislocations and imperfections. This resistance is overcome by the increase in driving force produced by lowering the temperature. The extent of the transformation thus depends on temperature rather than on time at temperature or cooling rate.

The lowering of transformation temperature and the general sluggishness of the reaction in fine grained poly-crystalline material is explained by Christian as being to the tendency of dislocation to lose kinetic energy en arrival at grain boundaries, resulting in their
being more easily stopped, on reflection, by opposing fore* fields,
Similarly, s dialecati on «ey bo completely absorbed at a grain boundary
end thus contribute no further to the reaction. It may also be postulated
that insufficient suitable dislocation# are present in very tins particles
or grains to efficiently nucleate the transformation, and that those which
are present tend to have a low kinetic energy than in coarse grained
material due to the shorter distance through which they have travelled on
arrival at a free surface or grain boundary,

A slightly different type of eeehealaw is proposed by Seeger ^,
Sebillaau and Bibring AJO, and bilby i31. Again, the treatl#nli#n on
cooling is nucleated by a region of k.c.p. material present between two
partial dislocations in the f.c.c. lattice. Crowtil of the stacking fault
is, however, accomplished by rotation around a dislocation with a screw
cceapeaat of 2a/3 <lll>. Th* failure of the reaction to occur in finely
divided material is assumed to be due to a lack of sufficient suitable
dislocation# In individual particles or grains.
<table>
<thead>
<tr>
<th>No.</th>
<th>Author(s)</th>
<th>Title and Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Hull, A.W.</td>
<td>Phys. Rev., 17 (II), 571 (1921)</td>
</tr>
<tr>
<td>A2</td>
<td>"Cobalt Monograph", Ed. Centre d'Information du Cobalt, Brussels 1960</td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td>Wyckoff, R.W.G.</td>
<td>The Structure of Crystals (New York Chemical Catalog Co. Inc.), 204 (1931)</td>
</tr>
<tr>
<td>A14</td>
<td>Bottofha, A.G.</td>
<td>Acta Met., 1, 609 (1953)</td>
</tr>
</tbody>
</table>
A25 Hersten, R., Physics, 2, 274 (1932)
A26 Gianni, A., Burms, J., and Freise, R.J., Cobalt No. 39 (1968)
A27 Krajewski, W., Kruger, J. and Wintersager, H., Cobalt No. 47
 81 and No. 48, 129 (1970)
A29 Seege, A., Z. Metallkunde, 47, 653 (1956)
A30 Bibring, H., and Schilleau, P., Rev. Met., 52, 569 (1955)
A31 Bilby, B.A., Phil. Mag., 44, 782 (1953)
Fig. A.1 - Temperature hysteresis of
\(\alpha \to \gamma \) transformation (schematic) \(^{22}\)

- \(\Delta T_1 \)
- \(\Delta T_2 \)
- 12x10\(^{-3} \)

Fig. A.3 - Effect of alloy additions on
the equilibrium stability of
\(\alpha \) and \(\gamma \), (schematic) \(^{22}\)

Fig. A.4 - Schematic phase diagram with
\(A_s \) and \(M_s \) temperatures superimposed \(^{22}\)
(a) Cobalt-based alloys with nickel or iron
(b) Cobalt-based alloys with the refractory metals
APPENDIX II

Summary of a recent X-ray diffraction study of Malcolloy

These reports came to the attention of the author when published in English translation during 1971, at which time the work described in this thesis was largely complete. The papers are concerned largely with a study of the crystallography of the Malcolloy alloys and substantially confirm several of the conclusions reached in the present work.

Using X-ray diffraction photographs obtained in a rotating crystal camera with single crystal specimens rotating, rocking and fixed, the phases present in an alloy of cobalt plus 27.5 at% aluminium, in the quenched and aged condition, were studied. On ageing at up to 700°C a h.c.p. phase with lattice parameters, $a = 2.50 \, \text{Å}$, $c = 4.0 \, \text{Å}$, $c/a = 1.60$ was precipitated. This phase was called α to differentiate it from the f.c.c., a solid solution of aluminium in cobalt which precipitated on ageing at 750°C. The h.c.p. form of cobalt, α, has parameters, $a = 2.5071\, \text{Å}$, $c = 4.9666\, \text{Å}$, $c/a = 1.6228\, \text{Å}$. It seems reasonable to suppose, therefore, that the h.c.p. α phase detected by Arbuzov et al is, essentially, α. The parameters of α' are thus rather smaller than those normally accepted for α but the fact that values are quoted to only two decimal places in the case of a and only one place in the case of c, suggests that the accuracy of the measurements was not very great and it is doubtful whether any significance should be attached to the small difference observed.
These results thus confirm, in teras, the conclusion isicM in this thesis that s is precipitated in ^ieollsf at agoing tcs^rstsTM for which %is the stable fort?. It is ap clear at wat ISKpsrilnVi f.c.c. a was dotacted ia addition to h.c.p. a' («) but both phases were present after ageing at 700 κ the soount of a increasing a* the tins was exceeded from half-a«-kCy to one hour.

TM orientation islstiesskip between b.c.p. a (t) and the b.c.c. festrix (d) was daterained as,

\{0001\}^\text{<101>g} // (01)g \langle1\bar{1}0\rangle^\text{<a>o} // \langle1U>£

This is the turgors relationship end substantiates the result# of the present work* It is al#o interesting that, Iron the for© of diffuse scattering regions associated with the matrix reflections! Arbuses et al deduced that the actrix we strained, due to coherency with the h.e.p. ?reelpitate, aa that the cubic lattice was distorted into s uonoclinic structure, the effect was not observed when the precipit.-te was a. this is again in agreeetsssnt with the present work where line broadening in the diffraction pattern of £ in the presence of « was attributed to strain. Fertheraore, strain due to coherency between \{110\}e and \{112\}$, (tao planes suggested in the thesis as being likely to fora a coherent interface between a and f), would result in a reduction ia the inter?leaer spacing of one set of \{110\} planes in the $ latti.es, thus giving a moaeclialc type of structure.