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Abstract

In this work I shall give details of the development of a two dimensional 

Lattice Boltzmann algorithm targeting the simulation of immiscible fluids at 

low Reynolds number and low Capillary number. The Lattice Boltzmann 

method will be explained along with its multi-component extensions. Key 

method developments shall first be developed in terms of single component 

advancements, made in the lattice closure algorithm and in the application 

of external forces to boundary lattice sites. Having secured single compo­

nent advancements, I shall present parallel developments made in immiscible 

flow simulation, considering two immiscible fluids (however extension to larger 

numbers of immiscible species is mentioned where appropriate). Drop dynam­

ics within shear flow shall be examined with Numerical colour segregation 

along with attempts for the application of a kinematic condition. Analytic 

segregation shall then be used and the dynamics of the phase field shall be 

analysed showing improved drop dynamics. A simple and adaptable method 

for application of a kinematic condition shall next be shown to be effective 

when used in conjunction with the analytic diffusion method in improving 

the quality of the models hydrodynamics. Culmination of all the previously 

identified improvements to the simulation method shall then be utilised in the 

simulation of wetting drops in both static and dynamic situations. The final 

method is qualitatively shown to predict static wetting, rolling contact points, 

bifurcating contacts and the spreading of films.
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1 Thesis Overview

Work carried out as part of this report has been supported by Fluent Europe Ltd. 

Although some of the nomenclature and language used in this section are yet to be 

explained; it is deemed appropriate at the outset to provide an overview of the aims 

and objectives of the work and to outline the intended route to fulfilling these. This 

section shall detail the initial issues associated with the inherited multi-component 

lattice Boltzmann method and the steps taken to overcome these issues. The layout 

of the thesis shall also be described.

1.1 A im s of thesis

At the beginning of this work the multi-component lattice Boltzmann (MCLB) 

method showed great potential in a number of important areas of continuum flow 

calculations. However there remained a variety of significant problems within the 

core method, see Chapter 7 for an in-depth analysis of the associated problems with 

the core method.

The major issues that are to be addressed within this work may be summarized 

as follows:

1. Micro-currents on multi-component interface obscuring hydrodynamic signals.

2 . Lattice pinning in low Reynolds number flows or “sticking to the simulation 

lattice” of the multi-component interface.

3. Indeterminate interfacial hydrodynamics and a verifiable absence of a kine­

matic condition.

4. Verifiable contact line behaviour at an accurately represented boundary with 

the ability to recover Navier conditions.

It is worth noting that the final item decomposes into a number of sub-issues tha t 

are to be addressed separately.



The intended aim of this project was to improve and develop lattice Boltzmann 

simulation of multi-component immiscible fluids, with particular attention being 

paid to the above issues, thus facilitating simulations in micro-fluidic regimes and 

venule scale blood flow applications. It is stressed at the outset that individual 

application of the method to a specific situation is not the purpose of this work. The 

ultimate aim is to produce an effective and accurate LB method for the simulation of 

interface-dominated flow including wetting in both static and dynamic conditions.

1.2 Layout

Considering the issues arising in the inherited model that were identified in the 

previous section; it is clear that the work devolves into two sections.

1. Consideration of boundary conditions.

2. Fundamental issues arising from MCLB interfaces.

In terms of the structure of the thesis I intend to address the above issues as follows: 

I initially intend to address the issue of boundary conditions exhaustively. For 

tractability and for my own personal introduction into the subject it was decided tha t 

boundary conditions are, initially, to be examined using single component lattice 

Boltzmann (SCLB).

Having resolved any issues arising while working on- an accurate and effective 

boundary condition; the remaining problems that are associated with the MCLB 

interface shall be resolved.

Finally the two work-packets listed above shall be combined in order to create an 

effective algorithm for the treatment of multi-component fluids at solid boundaries. 

Having done this the issues raised in items 1-4 in 1.1 above will have been resolved. 

Considering the above discussion the structure of this thesis is as follows: 

Following an introduction in Chapter 2; Chapters 3 and 4 highlight all relevant 

background material used in subsequent chapters. Relevant fluid mechanics is briefly
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discussed in Chapter 3 with relevant lattice methods reviewed in chapter 4. It is 

noted here that this is not intended to be a complete treatment of fluid mechanics 

but a brief overview intended to put the work into context.

Chapters 5 and 6 contain a rigorous treatment of the issues arising with boundary 

conditions. This treatment of boundary closure methods is carried out using SCLB 

initially. It will be generalized later in Chapter 10.

Chapter 7 details my initial attem pts using an inherited MCLB. The issues 

highlighted in points 1-3 in 1.1 are addressed with only partial success. This chapter 

serves to highlight the inadequacies of the core model that I inherited.

Chapters 8 and 9 contain a fundamental revision to the core MCLB algorithm 

which proved successful in overcoming the issues of 1-3 in 1.1.

Chapter 10 attempts to combine advances made in SCLB from chapters 5 and 

6 with the MCLB advances made in chapters 8 and 9. The aim of this chapter is 

to show how a flexible method has been developed for boundary closure, tha t is 

capable of dealing effectively with interfaces and Navier slip conditions.

Chapter 11 proposes future work and extensions to the new methods and suggests 

possible methods of improvement.

11



2 Introduction

Fluid dynamics is a branch of physics and mechanics dealing with fluids, these 

can be liquid i.e. hydrodynamics or gaseous i.e. aerodynamics. The effects of fluid 

motion impacts upon us within most areas of our daily lives from aerodynamics 

within automotive industries to pharmaceutical manufacture ensuring even distri­

bution of components drug mixing within crucibles. A conventional approach within 

engineering environments is to recreate flow phenomena through the use of certain 

dimensionless numbers, that are discussed later. Using these dimensionless parame-' 

ters it is possible to physically recreate various flow environments through ‘dynamic 

similitude’. In other words, real systems may be classified by dimensionless numbers 

so as to recreate identical fluid effects using different physical models described by 

the same numbers. Such concepts are used in practical experiments such as wind 

tunnels etc. Physical scaling of systems is an effective way of reproducing fluid 

phenomena within flow domains however there are also various disadvantages to 

dynamic similitude. Conducting physical dynamic similitude experiments is a time 

consuming and costly process, making minor changes to the flow domain can be 

difficult, quantitative data may only be collected from discrete points within the 

simulation domain giving local information only. Additional complications arise 

when conducting dynamic similitude experiments when various flow regimes are to 

be analysed for example laminar or turbulent flow, difficulties can arise in produc­

ing identical experimental conditions for both flow regimes. Computational fluid 

dynamics packages therefore offer a cost effective, transportable and adaptable way 

of simulating systems to aid understanding of physical experiment or to simulate sys­

tems that may be too complex for dynamic similitude experiments. In conjunction 

with theoretical fluid mechanics, the three methods allow us to better understand 

the processes taking place within flow systems.

In respect of the computation methods at the heart of this thesis, the first at-

12



tempt to model fluid flow successfully and recover the rotational symmetry of the 

Navier-Stokes equations was made in 1986 by Uriel Frisch, Brosl Hasslacher and 

Yves Pomeau (FHP) [1] when they produced a cellular automaton (CA) computer 

simulation that worked by obeying conservation laws to recover hydrodynamics on a 

microscopic level. This early CA worked using a two step mechanism, a free-stream 

and a collision; the free-stream operation involves the movement of Boolean parti­

cles from one site on a hexagonal lattice to an adjacent lattice site, thus making the 

method a Lattice Gas Cellular Automation (LGCA). The collision step occurs when 

Boolean particles reach the same site on the lattice at the same time and interact; 

the total momentum is conserved but redistributed between the particles at that 

site. The redistribution is governed by a set of local collision protocols. This system 

is clearly, time-space discretised.

Due to the large amounts of integers being processed for a Boolean LGC A sim­

ulation there is inevitably large amounts of statistical noise. In an effort to try  and 

reduce the levels of statistical noise and recover behaviour more conclusively related 

to Navier-Stokes behaviour, the Boolean components were replaced with, effectively, 

an ensemble-average population based on a distributed Maxwell-Boltzmann distri­

bution! It was soon realized that the technique of replacing the Boolean particles 

and integer arithmetic with floating point arithmetic on continuous populations was 

a valid method of reproducing fluid hydrodynamics in its own right [2]. Hence the 

first form of the Lattice Boltzmann Equation (LBE) was produced.

Fluid mechanics relies on the laws of conservation, in this report the Lattice 

Bhatnagar Gross and Krook (LBGK) algorithm will be used for the implementation 

of the Boltzmann equation on a lattice. The algorithm is implemented on a two 

dimensional lattice with nine possible velocities (D2Q9) that will be covered in 

more detail later. [3] [4]

Fluids considered in this work are Newtonian fluids in the continuum regime. 

That is, that stress and strain within the fluid are linearly related through their
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viscosity. The fluids are viewed in the continuum regime or in other words are 

considered to be continuously divisible. The interaction of the individual particles 

comprising the fluid are not directly considered. Thus physical parameters such as 

the velocity of the fluid and the fluid density may be specified at any point within 

the flow domain.

Throughout this work, flow shall be regarded as incompressible and isothermal. 

All fluids are compressible to some degree however the assumption of incompressibil­

ity allows us to assume a constant density throughout the continuum fluid and thus 

a uniform viscosity. As the fluids are considered to be isothermal we assume them 

to have a uniform temperature throughout. Consideration of isothermal and incom­

pressible fluids allows us to greatly simplify the equations governing flow. There 

has been substantial work carried out considering the energy equation tha t governs 

flow [5], as we are considering isothermal and incompressible fluids, this shall not 

be considered.

The law of mass conservation will be used to derive the Continuity equation and 

the conservation of momentum will be shown to give rise to a set of three equations 

known as the Navier-Stokes equations. The Continuity and Navier-stokes equations 

can be used to describe the behaviour of any fluid within a flow domain, the unique 

characteristics of the flow are a consequence of the interaction of the fluid with 

domain boundaries and interface interactions between immiscible components.

Accurate representation of the domain boundaries including the interface be­

tween two immiscible fluids is therefore essential if accurate hydrodynamics are to 

be recovered.

2.1 R ecent R elated  A dvances U sing L attice B oltzm ann

Throughout this work various recent developments in LBE modelling are directly 

utilised and are referenced where appropriate such as M.Latva-Kokko and D.H.

14



Rothman’s segregation method [6] which was published in 2005. In order to illustrate 

and contextualize recent developments and to show wider applications of the method 

I would like to give a brief overview of recent work carried out by G. Berk Usta and 

Alexander Alexeev from the Chemical Engineering Department of the University 

of Pittsburgh [7]. The following application illustrates the broader context of the 

detailed work undertaken in this thesis.

Usta’s work builds on earlier simulation techniques of Alexander Alexeev et al [8]. 

Alexeev uses two different meso-scale models and integrates them in order to simu­

late the behaviour of micro-capsules in a continuum fluid. The aim of Alexeev’s work 

is to combine an LB method fairly similar to ours and a lattice spring method [9] 

(which will not be discussed in this work), .to simulate the behaviour of a continuum 

fluid alongside a micro-capsule’s elastic shell. The work aims to improve the speed 

at which chemical data can be retrieved from micro-reactors. The aim is to ma­

nipulate minute quantities of reagents that are contained within the micro-capsules. 

Alexeev also notes that the fluid-filled elastic shelled micro-capsules can also be used 

as simple models for biological cells such as leukocytes.

Using similar boundary conditions to those developed by Alexeev et al [8] de­

scribed above; Usta has recently published work describing how, by using the com­

bined LB and lattice spring method of Alexeev, they have been able to simulate the 

self propelled motion of micro-capsules.

Usta describes how in some biological systems there is communication between 

cells which are designated signalling and target cells, this allows the cells to cooperate 

and thus carry out a large range of functions. The aim of U sta’s work is to mimic the 

communication that occurs between biological cells. The main outcome is th a t when 

considering a pair of cells, one signalling and one target, tha t are situated in close 

proximity on a substrate, the action of the signalling cell results in the self-propelled 

motion of both cells.

Initially consider a single signalling cell on a substrate that is surrounded by a
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continuum fluid. The signalling cell is filled with dispersed nano-particles within 

its fluid filled core. These nano-particles are able to diffuse through the shell of 

the micro-capsule. The nano-particles can “chemisorb” onto the surface of the 

substrate and modify its wetting properties, in particular its adhesive interaction. 

The strength of adhesion of the substrate diminishes as the concentration of nano­

particles chemisorbed onto it increases. The signalling cell therefore emits nano­

particles that diffuse through the surrounding fluid according to Brownian motion. 

The deposition of nano-particles on the substrate creates an adhesion gradient em­

anating from the point directly underneath the centre of mass of the signalling cell. 

At this stage Usta notes that there is no self-propelled motion as the system is 

symmetrical.

Placing a target cell in close proximity to the signalling cell however breaks 

the system’s symmetry. Upon diffusion of the nano-particles, the wetting section 

of the target cell is exposed to a adhesion gradient. Should the parameter set be 

appropriate in terms of diffusion rates and relative separation and reactivity of the 

nano-particles relative to the adhesivness of the surface; the target cell will, under 

the correct circumstances, move from the less.adhesive area to the more adhesive 

area, i.e. along the adhesion gradient.

Subsequent to the initial movement of the target cell, Usta found tha t the hydro­

dynamics of the continuum fluid caused by the motion of the target cell, initiated 

movement of the signalling cell itself thus following the target cell along the adhesion 

gradient. Following this initial movement, both the target cell and the signalling 

cell lie in asymmetric positions relative to the adhesion gradient and thus continue 

to move provided that the signalling cell continues to diffuse nano-particles.

Therefore, by utilising the lattice Boltzmann method, Usta et al have designed 

a biometric system where communication is achieved between a pair of synthetic 

particles through the diffusion of nano-particles. They have also shown how the 

hydrodynamics induced by the target cell can influence the motion of the signalling
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cell thus demonstrating that hydrodynamic forces have an important role in the 

sensing and signalling behaviour of biological systems.

I will not attem pt simulation with the degree of complexity of Usta et aVs [7] 

work; my objective is to examine the fundamental accuracy and verifiability of the 

underlying LB model. However, U sta’s work does illustrate the complexity of the 

fluid systems that LB can address. The following is the sort of thing tha t the models 

I have developed might, eventually, be applied to.

There is a long history of modelling attaching cells as wetting immiscible drops. 

In the context of this thesis, a similar result to that obtained by Usta et al may 

be achieved by using the culmination of advances described in this thesis, shown in 

chapter 10. If simulations of this kind were to be carried out, the wetting properties 

of the substrate, specifically in the above example, the adhesion properties of the 

substrate would need to be investigated. In addition, the secondary migration of' 

the signalling cell that is induced by the hydrodynamics of the continuum fluid must 

not be compromised by the micro-currents of the interface. The low micro-current 

interface algorithm demonstrated in Chapter 10 is necessary.

The essential difference between the work in this thesis and tha t of Usta et 

al is our focus on hydrodynamic boundary conditions and their accurate correct 

representation without recourse to any form of (computationally expensive) and 

unverified membrane model.

17



3 Introduction to Fluid M echanics

The intention here is not to cover fluid dynamics in a comprehensive manner however 

it is appropriate to consider some key concepts in context; more complete accounts 

are to be found in Batchelor [10], Tritton [11], Landau and Lifshitz [5] and Happel 

and Brenner [12].

3.1 D im ensionless Q uantities in H ydrodynam ics

In fluid mechanics it is conventional to describe various flow regimes using a variety 

of different dimensionless quantities. It is appropriate at this stage to mention some 

of these dimensionless quantities and their meanings. There are a wide range of 

dimensionless numbers that are applicable to a large variety of flow situations such 

as; the Nusselt Number (that measures the enhancement of heat transfer within a 

fluid when convection is considered as well as conduction) and the Schmidt Num­

ber (that is used to describe the ratio of diffusion of momentum to tha t of mass). 

Dimensionless quantities that are to be used regularly in this work are explained 

below in greater detail.

Throughout this work the following standard notation shall be employed. The 

shear and kinematic viscosity are denoted as 77 and z/ respectively. The drops we 

consider have radius R  and surface tension a. Their flow environment is usually 

characterised by a velocity Uq and/or a shear rate 7 .

3.1.1 Capillary Number

In fluid mechanics the capillary number (Ca) is used when considering the interface 

between two immiscible fluids or liquid-gas interfaces. The Ca measures the ratio 

between the effects of viscous forces relative to the surface tension acting across the 

interface. The Ca may be regarded as the ratio of momentum diffusion forces to
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surface tension forces. The Ca may be expressed quantitatively as follows:

Ca = ^ .  (1)
a

Where all symbols have meanings as described previously.

3.1.2 Mach Number

The Mach number (Ma) of a flow may be regarded as a measure of the speed of the 

flow. It is defined as. the ratio of the speed of an object relative to the fluid and the 

speed of sound with in the fluid medium. The Ma may be expressed as follows:

M a  =  — . (2)

Where cs is the speed of sound within the medium and all other symbols have their 

usual meaning as described previously.

It is worth noting that the Mach number is temperature dependant as the speed 

of sound within a given medium varies with temperature. When considered in the 

context of this work however the Ma may be considered constant as we are solely 

concerned with isothermal flows.

The Ma is important when considering fluid mechanics simulations as solids 

being passed by a fluid , at the same Ma will experience similar forces and effects 

even though the velocity of the passing fluid may not be identical in both cases.

3.1.3 Reynolds Number

The Reynolds number (Re) of a flow practically quantifies the isothermal flow regime 

and is used to distinguish between various types of flow for example laminar and 

turbulent flows. The Re is considered the fundamental and most important dimen­

sionless number used in fluid mechanics. The Re is defined as the ratio of the inertial
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forces in flow to the viscous forces. It may be expressed as the bulk Reynolds number 

using the dimension of the flow domain or may be expressed as the ‘drop Reynolds

number, the Reynolds number may be used in conjunction with other dimensionless 

numbers to calibrate simulations of actual systems where dynamic similitude relates 

different experiments.

3.2 G overning Equations o f H ydrodynam ics

3.2.1 Continuity Equation

The Continuity Equation arises as a consequence of the principle of conservation 

of mass within a flow domain. To illustrate this we can consider a control surface 

element of surface area, dA, and its normal unit vector h. If we consider the amount 

' of fluid passing through the surface area in a unit time with a velocity u .we have:

Multiplying the above expression through with the density of the fluid gives us an

Now using surface integration techniques and applying the law of mass conservation, 

the total change in mass of the volume, uq, with surface area, A, must equal the

number’ (Red) which uses the local dimension of a drop contained within flow as 

follows;

(3)

(4)

where W  is the physical dimension of the flow domain, 7  is the shear rate, R  is the 

radius of the drop and u is the dynamic viscosity of the fluid. As with the Mach

u.hdA = u.dA\ dA =  hdA. (5)

expression for the mass of fluid passing through the surface element in a unit time.
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amount of mass passing through the surface, 5, in a unit time:

d_
dt

p.du = —i f . pu.dA. (6)

Using the divergence theorem on the reference volume provided that mass is neither 

created nor destroyed, we have;

-V (pu)du . (7)

Equating integrals we obtain from the principle of mass conservation and the diver­

gence theorem [13];

(8)

We have therefore shown that the continuity equation comes as a direct result of 

the conservation of mass within a system. The continuity equations is the most 

fundamental equation within fluid mechanics.

3.2.2 Euler Equation .

The Navier-Stokes equations arise from the conservation of momentum and the 

application of Newton’s second law of motion. The equations are parabolic second- 

order partial differential equations that are fundamental in fluid mechanics and, 

along with the continuity equation and the flow boundary conditions, close the 

description of hydrodynamic flow processes.

Prior to derivation Of the Navier Stokes equations it is appropriate to derive the 

Euler equation. Which applies to the ideal and reversible flow processes.

Force exerted by a liquid on a material enclosed in a surface “s” is :

(9)
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Now, by applying the divergence theorem to the vector V  = Va  with a a constant 

unit vector, it is straightforward to show that:

that is;

V.dA = a. VdA  = a. V ttfV , (10)
S  J Js J J J V

VdA = /  /  /  V V crr, (11)
5 J J Jv

which when applied-to equation (9) gives;

F  = -  [  I  P.dA =  -  [ f  [ (V P)d3r. (12)
J J S  J J Jv Q

Making the definition for the force per unit volume on the immersed reference body 

to be:

E =  [ f [ Fldb ,  (13)
J  J  J v  0

which may be inserted into equation (12) in order to give the equivalence;

F' = — VP. (14)

Consider Newton’s second law of motion and express it as a material derivative the 

momentum of the unit volume. Expanding the material derivative we may express 

the force per unit volume in terms of time and space derivatives:

w D d d d . .F = P- u  = p ( ^  +  ux- u  + uy- u  +  u z- u ) .  (15)

Compressing the spatial derivatives and making use of the equivalence identified in 

(14) we can write the Euler equation:

- V P  =  p{ J  +  (u.V).u).  (16)
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We have derived the Euler equation for an incompressible fluid but it remains true 

for a compressible fluid also.

3.2.3 Navier-Stokes Equation

We may now proceed to derive the Navier-Stokes equations. Initially we can denote 

the Euler equation (16) in cartesian tensor form and rearrange with the view of 

obtaining a form into which we can insert the momentum flux tensor, 11^ [5], and 

defined below. Taking the Euler equation in tensor notation and rearranging we 

obtain;
d(ui) dui l d P  , ,

=  - (u* ^ ) -  -p te t-  (17)

If we now consider separately the time differential and expand the derivative 

using the chain rule we obtain a two term differential equation, if we proceed to 

replace the density differential on time with the identity proposed by the Continuity 

equation we can obtain an expression;

duj _  1 d(puj) Uj d(puk) . .
dt p dt p dxk

Substituting (18) into (17) and rearranging we. obtain,

1 d(puj) Uj d(puk) =  duj 1 d P  . . .
p dt p dxk Uk dxk pdxi

Rearranging (19) allows us to condense derivatives in xk using the reverse of the 

product rule for differentiation giving;

dpUj =  d P  _  dpukUj ■
dt dxi dxk

The free variable tensor subscripts may be changed using the property of the Kro- 

necker delta function, the resulting equation may then be factorized producing an
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equation tha t will allow us to identify a momentum flux tensor function:

(21)

defining;

f-hfc —  P$ik 4" pUfcUii (22)

we have;
dpUi dr 1 _ TT

r i . r \ut 'UXk
(23)

The momentum flux tensor 11** is defined as the ith component of the momentum 

transferred into a reference volume Uq through a surface, S with its normal in the

equation is applicable to ideal fluids only as it represents a momentum transfer 

mechanism that is totally reversible.

In order to obtain the appropriate hydrodynamics for a non-ideal, viscous fluid, 

internal friction must be incorporated into the Euler equation (where friction is 

regarded as dissipation of kinematic energy) which has been expressed in equation

(23) in terms of the momentum flux tensor. In order to take account of friction 

effects the momentum flux tensor is modified, incorporating an additional term, 

the viscous stress tensor a'ik. This term introduces momentum dissipation into the 

momentum transfer mechanism of the fluid. The modified momentum flux tensor 

may be expressed as;

Xk direction in a single unit time. It can be noted that the current form of the Euler

(24)

Inserting the modified form of the momentum flux tensor into (22) and substituting 

in for n ifc in (23) it is possible to factorize the resulting equation into the following 

form;

(25)
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The t e r m +  a 'ik, in (25) is the full stress tensor, and —PSik is known as 

the hydrodynamic stress component and, as we have discussed, a 'ik, is the viscous 

stress tensor.

From physical arguments the viscous stress tensor must become zero for a fluid 

that is under uniform translational or rotational motion. From such physical ar­

guments it is possible to derive an expression for the viscous stress tensor. Such a 

derivation is carried out in [5] with the result being;

, dui duk 2 dui , £,dui ,oa\
ff*  = T,(d ^ + a ^ -  3 dxi  +  ? (26)

Where 77 and f  are coefficients of viscosity and are both positive and functions of 

pressure and temperature. As we are only considering isothermal and incompressible 

flows, these coefficients are constants, tj is known as the shear viscosity and £ is the 

bulk viscosity. Substituting into equation (25) and making use of the Kronecker delta 

function we can express the expanded form of the Euler equation with additional 

retardation as;

dpui t .dpukUi dP ^2 2 d dut , ^
- w  + ^ 7  = - d ^ i + r ,V U i+ { z - (27)

Using standard algebraic techniques the left hand side of equation (27) may be 

expanded using the product rule, the resulting equation may then be factorized and 

expressed in a form that allow the continuity equation to be used to cancel terms 

and simplify the expression:

.dui dm. dP 1 x d ,duu
+  +  ^  +  K +  (28)

The fact that the kinematic viscosity is given by % = is, also from the Continuity 

equation, for an incompressible fluid =  0. It is therefore possible to produce and
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expression for the incompressible Navier-Stokes:

dui dui ' 1 dP 2 f .
-J^  + Uk— !- = — —  + v V 2Ui. (29)
o t  OXk p u X i

The incompressible Navier-Stokes equation and the Continuity Equation form the 

most important set of equations in hydrodynamics.

3.3 Initial C onditions

Chapter 5 deals with boundary conditions in the context of lattice Boltzmann sim­

ulation in detail. It is appropriate, however, to make a few remarks here.

We consider only incompressible fluids with the equation of state p = constant; 

compressible fluids need a little more care.

The Navier-Stokes equation is a parabolic partial differential equation. To close 

a particular solution it is therefore necessary to have (i) its solution (the velocity 

field) specified over the complete, closed perimeter of the flow domain at all times 

and (ii) an initial condition specified over the whole flow domain. Note that it is 

not necessary to know the pressure distribution over the boundary. (In principle,

pressure may be eliminated from the description- by taking the curl of the Navier-

Stokes equation, which may then be solved. Pressure is later derived from the known 

velocity by solving a Poisson-type equation derived by taking the divergence of the 

Navier-Stokes equation and using the continuity equation).

In cases where the steady-state of flow is alone of interest, the elliptic tim e- 

independent Navier-Stokes equation must be solved with reference to the velocity 

field specified over the complete, closed perimeter of the flow domain.

3.4 Interface C onditions

It may be shown that from mechanical stability considerations, namely Newton’s 

third law of motion, that at an interface between two immiscible fluids (a) and (b),



characterized by a local normal n(r), the following stress conditions must hold for 

the viscous stress and the full stresses respectively: .

(30)

(31)

where t is the tangent to the interface (t.h =  0 ), Ri and R 2 are the principal radii 

of curvature of the interface and a  is the surface tension at the interface.

At this point it is important to note that (i) in the continuum approximation 

the interface enters the description of the problem of a boundary condition and (ii)

that the interface is considered to have no structure.

3.5 C losing Rem arks

It should be noted here that, as we are carrying out simulations using isothermal 

fluids, a large body of work th a t has been carried out concerning the scalar (partial 

differential) energy equation has been omitted. For information regarding the energy 

convection and diffusion (conduction) in fluids, the reader is directed to [5], for 

further information and derivation of the energy equation. It should also be noted 

that a closed mathematical description of a fluid in general requires the equation of 

state for the fluid to be specified. In the present context, however, lattice Boltzmann 

fluids have an ideal gas equation of state (see below) which simplifies the description 

of the lattice fluid (but introduces other problems because the speed of sound in 

such models is only o(l)). Notwithstanding the preceding comments, we shall work, 

henceforth, in the incompressible, isothermal regime of viscous flow, described by 

the continuity and Navier-Stokes equations.

It is also appropriate to remark on the large variety of analytical solutions to 

and simplifications of the flow problem. The range of analytical solutions and of the
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methods and investigation strategies developed to solve the continuity and Navier 

Stokes equations are surveyed in a range of well-established texts, possibly the most 

significant of which is [10].

Physicists get away with approximating the greater part of many flows as “po­

tential” (with velocity fields derived from the gradient of a scalar velocity potential), 

with magnetostatic analogies and a range of savage approximations of a less than 

rigorous nature. For more “physical insight” into such approaches to flow processes, 

and for an appreciation of the underlying flow physics, the reader is directed to [11], 

who describes fluid dynamics from the perspective of the underlying physics of the 

flow, in a way well suited for the less mathematically orientated reader and with 

reference to experimental facts.
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4 Lattice M ethods

Lattice methods have been a part of statistical mechanics for decades. Models such 

as the famous Ising model, was solved in two dimensions in 1944 by Onsager [14]. 

Lattice gas models for the simulation of fluids appeared in approximately 1976 as a 

result of work by Hardy [15]. W ith the progression of technology computational fluid 

dynamics came of age approximately a decade later. As previously discussed Lattice 

Boltzmann methods are a derivative of lattice gas cellular automaton. Here I shall 

present a brief summary of the methods used in this work in order of their algorithmic 

complexity; beginning with single component simulations and later progressing to 

multi-component simulations.

4.1 Single C om ponent LB M ethods

4.1.1 Background

Historically Lattice Boltzmann methods derived from Lattice Gas Cellular Au­

tomata. As mentioned in Chapter 2, one of the main problems arising in LGCA 

was noise in the simulations, which was overcome by using an ensemble average as 

a primary quantity as opposed to boolean quantities. Other problems with LGCA 

arise in the form of sensitivity to lattice structure; only ceftain choices of local lat­

tice structure (i.e. the unit cell) retain sufficient symmetry in terms of their isotropy 

to . allow successful recovery of Navier-Stokes behaviour [3]. Further problems arise 

when carrying out simulations in three dimensions, there are no unit cells tha t have 

sufficient symmetry to recover the appropriate hydrodynamics. In order to achieve 

three dimensional simulations with LGCA it is necessary to work in four dimensions 

to increase the isotropy of the system. This obviously increases the complexity of 

the simulation and requires large run times or the compilation of large collision rule 

tables, using large amounts of system memory.

Galilean invariance is not intrinsic in LGCA and the fluid velocity becomes pres-
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sure dependant. When recovering the hydrodynamic equations tha t are Navier- 

Stokes like, it is found that using a discretised lattice velocity gives rise to a “Gallileance 

breaking” factor in the lattice fluids macroscopic equation. In order to remove this 

factor it was necessary to confine the simulation to low Mach number flows, thus 

making terms containing the Galileance breaking term negligible [16]. Further cal­

culations must then be carried out in performing scaling operations of the velocity 

and time with the Galileance breaking term.

CA simulations are subject to further* constraints in terms of the maximum 

Reynolds number (Re) that may be obtained. The maximum Re is governed by 

the number of collisions that may occur per time-step and is therefore dependent 

on the lattice used (due to the number of discrete velocities allowed). The possible 

number of allowed unit cell velocity vectors that are capable of conserving mass 

and momentum is therefore central in terms of achieving target flow regimes in 

simulation.

Having said all this however; what was previously considered as an inconvenience 

in CA has recently enjoyed a renaissance in CA; the calculation of actual collision 

sets in collision tables. Although inconvenient to encode, the boolean nature of 

the collision in LGCA simulations gives unconditional stability with no numerical 

•divergence and is therefore being reinvestigated to apply the simulations to cases of 

turbulence.

LB began as a solution to the problem of statistical noise in the CA system 

by calculating time and space averaged quantities directly and using floating point 

populations as opposed to Boolean quantities. In recent times the lattice version of 

the Boltzmann equation (LBE) has become the most relevant derivative technique of 

the essential method, the model continues to attract interest above models like DPD 

[17-20] as the Boltzmann equation may be shown to recover the Navier-Stokes and 

the continuity equation through the Chapman-Enskog expansion to be considered 

later.
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There are various forms of lattice Boltzmann equation simulation each with their 

individual merits for application to various situations. For example, in mesoscale, 

multi-component problems, where the kinematics of phase separation feature, the 

free-energy method [2 1 , 22], based as it is upon Cahn-Hilliard theory, is the most 

appropriate choice of multi-component LB (MCLB). Alternatively, flows like tha t in 

reference [23], which are formally characterized as complex, incompressible, m ulti- 

component flows, address the continuum fluid approximation, to which we consider 

the LBGK (see below) method described here is most applicable.

In the latter applications, fluid-fluid interfaces are unstructured and appear as 

boundary conditions on dfli2 where f2i and f 2̂ are separate Navier Stokes domains. 

(Most MCLB variants have, at some time, been applied in this approximation but 

physical accuracy, efficiency and simplicity favour a MCLB pioneered by Gunstensen 

et al [24] and modified by Lishchuk [25] and a method of Latva-Kokko and Rothman 

[6] for the continuum regime).

The LB method used here is the LBGK method [4], arises as the BGK Boltzmann 

equation [26] is applied to a lattice and the Navier-Stokes and Continuity equations 

are recovered. The BGK Boltzmann equation is given in [26] as;

| /  +  (££.V )/ =  - i ( /  -  (32)

where the link populations are given by the single particle population distribution 

function fi and fj® is the Maxwell-Boltzmann equilibrium distribution. U_ is the 

macroscopic velocity of the fluid and r  is the collision time. The term on the right 

hand side of equation (32) is the collision term, it is worth noting, tha t if the right 

hand side of the equation were to tend to zero, we have a situation where no collisions 

occur, as we would expect in a low density gas system. The collision term acts as 

to return the system to thermodynamic equilibrium, the further the distribution 

function (ff) is away from the equilibrium distribution (f-°^) then the larger this term
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becomes and the greater the tendency to return to equilibrium. Taking equation.

(32) and expressing the left hand side of the equation as the material derivative and 

essentially integrating along characteristic of the equation we may obtain:

(33)

The essential idea of lattice Boltzmann is to solve this equation on a regular lattice 

made-up from a ‘basis’ or unit cell of discrete velocity vectors (see figure 1). This 

discrete velocity set c* will then define all the positions on the lattice.

The D2Q9 LBE method operates on a two dimensional (D = 2 ) lattice with 

nine (Q = 9) possible velocity vectors. The lattice is essentially square with eight 

velocity vectors connecting nearest and next-nearest lattice nodes, the ninth, zero 

vector corresponds to the central rest node. The velocity vector direction is indexed 

by the quantity “i” , the velocity vectors are denoted using c{ as shown (figure 1).

Each of the nodes depicted in figure 1 are arranged on a regular lattice that 

covers the simulation domain (figure 2 ).

The magnitude of the velocity vector is denoted as the vector population distri­

bution function, fi. The vector populations (fi) are controlled by a set of governing 

laws that may be used to obtain the macroscopically observable quantities of the 

flow.

In General LB is a directional discretization of equation (33) in velovity space: 

f i ( r  +  Ci6t , t  +  6t) =  / - M )  =  / i ( r ,0  +  ^*j ( / j 0)(p,v) -  / j M ) )  +'&• (34)

In equation (34) £2̂ - is known as the collision matrix and fi is the population of 

particles travelling with velocity c{ [3]. The term will be considered in greater 

detail in later sections, for current purposes it may be regarded as a term used to

m , L  + ZSut  +  6t) - m , r , t )  =

f ( £ , L  + (S t , t  + 5t) = -  f (0\ p , u ) ) .
T
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i= l i=2 i=3

■5- i=4=8i: i=0.

i=6i=7
Figure 1: Single lattice node for D2Q9. The velocity vectors point in the directions 
indicated by the arrows. Note for i odd, velocity magnitude is increased by y/2. 
Note that |c4| =  y1.

Figure 2: Lattice domain for D2Q9. The horizontal distance between adjacent nodes 
is the lattice spacing Sx.
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impose an external force on the fluid such as a gravitational field. In general, the 

lattice fluid’s kinematic viscosity is determined by the principal eigenvalue of the 

symmetric collision matrix =  fyi- For the single relaxation time so-called LBGK 

model Qij takes a simple form:

with the collision parameter r  determining the fluid kinematic viscosity; for our 

particular D2Q9 choice [3]:

where 6X is the lattice spacing see figure 1 and 5t is the time step. Note tha t the 

lattice spacing 5x = 1 throughout. The 0 ^  or r  are assumed to be known.

For the D2Q9 model of Qian and d ’Humieres [4], analysed in detail by Hou et 

al [27];

turn density; tpG is a “source” term, where tp is the lattice link weight, which may 

be used for example, to represent a uniform pressure gradient [3,28] or interfacial 

tension as an external force, in the case of multiple immiscible fluids [3]; all other 

symbols have their usual meaning [4,27].

Algorithmically, equation (37) is interpreted as a collision step (right hand side 

of (37)) followed by a “streaming” or “propagation” step in which the calculated 

value of the right hand side is moved in the direction of ci for an interval 5t to reach 

the next lattice node.

(35)

(36)

f j  (r, t) is the “post-collision” , “pre-propagate” (see below) value of the momen-
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i 0 (rest) 1 2 3 4 5 6 7 8

tp 4/9 1/9 1/36 1/9 1/36 1/9 1/36 1/9 1/36
Cix 0 1 1 0 -1 -1 -1 0 1

■ Piy 0 0 1 1 1 0 -1 -1 -1

Table 1: Definition of the D2Q9 simulation lattice link vectors, c 

For all LB models the equilibrium distribution function is linear in p:

f i 0)(p ,v )  = p P t;1) (v • Cj) , (38)

where the second-order polynomial P^2)(v-Ci) depends upon the particular LB model 

being used [3].

The principal contribution to the distribution function is the equilibrium distri­

bution function, which for LBGK, is defined as:

= t pp
V • c (V  • Ci) 21

Cl 2c2 2 cf

We derive the macroscopic fluid density and momentum as follows:

(39)

(40)

It will be shown below how the form of equation (39) is arrived at.

In the present context equations (39) and (40) refer to those lattice links ci and 

weights tp defined in Table 1 and depicted in figure 1 where the speed of sound 

cs = 1/ \/3  for the D2Q9 lattice. The above choice for the equilibrium distribution 

function also recovers a pressure tensor:

ni°i = \ p S a »  +  P 'l'aV fj =  f f ' c i a d p  . (41)

Note that the quantities p and v are the solutions to the Navier Stokes and
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Continuity equations for the flow problem. It is not a trivial exercise to show that, 

as we shall now see. • .

4.1.2 Chapman Enskog Expansion for Macroscopic Dynamics

Within this section I attem pt a limited but direct derivation of the hydrodynamic 

equations recovered from the Boltzmann equation via the Chapman Enskog expan­

sion. Key points arising within this derivation will be referred to in following sections 

notably Chapter 6 .

The Chapman-Enskog [29] analysis allows us to recover the hydrodynamic equa­

tions from the lattice Boltzmann evolution equations. The LB equation is initially 

expanded to second order accuracy in space and time with relation to the Knudsen 

number [3], Through algebraic manipulation and scaled expansion a set of equations 

may be obtained at short and long distance scales and fast and slow time scales.

Working from the LBGK evolution equation we shall show how to arrive at the 

hydrodynamic equations and derive a system of simultaneous equations for param­

eters in fj;0\

We begin with the LBGK evolution equation from equation (37) that is clearly 

space and time discretised:

f i(x  +  8tCii t + 8t) = f i ( x , t ) +  - ( / i (0) -  fi(x, t)). (42)
T

Taylor expansion of equation (42) in two dimensions, retaining terms up to and 

including second order along with cancellation of like terms yields:

5((ci.V +  ^ ) / i +  § ( c i.V +  ^ ) 2/i =  i ( i ; (0) - / i f e i ) ) .  (43)

The time and space derivatives are now Chapman Enskog expanded into parts con­

sisting of their long and short components, this effective expansion of the variables
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formally being carried out with relation to the Knudsen number, 5. We therefore

make the following expansions:

&t — fto +  fidth (44)

/• =  / i(0) +  <5/j(1) +  52f P .  (45)

Substituting the above definitions into equation (43) we obtain an expression that 

may subsequently be separated into first and second moments in terms of the Chap­

man Enskog Knudsen number expansion parameter 5 which is set equal to 6t:

6(cj.V +  dto +  59(i)(//0) +  S f P  + S2f P )

+^y(CjV +  9(° +  JcJtiXcjV +  fl(° +  +  5/j® +  <52/ j 2*)

= ~ l ( S f P  + S2f P ) .  (46)

Collecting and separately equating terms in 5 and 52 it is possible to express the 

first and second moments of the distribution function as;

(Ci.V +  a t0) / f  > =  - i / | 1), (47)

(ciV  +  dto )r i1) + dtj W  +  ^ {ci V  + dmf f )  =  - l f p ,  (48)

Through straightforward algebraic manipulation of equation (48) and insertion of 

equation (47) we can obtain a form of equation (48) that is more easily manipulated 

within the analysis: <

(1 - l ) ( c i V  +  d t0) f } 1) +  d n f l 0) =  - - f F ) . (49)
I t . t

We now have a set of equations that consider the first and second moments of the 

parameter 8 namely equation (47) and equation (49) respectively. We now consider
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the lattice basis summation moments that are imposed on the distribution function. 

For the conservation of mass, Chapmann and Enskog required:

-  /*:

£ i / i (">0) =  0. (50)

Similarly for momentum considerations we may follow Chapmann and Enskog:

E i/ i (0)Cj =  pa,

S i/ i<">°)a  =  0. (51)

Taking the equation for the first moment 5o(l), equation (47) and summing on 

“i” and inserting the above momentum and mass conservation considerations we 

can show that we have produced the continuity equation with short time scale 

components [30]. Expressed in tensor notation, we have;

dtop +  dapua =  0. (52)

Considering the second moment of o(£), equation (47) we can write the equation in 

tensor notation and multiply through by c^:

Xiciad J ? )cil3 + Z idtot f )cil3 = - - Z if l 1)ci0. (53)
T

Using the identities expressed in equations (50) and (51), we may express equation 

(53) as;

ZiCiadafPcid +  dtopup = 0. (54)

W ith an eye on the required emergent behaviour (see below) we require the “equilib-
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rium” contribution f - ° \  of the distribution function f i  to have the following property;

^ i f i  C-iaC-iP ~  ^sP^aP Pea'll/.3*

Substitution of (55) into (54) yields;

dtopup +  dac2sp5a/3 +  dapuaU(3 =  0. (56)

Through tensor algebra we can exploit the property of the Kronecker Delta function 

in order to change the equation subscripts and subsequently in order to expand the 

equation further we invoke the product rule for differentiation. Cancellation of terms 

may then be carried out using the continuity equation, equation (52), to transform 

terms within the equation. The equation resulting from these operations is:

dtoup +  uadaup =  -dpc2sln(p). (57)

Comparison of equation (57) with earlier work shows that our model reproduces a 

form of the Euler equation on short time scales. Thus far we have used the equation 

containing terms of first order in “6" to recover the continuity and Euler equations 

on short time scales.

We can now proceed to considerations of the longer time scale o(S2), equation 

(49). Summation of equation (49) on “i” and taking into account the mass and 

momentum conservation constraints identified in equations (50) and (51) we have 

the equation;

dtlp = 0. • (58)

Multiplication of equation (58) with “5" and adding with, from the previous analysis, 

the short time scale continuity equation, equation (52) we obtain, through standard 

factorization, and consideration of equation (44), a demonstration that our model
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recovers the continuity equation on long time scales:

dtp + da(pUa) = 0. (59)

In order to obtain further dynamics of the system we return to the o(52) equation, 

equation (49). Multiplication throughout by a second velocity vector ap prior to 

summation on the “i” components yields the following;

dnZ if^C ip  +  (1 -  ^ - )£ i(3 (0 +  CiO0 a) / f %  =  - - S j f  ci/3, (60)
I t  t

to which we return to in Chapter 6 , note.

Using equation (51), equation (60) may be simplified (having made a substitution 

for the first moment of the distribution function, ./*, in conjunction with equation 

(47) in tensor format):

dtipup +  (1 -  -^)<9a2i(-T(<9<0 +  CiydJf^CiaCip = 0 . (61)

Through general expansion and substitution of the definitions made in equation 

(55) we obtain from the above a form that may be expanded further using the 

product rule for differentiation:

dtipup +  ( i  -  r)da dt0c2sp5ap +  updtopua +  puadmup +  d7E i/-°)Q7q acii0 =  0. (62)

The second and third terms contained within the square bracket in equation (62) 

may be expanded using definitions derived from the Euler equation on a short time 

scale, equation (57), giving;

dtiP^p T (^ [clySj/) CijCiaC{p -{- dtocsp5ap

—UpC^daP — UpdjpUjUa — Ua(?sdpp — UapUjdjUp] = 0. (63)
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The fourth and final terms within the square bracket may now be combined using 

the reverse of the product rule for differentiation resulting in;

dnpup +  ( i  -  r ) a a [57Eit/-(0)ci7ciaci/3 +  dtoc2sp5ap

—upc2sdap -  uac2sdpp -  d1puaupu1\ = 0. (64)

The final term in the square bracket of equation (64) is conventionally called the error 

term and is an undesirable but unavoidable occurrence within the analysis. Dropping 

the error term from the analysis and substituting in the continuity equation in order 

to remove the time derivative from the second term within the bracket, results in;

^tlPUp ~b (^ 7 " ) ^ a [ ^ 7 CsdapUa5ap

-u p c2sdap -  uac2dpp] = 0. (65)

The time derivative dt\pup will be incorporated naturally into the overall time deriva­

tive when equations (57)and (65) are combined it is disregarded for the moment. 

By considering only the function contained within the square brackets we obtain 

a further constraint on the equilibrium distribution function required to achieve 

Navier-Stokes behaviour:

Ci'yCiaCiP Cs^aP^a^&P ^pCs^&P ^a^s^PP = ^P^aP

Henceforth we shall also neglect the term that is quadratic in velocity. Through cal­

culus and general algebraic manipulation the above expression may be manipulated 

into a form resembling the Navier-Stokes equation [30].

In order to recover the Navier-Stokes behaviour, the above equation must be 

equal to a constant multiplied by the density and stress as shown. We now consider 

the general form of the equilibrium distribution function that must be used to make
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certain that the steps above may be achieved. We write:

fiykQ ~  “b B(j-U§Ci§ “I-  C a U§UtCj§Cit ~b

f i i0 ~ Aa + Dau5u5.

By recalling the constraints that have been applied to the equilibrium distribution 

function in order to recover the hydrodynamic equations in the above analysis it is 

possible to generate a system of simultaneous equations in A...D that allow us to 

determine values for the constants in the general form of the equilibrium distribution 

function equation. For convenience the constraints on the equilibrium distribution 

function we have just used are summarized again below:

^ i f i  Q a  =  P ^ a t  

^ i f i  CiaCi(3 — ^sP^a P “b p U a llp ,

~b ^P&aP  ”b  ^ a ^ p P )  “b fcpSafi

For the lattice depicted in figure 1 (and indeed any viable LB simulation lattice) 

it may be shown that:

^   ̂tpCjct — 
i

^  v tpCjgCjp ^2^ap t
i

^   ̂tpCiaCipCi^ 0 ,
i

^  t p Ci a C
i

(69)

(68)

(67)
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where &2 =  §, and k± =  |  (for the D2Q9 lattice).

Essentially the first three of the above constraints will determine the form of the 

equilibrium distribution function and the value of the models speed of sound cs. The 

fourth of the constraints uses the speed of sound to identify exactly the value of the 

constant k in equation (68) as jL Equilibrium distribution functions summations 

in (68) are now decomposed into separate summations of the rest link and of the

short links (+) and of the long links (x ). Considering the first of the constraints

summarized in system (68);

— -do +  4v4i +  4^2 +  BiTi+usCi§ +  B^BAusCis +  C iB +usUtCi8Citi 

+C2£ x usUtCisCa +  (D0 4Di -t- 4 D 2)?/2 =  p. (70)

The above condition must hold for all values of fluid velocity, v. We therefore obtain 

two equations governing the coefficients of the equilibrium distribution function:

A q +  4j4i +  4^2 =  Pi (71)

2 Ci +  4 C2 +  D q +  4Di +  4 .D2 =  0. (72)

The second of the equilibrium distribution function weighted summations in (6 8 ) 

may now be considered;.

B*ifi Qict — B \ B  U§Ci§Cia  “I-  B qB  UftCi$Cia

~\~C\B U5'UjtCi8CitCia T C2B U§Û C{§C{iCia

+ D 0ciau2 +  ADiciau2 +  Cia4D2u2 =  pua. (73)

Using lattice moment properties defined above we remove all terms not quadratic 

in C{a. Cancellation of terms results in the following restraint on the coefficients of
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the equilibrium distribution function;

2Bx + 4,B2 = p. (74)

Performing similar operations with the second and third velocity moments allows us

to produce further relations between the coefficients in the equilibrium distribution

function defined in (70). When considering the third q  moment we force a condition

on the C coefficients, namely;

2Ci -  8C2 = 0. (75)

This condition insures Gallilean invariance [31]. Making this assumption within the 

second q  moment of the equilibrium distribution function allows us to make the 

following statements:

2(A\ +  2A2) = c2sp, (76)

8 C2 = p, (77)

4C*2 +  2{Di +  2D2) = 0. (78)

We can now consider the third q  moment of the equilibrium distribution function 

in equation (68) which generates the following constraint on the coefficients of the 

equilibrium distribution function:

2#! -  8B2 =  0. (79)

Manipulating the third velocity moment into a form to generate the Navier-Stokes 

equation gives a final restriction on the equilibrium distribution function [31]:

B 2 = & .  (80)

44



We have now produced a set of simultaneous equations that restrict the coefficients 

of the equilibrium distribution function in such a way as to allow us to recover con­

ventional hydrodynamics namely the continuity and Navier-Stokes equations from 

the lattice Boltzmann equation algorithm. The system of equations however is not 

a conventional system of equations, as it is under-determined i.e. we have a system 

of eight equations in ten unknowns. The system also contains subsets of equations,

these subsystems may be solved exactly:

Aq +4j4i + 4 .A2 =  p 1

2A\ +4^2 ' =  c2p ,

B\ +4i?2 =  p 1

2 Ci + 4 C2 +D0 +4Di + 4 D2 — 0, 

2 C i-8 C 2 = 0 ,

8C2 = p ,

4 C2 +2Di +  4 D2 =  0 5

2B\ —8B2 = 0.

(81)

The subsystems contained within the set of eight equations allows the coefficients 

.Bi, B2, Ci and C2 to be solved completely. It is also worth noting tha t the B.2 

coefficient determines the speed of sound c2s in the calculations. Through equation 

(76) the value of B 2 also constrains the values of the coefficients ^4i and A 2 therefore 

the range of “free” coefficients is somewhat restricted. We can note tha t the values 

selected for the “free variables” will effect the overall properties of the system. The 

choice of Aq for instance will determine the amount of rest mass contained on a 

link. The selection of a large value of Aq will restrict the attainable Mach number of 

the flow as there is less momentum to be distributed on the non-zero velocity links,
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i =  l  — 8. Having solved for A...D, the in LBGK may be written:

f i 0)(p>v ) = u p
V - C ;  . V 2 ( v - Cj )2

1 -t — ~r~z +2c2 2 ci
(82)

4.1.3 Length and Time Scale Considerations

When considering the behaviour of momentum transfer within a fluid, as would be 

expected, internal friction causes the fluid distribution function to return to ther­

modynamic equilibrium. The momentum of the particles of the fluid and thus the 

information that they carry is transferred through collisions. Low density systems 

such as low density gases transfer information slowly as collisions between particles 

are rare, the length scales, viscosity and density of the simulation therefore influence 

the rate at which a simulation achieves its equilibrium velocity distribution. The 

equilibrium state of a fluid may be achieved through different processes depending 

on the time scales involved.

A first relaxation regime occurs when the system under consideration consists of 

many bodies and the time scales involved are shorter than the duration of a collision 

event. Due to the short time scales there must be rapid relaxation of the many body 

distribution function, occurring at the collision, to the single particle distribution 

function. In the Boltzmann regime the collisions are assumed to be instantaneous 

and therefore the relaxation mechanism considered in this system are ignored.

The second relaxation mode is the kinematic regime where the time scales are 

in the region of the duration of the time of flight between collision events; The 

Maxwellian equilibrium distribution is a many body ensemble average over a local 

region where the collision occurred. The system described in this regime is a series 

of local regions in local Maxwellian equilibrium.

The third possible relaxation mode is the hydrodynamic regime and is achieved 

when the relaxation time scales lie between the time elapsed between particle col­

lisions and the minimum hydrodynamic time scales considered. The equilibrium
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is once again a Maxwellian distribution however unlike the kinematic regime, the 

hydrodynamic relaxation occurs as a slow drift to a global Maxwellian. The time 

scales involved in this mode of thermodynamic equilibration are too long to con-

time scales, may only be resolved with current and all anticipated computational re­

sources in the absence of the more transient phenomena. Long time scales are central 

as .they characterise the flow processes of interest. Essentially, as the systems under 

consideration here are continually changing (by flowing), so local distributions'at­

tempt to stabilize and form a global equilibrium. However, the constant injection of 

energy (say) makes this equilibration very slow; the systems (attempted) approach 

to equilibrium is the process of interest.

4.1.4 Stress in LBGK Simulations

Recalling equation (60) we can identify a key practical advantage of the LB tech­

nique that is that the stress, aa!3 and the viscous stress cr^ (see section 3.2.3 for 

definitions) are carried in the /* distribution locally which shall now be shown. ■ The 

local information may be used when e.g. considering Lagrangian particles or inter­

faces between two immiscible fluids.

We can make use of the conservation conditions imposed on the distribution 

function of equation (68) and recall the summation conventions of equation (51) to 

modify equation (60) giving;

which when added to the o(S) expression (57) gives the Navier-Stokes equation. The 

following identity may therefore be made for the viscous stress:

sider alongside (i.e. in the same calculation) those previously discussed. These long

da/m? +  (1 -  ^ - ) d ĉ i f i^C ica p  =  0, (83)

(84)
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Apparently the viscous stress may be derived directly from local distribution func­

tions, This is a considerable advantage relative to other numerical methods. 

It means that the fluid stress may be constructed from local information, instead 

of from measured velocity gradients (which must be measured from non-local finite 

differences).

Prom the alternate form of the evolution equation (37), in Chapter 8 we will 

make use of the concept of pre and post-collision quantities. Equation (37) may, 

with some of the concepts established in the previous section, be written as;

/ /  =  /; + - ( i f - / * ) ,  (85)T

a dagger denotes a post collision quantity, whence;

/ /  =  / f  (/?,«) +  i f  +  i f  -  ^ ( / f  +  i f  +  (86)

Therefore the post-collision is given by;

/ / ~ / f  +  ( l - i ) / f .  (87)

Recalling the relationship between and the stress (equation (84)) LB methods 

may be styled “stress-relaxation” methods and;

/ f *  =  ( l -  i )  / f ,  (88)

with fj® being considered in the collision process of equation (87).



4.2 M u lti-com pon en t LB M ethods

4.2.1 Introduction to Multiphase LB Methods

The work carried out so far considers single phase fluid flows only, we shall now 

consider the behaviour of mutiphase flows and the relevant extensions required to 

recover it. The behaviour of multiphase flows will be briefly outlined along with a 

multi-component LB component segregation method (the essential extra ingredient) 

that has been constructed and is the subject of later chapters of this thesis.

Multiphase behaviour is recovered by considering a single component continuum 

fluid with unstructured interfaces (where the structure of the interface is not of 

concern, the interface is considered a transition from one fluid to another). Incorpo­

rated into the behaviour of the single continuum fluid are two conditions, namely; 

a body force giving rise to interfacial tension and a coupled phase field which tells 

the body force where to act. When combined, the three components of the single 

continuum fluid, the body force and the phase field give rise to a multi-component 

system, which in this work are considered to be “red” and “blue” fluids.

As we have already considered single phase fluid behaviour (that governs the 

behaviour of the underlying continuum fluid) earlier in this thesis I shall now look 

at the remaining algorithmic components required to achieve a multiphase flow.

4.2.2 Multiphase Extensions and Definitions

This section contains a formal but brief introduction to multi-component general­

isations; a less formal and more formulaic and practical account is contained later 

in section 7.4 where multi-component methods are more fully considered.

In calculation the same basic mass and momentum conservation rules still apply 

however we make the following generalization;

f i  -  {/>’:. « i). (89)
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P - ■ ( I t />’)• (90)

In order to distinguish between immiscible lattice fluids, the multi-component 

LBE uses a phase field based upon the densities of “red” and “blue” fluids present 

at a node.

Firstly we shall consider the phase field. The phase field is characterized by pN 

with a range of ±1, with +1 representing completely red fluid and —1 representing 

completely blue fluid. Following the notation of [25], we define a component index, 

or phase field, pN(r):

P  (rJ )~ [ PJl(r’t) + pB(r,ty) (91)

where —1 < pN(r) <  1. Note tha t pN varies in time only through time dependence 

in P r ( t ,  t )  and ps{r, t ) .  Red and blue fluids mix under the LBE propagation step [3]; 

this defines the interfacial region, i.e. the transition from red to blue fluid.

We can now define a vector known as the colour field, the colour field is a unit 

vector that lies normal to the interface between the red and blue fluids. The vector 

direction is so that it points from the blue phase into the red phase:

,• = I f L  (92)
is- |VpW|- 1 ’

For the above calculation it can be shown that the gradient of the phase field can 

be obtained from an “isotropic derivative” see section 7.5.3;

V p N = 3ZitppN(r +  Ci)ci. (93)

The curvature of the interface may be calculated using the colour field unit vector,
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in tensor notation the curvature of the interface is given by (see [32]);

k = (Safi ~  faafafijdfffa- (94)

It is worth noting at this stage that the calculation of curvature outlined in equation 

(94) is dependant on the gradient of the colour field and thus assumes tha t the 

interface is continuous. This issue shall be revisited in the final chapter, Chapter 

11, when the interface at a boundary is no longer continuous.

Now that we have derived the main substitutions and primary quantities, colli­

sion is carried out as before for a single continuum fluid with /* given by Ri -f- Bi. 

Post collision, the populations are re-allocated so as to promote segregation between 

the two fluids with R  = YliR i and B  = TtiRi . The method of segregation determines 

the properties and dynamics of the phase field.

4.3 Interface Im plem entation

The several multi-component LB methods may be distinguished by the differ­

ent ways in which they impose a fluid-fluid interface. Illustrative references are 

[21,22,24,25,33]. See also references [3,34] for a survey of the methods’ relative 

advantages and applications. In problems where the kinematics of phase separation 

feature, Swift’s method [21,22], based as it is upon the Cahn-Hilliard theory, rep­

resents an appropriate choice of LBE interface algorithm. Here, however, we aim 

to address only completely immiscible mixtures in a continuum approximation, in 

which interfaces are assumed to be very narrow and unstructured. Computational 

resources or physical accuracy may also impose similar requirements and restrict 

choice of interface algorithm to a type pioneered by Gunstensen et al [24] and later 

modified by Lishchuk et al [25]. The model presented and applied here is based on 

the latter.

In Lishchuk’s method (see section 4.3.3) the interface is based on the contin-
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iium level stress boundary conditions which apply on an unstructured interface 

between completely separated fluids [5]; imposed through a body force acting in 

the fluid; an idea first introduced in the context of interfacial tension by Brack- 

bill, Kothe and Zemach in 1992 [35]. Lishchuk’s method produces narrow interfaces 

with reduced micro-currents (or ‘spurious velocities’ [3]),.it has an independently 

adjustable interfacial tension and it sustains interfacial tensions larger than Gun- 

stensen’s method [24].

4.3.1 Numerical Segregation or Re-colour

The method referred to in this work as numerical re-colour was suggested by Gun- 

stensen and Rothman [24]. The re-colour method is essentially a maximisation 

problem. The lattice fluid is initially collided in a colourblind collision. Post col­

lision, the lattice densities are subjected to a perturbation that has the effect of 

inducing a surface tension before the re-colour step and subsequent propagation.

The first step of the numerical re-colour algorithm is to identify the interface 

region from the magnitude of the phase field vector. Note, the phase field vector also 

lies perpendicular to the interface direction. In regions where the gradient of the 

phase field implies that there is an interface between two binary fluids, a perturbation 

is added to the collided densities. The effect of this perturbation is to redistribute 

the link densities, /*, within the interface region; diminishing populations on links 

parallel to the interface and increasing populations perpendicular to the interface 

subject to the constraints of mass conservation.

In practice, the application of the numerical re-colour algorithm is carried out 

using the direction of the colour field unit vector which is used to generate “filling 

priority” tables for the nine velocity links of the D2Q9 lattice system. Links with 

the largest component of their velocity lying in the direction of the colour field 

are assigned highest filling priority subsequent links are similarly assigned filling 

priority depending on the magnitude of their component parallel to the colour field
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Figure 3: Single interface lattice node for D2Q9 showing numerical re-colour filling 
priority

direction. In figure 3 for example, the interface is shown crossing a lattice node, the 

links of highest filling priority in terms of the red fluid are links i = 5 ,4 ,6 ,3 ,7 ,2 ,8 ,1 . 

Segregation is achieved, for the numerical method, by taking all of the red fluid lying 

at a lattice site and allocating as much as possible to the link of highest priority, 

links are filled according to their priority until there is no red fluid remaining on 

the site. The remaining, empty or partially filled links are then populated with the 

remaining blue fluid thus adhering to the conservation of mass at the node. The 

benefit of the numerical method of segregation is that it allows us to insert a surface 

tension between immiscible fluids and produces a relatively sharp interface, usually 

distributed over a maximum of three sights. The disadvantages of such a segregation 

method is the large amounts of noise that is generated at low Reynolds number flows. 

The method is also computationally labour intensive and slow. The development of 

the priority look up tables takes time but the subsequent repeated reallocation of 

colour onto the links is a massively time consuming process. The noise generated in
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hydrodynamic quantities, other then the phase field such as velocity, when using this 

segregation method remains the most significant issue and undermines the advantage 

of the sharp interface, see Chapter 8 for more details.

4.3.2 Formulaic Segregation and the Diffuse interface

Working from a method proposed by Latva-Kokko and Rothman [6], segregation 

may be achieved using an algorithm that allows a degree of colour diffusion at the 

interface. The algorithm is applied post collision and gives segregated or re-coloured 

densities as;

R ?  =  ^ f }  + t ? j l ) c 0 s(ei - e f )ci, (95)

where is the link angle, Of is the colour field angle. Here, the link and the colour 

field are both measured by the angle subtended at the local x-axis, taken positive in 

the anti-clockwise direction. (3 determines the extent of the diffusion of the red and 

blue fluids into one another. Here R p  is the red density allocated to the link ”i” , 

of course B p  = fi — R p  • As (3 increases the interface becomes less diffuse. Latva- 

Kokko and Rothman state in [6] that the value of beta lies in the range 0 <  (3 < 1 

however from simulation data we have found that the maximum value of (3 tha t can 

be used is in the region of 0.71, see equation (255). Simulations will run at higher 

values however situations such as negative densities have been found to occur, this 

point is discussed in greater detail in Chapter 8.

4.3.3 Interface Force; Lishchuk’s Method

It is possible to show that the effect of interfacial tension existing between two im­

miscible fluids may be approximated using a body force. The magnitude of the 

body force will be dependent on the curvature of the fluid-fluid interface. We there­

fore suppose that the hydrodynamics in the region of the interface are governed by 

the continuity and Navier-stokes equations with an additional body force, F_. F_ is
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defined in terms of the surface tension parameter, a  as follows;

F  = ^ k V p N, (96)

where k is the curvature, identified above, of the interface which for low Reynolds 

number flows we can assume varies slowly and is in some cases constant i.e. spherical 

drops. The effect of the body force is to produce a pressure step across the interface 

A P;
, „  ah f Red „  „

A P = —  F.dl
2 J Blue

Through standard algebraic manipulations it can be shown that the pressure step 

at the interface may be expressed as;

A P  =  ^ V ] «  =  afc, ' (98)

as required to recover the Laplace law [25].

It is appropriate to note at this stage that the use of the curvature in the calcula­

tion of the interface inducing body force creates specific problems when the interface 

is intersected by a boundary in problems such as wetting. This issue is further dis­

cussed in Chapter 11 and illustrated by the cartoon in figure 4. Problems arise in 

the circled regions.

4.4 N avier Slip C ondition

The Navier slip condition is primarily used in the latter stages of this work specif­

ically in chapter 10, however it is deemed appropriate to introduce the concept at 

this point.

Consider an isolated droplet in contact with a boundary contained within a 

continuum fluid. As illustrated in figure 4. When a force, or gravity, is applied in 

the positive x-direction, the contact point between the two fluids and the boundary
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Figure 4: Isolated droplet in contact with channel boundary.

will move. The contact is then known as the dynamic contact line or DCL.

If a no-slip condition were applied to the boundary there would result a singu­

larity at the contact point. In order to avoid the occurrence of such a singularity, 

a slip boundary condition may be implemented. There are a number of slip condi­

tions that may be applied to the boundary however, in this work, the Navier slip 

condition is to be utilised. For alternative methods of applying a slip condition at 

the boundary the interested reader is directed to Happel and Brenner [12]. It is 

not the intention of this work to verify or to modify the Navier slip condition in 

any way, the condition is employed widely in calculation as a method of allowing 

slip velocity on the boundary to evolve and to avoid generating the aforementioned 

singularity. It is also worth stressing that this work does not aim at an algorithm 

that predicts the slip velocity (as with many algorithmic non-equilibrium molecular 

dynamic simulations currently under development).

The Navier slip condition we use here contains a parameter known as the slip 

length “b” this is taken to be a molecular property of the material itself. The Navier 

condition allows a slip velocity to evolve according to the following relationship when 

applied to the geometry of figure 5:

M v  = o) = b - ^ . (99)



Figure 5: X-velocity profile as a representation of the Navier slip condition where b 
is the slip lenght

The role of the parameter “b” , the slip length, may be envisaged as shown in figure 

5.

4.5 Boundary Closure M ethods

Lattice closure methods in LBE [3] comprise two sets. One provides Lees-Edwards 

type boundary conditions [36], typically for calculation of colloidal phase properties 

and phase separation kinematics [37]. The methods developed in this thesis belongs 

to a second class of LBE boundary closure, designed to impose a specified velocity 

distribution (possibly corresponding to a slip) on the defined surfaces which comprise 

the boundary.

There are several implementations of the rest boundary condition in LB [3]. The 

popular, convenient and reasonably accurate bounce-back method has been eval­

uated, at steady-state, by a number of workers (e.g. [38,39]) and He and Zou et 

al. have shown how it is possible/analytically, to predict small, defect boundary 

velocities resulting from its use [40]. More recent, more accurate LB boundary algo­

rithms apply to moving boundaries and involve bouncing-back the non-equilibrium 

part of the LB momentum densities [31]; extrapolation [41]; the introduction of 

a counter-slip velocity [42]; second order bounce-back [43] and Skordos [44] has 

solved the problem of boundary closure by deriving auxiliary partial differential
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equations which may be solved for lattice boundary information. Of some impor­

tance here is one of the most overlooked and most general approaches to simulation 

lattice closure - the locally second-order boundary method (LSOB) of Ginzbourg 

and d’Humieres [45].

Boundary closure plays a central role in this work. The next chapters consider 

the basic method I developed in the context of single component LB.
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5 Mass Conserving Boundary Closure Scheme

In this chapter and the next I intend to deal with the fundamental issues surrounding 

boundary conditions associated with the single phase LB simulation. In order to 

maintain tractability, the analysis is to be carried out using single component lattice 

Boltzmann (SCLB). The work presented here will not be generalised to MCLB until 

Chapter 10, by which point the core multi-component lattice Boltzmann (MCLB) 

method will have been considered in detail in chapters 7 - 9  inclusive. MCLB 

therefore will not be used within this chapter or the next.

In addition to restricting our treatment here to single component fluids, we shall 

also suppose that the fluid is not subject to any external body force such as gravity 

imposed with the term fa in equation (34). In the next chapter we shall revise the 

last assumption.

5.1 Introduction

It is important to recall that accurate representation of boundary conditions is es­

sential in all computational fluid dynamics (CFD). Here we derive, then demonstrate 

a robust simulation lattice closure algorithm for the single phase lattice Boltzmann 

(LB) [3] method. Our method treats the fluid on the boundary with the same ac­

curacy as the bulk LB fluid and extends previous work carried out in [46] (i) by 

shifting emphasis away from boundary pressure onto boundary mass conservation 

(an adjustment made necessary by multi-component applications) and (ii) by apply­

ing the method to an internal and an external corner geometry with no diminution 

of accuracy. In these respects, the new method presented here is as convenient as 

the popular LB strategy of mid-link bounce-back [3]; however it has additional ad­

vantages of (i) applying boundaries on a given lattice node (not at the mid point 

•between nodes), (ii) being instantaneously accurate (our lattice closure strategy is 

verifiably accurate after a very small number of simulation time steps), (iii) being
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capable of representing moving fluid boundaries, including boundaries crossed by 

fluid and (iv) working with a range of collision parameters, r .

Solutions of the Navier Stokes and continuity equations, (v (r,£ ),P (r,£ )), are 

most conveniently closed by Dirichlet boundary conditions on fluid velocity (only):

v (r,* )|r/t =  u 0(r ',£), (100)

r ' denotes a position on the boundary of the flow domain; u0(r', t) denotes a specified 

boundary velocity. The several lattice closure methods in LB [3] reduce to imposition 

of a given uo(r',£). Note that uo(P, t) is supposed to be known throughout all that 

follows in this chapter and chapter 10.

In this chapter, we derive, test-bench and compare a portable closure step for 

application over the edges of a lattice Boltzmann fluid simulation space. The step is 

equivalent to applying Dirichlet boundary conditions. Accordingly, it assumes (i) a 

boundary velocity and (ii) local mass conservation. It (i) gives correct behaviour at 

every time-step; (ii) represents boundary lattice fluid to the same accuracy as the 

bulk lattice fluid and (iii) applies to immiscible fluids in contact at a boundary (see 

Chapter 10). The method is derived for a locally flat wall at which fluid is assumed 

to be entrained with a specified velocity; then show equivalent results for internal 

and external corners. To test the method we present (i) accuracy plots based upon 

exactly solved flows and (ii) stream functions derived from the lid driven cavity.

It is henceforth assumed that our LB boundary node lies infinitesimally within 

the lattice fluid, which, locally, is moving at specified velocity. We work in 2D, using 

the popular D2Q9 lattice, as described earlier. However, the analysis generalizes to 

3D directly. For consistency and simplicity, as much of the notation and approach 

of the extended work of [46] is used as possible. Our purpose then: momentum 

densities, /*, which ‘span’ such a boundary shall be constructed by requiring that 

fi s (i) evolve according to rules equivalent to those operating on bulk nodes; (ii)

60



are consistent with a known local velocity; (iii) conserve mass.

5.2 A sp ects o f Lattice B oltzm ann Theory

Recalling the background theory of lattice Boltzmann set out in Chapter 4 it is 

appropriate to emphasise a result derived there. In what follows we stress that, the 

second moments of the f  are not zero as we have seen:

^ i i (1)Cic*Q/3 =' - 2 c 2spTSaf3 , (101)
i

[31]. Sap is the rate of strain tensor here. We note also that, in D2Q9, consideration 

of the constraints placed on the moments of the equilibrium distribution function 

expressed in section 4.1.2, (equations (50) and (51)) and (101) provide six equations 

for the nine Note, by combining equations (42) and (45):

4 ( r , i )  =  / f  M )  +  / l 1)f =  ( l  -  1 )  5 , / y  +  o (<5(2j f  >) . (102)

5.3 M ass C onserving Lattice C losure A lgorithm

The method I inherited, described in [46], allows a boundary pressure freely to 

develop; so boundary node densities must fluctuate. In contrast, the present method 

described here conserves the density associated with what are designated f lu id  links 

(see figure 6). This changed assumption raises key limitations in the original analysis 

of [46] and crucially lends the modified method to a wider range of geometries 

and situations (in particular, to wetting). In this section we shall treat planar 

and corner boundaries in separate subsections. Throughout this section denote the 

known boundary velocity by u 0.
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5.3.1 Planar Boundary Algorithm

Figure 6 shows an upper boundary site on the D2Q9 lattice. The dotted line shows 

the supposed extent of the lattice fluid. Links indexed i = 1,2,3 are cut by the line 

of the boundary. All non-boundary nodes are evolved according to (42). At the end 

of a propagation step, a pre-collision value of lattice momentum density, /*, exists 

for all links i ^  5 ,6 ,7  (a situation represented by use of empty circles in figure 6).

Figure 6: Schematic of a boundary node on the top, horizontal wall, immediately 
prior to the collision step. The wall or boundary location is denoted by the dashed 
line, which makes the node ‘infinitesimal^ wet’. Propagated data is denoted by 
arrowheads, unknown link information (lack of data) is denoted by the open circles 
on links. The links are numbered as referred to in the text and link velocity vectors 
are numbered accordingly.

The boundary velocity provides two conditions on (moments of) the f f  s, through 

equations (40), but there are three post-collision /? ’s which need to be obtained, 

namely f l , f l  and f ] .

At the boundary node, links designated henceforth as live require values of / ,  

(links i 7  ̂ 1 ,2,3 in figure 6); these links connect to the flow domain and influence the 

evolution of adjacent nodes. The f f  s on ghost links propagate into the boundary.
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For the geometry of figure 6, pre-collision f f  s exist for links i =  0 ,1 ,2 ,3 ,4 ,8 , post­

collision / / ’s are required for live links i = 0 ,4 ,5 ,6 ,7 ,8 . Local mass conservation is 

defined by pre(post)-collision sub-totals of the f f s  ( / / ’s):

£  / * ) = £ / £  (io3)
# 5 ,6 ,7  /  # 1 ,2 ,3

We construct a post-collision f i ,  instantaneously correct to the accuracy of the LB 

model (o(f i^),  for links i = 0..8, in the following principal steps:

1. Determine a mass conserving boundary node density, p' and hence the f f ^  (//, Uo), 
i = 0...8. p' is calculated such that:

E  = (104)
# 5 ,6 ,7

where M  is defined in equation (103).

2. Determine pre-collision / / ^ ’s which satisfy an under-specified system after 

equations (50), (51) and (101).

3. Collide and propagate the boundary sites according to equation (42)

Before we expand steps 1..3, it is appropriate to briefly discuss the under-specified 

system used for the / / ^ ’s. Consider the y = constant boundary in figure 6 (depicted 

by the dashed line). To conserve the total mass on only live links, it is necessary to 

modify the constraints on the f - ^ ’s:

£  f P  = o,
# 1 ,2 ,3

X ^ 1)ciQ =  0’
i

 ̂ , fi CiaCip — — p TSap . 
i
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The corresponding post-collision values of are all proportional (see equation 

(102)) to the solution of the above system. Thus, the condition of local boundary 

mass conservation can be stated by equation (105). In treating a forced fluid at 

a boundary with this method particular care must be exercised around equation 

(105); see sub-section 5.4 and Chapter 6.

S tep  1. Evaluate M  from the definition in equation (103). Since boundary 

velocity Uo is known, equations (39) and (104) provide an identity for effective 

density parameter p':

M 12 M

E *#1,2 ,3  t p 1 + U Q -C,; ul I (uo-cQ2
2c? “f- 2ci

10 +  6u0y -  6uly'
(108)

It is now possible to assign u 0). Note that over all links i = 0..8 of the

boundary node, mass is not conserved. However, on links i ^  1,2,3 there is a total 

mass of M  which is conserved.

S tep  2. Measure the local strain rates, using o(3) spatially accurate finite dif­

ferences of velocity. Whilst the assumed boundary velocity, Uo and p' uniquely de­

termine f - ° \  Sap is used separately to fix the / ^ ’s. The nine s, i = 0...8 satisfy 

the six equations (105)..(107) reproduced and formatted below, for convenience:

+0A(1) + o /2(1) + 0 /I1’ + / i :) + / 5(1> + / 6(1) + / f ) + /i1) =  0,

- f l 1] + / i 1) ■+ / i 1) + / 5(1) f(l) /  8 =  0, •

/i(1) + / 2(1) +/3(1) - f P f(l) /  6 - f ? =  0,

A(1) + / 3(1) + / i 1) + / 5(1> + f P =  —2pr/3 Sxx 1

7i(1) + / 2a> +/s(1) + / 5(1) + /.P) +/f> II 1 to •s CO S y y

- / f ’ + / 3(1> - / 5(1) + f P II 1 to s CO Quxy

(109)
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The terms in the first equation with coefficient 0 are removed from the equivalent sys­

tem of equations in reference [46] by our altered assumptions; the strain rates in the 

last three equations were measured using spatially o(3) accurate finite-differences. 

To solve this under-determined system, select three f -1̂ s as free variables, in terms 

of whose values the remaining six basic variables are found. Certain combinations 

of the free s are forbidden; this may understood by regrouping quantities as 

follows:

9 i =  A 1 + A 1 + A 1

9 2 =  A 1 + A 1 + A 1

9 3 =  A 1 + A 1 + A 1

9 4 =  A 1 + A 1 + A 1

9 3 =  A 1 + A 1 + A 1

in terms of which quantities the first five of the six equations (109) become:

9 2  +  9 5

9 3 -9 4

g i  ~  9 2

9 3  +  9  a

9i +  92

Apparently, system (111) can be solved for the g\..g$ in terms of the Sap. A value for 

gi (say) constrains the three used in its definition. Forbidden sets of free s 

arise in this way; their elements are defined in table 2 alongside a diagrammatic 

interpretation. The sixth equation in the system (109) cannot be expressed in terms 

of <7i-S's (scrutiny of the second column in table 2 demonstrates this) and so does

0,

0,

0,

—2pr/3 S x x ,

— 2p r / S  S y y . ( I l l )
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not yield information.

It is very important to note that, in addition to the structure of system (111), 

the set of f -1̂ s selected as free variables depends upon which directions Ci contain 

pre-collision information.

Forbidden se t  o f  three free f - ^ ' s Link representation

f(i) f(i) f(0 
J1 1 J 2 5 J 3

A \ /

f (l) f (l) Al )  
J 3 5 j  4 5 J 5

/
\

f(l) f(l) f(l) 
J5 5 J6 5 j 7

/ i \

Al )  Al )  Al )
Jl  ? J7 i J8

\

/

Al )  Al )  Al)
JO ? ./4 5 J8 — •—

Table 2: Diagrammatic representation of the forbidden combinations for the 
planar boundary geometry of figure 6. The small (large) dot represents inclusion 
(exclusion) of the rest link’s distribution, / j 1̂ .

In order to solve the system of equations (105)..(107), we choose free s which 

(i) are not a forbidden set and (ii) have accessible values. Criterion (ii) requires 

that one must select / ^ ’s corresponding to defined pre-collision f d s; an additional 

reason against that third row in table 2. Here pre-collision values of / - i f ,

i = 0 ,1 ,2  were chosen as “free variables” .
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The solution for the particular boundary case represented in figure 6 now is:

fl1) _  f'l1) f'l1)
/ 3  ' —  K D y y  J l  J 2  j

/ f  =  - k S x v  +  -  t / ' (1> +  2 / f )  +  / ' (1> ,

fl1) _  —k-c 4 -^9  —- k-9 _l i  f'l1) _  f'l1)
J 5 — t  2  yy 2  ’

fl1) _  0^.0 _*•<? _  f'l1) _  f'l1)
, / g  —  4 t v D x x  K d y y  J Q  J 2  5

i f  =  - « s xx -  Ks xs +  ±kSw  +  +  r f »  +  / ' (1),

/ f  =  «sxy -  -  i / ' (1) -  2/;(1) -  / ' (1), (112)

where « =  c^pr.

Step 3. The pre-collision boundary node / ^ ’s constructed in step 2 are collided, 

using equation (102), then added to the corresponding //°^(p',u0):

f i ( r ^ )  = f i ° \p ' ^ u o ) + ( l ~ ^ j  f i 1]- (H3)

Propagation completes the evolution of our boundary site, which apparently involves 

the collision of second order accurate f f  s, consistent with the target boundary ve­

locity and the implicit wall stresses.

5.3.2 Internal Corner Algorithm

Figure 7 shows a top left internal corner boundary node. The dotted line shows 

the supposed location of the boundary. Quantities / 3, f j  (links with open arrows) 

are ghost quantities which never participate, /J , / ] ,  /Jand  /J  are required. For the 

geometry of figure 7 the appropriate value of M  is:

M  = f h (114)
#3,4,5,6,7
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Figure 7: Schematic of a boundary node on an internal corner. The wall location is 
denoted by the dashed line, which makes the node ‘infinitesimally wet’. Propagated 
data is denoted by arrowheads, unknown link information (lack of data) is denoted 
by the open circles on links. Ghost Links which never participate are indicated by 
open triangles.

and the value of p' is therefore:

The last expression for p' has complicated dependence upon Uo- However, this does 

not appear to affect the stability of the resulting scheme.

The mass conservation condition corresponding to equation (105) for this geom-

M
P

25 -  15u0x +  15u0y -  9u0xu0y -  15ulx -  15uly

etry is:

(116)
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Solving for pre-collision f -1̂ s again follows the procedure in section 5.3.1 taking 

free variables to be /q1̂ , and ■ We arrive straightforwardly at the following 

solution:

/ i 1 

/ i 1 

i f  

i f  

i f  

i f

Where, we stress that, all quantities in the right hand side are measured.

The procedure from Step 3 in section 5.3.1 may now be executed for the “free 

variables” of the above system. Summing the newly acquired / f  ̂ and the 

components and subsequent propagation completes the evolution of the boundary 

site.

Note that no sets of three obtainable / f  ̂ ’s which represent forbidden free vari­

ables arise for the internal corner geometry.

5.3.3 External Corner Algorithm

Figure 8 shows a top left external corner. The dotted line shows the supposed 

location of the boundary.

/o, / i ,  f h  f h  f L  f h  f l  and is  are required. For M  and p' we now have:

M  = (H8)
#  i

1
~ k S xx -  k S xv +  Z- n S y y  -  i / ' (1) + + f P

- \ k S xx +  n S Xy -  1 * S y y  +  ^  ^  ,

K q  _  K q  _  p i 1) _  f(*-) _  f ' 1 
™&xx hj° y y  Jo  J 1 J 2

1 1 1
fcSxy T  2 ^^yy "b 2

~ f t S Xx  T FvSxy 2

r'(l) Al )

n S xx — K:Sxy  +  -  K-Syy +  +  / 2(1)

~ * S XX +  K S Xy  -  ~ -K S y y  -  -  i f ' P  -  / ' (1) (117)
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1

Figure 8: Schematic of a boundary node on an external corner. The wall location is 
denoted by the dashed lines. Propagated data is denoted by arrowheads, unknown 
link information (lack of data) is denoted by the open circles on links.

and;

M
1 I U Q - C j J f o .  I ( u p - C j ) 2

1 +  cf 2c | +  2 cj

36M
35 +  3u0x -  3u0y — 3ulx -F 9uoxu0y — Sul0 y

(119)

The mass conservation condition corresponding to equation (105) for this geometry 

is:

J 2 f ^ = 0 .  (120)
iy£ 5

Solving for pre-collision / ^ ’s again follows the procedure in section 5.3.1 taking
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free variables to be and We obtain the following solution:

/i(1) =  2 KSxx +  nSxy — n,Syy +  +  2 ^  +  2 * ^  ’

AA _  — k q —  ̂ r'd) ^ A(A o A(A
J  2  —  2  x x  K D x y  ^ J  o  2 ^ 3  —  ’

f ( l )    K Q f'C1) f '( l )
J 5 —  K D x x  J 3  J 4  5

/*(!) _  4- ac 9  — -  f '^ 1) -I- -  f'C1) -4- -  f'C1)/6 — 2  xx ^  xy 2 2 2 ’

/<» =  -  KSxy -  kSw  +  i / ' (1) -  i / ' (1) +  t / ' (1),

=  -« 5 II +  2«5!ro- / ' (1)- / ' (1) + 2/;<1). (121)

The procedure from Step 3 in section 5.3.1 may now be executed for the “free 

variables” of the above system. Summing the newly acquired and the 

components and subsequent propagation completes the evolution of the boundary 

site.

Combinations of now forbidden are listed in table 3. Note, other sets of 

three / / ^ ’s may exist for the external corner geometry: these combinations are not 

listed as they rely upon three / / ^ ’s which do not have pre-collision values.

Forbidden set o f three free s Link representation

f ( l )  A A  f ( l )
JO i J 6 5 J 7 A
A 1) A 1) r  (1)
JO ) J4  5 J 3 A

Table 3: Diagrammatic representation of the forbidden combinations of as free 
variables, for the external corner geometry of figure 8. Note tliat a small (large) dot 
indicates exclusion (inclusion) of the rest link. Note also that, unlike table 2, only 
combinations which relate to s which may be evaluated appear.
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5.4 In itial C om m ents on Boundary Forcing

Clearly other geometries and other situations are amenable to the boundary analysis 

of this section. Situations in 3D, corresponding to  any number of cut links are a 

straightforward generalization of the current method. Further extension to off- 

lattice boundaries is more complicated but it requires no fundamental modification 

to the method. The situation encountered when considering multiple immiscible 

fluids does, however, merit further comment.

All immiscible lattice Boltzmann fluids have interfaces supported by segregating 

forces impressed between different fluids. The forcing applied generally conserves 

mass over all lattice links Ci, and is represented by an appropriate choice of source 

term, tpG in equation (37). For lattice fluid interfaces at a boundary (the wetting 

problem), it is necessary to apply a segregating force to fluids at boundary fluid node. 

This force will not, in general, conserve mass on only the uncut links. Accordingly, 

it is necessary to re-state our mass conservation condition (equation (105) for the 

planar boundary) to apply post-collision. We have obtained a closure scheme which 

conserves mass at the boundary where the velocity is supposed to be known, but 

currently, no body force acts. The last assumption is, in fact, very restrictive in the 

context of the broad aims of this thesis. We will consider it in detail in the next 

chapter. For the moment, we proceed to present results obtained with the methods 

of this chapter.

5.5 R esu lts

To make comparison with the popular and robust methods of on-link and mid­

link bounce-back boundary conditions, steady-state duct flow was simulated. This 

requires u0 = 0. Planar boundaries, taken to be parallel to the rr-direction, were 

represented by (a) on-link bounce-back boundary conditions (b) mid-link bounce 

back (c) the inherited non mass-conserving method of [46] and (d)the method of
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section 5.3.1; periodic boundary conditions were used in in the y-direction. Flow 

rate and hence Reynolds’ number, Re, were fixed by the parameter G in equation 

(37). Note that G = 0 on the boundaries. The corresponding analytical solution is:

The scalar difference between the measured steady-state flow profile, (vm(y), 0):

parameterised by the duct width W  =  10 x 2N, N  <  5.

In general, a plot of measured error (Such as that defined in equation (123)) as a

order of the accuracy of the scheme: The steeper the graph of Aw versus resolution, 

the more accurate the scheme.

The data of figure 9 shows the value of Aw as a function of resolution for 

boundary methods (a)..(d). The short-comings of the first-order accurate on-link 

bounce-back technique ((a)) in terms of the reduced accuracy of the solution close to 

the lattice boundaries and first order-accuracy are documented elsewhere [46]. Mid­

link bounce-back ((b)), the inherited method of [46] and method of section 5.3.1 

((c)) are all seen to be second order accurate in spatial gradient (from the gradient 

in figure 9 ), with the latter two methods ((c) and (d)) slightly more accurate and, 

of course, capable of representing a boundary with any velocity |u01 < 0.1 and time 

dependence.

To demonstrate that our boundary closure is robustly correct, even at short 

times, and that it accommodates moving boundaries we considered a lattice fluid 

initially at rest (/*(r , 0) =  f - ° \p ,0 )  everywhere) between two horizontal planar

( 122)

(123)

was measured at constant Re ■= 0.5 for a range of lattice resolutions. The latter was

function of resolution has a (negative) gradient. The magnitude of which defines the
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Figure 9: Error, A W ,  defined in equation (123), as a function of lattice resolution. 
The latter is measured by lattice width W. Re  =  0.5. The diagonal crosses repre­
sent bounce-back boundary conditions, the erect crosses represent mid-link bounce 
back, the star symbols represent the inherited non-mass conserving version of the 
bounceback condition and the open squares represent the lattice closure strategy 
developed in.section 5.3.1.

"bounce-back.dat" + 
"on-link-bounce-back.dat" x 

"none-mass-conserving-Dirichlet.dat" *  
"mass-conserving-Dirichlet.dat" □
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boundaries y =  0 , W +; the latter was impulsively started from rest at t = 0+ to 

velocity ( u q , 0 ) .  The analytic solution to this transient flow is:

m

Where note ”m” is a dummy index. Here t represents a dimensionless time parame­

ter. Snapshots of the developing flow across the whole width of the duct, obtained for 

discrete times t = 10, 100, 1000 with corresponding collision parameter, 1 / t  =  0.6, 

1.0, 1.6, were collected. Results with the present method are identical to those 

obtained using the original method [46]; remarks made in [46] still apply.

To assess the accuracy of the corner boundaries a square, 2D lid-driven cavity 

was simulated over a small range of Re  ~  93 (where a secondary vortex is known 

first to appear) and resolutions. See figure 10 caption for simulation data. Figure 10 

shows the stream function obtained with our new boundary conditions enforced over 

the entire boundary; in particular the top corners of the enclosure were assumed to 

be moving with the lid speed. Figure 11 shows detail of the stream function in the 

bottom left corner of the flow. Figure 12 shows the ^-component of velocity along 

the right hand boundary; the point of detachment is clearly visible in this data.

x e- m  i  t

(124)
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Figure 10: Steady-state stream function for a 2D square lid-driven cavity. Data 
corresponds to a square box 256x256. The single relaxation parameter was r  =  3.33; 
the density parameter p = 1.8. For the data show Re = 100. The four internal 
corners and the planar boundaries were simulated using the method of section 5.3.1; 
corners in contact with the moving (top) lid were moved with lid velocity.

20

o 2 4 6 8 10 12 14

Figure 11: Detail of the steady-state stream function for a 2D square lid-driven 
cavity, shown in figure 10. This image corresponds to the detached flow due to the 
secondary vortex encountered in the bottom left corner.
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Figure 12: The ^-velocity distribution along the right-hand boundary of the simu­
lation box; the change in the sign of the velocity corresponds to the point in which 
the stream function detaches
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5.6 C om m ents

In this chapter we have set-out and validated a very adaptable method for closing 

a lattice Boltzmann simulation lattice by calculating appropriate values for the set 

of missing momentum densities, subject to the condition of local mass conservation. 

Like the previous algorithm, which allowed pressure adaptation at the boundary [46], 

the method presented here is demonstrably accurate, flexible and instantaneously 

correct. However, the present method can also apply (i) to an increased range of 

geometries other than the set presented here and (ii) to boundaries where fluid forces 

need to be impressed- in particular the case of immiscible fluid-fluid interfaces at a 

boundary as carried out in Chapter 6.

It is noted that the method of this chapter may be generalised for application to 

3D situations.

Calculations have been shown here for application of the method to external 

corners. Due to time constraints both internal and external corners were not simu­

lated, however the case of the internal corner was deemed to be most algorithmically 

demanding and was therefore the situation simulated. Brief investigation into the 

application of the external corner algorithm appear satisfactory.

Furthermore, we find that the scheme devised in this chapter remains stable 

over a range of collision parameter. Complex simulations with the resolution and 

the Re of that used to generate the data of figures 10... 12 show results which do not 

change appreciably for 2.5 > r  > 0.56. Time and processing constraints prevent a 

full consideration of the stability of our closure scheme with variation of r  but it is 

appropriate to emphasize that e.g. bounce back method accuracy varies considerably 

with r  as t  is shifted away from its optimum value of 1.0.

The key restriction on the analysis of this chapter is that the fluid at the boundary 

was assumed to be free of any force. In the next chapter I shall (i) revise this 

assumption and (ii) apply the method to produce a model of fluid slip.
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6 M ass Conserving Boundary Closure Scheme for 

Fluids Subject to External Forces

The algorithm after Chapter 5 has been demonstrated to treat the lattice fluid on 

boundary and bulk nodes to the same accuracy and in a demonstrably equivalent 

manner. Whilst the new method presented here applies to rectangular geometries, it 

adds to our previous method of Chapter 5 the ability to subject boundary fluid to an 

external force. Though this is much more intricate this will become very important 

in Chapter 10.

For the purposes of clarity and completeness some of the analysis of the previous 

chapters is reiterated here to produce a coherent chapter in its own right. For the 

reader who is not solely reading this chapter, and has fully engaged with the material 

previously, it may be appropriate to omit certain sections. However the intricate 

nature of the analysis to be presented here makes me reluctant to recommend any 

omissions.

6.1 Introduction

This chapter is an extension of previous work outlined in chapter 5 which in turn  is 

an extension to the inherited algorithm of [46], the aim is to facilitate (i) Navier-type 

boundary conditions and (ii) simulate boundary fluids under external forces, such 

as are applied to produce fluid-fluid interfaces; the essentials of multi-component 

LB boundary conditions for e.g. wetting (this will be addressed in Chapter 10). 

Like Chapter 5, the work presented in this section is designed to give boundary fluid 

in transient flow near the boundary the same dynamics and accuracy of represen­

tation as the bulk lattice fluid (at all times), it applies transparently to complex 

boundary geometries (corners) with no diminution of accuracy and it admits of the 

representation of moving fluid boundaries, including those crossed by fluid.
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If a fluid is said to stick; to have ‘no-slip’ against solid surfaces; then uo(r',t) 

corresponds to the velocity of any solid boundaries. However, there have been 

persistent doubts about the no-slip condition for more than a century. Take a 

topical example relevant to multi-component, microfluidic flow of Newtonian fluids; 

a fluid-fluid interface in motion relative to a solid boundary. The fluid close to a 

so-called dynamic contact line (DCL) must clearly violate the no-slip condition. For 

the case of Couette flow, (viscous laminar flow in a channel where the flow is driven 

by the motion of one of the boundaries relative to the other), one simple theory is the 

Navier slip theory briefly outlined in Chapter 4, which relates the boundary-tangent 

component of fluid velocity, the slip velocity, vs, to the tangential component of fluid 

shear at the surface:

vs(r ',£) =  b dvt
dxr

(125)
r ' t

in which the constant b is the slip length which is for present purposes, taken to 

be a molecular property of the material. The boundary-normal component of fluid 

velocity is equal to the boundary-normal component of the boundary velocity.

It is stressed at the outset that the purpose of this section is not to investi­

gate the origin or applicability of particular boundary conditions; rather to derive 

and evaluate a single tractable, practical, simple-to-implement and versatile LB 

closure step. Accordingly, the method assumes a known boundary velocity and af­

ter that in equation (125), a local mass conservation (essential to the treatm ent 

of multi-component fluids at a boundary) and a known external force distribution 

at the boundary. After reviewing salient theory in section 6.2, we consider a flat 

boundary at which fluid is moving with specified velocity, subject to a specified, 

external body force, in section 6.4.1. We summarize equivalent results for internal 

and external corners in sections 6.4.2 and 6.4.3. To evaluate our method, section 6.5 

presents accuracy plots, profiles of solved, pressure driven duct flows with moving 

and stationary boundaries and stream functions.
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6.2 Further Background to  LB D ynam ics

It is appropriate to recall that collision and propagation of LB’s primary quantity, the 

link-based momentum distribution function or density, /;(r, t), i = 0..8 is expressed 

in a kinetic equation:

fi(r + Ci8t,t +  6t) = f-(r, t)  =  f i ( r , t ) + u j ^ 0)(p,v) -  / i ( r , t ) )  +  fa, (126)

where 5t represents the time step and fj(r, t ) is the post-collision, pre-propagate 

value of the momentum density. The vectors and indexing of the D2Q9 velocity 

basis ci are defined in figure 13. The so called source term, fa, in equation (126) 

will be discussed shortly. Essentially it is used to impress a body-force density on 

the fluid.

Following the constraints underlying the distribution function, shown in equa­

tions (50) and (51) we may write the following condition:

Ai =  0, (127)
i

where =  1,

Recall that equation (60), from the Champman-Enskog expansion shown in sec­

tion 4.1.2, had the second moments of the not equal to zero;

+  (1 — x-  )^i(d to +  Ciada)f-^Cif3 = — (128) 
Z T  t

In fact provide a local expression for the lattice fluid rate of strain, see equation 

(84):

\  E  ( “  -  2)  /i(1>C» C<73 =  Zl'pSafi , (129)
i j  '  '
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where recall Sap =  l /2 (davp -f dpva) . It is convenient to re-express equation (129):

—C1 — ^ : )  (130)
i

All the equations written so far in this chapter describe a fluid in two or three 

dimensions. In D  dimensions, equations (130) number D(D  +  l) /2  and equations 

(127) number (D +  1); in all systems (130) and (127) provide (D +  l)(D /2  + 1) 

equations for Q / ^ ’s.

Recall from Chapter 5 that in the case of a D2Q9 LBGK model, equations (127)

and (130) yield a total of 6 equations for Q = 9, s; moreover, we can use

equations (35) and (36) to obtain from equation (130) the following:

Y ^ f i 1)ciaCif3 = - ^ c 2sprSap. (131)
i

Using equations (126) and (45) (with n < 2), it is possible to express the collision 

part of the evolution as a relaxation of (just) the f \ l>> component of /*(r,t):

ihr,t)= / j0)(p,v)+ + 4>i + o (<5</i<2>)  i (132)
i

that is, collision may be represented by a replacement:

tj (133)
i

and the addition of source term, fa; note that we have set 5t = 1 here for simplicity. 

In the current context, using equation (35), equation (133) simplifies to make LBGK 

an attractive option:

/ 4(1),=  ( l - l ) / / 1)- (134)

The term fa in equations (126) and (132) is a source term used to impress an 

external force on the lattice fluid at the macroscopic, Navier-Stokes level (for exam-
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pie to represent a uniform pressure gradient or, in the case of multiple immiscible 

fluids, the effects of interfacial tension [3]). For current purposes, we neglect spa­

tial variation in the macroscopic force; however this assumption will be revisited in 

chapter 10, taking the macroscopic momentum equation corresponding to equation

(126) to be:

+ = + £ ; (2puSa0)+ £  M o ’ {135)

in which all other symbols and notations have their usual meaning. The relation­

ship between the <^’s and a non-uniform macroscopic force has been considered by 

Ladd and Verberg [47] and by Guo, Zheng and Shi [48]; This issue shall be further 

considered in chapters 7 and 8. Note that forcing a fluid must conserve mass over 

all nodal lattice links i = 0..(Q — 1):

(Q -i)

J 2  &  = °- (136)
i=0

Without considering MCLB in too much detail at this stage (as multiphase 

extensions are not rigorously covered until chapter 7), it is appropriate to note that 

all multi-component lattice Boltzmann fluids have interfaces produced by phase 

index coupled pressure tensor fluctuations within what is a single effective fluid [3]. 

These fluctuations must, in the end, be considered as (segregating) external forces, 

impressed in certain regions of a single fluid. Such interface forcing is represented by 

an appropriate choice of source term (f) in equation (126) and, in bulk simulations or 

with periodic boundaries, mass (but not momentum) is conserved. Other situations 

involve external forces at the boundary; for example a fluid under gravity.

A problem arises for LB fluids under external forces at the boundary. For a 

lattice fluid interface at a boundary, it is essential to apply a segregating force; more 

generally, if bulk fluid is subject to any external force, then the ideally equivalent
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boundary fluid should also be under the same external force as we consider boundary 

nodes to be infinitesimally wet. In the present context, this force is assumed to be 

known; the problem we seek to address is that the corresponding source term does 

not, in general, conserve mass on only uncut links; put more precisely, partial totals 

of the interface source term are not necessarily zero:

E & ^ O ,  (137)

where the symbol SJ indicates a summation over a restricted range of subscript z, 

which excludes the value of z corresponding to cut links.

6.3 L im iting A ssum ptions

In this chapter we will concentrate on a methodology for treating c o n sta n t forces. 

The limitations of this assumption will become apparent during chapters 7 and 8, 

where it will be very obvious that when we deal with interfacial tension, we are 

concerned with variable forces.

However, with the methodology of the present chapter in place, we shall find, in 

Chapter 10, that a very simple re-definition of the strain rate will be sufficient to 

generalise all the results and methods of this chapter to multi-component variable 

forces at a boundary, in particular see section 10.5.

6.4 L attice Closure A lgorithm  for Fluid at a B oundary Sub­

ject to  a C onstant E xternal Force

Mass conservation is a widely-used and convenient assumption when closing LB 

simulations with Dirichlet boundary conditions; the same assumption becomes un­

avoidable when multiple fluids are in contact at a solid boundary. Moreover, in 

such situations (interfaces in contact, wetting a boundary) it is necessary, in LB
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simulations, to impress an external force on the boundary fluid, in order to create 

interfacial tension. Hence there is a need to develop a lattice closure for a specified 

boundary velocity (which may correspond to a slip velocity) with mass conservation, 

which allows for the presence of a force. Other situations to which such a closure 

might apply are fluid under gravity or fluid with a separately calculated pressure 

distribution.

Throughout this analysis it shall be assumed that an effective boundary veloc­

ity is always known. This velocity may correspond to a fluid slip (pre-calculated 

according to some assumed model e.g. equation (125)).

In summary, the aim is to calculate momentum densities, /*, for links of a bound­

ary node which (i) evolve according to rules equivalent to those governing bulk nodes,

(ii) are consistent with a known, local, boundary velocity (including a slip velocity),

(iii) are consistent with a known local external force and (iv) will conserve mass 

locally.

6.4.1 Planar Boundary Algorithm

Whilst keeping the overall approach as general as possible, it will be necessary, for 

definiteness, to refer to a particular lattice and flow geometry. For this purpose and 

for consistency with other sections we consider a planar boundary site on the LBGK 

D2Q9 lattice shown in figure 13 as with Chapter 5. The dotted line indicates the 

uppermost extent of the lattice fluid. Links i = 1,2,3 are cut. At the end of a 

propagation step, a pre-collision value of fa, exists for all incoming links i 5,6,7; 

a situation represented by use of empty circles. In contrast to chapter 5 we now 

suppose it is necessary impress an external force on the boundary fluid; tha t is, to 

use a source term fa in equation (126). Say that the node of figure 13 bounds a flow 

driven by a uniform, external body force in the ^-direction, representing gravity or 

a uniform pressure gradient; this force is obtained from a source term fa = tpGcix. 

As with Chapter 5, we denote as live those links which require post-collision

85



-►  i =  4

Figure 13: A boundary node on a horizontal wall, immediately prior to a collision 
step. Links i = 1,2,3 (? =  0,4..8) all point into solid (fluid). The wall location is 
denoted by the dashed line. Propagated link data is denoted an arrowhead on the 
link, lack of data by an open circle..

values of / / ;  links i ^  1,2,3 in figure 13 are live; they connect to the flow domain. 

The fi s on dead links propagate into the boundary. Note that fig 13 is essentially 

identical to that of Chapter 5, figure 13 is inserted for convenience only. For the 

geometry of figure 13, pre-collision f f s exist on incoming links i = 0 ,1 ,2 ,3 ,4 ,8 ; 

post-collision / / ’s are required only for live links i = 0 ,4 ,5 ,6 ,7 ,8 .

Boundary mass conservation is defined in terms of equality between sub-totals 

of the f i  s and (different) sub-totals of the / ? ’s. Recall tha t for the geometry of 

figure 13, local mass conservation is expressed:

( m  = £ / < ) = £  f l  (138)
\  5,6,7 /  # 1 ,2 ,3

of which the equivalent formula in DSQ N  is a straightforward generalisation.

Applying a force on boundary nodes does not conserve mass on the sub-set of
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live links. Again for the example geometry of figure 13, an amount of mass:

S M =  Y ,  (139)
*#1.2 ,3

is introduced into the flow domain by the macroscopic force.

In general, nodes are thought of as being evolved by collision and propagation, 

with collisions described by equation (132). Constructing post-collision, boundary 

f i  s, instantaneously correct to the accuracy of the bulk LB model essentially in 4 

steps:

1. Determine M  and 5M  from generalized forms of equations (138) and (139):

•'/ E  />•
incoming

and;

5M  = Y J 4>i-
live

2. Determine the //° '(p ', u 0) from an effective density, p' such that;

£ i f V , u o) =  M -< 5 M , (142)
live

where the summation is taken over values of i corresponding to live links and 

M  and 8M  are defined in equations (140) and (141) (or, alternatively, after 

equations (138) and (139)).

3. Determine pre-collision / j ^ ’s from an under-specified system after equations

(127) and (131) in an identical manor to that carried out in chapter 5.

4. Collide the boundary sites according to equation (132) after Chapter 5 but 

with addition of the source term fa, note.

(140)

(141)
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Before detailing the above steps, a few remarks are in order. It is important 

to note that the condition of boundary mass conservation is satisfied only after the 

completion of final step (4). Also note that the under-specified system solved for 

the f -1̂ s in step (3) is an adaptation of (D +  l) (.D/2 +  1) equations (127) and (131), 

namely:

E / ‘1 ) = 0 - (143)
live

Y l f i 1)ci- = 0, (144)
i

Y ^ f i 1)cicxCip = 2p'lsSai3. . (145)
i

We note that in the above system of equations (143) and (144) are independent of

particular LB model, however the D(D  +  l) /2  equations (145) depend upon model

through the We note that the corresponding, post-collision, values are 

a simple linear combination of the solution of equations (143)..(145) above (see 

equation (133)). Finally we emphasise that it is only after the completion of step 

4 that the mass on live simulation links balances mass which initially propagated 

onto the boundary node.

S tep  1. Evaluate M  and 5M  using the definitions in equations (138) and (139) 

respectively.

S tep  2 The boundary (or slip) velocity u 0 is known. Equations (38) and (142) 

provide an identity for effective boundary node density, p

, M  — 5M  
p - E b ^ (o) (<*>•*)• (146)

For the example geometry of figure 13 and the corresponding LBGK equilibrium, 

equation (146) is:

X + 1 ,2 ,3 ^ P
1 +  _  | L +  (Hgili 5 +  3U0* -3 u § „ ’



in which, note, velocity component uqx does not appear. To evaluate 5M  from 

equation (141) (or equation (139)) requires the values of live source terms, fa. For 

our chosen example (a uniform body force in the ^-direction, recall) fa = tpGciX:

5M = G tpCix. (148)
# 1 ,2 ,3

It is now possible to assign p' from equation (147) and hence u 0).

S tep  3. The calculation of the component follow an identical procedure to 

that of “step 2” in section 5.3.1. For the purposes of producing a coherent and self 

contained account, the calculation of / ^ ’s is documented here. For the reader who 

has fully engaged with the concepts and methods of “step 2” in section 5.3.1 you 

may wish to bypass this step and continue to “step 4” .

For our chosen example boundary, flow and model equations (143), (144) and 

(145) yield:

E  =  °> (149)
# 1 ,2 ,3

• f i 1)cia = °> a = y> (15°)
i

  2
^ 2  f i 1)ciaCip =  - ~ p 'r S ap a  = x ,y ,  (3 = x, y, (151)

i

in the last of which we have used equations (130) and (35). Here then, nine f \ l\  

i =  0...8 satisfy the six equations (149)..(151) re-formatted below:

f(l)Jo +0/i(1) + o /2(1) +o i f +/4(1)+/5(1)+ /f + / f + /f = 0?
f(l)Jo +/4(1) + / f +/e(1) + / f + /f = 0?

+/J1) +/4(1) +/5(1) - i f f (!)J 8 = 05

/i(1> + / f + / f f(l) J 5 f(l)J6 - i f = 05

i f + / f + / i 1} + / f + / f +/8(1) = - 2pr/3 S'**,

i f + / f + / f + f P + / f + / f =  - 2pr/3 Syy,
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(152)

Note, the surface strain rates in the right hand side of last three equations must all 

be determined, in this work a spatially o(3) accurate forward and backward finite- 

difference method is utilised. Note that in the case of slip, these finite difference 

expressions, which involve the instantaneous surface slip velocity, were assumed 

simply to assign a quasi-statically developing slip velocity at the next time step.

When applying this LB method to other models, differences must be assumed 

to arise a this point. For a 3D LBGK model, a system similar to equations (129) 

results; for general LB models the system of equations corresponding to equations 

(152) would contain coefficients of the f -1̂ s which are linear combinations of the 

fiy ’s (see e.g. equation (129)).

Following the parallel analysis of Chapter 5, to solve the under-determined sys­

tem of equations (152), select a triplet of known / / ^ ’s as free variables. Certain 

triplets of the free f - 1̂ 1 s are forbidden, which may understood as follows. Defining 

quantities:

ffl =  f i1 + /2(1)+ A 1
92 =  /I1 + A 1} + A 1
9s = A ' + A 1} + A 1
94 = A 1+ A 1] + A 1
9s =  fo + /I1*+ A 1
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the first five of the six equations (152) may be written:

92  +#5  — 0 ,_

9 z ~ 9 a = 0 ,

9 i - 9 2  = 0 ,

9s 94: 2pr/3  Sxx,

9i + 92 =  ~ 2pr /S  Syy. (154)

Which system (154) may be solved for the gi..g$ in terms of the Sap. The value 

of (say) g\ so obtained constrains the sum +  f<p\ accordingly

and cannot all be assigned; cannot all be free variables. Forbidden triplets of 

free / / ^ ’s for our example system are defined in table 4, alongside a diagrammatic, 

interpretation. Note, the sixth equation in the system (152) cannot be expressed in 

terms our chosen g\..g^.

Above known s were referred to. In addition to the structure of system (154), 

the set of three / ^ ’s selected as free variables should depend upon which links, Ci, 

contain information originating from within the flow domain. To solve equations 

(149)..(151) then, free variable are used which (i) do not comprise a forbidden 

set and (ii) have accessible values.

Free variables are chosen as in the solution equations (149)..(151):

j f - ( / i - i f V ,  u0) ) ,  * =  0,1,2, (155)
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Forbidden set o f three free f j ^ ' s Link representation

A A  A A  A A
J 1 ) J 2 5 J 3

\ ( /

A A  A A  A A
J 3 i JA i J 5

' /  
\

f(!) f(l) f(!) 
Jh J J6  . i J7

/ i \

A A  A A  A A
J l  1 J7  5 J8

\
/

A A  A A  A A
JO ) J4 5 J 8 --- •---

Table 4: Diagrammatic representation of the forbidden f - 1̂ combinations for the 
planar boundary geometry of figure 13. The large (small) dot represents inclusion 
(exclusion) of the rest link.

in terms of which the following is a solution of system of equations (152)

A A  _  x  C  f ' ( A  f ' ( A
J  3 “  K D y y  J1 — J 2 , .

s2) = - ksxv +  \ Ksyv -  i / ' (1)+ 2/ ; (1)+ / ' « ,

f P  = - * S XX + KSx v - \ KSvy+ 1- f ' V  -  f ' V ,

A A  _  n  o  _  f ' ( ! )  f ' ( A
J 6  ~  z t i D x x  rv Oyy  J q J 2 ,

f A  =  -K S ZX -  KSxy + \ n S yy +  1 / ' (1) +  + / ' (1),

f A  = *Sxy -  ±KS„ -  \ f 0{1) -  2 /1'(1) -  / ' (1), (156)

where:

k =  <?spr. (157)

The choice of free variables / ? '  made here, i = 0,1.2 is not unique. This shall 

be further discussed in section 6.5.

S tep  4. The pre-collision boundary node / / ^ ’s constructed in step 3 are collided,
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using equation (132), then added to the corresponding u 0), yielding a.post­

collision momentum density:

/ ‘(r . *) =  /i° V >  u o) +  X  -  n «) 4 l) + (158)

which, for the example LBGK system, reduces to:

(159)

Before proceeding to consider other boundary shapes (corners), a few remarks are in 

order. Note that the analysis of this section is valid, stability issues notwithstanding, 

for any value of collision parameter r . Of course, as with Chapter 5, the choice of 

the free variables in step 3 of this section should not affect the accuracy or stability 

of the resulting closure scheme. This shall be further discussed in section 6.5.

6.4.2 Internal Corner Algorithm

We illustrate the versatility of the method outlined in section 6.4.1 by treating, 

albeit in less detail, internal and external corners. Consider our example D2Q9 

LBGK system.

Figure 14 shows a top left internal corner boundary node. The dotted line shows 

the supposed location of the boundary.

Quantities fs, fa (links represented by broken lines) are ghost (not, note, dead) 

quantities which never participate, /o, / | ,  f l  and f l  are required. For the geometry 

of figure 14 the appropriate value of M  is:

(160)
zy3 ,4 ,5 ,6 ,7
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Figure 14: A boundary node on an internal corner. The walls locations are de­
noted by the dashed lines. The node is taken to lie in the fluid with the rest link. 
Propagated link data is denoted by a solid arrowhead or solid square on the link, 
unavailable link information (lack of data) by an open circle. Ghost links, which 
never participate, are indicated by open arrowheads.

and the value of p' is therefore given by:

P =
M - 5 M

E * # l ,2 ,3 ,7 ,8  t p
1 I U p C ? _  , ( u p - C j ) 2

^  c2 2c2 2 ci

(161)

where 5M  is the mass associated with the source terms to be added on the live links 

(see equation (139)):

5 M =  (162)
t# l ,2 ,3 ,7 ,8

W ith some straightforward algebra:

36(M -  5M)
25 +  lhuQX -  15u0y -  9u0xu0y -  15?/ox -  15itoy ’ 

The condition corresponding to equation (149) for this geometry is:

(163)

(164)
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i

-►  i - 4

Figure 15: A boundary node on an external corner. The walls locations are denoted 
by the dashed lines; the node is taken to lie in the fluid. Propagated link data is 
denoted by a solid arrowhead or solid square on the link, unavailable link information 
(lack of data) by an open circle.

Solving for pre-collision / ^ ’s follows the procedure in section 6.4.1. No forbidden 

triplets of obtainable arise for the case of 2D, D2Q9 internal corner geometry.

6.4.3 External Corner Algorithm

Figure 15 shows a top left external corner. T he dotted line shows the supposed 

location of the boundary.

/„*, f t ,  f h  f h  f l > / i t  f i  and f i  are required. For M , 5M  and p' we now have:

M  =  J >  (165)
1

and:

5M  =  (j)i. (166)
i^5
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Forbidden set o f three free f ^ ' s Link representation

A 1) /•(!) f(l) 
J o  . 1 J 6 1 J 7

A A  A A  A A
J O  i J A 5 J 3

Table 5: Diagrammatic representation of the forbidden combinations of f -1̂ s as 
free variables, for the external corner geometry of figure 15. Note tha t a large dot 
indicates inclusion of the rest link. Note also that, unlike table 4, only triplets which 
contain evaluatable / / ^ ’s are listed here.

and (after some algebra):

P =
36(M  -  5M)

35 -  Su0x -  3u0y +  3u\x +  9u0xuoy -  3uly '
(167)

The mass conservation condition corresponding to equation (149) for this geometry 

is:

£ / f >  =  0. (168)
#  5

Solving for pre-collision / / ^ ’s again follows the procedure in section 6.4.1. Triplets 

of evaluatable s now forbidden are listed in table 5.

Clearly other geometries and other situations are amenable to the boundary 

analysis of this section. Situations in 3D, corresponding to any number of cut links 

are a straightforward generalization of current method. Further extension to off- 

lattice boundaries is more complicated; it requires no fundamental modification to 

the method.

6.5 R esu lts

In order to assess the above method for time-dependant boundary conditions, the 

development of incompressible flow in a uniform channel is considered, width W ,  

bounded by stationary surfaces y = constant and, in the horizontal direction, by
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periodic boundary conditions. Flow was driven (for t > 0) by a uniform pressure 

gradient | ^  = g corresponding to ^  =  tpGcix at t = 0+ and the lattice fluid was 

initialized by assigning /i(r, 0) =  f - ° \p ,  0) everywhere. Note tha t G = 3g [28]. To 

generate additional interest the planar boundaries y — 0“ , W + were assumed to 

admit to slip, described by a slip velocity instantaneously in accord with equation 

(125). A range of slip lengths b = 0.005,0.05,0.5 were used. W ith no-slip boundary 

conditions, the corresponding flow has a characteristic time [46]:

To = (169)

Vs / ^ o? the instantaneous slip velocity, normalized to the slip velocity measured at 

t = Tq/ 2, was obtained from a numerical solution (explicit, time-marching scheme) 

of the 2D, time-dependant Navier-Stokes equations, for times t < To/2; this solution 

is, in figure 16, found to be in excellent agreement with values obtained from the 

corresponding LB simulations using our boundary closure, over the range of slip 

lengths.

Consider now the steady state corresponding to the flow considered above, now 

with no-slip, Dirichlet boundary conditions. Invoking translational invariance in 

the ^-direction and the fact that p  = constant everywhere, it is straightforward 

to obtain the steady-state solution, (t?o(y),0), to the lattice fluid’s Navier-Stokes 

equation (135):

My) = (17°)

which we now proceed to use quantitatively to assess the accuracy of the solution 

obtained from simulations closed using the method of section 6.4.1.

Flow rate and hence Reynolds’ number:

' D v W  G W 3 -
R e =    =  2 ' 171is 3 6 p is 2
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Figure 16: Evolution of the boundary slip velocity in pressure-driven duct flow. The 
time normalization parameter To =  jfij. The line shows the numericalsolution, the 
open triangles correspond to slip length b = 0.005, squares b =  0.05 and diamonds 
b =  0.5.

was controlled by the value of G used in the source term = tpGcix of the LBGK 

adapted evolution equation (126). A total absolute error:

^  |vm(y) ~  v0(y)\ , (172)
o

was defined, where vm(y) denotes the simulated, parabolic profile obtained with the 

boundary closure method of section 6.4.1. vm(y) was measured at constant Re = 0.5 

for a range of lattice widths (resolutions) W  =  10 x 2^, N  <  5.

The data of figure 17 shows the value of logio (Aw) as a function of resolution, 

measured by log10 W .  The collision parameter for this particular data was r  = 2/3, 

however, use of r  — 1,2 produce no change in the data presented in figure 17 visible 

to the eye, as discussed below.

The results in figure 17 comprise two almost overlying, sets of points (a) and (b). 

Data set (a) is comprised of open squares and diagonal crosses, data set (b) of open 

circles and erect crosses. Sets (a) and (b) are based upon different choices of the
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Figure 17: Error, AIT, defined in equation (172), as a function of lattice resolution, 
W ,  for our method of section 6.4.1. This data was obtained for pressure driven flow 
in a uniform duct y = 0, W  with constant Re =  0.5. Collision parameter r  =  3/2  
for this data; values r  =  1,2 produce no change in the data visible to the eye. The 
results in this figure comprise two almost overlying, sets of points (a) and (b). Data 
sets (a) and (b) are based upon different choices of the free variable in terms
of the planar boundary y =  W  of section 6.4,1, set (a) corresponds to i =  0,1,2, set 
(b) to i =  0,3,4. In data set (a) open squares (diagonal crosses) represent unforced 
boundaries ^  =  0 ,y  =  0 , IT (forced boundaries ^  7  ̂ 0,y  = 0 , IT). In data set (b) 
open circles (erect crosses) represent unforced boundaries ^  =  0, y =  0, IT (forced 
boundaries </>* 7  ̂0, y = 0, IT).

99



free variable f - 1̂ s; in terms of the planar boundary y = W  of section 6.4.1, set (a) 

is characterised by choice i = 0,1,2, set (b) to choice i =  0,3,4. This point shall be 

discussed further below. In data set (a) open squares (diagonal crosses) represent 

unforced boundaries fa = 0, y = 0, W  (forced boundaries fa ^  0, y = 0, W ). In data 

set (b) open circles (erect crosses) represent unforced boundaries fa = 0,y  = 0, IT 

(forced boundaries fa ^  0, y =  0, IT). In both sets (a) and (b), omitting the 

boundary force produces a linear variation in log10 IT with log10 W  of gradient ^  —2, 

characteristic of a spatially second-order accurate scheme; in the case of forced 

boundaries y = 0, IT, the method of section 6.4.1 appears to achieve a solution 

exact to machine precision, over the range of resolutions considered.

The fact tha t both data sets (a) and (b) in figure IT correlate very well implies 

that the boundary closure method presented here is insensitive to the choice of free 

variable s. The results also appear to show that the method is stable over a 

range of values of collision parameter 2/3 < r  < 2.

Figure 18 shows corresponding reference data, obtained from various forms of 

bounce back boundary conditions. All the data in figure 18 were obtained with 

collision parameter r  = 1, corresponding to a known optimum of performance in the 

bounce-back closure method. Before exposing any shortcomings, it should be noted 

that on-link bounce back is adaptable, robust, versatile and easy to implement for 

both LBGK and LB methods. That said, the limitations of the first-order accurate 

‘on-link’ variant (represented by open squares) are clear. Applying a boundary 

force to this method (open circles) leaves the data unaffected. Mid-link bounce- 

back (diagonal crosses) approaches second order accuracy; with a boundary force 

(erect crosses) it achieves a smaller error, again approaching second order accuracy. 

None of the bounce-back methods recorded in figure 18 achieve the accuracy of the 

forced-boundary method of section of 6.4.1; neither, can they be used to represent 

moving boundaries.

In order to demonstrate the ability of the method to handle both a boundary force
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Figure 18: Error, AW, defined in equation (172), as a function of lattice resolu­
tion, W, for mid-link and nodal bounce-back boundary conditions. This data was 
again obtained for pressure driven flow in a uniform duct y = 0, W  with constant 
Re = 0.5. For all data in this figure, the collision parameter t  =  1, corresponding 
to an optimum of performance for the bounce-back boundary method. Open cir­
cles (squares) correspond to nodal bounce-back (with a body-force applied at the 
boundaries y = 0, W). Diagonal (erect) crosses correspond to mid-link bounce-back 
(with a body-force applied at the boundaries y — 0, W).
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Figure 19: Sheared, pressure driven velocity profiles obtained from simulations using 
our boundary closure of section 6.4.1. For this data, Re = 0.5, collision parameter 
r  — 1 and the right-hand wall velocity u0 = 1 x 10~3,2 x 10~3,3 x 10~3, where all 
velocities are in LB units.

and a boundary velocity, sheared, duct flow was simulated. Shear and a pressure 

gradient were simultaneously applied to an incompressible fluid, again confined in 

a uniform channel of constant width W  = 80, bounded by surfaces y = 0,80. Flow 

was driven by (i) a pressure gradient, G , and (ii) a constant motion of the y = W  

boundary, which moved at velocity u q x .  Various values u q  and g consistent with a 

constant Re = 0.5 were used. For such unidirectional flow it is possible to superpose 

solutions of the Navier-Stokes equations:

vo(.y) = - ^ v ( w - y) + ^y-  (173)

Figures 19 and 20 show a range of such velocity profiles with different values of 

uq and G. Figure 19 shows simulation data obtained for collision parameter r  =  1 

for uq = 1 x 10-3, 2 x 10-3, 3 x 10-3; figure 20 shows simulation data for r  = 2/3 for 

uq =  6 x 10_3,7 x 10_3,9 x 10"3, where all velocities are in LB units. In all cases, 

any difference with the analytical result, obtained from equation (173), is too small 

to be visible in figures 19 and 20.

To asses the internal corner boundary closure of sub-section 6.4.2 a square, 2D
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Figure 20: Sheared, pressure driven velocity profiles obtained from simulations using 
our boundary closure of section 6.4.1. For this data, Re =  0.5, collision parameter 
r  = 2/3 and the right-hand wall velocity uq = 6 x 10-3 ,7 x 10-3 ,9 x 10“3, where 
all velocities are in LB units.

lid-driven cavity with rest boundaries y = 0, x = 0, W  and a moving lid y = W  

was simulated. This lid is taken to move with velocity u 0. Later u 0 = u0ex will be 

set. To obtain results which may validated in an original way and to illustrate the 

adaptability of our method, we introduce at this point a model variant. It is possible 

to simulate at Re = 0 by using an adapted D2Q9 LBGK scheme, after Ladd and 

Verberg, [47]. Following Ladd and Verberg, simplify the equilibrium distribution:

f i 0) = tpp [ \  + ^ v .c  i ) ,
1

(174)

producing a D2Q9 LBGK model otherwise identical to that considered in sections

6.2 and 6.4.1. Analysing with the particular Chapman-Enskog approach of Hou et 

al in reference [27], it is possible to obtain a steady-state behaviour:

d
dxi

Pv0 =  0, t ( 2 r - l ) V > /3- i A p  = o, (175)

which, with replacement v —> pv, represents the Stokes equations with pressure 

P  =  1/3p and shear viscosity rj = The results of section 6.4 may be
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modified for this revised model. For example, in section 6.4.1, equation (147) for

the density is modified for use with the truncated equilibrium in equation (174):

in which 5M = 0, corresponding to no boundary force. Similar modifications must

assembled precisely after the method of section 6.4.1.

Figure 21 shows detail of the rectangular stream function close to a corner of

а, 2D, square lid-driven cavity at steady-state. Here the stream functions should 

approximate the known solution of flow into a corner [10], which appears in figure 

22, for reference. The large system size of 150 lattice units and the small lid velocity 

1.0 x 10-4 underlie encouraging correspondence with figure 22

б.6 Sum m ary

In summary of this section a very adaptable and accurate method for closing a lattice 

Boltzmann LBGK simulation lattice has been set-out and validated. The method 

allows for both .boundary motion and constant boundary fluid external forces such 

as gravity and its derivation demonstrates an accuracy consistent with the corre­

sponding bulk scheme, it is instantaneously accurate and robust in tha t it functions 

with unimpaired accuracy for a range of values of LBGK collision parameters.

The boundary closure method has been developed for key flat and corner ge­

ometries; it may be applied to others. Overall it is suggested that this method is as

M - 5 M 6M
(176)

5 +  2>UQy

be made to the expressions for p' in the case of the internal corner, in equation (163):

25 4- 24uqx — 15t/oy
36(M -  SM)

(177)

Using equation (174), the equilibrium, f j ° \  component of the boundary /*’s 

was assigned; boundary s were calculated and the post-collision distribution
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Figure 21: Corner Top, right hand corner detail of the rectangular stream function 
contours of a steady-state, 2D, square lid-driven cavity. This data was obtained 
for Re = 0 Stokes flow. The large system size of 150 lattice units and the small lid 
velocity underlie the good correspondence with the analytical solution of corner flow, 
shown in figure 22. if) =  0 on x = 0, y = 0; the maximum value of ip corresponds to 
ip = 1.05 x 10“4.

Figure 22: Rectangular stream function, ij;, contours for two dimensional flow into a 
top right, right-angled corner; 130 < x < 150, 130 < y <  150. Note, the image detail 
does not show the ip =  0 on x = 0, y =  0; the maximum value of ip corresponds to 
ip = 9.5 x 10~5, in good agreement with the result in figure 21. Note the different 
contour interval in this image.
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adaptable in this respect as popular bounce-back methods but, in addition, it has 

the added advantages of tractability, the capacity to handle both moving and sta­

tionary boundaries and the capacity to accommodate a fluid force at the boundary. 

The latter is of special significance to the wetting problem, to which this method 

will be applied later.

It is appropriate to emphasize that additional conceptual and therefore algorith­

mic complexity is introduced when the external force in question is not constant. 

The problem of a spatially-dependant body force arises when an LB fluid is subject 

to a “boundary force” . We defer further consideration of issues relation to interfacial 

forces at a boundary until chapter 10, after spatially variable fluid body-forces have 

been considered in general in the next chapter.
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7 Simulation at Low Reynolds and Capillary num­

bers for M ulti—Com ponent LB

In this chapter I begin to consider MCLB in detail. This chapter serves as a survey 

of the problems associated with MCLB in the continuum limit when addressed 

with the particular variant which I inherited. It is shown in this chapter tha t the 

problems identified may be reduced with minor algorithmic adjustments however 

for more complete resolution further fundamental modifications must be made to 

the method; these are discussed in following chapters, pradominantly chapter 8 and 

9. That is not to say that the modifications and observations of this chapter are 

later rendered entirely redundant as they will be utilised in chapters 8 and 9 to 

help characterise the algorithmic modifications. At the risk of being repetitious, it 

is appropriate at this juncture to reiterate some LB introduction. This is done for 

completeness and with the aim of making the chapter relatively “self-contained” .

7.1 Prelim inary Rem arks

The key issue revised in this chapter is to be found in section 7.5.1. In Chapter 4 we 

detailed the Chapman Enskog analysis by which the macroscopic dynamics of LB 

models are derived. However in 2002, Guo et al [48] showed that when a spatially 

variable external body force is applied to a fluid (as opposed to the constant body 

forces considered in Chapters 5 and 6) a more accurate varient of LB is possible. 

The changes necessary to implement the LB varient of Guo are straightforward (see 

section 7.5.1) however the process of modified Chapman Enskog expansion by which 

they are derived is intricate. This analysis is found to be in [48]. Guo’s method as 

set out in 7.5.1 is retained throughout the rest of this thesis.
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7.2 Background and C ontext

The simulation of multi-component fluids at low Reynolds number and low capil­

lary number is of interest in a variety of applications such as the modelling of venule 

scale blood flow and microfluidics; however,' such simulations are computationally de­

manding. In this chapter, the inherited multi-component lattice Boltzmann scheme 

is presented with some algorithmic modifications. The aim is to represent inter­

faces in the continuum approximation, the modifications presented are shown (i) 

significantly to reduce common algorithmic artifacts and (ii) to recover full Galilean 

invariance; see section 7.3. The method will be used to model drop dynamics in shear 

flow in two dimensions where it recovers correct results over a range of Reynolds 

and capillary number greater than that which may be addressed with the inherited 

method.

Many multi-component flows are conveniently modelled using the LB method; 

microfluidic multi-component flows are a relevant example. The latter are charac­

terised as complex, incompressible flows at small Reynolds number, Re, and small 

capillary number, Ca. Multiple blood cells in venule-scale flows have also been rep­

resented with LB as immiscible drops (a traditional device) [49,50]; such flows have 

Re  ~  1 and may be simulated using values of Ca ~  2.0. Traditional computational 

fluid dynamics has also, of course, been applied in similar situations; recently Jadhav 

et al [51] have used the immersed boundary method to three dimensional simula­

tions of leukocyte (white blood cell) rolling and, in the wider context, Esmaeeli and 

Tryggvason [52] and references therein, have published simulations of bubbles at low 

Re; and Sankaranarayanan et al [53] have produced a comparative study of LB and 

front-tracking finite-difference methods for bubble simulations.

Recall sections 4.3.1 and 4.3.3; there, a method due to Lishchuk was described 

which (i) produces sharp interfaces with small micro-currents (ie ‘spurious veloc­

ities’) [3]), (ii) has an independently adjustable interfacial tension (iii) is conve­
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niently direct and (iv) can produce interfacial tensions larger than Gunstensen’s 

method [24]. The key feature of the Lishchuk method is that, in order to impose 

surface tension, it impresses a curvature-dependant force in what is effectively a sin­

gle fluid (this shall be revised later in chapter 11). However, both methods have a 

problem reaching low Ca and drop Reynolds number, Rea (defined in sec 3.1), giving 

rise'To a tendency for drops to “facet” as Ca and Red decrease (lengths of interface 

with zero curvature form parallel to lattice directions). Faceting is associated with a 

reduced drop advection and hence Galilean invariance (i.e. in all internal frames of 

reference, physical laws remain the same). The aim of this chapter is to show how 

the following issues may be addressed. The limited success we achieve motivates the 

developments of chapters 8 and 9.

We summerize the developments to be presented in the present chapter as follows:

In order to reduce discrete lattice effects and to enforce the global conservation 

of momentum, the interface method of Guo et al [48] is used in the implementation 

of interface forcing.

To attem pt to reduce simulation noise and to increase accuracy, numerical deriva­

tives of o(4) (in mesh-spacing) are used to attem pt to achieve a more distributed 

forcing around the sharp phase-field boundary.

Algorithmic modifications are made to enforce mutual impenetrability of binary 

fluids at the interface i.e. a kinematic condition. Which although partially achieved 

in this chapter, the methods proposed are somewhat primitive and computationally 

expensive. They are included for purposes of completeness rather than their algo­

rithmic advances. A much more elegant and implementable solution is presented in 

Chapter 9.
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7.3 Problem s A ssociated  w ith  R educed R eynolds and C ap­

illary N um ber Sim ulations U sing M CLB

The objective of the work reported in this chapter, to which the present section 

provides background, is to begin to modify and bound Lishchuk’s method [25], to 

improve the representation of completely immiscible stiff drops in slow flow using, 

essentially, the MCLB algorithm I inherited, which is outlined in section 4.3. In 

essence the data in the present section serves to explore its faults and hence to set 

the agenda for following chapters.

Consider the simulation of the flow of high volume fraction, non-Brownian col­

loids in complex, internal geometry. At some positions in the geometry, the flow 

velocity is likely to be small. Now suppose we need to simulate stiff drops. We there­

fore require a small capillary number, Ca and must expect to encounter a small drop 

Reynolds’ number, Red.

As discussed previously; LB fluids are described by the Navier-Stokes and con­

tinuity equations only for restricted Mach number M  = U q/ cs , [3]; usually M  < 0.1 

is required. The fact that LB models have a small speed of sound, cs ~  o(l), limits 

the value of U q. It follows that low Ca, low R e d  must be achieved using large sur­

face tension, a  and limiting the shear rate, 7  see section 3.1. But a velocity which 

is too small is also a problem. In the interfacial region of multi-component LBs, 

there exist un-physical velocity field fluctuations, or micro-currents, generated by 

the interface algorithm. To obscure these, one approach to target Red and Ca  is to 

limit length scale and maintain the characteristic velocity. Where length scales are 

limited, narrow interfaces are necessary to avoid introducing a length scale which 

may conflict with that of the flow problem eg . [49].

The above requirements translate to a need for (i) a sharp phase-field boundary, 

(ii) large surface tensions and (iii) a small LB micro-current. Whilst Lishchuk’s 

method [25] facilitates (i)..(iii), as Re —> 0 a lack of Galilean invariance arises as
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droplets ‘pin’ on the lattice.

Wagner [54] has pointed-out the origin of the microcurrents in multi-component 

LBs; imperfect correlation between an interface-producing force and the dynamics 

of the phase index, or colour label, pN (see equation 91 and section 4.2.2) means 

fluid is kept in constant motion near the interface. Enhanced consistency between 

the interface-inducing force and the pN field decreases the micro-current. These 

considerations maybe set in the context as follows.

By working from the core algorithm presented by Lishchuk in [25], the force 

applied to create the interface (discussed in Chapter 4 and further in section 9.2) 

is defined in terms of derivatives of pN (see equation (182)). Sharp interfaces lead 

to numerical error in the calculation of these spatial gradients of pN, resulting in 

anisotropic forcing over the a drop perimeter. Micro-currents and small, damped 

shape fluctuations ensue. By distributing the interface, the accuracy of numerical 

gradients may be improved, making the interface forcing more isotropic (see Chapter 

8). Figure 23 shows data obtained from simulations which use an idealised phase 

field:

pN(x , y) = tanh ( k y / (x  -  x 0)2 +  (y -  y0)2)  , (178)

in which the interface thickness parameter, k , has been varied. See the figure caption 

for simulation data.

W ith k «  2.4 (typical of numerical colour segregation) the interface width is 

less than two lattice spacings. Decreasing k distributes the interface and improves 

numerical derivatives of pN (we shall return to interfacial distribution in detail in 

Chapter 8 and to a lesser extent in chapter 9). The interface-inducing force inte­

grated along a radial section of the interface measures interfacial tension [25]. A 

numerical integral was obtained for cuts at (i) 0 rad and (ii) 7r/4 rad. R  is the ratio 

of this force integral in (i) to that in (ii). In figure 23, as k decreases, R  —> 1 and the 

total micro-current activity falls. The latter was measured as the lattice sum of the
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Figure 23: Data from the multi-component LB algorithm of reference [25]. Nor­
malised, whole-lattice micro-current activity, //, (open squares) and surface tension 
isotropy, R, (solid squares) for a range of interface thickness parameter, k. Ratio R  
is obtained as described in the section 7.3. This data was obtained for a neutrally 
buoyant drop, initial radius 15 lattice units, placed on a 75 x 75 lattice, with collision 
parameter r  = 1.

velocity modulus, +  iqj, normalised to its value for k = 2.4. A more accurate 

interface-generating force appears to reduce micro-currents. In the present context, 

accuracy relates to the quality of numerical derivatives.

Next consider an immiscible drop embedded in a fluid, moving with uniform 

velocity U q. In any multi-component LB the interfacial micro-current increases in 

proportion to surface tension, a. As U q decreases, the speed at which the drop ad- 

vects, Ud, approaches the value which characterises micro-current activity and there 

is a loss of advection for the drop. This is discussed in more detail in section 7.8. 

Figure 24 shows the results of advection tests using the inherited algorithm of refer­

ence [25], outlined in section 7.4. A drop embedded in uniform flow is characterised 

by ordinal value Uj/Uq =  1, a completely trapped drop by Uj/Uq = 0. This data 

was compiled for a range of a  and U q. All data lie about the solid line inserted in 

figure 24, which is a grid search optimised fit to the data using an expression of the 

form tanh(a([/d/Z7o) — b). It was found that a = 0.049. From figure 24 it is clear that 

for U o / a  < 0.1 there results a progressive loss of advection in the basic algorithm of
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Figure 24: Original LB algorithm of reference [25]. The final advection speed, Ud, 
of an infinite chain of red drops, surface tension a, responding to Tar-field ’motion 
( U q , 0 )  is normalised to U q and plotted as a function of ratio U o / a .  This data 
was obtained for a neutrally buoyant drop, initial radius 15 lattice units, placed on 
a 75 x 75 lattice, for a range of values of boundary velocities, U q and interfacial 
tensions a . The solid line is a grid-search optimised tanh profile fit to the data. As 
the surface tension increases for fixed advection velocity, the drop ‘stalls ’.

reference [25]. Note that the results of figure 24 do not set a characteristic minimum 

on the value of quotient C/o/cr, micro-current activity is, recall, slightly influenced 

by fluid viscosity.

The ‘simple’ case of a lack of Galilean invariance expressed in figure 24, is com­

pounded in what we shall term a ‘general’ notion of Galilean invariance. Consider 

again the immiscible drop; its motion is a response to the accumulation of interfacial 

stresses. However, in all multi-component LB, interfaces are created by a perturba­

tion which degrades the hydrodynamic stresses and, therefore, the drop’s dynamics. 

Since this effect becomes more noticeable when stresses are relatively small, it is 

evident that we need a refined multi-component LB model first for the small Re, 

small Ca regime. In the present context, the benefits of the improved method arise 

in part because the interface perturbation better respects viscous stress. Results 

show general loss of Galilean invariance properties at low Red, low Ca, assessed by 

means of lift simulations, are improved by the innovations introduced in section 7.5 

without compromising on the length-scale of the interface.
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It is stressed that, for small Ca, large Red, the basic model outlined in the 

next section exhibits fewer problems. It is upon slow, Red ~  1, surface-tension 

dominated, Ca < 2, flow that the reported innovations focus.

7.4 M u lti-com pon en t L attice B oltzm ann in th e  C ontinuum  

A pproxim ation

The work reported in this chapter is based upon the LBGK method, due to Qian 

et al [4], described previously. To this a ‘source term ’, fa is added, allowing us to 

insert interfacial tension:

fi  (r +  cu t + 1) =  fi (r, t) -  i  (fi (r, t) -  f?(p, pu)) + fa. (179)

Recalling Chapter 6, a constant source term, fa, Chapman-Enskog analysis [3] leads 

to modified Navier-Stokes equations: [28], [25]:

S p“ “ + ^ w “ “ = - i p + i ^ (2^ ) + F “ ’ (180)

where the source term fa is responsible for a constant body force:

F  =  ^ < f c c i. (181)
i

Note, the summation convention on repeated Greek subscripts applies in equation 

(180). For present purposes, the body force needs to contain spatial variation: F  —»• 

F(r). This necessitates spatial variation in fa —> fa(r) which, in turn, complicates 

the derivation of equation (180) above [48]. The solution given by Guo et al to this 

problem, which we utilise in section 7.5, requires a more complicated relationship 

between F (r) and fa(r) than that given in equation (181) and a re-definition of 

u  [48].
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The two fluids are segregated numerically as described in [24] and previously in 

section 4.3.1.

The quantity F (r) is defined in terms of the gradients of pN(r). To achieve a 

cross-interfacial pressure step proportional to the local curvature in pN, K ,  we take:

F (r) =  \ a K V p \  (182)

with the surface tension parameter a. Note that F(r) has also no explicit time 

dependence and that the right hand side of equation (182) vanishes for constant 

pN. The cumulative effect of the force (in equation (182)) produces a pressure step 

across the interfacial region. Assuming K  to be locally constant, the local pressure 

step is obtained as the line integral of F(r) between the terminal points, A  and B , 

of a short, normal path:

A P  = \ a K  [ ^ ( B )  -  pN(A)] = aK.  (183)

Note that A  and B  are embedded in the blue and red fluids respectively and so tha t 

pN(A) =  —pN(B ) =  1. Using the negative of a normalised colour gradient as the 

interface normal, n, interface curvature K  is obtained from the surface gradient:

■ T. (  d d \  2 d 2 d , .
K  = nxny \ ^ n x + - n y) - nx- ny. - n v- n x, (184)

where n  =  V p N/  |VpN|. It is important to note that the evaluation of K  involves 

numerical second derivatives of pN.

For the body-force defined in equation (182), arguments are presented in [25] 

which yield a source term, fa of the form:

0i(r ) =  ( ^ P N) -ci> (185)
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which result, it is stressed, is improved in section 7.5.

In order to achieve narrow interfaces, numerical de-mixing of red and blue fluids 

at an interface is necessary [24,55]. The interface algorithm outlined in this chapter 

is based upon a variable force applied locally in a single fluid, to eliminate curvature 

in a phase field. This accurately represents interface dynamics (stress conditions) 

[25]. But the extent to which the kinematic condition of mutual impenetrability is 

implicit is unclear; the fact that there is a single ‘sum’ fluid means that the combined 

momentum of the mixture of fluids is continuous across an interfacial region but the 

velocities of the red and blue fluids may not be easily defined close to the interface.

7.5 Im provem ents to  the M odel

We describe a number of modifications to the algorithm outlined thus far. In sum­

mary:

1. The source term, fa, in equation (179) is modified more accurately to recover 

the required interface force in equations (180); this is achieved using the meth­

ods of Guo [48] and Ladd and Verberg [47].

2. fa is refined by more careful definition of the interface.

3. A higher-order accurate calculation of numerical derivatives in fa is used.

4. A kinematic condition is introduced.

7.5.1 Interface Source Term

A constant source term fa = 3tpG.Ci is a well-known device for inserting a constant 

gradient G. As stated in 7.4 it is recognised that spatial dependence in fa requires 

a modified Chapman-Enskog analysis of the macroscopic dynamics [28,48]. The 

method of Guo is a progression of earlier work, in particular of Ladd and Verberg [47].
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It may be used to yield an expression for a source term, </>*, in terms of the target, 

space-dependant macroscopic force F (r) [48]:

<Mr) = tp ^1 -  ^  (3 (ci -  u*) +  9 (ct-.u*) cf) .F(r), (186)

where macroscopic velocities are now defined in terms of the external body force:

u * =  ~p  ^ / i c i +  ^ F (r) V  (187)

Equation (186) replaces that given in equation (185); equation (187) gives an ac­

companying re-definition of the model’s velocity. Note that equation (186) remains 

correct if the macroscopic force also contains time dependence. The Navier-Stokes 

equation (180) now acquires position dependence in the body-force term:

§ t ^ + ^ > -  =  ~ w a p + ^ 2 pv S^ + F a i T ) - (188)

Note also the right hand side of equation (186) reduces to the right hand side of 

equation (185) for u* —> 0 and r  —> 1.

The remainder of this subsection is concerned with peripheral comments on the 

preceeding method of Ladd and Verberg [47] which has been included for purposes 

of reference, but has no direct effect on work carried out here. The casual reader 

may wish to ommit the remainder of this subsection.

In addition to requiring a re-defined velocity, Guo’s method removes the local 

relationship between the fluid strain rate and the distribution function, f - 1̂ [48], see 

section 10.5, the usual form of which is reproduced in equation (204), section 7.8. 

For some applications this is unfortunate; Ladd points-out that local expressions for 

the strain rate are advantageous when calculating, for example, stresses imparted 

onto Lagrangian particles suspended in the LB fluid [56]. The approach of Ladd and 

Verberg [47] for time-independent body forces, applied to our case of an interface
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force, yields:

<t>i(r) = tp ( 3  (c ; -  ( l  -  - ^ )  u )  +  9 ( l  -  - ^ )  (Cj.u) Cj) .F (r), (189)

which recovers the Navier-Stokes equations (188) to the same accuracy as the 

method of Guo. However, the continuity equation now acquires an additional 

term [48]:

. % + i r e pu* = ~ \ i ? e { r ) - m

This approach, referred to in reference [48] as ‘method 2a’, requires no re-definition 

of velocity, and represents (in my opinion for narrow interfaces) an optimum treat­

ment of variable forcing without recourse to a re-defined velocity. However, when 

using method 2a for a spatially varying force, the continuity equation acquires non­

physical terms as indicated in equation (190). The latter may, in fairness, be small 

and in certain applications, an intact interpretation of velocity may outweigh this 

disadvantage. For present purposes however, method 2a is expected to produce 

inferior results owing to this continuity equation effect.

Equations (186) together with equation (187) (where appropriate) and equation 

(189) represent expressions for fa(r) each of which is an improvement upon our 

original expression in equation (185). We compare results from both methods in 

table 6; everywhere else we use equation (186).

7.5.2 In te rface  D efin ition  an d  C u m u la tiv e  Forcing

The criterion for inclusion of fa in the evolution equation (179) is modified to a 

condition on the gradient of pN. fa is now only included if |V/o^| <  10~8. W ith 

o(4) numerics (see section 7.5.3), this distributes the interface slightly forcing for a 

more accurate cumulative effect. Meanwhile, numerical segregation ensures tha t the 

length-scale of the variation in pN is unaffected (the effects off using an algorithm 

with a larger degree of distribution is seen in Chapter 8). Choosing to use the
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1 /r V Re Red Ca y / L v
±0.01

Ud/U0
±0.01

Sy 5y' 5y"

0.85 0.23 1.11 0.10 2.98 0.49 0.49 0.45 1.92 1.93
0.90 0.20 1.23 0.11 2.70 0.48 0.48 0.78 1.72 1.72
0.95 0.18 1.36 0.12 2.43 0.49 0.48 0.61 1.54 1.54
1.00 0.17 1.50 0.16 2.21 0.51 0.51 0.49 1.12 1.12
1.05 0.15 1.66 0.15 1.99 0.49 0.48 0.43 1.35 1.35
1.10 0.14 1.83 0.17 1.80 0.50 0.50 0.59 1.91 1.81
1.15 0.12 2.03 0.18 1.63 0.50 0.50 0.19 3.25 5.20

Table 6: Summary of (i) the normalised steady-state transverse position T //I/y and 
(ii) the normalised steady-state velocity Ud/Uo for neutrally buoyant drops, initial 
radius 15 lattice units, exposed to a uniform shear flow of characteristic shear velocity

' U0.

internal (say) ‘red ’ relaxation parameter r  =  tr only when pN(r,t) > 0.99; this 

follows a ‘level-set’ philosophy and places the interface entirely within the embedding 

fluid. It has the effect of sharpening the phase field boundary and the location of 

any viscosity change.

Figure 25 shows the value of p^  versus radial distance for a static drop of initial 

radius 15 lattice units. The component index, pN, changes essentially over a distance 

of one lattice unit. The solid line in figure 25 corresponds to the function tanh(A;(r— 

To)), with ro the average radius of the drop. Least-squares fitted values o i k  = 2.77 

and r 0 =  14,82 were determined. The collapse of all interface data onto this single, 

contour supports the view that (i) whilst very narrow, the interface in our modified 

model has a structure independent of its orientation relative to the underlying lattice 

and (ii) to good approximation, the drop is isotropic. However from the slight spread 

of values it is apparent that further improvements may be attainable, see chapters 

8 and Chapter 9.

Suppose the interface forms a sharp, closed contour in a plane. From the defi­

nition of curvature it can be shown that the line integral, along this contour, of a 

normally-directed force, proportional in magnitude to local contour curvature, i f ,  

must vanish. However, numerical derivatives introduce inaccuracies in If; a non-zero 

value of this line integral results. Therefore, the small, fluctuating but non-zero,
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Figure 25: The distribution of phase field index for a neutrally buoyant red drop 
(pN = +1) at rest, suspended in a blue fluid (pN = —1). Both fluids have collision 
parameter r  — 1 The initial radius of the drop is 15 lattice units, the interfacial 
region has a characteristic width of about a single lattice unit. The solid line corre­
sponds to a tanh profile fit (see text).

total applied interface force is recorded and any imbalance is eliminated by applying 

its negative over the interface region, weighted by the magnitude of local interface 

force. The corresponding correction to the source term of equation (186) at position 

r  is:

^ i =  _ M p ( f e l w ) | F ( r ) l ’ (191)

where the summation on r ' runs over all points in the interface region. Note tha t 

the factor ‘3’ in (191) cancels when taking first moments, see (192).

To police the cumulative interface force it may seem reasonable to determine 

some form of local curvature average. However, sharp, local fluctuations in K  are 

actually necessary to keep an interface sharp and smooth. Consider figure 26 in 

which interface sites with —0.9 < pN < 0.9 have the direction of their colour gra­

dient displayed. As the tangent to the local interface direction approaches a lattice 

direction local curvature K  changes sign as follows. Point (103,82) in figure 26 lies 

in a region above a vertical length of interface, tangent to line x = 106. For a circular 

drop, the interface must, near to position (103,82), ‘switch’and continue on another,
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Figure 26: Detail of the normalised colour gradient field for a rest drop. Point 
(103,82) in the above figure lies in a region above a vertical length of interface 
tangent to line x = 106. In order to have an overall isotropic, circular drop the 
interface must ‘switch ’to a parallel line of nodes. Near (104,82), the interface 
‘switches ’onto another, parallel line of nodes x — 105. When this happens the local 
curvature must fluctuate and change sign.

parallel line x = 105. When this happens the local curvature must fluctuate and 

even change sign. Local smoothing undermines this curvature elimination property 

of the algorithm, thereby undermining the mechanism by which the interface is kept 

smooth and sharp.

7.5.3 Calculation of Numerical Derivatives

The inter-node links c*, corresponding weights tp, and indexing of the D2Q9 [4] 

lattice are defined in table 1. Note the implicit use of unit lattice spacing. By direct 

calculation this set of lattice link vectors and weights may be shown to have the
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following even ‘moments’:

=  1- (192)
i

^  '  tpCjgCjP ~2^af3i
i

^   ̂ Q  c+z/3 Q  7+<5 — — (^a/3^7S “I-  &cty&/3S +  ^ad^P7 ) • 
i

Whilst the corresponding odd moments are zero. Now, a Taylor expansion of the 

function </>(r  +  TVc*), about r , may be approximated:

</>'(? +  N * )  ~  4(r) + V  i i V ’*(ci.V )> (r ) , (193)
' n!

n<n0

where IV =  1 ,2 ,3  Retaining derivatives to o(uq) yields an expression with order

of accuracy no in lattice spacing. Multiplying equation (193) by the product tp C{a 

(a = x,y),  summing the result upon link index i and appealing to the moment 

properties in equations (192), one can obtain a system of simultaneous equations,

with spatial derivatives such as d24>(r)/dxdy as its independent variables. The

equations in this system are characterised by the choice of parameter a  and the 

value of range parameter N.  Taking n0 =  3 and N  < 3 one can solve this system 

for o(rio +  1 =  4) accurate expressions for the first spatial derivatives of <j>{r):

V 0(r) = Y ^ t p H ^ r  +  Ci) -  ^ 0 ( r  +  2ci) + ^ 0 ( r  +  3cA  c (194)

Clearly this method of calculating gradients undermines that locality of the algo­

rithm which is considered to be one of the strengths of LB. However, the additional 

overhead introduced only scales as the total length of interface in the simulation.
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7.6 K inem atic condition

7.6.1 Kinematic Problem

It is worth noting at the outset of this sub-section that the following are initial 

attempts to enforce a kinematic condition and although successful to some degree, a 

more rigorous treatment of the kinematic condition is carried out in chapter 9 with 

superior results. The remainder of this section therefore should be mainly regarded 

as a record of the work I have undertaken, not as a worthwhile algorithmic extension.

The kinematic condition is stated as the requirement that, at the interface, the 

internal and external fluids have the same velocity. In fact the kinematic condition is 

important in multi-component flow. The Re =  0 calculation of flow past a spherical 

drop demonstrates this very clearly [12]. Here a method of coupling the dynamics 

of the phase field and those of the fluid are presented, aiming to embed a kinematic 

condition. Throughout sub-sections 7.6.1 and 7.6.2 an asterisk superscripts denotes 

discrete positions; point (x*,y*) is a discrete lattice position; (x,y)  is a sub-lattice 

point.

The narrow interfaces generated by the methods considered here correspond, typ­

ically, to local interface profiles with only one node on the lattice with \pN 

0.8. Take sub-lattice contour pN(x, y) = 0 to define the (off-lattice) centre of the in­

terface, suppose that all the N  (M ) points {(x ^y i ) \ i  = 1..N} {{(xi,y*)',i =  1..M}) 

at which this contour intersects the short lattice links have been determined (by 

searching vertically and horizontally over the lattice and using linear interpolation). 

Contour pN(x, y) = 0 bounds what should be two different fluid domains; boundary 

and, ideally, kinematic conditions should apply between the bulk fluids on this con­

tour. {(ajJ, ?/*); i — 1..N} I J i f e  2/*); i = 1..M}) is a suitable set of points upon which 

to apply appropriate conditions. Of course, this choice of a set of points implicitly 

defines a sharp interface.
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7.6.2 Kinematic Condition Solutions

Noting that the dynamic boundary conditions on interfacial stress are implicit in 

the core inherited method [25], and aiming to preserve resolution and to conserve 

local momentum, we consider three practical approaches to a kinematic condition, 

each based upon the set of points {(z?, ^ ); i =  1..N} U lfe?  Vi)\i  — 1..M}).

M eth o d  1 Take the two sets of pairs of points {{{x^int{yi)  .+ 1), (x*,int(yi) — 

l));z =  1..N} and {((inf(a;*) +  1 ,y*), ( in t (x i )— 1 ,y*))',i ■= 1..M}, where int(xi) 

denotes the integer part of X{. Find the mean velocity U* of each such pair of points:

— =  p(int(xj) +  l,y?)u(int(xj)  +  1 ,^ )  +  p{int(xj) -  l ,y?)u(int(xj) -  1 ,y*)
U p(int(xi) +  1 ,yl) +  p(int{xi) -  1 ,y-)

(195)

and assign the pre-collision fluid velocity at points (x*,int(yi) + 1) and (xj, int(yi) — 

1) to u*; it is velocity u* which is used to evaluate the equilibrium distribution 

f i ° \p ,  u*) in equation (179). Fluid just inside each of the separated components 

is thus induced to move at the same speed. It is important to note tha t it is the 

modified velocity, defined in equation (187), which is averaged.

M eth o d  2 Determine the mean, pre-collision velocity u*' in an interfacial neigh­

bourhood (int(xi) — 1) <  x* < (int(xi) + 1), (int(yt) — 1) <  y* < (int(yi) — 1):

^17 =  £ .-= - i ,o ,i ,  £ j = - i , o , i  p (x " +  i ’ V ' + v ’ +  i )  (196)

u  £ i= - i ,o , i ,  £ j = - i , o , i  p ( x * + i , y * + j )

As in method 1, all nodes in this region are then evolved according to equation (179) 

with an with equilibrium distribution f ^ ( p ,  u*'). Clearly this method results in a 

loss of resolution in the interface region relative to method 1.

M eth o d  3 Using an alternative, non-numerical method for component segrega­

tion [57,58] covered extensively in chapter 8, with ‘segregetion parameter’ j3 =  0.7 

(notation of reference [58]) method 1 from above was followed. Method 3 there­

fore has a distributed interface of much greater width than those obtained by the
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numerical segregation otherwise considered; with /3 =  0.7 the value of pjv switches 

between —1 and +1 in the surface normal direction over approximately 6 lattice 

spacings (rather than 1 lattice spacings with numerical segregation shown in figure 

25). One of the advantages identified at this stage of a diffuse phase boundary is that 

the contour pN(x,y) = 0 is better defined. At this point the segragation algorithm 

variant of [57,58] is introduced solely to obtain a contextual view of the kinematic 

condition it shall be exploited further in the following chapters.

7.6.3 Comments

There is a considerable body of literature relating to the transverse migration or 

‘lift’of a solid particle subject to simple shear or parabolic flow. Lift is widely 

discussed in the context of a range of important applications such as re-suspension. 

The term lift may suggest a direction of motion dictated by a gravitational field; 

however it is important to note that the effect is simply the migration of a particle or 

droplet in a flow as a consequence of a hydrodynamic interaction of the particle with 

one or more neighbouring boundaries. The direction of migration is determined by 

the nature of the flow and the boundaries. As a basis for evaluating the above model 

modifications I consider the lift of a deformable, incompressible, neutrally buoyant 

liquid drop in simple shear flow, at low Red, with a capillary number Ca ~  2 which 

permits only restricted deformation.

The chosen geometry is a stringent test of the algorithm. For one thing, an­

ticipating the results, lift appears to rely upon a small imbalance of hydrostatic 

pressure. To achieve this the interface algorithm must be sensitive. Secondly, for 

a small shear rate, a drop’s drift velocity component in the direction of the unper­

turbed shear gradient is small, particularly as the drop approaches its steady-state 

position. Any lack of Galilean invariance is thus exposed in the transverse compo­

nent of the motion.
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7.7 R esu lts

7.7.1 Simulations of drop lift in shear flow

It is important to use accurate boundary conditions. The necessary Dirichlet bound­

ary conditions cannot be represented by popular LB methods like on-link or mid-link 

bounce back [3]. To impose o(2)-accurate velocity boundary conditions, a precursor 

method to that reported in chapters 5 and 6 was used. The precursor method used 

is the inherited boundary method reported in reference [46]. Recall by o(2) accu­

rate we mean (i) second-order accurate in lattice spacing and (ii) able correctly to 

construct boundary distributions up to the level denoted fj® [3].

Advection and lift tests identical to those described in section 7.3 were repeated 

using all four innovations described in section 7.5 and as previously mentioned, using 

an o(2) accurate lattice closure scheme to impose velocity boundary conditions. In 

particular, the kinematic condition reported in method 1 of section 7.6.2 was used. 

In terms of the results in figure 24, simple Galilean invariance is restored down to 

values of parameter Uq/ ol ~  0.003. This modest improvement (compared with the 

data of figure 24) is to be expected from the arguments set-out in section 7.8.

Lift tests were conducted on a drop of initial radius 15 lattice units, placed on 

a Lx x L y = 150 x 51 lattice, bounded by Dirichlet velocity conditions, reported 

in ref [46], in the y-direction and periodic boundary conditions in the ^-direction. 

This, of course, produced an infinite line of drops. The drop was positioned with its 

centre at y = 20 lattice units and equilibrated for 5 x 103 <  t time steps. For time 

steps in the range t : 5 x 103 < t <  4 x 105 the y =  {Ly,0} boundary was set to 

move with x-velocity {5 x 10“3, 0} lattice units per time step respectively. W hat 

would, for a uniform system, be a shear profile ux = (Uo/Ly)y was thus applied to 

stable drops.

The centre of mass ^-coordinate of the drop is denoted by yo and the x  and y 

components of its velocity by Ud and Vd, respectively. Mechanical equilibrium or
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steady-state is defined by a vanishing long-time average < Vd >t= 0. At steady- 

state, general arguments require the centre of mass (£0, 2/0) of a neutrally buoyant 

drop to advect at velocity (Ud,Vd) = (Uo/2,0) at y position Ly/2. Results for 

(< Ud >t,< Vt >t) from the simulation can therefore be compared with expected 

values (t/o/2,0).

For all the results in figures 27 - 30, and table 6, simulation parameters were 

p = 2, 7  =  10~4, a ~  3.4 x 10-3. All data presented here assumes tha t the drop 

liquid and the embedding fluid have the same viscosity. The single LB relaxation 

parameter r  was varied over a range 0.85 <  1 /r  <  1.15. Steady-state data is 

presented for 0.100 <  Red < 0.165 and 1.63 < Ca <  2.98. The channel Reynolds 

number ranges in the data 1 < Re < 2 (see table 6 for exact values).

Figures 27 and 28 are an abbreviated life history of a lifting drop. Figure 27 

shows the partially deformed and orientated drop at the point at which transverse 

migration commenced, depicted using pressure P = p/3 (for our model). Note 

the high pressure region visible between the drop and the closest, rest boundary. 

From these and similar images it is apparent that substantial drop deformation and 

orientation occur before any lift commences. Figure 28 shows the corresponding, 

now symmetric, pressure distribution about the drop at steady state. Both figures 

27 and 28 show fluctuations in pressure in the interfacial region; the phase field, pN, 

by contrast, varies slightly more smoothly across the interface (figure 25). However, 

as mentioned previously, the slight spread in data points indicates tha t further 

improvements' may be possible. Further advancements are detailed in following 

chapters.

More data is shown in table 6 and figure 29. Values of yo/Ly and normalised 

final advection velocities Ud/Uo are recorded in table 6. The last three columns of 

table 6 compare 5y, the absolute difference \yo — L y/2\ with 5 y the corresponding 

data obtained with the method of Ladd and Verberg [47] (equation (189)) and 

6y" that obtained using the unmodified inherited algorithm [25] (equation (185)).
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Figure 27: The pressure distribution for a droplet at the point at which transverse 
migration commences. Note the fluctuation in the pressure near to the interface.

Figure 28: The pressure distribution for the same droplet as that presented in figure 
27, at steady state. Note the small regions of high pressure located at the tips. 
Some slight faceting is visible in this image.
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Figure 29: ^/-positions and ^-velocities for all the trajectories of all the drops in 
table 6. ^/-excursion is plotted against the corresponding rr-velocity, sampled every 
2.0 x 105 time steps. Point y — 25, Ud = 2.5 x 10~3 is the equilibrium position 
required by general Galilean invariance.

Notwithstanding a need to adjust the velocity, the method based upon Guo’s analysis 

[48] outperforms the others, as shown in typical drop centre of mass trajectories in 

figure 29. Note, however, that the Ladd-Verberg approach is not at its best in this 

application as it does not achieve the same accuracy as the method of Guo [48]. Its 

unadjusted velocity may well represent an advantage in other applications.

Figure 30 shows data for all the trajectories of all the drops in table 6. Their 

y-excursion is plotted against the corresponding velocity, sampled every 2.0 x 105 

time steps. Point y = 25, Ud =  2.5 x 10-3 is the equilibrium position required by 

general Galilean invariance. All data lie on the same trajectory.

A measure of the Gallilean invariance of the current algorithm is the steady-state 

value of distance from mid-channel, 5y. Outside the above range of parameter it be­

gins to fail. However, an improved performance in terms of consistency is clear from 

a comparison of the last two columns of table 6. From the sixth row, for C a/Re  ~  1, 

Ca/Red ~  10, the modified model has 28% of the error of the unmodified inherited 

model of reference [25]; over the range of data in table 6, the error in the current 

(unmodified) algorithm, measured by 5y (Sy"), is 0.51 (2.10). W ith 5y <  0.5 as
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Figure 30: Centre of mass drop trajectory. Note that all the drops in the study 
appear to have a trajectory broadly indistinguishable from that shown here. For 
times in excess of the 7.0e5 time steps the drop remains at the channel centre position 
y = 25. Note also that a degree of pinning is apparent as the drop approaches its 
steady-state position.

the criterion, Ca/Red ~  0.78 are possible with the modified algorithm. At no point 

does the unmodified algorithm have so small an error (associated value of 5y').

7.7.2 Kinematic condition

To illustrate the kinematic condition outlined in sub-section 7.6.1, and to set the 

context of the more successful and elegant methods of chapter 9, we proceed as 

follows. Consider the relative normal velocity in the region of the interface. At 

steady-state, the deformation of a sheared drop is constant. The component of 

fluid velocity relative to the drop in the direction of the interfacial normal, wn, must 

vanish and the drop interface should correspond to a closed contour un =  0. The 

interface normal is readily obtained from the (negative of) the direction of V p N. 

The constant centre-of-mass velocity, Ud, of a drop was calculated and subtracted 

from the steady-state velocity field to allow un to be calculated:

«n = ( « * - « * ) •  ( j V ^ i j -  ■ ( 19 7 )
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Figure 31: Ca = 2.5, Reci = 0.13. Data for numerical segregation with (a) kinematic 
conditions of method 1 (b) kinematic condition of method 2 and (c) no kinematic 
condition (all (a)..(c) produce results with no differences visible to the eye). The 
fluctuating solid contour corresponds to zero surface normal velocity, un = 0 (see 
equation (25)). The interface, pN =  0, corresponds to the axis of the ‘toroidal’ 
region covered b}̂  this fluctuating solid contour.

Note that Ud/Uo = 0.5 in the channel centre, on general grounds.

Figures 31 and 32 each show the (solid) un = 0 contour. Both images correspond 

to Ca = 2.5, Red = 0.13. Figure 31 corresponds to the three cases of (a) no kinematic 

condition, (b) the kinematic condition of method 1 and (c) the kinematic condition 

method 2; figure 32 corresponds to method 3.

For no kinematic condition (figure 31), the fact that the un — 0 contour is so 

fragmented, relative to the pN = 0 contour, demonstrates that, despite a sharp 

phase field boundary, the actual hydrodynamic boundary is diffuse. It was hoped 

that a kinematic condition would produce better correlation between the un = 0 

and the interface. Unfortunately data corresponding to methods 1 and 2 show no 

improvement observable to the eye. Figure 32, which, recall, corresponds to a model 

extension by way of a diffuse interface, shows a large improvement both in terms 

of an identifiable un = 0 contour and its correlation with the contour pN ■= 0. 

The diffuse interface is considered in detail in chapters 8 and 9. In respect of the 

diffuse nature of the interface, however, it is important to note that the noise in 

the un = 0 contour, clear in figure 31 extends over approximately six lattice sites in 

the normal direction; in this sense the hydrodynamic boundary between the fluids
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Figure 32: Kinematic condition of method 3, section 7.6.1 used. Ca = 2.5, 
Red = 0.13. Overlaid contours of =  0 (closed ellipsoid) and un = 0. The cor­
relation between the phase field and hydrodynamics information in this simulation 
is clearly much improved. Note that the two diagonal lines extending from (92,0) 
to (105,14) and (45,24) to (70,50) are artifacts of the way in which this information 
was compiled.

are approximately as diffuse (but rather more noisy) as the phase field boundary 

generated by the modified segregation shown in figure 32.

The fact that the modified segregation of figure 32 shows a u n =  0 contour which 

is not closed, for example, at the poles of the drop is at this stage an undesirable 

error. Around the poles, flow is directed along the tangent to the interface and the 

normal component of velocity is very small throughout finite polar regions. Hence, 

with the modified segregation of method 3, section 7.6.1, the correlation between 

hydrodynamic boundary and phase boundary pN = 0 is improved over the majority 

of the interface, however, small deviations still persist at the poles. This deviation 

is reduced in later chapters with the introduction of a diffuse interface and a more 

effective kinematic condition.

7.8 D iscussion

In this section I intend to discuss issues relating to the inherited LB simulation 

model, reserving for remarks on the lift till, section 7.9. Unless otherwise stated, 

suppose that the original model of [25] is in use.
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Eventual loss of simple Galilean invariance seems universal in multi-component 

LB on the following approximate argument. Consider a two dimensional D2Q9 LB 

fluid. Suppose the lattice fluid is translating uniformly at velocity Uo =  U^ex. It is 

then described everywhere by an equilibrium distribution function f i ° \ p ,  Uo); eg. 

equation (39). The momentum distribution for a link j ,  parallel with imposed flow, 

is thus shifted about its rest equilibrium value (of tpp) by an amount:

dfj =  3tppUo +  O(Ug). (198)

Note, the numerical factor 3 in equation (198) has dimensions which give the overall 

expression for dfj units of p. Now, suppose the LB fluid contains an embedded drop, 

radius R. When the interface-inducing source term f>j (equations (179) and (185)), 

competes with dfj , information relating to the advection of the interface is lost. This 

leads to an approximate, 0(U q) accurate, condition for loss of flow information in 

the interface region:

f l s l  (199)

where, recall, the factor |  is dimensional. Taking a value for the phase field gradient 

of unity (typical of the centre of the interface) and R  = 15, we obtain:

—  > I T  =   ---- !------- RJ 0.035
a -  2 pR  2 X 15 x 2.0

•where we have substituted the value of p = 2.0  used for all the results.

Given the approximate nature of these arguments, the prediction in equation 

(200) is very well supported by the simulation results shown in figure 24; a fit to 

the data (solid line, figure 24) gives a figure of 0.049. Note that, using the modified 

forcing, defined in equation (186) or, indeed an alternative form of LB interface 

generating algorithm, the central assumptions of the above analysis survive.

Similar arguments apply to the problem of a drop subject to fluid stresses. The

(200)
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lift simulations reported in the section 7.7.1 consider a drop suspended in a uniform 

applied shear:

ua =  eapxp, e\\ — e2i =  e22 =  0, ei2 =  7, (201)

which we take to be the unperturbed flow. There is an exact solution for the / /  s in 

this flow [59], for our model it may be written [60]:

f i  =  f i ° \p >  U ) -  Ttp PeaP®al3, Qafi =  (ci*Ci(3 -  • (2 0 2 )

It is worth noting in passing that our unit time step, introduced from equation 

(179), actually multiplies the second term in the right hand side of this equation (see 

the Chapman-Enskog derivation [3] of Hou et al [27]) giving that term the overall 

dimensions of density. For our underlying D2Q9 model, the number of velocities 

b = 9 and (?s =  1/3 (in units of lattice velocity squared) so equation (202) implies 

an expression for the so-called /0 )  component (see eg [3] and Hou et al [27]) of the 

momentum distribution function:

(203)

in which, note, the factor 3 has units which cancel those of the factor Cjxq y, again 

giving the right hand side of equation (203) dimensions of p overall. Now, it is 

well-known that the strain-rate in single-component LB fluids is given by Sap = 

- 2 ^ / 7  CiaCip from which it is possible to show that the viscous stress is con­

trolled by the s:

(j'a(3 = 2r)Sap = / / 1)c*ac*)9> (204)
'■ '  i

and that the LBGK evolution equation (179) can, with the assumptions of the

f.(1) =  - t
3rp  .

^CixCiy,
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original model of reference [25], be written in terms of the f -1̂ s [3]:

fi (r + Ci,t + 1) = f ? ( r , t ) + ( l  - ^ j  + fa. (205)

Suppose now that the LB fluid contains a drop, radius i?, under shear. It is the 

fluid stresses in the interfacial region which impress force between the drop and 

embedding fluid. Clearly, from equation (204), this stress is determined by the 

f - 1̂ s. So if the interface-inducing source term fa competes with information 

relating to the fluid stress distribution about the interface is degraded. Hence the 

loss of stress information, or lift, is characterised by:

(206)

Substituting from equations (185) and (203) into equation (206), cancelling the 

(dimensional) numerical factors and tpj we find a simple condition for degradation 

of surface stress information:

Thus, taking the parameters used for the data of table 6 , r  ~  1, p = 2 and 7  =  10-4  

and taking | V |  ~  1, equation (207) suggests an upper limit of surface tension 

a ~ 3 x  10-3. This value accords with observations. In table 6 , recorded values of 

8y' show that the drops with a value of a = 2.5 x 10~3 used there are not forced into 

the position required by general Galilean invariance. However, the results presented 

in table 6 for 8y, using the improved model (for the same parameters) reflect a 

simulation with considerably improved general Galilean invariance. This is due, in 

part, to the use of the analysis of Guo et al [48], which ensures that the background 

fluid stress information is less corrupted by the interface forcing.
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7.9 C onclusion

Presented in this chapter was a two-component lattice Boltzmann model of flow, 

designed to be efficient in the continuum approximation and to support essentially 

unstructured interfaces. It contains a set of modifications to my inherited model, 

of reference [25], described at the beginning of section 7.5. In outline, these modifi­

cations achieve a slightly improved fluid-fluid interface behaviour in terms of drop 

shape (faceting) at smaller capillarity number, Ca, and Reynolds numbers Re  and 

R e ^  These improvements in the basic reliability of this class of LB model make it 

more suitable for microfluidic and non-Brownian colloid applications than the previ­

ous method, eg those in references [49,50], in which local Red variations must occur. 

The approximate analysis of section 7.8 suggests that the modifications outlined in 

this chapter achieve better results by improving the representation of stress near the 

interface.

We have used the improved model to report on 2D simulations of lift on slightly 

deforming, neutrally buoyant, immiscible liquid drops in simple shear. Clearly, on 

general grounds, a drop must migrate across stream lines of the undisturbed simple 

shear flow, until it reaches a position of mechanical steady-state: which is what 

was observed to a greater extent than with the previous inherited method. To 

use LB accurately one must be confident that any small pressure fluctuations can 

register stresses in the interfacial region of the fluids, where pressure was seen to be 

fluctuating due to interfacial forcing; a point underscored in figures 27 - 28, in which 

the relative size of the lift-inducing pressure difference and the interfacial pressure 

jump are made clear.

It is worth commenting that results also demonstrate that transverse position 

and drop velocity increase in proportion; also a marked degree of deformation and 

orientation in local flow precedes any lateral migration. This, again, is an unsurpris­

ing observation given uniform nature of applied shear. It is also worth repeating that
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the migration trajectory information shown in figures 29 and 30 were not observed 

significantly to vary over all drops in this study.

Although improvements have been made, very small values of Ca and Red remain 

elusive with the method as it now stands. This regime might be achieved by reducing 

local shear rates 7 . From equation (207), this can be balanced only by a reduction 

in the value of phase field gradient V p N. Taken with the results of figures 31 

and 32, this observation calls into question the practical utility of a sharp phase 

boundary close to which the velocity, in particular, fluctuates. The results in figure 

32 are important in this respect. Figure 32 depicts a distributed interface algorithm 

but the velocity field correlation with a particular value of phase field is greatly 

improved- actually making the hydrodynamic boundary sharper, the distributed 

interface method shall be investigated- fully in the following chapters.

7.10 Chapter Sum m ary

The work in this chapter is of limited value, although not fruitless; it is worth 

noting some remaining shortfalls and where substantial advances in performance 

remain elusive.

As the capillary number tends to zero, pinning still occurs. Although the ad­

vances in this chapter have enabled lower Raynolds numbers and Capillary numbers 

to be reached, pinning remains at very low Ca. The cause of this pinning is thought 

to originate in the relatively high levels of noise that are still present in the phase- 

field that themselves are attributed to the ’’sharpness” of the interface causing high 

gradients. W ith the sharpness of the interface being one of the attractive attributes 

of this method; to  increase the thickness of the interface requires a more complete 

solution of the kinematic condition.

The attempts to formulate a kinematic condition in this chapter have proven 

to be computationally expensive and only mildly effective. The incorporation of a

137



kinematic condition, however, is still considered to be of importance and shall be 

considered much more successfully in Chapter 9.
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8 N ew  Approach to Continuum MCLB Simula­

tion

Close investigation of the phase field and other hydrodynamic signals using numeri­

cal re-colour revealed that a sharp contour was only achieved in the phase field with 

high levels of noise and corruption in other hydrodynamic quantities. As mentioned 

previously the large levels of noise present in other hydrodynamic quantities are 

mainly due to the large gradients in the colour field itself leading to noise associated 

with its derivatives. A proposed solution to this corruption is to attem pt to achieve 

a smoother variation in the phase field coupled with an adequate means of identi­

fying the fluid-fluid interface such as not to compromise interface resolution. That 

is, make the interface too broad for a continuum description to be appropriate.

8.1 Prelim inary Rem arks

Presented in this chapter is a multi-component lattice Boltzmann simulation for 

continuum fluid mechanics, paying particular attention to the component segrega­

tion part of the underlying algorithm. The principal result of this chapter is that the 

dynamics of a component index, or phase field, is, for the first time, obtained for a 

segregation method after d ’Ortona et al [57], due to Latva-Kokko and Rothman [6]. 

The said dynamics accord with a simulation designed to address multi-component 

flow in the continuum approximation and underwrite improved simulation perfor­

mance in two main ways: (i) by reducing the interfacial micro-current activity con­

siderably and (ii) by facilitating simulational access to regimes of flow with low 

capillary number and drop Reynolds number, see Chapter 7. The component segre­

gation method studied, used in conjunction with Lishchuk’s method [25], produces 

an interface which is distributed in terms of its component index; however the hy­

drodynamic boundary conditions which emerge are shown to support the notion of
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a sharp, unstructured, continuum interface.

8.2 Introduction

As identified previously, the simulation of multi-component fluids at low Reynolds 

number and low capillary number is of interest in a variety of important applica­

tions. Refining MCLB simulation to the extent that it can address this regime more 

effectively than the MCLB variant of Chapter 7 is the major objective here.

A variety of multi-component flows on a range of length and time scales have 

been modelled using the multi-component LB method; the work presented in this 

chapter is of most relevance to such applications, for instance the recent miCroflu- 

idic flow simulations of Dupin et al [23] would be significantly improved in physical 

accuracy were they performed using the methods outlined in this chapter. Such 

flows as are addressed in reference [23] are formally characterised as complex, in­

compressible flows at small Reynolds number, Re, and small capillary number, Ca. 

Multiple blood cells in venule-scale flows have also been represented in this regime, 

with LB [49,50]. Improving simulations of such non-Brownian colloids, addressed 

in the continuum fluid approximation, where fluid-fluid interfaces have no assumed 

structure and appear as boundary conditions, are the object of the work undertaken 

in this chapter.

Despite some successes [23] and work carried out in Chapter 7, continuum m ulti- 

component LB (with Lishchuk’s method or Gunstnsen’s method) still encounters a 

significant problem reaching low Ca and drop Reynolds number, R e ^  as outlined 

previously; as Ca and Red both decrease there is an increasing tendency for sus­

pended drops of immiscible fluid to facet and to attach, or pin to the simulation 

lattice in an effective loss of Galilean invariance; here this problem is addressed 

together with the related problem of the interfacial micro-current, see Chapter 7.

In this chapter, in continuation of work carried out in Chapter 7 ,1 draw attention
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to what I regard as the key element of the multi-component LB algorithm which 

will impact on its uptake; an elegant, efficient alternative fluid-fluid segregation pro­

cess, devised by d ’Ortona et al [57]. Recently, Latva-Kokko and Rothman have 

demonstrated the advantages of a segregation method closely related to d ’Ortona’s 

in respect of an almost eliminated tendency to drop pinning [6]. Concentrating on 

application to the continuum regime, where drop evaporation must be completely 

interrupted, what is shown here is that, by adopting the approach of d ’Ortona and 

Latva-Kokko (i) the interfacial micro-current is, likewise, almost eliminated aiid (ii) 

the kinematics of the interface may be predicted (see below). W hat emerges is a 

simple, relatively efficient, analytic algorithm with determinate phase-field dynam­

ics, has very low micro-current activity, very low pinning and high adaptability in 

the continuum approximation.

8.3 Interfacial H ydrodynam ics in the C ontinuum  approxi­

m ation

The key result of this chapter - one might say this thesis - is the equation which 

expressed the dynamics and the kinematics of the LB models interface. We will; in 

this chapter, seek the latter as the equation of motion of pN, the phase field. In 

the continuum regime, the interface is defined as d £ i2, the boundary between two 

Navier-Stokes domains £ i  and £ 2- On this boundary certain kinematic and dynamic 

conditions must be satisfied. The most fundamental is the kinematic condition of 

mutual component impenetrability which requires that both components have the 

same velocity on the d £ i2. [5]:

y (l)= u (2)t 0n a S l2  (208)

The interfacial dynamics appropriate to the continuum regime have been dis­

cussed in 3.4 and [5].
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To recover the dynamics expressed in (208) we would like to see the interface, 

identified by contours of p;v=constant, advect in flow without any form of diffusion, 

put another way, for a continuum interface our models phase field should obey;

§-t PN = 0. (209)

8.4 M u lti-com pon en t la ttice B oltzm ann in th e  continuum  

approxim ation

The source term has been discussed previously in Chapter 6 and Chapter 7. Since 

the aim of this chapter is to generalise its application, some key details are presented 

with the aim of setting this chapter into context and for the sake of completeness 

and coherence. If the reader is happy with the material of Chapter 7 he or she may 

wish to proceed directly to section 8.5.

fi (r  +  c t  +  1) =  fi (r , t ) - u j  f  (r , t ) -  j f  } (p , p u ) )  +  fa(r ) .  (2 1 0 )

The source term, fa, in equation (210) has the effect of impressing a body force in 

the fluid which emerges from this kinetic (fi-based) description; 0 < uj < 2 is the 

single selectable parameter which, with LBGK, controls the viscosity of the fluid [3]; 

all other symbols have their usual meaning. Below I discuss how the source term, 

fa, inserts a body force of limited range to produce an interfacial pressure step in 

the fluid. Note, equation (210) assumes unit time step.

For a constant source term, fa, Chapman-Enskog analysis [3] may be used to 

derive LB’s characteristic weakly compressible form of the incompressible Navier- 

Stokes equations, now with a body force. For example, the choice:

fa =  tp-j-F.Ci, (211)
<v2
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represents one, simple, widely used device for inserting a uniform body force (or 

uniform pressure gradient), F, into the lattice Navier-Stokes equations:

p̂Ua + ̂ pUpua = -^ p+̂ {2pvSaff) + Fa, (212)

where kinematic viscosity z/ =  |  — l) and Sap is the strain rate tensor; the

lattice-dependant constant k2 and the link weights, tp, are discussed in' Chapter 4 

and re-iterated in the beginning of section 8.5.

The precise relationship between the fluid body force and the source term fa is 

an issue throughout this chapter. Recall, a constant microscopic source term, fa, 

in equation (210), and the resulting macroscopic body force, in equation (212), are 

related:

F  =  fc2y > Cj. (213)
i

For present purposes, however, the external body force (used to impress interfa­

cial behaviour) has spatial variation: F  —» F (r) see Chapter 7, which necessitates 

spatial variation in fa{r); as Guo et al point-out [48], such a generalization com­

plicates the derivation of equation (212) above and requires (i) a more complicated 

relationship between F (r) and fa(r) than tha t given for equation (213) and (ii) a 

re-definition of u  (initially defined in Chapter 7). Before reiterating Guo’s modified 

relationship, it will be useful to consider the form of fluid interface force which fa 

should generate, and where this force should be applied.

Fluid-fluid interface dynamics are applied in regions of the lattice where two im­

miscible fluids interact (and segregate). The two fluids concerned are, as in Chapter 

7, designated red and blue. As different fluids mix in an interfacial region they 

define a single mixture, or sum, fluid which is evolved according to the evolution 

equation (210), the interface dynamics being captured by the source term, fa The 

mixture is then segregated. Segregation is not a passive process; the way in which 

it is achieved influences the physical accuracy of the model. Where previously, as
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described in detail in Chapter 7, numerical segregation has been used, here an anal­

ysis of a particular, advantageous, segregation method (initially used in Chapter 7 

in subsection 7.6.2 method 3) is presented in section 8.5; in the remainder of this 

section, salient detail of the interface force and corresponding source term  will be 

considered.

To identify mixed fluid, first distinguish between individual lattice fluids them­

selves. As stated previously our multi-component LB uses a phase field based upon 

the densities of ‘red ’and ‘blue’ fluids present at a node. Following the notation 

of [25], we define a fluid component index, or phase field, pN(r):

f  R(r, t )  ~  B ( r , t ) \  ' N
p- (r’*) 5 U r |* )  + B (A )J ’ - 1 - P ( r ) - L (214)

Red and blue fluids mix under the LB propagation step [3] defining an interfacial 

region; here an additional force is applied to the sum fluid capturing the effects of 

interfacial tension. The two fluids are then segregated numerically [24] or by the 

method of section 8.6. Whatever the segregation algorithm used, in Lishchuk’s LB 

interface method [25] a surface tension inducing interface force, F(r), is defined in 

terms of the gradient of pN(r). To achieve a cross-interfacial pressure step propor­

tional only to K , the local curvature in the pN field, use a fluid body force:

F(r) =  - l a K V p N, (215)

with a , a surface tension parameter. Note, the right hand side of equation (215) 

vanishes for constant pN. As stated previously, the negative of a normalised phase 

field gradient is used as the interface normal, n, K  is obtained from the surface 

gradient:
d d \  9 d 9 d



where from Chapter 7:

(217)

It is appropriate to emphasize here that all the gradients are calculated numerically 

using suitable finite differences, see Chapter 7; a source of significant computational 

overhead. We shall consider the feasibility of appropriate, locally calculated alterna­

tives in section 8.9 and in section 8.10.

The cumulative effect of the force in equation (215) is to produce a pressure 

step across the interfacial region. Assuming K  to vary slowly, the total local force 

perpendicular to a unit length of interface, which is numerically equal the pressure 

step, is obtained from the integral of the force (density), F (r), between the terminal 

points, Pr and Pg, of a short, normal path with element dn:

temporally varying force applied locally in what is a single fluid, to eliminate curva­

ture in a phase field. This, it may be shown, accurately represents interface dynamics 

(stress conditions) [25]. However, the extent to which the kinematic condition of 

mutual impenetrability is implicit is unclear; the fact that there is a single ‘sum’ 

fluid means that the combined momentum of the mixture of fluids is continuous 

across an interfacial region but the velocities of the red and blue fluids may not be 

easily defined close to the interface. Previous attempts at enforcing an interfacial 

kinematic condition, set out in Chapter 7 are, at least, clumsy and only partially 

effective. I return to this point in section 8.5 and in Chapter 9.

The methodology of Guo addresses the issue of a spatially varying body force in 

a progression of earlier work of, in particular, Verberg and Ladd [47]; it furnishes

where Pr and Pr are embedded in the blue and red fluids respectively, so pn (Pr ) = 

- p N(PB) =  1.

The interface algorithm outlined in this chapter is based upon a spatially and
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an expression for an appropriate source term, in terms of variable macroscopic 

force F (r) [48]:

<Mr ) = t p ( l -  D  (3 (ci -  u*) +  9 (cf.u*) ci) .F (r), (219)

where, it is emphasised, the fluid velocity is re-defined, effectively to carry some of 

the influence of any external body force:

I shall return to this point and the definition of link weights, tp, in section 8.5. Note

time dependence. Of course, in a standard LBGK model, /  — 1 in definition (220). 

It is worth the inconvenience of retaining the parameter / ,  introduced above, as it 

is possible easily to adapt our key results to a standard LBGK model simply by 

changing its value from /  =  \  to /  =  1.

W ith Guo’s methodology [48], the model’s Navier-Stokes equation (212) now 

acquires position dependence in the body-force term:

We emphasize that Fa (r) should be regarded as that interface force defined in 

equation (215).

8.5 A nalysis o f th e Form ulaic Segregation R ule

Previously, in Chapter 7, results derived from my inherited MCLB, based on the 

numerical segregation method of Gunstensen and Rothman [24], outlined in section

4.3.1 were shown. In this chapter we consider in detail the formulaic segregation

(220)

that equation (219) accounts for the case of a macroscopic force which also contains

i p < + + (2puS^ + F° (r)  • (221)
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i=7
f
i=6

Figure 33: The nodal velocity set and subscripting convention for the two dimen­
sional, nine velocity, D2Q9, lattice. Note that links classified with odd values of 
subscript i have a larger length. The weights corresponding to the links are listed 
in Table 1 of section 4.1.1.

method of Latva-Kokko and Rothman [58], briefly discussed in section 4.3.2.

Recall, R  (B ) denotes the density of red (blue) fluid present at the node, position 

r. In terms of phase-field parameter, pN, these quantities are:

(l + pN(rit)) , (222)

£ ( r > t) =  ip ( r , t) (1 -  pN(r, t)) . (223)

For compatibility with previous chapters, simplicity and reasons of available re­

source, work in this chapter shall be carried out on the D2Q9 lattice defined in figure 

33. Extensions to alternative lattice structures shall be made where appropriate. 

Results will generalize to D3QN transparently, for lattice and model dimensional­

ity enter only through parameter /c2, which is retained explicitly throughout this
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section. As previously a unit time step and lattice spacing are used for the same 

reasons. Whether in two or three dimensions, all lattices are considered have the 

usual isotropy properties:

^  y p̂QqQ/3 — (224)
i

^  ' tpCjgCipCijCiS — &4 (6af3$'y5 T  &(35 T &a5$/3'y>) : (225)
i

odd moments of the lattice basis vectors, c*, being zero. In equations (224) and 

(225) the link weights, tp, are a set of scalar quantities which weight the directions 

of the lattice according to the length of velocity vector c*. The values of tp and c* 

for the of the D2Q9 LBGK lattice are defined in Table 1 of section 4.1.1. Note that, 

for the D2Q9 lattice &2 =  | .

Component segregation is achieved by allocating colour density R  (say) to the 

sum fluid’s momentum distribution function, fi, optimally at each node [24]. It 

is the purpose of this chapter to demonstrate the advantages of, and to analyse, 

an alternative approach, after d’Ortona [57], due to Latva-Kokko and Rothman

[6]. I shall adhere to the following convention. A post-collision, pre-propagation 

momentum density, is indicated by the use of a dagger superscript; accordingly 

equation (210) becomes:

fi  (r >t) = fi (r , t ) ~ u  ( f i  (r > t) ~  f i ° \ p > pu*j) +  <Mr), (226)

in which the modified velocity of (220) is used to calculate the equilibrium, note. 

Note also that the post collision momentum distribution function, / / ,  includes the 

source contribution, fa, defined in equation (219).

For convenience, the collision process is subsequently resolved into two steps; 

first, that expressed above, second the segregation process. Post collision, post­

segregation (re-coloured), quantities will be indicated by the use of a double dagger 

superscript.
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Before proceeding, it is necessary to remark on certain properties of the Guo 

LBGK model [48]. As mentioned previously, the effect of a fluid body force is partly 

carried in a re-defined velocity which has a notable consequence for the first moment 

of the f j  as defined in equation (226):

’Z , f ' c ia = /Ml + f F a, /  =  i  (227)
i

which result may be established by taking first moments of the expansion of fi  

expressed in (45) and summing on i as follows. Appealing to equation (5) of Guo 

et al [48] and my equations (51) it is possible to identify the first moment of the 

component in terms of the body force, F. Replacing fi  in the LBGK evolution 

equation (226) with (45) and taking it’s first moments and using Guo’s equations

(7), (8c), (11), and (17) and observations of Guo et al [48]. Equation (227) follows 

with some straightforward algebra. Note, Guo’s time step parameter set to A t  = 1.

For the usual LBGK model used in Chapter 7, the parameter /  introduced in 

equation (227) would, of course, take the value /  =  1.

We proceed to develop the macroscopic dynamics arising from the formulaic 

segregation encapsulated in equations (231) and (232) by attempting to obtain an 

expression for ApN later in section 8.8.

8.6 A cceleration  of Colour F lux

As commented upon earlier in section 4.2.2, the post-propagation, pre-collision, 

nodal red and blue masses and single colour fluxes in terms of the link based quan­

tities Ri(r, t)  and Bi(r, t)  are defined as:

=  B(r , t )  =  ^ B i ( r , f ) ,  (228)
i i

QRa(r, t) = ^ 2  Ri(r i t)ciaJ qBa(r, t) = ^  ^ ( r ,  t)cia. (229)
i i
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The overall colour flux is also defined as:

q(r, t) = qfi(r, t )  -  qB(r, t), (230)

which is further discussed in much greater detail when considering the dynamics of 

the phase field and the colour flux vector in section 8.8.

It is now possible to define a slightly modified colour segregation after Latva- 

Kokko and Rothman’s form of d ’Ortona’s segregation [6], [57]. We assume tha t close 

to rest the equilibrium distribution (p, 0) can be approximated as ptp and take:

=  R +  +  P1^+B tpCOS(0f ~  ^  lC|l ’ 2̂31^

B*?‘ =  R T B f <~ ~  Si) |ci1' (232)

in which Of (0*) is the angle of the colour field, f'(r), (link) and R p  denotes the 

post-collision, post segregation value of the momentum density of the red fluid 

associated with link i. The inclusion, in equation (231) and (232), of the factor 

|cj| makes the resulting algorithm more amenable to analysis whilst preserving the

essential ideas of Latva-Kokko and Rothman and d ’Ortona et al [6], [57]. Whilst the

equation (231) essentially accords with equation 9 of Latva-Kokko and Rothman [6] 

(the latter being an improvement over the original method expressed in equation 8 

of d ’Ortona et al [57]), it will be necessary to revisit certain of Latva-Kokko and 

Rothmans’s results later in this section and also in 8.7, where segregation parameter, 

/3, is considered in more detail.

It is necessary to note two properties of equation (231). First:

£ * ? = * •  (233)i i

where the identity cos(0f — 0i)|c»| =  cos(0f)cix +  sin(6f)ciy has been used and
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recalling that tp°ia — 0 where a = x , y  and that the density is given by the sum 

of the red and blue fluids. Secondly:

V i ? t tcj =  qLt =  i?u* +  /9fc2- ^ - f '  +  / _ ?—  F, (234)
4-* R  + B- J R  + B  ’ v 'I

where we have used equation (227) and those properties of even lattice moments 

given in equations (224) and (225), the unit vector f ' is defined in equation (217), 

F  is any continuum body force and, recall:

f  = \ ,  1, (235)

for Guo’s LBGK model variant [48] and standard LBGK respectively. For the D2Q9

lattice, =  1/3 (and — 1/9). For the segregation of the blue component,, let

(236)

(237)

(238)

and replacing quantities R  and B , using the definitions expressed in (222) and (223), 

equation (238) takes the form:

qtt =  ppNu* +  i/?fc2p (1 -  pN2) f> + f p NF, (239)

Of —» (Of +  7r) thus making the corresponding blue species equation:

V  Bpcg =  q£  =  Bu* -  Pk2 î B ?’ -  
4 ' H R  + B  1 R  + B  ’I

Hence, from equation (234) and (236), the net flux of colour vector:

q ft =  qJJ -  qS =  ( ^ C j  -  B^Cj) ,
i

may be written:

q "  = ( R -  B)u* +  2f}k2- ^ ^ { c o s { e } ), sin(8f )) + f p NF,
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Figure 34: Analysis of a flat, equilibrium interface orientated perpendicular to short 
lattice links. The lattice links on each of the nodes depicted are indexed as in figure 
33. The colour gradient points from left to right; the vertical broken lines represent 
contours of constant phase-held value.

Now, qtt =  ppNu* represents a post-collision colour concentration advecting in 

how. Neglecting for the moment correlations between q and qb , the segregation 

expressed in equation (231) tends to accelerate the colour flux in the direction of 

the colour held at the rate \(3k2p (l — pN2). We return to this point later in this 

chapter after equation (293).

8.6.1 P la n a r  In te rface  a t  R es t

Before proceeding with our derivation of the interface dynamical equation, we pause 

to investigate the structure of a hat boundary between rest huids, formed by rules 

(231) and (232).

Consider a lattice huid a rest with uniform density p, in the steady state, con­

taining a hat interface parallel to short lattice links in a D2Q9 huid. This situation 

is depicted in hgure 34, in which two contours of constant phase held parameter 

pN are represented by broken lines and three adjacent lattice sites are shown. The 

indexing of the link label, z, for all three sites is as dehned in hgure 33. Note tha t an 

explicit lattice spacing, h, parameter has been introduced for present purposes. The

Redder Fluid

N+1
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colour gradient field unit vector / '  =  x. For the situation depicted in figure 34 there 

is no variation of pN with the y coordinate; furthermore, on grounds of symmetry 

alone:

R3 {xn,y) = Rb(xn,y), R i (xn,y) = R 7(xn,y), R 2(xn,y) =  R 6(xn,y),  (240)

where R  may be a pre or post collision value and n =  (N  — 1), TV, (N  +  1).

At equilibrium, there is no change of colour content at any site and, henceforth 

suppressing the y coordinate, we can write the following equilibrium condition for 

the red density on site N:

R(xN) =  2 R l \ x N- i )  +  R \ \ x N - i ) +  2 R \ \ x n )

+ 2 i^ (# N + i) +  R $ ( x n +i ) +  .R}q (x n )’ (241)

Using equation (251) for R with the equilibrium solution f j  = tpp with appropriate 

values of tp and colour field jf, the last equation may, after some simple algebra, be 

written:

2R(xN) = R($N-.1) ( l  + l3,( p - R ( x N- 1))) 

+R(xN+1) ( l - P ' ( p - R ( x N+1))),  (242)

where (3r — {3/p and the density p is considered constant giving B  =  (p — R). Taylor 

expanding the terms in this equation about x ^ ,  to second order in lattice parameter, 

7i, to give the following definitions:

h2
R ( x n + i) =  R ( x n ) +  hR'(xN) +  — R " ( x n ) +  ... (243)

Through substitution of (243) into (242) and retaining terms to second order in 

lattice parameter, h, it is straightforward to obtain the following equation for the
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red density, R ( x ), at equilibrium:

d2R  nj3 dR B 'dR2
——r- -  2y-—— +  2 b - - —
da:2 h dx h dxh dx h dx

(244)

which may be integrated once, straightforwardly to obtain a separable first-order 

differential equation:

which, note, differs only superficially from equation (15) of Latva-Kokko and Roth­

man [6]. The last equation may be readily integrated. On supposing that the site at 

xn  lies at the centre of an interface, the constants of integration are easily obtained:

The above may be checked by substitution into equation (244).

On setting h =  1, segregation parameter /3 is seen to be the parameter of the 

equilibrium interface width. Clearly, the preceding analysis generalizes directly to

For a D2Q9 lattice, a conceptually identical but somewhat more complicated 

analysis of the case of an interface parallel to the long links of the lattice shows 

that the equilibrium state of the interfacial phase field is described by differential 

equation (244) solution (246).

8.6.2 Curved Interface

We saw in the last section that by considering the flat interface, centred on x = xo, 

embedded in a rest fluid, a solution for the steady-state spatial variation in the 

phase field can be obtained (by analytical methods) which may be expressed in

(245)

(246)

case of a 3D lattice.
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Figure 35: Variation of the phase field parameter, pN, with distance, x, across 
the equator of a red (pN =  1 ) drop of approximate initial radius 10 lattice units, 
obtained for a range of segregation parameters (3 (equation (231) and figure key).

generalised notation as:

pN = tank  (k(x  — x 0) ) , k = f3. (247)

As noted above, this equation applies to both (i) the interface parallel to the short 

links of a D2Q9 lattice and (ii) the interface parallel to long links of a D2Q9 lattice. 

Furthermore, for a distributed, circular drop interface, with 0 <  (3 < 0.7, simulation 

results like those in figure 35 (which correspond (3 = 0.7, note) show that the steady 

interface profile generated using equation (231) is well-approximated (see below) by 

a phase field parameter variation:

pN (s) = tanh(ks), k = (3, (248)
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in which s measures distance in the direction of f' with s = 0 corresponding to the 

centre of the interface. Supported by these observations, we take in general:

V p N «  ksech2{ksjf' = k  (1 -  pN2) P, k = f5. (249)

The parameter k shall be retained as the interface parameter throughout this anal­

ysis, setting k = (3 only in final results.

It is important to reiterate the fact that, for the case of a D2Q9 lattice, solution 

(247) may be shown to describe interfacial orientations with the interface parallel 

to short lattice links as carried out above and also with the interface parallel to the 

long lattice links; this demonstrates the isotropy implicit in the distributed interface 

and accords well with Latva-Kokko and Rothman’s observations.

Now, returning to the colour flux, after the segregation between colour compo­

nents may be written:

q "  = ppNu* + ^ k 2pVpN + f p NF. (250)

Where the first term in the right hand side of the above expression relates to the 

colour concentration adverting with flow and the latter term on the right hand side 

of equation (249) relates to the acceleration of the colour flux. The result expressed 

in equations (239) and (250) generalizes straightforwardly into three dimensions:

<251)

8.7 Stab ility  of the Interface

For application to the continuum hydrodynamic regime, it is necessary to impose 

limitations on the range of parameter (3 in equation (231). Figure 35 shows the 

variation of the phase field, pN, across the equator of a stationary drop, initial
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radius 20 lattice units, for a range of beta values. Clearly, interfacial thickness 

decreases as (3 increases. However, for (3 >  0.7, there is no stable steady state. This 

is manifest in the data of figure 35 in overjump behaviour which, for application to 

the continuum regime with arrested evaporation, represents an instability.

An approximate maximum stable value for segregation parameter, (3rnax , may be 

obtained from the condition ^  / /  and equation (251). We require:

R T B ^ * +l3W V B tp^ ' Ci ** f ° ralli’ (252)

from which it is straightforward to obtain the inequality:

tp(3R?'-Ci <  f j -  ' . (253)

The upper bound for (3 must correspond to a maximum of the scalar product f'.c*; 

that is, when ¥  is parallel to c* for some particular link i = / ,  which is supposed to 

have the longest possible length lmax:

tpftmax R^max ^  /]• (254)

Approximating f j  «  0) =  tpp and taking the maximum possible value of R

(which is close to p) provides the required maximum stable value for (3, consistent 

with arrested evaporation. For a D2Q9 lattice, lmax = \/2, so, for our particular 

simulations:

Pmax < ^  =  0.71, (255)

which value agrees very well indeed with simulations at low Re , Ca. It is important 

to note that the practical upper bound approximated in this way may be reduced

in other regimes of more rapid multi-component flow, when the fas depart further

from their equilibrium values.
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Figure 36: Contours of constant value for the rectangular stream function obtained 
for a two-dimensional drop with numerical segregation, exposed to a small, symmet­
ric shear flow.

Figure 37: Contours of constant value for the rectangular stream function obtained 
for a two-dimensional drop with the segregation method after d ’Ortona [57], analysed 
in section 8.5. Again the drop was exposed to a small, symmetric shear flow, identical 
to that used for the data of figure 36.

Compared with the formulaic segregation expressed in equation (251), numerical 

segregation [24] produces much narrower interfaces; typically its phase field switches 

in ~  1.5 lattice spacings see Chapter 7. An obvious question arises around replacing 

a numerical segregation by the formulaic segregation; whilst numerical segregation 

is affected by pinning, and computationally it is much slower, surely the sharper 

interface of numerical segregation better accords with the continuum concept of a 

discontinuous interface? In fact, a close examination of the rectangular stream func­

tion of symmetrically sheared drops, maintained by numerical segregation (figure 36) 

and formulaic segregation (figure 37) provides a reply.
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Figures 36 and 37 relate otherwise identical, slightly sheared drops maintained 

(respectively) by numerical segregation and formulaic segregation. The last open 

and first closed contours have been selected closely to sandwich the interface. In 

figure 36, this pair of contours exhibit oscillations of an amplitude which, when re­

solved in the direction of the local interface normal, extend over <  5 lattice spacings 

exposing a noisy velocity field in the region of the interface. Such noise is absent 

from the equivalent results of figure 37. In fact, it is possible to examine the pre­

cise hydrodynamic boundary conditions recovered in this interfacial region and to 

develop, for formulaic segregation, simple, robust, highly adaptable and very effec­

tive algorithmic corrections which effectively sharpen the interface; this algorithmic 

modification is to be covered in detail in Chapter 9. Furthermore, even though the 

phase-held interface is sharper, the hydrodynamic interface obtained with numerical 

segregation (as defined by properties of the velocity held) is diffuse over a distance 

comparable to the phase held variation obtained with formulaic segregation. So, 

with numerical segregation, the interface is not consistently sharper. It is appropri­

ate also to emphasize that, this problem only becomes more acute as drop surface 

tension (deformation) increases (decreases).

8.8 D ynam ics of th e  P hase Field

Having gathered several key results we hnd ourselves in a position to pursue the key 

objective of this chapter, to derive an expression for the dynamics of the phase held.

The dynamics of numerical species segregation has not, to my knowledge, been 

derived. It is a considerable advantage that d’Ortona’s formulaic method allows one 

to derive the dynamics of the phase held, which result form use of its characterizing 

equation (231). It is therefore appropriate to consider the equation of motion of the 

phase held, pN.

Unlike numerical segregation (or re-colouring) strategies [24], the formulaic seg­
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regation method of d ’Ortona et al [57] is amenable to analysis. To facilitate this 

analysis, formulaic segregation is described formally using a single relaxation time 

LBGK evolution equation with collision parameter ujc and the corresponding macro­

scopic dynamics are obtained by a Chapman-Enskog expansion process. The seg­

regation encapsulated in equation (231) represents a special case of the following, 

generalized formulaic segregation or ‘colour collision’:

Ri(r  +  Ci, t  +  1) =  Ri(r, t) -  u c ( r ^ t, t) -  R\0)  ̂ , (256)

with;

R i0) -  f i  +  +  ^ ( ] f  +  ^ )  tpcos(ef (T,t) -  8{) |c;|, (257)

in which R = R(r , t ) .  It is important to emphasize that equation (257) is a general­

ized segregation; setting ujc =  1 will enable us to extract the macroscopic dynamics 

of the particular formulaic segregation after references [57] and [6]; the aim here 

is not to consider a generalized segregation process. Note that the above equation 

(257) is the same as that expressed in (231) with the bracket term re-expressed as 

a reciprocal and that f }  includes any source term contribution; see equation (226). 

It is assumed that it is possible to expand the Ri(r, £) about equilibrium:

Ri(r,t) = Y , z nl t ), (258)
n

where e is a Chapman-Enskog parameter equivalent to 5 used previously. It is now 

straightforward to obtain the following three results for the moments of first:

E  tf ‘0) =  R (r > *) =  E  ^  <)■ (259>
i i

y > ,< 0)Ci =  f lu - +  fe/3 ( t  +  1 )  1 fi + s  qtt (260)
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  ̂ ^
^  ̂Rj CiaCi(3 ^  ̂/; Qâ i/3 — h-Rxx(3i (201)

i i

where equation (234) has been used and, in equation (261), the fact that odd mo­

ments of the lattice distribution function are zero has been utilised. Defining:

Aa/3 =  ARaf3 — A Ba/3- (262)

Equations (260)..(262) shall be used shortly. For the moment, note that equation 

(259) implies that:

£ i t >1} =  0, (263)
i ■

but, however, it is important to note that it is not possible to infer a correspond­

ing result for the first moment of the R\0̂ : JT  ^ n>1 ĉ*« ¥" 0- From equations 

(256)...(263), only equation (260) changes under the exchange B  <-»> R:

^ B < °> c i =  B u * - f e / 3 ( - t  +  - t )  1 f ' +  f j ^ F  = qg , (264)
i \  /

and so:

E  (i?‘0) -  •B‘0>) C* = PPNV* + 2k20 (^  + f' + f PNF

where, in the second part of the equality, equation (238) has been used.

Proceeding in the fashion of Chapman-Enskog as outlined in section 4.1.2; that 

is, by using a Taylor expansion of the evolution equation (256) about r, t and a 

subsequent scale expansion of, the time derivative [3]:

. dt = dto + edth dx = edx, (266)

in addition to section 4.1.2 discussion is contained in [3] and [27]. Note th a t in

(265)
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the form of Chapman Enskog expansion used here (which is entirely equivalent to 

that used in section 4.1.2 the space derivative is also given a scale label, e). The 

Chapman-Enskog expansion then generates the following equations; at o(e):

d to R f  +  C fcA flf  =  -ujcR f \ (267)

and at o(e ):

dt\ R ?  +  ( l  — (^o +  ciada) R ?  — —wcR ? - (268)

Now, consider the o(e) dynamics. Summing equation (267) over z, using equation 

(263) and definition (260), we obtain:

dtoR +  V. ( Ru* +  k2(3
T E  
R  + B

i ' +  f — —— F  1 = 0
J R  + B '

(269)

and similarly, for the B  component:

dtoB +  V. [ Bu* — k2(3
1_ E  
R  + B

-1

?' + i r T b f  = ° -
(270)

Subtracting equations (269) and (270), there results the following macroscopic dy­

namics for the phase field scalar at o(e):

d toPPN  +  da.pp"u*a = - 2  k2fidaA T * E  -  f d a (pNFa) .  (271)

Multiply equation (267) by link velocity component c^, sum the resulting equa­

tion over i and follow a similar analysis using equation (261) as opposed to (260), 

to obtain (still at o(e)):

1 1
fto [ PPNu*p +  2A;2/5 ( — +  — J fp + f p NFp

- l

+ d a K p  =  - Wc J 2  ( l ?1) -  Bj1))  Cif,,

(272)
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\

in the right hand side of equation (272) make the approximation (Ci -  C f )

(C = R ,B )  and use equations (230) and (265); equation (272) now becomes:

<9*o ^PPNu* + 2/C2/3  ̂ f' + fpN

+ dpAaf3 = ujc(qn  ~ q ) .

Next consider the o(e2) dynamics. In equation (268), substitute for from 

equation (267) and again sum on i; after some algebra, we obtain:

dtiR  +  ^ ^ 20i? +  2dtoda R^Cia'j +  dadpA =  0, (274)

with a corresponding equation for B , which, when subtracted from equation (274), 

yields:

â w+( } - £ )

(dliPPN + 2dtoda \^>pNu*a + 2/c2/3 ( - t  +  - t )  f ' a +  f p NFa \  + dadpAap \  = 0,

(275)

where equation (265) has been used. By using equations (273) and (271) it is 

possible, again after some algebra, to obtain from the last equation the following 

dynamics for the phase field at o(e2):

d t \P P N  = ( i  -  y ) V. ( q n  -  q )  . (276)

Turning attention now to the derivation of an expression for colour flux vector, q to 

use in the right hand side of the above.

Substitute equations (229) into definition (230) and reverse the propagate step
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to obtain:

cl ( r ’ f ) = ] C  (r  “  -  ! )  -  B P (r  -  ch t  ~  !) )  c i. (277)
i

Substituting with equation (251) and using definitions (222) and (223) it is possible 

to obtain straightforwardly:

(r, t) =  PN (r  -  ci? t -  1) / /  (r -  ci51 -  1) cia+
i

^ Y l t PP ^r ~ C^ t ~ 1H 1 ~  PN 2 (r  -  ~  ! ) )  f(3 (r  “  Cn  t  ~  1 ) c ia Cii3,
i

(278)

in which, note, f j  contains the body-force source term contribution. Equation (278) 

shall be treated term by term in the following analysis.

In continuum applications, the interfacial phase field is always close to equilib­

rium; accordingly its time variation shall be neglected. Moreover, bearing in mind 

the form of the gradient already present in the right hand side of equation (276), it 

is necessary to work only to first order in space derivatives to obtain second order 

accuracy in the Chapman-Enskog expansion. Accordingly, the first term in the right 

hand side of equation (278) is treated by Taylor-expanding pN and f j  about r, to  

obtain the following expression:

pN(r - c h t -  1 ) / / ( r  - c h t -  1)cia = Y ^ (P N ~  CipS0pN +  ^ cilci05150pN)
i i

(fi CiS&sfi ”b 2̂ CiSCi(f>5sS(f,fi )Cja .

(279)

Multiplying out the above and neglecting all second derivatives leads to the following
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expression:

~  PNd<* fiCiaCi^j -  (daPN) fi CiaCif3 +  O (<53) . (280)

In section 8.5, equation (227), it was stated that J2i P ° i a  — Pu *a +  /^a» with /  =  

1, |  for the standard and Guo variants respectively. Expressions in macroscopic 

quantities for the second and third terms in expression (280) may be obtained in 

like manner, for the Guo variant: substitute for f j  using definition (226), replace fi  

with ( ^ f ^  +  e f  j 1̂ +  ..^ take second moments of the resulting equation and sum on 

z. Then substitute using equations (7) of Guo et al [48] (Guo’s parameter A  is set 

to zero for mass conservation, note). Guo proceeds to make the following identities:

ttW _  „ f (°)a/3 /  y c t a c i(3fi  ?

* (281)
n $  = ' £ c lacv f!1>,

i

and to provide expressions for them in equations 12 and 16 of guo et al [48] with 

these and with Guo’s time-step parameter A t  = 1 and appealing to equation 16 and 

equation 12 of Guo et al [48], it is possible, after some algebra to obtain:

^   ̂f j ciaci/3 =cspfiaf3 4~ PUaU/3~̂~
1 (282)

1 (w -  1) { K F 0 +  u}Fa) +  2 ( l  -  i )  clpSlp.

For the standard model the equivalent result is easily obtained as follows from

equations (276) and (84):

^   ̂fi CiaCi(3 ^  ' fi 4“ ^   ̂fi GaQ/3 4” ^  ] 0iGaQ/3* (283)
i i i i

Note, <j>i = kaciadap. Using equation (41) and the fact that the odd lattice moments
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in the last term vanishes:

^ 2  f i Ci*CiP = 'P&afl +  PUaUp +  (284)
i i

appeal to equation (88) and equation (84) in Chapter 4 then gives, for the standard 

model:

^ 2  = c2sp5ap +  puaup +  2(1 -  r)c2spSap. (285)
i

The second term in the right hand side of equation (278) is first transformed using 

(i) (249) to replace the factor (l — pN (r — c*, t — l)2) / '  with |V p N\/k  evaluated at 

position r — Ci and (ii) the definition of /^ , in equation (217). After Taylor expansion 

it is possible to express the right hand side of equation (278) as:

^  (r  "  C«’1 ~  *) C1 -  PN (r “  C'>t  ~  1)2) %  (r  -  C»  1 ~  ! )

0  1 (286)
2" ^   ̂ a.{$j3P ))CiaQ/3-

i

Recalling that terms cubic in c* are zero and appealing to equations (224) yields:

] ~ k 2pdapN +  o (63) , (287)

where, recall k = (3.

Using expressions (280), (287), equation (278) and (282) it is possible to obtain, 

correct to first order spatial gradients, the following expression for qa in the Guo
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model where cancellation has been carried out using the chain rule:

ga(r, t) =ppNu*a -  <?sda (ppN) + i pNFa + \ j h p d c,pN

~  dp (PpNu*au}) -  ~dp (pN(u> -  1) [u*aFp +  u}Fa] ) (288)

-  2 ( i  " )  ( / ' • V ) ,

in which we again emphasize the terms in the second line are neglected. Since, when 

used in the right hand side of equation (276) (as will be carried out in the following 

steps), they will produce second order spatial gradients of terms quadratic in ua 

and Fa. The corresponding result for the standard model is easily established using 

equations, again from expressions (280), (287), equation (278) and, now, (285):

qa(r,t) = ppNua -(?sda (ppN) + pNFadapN + ~ k 2pdapN -  ( f  -  1 )  c;dl3 (pNSap) .

(289)

When combined with equation (250) it is possible to re-express the right hand side 

of equation (276) to obtain a simple result:

9tiPPN = \<?3V 2 (ppN) , (290)

in which equation we have now set u c = 1 and used the fact tha t k = (3, note. To 

combine the o(e) and o(e2) time scales, add equations (271) and (e times) equation

(290), invoke identity (266) and identities (222) and (223) and use the facts tha t

k = (3 and, in LBGK models, k2 =  c2 [27] to obtain:

dtppN + V. O V V )  =  - J W .  (pNF) +  ic^V . (pNV p ) . (291)

Now, equation (291) describes the behaviour of the phase field for multi-component 

LBGK model based upon Guo’s enhanced variant ( /  =  1/2) and for the standard, 

unmodified model ( /  =  1). The final form of the phase field dynamics for these two
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cases are now considered separately.

Consider Guo’s LBGK model, characterized by /  =  1/2. On utilizing the conti­

nuity equation 18a of reference [48], for the lattice fluid:

dtp +  V. (pu*) =  0, (292)

it is straightforward using the product rule to manipulate equation (291) into a form 

containing the material derivative:

§ t pN =  Tpv ' ^ s p N v p  pNj?) ’ (293)

where, note, interface force, F, (see equation (215) and associated discussion) is 

impressed on the fluid only in the interfacial region.

For the standard LBGK model, it is possible to show that the presence of a 

variable fluid body force, F, generates additional terms in the lattice fluid continuity 

equation of for the lattice fluid [46], [61], which becomes:

dtp + V. (pu) = ~ ^ V F , (294)

which now implies phase field dynamics:

=  =  (295)

In a continuum fluid, the interface is subject to a kinematic condition which

requires that it (the interface) move at the same' speed as the local fluids. For a

point in the interface, identified by a chosen value of pN, to advect with local flow
r \  N

requires a condition = 0. It follows that, in either of the models represented by 

equations (293) and (295) (and, indeed, in all multi-component LB) the interface 

is accelerated relative to the local fluid, in fact by an amount independent of the

168



local flow and interfacial tension, determined mainly by local phase field gradients. 

Qualitatively at least, these observations accord with the observations of Latva- 

Kokko and Rothman [6]. Approximating p = constant , the value of pN, and hence 

the term in the right hand side of each of equations (293) and (295), clearly varies 

across the interfacial region indicating un-physical, relative movement between the 

phase field and the lattice fluid in both models.

To restore this lack of a kinematic condition attempts are made to limit the 

differential motion of the lattice fluid and the phase field on closed contour pN = 0; 

the latter appears to be the lattice region onto which efforts (algorithmic extensions) 

designed more strongly to promote a kinematic condition are best concentrated. 

None of the several flavours of the LB interface strategies currently in use explicitly 

impose a kinematic condition. In the following chapter, Chapter 9, attem pts are 

made to address the issue of simple, portable and effective kinematic condition, 

independent of the background interface model.

8.9 Local Expression For Colour Gradient

During the course of this work attempts were made to derive a local expression 

for the colour gradient. In the following section, attempts are made to localize the 

colour gradient. The results reported here are done so as a m atter of course to 

report on general progress and may be omitted if the reader desires.

Introduced in this section is a local expression for f '(r) which provides a com­

putationally efficient expression suitable for use with a formulaic segregation rule 

(expressed in equations (231) and (251)) when the local interfacial curvature is not 

too great or changing too fast (see the discussion at the end of this section).

For red and blue fluids it is possible to define a local colour field:

g '(r ,t)  =  -  ^  -  B i(r,t))c i, (296)
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in which red and blue; densities are pre-collision values, note. If propagation is 

taken to be instantaneous, it follows that Ri(r, t) = Rp(r  — c*, t — 1) (and also that 

f i( r, t) = r  -  ci} t -  1)), accordingly:

g '(r, t) = -  (■R l \ r  - C i , t - 1 ) -  B p ( r  - C i , t -  1)) c*. (297)
i

Substitute from equation (231) into equation (297) and use the identities (222) and 

(223) to obtain:

g '(M )0 =  SM +  S f ,  (298)

where: .

= -  Y ^ p N( r - C i , t -  l ) f i ( r , t )a a, • (299)
i

as previously, the fact that r  — c*,£ — 1) =  /^(r, t) is used and:

'5o ) =  [l -  (pN2( r -  a , t  - 1 ) ) ]  c o s ( 6 g ( T - C i , t - l ) - 9 i ) c i c ,

(300)

in which 9g(r) is the direction of the colour field. Using the approximation in 

equation (249), equation (300) may be transformed:

 ̂ 2 ^  v 1)  (p x P  | r—Ci , t— T  d y P  | r—Cj,f—l Q y Q a )  • (^ 0 1 )
i

Henceforth neglect explicit time dependence. Noting tha t both equations (301) 

and (299) remain true in D3QN. The right hand side of both (equations (301) and 

(299)) are now expanded about r  and, using the expressions (224) and (225) for 

second and fourth moments of the lattice vectors, after some algebra, it is possible
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to show that:

S a ] =  - P NMp(r)u*a +  dppN(r) M r)ci «Ci /3, (302)
i

S {a ] = —^ k2 p(r)dapN(r) -  {dap(r)V2pN(r) +  2dep(r)dadepN (r)} . (303)

The quantity Yli f i (T)°iotcip in equation (302) may be replaced by the sum of the 

zeroth and first-order momentum flux (stress) tensors; wishing only to retain terms 

linear in gradient quantities we make the approximation:

fi{r )C iaCi/3  ~  ^ 0) (r )Ĉ ^/3 =  ° 2sP  +  PUa U%  (304)
i i

where cs is the speed of sound. Equations (302) and (303) may now be approximated 

as:

S {a ] ^  - p Af(r )p (r)<  -  pN(r)p(r)fFa +  clp(r)dapN(r), (305)

'5'i2) =  —^ k 2p(r)dapN(r). (306)

Where, since Fa is dependant on high order gradients, the term pN(r)p(r)fFa is 

dropped from the analysis. Equation (298) now yields the following local approxi­

mation to the colour gradient:

= 2  (g,-+ p ^ p N ^ u ^  ’ A  =  p(r) ( c»_ k 2) ' 3̂07^

From simulations in D2Q9, for which c?s = 1/3, with segregation parameter 

P =  0.7, p(r) =  2, Measurements of the parameter 1/A = 2.37, compared with a 

calculated value of 3.14. Whilst use of the above expression is found to produce 

instabilities when the local interfacial curvature, K  > 0.1, it does underwrite a 

useful increase in the execution speed, determined, of course, by the total amount 

of interface in the simulation. For a drop of initial radius 20 lattice units, figure 39
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shows a surface plot of the value of V p N(r) measured using equation (307).

8.10 R esu lts

Reduction in the pinning of advecting drops, resulting from the use of this re­

colouring strategy has been reported by Latva-Kokko and Rothman [6] elsewhere. 

Whilst the latter uses a different multi-component LB model (the surface tension 

generating algorithm of Gunstensen [24] is used), Latva-Koko and Rothman effec­

tively demonstrate that it is the re-colouring or segregation steps which lie at the 

root of an improvement in drop advection, or Galilean invariance properties. Not 

surprisingly, very similar improvements were observed with the particular LB model 

described here, in this section, I shall detail some other improvements associated 

with macroscopic fluid-interfacial properties of the model, which accrue from the 

use of a fomulaic segregation procedure.

Use of the segregation of section 8.5 is, alone, responsible for a considerable re­

duction in the un-physical spurious velocity activity (or interfacial micro-current), 

created by the interface. Micro-current activity was measured as follows. An equili­

brated drop of initial radius 20 lattice units was placed on a square lattice, bounded 

using the second-order accurate boundary closure method described in Chapter 5 

for no-slip conditions. The measured velocity modulus was averaged over annular 

lattice samples of increasing average radius, centred on the drop centre of mass. This 

activity average is denoted A. This procedure was performed on otherwise identi­

cal drops (surface tension parameter and the interfacial pressure steps) maintained 

(i) by numerical component segregation [24] and (ii) by the formulaic segregation 

method of section 8.5. Figure 38 shows the value of A as a function of distance 

from the drop centre, for (upper line) the numerical and (lower line) the formulaic 

segregation method. Note the use of a logarithmic ordinal scale. The figure insets 

show the corresponding steady-state micro-current flow fields, by means of a stream
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Figure 38: Average interfacial micro-current activity, (v), measured in lattice units, 
plotted as a function of radial distance from the drop centre, r, measured in lattice 
units, for numerical segregation (upper curve) and for the distributed segregation 
method (lower curve) for otherwise identical drops. Note the use of the logarithmic 
scale on the ordinate. There is a difference of almost two orders of magnitude in the 
micro-current activity.

function plot.

For j3 < 0.71, stable interface profiles- were found to be smooth and well- 

approximated by a variation pN = tanh(ks) with s distance in the direction of 

V p N and k = (3, the segregation parameter introduced in equation (231) (see figure 

35). This fact, together with the smooth variation of pN, encourages one to seek 

a local expression for the gradient in pN, the existence of which would make the 

algorithm entirely local and very efficient.

As shown previously in section 8.9, it is possible to derive a local expression 

for Vp^, which was found to work poorly for highly curved (or small) drops but 

surprisingly well for drops with curvature K  < 0.1. Figure 39 shows the key property 

of phase field gradient for a circular (drop) interface, initial radius 20 lattice units, 

simulated using the local approximations derived in section 8.9. In figure 39, only 

lattice sites with both red and blue fluids present have a defined interfacial normal 

and phase field gradient. Note that the peak value of V p N corresponds to pN = 0.
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45

Figure 39: Variation of the phase field gradient for a red drop immersed in a blue fluid 
(z-axis) versus position. V p N (z-axis) was calculated using the local approximation, 
given in equation (307), derived in section 8.9. The drop initial radius was 20 
lattice units. Only lattice sites with both red and blue fluids present have a defined 
interfacial phase field gradient. Note that the peak value of V p N corresponds to 
^  =  0.
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8.11 Conclusion

The work covered in this section is a presentation of a multi-component lattice 

Boltzmann simulation applied in the continuum approximation of fluid mechanics, 

to completely immiscible fluids, paying particular attention to the component seg­

regation part of the underlying algorithm. The principal practical outcome of this 

section of work is the result that the overall algorithm is found to produce a very 

low level of micro-current activity indeed; the principal methodological result of this 

section is the derivation of the dynamics of a component index, or phase field, which 

have here been obtained for the formulaic segregation method of d ’Ortona et al [57] 

and Latva-Kokko and Rothman [6], using the method of Chapman-Enskog analysis. 

The dynamics accord with a simulation designed to address multi-component flow in 

the continuum approximation and provide greatly improved simulation performance 

as follows.

The segregation method analysed has been shown to produce a very marked re­

duction in the interfacial micro-current activity associated with a curved interface, 

which makes the method valuable (i) in terms of the improved quality of its results 

and (ii) by facilitating simulational access to regimes of flow with low capillary num­

ber and drop Reynolds number, see Chapter 7. Whilst it (the formulaic segregation 

method) produces an interface which is distributed in terms of its component index, 

the hydrodynamic boundary conditions which it enforces (when used in conjunction 

with Lishchuk’s method [25]) support the notion of a sharp, unstructured, contin­

uum interface as effectively as other LB methods. Furthermore, it is possible to use 

further algorithmic extensions with the model discussed here to improve performance 

in this respect. It is also worth noting that the distribution of the interface is not 

dependant on resolution, therefore a narrow interface may effectively be modelled 

with an increase in system resolution.

For continuum applications, it was found that, in addition to improved hydrody­
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namic properties, a formulaic segregation method is considerably more computation­

ally efficient than other methods (eg. numerical segregation described in Chapter 7), 

especially when used with a locally calculated interface normal, which the method 

is able to support under certain circumstances.
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9 K inem atic Condition for D istributed Interface

In Chapter 7, initial attempts were made to impose a kinematic condition; these ini­

tial attempts were admittedly primitive and computationally slow; here is presented 

a, transferable, efficient and effective algorithmic enhancement designed to improve 

the accuracy of all multi-component lattice Boltzmann methods when applied to 

the simulation in the continuum approximation of fluid mechanics. The method 

presented in this chapter also benefits from a more well-founded theoretical basis.

By applying a collision parameter (kinematic viscosity) perturbation to reduce 

velocity gradients in the immediate interfacial region, a kinematic condition of mu­

tual impenetrability between separated fluids is effectively enforced. Matters relating 

to a variation in the collision parameter are also briefly discussed.

For consistency with previous chapters, a brief introduction and background are 

presented here in an effort to make this chapter reasonably self contained. The 

familiar reader may wish to overlook these sections and continue directly to section 

9.3.

9.1 Introduction

The simple and robust innovations outlined in this chapter are relevant to all MCLB 

variants when applied to the continuum regime, with completely immiscible fluids. 

The aim of this chapter is to address the representation of an interfacial kinematic 

condition (KC) of mutual fluid impenetrability [5]; in section 9.2 the most appropri­

ate MCLB model for'such an application will be described, then, in section 9.3, it is 

shown how the method may be simply and effectively modified explicitly to contain 

a KC in a manner readily transferable to other MCLBs; finally, in section 9.4 the 

results of this section of work shall be presented and then discussed.

Interfacial boundary conditions are treated in all MCLB as a constraint coupling 

of the dynamics of a single component lattice Boltzmann (LB) fluid to those of an
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order parameter [22] or a phase field as in previous chapters and [25]. Thereafter, 

the principal MCLB methods are distinguished by the detailed way in which a fluid- 

fluid interface is imposed [3], [21,25]. with different algorithms favouring different 

applications.

The MCLB method of Chapter 8 is used for this work and comprises a synthesis 

of the work of Lishchuk et al [25], d’Ortona et al [57] and Latva-Kokko and Roth- 

man [58]. As shown in previous chapters it has narrow interfaces with a thickness 

independent of the computational mesh resolution (but see below), an independently 

adjustable interfacial tension which may be large, predictable phase field dynamics 

and it also facilitates simulation at low capillary and drop Reynolds number see 

chapters 7 and 8. Furthermore, the MCLB method of chapters 7 and 8 is based on 

the notion of dynamic, stress, boundary conditions [5] enforced over the interface 

between immiscible fluids [25] however neither it nor its progenitors take explicit 

account of any form of KC.

The present work goes some way to addressing the problems of conflicting length 

scales, unavoidable in MCLB, given that any practical (stable) interface must be 

diffuse on some characteristic, finite distance. We address this issue of interface 

scale and locatability implicitly, by devising a simple KC algorithm which acts over 

a very limited distance on either side of a defined, sub-grid interface centre, which, 

in turn, the KC implicitly serves to define.

9.2 Background

The MCLB method used in this chapter is that described in Chapter 8 which in 

itself is a continuation of work carried out in Chapter 7. It builds from a single 

component, single relaxation time LB variant designated the LBGK model [4].

For present purposes, the body force needs to contain spatial variation which 

necessitates spatial variation in 0i(r) see section 7.4. This obstructs the emergence
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of the lattice Navier Stokes equation (212). As stated previously, a solution to this 

problem, given by Guo et al, requires (i) a more complicated relationship between 

F (r) and fa(r) than that of equation (213) and (ii) a re-definition of u. The modified 

relationships are stated in equations (219) and (220). Now, consider the form of fluid 

interface force which fa should generate, and where this force should be applied.

Utilising the same notation as that of Section 8.6, post-collision, post-segregation 

(re-coloured) quantities are indicated by the use of a double dagger superscript. Ac­

cordingly, the Latva-Kokko and Rothman’s form of d ’Ortona’s segregation is written 

as [58], [57]:

flftt =  R + B ^  +  ^'lt+ B tpC0Ŝ f ~ e^ ^  ’ (30S)

in which, recall, 6f (0*) is the angle of .the colour field, V p N, (link) and R t* denotes 

the post-collision, post segregation value of the red fluid’s momentum density asso­

ciated with link i. Note that, for stable continuum interfaces segregation parameter, 

ft < 0.71, see Chapter 8.

Equation (291) of Chapter 8 describes the dynamics for the phase field scalar, 

pN for any MCLB scheme based upon the segregation method outlined above which 

uses a LBGK model and either the standard method of applying a body force, or 

Guo’s more accurate method:

dtppN +  V. ( p / V )  =  - / V .  (pNF) +  IcJV . (pNVp) . (309)

In fact, the order parameter employed in the Oxford MCLB mesoscale model [21] 

to define the component (or, more accurately in this case, phase) obeys a broadly 

similar dynamical equation.

For the standard model (with a direct velocity, /  =  1 in equation (220)), as 

demonstrated in Chapter 8, it is possible to obtain for the dynamics of the phase
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which equation clearly deviates significantly from the correct form required for a 

continuum fluid, namely (see section 9.3):

(311)

However, with Guo’s more accurate representation of body force (with an indirect 

velocity, /  =  1/2 in equation (220)), the phase field dynamics takes a more amenable 

form. From Chapter 8 recall that using equations (276), (288), (292) and (293) 

directly, it is possible to obtain:

effectively requires that the interface move at the same speed as the local fluids. For

the local fluid by an amount determined by pressure and phase field gradients. This

other MCLB methods and rather more in accord with the spirit of LB simulation 

than earlier attempts based upon a momentum conserving process of averaging the 

separated fluids’ velocity in the interfacial region see Chapter 7. The latter method 

is of very limited value; it is reliant upon arbitrary, computationally expensive site 

selection criteria and it compromises interface resolution.

(312)

We return to this equation in the next chapter.

9.3 K inem atic C ondition

In a continuum fluid, the interface is subject to a kinematic condition (KC) which

a point in the interface, identified by a chosen value of pN, to advect in flow = 0. 

It follows from equation (310) or (312) that the interface is accelerated relative to

chapter is concerned with a remedy to this absence of an intrinsic KC, portable into



0.0

-0.6 -

-5 -3 -2 -1 0-4 1 2 3 4 5

—0 — V h o^ N  

- B - M =  1 

—K— M = 3  

-3 K -  Laplacian  

- A -  f(\ftio *N )

X /  lu

Figure 40: Variation of quantities across the interfacial region. In the figure key, 
M  =  1,3 identifies the variation of 5uj/ K  in equation (313) for M  = 1,3, /  denotes 
f ( p N) in equation (317). The interface, defined by pN = 0, is centred on re =  0 
locally.

Consider a static, spherical red drop, nominal radius r 0 =  50, suspended in a 

blue fluid, such a drop is described by a phase field, variation pN = tanh((3(r — ro)) 

for (3 < 0.71 as derived in Chapter 8. Figure 40 shows the variation of the phase 

field, pN, in the radial direction, across the interface (diamonds); note, abscissa 

x = 0 is the interface centre. Variation of the Laplacian of the pN field (which, 

broadly, determines the divergence of F, which is the principal contribution to the 

right hand side of equation (312) ) is plotted using asterisks. On contour pN = 0 

(at x = 0) of this particular MCLB’s interface, a KC is approximately satisfied in 

both models. In general, however, the gradients of pN vary and the interface is 

accelerated most rapidly for positions |x| <  1, corresponding to \pN\ <  0.5. This is 

true for all interface radii or curvatures. The region \pN\ < 0.5 suggests itself as the 

interfacial zone onto which algorithmic extensions designed to promote a KC should 

be concentrated.

To promote correlated motion between the internal (red) and external (blue) 

fluids at the boundary we seek to eliminate fluid shear in a thin shell |pN| < 0.5, 

which, from figure 40, is approximately 3 lattice units thick. This is accomplished
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by increasing the local sum fluid viscosity using a collision parameter perturbation:

Sw = - K  (1 -  pN2)M , |pw| <  0.5, K , M >  0, (313)

corresponding, in D2Q9, to a local viscosity increase:

(314)

in which use has been made of a property of interfaces generated by the formulaic 

segregation of equation (308), after d ’Ortona [57] and Latva-Kokko et al [58], derived 

in Chapter 8, namely:

\VpN\ = ( 3 { l - p m ) .  (315)

The requirement v > 0;0 < a; < 2 constrains the choice of K\  figure 40 plots 

the variation of 5uj for K  = 1, M  — 1 (open squares) and K  =  1, M  = 3 (diagonal 

crosses); for the case of M  = 3 perturbation 5cu is significant only for |pN| > 0.5, 

which advantageously limits any penalty on resolution in the interfacial region; with 

M  = 3 sites at x = ±2 are unaffected, further adjustment o f M : M > 3 , M < 1 0  

does not change this observation but degrades stability. Clearly, the extension in 

(314) generalizes readily to all other MCLB variants [22], [33], and is easy to apply 

in 3D.

When considering incompressible liquids, one traditionally factorizes v(u) in the 

lattice Navier-Stokes equation (212), whereupon any spatial variation in the latter 

will generate additional force terms. This encourages the view of an incompressible, 

fluid, interfacial region of variable viscosity, subject to a compensatory forcing which 

effectively restores a KC. It is worth remarking that a variation in kinematic vis­

cosity, v may characterize a particular problem, for example when modelling spatial 

variation in fluid temperature within the Boussinesq approximation; where thermo­

hydrodynamic flow is modelled (i)by neglecting density variation with pressure but

182



allowing the pressure to vary with temperature and (ii) allowing the kinematic vis­

cosity is to vary with temperature. Any such variation should be modelled with is, 

positioned as in equation (212), behind the first spatial differentiation in the second 

term in the right hand side of equation (212).

Consider the case of Guo’s (adjusted velocity) model. Factorization of is(u) 

exposes an effective, shear-rate dependant forcing in the right hand side of the 

lattice Navier-Stokes equation (221):

F ' = 2p s ; /3A K w ) =  _ ^ 5 , ^ fo !  (316)

in which the last equality uses a substitution for is( uj)  for the case of a D2Q9 model. 

Here strain rate, S^p, is based upon gradients in the corrected velocity of equation 

(220), note.

W ith the proposed ^-variation of equation (313) it is possible to obtain from 

equation (316), by straightforward use of equations (314) and (315):

F'a = - ^ K M f ( p N)Slef ff, }{pN) = pN (1 -  pm ) . (317)

It is not surprising to find an equivalence between an interfacial viscosity per­

turbation, suggested in equation (314) and an effective shear rate dependant force. 

The factor f ( p N), defined above, varies across the interfacial region as illustrated in 

figure 40.

9.4 R esu lts and conclusion

Figures 41 and 42 derive from data obtained from drops of initial radius 15 lattice 

units, with surface tension parameter a = 7.0 x 10-3. For the data of figure 41 

the drop was exposed to an unperturbed shear rate 1.0 x 10-4 in lattice units, on a 

lattice of size 150 x 50 lattice units; the unperturbed collision parameter lj = 1.0 and
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Figure 41: Normal velocity un = 0 contour superimposed over pN == 0 contour of a 
sheared drop at steady state, with (left) and without (right) the kinematic condition 
of equation (313) in effect. Note the departure of the pN = 0 and un = 0 contours 
in the ‘polar’ and ‘equatorial’ regions in the figure on the right.

the perturbation 8u (equation (313)) was characterized by K  =  0.5, M  = 2. For 

figure 42, the same lattice with rest boundaries was used, with a range of viscosity 

perturbations (see figure key and caption).

Consider a neutrally buoyant (red) drop embedded in a symmetrical sheared 

(blue) fluid of identical kinematic viscosity. At the steady state, in the rest frame of 

the drop interface deformation ceases and the normal component of fluid velocity, 

un, vanishes (this is untrue of the corresponding tangential component, which is non­

zero in general). On noting that the chosen interface centre, the contour pN = 0, 

cannot intersect any lattice node, it is suggested that the best illustration of the sub­

grid nature of the KC and the benefits attending its use is the correlation between 

the contour pN =  0 and the contour un =  0. Compare now the results in figure 

41. On the right of this figure is shown detail of the flow in the region of the drop 

pole; the un = 0 contour is superposed over the (closed) contour pN, for a drop 

without a KC inducing perturbation in force; the figure inset shows the whole drop. 

On the left of figure 41 is the corresponding simulation with a KC, characterized by 

K  = 1 ,M  =  3 applied. In the latter, the un = 0 contour is located much closer to 

the centre of the interface, especially in the polar region, where ut , the component
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Figure 42: Absolute value of R , the steady-state residual of the interface normal 
velocity, un (ordinate), defined in equation (318), plotted against M  (abscissa) for 
different values of K; M , K  as in collision parameter perturbation equation (313) 
for the simulation defined in the first paragraph of section 9.4

of fluid velocity tangent to the pN = 0 was also much smaller.

Briefly consider the effective, shear dependant force F ' of equation (316) at the 

‘North Pole’ of the drop depicted in figure 41. The shear rate at the drop North 

Pole is dominated by a contribution ^  > 0; this, and the variation of the factor 

f ( p N) imply F'x < 0 (F'x > 0) for the blue (red) side of the interface, in accord with 

a reduction of the local shear gradient when pN = 0.

Figure 42 considers the correlation of the zero of normal velocity with the pN = 0 

contour. The ordinate corresponds to a steady-state residual of the modulus of the 

normal velocity:

R  =  K l , (318)
p N= 0

the abscissa to the value of parameter M  in equation (313). Branches of the plot 

with increasing ordinal intercept correspond to amplitude parameter K = 1.00, 0.75, 

0.50, 0.25, 0.12, 0.012 in equation (313). Simulations show that the correlation
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improvements at a diminishing rate as M  increases; whilst our simulations were, 

stable, as M  increases larger shear rates may cause instability.

The segregation method outlined briefly in this chapter as a reiteration of the 

method described in detail in Chapter 8, when used in conjunction with a kinematic 

condition facilitate robust MCLB simulations in the continuum approximation with 

advantages of increased efficiency, negligible interfacial micro-current activity and 

drop pinning [58], Chapter 8 (facilitating low capillary and drop Reynolds number 

applications), improved representation of continuum hydrodynamic boundary con­

ditions (figure 41) and, not least, simplicity. Moreover, the simple rule expressed in 

equation (313) transplants into other MCLB methods [21], [33] directly, to facilitate 

their application to the continuum regime.
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10 W etting w ith continuum  IB : Simulation of  

2D dense Films Under Gravity

10.1 Introduction

The work carried out in this chapter combines and relates the work described pre­

viously, on the forced mass conserving boundary condition in Chapter 6 , the dis­

tributed interface of D’Ortona et al [57] and the kinematic condition discussed in 

the previous chapter 9. The focus of this chapter is to produce an accurate and 

robust continuum scale wetting condition.

Clearly the wetting problem is very long-standing and is of great importance in a 

range of situations; from medical applications, where leukocytes have been modelled 

as wetting drops, to industrial processes, such as paints and coating applications, to 

the new science of micro-fluidic devices (see also section 2.1 for recent advances).

It is important to stress at this stage that the aim of this chapter is not to 

produce a microscopic wetting theory. State of the art research in this area com­

bines non-equilibrium molecular dynamic calculations (which operate on very short 

length and time scales in the near-wall region) which are appropriately coupled to 

continuum flow solvers, this allows the solvers to cross the length scales between 

the surface slip, which is molecular in origin, and the continuum scale flow that this 

slip determines. In fact there are a range of more or less phenomenological methods 

that have been used to describe slip and wetting in continuum calculations. The 

dynamics and spreading of liquids has been treated in considerable- depth [62] and 

references therein. Most of these methods attem pt to use the stresses at the bound­

ary to predict a slip velocity. This qualitative but secure and well accepted fact is 

our principle modelling assumption. Accordingly the work undertaken in this chap­

ter focuses on an accurate, artefact free adaptation of given continuum boundary 

conditions to a multi-component lattice Boltzmann equation flow calculation.
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We begin by reminding the reader that, as discussed in chapter 4, when con­

sidering a solid boundary with a no-slip boundary condition applied, the relative 

motion of a dynamic contact line (DCL henceforth) between the red and blue fluids 

along the boundary will result in a singularity. We shall assume one, existing, model 

of slip at the contact point -  the so-called Navier slip condition, (as described in 

section 4.4). Again, our model is not intended effectively to provide a theory of 

slip velocity on the fly ; rather it adapts lattice Boltzmann simulation in a flexible, 

robust manner, without any need for additional assumptions beyond that of a given 

theory of slip. In overview, this is accomplished as follows.

At the contact point we (i) specify the wetting angle as a boundary condition on 

the interfacial normal: by (ii) devising an appropriate mass and species conserving 

boundary condition which (iii) uses the second-order accurate closure (as set-out 

in Chapter 6 ) to specify, for a measured distribution of fluid stresses, an instan­

taneous contact-point slip velocity. Our results are obtained using an assumption 

of a quasi-static slip ie. we will assume that slip velocity depends only upon the 

instantaneous distribution of fluid stress (an idea that was initially introduced in 

Chapter 4) according to:

Vs =  b ’ ' (319)

were the parameter “b” is known as the slip length and is a molecular property of 

the fluid, with, we assume, similar status to the kinematic viscosity.

10.2 Background

As mentioned previously predominantly in Chapter 7, at large flow velocities the 

effects of the micro-current is negligible, however, when the velocity of the flow be­

comes comparable to the velocities generated by the interface algorithm, significant 

anomalies in the method begin to appear. The motion of a DCL might be very slow,
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' Figure 43: D2Q9 lattice site positioned at the dynamic contact line (DCL) on the 
bottom surface of a flat duct (left) and enlarged (right). The heavy line shows the 
supposed location of the interface separating red (R) and blue (B) fluids.

so any micro-currents developed by the interface algorithm at the DCL will effect lo­

cal flow velocity and flow velocity gradients and thus the motion of the contact itself 

and the dynamics of the flow. Put another way, contact point slip at the boundary 

must be assumed to involve small motions relative to the boundary, the presence 

of micro-currents will interfere with the detail of the slip model and resulting flow: 

this underscores the need for a low micro-current interface algorithm, such as tha t 

developed in Chapter 8 . It should also be clear that, in addition to minimisation of 

micro-currents there must be exact conservation of mass and colour; there cannot 

be differential loss of either colour species close to the contact point.

We aim here to specify the fluid behaviour in terms of a chosen wetting model; a 

known contact angle or wetting angle, 0W, that is taken to be a molecular property 

with the same status as viscosity and, of course, the surface tension.

For the sake of continuity with previous chapters (chapters the analysis contained 

within this chapter will consider a D2Q9 node assumed to be situated at the bottom 

of a flat duct flow as shown in Figure 43. This node is situated in the boundary 

between the red and blue fluids and so its links contain non-zero momentum distri­

bution function of both components, Ri and The direction of the x-axis is taken 

to be tangent to the boundary.

The wetting angle, 9W, as mentioned above, is related to the colour field direction 

as illustrated in figure 44 and may be expressed as a boundary condition on the
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Figure 44: Boundary condition on the colour field direction at the DCL; the direction 
of the colour field is defined in relation to the wetting angle for wetting at the bottom 
of a duct. See equation (320) and fig 43

colour field direction Of as :

Of — {0w +  90), x = 0. (320)

The boundary condition associated with red and blue species is essentially one 

of mass conservation and is illustrated in fig 43.

Similarly, the fluid velocity on the boundary is predicted by the following slip 

law and kinematic condition:

du
ux{y =  0) =  6 -7̂ ,  vy(y =  0) =  0, (321)

in which ^  is measured, note, we return to this issue in section 10.3.

It is appropriate here to review the principal features of the boundary closure 

method that is now to be adapted to the situation of slip.

Notwithstanding detailed points revised below, the method of Chapter 6 essen­

tially requires that (i) a boundary, or wall, velocity distribution, u^, (ii) an effective 

density, pw (not the same as the mass, M*n arriving on uncut links of the boundary

site, note) and (iii) that the wall fluid strain rate, S apw henceforth, be known or

measured. Uncut boundary links’ momentum distribution function, /*, is then con­

sidered to be given by the sum of its f - ° \p w, u ^ J ’s and /^ ( S 'a/0u,)’s.. It is important 

to recall that, in the method of chapter 6 , we choose to make calculated (/* ^ ’s)

190



to sum to Min (zero) on uncut links.

To apply this method in the present context we need therefore to calculate or 

measure wall densities and wall strain rates. The latter are doubly important now 

as they’re used to find the wall velocity through the assumed slip model. As we 

shall see below, the problem of finding the wall density, pw is complicated by the 

need to apply a (variable) external force for interfacial tension and the problem of 

measuring the velocity gradient Sapw is complicated by the fact tha t the evolving 

wall velocity, uw, is not known and that the previous use of spatial translational 

invariance in Chapter 6 is lost in contact region when a DCL is considered. The 

simplest solution to this problem is that outlined in section 10.3.

In the method of Chapter 6 the effective wall density, pw, was defined such 

that the total mass on post-collision uncut links is equal to the mass, M in, which 

propagated onto the wall node links at the beginning of evolution step. It was 

also seen that the source term does not conserve mass on uncut links. Appropriate 

calculation of the effective wall density, pw which takes account of these facts and 

the fact that there are now two different, individually conserved fluids present at the 

boundary is set out in section 10.4. In section 10.4 we will deal with the calculation 

of wall strain rates and slip velocity and assignment of corresponding / ^ ’s. Section

10.4.1 will deal with re-colour.

As stated in the initial section of 10.2, it is important in this work to maintain 

the low velocity capabilities of the algorithm. Should the wetting procedure induce 

spurious velocities that are comparable to the velocity of flow itself, the calculated 

dynamics of the flow will be corrupted.
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PRE-Collision R ’s / B; ’s 
for duct bottom site 

as depicted in the above figure

POST-Collision R f s / R ’s 
for duct bottom site 

as depicted in the above figure
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Figure 45: Colour conservation boundary condition for the D2Q9 lattice site depicted 
above. The dotted line indicates the position of the boundary; em pty circles indicate 
the absence of information or locations where link information is not required.

10.3 G en e ra l R em ark s  on th e  Im p le m e n ta tio n  o f th e  Slip 

C o n d itio n

We clarify at the outset th a t the particular means by which boundary condition 

(321) is applied in the LB m ethod is reported in this chapter. At location x  on the 

boundary y =  0, when measuring the gradient ^  with say a fourth order correct 

finite difference we have;

ux (x, y = 0) =  b{a3ux (x, y = 3) +  a2ux(x : y =  2) +  aiux (x, y =  1) +  a0ux(x, y =  0)},

(322)

where a3...a0 are the appropriate coefficients for the finite difference form from which 

the slip velocity ux(x ,y  =  0) is easily determined;

/ nx azux (x1y = 3) + a2ux( x , y  = 2) + aiux (x ,y  = l) , .
ux (x, y =  0) =     — r ---------. (323)

(1 — oa0)
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10.4 A pplication  of Formulaic Segregation at a Forced B ound­

ary N ode w ith  Slip

The situation is now complicated beyond that discussed in Chapter 6 by the fact 

that there are two fluids present that need to be conserved individually. As with 

the situation described in Chapter 6, there is once again an external force applied 

to the continuum fluid which is specified and therefore known. The external inter­

face inducing force must be consistent with the wetting angle, 9W, see fig 44. The 

gradient of the phase field, ||V/oN|| and the curvature, k, are determined using finite 

differences. As we know all of the aforementioned quantities, we can calculate the 

overall wall force F. The associated mass “defect” may then be calculated from the

-  (3 (ci -  iT) +  9 (c*.u*) cO .F(r). (324)

A M  is the mass effectively removed or introduced to live or uncut links by the 

action of the surface tension force.

It is important to note that the mass defect, AM  will be eventually corrected 

for live or uncut links when the source term ^  is added.

For the boundary node depicted in figures 43 and 44, the incoming masses are 

calculated from:

Min = y , f "  . (325)
#  1 ,2 ,3

Ri„=  (326)
# 1 ,2 ,3

following expression:

A M  =  ^ 2 =  f 1
# 5 ,6 ,7  '
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Bin ^   ̂ Bi, 
1,2,3

(327)

and we define;

M'in = Min — AM. (328)

10.4.1 Effective Red and Blue Fluid Densities for Boundary Node

In order to apply the formulaic segregation of D’Ortona et al [57] (which was dis­

cussed in detail in Chapter 8) without any adjustment we need the effective red and 

blue densities, R! and B ', as well as M[n. By way of definition R ’ and B ' should be 

such that application of the formula;

p^  = a T f f ^ + p tr W ^ C08(-Bt- ?f )- ^ ’ (329)

will produce R ^ ’s and B p 's  which total to Rin and Bin according to equations (326) 

and (327), on uncut links. Colour conservation requires that:

5,6,7

E  B ?  = B > (331)
^5,6,7

where, after the notation of Chapter 8, a double dagger superscript denotes a post­

collision post-recolour value.

Now let, R '(B f) denote an effective value of R(B ) such tha t :

Z  -  Z  ( s T j p f l |3 J2 )
^ 5 ,6 ,7  5,6,7 '  '

where we have used equation (329).

Note that it is f p  and not f j  in the above equation; f p  includes the source
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contribution fa so, overall mass conservation requires that

E  = K . (333)
i  7 ^ 5 ,6 ,7

where, M/n =  (Mjn — AM ), recall.

Now, the factor (5 second term of equation (332) is a function

of 6W and particular boundary node geometry only. It is therefore straightforward 

to show that the following must be true for a node at the bottom of a channel 

(situation depicted in figures 43 and 44):

. P  =  R ' f y '  (334)
^ 5 , 6 , 7

where f y is the y component of the boundary colour field.

It is then possible to obtain the following relationship from equation (332) :

+ = (335)

On using the effective density identified in Chapter 7 we must clearly have:

p' = R! +  B'. (336)

Equation (335) now becomes :

(337)
P p 6

which re-arranges straightforwardly into a quadratic for the effective red density, R f, 

for the wall site of the node depicted in fig 44:

{PJy) R a -p '{ 5  + f3fy)B! + m p ' = 0, (338)
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where the fact that =  |  has been used, as was initially done in Chapter 7. 

Equation (336) may also be used to determine the effective blue density B '.

It is now possible to solve the above equation for R! to find the effective red and 

blue masses on a boundary site. Boundary site re-colour (or segregation) procedures 

are then carried out using this fictitious value, that is, using formula (329). Put 

another way, by using R! from equation (338) re-colouring may be carried out exactly 

as described in the previous section without any further modification, resulting in 

mass conservation and colour mass conservation on uncut links. The boundary 

node, including cut links, mass and colour are not conserved but clearly this is of 

no consequence. Note that the quadratic (338) must be solved at every boundary 

site as R' varies through the contact region.

Recall that in Chapter 6, third order forward and backward finite difference 

methods were employed to measure the fluid stress to solve the system of equations 

(152) for example. Due to the axial symmetry of the system considered in Chapter 

6, many of the stress derivatives in equations (152) were constrained to zero. The 

presence of a DCL now violates the symmetry of the previous system and this as­

sumption is no longer valid. All derivatives must now be calculated. The method of 

calculation of fi°\p,U o) and f ^  however, being third order forward and backwards 

difference methods, remains the same as in Chapter 6 and Chapter ?? with the 

following simple but important change.

10.5 Stress M easurem ents w ith  Spatially Variable Force

Here we make an important revision to the results and methods of Chapter 6.

In the Guo LBGK model used in this work to impress a variable body force, 

the Chapman-Enscog analysis works differently. By straightforward but tedious 

algebra, it is possible to extract from the reference [48] the modified relations for the 

zeroth to second moments of the higher components of the pre-collision distribution
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function, with the lattice basis. That is, when using the scheme for spatially variable 

forces F, used in chapters 7 and 8, there arise important changes from the usual 

Chapman-Enscog analysis of Chapter 4, which underpins the work of chapters 5 and 

6. We must take account of these now, before we use the results of chapters 5 and 

6. As we have just said, tedious but straightforward algebra allows us to extract 

from [48] the following modified relations for the zeroth to second order moments 

of the higher components of the pre-collision distribution function when we have a 

spatially variable force.

£ * (1) =  o, (339)
i

E / ‘1>Ci“ = ° ’ (34°)
i

^ 2  = -2 p c2sr S af3 -  ^ 5 t (Faiip +  Fpua) — ► - 2 pc2sr S ap. (341)
i

Where we have .replaced the strain rate as follows:

Sa(3 ----* 5t {FaUp +  FpUa) . (342)

Therefore, the methods of Chapter 6 can be easily applied to the problem dis­

cussed here but only after we replace the measured stress in e.g equation (152) with 

values calculated using the replacement 342.

10.6 R esu lts

In order to establish weather or not the wetting algorithm induces spurious velocities, 

a static drop at the bottom of a duct is simulated at steady state. From figure 46
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Figure 46: Velocity field for a static drop a t steady state. Note the micro current 
activity close to the contact point on the boundary.

it is possible to see tha t, a t steady state, the spurious velocities th a t exist at the 

contact region remain small and comparable in magnitude to  those generated within 

the bulk scheme. From this result it is evident th a t the low flow velocity capabilities 

of the algorithm are retained near the boundary.

For the continuum regime calculations, the wetting angle and the slip length, 

b, for example are required to determine the hydrodynamics. The thickness of the 

interface and the detail of the algorithm should not effect the observed wetting 

dynamics. Results shown in this section do not change with adjustm ent of the f3 

param eter for values 0.5 < (3 <  0.7.

Figure 46 shows detail of the micro-current in the vicinity of the contact for an 

attached drop at steady state; superposed contours show constant w2, the highest 

velocity observed in the contact region is 0 (1 0 “ 5). This is very small when compared 

to, for example, the Oxford algorithm.

Figure 47 is a summary of the dynamics of an attaching drop. The figure shows
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Figure 47: A drop of radius 22 lattice units in a channel of 150 lattice sites by 
70 lattice sites with wetting, Dirichlet boundary conditions applied on Y  =  0 and 
Y  = Y L E N G T H  boundaries with periodic conditions left to right. Gravity acts 
in the negative y direction (where the x axis runs positively up the page and the 
y axis runs from right to left on the page). Images show wetting behaviour with 
varying wetting angles specified. ’’Snap shots” were taken a t <7)10. 000/,, 6)30,000/;, 
c)50,000Z, d) 130,000/ and 250,000/. T h t^ a ra m e te r  j3 is set to 0.7 throughout



Figure 48: Detail of settled drop on the bottom  surface of a channel of dimensions 
400 by 90 (figure shows 150 to 300 of x-range and 0-50 of y-range). Drop has a 
specified wetting angle of 100° and a uniform body force of a  =  5 x 10 ;). Kinematic 
condition is applied and a slip length of 0.05 is specified.

the effects of a varying wetting angle on a 2D red drop th a t is initialised close to a 

flat boundary. The figure shows the evolution as the drop is released and approaches 

steady state with the slip length, b, set to zero. The effects of the slip length on 

these results was not investigated due to time constraints. The effects of the slip 

length are, however, considered in the following, more interesting sets of results 

which relate to simple (prototype) coating flows.

The result for film wetting in the presence of a constant body force applied from 

left to right to simulate gravity is shown in figure 48. The instantaneous stream  

function is calculated in the rest frame of the red fluid from:

^ ( x , y ) = f  (ux (x,y' )  - U x0)dy', (343)
Jo

where Uxo is the average velocity of the red fluid which is not zero. The rolling 

nature of the flow in the contact region is apparent in the structure of the s tream - 

function contours superposed on the phase field information. Note th a t the kine­

matic condition of Chapter 9 is in force. Also note th a t the fact th a t the stream  

function contours intersect the phase field boundary does not imply th a t fluids are 

flowing across the boundary as the film is still spreading in all the images presented. 

The rolling nature of the flow is entirely emergent given a set slip length param eter
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Figure 49: Identical simulation system as th a t shown in fig 48 however the entire 
simulation space is shown. The wetting angle in the above is set to  60° giving 
entirely different hydrodynamics to those emergent in fig48.

Figure 50: Identical simulation system to th a t depicted in both 48 and 49; again 
with the entire simulation space shown. The wetting angle is now set to 5°. The 
resulting hydrodynamics are again totally different to those shown in fig 48 and fig- 
49 above.

of 0.05 and the balance of the surface tension and the contact angle, no other forces 

or quantities have been set. The data  for figure 48 was obtained w ith a wetting 

angle of 100°.

Figure 49 shows an identical system to th a t shown in 48 with the wetting angle 

changed from 100° to 60°. The flow in this case is seen to be qualitatively different 

to th a t shown in 48 however the flow is again totally emergent. The flow system 

depicted in figure 49 is what we consider to be a bifuricating contact; the red fluid 

th a t is in contact with the boundary flows in a clockwise motion rolling onto the 

surface while the red fluid adjacent to the interfacial region moves anticlockwise as 

it travels through the blue fluid.

Figure 50 depicts an exact replica situation to th a t shown in fig 48 and 49 however 

the wetting angle has been set to 5°. The rolling flow at the trailing edge of the 

drop is now lost. The flow structure is again totally emergent however the structure 

of the flow is now fundamentally different.
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Figure 51: Red drop of radius ‘22 lattice units initialised in the centre of a channel 
of length 150 lattice units and a width of 45 lattice units, a uniform body force 
is applied from left to right. Navier slip and kinematic conditions are applied. A 
wetting angle of 60° has been specified.
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Figure 51 depicts a channel of width 45 lattice units and a length of 150 lattice 

units, a drop is initialised in the centre of the channel with a radius of 22 lattice 

units. The preferred wetting angle at the top and bottom surfaces is specified at 

60°. The drop is seen to attach to top and bottom surfaces during the initialisation 

stage. Following initialisation, a uniform body force is applied from left to right. 

The drop then coats the surface of the channel drawing red mass from the central 

region of the drop and depositing it on the channel surface. If left to evolve, the 

coating effect completely drains the red fluid from the centre of the channel and the 

result is coating of the top and bottom boundaries completely. Again this behaviour 

is completely emergent.

10.7 Sum m ary

The results which have been presented in this chapter represent a successful synthesis 

of work carried out previously and presented in chapters 6 - 9  inclusively. The 

formulaic segregation method of D’Ortona et al [57] has been found to be amenable 

to the adjustments necessary to make a very general boundary condition. The results 

all show that the induced micro-currents in the interface contact region are low (when 

compared with the bulk algorithm). By using a range of slip lengths and wetting 

angles the method has been shown to be capable of recovering various wetting and 

coating flows. In particular there is a qualitative, fundamental difference in the 

structure of the flows in the contact region between figures 48, 49 and 50 and we 

suggest tha t the range of bifuricating and rolling flows recovered show th a t our core 

MCLB method can be used to simulate DCL behaviour with confidence. We must 

be cautious about interpreting the data too closely. Time constraints permitted 

only q u a lita tiv e  evaluations of the closure method of this chapter. It is far from 

safe to attem pt, for example, to differentiate between situations where rolling and 

bifuricating flow in the contact might occur.
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Whilst time constraints prevented the generation of further results, those that 

. are presented here clearly demonstrate the potential and flexibility of the method.

Further discussion of these results is to be found in the following chapter where 

future work is considered.
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11 Prospective Future Work

11.1 Introduction

Although numerous advances to the multi-component LBGK method have been 

presented in this work; there are many points that at which it is possible to pursue 

future developments.

In this section I intend to outline what I perceive to be the most substantial 

problem with the algorithm as it stands, I also intend to propose a possible solution, 

which due to time constraints, has not been explored further than the suggestions I 

am about to make,

11.2 Curvature D iscontinuity

At steady state, with zero flow in the far field, the wetting algorithm produces, under 

certain circumstances, spurious velocities (that are depicted in figure 52, where the 

stream function is superimposed on a plot of the pN field). This is not surprising 

and all numerical methods must, at some level, produce artefacts. In our case the 

obvious anomalies in the algorithm produce vortices apparent in the stream function 

for example figure 52. This anomaly is important as it limits the application of the 

method to wetting problems where the method is most useful. Put another way, it 

bounds its domain of applicability.

From my data it is apparent that a spurious behaviour originates at the interface 

contact points. It has been found that our curvature calculation breaks down at the 

DCL for prolonged run-times (Recall, the MCLB interface algorithm evaluated, 

numerically, the interface curvature). Plotting the measured curvature data for the 

system shown in figure 52 shows that there is an obvious anomaly at the DCL at 

long simulation flow times, in steady flow. This anomaly, we believe, accumulates 

a flow artefact. Again this is not surprising as k cannot be defined where there is a
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Figure 52: Flow defect occurring for prolonged run times superimposed 011 the phase 
field information. Simulation shown is for a drop of wetting angle 60° with a uniform 
body force applied from left to right.

discontinuity in / -  the very definition of the DCL. The spurious values of curvature 

shown in figure 53 reach values in the region of 1.59 at their maximum in the DCL 

contact region.

Recalling the curvature calculation m ethod employed in this algorithm initially 

introduced in Chapter 7:

T '  (  ®  d ^  2  ^  2  ^  t o  A  A \

=  n *n * \ d y n * + o i Uy ~  ( }

The issue is not simply one of numerics; it can be seen in equation (344) th a t 

the curvature is dependant on gradients in the interface normal. At the DCL, 

the interface ceases to exist and therefore i t ’s gradients cease to exist, resulting in 

a discontinuity in the curvature calculation as shown in figure 53. For a closed 

interface there is no issue as the interface is continuous everywhere but in the case 

of a wetting drop, the interface must stop somewhere.

In the present work the problem is partially avoided by use of appropriate differ­

ence methods to calculate the curvature a t boundary nodes by extrapolation of the 

curvature at near boundary nodes. This expedient has allowed the current results 

to be obtained. More work and a more painstaking treatm ent of the curvature at 

the DCL might well resolve this issue, however there is a wider issue.
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Figure 53: Curvature plot superimposed on the phase field for the system shown in 
figure 52.

11.3 P ossib le  S o lu tion

To provide a more “stable” solution to the issue of curvature above independent of 

the assumptions made about the treatm ent of DCLs at a boundary, we recommend 

a method of interface forcing which does not require a measurement of curvature. 

Work on the problem is currently proceeding along the following lines:

The stress perturbation;

A SaP «  u f af 0t (345)

(where a; is a weight function) can be shown to have the following effect on the 

interfacial stress contractions in the interfacial regions:

A Sapnp =  u[n\p, (346)

A Scfftff =  0, (347)

where np and tp are interface normal and tangent respectively. It can be shown

th a t the above perturbation (345) is consistent with the following effective interface

forces at the macroscopic level;

Fa = dpASap,  (348)
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which, when used in place of the interface producing force used in this thesis, namely;

Fp =  | kadPpN, (349)

avoids the use of a measure of curvature - in the bulk algorithm and at the boundary. 

Put another way we can show that the body force:-

Fa = dpASap, A Saf3 = u f afp,  (350)

this generates an interfacial pressure step in accord with the Laplace Law, and 

also appropriate stress contractions in the interfacial region, without any further 

need to measure local curvature.

The above method has been found to produce an interfacial tension without 

the requirement to calculate curvature using equation (344). The method however 

remains in its infancy and currently is producing significantly larger micro-current 

signals than the previous curvature calculation method. However it is possible to 

switch between either method and therein lies a possibility; one might utilise the 

curvature based, low micro-current method for the bulk interface region and the 

modified forcing method albeit with higher micro-currents for the boundary region. 

This should give the basis for a more artefact free wetting algorithm.
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