Sheffield
Hallam
University

Lattice Boltzmann simulation methods for boundaries and interfaces in multi component
flow.

HOLLIS, Adam P.

Available from the Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/19815/

A Sheffield Hallam University thesis

This thesis is protected by copyright which belongs to the author.

The content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title, awarding
institution and date of the thesis must be given.

Please visit http://shura.shu.ac.uk/19815/ and http://shura.shu.ac.uk/information.html for
further details about copyright and re-use permissions.


http://shura.shu.ac.uk/information.html

I Adsetts Centre City Campus
L Sheffield S1 1WB

101 907 572 4

rohe” eid Haitem University
i Leaminq and IT Services
Aosetts Centre city Campus

REFERENCE



ProQuest Number: 10697121

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 10697121

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M 48106- 1346



Lattice Boltzmann Simulation Methods for

Boundaries and Interfaces in Multi Component

Flow.
Adam Peter Hollis.

A thesis submitted in partial fulfilment of the requirements of

Sheffield Hallam University for the degree of Doctor of Philosophy

Materials Research Institute, Sheffield Hallam University, Howard

Street, S1 IWB, UK

~ February 2009




Abstract

In this work I shall gii(e details of the development of a two dirﬁensional
Lattice Boltzmann algorithni‘targeting thé simulation of immiscible fluids at
low Reynolds number and low Capillary number. The Lattice Boltzmann
method will be explained along with its multi-component extensions. Key
method developments shall first be developed in terms of singie component
‘advancements, made in the lattice closure algorithm and in the appli_cdtion.
of external forces to boundary lattice sites. Having secured single compo-
nent advancements, I shall present parallel dévelopments made in immiscible
flow simulation, considering two immiscible fluids (however extension to larger
. numbers of immiscible species is mentioned where appropriate). Drop dynam-
ics within sheaf flow shall be examined with Numerical colour segrégation ‘

along with attémpts for the application of a kinematic .condition. Analytic
| segregation shall then be used and the dynamics of the phase field shall be
analysed showing improved drop dynamics. A simple and adaptable method
for épplication of a kinematic condition shall next be shown to be effecfive
when used in conjunction with the analytic diffusion method in improving
the qﬁality of the models hydrodynamics. Culmination of all the previously
identified improvéments to the simulation method shall then be utilised in the
simulation of wetting drops in both static and 'dynamic situations. The final
method is qualifatively shown to predicf static wetting, rolling contact points,

| bifurcating contacts and the spreading of films.
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1 Thesis Overview

Work carried out as part of this report has been supported by Fluent Europe Ltd.
Althoﬁgh some of the nomenclature and language used in this section are yét to be
explained; it is deemed appropriate at the outset to 'provide an overview of the aims
and objectives of the work and to outline the intended route to fulfilling these. This
section shall detail the initial issues associated with the inherited multi~component
lattice Boltzmann method and the steps taken to overcome these issues. The lgyout

‘of the thesis shall also be described.

1.1 Aims of thesis

At the beginning of this work the multi-component lattice Boltzmann (MCLB)
method showed great potential in a number of important areas of continuum ﬂo‘w'
calculations. HoWever there remained a variety of significant problems within the
core method, see Chapter 7 for an in-depth analysis of the associéted problems with
the core method. . |

The major i_séues that are to be addressed Withiﬁ this work may be summarized

as folloWs:

1. Micro-currents on multi—component interface obscuring hydrodynamic signals.

2. Lattice pinning in low Reynolds number flows or “sticking to the simulation

lattice” of the multi-component interface.

3. Indeterminate interfacial hydrodynamics and a verifiable absence of a kine-

matic condition.

4. Verifiable contact line behaviour at an accurately represented boundary with

the ability to recover Navier conditions.

It is worth noting that the final item decomposes into a number of sub-issues that

are to be addressed separately.



The intended aim of this prf)jéct was .t_o improve and develop lattice Boltzrﬁann
simulation of multi-component immiscible fluids, with particular attention being.
paid to the above issueé, thus facilitating simulations in micro-fluidic regimes and
venule scale blood flow applications. It is stressed at the outséi; that individual
application of the method to a specific situation is not the purpose of this work. The
ultimate aim is to pfdduce an effective and accurate LB method for the simulation of

interface-dominated flow including wetting in both static and dynamic conditions.

1.2 Layout

Considering the issues arising in the inherited model that were identified in the

previous section; it is clear that the work devolves into two sections.
1. Consideration of boundary conditions.

2. Fundamental issues arising from MCLB interfaces.

In terms of the structure of the thesis I intend to address the above issues as follows:

I initially intend to address the issue of boundary conditions exhaustively. For
tractability and for my own personal introduction into the subject it was decided that
bouiidary conditions are, initially, to be examined using single component lattice
Boltzmann (SCLB). |

Having resolved any issues arising while working.on' an accurate and effective

_boundary condition; the remaining problems that are associated with the MCLB

interface shall Be resolved.

Finally the two work-packets listed above shall be combined in order to create an
effective algorithm for the treatment of multi-component fluids at solid boundaries.
Having done this the issues raised in items 1-4 in 1.1 above will have been resolved.

Considering the above discussion the structure of this thesis is as follows:

Following an introduction in Chapter 2; Chapters 3 and 4 hz’ghlight all relevant

background material used in subsequent chapters. Relevant fluid mechanics is briefly
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discussed in Chapter 3 with relevant lattice methods reviewed in chapter 4. it is
noted here that thisis not intended to be a complete treatment of Aluid mechanics
but a brief overview intended to put the work into context.

Chapters 5 and 6 contain a rigorous treatment of the issues arising with boundary
conditions. This treatment of boundary closure methods is carried out using SCLB
ibnitially. It will be generalized later in Chapter 10. ‘ |

Chapter 7 details my initiai attempts using an ihherited MCLB. The issues
highlighted in points 1-3 in 1.1 are addressed with only partial success. This chapter
serves to highlight the inadequacies of the core model that I inherited.

Chapters 8 and 9 contain a fundamental revision to the core MCLB algorithm
which proved successful in overcoming the issues of 1-3 in 1.1. |

Chapter 10 attempts to combine ad\;ances made in SCLB from chapters 5 and
6 with the MCLB advances made in chapters 8 and 9. The aim of this chapter is
to show how a ﬂexible method has been developed for boundary closure, that is
capable of dealing effectively with interfaces and Navier slip conditions. |

Chapter 11 proposes future work and extensions to the new methods and suggesfs

- possible methods -of improvement.

11



2 Introduction

Fluid dynamics is a branch of physics and mechanics dealing with fluids, these

can be liquid i.e. hydrodynamics or gaseous i.e. aerodynamics.' Thé effects of fluid
motion impacts upon. us within most areas of our daily lives from aerodynamics

within automotive industries to pharmaceutical. manufacture ensuring even distri-

bution of components drug mixing within crucibles. A conventional approach within

engineering environme’nfs is to recreate flow phenomena through the use of certain

dimensionless numbers, that are discussed later. Using these dimensionless parame-

ters it is possible to physically recreate yarioué flow environments fhrough ‘dynamic

similitude’. In other words, real systéms may‘be classified by dimensionless numbers -
so as to recreate identical fluid effects using different physical models described by

_the same numbers. Such concepts are used in practical experiments such as wind

tuhnels etc. Physical Scaling of systems is an effective way of reproducing fluid

phenomena within flow domains however there are also various disadvéntages-to

dynamic similitude. Conducting physical dynamic simiiitude eﬁperiments is a time

consuming and costly process, making minor changes to the flow domain can be

difﬁculf, quantitative datav may only be collected from discrete points within the

simulation domain.giviﬁg local information only. Additional complications arise

when conducting dynamic similitude experimeﬁts when various ﬂo.w regimes aré to

be analysed for eicarﬁple laminar or turbulent flow, difficulties can arise in produc- -
ing identical experimental conditions for both flow regifnes. | Computatioﬁal fluid

dynamics packages therefore offer a cost effective, transportable and adaptable way

of simulating systems to aid understanding of physical experiment or to simulate sys-

tems that may be too compléx,for dynamic similitude experiments. In conjunction

with theoretical fluid mééhanics, the three methods allow us to better understand

the processes taking place within flow systems.

- In respect of the computation methods at the heart of this thesis, the first at-

12



-tempt to model fluid flow successfully and recover the rotational éymmetry of the

Navier—Stokes equations was made in 1986 by Uriel Frisch, Brosl Hasslacher and
Yves Pomeéu (FHP) [1] when they produced a cellular automaton (CA) computer
simulation that worked by obeying conservation laws to recover hydrodynamics ona
microscopic level. This early CA worked using a tWo step mechanism, a free-stream
and a collision; the free-stream operation involves the movement of Boolean parti-
cles from one site on a hexagonal lattice to an adjacent lattice site, thus making the
method a Lattice Gas Cellular Automation (LGCA). The collision step dccurs when
Boolean particles reach the same site on the lattice at the samé ﬁime and interact;
-the total momentum is conserved but redistributed between the particles at tlilat‘
site. 'The redistribution is governed by a set of loical collision protocols.. This system
is clearly tirne—space discretised. | |

Due to the large amounts of integers being processed for a Boolean LGCA sim-
ulation there is inevitably large amounts of statistical noise. In an effort to fry and
reduce tﬁe levels of statisﬁcal noise and recover behaviour more conclusively rélafed
toN avier—Stokés behaviour, the Boolean components were replaced with, effectively,
an énsemble-average population based on a distributed Maxwell-Boltzmann distri-
bution. It was soon realized that the technique of replacing the Boolean particles
and integer arithmetic with floating point arithmétic on continuous populations was
a valid method of reprbducing fluid hydrodynamics in its own right [2]. Hencé the -
first form of the Lattice Boltzmann Equation (LBE) was produced.

Fluid mechanics relies on the laws of conservation, in this report the Lattice
Bhatnagar Gross and Krook (LBGK) algorithm will be ﬁsed for the imple‘menta’tion
of the Boltimann equation on a lattice. The aigofithm is implemented on a two |
dimensional lattice with nine possible velocities (D2Q9) that will be covered in
more detail later. [3] [4] l

Fluids considered in this work are Newtonian fluids in the continuum regime.

That is, that stress and strain within the fluid are linearly related through their

13



viscésity; The fluids are vieWed in t‘he continuum regime or in other words are
considered to be continuously divisible. The interaction Qf the individual parficles
comprising the fluid are not directly considered. Thus physical parameters such as
“the velocity of the fluid and the fluid density may be speéiﬁed at any point within
the flow domain.

Throughout this work, flow shall be regarded as incompressible and isothe}‘mal.
All fluids are compressible to some degree however the assumption of incompressibil-
ity allows us to assume a constant density throughout the continuum fluid aﬁd thus
a uniform viscosity. As the fluids are considered to be isothermal we assume them
to have a uniform temperature thréughout. Consideration of isothermal and incom-
piressible fluids allowé_ us to greatly simplify the equations governihg flow. There
haé been substantial Work cafried out considering the energy equation that governs
flow [5], as we are considering isothermal and incompressible fluids, this shall not
be considered. |

The law of mass conservation will be used to derive the Continuity equation and

“the conservation of momentum will be shown tb give rise to a set of three equations
kﬁown as the Navier-Stokes equations. The Continuity and Navier-stokes equations
can be used to describe the vbehaviour of any fluid within a flow domain, the unique
characteristics of the ﬂowvare a consequence of the interaction of the fluid with
domain boundaries and interface interactions between immiscible corﬁponents.

Accurate represenfation of the domain boundaries including the intérface be-
tween two immiscible fluids is therefore essential if accurate hydrodynamics are to

be recovered.

2.1 Recent Related Advances Using Lattice Boltzmann

Throughout this work various recent developments in LBE modelling are directly

utilised and are referenced where appropriate such as M.Latva-Kokko and D.H.
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Rothman’s segregation method [6] which was published in 2005. In ;)rder to illusfrate :
and contextualize recent developments andvto show wider applications of the method
I would like to give a brief overview of recent work carried out by O. Berk Usta and
Alexander Alexeev from the Chemical Engineering Department of the University
of Pittsburgh [7]. The fOllovﬁng application illustrates the broader context of the
detailed work undertaken in this thesis. ' ‘.

Usta’s work builds on earlier simulation techniques of Alexander Alexeev et al [8].
Alexeev uses two different meso-scale models and integrates them in order to simu-
late the behaviour of micro-capsules in a continuum fluid. The aim of Alexeev’s work
is to combine an LB method fairly similar to ours and a lattice spring method [9]
(which will not be discussed in this work), to simulate the behaviour of a continuum
fluid alongside a micro-capsule’s elastic shell. The work aims to imprbve the speed
at which chemical data can be retrieved from micro-reactors. The aim is to ma-
nipulate minute quantities of reagents that are COnfained within the micro-capsules.
Alexeev also notes that the fluid-filled elastic shelled micro-capsules can also be used
as s_imple models for biolpgiéal cells such as leukocytes.

-Using similar boundary conditions to those de‘veloped by Alexeevet al [8] de-
scribed above; Usta haé recently published work describing how, by using the com-
bined LB and lattice spring method of Alexeev, they have been able to simuléte the
' self propelied motion of micro-capsules.

Usta describes how in some biological sysfterﬁs there is coininuhication between
célls which are designated signalliné; and target cells, thié allows the cells to cooperate
and thus ‘carry out a large range of functions. The aim of Usta’s work is to mimic the
communicat-ion that occurs between’biological cells. The main outcome is that when
considering a pair of cells, one signalling and one target, that are situated in close
proximity on a substrate, the action of the signalling cell results in the self-propelled
motion of both cells.

Initially consider a single signalling cell on a substrate that is surrounded by a

15



continuum fluid. The signalling cell is filled with dispersed nano-particles within
its fluid ﬁlied core. These nano-particles are able to diffuse through the shell of |
the micro—éapsule. The nano-particles can “chemisorb” onto the surfaée of the
substrate .and modify its wetting properties, in particular its adhesive interaction.
The strength of adhesion of the substrate diminishes as therconc_entration of naﬁo;
particles chemisorbed Qntb it incréases. The signalling cell therefore emits nano-
particles that diffuse through the surrounding fluid according to Brownian motion.
The dei)osition of nano-particles on the substrate creates an adhesion gradient em-
anatihg from the poiﬁt directly underneath the centre of mass of the signalling cell.
At this stage Usta notes that there is no self-propelled motion as the system is
symmetrical.

Placing a target cell in close proximity td the signailing cell however Br'eaks
the system’s symmetry. Upon diffusion of the nano-particles, the wetting section
of the target cell is exposed to a adhesion gradient. Should the parafneter set be
appropriate in terms of diffusion rates and relative separation and reactivity of the
nano-particles relative to the adhesivness of the surface;‘ the target cell will, und_er
the correct circumstances, move from the less.adhesive area to the more adhesive
area, i.e. along the adhesion gradient.

Subsequent to the initial movement of the tafget cell, Usta ‘foﬁnd that the hydro-
dynamics of the continuum fluid caused by the motion of the target cell, initiated

. movement of the signalling cell itself thus fdlldwing the target cell along the adhesion
gradient. Following this initial movement, both the targét cell and the signalling
cell lie in asymmetric positions relative to the adhesion gradient and thus contiﬁue
to move provided that the signalling cell continues to diffuse nano-particles.

Therefore, by utilising the lattice Boltzmann method, Usta et al have designed
a biometric system where communication is achieved between a pair of synthetic
particles through the diffusion of nano-particles. They have also shown how the

hydiodynamics induced by the target cell can influence the motion of the signalling

16



cell thus dembnstrating that hydrodynamic forces have an important role in the
sensing and signalling behaviour of biological systems.

I will not attempt simulation with the degree of complexity of Usta et al’s [7]
work; my objective is to examine the fundamental accuracy and verifiability of the
underlying LB model. However, Usta’s work does ‘illustrate the cofnblexity of the
fluid systems that LB can address. The following is the sort of thing that the models
'T have developed might, eventually, be applied to. |

There is a long history of modelling attéching c‘ells’as wetting immiscible drops.
In the context of this thesis, a similar result to that obtained by Usta et al hlay
be achieved By usingAthe culmination of advances described in this thésis, shown in
chapter 10. If simulations of this kind were fo be carried out, the wetting properties
of the substrate, speciﬁcaily in the above example, the adhesion properties of the
substrate would need to be investigated. In addition, fhe secondary migration of
the signalling cell that is induced by the hydrodynamics Qf the continuum fluid must
not be compromised by the micro-currents of the interface. The low micro-current
interface algorithm demonstréted in Chapter 10 is necessary.

' Thé essential difference between the work in this thesis and that of Usta et
al is 0ﬁr focus on hydrodynamic boundary conditions and their accurate correct
representation without re,cburse to any form of (céfnputatioﬁally expensive) aﬁd

unverified membrane model.
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3 Introduction to Fluid Me»chanics.

The intention here is not to cover ﬂuid. dynamics in a comprehensive manner however
it is appropriate to consider some key concepﬁs in context; more complete .accounts
are to be found in Batchelof [10],,Tritfon ‘[11], Landau and VLi‘fshitz [5] and Happel
and Brenner [12]. |

3.1 - Dimensionless Quantities in Hydrodynamics

In fluid mechanics it is conventional to describe various flow regimes using a ;x/ariety
of different dimens_ionless‘ quantities. It is appropriate at this stage to mention some
~ of these difnensionless quantities and their meanings. There are a wide range of
dimensionless numbers fhat are applicable to a large variety of flow situations such'
as; the Nusselt Number (that measures the enhanc'ementl 6f heat transfer within a
fluid when convection is considered as well as conduction) and the Schmidt Num-
ber (that is used to describe the ratio of diffusion of momentum to that of mass).
Dimensionless quantities that are to be used regularly in this work are explained
below in greater detail. |

Throughout this work the following standard ‘notation shall be empleed. The
shear and kinematic viscosity are denotéd as n and v respectively. The drops we
-consider have radius R and surface tension a. Their flow environment is usually

characterised by a vélocity U and/or a shear rate 7.

3.1.1 Capillary Number

In fluid mechanics the capillary number (Ca) is used when considering the interface
between two immiscible fluids or liquid-gas interfaces. The Ca measures the ratio
between the effects of viscous forces relative to the surface tension acting across the

interface. The Ca may be regarded as the ratio of momentum diffusion forces to
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surface tension forces. The Ca may be expressed quantitatively as follows:

Ca=—2. | (1)
Where all symbols have meanings as described previously,

3.1.2 Mach Number .

The Mach number (Ma) of a flow may be regarded as a measure of the speed of the
flow. It is defined as the ratio of the speed of an object relative to the fluid and the

speed of sound Witﬁ in the fluid medium. The Ma may be expressed as follows:

Ma= (2)

U,
cs
Where c; is the speea of sound within the'medium and all other symbols have their
usual meaning as described previously.

It is worth noting that the Mach number is temperat'ure dependant as the speed
of sound within a given medium varies with temperature. When considered in the

context of this work however the Ma may be considered constant as we are solely

concerned with isothermal flows. |

The Ma is important when considering ﬂuid‘melchanics simulations as solids
being passed by a fluid.at the same Ma will expe.rience similar forces and effects

even though the velocity of the passing fluid may not be identical in both cases. ’

3.1.3 Reynblds Number

The Reynolds number (Re) of a flow practically quantifies the isothermal flow regime
and is used to distinguish between various types of flow for example laminar and
turbulent flows. The Re is considered the fundamental and most important dimen-

_ sionless number used in fluid mechanics. The Re is defined as the ratio of the inertial
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forces in flow to the viscous forces. It may be expressed as the bulk Reynolds nurvnberl
using the dimension of the flow domain or may be expressed as the ‘drop Reynolds

number’ (Rey) which uses the local dimension of a drop contained within flow as

~ follows; _
Re= W | (3)
V : .
. D2
Red = %, ) . o (4)

where W is the physical dimension of the flow domain, 4 is the shear rate, R is the
radius of the drbp and v is the dynamic viscosity of the fluid. As with the Mach'
number, thé Reynolds number may be used in conjunctiobn’with other dimensionless
numbers to calibrate simulations of actual éystefns where dynamic similitude relates

different experiments. -

3.2 Governing Equations of Hydrodynamics
3.2.1 Continuity Equation

The Continuity Equation arises as a consequence of the principle of conservation
of mass within a flow domain. To illustrate this we can consider a control surface
element of surface area, dA, and its normal unit vector 7. If we consider the amount

of fluid passing through the surface area in a unit time with a velocity u.we have:

whdA =udd; dA=ndA. (5)

Multiplying the above expression through with the density of the fluid gives us an
expression for the mass of fluid passing through the surface element in a unit time.
Now using surface integration techniques and applying the law of mass consérvation,

the total change in mass of the volume, vy, with surface.area, A, must equal the
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amount of mass passing through the surface, s, in a unit time: A

il [roemeffpr o

Using the divergence theorem on the reference volume provided that mass is neither -

created nor destroyed, we have;

Jffgeeff [

Equating integrals we obtain from the principle of mass conservation and the diver-
gence theorem [13];

gﬁ+V@M—ﬂ | | ®

We have therefore shown that the continuity equation comes as a direct result of
the conservation of mass within a system. The continuity equations is the most

fundamental equation within fluid mechanics.

3.2.2 Euler Equation

The Navier-Stokes eqﬁations, arise from the conservatic;n of momentum and the
. appliéation of Newton’s second law of motion. The equations are parabolic sécond—
order partial differential equations that are fundameptal in fluid mechanics and,
along with the continuity equation and the flow boundary conditions, close the
des‘cription of hydrodynamic flow processes.

APrior to derivation of the Navier Stokes equations it is appropriate to derive the
Euler equation Which applies to the ideal and reversible flow procesées.

Force exerted by a liquid on a material enclosed in a surface “s” is :

E=—//PM. | )
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Now, by applying the divergerice theorem to the vector V = Va with a a constant

unit vector, it is straightforward to show that:

//gz.@=d.//sVd_A=a,///‘/VVdéz, o)
faan [ [ foves

which when applied.to equation (9) gives;

_I;"=‘—./4/SP.dA=—///v(VP)‘d?’IZ-. - }(12).4'

Making the definition for the force per unit volume on the immersed reference body

e- [ ] [ e G

which may be inserted into equation (12) in order to give the equiValence;

that is;

vto be:

F'=-VP. | (14)

Consider Newton’s second law of motion and express it as a material derivative the
momentum of the unit volume. Expanding the material derivative we may express

the force per unit volume in terms of time and space derivatives:

D ou 0 0 0 -'
F'= Popl =_p(8—; +uz%y+uya—yg+uzb—zu)- (15)

Coinpressing the spatial derivatives and making use of the equivalence identified in

(14) we can write the Euler equation:

VP =Bt @V. (16)
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We have derived the Euler equation for an incompressible fluid but it remains true

for a compressible fluid also.

'3..2.3 Navier-Stokes Equation

We may now proceed to derive the Navier-Stokes equations. Initially we can denote
the Euler equation (16) in cartesian tensor form and rearrange with the view of
obtaining a form into which we can insert the momentum flux tensor, ITy [5], and

defined below. Taking the Euler equation in tensor notation and rearranging we

obtain; .
= - - — 17
ot (e Oxy, ) p Ox; (17)
If we now consider separately the time differential 9leud) and expand the derivative

at

using the chain rule we obtain a two term differential equation, if we proceed to
replace the density differential on time with the identity proposed by the Continuity

equation we can obtain an expression;

Ou; _ 19(pus) L Ui 0(pux)

ot p Ot p O (18)
vS_ubst}ituting (18) into (17) and rearranging we obtain, -
10(pu;) | u; O(puy) ou; 1 oP
p Ot + p Oz, uk@xk p 0z’ (19>

Rearranging (19) allows us to condense derivatives ‘i_n x) using the reverse of the

product rule for differentiation gi\}ing;

Opu; _' OP  Opuyu; :
ot  Ox; Oz, (20) -

. The free variable tensor subscripts may be changed using the property of the Kro-

necker delta function, the resulting equation may then be factorized producing an
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equation that will allow us to identify a momentum flux tensor function:

Opu; 0

o _T%(Péik + pukus), | (21)

defining; .
I = Pdy, + purus, | - (22)
‘we have; : |
. 3({;?1 _ —‘%Hik; | ' - (23)

The momentum flux tensor Il is defined as the i** component of the momentum
transferred into a reference volume uo through a surface, S with its normal in the
. direction in a single unit time. It can be noted that the curreﬁt form of the Euler
équation is applicable to ideal fluids only as it represents a momentum transfer’
mechanism that is totally reversible‘.

In order to obtain the appropriate hydrodynamics for a’non-id.eal, viscous fluid,
internal friction must be incorporated into the Euler equation (where friction is
. regarded as dissipation of kinematic energy) which has been expressed in equation
(23) in terms of the momentum flux tensor. In order to take account of friction
effects fhe momentum flux tensor is modified, incorporating an a.dditionai term,
the viscous stress tensor o},. This term introduces momentum dissipation into the
momentum transfer mechanism of the fluid. The modified momentum flux tensor
may be expressed as;

L, = Ik — 0. ‘ ’ (24)

\

Inserting the modified form of the momentum flux tensor-into (22) and substituting
in for Iy, in (23) it is possible to factorize the resulting equation into the following

form;
Opu;
ot

8 , 8 - |
= %(—Péik —+ Uik) — 8—xkpu,-uk. (25)
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The term, — Pdy. + o}, in (25) is thé full stress tensor, o, and —Pd;; is known as
the hydrodynamic stress component, and, as we have discussed, o}, is the vis'co‘us
stress tensor.

From ph.ysicall arguments the viscous stress tensor must become zero for a fluid
that is under unifofm translational or rotational motion. 'Fro‘m such physical ar-
guments it is possible to derive an expressioﬁ for the viscous stress tensor. Such a
derivation is carried out in [5] with the result ‘being; |

o = U(S—Z + Z_ZI: - g%g—;ﬁ;) +§(g_zj)6ik- ‘ - (26)
Where 7 and ¢ are coefficients of viscosity aﬁd are both positive and functions of
pressure and femperatpre. Aswe are only considering isothermal and incompressiblé
flows, these coeflicients are constants. 7 is known as the shear .‘viscosity and £ is the
bulk viscosity. Substituting into equation (25) and making use of the Kronecker delta :
function we can express the expanded form of the Euler equation with additionél

retardation as;

Opu; | Opugu;  OP N
ot am  om VT3

2. 0 oy )
5. 07, (27)

Using standard algebraic techniques the left hand side of equation (27) may be
expanded using the product rule, the.reéulting equation may then be factorized and
expressed in a fofm that allow the continuity equation to be used to cancel terms
‘ahnd'simplify the exbressioﬁ:

PG Ukgg,) = “ag TV u T+ 3mas GGy

(28)

"The fact that the kinematic viscosity is given by % = v, also from the Continuity

equation, for an incompressible fluid g%: = 0. It is therefore possible to produce and
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expression for the incompressible Navier-Stokes:

8Ui : 8’[11, . ' 10P 2
T + ukaxkv =~ om + vV4u;. | | (29)

‘The incompressible Navier-Stokes equation and the Continuity Equation form the -

most important set of equations in hydrodynamics.

3.3 Initial Conditions

Chapter 5 deals with .boundavry conditions in the context of lattice Boltzmann sim;
ulation in detail. It is appropriate, however, to make a few remarks here.

We consider only incompressible fluids with the equation of state p = constant;
compressible fluids need a little more care.

The Navier—Stokes equation is a parabolic partial differential equation. To close.'
a particular solution it is therefore neceseary to haVe (i) its solution (the velocity
field) specified over the complete, closed perimeter of the flow domain at all times
and (ii) an initial condition specified over the whole flow domain. Note that it is
not neceseery to know the pressure distribution over the boundary. (In principle,
pressure may be eliminated from fhe descriptien- by taking the curl of the Navier—
Stokes equation, which may then be solved. ’Pressure is later derived from the known -
velocify by solving a Poisson—type eQuatien derived by takiﬁg the divergence of the
Navier—Stokes equation and using the continuity equation).

In cases where the steady-state of flow is alone of interest, the elliptie time—
independent Navier—Stokes equation must be solved with reference to the velocity

field specified over the complete, closed perimeter of the flow domain.

3.4 Interface Conditions

It may be shown that from mechanical stability considerations, namely Newton’s

third law of motion, that at an interface between two immiscible fluids (a) and (b),
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characterized by a local normal 7(r), the following stress conditions must hold for

the viscous stress and the full stresses respectively:

o\ Y%, — o, Of, =0, (30)
@) A N 1 1 4
Uzgk)nk - ng)nk = Q(E + R_)nh (31)
2

where £ is the tangent to the interface (£.7 = 0), R; and R; are the .principal radii
of curvature of the interface and a is the surface tension at the interface.

At this point it is important to note that (i) in the continuum approxifnation
the interface enters the description of the problem of a boundary condition and (ii)

that the interface is considered to have no structure.

3.5 Closing Remarks

It should be noted here that, as we are carrying out simulations using isothermal
fluids, a 1arge body of work that has been carried out concerning the scalar (partial
differential) energ& equation has been omitted. For information regarding the energy
convection and diffusion (conduction) in fluids, the reader is directed to [5], for
further information and derivation of the energy equation. It should also be noted
that a closed mathematical description of a fluid in general requires the equation of
state for the fluid to be specified. In the present context, however, lattice Boltzmann
fluids have an ideal gas equation of state (see below) which simplifies the description
of the lattice fluid (but introduces other problems because the.sp’eed of sound in
such models is only o(1)). Notwithstanding the preceding comménts, we shall work,
henceforth, in the incompressible, isothernial regime of viscous flow, described by
the continuity and Navier—Stokes equations.

It is also appropriate to remark on the large variety of analytical solutions to

and ‘simpliﬁcations of the flow problem. The range of analytical solutions and of the
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methods and inVestigation strategies developed to solve the conﬁinuity and Navier
Stokes equations are surveyed in a range of well-established texts, possibly the most
significant of which is {10].

| Physicists get away with vapproximating the gfeater part of many flows as “po-
tential” (with velocity ﬁeids derived from the gl;adient of a scalar velocity potential),
with magnetostétic analogies ;nd a range of savage approxirhations of a less than
rigorous .nature. For more “physical insight” into such approaches to flow processes,
and for an appreciation of the underlying flow physics, the reader is directed to [11], '
iwho describes fluid dynamics from the perspective of the underlying physics of the |
flow, in a way well suited for the less mathematically .orientated reader and with

0

reference to experimental facts.
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‘4 Lattice Methods

Lattice methods have been a part of statistical mechénics for decades. Models such
as the famous Ising model, was solved in two dimensions in 1944 by Onsager [14].
Lattice gas models for the simulation of fluids appeared in approximately 1976 as a
result of work by Hardy [15]. With the progression of téchnology computational fluid -
dynamics came of age approximately a decade late_f. As previously discussed Lattice
Boltzmann methods are a derivative of lattice gas cellular automaton. Here I shall .
present, a brief summary of the methods used in this work in order of their algorithmic
complexity; beginning with single corﬁpongnt simulations and later pngreSsing to

multi-component simulations.

4.1 Single Component LB Methods
4.1.1 Background

’Historic‘ally Lattice Boltzmann methods derived from Lattice Gas Cellular Au-
tomata. As mentioned in Chapter 2, one of the maiﬁ problems arising in LGCA
was noise in the simulations, which was overcome by using an ehsemble average as '
a primary quaﬁtity as opposed to boolean quantities. Othér problems with LGCA
arise in the form of éensitivity to lattice structure; only ceftain choices of local lat-
tice structure (i.e. the unit cell) retain sufficient symmetry in ferms of their isotropy
to allow successful recovery of Navier-Stokes behaviour [3). Further problems arise
when carfying out simulations in three dimensions, there are no unit cells that have
sufficient symmetry to recover the appropriaté hydrodynamics. In order to achieve
three dimensional simulations with LGCA it is necessary to work in foiur ‘dimensions
to increaée’ the isotropy of thé system. This obviously increases the complexity of
the simulation and requires large run times or the compilation of large collision rule
tables, ﬁsing large amounts of system memory.

Galilean invariance is not intrinsic in LGCA and the fluid velocity becomes pres-
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sﬁre dependant. When recovefing the hydrodynamic equafions that are Navier-
Stokes like, it is foﬁnd that using a discretised lattice velocity gives rise to a “Gallileance
breaking” factor in the lattice fluids macroscopic equation. In order to remove this
factor it was necessary to confine the simulation to low Mach number ﬂo§vs, thus
making terms éontaining the Galileance breaking term negligible [16]. Further cal-
culations must fhen be carried out in performing scaling operations of the veloéity
and time with the Galileance breaking term.

CA simulations are subject to further constraints in terms of the maximum
Reynolds nﬁmber (Re) that may be obtained. Thev‘maximum Re is _gqverned by
the nurﬁber of collisions that may occur per time-step and is ‘therefore dependent |
on the lattice used (due to the number of discrete velocities allbwed). The possible
number of allowed unit cell velocity -Vectors that are capable of conserving mass
and momentum is therefore central in terms of achie\}ing target flow regimes in
simulation. | | |

Having said all this however; what was previously considered as an inconvenience
in CA has repently enjoyed a renaissance in CA; the calculation of actual collision
sets in colliéion tables. Although inconvenient to encode, the boolean nature of
~ the collision in LGCA simulations gives unconditional stability with no numerical
divergence and is therefore being reinvestigated to apply the simulations to cases of
turbulence. | ’7 7 |

LB began as a solution to the problem of statistical noise in the CA system
by calculating time and space averaged quantities directly and using floating point
p'opulations as opposed to‘ Boolean quantities. In recent times the lattice version of
 the Boltzmann equation (LBE) has become the most relevant derivative technique of
the essenfial method, the model continues to attract interest above models like DPD
[17-20] as the Boltzmann equation may be shown to recover the Navier-Stokes and
~ the continuity equation through the Chapman-Enskog expansion tov be considered

later.
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There are various forms of lattice Boltzmann equation simulation each with their
individual merits for application to various situations. For example, in mesoscale,
multi—-component problems, where the kinematics of phase separation feature, the
free—énergy method [21,22], based as it is upon Cahn-Hilliard theory, is the most
appropriate choice of multi-component LB (MCLB). Alternatively, flows like that in
reference [23], which are formally characterized as complex, incompressible, multi-
component flows, address the continuum ﬂuid approximation, to which we consider

' the LBCK (see below) method described here is mbst applicable.

In the latter applications, .ﬂuid-ﬂuid interfaces are unstructuréd and appear as
boundary conditions on 0912 where €2; and Q5 are Separate Navier Stokes domains.
H(Most MCLB variants have, at some time, been applied in this approximation but
physical accuracy, efficiency and simplicity favour a MCLB pioneered by Gunsteflsen
et al [24] and modified by Lishchuk [25] and a method of Latva-Kokko and Rothman
[6] for the continuum regime).

The LB method used here is the LBGK method [4], arises as the BGK Boltzmann ‘
equation [26] is applied to a lattice and the Navier-Stokes and Contihuity equations

are recovered. The BGK Boltzmann equation is given in [26] as;
[— . = —— — A ‘ 2
~f TV =—(f - 1), @

where the link populations are given by the single particle pop‘ulatibn distribution
function f,; and fi(o) is the Maxweli—Boltzmann équilibrium distribution. U is the
macroscopic velocity of the fluid and 7 is the éollision time. The term on the right
hand side of equation (32) is the collision term, it is worth noting, that if the right
hand side of the equation were to tend to zero, we have a situation where no collisions
occur, as we would expect in a low density gas system. The collision term acts as
to return the system to thermodynémic equilibrium, the further the distribution

function (f;) is away from the equilibrium distribution ( fi(o)) then the larger this term

31



becomes and the greater the tendency to return to equilibrium. Taking equation .
(32) and expressing the left hand side of the equation as the material derivative and

essentially integrating along characteristic of the equation we may obtain:

y 5t7 5t - bl |
JELr &t 0 2 JELD _ s r0)- 1O(0,w)

fEr+ 86,0+ 6) = fEr, 1) = 26 — fOp). (3

The essential idea of lattice Boltzmann is to solve this equation on a regular .lattice
made-up from a ‘basis’ or unit cell of discrete velocity vectofs (see figure 1). This
discrete velocity set c; will then deﬁne all the positions on the lattice.

The‘D2Q9 LBE method operates on a two dimensional (D = 2) lattice with
nine (Q = 9) possible veloéity vectors. The lattice is essentially square with eight
~ velocity vectors connecting nearest and next—nearest lattice nodes, the ninth, zéro
vector corresponds to the central rest node. The velocity vector direction is indexed
by the quantity “i”, the velocity vectors are denoted using ¢; as shown (figure 1).

Each of the nodes depicted in figure 1 are arranged on a regular lattice that
covers ‘the simulation domain (figure 2). |

The magnitﬁde of the velocity vector is denoted as the vector population distri-
bution function, f;. The vector populations (f;) are controlled by a set of governing
- laws that méy be used té obtain the macroscopically observable quantities of the
flow.

In General LB is a directional discretization of equation (33) in velovity space:
filr + cib, t +6,) = fi(xr,t) = fi(r, 1) + € (f,go)(ﬂ, v) — fi(z, t)) +¢i.  (34)

In equation (34) Q;; is known as the collision matrix and f; is the population of
particles travelling with velocity ¢; [3]. The term ¢; will be considered in greater

. detail in later sections, for current purposes it may be regarded as a term used to
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I i 8% '

i=8 =0 i=

=7 i=6 i=5

Figure 1: Single lattice node for D2Q9. The velocity vectors point in the directions

indicated by the arrows. Note for i odd, veloc1ty magnitude is increased by /2.
Note that |¢4| = 5’

Figure 2: Lattice domain for D2Q9. The horizontal distance between adjacent nodes
is the lattice spacing 0.
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impose an external force on the fluid such as a gravitational field. In general, the
lattice fluid’s kinematic viscosity is determined by the principal eigenvalue of fhe
‘'symmetric collision matrix 2;; = {2js. For the single relaxation time so—called. LBGK
model €;; takes a simple form: | |

Qi = ;_1'57:3', | : - (39)
with the collision parameter 7 determining the fluid kinematic viscosvity; for our

particﬁlar D2Q9 choice [3]:

(21 =1\ 6z o
v = — 36
()= (36)
where ¢, is the lattice spacing see figure 1 and §; is the time step. Note that the
lattice spacihg 0z = 1 throughout. The €;; or 7 are assumed to be known.

For the D2Q9 model of Qian and d’Humieres [4], analysed in detail by Hou et
al. [27);

e+ cibt+8) = f1(,8) = filr, 1) + %( 1O0,v) = fim )+ 4,6, (37)

» &L

fg (r,t) is the “post—collision”, pre—prdpagate” (see below) value of the momen-
tum denéity_; tp,G is a “source” term, where -tp is the lattice link weight, which may
be used for example, to represent a uniform pressure gradient [3,28] or interfacial
tension as an external force, in the case of multiple i_mmiscible' fluids [3]; all other
symbols have theif usual meaning [4,27].

Algorithmically, equation (37) is interpreted as a collision step (right hand side
of (37)) followed by a “stréaming” or “propagation” s.tepv in which the calculated
value of the right hand side is moved in the direction of ¢; for an interval d; to reach

the next. lattice node.
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i | O(rest) | 1 2 3 4 ) 6 7 8
t, | 4/9 |1/9|1/36|1/9|1/36|1/9|1/36 | 1/9 | 1/36
Ciz 0 |1 1 0 | -1 -1 | -1 0 1
.Ciy 0 0 1 1 1 0 -1 -1 -1

Table 1: Definition of the D2Q9 simulation lattice link vectors, c;.

For all LB models the equilibrium distribution fﬁnction fi(o) is linear in p

 1O%0,v) = pP? (v -cy) - (38)

where the second-order polynomial P@(v.c;) depends upon the particular LB model
being used [3].
The principal contribution to the distribution function is the equilibrium distri-

bution function, which for LBGK, is defined as:

. 2 2
©) vee v (v-ci)
; =tp |1 -+ —
fz (/), V) Pp [ + cg 2C§ + 20;1 :| (39)
We derive the macroscopic fluid density and momentum as follows:
pv = Y fie - (40)

It will be shown below how the form of equation (39) is arrived at.

in the present context equations (39) and (40) refér to those lattice links 'ci and
weights ¢, defined in Table 1 and depicted. in figure 1 where the speéd of éound
cs = 1/+/3 for the D2QQ lattice. The above choice for the equilibrium distribution

function also recovers a pressure tensor:

Hgg = §p5ag + puovg = Z 9% s ‘ - (41)

Note that the quantities p and v are the solutions to the Navier Stokes and
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Continuity equations for the flow problem. It is not a trivial exercise to show that,

as we shall now see. .

4.1.2 Chapman Enskog Expansion for Macroscopic Dynamics

Within this section I atfempt a limited but direct derivation of thevhydrodynamic
equations recovered from the Boltzmann e(juation via the Chapmém Enskog expan-
sion. ‘Key points arising within this derivation will be referred to in following sections
notably Chapter 6. .

The Chapman-Enskog [29] analysis allows us to recover the hydrodynamic equa-
tions from the lattice Boltzmann evolution equations. The LB equation is initially
expanded to second order accuracy in space and time with relation to the Knudsen
number [3]. Through algebraic maﬁipulafion and scaled expansion a set of equations
may be obtained at short and long distance scales and fast and slow time scales.

Working from the LBGK evolution equation we shall show how to arrive at the
hydrodynamic equations and derive a system of simultaneous equations for param-
eters in fi(o).

We begiﬁ with the LBGK evolution equation from equation (37) that is clearly

space and time discretised:
. | )
filg +8ei t +60) = fi(z, ) + ~(H9 = filz,1). (42

‘Taylor expansion of equation (42) in two dimensions, retaining terms up to and

"including second order along with cancellation of like terms yields:

o] 52 0
61(ci. V+ a)fz + %(sz + a)2fi = ’i‘(fi(o) — fi(z,1)). | (43)

The time and space derivatives are now Chapman Enskog expanded into parts con-

sisting of their long and short components, this effective expansion of the variables

36



formally being carried out with relation to the Knudsen number, §. We therefore

make the following expansions:
Oy = Oy + 804, (44)

fi=f0+650 + 6242, (45)

Substituting the above definitions into equation (43) we obtain an expression that
~ may subséquently be separated into first and second moments in terms of the Chap-

man Enskog Knudsen number expansion parameter § which is set equal to d;:

0(¢ci-V + Oy + 58;1)(fi(0) + 5f1(1) + 52fi(2)) _
2

5
7 (&Y + 0o +80) (e:V + o + 80u)( 5O 4550 4 6252

=GO+ | (46)

Collecting and separately equating terms in 6§ and 62 it is possible to express the

first and second moments of the distribution function as;
1 o
eV +00)f;” = =~ 1", » (47)

. 1 1
(aV + 3to)fi(l) + 3t1f,~(0) + QT(C’V + 8tO)in(O) = _;fi@)' _ (48)

Through straightforward algebraic manipulation of equation (48) and insertion of
equation (47) we can obtain a form of equation (48) that is more easily manipulated

within the analysis: 1
Lo A ® ©_ 1.
(1- 2T>(civ +0w)f; +0uf,’ = “;fi . _ (49)

We now have a set of equations that consider the first and second moments of the

parameter § namely equation (47) and equation (49) respectively. We now consider
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the lattice basis summation moments that are imposed on the distribution function.

For the conservation of mass, Chapmann and Enskog required:

Sifi® =p,

50 = 0. | | (50)
Similarly for momentum considerations we may follow Chapmann and Enskog:

%ifi®e = pu,

% fi0¢ = 0. ' (51)

Taking the equation for the first moment do(1), equation (47) and summing on

{534

i’ and inserting the above momentum and mass conservation considerations we
can show that we have produced the continuity equation with short time scale

components [30]. Expressed in tensor notation, we have;
Orop + Oapua = 0. . - (52)

Considering the second moment of 0(d), equation (47) we can write the equation in

tensor notation and multiply through by c;s:
1 A
Ziciaaafi(())ci,@ + Ziatofim)ciﬁ = —;Eifi(l)cw- _ (53)

Using the identities expressed in e(iuations (50) and (51), we may express equation
(53) as; ‘
- BiciadafVcig + Oopus = 0. | (54)

With an eye on the required emergent behaviour (see below) we require the “equilib-
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rium” contribution fi(o) , of the distribution function f; to have the following propérty;
Zl’fi(O)CiaCiﬂ = C2pbap + PUlp. (55)

Substitution of (55) into (54) yields;
O0pup + OuC2pbap + OupUalip = 0. o (56)

Through tensor algebra we can exploit the property of the Kronecker Delta function
in order to change the equation subscripts and subsequently in order tb expand the

equation further we invoke the product rule for differentiation. Cancellation of térms
may then be carried out using the continuity equation, equation (52), to transférm

terms within the equation. The equation resulting from these operations is:
Oiug + UaOqtig = —0pc2In(p). (87

Comparison of equation (57) with earlier work shows that our model reproduces a
form of the Euler equation on short time scales. Thus far we have used the equation
Con’gaining terms of first order in “6” to recover the cdntinuity and Euler equations
on short time scales.

We éan now proceed to considerations of the longer time scale 0(§?), equation

[1334)

(49). Summation of equation (49) on “i” and taking into account the mass and -
momentum conservation constraints identified in equations (50) and (51) we have
the equation;

3t1p =0. » . (58)

Multiplication of equation (58) with “§” and adding with, from the previous analysis;
the short time scale continuity equation, equation (52) we obtain, through standard

factorization, and consideration of equation (44), a demonstration that our model
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recovers the continuity equation on long time scales:
0ip + Oa(puq) = 0. : o (59).

In order to obtain further dynamics of the system we return to the 0(§2) equation,

equation (49). Multiplicationithrougho.ut by a second velocity vector c¢;s prior to

3
1

summation on the components yields the following;

o 1 - 1 |
0uZifVeis + (1= 52)%i(00 + ciada) N eip = ——SifPeis,  (60)

to which we return to in Chapter 6, note.
Using equation (51), equation (60) may be simplified (having made a substitution
for the first moment of the distribution function, f;, in conjunction with equation

(47) in tensor format):
1 ' ’ |
Oupug+ (1= 5-)0aZi(—7 (0 + cirO) f{)ciatip = 0. (61)

Through general expansion and substitution of the definitions made in equation
(55) we obtain from the above a form that may be expanded further using the

product rule for differentiation:
1 ‘ , ,
Bﬂpuﬂ + (5 - T)@a [8t0c§p6ag + ’ngatopua + puaatou,g + 872,-fi(0)c,~7ciaciﬁ] =0. (62)

The second and third terms contained within the square bracket in equation (62)
may be expanded using definitions derived from the Euler equation on a short time

scale, equation (57), giving; .

1 |
Bupup + (5 = 7)0u[0y 51" cinCiacip + OuoCipSap

—ugC20ap — Uugbypuytly — Uac2Opp — UapUyOyig] = 0. (63)
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The fourth and final terms within the square bracket may now be combined using

the reverse of the product rule for differentiation resulting in; -

1 . o
Bpus + (5 — 7)8a[0,Z: f 0 i CiaCip + BioC2P0as
2

—~ugC20pp — UaC20pp — Oypugugu,] =0. (64)

The final term in the square bracket of equation (64) is conventionally called the error
term and is an undesirable but unavoidable occurrence within the analysis. Dropping
the error term from the analysis and substituting in the contfnuify equation in order

to remove the time derivative from the second term ‘Within'the bracket, results in;

1 ’ .
- Oapug + (5 — 7)0a[0, 517 cisCiatip = c20npUalap

~ugCi0ap — Uac;0pp] = 0. _ (65)

The time derivative 8,1 pug will be incorporated naturally into the overall time deriva- |
~ tive when equations (57)and (65) are combined it is disregarded for the moment.
By considering_ only the function conteﬁned within the sqiuare brackets we obtain
a further constraint on the equilibrium distribution function required to achieve

Navier-Stokes behaviour:
872,~fi(0)ci,,ciacw — C20apUialas — UsC 00p — uacgagp = kpSap (66)

Henceforth we shall also neglect the term that is quadratic in velocity. Through cal-
culus and general algebraic manvipulation the above expression may be manipulated
into a form resembling the Navier-Stokes equaﬁion [30].

In order to recover the Névier-Stokes behaviour, the above equation must be
equal to a constant multipliéd by the density and stress as shown. We now consider .

the general form of the equilibrium distribution function that must be used to make
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certain that the steps above may be achieved. We write:

f,-(i)o ~ Ay + Bouscis + Coususciscit + Dousus,

1.(2)0 ~ A, + D,usus. : | (67)

By recalling the constraints that have beenAapplied to the equilibrium. distribution
function in order to reédver the hydrodynamic equations in the above analysis it is
poséible to generate a system of simultaneous equations in A...D that allow us to
determine \.falues for the constants in the general form of the equilibrium distribution
funcfion equation. For convenience the constraints on the equilibrium distribution

function we have just used are summarized again below:

Eifi(O) =p
/O, = pa,
Sif{Vciatip = 2pap + puaug,
0,:/ O ciatipCin = C(BagDopity + UBap + uadsp) + KpSap.

(68)

For the lattice depicted in figure 1 (and indeed any viable LB simulation lattice)

it may be shown that:

thc'ia =0,
thc'iaciﬁ = k25a,6>
%
Z tpciaciﬁci‘y =0,
; .

Z tpciaéiﬁcivcié = k4(6aﬂ676 + 5&76&5 + 60155[3")')’
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where k;, = 1, and ks = } (for the D2Q9 lattice).
Essentially the first three of the above constraints will determine thé form of the
“equilibrium distribution function and the value of the models speed of sound c;. The

fourth of the constraints uses the speed of sound to identify exactly the value of the

constant k in equation (68) as 3. Equilibrium distribution functions summations

in (68) are now decomposed into separate summations of the rest link and of the
short links (+) and of the long links (x). Considering the first of the constraints

‘summarized in system (68);

CSifO = Ag+ 44, + 44, + B1Z%uscis + BaS*useis + Cr1E ususciscn,

- +CoY*ususcisciy + (Do + 4Dy + 4Do)u? = p. - (70)

The above condition must hold for all values of fluid velocity, v. We therefore obtain

two equations governing the coefficients of the equilibrium distribution function:
AO -+ 4A1 -+ 4A2 =P (71)

2C1 +4Cy + Dy + 4D + 4D, = 0. (72)

The second of the equilibrium distribution function weighted summations in (68)

may now be considered;

0
Sif 0 ¢ia = BiZ usciscio + BaX*uscisCia
+C1 D ustsCisCitCiay + CoE UsUsCisCitCia

+Dyciqt® + 4D1ciqu? + Cind Dyt = pug,. (73)

Using lattice moment properties defined above we remove all terms not quadratic

in ¢;,. Cancellation of terms results in the following restraint on the coefficients of

43



the equilibrium distribution function;

Performing similar operations with the second and third velocity moments allows us
to produce further relations between the coefficients in the equilibrium distribution
function defined in (70). When considering the third ¢; moment we force a condition

on the C coefficients, namely;
12C; —8C, = 0. | e (75)

This condition insures Gallilean invariance [31]. Making this assumption within the
second 'ci moment of the equilibrium distribution function allows us to make the

following statements:

2(A1 +24,) = p, | (76)
AC, + 2(Dy + 2D,) = 0. (78)

We can now consider the third c; moment of the equilibrium distribution function
in equation (68) which generates the following constraint on the coefficients of the V

equilibrium distribution function:
2B; — 8B, = 0. - (19)

Manipulating the third velocity moment into a form to generate the Navier-Stokes

equation gives a final restriction on the equilibrium distribution function [31]:

2
By = cjl_p. - (80)
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We havé now producéd a set of simultaneous equations that restrict the coefﬁcieﬁts
of the equilibrium distribution function in such a way as to allow us to recover con-
ventional hydrodynamics namely the continuity and Navier-Stokes equations from
the lattice Bolﬁzmann equation algorithm. The system of equations however is not
a conventional system of equations, as it is under~determiﬁed i.e. we have a system
of eight equations in ten unknowns. The sysfem also contains subsets of equations,

.these subsystems may be solved exactly:

Ag +44; +4A, | | =,
2A‘1 +4A2 ’ ) " . = Cgp,
B] +4Bg ' =p,

2C; +4C, +Dy +4D;+4D,=0, '

201 —8C2 = 0, .
802 =p,
4C, +2D; +4D,= 0,

2B, —8B; =0.

(81)

The subsystems contained within the set of eight eduations allows the coeflicients
By, By, C; and C, to be solved. completely. It is also worth noting that the Bs
coefﬁcient determines the speed of sound c? in the calculations. Through equation
(76) the value of B, also constrains the values of the coefficients A; and A, therefore
the range of “free” coefficients is somewhat restricted. We can note that the values
selected for.the “free variables” will effect the overall properties of the system. The
-‘choice of Ay for instance will determine the amount of rest mass contained on a
link. The selection of a large value of Ay will restrict the attainable Mach number of

the flow as there is less momentum to be distributed on the non-zero velocity links,
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i =1 — 8. Having solved for A...D, the fi(o) in LBGK may be written:

veg - vr (veg)?

(0) —
fi (p,V) = lpp 1+C_2 - 203 203

S

(82)

4.1.3 Length and Time Scale Considerations

When consfdering-the behaviour of momentum traﬁsfer within a fluid, as would be
expected, internal friction causes the fluid distribution function to return to ther-
modynamic eQuilibriﬁm. The momentum of the particles of the fluid and thus the
information that they carry is transferred through collisions. Low density systems
- such as low densify gases transfer information slowly as collisions between particles
are rare, the length scales, viscosity and density of the simulation therefore influence
the rate at which a simulation achieves its equilibrium velocity distribution. The
equilibrium state of a fluid may be achieved through different processes depending
on the time scales involved.

A first relaxation regime 6ccurs when the system under consideration consists of
many bodies and the time scales involved are shorter than the duration of a collision
event. Due to the short time scales there must be rapid relaj;ation of the many body
distribution fuﬁction, occurring at the collision, to the single particle distribution
function. In the Boltzmann regime the collisions are assumed to be instantaneous
and therefore the relaxation mechanism considered in this systeni are ignored.

The second relaxation mode is the kinematic regime where the time scales are °
in thé region of the duration of the time of flight between collision events: The
Maxwellian equilibrium distribution is a many bo.d,y ensemble average over a _local
region where the collision occurred. The system described in this regime is a series
of local regions in local Maxwellian equiiibriﬁm.‘

The third possible relaxation mode is the hydrodynamic regime and is achieved
when the relaxation time scales lie between the time elapsed between particle col-

lisions and the minimum hydrodynamic time scales considered. The equilibrium
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is once again a Maxwellian distribution however unlike the kinematic regime, thg
hydrodynamic relaxation occurs as a slow drift to a global Maxwellian. The time -
scales involved in this mode of thermodynamic equilibration are too long to con-
sider alongside (i.e. in the same calculation) those previously discussed. These long
time scales, may only be resolved with current and all anticipated computational re-
sources in the absence of the more transient phenomena. Long time scales are central .
as.they characte_rise the flow processes of intérest. Essentially, as the systems under
consideration here are continually chahging (by flowing), so local distributions’at-
tempt to stabilize and form a global equilibrium. HoWever, the constant injection of
. energy (say) makes this equilibrdtion very slow; the systems (attempted) approach

to equilibrium is the process of interest.

4.1.4 Stress in. LBGK Simulations

Recalling equation (60) we can identify a key practical advantage of the LB téch-
nique that is that the stress, o,g and the viscous stress og4 (seé section 3.2.3 for
definitions) are carried in the f; distribution locally which shall now be shown.  The
local informatic;n may be used when e.g. considering .Lagrangian particles or inter-
faces between two immiscible fluids. |

 We can make use of the conservation conditions imposed on the diétribution
function of equation (68) and recall the summation coﬁventions of equétion (51) to

modify equation (60) giving;

1 1 : ' v
Onpug + (1.— ;)&Eifi(l)ciacw =0, ‘ (83)

which when added to the o(d) expression (57) gives the Navier-Stokes equation. The
following identity may therefore be made for the viscous stress:

L

Ui"ﬁ - (1 2T

12V cigcis. (84)
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Apparently the viscous stress may be derived directly from local distribution func-
tioﬁs, fi(l). This is a considerable advantage relative to other numerical methods.
It means that the fluid stress may be constructed from local information, instead
of frbm measured velocity gradients (which must be measured from non-local finite
differences). |
From the alternate form of the evolution equation (37), in Chapter 8 we will
make use of fhe concept of pre and post-collision quantities. Equation (37) may,

with some of the concepts established in the previous section, be written as;
i 70 :
5= f+ U0 - B, o ®
a dagger denotes a post collision quantity, whence;

I LA R LRy S R A €0

~ Therefore the post-collision f; is given by;
ey 1Y .
i=fi’+ 1_; Ii : (87)

Recalling the relationship between f" and the stress (equation (84)) LB methods

may be sty'led “stress-relaxation” methods and;
Ot = (1= 1) g | (88)
[ T 7

with fi(o) being considered in the collision process of equation (87).
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4.2 Multi—component LB Methods
4.2.1 Introduction to Multiphase LB Methods

"The work carried out so far considers single phase fluid flows only, we shall now
consider the behaviour of mutiphase flows and the relevant extensions required to
recover it. The behéviour of multiphase flows will be briefly outlined along with a
multi-component LB component segregationb method (the essential extra ingredient)
‘that has been constructed and is the subject of later chapters of this thesis.

Multiphasé behaviour is recovered by considei*ing a single comporient coﬁtinuum
fluid with unstructured interfaces (where the structufe of the interface is not of
concern, the interface is considered a tfansition from o-fle fluid to another). Incorpo-
rated into the behaviour of the single continuum fluid are two conditions, namely;
a body force giving rise to interfacial tension and a coupled phase field which tells
the body force where to act. When combined, the three components of the single
continuum fluid, the body force and the bhase field give rise to a multi-component
system, which in this work are considered to be “red” and “blue” fluids.

'As we have already considered single phase fluid behaviour (that governs the
behaviour of the undérlying continuum fluid) éarlier in this thesis I shéﬂ now look

at the remaining algorithmic components required to achieve a multiphase flow.

4.2.2 Multiphase Extensions and Definitions

This section contéins a formal but brief introduction to multi-component general-
isations; a less formal and more formulaic and practical account is contained later
in section 7.4 where multi—-component methods are more fully considered.

In calculation the same basic mass and momentum conservation rules still apply

however we make the folloWing generalization;
fi = (R, By), | : (89)
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p— (R, B). - (90)

In order to distinguish between immiscible lattice ﬂuids,Athe multi-component
LBE uses a phase field based upon the densities of “red” and “blue” fluids present
at a node. |

Firstly we shall consider the phase field. The phase field is characterized by plf’
with a range of il, with +1 representing completely red fluid and —1 representing
compietely blue fluid. Following the notation of [25], we define a component index,

or phase ﬁeld, pN(r):

pN(r7 t) pr(r,t) + ps(r, t)

(PR(r, t) — pa(r, t),> | | (91)

where —1 < p¥(r) < 1. Note that p{v varies in time only through time dependence
in pgr(r,t) and pB'(r, t). Red and blue fluids mix under the LBE propagation step [3];
this defines the interfacial region, i.e. the transition from red to blue fluid. |

We can now deﬁhe a vector known as the colour field, the colour field is a unit
vector that lies normal to the interface between the red and blue fluids. The vectof

direction is so that it points from the blue phase into the red phase:

. \V\
fr= b

fo = o (92)

For the aboye calculation it can be shown that the gradient of the phase field can

be obtained from an “isotropic derivative” see section 7.5.3;
VN =35it,pN (r + ¢ | (93)

The curvature of the interface may be calculated using the colour field unit vector,
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in tensor notation the curvature of the interface is given by (see [32]);

k= (6aﬁ - faqfaﬂ)aﬁfa- » , ’ (94) ‘

It is worth noting at this stage that the calculation of curvature outlined in equation
(94) is dependant on the gradient .of the colour field and thus assumes that the
interface is continuous. This issue shall be revisited in the final chapter, Chapteri
11, when the interface at a boundary is‘ no longer continuous.

Now that we have derived the main substitutions and primary quantities, colli-
sion is carried out as before for a single continuum fluid with f; given by R; + B;.
Post collision, the populations are re-allocated so as to promote segregation between
the two fluids with R = ¥;R; and B = ¥;R;. The method of segregation determines

the properties and dynamics of the phase field.

4.3 Interface Implementation

The éeveral multi-component LB methods may be distinguished by the differ-
ent ways in which they impose a ﬂuid-ﬂuid interface. Illustrative référeﬁces are
[21, 22,24, 25, 33). See‘ also references [3,34] for a survey of the methods’ relative
advantages and applicatiohs. In problems where the kinematics of phase separation
feature, Swjft’é method [21,22], based as it is upon the Cahn-Hilliard theory, rep-
resents an appropriaté choice of LBE interface algorithm. Here, howévér, we aim
to address only completely immiscible mixtures in a continuum approximation, kin
which interfaces afe‘assumed to be very narrow and unstructured. Computational
resources or physical accuracy may also impose similar requirements and restrict
choice of interface algorithm to a type pioneered by Gunstensen et al [24] and later
modified by Lishchuk et al [25]. The model presented and applied here is based on
the latter.

In Lishchuk’s method (see section 4.3.3) the interface is based on the contin- .



uum level stress boundary - conditions which apply on an unstructured interface '
between completely separated fluids [5]; imposed through a body force acting in
the fluid; an idea ﬁrst'introduced in the context of interfacial tension by Brack-
bill, Kothe and Zemach in 1992 [35]'. Lishchuk’s method produces narrow interfaces
with reduced micro-currents (or ‘spurious velocities’ [3]), it has an independently
adjustable interfacial tension and it sustains interfacial tensions larger than Gun-

stensen’s method [24].

4.3.1 Numerical Segregation or Re—colour

The method referred to in this work as numerical re—coldur was suggested by Gun-
stensen and Rothman [24] The re—colour method is essentially é, maximisation
problem. The lattice fluid is initially collided in a colourblind collision. Post col-
lision, the lattice densities are subjected to a perturbation that has the effect of
inducing a surface tension before the re—colour step and subsequent propagation. -

| The first step of the numerical re—coloﬁr algorithm is tb identify the interface
region from the' magnitude of the phase field vector. Note, the phase field vector also
lies perpendicular to the interface ‘direction. In regions where the gradient of the
phése field implies that there is én interface between two binary fluids, a perturbation
is added to the collided densities. The effect of this perturbation is to redistribute
the link densities, f;, within the interface region; diminishiﬁg populations on links
barallel to the interface and increasing populétions perpendicular to the interface
subject to the constraints of masé conservation.

In practice, the application of the numerical re—colour algorithm is carried out
using the direction of the colour field unit vecfor which is used to generate "‘ﬁlling
priority” tables for the nine velocity links of the D2Q9 iattice system. Links with
the largest component of their velocity lying in the direction of the colour field
are assigned highest filling priority subsequent links are similarly assigned filling

priority depending on the magnitude of their component parallel to the colour field
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Figure 3: Single interface lattice node for D2Q9 showing numerical re-colour filling
priority :

direction. In figure 3 for example, the interface is shown crossing a lattice node, the
links of highest filling pfiority in terms of the red ﬂuia arelinks i = 5,4,6,3,7,2,8,1.
Segregation is achieved, for the numerical method, by taking all of the red fluid lying
at a lattice site and allocating as ‘much as possible to the link of highest priority,
links are filled according to their priority until thefe is no red ﬂuidA remaining on
the site. The remaining, empty or partially filled links are then populated with the
remaining blue fluid thus adheriﬁg to the conservation of mass at the node. The
benefit of the numerical fnethod of segregation is that it allows us to insert a surface
tension between immiséible fluids and produces a relatively sharp interface, usually
distributed over a maximum of three sights. The disadvantages of such a segregation
method is the large amounts of ﬁoise that is genérated at low Reynolds number ﬂows; ‘
The method is also computationally labour intensive and slow. The development of
the priority look up tables takes time but the subsequent repeated reallocation of

colour onto the links is a massively time consuming process. The noise generated in
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hydrodynamic quantities, other then the phase field such as velocity, when using this
segregation method remains the most significant issue and undermines the advantage

of the sharp i'nterface,v see Chapter 8 for more details.

4.3.2 Formulaic Segrégation and the Diffuse interface

Working from a method proposed by Latva-Kokko and Rothman [6], segregatfon
may be achieved using an algorithm that allows a degree of colour diffusion at the
interface. The algorithm is applied post collision and gives segregated or re—coloured
densities as;

R RB

where 0; is the link angle, 6; is the_ colour field angle. Here, the link and the colour
field are both meaéured by the angle subtended at the local x-axis, taken positive in
the anti-clockwise direction.  determines the extent of the diffusion of the red and
blue fluids into one another: Here RI' is the red density allocated to the link ”i”,
of course Bit = f; — RI". As f increases the interface becomes less diffuse. Latva-
Kokko and Rothman state in- [6] that the value of beta lies in the range 0 < § < 1
however from simulation data we have found that the maximum value of # that can
be used is in the region of 0.71, see equation (255). Simulations will run at higher:
values however situations such as negative densities have been found to occur, this

point is discussed in greater detail in Chapter 8.

4.3.3 Interface Force; Lishchuk’s Method

It is possible to show that the effect of interfacial tension existing between two im-
miscible fluids may be approximated using a body force.v The magnitude of the
body force will be dependent on the curvature of the fluid-fluid interface. We there-
fore suppose that the hydrodynamics in the region of the interface are governed by

the continuity and Navier-stokes equations with an additional body force, F. F is
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defined in terms of the surface tension parameter, a as followé; -
- E=SkVeY, (96)

where £ is the curvature, identified above, of the interféce which for low Reynolds
number flows we can assume varies slowly and is in some cases consfant ie. spheriéal
dropé. The effect of the body force is to produce a pressure step across the interface
AP; | | | '

AP B (Jé_k Red /Redia_k@

Fdl~ .
2 Blue _d Blue 2 63: do (97)

Through standard algebraic manipulations it can be shown that the pressure step

at the interface niay be expressed as; -
AP = Z[pN]H = ak, . (98)

as required to recover the Laplace law [25].

It is appropriate to note at this stage that the use of the curvature in the calcula-
: tion of the interface inducing body force creates specific problems when the interface
is intersected by a boundary in problems such as wetting. This issue is further dis- |
cussed in Chapter 11 and illustrated by the cartoon in figure 4. Problems arise in

the circled regions.

4.4 Navier Slip Condition

The Navier slip condition is primarily used in the latter stages of this work specif-
ically in chapter 10, however it is deemed appropriate to introduce the concept at
this point.

Consider an isolated droplet in contact with a boundary contained within a
continuum fluid. As illustrated in figure 4. When a force, or gravity, is applied in

the positive x-direction, the contact point between the two fluids and the boﬁndary
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Figure 4: Isolated droplet in contact with channel boundary.

will move. The contact is then known as the dynamic contact line or DCL.

If a no-slip condition were applied to the boundary there would result a singu-
larity at the contact point. In order to avoid the occurrence of such a singularity,
a slip Boundary condition may be implemented. There are a number of slip condi-
tions that may be applied to the boundary however, in this work, the Navier slip
condition is to be utilised. For alternative methods of applying a slip condition at
the boundary the interested reader is directed to Happel and Brenner [12]. It is
not the intention of this work to verify or to modify the Navier slip condition in
any way, the condition is employed» widely in calculation as a method of allowing
"slip velbcity on.the boundary to evolve and to avoid. generatihg the aforementiohed
singularify. It is also worth stressing that this work does not aim at an algo_rithm
that predicts the slip velocity (aé with many algorithmic non-equilibrium molecular
dynamic simulations currently under development).

The Navier slip éondition we use herebontains‘ a parameter known as the slip
length “b” this is taken to be a molecular property of the material itself. The Navier
condition allows a slip velocity to evolve according to the following relationship when

applied to the geometry of figure 5:
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F igure 5: X-velocity profile as a representation of the Navier slip condition where b
is the slip lenght

The role of the parameter “b”, the slip length, may be envisaged as shown in figure

- 5.

4.5 Boundary Closure Methods

Lattice closure methods in LBE [3] comprise two sets. One provides Lees-Edwards
type boundary conditions [36], typically for calculation of colloidal phase properties
and phase separation kinematics [37]. The methods devéloped in this thesis belongs
to a second class of LBE boundary closure, designed to impose a specified velocity
distribution (possibly correspondiﬁg to a slip) on the defined surfaces which comprise
the boundary. - |

There are several implementations of the rest boundary condition in LB [3]. The
popular, convenient and reasonably accurate bounce-back method has been‘eval—
uated, at éteady—state, by a number of workers (e.g. [38,39]) and He and Zou et
al. have shown how it is possible, analytically, to predict small, defect boundary
velocities resulting from its use [40]. More recent, more accurate LB boundary algo-
rithms apply to moving boundaries and involve bouncing;back’the non-equilibrium
part of the LB momentum densities [31]; extrapolation [41); the introduction of
a counter=slip velocity [42]; second order bounce-back [43] and Skordos [44] has

solved the problem of boundéry closure by deriving -auxiliary partial differential -
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equations which may be solved for latt.ice bouridary information. Of some impor-
tance here is one of the most overlooked and most general approaches to simulation
lattice closure - the locally second-order boundary method (LSOB) of Ginzb()urg
and d’Humiéres [45]. |

Boundary closure plays a central role iﬁ this work. The next chapters consider

the basic method I developed in the context of single .component LB.
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5 Mass Conserving Boundary Closure Scheme

In this chapter and the next I intend to deal with the fundamental issues surrounding
boundary conditions associated with the single phase LB simulation. In order to
maintain tractability, the analysis is tovbve carried out using single component lattice
Boltzmann (SCLB). The work presented here will not be géneralised to MCLB until
Chapter 10, by Whiéh po_int.t.he core multi-component lattice Boltzmann (MCLB)
method will have been coﬁsidered in detail in chapters 7 — 9 inclusive:. MCLB
‘ therefore will not be used Withip this chapter or the next. A

In addition to restricting our treatment here to single component fluids, wé shall
also suppose that the fluid is not subject to any external body force such as gra\‘/ity
imposed with the term ¢; in equation (34). In the next chapter we shall revise the

last assumption.

5.1 Infroduction

It is important to recall that accurate representation of boundary conditions is es-
sential in all cdmputafional fluid dynamics (CFD). Here we derive, then demonstrate
a robust simulation lattice closure algorithm for the single phase lattice Boltzmann
(LB) [3] method. Our method treats the fluid on the boundary with the same ac-
curacy as the bulk LB fluid and extends previous work carried out in [46] (i) by
shifting emphasis away from boundary pres(sure onto boundary mass conservation
(an adjustment made necessary by multi-component applications) and (ii) by apply-
ing the method to an internal and an external corner geometry with no diminution
of accuracy. In these respects, the new method presented here is as convenient as’
* the popula‘r}LB strategy of mid-link bounce-back [3]; however it has additional ad-
| vantages of (i) applying boundaries on a given lattice node (not at the mid- point
‘between nodes), (ii) being instantaneously accurate (our lattice closure strategy is

verifiably accurate after a very small number of simulation time steps), (iii) being
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capable of representing moving fluid boundaries, including boundaries crossed by
fluid and (iv) working with a range of collision parameters, 7.
.Solutions of the Navier Stokes and continuity equations, (v(r,t), P(r,t)), are

most conveniently closed by Dirichlet boundary conditions on ﬂuid velocity (only):
V(I‘, t)Ir’t = U(](I'/,t), (100)

r’ denotes a pbsition on the boundary of the flow domain; uy(r’, ) denotes a sbeciﬁed
béundary velocity. The several lattice closure methods in LB [3] reduce to imposition
of a given ug(r’,¢). Note that ug(r’,) is supposed‘ to be known throughout all that -
| follows in this chapter and chapter 10. |
In this chapter, we derive, test—ben‘ch‘and compare a portable closure step for
'application over the edges of a lattice Boltzmann fluid simulation space. The step is
equivalent to applying Dirichlet boundary conditions. Accordingly, it assumes (i) a
boundary velocity and (ii) local mass conservation. It (i) gives correct behaviour at
every time-step; (ii) represents boundary lattice fluid to the same accuracy as the
bulk lattice fluid and (iii) applies to immiscible fluids in contact at a boundary (see
Chapter 10). The method is derived for é locally flat wall at Which fluid is assumed
to be entrained with a specified velocity; then show equivalent results for internal
-and external corners. To test the method we present (i) accuracy plots based upon
exactly solved ﬂows and (ii) stream functions derived from the lid driven cavity.
It is henceforth assumed that our LB boundary node lies 1nﬁn1tes1mally within
the lattice fluid, which, locally, is mdving at specified velocity. We work in QD, using
the popular D2Q9 lattice, as described ‘earlier. However, the analysis- generalizes to
3D directly. For consistency and simplicity, as much of the notation and approach
of the extended work of ‘,[46] is used as possible. Our purpose then: momentum
" densities, f;, which ‘span’ such a boundary shall be constructed by requiring that

fi’s (i) evolve according to rules equivalent to those operating on bulk nodes; (ii)
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are consistent with a known local velocity; (iii) conserve mass.

5.2 Aspects of Lattice Boltzmann Thedry

Recalling the background theory of lattice Boltzmann set out in Chapter 4 it is
appropriate to emphasise a result derived there. In what follows we stress that, the

second moments of the fi(n) are not zero as we have seen:
S 1Pciacis = —26207S0s, (101)

[31]. Sapis the rate of strain tensor here. We note also that, in D2Q9, consideration
of the constraints placed on the moments of the equilibrium distribution function |
expressed in section 4.1.2, (equations‘ (50) and (51)) and (101) provide six equations
for the nine fi(l)’s. Note, by combining equations (42) and (45): |

At = 0, ) + [f,.“” = (1 — %) 5 f,.(”] +0 (53 f,.@)). . (10‘2)

5.3 Mass Conserving Lattice Closure Algorithm

The method I inherited, described in [46], allows a boundary pressure freély to
develop; so boundary node densities must fluctuate. In contrast, the present method
described here conserves the density associated with what are designated fluid links
(see figure 6). This changed assumption raises key limitations in the original analysis
of {46] and crucially lends the modified method to a wider range of geometries
and situations (in particular, to wetting). In this section we shall treat planar
and corner boundaries in separate subsections. Throughout this section denoté the

known boundary velocity by up.
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5.3.1 Planar Boundary Algorithm

Figure 6 sholws an upper boundary site on the D2Q9 iattice. The dotted line shows
the supposed extent of the lattice ﬂuid. Links indexed i = 1, 2, 3 are cut by the line
of the'boundary. All non-boundary nodes are evolved accdrding to (42). At the end
of a propagation step, a pre-collision value of lattice momentum density, f;, exists
.for all links 7 # 5,6, 7 (a situation represented by use of empty circles in ﬁgtiré 6).

i=1 i=2 : i=3

A

G
()

C, Cs
cﬁ

Figure 6: Schematic of a boundary node on the top, horizontal wall, immediately
prior to the collision step. The wall or boundary location is denoted by the dashed
- line, which makes the node ‘infinitesimally wet’. Propagated data is denoted by
arrowheads, unknown link information (lack of data) is denoted by the open circles
on links. The links are numbered as referred to in the text and link velocity vectors
are numbered accordingly.

The ‘Boundary velocity provides two conditions on (mdments of) the. fi’s, through
equations (40), but there are three post-collision f;’s which need to be obtained,
namely fg , fg and f;. |

At the boundary node, links designated henceforth as live‘ require values of f;
(links ¢ # 1,2, 3 in figure 6); these links connect to the flow domain and influence the

evolution of adjacent nodes. The f;’s on ghost links propagate into the boundary.
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For the geometry of figure 6, pre—collision f;’s exist for links ¢ = 0,1, 2, 3,4, 8, post—
‘collision fiT’s are required for live links ¢ = 0,4,5,6,7,8. Local mass conservation is

defined by pre(post)—collision sub-totals of the f;’s (f]’s):

<ME > fi> = > il ~ (103)

1#5,6,7 1#1,2,3

We construct a post—collision f;, instantaneously correct to the accuracy of the LB

model (o fi(l)), for links ¢ = 0..8, in the following principal steps:

1. Determine a mass conserving boundary node density, o' and hence the fi(o) (p',uo),

i=0.8. pis calculated such that:

>, 12 w)=M, | (104)

i#5,6,7
where M is defined in equation (103).

2. Determine pre-collision fz-(l)’s which satisfy an under—specified system after

equations (50), (51) and (101).
3. Collide and propagate the boundary sites according to equation (42)

Before we expand steps 1..3, it is appropriate to briefly discuss the under—specified
system used for the fi(l)’s. Consider the y = constant boundary in figure 6 (depicted
by the dashed line). To conserve the total mass on only live links, it is necessary to

modify the constraints on the fi(l)’s:

S =0, o (105)

i#1,2,3
S fPea=0, | | (106)
2 |
> fPciacio = =5pTSas | (107)
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The corresponding post—collision values of fi(l)f, are all proportional (see equation
(102)) to the solution of the above system. Thus, the condition of local boundary
mass conservation can be stated by equation (105). In treating a forced fluid at
a boundary with this method particular care must be exercised around equation
(105); see sub—section 5.4 and Chapter 6. |

Step 1. Evaluate M from the definition in equation (103). Since boundary
velocity up is known, equations (39) and (104) provide an identity for effective

density parameter p’:

- M B 12M
Sieraaty [L+ 28 — # + Loed]. 10+ Guo, — 6us,

(108)

It is ﬁow possible to assign fi(o)(p' ,ug). Note that over all links ¢ = 08 of the
boundary nbde, mass is not conserved. However, on links 7 # 1,2, 3 there is a total
mass of M which is conserved.

- Step 2. Measure the local strain rates, using o(3) spatially accurate finite dif-
ferences of velocity. Whilst the assumed boundary velocity, ug and p’ uniquely de-
termine fi(0>’ Sap is used separately to fix the fi(l)’s. The nine fi(l)’s, i = 0...8 satisfy

the six equations (105)..(107) reproduced and formatted below, for convenience:

o) FOAY 40137 1057 110 + 17 450 +47 +50 =0,
£ +f) AR - =Y =0,
o Y- =0,

1 +fs) D D ) 5D = —207/3 Sea,

H et g PP P = =201/3 S,

SR P D =2 s,

(109)
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The terms in the first equation with coefficient 0 are removed from the equivalent sys-
tem of equations in reference [46] by our altered assumptions; the strain rates in the
last three equations were measured using spatially o(3) accurate finite-differences.
To solve this under-determined system, select three fi(l)’s as free variables, in terms
of whose values the remaining six basic variables are found. Certain combinations
of the free fi(l)’s are forbidden; this may understood by regrouping quantities as

follows:

g = O+ + 0,

5+ 06 + 1,

g =

g = 410+ 19,

g = O+ M+,

g = O+ + 19 - (110)

in terms of which quantities the first five of the six equations (109) become:

g2 +g95 = 0,
93— G4 = 0,
g1 — g = 0,
93+ 94 = —2p7/3 Sm
ate = —207/3 S, | (111)

Apparently, system (111) can be solved for the g;..gs in terms of the S,5. A value for
g1 (say) constrains the three fi(l)’s used in its definition. Forbidaen sets of free fi(l)’s
arise in this way; their elements are defined in table 2 alongside a diagrammatic
interpretation. The sixth equation in fhe system (109) cannot be expressed in terms

of ¢1..g5 (scrutiny of the second column in table 2 demonstrates this) and so does
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not yield information.
It is very important to note that, in addition to the structure of system (111),
the set of fi(l)’s selected as free variables depends upon which ‘directions ¢; contain

pre—collision information.

- Forbidden set of three free fi(l)_’s Link representation .

(1) | (1) (1)‘ . \l/
1 »J2 >f3 ‘.

.351) ff) (1) /-
’ AN

1 1 1
A SN A

SRR | AN
) b .
/
R e

Table 2: Diagrammatic representation of the forbidden fi(l) combinations for the

“planar boundary geometry of figure 6. The small (large) dot represents inclusion

(exclusion) of the rest link’s distribution, f{".

In order to solve the system of equations (105)..(107), we choose free fi(_l) ’s which
| (i) are not a forbidden set and (ii) have accessible values. - Criterion ‘(i) requires
that one must select f(1)’s corresponding to defined pre—collision f;’s; an additional
reason against that third row in table 2. Here pre—collision values of fi'(l) ~f;— fi(o),

1 =0,1,2 were chosen as “free variables”.
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The solution for the particular boundary case represented in figure 6 now is:

2= kS -1V - 1Y,

D = kS, + f;’-nsyy —% W o 4 0

él) = —KSpz + KSgy — %mSyy + - f'(l) /(1) y

D = 248, — kSyy — i) — f'(l)

D = kS — kS + 1mSyy +z f’(” LR,

él) = RSy — %’{Syy - 1 I(l) - 2f1 f;(1)7 - (112)

270

where = c2pr.
Step 3. The pre—colhslon boundary node f; ()35 constructed in step 2 are collided,

using equation (102), then added to the corresponding fi (p ,Up):

) = f,-(d)(p’, up) + (1 - %) oo (113)

Propagation completes the evolution of our boundary site, which apparently involves
the collision of second order accurate f,:’s; consistent with the tafget boundary ve-

locity aﬁd the implicit wall stresses.

5.3.2 Internal Corner Algorithm

Figure 7 shows a>top left internal corner boundary node. The dotted line shows
the supposed location of the boundary. Quantities f3, f7 (links with open arrows)
are ghost quantities which never participate. fg, fl , fg and fg are required. For the

geometry of figure 7 the appropriate value of M is:

M= Y f, o (114)

1#3,4,5,6,7
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Figure 7: Schematic of a boundary node on an internal corner. The wall location is
denoted by the dashed line, which makes the node ‘infinitesimally wet’. Propagated
data is denoted by arrowheads, unknown link information (lack of data) is denoted
by the open circles on links. Ghost Links which never participate are indicated by
open triangles.

and the value of P is therefore:

/ ' M
C; u2 . Cq 277
Zi¢1,2,3,7,8 tp [1_"' u?:gw - ﬁ + (ugé) ]
' 36M

— ' ’ : 115
25 — 15uq; + 15ugy — Quoguey — 15uf, — 15ud, (115)

The last expression for p’ has complicated dependence upon ug. However, this does
not appear to affect the stability of the resulting scheme.
The mass conservation condition corresponding to equation (105) for this geom-

etry is:

D) ' © (116)

i#1,2,3,7,8
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Solving for pre—collision fi(l)’s again follows the procedure in section 5.3.1 taking

(1) )

free variables to be fy~/, f;’ and fg(l). We arrive straightforwardly at the following

solution:

K
e

1)
5

1)
Je

(1)
7

55

_Hsa:y - f{(l) - fé(l) )

‘ 1 3 1 1 3 1 1

'—55353;_@ — K,Sa;y + §I€Syy — 5 6( ) =+ éf{( ) + fé( ) ,
1 1 Lo 1.0

_555151‘ + K8y — §’£Syy + §f6( ) - §f{( ),

KSas = kS = fo o = K™ = 12,

1 o 1 3
_5&5“ — KSgzy + EESyy + §f(l)(1) + §f{(l) + fé(l) )

1 1 1,0y 9.4 i
~5#Sza + RSz — SRSy — 3 '<>—§f{“—f;<>. | (117)

Where, we stress that, all quantities in the right hand side are measured.

The procedure from Step 3 in section 5.3.1 may now be executed for the “free

variables” of the above system. Summing the newly acquired fi(l) and the fi(o)

components and subsequent propagétion completes the evolution of the boundary

site.

Note that no sets of three obtainable fi(l)’s which represent forbidden free vari-

ables arise for the internal corner geometry.

5.3.3 External Corner Algorithm-

Figure 8 shows a top left external corner. The dotted line shows the supposed

location of the boundary.

fg, ff , f;, f;r , fl , fg , f; and fs’f are required. For M and p’ we now have:

=5 )

i#1
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Figure 8: Schematic of a boundary node on an external corner. The wall location is’
denoted by the dashed lines. Propagated data is denoted by arrowheads, unknown
link information (lack of data) is denoted by the open circles on links.

and;
po= M
- up-C; _ 2 ug-c;)? !
Zi%stp 1+ 22 _%'f(gcz)]
’ 36 M

= . 119
35 + 3ugy - 3U0y - 3’[1,%:8 + QU(]IUOy - 3u3y ) ( )

The mass conservation condition corresponding to equation (105) for this geometry
1s:

S =o. | (120)

i#5

Solving for pre—collision fi(l)’s again follows the procedure in section 5.3.1 taking
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1)

free variables to be f (1), and fil) We obtaln the following solution:

1
o = 5/@5’” + KSzy — KSyy + = f'(l) + = f/(l) + f,(l) ,

1 1 5
2(1? = _iﬂs:cx - K/Szy - 5 (;(l) - ifi‘ll - 2f41(1) 3
5(1) = "'K/Sxa; - .’;(1) - féi(l) ’

s = %nsm + Sy — %fé“’ - §'f’“’ = —1-f’(”
'él) = _”Szm + Q’CSyy - f(;(l) - :l*s(l) + 2f£(1)~ v (121)
The procedure from Step 3 iﬁ sect&on 5.3.1 may now be executed for the “free
variables” of the above system. Summiﬁg the newly acquired fi(l) and the fi(o)
components and subsequenﬁ probagation cdmpletes the evolution of the boundary
site. |
Combinations of fi(l)’s now forbidden are listed in table 3. Note, other sets of
three fi(l)’é may exist for the external corner geometry: these (kzombin'ations are not

listed as they rely upon three. f,-(l)’s which do not have pre—collision values.

Forbidden set of three free fi(l)'s Link representation

(1) (1) £(1)

0o »Je s J7 /T
(ORFORIO ~ -

4 >

Table 3: Diagrammatic representation of the forbidden combinations of fi(l)’s as free
“variables, for the external corner geometry of figure 8. Note that a small (large) dot
indicates exclusion (inclusion) of the rest link. Note also that, unlike table 2, only
combinations which relate to fi(l)’s which may be evaluated appear.
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5.4 Initial Comments on Boundary Forcing

Clearly other geometries and other situations are amenable to the boundary analysis '
of this sectien. Situations in 3D, corresponding to any number of cut links are a
straightforward generalization of the current method. Further extension to off-
lattice boundaries is more complicated but it requires no fundamental modification
fo the inethod. The situation encountered when considerir.lg’multiple immiscible
fluids does, however, merit further comment.

All immiscible lattice Boltzmann fluids have interfaces supported by segregating
forces impressed between different fluids. The forcing applied generally conserves
mass over all lattice links ¢;, and is represented by an appropriate choice of source
term, ¢,G in equation (37). For lattice fluid interfaces at a boundary (the wetting
problem), it is necessary to apply a segregating force to fluids at boundary fluid node.
This force will not, in general, conserve mass on only the uncut links. Accordingly,
it is necessary to re-state our mass conservation condition (equation (105) for the
planar boundary) to apply zﬁost—collision. We have obteﬁned a closure scheme which
conserves mass at the boundary where the velocity is supposed to be known, but
currently, no body force acts. The last assumption is, in fact, very restrictive in the
context of the broad aims of this thesis. We will consider it in detail in the next
chapter. For the moment, we proceed to pfesent results obtained with the methods

of this chapter.

5.5 Results

To make comparison with the popular and robust methods of on-link and mid-
link bounce-back boundary conditions, steady—state duct flow was simulated. This
requires up = 0. Planar boundaries, taken to be parallel to the z—direction, were
represented by (a) on-link bounce-back boundary conditions (b) mid-link bounce

back (c) the inherited non mass-conserving method of [46] and (d)the method of
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section 5.3.1; periodic boundary conditions were used in in the y—direction. Flow
rate and hence Reynolds’ number, Re, were fixed by the parameter G in equation

(37). Note that G = 0 on the boundaries. The corresponding analytical solution is:
wly) = oy (W —1),0) (122)

The scalar difference between the measured steady-state flow profile, (v (y),0):

AwEZ

y#0

'Um(y) - 'UO(y)' ,. (123) .

vo(y)

was measured at cbnstanf Re = 0.5 for é range of lattice resolutions. The latter was
parameterised by the ducf width W =10 x 2V, N < 5.

in general, a plot of measured error (Such as that defined in equation (123)) as a
function of resolution has a (négativ‘e) gradient. The magnitude of which defines the
order of the accuracy of the scheme: The steeper the graph of Ay versus resolution,
the more accurate the scheme. |

The data of figure 9 shows the valﬁe of Ay as a fﬁnction of resolution for
boundary methods (a).._(d). Theb short—comings of the first-order accﬁra"ce.on—link
bounce-back technique ((a)) in terms of the reduced accuracy of the solution close to
the lattice boundaries and first order-accuracy are documented elsewhere [46] Mid-
‘link bounce-back ((b)), the inhei‘it'ed method of [46] and method of section 5.3.1
((c)) are all seen to be second order accurate in spatial gradient (from the gradient
in figure 9 ), with the latter two methods ((c) and (d)) slightly more accurate and,
of course, capable of representing a boundary with any velocity |ug| < 0.1 and time
dependence.

. To demonstrate that our boundary closure is robustly correct, even at short

' times, and that it accommodates moving boundaries we considered a lattice fluid

initially at rest (fi(r,0) = f%(p,0) everywhere) between two horizontal planar
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Figure 9: Error, AW, defined in equation (123), as a function of lattice resolution.
The latter is measured by lattice width W. Re = 0.5. The diagonal crosses repre-
sent bounce-back boundary conditions, the erect crosses represent mid-link bounce
back, the star symbols represent the inherited non-mass conserving version of the
bounceback condition and the open squares represent the lattice closure strategy
developed in.section 5.3.1.
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boundaries y = 07, W+; the latter was impulsively started from rest at ¢ = 0% to

velocity (ug,0). The analytic solution to this transient flow is:

2 —1)m -t
wlr ) =y + 205 E g (T et =20 (12)
3 _

T m W

Where note "m” is a dummy index. Her"e t represents a dimensionless time parame-
ter. Snapshots of the developing flow across the whole width of the duct, obtained for
discrete times ¢ = 10, 100, 1000 with corresponding cbllision parameter, 1/7 = 0.6,’
1.0, 1.6, were collected. Results with. the present method are identical to those
obtained uéing the original method [46]; remarks made in [46] still apply.

To assess the accuracy of the corner boﬁndaries a square, 2D lid—driven cavity
was simulated over a small range of Re ~ 93 (where a secondary vortex is known
first to appear) and resolutions. See figure 10 caption for simulation data. Figuré 10
sh(;ws the stream function obtained with our new boundary conditions enforced over
the entire boundary; in particular the top corners of the enclosure were assumed to
be moving with the lid speed. Figure 11 shows detail of the stream function in the
bottom left corner of the flow. Figure 12 shows the y—component of velocity along

.the right hand boundary; the point of detachment is clearly visible in this data.
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Figure 10: Steady-state stream function for a 2D square lid—driven cavity. Data
corresponds to a square box 256 x256. The single relaxation parameter was 7 = 3.33;
the density parameter p = 1.8. For the data show Re = 100. The four internal
corners and the planar boundaries were simulated using the method of section 5.3.1;
corners in contact with the moving (top) lid were moved with lid velocity. ’

Figure 11: Detail of the steady-state stream function for a 2D squére lid-driven
cavity, shown in figure 10. This image corresponds to the detached flow due 1o the
secondary vortex encountered in the bottom left corner.
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Figure 12: The y-velocity distribution along the right—hand boundary of the simu-
lation box; the change in the sign of the velocity corresponds to the point in which
the stream function detaches
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5.6 Comments

In this chapter we have set-out and validated a very adaptable method for closing
a lattice Boltzmann simulation lattice by calculating appropriate values for the set
of missing momentum densities, subject to 'the condition of local mass-conservation.
Like the previous algorithm, which allowed pressure adaptation at the boundary [46],
. the method presented here is demonstrably accurate, flexible and instantaneously
correct. However, the present method can also apply (i) to an increased range of
geometries other than the set presented here and (ii) to boundaries where fluid forces
need to be impressed- in particular the case of immiscible fluid—fluid interfaces at a.
boundary as carrie_d.out in Chapter 6.

It is noted that the method of this chapter may be generaliséd for appli‘c:ation to
3D situations.

Calculations have been shown here for application- of the method to external
corners. Due to time constraints both internal and extefnal corners were not simu-
lated, however the case of the internal corner was deemed to be most algorithmically
demanding and was therefore the situation simulated. Brief investigation into the
- application of the ext_ernal'corner aigorithfn appear satisfactory.

Furthermore, we find that the scheme deviséd in this chapter remains stable
over a range of collision parameter. Complex simulations with the resolution and
the Re of that used to generate the data of figures 10...12 show results which do not
changé appreciably for 2.5 > 7 > 0.56. Time and processing ;:onétraints prevent a-
full consid}era,"cion of the stability of our closure scheme with variation of 7 but it is
appropriate to emphasize thaf e.g. bounce back method accuracy varies considerably
with 7 as 7 is shifted away from its optimum value of 1.0. ‘

The key restriction on the analysis of this chapter is that the fluid at the boundary
was assumed to be free of any force. In the next chapter I éhall (i) revise this

assumption and (ii) apply the method to produce a model of fluid slip.
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6 Mass Conserving Boundary Closure Scheme for
Fluids Subject to External Forces

The algorithm after Chapter 5 has been demonstrated to treat the lattice fluid on |
-beundary and bulk nodes to the same acctlracy and in a demounstrably equivalent
manner. Whilst the hew method presented here applies to rectangular geometries, it
adds to our previous method of Chapter 5 the ability to subject boundary fluid to an
external force. Though this is much more intricate this will beeome very important
in Chapter 10. | |

- For the purposes of clarity and completeness some of the analysis of the previous
chapters is reiterated here to produce a coherent chapter in its vown right. For the
reader who is not solely reading this chapter, and has fully engaged with the material
previously, it may be appropriate to omit certain sections. However the intricate
nature of the analysis to be presented here makes me reluctant to recommend any

omissions.

6;.1 Introduction

This chapter is an extension of previous work outlined in chapter 5 which in turn is
- an exteneioh to the inherited algorithm of [46], the aim is to facilitate (i) Navier-type
boundary conditions and (ii) silﬁulate boundary fluids under external forces, such
as are applied to produce fluid-fluid interfaces; the essentials of multi—component
LB boundary conditions for e.g. wetting (this will be addressed in Chapter 10).
Like Chapter 5, the work presented in this eection is designed to give boundary fluid
in transient flow near the botmdary the same dynamics and accuracy of represen-
tation as the bulk lattice fluid (at all times), it applies transparently to complex
boundary geemetries (corners) with no diminution of accuracy and it admits of the ‘

representation of moving fluid boundaries, including those crossed by fluid.
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If a fluid is said to stick; to have ‘no-slip’ against solid surfaces; then ug(x’/,?)
corresponds to the velocity of any solid boundaries. However, there have been
persistént doubts about the no-slip condition for more than a century. Take a
topical example relevant to multi-component, microfluidic ﬂow of Newtonian fluids;
a fluid-fluid interface in motion relative to a solid boundary. The fluid close to a
so—called dynamic contéct line (DCL) mﬁst clearly violate the no-slip condition. For
the case of Couette flow, (viscous laminar flow in a channel where the flow is driven
by the motion of one of the boﬁndaries relative to the other), one simple theory is the
Navier slip theory briefly outlined in Chapter 4, which relates the boundai“y—tangent
component of fluid Velocity, the slip velocity, v, to the tangential component of ﬂuid

shear at the surface:

u (1) = b{%} . (125)
nir't ) :

in which the constant b is the slip léngth which is for present purposes, taken to
be a molecular property of the material. The boundary-normal component of fluid
velocity is equal to the boundary-normal component of the boundary velocity.

It is stressed at the outset that the purpose of this section is not to investi-
gafe the origin or ‘applicability of particular boundary cohditions; rather to derive
and evaluate a single tractable, practical, simple-to—-implement and versatile LB
closure step. Accordingly, the method éssumes a _known boundary velocity and af-
ter that in equation (125), a local mass conservation (essential to the treatment
of multi—component fluids at a boundary) and a known extvernal force distribution

at the boundary. After réviewing salient theory in section 6.2, we consider a flat
bbun_dary at which fluid is moving with speciﬁéd velocity, subject to a specified,
externallbody force, in section 6.4.1. We summarize equivaient results for internal
and external corners in sections 6.4.2 and 6.4.3. To evaliiate our method, section 6.5
presents acéuracy plots, profiles of‘ solved, pressure driven duct flows with moving-

and stationary boundaries and stream functions.
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6.2 Further Background to LB Dynamics

It is appropriate to recall that collision and propagation of LB’s primary quantity, the
link-based momentum distribution function or density, fi(r,t), i = 0..8 is expressed

in a kinetic equation:
et ot +8)= 0 = e +o () < £E0) +6, (120

where 6, represents the time step and fit(r,t) is thé post—collision, pré—propagate
value of the momentum density. The vectors and indexing of the D2Q9 velocity
basis c; are defined in figure 13. The so called source term, ¢;, in equation (126)
will be discussed shortly. Essentially it is ﬁséd to impress a body-force density on
the fluid. |

Following the constraints underlying the distribution function, shown in equa-

tions (50) and (51) we may write the following condition:"
>0 =0, | (127)

where A; = 1, ¢z, Ciy.
Recall that equétion (60), from the Champman-Enskog expansion shown in sec-
" tion 4.1.2, had the second moments of the fi(l) not equal to zero;

1 1
6t12ifi(0)ciﬁ +(1- E)Ei(ato + ciaaa)fi(l)ciﬁ = _;Eifz‘@)ciﬂ' (128)

In fact provide a local expression for the lattice fluid rate of strain, see equation
(84): . :
1 1 Q) _ : :

5; (F - 2) fiVciaCip = 20pSag, | (129)
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where recall Sus = 1/2(8av5+ 8pv5) . It is convenient to re—express equation (129):

1

—(1 - Z) Z.fi('»l)ciaciﬂ =2vpSap. : (130)

K3

All the equations written so far in this chapter describe a fluid in two or three
dimensions. In D dimensions, equations (130) number D(D + 1)/2 and equations
(127) ﬁumber (D + 1); in all systems (130) and (127) previde (D +1)(D/2 + 1)
equations for Q fi(l)’s.

Recall from Chapter 5 that in the case of a D2Q9 LBGK model, equations (127)
andl (130) yield a total of 6 equations for Q = 9, fi(l)’s; moreover, we can use

equations (35) and (36) to obtain from equation (130) the following:
Z FPciatip = =227 Sup. (131)

Using equations (126) and (45) (with n < 2), it is possible to express the collision

part of the evolution as a relaxation of (just) the fi(l) component of f;(r,t):

A =120v) + [fi(m =6 wai(.l):l +dito (5t2fi(2)) o (132)

that is, collision may be represented by a replacement:

O = O PN =3" (6 - Q) 1, (133)
and the addition of source term, ¢;; note that we have set 6; = 1 here for simplicity.
In the current context, using equation (35), equation (133) simplifies to make LBGK

an attractive option:

fi(l)’r - (1 _ %) fz'(l)' (134)

The term ¢; in equations (126) and (132) is a source term used to impress an

external force on the lattice fluid at the macroscopic, Navier—Stokes level (for exam-
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ple to represent a uniform pressure gradient or, in the case of multiple immiscible
fluids, the effects of interfacial tension [3]). For current purposes, we neglect spa-

tial variation in the macroscopic force; however this assumption will be revisited in

chapter 10, taking the macroscopic momentum equation corresponding to equation

(126) to be:

) ) o 0 N |
5 et %pvﬂva = oz’ + B (2pvS,p) + El: PiCias (135)

in which all other symbols and notations have their usual meaning. The relation-
~ship between the ¢;’s and a non;uniform macroscopic fofée has been considered by o
Ladd and Verberg [47] and by Guo, Zheng and Shi [48]; This issue shall be further
considered in chapters 7 and 8. Note that'forcing a fluid must consérve mass over -
all nodal lattice links 7 = 0..(Q — 1):

(@-1)

Z ¢ =0. (136)

Without considering MCLB in too much detail at this stage (as Vmultiphase,
extensions are not rigorously covered until chapter 7), it is appropriate to note that
all multi—component lattice Boltzmann fluids have interfaces produced by phase
index cdupled pressure tensor fluctuations within what is a single effective fluid [3].
These fluctuations must, iﬁ the end, be considered as (éegregating) external forces,

. impréssed in certain regions of a single fluid. Such interface forcing is represented by
an appropriate choice of source term ¢ in equation (1246) and, in bulk simulations or
with periodic boundaries, mass (but not momentum) is conserved. Other situations
in‘volve external forces at the boundary; for example a fluid under gravity.

A problem arises for LB fluids under external forces at the boundary. For a
lattice fluid interface at a boundary, it is essential to apply a segregating forcé; more

generally, if bulk fluid is subject to any external force, then the ideally equivalent
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boundary fluid should also be under the same external fofce as we consider boundary
nodes to be infinitesimally wet. In the present context, this force is assumed to be
known; the problem we seek to address is that the corresponding source term does
not, in general, conserve mass on only uncut links; put more précisely, partial totals

~ of the interface source term are not necessarily zero:

where the symbol ¥} indicates a summation over a restricted range of subscript i,

" which excludes the value of ¢ corresponding‘to cut links.

6.3 Limiting Assumptions

In this chapter we will concentrate on a methodology for treating constant forces.
The limitations of this assumption will become apparent during chapters 7 and 8,
where it will be very obvious that when we deal with interfacial tension, v§e are
concerned with variable forces. |

However, with the methodology of the present chapter in place, we shall find, in
Chapter 10, that a very simple re-definition of the strain rate will be sufficient to
' genefalise all the results and methods of this chapter to multi-component variable

fo'rcé_s at a boundary, in particular see section 10.5.

6.4 Lattice Closure Algorithm for Fluid at a Boundary Sub-

ject to a Constant External Force

Mass conservation is a widely-used and convenient assumption when closing LB
simulations with Dirichlet boundary conditions; the same assumption becomes un-
avoidable when multiple fluids are in contact at a solid boundary. Moreover, in

such situations (interfaces in contact, ‘wetting a boﬁndary) it is necessary, in LB
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simulations, to impress an external force on the boundary fluid, in order to create
interfacial tension. Hence there is a need to develop a lattice closure for a specified
boundary velocity (which may correspond to a slip Ve_loéity) with mass conservation,
which allows for the presence of a force. Other situations to which such a closure
migh‘é apply are fluid ﬁnder gravity or fluid with a separately calculated pressure
distribution. | |

Throughout this aﬁalysis it shall be assumed that an effective boundary veloc-
ity is always known. This velocity may correspond to a fluid slip (pre-calculated
according to some assumed model e.g. equation (125)).

"~ In summary, the aim is to calculate momentum densities, f;, for links of a bound-.
ary node which (i) evolve according to rules equivalent to those governing bulk nodés, '
(11) are consistent with a known, local, boundary Veiocity (including a slip velocity),
(iii) are consistent w1th a known iocal external force and (1v) will conserve mass

locally. -

6.4.1 Planar Bdundary Algorithm

Whilst keeping the overall approach as general as possible, it will be necessary, for
deﬁniteﬁess, to refer to a particular lattice and flow geometry. f‘or this purpose and
for consistency with other sections we consider a planar boundary site oﬁ the L‘BGK
D2Q9 lattice Shown in figure 13 as with Chapter 5. The dotted line indicates the
uppermost extent of the lattice fluid. Links i = 1,2,3 are cut. At the end of a
propagation step, a pre—collision value of | fi, exists for all incoming links z";é 9,6,7;
a situation represented by use of empty circles. In contrast to chapter 5 we nov'vv
suppose it is necessary impress an external force on the boundary fluid; that is, to
use a source term ¢; in equation (126). Say that the node of figure 13 bounds a flow
driven by a uniform, extérnal body force in the z-direction, representing gravity or
. a uniférm pressure gradient; this force is obtajned from a source term ¢; = ichiz.

As w1th Chapter 5, we denote as live those links which require post-collision
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Figure 13: A boundary node on a horizontal wall, immediately prior to a collision
step. Links ¢ = 1,2,3 (i = 0,4..8) all point into solid (fluid). The wall location is
denoted by the dashed line. Propagated link data is denoted an arrowhead on the
link, lack of data by an open circle.. :
values of fiT; links ¢ # 1,2, 3 in figure 13 are live; they connect to the flow domain.
The fi’s on dead links propagate into the boundary. Note that fig 13 is essentially |
identical to that of Chapter 5, figure 13 is inserted for convenience only.- For the
geometry of figure 13, pre—collision f;’s exist on incoming links ¢ = 0,1,2, 3,4, 8;
post—collision f;“s are required only for live links i = 0,4,5,6,7,8.

Boundary mass conservation is defined in terms of é'quality between sub-totals
of the f;’s and (different) sub-totals of the f;r’s. Recall that for the georﬁetry of

figure 13, local mass conservation is expressed:

(ME > fi> => f}‘, | , (138)

i#5,6,7 i#£1,2,3 ‘

of which the equivalent formula in D3QN is a straightforward generalisation.

Applying a force on boundary nodes does not conserve mass on the sub-set of
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live links. Again for the example geometry of figure 13, an amount of mass:

M=3" ¢, (139)

i£1,2,3

is introduced into the flow domain by the macroscopic force.

In general, nodes are thought of as being evolved by collision and propagation,
with collisions described by equation (132). Constructing post—collis‘ion, boundary
[fi’s, instantaneously correct to .the acéuracy of the bulk LB mbdel essentially in 4

steps:

1. Determine M and éM from generalized forms of equations (138) and (139):
M= 5 (140)
) incoming

and;

M =Y "¢ . (141)

live
2. Determine the fi(o)(p’ ,ug) from an eﬁectz’bve density, p’ such that;
SO0 ue) =M —sM, o (142)
live

where the summation is taken over values of ¢ corresponding to live links and
M and 0M are defined in equations (140) and -(141) (or, alternatively, after
equations (138) and (139)).

3. Determine pre-collision fi(l)’s fromt an under—specified system after equations

(127) and (131) in an identical manor to that carried out in chapter 5.

4. Collide the boundary sites according to equation (132) after Chapter 5 but

with addition of the source term ¢;, note.
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Before detailing the above steps, a few remafks are in ofder. It is ‘important
to note that the condition of boundary mass conservation is satisfied only after the
- completion of final step (4). Also vnote that the under—specified system solved for
the fi(l)’s in step (3) is an adaptation of (D -+ 1)(D/2'+ 1) equations (127) and (131),

namely: ‘ . .
Z fz’(l) =0, (143)
live '

> P =0, (144)
N V¢iacip =2pvS05. (145)

We note that in the above system of equationsv(143) and (144) are independent of
particular LB model, however the D(D +1)/2 equations (145) depeﬂd upon model
‘through the €;;. We note that the corresponding, post-collision, values f,-(lyr are
a simple lineavr combination of the solution of equations (143)..(145) above (see
equation (133)). Finally we emphasise that it is only after the completion of step
4 that the mass on live simulation links balances mass which initially propagated
~ onto the boundary node. | ' |

Step 1. Evaluate M and §M 'using the definitions in equations (138) and (139)
respectively. |

Step 2 The boundary (or slip) velocity ug is known. Equations (38) and (142)

prbvide an identity for effective boundary node density,. I8

. M-sM
P= Zlive PO (uo 'Ci).

(146)

For the example geometry of figure 13 and the corresponding LBGK equilibrium,

equation (146) is:

p/_ M—-6M o ‘_ G(M—(SM)
Siaaty 1 +28 — 3§ + Lgelt] 5 3ug, —3uf,

2c2

(147)
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in which, note, velocity component ug, does not appear. To evaluate 6M from .
.equation (141) (or equation (139)) requires the values of live source terms, ¢;. For

our chosen example (a uniform body force in the z-direction, recall) ¢; = t,Geir:

M =G > tyti. - (148)
i#1,2,3
- It is now possible to assign p’ from equation (147) and hence fi(o)(p’ ,Up)-

Step 3. The calculation of the fi(l) component follow an identical procedure to
that of “step 2” in section 5.3.1. For the purposes of producing a coherent and self
contained acc’o’un"c, the calculation of fi(l)’s is doéumented here. For the reader who
has fully engaged with the concepts and methods of “step 2” in section 5.3.1 you
may wish to bypass this step and continue to “step 4”. | '

For our chosen example boundary, flow and model equations (143), (144) and

(145) yield:

S P =0, (149)
i£1,2,3
> Ve, =0, a=z : (150)'
i a — Yy - ’y’
, o, 2, _ _ 1
Zfz czgczﬂ - ngSaﬁ a=1IUY, IB =Y, (15 )

in the last of which we have used equations (130) and (35). Here then, nine fi(l),

i = 0...8 satisfy the six equations (149)..(151) re-formatted below:

40D +0fD +0£ + 70 450 410 1D 45 = 0,

X S 0 P 4 =,
£ +1) HP 4R - -0 =0,
R - =i - =,

g +fs) +f5 4D D D = =207/3 Sea,
R R DI A = —2p7/3 Sy,
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— +fY o +fD = 2pr/3 S,y

(152)

Note, the surface strain rates in the right hand side of last three equations must all
be determined, in this work a spatially o(3) accurate forward and backward finite-
differenc‘e method is utilised.. Note that in the case of slip, these finite difference
expressions, which involve the instantaneous surface slip velocity, were assumed
simply to assign a quasi-statically developing slip velocity at the next time step.

When applying this LB method to other models, differences must be assumed
to arise a this point. Fof a 3D LBGK model, a system similar to equations (129)
results; for general LB models the system of equatidns corresponding to equations
(152) would contain coefficients of the fi(l)’s which are linear combinations of the
;s (see e.g. equation (129)).

Following the pzirallel analysis of Chapter 5, to solve the under-determined sys-
tem of equations (152), select a triplet of known fi(l) 's as free variables. Certain
triplets of the free fi(l)’s are forbidden, which may understood as follows. Deﬁning _

quantities:

PN O C)
9 = W+ 0+ 10,
o= SO0,
g = 0+ 0+,
g = O+ 10+ 10, (153)
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the first five of the six equations (152) may be written:

g2 - t+g = 0,
-9 =0
91— 92 =0,
§3+94 = —2p7/3 Su,
g1+92 . = V—v2p‘7'/v3 Syy- (154)

Which System (154) may be solved for the g1..g5 in terms of the S,3. The value
of (say) g1 so obtained constrains the sum fl(l) + f2(1)-+ f?fl); accordingly 1(1), 2(1)
and fél) cannot all be assigned; cannot all be free variables. Forbidden triplets of
free fi(l)’s for our example system are defined in table 4, alongside a diagrammatic,
interpretation. Note, the sixth equation in the system (152) cannot be expressed in
terms our chosen ¢;..gs.

| ~ Above known fi(l)’s were referred to. In addition to the structure of system (154),
the set of three f,-(l)’s selected as free variables should depend upon which links, ¢;,
contain information originating from within the flow domain. To solve equations
(149)..(151) then, free variable fi(l)’s rare used which (i) do not comprise a forbidden
set and (ii) ha{/e accessible values. |

Free variables are chosen as in the solution equations (149)..(151):

O (5100 w), im0, (155)
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Forbidden set of three free fz-(l)'s Link representation

IR
S0 BN

(OJRrICIrIeY)
5 0J6 s J7

AR A 1

e 1
AR YR

N%

/
N

/1IN

N%

(1)

Table 4: Diagrammatic representation of the forbidden fi(l) combinations for the
planar boundary geometry of figure 13. The large (small) dot represents inclusion
(exclusion) of the rest link.

in terms of which the following is a solution of system of equations (152)

(1)
3

M
4

where:

: _K'Syy - {(1) - f2,(1) ) -

Sy + 558 — 50+ 210 4

5See K — 35S+ LD~ £,

265z —ES’yy - 6(1) - fé(l) )

~5Sex = Ky + S + I+ A + 1Y,
1 1

KSmy = 388y = 51 =20 = £, (156)

K = c2pr. : (157)

- The choice of free variables fi(l) made here, 7 = 0,1, 2 is not unique. This shall

be further discussed in section 6.5.

Step 4. The pre-collision boundary node fi(l)’s constructed in step 3 are collided,
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using equation (132), then added to the corresponding fi(o) (0, up), yielding a.post—

collision momentum density:

7,8 = 790, ) + 3 (0 — 245) 10 + 6, (158)

which, for the example LBGK system, reduces to:

10,0 = 190, v0) + (1 B %> Opu) e ()

Before proceeding to consider other boundary shapes (corners), a few remarks are in
order. Note that the analysis of this section is valid, stability issués notwithstanding,
for any value of collision parametef 7. Of course, as with Chapter 5, the choice of
the free variables in step 3 of this section should not affect the accuracy of stability

of the resulting closure scheme. This shall be further discussed in section 6.5.

6.4.2 Internal Corner Algorithm

We illustrate the versatility of the method outlined in section 6.4.1 by treating,
~ albeit in less detail, internal and external corners. Consider our example D2Q9-
LBGK system.

Figuré 14 shbwé a top left internal corner boundary node. The dotted line shows
the supposed location of the boundary. |
| ~ Quantities f3, f7 (links repreéented by broken lines) are ghost (not, note, dead)
quantities which never participate. f(‘; , f;r , f;‘ and fg are required. For the geometry

of figure 14 the appropriate value of M is:

M= Z fi, (160)

1#3,4,5,6,7
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Figure 14:" A boundary node on an internal corner. The walls locations are de-
noted by the dashed lines. The node is taken to lie in the fluid with the rest link.
Propagated link data is denoted by a solid arrowhead or solid square on the link,
unavailable link information (lack of data) by an open circle. Ghost links, which
never participate, are indicated by open arrowheads.

and the value of p' is therefore given by:

R M —6M

= Up-¢; u (uo-c;)? ’ (161)
Zi;ﬂ,z,a,'/,s tp [1 + c2 - fg’ + - 2ch ] '

where 6 M is the mass asSQciated with the source terms to be added on the live links
(see equation (139)): .
| M= Y ¢ E (162)

i#1,2,3,7,8

With some straightforward algebra:

- 36(M — M)
- 25 + 15'1103; - 15“03} - gu[)z:uﬂy - 15ugz - lsugy' :

p (163)

The condition corresponding to equation (149) for this geometry is:

| > =0 - (164)

i#1,2,3,7,8
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Figure 15: A boundary node on an external corner. The walls locations are denoted
by the dashed lines; the node is taken to lie in the fluid. Propagated link data is
denoted by a solid arrowhead or solid square on the link, unavailable link information
- (lack of data) by an open circle. '

Solving for pre—cbllision fi(l)’s follows the procedufe in section 6.4.1. No forbidden

triplets of obtainable fz-(l) s arise for the case of 2D, D2Q9 internal cofner geometry.

6.4.3 External Corner Algorithm

Figure 15 shows a tob left external corner. The dotted line shows the supposed
location of the boundary.

F5fL f3 f1fL £3 1 and ff are required. For M, M and ¢ we now have:
M= Z fi (165)
i#1

and:

M= (166)
i£5 : o
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1),

Forbidden set of three free f Link representétion

1 1 1
0, 10,

N
O, o, <

Table 5: Diagrammatic representation of the forbidden combinations of fz-(l)’s as
free variables, for the external corner geometry of figure 15. Note that a large dot
indicates inclusion of the rest link. Note also that, unhke table 4, only trlplets which
contain evaluatable f ’s are listed here.

and (after some algebra):

g 36(M — 6M) (167)
35 — 3’U/09; — 3u0y + 3u(2)z -+ 9u0$u0y - 3U(2)y ) ‘

The mass conservation condition corresponding to equation (149) for this gebmetry
is:

Y=o o aes)

i#5
Solving for pre—collision f,-(l)’s again follows the procedure in section 6.4.1. Triplets
. of evaluatable fi(l)’s now forbidden are listed in table 5.

- Clearly other geometries and other situations are amenable to the boundary
ahalysis of this section. Situations in 3D, corresponding to any number of cut links
are a straightforward generalizatioh of current method. Further extension to off-
lattic_e boundaries is more complicated; it requires no fundamental modification to

the method.

6.5 Results

In order to assess the above method for time-dependant boundary conditions, the
development of incompressible flow in a uniform channel is considered, width W,

bounded by stationary surfaces y = constant and, in the horizontal direction, by
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periodic boundary conditions. Flow was driven (for ¢ > 0) by a uniform pressure
gradient %—i = g corresponding to ¢; = t,Gc;; at t = 0% and the lattice fluid was’
initialized by.assigning fi(r,0) = f,-(o) (p,0) everywhere. Note that G = 3g [28]. To
generate additional interest the planar boundaries y = 0=, W* were aésumed to
~ admit to slip, described by a slip velocity instantaneously in accord with equation
(125). A range of slip lengths b = 0.005,0.05, 0.5 were used. With no-slip boundary

conditions, the corresponding flow has a characteristic time [46]:

Ty = -V% | (169)
vs/Vy, the instantaneous slip vélocity, normalized to the slip velocity measured at
t = Tp/2, was obtained from a numerical solution (explicit, .time—marching scheme)
of the 2D, time-dependant Navier-Stokes equations, for times ¢ < Tp/2; this solution ’
is, in figure 16, found to be in excellent agreement wi'th values obtained from the
corresponding LB simulations using our boundary closufe, over the range of slip
lengths.

Consider now the steady state corresponding to the flow considered above, now
with no-slip, Dirichlet boundary co_nditions. Invoking translational invariance in
the z—direction and the fa;:t. that. p = constant evérywhere, it is straightforward ‘
to obtain the steady-state solution, (vo(y),0), to the lattice fluid’s Navier-Stokes
equation .(135): | | '

G

vo(y) = 67yy(W -y, (170)

which we now proceed to use quantitatively to assess the accuracy of the solution
obtained from simulations closed using the method of section 6.4.1.

Flow rate and hence Reynolds’ number:

' 5 3
pe= W _ OW

v 36pv?’ (171)
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Figure 16: Evolution of the boundary slip velocity in pressure-driven duct flow. The
time normalization parameter To = 5. The line shows the numerical solution, the
open triangles correspond to slip length b = 0.005, squares b = 0.05 and diamonds
b=0.5. ' :

was controlled by the value of G used in the source term ¢; = t,Gc;; of the LBGK

adapted evolution equation (126). A total absolute error:

Aw = 3" lum(y) — ()] - amn

y#0

was defined, where v,,(y) dénot_es the 'simulated,' parabolic profile obtained with the
boundary closure method of section 6.4.1. vm(y> was measured at c'onstant‘ Re=0.5
for a range of lattice widths (resolutions) W = 10 x 2¥; N < 5.

Thé data of figure 17 shows the value of logio (Aw) as a function of resolution,
measured by logm‘W. The collision peirameter for this particular data was 7 =2/3,
however, use of 7'= 1,2 produce no change in the data presented in figure 17 visible
to the eye, as discussed below. ‘

The results in figure 17 comprise two almost overlying, sets of points (a) and (b).
Data set (a) is comprised of open sqliares and diagonal crosses, data set (b) of open

circles and erect crosses. Sets (a) and (b) are based upon different choices of the
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Figure 17: Error, AW, defined in equation (172), as a function of lattice resolution,
W, for our method of section 6.4.1. This data was obtained for pressure driven flow
in a uniform duct y = 0, W with constant Re = 0.5. Collision parameter 7 = 3/2
- for this data; values 7 = 1,2 produce no change in the data visible to the eye. The
results in this figure comprise two almost overlying, sets of points (a) and (b). Data
sets (a) and (b) are based upon different choices of the free variable fi(l)’s; in terms
of the planar boundary y = W of section 6.4,1, set (a) corresponds to i = 0, 1,2, set
(b) to i = 0,3,4. In data set (a) open squares (diagonal crosses) represent unforced
boundaries ¢; = 0,y = 0, W (forced boundaries ¢; # 0,y = 0,W). In data set (b)
open circles (erect crosses) represent unforced boundaries ¢ =0,y =0, IV (forced
boundaries ¢; # 0,y = 0, W). '
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free variable fi(l)’s; in terms of the planar boundary y = W of section 6.4.1, set (a)
is characterised by choice i = 0, 1, 2, set (b) to choice 7 = O, 3,4. This point shall b‘e
discussed further below. In data set (a) open squares (diagonal erosses)A represent
‘unforced boundaries ¢; = 0,y = 0, W (forced boundaries ¢; # 0,y = 0,W). In data
set (b) open circles (erect crosses) represent unforced boundaries ¢; = 0,y = 0, W
(forced boundaries ¢; # 0,y = .0, W). In both sets (a) and (b), omitting the
boundary force produces a linear variation in log,, W with log,, W of gradient =~ —2,
characteristic of a spatially second—ofder accﬁrate scheme; in the case of forced
boundaries ‘y = 0, W, the method of sec’eion 6.4.1 appears to achieve a solution
exact to machine precision, over the range of resolutions considered.

The fact that both data sets (a) and (b) in figure 17 correlate very well implies
that the boundary closure method presented here is insensitive to the choice of ffee
variable fi(l)’s. The results also appear to show that the method is stable over a
range of values of collision parameter 2/3 < 7 < 2.

Figure 18 shoWs corresponding reference data, obtained from various forms of
bouncev back boundary conditions. All the data in figure 18 were obtained with
collision parameter 7" = 1, corresponding to a known optimum of performahce»in the
bounce-back closure method. Before exposing any short-comiﬁgs, it should be noted
that on-link bounce back is adaptable, robust, versatile and easy to implement for
both LBGK and LB methods. That said, the limitations of the first-order accurate
‘on-link’ variant (represented by open squares) are clear. Applying a boundary
force to this method (open circles) leaves the data un'affected. Mid-link bounce-
back (diagonal crosses) approaches second order accuracy; with a boundary force
(erect crosses) it achieves a smaller error, again approaching second order accuracy.
None of the bounce-back methods recorded in figure 18 achieve the accuracy of the
forced-boundary method -of section of 6.4.1; neither.can they be used to represent
moving boundaries.

In order to demonstrate the ability of the method to handle both a boundary force
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Figure 18: Error, AW, defined in equation (172), as a function of lattice resolu-
tion, W, for mid-link and nodal bounce-back boundary conditions. This data was
again obtained for pressure driven flow in a uniform duct ¥y = 0, with constant
Re = 0.5. For all data in this figure, the collision parameter 7 = 1, corresponding
to an optimum of performance for the bounce-back boundary method. Open cir-
cles (squares) correspond to nodal bounce-back (with a body-force applied at the
boundaries y = 0, W). Diagonal (erect) crosses correspond to mid-link bounce-back
(with a body-force applied at the boundaries y = 0, W).
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Figure 19: Sheared, pressufe driven velocity profiles obtained from simulations using
our boundary closure of section 6.4.1. For this data, Re = 0.5, collision parameter
7 = 1 and the right-hand wall velocity ug = 1 x 1073,2 x 1073,3 x 1073, where all
velocities are in LB units. o
.and a boundary velocity, sheafed? duct. flow was simulated. Shear and a pressure
gradient were sirhultaneously applied to an incompressible fluid, again confined in
a uniform channel of constant width W = 80, bounded by surfaces y = 0, 80. Flow
- was driven by (i) a pressure gradient, G, and (ii) a constant motion of the y = W
boundary, which moved at velocity uoz. Various values uy and g consistent with a
constant Re = 0.5 were used. For such unidirectional flow it is possible to superpose
solutions of the Navier-Stokes equations:
G U ‘
v = —y(W—-y)+ —v. 173
0(y) oo VW —9) + gy (173)

Figures 19 and 20 show a range of such velocity profiles with different values of
up and G. Figure 19 shows simulation data obtained for collision parameter 7 =1
for ug = 1x107%,2 x 1073, 3 x 1073; figure 201shovx‘fs simulation data for 7 = 2/3 for
1y = 6 x 1073,7 x 1073,9 x 1072, where all velocities are in LB units. In all cases,
any difference with the analytical resultb, obtained from equation (173), is too small
| to be visible in figures 19 and 20. | | |

To asses the internal corner boundary closure of sub-section 6.4.2 a square, 2D
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“Figure 20: Sheared, pressure driven velocity profiles obtained from simulations using
our boundary closure of section 6.4.1. For this data, Re = 0.5, collision parameter
7 = 2/3 and the right-hand wall velocity ug = 6 x 1073 7 X 10‘3 9 x 1073, where
all veloc1t1es are in LB units.
lid—driven cavity with rest boundaries y=20,z=0,W and a moving lid y = W
was simulated. This lid is taken to move with velocity ug. Later ug = upe, will be
set. To obtain results which may validated in an original way and to illustrate the
adaptability of our method, we introduce at this point a model variant. It is possible

to simulate at Re =0 by using an adapted D2Q9 LBGK scheme, after Ladd and

Verberg, [47]. Following Ladd and Verberg, simplify the equilibrium distribution:
(0) 1
fil=tp |1+ 2Vei), (174)

producing a D2Q9 LBGK model otherwise identical to that considered in sections
6.2 and 6.4.1. Analysing with the particular Chapman-Enskog approach of Hou et

al in reference [27], it is possible to obtain a steady-state behaviour:

(2T—1)V2pvg—-:1§8ip 0, - (175)

D=

0
O0zg 82,7 =0

which, with replacement v — pv, represents the Stokes equations with pressure

= 1/3p and shear viscosity n = mT—l_l—)). The results of section 6.4 may be
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modified for this revised model. For example, in section 6.4.1, equation (147) for

the density is modified for use with the truncated equilibrium in equation (174):

g M-oM - eM
Diz123lp [1 + %] 5+ 3uoy

(176)

in which éM = 0, corresponding'to no boundary force. Similar modifications must
be made to the expressions for g’ in the case of the internal corner, in equation (163):

, 36(M — 5 M)

_ , 177
P = 95+ 24ug, — 1bug, (a77)

Using eQuation (174), the equilibrium, fi(o), component of the boundary f;’s:
was assigned; boundary fi(l)’s were calqulated and the post-collision distribution
assembled precisely after the method of section 6.4.1.

Figure 21 shows detail of the rectangular stream function close to a corner of
a, 2D, square lid-driven cavity at steady-state. Here the stfeam functions should'
approximate the known solution of flow into a corner [10], which appeafs in figure
22, for reference. The. large system sizev of 150 lattice units and the small lid velocity

1.0 x 10~ underlie encouraging correspondence with figure 22

6.6 Summary

In summary of this section a very adaptable and accurate method for cldsing a latfice :
Boltzmann LBGK simulation lattice has been set-out and validated. The method
allows for both boundary motion and constant boundary fluid external forces such
as gravity and its derivation demonstrates an accurécy consistent with the corre-
sponding bulk scheme, it is instantaneously accurate and robust in that it functions
with unimpaired accuracy for a range of values of LBGK collision parameters.

The boundary closure method has been developbed for key flat and corner ge-

ometries; it may be applied to others. Overall it is suggested that this method is as
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Figure 21: Corner Top, right hand corner detail of the rectangular stream function
contours of a steady-state, 2D, square lid-driven cavity. This data was obtained
for Re = 0 Stokes flow. The large system size of 150 lattice units and the small lid
velocity underlie the good correspondence with the analytical solution of corner flow,
shown in figure 22. ¥» = 0 on x = 0, y = 0; the maximum value of 1) corresponds to
P =1.05 x 107,

Figure 22: Rectangular stream function, v, contours for two dimensional flow into a
top right, right-angled corner; 130 < z < 150, 130 < y < 150. Note, the image detail
does not show the ¥ = 0 on & = 0, y = 0; the maximum value of ¥ corresponds to
¥ = 9.5 x 107%, in good agreement with the result in figure 21. Note the different
contour interval in this image. :
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adaptable in this respect as popular bounce-back methods but, in addition, it has -
the added advantages of tractability, the capacity to handle both moving and sta-
tionary boundaries and the capacity to accommodate a fluid force at the boundary.
The latter is of special significance to the wetting problem, to which this method |
will be applied later.

It is a.ppropl"iate to emphasize that additional conceptual and therefore algorith-
mic complexity is introduced when the external force in question is not constant.
The problem of a spatially—dependant body force arises when an LB fluid is subject
to a “boundary force”. We defer further Considerafion of issues rélation to interfacial
forces at a boundary until chapter 10, after spaﬁially variable fluid body-forces have

been considered in general in the next chapter.
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7 Simulation at Low Reynolds and Capillary num-

bers for Multi-Component LB

In this chapter I begin to consider MCLB in detail. This chapter serves as a survey
of the problems associated with MCLB in the continuum limit when addressed
with the particular variant which I inherited. It is shown in this chapter that the
‘problems identified may be reduced with minor algorithmic adjustments however
for more complete resolution further fundamental modifications must be made to
the method; thesé are discussed in following chapters, pradominantly chapter 8 and
9. That is not to say that the modiﬁcétions and observations of this chapter are
later rendered entirely redundant as they will be utilised in chapters 8 and 9 to
help characterise the algorithmic modifications. At the risk of being repetitious, it
is appropriate at this juncture to reiterate some LB introduction. T,his‘ is done for

completeness and with the aim of making the chapter relatively “self-contained”.
g y

7.1 Preliminary Remarks

- The key issue revised in this chapter is to be found in section 7.5.1. In Chapter 4 we
detéﬂed the Chapman Enskog analysis by which the macroscopic dynamics of LB
models are derived. However in 2002, Guo et al [48] showed that When‘a spatially
variable external body force is applied to a fluid (as opposed to the constant body
forces considered in Chapters 5 and 6) a more accurate varient of LB is possible.
The changes necessary to implement the LB varient of Guo are straightforward (see
section 7.5.1) however the process of modified Chapman Enskog expansion by which

they are derived is intricate. This analysis is found to be in [48]. Guo’s method as

set out in 7.5.1 is retained throughout the rest of this thesis.
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7.2 Background and Context

The simulation of multi—-component fluids at low Reynolds number and low capil-
lary number is of interest in a variety of applications such as the modellihg of venule
scale blood flow and microfluidics; however, such simulations are cdmputationally de-
manding. In this chapter, the inherited multi—compoﬁent lattice Boltzmann scheme
is presented with some algorithmic modifications. The aim is to represent inter-
faces in the continuuﬁl approximation, the modifications presented are shown (i)
significantly to reduce common algorithmic artifacts and (ii) to recover full Galilean
invariance; see section 7.3. The method will be used to model drop dyn.amics in shear
ﬂdw_in two dimensions where it recovers correct results over a range of Reynolds
and capillary number greater than that which may be addressed with the inherited '
method.

Many multi-component flows are conveniently modelled uéing the. LB method;
microfluidic multi-component flows are a relevant exémple. The latter are charac-
terised as complex, incompressible flows at small Reynolds number, Re, and small
capillary number, Ca. Multiple blood cells in venule-scale flows have also been Tep-
resented with LB as immiscible drops (a traditional device) [49, 50]; such ﬁows have
Re ~ 1 and may be simulated using values of Ca ~ 2.0. Traditional computational
fluid dynamics has also, of course, been applied in similar situations; recently Jadhav
et al [51] have used the immersed boundary method to three dimensional simula-
tions of leukocyte (white blood éell) rolling and, in the wider éontext, ‘Esmaeeli and
Tryggvason [52] and references therein, have published simulations of bubbles at low
Re; and Sankaranarayanan et al [53] have prdduced a comparative study of LB and
front-tracking finite-difference methods for bubble simulations. 4

Recall sections 4.3.1 and 4.3.3; there, a method due to Lishchuk was described
which (i) produces sharp interfaces with small micro-currents (ie ‘spurious veloc-

ities’) [3]), (ii) has an independently adjustable interfacial tension (iii) is conve-
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niently direct and (iv) can produce interfacial tensions larger than Gunstensen’s
method [24]. The key feature of the Lishchuk method is that, in order to impése
surface tension, it impresses a curvature-dependant force in what is effectively a sin-
gle fluid (this shall be revised later in chapter 11). However, both methods have a
problem reaching low Ca and drop Reynolds number, Re; (defined in sec 3.1), giving
risefo a tendency for drops to “facet” as Ca and Regy decrease (lengths of interface
with bzero curvature form parallel to lattice directions). Faceting is associated with a
reduced drop 'advection and hence Galilean invariance (i.e. in all internal frames of
reference, physical laws remain the same). The airﬁ of this chaptef is to show how
the follov&ing issues may be addressed. The limited success we achieve motivates the»
developments of chapters 8 and 9.

We summerize the developments to be presented in the present éhapter as follows:

In order to reduce discrete lattice effects and to enforce the global conservation
of momentum, the interface method of Guo et al [48] is used in the implementation
of interface forcing.

"To attempt to reduce simulation noise and to increase accuraéy, numerical deriva- .
tives of o(4) (in mesh-spacing) are used to attempt to achieve a more distributed
forcing around the sharp phase-field boundary.

Algorithmic modifications are made to enforce mutual impenetrability of binary
' fluids at the interface i.e. a kinematic condition.- Which although partially achieved
in this chapter', the methods proposed are somewhat primitive and computationally
expensive. They are included for pﬁrposes of completeness rather than their algo-
rithmic advances. A much more elegant and implemen‘bable solution is presented in

Chapter 9.
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7.3 Problems Associated with Reduced Reynolds and Cap-
~illary Number Simulations Using MCLB

The objective of the work reported in this chapter, to which the present se?tion
provides background, is to begin to modify and bound Lishchuk’s method [25], to
‘ ~ improve the representation of completely immiscible stiff drops in slow.ﬂow'using,
essentially, the MCLB algorithm I inherited, which is outlined in section 4.3. In
essence the data in the present section serves to expiore its faults and hence to set
the agenda for following chapters. |
Consider the simulation of the flow of high volume fraction, non-Brownian col-
loids in complex, internal geometry. At some positions in the geometry,. the flow .
velocity is likely to be small. Now suppose we need to simulate‘ stiff drops. We there-
fore réquire a small capillary numbér, Ca and must expect to encounter a small drop
Reynolds’ number, Rey.
As‘ discussed previously; LB fluids are deséribed by the Navier-Stokes and con-
tinuity equations only for restricted Mach number M = Uy/cs, [3]; usually M < 0.1
" is required. The fact tilat LB models have a small speedlof sound, ¢; ~ o(1), limits
thé value of Uy. It follows that low C’d, low Rey must be achieved using large sur-
face tension, @ and lifniting the shear rate, 4 see section 3.1.‘ But a \}elocity which
is too small is also a problem. In the interfacial region of multi-component LBs, .
- there exist un—physical velocity field fluctuations, or micro-cufrents, generated by
the interface algorithm. To obscure these, one approach to target Req and Ca is to
limit length scale and maintain the characteristic velocity. Where length scales are -
limited, narrow interfaces are necessary to avoid introducing a length scale which
may conflict with that of the flow problem eg . [49]. ~
The above requirements translate to a need for (i) a sharp phase-field boundary,
(ii) large surface tensions and (iii) a small LB micro-current. Whilst Lishchuk’s

method [25] facilitates (i)..(iii), as Re — 0 a lack of Galilean invariance arises as
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droplets ‘pin’ on the lattice.

Wagner [54] has pointed—out the origin of thé microcurrents in multi—component
-LBs; imperfect cdrrelation between an interfaée—préducing forcé‘and the dynamics
of the .phase index, or colour label, pV (see equation 91 and section 4.2.2) means
fluid is kept in constant motion near the interface. Enhanced consiStency between
the interface—inducing force and the pV field decreases the micro-current. These
considerations maybe set in the context as follows.

By working from the core algorithm presénted by Lishchuk in [25], the force
applied to create the interface (discussed in Chapter 4 and further in séct.,ion 9.2)
_is defined in terms of derivatives of pV (see. equation (182)). Sharp interfaces lead
tb numerical error in the calculation of these spatial gradients of p", resulting in
anisotropic forcing over the a drop perimeter. Micro-currents and small, damped
shape fluctuations ensue. By distributing the interface, the accuracy of numerical
gradients may be improved, making the interface forcing more isotropic (see Chapter

8). Figure 23 shows data obtained from simulations which use an idealised ‘phase

feld:

pV(@y) =tanh (kv —2P + y—wP), ~  (78)

in which the interface thickness parameter; k, has been varied. See the ﬁguré caption
for simulation déta. |

With £ = 2.4 (typical of numerical -colour segregation) the interface width is
less than tv§o lattice spacings. Decreasing k dis_tributes the interface and improves
numerical derivatives of pN (we shall return to interfacial distribution in detail in
Chaptér 8 and to a lesser extent in chapter 9). The interface-inducing force inte-
grated albong a radial section of the interface measures interfacial tension [25]. A
numerical integral was obtained for cuts at (i) 0 rad and (ii) w/4 rad. R is the ratio

of this force integral in (i) to that in (ii). In figure 23, as k decreases, R — 1 and the

total micro-current activity falls. The latter was measured as the lattice sum of the
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Figure 23: Data from the multi-component LB algorithm of reference [25]. Nor-
malised, whole-lattice micro-current activity, u, (open squares) and surface tension
isotropy, R, (solid squares) for a range of interface thickness parameter, k. Ratio R
is-obtained as described in the section 7.3. This data was obtained for a neutrally
buoyant drop, initial radius 15 lattice units, placed on a 75 x 75 lattice, with collision
parameter 7 = 1. ' '

velocity modulus, |/uZ + uZ, normalised to its value for £ = 2.4. A more accurate
interface-generating force appears to reduce micro-currents. In the present context,
accuracy relates to the quality of numerical derivatives.

Next consider an immiscible drop embedded in a fluid, moving with uniform
velocity Up. In any multi-component LB the interfacial micro-current increases in
proportion to surface tension, o. As Uy decreases, the speed at which the drop ad-
vects, Ud, approaches the value which characterises micro-current activity and there
is a loss of advection for the drop. This is discussed in more detail in section 7.8.
Figure 24 shows the results of advection tests using the inherited algorithm of refer-
ence [25], outlined in section 7.4. A drop embedded in uniform flow is characterised
by. ordinal value Uy/Up = 1, a completely trapped drop by U,/Up = 0. This data
was compiled for a range of o and U,. All data lie about the solid line inserted in
figure 24, which is a grid search optimised fit to the data using an expression of the

. form tanh(a(Uy/Up) —b). It was found that a = 0.049. From figure 24 it is clear that

for Up/a < 0.1 there results a progressive loss of advection in the basic algorithm of
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Figure 24: Original LB algorithm of reference [25]. The final advection speed, Uy,
of an infinite chain of red drops, surface tension «, responding to ‘far-field 'motion
(Us,0) is normalised to Uy and plotted as a function-of ratio Up/a. This data
was obtained for a neutrally buoyant drop, initial radius 15 lattice units, placed on
a 75 x 75 lattice, for a range of values of boundary velocities, Uy and interfacial
tensions a. The solid line is a grid—-search optimised tanh profile fit to the data. As
the surface tension increases for fixed advection velocity, the drop ‘stalls .
reference [25]. Note that the results of figure 24 do not set a characteristic minimum
on the value of quotient Up/q; micro-current activity is, recall, slightly influenced
by fluid viscosity.

The ‘simple’ case of a lack of Galilean invariance expressed in figure 24, is com-
pounded in what we shall term a ‘general’ notion of Galilean invariance. Consider
‘again the immiscible drop; its motion is a response to the accumulation of interfacial
stresses. However, in all multi-component LB, interfaces are created by a perturba-
tion which degrades the hydrodynamic stresses ahd, therefore, the dfop’s dynamics.
‘Since this effect becomes more noticeable when stresses are relatively small, it is
evident that we need a refined multi-component LB model first for the small Re,
small Ca regime. In the present context, the benefits of the improved method arise
in part because the interface perturbation better respects viscous stress. Results
show general loss of Galilean invariance properties at low Rey, low Ca, assessed by

means of lift simulations, are improved by the innovations introduced in section 7.5

without compromising on the length—scale of the interface.
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It is stressed that, for small' Ca, large Reg, the basic model outlined in the
next section exhibits fewer problems. It is upon slow, Reg ~ 1, surface-tension

doininated, Ca < 2, flow that the reported innovations focus.

7.4 Multi—-component Lattice Boltzmann in the Continuum

Approximation

The work reported in this chapter is based upon the LBGK method, due to Qian
et al [4], described previously. To this a ‘source term’, ¢; is added, allowing us to

. insert interfacial tension:

File+ent+1) = filet) (o)~ o) +é. (79)

Recalling Chapter 6, a constant source term, ¢;, Chapman—Enskog analysis [3] leads

to modified Navier-Stokes equations: [28], [25]:

L0, 00
" 0za" " Oup 0z

0 0
= PUq + 7 PUFUG =

5 o 2Sas) +Fay  (180)

where the source term ¢; is responsible for a constant body force:

F=> ¢c. (181)

Note,‘ the summation convention on repeated Greek subscripts applies in equation -
(180). For present purposes, the body force needs to contain spatial variation: F —
F(r). This necessitates spatial variation in ¢; — qﬁli(r) which,‘ in turn, compiicates
~ the derivation of equation (180) above [48]. The solution given by Guo ¢t al to this
problem, which we utilise in section 7.5, requires a more complicated relationship
between F(r) and ¢;(r) than that given in equation (181) and a re-definition of
u [48].
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The two fluids are segregated numerically as described in [24] and previously in
section 4.3.1.
The quantity F(r) is defined in terms of the gradients of pN(r). To achieve a

cross—interfacial pressure step proportional to the local curvature in pV, K, we take:

F(r) =

N =

aKvp", (182)

with the surface tension paraméter a. Note that F(r) has alsobno explicit.time
dependence and that the right hand side of equation (182) vanishes for constant
pY. The cumulative effect of the force (in equation (182)) produces aﬂvpressure step
across the interfacial region. Assuming K to be locally constant, the local pressure
step is obtained as the line integral of F(r) between the terminal points, A and B,

of a short, normal path:
AP = %aK [0V (B) - p"(A4)] = oK. (183)

Note that A and B are embedded in the blue and red fluids respectively and so that
pN(A) = —p"(B) = 1. Using the negative of a normalised colour gradient as the
interface normal, 1, interface curvature K is obtained from the surface gradient:

: 0 0 L, 0 0 :
where i = Vp"/|Vp"|. 1t is important to note that the evaluation of K involves
numerical second derivatives of p".

For the body-force defined in equation (182), arguments are presented in [25]

which yield a source term, ¢; of the form:

[SC] RS

$:(r) = St,aK (Vo) i, - (185)
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which result, it is stressed, is improved in section 7.5.

In order to achieve narrow interfaces, numerical de-mixing of red and blue fluids
at an interface is necessary [24,55]. The interface algorithm outlined in this éhapter
is based ubon a variable force applied locally in a single fluid, to eliminate curvafﬁre
in a phase field. This accurately represents interfaée dynamics (stress conditions)
[25]. But the extent to which the kinematic condition of mutual impenetrability is
implicit is unclear; the fact that there is a single ‘sum’ fluid means that the combined
momentum of the mixture of fluids is continuous across an interfacial region but the _

velocities of the red and blue fluids may not be easﬂy defined close to the interface.

7.5 Improvements to the Model

We describe a number of modifications to the algorithm outlined thus far. In sum-

mary:

1. The source term, ¢;, in equation (179) is modified more accurately to recover
the required interface force in equations (180); this is achieved usiﬁg the meth-

ods of Guo [48] and Ladd and Verberg [47].
2. ¢; is refined by more careful deﬁhition of the interface.
3. A higher-order accurate calculation of numerical derivatives in ¢; is used.

4. A kinematic condition is introduced.

7.5.1 Interface Source Term .

A constant source term ¢; = 3t,G.c; is a well-known device for inserting a constant
gradient G. As stated in 7.4 it is recognised that spatial dependence in ¢; requires
a modified Chapman-Enskog analysis of the macroscopic dynamics [28,48]. The

method of Guo is a progression of earlier work, in particular of Ladd and Verberg [47].
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It may be used to yield an expression for a source term, ¢;, in terms of the target,

space-dependant macroscopic force F(r) [48]:

1

$i()=t,(1— =) (3(c; — u*) +9(ciu) &) F(r), (186)
2T o

where macroscopic velocities are now defined in terms of the external body force:

o = % <Z fic; + %F(r)). o (187)

Equation (186) replaces that given' in equation (185); equation (187) gives an ac-
companying re-definition of the model’s velocity. Note that equétion (186) remains
correct if the macroscopic force also contains time dependence. The Navier-Stokes
equation (180) now acquires position dependence in the body—force term:

5 e + 8_xﬂpuﬁu" =5, + - (2pvS%5) + Fao (r). (188)

T

Note also the right hand side of equation (186) reduces to the right hand side of
" equation (185) for u* — 0 and 7 — 1.

The remainder of this subsection is concerned with peripheral comments on the
preceeding method of Ladd and Verberg [47] which‘has been included for purposes
of reference, but has no direct effect on work carried out here. The casual reader
~ may Wish to ommit the remainder of this subsection. .

In addition to requiring a .refdeﬁned velocity, Guo’s method removes the local
relationship between the fluid strain rate and the distribution function, £ [48], see
section 10.5, the usual form of which is reproduced in equation (204), section 7.8.
For some applications this is unfortunate; Ladd points—out that local expressions for
the strain rate are advantageous when calculating, for example, stresses imparted
onto Lagrangian particles suspended in the LB fluid [56]. The approach of Ladd and

Verberg [47] for time-independent body forces, applied to our case of an interface
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force, yields:

=0 (3o (1= ) o) 0 (1= L) e ¥, a0

which recovers the Navier-Stokes equations (188) to the same accuracy as the
method of Guo. However, the continuity equation now acquires an additional
term [48]:

E'_}_ a—ﬁlmﬁ = _56_3:5Fﬁ (r). (190)

This approach, referred to in reference [48] as ‘method 2a’, requires no re—definition
of velocity, and represents (in my opinion for narrow interfaces) an optimum treat-
ment of variable forcing without recourse to a re-defined velocity. However, When
using method 2a for a spatially varying fofce, the continuity equation acquires non—
.physical terms as indicated in equation (190). The latter may, in fairness, be small
and in certain applications, an intact interpretation of velocity may outweigh this
disadvantage. For present purposes however, method 2a is eﬁcpected to produce
inferior results owing to this continuity equation effect.

Equations (186) together with equation (187) (where appropriate) and equation
(189) represent expressions for ¢;(r) each of which is an.improyem‘ent upon our

original expression in equation (185). We compare results from both methods in

table 6; everywhere else we use equation (186).

7.5.2 Interface Definition and Cumulative Forcing

The criterion for inclusion of ¢; in the evolution equation (179) is modified to a
condition on the gradient of pV. ¢; is now only included if |Vp"| < 10~8. With
o(4) mimerics (see section 7.5.3), this distributes the interface slightly forcing for a
more accurate cumﬁlative effect. Meanwhile, numerical segregation ensures that the
length—scéle of the variation in py is unaffected (the effects off using an algorithm

with a larger degree of distribution'is seen in Chapter 8). Choosing to use the
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/7| v Re | Req | Ca | y/Ly |Ug/Us | 6y | 6y | 6y"
+0.01 | £0.01
0.8510.23]1.11]0.10 | 2.98 | 0.49 0.49 |0451{1.92(1.93
0.90 10.20]1.23|0.11 | 2.70 | 0.48 0.48 |0.78 {.1.72 | 1.72
0.950.18 | 1.36 | 0.12 | 2.43 | 0.49 0.48 |0.61|1.54|1.54
1.00 | 0.17 | 1.50 { 0.16 | 2.21 | 0.51 0.51 [0.49|1.12]1.12
1.05 1 0.15| 1.66 | 0.15 | 1.99 | 0.49 0.48 | 0.43]135|1.35
1.10 1 0.14 | 1.83 | 0.17 | 1.80 | 0.50 0.50 | 059|191} 181
1.1510.12 { 2.03 | 0.18 | 1.63 | 0.50 0.50 |0.19 | 3.25| 5.20

Table 6: Summary of (i) the normalised steady-state transverse position y/L, and
(ii) the normalised steady-state velocity uqa/Uy for neutrally buoyant drops, initial
radius 15 lattice units, exposed to a uniform shear flow of characteristic shear velocity
- Up.

internal (say) ‘red ’ relaxation parameter = g only when p"(r,t) > 0.99; this
follows a ‘level-set’ philosophy and piaces the interface entirely wifhin the eml.)edding'
fluid. It has the effect of sharpening the phase field boundary and the location of
any‘viscosity change. | |

Figure 25 shows the value of py versus radial distance for a static drop of initial
radius 15 lattice units. The component index, pV, changes essentieﬂly over a distance
of one lattice unit. The solid line in figure 25 corresponds to the function tanh(k(r —
- 7T9)), with ry the average radius,of.the drop. Leas’e—squares fitted Values of k =2.77
and ry = 14,82 were determined. The collapse of all interface data onto this single,
contour supports the view that (i) whilst very narrow, the interface in our modified
model has a structure independent of its orientation relative to the underlying lattice
and (ii) to good approximation, the drop is isotropic. However from the slight spread
of values it is apparent that further improvements may be attainable, see chapters
8 and Chapter 9.

Suppose the interface forms a sharp, closed contouf in a plane. From the defi-
nition of curvature it can be shown that the line integral, along this contour, of a
normally—directed force, proportional in magnitude to local contour curvature, I,
must vanish. However, numerical derivatives introduce inaccuracies in K’; a non-zero

value of this line integral results. Therefore, the small, fluctuating but non-zero,
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16.0

Figure 25: The distribution of phase field index for a neutrally buoyant red drop
(pN = +1) at rest, suspended in a blue fluid (pV = —1). Both fluids have collision
parameter 7 = 1 The initial radius of the drop is 15 lattice units, the interfacial -
region has a characteristic width of about a single lattice unit. The solid line corre-
sponds to a tanh profile fit (see text).

total applied interface force is recorded and any imbalance is eliminated by applying -
its negative over the interface region, weighted by the magnitude of local interface
force. The corresponding correction to the source term of equation (186) at position

- ris:

L (ZLF)c |
0= 3t€<z,/'1F<r'>|>'F(r)" | ()

where the summation on r’ runs over all points in the interface region. Note that
the factor ‘3’ in (191) cancels when taking first moments, see (192).

To police the cumulative interface force it may seem reasonable to determine
some form of local curvature average. Howe;rer, sharp, local fluctuations in K are
actually necessa'ry to keep an interface sharp and smooth. Consider ﬁguré 26 in
which interface sites with —0.9 < p» < 0.9 havé the direction of their colour gra-
dient displayed. As the tangent to the local interface direction approaches a lattice
direction local curvature K chénges sign as follows. Point (103, 82) in figure 26 lies
in a region above a vertical length of interface, tangent to line z = 106. For a circular

drop, the interface must, near to position (103, 82), ‘switch’and continue on another,
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Figure 26: Detail of the normalised colour gradient field for a rest drop. Point
(103,82) in the above figure lies in a region above a vertical length of interface
tangent to line x = 106. In order to have an overall isotropic, circular drop the
interface must ‘switch ’to a parallel line of nodes. Near (104,82), the interface
‘switches ’onto another, parallel line of nodes & = 105. When this happens the local
curvature must {luctuate and change sign.

parallel line = 105. When this happens the local curvature must fluctuate and
~ even change sign. Local smoothing undermines this curvature elimination property

of the algorithm, thereby undermining the mechanism by which the interface is kept

smooth and sharp.

7.5.3 Calculation of Numerical Derivatives

The inter-node links c;, corresponding weights ¢,, and indexing of the D2Q9 [4]
lattice are defined in table 1. Note the implicit use of unit lattice spacing. By direct

calculation this set of lattice link vectors and Weighfs may be shown to have the
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following even ‘moments’:

Sty =1, | o - (192)
,thciaciﬂ = %50437

1
Z tpCiaCifCinCis = 9 (6ap0ys + Gary0ps + Oaspy) -

i

Whilst the corrésponding odd moments are zero. Now, a Taylor expansibn of the

function ¢(r + N¢;), about r, may be approximated:

$r+Nei) = g(r)+ n,Nn ci.V)"é(r), | (193)
n<ng
where N =1,2,3.... Retaining derivatives to-o(ng) yields an expressién with order

of accuracy ng in lattice spacing. Multiplying equation (193) by the pfodupt tp Cia
(o = z,y), summing the result upon link index i and appealing to the moment
propértieé in equations (192), one can obtain a system of simultaneous equations,
with spatial derivatives such as 82¢(r) /Oazay as its independent variables. The
equations in this system are characterised by the choice of parameter a and the
value of range parameter N. Taking ny = 3 and N < 3 one can solve this system

for o(no + 1 = 4) accurate expressions for the first spatial derivatives of ¢(r):

Zt < r+c;) — —¢( + 2¢;) —i—%_qﬁ(r + 30,~)> c;. (194)

Clearly this method of calculating gradients undermines that locality of the algo-
rithm which is considered to be one of the strengths of LB. However, the additional

overhead introduced only scales as the total length of interface in the simulation.
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7.6 Kinematic condition
7.6.1° Kinematic Problem

It is worth noting at the outset of this sub—séction that the following are inmitial .
attempts to enforce a kinematic condition énd although successful to some degree, a
morevrigorous treatment of the kinematic condition is carried out in chapter 9 with
superior results. The rémainder of this section therefore should be mainly regarded
as a record of the work I have undertaken, not as a worthwhile algorithmic extension.
| ‘The kinematic céndition is s_tated as the requirement that, at the interface, the
internal andvextérnal fluids have the same velocity. In fact the kinematic condition is
important in multi—componént ﬂovsf.‘ Thé Re = 0 calculation of flow past a spherical
drop demonstrates this very clearly [12]. Here a method of coupling the dynamics
of the phase field and those of the fluid are presented, aiming to embed a kinematic
condition. Throughout sub—sections 7.6.1 and 7.6.2 an astefisk superscripts denotes
discrete positions; pbint (z*,y*) is a discrete lattice position; (z,y) is’a sub-lattice
point. |
The narrow interfaces generated by the methods considered here correspond, typ-
ically, to local interface profiles with only one node on the lattice with |p" (z*, v*, t*)| <
10.8. Take sub-lattice contour pN(z,y) = 0 to define the (off-lattice) ceﬁtre of the in-
terface, suppose that all the N (M) points {(z},y;);7 = 1.N} ({(zs,y});i = 1..M})
at which this contour. intersects the short lattice links have been determined (by
searching vertically and horizontally over the latti‘ce and using linear interpolation).
Contour p" (z, y) =0 bouhds what should be two different fluid domains; boundary
and, ideally, kinematic conditions should apply between the bulk fluids on this con-
tour. {(z},¥:);¢ = 1..N}U{(2i,9);? = 1..M}) is a suitable set of points upon which
to apply appropriate conditions. Of course, this choice of a set of points implicitly

defines a sharp interface.
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7.6.2 Kinematic Condition Solutions

Noting that the dynamic boundary conditions on interfacial stress are implicit in
the core“inherited method [25], and aiming to preserve reéoiution and to conserve
local_momentum, we consider three practical approaches to a kinematic condition,
each based upon the set of points {(zf,9:);1 = L.N}U{(@s, v);i = 1M})
Method liTake the two sets of pairs of points {((z}, int(y;) + 1), (x},int(y;) —
)i = 1.N} and {((int(z:) + 1,97), (int(zs) — 1,47));i = 1.M}, where int(z;)

denotes the integer part of ;. Find the mean velocity u* of each such pair of points:

- plint(z) + 1,y ulini(z) +1,47) + plint(z:) — 1, u(imi(z) ~1,57)
p(int(z;) + 1, yF) + plint(z;) — 1,95) '

(195)
and assign the pre—collision fluid velocity at points (¥, int(y;)+1) and (%, int(y;) —
1) to u*; it is velocity u* which is used to evaluate the equilibriurn distribufion
fi(o)(p,'F) in equation (179). Fluid just inside each of the separated components
is thus induced to move at the same speed. It is important to note that it is the
modified velocity, defined in equation (187), which is ‘averaged.

" Method 2 Determine the mean, pre-collision velocity u* in an interfacial neigh-

bourhood (int(z;) — 1) < z* < (int(z;) + 1), (int(y;) — 1) < y* < (int(y;) — 1):'

Zi=—1,0,1, Zj=_1,0,1 p(z* + i, y* + j)u(z* + i,y + J)
Zi:—l,o,l, Zj=_1,0,1 p(z* +1i,y* + 7)

: (196)

ut =

As in method 1, all nodes in this region are then evolved.accdrding to equation (179)
with an with equilibrium distribution f©(p, u*). Clearly this method results in a
loss of resolution in the interfacevrégion relative to method 1. |

Method 3 Using an alternative, non-numerical method for component segrega-
tion [57, 58] covered extensively in chapter 8, with ‘segregetion parameter’ 8 = 0.7
(notation of reference [58]) method 1 from above was followed. Method 3 there-

fore has a distributed interface of much greater width than those obtained by the
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numerical segregation otherwise considered; with § = 0.7 the value of py switches
between  —1 and +1 in the surface normal direction over approximately 6 lattice
spacings (rather than 1 lattice spacings with numerical segregation shown in figure
25). One of the advantages identified at this stage of a diffuse phase boundary is that
the contour p¥(z,y) = 0 is better defined. At this point the segragation'aigorithm
variant of [57, 58] is introduced solely to obtain a contextual view of the kinematic

condition it shall be exploited further in the following chapters.

7.6.3 Comments

There is a considérable body of literature relating to the transverse migration or
Gift’of a solid particle subject to simple shear or parabolic flow. Lift is widely
discussed in the context of a range of important applications such as re-suspension.
The term lift may suggest a direction of motion dictated by a gravitatiohal field;
however it is important to note that the effect is simply the migration of a particle or
droplet in a flow as a consequence of a hydrodynamic interaction of the particle with
one or more neighbouring boundaries. The direction of migration is determined by
the nature of the flow and the boundaries. As a basis for evaluating the above model
modiﬁcatioﬁs I consider the lift of a deformable, incompressible, neufrally buoyant
“liquid drop in simple shear flow, at low Rey, with a capillary number Ca ~ 2 which
permits only restricted deform#tion. |

" The chosen geometry is a stringent test of the algorithm. For one thing, an-
-~ ticipating the results, lift appears to rely upon a small imbalance of hydrostatic
pfessure. To achieve this the interface algorithm must be sensitive. Sec‘ondly,‘ for
a small shear rate, a drop’s drift velocity component in the direction of the unper-
turbed shear gradient is small, particularly as the drop approaches its steady—state
position. Any lack of Galilean invariance is thus exposed in the transverse compo-

nent of the motion.
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7.7 Results
7.7.1 Simulations of. drop lift in shear flow

It is important to use accurate boundary conditions: The necessary Dirichlet bound-
ary conditions cannot be represented by popular LB methods like on-link or mid-link
bounce back [3]. To impoée 0(2)- accurate velocity boundary condiﬁons, a precursor
method to that reported in chapters 5 and 6 was used. The precursor method used
is the inherited boundary method reported in reference [46]. Recall by o(2) accu-
rate we mean (i) second-order accurate in lattice spacing and (ii) able correctly to
construct boundary distributions f; up to the level denoted fi(2) [3]. |

Advection and lift tests identical to those described in section 7.3"welre repeated
using all four innovations described in section 7.5 émd as previously mentioned, using
an o(2) accurate lattice closure scheme to impose velocit)} boundary conditions. In
particular, the kinematic conditibn reportéd in method 1 of section 7.6.2 was used.
In terms of the results in figure 24, simple Galilean in‘variance is restored down to
values of parameter .UO Ja ~ 0.003. This modest improvement (compared with the
data of figure 24) is to be expected from the arguments set—out in section 7.8.

Lift tests werek conducted on a drop of initial radius 15 lattice units, placed on
a L, x L, = 150 x 51 lattice, bounded by Dirichlet velocity conditions, repo_rtéd
in ref [46], in the y-direction and periodic boundary conditioﬁs in the z-direction.
This, of course, pfoduced an_inﬁnite line of drops. The drop was positioned with its
centre at y = 20 lattice units and equilibrated for 5 x 103 < ¢ time steps. For time
" steps in the raﬁge t: 5x10% <t <4x10° the y = {L,,0} boundary was set to
move with z—velocity {5 x 1073,0} lattice unifs per time step respectively. What
would, for a uniform system, be a shear profile u, = (UQ /Ly)y was thus applied to
stable drops. | |

The centre of mass y—coordinate of the drop is denoted by ¥, and the = and y .

components of its velocity by u4 and vy, respectively. Mechanical equilibrium or
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steady—state is defined by a vanishing lbng—time average < vg >¢= 0. At steady—
state, general arguments require the centre of mass (z0,y0) of a neutrally buoyant
| drop to advect at velocity (Ug, V}i)- = (Uo/2,0) at y position L,/2. Results for
(< ug >¢, < vy >;) from the simulation can therefore be compared with expected
values (Up/2,0). | |

For all the results in figures 27 - 30, and table 6, simulation pérameters were
p=2,9=10"" o ~ 34 x107° All data presented here assumes that the drop
liquid and the embedding fluid yhave'the same viscosity. ‘The single LB relaxation
parametervT was varied over a range 0.85 < 1/7' S 1.15. Sfeady~state data is
| presented for 0.100 SRed < 0.165 and 1.63 < Ca < 2.98. The‘ channel Reynoldsl
number ranges in the data 1 < Re < 2 (see table 6 for exact values). ‘

Figures 27 and 28 are an abbreviated life history of a lifting drop. Figure 27
showé the partially deformed and orientated drop at the point at which transverse
migration commenced, depicted using pressure P = p/3 (for our model). Note
the high pressure region visible between the drop and the closest, rest boundary.
From these and similar images it is apparent that substantial drop deformation and
orientation occur before any lift commences. Figure 28 shows the corresponding,
now symmetric, pressure distribution about the drop at steady state. Both figures
27 and 28 show fluctuations in pressure in the interfacial 'region; the phase field, pV,
by contrast, varies slightly rﬁore smoothly across the interface (figure 25). However,
as mentioned previously, the slight spread in data points indicates that further
improvements' may be possible. Further advancements are detailed in following
chapters. . |

More data is shown in table 6 and figure 29. Values of y/L, and normalised
‘ﬁnal advection velocities Uy/Uy are recorded in téble'b‘.. The last three columns of
table 6 compare dy, the absolute difference |yo — L, /2| with dy/, the corresponding
data obtained with the method of Ladd and Verberg [47] (equation (189)) and

6y that obtained using the unmodified inherited algorithm [25] (equation (185)).
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Figure 27: The pressure distribution for a droplet at the point.at which transverse
migration commences. Note the fluctuation in the pressure near to the interface.
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Figure 28: The pressure distribution for the same droplet as that presontéd in figure
27, at steady state. Note the small regions of high pressure located at the tips.
Some slight faceting is visible in this image.
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Figure 29: y—pbsitions and z-velocities for all the trajectories of all the drops in
table 6. y-excursion is plotted against the corresponding z—velocity, sampled every
2.0 x 10° time steps. Point y = 25,U; = 2.5 x 1072 is the equilibrium position
- required by general Galilean invariance.

Notwithstanding a need to adjust the velocity, the method based upon Guo’s analysis
[48] outperforms the others, as shown in typical drop centre of mass trajectories in
figure 29. Note, however, that the Ladd—Verberg approach is not at its best in this
application as it does not achieve the same accﬁracy as the method of Guo [48]. Its
unadjusted velocity'may well represent an advantage in other applications.

| Figure 30 shows data for all the trajectories of all the drops in table 6. Their
y—excursion is plotted 'against the corresponding z—velocity, sampled every ‘2.0 x 10°
time steps. Point y = 25,U; = 2.5 x 1073 is the equilibrium position required by
general Galilean invariahce. All data lie on the same trajectéry.

A measure of the Gallilean invariance of the current algorithm is the steady-state
value of distance from mid—channel, dy. Outside the above range of parameter it be-
gins to fail. However, an improved performance in terms of consistency is clear from
a comparison of the last two columns of table 6. From the sixth row, for Ca/Re ~ 1,
Ca/Req ~ 10, the modified model has 28% of the error of the unmodified inherited
model of reference [25]; over the range of data in table 6, the error in the current

(unmodified) algorithm, measured by &y (dy”), is 0.51 (2.10). With 6y < 0.5 as
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“Figure 30: Centre of mass drop trajectory. Note that all the drops in the study

appear to have a trajectory broadly indistinguishable from that shown here. For
" times in excess of the 7.0e5 time steps the drop remains at the channel centre position
y = 25. Note also that a degree of pinning is apparent as the drop approaches its
steady-state position.

the criterion, Ca/Req ~ 0.78 are possible with the modified algorithm. At no point

does the unmodified algorithm have so small an error (associated value of 5y’ ).

7.7.2 Kinematic condit;ion

To illustrate the kinematic condition outlined in sub-section 7.6.1, and to set the
context of the more successful and elegant methods of chapter 9, we proceed as
follows. Consider the relative normal velocity in the region of the interface. At
stéady—state, the deformation of a sheared drop is constant. The component of
~ fluid velocity relative to the drop in the directibn of the interfacial normal, u,, must
" vanish and the drop intérface should correspond to a closed contour u, ='0. The
~ interface normal is readily obtained from the (negative of) the direction of VoV,
The constant centre-of-mass velocity, Ugq, of a drop'was calculated and subtracted.

from the steady-state velocity field to allow u, to be calculated:

_ oY _9N \
Un = (ug — Ugg). (IV;;/I) + (uy — Udy.). (ﬁ) - (197)
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Figure 31: Ca = 2.5, Req = 0.13. Data for numerical segregation with (a) kinematic
conditions of method 1 (b) kinematic condition of method 2 and (c) no kinematic
condition (all (a)..(c) produce results with no differences visible to the eye). The
fluctuating solid contour corresponds to zero surface normal velocity, u, = 0 (see
equation (25)). The interface, pV = 0, corresponds to the axis of the ‘toroidal’
region covered by this fluctuating solid contour. ~

Note that Ui/ Ugb = 0.5 in the channel centre, on general grounds.

Figures 31 and 32 each show bthe (solid) u, = 0 contour. Both iméges correspond
to Ca = 2.5, Req = 0.13. Figure 31 corresponds to the three cases of (a) no kinematic
éondition, (b) the kinematic condition of method 1 and (c) the kinematic condition
method 2; figure 32 corresponds to method 3.

' For no kinematic cdnditibn‘ (figure 31), the fact that the u, = 0 contour is so
fragmented, relative to the p¥ = 0 contour, demonstrates that, despite a sharp
phase field boundary, the actual hydrodynamic boundary is diffuse. It was hoped
that a kinematic condition would produce better correlation between the u, = 0
and the interface. Unfortunately data corfesponding to methods 1 and 2 show no
improvement observable to the eye. Figure 32, which, recall, corresponds to a model
extension by way of a diffuse interface, Shows a large improvement both in terms
of an identifiable u, = 0 contour and its correlation with the contour p" = 0.
The diffuse interface is considered in detail in chapters 8 and 9. In respect of the
diffuse nature of the interface, however, it is important to note that the noise in

the u,, = 0 contour, clear in figure 31 extends over approximately six lattice sites in

the normal direction; in this sense the hydrodynamic boundary between the fluids
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Figure 32: Kinematic condition of method 3, section 7.6.1 used. Ca = 2.5,
Req = 0.13. Overlaid contours of p¥ = 0 (closed ellipsoid) and u, = 0. The cor-
relation between the phase field and hydrodynamics information in this simulation -
is clearly much improved. Note that the two.diagonal lines extending from (92,0)
to (105,14) and (45,24) to (70,50) are artifacts of the way in which this information
was compiled. ‘ ’ ‘ s
are approximately as diffuse (but rather more noisy) as the phase field boundary
-generated by the modified segregation shown in figure 32.

The fact that the modified segregation of figure 32 shows a u,, = 0 contour which
is not closed, for example, at the poles of the drop is at this stage an undesirable
error. Around the poles, flow is directed along the tangent to the interface and the
normal component of velocity is very small throughout finite polar regions. Hence,
with the modified segregation of method 3, section 7.6.1, the correlation between
hydrodynamic boundary and phase bdundary pN = 0 is improved over the majority
of the interface, however, small deviations still persist at the poles. This deviation

is reduced in later chapters with the introduction of a diffuse interface and a more

effective kinematic condition.

7.8 Discussion

In this section I intend to discuss issues relating to the inherited LB simulation
model, reserving for remarks on the lift till section 7.9. Unless otherwise stated,

- suppose that the original model of [25] is in use.
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Eventual loss of simple Galilean invariance seems universal in multi—compbnent
LB on the following approximate argument. Consider a two dimensional D2Q9 LB
fluid. Suppose the lattice fluid is translating uniformly at velocity Uy = Upé;. It is
then deséribed everywhere by an equilibrium distribution function fi(o)(p, Up); eg.
equation (39). The momentum distribution for a link j, parallel With.imposed flow,

is thus shifted about its rest equilibrium value (of ¢,p) by an amount:
df; = 3t,pUs + O(UZ). | (198)

Note, the numerical factor 3 in equation (198) has dimensions which give the overall
expression for df; units of p. wa, suppose the LB fluid contains an embedded drop,
radius R. When the interface-inducing source term ¢; (equations (179) and (185)),
competes with df;, information relating to the advection of .the interface is lost. This
leads to an approximate, O(U?) accurate, condition for loss of flow information in
the interface region:

da, 0 y 1
> et — —_—
3tppUo 2 2R?”8:vp R K’

(199)

where, recall, the factor % is dimensional. Taking a value for the phase field gradient

of unity (typical of the centre of the interface) and R = 15, we obtain:

U0>11 o1

22 5on = ey~ U (200)

-where we have substituted the value of p = 2.0 used for all the results.

Given the approximate nature of these argﬁments, fhe prediction in equation
(200) is very well Slipported by the simulation results shown in figure 24; a fit to
the data (solid line, figure 24) gives a figure of 0.049. Note that, using the modified
forcing, defined in equation (186) or, indeed an alternative form of LB interface
generating algorithm, the central assumptions of the above analysis survive.

Similar arguments apply to the problem of a drop subject to fluid stresses. The
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lift simulations reported in the section 7.7.1 consider a drop suspended in a uniform

applied shear:

Ug = €aBTg, €11 = eg1 = ey =0, €12 =1, (201)

which we take to be the unperturbed flow. There is an exact solution for the f;’s in
-this flow [59], for our model it may be written [60]:

N Ca ( o | 1
fi=1p,u) - Ttp%, Qop = <cmcm - §6aﬁ) : (202)

It is worth noting in passing that our unit time step, introduced from equation
(179), actually multiplies the second term in the right hand side of this equation (see
the Chapman-Enskog derivation [3] of Hou et al [27]) giving that term the overall
dimensions of density. For our underlying D2Q9 model, the number of velocities
b=9 and ¢ = 1/3 (in units 6f lattice velocity' squared) so equation (202) implies
an expression for the so-called f() component (see eg [3] and Hou et al [27]) of the

momentum distribution function:

37p . ‘
fz(l) = —tprvcixciy; (203)

in which, note, the factor 3 has units which cancel those of the factor c;jzc;y, again
giving the right hand side of equation (203) dimensions of p overall. Now, it is
well-known that the strain-rate in single-component LB fluids is given by Syp =

—% > fi(l)ciacw from which it is possible to show that the viscous stress is con-

trolled by the f™’s:

=S = — — Denc 204
Uaﬂ T}S ,B (27_ 1) Zfz C'L C’Lﬁ) ( 0 )
and that the LBGK evolution equation (179) can, with the assumptions of the
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original model of reference [25], be written in terms of the fi(l)’s [3]:
| 1
i tent+1) = fr,0) + (1 - ;) 1 +e (205)

Suppose now that the LB fluid contains a drop, radius R, ‘under shear. It is fhe_z
fluid stresses in the interfacial region which impress force between the drop and
erhbedding fluid. Clearly, from equation (204), this stress is determined by the
fi(l)’s. So if the interface-inducing source term ¢; compétes with fi(l), informa‘pion
relating to the ﬂuid stress distribution about the interface is degraded. Hence the

loss of stress information, or lift, is characterised by:
¢‘i ~ fi(l). (206)

Substituting from equations (185) and (203) into equation (206), cancelling the
(dimensional) numerical factors and tp, we find a simple condition for degfadation

~ of surface stress information:

pTYR

(207)

Thus, taking the parameters used for the data of table 6, 7 ~ 1, p = 2 aﬁd 4 =10"*
and taking |VpN | ~ 1, equation (207) suggests aﬁ upper limit of' surface tension
a ~ 3 x 1073, This value accords with observations. In table 6, recorded values of
0y’ show that the dréps with a value.of a = 2.5 x 1073 used there are not forced into
the position required by general Galilean invariance. However, the results presented
in table 6 for dy, using the improved model (for the same parameters) reflect a
simulation with considerably improved general Galilean invariance. This is due, in
part, to the use of the analysis of Guo et al [48], which ensures that the background

fluid stress information is less corrupted by the interface forcing.
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7.9 Conclusion

Presented in this chapter was a two—éomponentvlatt»ice Boltzmann model of flow,

designed to be efficient ’i_n the continuum approximation and to support essentially

unstructured interfaces. It contains a set of modificatiéns to my inherited model,
of reference [25], described at the beginning of Seption 7.5. In _outliné, these modifi-

cations achieve a slightly improved fluid—fluid interface behaviour in terms of drop

shape . (faceting) at smaller capillarity number, Ca, and Reynolds numbers Re and

Rey. These improvéments in the basic reliability of this class of LB model make it

more suitable for microfluidic and non-Brownian colloid applications than the previ— .
ous method, eg those in references [49,50]>, in which local Rey variations must occur.

The approximate analysis of section 7.8 suggests that the modifications outlihed in

this chapter achieve better results by improving the fepresentation of stress near the
interface.

We have used the improved model to report on 2D simulations of lift on slightly
deforming, neutrally buoyant, immiscible liquid drops in simple shear. Clearly',. on
general grounds, a drop must migrate across stream lines of the undisturbed simple
shear flow, until it reaches a position of mechanical steady-state: which is what
was observed to a greater extent than with the previous inherited method. To
use LB accurately one must be confident that any small pressure fluctuations can
register stresses in the interfacial region of the fluids, where pressure was seen to be
ﬂuctuéting due to interfacial forcing; a point underscofed in figures 27 - 28, in which
the relative size of the lift~inducing pressure difference and the interfacial pressure
jurhp are made clear. | |

It is worth commentihg that results also demonstrate that transverse position
and drop velocity increase in proportion; also a marked degree of deforrﬁation and
~ orientation in local flow precedes any lateral migration. This, again, is an unsurpris-

ing observation given uniform nature of applied shear. It is also worth repeating that
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the migration trajectory information shown in figures 29 and 30 were not observed
significantly to vary over all drops in this study. |

Although improvements have been made, very small values of C'a and Re,4 remain
elusive with the method as it now stands. This regime might be achieved by reducing
local shear rates 4. From equation (207), this can be balanced only by a reduction
in the value of phase field gradient .VpN . Taken with the results of figures 31
and 32, this observation calls into question the pfactical utility of a sharp phase
boundary élose to which theAvelocity, in particular, ﬂﬁcfuates. The results in ﬁgure'
32 are important in this respect. Figure 32 depicts a distributed interface algorithm
but the velocity field correlation with a particular value of phaée field is greatly
- improved- actually making the hydrodynamic boundary ‘sharper,' the distributed

interface method shall be investigated:fully in the following chapters.

7.10 Chapter Summary

The work in this chapter is of limited value, although not fruitless; it is worth
noting Asome remaining shortfalls and where substantial advances in performance
remain elusive.

As the capillary number ténds to zero, pinning still occurs. Although the ad-
" vances in this chapter have enabled lower Raynolds numbers and Capillary numbers
to be reached, pinning remains at very low Ca. The cause of this pinning is thought
to originate in the relatively high levels of noise that are still present in the phasé—
field that themselves are attributed to the ”sharpnesé” of fhe interface causing high .
gradients. With the sharpness of the interface being 6ne of .the attractive attributes
of this method; to increase fhe thickneés of the interface requires a more complete
solution of the kinematic condition.

The attempts to forinulatea kinematic condition in this chapter have proven

to be comiputationally expensive and only mildly effective. The incorporation of a
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kinematic condition, hoWever, is still considered to be of importance and shall be

~ considered much more successfully in Chapter 9.
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-8 New Approach to Continuum MCLB Simula-
tion

. Close investigation of the phase field and other hydrodynamic signals using numeri-
cal re—colour revealed that a sharp contour was only achieved in the phase field with
high levels of noisg and corruption in other hydrodynamic qﬁantities. As mentioned
previously the large levels of noise present in other hydrodynamic quantities are
mainly dueA to the large gradients in the colour field itself leading to noise associated
with' its derivatives. A proposed solution to this corruption is to attempt to achieve
a smoother variation in the phase field coupled with an adequate means of identi-
fying the ﬂuid—ﬂuid interface such as not to compromise interface resolﬁtion. That

is, make the interface too broad for a continuum description to be appropriate.

8.1 Preliminary Remarks

Presented in this chapter is a multi-component lattice Boltzmann simulation for
continuum fluid mechanics, paying particular attention to the component segrega-
tion part of the underlying algorithm. The principal result of this chapter is that the
dynamics of a component index, or phase field, is, fof the first time, obtained for a
segregation method after d’Ortona et al [57], due to Latva-Kokko and Rothman [6].
The said dynamics accord with a simulation designéd to address multi-component
flow in the continuum approximation and underwrite improved simulation perfor-
mance in two main ways: (i) by reducing the interfacial micro-current activity con-
- siderably and (ii) by facilitating simulational access to regimes of flow with low
capillary number and dfop Reynolds number, see Chapter 7. The component segre-
gation method studied, used in conjunction with Lishchuk’s method [25], produces
an interface which is distributed in terms of its component index; however the hy-

drodynamic boundary conditions which emerge are shown to support the notion of
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a sharp, unstructured, continuum interface.

8.2 Introduction

~ As identified previously, the simulation of multi-component fluids at low Reynolds

‘number and low capillary ﬁumber is of interest in a vafiety of important applica—
tions. Refining MCLB simulation t(.),the extent that it can address this regime more
effectively than the MCLB variant of Chapter 7 is the majOr objective here.

A variety of multi—compbnent flows on a range of length and time scales have '
been modelled‘ using the multi-component LB method; the work presented in this
chapter is of most relevance to such applications, for instance the recent microflu-
idic flow simulations of Dupin et al [23] would be significantly improved in physical
accuracy were they performed using the methods outlined in this chaptef. Such
flows as are addressed in reference [23] are formally characterised as complex, in-

" compressible flows at small Reynolds number, Re, and small capillary number, Ca.
Multiple blood cells in venule-scale flows have also been repre_sentedrin fhis regime,
with LB [49, 50]. Improving simulations of such non-Brownian colloids, addressed
in the continuum fluid approximation, where fluid-fluid interfaces have no assumed
structure and appear as boundary conditions, are the object of the work undertaken
in this chapter. | |

Déspite some successes [23] aﬁd work carried out in Chapﬁer 7, bcontinuum multi-
component LB (with Lishchuk’s method or Gunstnsen’s method) étill encounters a
significant problem réaching low Ca and drop Reynolds nurnber,. Regy; as outlined
previously; as Ca and Req both decrease there is an increasing tendency for sus-
pended drops of immiscible fluid to facet and to attach, or pin to the simulation
lattice in an effective loss of Galilean invariance; here this problem is addressed
together with the related problem of the interfacial micro-current, see Chapter 7.

In this chapter, in continuation of work carried out in Chapter 7, I draw attention
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to what I regard as the key element of the multi-component LB algorithm which
will impact on its uptake; an elegant, efficient alterh’ative fluid-fluid segregation pro-
cess, devised by d’Ortona et al [57]. Recently, Latva-Kokko and Rothmaﬁ have
demonstrated the advantages of a segregation method closely related to d’Ortona’s
in respect of an almost eliminated tendency to drop pinning [6]. Concentrating on
application to the contiriuufn regime, where drop evaporation must be completely
interrupted, what is shown here is that, by adopting the approach of d’Ortona and
Latva-Kokko (i) the interfacial micro-current s, likewisé, almost eliminated and (ii) -
the kinematics of the interface may be predicted (see below). What emerges is a
simple, relatively efﬁéienfc, analytic algorithm with determinate phase-field dynam-
ics, has very low micro-current activity, very low pinning and high adaptability in

the continuum approximation.

8.3 Interfacial Hydro'dynamics in the Continuum approxi-

‘mation

The key result of this chapter - one might say this thesis - is the equation which
exp_réssed the dynamics and the kinematics of the LB models interface. We will; in
.this chapter, seek the latter as the equation of motion of p", the phase field. In
the continuum regime, the interface is defined as 0%;,, the boundary between itwo ,
Navier-Stokes domains ¥; and . On this boundary certain kinematic and dynamic
conditions. must be satisfied. The most fundamental is the kinematic condition of
“mutual corﬁponent impenetrability which requires that both components have the

same velocity on the 0%;,. [5]:

Q(l) = Q(2), on 621.2. } (208)

The interfacial dynamics appropriate to the continuum regime have been dis-

cussed in 3.4 and [5)].
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To recover the dynamics expressed in (208) we would like to see the interface,
identified by contours of pN=constant, advect in flow without any form of diffusion,

put another way, for a continuum interface our models phase field should obey;

=0. | (209)

8.4 Multi—component lattice Boltzmann in the continuum

approximation

The source term has been discussed previously in Chapter 6 and Chapter 7. Since
the aim of this chapter is to generalise its application, some key details are presented
with the aim of setting this chapter into context and for the sake of completeness
and coherernce. If the reader is happy with the material of Chapter 7 he or she may

wish to proceed direétly to section 8.5.

filt+cyt+1) = fi(r,t) —w (fi (r,t) = £0(p, PU)) +i(r).  (210)

The source term, ¢;, in equation (210) has the 'effect.of -impressing a body force in
‘the fluid which emerges from this kinetic (f;-based) description; 0 < w < 2 is the
single selectable parameter which, with.LBGK, controls the viscosity of the fluid [3];
all other symbols have their usual meaﬁing. Below I discuss how the source term,
¢;, inserts a body force of limited range to produce an interfacial pressure step in
the fluid. Note, equation (210) assumes unit time step. |
For a constant sdurce term, ¢;, Chapman—Epskog analysis [3] may be used to
derive LB’s‘cha‘racteristic weakly compressible form of the incompressible Navier-

Stokes equations, now with a body force. For example, the choice:

¢i = tp—l—F.Ci, (211)
| ko |
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represents one, simple, widely used device for inserting a uniform body force (or

uniform pressure gradient), F, into the lattice Navier-Stokes equations:

9 9 o | 0 .
apua + 8—1:’3,0Ug’ua = _a_:ltap + a—xﬁ (QpVSa,g) + Fa, : (212)

where kinematic viscosity v = %(% — 1)_and Sap is the strain rate tensor; the

lattice-dependant constant ks and the link weights, t;, are discussed in"Chapter 4
and re-iterated in the beginning of section 8.5. |

The precise relationship betweén the fluid bOdy force and the source term ¢; is
an issue throughoﬁt this chapter. Recall, a constant microscopic source term, ¢;,
in equétion (210), and the resulting macroscopic body force, in eqﬁation (212), are

related:

For present purposes, however, the external body force (used to impress interfa-
cial behaviour) has spatial variation: F — F(r) see Chapter 7, Which necessitates
s_pafial variation in ¢;(r); as Guo et al poiﬁt—out [48], such a generalization com-
plicates the derivation of eqﬁation (212) abO\}e and requires (i) a more corﬁplicated
~ relationship between F(r) and ¢;(r) than that given for equation (213) and (ii) a
re-definition of u (initially defined in Chapter 7) .. Before reiterating Guo’s modified
relationship, it will be useful. to consider the form of fluid interface force which ¢;
~ should generate, and where this force should be applied. |

Fluid-ﬂuid interface dynamics are applied in regions of the lattice where two im-
miscible fluids .interact (and Asegregate). The twb_ fluids concerned are, as in Chapter
7, designated red and blue. As different fluids mix in an interfacial region they
define a single mixture, or sum, fluid which is evolved according to the evolution
equation (210), the interface dynamics being captured by the source term, ¢. The
mixture is then segregated. Segregation is not a passive process; the way in which

it is achieved influences the physical accuracy of the model. Where previously, as
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described in detéil in Chapter 7, numerical segregation has been used, here an anal-
ysis of a particular, advantageous, segregation method (initially used in Chapter 7
'in subsection 7.6.2 method 3) is presented in section 8.5; in the remainder of this
section, salient detail of the interface force and corresponding source term will be
considered. | ,

To identify mixed fluid, first distinguish between individual lattice fluids them-
selves. As stated previously our multi-component LB uses a phase field based upbn

the densities of ‘red ’and ‘blue’ fluids present at a node. Following the notation

of [25], we define a fluid component index, or phase field, p (r):

Feo=(Redoftl) Lcpmsn @)

Red and blue fluids mix under the LB propagation step {3] defining an interfacial
region; here ah additional force is applied to the sum fluid capturing the effects of
interfacial tension. The two fluids are then segregated numerically [24] or by the
method of section 8.6. Whatever the segregation algorithm used, in Lishchuk’s LB
interface method [25] a surface tension inducing interface force, F(r), is defined in
terms of the gradient of pN(r). To achieve a cross-interfacial pressure step probor—

tional only to K, the local curvature in the p" field, use a fluid body force:

1

F(r) = —EQKVpN , (215)

with «, a surface tension parameter. Note, the right hand side of equation (215)
vanishes for constant pV. As stated.previously, the negative of a normalised phase
field gradient is used as the interface normal, 1, K is obtained from the surface
gradient:

o .0 9 E -
K =ngn, (a—ynz + %nlJ) - nﬁ—a—yny - nganm (216)
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where from Chapter 7:

—~ ' : Co
n= —l'f—ll, ' =vpl. (217)

It is appropriate‘t_o emphasize here that all the gradients are calculated numerically
using suitable finite differences, see Chapter 7; a source of signiﬁcant- computational
overhead. We shall consider the feasibility of appropriate, locally calculated alterna-
tives in section 8.9 and in section 8.10.

" The cumulative effect of the force in equation (215) is to produce a pressure
step across the interfacial region. Assuming K to vary slowly, the total local force
perpendicular to a unit length of interface, which is numerically equal the pressure.
step, is obtained from the integral of the force (density), F(r), between the terminal

points, Pg and Pg, of a short, normal path with element dn:

Pr
/ Fdn
Pg

where Pp and Pg are embedded in the blue and red fluids respectively, so p™ (Pg) =

AP = = 2ok [0V (Pr) — p" (Po)] = ok, (218)

—oNIrp.\ : '
P Where P13 and Pg are embedded in the blue and red fluids respectively, so p/V (Pg) = -

Lpv(Py) = L.
PeME  The interface algorithm outlined in this chapter is based upon a spatially and
ture in a phase field. This, it may be shown, accurately represents interface dynamics
(stress conditions) [25]. However, the extent to which the Kinematic condition of |
jr.nutual impenetrability is implicit is unclear; the fact that there is a single ‘sum’
fluid means that the combined momentum of the mixture of fluids is continuoﬁs
across an interfacial region but the velocities of the red and blue fluids may not be
easily deﬁned close to the interface. Previous attempts at enforcing an interfacial'
kinematic condition, set out in Chapter 7 are, at least, clumsy and only partially
effective. I return to this point in section 8.5 and in Chapter 9.

The methodology of Guo addresses the issue of a spatially varying body force in

a progression of earlier work of, in particular, Verberg and Ladd [47]; it furnishes
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an expression for an appropriate source term, ¢;, in terms of variable macroscopic

force F(r) [48]:
#ilr) =, (1- g) B(ci—u)+9(cu?)c) Fx),  (219)

where, it is emphasised, the fluid velocity is re-defined, effectively to carry some of

the influence of any external body force:

= % (Z fici+ (1 — f)F(r)) g =%. (220)

I shall return to this boint and the definition of link weights, ¢,, in section 8.5. Note
that equatioh (219) accounts for the case of a macroscopic force which also cbhtains
time dependence. Of course, in a standard LBGK model, f = 1 in definition (220).
It is worth the inconvenience of retaining the parameter f, introduced aBove, as it
is possible easily to adapt our key results to a standard LBGK modél simply by
changing its value from f ='% to f=1.

With Guo’s méthodology [48], the model’s Navier-Stokes equation (212) now

acquires position dependence in the body—force term:
g ., 0 ., . 0 , 4 0 o y
57 le + a—mﬂpuﬂua = N (csp) + 6_@3 (2p1/Saﬁ) + Fo(r). . .(221)

We emphasize that F, (r) should be régarded as that interface force defined in

equation (215).

8.5 Analysis of the Formulaic Segregation Rule

Previously, in Chaptef 7, results derived from my inherited MCLB, based on the
numerical segregation method of Gunstensen and Rothman [24], outlined in section

4.3.1 were shown. In this chapter we consider in detail the formulaic segregation
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i=0

i=8 - - =4

i=7 i=6 : i=5

Figure 33: The nodal velocity set and subscripting convention for the two dimen-

sional, nine velocity, D2Q9, lattice. Note that links classified with odd values of

subscript ¢ have a larger length. The weights corresponding to the links are listed

in Table 1 of section 4.1.1. :

method of Latva-Kokko and Rothman [58], briefly discussed in section 4.3.2. .
Recall, R (B) denotes the density of red (blue) fluid present at the node, position

‘r. In terms of phase-field parameter, bN , these quantities are:
R(r,t) = 5p(r;t) (1+p" (v, 1)) , (222)

B(r,t) = %p(r,t) (1— ¥, 0)). (223)

For compatibility with previous chapters, simplicity and reasons of available re-‘
source, work in this chapter shall be carried out on the D2Q9 lattice defined in figure
33. Extensions to alternative lattice structures shall- be made where appropfiate.
Results will generalize to D3QN transparently, for lattice and model dimensional-

ity enter 6nly through parametef k2, which is retained explicitly throughout this
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section. As previously a unit time step and lattice spacing are used for the same
reasons. Whether in two or three dimensions, all lattices are considered have the

usual isotropy properties:

thciac,-ﬂ = kgéaﬂ, (224)
thciaciﬁci'ycié = ky (5aﬁ6'y<5 + 504’*/5&5 + 5&55ﬂ7) ’ A (225)

odd moments of the lattice basis vectors, c;, being zero. In equatiene (224) and
(225) the link weights, ¢,, are a set of scalar quantities which weight the directions
of ithe lattice according to the length of velocity vector c;. The values of ¢, and c;
for the of the D2Q9 LBGK lattice are defined in Table 1 of section 4.1.1. Note that,
for the D2QQ lattice ky = 1.

Component segregation is achieved by allocating colour density R (say) to the
sum fluid’s momentum distribution function, f;, optimally at each node [24]. It
is the purpose of this chapter to demonstrate the radvantages of, and to analyse,
an alternative approach, after d’Ortona [57]; due to Latva-Kokko and R-othmanv,
[6]. I shallr adhere to the following convention. A post-collision, pre-propagation
momentum density. is indicated by the use of a dagger superscript; accordingly

equation (210) becomes:

£ 1) = i) = (4 ,6) = £0(p, pu)) + i), (226)

in which the modified velocity of (220) is used to calculate the equilibrium, note.
Note also that the post collision momentum distribution function, f,;f, includes the
source contribution, ¢;, defined in equation (219).

For convenience, ’ehe collision process is subsequently resol{/ed into two steps;
first, that expressed above, second the segregation process. Post collision, post—
segregation (re—coloured), quantities will be indicated by the use of a double dagger

superscript.
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Before proceeding, it is necessary to remark on certain properties of the Guo
LBGK model [48]. As mentioned previously, the effect of a fluid body force is partly
carried in a re-defined velocity which has a notable consequence for the first moment

of the f] as defined in equation (226):

S flew=put + [ f= 2, (227)

which result may be established by taking first moments of the expansion of f;
expressed in (45) and summing on i as follows. Appealing to equation (5) of Guo
et al [48]> and my equations (51) it is possible to identify the first moment of the
fi(l) component in terms of the body force, F. Re‘placing fi in the LBGK evdlution
equation (226) with (45) and taking it’s first moments and using Guo’s equations
(7), (8¢c), (11), and (17) and observations of Guo et al [48]. Equation (227) follows
with some straightforward algebra. Note, Guo’s time step parameter set to At = 1.

For the usual LBGK' model used in Chapter 7, the parameter f int;roduced in
equation (227) would, of course, take the {ralue f=1

We proceed to develop the macroscopic dynamicsA arising from ‘the. formulaic
segregation encapsulated in equations (231) and (232) by attempting to obtain an

expression for % p" later in section 8.8.

8.6 Acceleration of Colour. Flux

‘As commented upon earlier in section 4.2.2, the post-propagation, pre-collision,
nodal red and blue masses and single colour fluxes in terms of the link based quan-

tities R;(r,t) and B;(r,t) are defined as:
Re,t) =S Ri(r,t), Ba,H)=Y B, (228)

Gra(r,t) = Z Ri(r,t)cia,  qBa(r,t) = Z Bi(r, t)Cia- (229)
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The overall colour flux is also defined as:

q'(r,’t) = qg(r,t) — (iB(r,t), | (230)

which is further discussed in much greater detail when considering the dynamics of
" the phase flieldAand the colour flux veétor in section 8.8.

It is now possible to define a slightly modified colour 4segregafion after Latva-
- Kokko and Rothman’s form of d’Ortona’s segregation [6], [57]. We assume that close

' to rest the equilibrium distribution f©(p, 0) can be bapproximated as pt, and take:

R;rT R+Bff+ﬁ pcos(Of —0) |ci{,' o (231)
RB
Bl=g7 Bf [ — B —gtecos(0r —03) i, (232)

in which Gf' (6;) is the angle of the colour field, f'(r), (link) and R! denotes the ‘
post—collision, post segregation value of the momentum density of the red ﬂuid‘
associated with link 7. The inclusion, in equation (231) and (232), of the factor
. |c;| makes the resulting algorithm more amenabie to aﬁalysis whilst preserving the
essential ideas of Latva-Kokko and Rothman and d’Ortona ef al [6], [57]. Whilst the

* equation (231) essentially accords with equation 9 of Latva-Kokko and Rothman [6] |
(the latter .being an improvement over the original method expressed in equation 8
of d’Ortona et al [57]), it will be necessary to revisit certain of Latva-Kokko and
Rothmans’s results later in this section and also in 8.7, where segregation parameter,
(3, is considered in more detail. »

It is necessary to note two properties of equation (231) First:
ZR’U‘:_R Sfi=Rr | (233)

- ) R+B - 1 )
where the identity cos(8f — 6;)|c;| = éOS(gf)Cix + sin(fy)ciy has been used and
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recalling that ). tyciq = 0 where a = :c,-y and that the density is given by the sum
of the red and blue fluids. Secondly: - |

hB g R g (234)

wheére we have used equation (227) and those properties of even lattice moments
given in equations (224) and (225), the unit vector f' is defined in equation (217),

F is any continuum body force and, recall:
. ,

for Guo’s LBGK model variant [48] and standard LBGK respectively. For the D2Q9
lattice, k; = 1/3 (and k4 = 1/9). For the segregation of the blue component, let

6y — (05 + m) thus making the corresponding blue species equation:

RB - B

> " Bffe; = qlf = Bu* Bl 5 - f

F 236
D

H

Hence, from equation (234) and (236), the net flux of colour vector:
qf=qfl —qff =) (RIJ‘_ci - Bi”ci) : - (237)
may be written:

(cos(8;), sin(8;)) + fo"F, (238)

RB
= _ *
o' = (R~ Bju" + 26kr

and replacing quantities R and B, using the definitions expressed in (222) and (223),

equation (238) takes the form:

] 5 |
a = pp™u* + 5 Bkap (1 - ") £ + fp"'F. - (239)
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Figure 34: Analysis of a flat, equilibrium interface orientated perpendicular to short
lattice links. The lattice links on each of the nodes depicted are indexed as in figure
33. The colour gradient points from left to right; the vertical blol\cn lines represent
' contours of constant phase—field value.

Now, qft = ppNu* represents a post—collision colour concentration advecting in
flow. Neglecting for the moment correlations between q and q'f, the segregation
expressed in equation (231) tends to accelerate the colour flux in the direction of

the colour field at the rate 18kyp (1 — p™?). We return to this pdint later in this

chapter after equation (293).

8.6.1 Planar Interface at Rest

Before proceeding with our deriffation of the ihterface dynamical equation, we pause
to investigate the structure of a flat boundary between rest fluids, formed by> rules
(231) and (232). |

Consider a lattice fluid a rest with uniform density p, in the steady state, con-
taining a flat interface parallel to short lattice links in a D2Q9 fluid. This‘situation
is depicted in figure 34, in which two contours of constant phase field parameter
p" are represented by broken lines and three adjacent lattice sites are shown. The
indexing of the link label, 7, for all three sites is as defined in figure 33. Note that an

explicit lattice spacing, h, parameter has been introduced for present purposes. The



~ colour gradient field unit vector f’ = 7. For the situation depicted in figure 34 there
is no variation of p"V with the y coordinate; furthefmore, on grounds of symmetry

alone:

R3(.’L'n, y) = 'R5(£L‘n, y)> Rl (x'fh y) = R7($n7 y)1 RQ(xn’ y) = Rﬁ(x’nv y)1 (240)

where R may be a pre or post collision value and n = (N — 1), N, (N + 1).
At equilibrium, there is no change of colour content at ény site and, henceforth
suppressing the y coordinate, we can write the following equilibrium condition for _

the red density on site N:

R(zy) = 2R{/(zn-1) + R} (zn_1) + 2R}l (zn)

+2R M (@na1) + B (@ne1) + B (2n). O (241)

Using equation (251) for R:-” with the equilibrium solution fif = t,p with appropriate
values of ¢, and colour field f, the last equation may, after some simple algebra, be

written:

2R(zn) = R(zn-1) (1 + B'(p — R(zn-1)))

+R(zn1) (1 - B'(p — Rlzn+1))) - (242)

where ' = §/p and the density p is considered constant giving B = (p— R). Taylor
expanding the terms in this equation about zy, to second order in lattice parameter, -

h, to give the following definitions:
e |
R(:EN_H) = R(zn) + hR,(.’EN) + ER”(HBN) + .. - (243)

Through substitution of (243) into (242) and retaining terms to second order in

lattice parameter, h, it is straightforward to obtain the following equation for the
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red density, R(z), at equilibrium:

&R _BdR B dR? -
w0 (244)

which may be integrated once, straightforwardly to obtain a separable first—order

differential equation:

dR_ 20 ([ R - |
&= r(-7) -

which, note, differs only éuperﬁcially'from equation (15) of Latva-Kokko and Roth-
man [6]. The last equation may be readily integrated. On supposing that the site at

:L'N lies at the centre of an interface, the constants of integration’ are easily obtained:

R(z) = tanh (é—i (@ — zN_)> . | | ‘(246) ~

The above may be checked by substitution into equation (244).

On setting h = 1, segregation parameter [ is seen to be the parameter of the
equilibrium interface width. Clearly, the preceding analysis generalizes directly to
case of a 3D lattice. | | |

For a D2Q)9 lattice, a conceptually identical but somewhat more complicated
analysis of the case of an interface parallel to the long links of the lattice shows
‘that the équilibrium state of the interfacial phase ﬁ‘eld is described by differential |
equation (244) solution (246).

8.6.2 Curved Interface

We saw in the last section that by considering the flat interface, centred on z = xg,
embedded in a rest fluid, a solution for the steady-state spatial variation in the

phase field can be obtained (by analytical methods) which may be expressed in
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Figure 35: Variation of the phase ficld parameter, pV, with distance, T, across
the equator of a red (p¥ = 1) drop of approximate initial radius 10 lattice units,
obtained for a range of segregation parameters 3 (equation (231) and figure key).

generalised notation as:
pN = tanh (k(x —zo)), k=pB. (247)

As noted above, this equation applies to both (i) the interface parallel to the short

links of a D2Q9 lattice and (ii) the interface parallel to long links of a D2Q9 lattice.
| Furthermore, for a distributed, circular drop in’cerface, with 0 < ﬁ < 0.7, simulation
results like those in figure 35 (which correspon(i B = 0.7, note) show that the steady
interface profile generated using equation (231) is well-approximated (see below) by

a phase field parameter variation:

o™ (s) = tanh(ks), k=g, (248)



in which s measures distance in the direction of f with s = 0 corresponding to the

centre of the interface. Supported by these observations, we take in general:
VN ~ ksechz(ks)P =k (1-p"?) £, k=p. : (249)

The parameter £ shall be retained as the interface parameter throughout this anal-
ysis, setting £ = ( only in final results.'

It is importanf to reiterate the fact that, for the case of a D2Q9 lattice, solution
(247) may be shown to describe interfacial orientations with the interface parallel
to short lattice links as carried out above and also with the interface parallel to the
long lattice links; this demonstrates the isotropy implicit in the distributed interface
and accords well with Latva-Kokko and Rothman’s observations.

Now, returning tb the colour flux, after ﬁhe segregation between colour compo-

nents may be written:

q't = pp™u +-2-szpr + fp"F. | - (250)

)

Where the first term in the right hand side of the above expression relates to the
colour concentration advecting with flow and the latter term on the right hand side
of equation (249) relates to the acceleration of the colour flux. The result expressed

in equations (239) and (250) generalizes Straightforwardly into three dimensions:

Rit = fT + ﬂ —tyf.c. 4 (251)

R-I—B

8.7 Stability of the Interface

For application to the continuum hydrodynamic regime, it is necessary to impose
limitations on the range of parameter § in equation (231). Figure 35 shows the

variation of the phase field, p", across the equator of a stationary drop, initial
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radius 20 lattice units, for a range of beta values. - Clearly, interfacial thickness
decreases as 3 increases. However, for B8 2 0.7, there is no stable steady state. This'
is Iflanifest in the data of figure 35 in overjump behaviour which, for application to
the continuum regime with arrested evaporation, represents an instability.

An approximate maximum stable value for segregation paraineter, Bmaz, May be
obtained from the condition R]' < f;r and equation (251). Wé require:

R . . RB
R+B" PR+ B

tfc <l foralli, (252)
frdm which it is-straightforward to obtain the inequality:
t,8RF c; < ff. ‘ (253)

The upper bound for # must correspond to a maximum of the scalar product f .Cj;
that is, when f is parallel to c; for some particular link ¢ = I, which is supposed to

have the longest possible length lpeq:

tpﬂmalema:c < f]T ‘ | (254)

Approximating f} R I(O)(p, 0) = t,p and taking the maximum possible value of R

(which is close to p) provides the required maximum stable value for 3, consistent

with arrested évaporation. For a D2Q9 lattice, lna; = V2, so, for.our particular
simulations:
o1 '
Bz S 7§ =0.71, | | | (255)

which value agrees very well indeed with simulations at low Re, Ca. It is important
to note that the practical upper bound approximated in this way may be reduced
in other regimes of more rapid multi-component flow, when the f;s depart further

from their equilibrium values. -

157



Figure 36: Contours of constant value for the rectangular stream function obtained
for a two-dimensional drop with numerical segregation, exposed to a small, symmet-
ric shear flow. '

Figure 37: Contours of constant value for the rectangular stream function obtained
for a two-dimensional drop with the segregation method after d’Ortona [57], analysed
in section 8.5. Again the drop was exposed to a small, symmetric shear flow, identical
to that used for the data of figure 36.

Compared with the formulaic segregation expressed in équatio_n (251), numerical
~ segregation [24] produces much narrower interfaces; typically its phase field switches
in ~ 1.5 lattice spacings see Chapter 7. An obvious question arises around replacing
a numerical segregation by the formulaic segregatioh; whilst numerical segregation
is affected by pinning, and computationally it is much slower, surely the sharper
interface of numerical segregation better accords with the continuum concept of a
discontinuous interface? In fact, a close examination of the rectangular stream func-
tion of symmetrically sheared drops, maintained by numerical segregation (figure 36)

and formulaic segregation (figure 37) provides a reply.



Figures 36 and 37 relate otherwise identical, slightly sheared drops maintained
(respectively) by numerical segregation and formulaic segregation. The last open
and first closed Conﬁours have been selected closely to sandwich the interface. In
figure 36, this pair of contours exhibit oscillations of an amplitude which, when re-
solved in the direction of the local interface normal, extend over < 5 lattice spacings
_exposing a noisy velocity field in the region of the interface. Such noise is absent
from the equivalent results of figure 37. In fact, it is possible to examine the pre-
cise hydrodynamib 4boundary conditions recovered in this int.erfacial regioﬁ and to
develop, for formulaic segregation, simple,‘ robust, highly adaptable and very effec-
tive algorithmic correct_ioné which effectively sharpen the interface; this algorifhmic
modification is to be covered in detail in Chapter 9. Furthermore, even though the
phase-field interface is sharper, the hydrodynamic interface obtained with numerical
segregation (as defined by properties of the velocity field) is diffuse over a dista.nceA
comparable to the phase field variation obtained with formulaic segregation. So,
with numerical segregation, the interface is not consistently sharper. It is appropri-
ate also to emphasize that, this problem only becomes more acute as drop surface

tension (deformation) increases (decreases).

8.8 Dynamics of the Phase Field

Having gathered several key results we find ourselves in a position to pursue the key
objective of this chapter, to derive an expression for the dynamics of the phase field.

The dynamics of numerical species segregation has not, to my knowledge, been
'deri_ved. It is a considerable advantage that d’Ortona’s formulaic method allows one
to derive the dynamics of the phase field, which result form use of its characterizing
equation (231) It is therefore_ appropriate to consider the equation of motion of the
phase field, p".

Unlike numerical segregation (or re-colouring) strategies [24], the formulaic seg-
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regation mefhod of d’Ortona et al [57] is amenable to analysis. To facilitate this
analysis, formulaic segregation is described forrﬂally using a single relaxation time
LBGK evolution equation with collision parafneter wc and the corresponding macro-
scopic dynamics are obtained by a Chapman-Enskog expansion process. T he ség—
regation encapsulated in equa;cion (231) represents a special case of the following,

generalized formulaic segregation or ‘colour collision’:

) Rz(r +c,t+ 1) = Ri(r) t) — We (Rd(r’ t) - Rz(O)) ’ : (256)
with; A
©_ R 4 1 1\ | )
A= il 48 (54 g) teosOtn) —0)led, @7

in which R = R(r, t). It is important to emphasize thét equation (257) is a general-
ized segregation; setting w, = 1 will enable us to extract the maéroscopic dynamics
of the particular formulaic segregation after references [57] and [6]; fhe aim here
‘is not to consider a generalized segregation.j.)rocess. Note that the abové equation
(257) is the same as that expressed in (231) with the brackét term re-expressed as

a reciprocal and that fiT includes any source term contribution; see equation (226).

It is assumed that it is possible to expand the R,-(r, t) about equilibrium:
Ri(r,t) =Y "R, (258)

where € is a Chapman-Enskog parameter equivalent to ¢ used previously. It is now

straightforward to obtain the following three results for the moments of REO); first:

Z R = R(r,t) = Z Ri(r,t), (259)

-1
ZREO)Ci=Ru*+k2,B (%’i‘%) f,+fRfBF‘qu, (260)

i
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Z REO)Cian R ﬁ B Z fiTciaciﬂ = ARag; (261)

where equation (234) has been used and, in equation (261), the fact that odd mo-

ments of the lattice distribution function are zero has been utilised. Defining:
Aop = Arap — ABag. | (262)

Equations (260)..(262) shall be used shortly. For the moment, note that equation
(259) implies that:

YRV =, (263)

but, however, it is important to note that it is not possible to infer a correspond-
ing reéult for the first moment of the R§°): > R§n>1)c,~a # 0. From equations

(256);..(263), only equation (260) changes under the exchange B < R:

-
ZB(OC, Bu* —A25<R E) f’+fR+BF qff (264)

and so:

. -1
© _ O ¢. = ppNy* I\ ' N
Z:(Ri B; )cz pp +2k2ﬂ(R B) '+ fp'F

(265)
= qT,

where, in the second part of the equality, equation (238) has been used.
Proceeding in the fashion of Chapman-Enskog as outlined in section 4.1.2; that
is, by using a Taylor expansion of the evolution equation _‘ (256) about r,t and a

subsequent scale expansion of, the time derivative [3]:
8t = &o + Eaﬂ, 89; = eﬁz, i (266)

in addition to section 4.1.2 discussion is contained in [3] and [27]. Note that in
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the form of Chapman Enskog expansion used here (which is entirely equivalent to
that used in section 4.1.2 the space derivative is also given a scale label, €). The

Chapman-Enskog expansion then generates the following equations; at o(e):
O R + ia0aR” = ~w R, S (267)

and at o(€?):

9,1 R! (1 - —) (O + ciode) B = —woRE. (268)

Now, cons1der the o(€) dynamics. Summing equatlon (267) over 1, usmg equation

(263) and definition (260), we obtain:

175 R ’
OwR+ V. (Ru + ko8 [ 7 E] f + fR+_BF> 0, (269)
and similarly, for the B component:
9B +V. [ Bu — k8 |+ 4 1 _lf%rf B _g)—o (270)
e 2 R B R+B )

Subtracting equations (269) and (270), there results the following macroscopic dy-

namics for the phase field scalar at o(e):
| N N, % 1 1 - N : N |
Owopp” + Oa-pp” Uy = —2’6253 R + B fL) = foa (" Fy) . (271)

Multiply equation (267) by link velocity component c;z, sum the resulting equa-
tion over ¢ and follow a similar analysis using equation (261) as opposed to (260),

to obtain (still at o(e)):

1 1\ ta .
O (pp ug+2kzﬁ<R E) f[;+prFﬂ>

+ 0ahag = —we Y (R = BP) s,

(272)
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in the right hand side of equation (272) make the approximation C\" = (C; — C,-(O))
(C = R, B) and use equations (230) and (265); equation (272) now becomes: |

’ 1 1\ 4
O (PP&U* + 2ko3 <§ +§) f + fPNF)

+ 9pAap = w(a' — ).

(273)

‘Next consider the o(e?) dynamics. In equation (268), substitute for Rgl) from

equation (267) and again sum on 7; after some algebra, we obtain:

K3

. 1 1 ‘
@th + (5 - Jc) <8t20R.+ 20400, (2 Rgo)cig) + 3a3ﬂARaﬁ) =0, (274)

with a corresponding equation for B, which, when subtracted from equation (274),
yields:

1 1
o+ (5~ 1)

2w

| | 1 1\ 7'4 ‘
((9,520/)/)]\’ + 20,00, (ppNu:; + 2k 3 (ﬁ + E) f'a + prFa> + 8a8ﬁAaﬁ) =0,

(275)

where equation (265) has been used. By using equations (273) and (271) it is
possible, again after some algebra, to obtain from the last equation the following
dynamics for the phase field at o(€?):
' N _ We. i
dupp” = (1-5)V.(d" - q). (276)
Turning attention now to the derivation of an expression for colour flux vector, g to

use in the right hand side of the above.

Substitute equations (229) into definition (230) and reverse the propagate step
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to obtain:
q(r,t)y = Z (R? (r—cyt—1)— BT (r —¢;,t — 1)) C;- (277)

Substituting with equation (251) and using definitions (222) and (223) it is possible

to obtain straightforwardly:

qa(ra t) =ZPN r— ch 1) fT (r cla - 1) Cid+

IB Z tpp —c;t 1) (1 - pN2 (I‘ Ci,t )) fg ( —Cj,t 1),Ciaci[3,

(278)

in Which, note, ' ff contains the body—force source term contribution. Equation (278)
shéll be treated term By term in the following analysis. ‘

In continuum applications, the interfacial phase field is always close to equilib-
rium; accordingly its time variation shall be neglected. Moreover, bearing in mind
the form of the gfadient already present in the right hand side of equation (276), it
is necessary to work only to first order in space ‘derivatives fo obtain second order
accuracy in the Chapman-Enskog expansion. Accordingly, the first term in the right
hand side of equation (278) is treated by Taylor-expanding pV and ff about r, to

obtain the following expression:

‘ ' 1
DA — et =Dl —cit—Dew =) (0" ~ cisdpp™ + ycirci00,060™)

1 :
(f;r — ci555fif + '2—'Ci60i¢665¢fif)cia'
‘ (279)

Multiplying out the above and neglecting all Second derivatives leads to the following
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expression:

N (Z fme) — " 0a (Z fiTciaci,B> — (0aP™) > fleicis +0(8%) . (280)

In section 8.5, equation (227), it was stated fchat S ficia = pul, + fF,, with f =
1 % for the standard and Guo ;rariants respectively. - Expressions in macroscopic
quantities for the second and third terms in ekpression (280) may be obtained in
like manner, for the Guo variant: substitute for f;‘ using definition (226), replace f;
with ( f; © 4 e fi W4 ) take second monients of the resulting equation and sum on
i. Then substitute using equations (7) of Guo et al [48] (Guo’s parameter A-is set -

to zero for mass conservation, note). Guo proceeds to make the following identities:

X |
s = Z ciacis ;)

a,B = Z Czaczﬁf

(281)

and to provide expressions for them in equations 12 and 16 of guo et al [48] with
these and with Guo’s time;step parameter At = 1 and appealing to equation 16 and

equation 12 of Guo et al [48], it is possible, after some algebra to obtain:
Y Heiacis =Cpbag + puius+ |
i ' (282)

3 (w—1) (uaFﬂ + upFy) + 2 (1 - —u;) c2pSis.

For the standard model the equivalent result is easﬂy obtained as follows ‘from

equations (276) and (84):

Z flciatis = Z FOcicis + Z FPeiacis + Z PiCiaCip- (283)
i i N i

Note, ¢;. = kaCiaOap. Using equation (41) and the fact that the odd lattice moments
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in the last term vanishes:

Z f iTCio;Ciﬁ =pc20ap + PualUp + Z f i(l)Tciaciﬁ, (284)
i i _
appeal to equation (88) and equation (84) in Chapter 4 then gives, for the standard -

model:

> flciacis = Cplap + piatip +2(1 — 7)pSas. - (285)

The second term in the right hand side of equation (278) is first transformed using ‘
(i) (249) to replace the factor (1 — p¥ (r — c;,t — 1)) 7" with |Vp"|/k evaluated at
position r —c; and (ii) the definition of f;, in equation (217). After Taylor expansion

it is possible to express the right hand side of .equat'ion (278) as:

ﬁztpp —cit—1) (1 -—‘pN (r—ci,t—1)2)fé(r_ci,t_ 1) CiaCig
ﬂ (286)
=3 Z ;tp(p + Ciabap + ) (650" + ciaba(659"))cincis. |

Recalling that terms cubic in ¢; are zero and appealing to equations (224) yields:
2k

ﬂkaa pN +0 (8%, | (287)

where, recall k& = 0. ,
Using expressions (280), (287), equation (278) and (282) it is possible to obtain,

correct to first order spatial gradients, the following expression for ¢, in the Guo |
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model where cancellation has been carried out using the chain rule:

n 1 1
Ga(r;1) =pp"ug, — cS0u (") + 50" Fa + 5%@0(%/}”

1 |
— 8 (ppusus) = 50 (PM(w - 1) [usFs +upFa))  (289)

N g N
_2(1 w> csaﬂ (p Saﬁ)v

in which we again emphasize the terrﬁs in the second line are neglected. Since, when
used in the right hand side of equation (276) (as will be carried out in the following
steps), they will produce second-order spatial gradients of terms quadratiq in ug
and Fy. The corresponding result for the standard model is eésily established using

equations, again from expressions (280), (287), equation (278) and, now, (285):

1 | 1 |
Ga(r,t) = pp"ua — Z0a (pp™) + " Falap™ + §kap8apN — (1 - Z) 205 (p" Sap) -
- § (289)
When combined with equation (250) it is possible to re-express the right hand side

of equation (276) to obtain a simple result:
1
dnpp" = 56,V (pp™) | (290)

in which equation we have now set w. = 1 and used the fact that kK = (3, note. To
combine the o(€) and o(€?) time scales, add equations (271) and (e tirhes) equation
(290), invoke identity (266) and identities (222) and (223) and use the facts that’
k= and, in LBGK models, k; = ¢ [27] to obtain:

1
Opp™ + V. (ppNu*) = —fV. (P"F) + §cfv. (P Vp). (291)

Now, equation (291) describes the behaviour of the phase field for multi-component
LBGK model based upon Guo’s enhanced variant (f = 1/2) and for the standard,

unmodified model (f = 1). The final form of the phase field dynamics for these two
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cases are now considered separately. ‘ .
Consider Guo’s LBGK model, characterized by f = 1/2. On utilizing the conti-

nuity equation 18a of reference [48], for the lattice fluid:

B+ V. (pu*) =0, (292)

it is straightforward using the product rule to manipulate equation (291) into a form
containing the material derivative:

. D N __ 1 2 N N

where, note, interface force, F, (see equation (215) and associated discussion) is
impresséd on the fluid only in the interfacial region. . |

| For the sténdard LBGK model, it is possible td show that the presence of a
variable fluid body force, F, generates additional terms in the lattice fluid continuity

equation of for the lattice fluid [46], [61], which becomes:
) ,
Op+ V. (pu) = =5 VF, 4 (294)

which now implies phase field dynamics:

L N 1 » N N 1 1’ N
—— =——Y. F) + —V. = ~——F.Vo'.
P 9 (p ) P D) (F) 5 P (295)

In a continuum fluid, the interface is subject to a kinematic condition which
* requires that it (the interface) move at the same speed as the local fluids. For a
point in the interface, identified by a chosen value of p", to advect with local flow
requires a condition % = 0. It follows that, in either of the models represented by
equations (293) and (295) (and, indeed, in all multi-component LB) the interface -

is accelerated relative to the local fluid, in fact by an amount independent of the
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local flow and interfacial tension, determined mainly by local phase field gradients.
Qualitatively at least, these observations accord with the observations of Latva- ;
Kokko and Rothman [6]. Approximating p = constant, the value of p", and hence
the term in the right hand side of each of équations (293) and (295), clearly varies
across the interfacial region indicating un-physical, relative movement between the
phase field and the lattice fluid in both models. ‘ | |

To restore this lack of a kinematic condition attempts are made to limit the
differential motion of the lattice fluid and the phase field on closed contour pVV = 0;
the latter appears to be t‘he lattice region onto which efforts (algorithmic extensions)
designed more strongly to promote a kinematic condition are best concentrated.
None of the several flavours of the LB interface .stratégieskcurrently in use explicitly
impose a kinematic condition. In the following chapter, Chapter 9, attempts are
made to address the issue of simple, portable and effective kinematic condition,

independent- of the background interface model.

8.9 Local Expression For Colour Gradient

During the course of this work attempts were made to derive a local expression
for the colour gradient. In the following seétion, attempts are made to localize the
colour gradient. The results reported here are done so as a matter of course to
report on general progfess and'may be omitted if the reader desires.

Introduced in this section is a local expression for f'(r) which provides a com-
putationally efficient expression suitable for use with a formulaic segregation rule
(expressed in equafions (231) and (251)) when the local interfacial curvature is not
too great or changing too fast (see thé discussion at the end of this section).

For red and blue fluids it is possible to define a local colour field:

&)=~ 5 (Rilr,t) - Bi(r,0) s (296)
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in which red and blue densities are pre—collision values, note. If propagation is

taken to be instantaneous, it follows that R;(r,¢) = R!'(r — c;,t — 1) (and also that
fi(r,t) = f;‘(r —¢;,t — 1)), accordingly:
gr=—> (Ale-ct-1)-Ble-cot-1)e (297

Substitute from equation (231) into equation (297) and use the identities (222) and
(223) to obtain: '

g'(r,t)e =SSP + 59, (298)
where:
5P = Z PN (r = ci,t — 1) fi(r, ) Cias , (299)

as previously, the fact that f](r — c;,t — 1) = fi(r,t) is used and:

3(2) =—= Z tpp(r—cit—1) [1 = (p"*(r — c;t — 1))] cos(fy(r —c;,t — 1) — 6;)Cia,
(300)
in which 6,(r) is the direction of the colour field. Using the approximation in

equation (249), equation (300) may be transformed:
g) = - k thp Ciyt - 1) (aa:pN|r—c,~,t—1cimcia + 8ypN|r—c,~,t—lciyci<;)z) . (301)
Henceforth heglect explicit time dependence. Noting that both equations (301)
and (299) remain true in D3QN. The right hand side of both (equations (301) and

(299)) are now expanded about r and, using the expressions (224) and (225) for

second and fourth moments of the lattice vecfors, after some algebra, it is possible
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to show that:

SO = —pN(0)p(r)us + 850V (1) 3 fi(D)es aci 5, (302)

SO = L kap(s)0u" () = ke {0p(@) V20" () + 2000(0)0u000" (1)} . (303)

The quantity Zi fi(r)ciacip in equation (302) may be replaced by the sum of the
zeroth and first-order momentum flux (stress) tensors; wishing only to retain terms

- linear in gradient quantities we make the approximation:
- Y (0 * %
z filT)ciaCip ~ E fz( )(r)ciaciﬂ =cip+ PUgUg, (304)
i i :

where c; is the speed of sound. Equations (302) and (303) may now be approximated

SO =~ —pN (W)p(r)us, — p (1) p(x) Fo + p(x)0p™ (1), (305)
0 = L ape)u (). (306)

Where, since Fy, is dependant on high order gradients, the term p" (r)p(r) fF, is
dropped froﬁ1 the analysis. Equation (298) now yields the following local approxi-
mation to the colour gradient:

.p(r) <c§ _ %kz) . @30)

Vo E) =5 (€ +pp ), A

From simulations in D2Q9, for which ¢2 = 1/3, with segregation parameter

. B =07, p(r) = 2, Measurements of the parameter 1/4 = 2.37, compared with a

calculated value of 3.14. Whilst use of the above expression is found to produce
instabilities when the local interfacial curvature, K > 0.1, it does underwrite a
useful increase in the execution speed, determined, of course, by the total amount

of interface in the simulation. For a drop of initial radius 20 lattice units, figure 39
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shows a surface plot of the value of VpN (r) measured using equation (307).

8.10 Results

Reduction in the pinning of ad\}ecfing drops, resulting from the use of this re—
Acolouring strategy has been reported By Latva-Kokko and Rothman [6] elsewhere.
Whilst the latter uses a different multi—componént LB model (the surface tension
generating algorithm of Gunstensen [24] is used), Latva-Koko and Rothman effec-
tively demonstrate that it is the re—coburing or segregation steps which lie at the
root of an improvement in drop advection, or Galilean invariance properties. Not
surprisingly, very similar improvements were observed with the particular LB model
* described heré, in this section, I shall detail somé other improvements associated
with macroscopic fluid-interfacial propertiés of the model, which accrue from the
use of a fomulaic segregation procedure.

Use of the segregation of section 8.5 is, alone, responsible for a considerable re-
duction in the un-physical spurious velocityvact’ivity (or interfacial micro-current),
created by the interface. Micro-current activity was measured as follows. An equili-
brated drop of initial radiﬁs 20 lattice units was placed on a square lattice, bounded
using the second-order accurate boundary closure method described in Chapter 5 -
for no—siip conditions. The measured velocity modulus was averaged over annular
lattice samples of increasing average radius, centred on the drop centre of mass. This
activity average ié denoted A. This procedﬁre was performed on otherwise identi-
cal drops (surface tension parameter and the interfacial pressure steps) maintained
(i) by numerical component segregation [24] and (ii) by the formulaic segregation
method of section 8.5. ‘Figure 38 shows the value of A as a function of distance
from the droﬁ centre, for (upper line) the ‘numeri.cal and (lower line) the formulaic
segregation method. Note the use of a logarithmic ordinal scale. The figure insets

show the corresponding steady-state micro-current flow fields, by means of a stream
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Figure 38: Average interfacial micro-current activity, (v), measured in lattice units,

plotted as a function of radial distance from the drop centre, r, measured in lattice

units, for numerical segregation (upper curve) and for the distributed segregation

method (lower curve) for otherwise identical drops. Note the use of the logarithmic

- scale on the ordinate. There is a difference of almost two orders of magnitude in the
micro-current activity. :

function plot.

For 8 < 0.71, stable interface profiles were found to be smooth and well-
approximated by a variation p" = tanh(ks) with s distance in the direction of
Vp" and k = f, the segregation parameter introduced in equation (231) (see figure
35). This fact, together with the smooth variation of p", encourages one to seek
a local expression for the gradient in pV, the existence of which would make the
* algorithm entirely local and very efficient.

~ As shown previously in section 8.9, it is possible to derive a local expression
for Vp¥, which was found to work poorly for highly curved (or small) drops but
surprisingly well for drops with curvature K < 0.1. Figure 39 shows the key property
of phase field gradient for a circular (drop) intérface, initial radius 20 lattice units,
simulated using the local approximations derived in section 8.9. In figure 39, only

lattice sites with both red and blue fluids present have a defined interfacial normal

and phase field gradient. Note that the peak value of Vp" corresponds to p" = 0.
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Figure 39: Variation of the phase field gradient for a red drop immersed in a blue fluid
(z-axis) versus position. Vp" (z-axis) was calculated using the local approximation,
given in equation (307), derived in section 8.9. The drop initial radius was 20
lattice units. Only lattice sites with both red and blue fluids present have a defined
interfacial phase field gradient. Note that the peak value of Vp" corresponds to
pN =0.
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8.11 Conclusion

The work covered in this secfion is a presentation of a multi-component lattice
Boltzmann simulation applied in the continuum approximation of fluid mechanicé,
to completely immiscible fluids, paying particular attention to the component seg-
regation part of the underlying algorithm. The principal practical outcome of this
section Qf Work is the result that the overall algorithm is.found to produce a very
low level of micro-current activity indeed; the principal methodological result of this
section is the derivation of the dynamics of a component index, or phase field; which
have here been obtained for the formulaic segregatibn method of d’Ortona et al [57]
and Latva-Kokko and Rothman [6], using the method of Chapman-Enskog analysis.
The dynamics accord with a simulation designed to address multi-component flow in
the continuum approximation and provide greatly improved simulation performance
as follows. |

| The segregation method analysed has been shown tb produce a very marked re-
duction in the interfacial micro-current activity associated with a curved interface,
which ﬁlakes the method valuable (i) in terms of the improved quality of its results

and (ii) by facilitating simulational access to regimes of flow with low capillary num- -

- ber and drop Reynolds number, see Chapter 7. Whilst it (the formulaic segregation

method) produces an interface which is distributed in terms of its component index,
the hydrodynamic boundary conditions which it enforces (when used in conjunction
with Lishchuk’s method [25]) support the notion of a sharp, unstructured, contin-
wum interface as effectively as other LB methods. Furthermore, it is possible to use
further algorithmic extensions with the modél discussed here to improve performance
in this respect. It is also worth noting that the distribution of the interface is not
dependant on resolution, thereforé a narrow interface may effectively be modelled
with an increase in system resolution.

For continuum applications, it was found that, in addition to improved hydrody-
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namic properties, a formulaic segregation method is considerably more computation—
ally efficient than other methods (eg. numerical segregation described in Chapter 7),
“especially when used with a locally calculated interface normal, which the method

is able to support under certain circumstances.
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9 Kinematic Condition for Distributed Interface |

In Chaptér 7, initial attempts were made to impose a kinematic condition; these ini-
tial attempts were admittedly primitive and computationally slow; here is presented
a, transferable, efficient and effective algorithmic enhancement designed to improve
the accuracy of all multi-component lattice Boltzmann methods when applied to
the simulation in the continuum approximation of fluid mechanics. The method
presented in this chapter also benefits from a more well-founded theoretical basis.

By applying a collision parameter (kinematic; viscosity) perturbation to reduce
velocity gradients in the immediate interfaéial region, a kinematic condition of mu-
tual impenetrability between separated fluids is effectively enforced. Matters relating
to a variation in ﬁhe collision parameter are-also briefly discussed:

For consistency with previous chapters, a brief introduction and background are
presented here in an effort to make this chapter reasdnably self contained. The

familiar reader may wish to overlook these sections and continue directly to section.

9.3.

9.1 Introduction

The simple and robust innovations outlined in this chapter are relevant to all MCLB
variants when applied to fhe continuum regime, with completely immiscible fluids.
The aim of this chapter is to address the representation of an interfacial kinematic
cénditibn (KC) of mutual fluid impenetrability [5]; in section 9.2 the most appropri-
ate MCLB model for such an application will be described, then, in section 9.3, it is
shown how the method may be simply and effectively modified explicitly to contain
a KC in a manner readily transferable to other MCLBs; finally, in section 9.4 the
results of this section of work shall be presented and then discussed.

Interfacial boundary conditions are treated in all MCLB as a constraint coupling

of the dynamics of a single component lattice Boltzmann (LB) fluid to those of an
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order parameter [22] or a phase field as in pr_e'vious chabters and [25]. Thereafter,
the principal MCLB methods are distinguished by the detailed way in which a fluid-
fluid interface is imposed (3], [21,25]. with different algorithms favouring different
applications. | | A

The MCLB method of Chapter 8 is used for this work and comprises a synthesis
of the work of Lishchuk et al [25], d’Ortona et al [57] and Latva-Kokko and Roth-
man [58]. As shown‘in previous chapters it has narrow interfaces with a thickness
- independent of the computational mesh resolution (but see below), an independently
badjustable interfacial tension which may be large, predictable phase field dynamics
and it also facilitates simulation at low capillary and drop Reynolds number see
. chapters 7 and 8. Furthermore, the MCLB method of chapters 7 and 8 is based on
the notion of dyna'r.n'ic, stress, bouﬁdary conditions [5] enforced over the interface
: betwéen immiscible fluids [25] however neither it nor its progenitors take expiiéii v
account of any form of KC.

The present work goes some way to addressing the problems of conflicting length
scales, unavoidable in MCLB, given that any practical (stable) interface must be
diffuse on some characteristic,‘ finite distance. We address this issue of interfaée
scale and locatability implicitly, by devising a simple KC algorithm which acts over
a very limited distance on either side of a defined, sub—grid interface centre, which,

in turn, the KC implicitly serves to define.

9.2 Background

The MCLB method used in this chapter is that described in Chapter 8 which in
itself is a continuation of work carried out in Chapter 7. It builds from a single
component, single relaxation time LB variant designated the LBGK model [4].

For present purposes, the body force needs to contain spatial variation which

necessitates spatial variation in ¢;(r) see section 7.4. This obstructs the emergence
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of the lattice Navier Stokes equation (212). As stated previously,-a solution to this
problem,' given by Guo et al, requires (i) a more complicated relationship between
F(r) and (,zSz(r) than that of equation (213) and (ii) a re-definition of u. The modified
relationships are stated in equations (219) and (220). No.w7 consider the form of fluid
 interface force which ¢; should generate, and where this force should be applied.
Utilising the same notation as that of Section 8.6, post—collision, post-segregation
(re—coloured) quantities are indicated by the use of a double dagger superscript. Ac-
cordiﬁgly, the Latva-Kokko and Rothmaﬁ’s form of d’Ortona’s segregation is written

as [58], [57]:

gt

RB |
T —0.) e
i TRy Bf’ + 8 mn Btpcos(ﬁf ;) |ci|, (308)

R
in which, recall, 8 (6;) is the angle of the colour ‘ﬁeld, VoV, (link) and R;” denqtes,
the post—collision, post segregation value of the red fluid’s momentum density asso-
ciated with link 7. Note that, for stable continuum interfaces segregation parémeter,
B < 0.71, see Chapter 8.

Equation (291) of Chapter 8 describes the dynamics for the phase field scalar,
p" for any MCLB scheme bésed upon the segregation method outlined‘above which
uses a LBGK model and either the standard method of applying a body force, or
Guo’s more accurate method:

Bipp" + V. (ppNu*) = —fV. (p"F) + %cgv. (PN Vp). (309)
In fact, the order parameter employed in the Oxford MCLB mesoscale model [21]
to define the component (or, more accurétely in this case; phase) obeys a broadly
similar dynamical equation. |

For the standérd model (with a direct velocity, f = 1 in equation (220)), as

demonstrated in Chapter 8, it is possible to obtain for the dynamics of the phase
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field:

D N _ 1. N '
i’ = 2pF'V”’ ] (310)

which equation‘ clearly deviates signiﬁcantly from the correct form required for a
continuum fluid, namely .(see section 9.3):

DpV :

= . 11

‘Dt 0 A (311)
However, with Guo’s more accurate representation of‘ body force (with an indirect
velocity, f = 1/2 in equation (220))', the phase field dynamics takes a more amenable
form. From Chapter 8 recall that using equations (276), (288), (292) and (293)
directly, it is possible to obtain:

D y_ 1 2 N N |
5;° = QpV. (cZp Vp—p F). | (312)

We return to this equation in the next chapter.

9.3 Kinematic Condition

In a continuum fluid, the interface is subject to a kinematic condition (KC) which
effectively requires that the interface move at the same speed as the local fluids. For
a point in the intérface, identified by a chosen value of pN , to advect in flow -D—g =0.
It follows from equation (310) or (312) that the interface is accelerated relative to
the local fluid by an amount determined by pressure and phase field gradients. This
chapter is concerned with a remedy to this absence of an intrinsic KC, portable into
‘other MCLB methods and rather more in accord with the spirit of LB simulation
than earlier attempts based upon' a momentum conserving process of averaging the
separated fluids’ velocity in the interfacial region see Chapter 7. The latter method
- is of very limited value; it is reliant upon arbitrary, computationally expensive site

selection criteria and it compromises interface resolution.
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Figure 40: Variation of quantities across the interfacial l‘égion. In the figure key,
M =1, 3 identifies the variation of dw/K in equation (313) for M = 1,3, f denotes
f(p") in equation (317). The interface, defined by p"V = 0, is centred onz =0
locally. ' ‘ ' :

Consider a static, sﬁherical red drop, nominal 'r'a(viius o = 50, suspended in a
blue ﬂuid, such a drop is described by a phase field variation pN = tanh(B(r — o))
for 8 < 0.71 as derived in Chapter 8. Figure 40 shows the variation of the phase
ﬁelld,> pN, in the radial direction, across the interface (diamonds); note, abscissa '
x = 0 is the interface ceﬁtre. Variation of the Laplacian of the pV field (which,
broadl&, determineé the divérgence of F, which is the i)rinciﬁal contribution to the
right hand side of equation (312) ) is plotted using asterisks. On contour pV = 0
(at = = 0) of this particular MCLB?’s interface, a KC-is approximately safisﬁed in
both models. In general, however, the gradients of p" vary and the interface is
accelerated most rapidly for positions |z| < 1, cofresponding to [pV| < 0.5. This is
true for all interface radii or curvatures. The region |p"| < 0.5 suggests itself as the
interfacial zone onto which algorithmic extensions designed to promote a KC should
be concentrated.

To promote correlated motion between the internal (red) and external (blue)
fluids at the Boundary we seck to eliminate fluid shear in a thin shell |p"| < 0.5,

which, from figure 40, is approximately 3 lattice units thick. This is accomplished
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by increasing the local sum fluid viscosity using a collision parameter perturbation:

sw=—K(1-p")",  |pY|<05, K ,M>0, (313)

corresponding, in D2Q9, to a local viscosity increase:

1K ot LKMoy
=55 0=p")" =3/ V"7, (3?4)
in which use has been made of a property of interfaces generated by the formulaic
segregation of equation (308), after d’Ortona [57] and Latva-Kokko et al [58], derived
in Chapter 8, namely:

Vo =B(1—-p"). (315)

The requirement v > 0;0 < w < 2 constrains the choice of K ; figure 40 plots
the variation of dw for K = 1, M = 1 (open squarés) and K = 1, M = 3 (diagonal
c_rosses)'; for the éase of M =3 perrturbation dw is significant only for |oN| > 0.5,
which advantageously limits any penalty on resolution in the interfacial region; with
M = 3 sites Aat r = +2 are unaffected, further adjustment of M : M > 3, M < 10
does not change this observation but degrades stability. Cleaﬂy, the extension in
(314) genefalizes readily to all other MCLB variants [22], [33], and is easy to apply
in 3D. -

When considering incompressible liquids, one traditionally factorizes v(w) in the
lattice Navier-Stokes equation (212), whereupon any spatial variation in the latter
will generate additional force terms. This encourages the view of an incompressible,
fluid, interfacial region of variable viscosity, subject to a‘compe'nsatory forcing which
effectively restores a KC. It is worth remarking that a variation iﬁ kinematic vis-
‘cosity, v méy characterize a particular problem, for example when modelling spatial

variation in fluid temperature within the Boussinesq approximation; where thermo-

hydrodynamic flow is modelled (i)by neglecting density variation with pressure but
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allowing the pressure to vary with temperature and (ii) allowing 'ghe kinematic vis- -
cosity v to vary with temperature. Any such variation should be modelled with v,
positioned as in equation (212), behiﬁd' the first spatial differentiation in the second.
term in the right hand side of equation (212). |

Consider the case of Guo’s (adjusted velocity) model. Factorization of v(w)
‘exposes an effective, shear-rate dependant forcing in the right hand side of the
lattice Navier-Stokes equation (221): |

9 2p . 0

Fl =2pS%, i VW) =~ S50 (316)

in which the last equahty uses a substitution for 1/( ) for the case of a D2Q9 model
Here strain rate, S, is based upon gradients in the corrected velocity of equation
(220), note. |

With the proposed w-variation of equation (313) it is possible to obtain from
equation (316), by straightforward use of equations (314) and (315):
r_ 4pB S* fl Ny — N N2

o= —LoKMf(M)Saslpy S =" (1-0").  (317)

It is not surprising to find an equivalence between an interfacial viscosity per-

turbation, suggested in equation (314) and an effective shear rate dependant force.

The factor f (pN ), defined above, varies across the interfacial region as illustrated in

figure 40.

9.4 Resulfs and conclusion

Figures 41 and 42 derive from data obtained from drops of initial radius 15 lattice
units, with surface tension parameter o = 7.0 x 1073. For the data of figure 41
the drop was exposed to an unperturbed shear rate 1.0 X 10~* in lattice units, on a

lattice of size 150 x 50 lattice units; the unperturbed collision parameter w = 1.0 and
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Figure 41 Normal velocity u, = 0 contour superimposed over p™ = 0 contour of a

sheared drop at steady state, with (left) and without (rlght) the kinematic condition
of equation (313) in effect. Note the departure of the p¥ = 0 and v, =0 contours
in the ‘polar’ and ‘equatorial’ regions in the figure on the right.

the pertﬁrbatioh 0w (equation (313)) was characterized by‘K =.0.5, M = 2. For
figure 42, the same lattice with rest boundaries waé used, with a range of viscosity
pefturbations (see figure key and caption).

Consider a neutrally buoyant (red) drop embedded in é symmetrical sheared
(blue) fluid of identical kinematic viscosity. At the steady stafe, in the rest frame of
the drop interface deformation ceases and the normal component of fluid velocity,
Up, vanishes (this is untrue of the correspondmg tangential component, wh1ch is non-
zero in general). On noting that the chosen interface centre, the contour p™ = 0,
cannot intersect any lattice node, it is suggested that the besf illustration of the sub- -
'grid nature of the KC and the benefits attending its use is the correlation betweeﬁ
the contour p¥ = 0 and the contour u, = 0. Compare now the results in figure
41. On the right of this figure is shown detail‘ of the flow in the region of the drop
pole; the u, = 0 contour is superposed. over the (closed) contour pV, for a drop
without a KC inducing perturbation in force; the figure inset shows the whole drop.
On the left of figure 41 is the corresponding simulation with a KC, characterized by
K =1, M=3 applied. In the latter, the u,, = 0 contour is located much closer to

the centre of the interface, especially in the polar region, where u;, the component
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Figure 42: Absolute value of R, the steady-state residual of the interface normal
~ velocity, u, (ordinate), defined in equation (318), plotted against M (abscissa) for

different values of /{; M, K as in collision parameter perturbation equation (313)
for the simulation defined in the first paragraph of section 9.4 :
of fluid velocity tangent to the p¥ = 0 was also much smaller.

Briefly consider the effective, shear dependant force F’ of equation (316) at the
‘North Pole’ of the drop depicted in figure 41. The shear rate at the drop North
Pole is dominated by a contribution V%L; > 0; this, and the variation of the factor
f(pN) imply F! < 0 (F. > 0) for the blue (red) side of the interface, in accord with
a reduction of the local shear gfadient when pV = 0. |

“ Figure 42 considers the correlation of the zero of normal velocity with the p™¥ = 0
contour. The ordihate corresponds to a steady-state residual of the modulus of the

normal velocity:

R="" |u,,1', (318)

pN=0
the abscissa to the value of parameter M in equation (313). Branches of the plot
- with increasing ordinal intercept correspond to amplitude parameter K= 1.00, 0.75,

0.50, 0.25, 0.12, 0.012 in equation (313). Simulations show that the correlatién
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- improvements at a diminishing rate as M increases; whilst our simulations were'
stable, as M increases larger shear rates may causé instability.

The segregation method outljned brieﬂy in this chapter as a reiteration of the
method described in detail inChapﬁef 8, when used in conjunction with a kinématic
condition facilitate robust MCLB simulations in the continuum approximation with
advantages of inéreased efﬁciency, negligible interfacial micro-current aﬁtivity and
drop pinning [58], Chaptef 8 (facilitating low capillary and drop Reynolds number
applications).,'improved fepresentation of continuum hydrodynamic boundary con-
ditions (figure 41) and, not least, simplicity. Moreover, the simple rule expressed in
equation (313) transplants into other MCLB methods [21], [33] diréctly, to facilitate

their application to the continuum regime.

186



10 Wetting with continuum 1B : Simulation of

2D dense Films Under Gravity

10.1 Introduction

The work carried out in this chapter combines and relates the work described pre-
viously, on the forced mass conserving boundary condition in Chapter 6, the dis-
tributed interface of D’Ortona et al [57] and the kinematic condition discussed in
the previous chapter 9. The focus of this chvaptevr is to produce an accurate and
robust continuum scale wetting condition.

Clearly the wetting problem is very long-standing and is of great importance ina
range of situations; from medical applications, where leukocytes have been modelled
as wetting drops, to industrial processes, such as paints and coating applications, to
the new science of micro—fluidic devices (see also section 2.1 for recent advénces).

It is important to stress at this stage that the aim of this chapter is not to
produce a microscopic wetting theory. State of the art research in this area com-
bines non-equilibrium molecular dynamic calculations (which operate on very short
length and time scales in the near-wall region) which are appropriately coupled to
continuum flow solvers, this allows the solvers to cfoss the length scales between
the surface slip, which is molecular in origin, and the continuum scale flow that this
sllip determines. In fact there aré a range of more or less phenomenological methods
that have been used fo describe slip and wetting in continuum calculations. The
dynamics and spreading of liquids has been treated in considerable:depth [62] and
. references therein. Most of these methods attempt to use the stresses at the bound-
ary to predict a slip velocity. This qualitative but securevand well accepted fact is
our principle modelling assumption. Accordingly the work undertaken in this chap-
ter focuses on an accurate, artefact free adaptation of given continuum boundary

conditions to a multi-component lattice Boltzmann equation flow calculation.
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- We begin by reminding the reader that, as discussed in chapterv4, when con-
sidering a solid boundary ’With a no-slip boundary condition applied, the relative
motion of a dynamic contact line (DCL henceforth) between the red and blue fluids
aiong the boundary will result in a singularity. We shall assume one, existing, model
~of slip at the contact point — the so—called Navier slip condition, (as described in
section 4.4). Again, our model is not intended effectively to provide a theory of
slip velocity on the fly; rather it adapts lattice Boltzménﬁ simulation in a ﬂexible,
robust manner, without any need for additional assumptions beyond that of a given
theory of slip. In overview, this is accomplished as follows.

At the contact point we (i) speéify the wetting angle as a boundary coﬁdition on
the interfacial normal: by (ii) devising an appropriate mass and.species conserving
boundary condition which (iii) uses the second-order accurate closure (as set—ouf
in Chapter 6) to specify, for a measured distribution of fluid stresses, an instan-
taneous contact—point slip velocity. Our results are obtained using an assumption
of a quasi-static slip ie. we will assume that slip velocity debends only upon the
instantaneous distribution of fluid stress (an idea that was initially inti*oduced in

Chapter 4) according to:

Ou
oy’

vs=2>0 - (319)

. were the parametef “b” is known as the slip length and is a molecular property of

the fluid, with, we assume, similar status to the kinematic viscosity.

10.2 Background

As mentioned previously predominantly in Chapter 7, at large flow velocities the
effects of the micro-current is negligible, however, when the velocity of the flow be-
comes comparable to the velocities generated by the interface algorithm, significant

anomalies in the method begin to appear. The motion of a DCL might be very slow,
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Figure 43: D2Q9 lattice site positioned at the dynamic contact line (DCL) on the
bottom surface of a flat duct (left) and enlarged (right). The heavy line shows the
supposed location of the interface separating red (R) and blue (B) fluids.

so any micro-currents developed by the interface algorithm at the DCL will effect lo-
cal flow velocity and flow velocity gradients and thus the motion of the contact itself
and the dynamics of the flow. Put another way, contact point slip at the'bounldary
must be assumed to involve small motions relative to the boundary, the presence
of micro-currents-will interfere with the detail of the slip model and resulting flow: _
this underscores the need for a low micro—curfent interface. algorithm, such as that

developed in Chapter 8. It should also be clear that, in addition to minimisation of
micro-currents there must be exact conservation of mass and colour; there cannot

be differential loss of either éolour- species clése to the contact point.

We aim here to specify the fluid behaviouf in terms of a chosen wetting model; a
known contact angle or wetting angle, 6., that is taken to be avmolecu‘lar property
with the same status as viscosity and, of course, the surface tension. |

For the sake of continuity with previous chapters (chapters the analysis contained
within this chapter will consider a D2Q9 nbde assumed to be situated at the bottom
of a flat duct flow as shown in Figure 43. This node is situated in the boundary
between the red and blué fluids and so its links contain non—zero momentum distri-
bution function Qf both components, R; and B;. The dire.ction of the x-axis is taken
to be tangent to the boundary. | |

The wetting angle, 6,,, as mentioned above, is related to the colour field direction

as illustrated in figure 44 and may be expressed as a boundary condition on the
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. Figure 44: Boundary condition on the colour field direction at the DCL; the dlrectlon
of the colour field is defined in relation to the wetting angle for wetting at the bottom
of a duct. See equation (320) and fig 43

colour field direction 6y as :
0 = (0 +90), 2=0. o (320)

The boundary condition- associated with red and blue species is essentially one
of mass conservation and is illustrated in fig 43.
Similarly, the fluid velocity on the boundary is predicted by the following slip

law and kinematic condition:

Ou,
ur(y =0) = _bay

vy =0) =0, o (s2)

in which %Ly” is measured, note, we return to this iss1_ie in section 10.3.

Tt is appropriate here to review the 'principal features of the boundary closure
method that is now to be adapted to the situation of slip. .

Notwithstanding detailed points revised below, the method of Chapter 6 essen-
tially requires that (i) a boundary, or wall, velocity distribution, u,, (ii) an effective
density, p,, (not the same as the mass, M, arriving on uncut links of the boundary
site, note) and (iii) that the wall fluid strain rate, S,g., henceforth, be known or
measured. Uncut boundary links’ momentum distribution function, fi, is then con- |
sidered to be given by the sum of its fi(o) (Pw,uw)’s and fi(l)(Sagw),S., It is important

to recall that, in the method of chapter 6, we choose to make calculated f(’s ( Fs)
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to sum to M;, (zero) on uncut links.

To apply this method in the present contekt -we need therefore to calculate or
" measure wall densities and wall strain rateé. The latter are doubly important now
as they’re used to find the wall velocity through the assumed slip model. As we
shall see below, the problem of finding the wall density, p, is complicated by the
need to apply a (Variable) external force for interfacial tension and the problem of
measuring the velocity gradient S,gs,, is complicated by the fact that the evolving
wall .Velocity, Uy, is not known and that the previoﬁs use of spatial translatiohal
invariance in Chapter 6 is lost in contact region when a DCL is considered. The
simplest solution to this problem is that outlined in section 10.3.

In the method of Chapter 6 the effective wall density, p,, was defined such
that the total mass on post—collision uncut links is equal to the mass, M;,, which
propagated onto the wall node links at thé beginning of evolution step. It was
also seen that the source term does not conserve mass on uncut links. Appropriate
calculation of the effective wall density, p, which takes account of these facts and
the fact that there are now two different, indi\./idually conserved fluids present at the
boundary is sét out in section 10.4. In section 10.4 we will deal with the calculation
of wall strain rates and slip velocity and assignment of corresponding fi(n’s. Section
10.4.1 will deal with re—colour. |

As stated in the initial section of 10.2, it is importént in this work to maintain
theﬂ loW velocity capabilities of the algorithm. Should the wetting procedure induce
spurious velocities that are cdmparable to the velocity of flow itself, the calqulatéd ,

dynamics of the flow will be corrupted.
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PRE-Collision R ’s/ B;’s POST-Collision Rfs/R’s

for duct bottom site for duct bottom site
as depicted in the above figure as depicted in the above figure

R B R B

RE RO+R4+R 5+ BE Bo+ B4+ B 5+ RE Rot+ R+ R 2+ BTE BIl+ + B2+

RG+R7 + Rs Bo+B7+B8 R > Rt4+ R:» bI+b! + bR

Figure 45: Colour conservation boundary condition for the D2Q9 lattice site depicted
above. The dotted line indicates the position of the boundary; empty circles indicate
the absence of information or locations where link information is not required.

10.3 General Remarks on the Implementation of the Slip

Condition

We clarify at the outset that the particular means by which boundary condition
(321) is applied in the LB method is reported in this chapter. At location x on the
boundary y = 0, when measuring the gradient ~ with say a fourth order correct

finite difference we have;

ux(x,y = 0) = bfadux(x,y = 3) + aZux(x:y = 2) + aiux(x, y = 1) + aOux(x, y = 0)},

(322)
where a3...a0 are the appropriate coefficients for the finite difference form from which
the slip velocity ux(x,y = 0) is easily determined;

ux{x,y _ 5?(: azux(xly = 3) + aZu()lc()c,y;5 2) + aiux(x,y = l).
—oa
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10.4 Application of Formulaic Segr'egation at a Forced Bound-

ary Node with ;Sli‘p

- The situation is now complicafed beyond fhat discussed in Chapter 6 by the fact
that:there are two fluids present that need to be conserved individually. As with
the situation described in Chapter 6, there is once again an external force applied
to the continuum fluid which is specified and thérefore i{nown. The external inter-
face inducing force must be consistent with the wetting angle, 0,,, see fig 44. The
gradient of the phase field, ||Vp"|| and the curvature, k, are determined using finite
differences. As we kn'ow all of the aforementioned quantities, we can calculate the
overail wall force F. The associated mass “defect” may then be calculated from the

following expression:

2T
i#£5,6,7

AM= Y ¢, ¢i=t, (1—i> (B(ci—u") +9(ciu) c) F(r).  (324)

AM is the mass effectively removed or introduced to live or uncut links by the
action of the surface tension force.
ltis important té note that the mass defect, AM will be eventually corrected
for live or uncut links when the source ferm ¢; is ad'ded.
For the bouhdary node depicted in figures 43 and 44, the incoming masses are

calculated from:

M, = Z Jis o o (325)

i#1,2,3

Rn= ) R, @)

i#1,2,3
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Bin= Y B, - (32)

i#1,2,3

and we define;

M. = M, — AM. | (328)

10.4.1 - Effective Red and Blue Fluid Densities for Boundary Node

In order to abply the formulaic segregation of D’Ortona et al [57] (which was dis-
cussed in detail in Chapter 8) without any adjustment we need the effective red and .
blue densities, R’ and B’, as well as M{n By way of definition R and B’ should be
such‘that application of the formula; |

R R'B' |

T Tt
R, f + ﬂtmeOS(gi - ef).lCiI, : (329)

" R+PB

will produce RI s and B;f s which total to R;, and ‘Bin according to equations (326)

and (327), on uncut links. Colour conservation requires that:

Z Rﬁ‘ =R, (330)

i#£5,6,7

> Bl'=B, (331)

i#5,6,7 v
where, after the notation of Chapter 8, a double dagger superscript denotes a post-
collision post-recolour value.

Now let, R'(B’) denote an effective value of R(B) such that :

, R/ / R ’
Z Rit= Z (R/+B’fff+ﬁpR,+B/c,f> (332)

i#5.6,7 i#5,6,7

where we have used equation (329).-

Note that it is fiﬁ and not fiT in the above equation; fiﬂ includes the source
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contribution ¢; so, overall mass conservation requires that :

| o=, o (333)
i#5,6,7 :
where, M/ = (M;, — AM), recall.
Now, the factor 83, 5 ¢ 7 tpfici in the second term of equation (332) is a function
of 0y, and particular boundary node geometry only. It is therefore straightforward
to show that the following must be true for a node af the bottom of a channel

(situation depicted in figures 43 and 44):

B ife=21, e

i#5,6,7

where f, is the y component of the boundary colour field.

It is then possible to obtain the following relationship from equation (332) :

R R'B" p

R T (335)

On using the effective density identified in Chapter 7 we must clearly have:.

¢ =R +B. . (336)
Equation (335) now becomes :
R, RG-R)B, _ -
> My + — > .gfy =R, (337)

which re-arranges straightforwardly into a quadratic for the effective red density, R/,

for the wall site of the node depicted in fig 44:

(Bf,) R® = p'(5+ Bf,)R' +6Rp =0, | (338)
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‘where the fact that Aﬁ" = '-2— has been used, as was initially done in Chapter 7.
Equation (336) may also be used to determine the effective blue density B'.

If is now possible to solve the above equation for R’ to find the effective red and
blue masses on a boundary site. Boundary site re-colour (or segregation) procedures
are then carried out using this fictitious value, that is, using formula (329).- Put
another way, by uéing R’ from equation (338) re—colouring nllvay be carried out exactly
as described in the prévioUs section without any further modification, resulting in
mass conservatign and colour mass conservation on uncut links. The boundary
node, including‘ cut links, mass and colour are not conserved but clearly this is of
no consequence: Note that the quadratic (338) must be solved at every boundary
site as R’ varies through the contact region. | |

Recall that in Chapter 6, third order fdrward and backward finite difference
methods were émployed to measure the fluid stress to solve the system of equations
(152) for example. Due to the axial symmetry of the system considered in' Chapter
6, many of the stress derivatives in equations. (152) were constrained to zero. The
presence of a DCL now violates the symmetry of the previous system and.this as-
sumption is no longer valid. All derivatives must novs} be calculated. The méthod of
calculation of fi(o)(p, u,) and fi(l) however, being third order forward and backwards

difference methods, remains the same as in Chapter 6 and Chapter ?? with the

following simple but importaﬁt change.

10.5 Stress Measurements with Spatially Variable Force

Here we make an important revision to the results and methods of Chapter 6.

In the Guo LBGK model used in this work to impress a variable body force,
.the Chapman-Enscog analysis works differently. By straightforward but tedious
algebra, it is possible to extract from the reference [48] the modified relations for the

zeroth to second moments of the higher components of the pre-collision distribution
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function, with the lattice basis. That iys, when using thé scheme for spatially variable
forces F, used in chapters 7 and 8, there arise important changes from the usual
Chapman-Enscog analysis of Chapter 4, which underpins the work of chapters 5 and
6. We must take account of these now, before we use the results of chapters 5 and
6. As we have just said, tedibus but straightforward algebra allows us to extract
- from [48A]>the following modified relations for the zeroth to second order moments
of the higher coniponents of the pre-coHision distribution function when we have a

| spatially variable force. .

S 0 =o, | (339)

K3

Y e =0, - (340)

Z fi(l)ciacig = —2pc*T S — —2-5t (Faug + Faug) — —2pc27Sag. (341)

Where we have replaced the strain rate as follows:

1
Saﬂ E— Saﬁ + '&E—T(St (Fa'ulﬁ + Fﬁua) . ‘ (342)

Therefore, the methods of Chapter 6 can be easily applied to the problem dis-
cussed here but only after we replace the measured stress inbe.g equation (152) with

values calculated using the replacement 342.

10.6 Results

In order to establish weather or not the wetting algorithm induces spurious velocities,

a static drop at the bottom of ‘a duct is simulated at steady state. From figure 46
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Figure 46: Velocity field for a static drop at steady state. Note the micro current
activity close to the contact point on the boundary.

it is possible to see that, at steady state, the spurious velocities that exist at the
contact region remain small and comparable in magnitude to those generated within
the bulk scheme. From this result it is evident that the low flow velocity capabilities
of the algorithm are retained near the boundary.

For the continuum regime calculations, the wetting angle and the slip length,
b, for example are required to determine the hydrodynamics. The thickness of the
interface and the detail of the algorithm should not effect the observed wetting
dynamics. Results shown in this section do not change with adjustment of the f3
parameter for values 0.5 < 3< 0.7.

Figure 46 shows detail of the micro-current in the vicinity of the contact for an
attached drop at steady state; superposed contours show constant w2, the highest
velocity observed in the contact region is 0(10“5). This is very small when compared
to, for example, the Oxford algorithm.

Figure 47 is a summary of the dynamics of an attaching drop. The figure shows
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Figure 47: A drop of radius 22 lattice units in a channel of 150 lattice sites by
70 lattice sites with wetting, Dirichlet boundary conditions applied on ¥ = 0 and
Y = YLENGTH boundaries with periodic conditions left to right. Gravity acts
in the negative y direction (where the x axis runs positively up the page and the
y axis runs from right to left on the page). Images show wetting behaviour with
varying wetting angles specified. ”Snap shots” were taken at <7)10. 000/,, 6)30,000/;,
¢)50,000Z, d) 130,000/ and 250,000/. Tht*arameter j3 is set to 0.7 throughout



Figure 48: Detail of settled drop on the bottom surface of a channel of dimensions
400 by 90 (figure shows 150 to 300 of x-range and 0-50 of y-range). Drop has a
specified wetting angle of 100° and a uniform body force of @ = 5x 10 ;). Kinematic
condition is applied and a slip length of 0.05 is specified.
the effects of a varying wetting angle on a 2D red drop that is initialised close to a
flat boundary. The figure shows the evolution as the drop is released and approaches
steady state with the slip length, b, set to zero. The effects of the slip length on
these results was not investigated due to time constraints. The effects of the slip
length are, however, considered in the following, more interesting sets of results
which relate to simple (prototype) coating flows.

The result for film wetting in the presence of a constant body force applied from

left to right to simulate gravity is shown in figure 48. The instantaneous stream

function is calculated in the rest frame of the red fluid from:

ANx,y) =Jf (ux(x,y') - U x0)dy’, (343)
0

where Uxo is the average velocity of the red fluid which is not zero. The rolling
nature of the flow in the contact region is apparent in the structure of the stream-
function contours superposed on the phase field information. Note that the kine-
matic condition of Chapter 9 is in force. Also note that the fact that the stream
function contours intersect the phase field boundary does not imply that fluids are
flowing across the boundary as the film is still spreading in all the images presented.

The rolling nature of the flow is entirely emergent given a set slip length parameter
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Figure 49: Identical simulation system as that shown in fig 48 however the entire
simulation space is shown. The wetting angle in the above is set to 60° giving
entirely different hydrodynamics to those emergent in fig48.

Figure 50: Identical simulation system to that depicted in both 48 and 49; again
with the entire simulation space shown. The wetting angle is now set to 5°. The
resulting hydrodynamics are again totally different to those shown in fig 48 and fig-
49 above.

of 0.05 and the balance of the surface tension and the contact angle, no other forces
or quantities have been set. The data for figure 48 was obtained with a wetting
angle of 100°.

Figure 49 shows an identical system to that shown in 48 with the wetting angle
changed from 100° to 60°. The flow in this case is seen to be qualitatively different
to that shown in 48 however the flow is again totally emergent. The flow system
depicted in figure 49 is what we consider to be a bifuricating contact; the red fluid
that is in contact with the boundary flows in a clockwise motion rolling onto the
surface while the red fluid adjacent to the interfacial region moves anticlockwise as
it travels through the blue fluid.

Figure 50 depicts an exact replica situation to that shown in fig 48 and 49 however
the wetting angle has been set to 5°. The rolling flow at the trailing edge of the
drop is now lost. The flow structure is again totally emergent however the structure

of the flow is now fundamentally different.
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Figure 51: Red drop of radius 22 lattice units initialised in the centre of a channel
of length 150 lattice units and a width of 45 lattice units, a uniform body force

is applied from left to right. Navier slip and kinematic conditions are applied. A
wetting angle of 60° has been specified.
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Figure 51 dépicts a channel of width 45 lattice units and a length of 150 lattice
units, a drop is initialised in the centre of the channel with a radius of 22 lattice
units. The preferred wetting angle at the top and bottom surfaces is specified at
60°. The drop is seen to attach to top and bottom surfaces during the initialisation
stage. Following initialisation, a uniform body force is applied fiom left to right.
The drop then coats the surface of the channel drawing red mass from the central
- region of the drop and depo-siting it on the channel surface. If left to evolve, the .
coating effect completely drains the red fluid from the centre of the channel and the
-result is coating of the top and bottom boundaries 'c'o'mpletely. Again this behaviour

is completely emergent.

10.7 Summary

The results which have been pfesented in this chapter represent a sucéessfiﬂ synthesis -
of work carried out previously and presented in chapters 6 - 9- iﬁclusively. The
formulaic segregation method of D’Ortona et al [57] has been found to be amenable
to the adjustments necessary to make a very general boundary condition. The results
all show that the induced micro-currents in the interface contact region are low (when
compared with the buik algorithm). By using‘a range of slip lengths and wetting
émgles the method has been shown to be capable of recovering varioiis wetting and
coating flows. In particular _theré is a qualitative, fundamental difference in the
~ structure of the ﬁqws in the contact region between figures 48, 49‘ and 50 and we
suggest that the range of bifuricating and rolling flows récovered show that our core
MCLB method can be used to simulate DCL behaviour with confidence. We must
be cautious about interpreting the data too closely. Time constraints permitted
only qualitative evaluations of the closure method of this chapter. It is far from-
safe to attempt, for example, to differentiateé between situations where rolling and

bifuricating flow in the contact might occur.
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~Whilst time constraints prevented the generation of further results, those that
-are presented here clearly demonstrate the potential and ﬂexibiliﬁy of the method.
Further discussion of these results is to be found in the following chapter where

future work is considered.
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11 Prospective Future Work

11.1 Introduction

Although numerous advances to the multifcomponent LBGK method ‘have been
presented in this work; there are many points that at which it is possible to pursue
* future developments.

In this section I intend to outline what I perceive to be the most substantial
problem with the algorithm as it stands, I also intend to propose a possiblé solution,
which due to time constraints, has not been explored further than the suggestions I

am about to make.

11.2 Curvature Discontinuity

At steady state, with zero ﬂow in the far field, the wetting algorithm produces, under
certain circumstances, spurious Velbcities (that are depicted in figure 52, where the
stream function is superimposed on a plot of the p" field). This is not surprising
and all numerical methods must, at some level, produce artefacfs_. In our case the
obvious anomalies in the algorithm produce vortices apparent in the stream function
for example ﬁgUre 52. This anomaly is important asiit limits the ap'plication of the
method to wetting problems where the method is most useful. Put another way, it
bounds its domain of applicability.

From my data it is apparént that a spurious behaviour originates at the interface
contact points. It has been found that our curvature calculation breaks down at the
DCL for prolonged rﬁn—times (Recall, the MCLB interface algorithm evaluated,
numerically, the interface curvature). Plotting the measured curvature data for the
system shown in figure 52 shows that there is an obvious anomaly at the DCL at
long simulation flow times, in steady flow. This anomaly, we believe, accumulates

a flow artefact. Again this is not surprising as k cannot be defined where there is a
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Figure 52: Flow defect occurring for prolonged run times superimposed 011 the phase
field information. Simulation shown is for a drop of wetting angle 60° with a uniform
body force applied from left to right.
discontinuity in /- the very definition of the DCL. The spurious values of curvature
shown in figure 53 reach values in the region of 1.59 at their maximum in the DCL
contact region.

Recalling the curvature calculation method employed in this algorithm initially

introduced in Chapter 7:

= n*n* \dyn* + oily~

The issue is not simply one of numerics; it can be seen in equation (344) that
the curvature is dependant on gradients in the interface normal. At the DCL,
the interface ceases to exist and therefore it’s gradients cease to exist, resulting in
a discontinuity in the curvature calculation as shown in figure 53. For a closed
interface there is no issue as the interface is continuous everywhere but in the case
of a wetting drop, the interface must stop somewhere.

In the present work the problem is partially avoided by use of appropriate differ-
ence methods to calculate the curvature at boundary nodes by extrapolation of the
curvature at near boundary nodes. This expedient has allowed the current results

to be obtained. More work and a more painstaking treatment of the curvature at

the DCL might well resolve this issue, however there is a wider issue.
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Figure 53: Curvature plot superimposed on the phase field for the system shown in
figure 52.

11.3 Possible Solution

To provide a more “stable” solution to the issue of curvature above independent of

the assumptions made about the treatment of DCLs at a boundary, we recommend

a method of interface forcing which does not require a measurement of curvature.
Work on the problem is currently proceeding along the following lines:

The stress perturbation;

ASaP « ufafot (345)

(where a; is a weight function) can be shown to have the following effect on the

interfacial stress contractions in the interfacial regions:

A Sapnp = u[n\p, (346)

A Scfftff = 0, (347)

where npand fp arcinterface normal and tangent respectively. It canbe shown
that the above perturbation(345) is consistent with the followingeffectiveinterface

forces at the macroscopic level,

Fa = dpASap, (348)
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which, when used in place of the interface producing force used in this thesis, namely;
Fp = 5kadfp”, (349)

avoids the use of a measure of curvature - in the bulk algorithm and at the boundary.

Put another way we can show that the body force:-

F, = 8/3A5a[3, ASaﬁ = wfafg, ) o (350)

this generates an interfacial preésure step in accord with the Laplace Law, and
~also appropriate stress contractions in the interfacial region, without any further
need to ‘meas'ure loc_dl curvature.

The above method has been found to produce an interfacial tension without
the requirement to calculate curvature using equation (344). The method however -
remains in its infancy and currently is producing significantly larger micro-current.
signals than the previous curvature calculation method. However it is possible to
switch between either method and thereiﬁ lies a possibility; one might utilise the
curvature based, low micro-current method for the bulk interface region and the
modified forcing method albeit with highér micro—cﬁrrents for the boundary region. |

This should give the basis for a more artefact free wetting algorithm..
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