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ABSTRACT (P B HIRST)

Buckling behaviour of slender structural elements under 
interactive axial static and cyclic loading

The objective of the research programme has been to investigate 
the effects of pre-buckling low frequency inelastic cyclic 
hysteresis upon a range of imperfection sensitive circular hollow 
section struts. The programme has involved experimental and
theoretical studies and computer graphics are widely employed 
throughout. The subject matter is introduced from a variety of 
perspectives, phenomenological, historical, theoretical and 
experimental in Chapter 1, together with an appreciation of the 
role of the digital computer within the research programme. 
Experimental factors are initially presented in Chapter 2 whilst 
the formal testing programme is described in Chapter 3. Original 
findings are definitively set out in Sections 3.3 and 3.7 wherein 
the concept of the 'cyclic step1 is first introduced, the
remaining sections in the chapter providing the necessary 
supporting data.

Theoretical studies are reported in Chapter 4 with the novel 
moment-thrust-curvature modelling described in Sections 4.2 and
4.3 being of central importance. This modelling enables the 
formulation of a predictive cyclic strut system effectively 
requiring of the end user the solution of only a pair of 
simultaneous equations and yet capable of providing data trends 
consistent with the experimental findings.

Design interpretation together with an overview of the 
experimental and theoretical studies and their interrelationship
are set out in Chapter 5. A practical design procedure oriented 
about the effect of a pre-buckling cyclic action phase upon 
otherwise static strut performance is delineated and an 
appropriate design chart is provided.

Conclusions are drawn with respect to the primary research 
findings in Chapter 6 wherein suggestions are also made regarding 
possible further studies. An Appendix is included providing the 
bibliography, nomenclature and respective published work; selected 
supporting documentation is also presented.

(xv)



CHAPTER 1

INITIAL CONSIDERATIONS

1.1 INTRODUCTION

Basic static structural analysis employs linear systems theory 

which prescribes the deformations to be indefinitely small and the 

constitutive properties to be of linear form. However, current 

structural design practice is increasingly concerned with the 

limit state concept(l) whereby these conditions, particularly the 

latter, are subject to revision. Consequently, inelastic 

behaviour is of notable interest in bridging between linear 

(elastic) and limit (plastic) states. Further, current trends are 

towards the employment of slender structural elements, with 

emphasis on economic strength-to-weight ratios. This, in turn, 

leads to increased importance being attached to stability 

considerations which necessarily involve some measure of regard 

being given to finite deformations and, crucially, incorporation 

of initial imperfection effects^).

Accepting that no service load is truly static(3), an(j given that 

there exists a wide range of dynamic configurations, then the 

incorporation of dynamic action in nominally static analyses also 

requires careful consideration. Severe dynamic action generates 

inertial forces^^ whilst r e s o n a n c e ^ , a singular phenomenon 

involving the structure’s natural frequency, is of major 

importance in the design of structures subject to vibration.

1



Given the prevention of rigid body motion in static systems, then 

essentially static studies which involve some dynamic modelling

are primarily concerned with vibration or cyclic considerations. 

Vibrations can be of free or forced excitation forms(6). 

Regarding free vibration modes, which relate to impulse or

transient disturbing forces, the presence of damping effects 

generally assures a diminishing dynamic response. Conversely,

forced vibration involves continually applied action, generally 

cyclic in nature, in which the vibration profiles may be of known, 

that is deterministic, configuration or otherwise^). For low 

frequency action, inertial effects are miniraal(^), permitting

some correlation between vibrational effects and static studies 

involving incremental plasticity shakedown and alternating 

p l a s t i c i t y ^ »10). Fatigue failure must be considered, of course, 

although its importance diminishes in cases involving relatively 

few cycles (^10^) and the absence of net tension.

Given the foregoing and the recommendations of recent studies 

delineating research n e e d s ( ^ » 1 2 ) # present work relates to the

effects of pre-buckling low frequency inelastic cyclic hysteresis 

upon a range of imperfection-sensitive circular hollow section 

(CHS) struts. Whilst there exists substantial data relating to 

the effects of fully reversed cyclic loading upon axially loaded 

structural elements(13-21)# little investigation appears to have 

been undertaken with respect to the effect of a pre-buckling 

cyclic loading phase upon the otherwise static strut buckling 

performance^^) # This would seem somewhat arbitrary given the 

importance of imperfections upon strut behaviour and the

2



possibility of interaction between inelastic hysteresis and 

imperfection sensitivity. Accordingly, amplification of the 

effects of any initial imperfection due to pre-buckling cyclic 

action is considered together with its concomitant effects upon 

load carrying capacity and serviceability.

1.2 BASIC STRUCTURAL INSTABILITY

Within the field of elastostaticsC23)# idealised structural 

behaviour can be typified by recourse to the stub and slender 

axial compression systems illustrated in Fig 1.1(a) and (b) 

respectively. As action parameter P, equivalent to the axial 

force in the respective member, is uniformly increased, the 

primary response parameter, axial deformation u, represented 

herein by the overall axial shortening ua , correspondingly

increases. For systems involving linear constitutive properties 

and indefinitely small deformations, ua=PJ,/AE, where £, is the 

length, A is the cross-sectional area and E is the direct modulus 

of the member. The governing action-response locus is of linear 

form as depicted in Fig 1.1(c). All structural response

parameters, including axial stress for example, afford a 

corresponding behavioural pattern. The axial or direct stress 

generated in the member is given by o^=P/A. System linearity 

ceases with the onset of either constitutive non-linearity, that

is the onset of yield in ductile steel structures for example, or

finite deformations which, with regard to the purely axial system 

herein, refers to the state at which the induced change in 

cross-sectional area becomes significant. In terms of flexural

3



(a) Stub Topology

ua/2
1

i  r

i L

^ua/2

T♦ ua/2 11>

(b) Fully Idealised Slender 
Topology

aa=p/a

elasto-plastic/

roundhouse

e=ufl/£

(c) Action - Response Locus 

Figure 1.1 ; Idealised Linear Systems Theory
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system behaviour, of particular relevance to the later work, 

finite deformations are typified by slopes exceeding 0.1 

radians(24)#

In conjunction with the above, idealised elasto-plastic 

constitutive behaviour, as associated with mild steels (eg grade 

43), is typified in Fig 1.1(d). Stress-strain behaviour is 

therefore linear for cKoy. Actual constitutive loci are derived

from tensile(25) or stub tests(2f>).
*

Consider now the introduction of some relatively small, transient, 

lateral interference force Q into each of the foregoing idealised 

axial compression systems in the manner denoted in Fig 1.2(a) and

(b), by means of which the systems concerned become only quasi

idealised compression systems. The respective responses of the 

stub and slender systems become quite distinct. The behaviour of 

the former is effectively unchanged, whilst the latter will 

undergo (elastic) instability. The study of instability(27,28) 

relates to systems which experience a singular and sudden change 

in structural response despite the action parameter being only 

gradually and uniformly increased. The fundamental nature of 

instability studies can be classified in terms of Thom’s 

Catastrophe Theory(29)#

Elastic instability can thereby be typified by reference to the 

slender compression system depicted in Fig 1.2(b). Noting the 

presence of the relatively small, transient force Q, then, as the 

action parameter P is gradually increased, axial response in terms

5
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of ua is again exhibited. However, at some singular or critical 

loading state Pe > a sudden change in structural response is

observed; flexural deformation, represented by the central 

(mid-span) and maximum transverse deflection parameter wc , is 

statically incurred. Further, a flexurally induced axial end- 

shortening uf is set up. That is, an apparently axial system is 

replaced by a predominantly flexural system at, and beyond, a 

singular state associated with compression Pe . The system 

typified in Fig 1.2(b) thereby suffers strut buckling action which 

onsets at Pe=ir2EA/( &/r )^ (30) with r denoting the minimum radius 

of gyration - note Fig 1.2(c). The degree of slenderness, 

assessed in terms of the so-called slenderness ratio, &/r, is

clearly of importance with regard to the possible onset of 

flexural behaviour. In linearised terms, that is assuming 

relatively small deformations, the critical load Pe represents the 

limiting load carrying capacity of the member. Experimentation 

has shown that such members can sustain loads higher than the 

critical or conceptual buckling load Pe , the necessary modelling

requiring a finite deformation study - the ’Elastica*(31). The

appropriate behavioural locus is included in Fig 1.2(c). Within 

the linear elastic constitutive range, the overall end-shortening 

now takes the form

whilst the appropriate maximum stress induced in the member ô j,

for P > Pe (1.1)
o

°rol°y> can be represented by

7



am = P/A + Pwc/z for P > Pe (1.2)

where Pwc is the maximum bending moment and Z is the elastic 

modulus of the member. For completeness, it is useful to note 

that for roundhouse constitutive loci, as associated with 

aluminium alloys or mild steel suffering substantial residual 

stress effects(32,33)s ^he critical load can be expressed in terms 

of a tangent modulus E t or as a reduced derivative(34) - note 

Fig 1.1(d).

The foregoing slender strut analysis requires the incorporation of 

the ill-defined transient parameter Q; such analyses are thereby 

deemed to be quasi-idealised. In practice, physical imperfections 

in the structural system are unavoidable and prompt flexural 

response, note Eqns (1.1) and (1.2), for P>0; Q conceptually 

serves to represent this fact. Physical imperfections can be 

classified into three major groups; initial curvature, eccentric 

loading and residual stresses(l).

Accordingly, Fig 1.3 illustrates a strut suffering an initial 

central deflection, wo c . Assuming a sympathetic initial profile, 

w0=w0csin(Trx/iD> then the response, in linearised, terms, is given 

by(33)

WC= W0C(1 - (p/pe))~1 (1.3)

This behaviour can be typified by imperfection locus 1 depicted in 

Fig 1.2(c), where the maximum load converges to the asymptote, Pe .

8
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Similar treatment can be instituted for the other types of 

imperfection either by direct analysis or by employing some 

effectively equivalent woc in Eqn (l.S)^1). More formally, and 

subject to the availability of a suitable yield strength, 

employment of a finite deformation study can lead to imperfection 

loci of type 2 form as shown in Fig 1.2(c). Loci 1 and 2 both 

involve linear elastic constitutive properties being extant 

throughout the loading process. The theoretical load carrying 

capacity is effectively unaffected by the incorporation of wo c . 

Such behaviour is classified as being imperfection insensitive. 

However, in practical terms, loci of type 3 as depicted in Fig 1.2

(c) are generally incurred in which the linear elastic limit or 

yield stress is breached below Pe , with flexurally inelastic 

response governing system behaviour where the maximum induced 

strain £m>£y. This results in the institution of a maximum load 

Pc , which is termed the crippling or buckling load, where Pc<Pe . 

The magnitude of Pc is dependent upon the initial imperfections 

(eg w oc) and the yield stress Oy. This form of strut behaviour is 

therefore deemed to be inelastically imperfection sensitive(3).

The inclusion of an initially curved strut profile, as illustrated 

in Fig 1.3, together with the elastic limit state or first yield 

criterion, forms the basis of the Perry formula(35). its 

subsequent derivative, employed in the current strut or column 

design code of practice BS 5950(36)^ is given by

PePs ps+(n+i)pe + /Ps+ (0+1)Pe \?- PePsl *
A2, 2A \ 2A / A J
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with Pp and Ps denoting the unfactored design and squash (yield) 

loads respectively, where Ps=OyA. The empirically based Perry 

factor T) is determined by

, iTl = 0.001ar (X-Xo) : An=Q.2^TT2Ej (1.5)

where A  and Ao denote the slenderness and limiting slenderness 

ratios respectively. The Robertson constant ar is assigned 

prescribed values according to the cross-sectional configuration 

and testifies to the employment of multiple column curves. For 

hot rolled and finished CHS struts, which are of primary concern 

herein, ar= 2 . The necessarily empirical basis for r| is due to the 

essentially statistical nature of practical strut performance, 

given both the highly variable and ill-defined form of strut 

imperfections.

Fig 1.4 graphically illustrates the appropriate design curve 

relating to hot and finished rolled CHS struts, together with the 

elastic critical (Euler) and yield loci. The ordinate is 

normalised to the squash load Ps , and the abscissa is evaluated in 

terms of the modified slenderness ratio A m=A/ A i ^ ^ ^  such that

A_ - A / A i  = A/r = (av /ae )4 = A/r (av /irlE ) J (1.6)

with Al denoting the value of A  at the state Ps=Pe* This takes 

explicit account of the respective constitutive properties and 

provides for normalised abscissa values. Also indicated in the 

figure is the classification of imperfection sensitivity by

11
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slenderness(37)f with extreme imperfection sensitivity occurring

at A/Al=l-

General inelastic strut behaviour is of complex form, and its 

treatment is considered at length in the ensuing study. Effort 

has been centred about the modified slenderness ratio of unity, 

important because of its service practicality and imperfection 

sensitivity.

1.3 STRUT BUCKLING - HISTORICAL RESUME

The study of structural systems can be said to begin in earnest 

with the Egyptians, surely the first culture to institute 

structural forms on a large scale. Developments through Grecian 

and Roman studies ebbed with the onset of the Dark Ages and 

scientific thought only re-emerged with the Renaissance. Da Vinci 

(1452-1519) considered the basic philosophy of the equilibrium of 

forces, this being typified in his quote ’Mechanics is the 

paradise of mathematical science, because here we come to the 

fruits of mathematics'. Amongst his many achievements was his 

experimental work on columns^38)^

Key developments in the seventeenth century may be concisely 

represented by the definition of elasticity by Hooke, the 

introduction of the principles of 'infinitesimal' calculus by 

Leibnitz and Newton, and, of course, Newton's Laws of Motion.

The study of structural instability proper was initiated in the
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eighteenth century by Euler (1707-1783). Employing the 

’infinitesimal1 calculus he provided an analysis and solution to 

the problem of the Elastica, determining the critical load of the 

strut under quasi-ideal conditions and subject to linear elastic 

constitutive properties. Euler also extended the associated 

theory of moraent-curvature and propounded the condition of small 

or indefinitely small deformations. The original formal concepts 

of first order linear structural theory were introduced by Young 

(1773-1829).

The nineteenth century saw a dramatic expansion in the study of 

mechanics. Particular interest centred on the work of Rankine, 

who, in 1858, presented a semi-empirical formula that predicted 

the crippling state of struts for a wide range of slenderness 

ratios. In 1886, the semi-empirical Perry Formula was introduced. 

An important step, this formula has formed a basis for column 

design through this century.

Robertson published results from an extensive series of steel 

column tests in 1925 and, on the basis of these tests, developed 

the applicability of Perry's work by proposing an improved value 

for the empirical imperfection constant Ti in Perry's formula^-*). 

It is to be noted that Perry originally attempted to define, 

albeit on an empirical basis, the limiting elastic or first yield 

state despite involving the statistically necessary employment of 

a load factor approach to design. This useful revision led to the 

Perry-Robertson formula being adopted in British practice. In 

1929, the Steel Structures Research Committee was set up under one

14



of the earliest cooperative ventures between British industry and 

the Government Department of Science and Industrial R e s e a r c h C 39) . 

This committee was responsible for introducing the first edition 

of BS 449 in 1931. This standard, suitably revised, served until 

the publication in 1985 of the current code of practice, which 

employs limit state philosophy, BS 5950. Herein, the Perry 

formula has been modified in line with a study commissioned by the 

European Convention of Constructional Steelwork (ECCS). As a 

result, a set of design loci or multiple column-strength curves 

are provided which account for the influence of both 

cross-sectional geometry and fabrication methods on strut 

performance.

The field of inelastic strut buckling, with which the present 

study is intimately concerned, has received considerable 

attention, the first notable contribution being from Considere in 

1889. He indicated the limited applicability of the Euler 

analysis, notwithstanding Euler's own intuitive understanding of 

the process of inelastic b u c k l i n g ( ^ ) . Supported by experimental 

evidence, Considere proposed a modified inelastic Euler 

formulation employing a reduced tangent modulus, whose value he 

qualified as being intermediate between the direct (Young's) and 

tangent moduli. A contemporary study by E n g e s s e r ^ ® ) , whilst 

being independent of Considere's contribution, led to the now well 

established tangent modulus formula. In 1895, Jasinski brought 

Considere's work to the attention of Engesser, who produced a 

general reduced tangent modulus approach. In 1910, KArraan 

developed this generalised approach in deriving explicit

15



expressions for the reduced tangent moduli of certain standard 

structural cross-sections. For the 35 years following Karraan’s 

work, controversy surrounded the relative merits of the tangent 

and reduced moduli. In 1946, Shanley reconciled this discord with 

a rational explanation of the phenomenon in favour of the tangent 

modulus approach. A year later he validated this theory by the 

analysis of a buckling model that has become eponymous with him(41)

More generally, with the twentieth came the development of a 

variety of refined analytical principles, together with an 

attendant improvement in the quality of experimental techniques. 

Further, the relatively recent advent of the electronic digital 

computer has had a dramatic impact upon both analytical and 

experimental studies. Modern computers are capable of undertaking 

algorithmic computations at phenomenal speed and facilitate the 

storage of vast amounts of data in a readily accessible manner. 

Since the advent of the first computer, ENSIAC, constructed in 

1948 in the USA, engineering analysis and experimental techniques 

have in turn developed to take advantage of the digital computer’s 

attributes. Given the highly variable, statistical nature of 

strut behaviour, these factors are of particular relevance to the 

research programme herein discussed.

1.4 BASIC THEORETICAL MODELLING

The representative spring-link model illustrated in Fig 1.5 

consists of two rigid and incompressible links, connected by a 

centrally located torsional spring of stiffness c - this is a
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constant for linearly constitutive systems. Such models afford 

considerable computational amenability. The spring represents the 

flexural stiffness of the model in discretised terms. The 

response moment M, due to the rotation of the spring, is given by 

M=2c0(3), where 0 , the angular link displacement, is the single 

kinematic generalised coordinate in this 1 degree-of-freedom 

system. Presently, c=2EI/& in accordance with linear elastic 

constitutive properties. The spring-link topology is taken to be

initially straight and the attendant analysis is thereby of 

quasi-idealised form.

Employing a potential energy approach(35), then, with V denoting 

the total potential energy of the system,

V = U - W (1-7)

where U and W are the strain energy and external work functions 

respectively. These functions may be derived explicitly in terms 

of 0, such that Eqn (1.7) becomes

V = 2c02 - P£(1-cos0) (1.8)

The condition that V is stationary with respect to 0 for static 

equilibrium affords

3V/80 = 4c0 - P£sin0 = 0 (1.9)

Eqn (1.9) can be satisfied either with 0=0 throughout all P, which 

forms a flexurally trivial solution, or with

P = 4c0/£sin0 (1*10)
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Linearising (1.10), such that 0/sin0=l for small displacements of 

0 , affords the critical load

Pe = 4c/£ = 8EI/&2 (1.11)

with ( 0 jp =0). Accordingly, the quasi-idealised post-buckling 

equilibrium path (0>O) is given by

P = Pe0 / sin0 (1.12)
To establish the nature of the stability of the pre- and post- 

buckling loci, the second differential of V with respect to 0 is

noting that maximum V (02V/002<O) and minimum V (d2V/(te2>0) are 

associated with unstable, ® | p <  Pe= ^> anc* stable 0 | Pe^0 >
equilibrium respectively.

If an imperfect initial profile is introduced into the former 

idealised model as illustrated in Fig 1.6, which is analogous to 

the initial curvature profile depicted in Fig 1.3, then V becomes

sought(3), whereby

32 V/302 = 4c - Pt.cos0 (1.13)

2
V = 2c(0-0O ) + P£(cos0-cos0o) (1.14)

with the equilibrium condition

3V/30 = 4c(0-0o) - P&sin0 = 0 (1.15)

19



affording

P = 4c(0-0o)/£sin0 (1.16)

Normalising the loading to its critical value

P/Pe=(0-0o ) / sin0 (1*17)

The locus given by this expression is typically represented by the 

imperfection locus illustrated in Fig 1.7; also shown are the 

equilibrium loci of the former quasi-idealised analysis.

Spring-link models can provide quantitatively representative data 

at low computational cost. This is particularly attractive when 

considering more complex inelastic studies and further use of 

the spring-link procedure is made in the ensuing theoretical 

work.

1.5 EXPERIMENTAL CONSIDERATIONS

Given the previously denoted statistical nature of inelastic strut 

performance, then experimentation and empiricism suitably form a 

major part of the research programme. Associated with this, the 

actual establishment of an accurate large scale testing system 

formed an integral part of this programme during the early stages 

of the study. Wherever applicable, the necessary compliance with

20



quasi-idealised 
locus ( P > PP/P

imperfection
locusbifurcation

linearised1

cf Figure 1.2(c)

4J

Figure 1.7 ; Model : Action - Response Loci

21



British Standards Codes of Practice was ensured; in aspects of the 

work not covered by these codes, recommendations from established 

literature sources in the field were sought/26).

The experimental system was based on a Schenck 250 tonne servo- 

hydraulic stiff column testing machine, possessing over 3m of 

available ’daylight1. Stroke or axial displacement control was 

employed, providing for static post-buckling path definition. 

Cyclic loading capability was made available through an in-board 

function generator. CHS steel strut specimens were chosen for 

testing purposes. A doubly encastre configuration was considered 

to afford the most readily definable form of boundary conditions. 

Such configurations afford a common effective length (ft=L/2) in 

both the elastic and inelastic material ranges(42)# Further, 

using circular sections should, given a sufficiently large number 

of tests, enable a check to be made upon specimen behaviour being 

machine independent. That is, the testing machine must not 

prejudice the buckling path direction response of the strut, there 

being no preferred failure direction (weak axis) resulting from 

the geometry of the specimen cross-section. Specimen geometry was 

to be based on Am values of about unity, the nominal strut lengths 

thereby being between 2.2m and 3.0m.

Material support from the tubes division (Corby) of the British 

Steel Corporation led to the provision of 7.5m runs of CHS 

electric-weld stretch reduced (EWSR) grade 43C steel; these 

sections are stress relieved. Two strut specimens were cut from 

each run, one being tested statically, the other being additionally
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subjected to cyclic loading phase, thereby affording some degree 

of specific static/cyclic strut performance correlation to be 

made. Such correspondence is limited by imperfection variability, 

however; if the static strut is substantially more imperfect, 

correlation of performance is greatly reduced. Consequently, the 

large number of tests is again important to statistically provide 

for a sufficient degree of correlation. Further, employing 

offcuts, a stub t e s t ( 2 6 )  was performed for each strut experiment 

undertaken to determine individual specimen constitutive data. 

Geometric properties of individual cross-sections were obtained by 

recording the relevant measurements. Datum out-of-straightness 

measurements were undertaken for each strut prior to actual 

testing whilst wall thickness and outer diameter measurements were 

employed for ovality and eccentricity of loading assessments^). 

Residual stresses were not explicitly considered in view of their 

relative unimportance in the (stress relieved) sections employed 

h e r e i n ( 3 5 ) # it is considered that such individual specimen 

assessment assists in accurate experimentation.

The Schenck column testing rig was adapted and developed through 

the earlier part of the research programme to accommodate the 

various types of testing denoted above - static strut, cyclic 

strut, stub and initial curvature tests. These developments were 

undertaken as part of the general enhancement of the basic testing 

system which also involved substantial digital computer provision. 

This provision resulted in considerable improvements in system 

accuracy, repeatability, control, ’turnround* time and safety; 

convenient manipulation of the large data sets generated was also

23



provided. Various types of computing facility were employed,

depending on the particular requirements involved. This feature 

is further discussed in the following section.

Additionally, a supplementary set of tensile tests were carried 

out to provide for control on the stub data. These tests were 

conducted on an Avery 7110 universal testing machine which

provided for tensile testing to BS 18, Part 4(25).

1.6 DIGITAL COMPUTER INCORPORATION

The experimental phase of the research programme was heavily 

influenced by the capabilities of modern computing equipment. The 

enhancement of the basic testing facility, whereby diverse 

computing systems were interfaced with the Schenck testing 

machine, led to improvements in both the quality and production of 

experimental data, as denoted in the foregoing section. The

enhanced computer governed testing facility involved micro, mini 

and mainframe computers, which were employed in the control, data 

monitoring/acquisition and graphical parametric output phases 

respectively. The RML380Z microcomputer afforded a '10-bit’ DAC 

(digital-to-analogue converter) and ADC control unit whilst the 

PDP1104(DEC) 16-bit minicomputer provided for high speed accurate

data recording. The IBM4341 mainframe computer supplied both high 

resolution graphics software support, together with substantial 

and readily accessible data storage facilities.

In addition to interfacing the testing machine with both the micro

24



and minicomputers, the micro was further interfaced with the mini 

and mainframe systems for data transfer purposes.

All drive, monitor and data reduction software was developed 

in-house. The BASIC language was used for the smaller computers, 

whilst 32/64-bit (per byte) FORTRAN/GINO programming was employed 

on the mainframe. The inelastic theoretical studies undertaken in 

support of the experimental programme were also implemented on the 

mainframe computer. This was considered necessary given the 

highly non-linear nature of the expressions involved.

1.7 SUMMARY

The history and nature of strut stability studies have been 

identified. The important role of imperfections has been set out, 

particularly with regard to struts possessing industrially 

relevant slenderness ratios (Am= l)* Attempts to model the complex 

inelastic behaviour of these common structural elements should pay 

due regard to the requirements of design engineers in practice. 

Accordingly, a spring-link modelling procedure which provides for 

computationally amenable expressions has been introduced.

Given that the objective of the programme is to determine the 

otherwise static behaviour of an inelastically imperfection 

sensitive strut subject to a pre-buckling cyclic loading phase, 

the need for substantial experimental study has been identified 

and discussed. Testing at large scale is demanded if direct 

definition of the effects of imperfections are to be made
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available. Incorporation of the digital computer is to be made 

throughout the experimental and theoretical phases of the research 

programme. The following chapter sets out the preliminary factors 

associated with the experimentation.
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CHAPTER 2

THE ESTABLISHMENT OF A LARGE SCALE STRUT TESTING SYSTEM

2.1 INTRODUCTION

Experimentation and empiricism, employing a suitably large number 

of tests, are of particular importance with regard to the study of 

inelastic strut behaviour(1). This is due to the sensitivity 

displayed with respect to the presence of imperfections; the 

substantial scatter of the data accompanying strut testing is 

well-established^^). Indeed, most recent studies on design 

criteria are concerned with the probabilistic basis of the 

parameters i n v o l v e d ^ 34)% Accordingly, considerable effort has 

been taken in the present programme to ensure high quality 

experimentation, with the substantial number of large scale tests 

involved being a particular feature.

The fulcrum of the compression testing system employed in the 

experimental studies was a +5 volt Schenck 250 tonne column 

testing machine. This was employed for the stub and strut 

compression tests and initial out-of-straightness monitoring of 

the strut specimens. A number of supporting tensile tests were to 

be undertaken on an Avery testing machine, with geometric data 

obtained from metrology studies completing the experimental 

programme.

An integral part of this programme was concerned with enhancement
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of the Schenck machine for reasons of accuracy, test 

repeatability, fine control, turnround time and safety. Of 

particular interest was the incorporation of digital computer 

control and monitoring which enabled fully automatic

experimentation and generation of graphical/numerical output data 

of high (digital) resolution. Concurrent with this enhancement 

was a preliminary series of strut and stub tests undertaken for

purposes of testing system validation; these two activities formed 

the first phase of the experimental programme and are discussed in 

the following.

2.2 INITIAL SCHENCK CONFIGURATION

The basic Schenck facility essentially consisted of a stiff 

mechanical rig, RV-10 servo controller and hydraulic power pack. 

The machine cross-head was adjustable on twin threaded columns; 

the actuator was located at the base, where the compressive

loading, under axial stroke (displacement) control was applied. 

This form of ’loading* control enables identification of the 

post-buckling path. Machine ’daylight' provision allowed for over 

3m vertical clearance and 0.6m lateral clearance in the plane of 

the columns; there was no effective restriction in the third

dimension. The testing machine was of servo-hydraulic form with 

the electronic (analogue) commands of the RV-10 servo controller 

governing the power pack's delivery of high pressure hydraulic oil 

to the actuator. Equivalence of the controller's signal with that 

fed back from the Schenck inboard transducer was indicative of the 

required incremental axial displacement being achieved. Cyclic
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action was provided for by means of a function generator in the 

RV-10 controller. Axial load was determined from an inboard 

2500kN load cell.

Plate 1 shows the Schenck mechanical rig being employed in its 

pre-enhancement or basic form. The specimen involved is a 50mm by 

3.2mm SHS - both SHS and CHS specimens were used in the 

preliminary tests - with encastre conditions being established 

using end caps bolted to the upper and lower plattens, bond 

between these caps and the ends of the strut being achieved by the 

use of proprietary resin. This arrangement was effective in 

restricting rotation of the ends of the strut but inconvenient to 

implement. Plate 1 also shows the dial gauges which were 

initially employed to measure specimen end-shortening whilst the 

centrally mounted strain gauges set a pattern for future tests. 

It is to be noted that the deflected shape conforms to that 

expected in the post-buckling range. Further discussion on the 

preliminary compression tests follows delineation of the actual 

testing system enhancement undertaken. It is to be understood 

that Sections 2.3 and 2.4 relate to the testing system and 

procedures as finally established in the enhanced configuration, 

ie the system and procedures employed in the formal testing 

programme described in Chapter 3. Section 2.5 deals with tests 

undertaken concurrently with this enhancement, these preliminary 

tests being integral with the enhancement process itself.

29



30

Pl
at
e 

1 
; 

In
it

ia
l 

Sc
he
nc
k 

Co
nf

ig
ur

at
io

n



2.3 SCHENCK ENHANCEMENT - PERIPHERAL HARDWARE

2.3.1 Strut Facility

Provision of an outboard 225kN Strainsert (low profile) load cell 

and the associated load cell amplifier, constructed in-house, 

ensured that the testing system complied with the highest grade, 

0.5, of BS 1610(45); ie load measurement was accurate to ±0.5% of 

full scale. Plate 2 depicts the load cell located between 

purpose-built hardened steel housing units. The lower housing 

unit was located on the machine actuator by a central locating 

spiggot, all relevant surfaces being milled flat to obviate 

alignment errors. As illustrated in Plate 2, the upper housing 

unit was recessed in the centre to accept a mechanical split taper 

lock collett which is displayed alongside. Colletts were employed 

to provide for end fixity.

Considerable thought was given to the means by which effective 

clamping action, to be maintained throughout the loading 

procedure, could be provided. Several mechanical devices were 

considered and, after trials, the use of taper lock colletts, a 

familiar item in mechanical engineering systems, was accepted as 

providing the best means by which the desired effect could be 

achieved. As shown in Plate 2, each collett accepted a 50mm 

length of section which was then gripped circumferentially upon 

mounting the collett in the appropriately recessed housing and 

fitting the two grub screws provided. Further, and importantly, 

the grip increases upon application of axial compression. End
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bearing on the extreme cross-sections completed the requisite end 

fixity definition. In addition to the lower mounting unit 

displayed in Plate 2, a similar but simplified - no load cell 

being required - unit was employed at the upper end of the strut 

where connection to the cross-head plat ten was effected. 

Initially, struts were turned down to fit the colletts. This was 

unsatisfactory as it introduced unnecessary effort and additional 

cross-sectional geometric imperfections. Accordingly, a set of 

colletts was obtained, these being turned to a variety of internal 

diameters to provide for a range of tolerances appropriate to the 

nominal section diameter - formal testing was to be made using 

48.3mm by 3.2mm CHS as noted in Section 1.5.

The necessary slack on the Schenck threaded column permitted 

movement of the cross-head under strut loading. It was considered 

that this could be problematical, particularly in the cyclic 

tests. A tie-rod arrangement was therefore implemented to pull 

the cross-head up against the threads of the columns using the top 

plate of the Schenck as an anchor point. The cross-head was 

forced back onto the column threads, under a load in excess of the 

maximum anticipated compressive test load; the tie-rod was then 

pre-tensioned to secure the cross-head in position.

A further development saw the provision of transducer monitoring 

of the primary kinematic response parameters - that is 

end-shortening and central transverse displacement. In addition, 

a more precise level of actuator control would be made available. 

This development consisted of a transducer network made up of a
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ten +50mm stroke transducer monitoring array located on a purpose 

built framework independent of specimen and machine strain. The 

stroke range employed was dictated by the prescribed limiting 

magnitude of the net central transverse displacement wcl-wocl. 

This prescribed magnitude was determined from the concurrent 

preliminary strut tests - cf Section 2.5. Six transducers were 

mounted to monitor the upper and lower end displacements and 

thereby provide definitive net axial strut movement. At each end, 

the respective transducers were located, radially, at 120° 

intervals, minimising any rotational effect of the platten mounted 

housings. (This arrangement indicated that no measurable rotation 

occurred throughout the testing programme.) Denoting the lower 

three transducer readings by A, B and C and the upper readings by 

D, E, and F, then the net axial shortening , denoted u (for conven

ience), is given by

(2.1)
= u

The algorithm was implemented using an in-house constructed, hard

wired analogue device. The lower three readings were themselves 

averaged, this similarly hard-wired reading supplanting the cruder 

inboard transducer in providing for a more accurate feedback 

signal regarding actuator movement. The remaining four

transducers, denoted by G, H, I and J were mounted to record net 

central transverse displacement w c l “W o c l . These were orthogonally 

located so as to bear onto the facets of a square target, itself 

centralised using knife-edges on the strut. Average values, 

taking account of the vectors provided by the respective 

transducers, of opposing pairs afforded a non-prejudicial net

A + B + C _ D + E + F

3 3
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resultant vector value of wCL_wocL by the following Pythagorian 

transformation;

which was also employed in hard-wired form using an in-house 

constructed analogue device. The transducers were served by the

necessary amplifying units, and the three sets of transducer

provided by four centrally mounted axially oriented strain gauges, 

located in a radially symmetric pattern. These enabled a close 

inspection to be made of the constitutive states appertaining to 

this highly stressed region of the strut.

2.3.2 Stub Facility

An important aspect of the experimental programme was the 

provision of appropriate yield/proof stress cty and direct modulus 

E data. This data was obtained from stub tests, the respective 

specimens being approximately 200mm in length, this length being 

dependent upon the specimen sections involved - note later. The 

tests were conducted with the Schenck cross-head lowered 

accordingly, the previously mentioned tie-rod being extended to 

accommodate this feature. In particular, and as required by the 

stub test p r o c e d u r e ( 2 6 ) f these tests necessitated the provision of 

case-hardened upper and lower bearing plate assemblies which were 

mounted on spiggots, these being located in .the previously 

discussed colletts. The upper housing unit was adjustable to 

ensure parallelism of the bearing surfaces between which were

(2.2)

assemblies are shown in Plate 3. Additional monitoring was
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(a) Upper Transducer Assembly

(b) Central Transducer Assembly

(c) Base Transducer Assembly

Plate 3 ; Strut Test Rig - Transducer Monitoring Network
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mounted four short stroke precision gauges - NER5 +_5mm stroke. 

The complete but unmounted stub testing unit is depicted in Plate 

4 together with a typical CHS specimen. The directly obtained (ie 

hard-wired) analogue average of the four transducers, mounted 

in a radially symmetrical manner, served both as the necessary 

end-shortening data output and actuator feedback signal. Axial 

load monitoring was again provided by the 225kN load cell.

2.3.3 Cyclic Testing Aspects

As noted in Section 1.1, the primary objective of the research 

programme was to determine the effect of a pre-buckling cyclic 

phase of loading upon otherwise static strut performance. The 

duration and frequency of this cyclic phase were to be based on 

offshore values in the absence of more definitive data. 

Accordingly, target values of n c=1000 cycles at f=l/16Hz(^6) were 

established. A familiar sinusoidal forcing function was to be 

employed using the RV-10 function generator under manual control, 

the appropriate amplitudes and mean cyclic axial displacements to 

be determined once typical static strut performance had been 

identified.

For those compression • tests involving a phase of cyclic action, 

additional and continuous monitoring was provided by the use of 

x,y and x,y/t plotters. For strut testing purposes, these were 

interfaced with the axial load, axial displacement and central 

transverse displacement output channels. This arrangement

provided axial load/axial displacement, axial load/central
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Plate 4 ; Stub Test Rig

Plate 5 ; Cyclic Stub Test Rig
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transverse displacement and each of axial load, axial displacement 

and central transverse displacement versus time graphical output. 

It was incumbent upon the system that the mean axial cyclic 

displacement or stroke was maintained constant throughout the 

cyclic phase. Pre- and post- cyclic action phase values of axial 

stroke were checked accordingly. For data control regarding 

slenderness ratio effects, a number of later stub tests, see 

Chapter 3, were also subject to a cyclic loading phase and 

facilities for the continuous monitoring of axial load and axial 

displacement against time and one another were incorporated in a 

similar manner to that described above. Plate 5 illustrates a 

stub specimen undergoing a test involving a cyclic action phase.

2.3.4 Out-of-Straightness Monitoring

Attempts to automatically monitor the initial out-of-straightness 

of the strut specimens were focussed on the fitting of a motorised 

lathe rotating centre to the lower collett seating together with a 

similar slave unit fitted into the upper collett seating. The 

lower mounting is illustrated in Plate 6. Out-of-straightness 

measurements were obtained using seven transversely mounted 

jfl2.5mm transducers fitted with T heads to allow for the circular 

nature of the specimens chosen for the main strut testing 

programme. The transducers were mounted on the previously 

mentioned main transducer framework and were evenly distributed 

along the length of each strut, with one at mid-span. Having 

fitted a specimen onto the lathe rotating centres, the specimen 

was automatically rotated and monitored, readings being taken at
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Plate 6 ; Out - of - Straightness Monitoring 
Rig - Base Assembly

Plate 7 ; Digital Computer Annexe
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intervals of7r/2. The lathe rotating centres enabled assessment of 

the initial out-of-straightness against BS4848, Part 2(^7)# Aware 

of the possibility that these readings might not be directly 

relevant to the encastre compression testing mode, readings were 

also taken with specimens fully mounted in the colletts. In this 

approach, the specimens were manually rotated - an awkward 

procedure - clamping being effected as required prior to the 

readings being taken. A representative sample of the struts 

formally tested and delineated in Chapter 3 were assessed in this 

manner and correlation established between the two sets of data. 

Attempts to motorise encastre mode out-of-straightness assessment 

were investigated but no convenient system was determined.

2.4 SCHENCK ENHANCEMENT - DIGITAL COMPUTER INCORPORATION

In conjunction with the foregoing mechanical enhancement, thought 

was given to the incorporation of digital computing facilities in 

order to establish a modern automated system. Initially a DEC PDP 

1104 mini-computer/data logger was interfaced with the appropriate 

transducer, strain gauge and load cell channels. This was 

essential if a substantial number of static increments were to be 

employed in the (static) compression tests - some 2000 data items 

per test was the desired target figure. This implementation was a 

relatively straightforward task, with all software produced 

in-house; 16-bit digital accuracy was thereby readily made 

available. In parametric terms, an accuracy of 0.01% was obtained 

at a reading speed of ten channels per second; this performance 

was markedly superior to that previously available.
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With newer but similar testing equipment also providing inboard 

computer control, it was then determined to employ a standard 

micro-computer for control purposes with the Schenck. An RML380Z 

computer was chosen in view of its 10-bit. DAC (digital-to-analogue 

converter), made available by paired combination of the machine's 

basic 8-bit architecture. Its 56K bytes memory and twin disc 

drive facility were ample for the tasks involved. With the 

necessary software again produced in-house, the interfacing took 

considerable effort to implement, most of this effort being 

expended on effectively setting up an accurate incremental loading 

or 'ramping' signal, in real-time, that would override the RV-10 

controller. Safety considerations were a further major factor, as 

was the need to coordinate the micro-drive with the 

mini-monitoring, again in real-time.

The essential features of the resultant control and monitoring 

system, as applicable to static testing, are illustrated in Fig 

2.1. With regard to the drive signal, the micro-computer set up a 

digital pulse as shown in Fig 2.1(a). Interfacing through the DAC 

enabled conversion of this pulse into the voltage regulated 

analogue linear ramp and plateau configuration depicted in Fig 

2.1(b). This regulation corresponded - note the +5 volt Schenck 

machine stroke range - to limiting both the stroke and stroke rate 

per 'loading' increment of the Schenck machine. The interface 

adaptor/stroke rate limiter (SRL) was controlled in real-time t' 

and the ramped signal was then passed, via the RV-10 controller 

now acting as a 'slave', to the actuator - note Section 2.2. 

Following actuator displacement, the channels corresponding to the
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lower platten outboard transducers, recall readings A, B and C 

delineated in Section 2.3.1 for strut testing and the four

precision gauge readings with respect to the stub testing 

configuration denoted in Section 2.3.2, were then ’interrogated’ 

for completion of the now computerised servo-loop. This servo 

check on the status of the actuator movement was again completed 

in real-time during the 'plateau' stage referred to above - note 

Fig 2.1(c). The servo- loop data was checked using the interface 

adaptor/SRL and the resulting status displayed on the

micro-computer's VDU employing the computer's ADC (analogue-to- 

digital converter) as denoted in Fig 2.1(c). The micro- and 

mini-computers were themselves interfaced so that a trigger signal 

could be despatched, satisfactory SRL status having been achieved, 

from the micro to the mini to initiate channel (ie data) 

monitoring of all parametric output by the latter computer. To 

have employed the controlling micro-computer for full data 

monitoring would have resulted in slower and less accurate 

testing. The micro/mini trigger signal and the mini channel 

scanning data acquisition process were again established in 

real-time t', as denoted in Fig 2.1(d). Failure to achieve or 

maintain satisfactory SRL status resulted in automatic test 

shut-down; this never occurred throughout the experimental 

studies.

The complete incremental procedure was duly programmed with each

increment occupying a prescribed time period, the procedure being 

repeated through to test completion, computer control and 

monitoring having begun once the specimen had been initially
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mounted in the Schenck. A total of IK bits was attributed to 

driving the overall actuator stroke. For those compression tests 

involving a cyclic action phase, an interrupt was provided to 

enable use of the RV-10 cyclic function generator under manual 

control. A sketch of the appropriate hardware features is given 

in Fig 2.1(e). Finally, a safety cut-out was made available by 

passing control to the micro-computer's 'space-bar' key whenever 

signals, either to/from the Schenck or to the mini-computer (ie 

trigger signal), were not active in the micro's CPU (central 

processor unit). This resulted in real-time cut-out being made 

available for 'virtually' the whole duration of a test. The 

computer coding required was simple but effective. On one 

occasion, for example, problems due to electronic interference 

were incurred resulting in vibration of the Schenck during a test. 

This was quickly overcome using the controlling computer’s 'space

bar' key. In conjunction with the displacement control approach 

employed, the testing system was actually safer than it had been 

under manual control; improved response time in all related 

aspects was the essential product of computer implementation.

Given the foregoing implementation, then, upon completion of a 

test, all data, relating to both raw individual sensor readings 

and their refined parametric equivalents, was resident in the 

mini-computer's CPU. This was then transferred, using paper-tape 

interfacing, to the micro-computer now free from its test control 

role. This computer had been interfaced with the (SCP) Computer 

Unit's IBM4341 8Mb mainframe - the first such interfacing between 

a micro-computer and the Polytechnic's mainframe to be achieved.
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The raw test data was transferred to the mainframe whereupon it 

was processed into engineering parametric graphical form. The 

stub and strut data processing programmes were written in 

Fortran/GINO and included linear regression routines for 

interpolated parametric values (eg determination of 0.2% proof 

stress from constitutive data plots).

With respect to out-of-straightness monitoring as conducted in the 

formal tests described in Chapter 3, a small control programme was 

written for the RML380Z (micro). Monitoring was undertaken using 

the mini-computer in a manner similar to that described above. 

Increments herein took the form of angular rotations, mechanical 

power being supplied by a small proprietary motor interfaced with 

the micro and connected to the lower lathe rotating centre - note 

Plate 6. Each test involved five full rotations of the strut 

making for twenty-one sets of initial displacements at each of the 

respective seven transducers. Data output was again transferred 

to the mainframe whereby mean initial displacements and their 

orientations were evaluated.

Clearly, considerable effort went into providing digital computing 

support to the experimental programme. Indeed, it was considered 

desirable to construct a ’digital computer annexe' to provide a 

clean air atmosphere for the micro- and mini-computers and 

attendant peripherals. An interior view of the annexe is given in 

Plate 7 whilst the testing system in its enhanced strut testing 

guise is illustrated in Plate 8, the annexe forming the backdrop; 

it is instructive to compare Plates 1 and 8. It must be recalled
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Plate 8 ; Enhanced Schenck Configuration
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that, together with the previously discussed mechanical 

enhancement, the foregoing digital computing support only came 

on-line towards the end of the preliminary series of compression 

tests and that the procedures discussed essentially relate to the 

formal testing programme described in Chapter 3. Fig 2.2 gives a 

schematic representation of the finalised Schenck testing system.

Attention is now drawn to the preliminary series of stub and strut 

tests undertaken during the period of testing system enhancement. 

These tests provided for testing system validation and important 

data such as suitable limiting stroke values for both formal stub 

and strut test purposes. Experience in large scale testing was 

gained and a review of methodology enabled.

2.5 PRELIMINARY TESTS

2.5.1 Static Strut Tests

In these tests both 50mm by 3.2mm SHS and 48.3mm by 3.2mm CHS 

specimens were employed. All sections were tested at a 

slenderness ratio of 80 arid were of Grade 43C material. The 

effective length was deemed to be half the nominal length, ie 

fc=L/2. Axial stroke was gradually applied, through buckling, up 

to some maximum axial stroke beyond which it was considered that 

data would not be of practical engineering interest. At each 

increment, the corresponding axial load was recorded together with 

further response data as available, this being dependent upon the 

degree of system enhancement extant. The number of increments
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involved in a given test was similarly variable. The early tests 

were conducted using as few as twenty increments involving only 

axial displacement, and load parametric monitoring.

Key experimental data is given in Table 2.1 together with the 

respective Euler/Critical and ECCS/Perry(36) (unfactored) load 

values. In these latter evaluations, the effective length has 

been taken as above ,£ ^0 .7l(36) } whilst values for direct modulus 

E and yield/proof stress Oy have been taken from code values(^{>), 

ie E=205kN/mm2 and oy=275N/mm2. (nb; At the time of testing BS 

449 was in force.) Tests P9-P21 involved initially restricted 

but developing use of the mini-computer/data logger, whilst tests 

P17-P21 involved some form of digital control. By the end of this 

preliminary series of static strut tests the testing system was 

fully on-line and the formal testing described in Chapter 3 was 

imminent. With particular respect to CHS specimens, the maximum 

value of net central displacement recorded was of the order of 

50mm, this evaluation being of importance to the design of the 

transducer network under development. The corresponding limiting 

axial displacement was of the order of 5mm. Of note is the fact 

that the average CHS buckling load was 1.12 times the respective 

ECCS limit state load.

2.5.2 Stub Tests

Six preliminary stub tests were carried out towards the end of the 

enhancement programme under full computer control and monitoring 

as delineated in Sections 2.3 and 2.4. Only the number and
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Test Ref. Buckling Load Axial or End Net Central
?c Shortening Transverse

u lpc Displacement
(kN) (mm) wcL “ wocL|p 

(mm) c

PI 131.3 _

P2 137.5 - -

P3 SHS 136.2 —

P4 CHS 105.5 2.92 9.49
P5 102.5 2.85 5.95
P6 109.0 2.67 4.23
P7 101.5 2.91 4.35
P8 101.6 2.96 5.07
P9 101.9 2.89 8.15
P10 100.3 2.88 5.76
Pll 103.5 2.89 4.21
P12 103.0 2.83 5.66
P13 100.5 2.91 5.78
P14 106.8 3.06 4.12
P15 102 .5 2.98 6.23
P16 95.2 2.86 6.65
P17 105.4 3.00 4.74
P18 99.6 2.96 5.65
P19 108.6 3.01 7.31
P20 98.8 2.92 7.12
P21 108.2 3.05 4.82

Average (SHS) 135.0 - -

Average (CHS) 103.0 2.92 5.85

SHS Euler Load = 187.8kN SHS ECCS Load = 143kN
CHS Euler Load = 121kN CHS ECCS Load = 92kN

Table 2.1; Preliminary Static Strut Test Results
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magnitude of the 'loading' increments remained to be established 

whilst the only non-automated aspect concerned the transfer of 

data to the mainframe and the manner of data reduction/graphical 

interpretation employed. Indeed, this experimentation 'back-end' 

was finally established employing the six data sets provided by 

these tests. The number of increments employed in an individual 

stub test increased from approximately twenty to in excess of one 

hundred in the course of this small series of tests. Essentially, 

the overall stub test procedure was formally established by this 

means and key preliminary test data is given in Table 2.2. All 

tests were carried out on 48.3mm by 3.2 mm CHS specimens; the 

spread of data for yield/proof stress and direct modulus is 

noteworthy.

2.5.3 Cyclic Strut Tests

Three cyclic strut tests formed the final set of preliminary tests 

and were conducted under appropriate computer control and 

monitoring. Employing experience obtained from the former static 

strut tests, the primary purposes of these tests were cyclic 

testing system validation and determination of suitable amplitude 

(2uam) and mean cyclic axial stroke values (uJjj), this latter 

parameter being that value of axial static displacement at which 

the cyclic action was implemented. In all three cases, 48.3mm by 

3.2mm CHS specimens were employed and the cyclic action incurred 

varying degrees of inelastic behaviour as indicated by the values 

for u | p c>uainand u^ in Table 2.3. Consideration was given to the 

relationship between u^ and the axial displacement corresponding
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Test R e f . Yield/Proof Stress
Oy

(N/mm^)

Direct Modulus 
E

(kN/mm^)

P25 312 197
P26 292 197
P27 293 206
P28 276 211
P29 280 207
P30 314 204

Average values: Oy = 295N/mm2, E = 204kN/mm^, u |pg = 0.29mm 

Table 2.2; Preliminary Stub Test Results

Test Ref. Buckling Load 
?c

(kN)

Axial
Displacement

» ipc
(mm)

Net Central 
Transverse 

Displacement

WcL ~r“^ L|pc (.mm )

P22 100.0 2.97 4.76
P23 100.5 3.03 7.67
P24 110.0 2.84 5.21

f = l/16Hz, uam= 1mm, nc = 100 cycles, u^ = 1.4mm

Table 2.3; Preliminary Cyclic Strut Test Results
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to the unfactored/factored*Perry'loads - this matter is discussed 

further in Chapter 3. For machine proving purposes, cyclic 

durations were limited to 100 cycles and no variation in u^ was 

detected; this is as required under displacement or stroke 

controlled action. Strain gauges were dispensed with, there being 

a surfeit of data otherwise made available, the data monitoring 

procedure being suitably amended. A slenderness ratio of 80 was 

once more employed. As with the preliminary static tests, 

imperfections were not monitored apriori. No indication of loss 

in end fixity due to cyclic action was recorded.

It was determined that efficient testing was readily available 

employing the established computerised static strut procedure 

subject to machine interrupt upon attainment of axial stroke um . 

Control was then passed to the RV-10 and a sinusoidal forcing 

function implemented under manual control. The tests enabled the 

dynamic monitoring to be ’tuned' during the cyclic action phases. 

Control was passed back to the micro-computer upon completion of 

the respective cyclic action phase.

2.5.4 Resume

The preliminary tests set out above resulted in the proving of the 

testing system through the various stages of the mechanical and 

digital computer enhancement programme. Chronologically

concurrent activities, the preliminary tests and enhancement 

programmes resulted in the procedures discussed in Sections 2.3 

and 2.4 being fully operative by their completion. Further
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consideration of these procedures follows after delineation of two 

additional developments whose necessity was identified as a result 

of the work undertaken in this initial experimental phase of the 

research programme.

2.6 TENSILE TESTING FACILITY

Given the variation in yield/proof stress data noted in Table 2.2 

for the limited number of tests undertaken and in view of 

established arguments relating to stub test based constitutive 

data(43) t it was considered necessary to supplement the 

compression tests with a series of tensile tests on a 

representative sample of specimens. An Avery 7110 testing machine 

was therefore configured to BS18, Part 4^25) standards, this 

requiring the addition of key peripherals to the basic machine. 

An x,y plotter was employed to record axial load/average axial 

strain whilst an x,y/t plotter recorded the strain rate(48). Load 

was monitored using an outboard 300kN load cell and manual control 

was employed throughout. CHS specimens were centrally 'waisted’ 

and four axially oriented strain gauges applied in a radially 

symmetric manner, their hard-wired average being provided by a 

supplementary analogue amplifier. Plate 9 illustrates the Avery 

system, as established, in operation. Further details of the 

tensile testing programme are given in Section 3.3.2.
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Plate 9 ; Avery - Tensile Testing Rig
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2.7 ANCILLARY FEATURES

During the first experimental phase it also became apparent that, 

for purposes of accuracy, the means of geometric measurement 

should be carefully assessed. To this end, recourse was to be 

made in the formal experimental programme to use of the 

Polytechnic’s Metrology Laboratory. Geometric dimensions recorded 

during the formal testing programme and noted in Chapter 3 

included CHS stub specimen length, diameter and wall thickness 

measurements together with checks upon the planarity of the 

respective stub end sections and their orthogonality with respect 

to the specimen length. Further, weight assessments were to be 

undertaken for purposes of sectional area assessment. Throughout, 

such experimental measurements were supported by checks being made 

employing the Metrology Laboratory facilities. In particular, all 

stub specimen length and end section parallelism assessments were 

checked in this way.

Inevitably, errors or inaccuracies will occur. Tolerances 

attending peripheral hardware - eg transducers - are available; 

tolerances attending the actual electronic acquisition of the 

data, however, can only be estimated. The former tolerances 

consist of non-linearity (the deviation from the 'true' value of 

the measured value) and repeatability (variation of a measured 

value due to repeated observations of that value) types. 

Tolerance values, given as a percentage of full scale, take the 

form +0.09% and +0.1% non-linearity for the load cell and the 

transducers respectively, and +0.03% repeatability for both items.
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The x,y and x ,y/1 plotters each involve total tolerances of +0.6%. 

Electronic acquisition tolerances are taken to be individually 

+0.1% for the amplifier, supply voltage fluctuations and logging 

errors, with +0.01% mini-computer resolution. Table 2.4 presents 

the resultant tolerances or errors incurred in the various 

monitoring systems employed. Each resultant consists of the 

square root of the sum of the respective component errors 

squared.

2.8 SUMMARY

The work discussed in this chapter has been primarily concerned 

with the establishment of an enhanced compression system and the 

preliminary strut and stub tests concurrently undertaken for 

purposes of testing system system validation. This work accounted 

for the first eighteen months of research study. During this 

time, the decision was taken to employ 48.3mm by 3.2mm CHS of 

Grade 43C for testing purposes, and BSC were approached for 

assistance. This resulted in the prompt provision of fifty such 

7.5m runs by BSC Tubes Division (Corby). The EWSR tubes conformed 

to BS436C)(49) an(j BS4, Part 2^50 ) f the manufacturing process 

involving hot rolling and forming, induction welding, stretch 

reducing to size and hot finishing (stress relieving). This 

material support is gratefully acknowledged.

The material was received some nine months into the programme and 

some of this stock was employed in the preliminary tests. It is a 

pity that more use could not have been made of the data obtained

57



e 0z 0 0CO t—1 in co
u CO O CM vO 3
0) 3 vO OM 4-1 • • • 3
4-1 o o . o .
o CO + 1 + 1 + 1i—1O,
4-1
So* (U
X 1—1

3
33 O
3 CO
CO in in

1“1 CM CM CM 3So rH VO vO vO
* 3 • • • 3
X IM o , o , o ,

+ 1 + 1 + 1IM
o

SO4-1 0 0 0•H z 0 0 0r-t 1—1 CO O iH
•H B 3 m o CM in
rO CU 3 mi- CM O o
CO 4-1 4-1 • • • •
4-1 CO O o . o . o . o .
CO to 3 +  1 +  1 + 1 + 10) COar*4 <u 3

CO V4 o
4-1 •H
•H + 4-1
60 •H 3•H tO CO r~l
Q 4-1 «H 3•H 3 O

j-i cr CO
CO o oo CO CO CO
CU CO i—( O' o o o
c T—1 i-H CM CM CM
*H CO 3 • • • •
r—1 4-1 CM o , o , o , o ,
1 CO + 1 + 1 +  1 + 1e  33 CMo o
Z  + S'S

/-N
z 0 3

0 0 U  0m 3  <5 0 3  0CM U  O 3  O o  mCM 3  rH M  rH 3  CM
O 3 33

II 3  II O  II 3  II
3 33 3 3
o 3 3  3 33 3 3  3
•H i—1 3  iH 3  >H M  rH
> rH 3 3  3 3  3 4-1 3
3 1—1 o U  O 3  O OO 3  3 4-1 3 J-i 3 0  3

O 4-1 0rH 0  rH i—1 m  *h
33 rH 0  rH 0  rH • rH
3  3 O  3 0  3 CM 3O  cm in .cm in .cm H . H
hJ V-' + l ~ + l w + 1̂

58

Ta
bl
e 

2.
4;
 
Er
ro
r 

An
al

ys
is



during these tests. (It is to be appreciated that the refined 

facilities and procedures detailed in Sections 2.3 and 2.4 only 

became available as a complete system towards the end of the 

preliminary testing programme.) However, with every test, ideas 

for refinement led to a continuous improvement in experimentation 

and programme specification. Accordingly, the following chapter 

sets out the formal experimental programme consisting of in excess 

of two hundred computer controlled and monitored tests. Given the 

importance of the digital computing aspects discussed in the 

foregoing with respect to the ensuing experimental programme, some 

further details of the software involved are given in the 

Appendix.
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CHAPTER 3

EXPERIMENTAL PROGRAMME

3.1 INTRODUCTION

The central feature of the mainstream or formal testing programme 

was the set of strut tests undertaken involving a pre-buckling 

cyclic action phase. In support of this set, static strut , stub 

and tensile tests were conducted for purposes of data control. As 

noted in Section 1.1, despite an intensive literature search - 

witness the Bibliography - little previous work directly relevant 

to this area of study has been u n c o v e r e d ( 2 2 ) .

The primary objective of the programme was to determine the effect 

of a pre-buckling cyclic action phase upon otherwise static 

performance, emphasis being placed upon imperfection sensitive 

struts and consideration of the effective amplification of initial 

strut imperfections due to the hysteresis incurred. In-depth 

time-dependent study per se was not undertaken. As noted in 

Section 2.3.3, offshore values for cyclic duration and frequency 

were employed in the absence of more definitive data, 

notwithstanding the more general consideration that no structural 

loading is truly static. Accordingly, cyclic action as 

implemented in the programme involved durations centred on 

approximately 1000 cycles (nc ) at a frequency(f) of 1/16 Hz(^6), 

thereby obviating inertial and resonance effects. The sinusoidal 

forcing function employed is detailed in Section 3.3.6.
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The mean states at which the cyclic action phases were to be 

introduced were based upon the factored Perry and 'unfactored' 

ECCS/Perry loads. The former effectively relates to service 

conditions, the latter guaranteeing inelastic cyclic excursions. 

Given axial displacement or stroke control, therefore, the 

respective mean strokes u'm were prescribed to correspond to axial 

compressions of approximately 45 kN and 70 kN respectively for the 

CHS sections employed at a slenderness ratio of 80; some 

two-thirds of the strut tests were conducted at A=80. As noted in 

the previous chapters, a doubly-encastre testing mode was to be 

employed relating to an effective length factor of 0.5. The basic 

70 kN load given above lies between the ECCS loads corresponding 

to the use of the 0.5 factor (92 kN) and the maximum code value of 

0.7(36) (60 kN).

Amplitudes were to be such as to constrain behaviour to the sub- 

buckling compression regime throughout. Relatively low amplitudes 

centred on a mean axial compression of approximately 45 kN would 

primarily involve quasi-elastic hysteresis(31) whilst larger 

amplitudes centred on the higher mean value of 70 kN would produce 

significant inelastic excursions. The remaining cyclic tests 

would cover the intervening range.

It should be noted that fatigue(52) generally involves net tension 

and a large number of cycles C^IO^); low cycle fatigue(31) 

involves ^10^ cycles but even this remains far in excess of the 

prescribed nc . At no stage during the experimental study were 

signs of fatigue failure observed; indeed, some cyclic-tested
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struts were later re-tested statically - see Section 3.8.

The ensuing experimentation is initially discussed in terms of 

specimen configuration and testing procedures. The respective 

data and findings are then presented. Clearly, a vast amount of 

data was generated from the large number of tests involved - in 

excess of 200 - and data presentation takes the form of sample 

tabulations and statistical techniques, in the form of histograms, 

in an attempt to display data concisely, whilst affording 

definitive data trends. All key data is presented in a summary 

table towards the end of the chapter.

3.2 SPECIMEN DEFINITION

3.2.1 Configuration

The 48.3mm by 3.2mm CHS employed in the experimental programme was 

delineated in Section 2.8. This section was chosen to enable 

suitable slenderness ratios to be achieved given the available 

Schenck ’daylight’ and to meet the large scale testing 

requirement. Slenderness ratios (\ ) of 70-90 were deemed 

appropriate, most tests being based on a ratio of 80. Modified 

slenderness ratios (Xm=X/Ai) were thereby centred on unity as 

required for maximum imperfection sensitivity. Nominal strut 

length L=2& therefore ranged between 2.2m and 3.0m; L=2.56m for 

\=80. An additional 50mm was provided at each end of a specimen 

for gripping in the collets described in Chapter 2.
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Accordingly, two strut specimens were cut from each 7.5m run 

provided by BSC. From each run, therefore, one specimen could be 

tested in a formal static manner whilst the other would be subject 

to testing involving a cyclic action phase or, as in a number of 

cyclic tests, phases. This specimen procedure enabled some degree 

of data control to be provided between corresponding static and 

cyclic 'partners'.

For purposes of control over constitutive data, E and cry, two stub 

specimens were cut from each 7.5m run at locations adjacent to the 

strut specimen metal, thereby providing individual strut 

constitutive data. In accordance with established

guidelines^26)j the stub specimens were about 200mm in length, 

with minimum length > 2D + 25cm or 3D and maximum length < 20r or 

5D where D and r denote diameter and minimum radius of gyration 

respectively. Additionally, provision was made to provide for a 

number of tensile specimens as control on the stub test data, 

further offcuts being used for geometric assessment.

Specimens were initially sawn from the 7.5m runs. Strut specimens 

had their ends machined square using a lathe. Stub specimen ends 

were additionally ground flat and parallel as required for direct 

bearing in the stub rig - recall Plate 4. Tensile specimens were 

cut to 600mm in length due to testing machine requirements. A 

central portion was 'turned down' or 'waisted' by lathe to 

approximately half wall thickness over a gauge length of 45mm, in 

accordance with BS18, Part 4^ ^ ) ,  to receive strain gauges. 

Static strut specimens were also 'cleaned' to receive strain
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gauges as noted in Section 2.3.1. Further, a small batch of strut 

specimens were subject to additional, synthetically produced, 

initial curvature; this particular feature is discussed later.

3.2.2 Reference System

A typical 7.5m run topology is illustrated in Fig 3.1; each run 

was assigned a consecutive serial number with sub-classifications 

S and C denoting the respective 'static1 and 'cyclic' strut

specimens, SS and SC their stub counterparts, with T denoting, 

where applicable, the appropriate tensile specimens. Accordingly, 

the main body of tests involved serial or reference numbers 1 to 

27. Numbers 28 to 31 were consigned to the above noted 

synthetically curved specimens. For data control purposes, 

reference number 16 involved one additional synthetically curved 

specimen; this particular specimen, nominally 16S, was given the 

reference 32S to avoid confusion with mainstream data. As a

result, 53 struts were tested effectively as supplied, a further 9 

struts being subject to synthetic curvature. In addition, 6 of

the former cases were subjected to re-testing for purposes of 

monitoring the typical 'failed' specimen; these re-tests were

assigned reference numbers 33 to 38. Finally, 6 stub tests were 

conducted on additional CHS material for cyclic action phase data 

control purposes.

3.2.3 Metrology Aspects

In keeping with the overall demand for accuracy, geometric
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measurement included specific metrology study. Wall thickness t 

and outer-diameter D were measured for each reference or serial 

number specimen set using offcuts. At each cross-section

concerned, 4 values of D and 8 values of t were determined as

denoted in Fig 3.2 employing precision vernier micrometers; 2 

cross-sections per run were assessed making for 248 final readings 

for D and 496 for t, these cross-sections being appropriate to the 

4 stub and strut specimens cut from each run. Sample D and t 

measurements are given in Table 3.1 whilst the histograms of Figs

3.3 and 3.4 present the final readings in concise form.

Fig 3.3 indicates all material complies with BS4848, Part 2 ^ ^ ) ,  

and virtually all readings exceeded the nominal diameter of 

48.3mm. With x denoting the mean and s the standard deviation, 

then the lower 95% confidence limit, x-2s assuming a normal 

distributionC53)? affords a lower bound on D of 48.344mm. Two

histograms are presented for t owing to the variability of the

thickness of the weld on the inner CHS surface. One histogram

assumes a single reading for t^ whilst the other employs the

average of two such readings, these attempting to mitigate the 

effect of the inner surface irregularities. The two means are 

close but both are less than the nominal value of wall thickness. 

A lower 95% confidence limit of 3.041mm was recorded. For both D 

and t values, samples were checked in the Metrology Laboratory 

employing alternative gauges - readings for t involved use of

conical measuring points - with close correlation obtained

throughout. D and t measurements were also made on the tensile 

specimens, t being recorded before 'waisting', D both before and
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after.

Table 3.2 affords sample processed D and t data used in the 

evaluation of effective sectional eccentricity e and ovality(43)# 

the latter being included for quality control purposes. Ovality 

is a localised imperfection and is given by (Dmax“Dmin)/Dav  With 

respect to the 62 strut specimen sample, the average(x)ovality was 

0.00218 (ie 0.22%) with s=0.00124 (ie 0.12%). This is considered 

fairly low(43)# Eccentricity of loading was considered to be 

equivalent to e=(ti*-t5)(Dav/tav-2)/4 noting the additional wall 

thickness invariably present in the weld vicinity(43).

All stub specimens were checked in the Metrology Laboratory for 

parallelism. Maximum and minimum length readings, taken around 

the individual section, afforded the parallel errors and average 

values of length for axial strain evaluation in the stub tests. 

Table 3.3 affords sample stub length and parallelism data. Whilst 

the readings appear excellent, no specification is given for 

parallelism(26) # Also given in Table 3.3 is data on

cross-sectional areas; values employing the processed geometric D 

and t data appertaining to the sample of stub specimens are given 

in accordance with

A  = Ag = TT(Dava - [Dav- 2 t av]2 ) (3.1)
4

Values for stub cross-sectional areas were also obtained employing 

weight assessment undertaken in the Metrology Laboratory. Area 

determination by 'mass’ is achieved employing

A m =Anom [nominal mass/metre] \stub mass/stub length) (3.2)
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Specimen

Reference
®max
(mm)

^min
(mm)

Dav
(mm)

ti-t5

(mm)
tav
(mm)

Ovality

(xlO-3)

1 S 48.620 48.515 48.565 0.180 3.174 2.16

C 48.540 48.440 48.486 0.173 3.166 2.06

5 S 48.575 48.425 48.503 0.111 3.156 3.09

C 48.550 48.485 48.519 0.002 3.174 1.34

10 S 48.535 48.375 48.446 0.125 3.198 3.30

C 48.525 48.340 48.446 0.175 3.228 3.82

15 S 48.550 48.440 48.483 0.169 3.240 2.27

C 48.525 48.390 48.459 0.243 3.249 2.79

20 S 48.565 48.480 48.513 0.079 3.222 1.75

C 48.535 48.425 48.484 0.103 3.210 2.27

25 S 48.550 48.360 48.469 0.180 3.160 3.92

C 48.580 48.440 48.500 0.127 3.184 2.89

30 S 48.500 48.350 48.427 0.260 3.252 3.10

C 48.540 48.420 48.458 0.160 3.226 2.48

Table 3.2; Sample Data for Ovality 

and Eccentricity of Loading Assessment
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Specimen

Reference

Average

stub

specimen

length

(mm)

Error in 

parallel

(mmxl0”3)

Stub

specimen

mass

(8)

(by 

mass )

(mm^)

A g
(by

geometry)

(mm^)

^av

(mm^)

1 S 203.457 2 724.82 453.32 452.61 452.97

C 203.835 5 725.52 452.92 450.77 451.85

5 S 203.880 5 722.58 450.98 449.59 450.34

C 203.890 7 723.65 451.63 452.15 451.89

10 S 202.884 5 721.32 452.41 454.60 453.51

C 203.212 6 727.68 455.66 458.56 457.11

15 S 202.182 5 725.02 456.31 460.52 458.42

C 203.396 2 730.33 456.90 461.46 459.18

20 S 202.710 2 727.19 456.48 458.45 457.47

C 202.484 8 720.80 452.97 456.57 454.47

25 S 202.896 4 721.80 452.68 449.80 451.24

C 203.120 7 724.51 453.88 453.28 453.58

30 S 201.937 5 722.42 455.21 461.55 458.38

C 202.965 5 727.07 455.83 458.42 457.13

Table 3.3; Sample Cross-Sectional Area Measurements
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(3.2)

where A nom=453mm2(50)is ^he nominal cross-sectional area and the 

stub length is as measured above. Data control and resultant 

average cross-sectional area values are thereby made available. 

On the basis of 62 partnered strut and stub specimens, a pertinent 

histogram is given in Fig 3.5. Excellent correlation was obtained 

between Anom, Ag and Am , data spread being Anom +3%; lower 95% 

confidence values were 441.766mm2 and 443.288mm2 for Ag and Am 

respectively. Given the close correlation, values of the 

resultant Aav were used for partnered strut and stub specimens - 

note Fig 3.1.

3.3 TESTING PROCEDURES

3.3.1 Stub Tests

All 62 static stub specimens were tested consecutively to provide 

the first phase of the formal testing programme. General testing 

system factors were given in Section 2.3.2. Specimens were 

manually located in the Schenck-mounted stub rig, note Plates 4 

and 5, and the 'zero-zero' datum state achieved as accurately as 

possible using manual control of the RV10 controller. Monitoring 

was provided by the mini-computer resulting in highly accurate 

'zeroing'. Alignment was thoroughly checked before invoking 

computer control, transfer to which resulted in the application of 

145 axial stroke increments. There were 75 'fine' increments ( 12 

jam/increment), at least 30 of which were assigned to the linear

1 73
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elastic r a n g e ( 2 6 ) j  35 increments were assigned to the unloading 

path, these forming part of the later 70 'coarser’ increments ( 90 

jim/increment).

Whilst formal output was obtained employing the IBM mainframe as 

discussed in Section 2.4, data on incremental values of stroke and 

load were also monitored on-line for purposes of experimental 

control and safety. Given the speed of monitoring, see Section

2.4, output was considered to be of 'dynamic' form(54)e The 

applied strain rate was 20 p€/s (ie specimen strain rate in the

linear elastic range), with tests being curtailed at a strain of

approximately 0.02 . Experimental turn-round time was of the

order of 30 minutes. Checks for non-axiallity were made by

investigating individual transducer readings(26). no problems were 

encountered. Final mainframe graphical output, discussed shortly, 

included provision of linear regression facilities for evaluation 

of E and <jy/proof stress.

Plate 10 illustrates 3 stub specimens; to the right is an untested 

stub, in the centre is a typically tested stub, whilst to the left 

is a stub compressed well beyond a strain of 0.02. This was done 

to exaggerate and thereby more visually illustrate the well-

established 'bulge' problem associated with stub testing. End 

friction coupled with the Poisson effect induces this flexural- 

type action which can adversely affect the constitutive values 

obtained(^3). Given this problem, a restricted series of tensile

tests were later conducted for purposes of comparative

assessment.
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Plate 10 ; Stub Specimens

Plate 11 ; Tensile Test Specimen
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3.3.2 Stub Tests - Cyclic

As noted in Sections 2.3.3 and 3.2.2, six additional stub tests 

were undertaken for control purposes. Three specimens were cut 

from each of two further (ie additional to specimen refs 1-38) 

7.5m CHS runs; one specimen from each run was tested statically. 

Using the data obtained, the remaining four stubs were tested 

statically up to a state mid-way through the linear elastic range 

whereupon computer control and monitoring were suppressed. A 

sinusoidal forcing function was manually instituted through the 

RV10 controller with amplitudes such that cyclic action (nc=1000 

cycles) remained within the elastic range. Dynamic monitoring of 

axial stroke and load against one another and time was undertaken 

using x,y and x,y/t plotters as illustrated in Plate 5. Upon 

completion of the cyclic phase, static computer control and 

monitoring was re-implemented through to the limiting strain 

state. Primarily, the output provided control on cyclic 

action/slenderness ratio effects, particularly in the context of 

quasi-elastic hysteresisC51). Further details on cyclic testing 

procedures are given in Section 3.3.6. These six tests were, in 

fact, the last tests undertaken, in chronological terms, with 

respect to the experimental programme.

3.3.3 Tensile Tests

Whilst compressive constitutive data is clearly desirable for 

strut testing support, the previously discussed ’end bulge1 effect 

gives reason for concern with respect to the values obtained(^3).
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Some measure of control is available by undertaking tensile tests 

on comparable specimens. Twelve full scale tensile tests were 

thereby undertaken employing offcut material - see Fig 3.1.

Tests were conducted to BS18, Part 4 using an Avery testing 

machine, see Plate 9. Specimen details are illustrated in Plate 

11. Taper-lock collets were employed in reversed mode, bearing 

onto which were end plates bolted to the specimen through 

previously drilled holes. The complete arrangement involved one 

collett being connected to the cross-head of the Avery machine, 

the specimen passing through the outboard load cell, its housing 

and beneath the travelling cross-beam of the machine to which the 

other collett was attached through a ball joint. Stroke loading 

was continuously applied, the rate being monitored using an x,y/t 

plotterC^S)^ thg respective 'K-factor' being determined as 

appropriate^®). Applied strain rate was 8 jie/s.

The average axial strain in the 'waisted' section, see Section

2.6 , was recorded together with the applied loading, the 'dynamic* 

criterion for yield stress being applicable^-^). Cross-sectional 

area was determined in accordance with Section 3.2.3. Specimens 

were tested to failure; Plate 12 shows a typical ruptured 

specimen, failure being of accepted ductile form.

3.3.4 Strut Tests - Imperfection Monitoring

Following completion of the tensile tests, all strut specimens 

- other than the re-test cases discussed later - were subjected to
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out-of-straightness monitoring. The essentials of the equipment 

employed were described in Sections 2.3.4 and 2.4; see also Plate 

6. With a variety of slenderness ratios being employed, the 

cross- head and transducers required re-location as necessary. 

Each strut was given ’strut-top' and 'strut-bottom' marks and then 

mounted in the Schenck with the weld seam in line with the central 

or mid-height transducer for control purposes. The 0° rotation 

reading was then taken and recorded using the mini-computer; 

subsequently, readings were taken at intervals of 90° with five 

full rotations employed as denoted previously. Fig 3.6

illustrates the principles involved, with the difference between 

diametrically opposing pairs of transducer readings being twice 

the respective imperfection. From the output data, resultant mean 

initial displacments and their orientation, conveniently expressed 

by R on with respect to the weld, were computed, with

for n=l,7, this denoting the seven transducers employed. Ovality 

data, as discussed in Section 3.2.3, was available for combination 

with this data for definitive values of initial out-of

straightness; the magnitudes of the ovality errors were considered 

negligible herein - see Table 3.2.

Whilst the data provided was directly relevant to the

(3.3)

and

Pon tan (en2/enl) (3.4)

80



sc
al
e 

re
ad

in
g

co
CO

0) -u

+ 1 J-I

o

O
00

\
N \o

ooo

CO t -I O  CO j-l CO co J -i

J-I J-I

o
CT\

CM

81

Fi
gu

re
 

3.6
 

; 
Ou
t 

- 
of 

- 
St

ra
ig

ht
ne

ss
 

Mo
ni

to
ri

ng
 

Co
nf

ig
ur

at
io

n



considerations of BS4848, Part 2(^7) owing to the lathe-centres 

employed in the procedure, relevance to the doubly-encastre 

support mode employed in the strut testing proper was clearly 

questionable. As noted in Section 2.3.4, a manual procedure was 

therefore adopted for the monitoring of the out-of-straightness of 

a representative sample of specimens fitted into the respective 

colletts. The correlation between the lathe (pinned) and collett 

(encastre) data for these specimens is considered later.

As noted in Section 3.2.3, cross-sectional geometry data provided 

an eccentricity of loading parameter 'e', values for which are 

given in Table 3.2. This parameter relates to local conditions 

only, however, and is essentially for reference purposes only. 

The influence of the weld upon 'e' is marked.

3.3.5 Strut Tests - Static

Those struts with a slenderness ratio of 80 - approximately two- 

thirds of the specimens - were tested as a batch following 

completion of the out-of-straightness monitoring. The remaining 

static tests were conducted following the cyclic testing, 

discussed below, of the A=80 'cyclic batch'. Re-tests and tests 

on synthetically deformed samples are considered separately in 

Section 3.8.

Having received the previously delineated strain gauges, each 

specimen was fitted, before being mounted in the Schenck, with the 

specially-designed square target discussed in Section 2.3.1 and
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illustrated in Fig 3.7. Mid-height transducer G was chosen as 

datum location for the weld. The four transducers enabled a 

resultant central transverse buckling path to be plotted from 

readings (G-I)/2 and (J-H)/2, the negative signs being transducer- 

dependent . This novel feature proved to be very important in 

assessing strut behaviour - ie ’is planar strut modelling valid?’ 

— and the corresponding computer graphical outputs were termed 

'vector traces'. Correlation between measured central transverse 

displacement wcL"wocL» see ®qn (2*2), and the strain gauge output 

was important and achieved employing the central monitoring 

topology depicted in Fig 3.7.

The colletts were tightened once the specimen/actuator was zeroed- 

in, and computer control was then effected. Each test involved 

the acquisition of some 2000 discrete data items employing 145 

stroke controlled increments which took the specimen well into the 

post-buckling range as discussed in Section 2.5.1 and illustrated 

in Plate 8. The initial 34 increments, each of 90pm stroke, were 

followed by fine increments of 25pm stroke for tight definition of 

the buckling state. The applied stroke rate approximated to 

16pe/s (ie 16p£/s for ^=80). An experimental ’turn-round’ time of 

35-40 minutes was not uncommon.

Plate 13 illustrates a buckled specimen with the reversed 

curvature displayed. The strut is subject to elastic recovery, 

some 60% recovery of the central transverse displacement being 

achieved upon unloading. It should perhaps be noted that the 

specimen actually depicted comes from the preliminary series of
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tests described in Section 2.5.1 as indicated by the presence of 

the 'turned1 ends.

3.3.6 Strut Tests - Cyclic

Upon completion of the X=^0 static strut tests - ie cases 

1S-16S - the testing of their cyclic counterparts was undertaken. 

Static data relating to buckling load Pc and corresponding end 

shortening u |pc assisted in prescribing cyclic amplitudes (2uam) 
and, given the appropriate mean state P^, ujj, the resulting peak 

cyclic axial displacements um . Behaviour was to be of sub- 

buckling compressive form throughout (ie u |pc>ujn+ua m , 0<uJj-ua m ) . 
Specimens were prepared and mounted in the testing rig in the 

manner earlier described with respect to the static strut tests 

save for the omission of strain gauges. These were not considered 

to be necessary given the additional cyclic monitoring aspects 

involved - see Sections 2.3.3 and 2.5.3.

Tests therefore proceeded in accordance with the aforementioned 

static manner until the prescribed mean axial displacement u^ was 

achieved, this state corresponding to axial compressions of 

approximately 45 kN and/or 70 kN as discussed in Section 3.1. At 

this state, manual override control was implemented employing the 

RV10 controller's inboard function generator to apply a sinusoidal 

waveform

u = um  + uam sin (27Tftf) (3.5)

where u denotes total axial displacement at time t', monitoring



being undertaken in accordance with Section 2.3.3 for P vs 

wcL“wocL (measured central transverse displacement) and P vs u, 

with each of these parameters also plotted against a time (t!) 

base. Peak cyclic parameters Pm and um were of obvious 

importance. Cyclic durations were varied but generally consisted 

of a total of nc=1000 cycles applied at either of the lower (45kN) 

or upper (70kN) P^, u^ states. Exceptions to this primarily

concerned the first test, 1C, in which short durations were 

applied, 25 cycles, as a lower limit check upon the preliminary 

tests delineated in Table 2.3, and tests 13C and 14C in which 1500 

cycles were employed as an upper limit check upon duration 

effects. Upon completion of a cyclic action phase, digital 

control was re-implemented, this being initiated by mini-computer 

logging of the post-cyclic phase values of load and displacement. 

This enabled accurate digital assessment of cyclic action phase 

effects in pre- and post-cyclic phase static terms. No effective 

change in mean axial displacement u^ was recorded throughout the 

cyclic experimentation, as was required of the testing system.

For tests involving only one cyclic action phase, completion of 

this phase was followed by re-implementation of the established 

static loading procedure through to the limiting post-buckling 

displacement state as discussed in Sections 2.5.1 and 3.3.5. For 

those tests involving two such cyclic phases, the static loading 

procedure was re-implemented between the two respective u^ states 

and again following completion of the second cyclic action phase 

through to the prescribed limiting post-buckling displacement 

state.
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A variety of cyclic profiles was therefore investigated for A=80.

It became apparent that the primary action parameter, given the

nc-uam-f-A configurations considered, was peak cyclic displacement 

um (or Pm ) . This was to be of major importance with respect to 

the final mainstream set of cyclic strut tests, 17C to 27C, 

these involving a variety of slenderness ratios A* These tests 

all involved only one cyclic action phase, primarily based on the 

upper value of u^, corresponding to P=70kN. Values of um were 

such that concern with peak inelastic excursion took precedence

over the quasi-elastic hysteresis associated with lower values of 

um . This second series of formal cyclic strut tests followed the 

testing of the corresponding static strut specimens 17S to 27S. 

The Schenck and transducer monitoring facilities were adjusted to 

accommodate the changes in X as required. Detailed consideration 

of the results obtained follows as part of the ensuing discussion 

of the overall formal experimental data.

3.4 CONSTITUTIVE BEHAVIOUR - RESULTS

3.4.1 Stub Tests

Table 3.4 presents sample specimen data from the main set of 62

static stub tests. Constitutive response ranged between the 

typical yield and roundhouse loci depicted in Fig 3.8; most loci 

were of either the former or slightly rounded, quasi-yielding type 

shown in Fig 3.9. This figure also illustrates the typical 

computer graphics output resulting from a stub test, with 

regression providing for E and the 0.2% proof stress. Few full
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Specimen

Reference

°y/£y0 .2%
(N/mm)

E

(kN/mm^)

Classification

R-roundhouse

S-slightly rounded 

Y-yield

1 SS 285 214 S

SC 283 214

5 SS 287 213 S

SC 302 207

10 SS 306 215 S

SC 309 211

15 SS 275 215 Y

SC 277 217

20 SS 297 218 S

SC 300 219

25 SS 204 213 Y

SC 210 218

30 SS 325 216 R

SC 320 220

Table 3.4; Sample Stub Test Data
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400

roundhouse [ref.17SS]proof
300

yield [ref.15SS]

200- E obtained by computerised 
least squares fit

100 -

- 30.2% proof E x 10

Figure 3.8 ; Stub Loci - Yield and Roundhouse Type

3 9 .

n  .'zi.

29 .

: stub locus [ref. 20SC]21:

— : tensile test locus [ref.20T]
19.

11 :

0.22 PROOF LOCUS

Figure 3.9 ; Stub and Tensile Test Loci
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roundhouse curves were obtained, supporting the thesis that 

residual stresses are relatively unimportant in the hot-finished 

sections employed(32)#

Fig 3.10 affords histograms of the o*y/0.2% proof stress and E 

obtained from the stub experimentation. Variations from the mean 

of up to -33% and -13% respectively are noted. These variations 

from the respective means of 284.4N/mm2 and 213.6kN/mm2 are

substantial, particularly in the case of Oy/0 .2% proof stress, and 

justify the constitutive experimentation. However, variations 

with respect to any given specimen reference set were generally

small as typified in Table 3.4. The findings of the cyclic stub

experimentation are discussed later.

3.4.2 Tensile Tests

Table 3.5 presents pertinent data from the 12 tensile tests 

undertaken on specimens taken at random from offcut material. 

Tensile test values for yield/0.2% proof stress and direct modulus 

are denoted by Oy^t and E t t . Their relationship to the 

corresponding stub test values of cTy and E is given alongside 

showing the stub test average to be 3% down on yield/0.2% proof 

stress and up by 7% on the direct modulus. When comparing the

average tensile test values with those from all 62 stub tests, 

however, the stub values show a drop of 6% in yield/0 .2% proof 

stress and an increase of 6% in direct modulus; note Fig 3.10.

Fig 3.9 shows a typical tensile constitutive locus superposed on 

the corresponding stub test output, specimen ref. 20T; the struts
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% Frequency
45"

  E (kN/mm2 )
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30 -
sample size = 62
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Figure 3.10 ; Direct Modulus and Yield/Proof Stress Histograms

mm x10”2
- 20-

-15-

on >
- 10-

[plan view]

-5-

(0°-180°) 
-20 Weld

mmx10“2
-15

Figure 3.11 ; Out - of - Straightness Components - Strut Ref. 6S
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Specimen 

R e f .

°ytt 

(N /mm^)
°y

°ytt

Ett
(kN/mm^)

E

E tt

Classification

R-roundhouse

S-slightly

rounded

Y-yield

IT 290 0.98 200 1.07 S

3T 290 1.00 195 1.07 Y

5T 307 0.96 205 1.02 S

7T 300 0.98 200 1.07 S

8T 294 0.94 203 1.07 Y

13T 320 0.98 200 1.08 S

20T 311 0.96 205 1.07 S

a 21T 307 0.97 197 1.11 S

b 21T 306 0.97 200 1.08 S

22T 283 0.97 198 1.10 S

26T 331 0.94 206 1.06 R

27T 309 1.01 200 1.08 S

Average 304 0.97 201 1.07 n/a

Table 3.5; Tensile Test Data
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21S and 21C were of slenderness ratio 75, permitting two tensile 

specimens, a and b, to be obtained and compared. Most tensile 

loci were of slightly rounded yielding form as denoted in Table

3.5.

3.5 IMPERFECTION ASSESSMENT - RESULTS

3.5.1 Initial Curvature

Data from the 53 mainstream strut tests, IS to 27S, less 16S, and 

1C to 27C, as discussed in Section 3.2.2, was reduced from a basic 

set of 7420 individual readings to produce average resultant 

values of magnitude won and orientation £ o n , n=l,7, for each

strut; £ on was measured in an anticlockwise sense from the weld in 

plan view. Tables 3.6 and 3.7 present sample data. The values 

for won indicate the struts to be well-formed or very straight; 

this was true for all strut samples. Indeed, it was this trend 

which led to the decision to subject a set of strut samples to

synthetically produced additional initial curvature as discussed 

separately in Section 3.8. All struts were well within the

requisite 0.2%L tolerance^^) as assessed by the maximum value of 

the respective wo n , wo m . This value did not always coincide with 

the central value w04(=w0cl) as indicated in Table 3.6 and 

corkscrewed initial topologies were extant throughout; see £ on in 

Table 3.7. Fig 3.11 depicts the graphical output relating to 

case 6S and illustrates typical initial profile data in plan 

view. The complexities associated with attempting to

theoretically, model practical strut behaviour are well-typified by
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this example of a three-dimensional, corkscrewed initial topology. 

The histogram of Fig 3.12 gives an overall mean value of 

0.258 xl0“3 for wom/L, an order of magnitude within the 2x10“ ^

t o l erance(^).

Accepting that theoretical studies were to be undertaken in 

conjunction with the experimental programme and that modelling was 

to be undertaken on the generalised basis of effective length £, 

then the relationship between the measured wo n , n=l,7, noting w o c l 

in particular and that these were assessed over a length L, and an 

initial central transverse displacement woc defined with respect 

to £ was required. As noted in Sections 2.3.4 and 3.3.4, a manual 

procedure was adopted for the monitoring of out-of-straightness 

for a sample of ten strut specimens in the encastre mode. The two 

alternative modes of out-of-straightness monitoring are 

illustrated in Figs 3.13(a) and (b). The ten encastre tests 

generated 280 individual component data items. The appropriate 

processed data is given in relation to the corresponding pin-ended 

data in Table 3.8 in terms of the initial central transverse 

displacement values, wocg denoting the respective encastre data. 

The correlation was considered to indicate that, noting the 

relative straightness of the specimens, the pin-ended data could 

be used in conjunction with encastre strut testing per s e .

Compromise between the importance and variability of strut 

imperfections with the requirements of design practice demanded 

the reduction of the necessary won/wocL and wocg data base into a 

form suited to planar strut analysis. Accordingly, Fig 3.13(c)
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transducer 
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WocL

(a) Pinned End Conditions

transducer
array

T2
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T6 L /8

(b) Encastre End Conditions
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(c) woc

effective
centroid .weld

nominal
centroid

(d) Eccentricity

Figure 3.13 ; Imperfection Parameters
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illustrates the basic procedure adopted, with woc denoting the 

processed value of initial central transverse displacement with 

respect to effective length&=L/2. This procedure employs

woc = wocL“ (wo2+wo6)/'2 (3.6)

and effectively requires that w0cl=w04 be the respective maximum 

initial displacment wom and that non-negative values be obtained. 

To provide for cases where this was not viable, an alternative,

coordinate x to lie along the undeformed centreline as shown in 

Fig 3.13(c), then, for £=L/2, let the initial deformed profile 

take the form

such that the area enclosed between the undeformed centreline and 

the initial strut profile is given by

Equating this with the non-planar area piecewise enclosed by the 

actual won readings affords

7
w ocL*L/2 = (L/8)2 Z  won (3.9)

n=1

Employing £ =L/2 thereby implies

interpolating function procedure was adopted. Considering

w G = w 0c l  ( 1 “ c o s [27Tx /L])/2 (3.7)

0
(3.8)
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7
Wqc = w ocL / 2 = ( 2 1  » o n )/8 (3.10)

n=1

which is always available for any strut.

Values of wQC obtained either directly from Eqn (3.6) or by

interpolation from Eqn (3.10) enable assessment of woc against the 

0.1%& requirement^^) 0r imperfection parameter 0 in design 

practice^35,36) which gives 0.104%& for A=80 using design values

for Oy and E. Individual strut values for woc are given in the

comprehensive tabulations of Section 3.7; the maximum direct and 

interpolated values are well within these tolerances, being 0.05%& 

and 0.08%& respectively, corresponding means being 0.02%& and 

0.035%&. The minor discrepancies between wocl and woce as denoted 

in Table 3.8 are thereby considered negligible.

3.5.2 Load Eccentricity

Equivalence of cross-section and load eccentricity was delineated 

in Section 3.2.3 and the appropriate processed data given in Table

3.2 with tmax_tmin=tl“ t5 due t0 weld effects; note Fig 3.13(d). 

Evaluation of eccentricity e is thereby readily available, the 

respective data being given in the main tabulations of Section

3.7.

Given that strut imperfections can be broadly grouped under the 

classifications of initial curvature (say wQC), eccentricity of 

loading (say e) and residual stress, then it is considered that 

imperfection assessment has been comprehensively treated.
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Consideration of the implications is left to the overview of

experimental strut behaviour delineated in Section 3.7.

3.6 STATIC STRUT TESTING - RESULTS

3.6.1 Parametric Response

The software employed for the interpretation of the static strut 

test data provided for computer numerical and graphical output of 

the primary parameters, whilst additional software features 

generated vector traces, note Section 3.3.5, and interactively 

produced Southwell and Lundquist Plots; this latter item is

considered in section 3.6.2.

Two sets of complete graphical output, that is P vs u, P vs 

wcL“w ocL> P vs en and the associated vector trace plots, are 

depicted in Figs 3.14 to 3.23 inclusive. Cases 12S -

Figs 3.14 to 3.18 inclusive - and 20S - Figs 3.19 to 3.23

inclusive - are considered representative in terms of their output 

and also display particular features of interest.

From the P vs u graphs in Figs 3.14 and 3.19, it can be seen that

the dispersion of increments through the pre- and post-buckling 

paths - each discrete increment being delineated by a symbol - 

were aimed at defining the sensitive buckling region accurately. 

Despite the fine increment size, Fig 3.14 displays sudden load 

shedding, with the increment following attainment of Pc not being 

able to define a ’curve’ around Pc , and hence a definitive Pc .
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AXIAL LOAD vs. AXIAL DISPLACEMENT
x 101

Pc = 112.5 kN

(KN)

554020
XI0

U  < mm )

Figure 3.14 ; P vs u - Strut Ref. 12S

AXIAL LOAD vs. MID-SPAN RESULTANT LATERAL DISPLACEMENT
X101

3.::

5035

Figure 3.15 ; P vs WCL “ wocL “ Strut Ref. 12S



AXIAL LOAD vs. MID-SPAN AXIAL STRAIN

106 kN
10.

n=2 n=3

-6 -3-8 -4

(micro-strains)

Figure 3.16 ; P vs £n _ Strut Ref. 12S

m m x ie*1-40.
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P = 13 kN-5.

<J - H>/2

MID-SPAN LATERAL DISPLACEMENT VECTOR TRACE (PLAN VIEW) re: P s< Pc

Figure 3.17 ; Vector Trace ( P ^ P c) - Strut Ref. 12S
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-4

-3i.

~2

-2

5t <H>
MID-SPAN LATERAL DISPLACEMENT VECTOR TRACE PLAN VIEW (Axes Scaled Uniformly)

Figure 3.18 ; Vector Trace - Strut Ref. 12S

AXIAL LOAD vs. AXIAL DISPLACEMENT
X101

Pc = 109.6 kN

9.

5550
X10

454020 30 35

U  < mm >

Figure 3.19 ; P vs u - Strut Ref. 20S
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AXIAL LOAD vs. MID-SPAN RESULTANT LATERAL DISPLACEMENT
X10112,

Pc = 109.6 kN

< kN )

4530

Figure 3.20 ; P vs w cL - w QcL - Strut Ref. 20S

AXIAL LOAD vs. MID-SPAN AXIAL STRAIN
X10l

n=2n=4n=3 n=1

-3-4-7
< micro-strains >

Figure 3.21 ; P vs en - Strut Ref. 20S
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Figure 3.22 ; Vector Trace (P ̂  Pc) - Strut Ref. 20S
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MID-SPAN LATERAL DISPLACEMENT VECTOR TRACE PLAN VIEW (Axes Scaled UmFormly)

Figure 3.23 ; Vector Trace - Strut Ref. 20
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This behaviour is indicative of dynamic unloading associated with 

rigid/stiff testing machine characteristics(55) t where a ’sharp 

knee' displayed at buckling is to be expected. Fig 3.19 displays 

an increment being ’caught’ in the process of buckling. An 

additional P vs u plot for case 21S is included - Fig 3.24 - to 

depict the foregoing ’curve' around Pc being more effectively

defined; such highly specific P vs u curves were obtained from 

about one-third of the strut cases involved.

The most sensitive or difficult parameter to evaluate at the 

essentially ’dynamic’ buckling state is w c l ~w o c l |p c . The object 

is surely to obtain this value as the load begins to drop but

before the full dynamic buckling process is underway. Figs 3.15 

(12S), 3.20 (20S) and 3.25 (21S) are representative of the range 

of P vs w c l -w o c l  loci obtained. As is to be expected from the

above, the locus for case 21S provides for a slightly more

accurate determination of w c l -w o c l |p c , with w c l -w o c l j pc possibly 

being slightly underestimated in the remaining cases.

Figs 3.16 and 3.21 depict typical P vs £n loci (central strain 

gauge readings, n=l,4) for cases 12S and 20S respectively.

The pre-buckling loci for each £n trace is linear up to loads

approaching Pc although the readings indicated that inelastic 

buckling was indeed prevalent.

Sample key static strut test data is given in Table 3.9 with 

experimental buckling load Pc presented in terms of the Euler 

critical load Pe and squash load (stub test) Ps . Further ,

the design load Pp (with £=L/2 ) is given in terms of the Euler
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AXIAL LOAD vs. AXIAL DISPLACEMENT

6025 3020
U  < mm >

Figure 3.24 ; P vs u - Strut Ref. 21S

AXIAL LOAD vs. MID-SPAN RESULTANT LATERAL DISPLACEMENT
X10*

<kN>

2. I

5550

Figure 3.25 ; P vs w cL - w ocL - Strut Ref. 21S
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critical load. In all cases, individual geometric and constitutive 

(compressive) data are employed in these evaluations. The table 

testifies to the range of modified slenderness ratios Am employed, 

exhibits the direct and interpolated values for woc (note 

correlation where applicable) and shows that eccentricity e is of 

the same order of magnitude as wo c .

Figs 3.17, 3.18, 3.22 and 3.23 illustrate the respective

pre-buckling and full buckling loci vector traces, employment of 

which is considered to be of novel form. The variable and very 

fine scales employed in the pre-buckling traces are to be noted, 

with minor zero-zero datum irregularities being shown in Fig 3.17 

- note abscissa scale vs ordinate scale in particular. 

Importantly, Figs 3.18 and 3.23 exhibit 'planar1 behaviour, 

although the orientations should be noted in the context of the 

woc and e orientations provided. The resultant vector trace 

planarity is the product of a complex interaction of

imperfections, particularly wocL(woc) and e herein. Indeed, the 

vector traces given in Figs 3.26 and 3.27 relate to case 6S 

for which wQn imperfection data was given in Fig 3.11. The

apparent agreement between the orientations of w o c l (and wo c ) and 

the planar buckling path belies the fact that 6S was heavily 

corkscrewed, note Fig 3.11, with w ocL^wom and no direct w oc value 

being available. Further, the eccentricity e was six times the 

magnitude of woc (interpolated). Recall that values of e and w oc 

are fully tabulated in Section 3.7 together with all other

important experimental data. The diverse orientations of the 

vector traces given in Figs 3.18, 3.23 and 3.27 indicate
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independence of buckling path from machine interference; this is 

clearly as required.

The interrelationship of data obtained from central strain gauge 

readings and the corresponding vector traces provide for control 

of output in accordance with the topology illustrated in Fig 3.7. 

All strut studies involved suitable correlation, the zone of 

highest compression as provided by strain gauge output correlating 

well with that prescribed by the direction of the buckling path 

given by the corresponding vector trace.

It is instructive to consider the strain gauge/vector trace 

correlation further. Considering case 12S, Fig 3.18 indicates 

strain gauge reading €2 > recall Fig 3.7, will afford the maximum 

compressive strain. The corresponding value of limiting linear 

elastic strain is available from the appropriate stub test, 12SS, 

which gives a value of 1.275x10“^ and the associated stress to be 

275N/mm2. From Fig 3.16, the maximum linear elastic load thereby 

corresponds to 106kN, this being 6% lower than the buckling load 

Pc . The ECCS load(36) subject to il5=L/2 and the use of stub test 

data gives Pp=103.5kN. This form of correlation is as anticipated 

and supports claims of accurate experimentation. Further, 

employing Eqn (1.2), a check can be made upon load-displacement 

characteristics. Substituting the above noted maximum linear 

elastic values for stress and load, together with values for A and 

Z, then wc=1.86mm at the limiting elastic state, wc being relative 

to effective length £. Accepting that wc=wcl/2 for £=L/2, note 

Eqn (3.7), and similarly transforming the respective imperfections
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woc and w ocL affords an estimate that w c l -w o c l = 2.48mm at the 

limiting elastic state. From numerical output (nb Fig 3.15), the 

experimental value for w c l -w o c l  is 2.36mm. Validity of the output 

data is thereby supported.

3.6.2 Semi-Empirical Analyses - Southwell and Lundquist Plots

The basis for the Southwell and Lundquist plot techniques is well 

establishedC56,35,57,58)# ^he governing equations of the

Southwell and Lundquist plots take the form

(w -w )/P = (w -w )/P +a /P / o 11 ̂c oc c oc es os es (3.11)

and

(w -w - w ’)/(P-P')= (w -w - w f)/(P -P')+a n/ (P n”P f) (3.12)c oc c oc el ol el

where P 1 and w' denote the elastic 'pivot* state and Pe s , aos and 

Pei , a0i delineate the Southwell and Lundquist estimates of the

critical load and initial central displacement respectively with 

respect to the effective length £. The Lundquist 'pivot' attempts 

to mitigate low load non-linearities (56)  ̂ Importantly, the aos 

and a0i parameters can be considered as lumped or effective

imperfections taking account, when applied to practical struts, of 

not only wQ C , but also e and residual stress effects (however

small). These aos and aQ^ parameters were particularly useful

herein given the initially corkscrewed/irregular strut topologies 

extant, this effect also rendering central woc (direct) values not
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always being deemed applicable. Given the availability of 

experimental data, aos and a0i provide convenient planar 

imperfection parameters highly suited to practical engineering 

interpretation.

Eqns (3.11) and (3.12) also provide estimates for the Euler 

critical load and thereby, given appropriate constitutive and

geometric data, estimates for effective length from

£s/ £ =  (Pe/Pes)^ and % / £  = (Pe/Pel) * (3.13)

where &s and are t îe Southwell and Lundquist estimates for 

effective length respectively.

Employing interactive linear regression, suitable Southwell and 

Lundquist plots were made readily available as an experimentation 

back-end facility. Various linear fits and Lundquist pivots

were implemented for all cases, the necessary transformation 

w c “ w o c = (w c L ” w o c L ) / 2  being applied pre-plotting. Indeed, these 

effective length check procedures were appreciated to be of the 

utmost importance to the research programme. The various

applications of the £=L/2 transformation, see Sections 3.5.1 and

3.6.1 for example, demand that some control on effective length be 

made available. Fig 3.28 clarifies the effective length 

transformation details whilst Table 3.10 affords sample key data, 

the final values of fit range, and pivot state in the case of

Lundquist plots, being those which gave the best degree of 

linearity. It is considered that the linear ranges quoted are
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sufficiently large and that the effective length &.s and 

estimates lend confidence to the deemed £=L/2. Imperfection 

parameters aos and a0i appear attractive and are of the same order 

of magnitude as their direct and interpolated woc equivalents, 

note Table 3.9. As noted above, aos and a0i include all 

imperfections considered in a planar regime.

Fig 3.29 presents the Southwell and Lundquist plots for case 21S 

whilst Fig 3.30 shows a typical computer graphics Southwell plot 

for case 5S. The latter shows more pronounced low load 

irregularityC56) than the former Southwell plot; overall, however, 

case 21S is the more typical. The Lundquist plots did not 

generally provide for larger linear 'fit' ranges, the Southwell 

plots themselves being, as indicated above, well- behaved. As 

employed herein, these two semi-graphical techniques proved very 

useful, providing for experimental verification as well as for 

alternative imperfection assessment. Given the lack of explicit 

residual stress analysis, this latter feature serves as a control 

upon this factor. The Southwell and Lundquist techniques provide 

an excellent example of experimental-numerical interaction^59)# 

their output serving further in the theoretical modelling 

procedures discussed in the next chapter. Finally, it should be 

noted that out of the 26 static strut test cases, only 7 and 8

cases respectively failed to provide suitable Southwell and

Lundquist plots (56)  ̂ These failures were generally associated

with low Am  configurations.
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3.7 CYCLIC STRUT TESTING - RESULTS

3.7.1 Pseudo-Static Parametric Response

Given that the primary objective of the research programme was to 

determine the effect of a pre-buckling cyclic phase of loading 

upon otherwise static strut performance, then the respective 

experimental data is considered in two parts. First, the pseudo

static characteristics are studied; these relate to assessment of 

the appropriate static parameters, the cyclic action phase being 

considered as an interface between the respective static regimes. 

The situation is illustrated in Fig 3.31 with statically monitored 

regimes OA and BC being interfaced with a linear locus AB, points 

A and B representing the statically defined start and stop limits 

of the cyclic action phase. Fig 3.31 is thereby deemed to 

illustrate the pseudo-static characteristics of the strut system. 

Study of the actual cyclic action phase is considered in Section 

3.7.2. Strictly, Fig 3.31 could not have been produced ’earlier', 

due to the absence of appropriate experimental data despite an 

intensive literature search, note the Bibliography, this search 

including the use of computer-based international facilities.

Key details of the cyclic profiles employed with respect to the 27 

mainstream tests (1C-27C) are given in Table 3.11. The 

'unfactored' base symbol U denoting u Jq nominally corresponding to 

the ECCS limit state load, F denoting a Perry(60)-type reduction 

from this to relate to service condition behaviour with u^ 

nominally corresponding to 45kN; note Section 3.1. The necessity
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Note

The classifications ’quasi-cyclic’ and fformally cyclic1 

can be more c l e a r l y  defined by reference to the time- 

dependent responses discussed in the next section (i.e. 

3.7.2). ’Quasi-cyclic* cases i n v o l v e  load/transverse 

d isplacement loci which possess closed loop line 

hysteresis; see Fig 3.50, page 141. The o v e r a l l  

hysteresis band-widths are stabilised and narrow with a 

corresponding cyclic step of e i t h e r  h a r d e n i n g  or 

softening form. 'Formally c y c l i c ’ cases i n v o l v e  

load/transverse displacement loci which possess finite 

area hysteresis loops; see Figs 3.51 - 3.54, pages 143 

- 145. The associated overall hysteresis band-widths 

are non-stabilised, the corresponding cyclic steps 

displaying definitive softening-only characteristics 

throughout.



of inducing inelastic excursions requires high peak um=uam+uJI1 

values as given by the specific limiting elastic considerations 

discussed in Section 3.6.1. Lower values of um relate to 

quasi-elastic hysteresis(51) considerations. In Table 3.11, um is 

non-dimensionalised with respect to the corresponding axial 

displacement at buckling. Accordingly, cases 1C to 17C relate to

quasi-elastic hysteresis behaviour, the remaining tests

appertaining to primary inelastic considerations. Case 2C was 

earmarked for static testing on account of the low buckling load 

Pc achieved in case 2S, concern over the validity of that test 

demanding a further static assessment. (Low values for Oy from

stub tests 2SS and 2SC confirmed that constitutive ’weakness1 

induced this lower Pc behaviour.) Throughout the cyclic tests, 

frequency f=l/16Hz(^^). Case 20C represents an upper bound on the 

programme, with buckling being induced during the cyclic action 

phase.

It is valid to consider tests upto 17C separately from those 

beyond given the action data for um /u |pc - and the response data 

for w c l /(w c L_w o c l ) I Pc where w ^  represents the increase in 

measured central displacement (over L) induced during the cyclic 

action phase; w £l  is herein termed the ’cyclic step'. The 

tabulated non-dimensionalised cyclic step is £=L/2-transformation 

independent - note Section 3.5.1 and Fig 3.28. Tests upto 17C are 

termed ’quasi-cyclic’ on account of the small, and 

variably-signed, cyclic step; those beyond are considered to 

exhibit a more substantial cyclic step and are thereby deemed to

be 'cyclic-proper' or formally cyclic tests.

i
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Cases 1C to 17C (less 2C) correspond to a cyclic action phase 

inducing quasi-elastic hysteresis in which constitutive impurities 

in the nominally linear elastic range of the material give rise to 

hysteresis or work loss in the supposedly fully reversible 

constitutive regime(51,61) .importantly, however, the induced system 

changes can result in both cyclic hardening or softening according 

to experimental work on axial compression samples under reversed 

axial loading(63)# The negative values of cyclic step obtained in 

cases 4C, 5C, 8C, 9C, IOC, 12C and 16C testify to the highly

variable nature of the quasi-elastic hysteresis phenomenon, 

heightened, perhaps, by the imperfection sensitivity of the strut 

samples concerned. That is, the sensitivity could perhaps result 

in a ’positive* response to such action. However, as shown by the 

magnitude of the cyclic steps involved in cases 1C to 17C, the 

overall effect of cyclic action is small. Case 4C shows opposing 

effects with respect to the two cyclic phases involved.

Table 3.11 also gives details of the peak axial compression Pm 

induced during the cyclic action phase in terms of the ensuing 

post-cyclic action phase buckling load Pc . The demarcation 

between the quasi-cyclic and formally cyclic classifications is 

clearly shown. Table 3.12 gives an overview of all strut testing 

key data showing that in no instance other than the singular case 

20C was a substantial loss in buckling load Pc reported due to 

pre-buckling cyclic action, the cyclic Pc being compared with its 

static partner’s Pc . Even in the formally cyclic cases showing 

substantial cyclic hysteresis or cyclic step, note cases 21C, 22C, 

26C and 27C, there was little variation between corresponding
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strut case cyclic and static Pc values. Indeed, the former pair

exhibit an increase in Pc over their respective static partners. 

This fact can be explained by reference to the appropriate 

imperfections, the 'cyclic1 strut cases being initially less

imperfect in both cases. It was precisely this sort of problem 

which led to the large number of tests undertaken.

Case 20C actually buckled during the cyclic action phase and, 

unsurprisingly, post cyclic action phase buckling load Pc suffered 

a drastic drop. Apart from this case, it appears that deformation 

was more susceptible to pre-buckling cyclic action than load 

carrying capacity itself. This consideration is limited by the 

fact that definitive control upon static/cyclic Pc correlation is 

not available, as discussed above, whilst the cyclic step is more 

readily assessed in terms of the cyclic test central transverse

displacement at buckling. It is not assessed against the

corresponding static buckling displacement, note Table 3.12.

Crucially, however, Tables 3.11 and 3.12show that the key cases 21C,

22C, 26C and 27C can be seen to correspond to high peak inelastic

excursions in struts possessing a relatively substantial inelastic 

range. It is considered that this represents the primary research 

finding, noting just how high a degree of inelastic incursion is

required to cause problems for imperfection sensitive struts. For

the prescribed values of frequency f and duration nc , the CHS 

specimens employed display considerable resilience to pre-buckling 

cyclic action. It should also be recalled at this stage that 

although the specimens employed corresponded to being imperfection
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sensitive, they were remarkably imperfection-free as shown in 

Table 3.12, remembering also the low level of residual stress

present(32).

Supporting data to that given in Tables 3.11 and 3.12 is provided 

by that given in Table 3.13 where experimental buckling loads Pc 

are assessed against squash load Ps (stub test) and ECCS load

P p ( 3 6 )  (but & -L/2) . It is considered that modified slenderness 

ratio Xm , an important reference in the above finding, affords an 

excellent means of overall buckling classification taking on board 

as it does the relationships exhibited by Pc to elastic/ inelastic 

demarcation (*Pp '), elastic buckling (Pe and \ ) and squash load 

(Ps ) considerations. It should be noted that employing £=L/2 

effectively doubles the ECCS load Pp , this effect being somewhat 

offset by the fact that rj ( 3 6 )  f a r  i n  excess of the

imperfections wQC encountered herein as discussed in Section 

3.5.1. The complex nature of the imperfection role in strut

stability is emphasised by the nature of the wo c , both direct and

interpolated, e and w q c l parameters. The number of cases in which 

a direct woc centred imperfection could not be determined is 

notable. This problem, detailed in Section 3.5.1, is ’masked’ 

when pin-ended strut testing is employed; rarely are such 

conditions met in engineering practice and it is to be noted that 

studies into the nature of practical effective lengths are being 

conducted elsewhere(62)#

The primary research finding propounded above is considered

further in Fig 3.32. The central cyclic step displacement is duly
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Figure 3.32 ; Cyclic Step / Peak Cyclic Load Ratio 
vs Modified Slenderness
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Figure 3.33 ; Peak Cyclic Load vs Cyclic Step Response
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presented in terms of the peak inelastic cyclic load, both 

parameters being normalised to their respective buckling

equivalents. As plotted against the equally embracing modified

slenderness ratio, a concise visual presentation is afforded of 

the fact that cyclic amplification of initial imperfection effects 

is dependent upon the availability of substantial inelastic 

exposure. With respect to design considerations, the key

relationship between cyclic step and peak cyclic loading Pm is 

given in Fig 3.33. The aforementioned classifications of 

quasi-cyclic and formally cyclic cases are denoted and Pm data is 

presented in terms of both the respective specimen Pc values

(C and S ). This attempts to overcome the variations between the 

corresponding static and cyclic strut partners' imperfections and 

to provide data appertaining to the appropriate static value, 

static values being the accepted medium in engineering practice. 

Fig 3.33 represents the research programme's primary finding in 

design terms and includes a suggested empirical locus with

wcL/(wcL“wocL)=5% for pm/pc-̂ 0 *75 and

w cL/ (w c L - wocL)|pc = (85.5 -86.27Pm /Pc)'1 (3.14)

for Pm /Pc>0.75, noting the serviceability cut-off.

Figs 3.34 to 3.37 display computer graphic output for case 

13C, typical of the quasi-cyclic batch; see Table 3.11. The 

cyclic effects are small with little load shedding - note AP in 

Fig 3.31. Two cyclic action phases were involved and the possibly 

surprising stiffening effects best displayed in Fig 3.34 are the
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AXIAL LOAD vs. AXIAL DISPLACEMENT

pre - cyclic gradient 
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post - cyclic gradient 
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first cyclic 
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20 504535
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Figure 3.34 ; P vs u - Strut Ref. 13C

AXIAL LOAD vs. MID-SPAN RESULTANT LATERAL DISPLACEMENT
X101

Pc = 105.3 kN

second cyclic phase

< kN )

first cyclic phase

20 25

W  clr* W  o c L < ^
30 35

Figure 3.35 ; P vs WCL “ w o c l  ” Strut Ref. 13C
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Figure 3.36 ; Vector Trace ( P ̂  Pc ) - Strut Ref. 13C
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Figure 3.37 ; Vector Trace - Strut Ref. 13C
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most notable feature, the axial stiffness, essentially E, being 

increased by approximately 3%. Figs 3.36 and 3.37 show the 

respective vector traces, these not being notably different from 

the static equivalents discussed in Section 3.6.1.

Figs 3.38 to 3.41 and 3.42 to 3.43 provide computer graphics output 

for cases 26C and 27C, typical of the formal cyclic batch 

displaying a significant cyclic step. In conjunction with this, 

load loss during the cyclic phase is more substantial than in the 

quasi-cyclic cases but still <10% P^. Figs 3.38 and 3.42

similarly display a larger than formerly increase in axial 

stiffness/E of approximately 5%. It should perhaps be noted that 

in the quasi-cyclic cases, the change in stiffness compensates for 

the load loss AP in so much that in the vicinity of buckling, the 

post-cyclic locus crosses over the projection of the pre-cyclic 

path in the P vs u loci, see Fig 3.34. However, in the formal 

cyclic cases, see Figs 3.38 and 3.42, the increase in stiffness 

fails to 'claw back' in this manner. That is, increase in axial 

stiffness or E fails to overcome the inelastic increase in 

deformation as assessed by the associated cyclic step; note Figs 

3.39 and 3.43. In all cited cyclic cases, note Figs 3.34, 3.35, 

3.38, 3.39, 3.42 and 3.43, the buckling state is well-defined. 

The vector traces of Figs 3.40, 3.41, 3.44 and 3.45 are again of 

the essentially planar form displayed by their static and 

quasi-cyclic counterparts. This situation can be contrasted with 

the pre-buckling vector trace shown in Fig 3.46 which corresponds 

to case 19C. The cyclic step is associated with a distinct shift 

in the vector trace, although the post-cyclic phase path and the
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AXIAL LOAD vs. AXIAL DISPLACEMENT
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Figure 3.38 ; P vs u - Strut Ref. 26C
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Figure 3.39 ; P vs w c l  - w0cL ” Strut Ref. 26C
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AXIAL LOAD vs. AXIAL DISPLACEMENT

Pc = 1M.0 kN

20 25 453530
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Figure 3.42 ; P vs u - Strut Ref. 27C
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Figure 3.43 ; P vs w c l  - w o c l  - Strut Ref. 27C
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displacement magnitudes involved are small. That is, the effect 

is small. Given the above parallelism, it is useful to recall the 

former arguments relating to buckling path orientation and 

monitored imperfections w o c l  and e given in Section 3.6.1. The 

apparent agreement between the orientations of w q c l and the vector 

trace belies the fact that 19C was also a heavily corkscrewed case 

with no direct wQC value being available; note Table 3.12 and the 

typical corkscrewed topology of Fig 3.11. Summarising, planarity 

of the vector trace can be disturbed by cyclic action, the 

orientation of the vector trace planarity remaining largely under 

the control of the complex initial imperfection interaction 

discussed in Section 3.6.1.

Finally, attention is drawn to case 20C wherein buckling was 

induced during the cyclic phase as denoted in Table 3.12 and 

illustrated in Figs 3.47 and 3.48. As is to be expected, given 

the nature of instability studies, the cyclic step and the cyclic 

phase load loss increase dramatically with respect to the

other formal cyclic cases. Reference to Table 3.11 shows that a

relative increase of 5% in um /ujpc , see cases 21C, 22C, 26C and

27C, produces a disproportionate increase in response as noted 

formerly; cases 20C and 21C share common Am . Recall that Figs 3.38 

and 3.39, and Figs 3.42 and 3.43, show the respective 

characteristics for cases 26C and 27C with which Figs 3.47 and 

3.48 should be compared. The post-cyclic action phase value of Pc 

is 20% below that of its static partner 20S, the only such 

registered case in the testing programme. This reduction suggests

that imperfection sensitive struts only suffer drastic performance
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AXIAL LOAD vs. AXIAL DISPLACEMENT
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Figure 3.47 ; P vs u - Strut Ref. 20C
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Figure 3.48 ; P vs w c l - w o c l  - Strut Ref. 20C



loss due to cyclic action if buckling is actually induced during 

the cyclic phase.

The nature of the struts' behaviour during the cyclic action phase 

is important. Response 'temporal rates' will govern the degree of 

validity possessed by an essentially static or pseudo-static 

analysis. Consideration will therefore now be given to the 

time-dependent aspects of the C-series tests.

3.7.2 Time-Dependent Parametric Response

Typical quasi-elastic hysteresis(51) behaviour is illustrated in 

Figs 3.49 and 3.50 which relate to case 13C. These loci can be 

compared with those shown in Figs 3.34 and 3.35 which relate to 

static (only) paths . The hysteresis consists of closed

loop lines(^3) displaying cyclic stiffening. Cyclic phase exit 

paths are variably located within the hysteresis bounds. That is, 

the hysteresis lines are overwriting, oscillating within a band 

width established earlier in the cyclic phase; note cases with 

nc / 1000 - P22 to P24, 1C, 13C and 14C (cf Tables 2.3 , 3.11 and 3.12 ). 

This maximised band-width suggests that quasi-elastic hysteresis 

importantly involves effectively stabilised and narrow 

band-widths. The highly variable hysteresis behaviour signified 

by the dual signed cyclic steps of Table 3.11 is thereby 

fortunately 'bounded'. Pseudo-static interpretation would appear 

to be substantive.

Two types of hysteresis occur in the formally cyclic cases.
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Figure 3.49 ; Quasi - Elastic Hysteresis : P vs u Trace - Strut Ref. 13C
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Finite area(64) single band hysteresis occurs for cases showing a 

lesser cyclic step, ie those involving higher Am and/or lower um 

values. This is typified in Fig 3.51, case 19C, where a single 

basic loop is effectively traced out by all cycles. (It should be 

noted that the RV10 function generator is manually controlled and 

involves a gradual attainment of full amplitude over the first few 

cycles.) Again, stabilisation occurs well within 1000 cycles 

although the band-width is larger and of uniform 'sign* or 'sense' 

throughout. Multiple band hysteresis is illustrated in Fig 3.52 

and relates to case 21C. This profile is typical of those cases 

involving higher values of cyclic step with lower values of 

modified slenderness ratio A m  an^ higher values of peak cyclic 

displacement i^. In this situation, discrete groups of individual 

hysteresis loops of finite area forward march, increasing the 

band-width. Figs 3.53 and 3.54 display similar hysteresis 

patterns with respect to cases 26C and 27C. Although there is a 

'tightening' of the individual hysteresis loops with increasing 

cycles, cyclic creep deceleration(6^>6fj),there is, importantly, no 

cyclic creep stabilisation; incremental displacement is evident 

with each cycle. Any proposed pseudo-static modelling for these 

cases must include tratement of the cyclic step w ^ .  The above 

discussion has utilised P vs w*cL"w ocL l°ci> these display cyclic 

activity more distinctly than the corresponding P vs u loci. 

However, as shown in Figs 3.55 and 3.56, relating to cases 26C and 

27C respectively, formally cyclic P vs u hysteresis differs from 

that associated with quasi-elastic hysteresis by being of uniform 

'sense' or 'sign' (ie no cyclic hardening) throughout and by 

displaying substantially larger band-widths.
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Figure 3.55 ; P vs u Hysteretic Trace - Strut Ref. 26C
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Figure 3.56 ; P vs u Hysteretic Trace - Strut Ref. 27C
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Finally, Figs 3.57 and 3.58 respectively display the P vs u and P 

vs wc L “ wocL relating to case 20C which buckled during the

cyclic phase. Visually dramatic with Pm /Pc nominally equal to 

unity, Pc as defined does not exist, the singular behaviour 

represents an upper bound on the testing programme. Cyclic creep 

accelerates into the buckling state before deceleration occurs 

post-buckling. Given the subsequent degradation in performance, 

it appears that for imperfection sensitive struts to display 

catastrophic behaviour under short duration, low frequency cyclic 

action, pre-buckling displacement state must be 'local1 to the 

buckling state.

3.7.3 Semi-Empirical Analyses - Southwell and Lundquist Plots

Given the usefulness of their application to the static strut 

studies, it was decided to attempt to employ the Southwell and 

Lundquist plots in the cyclic strut studies. The objective in 

each case was to obtain two distinct linear fit ranges of pre- and 

post-cyclic phase form which were parallel but offset. This 

implied no change in effective length due to loss of collett grip, 

but inelastic amplification of the initial lumped imperfection. 

It has been noted that a small increase in direct modulus E was 

incurred as a result of cyclic action and this will affect the 

parallelism factor.

With respect to the quasi-cyclic cases, however, the induced 

cyclic step wcY  was so small that no effectively distinct pairs of 

linear fits could be obtained. Figs 3.59 and 3.60 show the
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Figure 3.59 ; Southwell Plot - Strut Ref. 7C
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Figure 3.60 ; Lundquist Plot - Strut Ref. 7C
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computer graphic plots for case 7C. The locations of the cyclic 

step within these plots are indicated and relate to a relatively 

low value of mean cyclic stroke. Their identity is partially 

masked by low load irregularities(56). in other cases, the linear 

fit range sometimes included the state corresponding to the cyclic 

step. Appropriate data for all quasi-cyclic tests is given in 

Table 3.14. All cases were effectively treated as static studies. 

Three cases failed to provide acceptable linear fit ranges; the 

low value of Pc /Pe=0.58 for case 11C is to be noted(56)#

With respect to the formally cyclic cases, attempts to obtain 

viable pre- and post-cyclic action phase pairs of plots were 

reasonably successful as indicated in Table 3.15 , the cases of 

inadmissibility being restricted to those with relatively low 

values. The respective effective length estimates show a 

consistent and small reduction for the post-cyclic values but 

these variations are in keeping with the above-mentioned increase 

in direct modulus (average of +5%). Cyclic plots for case 24C are 

exemplified in Fig 3.61, with the computer graphics appertaining 

to case 18C being displayed in Figs 3.62 and 3.63. The location 

of the cyclic step is clearly depicted throughout. In all cases 

available, there is a distinct increase in the initial lumped 

imperfection parameters aos and a0i due to cyclic action. That 

i s , the plots display, as denoted in Table 3.15, amplification of 

initial strut imperfections due to pre-buckling cyclic action.
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Strut 

Ref .

Linear Fit Range 
(% of Pe)

Euler Data w oc Data 

(mm)

Southwell Lundquist Al/A aos aol

1C 60 - 73 60 - 73 1.06 1.07 0.21 0.11

$ 2C n/a n/a n / a . n/a n/a n/a

3C 38 - 48 50 - 60 1.00 1.05 0.55 0.40

4C 49 - 59 51 - 59 1.01 1.05 0.75 0.54

5C 61 - 70 55 - 63 1.08 1.07 0.24 0.35

6C 59 - 77 60 - 77 1.07 1.07 0.05 0.05

7C 36 - 58 39 - 59 1.03 1.04 0.39 0.33

8C 5 0 - 6 3 40 - 58 1.03 1.05 0.70 0.52

9C (*) (*) (*) (*) (*) (*)

IOC (*) (*) (*) (*) (*) (*)

11C (*) (*) (*) (*) (*) (*)

12C 51 - 63 60 - 70 1.02 1.07 0.35 0.10

13C 72 - 77 65 - 75 1.03 1.02 0.40 0.38

14C 39 - 53 55 - 64 1.04 1.08 0.36 0.25

15C 59 - 66 59 - 67 1.04 1.06 0.37 0.34

16C 37 - 49 31 - 48 1.01 1.08 0.44 0.24

17C 53 - 64 53 - 64 1.03 1.02 1.54 1.63

(*)=inadmissible ranges $=static test n/a=not applicable 

Table 3.14; Quasi-Cyclic Struts - Southwell and Lundquist Plot Data
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4-1•HPn cj O•H •H
U H r—4CO o CJ0) >N X3 o CJ•H 1 1■J <u •UM CO X JH X PH X Ph X >4 X PH X PH X PH3< oP-4

II II
X PH
4-1 •
3 U-4 00 00 ON ON o O i— *— CM CM cn cn <r <aM 3 T— CM CM CM CM CM CM CM CM CM CM4J 35CO

3CO
3xCO Ou300 CJ

3 •H
3 r—1
J-i u

X0) o
i—1
X 00
•H 3CO •H
CO l-i•H 3B 'O*33 *3
3 3•H i—i
X

II CJ
33 X

3 II
4f*

CO■u
COQ
•u»Oi-1

CM

O
4-1

m
CM

CO vCM3 \  
a6 it 
COCO o?

CO•H3crT333•3
*3
3
CO

a)
I
4J
3OC/0

in
•cn
3
I— I
jo
COH

153



Lu
nd

qu
is

t;
 

(w 
- 
w 

-w
* 

)/
(P

-P
f) 

(m
m/
kN
) 

xI
O"

 
c 

oc

m
cn

om
cn cnco

m
CM CM

O mo
CM

Om

o mcn
o

m
o

mo
00 vO cn

r
oo

— rr-'- — r
vO m

— r
cn

— T
CM

154

Fi
gu
re

 
3.
61
 

; 
So

ut
hw

el
l 

and
 

Lu
nd

qu
is

t 
Pl
ot
s 

- 
St
ru
t 

Re
f.
 2

4C



(wc - woc) /P SOUTHWELL PLOT : CTCLIC / PRE-ULTWATE LOAD

■- p f f  - fggpfssjom
Fir DATA50.

-  LOAD SrAfSS < Pc

35.

30.

cyclic
step25.

20.

oc
25 35

Figure 3,62 ; Southwell Plot - Strut Ref. 18C

(w c ” wOC “ w ')/(p “ P*) LUNDQUIST PLOT : CTCLIC / PRE-ULTIMATE LOAD
(iran/kN)xi0-375

70.

G5.

60.

55.

50.

45.
40.

35.

30.

25.

A PFF - PFGPFSS/OH 
Fir DATA

x - - load srAres < fc 
<p' =31 .5kN ,w' = .47mm>

cyclic
step

20.
15.

- woc
4520 25-5

Figure 3.63 ; Lundquist Plot - Strut Ref. 18C
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3.8 ADDITIONAL TESTS

3.8.1 Comments

Three series of additional stub and strut tests were conducted for 

purposes of data control. Six stub tests were undertaken using

additional material to ascertain the effect of quasi-elastic 

hysteresis on structural specimens independent of stability 

considerations, ie low Nine strut specimens were subjected to

a 'section bending1 process in order to investigate the static 

performance of the CHS specimens in the presence of larger 

imperfections - the high quality of the ESWR specimens employed 

having been specifically discussed. Use was made of facilities 

available in the South Yorkshire coalfield to achieve the 

necessary circular arc profile for the nine strut specimens - 

section bending is used to provide runway roofing. The

cold-forming technique employed will not only generate larger

initial curvatures but also set up residual stress leading to 

complex high order imperfections. Alternative control using 

highly imperfect struts was also achieved by re-testing,

statically, six previously buckled specimens from the mainstream 

testing programme. However, as three of the specimens had 

previously been tested cyclically, additional control on fatigue 

and comparative cyclic/static, assessment was also made available.

3.8.2 Cyclic Stub Test

Table 3.16 gives the key data appertaining to the six additional
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ID; Oy*305N/mm2 

E«201kN/mm2 

2D; Oy“294N/mm2 

E-205kN/mm2

Table 3,16 ; Cyclic Stub Test Data

Strut

Ref

X / Xi wocL (mm) Pc

( k.N)

PC/Ps

Pinned

wocL

Encastre

wocE

28 <a) 0.98 5.33 2.A8 101.0 0.68

<b> 0.98 5.80 2.70 10A.0 0.71

29 (a) 0.90 5.20 2.67 9A.7 0.75

<b> 0.91 8.47 A. 27 90.6 0.72

30 W 0.98 9.67 A.63 9A.2 0.63

<b) 0.97 7.50 3.79 96.3 0.68

31 (a) 0.96 6.79 3.2A 99.5 0.70

<b> 0.97 8.06 3.89 95.2 0.67

32 (a? 0.87 7.37 3.62 75.7 0.80

Pc average - 95kN; Pc/P8 average *0.67

Table 3,17 ; Synthetically Deformed Strut Test Data

Strut Ref 1R 2R 3R AR 5R 6R AveraRe

Original 

Strut Ref 5S 10S IOC 13C 15S 15C

w o c e (““ )

encastre 18.8 26.A 18.1 20.9 27.9 23.6 22.6

Pc (kN) 70.6 61.1 71.1 65.3 59.A 58.2 6A.3

Original
Pc(kN) 106.A 106.8 111.0 105.3 112.5 111.9 109. A

Table 3,18 ; Retested Strut Test Data

Stub

Ref

Mode

S-static

C-cyclic

Pre-

cycllc E 

(kN/mm2)

Post- 

cyclic E 

(kN/mm2)

AP

(kN)

ID S n/a n/a n/a

2D S n/a n/a n/a

ID (a) C 199 20A -0.3

(b> C 200 206 0.5

2D (a) C 20A 212 2.5

<b> C 203 210 2.1
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stub tests conducted on CHS material cut from two further runs of 

steel, demarked 1 and 2 respectively. Tests ID and 2D were purely 

static to establish appropriate E and Oy/proof stress data; note 

Section 3.4.1. The cyclic action profiles implemented in the 

remaining four tests were constrained to maintain cyclic action 

wholly within the nominally linear elastic range. Figs 3.64 and 

3.65 display typical behaviour. As shown in Table 3.16, the post- 

cyclic stiffness increases in accordance with the findings of

Section 3.7.1, with the post-cyclic modulus E being clearly deemed 

to be the agent of this increase. Quasi-elastic hysteresis is a 

random phenomenon^51) and this is borne out by the results

obtained. The characteristics of the densely grouped line 

hysteresis displayed in Fig 3.64 are of similar form to those 

obtained in the quasi-cyclic strut tests, note also AP in Table

3.16, showing imperfection sensitivity and slenderness ratio are 

not of importance with respect to the random quasi-elastic 

hysteresis phenomenon.

3.8.3 Synthetically Curved Struts

Data appertaining to these static strut tests is given in Table

3.17. Strut Ref 32(a) overwrites case 16S as discussed in Section 

3.2.2, the remaining samples being strut pairs from the denoted

7.5m section runs; for all cases, A =80. Due to the larger 

geometric imperfections induced, correlation between the lathe- 

centre or pinned mode w o c l data and the corresponding encastre 

mode data wocg is lost; note Section 3.5.1. These imperfection 

values are an order of magnitude higher than those of the
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onset of 
plasticity200-

static

100.
£ x10first

cycle
stati

'Hysteresis1 abscissa scale

20
Figure 3.64 ; Cyclic Stub Test (Autographic) Output 

- Stub Ref. 2D (a)

O  STUB TEST OUTPUT

(N/mm2 )XI#,

29. [static locus]

2t:

post-cyclic E
19.

II.

pre-cyclic E

LOCUS

Figure 3.65 ; Cyclic Stub Test : Computer Graphic Output 
- Stub Ref. 2D (a)
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mainstream strut tests. Comparison with the average Pc /Ps value 

for the mainstream static strut tests with A=80 shows an average 

reduction in Pc /Ps of some 20%; from 0.83 to 0.67, note Tables 

3.12 and 3.13. Fig 3.66 shows a typical P vs w c l “W o c l  locus with 

apparently negative pre-buckling stiffness. Fig 3.67 shows the 

corresponding vector trace explaining this apparent anomaly, with 

planarity of the buckling path clearly invalid. The path is 

subject to a complex interaction of larger imperfections, noting 

particularly the implications of clamping a circular arc initial 

strut topology. It should be noted that Pc in case 32(a) is 

approximately 12% lower than the Pc of case 16C.

3.8.A Re-Tested Struts

A final six static tests upon struts of a heavily imperfect form 

were undertaken using previously tested specimens. Key data is 

given in Table 3.18; note the large values of wocg recorded in 

comparison with those of Table 3.13 . Reductions in buckling load 

of the order of 40% were obtained and lateral displacement at 

buckling increased significantly. The previously cyclically 

tested struts, as anticipated, showed no sign of fatigue having 

been induced due to the former cyclic action. The correspondence 

between the re-tested data for both the S and C type cases 

reinforce the finding that the quasi- elastic hysteresis 

associated with the quasi-cyclic tests does not significantly 

affect static strut performance. Fig 3.68 displays a typical 

re-test P vs w c l ” w o c L 1°c u s > the corresponding vector traces 

are planar as is to be expected given their re-tested nature.
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AXIAL LOAD vs. MID-SPAN RESULTANT LATERAL DISPLACEMENT

25 3(

WcL" WocL( mm >
Figure 3.66 ; P vs w cl  - w o c l  - Strut Ref. 32(a)

-5.

-5-2 -3 -6

20.

25.

30.

35.

P = Pp = 75.7kN
40j

MID-SPAN LATERAL DISPLACEMENT VECTOR TRACE (PLAN VIEW) re: P  ̂Pc

Figure 3.67 ; Vector Trace ( P < Pc) - Strut Ref. 32(a)
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3.9 SUMMARY

The findings of in excess of 200 computer governed large scale 

tests have been presented and discussed. Further deliberation 

will follow the theoretical modelling set out in the next chapter. 

Key data has been summarised in Tables 3.11, 3.12 and 3.13 whilst 

primary findings are typified by Fig 3.33. A schedule of tests is 

given in Fig 3.69.

Considerations will now be given to a theoretical study with 

regard to which attention is drawn to the nature of the cyclic 

step (w £l or, with respect to £=L/2, w£) and the fact that up to 

four different forms of identifying the initial out-of- 

straightness are available for each strut. Finally, the

importance of Xm values upon strut performance has been 

specifically recorded. This demands that particular attention be 

given to the matter of constitutive modelling.
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Metrology

Tensile Tests

Cyclic stub tests

Stub tests (static)

Synthetically deformed and retested struts

Preliminary Tests

Chapter 2

Strut tests (\=80)

static & cyclic

Cut specimens from runs

(struts to afford A=90)

Strut tests (70< A < 9 0 ? 80)

static and cyclic

Out-of-straightness (wonL/wonE) 

on struts (static & cyclic)

Figure 3.69 ; Schedule of Tests
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CHAPTER 4

THEORETICAL STUDY

4.1 INTRODUCTION

Given the complexities associated with inelastic strut behaviour, 

their planar static analysis invariably involves numerical or 

approximate techniques. A variety of approaches have been 

establishedC35,66,67 ,68) t with finite element(55 >69) ancj tangent 

stiffness(^0 »^1) studies being prominent amongst them. 

Constitutively, three phases of behaviour have been identified, 

the 'elastic1, the 'primary plastic' and the 'secondary plastic' 

phases^^). The first phase relates to those zones of the strut 

which are only stressed in the elastic range, the second to those 

in which yielding occurs in the compressive fibres, whilst the 

'secondary plastic' phase involves those zones of the strut in 

which yielding occurs in both tensile and compressive fibres. 

Strut analysis also involves their interaction, a task requiring 

considerable computational effort.

It is against this background that the present theoretical studies 

are set and the following decisions were taken with regard to 

their implementation. With the primary purpose being to analyse 

static strut behaviour subject to the effect of a phase of pre

buckling cyclic loading, a fully static model was to be initially 

produced. This static model was to involve the aforementioned 

three zone constitutive relationships. In an attempt to simplify
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this involvement, a novel moraent-thrust-curvature function, of 

central importance to the theoretical studies, was derived. 

Computational amenability was completed by employing a 

representative spring-link strut model approach^3,35) Spring-link 

modelling as introduced in Section 1.4 provides an excellent 

research tool, enabling convenient and representative 

quantification of system parameters. System performance was to be 

couched in terms of virtual work(73,74)> an(j analysis was to be 

continued well into the post-buckling range.

Inclusion of cyclic effects was to be centred on representation of

the cyclic step as exemplified in Fig 3.33 and Eqn (3.14). 

Experimentation had shown this to be the primary effect of a pre

buckling cyclic action phase and modelling the appropriate pseudo

static characteristics as delineated in Fig 3.31 was thereby

deemed to afford sufficient definition of the problem.

Concentration was placed upon flexural behaviour, this being 

considered to be the quintessential arbiter of buckling

performance. End-shortening modelling was to be largely

intuitive.

The model was to accommodate imperfections in the form of an 

initial central transverse displacement, data for this parameter 

being provided from the experimental programme in the form of woc- 

direct, woc-interpolated, aos (Southwell) and a0^ (Lundquist).

The latter pair of parameters should provide for the correct 

planarity of action and inclusion of eccentricity of loading and 

residual stress (however small) effects. Upto four theoretical
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models per strut case analysis are thereby provided for, case 

assessments being detailed following derivation of the model.

Theoretical studies are based upon an effective length £ (=L/2) 

and the necessary transformation for experimental flexural 

deformation data is carried out in accordance with the discussions 

of Section 3.5.1, see Eqn (3.10) for example, and Section 3.6.2,

noting Fig 3.28 in particular. Essentially, all prototype

flexural deformation parameters are halved with respect to model 

studies, confidence in the deemed experimental assumption of £=L/2 

being provided by the effective length assessments given in Tables 

3.10 and 3.14. The non-dimensionalised cyclic step ratio denoted 

in Eqn (3.14) is invariant. Resulting theoretical or model 

flexural deformation values are then doubled for use in

theoretical/experimental assessment employing prototype loci.

Computer resident algorithms were employed throughout using 64-bit 

based routines for solution of the resultant non-linear

expressions. Computer graphics were employed for parametric 

output and the appropriate files were interactively controlled to 

enable appropriately fine incrementation in the vicinity of the 

buckling state.

4.2 FORMAL STATIC MOMENT-THRUST-CURVATURE CONSTITUTIVE 

RELATIONSHIPS

An encastre CHS strut is illustrated in section and half

elevation, noting the relevant symmetry, in Figs 4.1(a) and (b)
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respectively. The appropriate three-phase constitutive

t o p o l o g y ( ^ 2 )  is shown in Fig 4.1(c) with e i and £2 denoting the 

respective maximum compression and tensile direct strains, cr̂  and 

0*2 the corresponding maximum elastic stresses and parameters k} 

and k2 denoting non-dimensional elastic core delineators. Yield 

zones are hatched in the half-elevation profile. Idealised 

elasto-plastic behaviour is assumed, the stub test

experimentation, noting Section 3.4.1 in particular, supporting 

this assumption overall.

General moment, thrust and curvature relationships at any 

centreline location are derived employing
I

P = ̂ x = f* axy dA (4.1)

M = MX = J* ax y y dA (4-2)
A

v = vx = (£<[-£2 )/D (4.3)

y denoting the spatial coordinate orthogonal to x. Eqns (4.1) to 

(4.3) are evaluated for each of the three phases, resulting in

P = AE (e2+ VD/2) (4>4)

M = ElV (4.5)

v = ( e 1-e2 )/D (4.6)

for the elastic phase
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P = Pg + ED2 tv[ kj cos"1(k1) - k 1 - (1 -k^ ) ̂ ] 
2

(4.7)

M  = ED3 tv [ M l - k i  )* + c o s "1(-kl)] (4.8)

v = 2(£y - £2)/D(1-rk1) (4.9)

for the primary plastic phase, and

P = Ps I"£y C sin 1 (k2^ “ sin 1 (k l) ]
£yir L

—  1 — 1+ VD - £2 t (sin (k-j) + sin (k2) ]
2

+ VD [ (1-k?)4 - (1 -k| ) 4 ] (4.10)

M = 2ED2t

.2 x J

(1-k| )* [ e + — VD(1 +k,/2) ]
3 2

+ (1 -k2 ) [ £y - £2 - VD(k?/2 - 1) ]

- 1  - 1+ VD [ sin (k^) + sin (k2) ]
4

(4.11)

V = 4£y / D(k1 + k2) 

for the secondary plastic phase.

(4.12)

The above are represented in graphical terms in Fig 4.2, the 

moment-thrust-curvature expressions being evaluated in terms of 

n=P/Ps using an open form solution procedure^^5). The dashed 

asymptotes relate to the respective plastic moments of resistance
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in the presence of axial thrust, Mpn , these asymptotes obeying

M pn = Mp cos (mr/2) , v 00 (4.13)

as required by the sectional geometry of Fig 4.1(a), Mp denoting 

the fully plastic moment. Fig 4.2 is presented in non-dimensional 

form, values being normalised to first yield moment My and 

curvature Vy. Noting the complex natures of Eqns (4.7) to (4.12), 

then specific values for E and <Ty must be employed for Fig 4.2, 

the values actually employed therein being the respective average 

values obtained from the stub testing programme; see Section

Eqns (4.4) to (4.12) relate to a complex stress-strain regime and 

are computationally unwieldy, particularly given the need to 

interface these three phases in accordance with the relevant 

governing system requirements.

It was considered that the provision of a continuous moment- 

thrust-curvature function would do much to overcome the problems 

associated with implementation of the three-phase constitutive 

modelling. Previously published work relating to simplification 

of Eqns (4.4) to (4.12) has been restricted to the use of curve- 

fitting, with respect to loci of the form illustrated in Fig 4.2, 

involving the use of several piecewise connecting sub- 

functionsC ̂ 6 ,77). Noting work elsewhere in the modelling of

3.4.1

4.3 NOVEL CONSTITUTIVE MODELLING
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non-conservative forces using exponential functionsC^®), a search 

for a suitable and unique moment-thrust-curvature expression was 

undertaken. Two primary constraints were placed upon the 

perceived function; first, initial behaviour must be in accordance 

with linear elastic characteristics and second, compliance with 

the asymptote behaviour denoted above must be present. The basic 

form of the function required was perceived to be of the form

M  = Mpn ( 1 - e_f[MPn > V]) (4.14)

and various attempts were undertaken to refine the modelling, 

conducted employing interactive computer graphics. This

refinement resulted in acceptance of

M = Mpcos(mr/2) ( 1 - e-[EIv/(Mpcos(wr/2)) +c(1-n)v’] ) ( 4 a 5 )

where c=123xl0^mm2, a sectional constant. Eqn (4.15) is valid for 

0<n<1, and the performance is typified by Fig 4.3. The initial 

gradient of Eqn (4.15) with respect to the format of Fig 4.3 is 

given by 3M/3\> = El which accords with linear elastic theory. 

Asymptotes for all respective n are as required with 1/e00 =0 as V 
approaches °° . Eqn (4.15) is also capable of being conveniently 

normalised to first yield values of moment and curvature, with

M/My = rscos(nir/2) (l - e- M v yrscos(mr/2) )_1+c(1-n)V2 ]) (416) 

where rs=Mp/My denotes the respective shape factor.
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The above formulation represents a unique and fully differentiable 

modelling of Eqns (4.4) to (4.12) and affords a computationally

amenable format. Static strut modelling is now undertaken with a 

view to implementing the foregoing in a structural system of 

similarly accurate yet convenient form.

4.4 SPRING-LINK STRUT MODEL

Representative spring-link modelling was introduced in Section 1.4 

with respect to elastic strut stability. Fig 4.4 illustrates a

typical spring node i as displaced from an idealised zero datum 

state. The slopes of the adjacent links are given by 0^ and ©i-i 

respectively, the angle through which the spring stiffness kj

works thereby being (*£ =9i-i“9i* Nodal therefore takes the form

V i = a i / [ ( c o s 0 i _ 1 + c o s e i ) £ i / 2 ]  zcLi/Hi = (0i--|-0i)/£i ( 4 . 1 7 )

wherein the degree of system non-linearity is r e s t r i c t e d ( 2 4 ) # The 

spring moment Mj is given by

Mi = k iai (4.18)

where spring stiffness ki=f(o^) for non-linear constitutive

behaviour; see Eqn (4.15).

Fig 4.5 accordingly depicts a four-link strut model appertaining 

to an effective length & with ki=k5=0. The system is considered 

to be symmetrical, effectively possessing two degrees-of-freedom,
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say and 0£. Net central displacement is given by wc-wo c ,

noting the imperfect structural datum essentially defined by 0oi 
and ©02* Values for these parameters are deduced from rigid body

geometry, woc data obtained from the experimental programme and

acceptance of an initial sinusoidal profile. The imperfect datum 

requires curvature Vf and moment Mj to become

v = (ai-api)/(K/4) = 4 ( e i_ 1-e0(i_ 1)-ei+60i)/ji (4.19)

and

M i = k i ( 04. - a oi) (4.20)

where represents employment of Eqn ( 4 . 1 6 )  subject to the

appropriate substitution of Eqn ( 4 . 1 9 )  for curvature V = V j _  and with

Mi=M.

End shortening u neglects axial straining ua , with flexural end 

shortening represented by U f . Net end shortening is thereby 

formally written

u - u q  =  U f  -  u q  = £ ( c o s 0 0 ^ “ C O s 9 i + c o s .0q 2 “ C o s 0 2 ) / 2  ( 4 . 2 1 )

as denoted in Fig 4.5. Axial modelling for imperfection sensitive 

struts must include axial strain effects and this feature is 

discussed in Section 4.9.

Eqn (4.16) subject to Eqns (4.19) and (4.20) thereby defines the 

strut model characteristics involved. The next section employs
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the virtual work method to set up the necessary system equations.

4.5 ANALYTICAL VIRTUAL WORK FORMULATION

Denoting the internal virtual work by 6 U , then

6u = SD W i  • «(<»£-OQi)] (4.22)
i=2,3,4

The external virtual work, 6W, takes the form

6W = P 6 ( U f - u 0) (4.23)

For statics

6U = 6W (4.24)

Incorporating relationships established in Eqns (4.19) and (4.21), 

then Eqns (4.22) to (4.24) gives

ll [Mi acei.-! - e0 (i_i)- 6i + eoi) ]
i=2,3,4

= P£ <5[ c o s 0q i “ cos0-| + cos0Q2 - cos02) (4.25)

Substituting from Eqn (4.15), recalling M=Mi and V = V i , and

employing 6U=(3U/8ei )6ei . with 6 W = O W / 3 0 i )6©i gives, for i=l,2

noting the symmetry in Fig 4.5
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-[2A(02.-eO2) + 4 B ( 0 2- e O2) 2]

3_ I ,2Mpn (6i” 0oi^ + e

-[A(6r 0ore2+eo2)+B(er eo r W  ]
+ 2e .Hpn[A+2B(0^-0oi_02+0 O 2 ^  ^

= 8_ ["Pi£1(c o s 0o 1-c o s 0 1+c o s 0O2- c o s 02) (4.26)
80. L 2i

where A=4EI/(£ Mpn ) and B=16c(l-n)/&2. Differentiating affords

sin0. + sin0 = 4 M  cos (mr/2) (1-e ^)/P£ (4.27)1 l p

and

where

sin0. = 4M cos(n7r/2) (1-e ^)/P£ (4.28)i P

C = 8EI(02-0O2) + 4c(1-n)(02-0nJ 2
£M cos(mT/2) U / 4 ) 2 (4.29)P

and

D - 4 E « e r e2-e01+e02) ♦ c(iZn)(e1-e2-e01+e02)2
Mp£cos(n7r/2) (il/4) (4.30)

Eqns (4.27) and (4.28) represent the pair of non-linear

simultaneous equations which effectively govern the flexural 

system behaviour. Although highly non-linear, they provide an
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extremely simple modelling procedure to the static strut problem, 

with only two equations covering the entire constitutive history. 

Whilst they can be applied directly to static case studies, their 

implementation with respect to struts subject to a pre-buckling 

cyclic action phase requires some further modelling development. 

This and the related matters of imperfection inclusion and 

solution algorithms are discussed in the following.

4.6 APPLICATION AND SOLUTION PROCEDURES

4.6.1 Static Studies

As noted above, the treatment of static strut studies requires 

only the provision of the appropriate data for use with Eqns 

(4.27) and (4.28). Case studies were undertaken for all static 

strut tests employing individual constitutive and geometric data. 

Most notable, perhaps, was the treatment of imperfections 0 qi and 

©02* Data for woc ̂ from which input values for ©qi and 0Q2 were 

deduced, was available in up to four forms per case, woc being 

provided by both direct and interpolated means as well as by a os 

and a0i , the Southwell and Lundquist versions of woc respectively.

4.6.2 Cyclic Studies

Struts subjected to a pre-buckling cyclic action phase require the 

inclusion of an additional procedure to allow for the cyclic step 

2w ^(=w ^l , the appropriate transformations between displacement 

values based upon effective and nominal lengths being discussed
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previously). Attention is also drawn to Fig 3.31(b).

Considering first the use of woc direct and interpolated data, 

then analysis for 0<P<P^j, mean cyclic load P^ being a prescribed 

system parameter, is conducted in the accepted static manner, 

together with determination of the respective equivalently fully 

static buckling load fPc f and attendant central transverse 

displacement ’(wc-woc) |pc ’ • The displacement at the p{q state is 

then deemed to increase by cyclic step parameter w^., load loss due 

to hysteresis, note AP in Fig 3.31(b), being considered 

negligible. A new post-cyclic static state (wc~™oc+x*c) I P ^ P ®  is 

thereby established, the magnitude of w^ being determined from Fig 

3.33 or Eqn (3.14). The invariance of the non-dimensionalised 

cyclic step as delineated in Eqn (3.14) is to be recalled. Use of 

Fig 3.33 or Eqn (3.14) requires prescribed Pm and knowledge of the 

equivalently fully static values for ’Pc ’ and '(wc“w0c) | pc ’ 

obtained as above.

The immediate objective now is to determine a new or revised value 

of initial imperfection 'wo c ' that would generate a load- 

displacement locus that would pass, statically, through the above 

delineated post-cyclic static state (wc-woc+wfc ) | p^,Pm. This 

static-type procedure was undertaken on an iterative trial-and- 

error basis, the revised value of initial imperfection being 

indicative of cyclic hysteresis amplification of initial strut 

imperfections. Once this amplified imperfection has been 

determined, a revised static analysis is conducted through to the 

post-buckling range in accordance with accepted procedures.
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Finally, therefore, the overall pseudo-static modelling involves a 

static path based upon the respective initial imperfection for 

0<p<p;, implementation of the cyclic step based upon the empirical 

design curve of Fig 3.33, followed by a second static analysis 

employing the appropriate cyclically revised imperfection through 

buckling for P>?m* This latter step provides the effective 

pseudo-static or post-cyclic buckling load associated with cyclic 

studies, Pc , together with the corresponding central transverse 

displacement. Referring to Fig 3.33, quasi-cyclic cases, note 

Table 3.11, employ the lower 5% cut-off value for the cyclic step. 

However, given the small values of cyclic step involved, a 

standard static analysis of the respective strut case is 

considered to be of sufficient accuracy.

With respect to employment of the l u m p e d ( 5 6 )  Southwell and 

Lundquist imperfection parameters aos and aQi , a different cyclic 

analysis procedure is utilised given the existence, where 

feasible, of distinct pairs of pre- and post-cyclic action phase 

values of aos and a0i . Each cyclic strut case analysis consists 

of two static loci, one employing the pre-cyclic value of aos or 

aol> t îe ot^er employing the corresponding post-cyclic value. For 

0<p<p;, the former locus is valid, while the latter locus is valid 

for P^P^, the effective pseudo-static locus being completed by a 

transition line joining these two part-loci at P=Pm* Tt is 

pertinent to note that for those cases of the Southwell and 

Lundquist plots in which only a post-cyclic linear fit range was 

available, see Table 3.15, the appropriate pseudo-static or 

post-cyclic buckling load Pc and its attendant central transverse
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displacement, remain accessible. For the quasi-cyclic cases, note 

Table 3.11, single static-type linear fit ranges were employed as 

denoted in Table 3.14, and, analytically, standard static strut 

procedures were followed in the manner described in the preceding 

section.

4.6.3 Non-Linear Solution Routine

Having established the means by which Eqns (4.27) and (4.28) were 

to be applied to the imperfection-sensitive static and cyclic case 

studies, the procedures by which the resulting expressions were 

actually evaluated can be considered. For computational

convenience, Eqns (4.27) and (4.28) were actually rewritten in the 

form

recalling that C and D are given in Eqns (4.29) and (4.30) respectively. 

With only two equations to solve, an in-house solution procedure 

was established employing suitable tolerance values. The solution 

procedure consisted of prescribing P(n), estimating ©2 ami 

determining the corresponding value of from Eqn (4.31). The 

three values were substituted into Eqn (4.32) to provide a 

'remainder' with respect to which ©2 was re-estimated and a 

revised value of ©1 obtained from Eqn (4.31), Eqn (4.32) again

©I = sin  ̂[ ( 4 M p C O S (nTT/2) (1-e ^)/P£) - sin02] (4.31)

and

0 =  (1 - e  ^) - P£sin0^/4MpCos (mr/2) (4.32)
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acting as control. The procedure was repeated until a ’null’ 

condition of ±1x10” ^ was achieved. This procedure was adopted for 

all specified values of P(n). For low values of P(n), 

particularly small estimates of ©2 were required corresponding to 

the pre-buckling path, with second roots defining the 

post-buckling path becoming acceptable as the load values of P(n) 

increased. Fine incrementation was employed as P(n) reached 

buckling, this being the state at which the two relevant roots 

become coincident. The foregoing procedure included provision for 

a cyclic step as necessary, transverse displacement being 

singularly increased at P=P^ in accordance with the principles 

established in Section 4.6.2.

Both numerical and graphical output were provided. The latter 

involved the merging of both the corresponding numerical and 

experimental data files for each case study. Initially, however, 

the performance of the model is exemplified in more generalised 

terms in the following section.
\

4.6.4 Static Strut Analysis, Am= ^

Typical numerical modelling performance is typified in Fig 4.6 

with X m=l and constitutive data in accordance with BS 5950(36). 

For the quasi-idealised case (woc=0), the squash and critical 

loads are coincident and inelastic strut imperfection sensitivity 

is maximised. Imperfection loci corresponding to three arbitrary 

values of woc are also shown. Locus (a) employs an imperfection 

corresponding to case 18C (Am=l)> thereby approximating to a
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specific experimental case study (nb E, cTy and C specification). 

It is considered that the loci are consistent with established 

data and conducive to confidence in application of the model. The 

quasi-idealised locus acts as an ’envelope' to the appropriate 

imperfect loci.

4.7 CASE STUDIES; STATIC ANALYSES

Theoretical studies were undertaken for all mainstream static 

tests; see Table 3.12. Upto four analyses were possible in each 

case, these respectively employing the four different types of 

imperfection parameter wQC-direct, w oc-interpolated,

aos-Southwell, and a0i~Lundquist. Only woc~interpolated analyses 

were available for all static case studies. Figs 4.7 and 4.8 

illustrate typical theoretical performance in terms of prototype 

or L-based values, with wQC-direct type modelling showing well in 

both the 18S and 21S cases depicted; such woc~direct planar 

modelling was not available, however, in 10 of the 26 static strut 

cases denoted in Table 3.12.

Sample static strut modelling data is given in Table 4.1 with 

theoretical buckling loads being given in terms of the 

corresponding experimental value. The consistently lower bound 

nature of the Southwell-based results is most noteworthy. As 

denoted in Section 3.6.2, aos and a0i data was available for most 

- 19 and 18 cases respectively - static strut cases. Given the 2 

degrees-of-freedom analyses employed, the modelling data is 

considered to be particularly good. The majority of theoretical
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X101

Experimental Locus 
Southwell aQ Based Locus 
Lundquist a0 Based Locus 
Direct woc Based Locus 
Interpolated woc Based Locus

Figure 4.7 ; Case Study - Strut Ref. 18S

12-

10.

<kN>

—  I Experimental Locus 
oI Southwell aQ Based Locus 
a j Lundquist aQ Based Locus
x J Direct woc Based Locus 
a | Interpolated woc Based Locus

Figure 4.8 ; Case Study - Strut Ref. 21S
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Strut 

Ref.

Theoretical Buckling Load (% of experimental value)

Southwell Lundquist Direct Interpolated

3S 88.7 103.3 n/a 91.6

5S 89.9 102.4 102.4 99.6

9S 91.4 101.4 n/a 101.4

15S 92.4 100.0 n/a 94.7

17S 94.9 108.8 88.5 94.0

18S 95.9 100.8 96.7 92.9

20S 95.3 99.0 111.3 109.0

21S 94.2 101.9 95.6 90.1

22S 92.0 98.5 n/a 96.2

24S 96.6 91.4 96.1 86.2

n/a - not applicable

Table 4.1; Sample Static Strut Data - Theoretical Buckling

Load Assessment

Strut Theoretical Buckling Load (% of experimental value)

Ref. Southwell Lundquist Direct Interpolated

3C 91.7 95.4 96.9 91.4

4C 90.3 93.9 97.2 92.0

7C 93.4 94.7 n/a 95.7

8C 88.4 91.5 98.2 91.0

12C 94.6 104.9 n/a 96.3

n/a - not applicable

Table 4.2; Sample Quasi-Cyclic Strut Data - Theoretical 

Buckling Load Assessment
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static Pc values were of conservative form in keeping with Figs

4.7 and 4.8 and Table 4.1. Overall static modelling average 

values are summarised towards the end of this chapter. It is 

considered that the data trends illustrate satisfactory 

performance, with convergence to the appropriate experimental 

post-buckling path, wherein the effects of imperfections 

degenerate, being well displayed in Fig 4.8 .

4.8 CASE STUDIES; CYCLIC ANALYSES (PSEUDO-STATIC MODELLING)

Theoretical studies were conducted for all mainstream cyclic 

tests, note Table 3.12, with up to four analyses per case being 

available as noted in the previous section. Given the small and 

highly variable nature of the cyclic step involved in the quasi- 

cyclic cases,ie 1C to17C, less 2C , it was deemed appropriate to 

treat these cases as effectively static, note Section 3.7. That 

is, with respect to the wQ C , direct and interpolated approaches, 

the 5% cut-off of Fig 3.33 was considered to be equivalent to a 

minimal effect as suggested in Section 4.6.2. Support for this 

interpretation is provided by an appropriate case-study. Also 

noted in that section was the fact that only single, static- type 

linear fit ranges were obtained in the respective Southwell and 

Lundquist plots; see Table 3.14. Accordingly, similarly 

static-type aos and a0i analyses were also applied to the quasi- 

cyclic cases.

Table 4.2 contains sample theoretical modelling data appertaining 

to the quasi-cyclic studies. Values for buckling load are largely
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conservative, typical of the 16 strut case-studies undertaken; 

overall average model values are considered in the summary of this 

chapter. The theoretical and experimental load-displacement loci 

for cases 3C and 7C are illustrated in Figs 4.9 and 4.10 , no 

w oc-direct analysis being available for the latter case; note 

Table 3.12. These loci display typical theoretical performance, 

employing static modelling. The performance is considered 

satisfactory, particularly given the loci shown in Fig 4.11 which 

incorporates a wQC-direct analysis of case 3C, note Fig 4.9 , 

which includes a 5% cyclic step with no cyclic load loss in 

accordance with the dictates of Fig 3.33. Whilst deformation 

characteristics are improved, buckling load estimates 

correspondingly suffer and, overall, little is considered to be 

effectively gained whilst computational effort is significantly 

increased. This is particularly so for case 3C as two distinct 

cyclic action phases were included, causing transverse 

displacement to be doubly augmented whilst the buckling load is 

doubly diminished. Given the highly variable nature of the cyclic 

step in the quasi-cyclic strut cases, note particularly the signs 

of Wcxj/(wcxj-wocl)| p c in Table 3.11, there is a danger of over

conservatism in strictly adhering to the 5% cut-off rule of Fig 

3.33.

The opportunity is taken in Fig 4.11 to clarify the 'equivalently 

fully static buckling load' referred to in Section 4.6.2. This 

load is denoted by Pcs and indicates that buckling load 

theoretically predicted from a fully static analysis with 

reference to struts suffering a cyclic action phase. Strictly,
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12.

10.

CkN>

 iExperimental Locus
o ; Southwell aQ Based Locus 
o jLundquist aD Based Locus 
x ; Direct w oc Based Locus 
a iInterpolated wQC Based Locus

Figure 4.9 ; Case Study - Strut Ref. 3C

X10112.

10.

CkN>

—  5 Experimental Locus 
o i Southwell a0 Based Locus 
n | Lundquist ao Based Locus 
A . Interpolated woc Based Locus

2.

Figure 4.10 ; Case Study - Strut Ref. 7C
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quasi-cyclic cases analysed in a static manner, see Figs 4.9 and 

4.10 and Table 4.2, generate Pcs values.

With respect to the nine formally cyclic cases, 18C to 27C less 

20C, the four analytical approaches were applied, as feasible, in 

accordance with the pseudo-static modelling procedure delineated 

in Section 4.6.2. Table 4.3 presents the appropriate theoretical 

buckling load values in terms of the respective experimental 

value. Given the central importance of these nine, ten including 

20C, cases, the theoretical values appertaining to the 

corresponding static strut cases, note the previous section, are 

also included in Table 4.3 for comparison.

No theoretical study is made in the case of 20C as it relates to 

buckling being incurred during the cyclic action phase and is 

therefore beyond the sub-buckling cyclic action category. Despite 

the cyclic step being considered excessive with respect to 

serviceability requirements as denoted by the upper cut-off value 

in Fig 3.33, analysis for case 27C is included. Unsurprisingly,

neither Southwell nor Lundquist plots were available for this 

case. Additionally, aos and a0i values were not available for

cases 25C and 26C, these last three cases all possessing low \ m 

but high um values; see Section 3.7.3 and Tables 3.11, 3.12 and 

3.15. It is considered that the Southwell-based analytical values 

for Pc are of exemplary form, being consistently conservative 

throughout. The respective static and cyclic theoretical 

percentages show a relative decrease in accuracy overall in the

cyclic cases. Given the greater degree of complexity involved,
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this is to be expected. The average values given in Table 4.3 are 

considered satisfactory, particularly given the two 

degrees-of-freedom nature of the modelling.

Figs 4.12 to 4.17 illustrate typical load-displacement loci. The 

cyclic step, 'horizontally' modelled in the theoretical studies, 

is clearly depicted, with case 18C of Fig 4.12 providing for 

employment of all respective theoretical cyclic loci. General 

points to note include post-buckling convergence with the 

dramatic experimental buckling increment delaying this in Fig 

4.13, the delightful Southwell-based locus of Fig 4.14, the ready 

availability of woc-interpolation loci and the problems associated 

with static-cyclic correlation as highlighted by the respective 

experimental loci in Figs 4.15 and 4.16, the former being 

apparently pathological whilst the latter case is thoroughly 

well-behaved. Fig 4.13 shows good woc-interpolated performance 

whilst the pre-buckling characteristics of the Southwell-based 

locus are exemplary. Fig 4.17 relates to case 27C which includes 

the largest cyclic step recorded - excluding case 20C - and

modelling suffers accordingly although this case is deemed to 

exceed serviceability requirements as noted in Fig 3.33. It is 

considered that the theoretical pseudo-static interpretations 

employed provide for satisfactory modelling of the physical 

phenomena associated with the low cycle, low frequency inelastic 

hysteresis involved; see Sections 3.7.1 and 3.7.2. By employing 

upto four alternative imperfection values for each strut case, 

data trends, reflecting the above denoted statistical/empirical 

nature of strut design, are definitively established.
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13-  P(kN)

12.

10.
8.

.cyclic step [experimental]

—  I Cyclic Experimental Locus
O f Cyclic Southwell aQ Based Locus
X 1 Cyclic Direct w Based Locus oc
A  • Cyclic Interpolated v Based Locus

Figure 4.14 ; Case Study - Strut Ref. 21C

X10113-

cyclic step [experimental]

Interpolated woc Based Locus

Static Experimental Locus 
Oyclic Experimental Locus

1025

Figure 4.15 ; Case Study - Strut Ref. 22C
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cyclic step [experimental]

< kN >

—  ; Experimental Locus 
a ; Interpolated woc Based Locus

25 30

Figure 4.17 ; Case Study - Strut Ref. 27C

ro c  locus

roc locus

Awoc * cyclically amplified
(initial) imperfectionPseudo - static locus 

for struts subject to 
a cyclic action phase

- 4  AP»0 1 
/ 1[cf fig 3.31

cyclic
step

A <”c - “oc)|pc(s)

(wc “ Woc )jpc8 (w(Aw.

Figure 4.18 ; Pseudo - Static Model Characteristics
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Finally, some assessment of static/cyclic correlation must be 

made. Matters regarding static/cyclic correlation or data control 

with respect to experimental buckling load Pc values are at the 

mercy of the complex interaction of the respective and highly 

variable prototype imperfections. Modelling within planar 

constraints on an individual basis is exceptionally difficult - 

hence the statistical basis of strut designC35 ,36)# it is 

instructive to recall at this stage, however, that, as noted in 

Section 4.6.2 and Fig 4.11, the theoretical models themselves are 

quite capable of providing a degree of data control inasmuch as 

they can provide, in addition to the post-cyclic buckling load Pc , 

an equivalently fully static buckling load Pcs based only on the 

respective pre-cyclic or initial imperfection data in each case. 

Clearly, this latter value will be in excess of the defined 

post-cyclic Pc , this difference thereby highlighting the effect of 

a pre-buckling cyclic action phase upon initial strut 

imperfections.

This feature is clarified in Fig 4.18 which displays typical 

pseudo-static characteristics, this time in terras of model 

effective length £=L/2 parameters; note Fig 3.31 which is based on 

prototype L parameters. The appropriate pseudo-static locus is 

shown bold, consisting of the initial imperfection-based (wQ C ) 

locus for P^P^, the cyclic step neglecting cyclic load loss AP, 

and the cyclically amplified imperfection (woc+ A w oc) for P^Pm* 

Additionally, the woc and w0c+ ^ woc loci are shown in their 

respective entireties by means of dashed curves. The equivalently 

fully static load Pcs is shown to be the theoretical buckling load
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corresponding to the particular strut case if̂  the strut were

considered in purely static terms (ie; as in the case of the

quasi-cyclic case studies). The corresponding loss in buckling 

load from Pcs to that theoretically predicted from the respective 

cyclic strut analysis, Pc , is denoted by A P C . This term, 

effectively unobtainable experimentally due to the variability of 

imperfections between static/cyclic strut pairs as denoted in

Table 3.12, thereby affords some consistent measure of cyclic 

action phase effects. Accordingly, Table 4.4 provides the

appropriate data for the formally cyclic strut cases with cases 

21C, 22C, 26C and 27C showing distinctly greater cyclically

induced A P C losses. This is in keeping with the experimental 

findings denoted in Section 3.7, these being the cases involving 

high um and low Am data. The less conservative data according to 

the Southwell and Lundquist approaches is due to the in-built 

safety tolerance of Fig 3.33/Eqn (3.14) as employed in the other 

pair of approaches. The loss in buckling strength is upto the 

order of 10% of the anticipated static strut strength (Pc s ) except 

in the exceptional 20C - buckling during cyclic loading - and 27C 

- excessive deformation breaching deemed serviceability limits - 

cases.

Fig 4.18 also shows the theoretical accompanying increase in 

central transverse displacement at buckling, A(wc—wo c )I ( s) • 

Values appertaining to this effect are given in Table 4.5, the 

above denoted data trend being confirmed with cases 21C, 22C, 26C 

and 27C showing the most significant cyclically induced increase 

in buckling state displacement. Values for A ( w c-wo c ) | pc ^g  ̂ *n

203



cu
OC ON r—I 00 i-H o o o CM
CO • • 1 • • • • • • •
M Cl NO 00 1—< CO St CO i-H CO
CU ON ON 00 ON ON ON ON ON oo
5>
<

4-1
CO

•H ON o o cO 03 ON CM CO CO CO
d • • 1 • •
c r o 0 0 a d CO S t d d d

T 3 ON ON ON ON
d
d

►j

T—1
i-H

e^s 0)
v -x ON m CO CM CO c o co CO CO

X • • 1 • • • • —.
CO 4-1 in 0 0 CO CO 0 0 0 0 d d d
o d ON ON ON ON ON ON

p o
----- CO
o

P

, a
cu
4->
CO
r-H ON o NO o o CM r o CM CM
o • • 1 • • • • • • •
P . s f r—1 NO ON ON < r CO o CO
U ON ON 0 0 0 0 0 0 ON ON ON 0 0
CU
4J
d

M

4->
O ON co St CO co o o 0 0 co
0) • 1 • • • • "•s .
M CO a NO c e rH CO »—i d

•H ON 0 0 ON ON ON
Q

■u
d •
j j <4-4 u o o o o a u u o o
4-» <U 0 0 ON o rH CM CO St in NO
in pci r-H f-H CM CM CM CM CM CM CM CM

*

<u
00
CO
4J
d<u
ou<u
p

cO CO
O

CO P
CO

#<*T3 CO
CU
CO d
CO i-Hcu COu >
p
X CJ
w •H

-U
CO

o 4J
p in

*1 4-1
CO d
no cu
CO i-Ho CO.J >

•H
oo d
d cr
•H w
rH
X 5o
o i-H
d rH

(U « d
CO p
CO cu
X CO V4
p co •H

rd CUo P X
•H H
r— 1 o
o •H <4H50 i-H O
o O5o
00 CJ
d
•H 4-4»M CO
d O
T3 P
T3 • 9\a) St
r— t •
M St
CJ
d <UX i-HX
* CO

E-H

204



CM r-H CM r-H O NO 00 00 i—Ho • • 1 • • • • • • •(U O'! xr xr CO rx NO m m in6£CO
(U>< CO f—1 m CM 00 NO rH i-H xr xrw • • 1 • • • • • • •px CO CM f-H in in CO CM CM

H Px 00 m CM NOCO i-H ON NO CM m 3 3 3
4-1 o • • 1 • • • • '—■— X- X-
CO rH xr CM CM px px 3 3 3

•H r-H3cr3333 CO px CO NO.J CO in 00 3 3 f-H xr 3 3 3W • • 1 x-. X^ • • x^ X^ X--.p- CO 3 3 in m 3 3 3

XT XT f-H m o 00ON ON xr CO CO in 3 3 3
r - l o • • 1 • • • • x̂ . X-
rH O xr CO xr Px NO 3 3 30) rH>,3
4-13O nO r-H o> m ON oC/0 CO CM in ON Px NO o 3 3 3W • • 1 • • • • X-. X-

on xr rH CM NO NO 3 3 3

33 m o P - 00 xr NO rH O CO0) o \ rH i-H CO xr o 00 CM i—H
4-1 o • • 1 • • • • • • •3 p- CO in CM NO px m in mr—1OauCU
4-1 CO xr CM CM o i-H rH 00 Px3 CO XT l-H CO ON o CO m ON CO
M W • • 1 • • • • • • •NO CM CM o in m CO rH CM

vD vO m CO Px
XT 3 i-H 3 3 o NO CO 3CJ • 1 • "x» X̂ . • • • ~x.

4-1 vO 3 in 3 3 m xr NO 3OCUl-i
•H
a

o rH CM inCO O 3 CO 3 ^3 in NO Px 3w • 1 • X-. • • • X -*
in 3 CM 3 3 CO CM CM 3

4-1 *3 •<4H oo on o i-H CM CO x r m NO rx4-1 CU r-H f-H CM CM CM CM CM CM CM CM
CO OS

3■u33e3oCO
rHa-co
•Ho
603

PQ

O•Hf—Iotoo
333N
CO
o

•H
4-1to
4-1
C/0

4-133
i—i03>
•H3O'w

3
3 to
3 rH

rH rH
3 3
> Cu

33 rH
3 3

3 3 CJ
3 3 •H
3 iO 4-1

*3 3
3 . CJ O

•H O
O 4-1 3

•rH 3 r3
4-1 3 H

o 3 3
to 3 • #1
O 4-1 i—1 in

3 3 •
60 3 > x r
3 rH

•H 3 33 3U > 3 r—t
3 •H 3 rO

33 3 3 3
c r fO EH

33 3
3 O

rH to •H
rH rH

o rH O
3 3 to

rO Uh a

II II II

CO
•K w o

205



the range 20% to 140%, the latter value predictably lying with 

case 27C.

The above static/cyclic correlations are consistent both in 

themselves and with the primary experimental findings. Data 

trends are definitive, both with respect to the four theoretical 

approaches employed as shown in Table 4.3 and to the individual 

strut case analyses as shown in Tables 4.4 and 4.5.

4.9 END-SHORTENING CONSIDERATIONS

Emphasis in this chapter has been properly placed upon the primary 

flexural characteristics of the strut system. Typically, strut 

tests were terminated when the central transverse displacement was 

of the order of 50mm, the corresponding end-shortening being an 

order of magnitude less, say 5mm, reflecting the above emphasis.

With cyclic action being of kinematic form in the experimental 

programme, ie u^ is unchanged through the cyclic phase, the only 

cyclic effects upon the axial compression/end-shortening 

characteristics are load loss, note AP in Fig 3.31, and a slight 

post-cyclic increase in direct modulus E. Figs 3.14, 3.19 and 

3.24 can be compared with Figs 3.34, 3.38 and 3.42, whilst Fig 

3.47 shows the substantial load loss AP accompanying the singular

case 20C; Fig 3.49 can be interpreted as displaying reasonably

typical P vs u hysteresis in the context of a pseudo-static locus. 

Neglecting load loss AP led to the decision to treat both static

and cyclic strut case axial compression/end-shortening
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characteristics in a fully static sense.

Initially, therefore, end-shortening takes the form

u - uQ = ua + uf - uQ (4.33)

which can be contrasted with Eqn (4.21) wherein ua was neglected; 

this did not affect the flexural modelling adversely as the axial 

term ua^f(0i), i=l,2 with respect to Eqn (4.26).

From the static strut strain gauge output, typified in Figs 3.16 

and 3.21, it was observed that, overall, the respective four 

buckling state strains could be joined to the datum state by 

linear loci whose average gradient showed a reduction of the order 

of 7% with respect to the actual initial and common linear 

gradient involved; the pre-buckling strain gauge loci were 

substantially linear. The tensile studies reported in Section

3.4.2 showed an average reduction in direct modulus of the same 

order of magnitude with respect to the corresponding stub test 

data as noted in Table 3.5 and illustrated in Fig 3.9. 

Accordingly, noting Eqn (1.1), ua is intuitively modelled with

u = P L  / AEtt (4.34)

for P<PC where E tt denotes employment of the tensile modulus 

value, whilst Uf-u0 is obtained from Eqn (4.21). Eqn (4.33) is 

thereby non-linear though the linear axial term of Eqn (4.34)
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predominates given the imperfection sensitive topologies involved 

(Xm-1) f°r • ^ ie respective theoretical buckling load Pc was

obtained for each strut case from the data trends established in 

the previous flexural studies. That is, in each strut case, that 

flexural analysis which provided the most accurate estimate of Pc 

as assessed against the appropriate experimental data was re-run 

using the average E tt and Oytt values denoted in Table 3.5. 

Employing constitutive data consistent with the foregoing axial 

considerations gave a slightly revised value of model Pc , together 

with the respective flexural end-shortening values in accordance 

wi th Eqn (4.21).

Post-buckling modelling assumed the axial term ua to be wholly

inelastic with ua= u ai for ua > ua| therespective flexural component• Pc 'Pc
being obtained from the revised flexural analyses undertaken as 

noted above.

Typical axial compression/end-shortening modelling characteristics 

are illustrated in Figs 4.19 and 4.20 which relate to strut cases 

20S and 21S. The substantially linear experimental pre-buckling 

paths are well replicated whilst the post-buckling characteristics 

are considered acceptable. The familiar problems associated with 

the sudden, immediately post-buckling load loss(^5) are smoothed. 

The concomitant reversal of end-shortening in this vicinity is 

available theoretically only if elastic recoverability is 

accounted for; this was not considered to be an essential 

requirement of the study although a u-reversal partial recovery 

modelling showing the u-reversal effect is included in Fig 4.19
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Figure 4.20 ; P vs u - uQ Case Study - Strut Ref. 21S
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for completeness.

4.10 SUMMARY

No fewer than 156 flexural case analyses of the static and cyclic 

configurations were undertaken, with overall buckling load

performances summarised in Table 4.6. The data appears to be

highly acceptable, particularly given the relative simplicity of 

Eqns (4.31) and (4.32). Clearly, the employment of additional 

spring-links in the strut modelling illustrated in Fig 4.5 would 

improve model performance, especially in the formally cyclic cases 

which tend to exhibit over-stiff pre-buckling paths, but this was 

not considered to be necessary given the quality of modelling 

obtained.

Table 4.6 shows a relative deterioration of modelling

characteristics to exist in all four approaches with respect to 

the inclusion of cyclic action effects. Noting the increased 

problem complexity due to this inclusion, this is to be expected 

and the least accurate modelling, that of the cyclic 

Southwell-based studies, is still within 10% of the experimental

average. Further, it is considered that this is offset by the 

fact that the Southwell-based studies were consistently 

conservative throughout the respective 36 case studies. All four 

theoretical approaches attract confidence with the Lundquist 

standard deviations being remarkably consistent. All four 

approaches possess individual attributes, note the general 

applicability of the novelly-defined woc-interpolated data whilst
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the wQC-direct approach possesses the intrinsic advantage of 

employing the rawest form of experimental data. Additional 

significance is gained by the consistency of the overall data 

trends, with static/cyclic strut correlation being made available.

Of crucial importance to the flexural model is the novel moment- 

thrust-curvature expression delineated in Eqn (4.16). It is the 

sophistication of this expression that enables effective modelling 

to be undertaken with only two degrees-of-freedom. It is not 

uncommon for equivalent finite element studies to employ as many 

as 20 non- linear elements^55)#

End-shortening characteristics assumed a lesser role in the study. 

This was considered to be reasonable given the overriding 

importance herein of the cyclic action phase effects. Employing 

stroke-displaceraent loading in the experimental study resulted in 

the flexural cyclic step assuming a primary role in the research 

programme. The empirical inclusion of this cyclic step, employing 

either the data of Fig 3.33 or of paired Southwell/Lundquist 

plots, represents a novel interpretation of the problem allowing 

for satisfactory pseudo-static modelling. This is in keeping with 

the essentially static-based design approach to structural

steelwork practice(36).
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CHAPTER 5

DISCUSSION

5.1 INTRODUCTION

The primary objective of the research programme was to assess the 

effects of a pre-buckling cyclic action phase upon otherwise 

static strut behaviour. Strut topologies were in the imperfection 

sensitive range, A m= l , and effective amplification of initial 

strut imperfections due to cyclic hysteresis was sought. The 

cyclic phase consisted of low frequency, low duration cyclic 

hysteresis action. Effort was concentrated upon a frequency of 

l/16Hz and a duration of 1000 cycles. Action thereby lay between 

f a t i g u e ( ^ 2 )  an(j incremental plasticity^ ̂ >^9 >80). xt should be 

noted that 1000 cycles involving substantial inelastic excursions 

can represent a long time in terms of service l i f e ^ ^ d e s p i t e  the 

low duration classification in strictly ’cyclic action’ terms.

Attemts to set up experimental static/cyclic performance 

correlation were constricted by the variability and complex 

interaction of practical strut imperfections. That is, despite 

struts being tested as static/cyclic pairs cut from the same run 

of steel CHS as supplied, and despite the sizeable supporting 

constitutive and geometric testing programmes which provided for 

individual strut data, the respective pairs of static and cyclic 

strut specimens remained subject to the statistical variations 

encountered in strut imperfections. Fig 4.15 shows case 22C to
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possess a greater buckling load than its static counterpart 22S, 

whilst Fig 4.16 shows the more consistent relationship for cases 

26C and 26S which exhibit a decrease in buckling strength under 

cyclic action. This apparent anomaly can be explained by the 

former pair involving an initially more imperfect static specimen. 

The woc data of Table 3.12 only forms part of the reason; 

localised eccentricity data e is also involved together with the 

effects of residual stresses, although these are small in the 

sections employed(32) herein. The complexity of imperfection 

effects is further compounded by their interaction. Attempts to 

assess this problem included the use of imperfection monitoring 

together with the apparently novel vector trace inclusion. The 

latter showed that even initially corkscrewed struts buckled in a 

planar manner, but that this plane was virtually impossible to 

predict apriori; note the e/woc orientations superposed on the 

vector traces depicted in Sections 3.6.1 and 3.7.1. Southwell and 

Lundquist plot techniques were useful in dealing with this matter, 

affording empirical buckling plane oriented lumped imperfections 

which resulted in the static/cyclic correlations given in Tables 

4.4 and 4.5.

Over 200 large scale computer governed tests were undertaken 

including 52 mainstream strut tests. The extensive experimental 

data base generated provided for data control over the 

statistically highly volatile results obtained. Empiricism forms 

a prominent aspect of instability studies(40. Digital computer 

incorporation was crucial and whilst it could be argued that more 

modern column testing machines than the basic Schenck system
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employed herein now provide for automatic computerised data 

output, it has to be recalled that mainframe 32/64-bit accuracy 

was employed in the numerical and graphical output; see Section 

2.4.

Theoretical studies employed a basic spring-link representative 

model in conjunction with novel raoment-thrust-curvature analysis 

and a novel imperfection inclusion. The latter refers to the four 

woc-direct, woc-interpolated, aos-Southwell and a0i~Lundquist 

initial imperfection data sets. The data trends established 

between the four approaches employed both in terms of the 

approaches themselves - see Tables 4 . 1 ,  4 . 2  and 4 . 3  - and in terms 

of each formally cyclic strut case per se - see Tables 4 . 4  and 4 . 5  

in the context of Table 3 . 1 1  - are definitive in supporting the 

modelling interpretations presented. Table 4 . 6  gives an overview 

of the 1 5 5  strut analyses undertaken - 1 5 6  including 2 7 C  - ; the 

resulting pseudo-static modelling being graphically illustrated in 

Sections 4 . 7  to 4 . 9 .  Fig 4 . 6  elegantly relates the modelling to 

established t h e o r y ( 3 , 3 5 ) ^

It remains to set the research programme findings in the context 

of design practice. To this end, the following sections attempt 

to condense the substantial data provided in Chapters 3 and 4 into 

appropriate form. Throughout the experimental programme, data 

control over the various aspects involved has been considered 

imperative. This philosophy has also been applied to the 

theoretical modelling throughout which empiricism is a necessary 

inclusion. Modelling for pre-buckling cyclic action in strut
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studies is now available.

5.2 STATIC-CYCLIC CORRELATION

5.2.1 Experimental Considerations; Data Control

Provision of individual strut geometric and constitutive data, 

discussed particularly in Sections 3.2.3, 3.4.1 and 3.4.2, was 

itself subject to data control. Two means of assessing specimen 

cross-sectional areas were employed whilst tensile tests served as 

control on the problems associated with stub specimen end-bulging 

- see Plates 10 and 11. Initial out-of-straightness measurements, 

discussed in Section 3.5.1, were undertaken in encastre and lathe- 

centred (pinned) modes , which revealed the complexities involved. 

Central values were not necessarily the respective maxima and 

corkscrewed topologies, note Fig 3.11, were invariably 

encountered. The struts were of good quality inasmuch as they 

were well within the 0.2%L requirement(47) • this factor is

considered further in Section 5.3. Histograms relating to the 

numerous coarse constitutive and geometric data were given in Figs 

3.3, 3.4, 3.5, 3.10, and 3.12. Further, localised

eccentricity readings were taken, importantly showing the weld to 

be a primary parameter in its evaluation; see Section 3.5.2. 

Whilst the residual stresses due to welding are largely removed 

from the EWSR steel, the additional wall thickness in the weld 

vicinity is not. The eccentricity values were importantly shown 

to be of the same order of magnitude as the out-of-straightness 

data; the overall high quality of the steel tubing must be
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reiterated, however. Perhaps the most crucial observation with 

respect to this data, apart from the obvious one concerning the 

necessary provision of specific support data for strut testing 

assessment purposes, was that this 'high quality' was deemed to 

offset the imperfection sensitivity associated with struts 

possessing A m-1.

The struts were tested in a doubly encastre mode, a feature of 

particular note. This involved employment of the most practically 

attainable form of end condition and one whose performance could 

be readily assessed - pins can seize under high compression 

loading - and provided for a more direct relationship with 

practical design conditions. This feature relates to the fact 

that pinned-end conditions are rarely encountered in design 

practice and necessitated that effective length, a primary 

parameter in strut design, be assessed from observation. That is, 

the experimental convenience of employing £=L is at some cost in 

engineering practicality. Practical effective length assessment 

is presently a contentious issue in itself(62). The corollary 

was, however, the necessity of undertaking the model Z /prototype L 

transformations, based upon £=L/2, identified in Figs 3.13 and 

3.28. An off-shoot of this transformation was the derivation of 

woc-interpolated data, providing for a guaranteed imperfection 

parameter, in all strut cases, suited to analytical employment.

Assessment of effective length ft =L/2 was undertaken in two ways. 

Post-test observation of the specimen in-situ corroborated 

maintenance of end fixity throughout the strut testing programme.
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Further, computer-resident Southwell and Lundquist plots, in 

interactive graphics mode, were employed to assess effective 

lengths (and provide for lumped imperfection parameters aos and 

aQi respectively). Initially employed in the static strut series 

in an established manner, note Table 3.10 and Figs 3.29 and 3.30, 

they were then employed with confidence in the cyclic strut cases, 

note Tables 3.14 and 3.15 together with Figs 3.59 to 3.63. This 

was itself a novel procedure. It is useful to note that the 

average £ s/£ ratio for all suitable static strut tests (19/26), 

quasi-cyclic strut tests (13/16) and cyclic strut tests with 

respect to the pre-cyclic behaviour (6/9) is 1.04; the Lundquist 

equivalent is 1.05 giving good correlation. Noting the previously 

mentioned tensile testing control upon stub test data and the 

resulting 7% overestimate of direct modulus E - see Table 3.5 - 

then the above values can be adjusted with

Pe / pes = ( E ct / £2) / ( E / i.g) (5.1)

Pe / P es = 0.93 U s / «
2

(5.2)

For £=L/2, Pe=Pe s » then

iB /a = ( 0.93J (5.3)

ie
£s / £  =1.04 (5.4)

which implies remarkably accurate £ =L/2 provision. Noting the

aos-Southwell and a0^-Lundquist based analyses employed in Chapter 

4 and discussed further in the following section, then the



Southwell and Lundquist techniques can be seen to have been of 

major importance to the research programme. Additionally, the aos 

and a0i parameters served as control on the negligibility of 

residual stresses - note also the 'retested1 struts discussed 

shortly - in EWSR sections and on the imperfection interaction 

involved.

It is also considered that the central transverse deflection 

vector traces, liberally illustrated in Sections 3.6.1 and 3.7.1, 

possess a degree of novelty, similar diagrams not having been 

located in reference material. Planarity of buckling deformation, 

even for corkscrewed struts, has been shown; this planarity is 

hardly disturbed by the inclusion of a cyclic action phase - note 

Figs 3.44 and 3.46 in particular. Validity of planar modelling 

was supported. The vector trace data was confirmed by the strain 

gauge readings throughout. Confidence in avoidance of machine 

interference in the form of eccentric loading additional to that 

associated with weld effects being incurred, was shown with 

buckling planes being dispersed in diverse orientations.

Strut testing was oriented about the cyclic cases 1C-27C, static 

strut tests being primarily undertaken for the purposes of data 

control and design code(36 ) relevance; in design practice, only 

static limit state loads are explicitly available. Case 20C, in 

which buckling was deliberately incurred during the cyclic action 

phase, formed an upper bound to the cyclic testing programme. 

Testing was centred on nc=1000 cycles, control for this being 

presented by testing struts with cyclic ranges varying between
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50-1500 cycles. Primary system parameters were deemed to be 

modified slenderness ratio A m , peak cyclic displacement um and 

cyclic step w£ (or w £l ) • Under axial displacement control, some 

small cyclic load loss A P  resulted from hysteresis, but wc remains 

the prominent (and kinematic) response parameter. Peak cyclic 

load Pm was found to be of the form

P* / P c approximately / u Ip c (5,5)

corroboration for this approximate proportionality coming from the 

substantially linear P-u loci distributed through Sections 3.6.1 

and 3.7.1.

A major finding of the research programme was the demarcation 

between the so-called quasi-cyclic and formally cyclic cases. The 

former involve quasi-elastic hysteresis^ 61 ) wherein cyclic action 

occurs within the nominally elastic range - this range was 

ascertained from the strain gauge readings as exemplified on page 

112. Material impurities give rise to highly variable but 

relatively small cyclic effects. Both cyclic hardening and 

softening can occur. Static interpretation is deemed sufficient. 

The formally cyclic cases, however, afford only cyclic softening 

and a pronounced cyclic step; peak inelastic excursions were of 

the order of um /u|pc=0.91 to 1.0.

Whilst the static strut tests failed to provide for direct static/ 

cyclic strut data control - this was never anticipated - it served 

to provide the appropriate static strut data trend. The cyclic
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tests thereby showed the specimens to be resilient to significant 

load loss except when inelastic behaviour was incurred in the 

close proximity of the 'static' buckling state. Strut transverse 

deformations were another matter, however, with serviceability 

considerations being deemed to have been breached in the more 

extreme cases - ie; cases 20C and 27C. The primary experimental 

finding was that significant degradation in strut performance due 

to pre-buckling cyclic action was associated with those cases 

involving high peak stroke um in conjunction with struts 

possessing a low modified slenderness ratio. This situation 

maximises the degree of inelastic excursion available; see Section 

3.7, all important strut testing data being summarised in Tables 

3.11, 3.12 and 3.13. Cases 20C and 27C indicate that catastrophic 

buckling load loss is limited to cases involving Pm=Pc .

Experimentally, little loss in buckling strength appears to occur 

due to pre-buckling cyclic action; this is matched by the 

negligible load loss incurred during cyclic action - note A P  in 

Fig 3.31. Similarly matched but in the opposing sense, cyclic 

step w^l and the increase in transverse buckling displacement due 

to cyclic action are more pronounced with respect to the formally 

cyclic cases. Figures 3.32 and 3.33 present the above-noted 

primary findings in concise form; they are considered further in 

Section 5.3. Noting the small loss in buckling strength incurred 

due to cyclic action and given the design code's(36) orientation 

about static load values, then Fig 3.33 includes both the 

respective cyclic-based and static-based Pc data. Figs 5.1 to 5.3 

extend this reasoning with all 52 cases of mainstream strut data
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referred to in the presentations of Pc in terms of Ps , Pe and Pp 

[note Eqn (1.4)] against X m . Fig 5.1, which additionally includes 

re-test and synthetically deformed strut test data, shows most

mainstream strut Pc values to be just lower bounded by the 

respective ECCS curve( 36 ) with £=L/2. Case 20C clearly falls 

below the design (L/2) curve due to the extreme cyclic action 

involved; case 18C also breaches the design (note below) locus. 

All Ps data is deduced from individual constitutive and geometric 

values, however. Further, the location X m =0.93 relates to a 

slenderness ratio of 80 using code values of Oy=275N/mm2 and 

E=205kN/mm2. At this state, the code effectively provides for a 

woc of 0.104%£(35,36) which is well in excess of the order of 

experimental wQC values recorded - see page 100. That is, the 

cyclic action effects are offset by the high quality of the strut 

specimens provided by BSC. Further, most experimental constitutive 

data exceeds the corresponding code values,hence, the Pc /Ps data 

values are generally lower than if design P s data had been employed.

Fig 5.2 shows the cyclic cases again towards the unsafe region of 

the appropriate data trend, with experimental values increasing 

towards P e as modified slenderness ratio increases. Accepting 

that the design Pp locus of Fig 1.4, although nominally based on 

elastic theoryC 35 ) t is a lower bound to experimental buckling 

data, then the critical or Pe locus will be approached by 

experimental data in the manner shown in Fig 5.2. Fig 5.3 

accordingly shows the lower bound provided by Pp to the 

experimental data, in this instance individual constitutive data 

being employed in the Pp evaluations which implies Pc /Pp=l affords
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conservatism with respect to design values. The one case - case 

20C is omitted in view of its singular nature - involving Pc /Pp<l, 

case 18C, will not therefore actually lie below a Pp locus 

employing design code data as shown in Fig 5.1. Case 18C 

possesses only moderate imperfections but subscribes to A m =l, 

generating maximum imperfection sensitivity - note Fig 4.6. Fig

5.3 most clearly shows cases 26C and 27C to be close to design 

limits. The design implications of Figs 5.1 to 5.3 are considered 

in Section 5.3.

Using the cyclic stub tests as control, the quasi-cyclic and 

formally cyclic cases showed post-cyclic phase increases in direct 

modulus E of the orders of 3% and 5% respectively. These 

increases occurred immediately cyclic action was initiated, note 

the time-dependent characteristics illustrated in Section 3.7.2. 

The quasi-cyclic cases involved this increase succeeding in 

’clawing back’ any hysteresis generated additional displacement; 

see Fig 3.34. It is suggested that the lack of significant 

buckling load loss due to pre-buckling cyclic action relates to 

this enhanced E effect, with cyclic work-hardening providing for 

some further saving in buckling load loss.

The Southwell and Lundquist plot techniques were employed in a 

novel manner in the case of the formally cyclic tests with 

respective pre- and post- loci being produced as shown in Table 

3.15 and Figs 3.61-3.63. This data is effectively the Southwell 

and Lundquist equivalent to that provided in Fig 3.33. As noted 

in Section 3.7.3 and recalling Eqns (5.1)— (5.4), this post-cyclic
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E shift results in the data provided in Table 3.15 with respect to

post-cyclic effective length assessment being superior to the

apparent trend illustrated. Incorporating both tensile moduli and 

post-cyclic moduli effects, then

[(£sor£i / £) . ] / [(£cor£i / £) . 1s 1 pre-cyclic s *1 ' *'post-cyclicJ

= ( 0.98 / 0.93)' = 1.03 (5.6)

That is, the anticipated post/pre cyclic ratio for effective

length assessment should be- 1.03 for £=L/2 throughout;

significantly this is in keeping with Table 3.15.

Most effort has been centred on the provision of pseudo-static 

data employing highly accurate digital monitoring. The cyclic 

action phase behaviour, however, showed two distinct patterns in 

keeping with the established quasi-cyclic and formally cyclic 

classifications. Quasi-cyclic action involved quasi-elastic 

hysteresis^ 63) displaying closed loop lines - see Fig 3.50 - with 

random exit paths. Formally cyclic cases displayed finite area 

loopsC 64 ) } with forward marching multiple band finite area 

l o o p s C  65 ) being obtained in the more significant cyclic effect 

cases of 21C, 22C, 26C and 27C; note Figs 3.51-3.54. This latter 

type of hysteresis is not unrelated to incremental plasticity( f 

with cyclic creep displayed amidst a decelerating but 

non-stabilised cyclic profile. Case 20C singularly involved creep 

acceleration as is to be expected from intuition; note Figs 3.57 

and 3.58. The cases involving lack of cyclic creep stabilisation 

- cases 21C, 22C, 26C and 27C - imply that pseudo-static

considerations will be directly affected for nc>1000 cycles.
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The re-tested struts served to show that fatigue was not a problem 

in the mainstream cyclic strut tests. A 40% loss in buckling 

strength upon static re-testing was found with highly planar 

buckling behaviour being appropriately dictated in the re-tested 

configuration. The synthetically deformed struts also showed the 

effects of larger imperfections with buckling strength typically 

20% down on the mainstream strut values. Highly non-planar 

buckling action was observed, see Figs 3.66 and 3.67, due to the 

conflict between the prescribed circular arc initial free body 

profile and the reverse curvature initial doubly-encastre testing 

mode. Both re-tested and synthetically deformed strut cases are 

shown in Fig 5.1 to clearly breach design criteria (£=L/2), both 

types failing to meet the 0.2 %L BS requirement for initial out-of- 

straightness^47)  ̂ Interestingly, case 20C, which suffered

buckling during the cyclic action phase, shows up well in Fig 5.1 

as compared with the retest data.

Finally, some mention must be made of problems encountered in the 

experimental programme. No fewer than three servo-valves were 

required through the programme due to mechanical failure of the 

system. Impurities of micron size in the oil led to this 

succession of problems. One such failure in turn led to static 

test 4S being spoilt due to the Schenck machine suffering 

vibration in the vicinity of the buckling state. This dramatic 

occurrence was never repeated and served to prove the validity of 

computer controlled shut-down procedure as noted on page 44. Test 

27C involved plotter pen failure - note Fig 3.56 - readings for Pm 

being obtained from x,y/t plotter data (note Appendix). Data from
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the plotters was subject to less stringent tolerances as denoted 

in Table 2.4 and values of Pm /Pc are subject to this factor. 

Cyclic tests took approximately four hours to complete, with 

unavoidable ’electronic drift’ being associated with 

time-dependent monitoring.

5.2.2 Pseudo-Static Modelling

Pseudo-static modelling provides for an analytical assessment of 

the effect of a pre-buckling cyclic action phase upon otherwise 

static strut behaviour. In those more extreme cyclic cases 

involving non-stabilised cyclic creep - see Figs 3.52-3.54 - care 

must be taken with respect to the total number of cycles involved ; 

otherwise, fatigue governs this factor(52)# The pathological case 

20C relates to a singular phenomenon and breaches the ’sub- 

buckling' constraint of this research study.

The basic analytical vehicle was the two degrees-of-freedom 

spring-link model depicted in Fig 4.5. Used in conjunction with 

the novel moment-thrust-curvature expression of Eqn (4.16) and the 

four types of initial imperfection experimentally provided, a 

large data base relating to the 51 mainstream strut tests (ie 52 

less 20C) has been established. Overall experimental/theoretical 

correlation is considered to be good, with a concise overview 

given in Table 4.6. Improved theoretical modelling could be 

readily achieved by the incorporation of additional spring-links 

as previously noted. This would detract, however, from the 

computational amenability available from use of Eqns (4.31) and
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(4.32). Typical static strut analysis can involve using 20 finite 

eleraents(55)• the (static) modelling provided herein is not 

considered to be inferior.

Static strut analysis provided a testing ground for the four 

'methods’, see Figs 4.7 and 4.8. The four static data trends 

provided were closely followed in the cyclic analyses as shown by 

Tables 4.1-4.3 and 4.6. Whilst the quasi-cyclic cases were fully 

statically modelled as illustrated in Figs 4.9 and 4.10 (but note 

Fig 4.11), the formally cyclic cases - those cases involving 

cyclic softening and a distinct cyclic step - were modelled in 

accordance with Fig 3.33 with respect to the woc-direct and 

woc-interpolated data.

The equivalent aos-Southwell and a0^-Lundquist approaches were 

separately modelled employing a novel 'paired linear fit' 

procedure. This afforded a distinct form of cyclic analysis and 

thereby provides for data control. Whilst, overall, most 

theoretical buckling load values were conservative, Southwell- 

based values were conservative throughout. Indeed, as employed 

herein, the Southwell and Lundquist techniques form truly 

catalytic interfaces between experimentation and theory. The 

additional computational effort required in the Lundquist approach 

has not shown any dramatic improvement upon the S o u t h w e l l ^ -*6) 

method. The major limitation of both methods was that their 

applicability was limited, particularly with respect to the more 

significant formally cyclic cases 21C, 22C, 26C and 27C. In these 

cases, the low A m /high um configuration mitigated against these
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two semi- graphical approaches. It is these four cases that 

relate to the most significant cyclic action phase effects

recorded and the unavailability of Southwell-based and 

Lundquist-based models is a major limitation.

Fortunately, however, the woc-interpolated model was always 

applicable, ensuring modelling availability for all such problems 

by an approach which can be assessed by the use of three other 

approaches in the majority of cases. Modelling employing coarse 

experimental data - ie woc-direct - was the least available 

approach but possessed the attraction of employing the most 

fundamental type of imperfection. Figs 5.4-5.7 exhibit each 

method’s Pc data trend for all strut cases in the manner of the 

experimental equivalent presented in Fig 5.1 and with which they 

can be compared. Essentially they show the same data trends but 

with conservative estimates of Pc showing greater violation of the 

design locus (£=L/2). The increased conservatism noted for the 

formally cyclic cases in Table 4.6 results in a clearer 

demarcation between these and the remaining strut cases in Figs

5.4-5.7. This particular trend will be specifically considered in 

Section 5.3 as a matter of some import. It must be recalled that 

most data points would rise relative to the design curve if design 

values rather than individual strut values were employed in the 

evaluation of squash load Ps ; similarly the code's &=0. 7 L

restriction should be noted(36)#

Figs 4.12-4.17 illustrate typical modelling performance with 

respect to the formally cyclic cases, clearly the most complex
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strut testing configuration involved. Perhaps the four approaches 

are a little over-stiff in their pre-cyclic action phase 

characteristics, but not Figs 4.14 and 4.17; this situation could 

be resolved by including additional spring-link units within the 

model if required.

An important feature of the theoretical study was the provision of 

a means of assessing static/cyclic strut correlation with respect 

to the associated buckling load loss A P C and the corresponding 

increase in central transverse displacement at buckling, see Fig 

4.18. Theoretical assessment is not so subject to the rules of 

imperfection sensitivity as direct experimentation but is 

obviously more restricted in appeal. The data trends provided, 

however, are consistent in themselves, note Tables 4.4 and 4.5, 

and afford the only alternative to the acquisition (and testing) 

of ’identical1 pairs of struts. The theoretical trend is one of 

buckling displacement increasing more notably than buckling 

strength decreases - that serviceability considerations are more 

crucial than concern with loss of load carrying capacity except in 

the most severe of cases (ie 20C). This is totally in keeping 

with the experimental findings and, taken together with the rest 

of the theoretical findings discussed in the foregoing, suggests 

insight into the physical phenomenon has been gained.

End-shortening characteristics have been considered to a lesser 

extent than the transverse-flexural. Support for this came from 

the orders of deformation magnitude involved and the displacement 

controlled nature of the cyclic action applied. Neglecting cyclic
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action phase load loss AP (not to be confused with A P C above) 

simplified modelling without significant loss of accuracy and 

effectively demanded that the transverse displacement cyclic step, 

wc or wcL> t îe primary response parameter - recall Table 3.11. 

[Response parameter Pm was virtually linear in terms of action ura 

as noted in Eqn (5.5)].

5.3 DESIGN IMPLICATIONS

It is now apposite to suggest the means by which the experimental 

and theoretical studies summarised in the previous section could 

be incorporated into design practice; Figs 5.1-5.7 have been 

produced with this in mind. They show quite clearly that strict 

adherence to the maximum code value of £=0.7L would apparently 

cater for the type of cyclic action considered herein^^). 

Against this, however, is the fact that laboratory control implies 

that relationship to practice is more valid upon the basis Jt ==L/2; 

it is effective length £ that is crucial. This factor suggests 

that cyclic action can lead to minimal safety tolerances if design 

practice employs only static criteria. Given that no British 

Standard relates to stub testing, the matter of employing such 

data in Figs 5.1-5.7 with respect to all coordinate axes again 

suggests that cyclic action effects require careful treatment 

before formal design rules could be drawn.

Further, the high quality of the specimens provided by BSC 

cushions the effects of cyclic action due to the inherent out-of- 

straightness being far less than that provided for by the design
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code(36)# That is, the borderline nature of the static 

interpretations shown in Figs 5.1-5.7 is subject to a considerable 

leeway in imperfection provision, with less perfect but still

code-acceptable struts showing a more critical data trend. This

feature is supported by the performance of the synthetically-

deformed and re-tested data shown in Fig 5.1, and by the

woc-direct, woc-interpolated, a0s“Southwell and a0x~Lundquist data 

trends displayed in Fig 5.8. Strictly, only the woc-direct data

is applicable with respect to code considerations and the high

quality of the struts is clearly shown. Recall that the re-tested

and synthetically-deformed struts breached the 0.2%L initial

out-of-straightness requirement .

A design procedure in which explicit account is taken of the

cyclic effects is thereby proposed as follows;

(i) Establish static strut buckling load Pp in accordance with

present design practice^36).

(ii) Establish a fully static P vs wc-woc [or w c l ~w o c l  with

£=f(L) as required] analysis in accordance with Eqns

(4.31) and (4.32) employing an imperfection woc based upon 

the code’s r) parameter(35) # This affords Pcs and

(wc-woc)|pcg - note Fig 4.18.

(iii) From prescribed data for mean and peak cyclic axial

displacements u^ and um respectively (or u^ and ua m , say),

undertake a cyclic strut analysis in accordance with the
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procedure established in Section 4.6.2, incorporating the 

employment of Fig 3.33 to define the respective cyclic 

step (recall the abscissa of Fig 3.33 is effective length 

transformation independent). With respect to this figure, 

peak cyclic load Pm is determined from um , noting Eqn

(5.5), whilst 'Pc ’ can take the form of Pp - note Fig 5.3 

- as determined in (i) above. Initially, take (w c-woc)|pc 

= (wc-wo c )|pcs . Note that prescribed values for P̂ j and Pm 

would serve as alternatives to provision of u^ and um

respectively.

(iv) A formal cyclic analysis in accordance with Section 4.6.2 

can now be completed - note Figs 3.31(L) and 4.18(£).

(v) Having established the increase in transverse central

displacement at buckling, steps (iii) and (iv) can be 

revised to employ (wc“woc)|pc *n determination of the

cyclic step - note (iii) above. This iteration is due to

the fact that post-cyclic action phase values for Pc 

cannot be known apriori and that Pcs is effectively 

experimentally unattainable - note Section 5.2.2.

(vi) Resultant values for post-cyclic action phase for Pc can 

be checked against Pp whilst (wc-woc)|p can be assessed 

against serviceability requirements.

Fig 3.33 thereby serves as a design chart; note Eqn (3.14).

Further, a nomogram-type approach which would serve to quickly
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estimate cyclic effects is available by combining Figs 3.32 and 

3.33. Initially Fig 3.32 is redrafted as Fig 5.9 to include 

appropriate static buckling data - ie experimental buckling loads 

and lateral displacements for strut cases 18S-27S, less 20S - in 

the manner employed in Fig 3.33 and elsewhere. The upper bound 

locus is evaluated to be of the form

[ w£ / (wc-woc)|pc ] / (Pm  / Pc ) = Ajjj ( 84Am  - 69.76 ) “ 1 (5.7)

Combining Eqns (5.7) and (3.14) affords

An, [ 85.5 (Pm / P c) - 86.27 (Pm  / Pc )2 ] = ( 8 4 ^ - 6 9 . 7 6 )  (5.8)

which, given input of A ra and Pc gives an upper bound for tolerable 

Pm - ie peak cyclic load - values. The transformation independent 

nature of the non-diraensionalised cyclic step term is reiterated 

and care with respect to the 5% lower cut-off limit oriented about 

the quasi-cyclic cases must be exercised in the employment of Eqn 

(5.8).

5.4 SUMMARY

Whilst the data of Figs 5.1-5.7 suggest that present static design 

criteria could serve to accommodate pre-buckling cyclic action 

effects in terms of buckling load estimates, the tolerances are 

very tight and not conducive to confidence. The research 

programme has shown serviceability considerations, in the form of 

enhanced strut deformations being set up due to the effective
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amplification of initial imperfections by cyclic action, to be 

more critical. Indeed, between statics and fatigue there is a 

range of limiting criteria to be e s t a b l i s h e d ( 8 2 )  with many 

serviceability problems encountered in practice being possibly due 

to sub-fatigue cyclic a c t i o n ( 3 7 ) #

The foregoing design discussions are produced in the context of 

the frequency, duration and specimen section (CHS) specifications 

considered herein. The principles involved, however, are 

generally applicable. Further, it is considered that the 

aos-Southwell and a0i-Lundquist type studies serve primarily as 

excellent research tools with possible scope in non-destructive 

testing work. Their inclusion in design procedures is not 

considered to be feasible in the short-term.

Relationships between the inelastic cyclic studies contained 

herein and established plasticity theorems exist. Whilst 

alternating p l a s t i c i t y ^ >*0) not relevant due to the absence of 

net tension(82)s t^e formally cyclic cases exhibit hysteresis 

reminiscent of incremental p l a s t i c i t y ( 9 ,10). Finally, it should 

be appreciated that there is no shakedown limit for struts(®^)j 

note the absence of cyclic creep stabilisation in all but those 

cases involving effectively nominal cyclic action.
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CHAPTER 6

CONCLUSIONS

6.1 PRIMARY ASSESSMENTS

No structural loading is truly static and the research programme 

has sought to provide insight into the mechanics associated with 

imperfection sensitive strut behaviour under sub-fatigue and sub- 

buckling cyclic loading conditions. Substantial experimental and 

theoretical data and the corresponding data trends have been 

provided. A complex problem has been experimentally and 

theoretically studied and design practice interpretations have 

been presented. Key original findings are summarised below.

Inelastic imperfection sensitive struts possessing a relatively 

low modified slenderness ratio and subject to a pre-buckling 

cyclic action phase involving substantial peak inelastic 

excursions of low frequency suffer an effective amplification of 

their initial imperfections. Serviceability conditions are of 

particular concern, loss in post-cyclic buckling strength only 

becoming notable when buckling is initially induced during the 

cyclic action phase.

A range of cyclic profiles employing common values of frequency 

and duration has been applied to a variety of imperfection 

sensitive struts possessing a specific sectional form. Structural 

response has been classified into quasi-cyclic and formally cyclic
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categories. Response to a cyclic action phase has been assessed 

in terms of the increase in central transverse displacement 

incurred during this phase - the cyclic step.

Theoretical studies involved the derivation of a novel moment- 

thrust-curvature relationship of fully differentiable form 

applicable to the entire constitutive range of the material 

concerned. The underlying analytical philosophy is fully capable 

of being exploited in other areas of structural engineering. The 

computational convenience afforded by the inclusion of this 

relationship cannot be underestimated, removing, as it does, the 

need for careful interfacing of the various constitutive zones 

involved through the body of the respective structural form.

It should perhaps be noted that the crucial strut cases involved 

incursion of substantial peak cyclic inelastic excursions. One 

thousand such cycles can relate to a significant period of service 

life in practice. Seismic studies are a case wherein significant 

inelastic excursions could be readily incurred whilst the 

frequency/duration specification employed refers typically to, 

say, a twenty year wave in offshore studies. With particular 

respect to struts, then it is considered that the absence of net 

tension mitigates against fatigue failure.

6.2 ASSOCIATED FACTORS

The Southwell and Lundquist plot techniques have been employed in 

a multi-role manner involving novelty of application in the case
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of the formally cyclic studies. Employed as experimental 

effective length controls and as lumped, buckling plane-oriented 

imperfections in the theoretical studies, the techniques afforded 

a powerful experimental/theoretical interface. The Southwell and 

Lundquist plot techniques are powerful research tools and the 

relative success in their provision of essentially parallel but 

offset pre- and post-cyclic action phase linear fit loci was of 

major importance to the research programme both in terms of the 

novelty of application involved and the practical support 

afforded.

It is also considered that the employment of central transverse

displacement vector traces provided a novel means of buckling path 

assessment. The validity of planar modelling, despite the

presence of highly variable although relatively small 

imperfections, was clearly established for most strut cases. 

Importantly, however, the synthetically deformed strut 

experimentation findings serve as a control on this general 

assumption.

The experimental programme itself was extensive. The statistical 

problems associated with strut performance demanded that a large 

number of strut tests and supporting experimentation be

undertaken. An exercise in project management, the manipulation 

of the large data sets involved was particularly demanding. In

retrospect, some reduction in the number of supporting geometric 

and stub tests could have been made. The histograms provided, 

however, have been especially useful in engendering confidence in
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the overall experimental data determined. Direct, hands-on 

experience of not only undertaking the actual tests but also of 

assisting in the establishment of the large scale testing system 

itself is considered to have been most useful; accuracy and 

physical ’feel1 were obtained through engineering effort.

The research programme would have been impossible without 

considerable recourse to the digital computer. Computer 

applications were made with respect to experimental monitoring and 

control, involving a variety of specialist machines. Theoretical 

studies were interfaced with graphical experimental output data 

automatically. Typical strut test numerical output data and a 

listing of the graphical and numerical strut data interpretation 

computer programme are included in the Appendix for inspection.

6.3 SUGGESTIONS FOR FURTHER WORK

Most obviously, alternative frequencies, durations and forcing 

functions could be employed with respect to the cyclic action 

phase to extend the present data base. A variety of different 

structural sections could be tested for similar ends. Perhaps the 

testing of lighter gauge, cold formed sections would yield more 

notable responses. The whole question of the treatment of sub

fatigue but non-static structural loading would appear to require 

further attention.
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SYNOPSIS O F  T E C H N I C A L  N O T E  424

Regarding flexural curvature

N. TAYLOR, BTech, MSc, P hD *

P. HIRST, BScf

The theory of Simple Bending is one of the most important aspects of any under
graduate syllabus appertaining to Civil Engineering. Crucial to the study of flexure 
is the moment-curvature expression. It appears to the Authors, however, that the 
manner in which most texts on the subject derive this expression is at least tauto
logical; at worst, it appears misleading. Presented herein is a consistent approach 
to this matter which, although not original, would not seem to be widely appre
ciated by authorities at large.

2. The well-established Bernoulli-Euler assumptions enable the derivation of 
the moment-curvature relationship

where M  is the bending moment, E l represents the flexural rigidity of the section 
and R is the radius of curvature. The flexural inextensibility of the centroidal or 
neutral axis gives rise to the presence of flexural end-shortening terms it and Su. 
These are physical quantities which are important in the understanding of struc
tural behaviour. All essential information is denoted in Fig. 1.

3. A typical element of beam Sx is deformed from location PQ to P ’Q'. Curva
ture is given by

The full manuscript of the Paper can be seen in the Institution Library.
* Senior Lecturer in Structural Engineering, Department of Civil Engineering, Sheffield City 
Polytechnic.
t  Research Assistant, Department of Civil Engineering, Sheffield City Polytechnic.

M /E l =  1 /R (1)

v =  \ / R  =  dO/dx (2)
With

sin 0 — dw/dx (3)
then

(4)

Flexural end-shortening is given by

(5)
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Fig. 1. Curvature topology

4. Accepted undergraduate texts, however, employ

tan 0 =  dw/dx

which generates

d2w

d x2 '*'T
-3/2

(6)

(7)

This is only acceptable if (/) linearization, denoted by arc P"Q", is accepted a priori 
with

u =  Su =  0 (8)
or (ii) flexural end-shortening is compensated for by secondary effects (e.g. axial 
straining).

5. Condition (/) simply implies tautology; condition (ii) is rarely met in prac
tice. The former approach is widely employed in finite deformation studies. Its 
consistency surely demands a revision of the accepted approach to this matter.
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Com puterised Large Scale Strut Testing -  Interaction Between  
Experim ental and Numerical M odels 
N. Taylor, P. Hirst
Department of Civil Engineering, Sheffield Polytechnic, U .K .

ABSTRACT

Noting the importance of structural imperfections with regard 
to strut studies, herein presented is a means of back-ending 
an experimental programme with a numerical modelling procedure 
in order that enhanced imperfection data is made available for 
use with predictive theoretical techniques. Lundquist and 
Southwell plot procedures are used to generate lumped 
imperfection parameters from the experimental data which also 
serves to check their validity. Sample comparative
theoretical findings are made which illustrate the latent 
potential of the respective plot procedures with regard to the 
non-destructive testing of struts.

INTRODUCTION

A recently completed strut testing programme, employing a 
Schenck 250 Tonne column testing machine subject to in-house 
developed micro- and mini-computer control and monitoring, has 
provided a substantial data base involving the findings of in 
excess of 200 computer governed strut, stub and imperfection 
tests - note Plates 1 and 2. The strut elements have been 
subject to encastre end conditions and consist of 48.3mm 
diameter by 3.2 mm wall thickness, EWSR Grade 43 CHS sections. 
Effort has been centred about the modified slenderness ratio 
of unity, important because of its service practicality and 
imperfection sensitivity (Trahair, 1977); nominal strut length 
is therefore approximately 2.5 m.

The objective is to assess the rationale of imperfections with 
a view to providing a novel yet simple strut modelling 
procedure. Crucial to this is the incorporation of 
semi-graphical procedures to act as interpretative adjuncts to 
the established experimental data base. Deterministic 
procedures are essential given the statistical nature of 
imperfection studies (Ciria 1977; Lui and Chen 1983). Brevity
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Plate 1; 250 Tonne Testing Plate 2; Buckled Specimen
Machine (partial recovery)

demands attention be focussed on a group of 14 strut tests; 
the findings are typical, however, of the larger sample (72).

EXPERIMENTAL PROGRAMME

Employing offcuts, a stub test (Tall, 1976) was carried out 
for each strut experiment undertaken in order to provide 
individual direct modulus and yield/proof stress data. 
Constitutive response ranged between the typical yield and 
roundhouse loci depicted in Fig.l, most loci being of slightly 
rounded, quasi-yielding form. Histograms for direct modulus E 
and yield/proof stress ay values are given in Fig.2. With 
variations from the mean of up to -13% and -33% respectively, 
determination of individual constitutive data can be seen to 
be of considerable importance (Ciria, 1977).

Regarding imperfection assessment, wall thickness measurements 
were taken using further offcuts as indicated in Fig.3(a); 
these relate to eccentricity of loading e (Ellinas et a l ,
1984). Seven-point initial out-of-straightness imperfection 
measurements were taken, prior to testing, for each strut 
specimen as noted in Fig.3(b). These showed non-planar 
initial topologies extant throughout (corkscrew). Viable 
initial central displacement values w oc based on an effective 
length of & =L/2 were thereby not always available with
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Figure 2; Direct Modulus and Yield/Proof Stress Histograms

non-central values being non-coplanar with, and often 
exceeding, the central reading. However, the struts were 
relatively straight, being well within the standard 0.2%L 
tolerance (BS 4848, 1975) and the accepted value of 0.1%£
(Johnston, 1977). Values of e and woc are given in Table 1; 
importantly, they are of the same order of magnitude.
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Figure 3; Imperfection Monitoring

Table 1; Experimental Data
Strut
Ref. H ,

w oc
(mm)

e
(mm)

I V
Pe Pc- pre VP*e

1 0.94 n/a 0.74 0.88 0.70 0.65
2 0.94 0.14 0.37 0.87 0.72 0.64
3 1.01 n/a 0.79 1.03 0.74 0.71
4 0.91 n/a 0.55 0.82 0.73 0.62
5 1.02 0.52 0.23 1.04 0.75 0.71
6 0.99 0.66 1.18 0.97 0.69 0.68
7 0.88 0.12 0.26 0.77 0.62 0.60
8 0.88 0.61 0.45 0.76 0.62 0.59
9 0.85 n/a 0.72 0.71 0.62 0.56
10 0.93 0.30 0.64 0.87 0.71 0.64
11 0.98 0.36 0.42 0.94 0.70 0.67
12 0.94 n/a 0.31 0.89 0.72 0.65
13 0.91 0.30 0.37 0.82 0.69 0.62
14 0.98 n/a 0.72 0.95 0.74 0.68

Residual stresses were not considered in view of their 
relative unimportance in such hot rolled sections (Staraenkovic 
and Gardner, 1983).

Regarding the strut testing itself, the range of modified
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slenderness ratios A/A i employed are also given in Table 1, 
with

X/Xj  = (je./r)(CTy/TT2E)i ( 1 )

where r denotes the radius of gyration; this normalised ratio 
takes explicit account of the respective constitutive 
properties. As with the stub tests, deformation controlled 
loading was used throughout and key experimental findings are 
included in Table 1. Values of squash load P s (stub test) and 
buckling load Pc are given in non-dimensionalised form with 
respect to the Euler critical load ? t\ ̂-EI. / , j denoting
second moment of area. Corresponding values of the modified 
Perry load Pp (BS 5950, 1985) are also included. The
correlation between A/A j and Ps/Pe indicates accuracy in the 
testing procedure. Full equilibrium path output is discussed 
later, whilst, noting the above comments on imperfections,
consideration is now given to the effective incorporation of 
such data within a theoretical model.

SOUTHWELL AND LUNDQUIST PLOTS

The basis for the Southwell plot technique and its related 
derivatives is well established (Attard, 1983; Leicester,
1970; Spencer and Walker, 1975). The governing equations of 
the Southwell and Lundquist plots take the form

(wc-woc)/P = (w c-woc) /^es+aos/^es ( ^)
and

(wc-w0C-w')/(P-P’)=(wc-woc-w')/(Pei-P')+aol/(Pel- P f) (3)

where w c denotes the central displacement under elastic load 
P, P ’ and w 1 denote the elastic 'pivot* state, and Pe s , aos 
and P ei, a0i delineate the Southwell and Lundquist estimates 
of the critical load and initial central displacement 
respectively. The Lundquist 'pivot' attempts to mitigate low 
load non-linearities.

Importantly, the aos and aQi parameters can be considered as 
lumped or effective imperfections taking account, when applied 
to practical struts, of not only woc but also eccentricity e, 
residual stress and initial corkscrew effects (Croll and 
Walker, 1972). By comparing the Pes and Pei values with the 
critical load Pe , for which definitive E and I(t) data exists, 
the viability of the aos and a0i values can be calibrated. 
That is, herein, the plot techniques are employed to lump all 
imperfections, which experimentation shows to be diverse and 
complex in form, into a format suited for use with predictive 
planar models, their viability being assessed by reference to 
experimental data (Pes> p el v s * pel^3)*

EXPERIMENTAL-NUMERICAL INTERACTION

In accordance with the above, Fig.4 depicts a typical pair of
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Southwell and Lundquist plots, appropriate data being given 
for all specimens in Table 2. The respective linear 
interpolation employs a computerised least squares fit, the 
ranges of which can be seen to be extensive (Spencer and 
Walker, 1972) and within the elastic Perry limit (BS 5950,
1985), important features given the substantial inelastic

Lundquist; (w c -Wq c -w ')/(P-P’) (mm/kN)x10“

^*1 Southwell; (wc“W0c)/P (mm/kN)x10~3

o Lundquist 
a Southwell

30.

P' = 62kN 
w* = 0.39mm20 -

0 oo' linear
range

Southwell; w c-w0c(milt1)0
0.4

Lundquist; w c-w0c~w ’(rom)i i i-----------1----------- 1-----------1
-0.4 0 0.4 0.8 1.2 1.6
Figure 4; Southwell and Lundquist Plots , Strut Ref. 8

Table 2; Southwell and Lundquist Plot Data
Strut Fit Range (% of Pe) .Euler Data woc Data
Ref. (% of Pp ) (mm)

Southwell Lundquist Pes Pel aos aol
1 55 - 62 52 - 60 103.2 88.5 0.79 0.18
2 58 - 67 50 - 67 96.8 87.3 0.55 0.14
3 59 - 67 50 - 67 102.3 93.6 0.66 0.22
4 53 - 61 53 - 61 98.0 86.1 0.30 0.10
5 57 - 66 57 - 70 97.2 85.9 0.48 0.07
6 38 - 55 44 - 57 91.5 83.2 0.77 0.45
7 36 - 50 39 - 52 98.6 89.8 0.67 0.48
8 38 - 54 38 - 54 95.2 82.7 0.66 0.32
9 37 - 51 46 - 55 97.3 84.1 0.68 0.36
10 38 - 48 50 - 61 99.7 92.2 0.55 0.40
11 49 - 60 51 - 60 97.6 90.7 0.75 0.54
12 42 - 58 46 - 58 94.3 91.4 0.39 0.43
13 52 - 62 45 - 55 93.7 91.1 0.70 0.52
14 53 - 62 61 - 69 96.7 85.5 0.35 0.10
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range of the struts involved - noteA/A^ and Pp/Pe ratios in 
Table 1. On the basis t h a t ^ - L / 2  is not actually prescribed, 
then the respective average Southwell and Lundquist values for 
effective length are within 1% and 6% of this assumed
relationship. This generates confidence in the
experimentation and is consistent with acceptance of aos and 
a0i as effective or lumped imperfection parameters. The 
salient features of a theoretical planar strut model for which 
such parameters are well-suited will now be briefly
considered.

THEORETICAL MODELLING

A constitutively and kinematically non-linear spring-link
model is illustrated in Fig.5. The 2°F modelling takes 
account of three-zone inelasticity (Chen, 1971; Snyder and Lip 
Seng, 1968) and, whilst being highly non-linear, generates
computationally amenable expressions.A quasi - potential energy 
approach is employed with

v = ̂ springs (jMd0) - P(u-u0 ) (4)

where V denotes the quasi - energy, M and 0 the spring 
bending moment and rotation respectively, and (u-u0 ) defines 
the effective flexural end shortening. Applying the statics 
criterion 6V/60i for i=l,2 results in

sin0i+sin02=MpCos(nn/2)(l-e“k)/P& (5)
and

sin0^=MpCOs(n7T/2)( l-e“m )/P£ (6)
where

k= 2EI(09-0o7)+48OO(l-n)(09-0Q2)2 (7)
M pLcos(nTr/2)

and

m =EI(0i -89-801+607 )+1200( l-n)(0i-02” ®O1+ ®O2 
Mp£cos (nTr/2)

inelastic 
spring

y *uo /2 ''u* _j 01 0i

Figure 5; Theoretical Model
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where Mp denotes the full plastic moment, n=P/Ps and 
the net slope, 1*1,2. Typical solutions obtained employing 
aos» ^ l  anc* direct woc data respectively are given in terms 
of P vs. wc loci in Fig. 6 together with the associated 
experimental curves. Corresponding values for the set of 
buckling loads Pc are given in terms of the appropriate 
experimental values in Table 3. Noting both Fig.6 and Table

140l

120.

100.

P (kN)

experimental
  w 0c based model
  Lundquist based model
  Southwell based model

Net central displacement (mm)

(a) Strut Ref. 7

-i-------------1------------ 1-------------1
10 20 30 40

120-, P (kN)

experimental
  w0c based model
 Lundquist based model
 Southwell based model

Net central displacement (mm)
0 10 

(b) Strut Ref. 8

Figure 6; Action - Response Loci
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Table 3; Theoretical Buckling Load Assessment
Strut
Ref.

Theoretical Buckling Load (% of Pc)
Southwell Lundquist Direct

1 88.7 103.3 n/a
2 89.8 102.4 102.4
3 91.4 101.4 n/a
4 92.4 100.0 n/a
5 94.9 108.8 88.5
6 95.9 100.8 97.7
7 95.3 99.0 112.3
8 94.2 101.9 98.7
9 92.0 98.5 n/a
10 92.1 95.4 99.7
11 90.3 93.9 97.2
12 93.4 94.7 n/a
13 88.4 91.5 98.2
14 94.6 104.9 n/a
Av. 92.4 99.8 99.3*
* Restricted Applicability

3, it is considered that the Lundquist technique affords a 
highly attractive approach to experimental imperfection 
interpretation.

CONCLUSIONS

The Southwell and Lundquist plots offer a viable catalytic 
interface between experimental and theoretical or predictive 
studies. Their application in the non-destructive testing 
assessment of in-service struts should be considered. Their 
ability to interpret effective length, given the developing 
studies on end condition effects, is of particular note.
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NOMENCLATURE

E direct modulus
I second moment of area
L nominal length
M, M p bending moments
P load (n=P/Ps )
pc» pe> pp> p s buckling, Euler, Perry and squash loads
pe s » pel Southwell and Lundquist Pe values
P', w' Lundquist pivot state
V quasi - potential energy
aos> aol Southwell and Lundquist imperfections
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e eccentricity
£ effective length
r radius of gyration
t wall thickness
u-u0 effective end shortening
w c , woc transverse central deformations
£ strain
e > ei» eoi slope; i=l,2

modified slenderness ratio ( = 1 for Pe=^s) 
o’, Oy stress; yield/proof stress

BIBLIOGRAPHY

Attard, M.M. (1983). Extrapolation Techniques for Buckling 
Loads. Jnl. Struct. Eng., ASCE, 109, 4, 926-935.
British Standards Institution. (1975) Hot-rolled structural 
steel sections, Part 2: Hollow sections. BSI, London, BS
4848, Part 2.
British Standards Institution. (1985). Structural use of 
steelwork in building, Part 1: Code of practice for design in 
simple and continuous construction; hot rolled sections. BSI, 
London, BS 5950, Part 1.
Chen, W.F. (1971). Further Studies of Inelastic Beam - 
Column Problem. Jnl. Struct. Div., ASCE, 97, ST2, 529-544.
Ciria Report 63. (1977). Rationalisation of safety and
serviceability factors in structural codes, Ciria, London. 
Croll, J.G.A. and Walker, A.C. (1972). Elements of 
Structural Stability. Macmillan Press, London.
Ellinas, C.P. et a l . (1984). Buckling of Offshore
Structures. Granada Publishing, London.
Johnstone, B.G. (1977). Third SSRC Guide with Column Design 
Applications. Jnl. Struct. Div., ASCE, 103, ST7, 1359-1376. 
Leicester, R.H. (1970). Southwell Plot for Beam-Columns. 
Jnl. Eng. Mechs. Div., ASCE, 96, EM6 , 945-965.
Lui, E.M. and Chen, W.F. (1983). Extrapolation of H-columns
with small end restraints. Struct. Eng., 61B, 1, 17-26.
Snyder, J.S. and Lip-Seng, L. (1968). Buckling of Elastic- 
Plastic Tubular Columns. Jnl. Struct. Div., ASCE, 94, ST1,
153— 17 3.
Spencer, H.H. and Walker, A.C. (1975). Critique of Southwell
Plots with Proposals for Alternative Methods. Jnl. Expt. 
Mechs., 15, 8 , 303-310.
Stamenkovic, A. and Gardner, M.J. (1983). Effect of Residual 
Stresses on the Column Behaviour of Hot-Finished Steel 
Structural Sections. P roc. Instn. Civ. Engrs., Part 2, 75, 
599-616.
Trahair, N.S. (1977). The Behaviour and Design of Steel
Structures. Chapman and Hall, London.

A13



APPENDIX 1(C)

STRUT BEHAVIOUR SUBJECT TO PRE-BUCKLING CYCLIC LOADING

PAUL HIRST & NEIL TAYLOR 
Department of Civil Engineering 
Sheffield Polytechnic 
Sheffield SI 1WB, UK

ABSTRACT

Amplification of the effects of an initial imperfection due to 
pre-buckling cyclic hysteresis is considered with respect to a range of 
imperfection-sensitive struts. The findings of a recently-completed 
large scale strut testing programme involving application of a variety 
of cyclic profiles are herein discussed. These cyclic profiles simulate 
excursions from nominally static loading and are bounded by constraining 
the axial load to remain compressive and of sub-buckling magnitude 
throughout. Imperfections were monitored and supporting static strut 
and stub tests undertaken for comparative assessment purposes. Testing 
was implemented under axial displacement control in conjunction with 
encastre end conditions. Circular hollow section specimens were 
employed, lengths being centred on a modified slenderness ratio of 
unity.

Findings indicate that serviceability degredation attends low cycle 
plastic excursions, the peak axial displacement/compression incurred 
during these excursions being the dominating influence. An empirical 
design chart is provided to this effect. A two degrees-of-freedom 
spring-link representative model which describes static strut behaviour 
as modified by the presence of a prescribed phase of cyclic action is 
derived for predictive purposes. Effective experimental-theoretical 
correlation is obtained.
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1. INTRODUCTION

Little inquiry appears to have been made regarding the effect the 
incidence of low cycle excursions of pre- or sub-buckling form has upon 
the otherwise static performance of a strut. This would seem somewhat 
arbitrary given the importance of imperfections upon strut behaviour and 
the possibility of interaction occurring between these two phenomena , 
noting also that purely static loading cannot be guaranteed in practice. 
Study has therefore been undertaken to identify the primary features of 
static strut behaviour as modified by the presence of a phase or phases 
of low frequency, low duration pre-buckling cyclic action.

Investigation has been centred about the modified slenderness ratio of 
unity, important because of its service practicality and inelastic
imperfection sensitivity (1). Circular hollow sections (CHS) have 
served for testing purposes. Cyclic action phases, involving a variety 
of profiles, have been introduced at static axial compressions 
corresponding to either the factored or unfactored ECCS service load 
(2). The axial displacement accompanying this compression is maintained 
as the mean cyclic axial displacement, with some load relaxation being 
associated with inelastic response (3). Excursions into the inelastic
range of the material that incur hysteresis loops displaying the 
characteristic of cyclic creep (3) are of primary concern as these will 
tend to amplify the effect of any initial imperfection. Serviceability 
considerations are then made with respect to static strut performance, 
through to buckling, upon exit from the cyclic loading phase.

Given the foregoing, a recently completed strut testing programme,
employing a 250 Tonne column testing machine subject to in-house 
developed micro- and mini-computer control and monitoring, has provided 
an appropriate and substantial data base involving the findings of in 
excess of one hundred computer governed strut, stub (4) and imperfection 
tests. Complementary predictive theoretical studies employ a
representative spring-link model which utilises a novel fully 
differentiable and integrable moment-thrust-curvature expression capable 
of describing elastic, inelastic and plastic static behaviour. Whilst 
initial static behaviour is considered in largely established terms, 
post-cyclic loading phase static behaviour is modelled on the basis that 
an amplified initial imperfection has been effectively incurred during 
the cyclic phase. Definition of this amplified initial imperfection is 
made in terms of the amount of cyclic creep or 'cyclic step' incurred, 
use being made of an empirical design chart obtained from the 
experimental studies.

2. NOTATION

E
I
L

P
Pc » P e » P p » Ps
P
M, Mp, My

c » fe»

direct modulus
second moment of area
nominal length
bending moments
compressive load (n=P/Ps )
buckling, Euler, 'Perry' and squash loads
Southwell and Lundquist Euler estimates
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p p 1 rm> rm maximum cyclic load, initial mean cyclic load
P ’ , w ’ Lundquist pivot state
R section outer radius
6U, 6w internal and external virtual work functions
aos > aol Southwell and Lundquist imperfections
c exponential constant
e eccentricity
f frequency
k i section constants; i = l,2
£ I » “̂1 effective lengths
r radius of gyration
t wall thickness
u-u0 effective end shortening
ua half cyclic amplitude

mean cyclic stroke
w c » w oc transverse central deformations
w *wc cyclic step
X, y, t' independent coordinates
£ ,  £  £  , £ y strain; yield/proof strain
9, 0^, 9q£ slope; i=l,2
A/AX modified slenderness ratio (=1 for Pe=Ps )
O', O y stress; yield/proof stress
v ;  V y curvature; first yield curvature

3. EXPERIMENTAL PROGRAMME

3.1 Test Specimens

All tests were conducted on EWSR Grade A3 CHS 48.3mm diameter by 3.2mm 
wall thickness specimens. Sections were supplied in 7m runs by BSC 
(Corby). Struts were subject to encastre end conditions giving an 
effective length L=L/2, where L denotes the nominal length, in both the 
elastic and inelastic behavioural regimes. Tests were undertaken on 
inelastically imperfection sensitive struts typically possessing 
modified slenderness ratios \/X\ in the vicinity of unity where

AMt-U/rXOy/l^E)1 (1)
with r denoting radius of gyration, Oy the appropriate yield or proof 
stress and E the corresponding direct modulus. Strut specimens were 
thereby approximately 2.5ra in length, enabling two specimens of equal 
length and thereby possessing a common ECCS service load (2) to be cut 
from each 7m run of section as supplied. One specimen to be tested 
statically, the other to be additionally subjected to a cyclic loading 
phase centred upon some specified pre-buckling static state. This 
static/cyclic correlation provides for some degree of control over the 
experimental cyclic data, further control being sought by the large 
number of tests undertaken - see Table 1. This degree of control was 
considered essential given the statistical basis of strut design.

Further, employing offcuts from the 7m runs provided, stub tests (4) 
were carried out on specimens approximately 200mm in length to provide 
individual yield/proof stress and direct modulus data relating to each
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static and cyclic strut test undertaken. The normalised ratio given in 
eqn 1 utilises this data explicitly with regard to strut specimen 
definition. Additional offcut material was used for wall thickness and 
outer diameter assessment enabling evaluation of the corresponding 
eccentricity of loading incurred in the static and cyclic strut tests
(5).

3.2 Static Tests

Strut, stub and imperfection experimentation was carried out on a 
Schenck servo-hydraulic testing machine, see Plate 1, modified to 
operate under computer control (RML380Z) and digital monitoring 
(DEC1104). All testing was carried out under axial displacement
control. To meet BS1610 requirements (6), a 225kN load cell was 
incorporated, and the testing machine's crosshead was pulled back with a 
pre-stress in excess of the maximum specimen loading in order to obviate 
adverse effects - particularly during cyclic loading, note later.

For stub test purposes, the crosshead was lowered and accurately formed 
loading plattens incorporated in the machine (4). Constitutive response 
ranged between the typical yield and roundhouse loci depicted in Figure
1, most loci being of slightly rounded, quasi-yielding form. Histograms
for direct modulus E and yield/proof stress Oy values are given in 
Figure 2. With variations from the mean of up to -13% and -33%
respectively, determination of individual constitutive data can be seen 
to be of considerable importance (7). It is to be noted that residual 
stresses were not explicitly considered in view of their relative 
unimportance in such hot rolled sections (8); stub test data - note 
Figure 1 - largely supports this view, relatively few full roundhouse 
curves being incurred.

Strut testing was conducted employing encastre end conditions, the 
modified slenderness ratios involved being given in Table 1. Taper-lock 
collets, possessing a clamping action which intensifies with increasing 
axial loading, were utilised to implement these conditions. The 
employment, discussed later, of the Southwell and Lundquist plot 
techniques (9)(10)(11) enabled a check to be made upon the effective 
length assessment - see Plate 2. Prior to actual testing, 
out-of-straightness measurements were taken. Each specimen was rotated 
through 360° and readings taken by seven tranversely mounted transducers 
evenly distributed along the strut's length (9). These readings showed 
non-planar or corkscrew initial topologies extant throughout. Viable 
initial central displacement values woc based on an effective central
length of &=L/2 - ie woc represents the difference between the central
and averaged quarter-point transducer readings - were thereby not always 
available with non-central values being non-coplanar with, and often 
exceeding, the central reading. However, the struts were relatively 
straight, being well within the standard 0.2%L tolerance (12) and the 
accepted value of 0.1%£ (13). Values of loading eccentricity e,
determined from sectional geometry assessment (5) as noted previously, 
and w QC are given in Table 1; importantly, these imperfections of form 
are of the the same order of magnitude. Two values for woc are given in 
Table 1; direct or viable readings, as defined above, are given where
applicable. An 'interpolated' value is also given, this being derived
by using a cosine curve possessing an unprescribed amplitude to define 
an initial shape and equating the volume of revolution swept out upon
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rotation of this curve about the centreline with that similarly swept 
out on the basis of the appropriate seven transducer readings. The 
values of central initial displacement or amplitude thereby obtained are 
halved to relate to the same central effective length £=L/2 employed in 
defining the direct woc value.

Typically, each static strut test involved the acquisition of some 2000 
discrete data items employing 150 quasi-static ramped axial stroke 
increments. Emphasis was placed upon experimental accuracy with tests 
being far longer in the preparation than the actual execution. Tests 
were conducted well into the post-buckling range and key static 
experimental data is summarised in Table 1, further details being 
available elsewhere (9). Values of buckling load Pc are given both in 
explicit and in non-dimensionalised form with respect to the appropriate 
Euler critical load Pe= tt^EA/C £ /r )2, A denoting cross-sectional area. 
Evaluation of Pe is made using individual strut material and geometric 
properties. Corresponding values of the unfactored modified Perry/ECCS 
load Pp (2) are also included in terms of Pp/Pe ; for consistency, Pp is 
similarly -evaluated employing individual test data with, additionally, 
£,=0.5L^0.7L (2) given the experimental specification (note later). As- 
measured transverse central displacement values (wc ) corresponding to 
the onset of buckling are given in view of serviceability requirements. 
Respective squash load P s = O y A  data is available from A/Ai=(Ps/Pe )2 .

3.3 Cyclic Tests

With stub and imperfection data established apriori , cyclic strut tests 
commenced with a static procedure upto an axial displacement UjJj which 
corresponded to some prescribed axial compression. This compression, 
denoted by P^, took the form of the respective factored or unfactored 
(Pjjj=Pp) ECCS load, typically in the vicinity of 45kN and 70kN 
respectively. The former value relates to conditions in practice, the 
latter effectively guarantees inelastic response during the cyclic 
action phase.

Cyclic action was applied in the form of a sinusoidal forcing function

u = u^ + uasin(2TTftf) (2)

where u denotes total axial displacement at any time t' such that u is 
compressive for all t', ua represents half-amplitude and f the 
appropriate frequency. Throughout, f was maintained at l/16Hz, a 
typical offshore value, obviating inertial and resonance effects. 
Following attainment of u^, cyclic action was instituted under axial 
displacement control in accordance with eqn 2. Monitoring was 
undertaken using x,y and x,y/t analogue plotters, key data being the 
peak axial displacement u^+ua and the peak axial compression Pm , with 
Pm <Pc throughout. Cyclic action phase durations were again based on 
offshore values and generally consisted of 1000 cycles. It should be 
noted that fatigue failure per se was not being sought (14). A range of 
amplitudes 2ua were investigated, some struts being subjected to two 
distinct cyclic action phases. Key details of the cyclic profiles 
employed and primary responses obtained are given in Table 2, data 
entries being identified by F for cyclic action phases based on the 
factored ECCS load, and by U for those based on the unfactored ECCS 
load.
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Values of axial displacement uJq, axial compression and central 
transverse displacement were digitally recorded upon emergence from the 
cyclic action phase. Whilst u^ was invariably unchanged, as required, 
from its corresponding pre-cyclic value and load relaxation was
negligible, distinct increases in central transverse displacement 
occurred in specific test cases. This increase in displacement due to 
cyclic creep (3) is identified by w<! and represents the aforementioned
cyclic step. Upon completion of the prescribed number of cycles,
automatic static control was accordingly re-implemented. In most tests, 
this involved taking the strut statically through buckling, which 
occurred at an axial displacement of u |pc , to some limiting displacement 
state. In the remaining tests, a second cyclic action phase was 
instituted prior to the static buckling procedure being implemented. 
This cyclic phase was necessarily based on the appropriate unfactored 
ECCS load.

Values of the ensuing buckling load Pc and the corresponding central
transverse displacement w c |p are given in Table 1, whilst values of 
peak cyclic load Pm and cyclic step w£ are expressed as percentages of 
these parameters in Table 2. These percentages, together with those 
corresponding to the use of the appropriate static test values for Pc 
and wc ]p , included for control purposes, are graphically represented in 
Figure 3 . Two classifications are indicated; those strut tests 
involving a small cyclic step w (I^4%wc j p are deemed to be of only
1 quasi-cyclic' form - except for Strut Refs 19, 23 and 24 - whilst the 
remaining strut tests are termed cyclic or 'cyclic proper'. Together 
with the data in Table 2, Figure 3 indicates that the latter set
corresponds to those cases involving substantial peak plastic excursions
as shown by the respective values of (uj{i+ua )/u| p c (controlled) or
pm/pc (monitored) - note Strut Refs 19, 23 and 24. A suggested
empirical design locus is superposed in Figure 3 accordingly, with 
w c /wc | p =5% for Pm /Pc^0.75, corresponding values for Pm /Pc>0.75 being, 
obtained from

wc/wc|P = (85.5 -86.27Pm/Pc)-1 (3)

It is to be noted that the load carrying capacity of the struts - ie the 
buckling load Pc - is relatively insensitive to cyclic action of the 
form prescribed as indicated in Table 1.

Experimental axial load/central transverse displacement loci typifying 
the cyclic tests are given in Figures 4 to 6 which also display 
corresponding theoretical loci later discussed. These loci represent 
static paths, the cyclic step being simply represented by a transition 
line joining the coordinates wc-wo c |p^, P^ and w c-woc | p 1 +wj., P,J; they
appertain to static strut behaviour as modified by them presence of a
prescribed phase of pre-buckling cyclic action. Figure 6 additionally
shows the appropriate (fully) static experimental and theoretical loci 
for comparative purposes, these loci relating to the statically tested 
'partner' (Strut Ref 26).

Hysteresis displaying cyclic creep through the cyclic step w<! is 
typified in Figure 7. Both load relaxation and cyclic creep
deceleration (3), that is a 'tightening' of the individual hysteresis 
loops as cyclic creep increases, are displayed; it is important to note
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that no stabilization of creep deceleration is reached, indicative of 
the interaction between the cyclic step and the imperfection sensitivity 
of the struts concerned. Alternative hysteresis profiles are given
schematically in Figure 7. Type 7(a) relates to those quasi-cyclic 
tests involving relatively low peak axial compressions, Pm being 
incurred during the cyclic action phase or phases. This form of profile 
is termed quasi-elastic hysteresis (14) and is of variable but small
effect upon strut performance. Local plastic inclusions and material 
imperfections induce, in the presence of cyclic action, effects which 
can either enhance or detract from strut stiffness with randomly located 
exit paths being recorded as hysteresis reversed and oscillated to a 
highly variable extent. Type 7(b) relates to those quasi-cyclic tests 
involving higher values of Pm and to Strut Refs 19, 23 and 24. Path 
stabilization occurs in the latter three cases, the random and complex 
nature of strut imperfections being held responsible for the apparently 
contrary behaviour involved. This feature is illustrated in Figure 8 
which shows a ’plan view’ of the path described by the central 
transverse displacement (Strut Ref 19). The cyclic step is to be noted 
as are the directions of measured imperfections woc and e. The apparent 
coincidence between the path's direction and that of woc belies the fact 
that Figure 8 relates to a corkscrew-type initial strut topology, note 
Table 1. Further, despite the weld dictating the direction of e for
each strut involved in the testing programme, wc path directions 
encompassed all four quadrants; this additionally indicates independence 
of the specimen from testing machine interference, however.

It should perhaps be noted that Strut Ref 20 relates to a cyclic test
which resulted in buckling occurring during the cyclic action phase and 
thereby represents an upper bound to the cyclic testing programme with 
(Uj5j+ua )/u|pc=l - note Table 2.

3.4 Southwell and Lundquist Plots

The basis for the Southwell plot technique and its related derivatives 
is well established (11,15). The governing equations of the Southwell 
and Lundquist plots take the form

(wc~woc) / P “ ŵ c~wo c ^ Pes+aos^Pes

and
K r woc-w ')/{p-I” ) = (wc-woc-w')/(pel_p')+aol/(pel~p,) (5)

where wc-woc denotes net central transverse displacement under elastic 
load P, P ’ and w* denote the elastic ’pivot’ state, and Pe s , aos and 
Pei , aDi delineate the Southwell and Lundquist estimates of the critical 
load and initial central displacement respectively. The Lundquist 
’pivot’ attempts to mitigate low load non-linearities. Displacement 
values are again based on a centrally located effective length.

Importantly, the a os and aQi parameters can be considered as lumped or 
effective imperfections taking account, when applied to practical 
struts, of not only w oc but also eccentricity e and residual stress 
effects (10). Further, given the availability of definitive material 
data (E,A,r,t), Southwell and Lundquist effective length estimates, £ s 
and %  respectively, can be derived and employed to assess the deemed 
experimental value (£=L/2). Given the performance of these techniques
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in the corresponding static studies wherein unique linear plots were 
obtained through both the elastic and inelastic behavioural regimes (9), 
it was determined to employ them with respect to the cyclic tests. Pre- 
and post-cyclic phase linear loci were sought, ideally the respective 
paths being parallel, Pe remains constant, but offset, indicating an 
increased initial imperfection (ao s , aG i). Appropriate data is given in 
Table 3 with respect to the cyclic (proper) cases. The fit ranges are 
considered adequate with the effective length estimates confirming 
confidence in the experimental value of L/2. Further, a significant 
number of viable pairs of bi-linear paths were obtained, typified by 
Figure 9, affording pre- and post-cyclic action phase values of aos and 
a0i for inclusion in the planar theoretical modelling to which attention 
is now turned.

4. THEORETICAL MODELLING

Recalling that the primary objective is to determine static strut 
behaviour as modified by the presence of a prescribed phase of cyclic 
action, then theoretical modelling is to be undertaken employing a 
static strut model capable of describing the pre- and post-cyclic action 
phases, incorporation of the cyclic step w<! being made by means of a 
simple transition locus for P=PTJ1. That -is, the post-cyclic static 
modelling will need to be capable of defining an artificial initial 
imperfection described in terms of w£.

A constitutively and kinematically non-linear representative spring-link 
model is illustrated in Figure 10; accepting symmetry, this possesses 
two degrees-of-freedom, 0  ̂ and 02* The springs need to be able to model 
elastic, inelastic and plastic constitutive behaviour. A
well-established three-zone constitutive strut topology is depicted in 
Figure 11 (16,17); this topology leads to complex governing equations 
typified by the moment-thrust-curvature loci given in Figure 12 which 
employ the non-dimensional compression parameter n=P/Ps . Simplification 
of these relationships is undertaken employing a curve fitting procedure
(18) with respect to these loci based on the expression

M  = M  cos (n7r/2)
P

where M and V denote general bending moment and curvature respectively, 
I=Ar^, Mp denotes the plastic moment and c is a sectional constant - 
c = 123.l0^mm2 herein. Eqn 6 is applicable to all constitutive regimes 
for all n and, importantly, is continuous, differentiable and formally 
integrable, thereby lending itself to ease of manipulation. Eqn 6 is 
employed to define the spring characteristics of the analytical model 
with spring moment Mj=M and spring curvature V^=4(0i_i-0i)/^=V.

With 6U and 6W denoting the internal and external virtual work functions 
respectively, then

6 U = 6 W (7)

- £e i v / (M cos (mr/2)) +c(1-n)v2J
1 - e (6)
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so that , for the model topology shown in Figure 10

E (M. 66. ) = P 6ui i (8)
i=1,5

where end-shortening u=f(©£). Incorporating eqn 6 and applying
60=( 9 0/ 3 0^) 6©i where j0T=f (©^ > with respect to eqn 7, then, noting 
imperfections ©0i and u0 , eqn 8 affords, taking account of symmetry

3 I M  cos(nTT/2) 
36i ‘ P

-[2 A (e2-eo2) + 4 B ( e 2-e02)!J
2(61-e0 i) + e

A + 4B(e2-e02)

-[A(er eo,"e2+eo2) + B(er 6ore2+6o2)2 ]
+ 2e

A+2B(ere0r e2+eo2)

3 f P £ ( c o s 6 q ^-c o s 6^ + c o s 6 q ^ - c o s 6^)1
30. *• 2 -*1

(9)

where A=4EI/[£MpCos(nTl/2)] and B=16c(l-n)/Z^ , for i=l,2. 
operating on eqn 9 affords

sin0. + sin© = 4M cos (mr/2) (1-e ^)/PZ1 2 p

and

where

sin6. = AM cos(mr/2)(1-e ^)/P£ 
1 P

C = 8EI(02-0O2) + ^c(1-n)(62-6Q2)
£M cos(mr/2) (A/4)

P

Differentially

(10)

(11)

(12)

and

D-4Ex(er e2-e01+e02) + cCi^ow,-© -0 +0 y
Mpilcos (mr/2) (A/A)

(13)

System solutions employing eqns 10 and 11 are initially determined by 
specifying P(n), estimating ©2 and determining the respective value of 
© 1. Revised estimates for ©2 are made until a null condition is 
achieved. In addition to the input of individual strut case data,

A22



values for 0qi and 0Q2 are determined from input woc values and 
acceptance of an initial sine profile. Upto four analytical case 
studies per strut specimen are available, alternatively employing 
direct w o c , interpolated w Q C , Southwell aos and Lundquist a0 i initial 
imperfection data respectively for woc as specified in Figure 10.

Employing the Southwell and Lundquist imperfection values, then two 
static analyses are carried out in each case, one employing the initial 
or pre-cyclic action phase imperfection values for aos and aQ i and a 
second, being prescribed, employing post-cyclic values. The
effective behavioural path consists of the former locus for and the
latter for P^P^, these being joined with a transition line P=P^ 
representing the cyclic step w^. Employing either the direct or 
interpolated w oc values, an initial static analysis is carried out for 
P^P^ together with determination of the buckling parameters Pc and w c |pc . 
Given the relative insensitivity of Pc to the prescribed low cycle, low 
frequency cyclic actions involved, the respective cyclic step w<! was 
determined using eqn 3 or the 5% cut-off value as appropriate - note 
Figure 3 also - on the basis of Pm /Pc employing the static Pc value 
determined above. An additional iterative procedure is now required in 
order to determine a revised or enhanced value of ’initial1 imperfection 
w QC such that the ensuing static analysis load-net displacement path 
passes through the state location (wc+w(I)|pi ,Pjj where wc |p’ denotes the 
immediately pre-cyclic value of the net central transverse aisplacement. 
Upon securing this revised imperfection, the overall strut behaviour is 
obtained from the initial static analysis for P^P^* and from the 
corresponding static analysis employing the revised or enhanced w oc 
value for P^P^; a transition line at P=Pjn again completes the 
appropriate locus. Cases involving more than one cyclic action phase 
require similar but repeated application of the foregoing techniques.

Typical analytical solutions for the respective P-wc loci are given in 
Figures 4-6, Figure 6 also including static loci for comparison, whilst 
Table 4 gives all feasible theoretical Pc values for the cyclic (proper) 
set of tests together with those of their static counterparts. Values 
of w c are interpreted in terms of L=2£ - ie are doubled - when referring 
to the physical prototype.

5. DISCUSSION

For the range of variables employed, it is apparent from Table 1 that 
strut deformation is more susceptible to cyclic action than the load 
carrying capacity itself. Table 2 indicates that substantial inelastic 
straining is required before any notable degradation in structural 
performance is incurred due to pre-buckling cyclic action; Figure 3 
presents an appropriate design chart. Imperfection variation between 
static and cyclic partners inhibits individual case assessment, and 
relatively large numbers of tests were undertaken to enhance data 
control. Importantly, Strut Ref 1 serves to show how quasi-elastic and 
closed loop hysteresis can involve cyclic steps which reduce upon 
continued excitation.

Cyclic amplification of initial imperfections involves open hysteresis
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loops suffering progressive cyclic creep (3) as typified in Figure 7. 
This phenomenon incurs characteristics associated with incremental 
plasticity, there being no shakedown limit (19) for struts. Between 
statics and fatigue (typically -̂ 10® cycles, with 'low cycle' fatigue 
^10^ cycles) there is a range of limiting criteria to be established
(20), with many serviceability problems in practice being possibly due 
to cyclic action (21). Figure 3 is produced with these factors in 
m ind.

The theoretical studies afford computationally amenable modelling of a 
complex problem. Figures 4 to 6 indicate effective conservative 
load-deformation characteristics are provided, with Tables 4 and 5 
affording definitive data trends. The models could readily be refined 
by the incorporation of additional spring-links, with formal cyclic 
action modelling a possibility (22). The Southwell and Lundquist 
techniques proved to be very useful in providing simple means of 
treating the complexities of imperfection assessment, the respective 
effective length evaluations providing additional benefits.

6. CONCLUSIONS

Cyclic amplification of initial strut imperfections has been studied for 
a specified range of parameters and design guidance in the form of 
cyclic step data and associated buckling performance has been 
established. Strut deformation has been shown to be susceptible to low 
cycle, low frequency plastic excursions exhibiting substantial but 
sub-buckling compression peaks. With the absence of net tension 
possibly offsetting the associated imperfection sensitivity concerned, 
and, given the well-formed nature of the sections employed, the findings 
indicate that higher frequencies and greater, but sub-fatigue, cyclic 
durations should be considered. Different section types are likely to 
exhibit varying degrees of response to pre-buckling cyclic action with 
lighter gauge, cold-formed sections of perhaps particular interest.
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Strut A/ * i w (direct) oc w (inter- 
oc polaled)

e Pc w
C'Pc Vr. VpeRef. (nm) (on) (on) (kN) (bis)

S C S C S C S C S C S C s C S C

1 0.93 0.92 n/a 0.04 0.28 0.10 0.60 0.58 106.7 113.7 4.27 3.86 0.71 0.75 0.64 0.63
2* 0.77 0.78 n/a 0.07 0.34 0.43 0.08 0.10 78.4 84.6 3.49 1.86 0.54 0.58 0.48 0.49
3 0.94 0.93 n/a 0.30 0.67 0.56 0.74 0.64 104.8 105.3 4.77 5.41 0.70 0.71 0.65 0.64
4 s/t 0.98 a/t 0.36 s/t 0.63 s/t 0.42 s/t 10c.0 a/t 5.64 a/t 0.70 a/t 0.67
5 0.94 0.97 0.14 0.67 0.19 0.44 0.37 0.01 106.4 107.1 4.56 5.03 0.72 0.73 0.64 0.67
6 0.89 0.93 n/a 0.26 0.13 0.37 0.73 0.36 115.1 116.5 2.01 2.71 0.76 0.80 0.60 0.64
7 0.94 0.94 0.24 n/a 0.33 0.31 0.09 0.31 109.3 110.3 3.22 4.28 0.70 0.72 0.65 0.65
8 0.91 0.91 0.17 0.30 0.44 0.55 0.26 0.37 112.2 102.9 1.78 5.10 0.74 0.69 0.62 0.62
9 1.01 1.01 n/a n/a 0.22 0.48 0.79 0.59 104.5 113.7 5.84 2.78 0.74 0.76 0.71 0.68
10 0.96 0.98 0.20 n/a 1.01 t .08 0.41 0.57 106.8 111.0 3.53 3.37 0.70 0.74 0.67 0.68
11 0.82 0.78 0.24 0.23 0.45 0.31 0.27 0.05 78.1 85.7 3.33 2.20 0.53 0.58 0.49 0.49
12 0.98 0.98 n/a n/a 0.62 0.30 0.62 0.72 112.5 112.7 3.20 3.95 0.75 0.74 0.69 0.68
13 0.97 1.04 0.10 0.08 0.59 0.67 0.76 0.51 107.8 105.3 4.95 5.32 0.70 0.79 0.67 0.73
14 1.01 0.94 0.30 n/a 0.97 0.66 0.74 0.82 106.2 106.9 4.73 4.42 0.82 0.71 0.71 0.65
IS 0.91 0.91 n/a n/a 0.23 0.28 0.55 0.79 112.5 111.9 3.89 4.23 0.73 0.73 0.62 0.62
16 n/a 0.78 n/a 0.03 n/a 0.21 n/a 0.36 n/a 84.3 n/a 1.54 n/a 0.59 n/a 0.49
17 1.02 1.01 0.52 n/a 0.84 0.60 0.23 0.29 100.6 101.2 5.27 6.19 0.75 0.74 0.71 0.70
18 0.99 1.00 0.66 0.42 .0.89 0.63 1.18 0.69 94.7 90.6 7.47 9.21 0.69 0.67 0.68 0.69
19 0.96 0.96 0.11 n/a 0.49 0.13 0.13 0.55 97.7 100.1 5.93 5.38 0.73 0.74 0.66 0.66
20$ 0.88 0.88 0.12 n/a 0.16 0.15 0.26 0.34 109.6 86.3 4.47 20.38 0.62 0.49 0.60 0.60
21 0.88 0.89 0.61 0.23 0.95 0.24 0.45 0.36 110.4 117.1 4.34 2.85 0.62 0.67 0.59 0.60
22 0.8S 0.84 n/a n/a 0.43 0.09 0.72 0.50 107.6 111.7 3.38 2.72 0.62 0.64 0.56 0.57
23 1.01 1.01 0.15 n/a 0.40 0.40 0.34 0.39 98.1 92.4 5.08 8.47 0.80 0.76 0.70 0.69
24 1.02 1.02 0.20 0.21 0.56 0.42 0.71 0.50 96.3 91.8 6.37 8.05 0.80 0.75 0.69 0.70
2S 0.87 0.89 n/a 0.27 0.22 0.41 0.60 0.42 74.0 77.0 4.06 3.95 0.63 0.64 0.58 0.59
26 0.84 0.84 0.17 0.37 0.59 0.24 0.58 0.26 116.6 114.5 3.71 3.69 0.57 0.57 0.56 0.57
27 0.84 0.85 n/a n/a 0.25 0.26 0.49 0.51 117.0 114.0 2.75 4.77 0.58 0.58 0.56 0.58

n/a > -■>*. applicable s/c - spoilt test $ - buckled during cyclic phase * - first low result for Pc,
S - static C - cyclic therefore cyclic «P«i»entested in static node

Table 1 ; Primary Experimental Data

Stroke Drive Primary Monitt>red Response

ClassificationStrut
Ref.

u 1ID

(nm)

♦ u - a

(inn)

u*a
“

u __a

Pc

Duration
( number of 

cycles )
> /

(X)
c

w'
(X)

pc

F U F U F U F U F U F U

1 1.19 1.96 0.25 0.45 0.45 0.75 25 25 45.1 75.6 1.3 2.3
2 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
3 1.29 1.96 0.35 0.35 0.54 0.73 250 750 54.1 77.0 1.5 0.0
4 1.29 2.02 0.47 0.27 0.55 0.75 500 500 57.6 75.5 1.6 -0.1
5 1.28 2.04 0.35 0.35 0.53 0.78 500 500 52.8 78.4 -0.5 0.1
6 1.96 0.35 0.71 1000 70.5 2.2
7 1.28 0.35 0.53 1000 51.7 0.6
8 1.28 0.35 0.54 1000 56.0 -0.1 Quasi-
9 1.29 0.35 0.50 1000 51.0 -0.1 Cvclic
10 1.28 2.03 0.36 0.35 0.52 0.75 250 750 52.0 76.4 3.1 -0.5
11 1.28 0.35 0.67 1000 66.0 3.0
12 1.97 0.35 0.73 1000 73.2 -1.1
13 1.28 2.05 0.35 0.35 0.55 0.81 1000 500 55.1 81.7 1.2 0.5
14 1.29 2.03 0.35 0.25 0.54 0.76 1000 500 54.3 74.8 1.3 0.1
15 1.96 0.35 0.74 1000 73.3 1.0
16 1.36 0.35 0.55 1000 69.5 -0.8
17 2.05 0.47 0.83 1000 82.0 1.6
18 2.14 0.50 0.91 1000 92.7 4.4
19 2.05 0.61 0.87 1000 88.0 2.6
20$ 1.98 1.13 1.00 1000 n/a n/a n/a Cyclic
21 1.90 1.00 0.95 1000 94.8 11.9
22 1.89 0.95 0.97 1000 94.9 16.3
23 2.27 0.61 0.93 1000 96.3 2.5
24 2.15 0.65 0.95 1000 94.8 2.2
25 1.51 0.81 0.90 1000 91.0 6.9
26 1.71 1.02 0.95 1000 94.3 18.3
27 1.80 1.00 0.97 1000 98.2 37.9

n/a » not applicable $ ■ buckled during cyclic phase F - factored base
U “ unfactored base

Table 2 ; Cyclic Experimental Data
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Strut
Ref.

Linear Fit Range Euler Data woc Data

X ■ Pre-Cyclic 
Y ■ Post-Cyclic

Southwell
(Z of P )e

Lundquist
(Z of P ) e

IS/£ £iVi
aos
(mm)

3ol
(mra)

18 X 39 _ 41 8 - 2 7 1.05 1.07 1.16 0.82
18 Y 53 - 64 53 - 64 1.03 1.03 1.54 1.63
19 X 41 - 50 22 - 48 1.05 1.09 0.42 0.33
19 Y 59 - 68 64 - 68 1.04 1.07 0.48 0.37
20 X $ $ $ $ $ $
20 Y $ $ $ $ $ $
21 X 34 - 41 n/a 1.02 n/a 0.19 n/a
21 Y 53 - 59 58 - 62 1.01 1.00 0.40 0.61
22 X 20 - 39 n/a 1.02 n/a 0.36 n/a
22 Y 56 - 60 54 - 60 1.00 0.95 0.68 0.25
23 X 39 - 56 39 - 56 1.03 1.07 0.65 0.42
23 Y 59 - 70 59 - 72 1.03 1.04 0.75 0.73
24 X 43 - 54 21 - 48 1.07 1.08 0.51 0.44
24 Y 62 - 73 66 - 73 1.06 1.06 0.60 0.75

samples 25 to 27 (incl.) are n/a n/a * inadmissible ranges
I  * I $ * buckled during cyclic phase

Table 3 ; Southwell and Lundquist Plot Data

Strut
Ref.

Pc , Theoretical Buckling Load ( Z of Experimental Value )

Direct Interpolated Southwell Lundquist

S C S C S C S C

18 96.6 97.9 92.9 94.7 95.9 88.6 100.8 87.9
19 105.4 n/a 91.6 96.3 93.7 90.9 99.8 93.5
20 111.3 $ 109.0 $ 95.3 % 99.0 $
21 95.6 85.2 90.1 85.1 94.2 93.4 101.9 89.2
22 n/a n/a 96.2 96.0 92.0 88.3 98.5 98.0
23 96.8 n/a 88.7 89.2 95.8 87.1 103.3 87.3
24 96.1 91.7 86.2 88.6 96.6 90.4 91.4 88.0
25 n/a 93.5 106.8 91.9 n/a n/a n/a n/a
26 110.2 91.4 98.6 92.9 n/a n/a n/a n/a
27 n/a n/a 106.0 n/a n/a n/a n/a n/a

n/a ■ inadmissible ranges $ ■ buckled during cyclic phase
S * static C ■ cyclic

Table 4 ; Theoretical Buckling Loads for Cyclic and 
Corresponding Static Struts

Classification No. off 
Exptl. 
Spec's

Direct Interpolated Southwell Lundquist
(Z) No. CO No. (Z) No. (Z) No.

Static 26 100

(s-6.5)
16 94

(s-6.7)
26 96

(s-4.9)
19 101

(s-4.2)
18

Quasi - 
Cyclic

16 97
(s-5.7)

9 91
(s*4.1)

16 94
(s-2.9)

11 96
(s*4.3)

12

Cyclic 9 * 92
(s-4.6)

5 92
(s*3.6)

8 90
(s-2.3)

6 91
(s-4.3)

6

* ■ excluding strut (ref. 20) ; buckled s * standard deviation
during cyclic phase

Table 5 ; Average Theoretical Buckling Loads : Given as
Percentages of Their Corresponding Experimental 
Buckling Loads
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APPENDIX II

TYPICAL NUMERICAL OUTPUT

FILE: JEANCAL OUTPUT A
DATE: 09JUL1987 AT 14:09:54 HRS

STRUT REFERENCE = 20S

(a) ; increment number 
(b) - (e) ; £n (n = 1 ,4) [\ie]

(f) ; u - uQ [mm]
(g) ; P [kN]
(h) ; w c - woc [mm]

LOAD ST. STRAIN1 STRAIN2 STRAIN3 STRAIN4 AX.DPLT. LOAD LAT.DPLT

(a) (b) (c) (d) (e) (f) (g) (h)

0 2. -10. -11. -9. 0.000 0.000 0.002
1 -35. -34. -37. -32. 0.080 2.408 0.076
2 -73. -68. -73. -64. 0.167 5.693 0.096
3 -93. -86. -91. -83. 0.212 7.628 0.136
4 -105. -96. -103. -93. 0.237 8.662 0.189
5 -123. -108. -122. -110. 0.277 10.215 0.246
6 -141. -126. -137. -122. 0.329 11.790 0.286
7 -163. -146. -158. -142. 0.377 13.702 0.325
8 -186. -166. -178. -157. 0.432 15.682 0.341
9 -195. -177. -188. -170. 0.457 16.560 0.314

10 -215. -1 98. -210. -191. 0.509 18.630 0.310
11 -241. -222. -235. -213. 0.570 21.015 0.32 0
12 -263. -242. -260. -238. 0.625 23.017 0.319
13 -294. -272. -287. -266. 0.695 25.829 0.32 9
14 -326. -301. -318. -2 95. 0.772 28.934 0.355
15 -359. -332. -351. -326. 0.852 31.882 0.376
16 -394. -363. -388. -358. 0.932 35.055 0.405
17 -427. -393. -423. -390. 1.010 38.115 0.434
18 -460. -422. -453. -418. 1.089 41.175 0.461
19 -495. -454. -489. -452. 1.172 44.393 0.492
20 -527. -483. -525. -482. 1.249 47.363 0.529
21 -563. -515. -562. -515. 1.330 50.603 0.570
22 -597. -544. -595. -544. 1.412 53.730 0.614
23 -635. -575. -632. -575. 1.495 57.015 0.660
24 -666. -603. -665. -605. 1.577 60.053 0.710
25 -702. -632. -702. -635. 1.659 63.203 0.766
26 -7 39. -662. -7 40. -668. 1.740 66.420 0.827
27 -777 . -694. -780. -704. 1.825 69.705 0.892
28 -814. -723. -817. -731. 1.907 72.990 0.963
29 -851. -751. -854. -763. 1.989 76.140 1.038
30 -886. -779. -889. -7 91. 2.072 79.223 1.116
31 -926. -808. -931. -823. 2.155 82.508 1.203
32 -962. -836. -967. -850. 2.240 85.658 1.296
33 -982 . -850. -990. -866. 2.285 87.323 1.350
34 -995. -858. -1001. -871. 2.307 88.313 1.382
35 -1003. -864. -1012. -882. 2.330 89.190 1.411
36 -1014. -872. -1022. -888. 2.354 90.068 1.443
37 -1023. -877. -1031. -8 96. 2.372 90.788 1.466
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38 -1035. -885. -1042. -902. 2.395 91.733 1.503
39 -1044. -891. -1055. -912. 2.419 92.453 1.536
40 \ -1057. -901. -1069. -921. 2.437 93.510 1.569
41 -1068. -908. -1081. -931. 2.464 94.388 1.609
42 -1077. -914. -1088. -935. 2.485 95.153 1.646
43 -1090. -920. -1102. -943. 2.509 96.143 1.699
44 -1100. -926. -1112. -949. 2.530 96.885 1.733
45 -1112. -932 . -1126. -957. 2.555 97 .763 1.777
46 -1124. -940. -1139. -966. 2.575 98.663 1.824
47 -1136. -943. -1150. -972. 2.597 99.518 1.875

jOAD ST. STRAIN1 STRAIN2 STRAIN3 STRAIN4 AX.DPLT. LOAD LAT.DPLT

48 -1147. -950. -1162. -981. 2.624 100.395 1.934
49 -1160. -954. -1176. -984. 2.645 101.228 2.006
50 -1172. -959. -1189. -992 . 2.665 102.083 2.069
51 -1186. -964. -1204. -997. 2.685 102.960 2.146
52 -1198 . -967 . -1216. -1003. 2.710 103.680 2.224
53 -1213. -968. -1232. -1009. 2.734 104.603 2.326
54 -1230. -973. -1251. -1014. 2.759 105.413 2.432
55 -1243. -972. -1267. -1015. 2.779 106.110 2.558
56 -1263. -974. -1291. -1022. 2.802 106.943 2.707
57 -1280. -972. -1311. -1022. 2.825 107.595 2.875
58 -1302. -967. -1340. -1022. 2.849 108.405 3.109
59 -1327. -960. -1372. -1020. 2.870 108.855 3.379
60 -1354. -944. -1416. -1016. 2.895 109.485 3.753
61 -1411. -906. -1502. -994. 2.914 109.620 4.527
62 -1713. -633. -2040. -857. 2.949 101.768 9.956
63 -2583. -137. -2846. -67 9. 2.969 90.720 15.478
64 -2682. -87. -2941. -663. 2.994 89.505 16.323
65 -2759. -45. -3021. -651. 3.017 88.628 17.011
66 -2837. -1. -3105. -637. 3.040 87.773 17.719
67 -2907. 36. -3175. -626. 3.067 86.918 18.331
68 -2972. 67. -3242. -618. 3.092 86.220 18.891
69 -3032. 99. -3306. -606. 3.114 85.568 19.424
70 -3093. 127. -3370. -600. 3.137 84.938 19.969
71 -3149. 159. -3430. -593. 3.159 84.330 20.442
72 -3207. COCOiH -3490. -582. 3.184 83.790 20.942
73 -3258. 210. -3544. -575. 3.207 83.228 21.398
74 -3312. 234. -3600. -572. 3.232 82.733 21.860
75 -3365. 261. -3656. -562. 3.254 82.238 22.329
76 -3417. 283. -3705. -558. 3.279 81.720 22.743
77 -3468. 308. -3757. -551. 3.302 81.293 23.177
78 -3515. 324. -3803. -550. 3.327 80.820 23.544
79 -3558. 343. -3846. -544. 3.347 80.528 23.92 6
80 -3607. 366. -3891. -539. 3.372 80.145 24.295
81 -3655. 387. -3934. -535. 3.395 79.718 24.677
82 -3700. 407. -3979. -531. 3.419 79.358 25.048
83 -3745. 424. -4021. -527. 3.442 78.998 25.413
84 -3789. 444. -4059. -523. 3.467 78.615 25.750
85 -3835. 462 . -4104. -519. 3.490 78.323 26.137
86 -3877. 482. -4136. -515. 3.514 77.918 26.467
87 -3915. 497 . -4168. -514. 3.535 77.648 26.796
88 -3955. 514. -4203. -511. 3.559 77 .310 27.109
89 -3997 . 533. -4236. -506. 3.582 77.085 27.474
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90 -4036. 549. -4272. -504. 3.607 76.725 27.801
91 -4076. 565. -4304. -501. 3.630 76.433 28.142
92 -4109. 583. -4335. -500. 3.655 76.140 28.460
93 -4143. 595. -4367 . -497 . 3.677 75.870 28.761
94 -4177. 612. -4401. -497 . 3.700 75.600 29.060
95 -4206. 62 3. -4432. -494. 3.722 75.353 29.359

jOAD ST. STRAIN1 STRAIN2 STRAIN3 STRAIN4 AX.DPLT. LOAD LAT.DPLT

96 -42 41. 638. —4464. -494. 3.747 75.083 29.670
97 -4272. 651. -4499. -496 . 3.770 74.835 29.960
98 -4305. 667 . -4533. -493. 3.794 74.610 30.258
99 -4334. 678. -4565. -494. 3.819 74.363 30.548

100 -4366. 696. -4603. -489. 3.842 74.115 30.859
101 -4393. 708. -4633. -489. 3.864 73.845 31.127
102 -4421. 721. -4667. -486. 3.890 73.620 31.394
103 -4452 . 732. -4698. -485. 3.912 73.418 31.669
104 -4481. 745. -4737. -486. 3.935 73.193 31.948
105 -4508. 759. -4771. -484. 3.959 72.990 32.241
106 -4541. 769. -4805. -485. 3.980 72.743 32.512
107 -4563. 780. -4835. -485. 4.005 72.518 32.740
108 -4594. 796. -4877. -481. 4.029 72.360 33.038
109 -4622 . 807. -4910. -479. 4.052 72.135 33.287
110 -4649. 817. -4942. -482. 4.075 71.910 33.524
111 -4673. 829. -4972. -481. 4.099 71.730 33.745
112 -4702. 843. -5010. -476. 4.122 71.573 34.023
113 -4733. 853. -5047. -476. 4.145 71.415 34.296
114 -4763. 865. -5087. -476. 4.169 71.190 34.557
115 -47 91. 877 . -5121. -476. 4.192 70.988 34.803
116 -4821. 887. -5159. -475. 4.217 70.808 35.067
117 -4849. 899. -5199. -475. 4.240 70.605 35.323
118 -4881. 910. -5236. -477. 4.264 70.425 35.585
119 -4907. 923. -5273. -476. 4.284 70.178 35.806
120 -4936. 932. -5311. -47 9. 4.307 70.043 36.055
121 -4963. 945. -5346. -476. 4.330 69.863 36.289
122 -4991. 957. -5381. -474. 4.355 69.705 36.541
123 -5019. 969. -5418. -472. 4.382 69.503 36.785
124 -5047. 982. -5456. -472. 4.402 69.345 37.031
125 -5075. 994. -5493. -473. 4.42 9 69.165 37 .269
126 -5098. 1003. -5529. -471. 4.450 68.96 3 37.479
127 -5125. 1017. -5566. -473. 4.472 68.828 37.720
128 -5150. 1026. -5601. -472. 4.499 68.648 37.949
129 -5175. 1038. -5634. -467 . 4.520 68.490 38.164
130 -5204. 1050. -5673. -468. 4.542 68.355 38.415
131 -5234. 1060. -5716. -465. 4.565 68.198 38.672
132 -5258. 1075. -5755. -464. 4.590 67.995 38.897
133 -5284. 1085. -5791. -467 . 4.614 67.815 39.115
134 -5309. 1095. -5826. -465. 4.639 67 .658 39.333
135 -5336. 1107. -5859. -464. 4.660 67.455 39.550
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APPENDIX III

TYPICAL x,y/t OUTPUT

III (A) Static and initial cycles of cyclic phase for Strut Ref. 

26C.

Ill (B) Concluding cycles of cyclic phase and post-cyclic static 

buckling for Strut Ref. 26C.
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APPENDIX IV

LIST OF COMPUTER PROGRAMMES

IV (A) RM 380Z Microcomputer Software - BASIC

(1) Strut test (machine control) drive

(2) Stub test (machine control) drive

(3) Initial curvature imperfection drive

IV (B) PDP/1104 Minicomputer Software - BASIC

(1) Strut test data scanning and acquisition

(2) Stub test data scanning and acquisition

(3) Initial curvature imperfection data scanning 

and acquisition

IV (C) Experimental Applications; IBM 4341 Mainframe Software

- FORTRAN

* (1) Strut test —  graphical and numerical data 

interpretation

(2) Stub test —  graphical and numerical data 

interpretation

(3) Initial curvature test —  graphical and numerical 

data interpretation



IV (D) Theoretical Applications IBM 4341 Mainframe Software

- FORTRAN

(1) Formal moment-thrust-curvature contour evaluation 

and graphical interpretation

(2) Formal and curve-fit moment-thrust-curvature contour 

graphical interpretation

(3) Numerical strut modelling solution algorithm

(4) Pseudo-static enhanced initial imperfection (Awoc) 

evaluation

* (5) Datafile manipulation (pseudo-static path 

coordinates)

* Item C(l) accesses D(5) for case study graphical 

interpretation.
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APPENDIX V

SAMPLE COMPUTER PROGRAMME

Strut test - graphical and numerical data 

interpretation programme

FILE: JEANCAL FORTRAN A 
DATE: 09JUL1987 AT 13:24:35 HRS

DIMENSION VLVDA(150)fTLSA(150),TLVDA(150),RL(150),RRL(150) 
DIMENSION LSA1(150),LSA2(150),LSA3(150)
DIMENSION LSA4(150),LSA5(150),IREF(1)
DIMENSION VEC1(100),VEC2(100),VECR(100),ARR(80),ARR2(80) 
DIMENSION VEP(120),VEL(120),VELU(120),L0DU(120),RLUNP(75) 
DIMENSION VEC10(90),VEC20(90),VECRO(90),JUIN(2),J0IN2(2) 
DIMENSION VEC3(85),VEC4(85),VECR1(85)
DIMENSION VCP(100),VCPO(80) ,VCP1(100),Y0UT(100),Y0UT1(80) 
DIMENSION VE(100),VC1(100),VEL1(99),VEP1(99),VEL2(90),VEP2(90) 
DIMENSION LOD(80),L0D1(90),L0D2(80),VC2(90),YUT(95),YUT3(80) 
DIMENSION VEL3(100),VEP3(100),NPV(50),RRRL(150)
DIMENSION START(2),T0(2)

DIMENSION PS(500),WCS(500),NS(500),WCSPR(500),WCSPO(500)
DIMENSION PL(500),WCL(500),NLU(500),WCLPR(500),WCLP0(500) 
DIMENSION PD(500),WCD(500),ND(500) fWCDPR(500),WCDPO(500)
DIMENSION PIN(500),WCI(500),NI(500),WCIPR(500),WCIPO(500) 
DIMENSION WAS(3),PAS(3),WAL(3),PAL(3),WAD(3),PAD(3),WAI(3) ,PAI(3 ) 
DIMENSION PSPR(500),PSP0(500),WS(500),PPS(500)
DIMENSION PLPR(500),PLPO(500),WL(500),PPL(500)
DIMENSION PDPR(500),PDPO(500),WD(500),PPD(500)
DIMENSION PIPR(500),PIPO(500),W1(500),PPI(500),PMX(5)

"PROGRAMME TO GRAPHICALLY INTERPRET DATA OUTPUT FROM STRUT TESTS" 
C 
C

REAL LSA2,LSA3,LSA4,LSA5,MXSTP,MXSTN
REAL MHJM,MHJM1,MGIM,MGIM1,LOD,LODl,LOD2,LODU
REAL MXST1,MXST2,MXST3,MXST4,LOADMX,JUIN,JOIN2
REAL ICPT,ICPT1,ICP1,INDIA
INTEGER DA,DM,YR,PDT
CALL NULIN(9)

A44
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CALL C1051W 
CALL DEVICE(8,0)
CALL DEVPAP(7250.,275.)

C
C

WRITE(6,10)
10 FORMAT(//' THE FOLLOWING DATA SET WILL HAVE A SYSTEM')

WRITE(6,15)
15 FORMAT(' OF UNITS SET OUT HEREIN')

WRITE(6,20)
20 FORMAT(/x***********************************")

WRITE(6,25)
25 FORMAT(//' MID AXIAL (LONGITUDINAL) STRAIN MEASUREMENTS')

WRITE(6,30)
30 FORMAT(' TO BE IN MICRO=STRAINS (E*10~6)')

WRITE(6,35)
35 FORMAT(//,' AXIAL LOAD IN KILONEWTONS (KN)')

WRITE(6,40)
40 FORMAT(//' AXIAL AND LATERAL DISPLACEMENTS IN MILLIMETRES')

WRITE(6,45)
45 FORMAT(//' TO PROCEED THRU OUTPUT SIMPLY PRESS RETURN KEY!')

C
C INPUT TEST REFERENCE ET. AL.
C

WRITE(6,71)
71 FORMAT(//' INPUT TEST REFERENCE NUMBER !')

READ(9.*) IR3 
WRITE(6 ,72 )

72 FORMAT(/' INPUT TEST REFERENCE ALPHABETIC CHARACTER !')
READ(9,77) IREF(l)

77 FORMAT(A3)
C

IREF1=IREF(1)
C
C
C INITIALISE VARIABLES FOR LOOP CALCULATIONS
C

N0T=0 
NSAS=10 
NPVV=0 
LOADMX=0.0 
PI=3.141529

CYCLIC TEST - CRIPPLING STATE DISTINCTION ROUTINE 

WRITE(6,4)
4 FORMAT(/,2X,'DO YOU REQUIRE A DATA I/P CHECK ? ; 1:~YES , 0:-N0') 

READ(9,*) NN 
C
C "READ "RAW" DATA TO BE STORED IN ARRAYS"
C

WRITE(6,80)
80 FORMAT(//,' ARE STRAIN GUAGE RESULTS REQUIRED ? 1 - YES ,0 - NO') 

READ(9,55) IEG 
55 FORMAT(II)
87 IF(IEG.EQ.O) GOTO 88
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"STATIC TEST RAW DATA INPUT"

READ(5,*,END=78)I1,I2,I3,IST1
READ(5,*fEND=78)IST2,IST3,IST4,L S ,MRA,MXH,MST,MVD 
READ(5,*,END=78)LD1,LD2,LD3,LD4,LOAD 
GOTO 1

"READ CYCLIC TEST RAW DATA"

88 READ(5,*,END=7 8 )I1,12,13,LS
READ(5,*,END=78 )MRA,MXH,MST,MVD 
READ(5,*,END=78)LD1,LD2,LD3,LD4,LOAD

1 ICHECK=I1+I2+I3+L0AD+MVD+LS 
IF(ICHE(X.EQ.O) GOTO 78 
IF(NN.EQ.O) GOTO 991 
WRITE(6,90) LS 

90 FORMAT(/' LS=',I4)

TRANSFORM INTEGER VARIABLES TO "REAL" VALUES

991 RMST=MST*(-0.001)
RLOAD=LOAD*(-0.001)
RMVD=MVD*0.001 
RLD1=LD1*0.001 
RLD2=LD2*0.001 
RLD3=LD3*0.001 
RLD4=LD4*0.001 
RL1=(RLD1-RLD3)/2 
RL2=(RLD4-RLD2)/2 
VEC=SQRT((RL1**2)+(RL2**2))
VEC=VEC*0 .5

ULTIMATE LOAD SCAN - "PCR"
C

RLOX=LOADMX-RLOAD 
IF(RLOX)100,110,110 

100 LOADMX=RLOAD
C
C STORE "REAL" DATA IN ARRAY STORES
C
110 LSA1(LS+1)=LS 

LSA2(LS+1)=IST1 
LSA3(LS+1)=IST2 
LSA4(LS+1)=IST3 
LSA5(LS+1)=IST4 
TLSA(LS+1)=RMST 
TLVDA(LS+1)=RLOAD 
VLVDA(LS+1)=VEC*2.0 
RL(LS+1)=RL1 
RRL(LS+1)=RL2 
RRRL(LS+1)=VEC 
LSCNT=LS+1 
GOTO 87 

78 CONTINUE
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SUM1=0.
SUM2=0.
SUM3=0.
SUM4=0.
SUM6=0.
SUM7 =0.
SUM8=0.
N=0
NC=0
N0=0
LB=0
LB 1=0
NA=0
NULT=0

FORMATION OF ARRAYS TO PROCESS FAILURE LOCUS 
AND SOUTHWELL PLOT(CYCLIC & STATIC TESTS)

WRITE(6,79)
79 FORMAT(/,2X,'DO YOU WISH TO CHOOSE THE UPPER & LOWER LIMITS OF') 

WRITE(6,81)
81 FORMAT(/,2X,'THE REGRESSION (STRAIGHT LINE) FIT FOR THE ')

WRITE(6,82)
82 FORMAT(/,2X,'SOUTHWELL PLOT ; 1 - YES , 0 - NO! . IF NOT DEFAULT') 

WRITE(6,83)
83 FORMAT(/,2X,'VALUES WILL BE SET AT THE CRIPPLING LOAD & 40% OF', 

*//,' THE "NOMINAL" EULER LOAD RESPECTIVELY')
RE A D (9,*) NUTS 
IF(NUTS.EQ.l) GOTO 16 
SNL=0.4*142.
SNL1=150.
GOTO 17

16 WRITE(6,84)
84 FORMAT(/,2X,'INPUT UPPER & LOWER LIMIT IN TERMS OF LOAD')

READ(9,*) SNLl.SNL
17 CONTINUE 

WRITE(6,950)
950 FORMAT(///////,' DO YOU REQUIRE A CHECK. ON THE "BREAKDOWN" OF' 

*,//,' LOAD INCREMENTS USED IN THE SOUTHWELL PLOT ?'
*,//,' 1:-YES , 0:-N0')
READ(9,*) SSS

DO 85 1=1,LSCNT 
TLV=TLVDA(I)
IF(TLV) 85,85,59

59 IF(TLV.LT.2.5) GOTO 85 
N=N+1
IF(LOADMX-TLV) 65,99,60 

99 NULT=15
60 IF(NA.GT.O) GOTO 66 

IF(SSS.EQ.O) GOTO 943 
WRITE(6,898) TLV,LOADMX

898 FORMAT(/,2 X ,'STHWELL:LOAD=',2X,IF9.3,'LDMAX=',2X,IF9.3) 
943 IF(TLV.GT.SNL) GOTO 130

C
C LOAD , DISPLTS. & SOUTHWELL FACTORS •
C
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120 NC=NC+1
VEC10(NC)=RL(I)
VEC20(NC)=RRL(I)
VECR0(NC)=RRRL(I)
VCPO(NC)=(VECRO(NC)/TLV)
L0D(NC)=TLV 
GOTO 85

LOAD , DISPLTS. & SOUTHWELL FACTORS

130 LB=LB+1
VEC1(LB)=RL(I )
VEC2(LB)=RRL(I )
VECR(LB)=RRRL(I)
VCP(LB)=(VECR(LB)/TLV)

LEAST SQUARES REG. :L00P TO DETERMINE SLOPE (PRE - CYCLIC 
OR PRE - ULTIMATE LOAD "STATIC")

IF(TLV.GT.SNLl) GOTO 134 
LB1=LB1+1
SUM1=SUM1+(VECR(LB1))
' SUM2=SUM2+(VCP(LB1))
SUM3=SUM3+(VECR(LB1)*VCP(LB1))
SUM4=SUM4+(VECR(LB1)**2)
PUP=TLV

134 LODI(LB)=TLV 
IF(NULT.EQ.15) NA=1 
GOTO 85

135 CONTINUE 
LSC=(LS )-NC0

POST CYCLIC SOUTHWELL AND LATERAL DISPLT. VALUES 
66 NA=NA+1 

N0=N0+1
VEC3(NO)=RL(I)
VEC4(N0)=RRL(I)
VECR1(N0)=RRRL(I)
VCP1(N0)=(VECR1(N0)/TLV)

LEAST SQUARES REG. : LOOP TO DETERMINE SLOPE (POST - CYCLIC)

SUM5=SUM5+(VECR1(NO))
SUM6=SUM6+(VCP1(NO))
SUM7=SUM7+(VECR1(N0)*VCP1(NO))
SUM8=SUM8+(VECR1(NO)**2)
L0D2(N0)=TLV 
LSCN=LSC-1 

85 CONTINUE 
65 NNN=1

SLOPES , INTERCEPTS ET.AL. FROM REGRESSION LOOP 
C

156 A=((LB1*(SUM3))~(SUM1*SUM2))
B=((LB1*(SUM4))-((SUM1)**2))
SLP=A/B
ICPT=(SUM2/LB1)-SLP*(SUMl/LBl)
IF(NOT.EQ.O) GOTO 410
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C
C SLOPES , INTERCEPTS ET.AL. FROM REGRESSION LOOP
C

C=( (NO*(SUM7 ) )-(SUM5*SUM6 ) )
D=((NO*(SUM8))-((SUM5)**2))
SLP1=C/D
ICPT1=(SUM6/N0)-SLP1*(SUM5/N0)

AUTO - SCALING OF VECTOR TRACE (LATERAL MOVEMENT)

410 IF(NOT.EQ.O) N0=0 
NLN=NC+LB+NO 
NL=NC+LB 
DO 495 1=1,NLN 
IF(I.GT.NC) GOTO 496 
ARR(I)=VEC10(I)
GOTO 495

496 IF (I . GT. NL.AND.NOT. E Q .1) GOTO 497 
ARR(I)=VEC1(I-NC)
GOTO 495

497 ARR(I)=VEC3(I-NL)
495 CONTINUE

RMAX=ARR(1)
RMIN=ARR(1)
DO 498 I=2,NLN
IF(ARR(I).GT.RMAX) RMAX=ARR(I)
IF(ARR(I).LT.RMIN) RMIN=ARR(I)

498 CONTINUE
DO 493 1=1,NLN 
IF(I.GT.NC) GOTO 501 
ARR2(I)=VEC20(I)
GOTO 493

501 IF(I.GT.NL.AND.NOT.EQ.1) GOTO 502 
ARR2(I)=VEC2(I-NC)
GOTO 493

502 ARR2(I)=VEC4(I-NL)
493 CONTINUE 

RMAX2 =ARR2 (1)
RMIN2=ARR2(1)
DO 504 1=2,NLN
IF(ARR2(I).GT.RMAX2) RMAX2 =ARR2(I )
IF(ARR2(I).LT.RMIN2) RMIN2=ARR2(I)

504 CONTINUE
C
C WRITE LATERAL DISPLACEMENTS IN TERMS OF ORTHOGONAL COMPONENTS
C

WRITE(6,491)
491 FORMAT(/,2X,'DO YOU REQUIRE TABULATED OUTPUT OF THE LATERAL') 

WRITE(6,492)
492 FORMAT(2X,'TRANSDUCERS ? - WC ,WC/P ET.AL (1-YES O-NO)') 

READ(9,*) Ml
IF(Ml.EQ.0) GOTO 666 
WRITE(6,490)

490 FORMAT(/' AVERAGED OPPOSING TRANSDUCERS "G & I"')
WRITE(6,510) (ARR(I),1=1,NLN)
WRITE(6,494)

494 FORMAT(/' AVERAGED OPPOSING TRANSDUCERS "H & J"')
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WRITE(6,510) (ARR2(I),1=1,NLN)
WRITE(6,511) RMAX,RMIN,RMAX2,RMIN2 

511 FORMAT(//' G-I"MAX,,=',F7.3,'G-r'MIN"=',F7.3,'H'-J"MAX,,=',F7.3, 
C'H-J"MIN"=',F7.3)

525 CONTINUE
C
C WRITE SUB - ULTIMATE LOAD SOUTHWELL VALUES
C

IF(NOT.EQ.O) GOTO 506 
WRITE(6,500)

500 FORMAT(//' VECTOR DISPLT. (PRE-CYCLIC)')
GOTO 523 

506 WRITE(6,521)
521 FORMAT(//' VECTOR DISPLT. (STATIC)')
523 WRITE(6,510) (VECRO(I),1=1,NC)

WRITE(6,510) (VECR(I),1=1,LB)
510 FORMAT(/8F8.3)

IF(NOT.EQ.O) GOTO 526
WRITE(6,520)

520 FORMAT(///' VECTOR DISPLT. / LOAD (PRE-CYCLIC)')
GOTO 889

526 WRITE(6,522)
522 FORMAT(//' VECTOR DISPLT. / LOAD... (STATIC)')
889 WRITE(6,510) (VCPO(I),1=1,NC)

WRITE(6,510) (VCP(I),1=1,LB)
C
C AUTOMATIC SCALING FOR THE SOUTHWELL PLOTS
C

666 SMAX=VECRO(1)
SMIN=VECRO(l)
SMAX1=VCP0(1)
SMIN1=VCP0(1)
DO 531 1=1,NC
IF(VECRO(I).GT.SMAX) SMAX=VECRO(I)
IF(VECRO(I).LT.SMIN) SMIN=VECRO(I)
IF(VCPO(I).GT.SMAX1) SMAX1=VCP0(I)
IF(VCPO(I).LT.SMIN1) SMIN1=VCP0(I)

531 CONTINUE
TMAX=VECR(1)
TMIN=VECR(1)
TMAX1=VCP(1)
TMIN1=VCP(1)
DO 532 1=1,LB
IF(VECR(I).GT.TMAX) TMAX=VECR(I)
IF(VECR(I).LT.TMIN) TMIN=VECR(I)
IF(VCP(I).GT.TMAX1) TMAX1=VCP(I)
IF(VCP(I).LT.TMIN1) TMIN1=VCP(I)

532 CONTINUE
IF(SMAX.GT.TMAX) SMA=SMAX 
IF(SMAX.LT.TMAX) SMA=TMAX 
IF(SMIN.GT.TMIN) SMI=TMIN 
IF(TMIN.GT.SMIN) SMI=SMIN 
IF(SMAXl.GT.TMAXl) SMA1=SMAX1 
IF(SMAXl.LT.TMAXl) SMA1=TMAX1 
IF(SMIN1.GT.TMIN1) SMI1=TMIN1 
IF(TMINl.GT.SMINl) SMI1=SMIN1 
IF( M1.EQ.0) GOTO 777
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WRITE(6,536) SMA,SMI,SMA1,SMI1 
536 FORMAT(/' MAX. DPLT.=',F7.3,2X,'MIN. DPLT.=',F7.3,2X,

C'MAX. DPLT./LD=',F7.3,2X,'MIN. DPLT./LD =',F7.3)
777 IF(NOT.EQ.O) GOTO 580 

WRITE(6,540)
540 FORMAT(//' VECTOR DISPLT. (POST - CYCLIC)')

WRITE(6,510) (VECR1(I),1=1,NO)
UMAX=VECR1(1)
UMIN=VECR1(1)
WRITE(6,545)

545 FORMAT(//' VECTOR DISPLT. / LOAD...... (POST - CYCLIC)')
WRITE(6,510) (VCP1(I),1=1,NO)
UMAX1=VCP1(1)
UMIN1=VCP1(1)
DO 575 1=1,NO
IF(VECR1(I ).GT.UMAX) UMAX=VECR1(I )
IF(VECR1(I ).LT.UMIN) UMIN=VECR1(I )
IF(VCP1(I).GT.UMAX1) UMAX1=VCP1(I)
IF(VCP1(I).LT.UMIN1) UMIN1=VCP1(I)

575 CONTINUE
WRITE(6,576) UMAX,UMIN,UMAX1,UMIN1

576 FORMAT(/' MAX.=',F7.3,2X,'MIN.= ' ,F7.3,2X,'MAX.=',F7.3,2X,
C'MIN.= ' ,F7.3)

C
C AUTOMATIC SCALING OF STRAIN AXIS, AXIAL DISPLACEMENT AXIS ,LOAD AXIS 
C AND RESULTANT LATERAL DISPLACEMENT AXIS 
C

580 VSTMX=TLSA(LSCNT)+0.5
VLVDAX=1.1*(VLVDA(LSCNT))
MXST1=LSA2(LSCNT)
MXST2=LSA3(LSCNT)
MXST3=LSA4(LSCNT)
MXST4=LSA5(LSCNT)
MXSTN=MXST1
IF(MXST2.L T .MXSTN) MXSTN=MXST2 
IF(MXST3.LT.MXSTN) MXSTN=MXST3 
IF(MXST4.LT.MXSTN) MXSTN=MXST4 
MXSTP=MXST1
IF(MXST2.GT.MXSTP) MXSTP=MXST2 
IF(MXST3.GT.MXSTP) MXSTP=MXST3 
IF(MXST4.GT.MXSTP) MXSTP=MXST4 
MXSTP=MXSTP+100 
MXSTN=MXSTN-400 
RLOADX=LOADMX*(1.05)
RMSTMX=MSTMX*(1.0)
IF(Ml.EQ.O) GOTO 705

C
WRITE OUT TEST DATA IN FORMAL ENGINEERING UNITS

705 IF(NSAS.EQ.O) GOTO 690 
WRITE(6,581)

581 FORMAT(2X,'DO YOU REQUIRE TABULATED OUTPUT FROM TEST? 1-YES,0-N0') 
WRITE(6,582)

582 FORMAT(/,2X,'INCLUDING LOAD, STRAINS, AXIAL & LATERAL DISPLTS.') 
READ (9,55) NWOT
IF(NWOT.EQ.O) GOTO 613 
WRITE(7,673) IR3,IREF1 

673 FORMAT(/,10X,' STRUT REFERENCE = '.I2.A4)
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WRITE(6,600)
WRITE(7,600)

600 FORMAT(// /,' LOAD ST.',IX,'STRAIN1' ,2X,'STRAIN2' ,2X,
C'STRAIN3',2X,'STRAIN4',2X,'AX.DPLT.' ,2X,'LOAD',2X,'LAT.DPLT')
WRITE(6,601)
WRITE(7,601 )

601 FORMAT(' ----------------------------------------------------------------
C------------- ')
WRITE(6,602)
WRITE(7,602)

602 F0RMAT(/)
WRITE(6,610) ((LSA1(I)),(LSA2(I)),(LSA3(I)),(LSA4(I)),(LSA5(I)), 

C(TLSA(I)),(TLVDA(I)),(VLVDA(I)),1=1,48)
WRITE(7,610) ((LSA1(I)),(LSA2(I)),(LSA3(I)),(LSA4(I)),(LSA5(I)), 

C(TLSA(I)),(TLVDA(I)),(VLVDA(I)),1=1,48)
610 F0RMAT(1I4,2X,2F10.0,2F9.0,2X,1F6.3,2X,1F7.3,3X,1F6.3)

IF(N.LT.57) GOTO 613
611 WRITE(6,600)

WRITE(7,600)
WRITE(6,601)
WRITE(7,601)
WRITE(6,602)
WRITE (7 ,602)

612 WRITE(6 ,610) ((LSA1 (I)) , (LSA2 (I)) , (LSA3 (I )) , (LSA4(I ) ) , (LSA5(I )) , 
C(TLSA(I)),(TLVDA(I)),(VLVDA(I)),1=4 9,96)
WRITE(7,610) ((LSA1(I)),(LSA2(I)),(LSA3(I)),(LSA4(I)),(LSA5(I)), 

C(TLSA(I)),(TLVDA(I)),(VLVDA(I)),1=49,96)
WRITE(6,600)
WRITE(7,600)
WRITE(6,601)
WRITE(7,601)
WRITE(6,602)
WRITE (7 ,602)
WRITE(6 ,610) ((LSA1(I)) ,(LSA2 (I)) , (LSA3(I)) , (LSA4(I) ) , (LSA5(I)) , 

C(TLSA(I)),(TLVDA(I)),(VLVDA(I)),1=97,N)
WRITE(7,610) ((LSA1(I)),(LSA2(I)),(LSA3(I)),(LSA4(I)),(LSA5(I)), 

C(TLSA(I)),(TLVDA(I)),(VLVDA(I)),1=97,N)
613 CONTINUE 
690 CONTINUE

C
C PROCESS REG. 'BEST FIT' STRAIGHT LINE THRU STATIC OR PRE & POST
C CYCLIC SOUTHWELL PLOTS
C

DO 300 J=1,LB1
YOUT(J)=(VECR(J)*SLP)+ICPT

300 CONTINUE
C

IF(NOT.EQ.O) GOTO 97 5 
DO 305 K=1,LSC
Y0UT1(K)=(VECR1(K)*SLP1)+ICPT1 

305 CONTINUE
C

97 5 CONTINUE

STATIC 'OR' PRE - CYCLIC SOUTHWELL PLOT 
C

WRITE(6,301)
301 FORMAT(/,2X,' DO YOU REQUIRE SOUTHWELL PLOT ? : 1:-YES , 0:-N0')
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READ(9,*) NSTH 
IF(NSTH.EQ.O) GOTO 309 
IF(NSAS.EQ.O) GOTO 39 
WRITE(6,310)

310 FORMAT(/,2X,' INPUT STRUT DATA ; E , "EFF. LENGTH" , AV. DIA' 
C,/, '& AV. WALL THICKNS. (N.B. UNITS IN MM. & K N .)')
READ(9, *) YM,LE, AVDIA,AVWT 
INDIA=AVDIA-(2.*AVWT)
SMAR=(PI*((AVDIA**4.)-(INDIA**4.)))/64.
PEU=((PI**2.)*YM*SMAR)/(LE**2.)
IPEU=INT(PE)

39 ASO=ICPT/SLP 
SSOP=l./SLP 
PLOW=LODl(1)
IF(SNLl.GE.LOADMX) PUP=LOADMX 
CALL WINDOW(2)
CALL SHIFT2(30.,0.)
CALL SCALE2(1.,0.97 )
CALL M0VT02(110.,227.)
CALL LINBY2(149.0,0.0)
CALL CHASWI(O)
CALL CHASW1(1)
CALL SOFCHA
CALL CHASIZ(3.1,3.1)
CALL AXIS2(0.0,SMA,0.0,SMA1)
CALL M0VT02(8.,12 5.)
CALL CHASWI(0)
CALL CHASWI(1)
CALL MIXCHA
CALL CHASIZ(3.3,3.2)
CALL CHAHOL(17 H (*LMM*U/*LK *UN)*.)
CALL M0VT02(178.,13.)
CALL CHAHOL(1OH(*LMM*U)*.)
CALL CHASWI(0)
CALL CHASWI(1)
CALL CHASIZ(5.5,6.9)
CALL M0VT02(165.,13.)
CALL CHAHOL(5H*LW*.)
CALL M0VT02(24.,135.)
CALL CHAHOL(3HP*.)
CALL M0VT02(15.,137.5)
CALL LINBY2(8.,6.75)
CALL M0VT02(10.,145.)
CALL CHAHOL(5H*LW*.)
CALL CHASWI(0)
IF(IEG.EQ.l) GOTO 701 
CALL CHASWI(0)
CALL CHASWI(1)
CALL CHASIZ(3.5,4.5)
CALL M0VT02(110.,22 9.)
CALL CHAHOL(45HSOUTHWELL PLOT : CYCLIC / PRE-ULTIMATE LOAD*.) 
GOTO 702 

701 CALL MOVTO2(110.,22 9.)
CALL CHASWI(0)
CALL CHASWI(1)
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CALL CHASIZ(3.5,4.5)
CALL CHAHOL(45HSOUTHWELL PLOT : STATIC / PRE-ULTIMATE LOAD*.)

702 CALL CHASWI(0)
CALL CHASWI(1)
CALL CHASIZ(4.5,4.5)
CALL M0VT02(14.5,141.5)
CALL CHAHOL(5H*LC*.)
CALL M0VT02(169.5,9.3)
CALL CHAHOL(5H*LC*.)
CALL CHASWI(0)
CALL CHASWI(l)
CALL CHASIZ(2.65,2.7)
CALL M0VT02(102.,201.5)
CALL ITALIC(30.0)
CALL CHAHOL(21H:- PRE - REGRESSION*.)
CALL M0VT02(102.,196.)
CALL CHAHOL(19H FIT DATA*.)
CALL MOVTO2(102.,185.)
CALL CHAHOL(23H:- LOAD STATES P*LC*.)
CALL ITALIC(0.0)
CALL HARCHA
CALL M0VT02(163.5,200.)
CALL CHAHOL(22 H P*LE *U11 ANALYTICAL11 =*.)
CALL M0VT02(225.2,200.)
CALL CHAHOL(8H*LK.*UN*. )
CALL M0VT02(163.5,190.)
CALL CHAHOL(21HP*LE*U"EMPIRICAL" =*.)
CALL M0VT02(222.,190.)
CALL CHAHOL(8H*LK*UN*.)
CALL M0VT02(165.,180.)
CALL CHAHOL(17HA0"EMPIRICAL" =*.)
CALL M0VT02(222.,180.)
CALL CHAHOL(6H*LMM*.)
CALL ITALIC(O.O)
CALL CHASWI(0)
CALL CHASWI(1)
CALL CHASIZ(3.0,3.25)
CALL SOFCHA
CALL M0VT02(208.5,200.)
CALL CHAFIX(PEU,5,1)
CALL REFR(IR3,IREF1)
CALL SOFCHA
CALL M0VT02(142.,185.)
CALL CHAHOL(3H<*.)
CALL M0VT02(205.5,190.)
CALL CHAFIX(SSOP,5,1)
CALL M0VT02(205.5,180.)
CALL CHAFIX(AS0,5,2)
CALL CHASWI(0)
CALL CHASWI(1)
CALL MIXCHA
CALL CHASIZ(3.6,3.6)
CALL GRASYM(VECRO,VCPO,NC,1,0)
CALL GRASYM(VECR,VCP,LB,4,0)
CALL GRAPOL(VECR,YOUT,LB1)
CALL CHASWI(0)
CALL CHASWI(1)
CALL CHASIZ(3.4,4.75)
CALL M0VT02(99.,203.5)
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CALL SYMBOL(1)
CALL M0VT02(99.,186.5)
CALL SYMBOL(4)
CALL CHASWI(0)
CALL CHASWI(1)
CALL CHASIZ(2.6,2.4)
CALL MIXCHA
CALL M0VT02(127.,214.)
CALL CHAHOL(50H( LINEAR REGRESSION FIT; P*LU= K*UN , P*LL=*.)
CALL M0VT02(200.,214.)
CALL CHAFIX(PUP,5,1)
CALL M0VT02(236.,214.)
CALL CHAFIX(PLOW,5,1)
CALL M0VT02(2 50.,214.)
CALL CHAHOL (10H*IK*UN )*.)
CALL M0VT02(0.,0.)
CALL SHIFT2(400.,0.)
CALL SCALE2(1.,1.031)

C
C

WRITE(6,306)
306 FORMAT(/,2X,' IS SOUTHWELL PLOT SATISFACTORY ? : 1:-YES , Os-NO') 

READ(9,*) NSAS 
IF(NSAS.EQ.O) GOTO 78 

309 CONTINUE

CHOOSE LIMITS FOR REGRESSION FIT TO LUNDQUIST PLOT 
C

WRITE(6,68)
68 FORMAT(/,2X,' DO YOU REQUIRE LUNDQUIST PLOT? ; 1:-YES , 0:-N0')

READ(9,*) NLUN 
IF(NLUN.EQ.O) GOTO 122 
WRITE(6,79)
WRITE(6,81)
WRITE(6,86)

86 FORMAT(/,2X,'LUNDQUIST PLOT ; 1 - YES , 0 - NO !. IF NOT DEFAULT') 
WRITE(6,83)
READ(9,*) NATS 
IF(NATS.EQ.1) GOTO 104 
QUST=0.4*142.
QUST1=150.
GOTO 73 

104 WRITE(6,84)
READ(9,*) QUST1,QUST 

73 CONTINUE
C
C INITIALISE LEAST SQUARES SUMMATION VARIABLES
C

SUM9=0.0 
SUM10=0.0 
SUM11=0.0 
SUM12=0.0
IF(NOT.EQ.O) GOTO 555 
SUM13=0.0 
SUM14=0.0 
SUM15=0.0 
SUM16=0.0
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555 CONTINUE

LOAD & DISPLACEMENTS TO FORM LUNDQUIST PLOT

550 FORMAT(/' CENTRAL DISPLACEMENTS (CYCLIC) SUB ULTIMATE LOAD') 
551 FORMAT(/' LUNDQUIST LOAD VALUES')

IF(NOT.EQ.O) GOTO 101 
WRITE(6,550)
GOTO 103

101 CONTINUE 
WRITE(6,102)

102 FORMAT(/' CENTRAL DISPLACEMENTS (STATIC) SUB ULTIMATE LOAD')
103 NLN1=NLN-1

DO 119 1=1,NLN 
IF(I.GT.NC) GOTO 109 
VELU(I)=VECRO(I)
LODU(I)=LOD(I )
GOTO 119

109 IF (I .GT.NL.AND.NOT.EQ.1) GOTO 114 
VELU(I)=VECR(I-NC)
LODU(I)=LODl(I-NC)
GOTO 119 

114 VELU(I)=VECR1(I-NL)
LODU(I)=LOD2(I-NL)

119 CONTINUE 
C WRITE(6,106) (VELU(I),1=1,NLN)

106 FORMAT(/7F7.3)
WRITE(6,551)
WRITE(6,107) (LODU(I),I=1,NLN)

107 FORMAT(/7F8.2)
WRITE(6,108)

108 FORMAT(/' INPUT "PIVOT" DISPLACEMENT POINT NUMBER')
READ(9,*) PDT

C
C AUTO-SCALE & CONSTRUCTION OF LUNDQUIST PLOT
C

RDL=0.0 
RDL1=0.0 
RLF=0.0 
RLF1=0.0 
NP=0
DO 162 1=1,NLN 
J=I
IF(I-PDT) 203,162,201 

201 J=I-1
203 VEP(J)=VELU(I)-VELU(PDT)

VEL(J)=VEP(J)/(LODU(I)-LODU(PDT))
IF(NOT.EQ.O) GOTO 167 
IF(LODU(J).GE.PV) GOTO 162 

167 NP=NP+1
IF(VEP(NP).GT.RDL) RDL=VEP(NP)
IF(VEP(NP).LT.RDL1) RDL1=VEP(NP)
IF(VEL(NP).GT.RLF) RLF=VEL(NP)
IF(VEL(NP).LT.RLF1) RLF1=VEL(NP)

162 CONTINUE
RDP=(VEP(NP))
RDP1=(VEL(NP))
R0P=VEP(NLN1)
R0P1=VEL(NLN1)

A56



oo
 

o
o
o
o
o
 

o
o

o
o

o
o

o
o

o
o

GOTO 719 
WRITE(6,116)

116 FORMAT(2X,'DO YOU REQUIRE REDUCED LUNDQUIST DATA ? 1-YES , 0-N0') 
READ(9,55) N00
IF(NOO.EQ.O) GOTO 719
WRITE(6,106) (VEP(J),J = 1 ,NLN1)
WRITE(6,117) RDL.RDLl

117 F0RMAT(/' LUNDQUIST DISPLTS. , MAX. & MIN =',2X,1F7.4,2X,1F7.4) 
WRITE(6,106) (VEL(J),J=1,NLN1)
WRITE(6,118) RLF,RLF1

118 FORMAT(/' LUNDQUIST FACTORS : MAX. & MIN. =' ,2X,1F7.4,2X,1F7.4)
719 CONTINUE

M=0
IN=0
K=0
LUNDQUIST CO-ORDINATE BREAKDOWN INTO

MN=0 
M6=0
DO 728 J=1,NLN1 
IF (NOT.EQ.O) GOTO 730 
IF (LODU(J).EQ.TLVDA(NPVV+l)) MN=10 
IF(MN.EQ.IO) GOTO 727 

730 IF(LODU(J).GT.QUST) GOTO 726 
IN=IN+1
VEP1(IN)=VEP(J)
VEL1(IN)=VEL(J)
GOTO 728

726 M=M+1 
VEP2(M)=VEP(J)
VEL2(M)=VEL(J)
IF(LODU(J).GT.QUST1) GOTO 3 
M6=M6+1
SUM9=SUM9+VEP2(M6)
SUM10=SUM10+VEL2(M6)
SUM11=SUM11 + (VE P 2 (M 6 )*VE L2(M6)) 
SUM12=SUM12+(VEP2(M6)**2) 
RLUNP(M6)=LODU(J )

3 GOTO 728
727 K=K+1 

VEP3(K )=VEP(J)
VEL3 (K )=VEL(J)
SUM13=SUM13+VEP3 (K )
SUM14=SUM1A+VEL3 (K ) 
SUM15=SUM15+(VEP3 (K )*VEL3(K )) 
SUM16=SUM16+(VEP3 (K )**2)

728 CONTINUE

CONSTRUCT LEAST SQUARES REG. FIT 
C

A1=((M6*(SUM11))-(SUM9*SUM10))
Bl=((M6*(SUM12))-((SUM9)**2)) 
SL0P1=A1/B1
ICP1=(SUM10/M6)-SLOP1*(SUM9/M6)
DO 761 1=1,M6
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YUT(I)=(VEP2(I)*SL0P1)+ICPl 
761 CONTINUE

CONSTRUCT LEAST SQUARES REG. FIT

IF(NOT.EQ.O) GOTO 216 
A3=( (K *(SUM15))-(SUM13*SUM14))
B3=( (K*(SUM16))-((SUM13)**2)) 
SLOP3=A3/B3
RICP3=(SUM14/K )-SLOP3*(SUM13/K )
DO 216 1=1 ,K
YUT3(I)=(VEP3(T)*SLOP3)+RICP3 

216 CONTINUE
IF(NSTH.EQ.l) GOTO 825 
WRITE(6,310)
READ(9, *) Y M , L E ,AVDIA,AVWT 
INDIA=AVDIA-(2.*AVWT)
SMAR=(PI*((AVDIA**4.)'-(INDIA**4.)))/64. 
PEU=((PI**2.)*YM*SMAR)/(LE**2.)

LUNDQUIST PLOT (STATIC / PRE CYCLIC) 
C

825 A0=(ICP1/SL0P1)-VELU(PDT)
S0P1=(1./SLOP1)+L0DU(PDT)
PI VLD=LODU(PDT)
PI VDIS =VELU(PDT)
QQLOW=RLUNP(1)
QQHI=RLUNP(M6)
IF(QUSTl.GE.LOADMX) QQHI=LOADMX 
IF(AO.LT.O) A0=A0*(-1.)
CALL SCALE2(1.,0.97)
CALL SHIFT2(17.,0.)
CALL CHASWI(0)
CALL CHASWI(1)
CALL SOFCHA
CALL CHASIZ(3.1,3.15)
CALL AXIS2(RDL1,RDL,RLF1,RLF)
CALL CHASWI(0)
CALL CHASWI(1)
CALL CHASIZ(3.5,3.5)
CALL MIXCHA 
CALL GRASYM(VEP1,VEL1,IN,1,0)
CALL GRASYM(VEP2,VEL2,M,4,0)

CALL CHASWI(0)
CALL CHASWI(1)
CALL MIXCHA
CALL CHASIZ(3.3,3.2)
CALL M0VT02(211.,11.)
CALL CHAHOL(8H*L(MM)*.)
CALL M0VT02(3.,116.)
CALL CHAH0L(17H(*LMM*U/*1K*UN)*.)
CALL GRAPOL(VEP2,YUT,M6)

CALL CHASWI(0)
CALL CHASWI(1)
CALL MIXCHA
CALL CHASIZ(4.6,4.6)
CALL M0VT02(169.,8.)
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CALL CHAHOL(5H*LC*.)
CALL M0VT02(191.5,8.)
CALL CHAHOL(5H*LC*.)
CALL CHASWI(0)
CALL CHASWI(1)
CALL MIXCHA
CALL CHASIZ(4.,4.3)
CALL M0VT02(5.5,147.)
CALL CHAHOL(5H*LC*.)
CALL M0VT02(21.7,147.)
CALL CHAHOL(5H*LC*.)
CALL CHASWI(0)
CALL HARCHA(1,0)
CALL M0VT02(127.,178.5)
CALL CHAHOL(5H*LC*.)
CALL MiXCHA 
CALL CHASWI(0)
CALL M0VT02(110.,22 9.)

CALL CHASWI(1)
CALL CHASIZ(3.5,4.)
CALL MIXCHA 
IF(IEG.EQ.l) GOTO 219

220 CALL CHAHOL(45HLUNDQUIST PLOT : CYCLIC / PRE-ULTIMATE LOAD*.) 
GOTO 221

219 CALL CHAHOL(45HLUNDQUIST PLOT : STATIC / PRE-ULTIMATE LOAD*.)
221 CALL M0VT02(110.,227.)

CALL LINBY2(149.,0.)
CALL CHAESC(1H%)
CALL CHASWI(0)
CALL CHASWI(1)
CALL CHASIZ(5.5,6.7)
CALL M0VT02(165..11.)

CALL CHAHOL(11H%LW - W *%.)
CALL CHASWI(0)
CALL CHASWI(1)
CALL CHASIZ(4.,5.7)
CALL M0VT02(2.,150.)

CALL CHAHOL(11H%LW - W *%.)
CALL M0VT02(2.,134.5)
CALL CHAHOL(8HP - P*%.)
CALL M0VT02(2.,144.)
CALL LINBY2(20.,0.)
CALL M0VT02(90.,205.5)

CALL CHASWI(0)
CALL CHASWI(1)
CALL CHAESC(1H*)
CALL CHASIZ(3.4,4.9)
CALL SYMBOL(1)
CALL MOVTO2(90.,191.)
CALL SYMBOL(4)
CALL M0VT02(95.,203.5)
CALL ITALIC(30.0)

CALL CHASWI(0)
CALL CHASWI(1)
CALL CHASIZ(2.65,2.7)
CALL CHAHOL(21H:- PRE - REGRESSION*.)
CALL M0VT02(95.,198.)
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CALL CHAHOL(19H FIT DATA* *)
CALL M0VT02(90., 190. )
CALL CHAHOL(25H LOAD STATES P*LC*.)

CALL ITALIC(0.)
CALL HARCHA
CALL M0VT02(163.,200.)
CALL CHAHOL(21HP*LE*U'ANALYTICAL'=*.)
CALL M0VT02(163.,190.)
CALL CHAHOL(20HP*LE*U'EMPIRICAL'=*.)
CALL M0VT02(164.,180.)
CALL CHAHOL(l6HA0'EMPIRICAL'=*.)
CALL CHASWI(0)
CALL CHASWI(1)
CALL CHASIZ(3.8,4.)
CALL CHAESC(1H%)
CALL M0VT02(157.,180.)
CALL CHAHOL(3H)%.)
CALL M0VT02(85.,180.)
CALL CHAHOL(6H(P*=%.)
CALL M0VT02(123.5,180.)
CALL CHAHOL(10H%LW%U *=%.)
CALL CHASWI(0)
CALL CHASWI(1)
CALL SOFCHA
CALL CHASIZ(3.,3.25)
CALL M0VT02(137.5,180.)
CALL CHAFIX(PIVDIS,4,2)
CALL M0VT02(136.,190.)
CALL CHAHOL(3H<%.)
CALL M0VT02(97.,180.)
CALL CHAFIX(PIVLD,5,1)
CALL M0VT02(150.5,180.)
CALL HARCHA
CALL CHAHOL(6H%LMM%.)
CALL CHAESC(1H*)
CALL REFR(IR3,IREF1)
CALL CHASWI(0)
CALL CHASWI(l)
CALL SOFCHA
CALL CHASIZ(3.0,3.25)
CALL M0VT02(205.,200.)
CALL CHAFIX(PEU,5,1)
CALL MOVTO2(203.,190.)
CALL CHAFIX(S0P1,5,1)
CALL M0VT02(202.,180.)
CALL CHAFIX(A0,5,2)
CALL MIXCHA
CALL M0VT02(221.5,200.)
CALL CHAHOL(8H*IX*UN*.)
CALL M0VT02(219.5,190.)
CALL CHAHOL ( 8 H*IK*UN*.)
CALL M0VT02(218.,180.)
CALL CHAHOL(6H*LMM*.)
CALL M0VT02(113.,180.)
CALL CHAHOL(10H*LK*UN, *.)
CALL CHASIZ(0.,0.)
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CALL CHASWI(0)
CALL CHASWI(1)
CALL MIXCHA
CALL CHASIZ(2.6,2.4)
CALL M0VT02(127.,215.)
CALL CHAHOL(5O H ( LINEAR REGRESSION FIT; P*LU= K*UN , P*LL=*.)
CALL MOVT02(200.,215.)
CALL CHAFIX(QQHI,5,1)
CALL M0VT02(236.,215.)
CALL CHAFIX(QQLOW,5,1)
CALL M0VT02(250.,215.)
CALL CHAHOL(10H*LK*UN )*.)
CALL CHASIZ(0.,0.)
CALL SHIFT2(-17.,0.)
CALL SCALE2(1.,1.031)
CALL CHASWI(0)
CALL M0VT02(0.,0.)
CALL SHIFT2(400.,0.)

C
C END OF LUNDQUIST PLOT ! PROCEED OR RE-PLOT?
C

224 WRITE(6,121) -
121 FORMAT(2X,'IS (ARE) LUNQUIST PLOT(S) SATISFACTORY ?:1-YES,0-N0') 

READ(9,*) LUND
IF(LUND) 309,309,122

C
C CENTRAL DISPLACEMENT VECTOR TRACE PLOT :
C

122 JUIN(1)=VEC10(NC)
JUIN(2)=VEC1(1)
JOIN2(1)=VEC20(NC)
JOIN2(2)=VEC2(1)
MP=0
ZMAX=RL(1)
ZMIN=RL(1)
ZMAY=RRL(1)
ZMINY=RRL(1)
DO 997 1=2,N
IF (RL(I).GT.ZMAX) ZMAX=RL(I)
IF (RL(I).LT.ZMIN) ZMIN=RL(I)
IF(RRL(I).GT.ZMAY) ZMAY=RRL(I)
IF(RRL(I).LT.ZMINY) ZMINY=RRL(I)

997 CONTINUE
WRITE(6,995)

995 FORMAT(/,2X,' DO YOU REQUIRE THE VECTOR TRACES ? 1:-YES , 0:-N0') 
READ(9,*) IVT 
IF(IVT.EQ.O) GOTO 800 
ZER=RRRL(1)
ZER1=VECR0(1)
IF(ZER.EQ.ZERl) GOTO 980 
START(1)=RL(1)
T O (1)=RRL(1)
START(2)=VEC10(1)
TO(2)=VEC20(1)

980 CONTINUE
CALL WINDOW(2)
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IF(MP.EQ.l) GOTO 875 
CALL SCALE2(1.0,0.96)

875 CALL AXIPOS(1 ,40.,140.5,260., 1) 
CALL AXIPOS(1,170.,45.,191.,2) 
IF (MP.EQ.O) GOTO 981 
CALL CHAHAR(0, 0)
CALL AXISCA(1,10,ZMAX,ZMIN,1) 
CALL AXISCA(1,10,ZMAY,ZMINY,2) 
GOTO 982

981 CALL CHAHAR(0,0)
CALL AXISCA(1,10,RMAX,RMIN,1) 
CALL AXISCA(1,10,RMAX2,RMIN2,2)

982 CALL AXIDRA(1,1,1)
CALL AXIDRA(-1,-1,2)
CALL CHASWI(0)
IF(MP.EQ.1) GOTO 986
CALL M0VT02(72 ., 33 .)
CALL CHASWI(0)
CALL CHASWI(1)
CALL SOFCHA
CALL CHASIZ(3.05,3.2)
CALL CHAHOL(44HMID-SPAN LATERAL DISPLACEMENT VECTOR TRACE*.)
CALL CHAHOL(32H (PLAN VIEW) *LRE: *UP < P*LC * 0
CALL M0VT02(7 2 ., 30.5 )
CALL LINBY2(200.,0.)
CALL CHASWI(0)
GOTO 989

986 CALL M0VT02(85.,33 .)
CALL CHASWI(0)
CALL CHASWI(1)
CALL SOFCHA
CALL CHASIZ(3.05,3.2)
CALL CHAHOL(44HMID-SPAN LATERAL DISPLACEMENT VECTOR TRACE*.)
CALL CHAHOL(15H (PLAN VIEW) *.)
CALL M0VT02(85.,30.5)
CALL LINBY2(162.5,0.)

989 CALL CHASWI(0)
CALL CHASWI(1)
CALL REFR2(IR3,IREF1)
CALL HARCHA
CALL CHASIZ(2.9,3.)
CALL M0VT02(174.,45.)
CALL CHAHOL(11H(J - H)/2*.)
CALL M0VT02(40.,143.5)
CALL CHAHOL(l1H(G - I)/2*.)
CALL M0VT02(284.,143.5)
CALL CHAHOL(4H(G*.)
CALL M0VT02(288.,143.5)
CALL CHAHOL(13H ;W*LELD*U)*.)
CALL M0VT02(172.5,234.)
CALL CHAHOL(6H (J)*.)
CALL M0VT02(30.,28.)
CALL CHASWI(0)
CALL LINBY2(280.,0.0)
CALL LINBY2(0.0,225.)
CALL LINBY2(-280.,0.0)
CALL LINBY2(0.0,-225.)
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IF(MP.EQ.l) GOTO 987
CALL GRACUR(VEC10,VE C2 0,NC)
IF(ZER.EQ.ZERl) GOTO 984 
CALL GRAPOL(START,TO,2)

984 CALL GRAPOL(JUIN,JOIN2,2)
CALL GRACUR(VEC1,VEC2,LB)
CALL M0VT02(0 .,0. )
IF(NOT.EQ.O) GOTO 985 
CALL GRACUR(VEC3, VEC4,N0)
CALL M0VT02(0.,0. )

985 GOTO 983
987 CALL GRACUR(RL,RRL,LSCNT)

CALL M0VT02(0 .,0. )
983 MP=MP+1

CALL SHIFT2(400 *,0.)
CONTINUE
IF(MP.GT.l) GOTO 990 
GOTO 980 

990 CONTINUE
CALL SCALE2(0.96,1.0)
CALL CHAHAR(0, 0)
CALL AXIPOS(0,170.,143.,201.5,1)
CALL AXIPOS(0,170.,143.,201.5,2)
CALL AXISCA(1,10,50.,-50.,1)
CALL AXISCA(1,10,50.,-50.,2)
CALL AXIDRA(2,1,1)
CALL AXIDRA(2,-1,2)
CALL MOVTO2(30.,29.)
CALL LINBY2(280.,0.)
CALL LINBY2(0.,225.)
CALL LINBY2(-280.,0.)
CALL LINBY2(0.,-225.)
CALL GRACUR(RL,RRL,LSCNT)
CALL M0VT02(51.5,34.2)
CALL CHASWI(0)
CALL CHASWI(1)
CALL SOFCHA
CALL CHASIZ(2.95,3.0)
CALL CHAHOL(44HMID-SPAN LATERAL DISPLACEMENT VECTOR TRACE*.) 
CALL CHAHOL(46H PLAN VIEW (A*LXES *US*LCALED *UU*LNIFORMLY)*.) 
CALL M0VT02(51.5,32.)
CALL LINBY2(232.,0.)
CALL CHASWI(0)
CALL CHASWI(1)
CALL MIXCHA
CALL CHASIZ(2.9,2.9)
CALL M0VT02(282.,142.)
CALL CHAHOL(13H(G ;W*LELD)*.)
CALL M0VT02(174.,43.)
CALL CHAHOL(5H(H)*.)
CALL MOVTO2(50.,142.)
CALL CHAHOL(5H(I)*.)
CALL M0VT02(174.,239.)
CALL CHAHOL(5H(J )*.)
CALL REFR2(IR3,IREF1)
CALL CHASWI(0)
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CALL SCALE2(1.04167,1.04167)
CALL M0VT02(0.,0.)
CALL SHIFT2(400.,0.)

800 CONTINUE
WRITE(6,831)

831 FORMAT(/,2X,' DO YOU REQUIRE "P - U" PLOT ? 1:-YES , 0:-N0') 
READ(9,*) IPU 
IF(IPU.EQ.O) GOTO 832 
CALL SCALE2(1.0,0.96)
CALL SHIFT2(10.,15.)
CALL CHASWI(0)
CALL CHASWI(1)
CALL MIXCHA
CALL CHASIZ(3.4,3.4)

C CALL AXIS(0.0,VSTMX,0.0,RLOADX)
CALL AXIS(0.0,VSTMX,0.0,RLOADX)
CALL CHASWI(0)
CALL CHASWI(1)
CALL MIXCHA
CALL CHASIZ(5.2,5.2)
CALL GRASYM(TLSA,TLVDA,LS CNT,3,0)
CALL CHASWI(0)
CALL CHASWI(1)
CALL MIXCHA
CALL CHASIZ(6.3,7.2)
CALL M0VT02(165.,9.)
CALL CHAHOL(5H*LU*.)
CALL M0VT02(21.,135.)
CALL CHAHOL(3HP*.)
CALL CHASWI(0)
CALL CHASWI(1)
CALL MIXCHA
CALL CHASIZ(3.5,4.2)
CALL M0VT02(135.,228.)
CALL CHAHOL(39HAXIAL LOAD *LVS*U. AXIAL DISPLACEMENT*.)
CALL M0VT02(135.,225.5)
CALL LINBY2(113.5,0.)
CALL CHASWI(0)
CALL CHASWI(1)
CALL SOFCHA
CALL CHASIZ(2.55,3.2)
CALL M0VT02(234.,200.)
CALL CHAHOL(11H P*LC*U =*.)
CALL M0VT02(249.,200.)
CALL CHAFIX(LOADMX,5,1)
CALL M0VT02(2 65.,200.)
CALL CHAHOL(8H*LK*UN*.)
CALL CHASWI(0)
CALL GRAPOL(TLSA,TLVDA,LSCNT)
CALL CHASWI(0)
CALL REFR(IR3,IREF1)
CALL CHASWI(0)
CALL CHASWI(1)
CALL CHASIZ(3.5,3.2)
CALL HARCHA
CALL M0VT02(19.,12 5.)
CALL CHAHOL(1 OH(*1X*UN)*.)
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(JALL m u v t u z  u  /»., y .;
CALL CHAHOL(1OH(*LMM*U)*.)
CALL SCALE2(1*0,1*04167)
CALL M0VT02(0 .,0. )
CALL SHIFT2(400., 0.)

832 WRITE(6,837)
837 F0RMAT(/,2X,' DO YOU REQUIRE "P - WC" PLOT ? ; 1:-YES 0:-N0') 

READ(9, *) NWC
IF(NWC.EQ.O) GOTO 957 
WRITE(6,838)

838 FORMAT( / / »' DO YOU REQUIRE EXP. & THEO "P - WC" LOCI ?',//,
C' 1 YES , 0 NO !')
READ(9,*) NTHWC
IF(NTHWC.EQ.0) GOTO 908

GENERATE PLOT(S) OF THEORETICAL "P - WC" LOCI

5 WRITE(6,11)
11 FORMAT(//,2 X ,  ̂ I/P "0" OR "1" IN SEQUENCE FOR THEO. LOCI TYPE 

C S O U T H W E L L  , LUNDQUIST , DIRECT , INTEGRAL' ,//,
C' " 1 " IF REQUIRED ; " 0 " IF NOT REQUIRED !')

READ(9,*) NSS,NLL,NDD,NII

IF(NSS.EQ.O) GOTO 31 
DO 32 1=1,500
READ(1,18,END=31 ) PS1,WCS1,NS1
PS(I)=PS1
WCS(I)=WCS1
NS (I)=NS1
NSLOT=NS(I)
WRITE(6,15) PS(I),WCS(I),NS(I) 

32 CONTINUE

31 IF(NLL.EQ.O) GOTO 41 
DO 42 1=1,500
READ(2,18,END=41) PL1,WCL1,NL1
PL(I)=PL1
WCL(I)=WCL1
NLU(I)=NL1
NLLOT=NLU(I)

42 CONTINUE
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41 IF(NDD.EQ.O) GOTO 50 
DO 52 1=1,500
READ(3,18,END=50) PD1,WCD1,ND1
PD(I)=PD1
WCD(I)=WCD1
ND(I)=ND1
NDL0T=ND(I)

52 CONTINUE
C
C
C

50 IF(NII.EQ.O) GOTO 61 
DO 62 1=1 ,500
READ(4,18,END=61) PI1,WCI1,NI1
PIN(I)=PI1
WCI(I)=WCI1
NI (.1 )=NI1
NIL0T=NI(I)

62 CONTINUE 
61 CONTINUE

18 F0RMAT(1X,1F6.2, IX, IF 10.3, IX, 13 )

TRANSFORMATION OF I/P DATA TO BUCKLING TYPE FORMAT 
I.E. PRE THEN POST BUCKLING DATA

IF(NSS.EQ.O) GOTO 885 
NSLOT2=NSLOT/2.
DO 89 1=1,NSLOT2 
IT=I-1
WCSPR(I)=WCS(I+IT)
PSPR(I)=PS(I+IT)
WCSPO(I)=WCS(2.*I)
PSPO(I)=PS(2.*I)

89 CONTINUE
C
C

DO 91 1=1,NSLOT2
WS(I)=WCSPR(I)
PPS(I)=PSPR(I)

91 CONTINUE 
NSl=NSLOT2+l 
NSTH=0 
J=-l
DO 105 I=NS1,NSL0T 
J=J+1
IF(WCSPO(NSLOT2-J).GT.VLVDAX) GOTO 881 
WS(I)=WCS PO(NS LOT2-J )
PPS(I)=PSPO(NSLOT2-J)
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NSTH=NSTH+1 
105 CONTINUE

881 NSN=NSL0T2+NSTH 
885 IF(NLL.EQ.O) GOTO 886 

. NLLOT2=NLLOT/2 *
DO 111 1=1,NLL0T2 
IT=I-1
WCLPR(I)=WCL(I+IT) 
PLPR(I)=PL(I+IT) 
WCLP0(I)=WCL(2.*1) 
PLP0(I)=PL(2.*I)

111 CONTINUE

DO 123 1=1,NLL0T2 
WL(I)=WCLPR(I)
PPL(I)=PLPR(I)

123 CONTINUE
NL1=NLL0T2+1
NLTH=0
J=~l
DO 131 I=NL1,NLL0T 
J=J+1
IF(WCLPO(NLL0T2-J ).GT.VLVDAX) GOTO 882 
WL(I )=WCLPO(NLL0T2-J)
PPL(I)=PLP0(NLL0T2-J)
NLTH=NLTH+1 

131 CONTINUE

882 NUN =NLLOT2 +NLTH 
886 IF(NDD.EQ.O.) GOTO 887 

NDLOT2=NDLOT/2.
DO 140 1=1,NDLOT2 
IT=1-1
WCDPR(I)=WCD(I+IT)
PDPR(I)=PD(I+IT)
WCDPO(I)=WCD(2.*I)
PDPO(I)=PD(2.*I)

140 CONTINUE
C
C

DO 150 1=1,NDLOT2 
WD(I)=WCDPR(I)
PPD(I)=PDPR(I)

150 CONTINUE
ND1=NDL0T2+1
NDIR=0
J=-l
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DO 160 I=ND1,NDL0T 
J=J+1
IF(WCDP0(NDL0T2-J).GT.VLVDAX) GOTO 883 
WD (I)=WCDP0(NDL0T2-J)
PPD(I )=PDP0(NDL0T2-J)
NDIR=NDIR+1 

160 CONTINUE

883 NDN=NDL0T2+NDIR 
887 IF(NII.EQ.O) GOTO 191 

NILOT2=NILOT/2.
DO 170 1=1,NIL0T2 
IT=I'-1
WCIPR(I)=WCI(I+IT)
PIPR(I )=PIN(I+IT)
WCIP0(I)=WCI(2.*I)
PIP0(I)=PIN(2.*I)

170 CONTINUE

DO 180 1=1,NILOT2 
WI (I)=WCIPR(I)
PPI(I)=PIPR(I)

180 CONTINUE
NI1=NIL0T2+1
NINT=0
J=-l
DO 190 I=NIl,NILOT 
J=J+1
IF(WCIP0(NIL0T2-J).GT.VLVDAX) GOTO 884 
WI(I)=WCIPO(NILOT2-J)
PPI(I)=PIPO(NILOT2-J)
NINT=NINT+1 

190 CONTINUE 
884 NIN=NILOT2+NINT

191 CONTINUE

DO 195 1=1,NSN 
WRITE(6,18) PPS(I),WS(I) 

195 CONTINUE
WRITE(6,*) NSN
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PMX(5)=RLOADX
C

IF(NSS) 211,211,212 
212 PMX(1)=PPS(NSL0T2) 

GOTO 213 
211 PMX(1)=0.0

213 IF(NLL) 214,214,215 
215 PMX(2)=PPL(NLL0T2)

GOTO 217
214 PMX(2)=0.0

217 IF(NDD) 218,218,228 
228 PMX(3)=PPD(NDL0T2)

GOTO 222
218 PMX(3)=0.0

222 IF(NII) 223,223,225
225 PMX(4)=PPI(NIL0T2)

GOTO 226
223 PMX(4 )=0.0

226 CONTINUE 
PMAX=0.0
DO 227 1=1,5 
PCH=PMX(I)
IF(PCH.GT.PMAX) PMAX=PCH

227 CONTINUE 
PMAX=PMAX*1.02 5

908 CONTINUE

CALL SCALE2(1.0,0,96)
CALL CHASWI(0)
CALL CHASWI(1)
CALL SOFCHA
CALL CHASIZ(3.3,3.3)
IF(NTHWC.EQ.1) PMPM=PMAX 
IF(NTHWC.EQ.O) PMPM=RLOADX 
CALL AXIS(0.0,VLVDAX,O.O.PMPM) 
CALL CHASWI(0)
CALL CHASWI(1)
CALL SOFCHA
CALL CHASIZ(3.3,3.3)
IF(NTHWC.EQ.1) GOTO 401 
CALL GRASYM(VLVDA,TLVDA,N,4,0) 

401 CALL GRAPOL(VLVDA,TLVDA,N,4,0)

A69



IF(NTHWC.EQ.O) GOTO 302 
CALL M0VT02(7 2 ., 100. )
CALL LINBY2(6., 0.)
CALL M0VT02(80.,100.)
CALL CHAHOL(24H; E*LXPERIMENTAL LOCUS*.)
CALL M0VT02(145.,100.)
CALL CHAHOL(12H , P*LC*U=*.)
CALL M0VT02(165.,100.)
CALL CHAFIX(LOADMX,5,1)
CALL M0VT02(182.,100.)
CALL CHAHOL(8H*LK.*UN*.)

C
C

YDIS=100.0
IF(NSS.EQ.O) GOTO 303 
CALL GRACUR(WS,PPS,NSN)
CALL GRASYM(WS,PPS,NSN,7,8)
WS11=WS(1)
PS11=PPS(1)
WAS(1)=0.
WAS(2)=WS11*0.33 
WAS(3)=WS11*0.66 
PAS(1)=0.
PAS(2)=PS11*0.33 
PAS(3)=PS11*0.66 
CALL GRAMOV(0.,0.)
CALL GRALIN(WS11,PS11)
CALL GRASYM(WAS,PAS,3,7,0)
YDIS=YDIS-10.
CALL M0VT02(80.,YDIS)
CALL CHAHOL(33H; S*LOUTHWELL BASED MODEL LOCUS*.)

303 IF(NLL.EQ.O) GOTO 304 
CALL GRACUR ( W L , PPL, NUN )
CALL GRASYM(WL,PPL,NUN,5,8)
WL11=WL(1)
PL11=PPL(1)
WAL(1)=0.
WAL(2)=WL11*0.33 
WAL(3)=WL11*0.66 
PAL(1)=0.
PAL(2)=PL11*0.33 
PAL(3)=PL11*0.66 
CALL GRAMOV(0.,0.)
CALL GRALIN(WL11,PL11)
CALL GRASYM(WAL,PAL,3,5,0)
YDIS=YDIS-10.
CALL M0VT02(80.,YDIS)
CALL CHAHOL(33H; L*LUNDQUIST BASED MODEL LOCUS*.)

304 IF(NDD.EQ.O) GOTO 311 
CALL GRACUR(WD ,PPD,NDN)
CALL GRASYM(W D ,PPD,NDN,4,8)
WD11=WD(1)
PD11=PPD(1)
WAD(1)=0.
WAD(2)=WD11*0.33 
WAD(3)=WD11*0.66 
PAD(1)=0.
PAD(2)=PD11*0.33
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PAD(3)=PD11*0.66 
CALL GRAMOV(0.,0 *)
CALL GRALIN(WD11, PD11)
CALL GRASYM(WAD,PAD,3,4,0)
YDIS=YDIS-10.
CALL M0VT02(80.,YDIS)
CALL CHAHOL(40H; D*LIRECT "*UW*LOC" BASED MODEL LOCUS*.)

311 IF(NII.EQ.O) GOTO 302 
CALL GRACUR(WI,PPI,NIN)
CALL GRASYM(WI,PPI,NIN,1,8)
WI11=WI(1)
PI11=PPI(1)
WAI(1)=0.
WAI(2)=WI11*0.33 
WAI(3)=WI11*0.66 
PAI(1)=0.
PAI(2)=PI11*0.33 
PAI(3)=PI11*0.66 
CALL GRAMOV(0.,0.)
CALL GRALIN(Will,PI11)
CALL GRASYM(WAI,PAI,3,1,0)
YDIS=YDIS-10.
CALL M0VT02(80.,YDIS)
CALL CHAHOL(42H; I*LNTEGRAL "*UW*LON" BASED MODEL LOCUS*.)

302 CALL MIXCHA
CALL MOVT02(100.,228.)
CALL CHASWI(0)
CALL CHASWI(1)
CALL CHASIZ(3.5,4.35)
CALL CHAHOL(50HAXIAL LOAD *LVS.*U MID-SPAN RESULTANT LATERAL DI*.) 
CALL CHAHOL(12HSPLACEMENT*.)
CALL M0VT02(100.,22 6.)
CALL LINBY2(186.,0.)
CALL CHASWI(0)
CALL CHASWI(1)
CALL SOFCHA
CALL CHASIZ(2.55,3.2)
IF(NTHWC.EQ.l) GOTO 404 
CALL M0VT02(235.,200.)
CALL CHAHOL(10HP*LC*U =*.)
CALL M0VT02(247.,200.)
CALL CHAFIX(LOADMX,5,1)
CALL M0VT02(264.,200.)
CALL CHAHOL(8H*LK*UN*.)

404 CONTINUE
CALL CHASWI(0)
CALL REFR(IR3,IREF1)
CALL CHASWI(0)
CALL CHASWI(1)
CALL HARCHA
CALL CHASIZ(3.55,3.4)
CALL M0VT02(197.,13.)
CALL CHAHOL(8H*L(MM)*.)
CALL M0VT02(20.,125.)
CALL CHAHOL(1 OH(*LK*UN)*.)

C
IF(NTHWC.EQ.O) GOTO 412
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CALL CHASWI 0)
CALL CHASWI 1)
CALL SOFCHA
CALL CHASIZ 3.5,3.5)
CALL M0VT02 75.,101.)
IF(NSS.EQ.0 GOTO 406
CALL MOVBY2 0..-10.)
CALL SYMBOL 7)

406 IF(NLL.EQ.O GOTO 409
CALL MOVBY2 0.,-10.)
CALL SYMBOL 5)

409 IF(NCD.EQ.O GOTO 411
CALL MOVBY2 0..-10.)
CALL SYMBOL 4)

411 IF(Nil.EQ.O GOTO 412
CALL MOVBY2 0.,-10.)
CALL SYMBOL 1)

412 CONTINUE
CALL CHASWI 0)
CALL CHASWI 1)
CALL MIXCHA
CALL CHASIZ 6.3,7.2)
CALL M0VT02 21.,135.)
CALL CHAHOL 3HP*.)
CALL M0VT02 163.,13.)
CALL CHAHOL 5H*LW*.)
CALL M0VT02 180.,13.)
CALL CHAHOL 5H*LW*.)
CALL CHASWI 0)
CALL CHASWI 1)
CALL CHASIZ 4.6,4.6)
CALL M0VT02 169.,11.5)
CALL CHAHOL 5H*LC*.)
CALL M0VT02 186.,11.5)
CALL CHAHOL 6H*LOC*.)
CALL M0VT02 174.5,15.)
CALL LINBY2 3.,0.)
CALL CHASIZ 0.,0.)
CALL CHASWI 0)
CALL M0VT02 0.,0.)
CALL SHIFT2 400.,0.)
CALL SCALE2 1.0,1.04167)

957 IF(IEG.EQ.O GOTO 920
WRITE(6,905

905 FORMAT(/,2X,' DO YOU WANT THE "P - EM GRAPH? , 1-YES O-NO') 
READ(9,*) NSTRM 
IF(NSTRM.EQ.O) GOTO 920 
CALL SCALE2(1.,0.98)
CALL M0VT02(169.,11.7)
CALL CHASWI(0)
CALL CHASWI(1)
CALL ITALIC(25.)
CALL SOFCHA 
CALL CHAHOL(3H,*.)
CALL ITALIC(0.)
CALL CHASWI(0)
CALL CHASWI(1)
CALL MIXCHA
CALL CHASIZ(3.2,3.3)
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CALL AXIS(MXSTN,MXSTP,0 .0,RLOADX)
CALL CHASWI(0)
CALL CHASWI(1)
CALL CHASIZ(6.3,7.6)
CALL MIXCHA
CALL M0VT02(21.,135.)
CALL CHAHOL(3HP*.)
CALL CHASWI(0)
CALL CHASWI(1)
CALL SOFCHA
CALL CHASIZ(3.,4.75)
CALL M0VT02(168.6,16.)
CALL ITALIC(32.)
CALL CHAHOL(5H*LC*.)
CALL CHASWI(0)
CALL CHASWI(1)
CALL CHASIZ(6.8,7.6)
CALL ITALIC(0.)
CALL ITALIC(20.)
CALL M0VT02(165.,11.)
CALL CHAH0L(5H*LC*.)
CALL ITALIC(0.)
CALL CHASWI(0)
CALL CHASWI(1)
CALL MIXCHA
CALL CHASIZ(3.5,3.99)
CALL M0VT02(115.,22 9.)
CALL CHAHOL(42HAXIAL LOAD *LVS*U. MID-SPAN AXIAL STRAIN*.) 
CALL M0VT02(115.,226.5)
CALL LINBY2(125.,0.)
CALL CHASWI(0)
CALL CHASWI(1)
CALL CHASIZ(3.7,3.5)
CALL M0VT02(171.5,9.6)
CALL CHAHOL(5H*LC*.)
CALL M0VT02(176.,8.)
CALL HARCHA
CALL CHAHOL(5H*LN*.)
CALL CHASWI(0)
CALL CHASWI(1)
CALL MIXCHA
CALL CHASIZ(3.3,3.3)
CALL M0VT02(185.,12.)
CALL CHAHOL(19H*L(MICRO-STRAINS)*.)
CALL CHASWI(0)
CALL CHASWI(1)
CALL MIXCHA
CALL CHASIZ(3.45,3.55)
CALL M0VT02(19.,125.)
CALL CHAHOL(1 OH(*LK*UN)*.)
CALL CHASWI(0)
CALL CHAHAR(0,0)
CALL REFR(IR3,IREF1)
CALL GRAPOL(LSA2,TLVDA,LSCNT)
YLAB=TLVDA(LSCNT)-3.0 
CALL CHAHAR(0,0)
CALL GRAM0V(MXST1,YLAB)
CALL CHAHOL(9H*LN*U=l*.)
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CALL GRAPOL(LSA3,TLVDA,LSCNT)
CALL GRAMOV ( MXS T2 , YLAB )
CALL CHAHOL(9H*LN*U=2*.)
CALL GRAPOL(LSA4,TLVDA,LSCNT)
CALL GRAMOV(MXST3,YLAB)
CALL CHAHOL(9 H*LN*U=3 *.)
CALL GRAPOL(LSA5,TLVDA,LSCNT)
CALL GRAMOV(MXS T 4 ,YLAB)
CALL CHAHOL(9H*LN*U =4 *.)
CALL M0VT02(0.,0.)
CALL SCALE2(1.,1.0204082)

920 CALL DEVEND
STOP
END
SUBROUTINE PAGE
CALL CHAMOD
READ(9,6)

6 FORMAT(A4)
CALL PICCLE
CALL CHAPOS(5., 285. )
RETURN
END
SUBROUTINE AXIS(MINX,MAXX,MINY,MAXY) 
CALL AXIPOS(1»45., 30., 27 3., 1)
CALL AXIPOS(1, 45., 30.,180., 2 )
CALL AXISCA(1,10,MINX,MAXX,1)
CALL AXISCA(1,10,MINY,MAXY,2)
CALL AXIDRA(1,1.1)
CALL AXIDRA(-1,-1,2)
RETURN
END
SUBROUTINE AXIS2(MINX,MAXX,MINY,MAXY) 
CALL AXIPOS(1,45.,30.,256.,1)
CALL AXIPOS(1»45., 30 .,180 ., 2 )
CALL AXISCA(1,10,MINX,MAXX,1)
CALL AXISCA(1,10,MINY,MAXY,2)
CALL AXIDRA(1,1,1)
CALL AXIDRA(-1,-1,2)
RETURN
END
SUBROUTINE REFR(IRA,IRA1)
CALL CHASWI(0)
CALL CHASWI(1)
CALL CHAHAR(0,0)
CALL M0VT02(40.,225.)
CALL CHAHOL(19HS*LTRUT *UR*LEF. *.) 
CALL M0VT02(71.,22 5.)
CALL CHAINT(IRA,2)
CALL M0VT02(78.,22 5.)
CALL CHAARR(IRA1,1,1)
CALL MIXCHA 
CALL CHASWI(0)
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RETURN

END
SUBROUTINE REFR2(IRA,IRA1)
CALL CHASWI(0)
CALL CHASWI(1)
CALL CHAHAR(0,0)
CALL M0VT02(38.,245.)
CALL CHAHOL(18HS*LTRUT *UR*LEF.*.) 
CALL M0VT02(70., 245. )
CALL CHAINT(IRA,2)
CALL M0VT02(77.,245.)
CALL CHAARR(IRA1,1,1)
CALL MIXCHA 
CALL CHASWI(0)
RETURN
END
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APPENDIX VI

NOMENCLATURE

A cross-sectional area

Ag cross-sectional area by geometric measurement

cross-sectional area by mass measurement

A"nom nominal cross-sectional area

D outer diameter

pav average outer diameter

E direct modulus

E t tangent modulus (direct)

Ett direct modulus determined by tensile testing

I second moment of area (principal)

L nominal length

M bending moment

Mp fully plastic moment

Mpn reduced plastic moment

My first yield moment

P axial compression

PC buckling load

pcs equivalent fully static buckling load in cyclic studies

pe critical (Euler) load

pel critical load by Lundquist plot

pes critical load by Southwell plot

pm maximum cyclic load

PP Perry (modified/ECCS) load

ps squash load
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P' Lundquist pivot state load

P^ initial mean cyclic load

Q conceptual interference force parameter

Tn transducer measurement at location n

U strain energy

V total potential energy

W external potential work/external (virtual) work

Z section modulus

a0i Lundquist plot imperfection parameter

aos Southwell plot imperfection parameter

ar ECCS Robertson factor

c spring stiffness or sectional constant

e eccentricity

enl>en2 component initial curvatures 

f frequency

k constitutive function

kf ,k£ elastic core delineators

n P/Ps

nc cyclic duration/number of cycles

r minimum radius of gyration

rs shape factor

s standard deviation

t wall thickness

tav average wall thickness

t 1 time

u global end-shortening

ua axial end-shortening
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uam half amplitude

Uf flexural end-shortening

peak cyclic amplitude 

u0 initial end-shortening

u^ mean cyclic stroke or displacement

wc central transverse displacement with respect to the

effective length 

w c l  central transverse displacement with respect to the

nominal length

woc initial central transverse displacement with respect

to the effective length 

wocE initial central transverse displacement with respect

to the nominal length under encastre end conditions 

won nth initial central transverse displacement with

respect to the nominal length under pinned end 

conditions 

wora maximum value of w on

wocL central value of won

w 1 Lundquist pivot state displacement

Wq cyclic step with respect to the effective length

w ^l  cyclic step with respect to the nominal length

x,y Cartesian coordinates

x mean

ith angular displacement with respect to adjacent 

model links 

a oi initial/unloaded value of

$on nth angular orientation of w on with respect to the
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AP

weld location 

load shedding at P^

A P C theoretically based load loss at bucklin;

6 U

cyclic action 

internal virtual work

5W external virtual work

e strain

em maximum strain

en nth strain gauge value

£y yield strain

£ 1 maximum compressive strain

e2 maximum tensile direct strain

T) Perry factor/ECCS imperfection parameter

model link rotation

®oi initial/unloaded value of 0^

X slenderness ratio

V s ̂*1 modified slenderness ratio

*o ECCS limiting slenderness ratio

£ effective length

% model link length

h Lundquist plot based effective length

£s Southwell plot based effective length

V curvature

v i ifch model-spring curvature

vy yield curvature

a stress

applied stress

am maximum stress
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a y/a 0.2 yield/proof stress

tfytt yield/proof stress evaluated from tensile testing

Cfj maximum compressive stress

C?2 maximum tensile stress
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