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((It is not long since conditions in the mines were worse than they are now. There are 

still living a few  very old women who in their youth have worked underground, with the 

harness round their waists, and a chain that passed between their legs, crawling on all 

fours and dragging tubs o f  coal. They used to go on doing this even when they were 

pregnant. And even now, i f  coal could not be produced without pregnant women 
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coal. But-most o f  the time, o f  course, we should prefer to forget that they were doing it. 

It is so with all types o f  manual work; it keeps us alive, and we are oblivious o f  its 

existence. More than anyone else, perhaps, the miner can stand as the type o f  the 

manual worker, not only because his work is so exaggeratedly awful, but also because it 

is so vitally necessary and yet so remote from our experience, so invisible, as it were, 

that we are capable o f  forgetting it as we forget the blood in our veins. In a way it is 

even humiliating to watch coal-miners working. It raises in you a momentary doubt 

about your own status as an Intellectual’ and a superior person generally. For it is 
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lives to poor drudges underground, blackened to the eyes, with their throats fu ll o f  coal 

dust, driving their shovels forward with arms and belly muscles o f  steel”

-George Orwell-The Road to Wigan Pier, 1932



Acknowledgments

First o f all thank you to my supervisors Dr. Keith Miller & Prof. Peter Strong for all 

their support and willingness to allow me freedom of thought and to try new things. Not 

everything worked out but I hope the direction we have travelled, represented in this 

thesis, will be something we can look back on with fondness. Thank you also to Prof. 

Stephen Evans, Dr. George Heath and Dr. Ben Johnson at the University o f Leeds you 

have been truly remarkable collaborators and this thesis would look radically different 

without you. Also where would I be without my friends and colleagues Dr. Mohamed 

Abdel-Rahman and Mohamed Tawfik.

To Prof. Thomas Smith, whose decision to employ me as placement student within his 

laboratory in 2008 represents the start o f this journey and I certainly wouldn’t be where 

I am today without you kindness, I must also thank Dr. Jeanette Gittens and Dr. Tim 

Nichol for their help, support and friendship over the last six years. I’m sorry for all the 

stolen pens, tip boxes, lab coats and mess I make-I only hope you can forgive me!

And to Nicola, I don’t think you realise the high regard people hold you in. The passion 

for your research, your role within science and the position you hold is only transcended 

by the warmth and kindness you do it with. Thank you for all your help and support 

over the last six years.

This PhD experience wouldn’t have been the same without (Dr) Robert Bradshaw and 

Adam Bagshaw, in the three years I have lived at Kelham Island you have provided 

more fim, laughter and true friendship then most people experience in a lifetime. I’ve 

spent all my money on Kelham best, incredibly bad football bets and slow horses and I 

wouldn’t change it for the world.



To my friends for who this big purple book means absolutely nothing. You’re an 

eclectic bunch to say the least and long may you stay that way. Never stop being who 

you are and become what society considers acceptable.

Apart from the fancy title, an even if  I fail the viva, it matters little because without 

starting this PhD I wouldn’t have met my beautiful girlfriend. Words can’t express how 

much I love you. When I think o f the future I don’t for one second consider the job I 

will have or things I will own I think o f us building a life and a family, spending time 

together because to be truly happy is the biggest prize of all.

But lastly I save the biggest thank you to my parents whom I love dearly. You have 

given me everything I could have ever wished for and this thesis is yours as much as 

mine. Wherever I am or whatever I’m doing I always think of being at home. The mark 

of happy home is it makes you relaxed and comfortable and whenever I am there I 

always do. To me it will always be home.



Abstract

The need for new antimicrobial agents is becoming one of the most urgent requirements 

in modem medicine. In the search for new antimicrobial drugs, in recent years, a large 

amount o f research has been undertaken to both identify antimicrobial peptides (AMPs) 

and elucidate their mechanism o f action. AMPs are ubiquitous in nature and have 

favourable properties that make them attractive for drug development including potent 

activity, low resistance rates due to their membrane disruptive mechanism o f action, and 

selectivity to prokaryotic membranes.

Venoms are an under exploited source o f AMPs, in this thesis AMPs have been 

identified, biologically characterised and their mechanism investigated. From snake 

venom two novel AMPs (6-7KDa) along with four potential phospholipase A2 (PLA2) 

proteins have been identified (12-14 KDa). One of these peptides, isolated from black 

mamba venom (Dendroaspis polylepis) exerts moderate antimicrobial activity and has 

low cytotoxic properties making it an ideal candidate for future drug development. 

From scorpion venom, three AMPs (1-4 KDa) have been biologically characterised, one 

of which, Smp43, is postulated to have a di-helical structure and exhibits good 

antimicrobial activity especially against Gram positive organisms (4-64 pg/ml) and 

exhibits negligible haemolytic properties at concentrations up to 512 pg/ml. The 

mechanism of action of Smp43 and a shorter peptide termed Smp24 has been 

determined using liposome leakage assays, atomic force microscopy (AFM) and quartz 

crystal microbalance-dissipation (QCM-D). Smp24 caused pore formation in synthetic 

prototypical prokaryotic membranes and induced the formation of non lamellar lipid 

structures and caused lipid segregation in a prototypical eukaryotic membrane whilst 

Smp43 exerted its effects through a mechanism of diffuse limited aggregation (DLA) 

which, until now, has not been described as an AMP mechanism of action.

In summary, this thesis has identified novel AMPs which can subsequently feed into 

drug development pipelines, provides further evidence of the membrane disruptive 

mechanism of AMPs whilst enhancing our understanding of these mechanisms.

v
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1 CHAPTER 1 
INTRODUCTION TO ANTIMICROBIAL PEPTIDES

l



1.1 Introduction

Over the last few decades an increasing number of pathogenic microorganisms have

developed resistance to conventional antibiotics. This poses problems in the clinical

management of infection, especially in immunocompromised individuals but also,

increasingly, at the community level. During the same period, the development of new

antibiotics has decreased. Recent publications by a number of leading public bodies

have highlighted this issue. For example, the publication of the UK Five Year

Antimicrobial Resistance Strategy (2013-2018) stated antimicrobial resistance to be one

of the greatest threats to the health of society and setting out a number of goals that

need to be reached to mitigate the problem include (i) having good infection prevention

and control measures to help prevent infections becoming the norm in all sectors of

human and animal health (ii) diagnosing infections quickly and using the right treatment

strategy (iii) for patients and animal keepers to fully understanding the importance of

antibiotic treatment regimens and to adhere to them (iv) for surveillance to be in place

which quickly identifies new threats or changing patterns in resistance and (v) a

sustainable supply of new, effective antimicrobials is developed (Department of Health,

UK 2013) Importantly, these goals need to be achieved on a worldwide scale a notion

recognised by the World Health Organization (WHO) in its 2014 antimicrobial

resistance global surveillance report (WHO 2014) which ominously states that the once

apocalyptic fantasy of a post antibiotic era is now a very real prospect. This worldwide

problem is driven by the ability of mobile genetic elements of bacterial plasmids to

spread through a population which increases the overall rate of resistance (Kumarasamy

et al., 2010). While the media portrayal of an imminent crisis of untreatable infections is

over simplistic, the position in reality is rather more complex and although treatment

options for some pathogens have undoubtedly decreased, for others the position has

actually reversed (Livermore. 2009). However recent high profile media coverage of
2



antimicrobial resistance have included prominent figures such as the prime minister 

David Cameron (Walsh 2014a), the UK’s chief medical officer Dame Sally Davies and 

leading members of the scientific national charities antibiotic action and antibiotic 

research UK (BBC 2014b) highlighting the severity of the issue and the potential impact 

on public life. One of the major issues in combating antimicrobial resistance is 

developing antimicrobial agents that are not easily susceptible to resistance and 

therefore a new approach to drug development is required (Jenssen et al., 2006).

1.2 Mechanisms of antimicrobial resistance

Conventional antibiotics have been developed that either kill or inhibit the growth of 

bacteria by binding to specific targets within bacteria. Table 1.1 summarises these 

antimicrobial drug targets as well as the resistance mechanisms bacteria have developed 

to combat these drugs.

Resistance to antibiotics is neither a new phenomenon nor an unnatural process with no 

single antibiotic having complete broad spectrum activity. Rather, the selective 

pressures of antibiotic use promote the survival of resistant strains, indeed the spread of 

methicillin resistance in Staphylococcus aureus was reported as far back as the early 

1960’s (Chastre. 2008). Antibiotic resistance is complex and no single issue can be pin 

pointed. However, the widespread abuse of antibiotics around the world including 

uncontrolled administration (Conly. 1998) an ageing population within the developed 

world requiring more complex healthcare (Chopra et al., 2008), increased global 

migration (Kumarasamy et al., 2010) and the use of antibiotics within farming (Porrero 

et al., 2007, Van den Bogaard et al., 1999) especially when administered at a sub- 

therapeutic dosage (Ghosh et al., 2007) have all contributed to the problem.
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Table 1.1: Examples o f antibiotic resistance mechanisms

Antimicrobial
agent Mechanism of drug Mechanism of 

resistance

Example of 
clinically 
relevant 
resistant 

pathogens

Beta lactams
penicillins

cephalosporins
carbapenems
monobactams

Inhibition of cell wall 
synthesis

Belta-Iactamase

S. aureus 
N. gonorrhoeae 

Entercocci 
Gram negative 

bacilli

MRSA 
S. pneumoniaeAltered penicillin 

binding protein

Reduced permeability
P. aeruginosea 

E. cloacae

Glycopeptides
vancomycin

Inhibition of cell wall 
synthesis Altered drug target Enterococci

Fluoroquinolones
ciprofloxacin

Inhibition of DNA 
synthesis

Altered DNA gyrase

S. aureus 
Gram negative 

bacilli 
M .tuberculosis

Efflux
S. aureus 

Gram negative 
bacilli

Rifampin Inhibition of RNA 
synthesis

Altered RNA 
polymerase

M. tuberculosis

Aminoglycosides
Gentamicin

streptomycin
kanamycin

Inhibition of protein 
synthesis

Modifying enzymes
Entercocci 

Gram negative 
bacilli

Altered ribosomal 
target

M. tuberculosis

Reduced uptake P. aeruginosa

4



Macrolides
erthromycin

clarithomycin

Inhibition of protein 
synthesis

Altered ribosomal 
target 5. pneumonie

Tetracylines
tetracyline

Inhibition of protein 
synthesis

Altered ribosomal 
target

N. gonorrhoeae 
S. aureus

Efflux
S. aureus 

Gram negative 
bacilli

Oxazolidinones
linezolid

Inhibition of protein 
synthesis Efflux S. aureus 

Entercocci

Folate inhibitors
sulfonamides Inhibition of folic acid Novel target enzymes

Gram negative 
bacilli

Lipopeptides
daptomycin

Cell membrane 
disruption

Changes in membrane 
composition

S. aureus 
Entercocci

Polymyxins Inner and outer 
membrane disruption

Altered outer 
membrane

Gram negative

Resistance can develop in a number of ways, by horizontal gene transfer of mobile 

genetic elements (both inter and intra) and by point mutations within an antibiotic target 

(Bryan., 1989, Silver et al., 1993 & Silver., 2011). Often it is assumed that the former 

is responsible for increased resistance levels of resistance, however as Woodford and 

Ellington. (2007) highlighted, organisms capable of hyper-mutation can readily acquire 

resistance without the need for horizontal gene transfer. Furthermore they are 

responsible for the continued evolution of plasmids containing resistance genes.

Along with acquired resistance bacteria can also exhibit phenotypic resistance which is 

often transient and dependent on their physiological condition. For example, if the 

bacteria are in a restive or dividing state effects susceptibility with a number of studies
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showing reduced antibiotic efficacy against resting cells (Lee et al., 1944, McDermott., 

1958). A reduction in cell permeability due to environmental stress such as temperature, 

nutrient deficiency, the presence of reactive oxygen species can reduce susceptibility in 

a number of ways, firstly, changes in cell wall/membrane architecture, for example, by 

modification or reduction of LPS, capsule formation, secondly, the closure of porins 

which through antibiotics can gain access to intracellular targets antibiotics and thirdly 

an increased production of efflux pumps (McPhee et a l, 2003). The formation of a 

biofilm leads to decreased susceptibility facilitating survival against antibiotic attack as 

gradients of nutrients and oxygen within the biofilm change the metabolic states of the 

bacteria depending on their depth inside the biofilm. Also, compounds of the matrix can 

impair the diffusion of the antibiotic and eventually bind the drug thus reducing its free 

concentration. Quorum sensing, which can be triggered at dense regions of the biofilm, 

may also alter bacterial susceptibility to antibiotics. Also the presence of persistent cells 

within the bacterial population, there is a subpopulation that are not killed by antibiotics 

in conditions that kill the bulk of the population, however, once growth resumes, these 

cells become susceptible to antibiotics, indicating that the phenotype of resistance is 

transient.(Corona & Martinez. 2013)

Whilst there has been global misuse of antibiotic drugs, the situation has been 

compounded by the lack of development of new anti-invectives with no new class of 

drugs been developed since the 1980’s (Livermore. 2009). Chopra et al. (2008) 

highlighted some of the key issues. The economic cost of drug development is 

considerable with capital of over $800 million required to bring a drug to market and 

the development of drugs for chronic diseases is more attractive option for both long 

term use and fewer resistance problems. Tight regulation placed upon anti-infective 

agents with regards to their therapeutic index mean that drugs with possible adverse side



effects or moderate activities are not approved however these considerations are of 

reduced importance when considering other therapeutic agents such as cancer drugs.

1.3 Strategies in antibiotic drug discovery

Two major strategies of drug discovery are empirical screening, testing of compounds 

to determine effect (i.e. does it kill bacteria) and a more targeted approach (i.e. does it 

interact with a specific molecular target). With the exception of a few antibiotics 

(monobactams, carbapenems, and fosfomycin) nearly all antibiotics have come through 

empirical screening of natural chemicals and fermenting cultures rather than a targeted 

approach (Chopra. 2000). As described by Silver (2011) this shift has been part 

economic part philosophical. During the “golden age” of antibiotic discovery this 

empirical screening led researchers to discover new antibiotics on the basis of 

antimicrobial activity rather than their mechanism of action. This approach proved very 

fruitful however it was also recognised that it was inevitably going to lead to a situation 

of degeneracy. This lead to a target based approach (Cohen., 1977) where compounds 

were assayed on the basis of their ability to interact with specific targets. Highly 

specialised groups taking responsibility for specific areas of research as opposed to a 

cohesive approach were also established, this loss of cohesion led to a situation where 

therapeutics competed against each other for development on the basis of their potential 

value to the company. This highly compartmentalised, intracellular targeted approach 

lead to vast libraries of drug candidates and the natural drug development route was 

almost abandoned. The paradigm with a targeted approach is that you get what you are 

looking for. By either only screening against known antibiotic targets or taking 

genomic or structural approaches to determine activity based on molecular modelling of
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previously know antibiotics the discovery of novel targets or structural motifs is 

essentially excluded (Harrison et al., 2014).

This does not mean structural modification of existing classes has not been successful 

and this approach has resulted in lowered adverse effects and has combated resistance 

(Silver. 2011). Although the development of resistance has quickly become apparent; 

resistance to third and fourth generation cephalosporins and carbapenems in a number 

of bacteria has been the result of a number of mechanisms that include : the generation 

of extended-spectrum P-lactamases (ESBL) due to extension of the spectrum of already 

widely disseminated plasmid-encoded p-lactamases by amino acid substitution, 

acquisition of genes encoding ESBL from environmental bacteria as, increased 

expression of chromosome-encoded P-lactamase due to modifications in regulatory 

genes or mutations of the P-lactamase promoter sequence, horizontal transfer into other 

Gram-negative species, the dissemination of plasmid-mediated carbapenemases as KPC 

and metallo-P-lactamases and reduced expression of porin and/or efflux pump-proteins 

(Pfifer etal., 2010).

1.4 Antimicrobial Peptides

AMPs represent an ancient defence mechanism that transverses the evolutionary 

spectrum and remain an effective strategy against invading pathogens in the animal 

kingdom they are commonly found in the blood, haemolymph, and mucus secretions 

and immunological cells, in the plant kingdom peptides have been isolated from roots, 

seeds, flowers, stems, and leaves. Because of their selectivity for prokaryotic 

membranes and their membrane-disruptive mechanisms for which microbes have little 

natural resistance, the spotlight in recent years has turned towards the development of 

novel antibiotics from these peptides (Zasloff, 2002).



AMP's can be broadly divided into 4 major groups; a helical, p sheet, extended peptides 

enriched with one or more amino acids and a small group of loop peptides (Powers., 

2003) and have between around 10-70 amino acids. These conformations are 

represented in Figure 1.1.

1.5 AMP conformation

The a-helical peptides are by far the most intensely studied group; indeed nearly all the 

structural-functional relationship studies carried out have been undertaken on this class 

(Huang et al., 2010). Unlike p sheet peptides they contain no disulphide bonds and lack 

tertiary structure and remain in extended, unstructured conformers until in the presence 

of membranes (Dennison et al., 2005). They are best characterised by AMP helical 

families such as the magainins (Zasloff. 1987) isolated from amphibians, the insect 

derived cecropins (Christenson et al., 1998), melittin from bee venom (Fennell et al., 

1968) and certain cathelcidins which have been isolated from a variety o f species 

including humans, chickens, dogs, rats, frogs (Zanetti et al., 2004) and recently snakes 

(Zhao et al., 2008). These peptides can be both amidated and non amidated at the C- 

terminal, however longer chain peptides tend to be the latter (Harrison et al., 2014) with 

shorter AMP amidation thought necessary for helical stability (Stranburg et al., 2007). 

As well as amidation, a-helical peptides can either be a mono-helical structure or di­

helical with the latter generally being far less cytotoxic. For example melittin is a 

mono-helical peptide with non specific lytic activity whilst maganin 2 is di-helical and 

is far less cytotoxic (Zasloff. 1987). Similarly pandinin 1 and 2 (Pin 1 & Pin 2) isolated 

from the venom of the scorpion Pandinus imperator (emperor scorpion) (Corzo et al., 

2001) show this phenomena with the di-helical pin 1 being far less haemolytic, which is 

postulated to be due to the increased flexibility around a central hinge region 

(Rodriguez et al., 2011).



The p sheet peptides are largely represented by the defensins which are characterised by 

an anti-parallel p sheet fold that is stabilised by at least 3 disulphide bonds (Powers et 

al., 2003). This tertiary structure is essential for activity with linearisation inhibiting 

activity (Matazuki et al., 1993 & 1997). Along with this motif, p-sheet peptides can 

also be constrained by the cyclisation of the peptide backbone (i.e. gramicidin S and 

polymxyin B (Ashrafuzzaman et al., 2009 & Tsubery et al., 2000). Whilst the 

defensins contain minimal helical structure, other cysteine constrained AMPs such as 

the scorpine-like molecules isolated from scorpion venoms do have helical structure 

and, it has been postulated (Zhou et al., 2004), that these peptides possess duel function, 

namely K+ channel modulation with only the helical N-terminus being responsible for 

antimicrobial activity.
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a-helical

extended

Figure 1.1: Structural confomration o f the major classes of antimicrobial peptides-(A) The 

largest class o f AMPs is the a-helcial peptides represented by magainin 2 (PDB: MAG2) 

(Gessel et al., 1997). (B) |3-sheet peptides are the second largest group and are best represented 

by the defensins such as human (1-defensin-l (PDB: 1KJ5) (Schibili et al., 2002). (C) & (D)- 

Two smaller but important groups are the extended peptides such as indolicidin (PDB: 1G89) 

(Rozek et al., 2000) and the loop peptides such as thanatin (PDB: 8T8V) (Mandard et al., 1998).



The extended peptides are best represented by the 13 residue tryptophan rich indolicidin 

(Selstrad et al., 1992, Rozek et al., 2000). These peptides lack secondary structure and 

only form weakly bound structures in the presence of membranes unlike a-helical 

peptides which form residue-residue non-covalent interactions, extended peptides form 

residue-lipid interactions (Powers et al., 2003); indolicidin for example develops two 

kinks within its structure when in contact with DPC, however it remains in its straight 

conformation extended when in anionic SDS (Rozek et al., 2000).

Loop peptides are the smallest of the classified groups with only one peptide being fully 

characterised. Thanatin (Fehlbaum et al., 1996), a 21 residue peptide displays typical 

loop formation caused by the presence of a single bond disulphide bond between 

residue 1 1  and 18 that forms an anti-parallel p sheet loop between residues 8  and 2 1 . 

Interestingly, it is not thought to be membrane disruptive as studies with D and L 

isoforms reveals stereospecificity with only the L-isoform being active, suggesting a 

receptor mediated mechanism.

1.6 Structural Characteristics of AMPs

An essential requirement of AMPs is to preferentially target the microbial membrane 

over the host membrane, therefore, the biochemical characteristics of AMPs are critical. 

To achieve this a number of interdependent physicochemical properties are found 

within AMPs these include amphipathicity, charge, hydrophobicity, polar angle and 

conformation (Yeaman et al., 2003). This is represented below in figure 1.2.
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An amphipathic molecule has opposing polarities within its structure. Phospholipids are 

a classic example, with a hydrophilic phosphate head group and hydrophobic fatty acid 

chains, and, therefore, it is not surprising that peptides adapted to interact with these 

molecules share the same characteristic allowing interaction with the both head group 

and the membrane’s hydrophobic core. Whilst an amphipathic conformation is 

essential for membrane interaction, too little and no incursion will occur, however, an 

increase beyond a critical point will decrease the specificity of the peptides towards 

prokaryotic membranes thus increasing their haemolytic potential (Pathak et al., 1995). 

This has been observed using magainin, where increasing its amphipathic nature 

increased lysis of zwitterionic liposomes (Wieprecht et al., 1997). Whilst the simplest 

form of amphipathic peptide is a helical structure (Eisenberg et al., 1984), the p sheet 

peptides are also amphipathic, with anti-parallel p-strands organised to give polar and 

non-polar domains and are amphipathic in aqueous conditions, whilst a-helical peptides 

only adopt this characteristic in the presence of lipids (Huang et al., 2010).

This amphipathic nature is highly linked to a peptides polar angle, a measure of the 

relative proportions of polar and non polar areas with a maximal measurement of 180° if 

each area is at opposing ends of the peptide (Yeaman et al., 2003). The polar angle of a 

peptide has been shown to be important in the permeabilisation of membranes, with a 

reduced polar angle leading to increased permeabilisation (Dathe et al., 1997, Wieprecht 

et al., 1997, Uematsu et al., 2000). Amphipathicity has also been implicated in the 

stability of membrane pores with peptides with increased polar angles forming pores 

with greater half-lives (Uematsu et al., 2000).

Preferential electrostatic attraction of an AMP towards the target membrane is 

fundamental to the mechanism of action therefore their charge state is critical. AMPs 

usually have a net positive charge of between +2 and +9. It is generally accepted that an
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increase will increase potency although over a certain threshold antimicrobial activity 

does not increase, instead an increased in toxicity is observed (Jiang et al., 2008). For 

example, an increase in the charge of magainin 2 from +4 to +5 increased antimicrobial 

activity but an increase to +7 did not correspond to further activity instead increasing 

haemolytic activity (Dathe et al., 2001). Similarly Jiang et al. (2008), using the 26- 

residue helical peptide L-V13K showed that by altering both net charge and number of 

positively charged residues, profound effects on biological activity were seen, with just 

one positive charged increase ( + 8  to +9) on the polar surface increased the haemolytic 

activity 32 fold. Ginagaspero et al. (2001) and Jiang et a l (2008) also showed that 

increasing charge beyond a certain threshold can decrease overall activity due to 

electrostatic repulsion within the peptide hindering helical formation.

Whilst the vast majority of AMPs are cationic in nature, anionic peptides have also been 

isolated, for example, dermicidin from humans (Schittek et al., 2001). These peptides 

have a net charge between -1 and -7 and it is thought that they form salt bridges with 

metal ions and the negatively charged phospholipids present within the microbial 

membrane, which allows attraction to the surface (Harris et al., 2009).

An AMP, on average, is comprised of approximately 50% hydrophobic residues, which 

is a critical parameter to allow partitioning of the peptide into the hydrophobic core 

(Tossi et al., 2000). A number of studies have sought to understand the relationship 

between hydrophobicity and biological activity. Using magainin, Tachi et al. (2002) 

synthesised analogues with an Alanine replacing Leucine at the non-polar surface, 

revealing that higher hydrophobicity increased the haemolytic activity, whilst a decrease 

in hydrophobicity lowered the antimicrobial activity. Chen et al. (2007) concluded that 

AMPs have an optimal window and any deviation from this has a dramatic effect on 

biological activity. It has been postulated that these effects are due to the peptides
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ability to self associate. In aqueous solution it is thermodynamically favourable for 

highly hydrophobic peptides to self associate and therefore a non specific lytic 

aggregate is formed rather than the monomeric form that is observed in AMP 

mechanism of action (Yeaman et al., 2003).

1.7 Membrane characteristics

The precise nature of membrane composition and super molecular structure is essential 

to cell function. As well as acting as a barrier, it regulates nutrient flow, maintains 

osmotic balance, electrochemical gradient and is the site of many catalytic reactions 

fundamental to cell function and survival. Due to the nature of prokaryotic and 

eukaryotic cell function and environmental stresses, fundamental differences in this 

composition exist, it is these differences that allow the preferential activity of AMPs 

against prokaryotic membranes. A comparison of the prototypical characteristics of 

Gram positive, Gram negative and eukaryotic membranes are seen in Figure 1.3.
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Differences in phospholipid composition influence membrane charge and curvature, 

essential parameters when considering a peptides ability to be electrostatically attracted 

and undergo incursion into the membrane. Prokaryotic membranes have a higher 

content of the negatively charged hydroxylated phospholipids phosphophatidylglycerol 

(PG), phosphatidylserine (PS) and cardiolipin (CL), whilst eukaryotic membranes 

consist of more neutrally charged phospholipids such as phosphatidylcholine (PC), 

phosphatidylethanolamine (PE), sphingomyelin (SM) and sterols such as cholesterol 

and ergesterol (Teixeria et al., 2012). Along with charge, shape is an important factor 

to consider as it has a direct influence on membrane curvature. The zwitterionic lipid 

PE has an inverted cone geometry thus promoting negative curvature of the membrane, 

which is thought to impede the activity of peptides that exhibit a carpet mechanism 

whilst PC and PG are far more cylindrical and do not cause any curvature (Bodone et 

al., 2012) (see figure 1.3). Along with head group charge and shape, acyl chain bulk 

and length has a significant effect, longer chains inhibit shorter pore forming peptides, 

in contrast bulkier chains cause steric hindrance within the membrane causing 

membrane thinning; the presence of cholesterol and ergesterol inhibits pore formation 

by ordering the membrane and causing lipid packing (Teixeria et al., 2012).
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Figure 1.4: Differences of phospholipid geometry and the effect o f lipid packing-lipids with a 

headgroup that has a smaller cross sectional area than the acyl chains such as PE will cause 

negative curvature when in a bilayer with lipids that have an equal cross sectional area such as 

PC, PG and PS. Adapted from Fromm & Hargrove 2012
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The asymmetry of prokaryotic membranes compared with eukaryotic membranes leads 

to a more negative charge, with the relative small amounts of negatively charged 

phospholipids within eukaryotic membranes oriented towards the cytoplasm (Yeaman et 

al., 2003). Transmembrane potential between eukaryotic and prokaryotic membranes is 

also very different with the potential in normal mammalian cells resting between -90 to 

- 1 1 0  mV whereas typical bacterial membrane potential in logarithmic growth phase sits 

between -130 to -150 mV. This difference is due to different rates of proton flux across 

the membrane (Hancock et al., 1997).

The presence of lipopolysaccharides (LPS) and teichoic acids in Gram negative and 

Gram positive bacteria increase overall negative charge and have been proposed to be of 

fundamental importance in the initial stages of AMP attack (Hancock et al., 1997, 

Peschel et al., 1999).

1.8 Natural resistance towards AMPs

Whilst the hypothesis for AMP drug development states that pathogens have little 

natural resistance towards AMPs, discrepancies in MIC values between different 

pathogens clearly point towards natural resistance mechanisms that have evolved to 

combat attack. A number of studies have highlighted possible mechanisms; Basselin et 

al. (1998) and Pershal et al. (2001) showed the reduction of net negative charge due to 

decreases in PG and CL content. Similarly Dorrer et al. (1977) had previously showed 

an increase in the cationic omithine-amide lipid compostion confers resistance to 

polymxyin B in Pseudomonas fluorescens. Modification of both phospholipids and cell 

wall constituents have also been noted as a mechanism of decreasing charge, for 

example, the modification of PG by lysine addition in S.aureus (Pershal et al., 2001) 

and the addition of positively charged a D-alanine residues to teichoic acid in the cell 

wall of S. agalactiae (Abachin et al., 2002). In Gram negative organisms, changes in
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LPS have also been noted through modification of the lipid A molecule including 

acylation and palmitate and 4-amino-4-deoxy-L-arabionse derivitisation (Ernst et al., 

2001) as well as increased LPS content of the zwitterionic PC (Lysenko et al., 2000).

Other strategies involved in AMP evasion include the synthesis of a polysaccharide 

capsule that is typically negatively charged and so binds the AMPs rendering them 

ineffective (Friedrich et al., 1999). Reduction in transmembrane potential (Yeaman et 

al., 1998) has also been shown to render some AMPs inactive, along with the release of 

proteases (Ulvatne et al., 2002). Mechanisms usually associated with conventional 

antibiotic resistance such as efflux pumps to decrease the concentration of intracellular 

AMPs have also been observed in a number of pathogens including Neisseria 

gonorrhoeae (Shafer et al., 1998), S. aureus (Kupferwasser et al., 1999) and Vibrio 

cholerae (Bina et al., 2008).

Although resistance mechanisms have been discovered and can be induced for example 

Perron et al. (2006) who successfully induced AMP resistance over 600-700 

generations in E. coli and P. fluorescens in vitro, it should also be considered that the 

interplay between AMP based innate immunity and pathogen challenge has been on 

going on for millions of years and, as of yet, the selective pressures that has seen 

widespread resistance to conventional antibiotics in little over 70 years has not 

occurred.

1.9 Stratergies for AMP production

If AMPs are to progress towards clinical use one major aspect that needs to be

overcome is their large scale production as isolation from natural sources is an

expensive and time consuming process (Li. 2011). Due to their very nature, soluble

recombinant expression of AMPs in bacteria has proven difficult therefore chemical

synthesis has been the standard procedure in AMP production however this is expensive
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and only feasible for mg amounts (Nair et al., 2007). However in recent years the 

expression of AMPs in bacteria has been successfully achieved by fusion of the AMP to 

a number of different carrier proteins (Li. 2011). These carrier proteins fall into two 

major categories, firstly, soluble-enhancing carriers such as thioredoxin and glutathione 

transferease (GST) both of which have proven extremely successful especially in E.coli. 

As examples

Another soluble carrier is small ubiquitin-related modifier (SUMO) and a worldwide 

patent has been granted to researchers within the US to produce a numbers of AMPs 

(Bommarius et al., 2008). The production of tagged AMPs in insoluble inclusion bodies 

has also been successfully in E.coli using the carriers PurF (Lee et al., 2000), 

ketosteriod isomerase (Majerle et al., 2000) PaP3.30 (Rao et al., 2004) and TAF12 

histone fold domain (Vidovic et al., 2009) and is thought to be more efficient than 

soluble expression as it offers more protection to the host cell. A similar strategy (Jang 

et al., 2009) involved the co-expression of AMPs with an anionic protein prone to 

aggregation which would form a electrostatically driven complex with the cationic 

peptides forming inclusion bodies. Along with removing the need to cleave the AMP 

from its carrier after treatment with 8 M urea approximately lOOmg of peptide was 

recovered from just 1L of bacterial culture. As with most recombinant expression 

strategies E.coli is the most extensively utilised expression host, however AMPs have 

been expressed in other organisms that are not susceptible to a particular AMPs effects. 

As examples, a cathelicidin from Bungarus fasciatus (banded Krait snake) intein fusion 

peptide in Bacillus subtilis (He et al., 2015), NK-Lysin has been expressed in the yeast 

Pichia pastoris (Fan et al., 2014) similarly NZ17074 isolated from the lugworm 

(Arenicola marina) was expressed in same organism (Wang et al., 2014), CecropinXJ 

isolated form Bombyx mori larvae has been expressed in Saccharomyces cerevisiae
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(Xia et al., 2013) and expression in higher eukaryotes such as Arabidopsis sp. as also 

been achieved (Wu et al., 2013).

These strategies offer the potential for a diverse range of AMPs to be expressed and 

high yields to be recovered which will be required if they are to be used in modem 

medicine.

1.10 AMP mechanism of action

As stated, the mechanism of action of AMPs is thought to be through membrane 

dismption (Zasloff, 2002). What is less clear is the precise molecular mechanism of 

AMPs. The evidence suggest that the key factor for membrane dismption is the initial 

electrostatic attraction of the peptide to the negatively charged bacterial membrane 

surface, with numerous studies revealing loss of biological activity upon either 

reduction of peptide positive charge or decrease in membrane negative charge (Huang., 

2000, Shin et al., 2001, Glukhov et al., 2005). After initial electrostatic attraction, a 

threshold concentration is required before membrane dismption can occur which is 

critical for all mechanisms described (Huang. 2000, Melo et al., 2009). During this 

process at low peptide to lipid ratios the peptide is organised and lies parallel to the acyl 

chains at the interface between the chains and the head groups (Ludtke et al., 1994 & 

Heller et al., 1997), as this peptide-lipid ratio increases these peptides begin to ‘tilt’ and 

start to align perpendicularly to the acyl chains at which point interaction with the 

membrane hydrophobic core can occur (Strandberg et al., 2006). A number of factors 

govern this threshold concentration and initial membrane incursion is both peptide and 

membrane dependent. These factors include the ability of a membrane to self associate 

and physical factors including charge, electrochemical gradient, fluidity and curvature 

(Lee et al., 2005, Mason et al., 2007, Bechinger et al., 2009).
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A number of mechanisms have been postulated to succeed this attraction. These have 

been depicted in figure 1.5. In the barrel stave mechanism a central pore lumen occurs 

with the pore characterised by peptide-peptide interactions (Eisenburg et al., 1973). 

Peptides associated with this mechanism such as alamethicin (Richards et al., 1982), are 

hydrophobic in nature with the hydrophobic faces of the peptides interacting with the 

acyl chains, the peptides bind as monomer, adopting an a helical secondary 

structure/conformation which induces localised membrane thinning by sitting at the 

phospholipid chain/head group interface, upon the threshold concentration being 

reached the hydrophobic face inserts into the membrane core and the peptides begin to 

self associate (Hancock et al., 1999). However, these pores are not static and continued 

interaction of the monomeric peptide to the membrane leads to further expansion 

(Hancock et al., 1999, Rakowski et al., 2013). Continued research on alamethicin 

further supports the view of barrel stave pore formation as a mechanism of AMP 

mechanism of action. Assessing the thermodynamic probability of pore formation 

Rahaman and Lazaridis (2014) used molecular simulations to show the formation of 

stable barrel stave pores of varying size. The trimer and the tetramer formed 6 A pores 

that were closed while the larger oligomers formed open pores at with the hexamer 

forming an 8 A pore and the octamer in an 1 lA pore. Their results are consistent with 

barrel-stave model with N terminal portion of the molecule exhibiting a smaller tilt with 

respect to the membrane than the C terminal portion, resulting in a pore shape that is a 

hybrid between a funnel and an hourglass. Direct visualisation of alamethicin pores 

have also been captured using electrochemical scanning tunneling microscopy (EC- 

STM) in a phospholipid matrix. Each channel consists of six molecules and had a 

diameter of 19 A ( ± 1  A), three or four of these molecules have the hydrophilic group 

oriented toward the centre of a water filled channel (Pieta et al., 2012).
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In the toroidal mechanism the pore lumen is lined by both peptide and lipid head group 

interactions and is characterised by the induction of membrane curvature due to 

interaction of the hydrophilic face of the peptide with polar head groups, this causes 

bending of the head groups in a continuous fashion to connect the outer and inner 

membrane leaflet due to the thermodynamically unfavourable interaction between the 

acyl chain and the aqueous environment (Park et al., 2005). Further examination of this 

model with molecular simulation studies on magainin and melittin (Sengupta et al., 

2008, Leontiadou et al., 2006) showed that the pore contained far more lipid head 

groups than peptide with only 2-3 peptides associated with each pore and not all the 

peptides maintained their secondary structure (Nguyan et al., 2011), this refined model 

has been termed the disordered toroidal model. More recent studies on the precise 

nature of melittin pore formation support a toroidal mechanism. Zhou et al., (2014) 

carried out liposome leakage assays on DMPC/cholesterol mixed liposomes with 

calcien dyes of varying size and determined a lag time of dye release proportional to an 

increase in dye size suggestive of initial nucleation, pore formation and increasing pore 

size over time. Whole cell patch clamp studies on the Chinese hamster ovary cell line 

CHO-K1 using a melittin analogue also supports the notion of a toroidal expanding pore 

(Fasoli et al., 2014). Both a barrel stave pore and a toroidal pore have been shown to 

exist with alamethicin and novicidin using (31) P solid-state NMR spectroscopy 

respectively in planer lipid bilayers (Bertelsen et al., 2012). Interestingly, with both 

peptides, the majority of the lipid remained in a planar conformation but a number of 

lipids were involved in peptide however more lipid remained in a planer conformation 

with alamethicin suggesting a transmembrane pore without significant disturbance of 

the surrounding lipids, whilst novicidin forms toroidal pores at high concentrations 

leading to more extensive membrane disturbance.

25



In the carpet model (Shai et al., 1999, Yamaguchi et al., 2001) the peptides cover the 

membrane surface and upon the critical concentration being reached form transient 

pores allowing peptide access to the inner leaflet leading to peptide ‘carpet formation’ 

on each membrane surface, peptides can then span the transmembrane bilayer causing 

curvature of the membrane to protect the acyl chains which leads to the disintegration of 

the bilayer due to micelle formation (Teixeria et al., 2012). However, it has been 

argued by Nguyan et al., (2011) and Brogden (2005) that the carpet model is an 

experimental artefact only seen n vitro at high a peptide-lipid ratio therefore is an 

experimental artefact although recent high resolution atomic force microscopy and 

quartz crystal microbalance-dissipation studies on aurein 1.2 (Fernandez et al, 2012) 

contradicted this view with a carpet model observed. More recent studies by Roversi et 

al, (2014) on live Escherichia coli cells determined that membrane lyses only occurred 

when bound peptides completely saturated bacterial membranes (10(6)-10(7) bound 

peptides per cell), indicating that the "carpet" model for the perturbation of artificial 

bilayers is representative of what happens in real bacteria.
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Whilst there is a clear evidence for each of these models a number of other models have 

been proposed for different peptides.

The interfacial model (Figure 1.5) (Wimley. 2011), postulates that shorter chain AMPs 

are not sufficient to transverse the membrane therefore a classical pore forming 

mechanism is not possible. Sequence analysis of a large number of these shorter chain 

peptides revealed the presence of a ‘polar pocket’ within the hydrophobic region of the 

peptide, usually 1 or 2 highly charged residues. This “imperfect amphipathicity” is 

fundamental to this model, when the peptide is driven into the bilayer and the 

hydrophobic portion of the peptide interacts the with membrane core, this ‘polar pocket’ 

interacts with the phosphate head groups within the inner leaflet causing negative 

curvature. The importance of this model has been described by Bodone et al. (2012) 

who questioned the reliability of liposome leakage assays as a method of mechanism 

determination. Using alamethicin and mastoparan-X, previously determined to act via a 

pore and carpet mechanism (Richards et al., 1982, Matsuzaki et al., 1997), they showed 

that these peptides behaved in unexpected ways depending on membrane composition 

with mastoparan-X being inhibited by increasing membrane thickness. However, 

alamethicin was not affected. Both peptides were also inhibited when PE was included 

in the membrane. Taken in this into context previous conceptions of AMP mechanism 

should be re-examined, especially when considering the interfacial model, which 

suggests that these two peptides act via singular mechanism. After Wimley’s analysis 

of the imperfect amphipathicity of a number of AMPs (Wimely 2011)Indeed, AMPs 

that intentionally exhibit an imperfect amphipathic helical structure have been 

successfully designed by Zhu et al, (2015) with an AMP termed PRW4 having 

preferential activity.
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Along with the interfacial model a number of other researchers have put forward 

theories that contrast with the three conventional models which highlight how further 

refinement of these models is leading to new ones. This is exemplified by the ‘leaky 

slit’ mechanism postulated by Zhao et al., 2004 in which the AMPs form fibril like 

structures classically associated with neurodegenerative peptides such as a-Synuclein. 

Peptides align with their hydrophobic side facing the lipids whilst the hydrophilic facet 

allows for further peptide aggregation through hydrogen bonding; lipids that are in 

contact with the hydrophilic face undergo dramatic curvature to protect the acyl chains 

thus allowing for a “slit” to occur along this surface where cellular metabolites can leak 

out. This mechanism is thought to be a refinement of the carpet and toroidal models 

and has been shown experimentally using the peptide plantaricin A by imaging 

liposome leakage assays (Zhao et al, 2006). Further studies on the bacteriocin AS-48, 

a 70 residue cyclical peptide with 5 helices using course grain molecular simulations 

indicated a ‘leaky slit’ mechanism of action (Cruz et al, 2013). There results showed 

the peptide formed dimeric structures within the membrane with two types of pores 

observed., firstly a small pore with a 1 nm radius and secondly a larger toroidal pore of 

variable dimension formed by dragging of phosphate lipid groups towards the bilayer 

interior due to interactions with charged protein residues which the authors The 

postulated to be in agreement with the “leaky slit” model.

Other models include the aggregate channel model, the molecular electroporation 

model, the sinking-raft model and the peptide-induced lipid segregation model which 

are depicted in figure 1 .6 .

In the aggregate channel model (Hancock et al., 1999) peptides insert into the bilayer, 

however unlike in pore forming mechanisms, large aggregates of unstructured peptides
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form that have water molecules adhered to the surface and consequently allow a small 

amount of leakage through the bilayer. However theses structures are not able to cause 

membrane depolarisation (Wu et al., 1999), act transiently and do not cause significant 

membrane disruption, thus is thought to be a mechanism for cell entry to other targets.

In the molecular electroporation model, originally proposed for the apoptotic protein 

Annexin V (Karshikov et al., 1992), the presence of the highly charged peptide in close 

proximity to the membrane creates an electric field due to the charge density with the 

relatively long time periods it occurs under (0.1 mS) enough to trigger pore formation 

(Miteva et al., 1999).

The more recent sinking-raft model (Pokomy et al., 2002, 2004) is caused by the mass 

imbalance within different lipid domains on the outer layer of the membrane caused by 

the preferential binding of the peptide to a certain lipids. This causes localised 

membrane strain which is relieved as the peptides sink into the membrane and 

translocate to the inner leaflet causing membrane leakage in the process (Pokomy et al., 

2004).

Preferential peptide-lipid binding also underpins the peptide induced lipid segregation 

model (Teixeria et al., 2010) in which lateral lipid segregation is observed upon AMP 

interaction. This mass ‘de-mixing’ of lipids causes defects within the membrane 

(Femandez-Rayes et al., 2010) allowing intracellular constituents to leak out. 

Interestingly, Epland et al. (2008) suggested that this mechanism could provide a 

rational explanation as to why there is such disparity of MIC values between different 

bacteria. Using the peptide OAK C12 K-7a8 against both S. aureus and B. cereus, the 

latter had a far lower MIC which was postulated to be due to the higher concentration of 

zwitterionic lipids found within its membrane compared to the former which has 

predominately anionic lipids, Epland’s have also examined the anionic lipid segregating
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potential of a number of AMPs and cell penetrating peptides (Wadhwani et al, 2012). 

Among the peptides studied, six AMPs and four CPPs showed strong anionic lipid 

clustering activity with these peptides also had bacteriostatic activity against E.coli that 

are sensitive to lipid clustering agents whilst AMPs and CPPs that did not cluster 

anionic lipids were not toxic to E. coli. Whilst this mechanism has been seen with 

AMPs it has mostly been observed with CPPs including snake elapid cardiotoxins 

(Dubovski et al, 2003), and crotamine, a myotoxin with antimicrobial properties from 

Crotalus durissus terifficus (South American rattlesnake) (Costa et al., 2014).

As is seen with some of the models described not all membrane interaction leads to 

disruption. Brogden (2005) and Nicholas (2009) examined the possibility of 

intracellular targeting. Both highlighted this possibility on the basis of a number of 

issues; (A) our lack of understanding of the physicochemical properties that give such 

disparity between MIC values, raising the possibility that a site specific intracellular or 

cell wall target is critical for activity, (B) discrepancies between membrane activity 

determined by biophysical means and actual bacterial cell death (C) in vitro studies 

have shown AMPs can recognise and inactivate a range of intracellular targets and (D) 

sequence homology between AMPs and a number of other peptides that transverse the 

membrane in a non lethal fashion.
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Whilst in high concentration, overwhelming evidence suggests loss of membrane 

integrity as the fatal mechanism, a number of peptides have, at much lower 

concentrations, been shown to interact with a variety of targets. For example histatin, a 

24 residue helical peptide isolated from human saliva has been shown to kill Candida 

by accumulating in the cell mitochondria and inhibiting FIFO-ATPase involved in ATP 

synthesis (Edgerton et al., 2000). Interestingly the peptide has a non-lytic mechanism 

and instead binds to the cell surface bound heat shock protein HSP-70 before being 

transported across the membrane by a membrane permease. Indolicidin causes pore 

formation at the MIC however does not cause cell lysis, rather the peptide is thought to 

bind to DNA and has shown to induce Alimentation in E. coli (Subbalakshmi et al., 

1998). Similarly in vtiro studies have demonstrated the DNA binding potential of the 

cyclical p-sheet peptide tachylplesin (Yonezawa et al., 1992). Also Diaz et a l (2009) 

implicated the blocking of bacterial sodium channels as the mechanism of action by the 

scorpion AMP bacteridine 1. Other peptides highlight these discrepancies for example 

an analogue of tritrpticin (termed TWF) a cathelcidin derived peptide, shows good 

activity against both S. aureus and E. coli however no evidence of membrane disruption 

or membrane polarisation are observed (Chan et al., 2006). Similarly both dermaseptin 

B2 and its truncated analogue are highly effective in calcien dye release assays however 

the latter has no antimicrobial activity (Noinville et al., 2003). These studies highlight 

that whilst there is clear evidence for AMP mechanism at the level of the membrane, 

whether this is the primary target needs further clarification and far more extensive 

studies on intracellular targeting needs to be undertaken. As seen with the discovery of 

bacteridine 1 the possibility of novel targets perhaps not conventionally thought of as 

antimicrobial targets need to be assessed.

Whilst AMPs have increasingly become of interest as alternatives to classic antibiotics,

factors including toxicity towards mammalian cells and expensive production costs
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have hampered development. A subcategory of AMPs that lacks this drawback is the 

bacteriocins which are small ribosomally synthesized peptides secreted by bacteria to 

inhibit the growth of evolutionary related species (Allen et al, 2014). Bacteriocins are 

produced throughout the major lineages of bacteria; with an estimated 99% of all 

bacteria producing at least one bacteriocin, consequently, there is vast diversity among 

these compounds, which potentially could be exploited for therapeutic purposes (Snyder 

and Worobo 2014). Bacterocins can be categorised into 5 majors classes based on a 

number of different factors including bacterial production strain, common resistance 

mechanisms, and mechanism of action however this naming system is becoming ever 

more confusing as more peptides are discovered with wider ranges of activity then 

previously recognised (Cotter et al, 2006). The class I bacteriocins are commonly 

known as the lantibiotics and contain the unusual polycyclic thioether amino acids 

lanthionine or methyllanthionine, as well as the unsaturated amino acids dehydroalanine 

and 2-aminoisobutyric acid. This class of bacteriocins has already been utilised on a 

commercial scale with nisin, a 34 residue peptide produced by Lactococcus lactis, been 

used in food preservation for nearly half a century. These class I peptides are produced 

by Gram positive organisms to target other Gram positives and function by binding to 

lipid II, a cell wall precursor lipid which disrupts cell wall production (Yang et a l, 

2014) . Class II bacteriocins are a large group of AMPs, below 10 KDa in size, which 

exerts their antimicrobial activity through membrane permeabilisation and can further 

be subdivided into 5 groups (Drider et al, 2006). Group Ha bacteriocins are the largest 

subgroup and contain an N-terminal consensus sequence YGNGVXaaC with the 

variable C-terminal responsible for species-specific activity (Drider et al, 2006). Group 

lib peptides require two different unmodified peptides, both of which must be present in 

about equal amounts in order for these bacteriocins to exert optimal antimicrobial 

activity (Oppegard et al, 2007) whilst the group lie bacteriocins are cyclical in nature



(Hechard and Sahl 2002) and group lid are post-translationally unmodified but do not 

contain the conserved N terminal domain found in group Ha (Netz et al., 2002). Finally 

group He peptides require 3-4 peptides to be expressed from a single operon which 

subsequently form a larger protein with all peptide components required for activity 

(Netz et al., 2002). Class III bactericoins are classified as over lOKDa and can be 

further sub divided into Ilia (membrane lytic) and Illb (intracellular targeting) (Bastos 

et al, 2010). The newest group, the class IV bacteriocins are made up of peptides with 

additional carbohydrate or lipid groups (Stepper et a l, 2011).

Because of their targeted activity they are a highly attractive class of AMPs in which to 

focus on both in their discovery and elucidating their mechanism of action, however the 

remainder of this thesis will focus on the identifying and furthering our understanding 

of AMPs from both snake and scorpion venoms.

1.11 AMPs from venom

Venom is a complex mix of proteins and peptides that have evolved over millions of 

years of to effectively paralyse and kill prey. Dependent on which venom you consider 

it will be comprised of proteins and peptides whose targets are ion channels, 

neurotransmitters, coagulation cascades, red blood cells and a whole host of other 

targets (de Lima et al., 2009).

Envenomation is a traumatic event with the possibility of the fangs/telsons being

damaged and broken off in the process which may lead to microbial infection, therefore

from an evolutionary point of view it is rational to assume that venom contains

antimicrobial components that will sterilise this process (de Lima et al., 2009). The

percentage component of antimicrobial constituents within venom varies between
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species, with wide intra-species variation noted in many organisms with variation 

dependent on age, sex, geography and climate (Calvete. 2013); indeed up to 25% of the 

venom of Lychas mucronatus has been described as AMPs in particularly challenging 

conditions (Rumming et al., 2010). Therefore venom presents a wealth of bioactive 

molecules ready to be mined with a large array of AMPs, particularly from scorpion 

venoms already characterised (Harrison et al., 2014).

1.11.1 AMPs from snake venom

Whilst AMPs have been isolated from a range of venoms, the isolation of AMPs from 

snake venom remains, at present, a relatively underexploited source although a whole 

host of other proteins have been isolated that confer antimicrobial activity including 

phosolipase A2, C-type lectins and L-amino oxidases (de Oliveira et al., 2013). Table 

1.2 details the sequences of selected snake derived AMPs discussed within this thesis.

A 2008 transcriptomic study by Zhou et al. found a number of novel a-helical 

cathelcidin AMP's from the venom glands of Naja atra (Chinese cobra), B. fasciatus 

and Ophiophagus hannah (king cobra); two full cathelcidin encoding cDNA sequences 

and a partial cDNA sequence were isolated respectively. Each of these sequences 

showed a highly conserved amino acid sequence suggesting evolutionary conservation 

of the cathelcidin peptides throughout the elapid family.

The cathelcidins are an evolutionary diverse family of AMPs made up of a conserved 

cathelin domain at the N-terminal connected to a hyper variable AMP region at the C- 

terminal which, after cleavage, produces a diverse range of structural conformations 

(Ramanathan et al., 2002).

36



From the predicted amino acid sequences, the O. hannah deduced peptide was 

chemically synthesised resulting in a 34 residue peptide (Zhou et al., 2008). Against a 

range of clinical isolates (Enterobacter cloacae, Pseudomonas aeruginosa and 

Enterobacter aerogenes), MIC values of 1-2 pg/ml were observed. Interestingly, the 

peptide showed only 10.8% haemolytic activity at concentrations o f200 pg/ml. Further 

studies truncated the peptide at the N-terminus to produce analogues with even lower 

haemolytic potency (0.69%) at 200 pg/ml when the first 4 residues were omitted whilst 

retaining its antimicrobial activity (Zhang et al., 2010).

Wang et al. (2008) isolated the 30 residue peptide, rich in both lysine (9) and 

phenylalanine (5), with a molecular weight of 3637.5 from B. fasciatus. The peptide 

showed preferential antimicrobial activity towards Gram negative organisms (E. coli <2 

pg/ml, P. aeroginosa 2.3-18.7 pg/ml and Klebsiella pneumoniae 0.3-9.4 pg/ml). 

Against Gram positive organisms an MICs of between 1.2-9.4 pg/ml was recorded 

against a range of Bacillus species however against S. aureus no MIC below 100 pg/ml 

was recorded. The peptide also showed strong activity against fungal species with C. 

albicans and P. pastoris both having MICs of below 5 pg/ml.

An active truncated peptide has also been designed from a cathelicidin fron Naja atra 

(Indian cobra) (Latour et al., 2010). From the 34 residue peptide (Mw 4175.2) which 

had a charge of +15, a peptides was designed was from the N-terminus, 

(KR(F/A)KKFFKK(L/P)K), which each carried a charge of +6 . EC5 0 values against 

Aggregatibacter actinomycetemcomitans and E. coli were comparable (<1.0 pM) for the 

native peptide and ATRA-1 (KRFKKFFKKLK) however in haemolytic analysis 

ATRA-1 lysed only 0.9% erythrocytes at 0.67 pM compared with the same percentage 

at 0.23 pM for the native peptide.
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A waprin protein, omwaprin (5602 Da) was identified by LC-MS from Oxyuranus 

microlepidotus (inland taipan) (Nair et al., 2007). The 50 amino acid recombinant 

peptide showed minor antimicrobial activity against Bacillus megaterium (560.2 pg/ml) 

and Staphylococcus wameri (1700 pg/ml), but did not show any effect on Bacillus 

thuringiensis, S.aureus and Streptomyces clavuligerus or the Gram negative E.coli and 

Agrobacterium tumefaciens bacteria with concentrations of 5600 pg/ml. SEM studies on 

the susceptible B. megaterium and S. wameri indicated a membrane disruptive mode of 

action. Alkylation and reduction of the disulphide bridges negated the peptides 

antimicrobial activity against B. megaterium; suggesting a disulphide bond-constrained 

tertiary structure is necessary for activity. A three dimensional model showed the 

peptide is likely to consist of a spiral backbone with two circular segments connected by 

the 4 disulphide bridges with protruding N and C-terminals. The N-terminal consists of 

9 residues, 4 being positive (KDRPKKPGL). N-terminal deletion mutation analysis 

showed this sequence to be vital for antimicrobial activity, indicating the cationic nature 

of the peptides activity.

An antifungal peptide has also been isolated from Bothrops jararaca (jararaca) (Gomes 

et al., 2005). This 1370 Dalton peptide, termed pep5B, shows high level inhibitory 

effects against Fusarium oxysporum, Colletotrichum lindemuthianum & S. cerevisae at 

25 pg/ml. Effects of pep5B on the fungal plasma membrane where also tested by 

monitoring the glucose stimulated acidification of the growth medium by S. cerevisae; 

60% inhibition of the process was seen indicating either inhibition of the H+ ATPase on 

the plasma membrane or increase H+ permeability. SYNTOX green fluorescence 

permeabilisation into the cytosol of F. oxysprum supported membrane interactive lethal 

effects.
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Possibly a new approach for antimicrobial peptide discovery from snake venom is 

highlighted by the recent discovery of the antimicrobial effect of crotamine (Yount et 

al., 2009), a well characterised 42 residue toxin from C. durissus terrificus, whose 

primary structure has been determined for decades (Laure et al., 1975).
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1.11.2 AMPs from  scorpion  venom

The noted similarity between insect defensins and scorpion toxins (Bontems et al., 

1991) led to the isolation of the first scorpion defensin from the haemolymph of the 

North African scorpion Leiurus quinquestriatus (deathstalker scorpion). This 4.3 KDa 

peptide contained 38 residues, with the characteristic 6  cysteines of many ion channel 

scorpion toxins and showed a high degree of homology to insect defensins within the 

order Odonata. This peptide was active against Gram positive M. luteus but inactive 

against Gram negative E. coli (Cociancich et al., 1993). The first cysteine-constrained 

AMP from scorpion venom (scorpine) was isolated by Possani and colleagues (Conde et 

al., 2000) from the venom of the African scorpion Pandinus imperator (emperor 

scorpion) Scorpine (8.3 KDa, 75 residues, 3 disulphide bridges) has a unique structure, 

with N-terminal similarity to some insect cecropins and C-terminal similarity to some 

scorpion defensins. The sequence information of these peptides along with all other 

scorpion derived AMPs discussed are detailed in Table 1.3.

Scorpine was active (MIC 1-10 pM) against both Gram positive (B. subtilis) and Gram 

negative (K. pneumoniae) bacteria and had anti-malarial properties against the causative 

parasite Plasmodium berghei (ED50 0.7 pM and 10 pM against ookinete and gamete 

stages, respectively. A second putative peptide (BmTXKS2) was also identified. The 

full length cDNA clone isolated from the venom gland of the Chinese scorpion, Buthus 

martensii Karsch (Zhu et al., 2000). BmTXKS2 was predicted to have 39 residues 

including 6  cysteines and have similarity to haemolymph defensins. However there 

have been no subsequent reports of the translated peptide (either native, recombinant or 

synthesised) being investigated and no biological data is available. In subsequent years
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two more members of the scorpine family members have been identified, opiscorpine 

from Opistophtalmus carinatus (Robust borrowing scorpion) (Zhu and Tytgat. 2004) 

and heteroscorpine-1 from Heterometrus laoticus (Asian Forest Scorpion) (Uawonggul 

et al., 2007).

Six peptides have been isolated from the venom of Tityus discrepans (thick tailed 

scorpion) termed the bactridines (Bacts) (Diaz et al., 2009), which unlike the scorpine 

family contain 4 disulphide bridges. Bacts 1 and 2 have been characterised more 

extensively with Edman degradation and in silico analysis revealing charged peptides 

containing 61 and 64 residues respectively.

Bacts 1 showed an MIC range of 22-77 pM whilst Bacts 2 had an MIC range of 27-65 

pM. In haemolytic assays, Bacts 1 showed only 0.2% at 90 pM and 1.1% at 180 pM 

with Bacts 2 showing 7.6 and 21% at the same concentrations, respectively. Whilst 

these peptides do not have potent antimicrobial activity, their mechanism of action is 

interesting. Using the pathogen Yersinia enterocolitica loaded with 1 pM of the Na+ 

fluorescent indicator CoroNa™ red the efflux of sodium ions was observed upon Bacts 

1 and 2 interactions. Furthermore this could be blocked in the presence of the sodium 

channel blockers amiloride (10 pM) and mibefradil (25 pM) although no inhibition was 

observed in the presence of 30 pM tetrodotoxin; these interactions were shown to be 

Na+ channel specific with no interactions observed with K+ or Ca2+ channels.

Bacts 1 showed no toxicity towards mice (0.4 pM/g) however was toxic to cockroaches 

(2.8 pM) induced sialorrhoea in crabs at 0.1 pM/g and death in 3 out of 7 crabs at 0.2 

pM/g. Bacts 2 however was toxic to mice at the same concentration suggesting 

specificity towards different classes of sodium channels. Peigneur et al. (2012) showed



no modulation of the mammalian sodium channels Nav1.2-Nav1.8 with Bacts 1, 

however no modulation of the insect DmNavl or the bacterial sodium channel 

(NaChBac) was seen either suggesting further research needs to be carried out. Bacts 2 

showed modulation of Nav1.2, Nav1.4 and Nav1.6. Bacts 1 shares 78% homology to 

ardiscretin (D'suze et al., 2004) which is an insect sodium channel blocker from the 

same venom whilst Bacts 2 shares 98 % homology to the first 60 residues of Tzl and 

Td4 from Tityus zulianus and Tityus discrepans (thick tailed scorpions) respectively 

(Borges et al., 2004). Structural modelling of the two peptides suggested a classical a- 

p-motif in which the peptides have an alpha helical region and conserved cysteine 

constrained beta sheet structure.

Bacts 1 represents a novel basis for an AMP although further work is required before a 

sodium channel specific mechanism of action can be truly revealed, however it would 

be of interest to the field of venom antimicrobials if these questions were answered and 

more bacteridine like AMPs were isolated (Kuhn-Nentwig., 2003; Zeng et al., 2005).

Whereas the original antimicrobial peptides isolated from scorpion venoms contained 

cysteine residues, various non-disulphide bridged peptides have subsequently been 

isolated and these are now in the majority (e.g. Kuhn-Nentwig, 2003, Zeng et al., 2005, 

Gao et al., 2010, Zeng et al., 2013).

1.11.2.1 Long chain helical peptides

Parabutoporin, isolated from the venom of the South African scorpion Parabuidethus 

schlechteri is a highly basic peptide (45 amino acids, overall charge of +7). A 

structurally similar, basic molecule (charge +4), existing as two isoforms, opistoporin 1
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and 2 was isolated from another South African scorpion Opistophtalmus carinatus 

(African yellow leg scorpion) (Moerman et al., 2002). These two isoforms (44 amino 

acids) differ at position 34 where a phenylalanine replaces a leucine. Parabutoporin was 

predicted to have an a-helical structure between amino acids 3-35 in comparison to 

opistoporin 1 and 2 with two a-helical regions between residues 3-14 and 20-39 which 

are connected by a short random coil WNSEP (Moerman et al., 2002). Circular 

dichroism (CD) spectra of parabutoporin in 40% 2,2,2-trifluoroethanol (TFE), 

dimyristoylglycerophosphocholine showed the peptide adopts an a-helical structure in 

membrane mimicking conditions. Under the same solvent conditions, opistoporin re­

organises from an unordered state into a continuous a-helical structure (Moerman et al., 

2002). The amphipathic natures of both parabutoporin and opistoporin 1 were also 

predicted with a-helical wheel projections, which clearly show distinct hydrophobic and 

hydrophilic regions within each peptide, although comparison of these projections 

clearly shows that parabutoporin has a larger polar surface.

Antimicrobial assays for parabutoporin showed growth inhibition of all Gram-negative 

organisms assayed with MICs generally varying from 1-6 pM. The peptide showed less 

activity towards Gram-positive organisms with MICs generally greater than 25 pM. 

Interestingly, a decrease in growth inhibition was observed in the presence of Mg2+ ions 

(Moerman et al., 2002). Opistoporin 1 showed less inhibitory activity against Gram- 

negative organisms (MIC values generally ranging from 6-50 pM) than parabutoporin. 

On the other hand, differences between the effects of opistoporin and parabutoporin on 

Gram-positive organisms were less marked, although Gram-positive bacteria did appear 

slightly more sensitive to the former. In antifungal studies, both parabutoporin and 

opistoporin inhibited growth of a range of fungi (Botrytis cinerea, Fusarium culmorum 

and S. cerevisiae) at similar concentrations (50% growth inhibition between 0.3-3.5
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pM). Parabutoporin was more than twice as effective as opistoporin in disrupting 

eukaryotic cell membranes. Using human erythrocytes, parabutoporin induced 50% 

haemolysis at 37 pM; in comparison, opistoporin 1 induced only 30 % haemolysis at 

100 pM.

Hadrurin is the prototype of another cysteine-free AMP family purified from the venom 

of the Mexican scorpion Hadrurus aztectus. Hadurin (4436 Da, 41 amino acids), carries 

an overall positive charge at physiological pH and has the same structural profile as 

opistoporin, namely two a-helical regions connected by an undefined region between 

amino acid residues 12-16 (Torres-Larios et al., 2000). The plot of an a-helical wheel 

shows opposite hydrophobic and hydrophilic regions and these two distinct regions 

allow the peptide to adopt an amphipathic conformation, as the carboxyl-terminal helix 

can rotate 100° with respect to the amino-terminal helix. In antimicrobial activity 

studies with Gram-negative organisms, several E. coli strains were very sensitive with 

MICs less than 10 pM; in comparison, Pseudomona strains required 50 pM for full 

inhibition (Torres-Larios et al., 2000). Haemolytic activity was observed at 30 pM. 

Studies with synthetic analogues have demonstrated that the (unnatural) D-isoform of 

hadrurin has a different activity profile from the native L-isomer, suggesting activity is 

a consequence of membrane disruption (Torres-Larios et al., 2000).

Studies on two antimicrobial peptides isolated from P. imperator (Corzo et al., 2001) 

have shed further light on the contribution of the two a-helical regions, to biological 

function. Pinl has two a-helical regions between residues 3-18 and 20-39, separated by 

a random coil region containing a proline-19 kink. In contrast, NMR analysis of Pin 2 

in a 60% TFE solvent containing DPC micelles, showed that this second peptide had a 

singular helical structure between residues 2-18 with no significant kink at the
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equivalent proline residue (Pro-14) (Nomura et al., 2005). The structural differences 

found between these two peptides are significant. While the antimicrobial activity of Pin 

land Pin 2 against a range of Gram-positive and Gram-negative organisms was broadly 

similar, it is the haemolytic studies on eukaryotic membranes that are of most interest. 

Pin 2 lysed 51% of sheep erythrocytes at 22 pM whilst Pin 1 only lysed 1.4% at the 

same concentration (Corzo et al., 2001). The authors suggest that the ability of Pin 2 to 

lyse both eukaryotic and prokaryotic membranes may be related more to the venom 

toxicity, in a similar manner to the bee venom peptide melittin, than a specific 

antimicrobial action. In contrast, the activity of Pinl is more in keeping with magainin 

1, the prototype AMP isolated from the skin of the South American toad, Xenopus.

A flexible hinge region is also important in successful AMP design. Replacing proline- 

14 in Pin 2 with a more flexible Gly-Val-Gly tripeptide reduces the haemolytic activity 

of Pin 2 without altering its antimicrobial activity (Rodriguez et al., 2011). This 

substitution creates a more flexible region while retaining the essential amphipathic 

nature of Pin 2 which is more in tune with the dual helical structure of magainin 2 

(Zasloffi, 1987).

With such contrasting effects on prokaryotic and eukaryotic membranes, a comparison 

of the mechanisms of action of these two peptides is of particular interest. On 

examination of the effects of Pin 2 on PC lipid vesicles using a calcien dye release 

assay, it was seen that the dose response curve for dye efflux was sigmoidal, suggesting 

pore formation during the time course of the experiment (Belokoneva et al., 2004). 

When PE, known to promote negative membrane curvature (Matsuzaki et al., 1998), 

was incorporated into the PC vesicles, no change in Pin 2 activity was observed, 

supporting the hypothesis of a barrel-stave mechanism of pore formation. Dextran- 

loaded liposome assays also showed great variability in the size (1.8-5 nm) of the
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membrane pores generated by Pin 2, dependent on peptide: phospholipid ratios 

(Belokoneva et al., 2004). Based on NMR studies of Pin 2, Nomura and colleagues 

(2004) proposed a pore forming mechanism of action, as a consequence of Pin 2 

inducing clustering of hydrophobic residues which allows further incursion into the 

membrane hydrophobic core and interaction with the inner membrane. This process can 

be conveniently visualized in a step-wise fashion as shown in figurel.6. Pin 2 inserts 

into the membrane at a 45° angle however is seen to be only at a 25° angle around the 

leucine 12 residue. This causes a slight kink in the peptide when in the membrane, and 

is a phenomenon seen in other pore forming AMPs, and is postulated to be essential for 

activity. After insertion, oligomerisation occurs between the Pin 2 monomers and then 

pore oligomerisation is seen leading to membrane being trapped between these pores to 

be “pinched o ff’. Thus, Pin 2 induces a 2 fold attack on the target with loss of 

intracellular constituents through the pore lumen and loss of membrane through pore 

association.

In contrast, NMR studies with Pinl showed a radically different mode of action, with a 

detergent-like effect due to the formation of cubic phase structures. It was suggested 

that Pinl sits within the interface of the membrane between the hydrophobic core and 

the polar phospholipid head groups (Nomura et al., 2005). This can also be 

conveniently visualised (Fig. 1.7). The Pinl N-terminal helices are tilted at a 30° angle 

with respect to the horizontal bilayer plane and the C-terminal helices. Interactions 

between tryptophan residues at position 4, 6 and 15 on the tilted helices and the polar 

head groups cause the membrane disruption and the formation of cubic phase structures. 

The N-terminal helices rotates around the average helical axis.
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Using primers originally designed to detect a bradykinin-potentiating peptide (K-12), 

Zeng and colleagues have identified a full length cDNA encoding a putative AMP 

(BmKbpp) from the venom glands of the Chinese scorpion, Buthus martensii Karsch. 

BmKbpp (NDBP-3.3 family) is predicted to encode a 47 amino acid mature peptide, the 

C-terminal region showing 57% homology to peptide K-12 (Zeng et al., 2000). BLAST 

analysis of BmKbpp revealed high homology with a number of scorpion toxins such as 

NDB9.6 (98%) from Lychas murconatus (Chinese Swimming Scorpion), Tx297 (96%) 

from Buthus occintanus israelis (Gravid deathstalker scorpion) and parabutoporin 

(68%), suggesting a novel family of AMPs (Zeng et al., 2012).

Secondary structure predictions of BmKbpp show a similar structure as Pin 1, with two 

a-helical regions (between residues 3-35 and 39-47) separated by a random coil region. 

Also, a-helical wheel projections reveal a highly amphipathic molecule. As with Pin 1 

low haemolytic activity is seen with only 39.9% lysis of human red blood cells at a 

concentration of 50 pM. Antimicrobial assays of BmKbpp in liquid cultures showed 

preferential activity against Gram-negative organisms (MIC's typically in the range 2-5 

pM) in comparison to Gram-positive organisms (MIC's typically > 20 pM). Using a 

bioassay-guided fractionation strategy, Miyashita et al. (2010) isolated Im-1 (6.3 kDa, 

56 amino acids) from the venom of Isometrus maculatus (Lesser Brown Scorpion). Im- 

1 belongs to the Bpp family and showed 43% homology toward parabutoporin, 

especially at the N-terminus. Secondary structure analysis indicated an a-helical 

structure between residues 3-40 which was confirmed by CD spectra in 50% TFE. 

Synthetic Im-1 had potent antimicrobial effects in liquid culture assays against both 

Gram-negative and Gram-positive bacteria (typical MIC values 0.4-0.8 pM and 0.8-1.6 

pM, respectively) (Miyashita et al., 2010).
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Another long chain peptide, vejovine (4.8 kDa, 47 amino acids), has been isolated from 

the venom of Vaejovis mexicanus (Eastern plain scorpion) (Hemandez-Aponte et al.,

2011), with 52% homology to hadrurin. In antimicrobial assays performed in liquid 

broth cultures, both native and synthetic vejovine showed preferential activity towards 

Gram-negative organisms (E. coli MIC values 4.4-20 pM) with no activity towards 

Gram-positive S. aureus. Vejovine gradually breaks down when freshly milked venom 

is stored, producing a truncated derivative (Vm36), lacking the first eight N-terminal 

amino acids of vejovine. In comparison with vejovine, Vm36 showed no antimicrobial 

activity, demonstrating the importance of the N-terminal region of this and presumably 

other AMPs with similar structure. In CD studies, vejovine adopted an a-helical 

secondary structure in 60% TFE although it remained unordered in aqueous solution. In 

contrast, Vm36 peptide adopted an a-helical structure in aqueous solution which may 

indicate that the increased flexibility of vejovine is a key factor in promoting 

antimicrobial activity. Vejovine (50 pM) induced 40% haemolysis of human 

erythrocytes in eukaryotic cytotoxicity studies.

Using a cDNA cloning strategy, three peptides have been identified from the venom 

gland of Heterometrus spinifer (Giant Forest Scorpion) termed Heterin-1, Heterin-2 and 

spiniferin (Wu et al., 2014). Heterin-1 is 43 residues in length and shares 73% 

homology with the opistoporins and 68% with pandinin 1 with secondary structure 

prediction indicative of a mono-helical structure between residues 3-38 flanked by two 

random coil regions, however, unlike these other peptides Heterin-1 has an amidated C- 

terminal. In antimicrobial assays it had good activity against the Gram positive 

pathogens of B. megaterium and Micrococcus luteus (4.0 pM) whilst its potency against 

S. aureus and a range of Gram-negative organisms was less so (15.0-42.0 pM) in 

cytotoxicity assays 54% haemolysis was seen at 10.0 pM.

51



1.11.2.2 Intermediate chain peptides

A completely new class of scorpion AMPs has been reported from the venom gland of 

the Asian scorpion H. spinifer (Nie et al., 2012). Clones encoding four highly 

homologous peptides were characterised and one peptide (HsAp) was synthesized by 

solid state methods. HsAp (29 amino acids) showed no significant homology to any 

other class of scorpion AMPs. It has broad spectrum antibacterial activity against both 

Gram-positive (MICs typically 11-50 pM) and Gram-negative organisms (MICs 

typically 25-50 pM), without clear target-cell specificity as well as anti-fungal activity 

(MIC approx. 50 pM). HsAp was postulated to have an a-helical structure (residues 7- 

24) with coiled N and C terminals. It has classical amphipathic characteristics although 

its hydrophobic face is disrupted by two hydrophilic residues (serine and glutamic acid). 

Nie and colleagues indicated that HsAp is a bacterial infection-responsive peptide 

because the genomic sequence of its gene is intronless. At present HsAp has limited 

therapeutic potential because of its potent haemolytic activity against human 

erythrocytes (95% haemolysis at 3.2 pM)

Heterin-2 from the scorpion H. spinifer is a 24 residue C-terminally amidated peptide 

which shares 92% homology to pandinin 2. Secondary structure predictions revealed a 

single helical domain between residues 2-21 flanked by two random coil regions and is 

amphipathic in nature. Moderate antimicrobial potency was observed against Gram- 

positive pathogens (5.6-30.0 pM) and it was broadly less potent against Gram-negative 

organisms (15.8->45.0 pM), it also exhibited high cytotoxicity with 6.4 pM causing 

over 90% haemolysis. Interestingly when the C-terminal random coil region is removed 

(KKD) the therapeutic index is improved with a halving of the haemolytic potential and
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an overall increase in the MIC against Gram-positive organisms; however a reduction is 

seen against Gram-negative pathogens (Wu et al., 2014).

1.11.2.3 Short chain peptides

The first short chain AMPs were isolated from the venom of the African scorpion 

Opisthacanthus madagascarienis (Madagascaran scorpion) IsCT and IsCT2 (Dai et al., 

2001 and 2002) share 78% homology (both approx. 1.5 kDa, 13 amino acids), have the 

same net charge (+2) and are both amidated at the C-terminus. The precursor of each 

peptide consists of a signal peptide and a C-terminal pro-sequence which contains the 

typical C-tenninal processing signals Gly-Arg-Arg or Gly-Lys-Arg. Both peptides 

showed a broad spectrum profile against most Gram-positive and Gram-negative 

bacteria on solid agar plates (MICs typically 0.6-16 pM) although Gram-negative 

Pseudomonas strains were unusually resistant (MICs typically > 66 pM). Both peptides 

were weakly haemolytic (10% lysis of sheep erythrocytes at 100 pM) (Dai et al., 2002) 

although IsCT (approx. 3 pM) was extremely effective, in comparison to mastoparan, 

at degranulating rat peritoneal mast cells, as measured by a histamine release assay 

(Dai et al., 2001). A pore-forming mechanism of action was postulated (Dai et al., 

2002) due to the threshold concentration kinetics during antimicrobial assays and 

calcien release assays with synthetic membranes. The latter revealed a membrane 

disruptive mechanism for both peptides. At low peptide concentrations a preferential 

affinity towards phosphatidic acid (PA) compared with PC was noticed; however this 

selectivity was not seen with high concentrations of peptides.

Extensive structure-function analysis has been carried out on IsCT and IsCT2 (Dai et 

al., 2001, 2002; Lee et al., 2004). CD spectra and helical wheel predictions of both 

peptides revealed an a-helical organisation in membrane-mimicking environments (40



and 70% TFE) which adopted a classical amphipathic structure. A sequence 

comparison between the two peptides shows differences at Phenylalanine-2 (leucine), 

Alanine-4 (lysine) and Asparagine-7 (glutamine) (IsCT2 residues in brackets). Helical 

wheel analysis demonstrates that these differences cause changes within the hydrophilic 

face of IsCT2, although there is no overall change in charge; this suggests that both 

overall ionic charge and amphipathic nature, as distinct from specific amino acid 

residues, are critical for AMP function. Mutation studies on IsCT (Lee et al., 2004) 

showed the importance of the hydrophobic residue at position 6. Substitution of 

Tryptophan 6 for Alanine 6 resulted in a remarkable decrease in both antimicrobial and 

haemolytic activities. Dai and colleagues (Dai et al., 2002) also identified two other 

peptides in the crude venom, analogous to IsCT and IsCT2 (IsCTf and IsCT2f, 

respectively). These latter two peptides are thought to be proteolytic products of the 

parent molecules devoid of the two penultimate amino acids (leucine and 

phenylalanine-NH2 ). IsCTf and IsCT2f have no antimicrobial activity and have no a- 

helical structure as evidenced by CD spectral analysis, implicating these two C-terminal 

residues as critical for function.

Two AMPs, BmKbl and BmKn2, have been identified from the venom gland cDNA 

library of B. martensii (Zeng et al., 2004). These peptides are both basic (BmKbl, 

charge +1; BmKn2, charge +2) and like the IsCT peptides discussed earlier, also have 

amidated C-terminals. BmKbl has a 52 amino acid pre-pro sequence containing a 22 

amino acid signal sequence, which after post translational modification gives an 18 

amino acid mature peptide. In comparison, BmKn2 has a 47 amino acid pre-pro 

sequence containing a 23 amino acid signal sequence, finally resulting in a 13 amino 

acid mature peptide. Secondary structure predictions suggest that both BmKbl and 

BmKn2 have a-helical regions (amino acids 2-16 and 2-11 respectively) flanked by two
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random coils; helical wheel projections demonstrate their amphipathic natures. The 

shorter and more highly charged BmKn2 is considerably more active than BmKbl 

(MICs for Gram-positive organisms were typically 0.4-6pM for BmKn2 as compared 

with 9-45 pM for BmKbl; MICs for Gram-negative organisms were typically 1-15 pM 

for BmKn2, as compared with 10-50 pM for BmKbl). The activity of BmKn2 against 

18 strains of multidrug resistant N. gonorrhoeae has recently been analysed via an MTT 

assay with these strains having an MIC50 value of between 6.9-27.6 pM (Arpomsuwan 

et al, 2014). This study also noted the C-terminally amidated residue was critical for 

function with a dramatic decrease in activity observed upon deletion.

Based on these findings, PCR primer sets were designed to detect BmKl homologues in 

other venoms, for example mucroporin from Lychas mucronatus (ornate black scorpion) 

(Dai et al., 2008) and imcroporin from I. maculates (Zhao et al., 2009). Mucroporin 

shows 51 % homology with BmKbl and consists of a 35-amino acid pre-pro peptide 

which gives rise to a 17 residue mature peptide amidated at the C-terminal. Mucroporin 

(charge +1) and a mucroporin-Ml analogue (charge +5) were both active against Gram- 

positive bacteria (MIC values 3-29 pM), although the difference in charge did not have 

a consistent effect on bacterial susceptibility. In contrast, both peptides had much 

weaker activity against Gram-negative bacteria, with MIC values greater 50 pM (Dai et 

al., 2008).

Because S. aureus was particularly sensitive to mucroporin M l, this peptide was further

tested against clinically important isolates of this particular bacteria. The data revealed

that mucroporin-Ml can inhibit a range of antibiotic-resistant pathogens of both

methicillin- and penicillin- resistant strains (4-10 pM), as well as penicillin- sensitive

strains (4-20 pM). Scanning electron microscopy (SEM) studies showed rapid lysis of
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bacterial cells after mucroporin or mucroporin-Ml treatment, suggesting a membrane 

disruptive mechanism. Mucroporin Ml has been shown to specifically inhibit RNA 

viruses, including SARS-corona virus, influenza and measles viruses, presumably by 

targeting the viral membrane (Li et al., 2011). DNA viruses were not inhibited. The 

same groups have more recently shown (Zhao et al., 2012) that the peptide inhibits 

hepatitis B virus replication, both in vitro and in vivo, by activating the mitogen- 

activated protein kinase (MAPK) pathway, which resulted in the down-regulation of the 

nuclear hormone transcription factor, HNF4a.

Imcroporin, the second peptide identified as a BmKbl homologue through a PCR 

screen, has the same number of amino acids and charge, as mucroporin. Secondary 

structure prediction and helical wheel analysis suggested that imcroporin has a highly 

amphipathic nature with a 100% alpha-helical conformation (Zhao et al., 2009). The 

antimicrobial activity profile of imcroporin was very similar to mucroporin; growth of 

Gram-negative organisms was weakly inhibited (MICs typically >57 pM) whereas 

Gram-positive organisms, including methicillin- and penicillin- resistant strains of 

clinical isolates of S. aureus were more sensitive to the peptide (MICs typically 11-30 

pM). For comparison, the MICs of all clinical isolates against vancomycin were 3 pM. 

Imcroporin was also tested in an in vivo mouse model (Zhao et al., 2009). The peptide 

(single dose, 60 pg/g, given one hour after intraperitoneal infection with S. aureus) was 

as effective as vancomycin (60 pg/g) in curing mice; all mice survived, seven days after 

treatment. However imcroporin also exhibited significant cytolytic properties against 

mammalian cell lines and red blood cells, as evidenced by MTT assays and haemolysis 

assays respectively. Imcroporin (57 pM) killed between 25-100% of kidney and 

hepatoma cells and haemolysed 70% of human erythrocytes. Kill kinetics and enzyme
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activity assays of cell supernatants revealed, as with mucroporin, a rapid membrane 

disruptive mechanism of action.

The great majority of scorpions are considered harmless and probably as a consequence, 

the characterisation of peptides found in their venom glands has been very limited. The 

Asian scorpion, Scorpiops tibetanus (higher mountain scorpion) is one such example 

and Cao, Li and colleagues (Yuan et al., 2010) have cloned a new antimicrobial peptide 

gene (StCTl) from S. tibetanus by screening a venom gland cDNA library with IsCT 

primers. The precursor of StCTl is characterized by a signal peptide (24 amino acids) 

followed by a putative mature peptide of 14 residues and finally, an unusual 37-amino 

acid acidic propeptide at the C-terminus, suggesting that the mature peptide is C- 

terminally amidated. A synthetic amidated peptide corresponding to the putative 

mature peptide of StCTl showed preferential activity towards S. aureus with weak 

activity towards Gram-negative organisms, in a similar manner to mucroporin and 

imcroporin. MIC values against MRSA strains ranged between 85-135 pM whilst 

penicillin-resistant strains were more sensitive (MIC 34 pM). It is interesting to note 

that although the amidated StCl peptide has approx 40% homology with IsCT, the latter 

peptide (in contrast to StCl) has activity against both Gram-positive and Gram-negative 

organisms. Using the same approach, a StCT2 gene has also been cloned (Cao et al.,

2012). A synthetic, amidated 14 amino acid StCT2 peptide, corresponding to the 

predicted mature peptide, also showed potent activity against S. aureus and methicillin 

resistant S. aureus (MICs values 3-13 pM). Both StCTl and StC2 peptides belong to 

the NDBP -5 family.

Two structurally divergent peptides (meucin-18; meucin-13) have been isolated from a 

venom gland library of the Asian scorpion Mesobuthus eupeus (lesser Asian scorpion)



by a random sequencing strategy (Gao et al., 2009). Based on MIC values, most Gram- 

positive organisms were 3-4 fold more susceptible to meucin-18 than meucin-13, while 

Gram-negative organisms were 2-5 fold more susceptible to the longer peptide. 

Meucin-18 was also 2-14 fold more potent than meucin-13 against a range of fungi and 

yeast.

Both meucin-18 and meucin-13 were cytotoxic toward rabbit erythrocytes; however 

meucin-18 (6.25 pM) was twice as haemolytic as meucin-13 at the same concentration 

(74 vs 38% haemolysis, respectively). Whole cell patch clamp experiments identified a 

sharp decrease in ion currents followed by a rapid, partial recovery, when rat dorsal root 

ganglion (DRG) cells were exposed to either peptide. These electrophysiological 

experiments were supported by morphological studies, when the surface of DRG cells 

was transformed from a smooth to a rough state after incubation with peptides. 

Evidence for the peptides causing membrane permeabilization in microbial cells 

(bacteria, yeast and fungi) was obtained with the fluorescent DNA-binding dye, 

propidium iodide. Taken together, these studies suggest that meucins cause permanent 

cell damage.

Gao and colleagues (2009) have then gone on to try and rationalize their biological data 

in terms of structural differences between meucin-13 and meucin-18. Meucin-13 has an 

amidated C-terminal in contrast to meucin-18 which does not. Extensive structural 

studies have been carried out on both peptides using CD spectroscopy and NMR 

spectrometry. The CD spectrum of meucin-13 in 50% TFE characterized the peptide as 

being primarily a-helical. This was confirmed by NMR, which identified an a-helical 

structure between residues 5-13 with an unordered N-terminus. Meucin-18 showed 

similar results to meucin-13, although NMR revealed a more ordered N-terminal 

structure. This is thought to be due to the presence of alanine at position 6 (meucin-13)
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instead of phenylalanine (meucin-18). A structurally ordered N-terminus is postulated 

to be important for biological activity. Gao and colleagues have also suggested that 

differences in biological potency might be related to differences in the 

hydrophilic/hydrophobic balance between the two meucins due to the more balanced 

amphipathicity of meucin-18. The C-terminal extension of meucin-18 with a free 

(charged) carboxy terminus means that overall, meucin-13 is more hydrophobic. This 

relative increase in hydrophobicity may reduce the biological activity of the latter due to 

its increased self-association in aqueous solution (Jiang et al., 2008). Gao and 

colleagues also noted that meucin-18 has a positively-charged region (adjacent lysine-6 

and lysine-11 residues) that could prove crucial for increased interaction with 

negatively-charged prokaryotic membranes.

The pattern of a-helical peptides from scorpion venoms showing preferential activity 

towards Gram-positive organisms has continued with the cloning of Ctriporin by the 

random screening of a large number of clones from the venom gland cDNA library of 

Chaerilus tricostatus (big Charles scorpion) {Fan et al., 2011). Ctriporin is a 19 amino 

acid peptide (net charge: +2) with, like many other previously described peptides, an 

amidated C-terminus that is produced by the post translational cleavage of a 34-residue 

acidic propeptide. Secondary structure analysis and CD spectra of the peptide in 30 and 

70% TFE revealed an amphipathic a-helical structure. However, the ambiguity still 

remains as to whether the peptide is completely a-helical or contains a random coil 

region, due to the presence of glycine-4, glycine-7 and proline-8, residues known to 

disrupt a-helical structures. MIC values (Gram-positive organisms) ranged from 3-5 

pM whereas Gram-negative organisms had MICs >49 pM). All clinical isolates of 

MRSA strains gave MIC values of 5 pM (c.f. vancomycin 3-6 pM). Similarly the 

penicillin-resistant strain of Staphylococcus epidermidis had an MIC of 5 pM,
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analogous to vancomycin. Ctriporin also had antifungal activity against Candida (MIC 

10 pM) and in vivo studies with mice demonstrated that topical applications of the 

peptide were more effective than currently established topical treatments, pexiganan and 

omiganan pentahydrochloride in treating fungal and S. aureus infections. Time kill 

kinetics and SEM studies suggested that ctriporin caused a rapid disruption of cell 

membranes, analogous to other a-helical peptides.

Two further short AMPs (AamAPl and AamAP2) have been isolated from the venom 

of the North African scorpion Androctonus amoreuxi (big tailed scorpion) (Almaaytah 

et al., 2012) and the precursor-encoding cDNAs have been cloned, using a shot-gun 

approach. They both have 18 amino acids and are amidated at their C-termini. AamAPl 

and 2 differ by only 2 residues with leucine being replaced by proline at position 2 and 

phenylalanine being replaced by isoleucine at position 17. Secondary structure 

prediction suggested that AamAP2 has a far greater random coil region than AamAPl. 

However these structural differences did not manifest themselves in changes in 

biological activity. Although neither peptide was particularly active (MICs 20-150 pM) 

AamAPl was slightly more active against Gram-negative organisms while the reverse 

was true for Gram-positive organisms. Both were equally effective against yeast and 

caused a significant haemolysis of red blood cells in the same concentration range.

Using a size-selective screening strategy, three new antimicrobial peptides (Pantinin-1, - 

2 and -3) were characterized from a venom gland cDNA library of the African scorpion 

P. imperator (Zeng et al., 2013). All three were predicted to be mature peptides of 13- 

14 amino acid residues with precursor peptides indicating the now-characteristic C- 

terminal post-translational processing, resulting in C-terminal amidation. Peptides were 

cationic and secondary structure prediction suggested that pantinins are a-helical,
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amphipathic structures. Amino acid sequence homology revealed that these peptides 

belong to the ever-growing 5th family of NDBPs. Pantinins are relatively potent 

against Gram-positive bacteria (MICs 4-48 pM), including vancomycin- and 

methicillin-resistant bacteria but are much weaker against Gram-negative bacteria 

(MICs 36- >87 pM). In addition to their antimicrobial activities, the three peptides 

showed haemolytic activity on human RBCs in a dose-dependent manner.

Two C-terminal amidated peptides (TsAP-1 and -2) have been isolated from the venom 

of T serrulatus by shot gun cloning and LC-MS identification (Guo et al., 2013). Each 

peptide contained 17 residues with a net charge of +2. TsAP-1 had very weak 

antimicrobial activity against yeast and both Gram-positive and Gram-negative 

organisms (MICs typically 120-160 pM) and showed very little haemolytic activity. 

TsAP-2 had no effect against Gram-negative organisms at the highest concentrations 

tested but was surprisingly effective in inhibiting the growth of both yeast and Gram- 

positive organisms (MICs 5-10 pM). TsAP-2 had weak haemolytic activity (18%) at 

four times the MIC for Gram-positive bacteria. The a-helical content (76% TsAP-2 vs. 

59 % TsAP-1) and hydrophobicity (0.51 hydrophobic moment TsAP-2 vs. 0.43 TsAP- 

1) has been suggested for the divergence in biological activities of these two peptides.

As part of this study the biophysical characterisation of the mechanism of action of 

AMPs will be examined, in part, on hydrated lipid bilayers using both atomic force 

microscopy (AFM) and quartz crystal microbalance-dissipation (QCM-D). Below is an 

explanation of these techniques.
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1.12 Atomic force microscopy

The utilisation of atomic force microscopy (AFM) in the field of materials science has 

proved useful in obtaining molecular scale images within the materials native 

environment (El Kirat et al., 2010). It provides three-dimensional images with 

nanometre scale resolution and can provide crucial information regarding the physical 

properties of the surface such as surface topology, hardness and elasticity. AFM has 

traditionally been used within the physical sciences, however, more recently the ability 

to image biomaterials in a pseudo native state, not possible in other high resolution 

techniques such as SEM and transmission electron microscopy (TEM), has been 

explored (Medalia et al., 2001).

AFM functions by moving a fine cantilevered tip over the samples surface in a raster 

fashion with electrostatic interactions, typically Van der Waals forces, between the 

surface and the tip causing the tip to deflect which in turn is detected and recorded by 

the machine. As seen in figure 1.8 an AFM system consists of a cantilevered probe 

containing a sharp tip, typically silicon nitride with a diameter of 5-20 nm, which is 

mounted to a piezoelectric actuator and photo sensitive diode. The PZT scanner itself is 

capable of moving the sample in the x, y & z direction (Binnig et al., 1986)

The principle of AFM is to shine a laser beam on to the top surface of the cantilever 

whilst the tip is scanning a surface, this beam is re played back to the photo electric 

diode through a feedback loop which allows the PZT to change position and thus keep a



constant force/constant height between sample and tip. By maintaining these constants 

through repositioning of the scanners it is possible to attain topological information of 

the sample. There are 3 modes in which an AFM system is operated in (Binnig et al., 

1986): (I) contact mode (II) non- contact mode and (III) tapping mode. In each mode it 

is possible to attain topological information as well as changes in electrostatic, magnetic 

and atomic forces with the sample.

1.12.1  O peration characteristics o f AFM

• Contact mode

In contact mode the tip is constantly touching the sample surface, whilst the tip scans 

physiochemical information is determined mainly via repulsion of interatomic electron 

clouds between the tip and surface due to the extremely small distances between them. 

Contact mode can be operated in both constant height and constant force mode. In 

constant height mode the PZT scanner only moves in the x & y direction and keeps the 

z direction constant accurately measuring topology. In constant force mode, upon initial 

interaction between tip and sample, a constant force required to keep the tip at a specific 

deflection (due to atomic repulsion) is set and this required force is maintained via the 

feedback mechanisms described previously. One advantage of contact mode is the speed 

at which the sample can be scanned. However, due to constant contact between tip and 

sample damage can occur with soft sample material and, therefore, is seldom used for 

biological applications (Morita et al., 2009)

• Non-contact mode

In non-contact mode the tip is oscillated and remains a distance of between 50-150 A 

above the sample surface, this oscillation is required for the detection o f electrostatic



interactions between tip and sample due to the distance between them. When the tip is 

oscillating in free air a set amplitude can be determined, however, upon closer 

electrostatic interaction between sample and tip, energy will be dissipated and a change 

in amplitude will be detected which is then relayed back through the feedback system to 

readjust the position of the PZT scanner. Because of the lack of tip-sample interaction 

non-contact mode yields higher resolution images than contact mode and does not 

suffer from sample degradation of soft material, thus is applicable for biological 

samples. One of the major drawbacks of non-contact mode is interaction with the tip 

and fluid layers that build up upon the sample surface which results in a loss of 

resolution as electrostatic interactions tend to occur between the tip and this 

contaminant layer instead of the actual surface (Morita et al., 2009).

• Tapping mode

Tapping is essentially a cross between contact and non-contact mode where the tip 

gently taps the surface as it scans. In this mode the tip is oscillated at near it's resonate 

frequency in free air with amplitudes between 20-100 nm. The tip is then lowered 

towards the surface until interaction occurs. As the sample is scanned the oscillating tip 

taps the surface at a set frequency and as with non-contact mode dissipation of energy 

occurs due to an increase of electrostatic forces. The PZT scanner then adjusts to 

maintain a set amplitude. By maintaining this set amplitude the samples topology can be 

mapped as a depression in the surface with relayed an amplitude signal near to the free 

air signal conversely any elevation with result a decrease in amplitude. Because of the 

high resolution and soft approach of tapping mode it is routinely used for biological 

samples (Morita et al., 2009).
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piezoelectric 
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Figure 1.9: Schematic illustration of a scanned tip AFM system. (Trache and Meininger. 2005). 

A flexible cantilever with a tip at the end is rigidly connected with a xyz piezoelectric element. 

The optical lever consists of a laser diode beam that is focused on the back o f the cantilever and 

bounces off reaching the photodetector. The photodetector is connected via a feedback loop to 

the z controller to alter the height of the cantilever to the original set point therefore mapping the 

features of a surface with respect to its height (Tsargorodska. 2007).
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1.12.2 Force volume curves

As well as obtaining crucial information regarding the topological and physicochemical 

properties of a surface, AFM can also be used to determine the 'stiffness' of the sample 

by using atomic force spectroscopy (AFS) to generate a force curve (Fig. 1.9).

AFS is carried out in contact mode and is the point wise analysis of the sample by 

determining the deflection of the cantilever as the z distance decreases with respect to 

tip sample-distance. Thus, as the z distance decreases, the progression of the cantilever 

deflection is recorded. Due to the initial tip-sample distance being a function of the 

reading, AFS spectra is a relative reading (Polyakov et al., 2011).
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retract curve
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Figure 1.10: Schematic of a force spectroscopy curve (Fuentes-Perez et al, 2013). (1). 

The electrostatic interactions between the tip and sample are seen and the cantilever tip 

is pulled towards the surface (2). As the tip and surface physically touch mechanical 

properties come into play and the tip cantilever is bent upwards (3). When undertaking 

AFS with deformable materials such as lipid bilayers, the puncturing of the bilayer is 

seen as the mechanical force increases and it is a good way of measuring the stiffness of 

a bilayer and after initial bilayer formation after lipid rupture if a double bilayer has 

been formed. The red line represents the retraction of tip from the surface (4) hence the 

force is decreasing as the mechanical stress between the tip and surface are relieved. 

However as can be seen a deviation between the approaching and retraction line occurs 

which is due to the electrostatic attraction occurring between tip and surface; at (5) the 

remaining adherence between tip and sample are being disrupted thus the force 

increases as more energy is required to pull away from the surface (Polyakov et al., 

2011 ).
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1.13 Quartz crystal microbalance-dissipation (QCM-D)

As with AFM, QCM-D was initial developed for use within materials science and 

electrochemistry (Rodhal et al., 1997), however in recent years it has been adapted to 

biological science (Dixon., 2008). QCM-D is based on the inherent piezoelectric effect 

of a quartz crystal, when an alternating current (AC) is applied the crystal will oscillate 

in shear mode (side to side) close to the resonant frequency (fR) due to continued 

expansion and contraction of the crystal lattice structure which generates acoustic 

waves. The crystal has a very high quality factor (Q factor) which is a ratio of the 

frequency and bandwidth with the frequency partially dependent on the thickness of the 

crystal therefore any change in thickness is related in a linear fashion to a decrease in 

the frequency if all the other variables remain constant. The dissipation reading is a 

determines the loss of energy from the crystal surface to the environment and is a 

measurement of the visoelestic properties of the crystal associated film after the AC is 

turned off, essentially the “wobbliness” of the crystal as the shear oscillation begins to 

stop, this is achieved by measuring the decay of the crystals oscillation after rapid 

excitation close to the fR. Thus when a phospholipid membrane is adhered tightly to the 

crystal surface a high frequency and low dissipation is observed, however as peptide 

adheres and begins to disrupt the membrane the frequency will decrease as the thickness 

of the crystal increases and as the peptide disrupts the packing order of the membrane 

the dissipation reading will increase as the membrane begins to disassociate from the 

crystal surface and interact with the liquid environment (Rodhal et al., 1995, 

Piantavigna et al., 2011, Rydberg et al., 2014). This is depicted in figure 1.10.
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Figure 1.11: Explanation of the QCM-D reading upon peptide attack-before peptide interaction 

the bilayer is tightly bound to the crystal surface resulting in steady disipation and frequency 

readings (flat red and green lines). As AMPs begin to accumulate and attack the surface the 

frequecny decreases as more mass is on the crystal surface whilst an increase in disipation is 

observed due to peptide disruption of the bilayer and increased interaction between the crystal 

surface and the fluid mobile phase (Piantavigna et al., 2011).
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1.14 Scope of the present study

This present study aims to mine the relatively unexplored resource of snake venoms for 

novel antimicrobial peptides using an empirical strategy (protein purification) to 

maximise our chances of finding novel antimicrobial compound scaffolds. It also aims 

to further our understanding of scorpion AMP mechanism of action which, in turn, will 

have wider implications for the study of AMP mechanism of action as a whole. Such an 

understanding will be critical if this promising research area is to progress into the 

clinical setting.

The objectives were to:

• Identify novel AMPs from snake venoms of both vipridae and elapidae origin 

and from distinct geographical regions to minimise degeneracy

• Characterise the interactions of these peptides with bacterial cells identified 

previously through the genomic analysis of the North African scorpion Scorpio 

maurus palmatus

• Ascertain the mechanism of action of these peptides on whole cells. Including 

insights into the possibility of intracellular targets

• Investigate the mechanism of interaction of these peptides with synthetic model 

membrane systems using a variety of biophysical techniques
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2 CHAPTER 
MATERIALS AND METHODS
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2.1 Purification and characterisation

2.1.1 Venom

Table 2.1 details the snake venoms used within this study, the family they belong to and 

the geographical region of the snakes natural habitat. Venoms were either purchased 

from Sigma (UK), Latoxan (France) or gifted by Mohamed Abdel-Rahman from the 

Institute of Zoology, Suez Canal University, Ismailia, Egypt. Venoms were chosen from 

both elapidae and viperidae families from a variety of geographically distinct regions to 

both maximise the chances of identifying novel AMP scaffolds and to minimise the 

chance of degeneracy.
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Table 2.1: Venoms used within this study

Species Family Geographical location

Bids arietans viperidae Sub-Saharan Africa

Cerastes cerastes viperidae North Africa

Crotalus adamanteus viperidae North America

Dendroaspis polylepis elapidae Eastern Africa

Naja heje elapidae North Africa

Nochetis scutatus elapidae Austrialia
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2.2 Purification of venom constituents

Venom was initially separated by being subjected to one round of gel filtration and then 

further purification on ion exchange. The quantity of venom purified was dependent on 

supply and is individually listed within chapter 3. For the gel filtration, Superdex 200 

prep grade matrix (Sigma, UK) was packed into a HiLoad® 26/60 column (GE 

Healthcare, Sweden) according to the manufacturer’s instructions to give a bed volume 

of 400 ml. The buffer used was 50 mM sodium acetate containing 20 mM sodium 

chloride (NaCl) at pH 4.3 (Buffer A), NaCl was included to inhibit electrostatic 

interaction between the venom and the matrix. The venom was resuspended in 2.5 ml of 

degassed buffer A and subjected to 10 mins centrifugation at 10,000 G on a bench top 

centrifuge (Eppendorf, UK) to remove any insoluble particulates, loaded onto the 

column via a manual injection loop and 1.5 column volumes (CV) of Buffer A was 

passed through the column at a flow rate of 0.5 ml/min. Protein concentration was 

monitored at 280 nm and 3 ml fractions were collected. Fractions were pooled, tested 

for their antimicrobial activity and the pooled fraction concentration determined at 280 

nm on a Nanodrop ND-1000 (Thermo scientific, UK). Active fractions were then 

subjected to ion exchange.

A HiLoad® 16/20 column was packed with SP sepharose high performance matrix 

according to the manufacturer’s instructions. The column was equilibrated with buffer 

A and then the active fraction loaded, 5 CV of buffer A was then passed through to 

wash out any unbound protein. The column was then subjected to a gradient of 0-100% 

B over 20 CV (buffer B-50 mM sodium acetate containing 1M NaCl at pH 4.3) at a 

flow rate of 0.5 ml/min, with protein concentration measured at 280 nm, 3 ml fractions 

were collected and individual peaks pooled. The antimicrobial activity of each fraction 

was determined.

80



2.2.1 Peptide synthesis

Smpl3, Smp24, Smp24GVG, Smp24T, Smp43 & Pin2 were synthesised by 

Prolmmune, Oxford, UK.
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2.2.2 MALDI-TOF analysis

MALDI-TOF spectrometry profiling was carried out on a Voyager-DE STR (Applied 

Biosystems, UK) in positive linear mode equipped with a 355 nm NDYAG solid state 

laser operated at 60 Hz. The analysis of samples was performed using a variable mass 

range depending on sample and a total of 400 shots were acquired per spectrum with a 

delay of 750 ns and a grid of 93%. Calibration of the instrument was performed using 

ion signals from a peptide/protein mixture (5000-17,000 Da), consisting of Insulin, 

Cytochrome C, Apomyoglobin and Human haemoglobin. Alpha cyno-4- 

hidroxycinnamic acid (CHCA) was used as the proton donor matrix. CHCA was 

dissolved at lOmg/ml in a 70:30 ethanol/acetonitrile solution and mixed with equal 

concentrations of sample (3 pi). These samples were then spotted (0.5 pi) on fresh 

aluminium sheets recently cleaned with acetone and allowed to dry before being 

attached to the target plate using double sided conductive carbon tape (TAAB, 

Berkshire UK) which prevented cross contamination from previous samples.

2.3 Biological Characterisation

2.3.1 Antimicrobial assay

The following microbes were used throughout this study and are listed below:

Escherichia coli JM109, Pseudomonas aeruginosa NCIMB 8295, Bacillus subtilis 

NCIMB 8024, Staphylococcus aureus SHI000, Klebsiella pneumoniae NCTC 13439, 

Staphylococcus epidermidis ATCC12228 & Candida albicans ATCC10231

Antibiotic resistant strains of S. aureus used were as follows: methicillin-resistant S.

aureus (MRSA) ATCC 33591, epidemic methicillin-resistant S. aureus (EMRSA) 15

and EMRSA-16, clinical isolate MRS A mecA mupA positive, along with the

83



vancomycin intermediate resistant S. aureus (VISA) Mu50, VISA 1235 and VISA 

1697. All clinical isolates were from K.miller (SHU) personal collection.

All antimicrobial assays were carried out by the microplate dilution method described 

by Andrews. (2001) and performed on a Tecan CENios Plus (Tecan, Switzerland) 

Synthetic AMPs were examined at a concentration range of 0-512 pg/ml whilst purified 

snake venom compounds were assayed, in the first instance at 50, 25 and 12.5 pg/ml. 

All samples were tested in duplicate on two separate occasions.

2.3.2 Haemolysis assay

Haemolytic activity was determined on sheep erythrocytes as described by Corzo et al., 

(2001). Synthetic AMPs were examined at a concentration range of 0-512pg/ml whilst 

purified snake venom compounds were assayed at 50, 25 and 12.5 pg/ml. Haemolysis 

was determined on a Tecan Infinite M200 (Tecan, Switzerland) at 570nm. 10% Triton 

X was used as a positive control with deionised water used as negative control. All 

samples were tested in triplicate.

2.3.3 Cytotoxicity assay

An ATP release assay (Sigma, UK) was used to determine the cytotoxic potential of 

peptides against HepG2 liver cells in accordance with the manufacturer’s protocol. The 

HepG2 cells were grown in Dulbecco modified Eagle’s minimal essential medium 

(DMEM) glutamate max medium contain 1 g/1 D-glucose, 10% foetal calf serum (Batch 

processed) and pen-step. Cells were grown at 37°C with 5% carbon dioxide until 80% 

confluence was reached. Cells were then trypsinised, washed in 1 x phosphate buffered 

saline (PBS) and resuspended at the desired concentration to be plated to a final density 

of 110,000 cells/well. Cells were incubated for 24 hrs (hours), washed with PBS and 

then peptide samples were added and incubated for 15 mins. Synthetic peptides were
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incubated at a concentration of 0.5-512 pg/ml whilst purified snake peptides were 

incubated at 50, 25 and 12.5 pg/ml for 1 hr. All assays were performed in triplicate. 

10% Triton X was used as a positive control and deionised water used as a negative 

control. Luminescence was determined on a Wallac Victor2 1420 multi-label counter 

(Perkin Elmer, Llantrisant, UK).

2.3.4 Membrane integrity assay (BacLight)

Bacterial membrane integrity following antimicrobial peptide attack was determined by 

the Baclight method described below and adapted from Hillard et al. (1999). Bacterial 

membrane integrity was determined for both Gram positive (S. aureus SHI00) and 

Gram negative (E. coli JM109) organisms using the live/dead Baclight kit (Invitrogen 

UK). Overnight cultures were diluted with Muller-Hinton broth to an optical density of 

between 0.5-0.6 at 600 nm, 500 pi of culture was pelleted at 10,000 G for 15 mins for 

each sample to be tested and subsequently washed with PBS. The pellet was 

resuspended in 475 pi of deionised water and 25 pi of peptide added at 4x MIC (for the 

snake purified fractions 50 pg/ml was used) and incubated at room temperature for 10 

mins on a rocking platform. Each sample was then centrifuged at 10,000 G for 10 mins 

and resuspended in 500 pi of deionised water. The optical density was adjusted to 0.5 

OD600 before 1.2 pi of BacLight reagent was added according to the manufactures 

instructions and incubated for 15 mins in the dark at room temperature. Fluorescence 

was measured at both 645 nm and 530 nm to determine both intact (green) and damaged 

(red) cells respectively. The excitation wavelength was 485 nm for both. 100% loss of 

membrane integrity was determined by the addition of 10% triton X whilst deionised 

water was added as a negative control. All samples were performed in triplicate.
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2.3.5 Intracellular bio-reporter gene assay

To determine if any of the peptides had intracellular targets a B. subtilis reporter gene 

assay was performed as described by Urban et al. (2007). In the study, a set of five B. 

subtilis promoters were fused to the firefly luciferase reporter gene, enabling a 

comprehensive high-throughput detection system of antibiotic interference in the major 

biosynthetic pathways of bacteria: the biosynthesis of DNA by the yorB promoter, of 

RNA by the yvgS promoter, of proteins by the yhel promoter, of the cell wall by the 

ypuA promoter were all used which had previously been identified by microarray to be 

consistently overexpressed when cells were under attack antibiotic agents known to 

target these pathways. These reporters were validated using 14,000 pure natural 

products, representing a source of highly diverse chemical entities, many of them with 

antibiotic activity (6% with anti-B. subtilis activity of <25 pg/ml]). In the assay all 

samples were exposed to 50% the MIC (Smp24 2 pg/ml, Smp24GVG 4 pg/ml, Smp24T 

4 pg/ml, Smp43 4 pg/ml, Pin 2 4 pg/ml) of each peptide in triplicate and with 

luminescence determined on a Wallac Victor2 1420 multi-label counter (Perkin Elmer, 

Llantrisant, UK) using thw luciferin/luciferase assay according to the manufactures 

instructions (Promega, UK). Responses were determined by calculating the % increase 

from the negative control.

2.4 Biophysical determination of mechanism of action

2.4.1 Lipids used within study

All lipids used in the study were purchased from Sigma (UK) and are listed in table 2.4 

along with their charge state, propensity to cause curvature and lipid packing.
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Table 2.3: Lipids used within this study

Lipid name Charge state (pH 7) Notes

1,2-Dioleoyl-5«-glycero-3- 
phosphocholine (DOPC) Neutral

1,2-Dioleoyl-^77-glycero-3- 
phospho-rac-( 1 -glycerol) 

(DOPG) Negatively charged

1,2-Dioleoyl-5«-glycero-3- 

phosphoethanolamine 

(DOPE)

Neutral Induces negative curvature

Cholesterol
Negatively charge hydroxyl 

(OH) group that interacts 
with the aqueous phase

Induces lipid packing and 
membrane thickening

Cardiolipin Negatively charged Commonly found with 
bacterial membranes

Sphingomyelin Neutral

Induces the presence of 
lipid rafts due to its higher 

melting point compared 
with other lipids
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2.4.2 Bilayer preparation

Supported lipid bilayers were produced by vesicle rupture (Heath et al., 2013). Briefly, 

lipids were resuspended in chloroform, mixed and dried under nitrogen. The lipids were 

then resuspended in milli Q-Water (Millipore, Billerica, MA) to a final concentration of 

0.2mg/ml and tip sonicated for 10 mins.

2.4.3 AFM imaging of hydrated lipid bilayers

Supported planer lipid bilayers were produced on a freshly cleaved mica surface by 

vesicle rupture. 200 pi of vesicles were placed onto the mica surface and incubated in 

the presence of 2 mM magnesium chloride for 15 mins at room temperature; after which 

8 washes with 100 pi of milli Q were performed to remove unruptured vesicles. The 

presence of a uniform bilayer was confirmed by lateral scanning in tapping mode over a 

8 pm2 area and the presence of multiple bilayers was ruled out by a statistically 

significant (nine) number of force spectroscopy curves.

Observations of the attack of Smp42 were performed using either a Nanoscope Ilia 

Multimode atomic force microscope (Digital instruments Santa Barbara CA) or a Zeiss 

Axiovert 100 M (Zeiss Microimaging GmbH, Germany). To observe the membrane 

disruptive mechanism of Smp43 a Dimension FastScan® Bio™ (Bruker, UK) was used. 

For all experiments oxide sharpened silicon nitride tips with a typical spring constant of 

0.32 N m-1 were used.

2.4.4 QCM-D protocol

Silicon dioxide sensor crystals (5 MHz) were used for the QCM-D experiments (Q-

Sense AB, Gothenburg, Sweden). QCM-D sensor crystals were cleaned by sonication

for 15 mins in 0.4% (w/v) SDS followed by thorough rinsing in ultrapure water, before
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a further 15 mins sonication and thorough rinsing in ultrapure water and finally dried 

under oxygen free nitrogen. The substrates were then further treated for 30 mins with 

UV/ozone (UV/ozone cleaning system, low pressure quartz mercury vapour lamp 

emitting 254 and 185 nm UV, UVOCS, Montgomeryville) followed by rinsing in 

ultrapure water and dried under oxygen free nitrogen. QCM-D experiments were 

performed on the Q-Sense E4 (Q-Sense AB, Gothenburg Sweden). Experiments were 

performed using silicon dioxide sensor crystals (Q Sense AB, Gothenburg, Sweden) at 

22 °C. Changes in the dissipation, D, and normalised frequency, f, (f = f  n/n where n is 

the number of the overtone, i.e. n = 3, 5, 7 etc.) of the 5th overtone (n = 5, 25 MHz) are 

presented in this work. Vesicles and buffer used were degassed under vacuum and 

incubated at the appropriate temperature in a block heater (Grant Instruments, 

Cambridge) before being introduced to the system. Bilayer formation occurred as 

follows. Initially milli-Q water was injected into the system at 40 pL/min to determine 

the resonant frequencies of the overtone after which the vesicle solution was injected at 

the same flow rate at a concentration of 0.2 mg/ml. Both frequency and dissipation were 

monitored until vesicle absorption and rupture occurred and a planar lipid bilayer 

formed. After the dissipation reading had stabilised the bilayer was rinsed to remove 

excess vesicles. Successive peptide concentrations were then injected at a flow rate of 

50 pL/min with changes in dissipation and normalised frequency being monitored for a 

period of 20 mins before the next injection. Changes in the dissipation, D, and 

normalised frequency, f, (f = f  n/n where n is the number of the overtone, i.e. n = 3, 5, 7 

etc.) of the 5th overtone (n = 5, 25 MHz) are presented in this work.
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2.4.5 Liposome leakage assay

Liposomes for leakage assays were made differently from those of AFM and QCM-D 

with the lipid extruder method employed modified from Xue et al, (2009). Differences 

in lipid preparation were due to the need for a uniform intact liposome preparation in 

this assay compared with the eventual rupture and bilayer formation observed in AFM 

and QCM-D.

Liposome compositions were mixed and dissolved in chloroform and the solvent 

evaporated under a stream of nitrogen gas. The lipids were resuspended in 1 ml of 

carboxyfluorescein (CF) Buffer (50 mM sodium phosphate, lOmM NaCl and 1 mM of 

ethylenediaminetetraacetic acid (EDTA) pH 7.4) saturated with CF and then sonicated 

for 60 mins in a sonicating bath. The lipid preparation subsequently underwent 5 rounds 

of freeze thawing using liquid nitrogen after which the preparation was extruded using 

an Avanti lipid extruder (Avanti lipids, USA) with a membrane containing a 100 nm 

molecular cut off. Unencapsulated CF was removed by 3 centrifugation washes using a 

Beckman TLA-120.2 Rotor on the Beckman Optima TLX (Beckman, UK) at 100,000 

rpm for 30 mins. The liposomes were then resuspended in 1 mL of CF liposome buffer 

and stored at 4°C in the dark overnight for the liposome dye release assay. The 

liposome dye release assay was then performed as follows: 20 pL of sample, 10 pL of 

liposomes and 170 pL of CF liposome buffer were inoculated into wells of a black 96 

well plate to give the final volume of 200 pL. The well contents were mixed during 

plate inoculation and incubated in the dark for 15-25 min. CF fluorescence was 

measured on the Tecan infinite M200 plate reader (Tecan, Switzerland). Fluorescence 

excitation was optimised to 480 nm and emission was optimised at 520 nm. Blank CF 

liposome buffer and 10 pL of liposomes were used as a negative control to normalise 

results. 10% Triton-X was used as a positive control to measure complete dye release.



The rate of CF leakage is expressed as a percentage dye release of the total encapsulated 

carboxyfluorescein and then normalised against the blank buffer signal. All samples 

were run in triplicate.
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3 CHAPTER 3
IDENTIFICATION AND CHARACTERISATION OF 
ANTIMICROBIAL PEPTIDES FROM SNAKE VENOMS
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3.1 Background and Aims

A number of antimicrobial peptides have previously been identified in snake venoms. 

However, this rich source of bioactive compounds is relatively unexplored compared 

with other venoms and other natural product reservoirs (de Oliveria et al., 2013). Whilst 

a number of other proteins have been identified as having antimicrobial activity within 

snake venom such as phospholipase A2 (PLA2), L-amino oxidase and C-type lectins 

(Radis-Baptista et al., 2006, Sarny et al., 2011), only a small number of venoms have 

been examined, therefore, exploring a wider range of venoms to isolate their 

antimicrobial components and characterise them biologically as well as determining 

their mechanism of action by determining their membrane destructive effects is 

attractive. This chapter examines a number of different venoms of elapid and viper 

origin and examines their potential as antimicrobial compounds in terms of 

antimicrobial activity and cytotoxic effects. Their membrane damaging effects are also 

assessed to determine a possible mechanism of action. The chapter then moves on to 

assess possible future steps to be taken to create clinically relevant antimicrobial 

compounds from these peptides and suggests how a generalised strategy could be 

applied to structurally divergent snake peptides that could dramatically increase the 

prospects of developing antimicrobial peptides from this rich source of bio active 

peptides.

3.2 Method Summary

Snake venoms were purified as described in 2.1.1. Fractions were pooled into individual

peaks, the protein concentration and antimicrobial activity determined against Gram

positive (S. aureus SHI000) and Gram negative (E. coli JM109) bacteria. Active

fractions were further purified, peaks pooled and the protein concentration and

antimicrobial activity re-examined. Individual active peaks were characterised via
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MALDI-TOF mass spectrometry to determine size and purity. Once activity and purity 

had been determined antimicrobial activity, haemolytic and cytotoxic potential was 

determined at 50, 25 & 12.5 pg/ml. The effect of purified proteins on bacterial cell 

membrane integrity was also examined at 50 pg/ml (if bacteria were susceptible).

3.3 Results

Purified venom proteins are listed in Table 3.1 along with their molecular weights as 

determined by MALDI-TOF mass spectrometry, their antimicrobial activities and 

membrane damaging effects determined by the Baclight assay.
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3.3.1 Isolation and characterisation of an antimicrobial component of Bitis arietans 
venom

Figure 3.1 (a & b) detail the purification of 50 mg of Bitis arietans (puff adder) venom, 

the active fraction was eluted mid way through the run on a Superdex 200 gel filtration 

column suggesting that the protein was above 10 KDa, roughly 30% of the total protein 

concentration loaded onto the column was eluted in this fraction (14.28 mg). Further 

purification using cation exchange yielded 8 peaks with the major peak having activity 

(peak 4) eluted after 25% of the salt gradient suggesting a basic protein it also 

represented a major protein within the venom accounting for 13% (6.59 mg) of total 

protein. Mass analysis was undertaken by MALDI-TOF and is seen in figure 3.1c. 

There is a major peak at 6889.31 with a smaller peak at 13451.07 with a repeating 

pattern of peaks decreasing in size. As there is no peak below 6889.31 it would suggest 

that this is the fragment carrying a double charge therefore the peak at 13451.07 is the 

actual protein (calculated mass of 13450). Based on its molecular weight it is most 

likely a phospholipase A2 (PLA2) protein. The repeat pattern can be explained by 

calculating the ratios of the possible aggregates with the peak at 20218.87 being the 

double ion of the trimer (ratio of 1.990), the peaks at 33520.07 and 47130.24 can be 

assigned as the double charged ions of the quintuplet and septuplet aggregates. In 

biological assays it had broad spectrum antimicrobial activity with full inhibition of 

both E. coli and S. aureus at 25 pg/ml and partial activity seen at 12.5 pg/ml. In 

cytotoxicity assays 89.3% (± 4.9), 49.6% (± 1.7) and 7.9% (± 2.0) haemolysis (figure 

3.2a) was observed with the decreasing concentrations. 71.6% (± 6.7) cell damage 

against was seen HepG2 cells at 50 pg/ml with 28.7% (±4.1) and 9.4% (± 0.2) damage 

detected at the lower concentrations (Fig. 3.3a) As would be expected from such a 

potent broad spectrum peptide, maximum membrane damage was detected in the



backlight assay against both organisms with readings over 100% obtained in both cases 

(Table 3.1). The readings over 100% may be done to slight optical discrepancies 

between the two dyes with propidium iodide being more prominent (Invitrogen 

BacLight data sheet. 214).

97



5 0

4 9 '

4 8 '

4 7 -

4 6 '

4 5 '

4 2 -

4 1

5 0

UVmAu
Active Fmction

4 0 . 0 '
4 5 . 5 '
4 5 . 0 '
4 4 .5 -

4 3 .5 -
4 3 . 0  
4 2 . 5
4 2 . 0  
4 1 . 5 '  
4 1 .0 -  
4 0 . 5 '

3 9 . 0 - r

SO

5500- [M + Hf1*
5000-

4500-

4000-

3000-

2500-

2000- D im er
<o Trim er

1500-

CN
1000'

500 '

5000025000 35000 40000 4500015000 20000 300005000 10000 m *7

Figure 3.1: Isolation and characterisation o f a potential PLA2 antimicrobial protein from B i t i s  a r i e t a n s  

venom (A) Superdex 200 profile with active fraction eluted after 550 ml (B) SP ion exchange o f  fraction 

3 from GF, elution occurred at the beginning o f  the salt gradient reflective o f a weak cationic nature. (C) 

MALDI-TOF analysis revealed a peak at 13415.07 with a number o f  oligomeric structures detected

98



100

60 I

A

Bitis arietons

500 25.0 12.5

PioUsi CoKtnfaJtion ijia nil)

100

80

S 60 >
Ml/

40

20

0

Cerastes cerastes

100

90

80

6 W1

* 40 

30

Crotohts adumotitm

‘
50.0 250 12.5

f t v 4« l C « K 0 lftl*K’n i f l S  m il

100 

90 

80 
70 

# 60 

iJ »
» 40 

30 

20 

10 
0

D

D cih im aspm pohkpis

50.0 25.0 12.5

Piotein o w c a iW w n  1 ms ml)

100

90

80

e 40

20 J

STaja heje

50 0  25 0 12.5

Pi otem < 'oik oiti jtnw (|u ail i

100

90

80

70

•  60 s „> 50

S'otcchs SCUhltllS

I
12.5

I’t<<4CHICl'«K<I|tlAtlOIII|IV nil)

Figure 3.2: Haemolytic effects of antimicrobial snake proteins against sheep erythrocytes. The 

peptide isolated from Dendroaspis polylepis (D) exhibited very low haemolytic activity even at 

the highest concentration of 50 pg/ml

99



100

90

80

| 70
M 60 ■

t 50

t  30 

20 

10 

0

100 

90 

80 

u 70

I  60

< 40 
o' 30

10

Bids iinektm

i—
250

htXeui ( 'oituiiii .rfioii (fig ml)

12.5

Crotlausudamonteiis

1 1
500 250

Piotcm» I'jKcitiialioayij; ml)

i
12.5

100 

90 

80 

|  70

i  60

i  50 
< 40 
O4 30 

20 

10 

0

Cerastes cerastes

B

i
12.5

Ptotem Concert mioii (|ig iid)

100 

90 

80 

I  70

i  60

£  50

< 40 
o8 30

20
10

0
D

Dcndmasptspotylepis

*
50 0 250 125

Pi oi«m CoiKaiintttott (pg/ml l

100

90

80

« 70I\
£  60

.Yfl/d fww 100

90

80

a 70
i  60 

?  so
5  40 

/  30 

20 

10 

0

Sotechts saitatiis

500 250 12.5
PtoteuiContaitratKm (jig ml)

500 25.0 US

Pideui Concentration (fig ml i

Figure 3.3: Membrane damaging effects of snake proteins against the eukaryotic cell line HepG2 
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3.3.2 Isolation and characterisation of an antimicrobial component of Crotalus
adamanteus venom

A second potential PLA2 has been purified from Crotalus adamanteus (Eastern

diamondback rattlesnake) (Fig. 3.4a-c) 120 mg of venom was applied to the gel

filtration column (Fig. 3.4a) with the active fraction been in relatively small abundance

compared with the other peaks representing 9.24 mg of total protein content. The active

fraction from the ion exchange column (Fig. 3.4b) shows a resolved peak with baseline

resolution; it is also seen that the protein carries either a neutral or acidic charge as it is

eluted within the wash on a cationic column with 860 pg being obtained. MALDI-TOF

analysis (Fig. 3.4c) revealed the presence of only two peaks, a major peak at 13674.51

and a smaller peak at 6645.03. No peak approximately half that of 6645.03 is observed

therefore the major peak can be assigned a mass to charge ratio (m/z) of +1 whilst the

minor peak has an m/z of +2 thus the protein has a calculated mass of 13673.51. This

minor peak is not exactly half the mass of the major one however the machine of

analysis (Voegyer DSTR) has a mass accuracy of between 0.2-0.3 percent therefore this

slight discrepancy can be accounted for. In antimicrobial activity full inhibition was

seen at 25 pg/ml against S. aureus with partial activity is seen at 12.5 pg/ml, in contrast

against E. coli only partial activity at 50 pg/ml is observed (Table 3.1). In cytotoxicity

assays the protein showed moderate toxicity with 53.4% (± 8.2) haemolysis at 50 pg/ml

with 27.2 (± 2.1) and 16.7% (± 1.9) lyses seen at the lower concentrations of 25 and

12.5 pg/ml respectively (Fig. 3.2c) whilst against HepG2 cells 43.8% (± 4.2) ATP

release was observed at 50 pg/ml with 31.7 (± 3.4) an 19.0% (± 3.8) cell damage seen at

25 and 12.5 pg/ml (Fig. 3.3c). The membrane disruptive nature of the protein was also

determined with maximum membrane damage observed against S. aureus (readings

over 100% determined as maximum) in the backlight assay whilst against E. coli only
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79.9% (±1.6) cell damage was observed however at this concentration only partial 

inhibition was detected (Table 3.1).
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protein. (C) MALDI-TOF analysis revealed a peak at 13272.51



3.3.3 Isolation and characterisation of an antimicrobial component of Naja haje venom

A third potential PLA2 antimicrobial protein has been isolated from the venom of the 

elapid Naja haje (Egyptian cobra). 50 mg of venom was applied to the gel filtration 

column and as can be seen (Fig.3.5a) the majority of the venom did not show any 

activity with fraction 3 (2.8 mg) showing activity. When applied to an ion exchange 

column, unlike the C. adamanteus potential PLA2, elution was not observed until the 

middle of the salt gradient reflecting the basic nature of the protein (Fig. 3.5b). As with 

the C. adamanteus protein it is of low abundance within the venom with the final ion 

exchange peak having a concentration of 212 pg. MALDI-TOF analysis revealed a 

minor peak at 13808.32 Da with the major peak at 6891.24 with no peak observed at 

half this value, therefore 6891.24 has been assigned an m/z of 2 leaving the minor peak 

with an m/z of 1, thus the protein had a calculated mass of 13807.32 (Fig. 3.5c). Again 

these figures are within the boundaries of mass accuracy. Interestingly no antimicrobial 

activity is observed against S. aureus at the highest concentration of 50 pg/ml however 

against E. coli full inhibition is seen at 25 pg/ml with only partial inhibition detectable 

at 12.5 pg/ml. In cytotoxic assays 67.0% (± 2.8) haemolysis was observed at 50 pg/ml 

with 49.2% (± 1.0) and 10.0% (± 1.0) erythrocyte damage at the lower concentrations 

(fig. 3.2e). Against HepG2 cells 55.6% (± 8.1) cell damage was observed at 50 pg/ml 

whilst at 25 ad 12.5 pg/ml 47.4% (± 6.0) and 2.6% (± 0.5) cell damage was seen 

respectively (Fig. 3.3e). BacLight analysis showed a membrane damaging effect against 

E. coli with 96.3% (±5.6) cell damage observed and due to lack of susceptibility S. 

aureus was not assayed (Table 3.1)
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3.3.4 Isolation and characterisation of an antimicrobial component of Dendroaspis
polylepis venom

50 mg of the African elapid Dendroaspis polylepis (black mamba) was purified, the 

active gel filtration peak made up a small proportion of the total venom loaded 

containing only 2.7 mg (5.4%) (Fig.3.6a) and from the cation exchange a highly basic 

peptide has been identified that account for only 0.8% of the venom (407 pg) (Fig. 

3.6b). The peptide had a calculated mass of 6600 (Fig. 3.6c) with a number of peaks 

observed in the mass spectra which can be rationalised by calculating the dimer and 

trimer molecular masses and their expected m/z ratios. Biologically it is only active 

against E.coli with full activity at 50 pg/ml and partial activity at both 25 and 12.5pg/ml 

with only 4.3% (± 1.1) haemolysis observed at 50 pg/ml respectively (Fig. 3.2d). 

Against HepG2 cells, no damage was detected at 12.5 pg/ml with only 3.2% (± 1.7) and 

16.7% (± 3.2) damage at 25 and 50 pg/ml (Fig.3.3d). In the membrane susceptibility 

assay only 73% (±4.2) membrane damage was observed against E. coli, due to lack of 

susceptibility S. aureus was not tested (Table 3.1).
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Figure 3.6: Isolation of an antimicrobial protein from Dendroaspis polylepis venom (A) 

Superdex 200 profile with active fraction eluted mid way through the run (B) SP ion exchange 

of fraction 2 from GF revealed a highly cationic protein. (C) MALDI-TOF analysis revealed a 

peak at 6601.88
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3.3.5 Isolation and characterisation of an antimicrobial component of Notechis scutatus
venom

The only Australian snake examined in this study was from Notechis scutatus (mainland 

tiger snake). The starting protein concentration was 50 mg with the active fraction after 

gel filtration accounting for 12.3 mg (24%) (Fig.3.7a). As is seen from figure 3.7b the 

active fraction is either acidic or negatively charged with no interaction observed during 

cation exchange and had a protein concentration of 5.1 mg, thus being a large 

proportion of the venom (10%). MALDI-TOF analysis (Fig.3.7c) revealed a peptide 

with a molecular weight of 6943. Biologically the peptide was fully active against E. 

coli and S. aureus at 25 pg/ml and showed partial activity at 12.5 pg/ml however it was 

also highly haemolytic with 91.2% (± 5.6) lyses at 50 pg/ml, at the lower 

concentrations 68.1% (± 6.2) and 30.2% (± 1.1) lyses was observed respectively 

(Fig.3.2f). Against HepG2 cells 62.4% (± 14.4) cell damage at 50 pg/ml, at 25 and 12.5 

pg/ml 44.5% (± 9.6) and 17.7% (± 3.7) damage were observed was observed (Fig.3.3f). 

BacLight analysis revealed maximum membrane damage against both organisms (both 

readings above 100% therefore taken as maximum) (Table 3.1)
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3.3.6 Isolation and characterisation of an antimicrobial component of Cerastes cerastes
venom

35 mg of the North African viper venom Cerastes cerastes (homed desert viper) was 

purified. The gel filtration active fraction contained 6.4 mg (18%) (Fig. 3.9a) 

subsequent ion exchange produced 9 peaks with peak 8 been active; its elution near the 

end of the salt gradient near the end of the salt gradient suggests a highly basic nature 

which only accounted for a small proportion of the total venom with 914 pg protein 

purified (2.6%) (Fig.3.9b). MALDI-TOF analysis determined that the peak was not pure 

with 2 proteins present, one at 13827 and the other at 18354 (Fig.3.9c). In antimicrobial 

testing it showed full activity against both E. coli and S. aureus at 25 pg/ml with partial 

activity observed at 12.5 pg/ml. However, 75.6% (± 5.4) haemolysis was observed at 25 

pg/ml (99.2% (± 4.9) at 50 pg/ml and 54.3% (±6.1) at 12.5 jig/ml) (Fig.3.2b). Against 

HepG2 cells 88.4% (± 6.3) damage was observed at 50 pg/ml with 60.7% (± 7.7) and 

31.9% (± 6.2) observed at the lower concentrations (Fig. 3.3b). 98.2 (±6.2) and 91.3% 

(±1.6) bacterial membrane damage was also observed against E. coli and S. aureus 

respectively (Table 3.1). Because of its unfavourable biological profile and that both 

proteins present were of a significant size it was decided not to carry on purification.
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3.4 Discussion

Unlike most venomous creatures such as arthropods and other insects whose 

antimicrobial content is typically peptides between l-5KDa, snake antimicrobial content 

is radically different. With the exceptions of the cathelcidin family detected by 

transcriptomic analysis of the elapids B.fasciatus (bandad krait), N. atra and O. Hannah 

(Zhao et al., 2008) and more recently in the viper family (Falcao et al., 2014) no peptide 

has been isolated below 5 KDa with antibacterial activity, although an anti-fungal 

peptide has been isolated from the viper Bothrops jararaca (Brazilian jararaca) (at 

1.3KDa (Gomes et al., 2005). Indeed, as the present study further highlights 

antimicrobial defence in snake venom is elicited mainly through larger proteins such as 

PLA2s or peptides above 5 KDa.

In the present study potential PLA2 proteins have been isolated from both viper (Bitis 

arietans (puff adder) & Crotalus adamanteus (Eastern diamondback rattlesnake)) and 

elapid venom (Naja haje (Indian cobra).

Whilst the MALDI-TOF spectra for these proteins have been interpreted to be around

13,000 Daltons (and thus PLA2s) this is ambiguous with further experiments needed to

be to determine if  the proteins are the correct size and not dimers of smaller peptides.

One such experiment to determine the presence of smaller monomeric peptide, dimeric

structures or one larger protein would be to carry out an alternative MS technique such

as electrospray ionisation (ESI) mass spectrometry which favours the production of

multiply charged species allowing for greater structural elucidation. By analysing

multiply charged species it would be possible to identify the molecular ion through

mathematical deconvolution (Bhardwaj and Hanley 2014). Another experiment would

be to incubate the protein with a strong denaturing agent such as 8M urea which would

disrupt any inter-molecular bonding that may exist and determine if the protein is in fact
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a dimeric structure which could be then be detected by MALDI-TOF as a single smaller 

or by changes in the band size on an native acrylamide gel.

There has been a significant number of similar size proteins characterised from snake 

venoms as PLA2s that exhibit antimicrobial activity, including recently from C. 

adamanteus itself (Sarny et al., 2014) which has a molecular mass of 13272 Da. Whilst 

there is a discrepancy between this figure and the MALDI-TOF analysis of the potential 

PLA2 in this study they both show preferential activity towards S. aureus, however the 

transciptomic analysis of C. adamanteus venom revealed the presence of 7 PLA2 

proteins which maintain a high degree of homology throughout them (Rokyta et al., 

2012) therefore it is possible that this could be an isoform with the addition of a few 

amino acids or a post translational modification.

B. arietans venom is a relatively unexplored although a PLAT has recently been 

purified, however it has a molecular weight of 27.4 KDa, contains 14 cysteine residues 

and has been shown to block nicotinic acetylcholine receptors (nAChRs) with no 

antimicrobial activity described (Fulfius et al., 2011). PLA2 proteins have been 

identified in other Bitis species of similar size to the protein purified in this study 

including from Bitis gabonica (Gaboon viper) at 13376 (Brotes et al., 1986), Bitis 

caudalis (homed viper) at 13363 (Viljoen et al., 1982) and Bitis nasicornis (Rhinoceros 

viper) at 13665 (Joubert et al., 1983). Therefore the isolation of a potential PLA2 of 

13414 Daltons represents a novel addition to the Bitis PLA2 family and the first to be 

described to have antimicrobial activity.

Similarly the potential PLA2 from N. haje represents a new member of the Naja PLA2 

family with no such protein isolated from that venom, although a PLA2 has been 

isolated from other another Naja species (N. naja oxiana (Caspian cobra)) that does 

have antimicrobial activity (Samel etal., 2013).
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PLA2s are a well known component of many snake venoms, typically they are between 

13-15 KDa and are members of a larger super family of PLA's consisting of 11 groups 

arranged on the basis of size, structural homology, amino acid sequence and disulphide 

bridge pattern. Each group can then be further sub divided; all snake venom 

phospholipases are group 2 (PLA2) which are then further subdivided into group IA 

isolated from the elapids and group IIA from the vipers (de Oliveira et al., 2013). This 

latter group is further subdivided on the basis of the amino acid at position 49; one 

having a negatively charged aspartic acid residue and the other having a positively 

charged lysine residue. This is important regarding the binding of Ca2+ ions to the 

molecule, with the latter inhibiting PLA2/Ca2+interaction; this substitution confers 

Asp49 homologues with catalytic activity whilst Lys49 are catalytically.

Both PLA2-I and PLA2-II have been characterised as having antimicrobial activity, and 

have been shown to exert their antimicrobial activity by both a membrane damaging 

mechanism of action as well as the production of hydrogen peroxide (Kini. 2003).

Whilst none of the potential PLA2 proteins isolated in this study are useful in their 

current form one strategy to develop their clinical applications would be to determine 

truncated sequences with antimicrobial activity which has previously been applied for 

PLA2 proteins.

Santamaria et al. (2005) examined the activity of 8 previously identified PLA2-II 

proteins from Bothrops asper (terciopelo viper) (I-IV), Bothriechis schlegeli (eyelash 

viper) (I), Cerrophidion godmani (Godman's pit viper) (I & II) & Atropoides 

nummifer(Mexican jumping pitviper) (I) (Angulo et al., 1997, Diaz et al., 1992 & 

1995, Gutierrez et al., 1984 & 1986, Kaiser et al., 1990, Lomonte et al., 1989) which 

contained both Asp49 & Lys49 variants. The C terminal (KKYRYYLKPLCKK) of B. 

asper PLA2-II (115-129) had previously been tested for its activity showing near 100%
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inhibition of is. coli & V. cholerae at 30 (iM with a membrane damaging mechanism 

(Paramo et al., 1998). In the more recent study this peptide was used as a scaffold for 

amino acid substitution, with 10 variants synthesised resulting in the identification of 

the peptide pEM-2 (KKWRWWLKALAKK) which retained antimicrobial activity, 

however, its cytotoxic effects were significantly reduced and comparable to the 

clinically used antibiotic polymyxin B (Santamaria et al., 2005).

Clearly such truncation studies could be applied to the current potential PLA2 proteins 

isolated in this study to produce peptide scaffolds in which rational design techniques 

could be applied. Along with Paramo et al. (1998) and Santamaria et al. (2005) the idea 

of the C-terminal being responsible for the antimicrobial activity of PLA2 proteins has 

been further supported by Diz Filho et al. (2009) in which a Ca2+ dependent PLA2 

from Crotalus durissus ruruima (South American rattlesnake) was shown to have 

antimicrobial activity. However whilst this C-terminal activity seems sufficient for 

antimicrobial activity in some PLA2’s, in others this is not the case. For example an 

isoform termed F I7 isolated from Crotalus durissus terrificus (tropical rattlesnake) 

requires catalytic function for antimicrobial activity (Toyama et al., 2003).

Along with the potential PLA2 proteins isolated two peptides below 10 KDa have also 

been identified from, Dendroaspis polylepis (black mamba) and Notechis scutatus (tiger 

snake) which have molecular weights of 6600 & 6943 Da respectively. All these 

peptides have been isolated from elapid venom which contains a high proportion of 

cysteine containing peptides typically involved neuro- and cardiotoxic activities (Doley 

et al., 2009), therefore based on their size and origin it would be expected that they are 

cysteine containing peptides.

The peptide isolated from D.polylepis has a molecular weight and biological activity in 

line with the three fingered toxin F-VIII isolated from the closely related Dendroaspis



angusticeps (Eastern green mamba) which had a molecular weight of 6597.8 (Conlon et 

al., 2014) and showed similar low biological activity, however this peptide also showed 

no activity against E. coli whilst the peptide isolated in this study shows weak activity. 

This could be down to either differences in E. coli strain susceptibility or slight changes 

in the amino acid sequence between species. Toxin F-VIII is a member of the three 

fingered toxin super family therefore it would be reasonable to assume that this peptide 

is also a three fingered toxin. Although this peptide has only moderate activity its low 

cytotoxic activity makes it an ideal candidate for the future development, especially 

when considering the possible modification strategy described below.

Three fingered peptides have typically been characterised as been crucial for venom 

toxicity, they have a common structure of three p-stranded loops extending from a 

central core containing all four conserved disulphide bonds (Fig. 3.10a). However 

despite the common scaffold, they bind to different receptors/acceptors and exhibit a 

wide variety of biological effects. Members of this family include a-neurotoxins, which 

bind to muscle acetylcholine receptors (nAChR) (Chang et al., 1979) k-bungarotoxins, 

which bind neuronalnicotinic receptors (Grant et al., 1985), muscarinic toxins with 

selectivity towards muscarinic receptors (Jerusalinsky et al., 1994), fasciculins that 

inhibit acetylcholinesterase (Cervenansky et al., 1991), calciseptine that blocks the L- 

type calcium channels (de Weille et al., 1991), cardiotoxins that are pore forming 

peptides (Bilwes et al., 1994), dendroaspins, involved in disrupting cell-adhesion 

processes (McDowell et al., 1992) and b-cardiotoxins, which bind to b l-  and b2- 

adrenergic receptors (Rajagopalan et al., 2007).
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Recently certain three fingered toxins have been shown to exhibit antimicrobial activity. 

Kao et a l (2011) examined the antimicrobial properties of y toxin, a cardiotoxin 

isolated from the elapids Naja nigricollis (black necked spitting cobra) and cardiotoxin 

3 from N. atm  which have been postulated to disrupt mammalian cell membranes by 

binding to the anionic lipid of component and is therefore cytotoxic and haemolytic. It 

is the same mechanism of action that allows them to have antimicrobial function 

therefore in its current form it has little use as a therapeutic, however NMR studies of 

the interaction between y toxin and dodecylphosphocholine liposomes revealed the 

peptide remains structurally unchained during binding which is facilitated by the 

hydrophobic face of the peptide (Dauplais et al., 1995). Increased hydrophobicity is 

well known to increase the cytotoxic effects of AMPs (See intro) therefore it could be 

postulated that a site directed mutagenesis study that lowers the hydrophobic content of 

the binding face could lower its cytotoxic effects whilst retaining its antimicrobial 

effects. Successful recombinant expression of snake three fingered toxins has already 

been achieved by Lesovoy et al. (2009) who expressed the a-neurotoxin II (NTH) from 

N. oxiana in E. coli. This 61 chain residue peptide is known for binding to nAChR 

receptors however Lesovoy also showed the binding of the peptide to 

DOPC/DOPS/Chol liposomes, this secondary function was postulated to assist in the 

modulation of the primary nAChR receptor binding. Interestingly however, residues 

implicated in membrane binding are at the opposite end of the peptide to the nAChR 

receptor binding site which is located within the loop section of the middle finger whilst 

residues implicated in membrane binding are located at the base of the peptide in a non- 

consecutive flat plane (Fig. 3.10a).

Whilst no published data is available to ascertain the antimicrobial effects of this 

peptide it never the less offers an intriguing possibility. Firstly the nAChR receptor 

binding site could be “knocked out” by sequence scrambling or alanine scanning which
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would not be expected to not cause any major structural changes within the peptide due 

to its position within the loop region. Once ‘safe’ mutation studies could then by carried 

upon the residues implicated in membrane binding. Thus it may be possible to re­

engineer the peptide whilst maintaining the evolutionary advantages that has allowed it 

to be effective within a mammalian prey’s bloodstream, i.e. its stability from protease 

degradation. If successful, the engineering of the three finger toxins could give us a 

wealth of new molecules to examine with nearly 350 known peptides of this family 

already characterised at the protein level (Source: Uniprot) and no doubt many more 

identified by transciptomics.

Similar modification could be applied to other snake peptides such as the antimicrobial 

peptides waprins and peptides with previously known function which have recently 

been identified to have antimicrobial activity such P-bungarotoxin from B. fasciatus or 

the viper myotoxin crotamine.

Waprin peptides contain the whey acidic protein disulphide bridged core (WAFC) 

domain characterised by four disulphide bridges which is found in a variety of proteins 

from both vertebrates and invertebrates (Smith et al., 2011) (Fig. 3.10b). Along with 

nawaprin and omwarpin described previously, a number transciptomic studies have 

detailed the presence of potential waprin AMPs in other venoms including Liophis 

poecilogyrus (yellow-bellied Liophis), Pseudoferania polylepis (Macleay's water 

snake), Rhabdophis tigrinus tigrinus (tiger keelback), Thrasops jacksonii (black tree 

snake), Philodryas olfersii (Lichtenstein's green racer) and N. scutatus (Fry et al., 2008, 

St pierre et al., 2008).

The B chain of p-bungarotoxin is a 7 KDa peptide thought to be responsible for the 

blockage of voltage-gated K+ channel of the larger PLA2 hetero-dimer chain A (14 

KDa) and chain B (7 KDa) and has recently been shown to have antimicrobial activity
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via a membrane disruptive mechanism (Wen et al., 2012 & 2013). Interestingly residues 

implicated in membrane disruption are located around the cysteine residue that usually 

forms a bridge to the A chain which would suggest that the residues implicated in K+ 

channel modulation are not responsible for membrane disruption therefore as with the 

nAChR receptor binding site these residues could be ‘knocked out’ whilst maintaining 

membrane disruption (Fig. 3.10c)

Crotamine is a 42 residue basic peptides first isolated in the 1940’s from the venom of

C. durissus (Gonsalves et al., 1947). It has recently been shown to have antimicrobial 

activity against E. coli at 25-100 pg/ml however has no activity against other Gram 

negative or Gram positive organisms at the 200 pg/ml and showed no haemolytic 

activity at these high concentrations (Oiquiura et al., 2011). Structurally crotamine is 

evolutionary related to the P-defensins found with vertebrates with three disulphide 

bridges and whilst sequence homology is low their structural arrangement consists of a 

three-stranded-sheet core and a framework of loops stabilized by six disulfide-linked 

cysteines (Coronado et al., 2013).

Evidence of membrane permeability is abundant, Costa et al. (2014) observed the 

propensity of crotamine to disrupt liposomes containing negatively charged 

phospholipids whilst Siebur et al. (2014) detailed its pore forming ability on planer lipid 

bilayers in which the peptide forms oligomers in solution that insert into the membrane. 

However, recently, its ability to interact with DNA has also been observed (Chen et al., 

2012) raising the possibility of intracellular targets. Further support for this is shown by 

Hayashi et al.(2008) who determine the mechanism of cell penetration in eukaryotic 

cells occurs through liposomal endocytosis.

As is seen from the high resolution structure of crotamine (Coronado et al., 2004) it is a 

highly amphipathic peptide with clear definition between the hydrophobic (purple) and

120



hydrophilic (blue) residues (Fig. 3.10d) therefore manipulation of these areas could 

yield a more effective AMP, for example the addition of a polar residue within the 

hydrophobic core to create an imperfect amphipathic peptide as described by Wimley. 

(2011) that could increase antimicrobial activity. Importantly the hydrophobic residues 

are located around a loop region of the peptide and not in the evolutionary conserved p- 

sheet domain therefore the effects of residue modification of structure would be 

expected to be minimal. Whilst crotamine does have advantageous antimicrobial 

properties with low haemolytic potential it never the less is still a toxic peptide which 

causes irreversible membrane depolarization, and spontaneous repetitive firings of 

mammalian skeletal muscle (Chang et al., 1978, Rizzi et al., 2007). However recent 

electrophysiology data conducted by Jan Tytgat’s group (Peigneur et al., 2012) 

determined this was caused by the peptides ability to modulate potassium channels and 

suggested four residues involved in this process (Arg31-Trp32 and Tyrl-Lys2) which 

again could be substituted without compromising the hydrophobic region o f the peptide- 

nessesery for membrane core interaction.

Taken in context, whilst the proteins that have been isolated in this chapter are either too 

large for drug development in their current form and at present, have undesirable 

biological activities they offer a starting scaffold in which either specific sections of the 

peptide can re-engineered or truncated motifs synthesised from larger proteins. Future 

work on these peptides should be undertaken firstly to ascertain their full length 

sequences to determine if any short truncated helical peptides could be synthesised as 

described by Santamaria et a l (2005).

Secondly transcriptomic analysis of the venom glands of these snakes, particularly those 

where sub 10 KDa peptides have been isolated, should be undertaken so that 

recombinant peptides can be constructed and a site directed mutagenesis study designed.



Successful recombinant expression has been achieved with the three fingered toxins 

(Lesvoy et al., 2009), B chain p-bungarotoxin and crotamine (commercially available 

through recombinant expression) whilst successful chemical synthesis has been 

achieved with the waprin fold (Bannigan et al., 2010) therefore the chance of correct 

protein folding is relatively high.

A large number of venom glands have previously undergone both proteomic and 

transciptomic analyses which will no doubt be indispensible if either of these strategies 

is to be taken forward. However precedent should not be given to these technologies 

compared with the purification strategy described in this chapter. The present study 

should be widened to examine more snake venoms from the other two venomous snake 

families Atractaspididae and Colubridae which could provide us with novel peptide 

sequences and structures. The re-examination of previously known snake peptides for 

their antimicrobial activity should also be undertaken after the success of p- 

bungarotoxin and crotamine.

Ultimately, the larger number of structural motifs identified that exhibit antimicrobial 

activity the greater the chance of developing new classes of antibiotics.



4 CHAPTER 4 
CHARACTERISATION OF ANTIMICROBIAL PEPTIDES FROM

SCORPION VENOM
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4.1 Background and aims

A large array of scorpion AMPs have already been identified, with over 40 peptides 

biologically characterised (Harrison et al., 2014) some of which exhibit strong 

antimicrobial activity and low toxicity and thus provide good scaffolds for the future 

development of AMPs. However, a large number of genomic studies have identified 

more scorpion AMPs but their biological activities remain unknown (Silva et al., 2009, 

Schwartz et al., 2008, Zhu et al., 2000). One such study (Abdel-Rahman et al., 2013) 

used both proteomic and genomic approaches to identify four AMPs from the venom 

gland of the North African scorpion Scorpio maurus palmatus (Chactoid scorpion). 

These peptides span all the major classes of scorpion AMPs previously identified 

including a-helical peptides of short, mid and long chain length and a scorpine like 

cysteine constrained peptide.

This chapter aims to characterise their biological activity as well as providing evidence 

of their mechanism of action by elucidating any membrane destructive properties and 

intracellular targets.

Due to cost issues only the three helical peptides were synthesised and characterised. 

Sequence and physical properties are detailed in Table 2.1.

Structural modifications were also undertaken on one of the peptides (Smp24) to try and 

improve its biological profile, these were termed Smp24GVG and Smp24T (Table 2.1). 

These alterations were based on structural modifications that had a beneficial effect on 

the biological activity of the evolutionary related Pin 2 (Rodriguez et al., 2011 & 2014). 

In the first modification, the central proline residue was substituted for a glycine-valine- 

glycine motif and secondly the C-terminal was truncated by four residues.
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The chapter also aims to investigate the mechanism of action of these peptides based on 

homology comparison with other scorpion AMPs that have previously been identified 

and makes recommendations on how further modification can increase the potential for 

these peptides to be developed in the clinical setting.

4.2 Method Summary

Six scorpion peptides were assayed in the study as detailed in Table 4.1. All peptides 

were assayed for their antimicrobial activity by the micro dilution method from a 

concentration of 0.5-512 pg/ml. A range of Gram positive and Gram negative 

organisms were used, some of which displayed antibiotic resistance and a fungal strain 

was also included in the study. Peptides that displayed antimicrobial activity were 

assayed for their haemolytic and cytotoxic effects against sheep erythrocytes and by an 

ATP release assay against human liver derived HepG2 cells at the same concentration 

range as in the antimicrobial assays. Evidence of membrane damage and interaction 

with the possible intracellular processes of DNA, RNA and protein synthesis has also 

been explored to provide evidence of mechanism of action against live bacterial cells.

4.3 Results

4.3.1 Antimicrobial activity of AMPs from the Scorpio maurus palmatus

The antimicrobial activities of Smpl3, Smp24, Smp43 along with the Smp24 

derivatives are listed in Table 4.1. Pin 2 was also assayed for comparison.
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No activity is seen with the shorter Smp 13 whilst the mid and longer chain Smp24 and 

Smp43 exhibit preferential activity towards Gram positive organisms with no 

considerable difference seen when compared with the modified Smp24 peptides. Gram 

positive organisms are overwhelmingly more susceptible to S. maurus palmatus derived 

AMP attack than their Gram negative counterpart with Smp43 exhibiting the highest 

activity against this class of organisms. Because of the strong activity observed with 

Smp24 towards S. aureus SHI 000 the peptide was assayed against a wider range of S. 

aureus strains some which were classified as having resistance towards meticillin as 

well as showing intermediate resistance towards vancomycin. A wide of MIC values 

were observed between strains, particularly between EMRSA-15 and EMRSA-16 which 

had MICs of 16 pg/ml and 512 pg/ml respectively highlighting the possibility of 

resistance to be acquired either through plasmid aquisition, mutation or phenotypic 

routes against AMPs.

4.3.2 Haemolytic activity of AMPs from Scorpio maurus palmatus

In haemolytic assays (Fig. 4.1) Smp43 showed very low toxicity with only 1.2% (±0.5) 

lyses observed at the highest concentration of 512 pg/ml however 89.6% (±5.6) lysis 

was observed at the same concentration with Smp24. Indeed, significant disruption is 

observed between 64 pg/ml (14.5% ±2.0) and 128 pg/ml (52.8% ±4.2) with an increase 

of 38.3% lysis observed. Maximum disruption is observed with Pin 2 at the highest 

concentration (98.9% ±4.0) whilst lysis was higher at the lower concentrations of 64 

and 128 pg/ml compared with Smp24 (34.0%±1.7 & 71.6 % ±6.6 respectively). The 

modifications of Smp24 had contrasting effects. The addition of a flexible glycine- 

valine-glycine hinge region unexpectedly caused an increase in haemolysis, for example 

at 64 pg/ml 22.6% (±2.9) lysis occurred whilst at 128 pg/ml 67.4% (±5.3) was detected. 

However, the truncated Smp24 derivative showed a decrease in haemolysis with only
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50.8% (±2.9) seen at the highest concentration whilst at 64 and 128 pg/ml only 6.9% 

(±0.8) and 14.3% (±3.2) observed representing a decrease in haemolysis from the native 

Smp24 of 7.6 and 38.5% respectively.
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4.3.3 Cytotoxic activity of AMPs from Scorpio maurus palmatus

Cytotoxicity testing was carried out on HepG2 liver cells (Fig.4.2) using an ATP release 

assay. Because all systemic drugs would go through the liver and a large proportion of 

modification reactions happen in the organ a hepatic cell line was chosen to determine 

toxicity against this important organ.

As observed in haemolysis assay, significant cell damage occurs in a concentration 

dependent fashion with a noted increase in ATP release seen at 32 pg/ml with all five 

peptides used in this study. For example at 16 pg/ml no peptide causes no more than 2% 

cell damage however a doubling of the concentration causes 14.6% (±4.3) ATP release 

with Smp43 whilst Smp24 and its truncated derivative showed similar increases with 

15.9% (±1.3) and 11.8% (±4.0) release detected respectively. The addition of a hinge 

region caused a significant increase in cell disruption with 32.7% (±4.0) ATP release 

noted and a similar level was seen with Pin 2 which caused 27.0% (±5.0) release. As 

seen in haemolysis assays, the truncated peptide was overall less cytotoxic than the 

native and hinged peptide as demostrated at the higher concentration of 64 pg/ml with 

only 26.8% (±2.1) damage observed whilst 39.0% (±6.2) and 56.8% (6.5) is seen with 

Smp24 and Smp24GVG respectively. Surprisingly, when considering the low toxicity 

displayed with Smp43 against red blood cells, the peptide causes significant damage 

above 32 |Lig/ml which is consistent with the other peptides used within this study 

clearly highlighting the differences in eukaryotic cell membrane architecture and the 

need for a range of diverse mammalian cell types to be assayed during cytotoxic testing.
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4.3.4 Membrane disruptive potential of scorpion AMPs

As with the snake peptides isolated in Chapter three, prokaryotic membrane disruption 

was determined by the BacLight assay. As examined in Table 4.3 all the peptides 

assayed caused maximum disruption against both Gram positive and Gram negative 

organisms at a concentration of 4 times MIC clearly indicating the membrane disruptive 

activity of these peptides.
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Table 4.3: Effect of scorpion AMPs on Gram positive and Gram negative membranes

% M embrane damage
Smp24 Smp24GVG Smp24T Smp43 Pin 2

E.coli JM109 110.5 (±3.9) 97.2 (±1.2) 99.5 (±3.5) 105.4 (±1.8) 108.6 (±4.1)
S.aureus SH1000 101.2 (±4.8) 105.3 (±4.5) 11.6 (±2.9) 103.2 (±5.1) 103 (±2.9)
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4.3.5 Elucidation of intracellular targets of scorpion AMPs using the B. subtilis whole
cell assay

Further evidence of membrane interaction is observed with the stress responses 

observed in the B.subtilis whole cell assay (Fig. 4.3) where each peptide induced a near 

1500% increase in the cell envelope stress response compared to a no peptide control 

after 1 hr incubation. This stress response decreases over a 4 hr period, however at this 

time point, a significant stress is still present upon the cell envelope with between 130- 

190% induction still present suggesting a rapid peptide attack within the first hour and 

then a decrease in attack as the peptide is depleted over time.

The stress responses that would be elicited after an attack on DNA, RNA and protein 

synthesis have also been assayed. Interestingly all four shorter peptides caused a 

significant induction of response against the yorB (DNA) stress response after 3 hr 

incubation with Smp24GVG showing the greatest increase (288.4% ±14.2) with Smp24 

and the truncated peptide showing 228.1% (±12.1) and 162.3% (±6.4) respectively 

whilst Pin 2 caused a 192.4% (±13.1) increase in luminescence against the same stress 

response, however Smp43 showed no such induction with only a 4.8% (±1.9) increase 

recorded.

Whilst after 1 hr a DNA stress response is observed with Smp24, Smp24GVG, Smp24T 

and Pin 2 (65-120%) it is interesting that the maximum response is noted after 3 hrs in 

contrast to cell envelope stress, however conceivably it is logical that a maximum stress 

response after interaction with an intracellular target is elicited after incursion through 

the cell envelope.

For the RNA and protein synthesis assays no stress response was induced above a 20% 

increase for any of the five peptides with a large amount of variation and no trends seen
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in any of the data. Therefore, it was concluded that no real interaction is taking place 

between these two intracellular targets and any of the peptides.
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4.4 Discussion

A large number of scorpion AMPs have been characterised due to their size (<5 KDa) 

and diverse biological activities. However, an array of scorpion AMPs have been not 

characterised biologically. This study aimed to follow on from previous research 

undertaken by our collaborators Mohamed Abdel Rahman and Lourival Possani (Abdel 

Rahman et al., 2013) and biologically characterise three of the four AMPs detected in 

the venom of S. maurus palmatus.

This scorpion belongs to the family Scorpionidae, with BLAST analysis revealing 

Smp43 shares high homology with the scorpion AMPs opistoporin 1 & 2 and Pin 1 

sharing 86, 83 & 76% homology respectively (Fig. 4.4).

Opistoporin 1 & Pin 1 both have been shown to have helix-hinge-helix structures 

(Moerman et al., 2002, Corzo et al., 2001). Pin 1 is far more extensively studied with an 

NMR derived structure and characterised mechanism of action.

Similarly Smp24 shares 54% homology with Pin 2 (Fig. 4.5b) and contains structural 

motifs evolutionary conserved within shorter (17-20 residue) chain scorpion AMPs. 

Most notably the LIPS motif found within the core of the sequence of BmKbl, 

ctriporin, imcroporin, meucin-18, mucroporin as well as Pin 2. As with Pin 1, Pin 2 is 

the only peptide within the mid chain class that has been studied beyond basic 

biological characterisation.
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Structurally, Pin 1 has two helices (3-18 and 26-37) linked by a random coil region, 

with coil regions at the N and C terminals. Alignment of Pin 1 and Smp43 reveal there 

is high conservation within these helical regions, also secondary structure prediction 

using the Jpred 3 server (Cole et al., 2008) predicted a di helical structure for Smp43 

between residues 3-12 and 16-36 (red residues) (Fig. 4.5a). When the regions 

corresponding to the coil regions in Smp43 are analysed using helical wheel projection 

software (Fig. 4.6) both regions form amphipathic helical wheels therefore it would be 

reasonable to assume that like Pin 1 and the opistoporins Smp43 has a di-helical 

structure. Similar structural predications of Smp24 determined an N-terminal extending 

to residue 15. Pin 2 has been deduced by NMR to be helical at the N-terminal up to 

residue 18 and alignment of the two peptides (Fig. 4.5b) reveals that their helical 

regions share high homology including 10 identical residues and two highly conserved 

substitutions within the first 18 residues, three residues are also identical (KKD) at the 

C-terminal which is associated with the cytotoxic nature of Pin 2 (Rodriquez et al., 

2011).

The shorter Smpl3 belongs to the family of cytotoxic peptides such as the IsCT 

peptides (Dai et al., 2002), however unlike other peptides within this family the Smpl3 

carries no charge therefore it is not surprising it has no antimicrobial activity, and its 

actual function within the venom remains to be elucidated.
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The biological activity of Pin 1 and 2 are broadly similar to Smp43 & Smp24. Both 

exhibit broad spectrum antimicrobial activity. Pin 1 shares low haemolytic activity with 

Smp43 whilst Smp24 and Pin 2 are haemolytic. Biophysical characterisation has 

determined the mechanism of action of these two peptides. Briefly, Pin 2 exerts its 

effect through pore formation (Fig. 1.6, Page 40) whilst Pin 1 has a more generalised 

carpet mechanism (Figure 1.7, Page 41) (Nomura et al., 2004 & 2005).

A helical-hinge-helical topology seen within Pin 1 and postulated to exist in Smp43 is 

present in a number of AMPs with a high therapeutic index. As examples, cecroprin A, 

a 37 residue peptide isolated from the silk moth Hyalophora cecropia which has two 

helical regions extending from residues 5 to 21 and from residues 24 to 37 (Holak et al., 

1988), and dermaseptin B2, a 33 residue peptide isolated from the Amazonian tree frog 

Phyllomedusa bicolour has a highly helical structure interrupted by a valine and glycine 

at positions 9 and 10. Interestingly, NMR data also pointed towards a carpet model 

mechanism of action rather than pore formation as seen with Pin 1 (Galanth et al., 

2009). Hybrid peptides using residues 1-8 of cecropin A and 1-12 of magainin 2 linked 

by a Gly-Ile-Gly motif showed broad spectrum antimicrobial and low haemolytic 

activity (Shin et al., 2000).

The proline residue found within the helical region of Pin 2 is predicted to be at the end 

of this region in Smp24 therefore would not be expected to cause any significant helical 

kink as it does in Pin 2.

The effect of proline within AMPs is ambiguous. For example, some AMPs such as 

melittin and pardaxin that contain a proline residue in the central region of their 

sequence have high antimicrobial and haemolytic potential and removal of this further 

increases toxicity (Dempsey et al., 1991). This view is supported by Bodone et al. 

(2013) who suggested that this kink is required for selectivity for prokaryotic
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membranes over eukaryotic membranes as removal will increase toxicity due to 

increased helical structure. This increases the hydrophobic face and its propensity to 

bind to neutrally charged bilayers is greater, whereas more compact proline containing 

peptides will be less attracted to these surfaces but will still retain electrostatic attraction 

to negatively charged bilayers. In contrast to this view, a number of proline deficient 

peptides such as magainin 2 showed low toxicity (Zasloff., 1987) and previous efforts to 

decrease the haemolytic effect of Pin 2 by substitution of the proline residue for a 

flexible glycine-valine-glycine hinge region proved successful, based on the structural 

motifs found within the oxypinins from the wolf spider and ponericins G1 from the 

ponerin ant (Rodriguez et al., 2011).

A similar strategy was employed with Smp24 however as is seen in figures 4.1 & 4.2 

this modification decreases the therapeutic index supporting the notion of increased 

toxicity. Analysis of the predicted helical region of Smp24 and Smp24GVG would 

suggest that a more compact helix is observed in Smp24 with the N-terminal helical 

region stretching to residue 12 (red residues) with an extended helix up to residue 15 

(green) (Fig. 4.7). Furthermore the prediction of buried residues shows nine residues 

buried in Smp24 and 12 in Smp24GVG however this included the lysine residue at 

position seven which may have an effect by increasing the hydrophobic face within that 

section of that peptide. This view is supported by calculating the hydrophobic moment 

(HM) of the peptides (Reiber et al., 2014). In the case of Smp24 and Smp24GVG, the 

native sequence has a HM of 127° whilst Smp24GVG has an increased HM of 133.18°. 

This increase in the HM is known to increase both antimicrobial and haemolytic activity 

(Kondejewski et al., 2002). However the decrease in haemolytic activity noted with Pin 

2GVG is striking as the increase in HM is far greater than noted with Smp24 (114.8° to 

139.9°), therefore increased HM is not a prerequisite to an increased haemolytic effect.
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Secondly, whilst inclusion of a glycine-valine-glycine motif into each peptide increases 

the hydrophobic content by the same amount, Smp24 is more hydrophobic than Pin 2 

from the outset due to phenylalanine at residue four in place of an alanine, an isolucine 

at six instead of alanine and an isolucine is replaced by leucine at fifteen. As described 

by Chen et al. (2007) increasing hydrophobic content past a certain threshold is 

associated with an increased toxicity, therefore hydrophobic content of Smp24 may 

have been pushed beyond a critical threshold.

Finally any addition of residues within the middle of a peptide will have an impact on 

the spatial distribution of residues downstream and may have implications for 

membrane binding.

Addition of the glycine-valine-glycine motif to Smp24 effects spatial distribution of the 

polar (blue) and non-polar (red) residues within the peptide and is a good example of 

this phenomenon (Fig. 4.8 and Fig. 4.9) Interestingly, the two extruding polar surfaces 

seen at the C-terminal of Smp24 are on the opposite side of the helix in Smp24GVG 

whilst the effect of the GVG motif on Pin 2 shows these extruding polar surfaces 

present at the C-terminal however their position matches that of Smp24GVG (Fig. 

4.10), thus it is possible that the spatial distribution of these two extruding polar 

surfaces has an effect on biological activity due to the orientation of peptide-lipid 

interaction.
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Snip24 IWSFLIKAATKLLPSLFGGGKKDS 
 B -B B — BBBBBBB------------

Smp24GVG IWSFLIKAATKLLGVGSLFGGGKKDS 
 BBB BBBBBBB--------------

Figure 4.7: Comparison of the predicted helical regions of Smp24 and Smp24GVG using the 

Jpred 3 server (Cole et al., 2008). Residues in red are predicted to fonn an helical structure with 

residues in black predicted to be unstructured. Residues that are predicted to be buried and not 

expected to interact with a bilayer are indicated with B
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COOH

C'OOHCOOH

Figure 4.8: Spatial distribution o f Smp24 modelled using the 3D Hydrophobic 

Moment Vector Calculator (ReiBer et al., 2014). Polar facets are highlighted in blue 

and non-polar facets highlighted in red. Large proportion of the peptide surface are 

polar reflecting the importance of an AMPs electrostatic attraction to the 

prokaryotic membrane surface.

C'OOH

COOH

D C’OOH

Figure 4.9: Spatial distribution of Smp24GVG modelled using the 3D Hydrophobic 

Moment Vector Calculator (ReiBer et al., 2014). Polar facets are highlighted in blue 

and non-polar facets highlighted in red. Comapred with Smp24 (Fig. 4.8) the 

modified Smp24GVG peptide is less polar at the N-tenninal whilst the polar 

extrusions at the C-terminal are in the opposite orientation.
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Snip 24 Smp24GVG

Pm 2G\

Figure 4.10: C-terminal analysis o f the effect of the GVG m otif insertion in to both 

Smp24 and Pin 2 modelled using the 3D Hydrophobic Moment Vector Calculator (ReiBer 

et al., 2014). Polar facets are highlighted in blue and non-polar facets highlighted in red. 

Smp24 and Pin2 GVG (A & D) both have comparatively low cytotoxic effects than 

Smp24GVG and Pin2 (B & C). Interestingly, the two extruding polar facets are on one 

side of the peptide in Smp24 and Pin2GVG and on the other In Pin2 and Smp24GVG 

indincating a critical role of spatial distribution on AMP activity.
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Similarly to Pin 2 (Rodriguez et al., 2014), reducing the length of the C-terminal of 

Smp24 by the removal of the last 4 residues increased the therapeutic index. Likewise, 

shortening of the random coil region in Pin 2 had the same effect even though both 

peptides suffered a reduction in charge, although the electrostatic attraction is not as 

important towards eukaryotic membranes due to their zwitterionic nature (Jiang et al., 

2008). The reduction in haemolysis seen in Pin 2 after truncation to 14 and 17 residue 

peptides is of interest as CD spectra showed a change in structure from a predominantly 

helical structure to a P-hairpin structure similar to Indolicidin (Rodriquez et al., 2014). 

The structure of Smp24T needs to be elucidated to determine if this is also the case, 

however unlike with Smp24T, the membrane disruptive mechanism of action has not 

been examined with the truncated Pin 2 peptides. Whilst membrane disruption with Pin 

2 is well established a number of p-hairpin peptides including Indolicidin and 

Tachyplesin I are thought to exert their effect through intracellular targeting rather than 

membrane disruption (Nicholas., 2009).

Two modification strategies have been employed within this study. However future 

modification could include increasing the net positive charge. A strategy that was 

successful with mucroporin-Ml (Dai et al., 2008). Another strategy could be to include 

modified amino acids such as N-methyl glycine which induced a di-helical structure in 

the 13 residue IsCTl AMP which also increased the peptides ability to bind to DNA 

(Lim et al., 2006).

Although Smp43 exhibited low haemolysis it still caused significant ATP release in 

HepG2 cells suggesting disruption of eukaryotic membranes. However, it is worth 

noting these are cancer derived cells which have a more negatively charged membrane 

than normal eukaryotic cells due to an increase in the anionic lipid PS content within the 

membrane outer leaflet, differential branching and sialic acid content of N-linked
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glycans associated with transmembrane proteins and the increase in O-glycoslylated 

mucins (so AMPs are electrostatically attracted to the membrane. Indeed, a number of 

AMPs have been examined for their anti-cancer effects such as melittin (Gajski and 

Garaj-Vrhovac., 2013). On this basis it would be useful to assess any toxic effects on 

primary cells which exhibit normal membrane compositions both to redefine peptide 

toxicity and determine any beneficial anticancer properties. Even so, whilst peptide 

modification has focussed on Smp24, due to its size and previous modifications to 

similar peptides no such modifications were examined with Smp43. One strategy 

employed on similar long chain scorpion AMPs hadrurin and vejovine was the creation 

of hybrid peptides 18 residues in length which increased therapeutic index (Sanchez 

Vasquez et al., 2013).

Aspects of AMP development that have not been assessed in this study are both the 

protease stability and immunogenic potential of these peptides. Peptides of a-helical 

nature have reduced protease stability compared to cysteine containing AMPs (Falciani 

et al., 2014), so, it would be important to determine this stability and to access different 

peptide modifications to reduce degradation. A number of studies have examined this 

problem. As an example, Carmona et al. (2013) have examined the biological activity 

of the proteolytic-insensitive D-conformer Pin 2. A 30-40% reduction in haemolytic 

activity was observed with the D-conformer, which retained the antimicrobial profile of 

the native peptide. Crucially, when incubated with trypsin, elastase, whole human serum 

or proteases from P.aeruginosa, only the D-conformer retained activity, suggesting a 

feasible strategy for increasing AMP stability. These results are mirrored by previous 

studies on phyllogenically diverse AMPs including cecropin A (Wade et al., 1990), 

melittin and paradaxin (Orzen et al., 1997), LL-37 (Dean et al., 2011), magainin (Guell 

et al., 2011) and mastoparan (Jones and Howl. 2012).
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Other strategies employed to increase both peptide stability and plasma half life have 

focussed on the delivery system, for example using liposome encapsulation (Ahmad et 

al., 1995) or conjugation to human serum albumin (HAS) as a carrier protein (Hussain 

and Siligardi. 2010). More recent studies have investigated the potential of inorganic 

nanostructures for AMP delivery (Brandeli et a l, 2012). Interestingly, as well as 

increasing stability toward proteases, these strategies have also increased the therapeutic 

index of AMPs in vivo.

The reduction of immunogenicity of a protein/peptide is of great importance not just to 

AMPs but to protein therapeutics as a whole and, consequently, a number of strategies 

has been proposed to achieve this. Although no studies have been directed toward 

decreasing the immunogenicity of AMPs in particular, various general strategies have 

been examined and could provide useful areas for further AMP research. For example 

PEGylation (De Groot et al., 2007) is an approved non-toxic and non-immunogenic 

procedure by interfering with antibody and/ or HLA epitope binding. Similarly peptide 

glycosylation also results in decreased immunogenicity through a similar mechanism 

(Von Delwig et al., 2006). PEGylation has also been shown to increase the stability of 

AMPs in the presence of proteases (Falciani et al., 2014) as well as decrease toxicity 

and increase biocompatibility (Morris et al., 2012). Conjugation of peptides to IgG has 

also been carried out to successfully evade the adult immune system (Zambidas et al., 

1996) and is a strategy employed within clinical practice for the delivery of anti­

inflammatory drugs. Finally, modifications of a peptide sequence to delete potential T- 

cell epitopes have also been examined (De Groot et al., 2007). Therefore while a 

number of different strategies are available to improve stability and reduce 

immunogenicity, it is important to emphasise that the central goal of any strategy should 

be to maintain beneficial biological activity.
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Along with the membrane disruptive mechanism that has been determined by the 

BacLight assay, the B. subtilis whole cell bioassay showed a possible interaction with 

DNA for Smp24, its derivatives and Pin 2. Previously a number of peptides have been 

shown to interact with intracellular targets including DNA (Yonezawa et al., 1992, Park 

et al., 1998, Zhang et al., 2014). However, this is the first study that provides evidence 

of interaction between scorpion AMPs with intracellular targets, although the IsCT 

derivative described earlier has been postulated to do so (Lim et al., 2006).

The classical example of AMP/DNA targeting is that of buforin II. As with the shorter

chain peptides in this study buforin II contains a proline residue within the central core

of its sequence (Park et al., 1998). Its mechanism of action consists of penetrating the

membrane without causing permeabilisation and accumulating in the cytosol before

binding strongly with DNA, in contrast, the proline deficient magainin 2, causes

membrane permeabilisation and stays bound to the lipid bilayer with a low propensity

for DNA binding (Kobayashi et al., 2004). Structural comparison between magainin 2

and buforin II using NMR (Bechinger et al., 1993, Yi et al., 1996) determined that

magainin 2 is a highly helical structure between residues 2-20 whilst buforin II does not

maintain a definitive structure in 50% TFE suggesting a variable structure with a kinked

helical conformation. Residues 12-21 at the C terminal are compact and helical with an

unordered structure at 1-4 and an extended helix between 5-10 at the N terminal, these

two straight helical regions are separated by a proline at position 11 (Park et al., 2000).

Both of these peptides have been shown to form toroidal pores within the membrane;

however the half life of a buforin II transient pore is significantly shorter than that of

magainin 2 allowing the peptide to disassociate from the membrane and accumulate

before membrane leakage occurs, in contrast magainin 2 forms transient pores have a

longer half live that remain tightly bound to the membrane (Park et al., 2000). This

transient pore collapse is electrostatically driven with repulsive forces within the helical
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portion of the peptide driving the process. For example buforin II has 5 positively 

charged residues within the 17 residues that form the helix whilst magainin 2 has the 

same charge spread over 23 residues so the electrostatic repulsion between the pore 

forming helices is greater in buforin II. Similarly, in the presence of pure PG, liposome 

permeabilisation is seen with buforin II due to the attractive electrostatic forces 

stabilising the pore. However, in PE:PG membranes the pores collapse faster. The kink 

effect of the Proline is also thought to have a destabilising effect on pore half life with 

substitution of proline to alanine increasing peptide half life to resemble that of 

magainin 2 (Kobayashi et al., 2004). Further evidence for the destabilising effect 

proline can have is found with the pore forming peptide alamethicin where substitution 

of alanine for proline is known to destabilise the pore (Kaduk et al., 1998)

Sequence analysis for the peptides in this study shows a charge of +2 over the predicted 

helical section of Smp24 and Pin 2. Coupled with the destabilising proline residue it 

could be hypothesised that these peptides represent a “half way house” between buforin 

II and magainin 2 in which both longer pore half lives are noted compared with buforin 

II due to reduced charge but the peptide can still disassociate from the membrane and 

interact with DNA due to Pro destabilisation. This may account for the peptides 

membrane permeable effect seen within the Baclight assay and possible interaction with 

DNA.

The precise structural conformation that is driving DNA binding seems to be hard to 

elucidate with sequence analysis between intracellular targeting peptides low and a 

range of structures being able to bind to DNA, therefore trying to predict and rationalise 

this phenomena into rational AMP design will be difficult and further research on AMP 

intracellular interaction needs to be undertaken (Nicholas. 2009). However it was noted 

by Park et al. (2000) that removal of the N terminal disordered region negated buforin
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II’s antimicrobial properties and, whilst peptides that showed DNA binding in this study 

are predicted to be helical at the N-terminal, significant disorder is predicted at the C- 

terminal which could facilitate nucleic acid interaction. It would be of interest to 

substitute the proline residue within Smp 24 & Pin 2 for an alanine as seen in buforin II 

to determine if DNA interaction still occurs.

Whilst the prevailing consensus is that membrane disruption is the primary mechanism 

of AMP activity, it is worth remembering the role of these peptides in vivo especially in 

scorpion venom. The total amount of venom produced per scorpion through artificial 

electrical stimulation of the venom gland is around 0.5mg and it would not be expected 

that a scorpion would inject such a large quantity of venom naturally (Oukkache et al., 

2013). Thus the concentration of AMP excreted will be at a very low concentration (low 

|ig or ng) therefore it is possible that in vivo the AMP exerts its effect through 

intracellular targeting or through a synergistic effect with other venom peptides.

The intracellular stress responses of Smp43 are limited to the cell wall/membrane. 

Considering the high homology between the peptides within the present study and the 

Pandinin peptides it is worth again considering the mechanism of action of the latter 

two.

The localised pore formation seen with Pin 2 highlights the possibility of membrane 

interaction being a prelude for the peptide to cross the membrane into the cytosol and 

interact with the intended target. In contrast Pin 1 generalised degradation causes 

massive disruption of membrane integrity. Therefore, it could be rationalised that if 

Smp24 had a localised pore forming mechanism, intracellular targeting could follow, 

whilst the generalised membrane disruptive effect of Smp43 would not necessitate 

intracellular targeting.
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As is seen in antimicrobial assays of the five biologically active peptides there are wide 

differences in MIC values, especially between Gram negative and Gram positive 

organisms, with all peptides showing preferential activity towards Gram positive 

bacteria-in keeping with a-helical peptides from scorpion venom.

The decreased susceptibility of Gram negative organisms to AMPs has been noted 

previously with a variety of mechanisms proposed. A number of studies have shown 

AMP resistance to be mediated via two component signalling pathways that are directly 

responsible for AMP sensing. For example in Enterobacteriaceae, after outer 

membrane peptide uptake the cationic peptides bind to the anionic face of the PhoQ 

sensor kinase found within the periplasmic space leading to the activation of genes 

associated with the PhoPQ system (Bader et al., 2003). Activation of this two 

component systems have a profound effect on the outer membrane has been shown to 

be responsible for reducing average O-antigen chain-length, acylating, deacylating, and 

hydroxylating lipid A, lipid A and LPS core phosphate modification with cationic 

groups, palmitoylation of outer membrane PG and increase in cardiolipin levels, and the 

expression of basic outer membrane proteins which alter membrane architecture making 

AMP penetration less favourable in a number of bacteria.

Similar systems in P. aeruginosa has been discovered termed CprRS and ParRS which 

act independent to each other (Fernandez et al., 2010) whilst in Salmonella 

Typhimurium the RcsFCDB phosphorelay system is responsible for an increase in 

resistance via the lipoprotein RcsF, which is located in the inner leaflet of the outer 

membrane, that, after sensing, activates the system in an as yet undefined fashion. This 

ultimately leads to the expression of capsule genes and production of colanic acid, 

which is a precursor of 4-amino-4-deoxy-L-Arabinose (L-Ara4N) and is responsible for 

polymyxin B resistance due to lipid A modification (Farris et al., 2010).
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Proteolytic degradation, capsule production, membrane modification and both efflux 

and influx pumps has also been identified in Gram negative organisms. Degradation of 

AMPs has been associated with outer membrane proteases, for example the 

evolutionary conserved omptin family found within the Enterobacteriaceae of which 

OmT from E.coli is a classical example (Hritonenko et al., 2007). Another omptin 

protease from Citrobacter rodentium, a rare cause of urinary tract infection, termed 

CroP causes AMP degradation with these proteolytic fragments then transversing the 

outer membrane and activating PhoPQ thus further decreasing susceptibility (Le Sage et 

a l , 2012).

The ability of certain organisms to limit the amount of peptide reaching the outer and 

inner membranes via encapsulation is also a well recognised strategy for AMP 

resistance. For example the presence of capsule polysaccharides (CPS) around K. 

pneumoniae is known to protect against AMPs. Typically, these structures are anionic 

presumably to facilitate cationic peptide binding (Llobet et al., 2008). The formation of 

biofilms, which renders a large number of antibiotics ineffective compared with 

planktonic culture, are also noted as a mechanism for AMP resistance. Typically the 

extracellular matrix of biofilms is largely composed of exopolysaccharides which are 

anionic in nature and function by the same electrostatically driven deactivation method 

as CPS capsules (Sutherland., 2001), for example P. aeruginosa has been shown to 

inactivate the human cathelcidin LL-37 via production of a b-D-manuronate and a-L- 

guluronate containing polymer alginate (Herasimenka et al., 2005).

Changes in outer membrane structure have also been shown to be a major factor in 

AMP resistance especially modification of LPS which can be achieved through 

modification in situ or during synthesis after activation via a two component pathway 

and reduces the overall negative charge of the LPS molecule thus reducing electrostatic
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attraction (Gunn et al., 2000). Such modifications have been noted in a number of 

species including E .coli, P. aeruginosa, S. typhimurium and Neisseria spp. (Richards et 

a l, 2012).

The presence of membrane transporter systems is a highly effective strategy to remove 

antibiotic agents from the periplasmic and cytoplasmic space and is seen in a number of 

resistance mechanisms especially against antimicrobial agents with intracellular targets 

(Otto. 2009). Both efflux pumps and influx pumps are associated with AMP resistance, 

for example the Sap ABC importer system in S. Typhimurium transports AMPs from the 

periplasmic space to the cytoplasm following binding to the SapA periplasmic protein 

where they are then degraded and used as a nutrient source (Parra-Lopez et al., 1993). 

Conversely, efflux pumps have been associated with resistance in a number of species 

including K. pneumoniae and N. gonorrheae. In K. pneumoniae the AcrAB pump is 

associated with resistance (Padilla et al., 2010) whilst in N. gonorrheae the MtrCDE 

pump is required for resistance (Veal et al., 1998).

The present study shows the difficulty in discovering effective antimicrobial agents 

against Gram negative organisms. This failure to develop new antibiotics against this 

class of organisms further highlights the need for empirical compound discovery 

research to widen the cohort of molecules less susceptible to these complex resistance 

mechanisms (Silver. 2011).

Further studies on a range of S. aureus strains revealed wide discrepancies in MIC 

values especially between EMRSA-15 and EMRSA-16. It is of interest to determine 

how resistance towards other membrane active peptides has been characterised.

Daptomycin, a 13 residue lipopeptide which has a ring formation within its structure 

incorporating residues 3-10 linked through an ester bond between a kynurenine and
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threonine residues, forms pores in bacterial membranes in a calcium dependent manner 

in the presence of PG (Straus and Hancock. 2006; Zhang et al., 2014).

Recently decreased susceptibility to Daptomycin has been described in S. aureus

(Mishra et al., 2014, Tsukimori et al., 2014 ) along with B. subtilis (Hachmann et al.,

2011) and a number of Enterococcus strains (Saito et al., 2014). These higher MIC

values have been associated with infection where a sub therapeutic dose has been

administered that has been lower than the concentration required for mutation inhibition

(Nannini et al., 2010) according to the mutation selection window concept (Drlica et al.,

2007). These mutations have occurred in genes that have caused changes in the

architecture of the cell membrane. For example, mutations in mprF have resulted in the

ability of the bacteria to increase the net surface charge of the membrane by the

conversion of PG to lysyl-PG due to the production of lysyl-PG synthase (Friedman et

al., 2006), similarly net surface charge is altered by the alanylation of teichoic acid due

to the over expression of the dltABCD operon (Yang et al., 2009). Other cell membrane

associated changes described included a decrease in production of PG in B. subtilis via

mutations in the pgsA allele which encodes the PG synthase gene pgsA (Hachmann et

al., 2011). However, this mutation only increased the MIC from to 1 to 2 pg/ml over a 5

year period, highlighting the slow evolution of resistance towards this membrane active

peptide. The increased presence of cardiolipin within Enterococcus strains has caused

decreased susceptibility to daptomycin and is conferred by mutations that alter the cell

envelope stress response (liaFSR) including mutations that increase the activity of

cardiolipin synthase (Davlieva et al., 2013).Changes in the cell wall have also been

implicated with increase cell wall turnover via mutations in the gene yycG  that encodes

a histidine kinase (Mishra et al., 2012). Also increased thickness of the cell wall

associated with decreased vancomycin susceptibility, a glyopeptide that inhibits cell

wall synthesis, has also been associated with an increase in daptomycin MIC that has
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been postulated to be due to the molecule becoming trapped in the cell wall (Van Hal et 

al., 2011).

Resistance has also been observed against nisin, a 34 residue peptide produced by A 

Lactococcus lactis number of resistance mechanisms have been described including cell 

wall thickening through increased teichoic acid facilitated by the dlt operon (McBride 

and Sonenshein. 2011), cell membrane biosynthesis and removal of the peptide from the 

cytoplasm (Kramer et al., 2006) and the production of the nisin resistance protein which 

causes inactivation of nisin via reduction of the carboxyl alanine (Sun et al., 2009).

Interestingly, these resistance mechanisms are mediated through genomic changes 

rather than being plasmid mediated (Kramer et al., 2006). Resistance towards 

membrane active agents, especially in S. aureus, have arisen due to mutations within the 

genome rather than acquired by plasmid uptake. Whilst resistance is observed in the 

current study by certain S. aureus strains this is likely due to an increase resistance to 

lipopeptides such as vancomycin which has been shown a prerequisite for increased 

resistance to membrane active agents as a consequence of cell wall thickening and the 

likelyhood of a substantial increase in antimicrobial peptide resistance after repeated 

exposure remains low (Mishra et al., 2012).

In summary, three scorpion AMPs have been characterised from the venom of S. 

maurus palmatus. Two of these peptides (Smp24 & Smp43) showed broad spectrum 

antimicrobial activity but different haemolytic effects whilst the third shorter peptide 

had no biological activity. Modification of Smp24 led to both beneficial and adverse 

biological effects and highlighted the potential for further manipulation of these 

peptides as AMP scaffolds. Both show the classical membrane disruptive mechanism of 

action, however Smp24 and its derivatives along with Pin 2 showed evidence of DNA 

interaction.
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Based on alignment with other scorpion AMPs the longer peptide Smp43 has a helical- 

hinge-helical structure, allowing for a high therapeutic index and exerts its effects 

through a carpet model mechanism. The shorter peptide, Smp24 has a lower therapeutic 

index with a helical region at the N-terminal and unordered structure at the C-terminal 

with a pore forming mechanism being hypothesised

This study highlights the beneficial effect a helical-hinge-helical conformation has on 

an AMPs biological activity in line with other previous studies (Galanth et al., 2009) 

and it is these peptides should be the focus of further AMP development.
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5 CHAPTER 5
BIOPHYSICAL CHARACTERISATION OF THE ANTIMICROBIAL 

PEPTIDES SMP24 & SMP43 FROM SCORPIOMAURUSPALMATUS
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5.1 Background and Aims

A central question in AMP research is understanding the mechanism by which peptides 

interact with a phospholipid bilayer. As described in chapter 1, three main mechanisms 

have been proposed, the barrel stave, toroidal pore and carpet model, however, more 

recent models have also been proposed (Teixeria et al., 2012).

The use of atomic force microscopy to image planer lipid bilayers has become a well- 

established technique (El Kirat et al., 2010), however it has only recently been 

employed to determine the mechanism of action of AMPs.

Won et al., (2011) examined the effects of anoplin a 10 residue amidated a-helical

peptide isolated from the venom of the solitery wasp Anoplius samariensis. Using the

native peptide and 2 derivatives, a non amidated version (An-OH) and a D-amino acidic

(D-AN-OH) version, AFM images collected in air clearly shows the formation of lipid

domains of both DPPC & DPPG bilayers upon AN-OH and AN-NH2 interaction with

these domains having a height of approximately 2 nm with varying diameters in the tens

to hundreds of nanometre range, however the size of these domains were smaller upon

AN-NH2 interaction compared with the acidic free form. Fernandez et al., (2012)

investigated the mechanism of aurein 1.2, a 13 residue amidated peptide isolated from

the skin of various Australian frogs using both AFM and QCM-D to determine a carpet

model mechanism of action. QCM-D analysis showed a 15% reduction in lipid content

with the negatively charged bilayer compared with 5% with the DMPC model. AFM

imaging was undertaken on both membrane model systems in vesicle form at 0.67 pM

and 6.7 pM peptide concentrations. At the lower concentration no effects were

observed, however, at the higher concentration the vesicles are destroyed and the

formation of smaller collapsed vesicle like structures are seen, reflecting the

detergent/carpet like effect of the peptide on both model membranes. In contrast to this

160



carpet mechanism, Lam et al. (2007 & 2012) visualised the effect of the highly 

positively charged 18 residue peptide protegrin-1 (PG-1) isolated from porcine 

leukocytes. AFM imaging of a DMPC bilayer showed a concentration dependent effect. 

At low concentrations (up to 1.5 pg/ml) no detectable morphological changes occurred, 

however the peptide was thought to have bound to the surface of the membrane due to a 

decrease in perturbation of the soft bilayer during lateral scanning and as the 

concentration increased up to 2.0 pg/ml morphological changes were observed at the 

edge of the bilayer with a loss of a smooth edge (line tension). Further increases up to

4.0 pg/ml revealed the development of pores within the bilayer and with further 

increases in concentration the development of worm like structures which are 9 nm in 

diameter.

Along with assessing the damage AMPs cause to planer lipid bilayers researchers have

also examined their effects on whole bacteria, this offers a number of distinct

advantages over SEM, previously utilised to determine whole cell damage, due to the

ability of AFM's to be performed in pseudo native conditions and the possibility of

introducing the peptide during the time course of the experiment. Lu et al., (2014)

examined the effects of two AMPs on P. aeruginosa with the loss of membrane

integrity determined by efflux of the cytoplasmic contents of the cell and changes in the

viscoelastic properties of the cells during force spectroscopy, similarly Li et al., (2007)

showed the complete collapse of the cell structure of E. coli and P. aeruginosa using

endotoxin-binding Sushi peptides. Of particular interest is the use of high speed AFM to

image the effect of CM 15 on an E.coli cell in which the peptide is seen binding to the

live cell and then once a critical concentration can is reached the cell membrane losing

complete integrity and a crumpling effect observed (Fantner et a l, 2010). This study

represents the first of its kind to capture the dynamic process from start to finish on a

living cell. One criticism of using AFM to image whole cell events is that, whilst
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providing informative images of membrane damage near physiological conditions the 

resolution is poor typically in the high nm to low pm range and no individual events 

such as pore formation are observed as are seen in planar lipid bilayer studies.

In this study we examine the mechanism of action of Smp24 and Smp43 using a variety 

of biophysical techniques.

5.2 Method Summary

The mechanism of action of the two AMPs Smp24 and Smp43 was examined using a 

number of biophysical techniques using synthetic membranes which mimic prokaryotic 

and eukaryotic membranes. Methods included CF release assays, QCM-D and AFM on 

hydrated planer lipid bilayers. The effect of the incorporation of CR and CL were also 

examined.

5.3 Results

5.3.1 Analysis of Smp24 using liposome leakage assays

Liposome leakage assays were performed on a number of different liposome 

compositions. Against a negatively charged lipid membrane (PC:PG (1:1) significant 

membrane disruption starts to occur at 1.25 pM Smp24 with 37.7% (±1.7) CF release, 

increasing peptide concentration to 2 pM caused a maximum CF release of 70.9% 

(±2.6) (Fig. 5.1). The gradual release of CF at increasing concentration is suggestive of 

pore formation rather than a carpet mechanism as complete membrane collapse is not 

observed. The electrostatic nature of this attack has also been examined with a decrease 

in CF release in the presence of 500 mM NaCl, for example at 1.25 pM Smp24 only 

6.25% (±1.0) CF release is observed whilst 53.3% (±2.19) release is seen at 2.0 pM 

(Fig. 5.1).
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Against a neutrally charged bilayer (PC:PE (1:1)) CF release is less pronounced with 

only 19.6% (±1.7) observed at 1.25 pM peptide concentration. As against PC:PG, no 

membrane collapse is observed with a gradual increase in CF release is seen until a 

maximal release of 48.7% (±2.0) (Fig. 5.2). However unlike with PC:PG membrane 

disruption is not driven by an electrostatic interaction with no difference in lyses 

observed in the presence of 500 mM NaCl (Fig. 5.2).

The inclusion of cardiolipin (10%), found within some bacterial membranes, increases 

CF release at Smp24 peptide concentrations above 1.25 pM compared with the PC:PG 

bilayer with 100% release seen at 1.75 pM and above (Fig. 5.1). Unexpectedly, the 

inclusion of cholesterol into both PC:PG and PC'.PE membranes increased CF release 

with Smp24 (Fig. 5.1 & 5.2). The possible reasons for this are discussed in the 

discussion of this chapter. Against PC:PG:CL (45:45:10) complete CF release is 

observed at 1.0 pM peptide concentration (Fig. 5.1), however against PC:PE:CL CF 

release increases to 72.4% (±0.8) at 1.25 pM Smp42 and to a maximum of 89.0% (±2.8) 

at 2.0 pM peptide concentration (Fig, 5.2).
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5.3.2 Analysis of Smp24 attack on hydrated lipid bilayers using AFM

To visualise the membrane disruptive mechanism of Smp24, AFM was undertaken on 

hydrated lipid bilayers following attack with Smp24 at 1.25 pM and 2.0 pM against the 

following bilayer compositions; PC:PG, PC:PE, PC:PG:CL along with a bilayer that 

exhibits phase separation where clear lipid ordered and lipid disordered domains can be 

observed. This phase separated bilayer had a composition of PC/SM/CL (1:1:0.67) 

(SM- sphingomyelin).

A smooth bilayer is observed before peptide attack with clear lipid ordered (L o) and 

lipid disordered (Ld) seen with the light areas been in the Lo phase (figure 5.3a). After 

peptide attack at 1.0 pM the smooth appearance of these Lo domains begin to diminish 

and, whilst pore formation is not observed, the loss of the smooth appearance within the 

lipid ordered areas has implications for the nature of peptide mechanism of action (Fig. 

5.3b-f-consecutive scans 5min/frame). The PC:PG bilayer exhibits a smooth appearance 

before peptide attack (Fig. 5.4a) however after 5 minutes of incubation vesicles are 

observed blebbing off the surface (Fig. 5.4b), a further 5 minute incubation led to pore 

formation as revealed in figure 5.4e & f. These pores vary in size with a number of 

different pores detected having a diameter between 23.49-39.9 nm (Fig. 5.5). The depth 

of these pores range between 2-4 nm and so do not represent the removal of a full 

bilayer An increase in peptide concentration (Fig. 5.6a & b) to 2.0 pM caused the 

complete destruction of the bilayer with large vesicle formation and a marked softening 

of the bilayer seen in lateral scanning, reflecting the dramatic effect slight changes in 

the peptide: lipid ratio has
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Figure 5.7 shows the effect of Smp24 at 1.25 pM on a neutrally charged PC:PE bilayer 

(8 pm at 1.97 Hz) with figure 5.11a showing the bilayer before peptide attack. Upon 

peptide attack (B-D consecutive scans 5 min/frame) vesicle and pore formation are not 

observed, instead removal of the bilayer in 'stratified lines' is seen (Fig. 5.7f). Analysis 

of these disrupted areas (Fig. 5.8a) revels these areas are approximately 200 nm in width 

and within these areas a varying depth of disruption (i.e. bilayer removal) is seen 

ranging between 2-4 nm. Increasing the concentration of the peptide to 2.0 pM (Fig. 

5.9b-f ) increases the destruction of these areas however does not cause complete 

destruction of the whole bilayer as is seen with PC:PG with an increase in the width of 

these disrupted areas to approximately 350 nm (Fig. 5.8b) however the varying depth of 

bilayer removal is still apparent.
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The effect of the addition of 10 % CL to a PC:PG bilayer after peptide attack at 1.25 

pM has been determined (Fig. 5.10). Whilst areas of the bilayer before peptide attack 

contain holes, these holes are still present throughout the attack and do not influence the 

effect of cholesterol in the membrane. There is a significant difference between the 

original bilayer and the cholesterol containing bilayer with larger more concentrated 

areas of membrane disruption occurring rather than discrete pore formation with these 

areas being similar to the PC:PE bilayer (Fig. 51 Of).
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5.3.3 Analysis of Smp24 attack on hydrated lipid bilayers using QCM-D

Along with liposome leakage assays and AFM the interaction of Smp24 with PC:PG 

and PC:PE bilayers have also been assessed using QCM-D. QCM-D curves for both 

bilayers in which the bilayer is attacked with peptide at increasing consecutive 

concentrations over the same time period are shown in figures 5.11 and 5.12. In each 

graph the frequency has been inverted, with a decrease in frequency representative of an 

increase in the peptide upon the surface. The dissipation measurement is a measure of 

the increased interaction between the crystal surface and fluid environment flowing over 

the crystal. If the membrane is tightly bound to the surface the dissipation reading will 

be low, however if after peptide attack the membrane is disrupted and interaction with 

the fluid environment increases the energy that is lost from the surface of the crystal to 

the environment increases thus dissipation increases. The frequency and dissipation 

readings of QCM-D upon interaction with an AMP have been summarised in figure, 

1.11. For each figure each colour represents the shift in frequency and dissipation over 

the same time period (20 mins) of different concentrations of Smp24.

Upon Smp24 interaction with the negatively charged bilayer PC:PG at low 

concentrations (0.1 and 0.2 pM) the frequency decreases from around -24 Hz to -25.5 

Hz whilst only a small shift in dissipation from 0.2 to 0.35 is observed. However, at an 

increase in concentration to 0.75 pM, a marked increase in both peptide accumulation 

and membrane disruption occurs with the frequency decreasing -25.5 Hz to -37.3 Hz 

and the dissipation increasing to a maximum of 1.6, this then decreases back down to 

1.4. This “swing back” phenomenon could represent the threshold concentration being 

overcome and incursion of Smp24 into the membrane taking place with a transient 

stabilisation as peptides lay parallel with the phospholipid chains. A further injection of 

0.75 pM Smp24 has little effect with only a small decrease in frequency taking place
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down to -39 Hz, however further increases in peptide concentration to 1.25 pM 

significantly decreases frequency to -45 Hz and increases dissipation to 2.8 reflecting 

further peptide accumulation and further incursion into the membrane (Fig.5.11).

Whilst large shifts in frequency and dissipation is the over-riding theme of Smp24 

attack on the negatively charged model membrane, for the neutrally charged PC:PE 

bilayer the picture is very different with an increase in frequency from -27.7Hz to -24.4 

Hz and a minor decrease in dissipation from 0.66 to 0.44 (Fig. 5.12). The lack of 

dissipation “swing back” would also suggest that a threshold accumulation and 

incursion event does not take place. Therefore it is clear both from the QCM-D and 

AFM images obtained, that a radically different mechanism takes place at the same 

concentration on different bilayer compositions.
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5.3.4 Analysis of Smp43 attack on liposomes

Liposome leakage assays have also been undertaken against PC:PG, PC:PE and 

membranes containing cardiolipin and cholesterol using Smp43. As is seen in figures 

5.13 & 5.15 a significant difference in membrane disruption occurs between PC:PG and 

PC:PE confirming the AFM results. At 1.0 pM Smp24 97.4% (±4.35) CF release is 

observed with PC:PG liposomes with maximum release observed at higher 

concentrations whilst only 9.1% (±1.8) CF release was detected against a PC:PE 

composition with Smp43 attack at 1 pM with a maximum CF release of 46.3% (±2.0) at

2.0 pM. The electrostatic nature of attack was also examined. In the presence of 500 

mM NaCl the effect of Smp43 on PC:PG was significantly diminished with only 30.6% 

(±4.1) CF release seen at 1.0 pM compared with 86.5% (±6.8) at the same concentration 

in the absence of NaCl when tested at a concentration range of 0.2-1.0 pM (Fig. 5.14). 

In contrast when 500mM NaCl was included with PC:PE no significant difference in CF 

release was observed with 42.3% (±1.0) release observed at 2.0 pM compared with 

46.3% (±2.0) with no NaCl (Fig. 5.15).

CL was also incorporated into each membrane composition at a concentration of 10%, 

and as is seen in figures 5.13 and 5.15 it has contrasting effects on CF release. When 

incorporated into a PC:PG bilayer a significant decrease in CF release is observed with 

an almost complete inhibition of membrane disruption at 1.0 pM Smp43 with only 1.1% 

(±1.4) detected and a maximum release of 39.9% (±4.0) at 2.0 pM (Fig. 5.13). However 

against PC:PE a difference in release is observed at 1.75 pM Smp43 and above with 

79.7% (±3.9) release seen at 2.0 pM (Fig.5.15)The presence of cardiolipin with a 

PC.'PG bilayer caused no significant difference in leakage been highly susceptible to 

Smp43 at 1.0 pM and above (Fig. 5.13).
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5.3.5 Analysis o f the m echanism  o f action  o f Sm p43 using the D im ension  FastScan 
Bio™ AFM

The mechanism of action of Smp43 has been probed using liposome leakage assays and 

AFM, however for this peptide a Dimension FastScan Bio™ AFM was used with the 

potential to scan at up to 125 Hz which allowed the attack of the bilayer to be captured 

at a much faster rate than previously possible (Heath et al., 2014). For example, the 8 

pm2 scans obtained using Smp24 took 5 mins to generate, however using the fast scan 

AFM peptide attack was captured at 10 s/frame (1 pm2 scan). Thus it has been possible 

to capture AMP attack from initial incubation and give a better understanding of the 

whole process than previously possible. Both PC:PG and PC:PE bilayers were attacked 

at 1.0 pM Smp43 using a flow cell the bilayer with imaging taking place for 60s before 

the peptide was injected. As is seen in video 5.1 (on CD) there is a time lapse of 129 s 

before initial incubation to visible membrane disruption. Initial disruption occurs at two 

nucleation sites which have a pore size of 33.0 nm and 19.1 nm and the depths of these 

pores are between 0.6-1.5nm (Fig.5.16) suggestive of the removal of only one lipid 

layer as a planer lipid bilayer has a depth of between 4-6 nm (Heath et al., 2013). From 

these two nucleation sites membrane disruption expands in a seemingly random fashion 

until a further nucleation site appears after 371 s at the top of the frame. From the 

beginning of the video no vesicle blebbing is observed during attack. However, as is 

seen after the formation of the initial nucleation sites, the height differentiation 

increases, indicated by the increasing light nature of the false colour image representing 

the remaining bilayer. This increasing in height differentiation is also seen during 

expansion of the third nucleation site. After approximately 700 s membrane disruption 

starts to slow down suggesting that the peptide has been used up. A similar mechanism 

of action is observed against the PC:PE bilayer (video 5.2) (on CD). However, the time
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lapse until initial membrane disruption occurs and the speed and scale of disruption is 

significantly different from the PCPG bilayer. Initial membrane disruption only occurs 

at a single nucleation site after 367 s with a shallow indentation observed with a width 

of 27.5 nm and a depth of 0.5 nm (see figure 5.17a-c). A second nucleation site occurs 

approximately 140 s later The speed at which disruption occurs is significantly 

increased against PC:PG as is seen in when comparing the level of destruction 2 mins 

after initial disruption (figure 5.18). Similarly the difference in the level of disruption 

after 20 mins incubation is significant with only a small section of the PC:PG bilayer 

(Fig. 5.19a) still intact whilst nearly all of the PC:PE bilayer remains intact (Fig. 5.19b), 

even after 40 minutes incubation with the PC:PE bilayer a large proportion of the 

bilayer remains.
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5.4 Discussion

This study has investigated the effect of both Smp24 and Smp43 using CF release 

assays, AFM and QCM-D on synthetic membrane systems with the aim of elucidating 

their mechanism of action.

The membrane composition of prokaryotic membranes makes them more negatively 

charged than their eukaryotic counterparts, with prokaryotic membranes composed 

largely of the hydroxylated phospholipids PG, PS and CR, whilst eukaryotic membranes 

consist of more neutrally charged phospholipids such as PC, PE, SM and sterols such as 

cholesterol and ergesterol. (Yeaman et al., 2003). Although a number of bacteria do 

contain PE, for example the outer membrane of E. coli is predominantly PE (Ratledge 

& Wilkinson., 1988), the membrane compositions chosen within this study reflect 

prototypical prokaryotic and eukaryotic membranes with PC:PG being used to mimic 

the former and PC:PE chosen as the latter based on its zwitterionic properties.

Whilst both peptides show preferential activity against PC:PG bilayers, Smp43 has a 

lower attraction towards the PC:PE bilayer than Smp24 which is reflective of the lower 

cytotoxic nature of the former peptide against erythrocytes seen in biological testing. 

Furthermore, it shows that these two membrane compositions correlate well with 

biological activity providing adequate models to investigate AMP action.

The inclusion of cardiolipin into the PC:PG bilayer increased the propensity of lyses in 

the presence of Smp24. Whilst this would be expected due to its negative charge and 

high concentration within bacterial membranes it is not necessarily a prerequisite for 

increased AMP activity. For example, it has recently been demonstrated to inhibit the 

pore forming abilities of daptomycin in PG liposomes at a concentration of 10 & 20% 

(Zhang et al., 2014) with genetic studies suggesting a role for cardiolipin in decreased
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daptomycin susceptibility in a number of bacteria (Davlieva et al., 2013 & Mishra et al.,

2013).

A major driving force of AMP selectivity is the electrostatic attraction to prokaryotic 

membranes due to both the presence of negatively charged phospholipids along with 

LPS in Gram negative organisms and teichoic acid in their Gram positive counterparts 

(Hancock et al., 1997 & Peschel et al., 1999). Both peptides used within this study are 

positively charged with Smp24 & Smp43 carrying a charge of +3 & +4 respectively. As 

is seen in figures 5.2 and 5.18 the electrostatic attraction of these positively charged 

AMPs to negatively charged bilayers is significantly disrupted in the presence of 500 

mM NaCl reflecting the importance of this attraction. In contrast no significant decrease 

in lysis is observed with PC:PE liposomes suggesting that electrostatic interaction is not 

a factor in membrane disruption with respect to the zwitterionic bilayer. However both 

peptides do cause CF release and membrane damage is observed using AFM, therefore 

another factor is driving this disruption.

It is well known that PE induces negative curvature of the bilayer due to the cone 

shaped nature of the lipid with the head group having a smaller cross sectional area than 

bulkier lipids such as PC. The presence of such lipids induces packing defects within 

the bilayer resulting in the negative curvature (Vamparys et al., 2013). A number of 

peptides have been shown to interact with membranes active through a process of 

curvature-sensing, of interest, is the neuronal degenerative peptide a-Synuclein 

composed of a highly conserved sequence (KTKEGV) repeated imperfectly throughout 

the N-terminal half of the protein that can be displayed as an amphipathic helix upon 

binding to membranes (Drin & Antony., 2010). In the presence of cone shaped lipids 

such as PE, increased binding is observed, with significant rearrangement of the bilayer 

observed to accommodate the peptide, causing bilayer lateral expansion in order to
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bridge the spaces between head groups and relieve the negative curvature strain induced 

by the high PE content in the lamellar phase (Ouberai et al., 2013).

Other peptides containing amphipathic lipid packing sensor (ALPS) motifs such as 

synapsin 1 (Krabben et al., 2011) and ArfGAPl (Bigay et al., 2005), recognises lipid- 

packing defects by a conserved mechanism of peptide partitioning where hydrophobic 

residues interact into large packing defects within the bilayer. They are 20—40 residues 

in length and share low sequence homology but similar physicochemical features 

including hydrophobic residues every three or four residues, typically phenylalanine, 

leucine, or tryptophan. However, small polar residues between however charged 

residues are rare and bind to packing defects caused by positive curvature (Bigay et al., 

2005, Prin et al., 2007 & Vanni et al., 2013).

Indeed the phenomena of curve sensing is thought to be critical to a number of 

fundamental cellular functions and allows peptides, typically amphipathic in nature, to 

identify and aggregate on the correct sub cellular membrane and are critical for a 

number of transport and signalling pathways (Antony., 2011). Therefore it is perhaps 

not surprising that peptides characterised as being amphipathic such as AMPs can 

exploit such fundamental biochemistry.

Whilst electrostatic attraction and lipid defect sensing may be responsible for the initial 

attraction of these peptides, the AFM images generated for Smp24 reveal radically 

different effects depending on lipid composition.

Against the PC:PG bilayer the formation of pores within the bilayer is observed 

(Fig.5.8e & f) each of the pores detected varies in size between 23-40 nm with the pores 

being around 2-3 nm in depth (Fig 5.9) therefore the pores seen within this study are not
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sufficient to span the whole bilayer. This could be due to a number of reasons. Firstly, if 

the pore is of a toroidal nature the pore edges would be very unstructured, as opposed to 

a barrel stave pore. Therefore, the pore could be wider at the top then at the bottom and 

the depth analysis discrepancy is due to the radius of the tip being too large to measure 

the narrowest point of the pore. Secondly, only the top leaflet has been removed so in 

fact the peptide is exerting a carpet mechanism like effect and the disruption observed is 

a highly localised carpet mechanism. Thirdly, a pore has been formed however peptide 

has subsequently adhered to the exposed mica surface so the tip hits the peptide instead 

of the mica giving a false depth reading. From the liposome leakage assays, however, it 

is clear that complete membrane collapse is not taking place with a gradual release of 

CF suggestive of pore formation rather than a carpet mechanism (Belokoneva et al., 

2003). Also the QCM-D seems to suggest pore formation, as an accumulation of peptide 

occurs represented by a decrease in frequency, this build up along with an increase in 

the dissipation reading, a measure of the loss of energy from the crystal surface to the 

aqueous phase due to increased interaction. Interestingly, the dissipation reading 

undergoes a swing back event where dissipation momentarily decreases which could be 

hypothesised to .be an insertion event taking place as insertion of the peptide into the 

bilayer would lessen the interaction of peptide with the aqueous phase thus a decrease 

in dissipation is seen. After this event, and at higher peptide concentrations dissipation 

increases further, presumably as more peptide accumulates on the bilayer with pore 

formation leading to the eventual destruction of the bilayer as observed in figure 5.10. 

Smp24 seems to follow the classical pattern of AMP pore formation, starting with 

electrostatic attraction, accumulation and subsequent peptide insertion after reaching a 

critical threshold concentration (Zasloffi, 2002).

The mechanism of pore formation could be assumed to be toroidal on the basis of a

number of factors. Firstly, pores of varying size, secondly, increasing peptide
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concentration leads to complete destruction of the bilayer as opposed to increased pore 

formation and thirdly as is observed after peptide attack on the phase separated bilayer 

the peptide is line active.

Line activity is defined by the ability of a peptide to interact with points within the 

bilayer, typically at the edges, which high a high steric hindrance as depicted in figure 

5.20 and is explained in more depth below.

In a planer lipid bilayer system the edges of the bilayer are intrinsically curved as to 

allow protection of the hydrophobic chains, however this curvature comes at a price as 

the hydrophobic tails are bent towards each other and in close proximity, therefore it is 

energetically less favourable for a lipid molecule to stay at the edge of this system 

instead of being in the bulk (See Fig. 5.20). Because of the high unfavourable energy 

associated with this phenomenon bilayers have high line energy, in which the edges of 

the bilayer are shortened so that more lipid remains in the bulk then at the edges, these 

systems are said to have a high line tension which regulates the length of the 

lipid/aqueous edge leading to the appearance of smooth short edges when examined by 

AFM (Garcia Saez et al., 2007). In a phase separated bilayer the smooth edges within 

the lipid ordered areas seen before peptide attack is due to this high line tension. 

Previous studies have also examined the effects of AMPs on line tension which have led 

to insights into the mechanism of action of the peptides.
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BULK
STERIC HINDRANCE

HIGH LINE LOW LINE
TENSION TENSION

Figure 5.20: At the edges of a bilayer it is energetically unfavourable for an individual 

phospholipid to be at the edge of the bilayer due to steric hindrance therefore a high line tension 

is observed as more phospholipids remain in the bulk
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Lam et al. (2012) examined the effects of PG-1. During binding at low concentrations 

the peptide interacts with the edges of the bilayer and adopts an extended hair pin shape 

in which the hydrophilic N-terminal region interacts with the head groups within the 

bottom leaflet and the central hydrophilic region interacts with the top leaflet flanked by 

two hydrophobic regions sitting with the phospholipid chains. This peptide interaction 

has the effect of lowering the overall line energy (thus line tension) of the system and 

allows for a more rugged and relaxed line edge as is seen with the interaction of Smp24 

at the edge of the lipid ordered areas within the phase separated bilayer.

Increasing the concentration of PG-1 causes saturation of the edges of the bilayer at 

which point the line tension cannot be lowered any further and the peptides start to 

induce curvature of lipid areas within the bulk of the bilayer, thus increasing steric 

stress of these phospholipid chains which then allows for incursion of the peptide into 

the membrane and the formation of open pores within the bulk. The peptide interaction 

follows the same pattern in the bulk as at the edge and thus is a peptide-lipid interaction 

reminiscent a of toroidal mechanism of action (Ludkte et al., 1996, Matsuzaki et al., 

1996). Further increases in peptide concentration allows the peptides to form dimeric 

structures which allows the line tension to be reduced so much that worm like structures 

are formed as it is energetically favourable to have an increased edge (Fig. 5.21).
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Further evidence of line active peptides has been demonstrated by AFM imaging of 

phase separated bilayers with helix 5 of the bax peptide involved in eukaryotic cell 

death by pore formation in the mitochondrial cell wall (Garcia Saez et al., 2007). AFM 

studies previously determined the peptides pore forming abilities in planer lipid bilayers 

supporting a toroidal model (Epland et al., 2002). In the latter study on phase separated 

bilayers containing DOPC/SM/Chol (1:1:0.67) smooth Lo areas are clearly visible, 

however, after 30 minute incubation, the effect on line tension is apparent with a loss of 

line integrity.

The loss of line tension seen in the current study with Smp24 is compared with previous 

studies therefore a similar mechanism of action in which membrane disruption occurs 

through peptide-lipid rather than peptide-peptide interactions is a realistic assumption

Whilst a toroidal pore like mechanism can be hypothesised for the Smp24 attack on the 

PC:PG bilayer, attack on the neutrally charged bilayer is radically different. As is seen 

using AFM, no pore formation is observed. However, large areas of disruption occur 

that result in stratifications without the removal of the complete bilayer in these areas 

(Fig. 5.7f) Formation of possible domains has also been observed suggesting that phase 

separation is induced (Fig. 5.7e). Furthermore liposome leakage assays do not show a 

complete collapse of the bilayer (Fig. 5.1) and less leakage is observed than with the 

PC:PG bilayer suggesting that a carpet mechanism is not occurring, a hypothesis 

supported by the QCM-D results which suggest no accumulation event occurring (Fig. 

5.12).
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A number of AMPs have previously been shown to disrupt membranes by a mechanism 

termed peptide-mediated non-lamellar formation which has been suggested as a 

fundamental mechanism of protein-membrane interaction (Henley et al., 2010).

Membrane lipids can self-assemble into numerous different phases, including micellar,

lamellar, hexagonal and cubic phases and the ability of membranes to form these

structure is governed by lipid structure (Hanley et al., 2010). Membranes that are

composed of lipids with a similar headgroup and acyl chain cross sectional area, for

example PC and PG, favour the formation of planer lipid bilayers whereas membranes

containing the cone shaped PE lipids prefer inverted micelles and inverted hexagonal

lipid phases or regions with high negative membrane curvature strain (Tresset., 2009).

Therefore, it is important to understand how membrane properties governing membrane

dynamics are affected by changes induced by the interaction with AMPs. In the absence

of peptides, the stored curvature elastic energy causes the bilayer to expand laterally,

this expansion decreases steric hindrance and is thermodynamically favourable.

However, expansion can only occur up to a certain threshold as changes in membrane

conformation causes increased exposure of the acyl chains to water therefore beyond

this threshold it becomes thermodynamically favourable for an inverse phase to occur.

Typically with PE, a Hexagonal II phase (Hn) tubular structure forms with the head

groups orientated to the centre of the cylinder due to its favoured negative curvature

(Fig. 5.22). A similar feature was observed for some integral membrane proteins, which

may release stored curvature elastic stress locally during insertion into the bilayer by

allowing the chains to dislocate more and forces the head groups together, making the

peptide-lipid assembly thermodynamically more stable. Lipid lateral stress can be

induced by proteins causing membrane structural changes allowing the formation of

phases that are highly curved such as hexagonal, cubic or even micellar phases (Heller

et al., 1997, Lohner et al., 2001, Pozo et al., 2005 & Epand et al., 2008). A link between
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alterations in lipid structure and the modification of cell signalling events has been 

suggested (Epand., 1998). For example amphitropic enzymes comprise a class of 

proteins whose activities are modulated by the reversible translocation to membrane 

surfaces in response to local fluctuations on membrane dynamics and organisation 

(Hurley et al., 2000). An example of this process is the enzymatic protein kinase C 

(PKC) family. PKC enzymes are involved in cell proliferation, differentiation and 

signalling and activity is influenced by the presence of non-lamellar forming lipids, for 

example the PKC-catalyzed phosphorylation of histone occurs in the presence of cubic 

phase structures (Giorgione et al., 1998).

Analysis of the AFM images after 1.25 pM Smp24 attack on PC:PE show elongated 

stratifications (Fig. 5.7F). These areas of disruption have a width of around 200 nm. 

However not all the bilayer is removed within them and presumably these represent the 

elongated stratifications. Further increase in peptide concentration causes a widening of 

these disrupted areas to around 350 nm but complete bilayer removal is not observed 

(Fig. 5.8b & 5.9c-f). Based on the propensity of PE containing bilayers to form non- 

lamellar phases it is conceivable that Smp24 is inducing this process and that the 

stratifications are elongated structures similar to those described by Tresset. (2009) (Fig. 

5.22).

201



H„ H,

Figure 5.22: Non lamellar structures possibly present after Smp24 attack on PCPE 

bilayers with the lipid heapgroups represented in red and the acyl chains 

represented in grey. Taken from Tresset (2009).
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The formation of non-lamellar phases has been seen with a number of AMPs. 

gramicidin S (GS) has the ability to form cubic phases in lipid bilayers along with lipid 

extracts of E. coli (Prenner et al., 1997 & 1999). NMR and X-ray diffraction have 

revealed that the binding of GS membranes solely composed of PC, PS, CL or SM 

showed no formation of non-lamellar phases, however, in the presence of PE, PG and 

PC the formation of a cubic phases is observed (Fontell 1990). The detection of non- 

lamellar phase formation, after attack by human lactoferrin derivatives on E. coli total 

lipid extracts using small-angle X-ray scattering in which two different cubic phases 

coexisted with the lamellar phase, was also seen (Zweytick et al., 2008).

Furthermore, the AMPs sprotegrin-1 and PGLa were able to form cubic phases on pure 

POPE membranes (Hickel et al., 2008), and nisin caused cubic phases with POPE 

membranes and alamethicin has also been shown to induce cubic phase structure in PE 

membranes (Keller et al., 2008). It has been suggested that the insertion of the peptide 

in the bilayer shifts the amphiphilic balance by increasing the hydrophobic contribution, 

driving non-lamellar structure formation (El Jastimi et al., 1999)

A comparison of figures 5.7e and 5.7f suggests it is possible that Smp24 induces both 

non lamellar structures and phase separation upon attack at 1.25 pM. As is seen in 

5.1 le, after peptide attack the bilayer has both Lo and Ld areas represented by 

differences in the height differentiation (lighter patches are higher).

Membrane disruption by induction of lipid-peptide domains through lateral phase

segregation of zwitterionic from anionic lipids and has been seen along with the

induction of non-lamellar phases in various studies (Arouri et al., 2008, Epland &

Epland., 2009, Teixeria et al., 2010). For example, linear and cyclic arginine- and

tryptophan-rich AMPs have been shown to induce de-mixing of a DPPG/DPPE bilayer
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in to separate domains (Arouri et al., 2008) and it was recently postulated that AMPs 

with a high positive net charge, conformational flexibility and sufficient hydrohobicity 

facilitate preferential interaction with anionic lipids and the promotion of lipid lateral 

segregation (Epland & Epland et al., 2009). This mechanism has also been suggested to 

be responsible for a peptides ability to affect certain bacteria and not others. For 

example, a study on the peptide OAK C12 K-7a8 using Bacillus cereus and S. aureus 

showed the former was far more susceptible with the authors suggesting the high 

concentration of PE in the bilayer was responsible for this as S. aureus has a much 

lower PE content therefore lipid segregation is inhibited (Epland et al., 2008). Also, LL- 

37 derivatives induced lipid phase segregation of anionic lipids away from zwitterionic 

lipids (Epland et al., 2009). Overall, these studies suggest that some antimicrobial 

peptides are able to induce lipid segregation on species with membranes composed of 

zwitterionic and anionic lipids.

In figure 5.23 there is a striking resemblance between the bilayer attack and patterns 

produced during diffuse limited aggregation (DLA) (Witten and Sander., 1981, 

Mandelbrot et al., 1995). DLA is characteristic of systems in which molecules that 

undergo Brownian motion form irreversible aggregate clusters on a surface. In the 

process a seed particle attaches to the surface and then other particles attach to this 

particle. The rate-limiting step in aggregation is often the diffusion of the particles to 

the surface of the aggregate. Similar growth processes occur when a chemical species 

precipitates from a supersaturated matrix or when crystals grow from a super cooled 

melt. In these cases diffusion of the species toward the surface (or heat away from it) 

can be the rate-limiting process. The aggregates formed in all of these cases have 

extremely complicated multi-branched forms familiar in the case of dust balls, 

agglomerated soot, and dendrites (Witten and Sander., 1983).

204



2
0

5



A number of proteins have been shown to self-organise into DLA patterns. For 

example, Meier et al. (2014) examined the aggregation morphology of high molecular 

weight polypeptides after modification with polyethelene oxide using AFM this 

modification leads to DLA-type formations with a similar morphology to the areas of 

membrane damage seen in the present study. The aggregation of amyloid-p using three 

dimensional Monte Carlo simulations of DLA acting linear polymers in a confined 

space, representing the endoplasmic reticulum, has been examined (Budrikis et al.,

2014). In this simulation the authors altered the rates of protein production and 

degradation and show that the system undergoes a non-equilibrium phase transition 

from a physiological phase with little or no polymer accumulation to a pathological 

phase characterized by persistent polymerization. A number of elastomeric proteins 

such as elastin, resilin, abductin and wheat gluten have been theoretically examined for 

their DLA properties (Song et al., 2012). These DLA protein events may have 

implications not just for a number of clinically relevant protein diseases but also in the 

rational design of proteins for bioengineering.

The DLA mechanism of action would be driven principally by the aggregation of 

protein on to the lipid surface and then the further attraction of protein until membrane 

destruction occurs. It is worthwhile considering other examples of lipid protein 

aggregation events notably fibril formation seen within protein misfolding diseases, 

such as Alzheimer’s, Parkinson’s and prion disease, in which a range of proteins from 

globular to unstructured proteins form aggregates causing massive disruption of cellular 

membranes, for example in neuronal cells (Eichner and Radford., 2011). The precise 

nature of amyloid fibril formation is currently unknown (Jahn and Radford., 2008), 

However, the protein being in an unfolded state, within an hydrophobic environment
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and neutralisation of the peptides charge, are important for aggregation to occur (Rochet 

et al., 2000 ) Zhao et al. (2004) on examining fibril formation with a number of 

different proteins including lysozyme, insulin, GAPDH, myoglobin, cytochrome C, 

histone HI & a-lactalbumin determined that the presence of acidic phospholipids within 

liposome such as PG:PS, promoted fibril formation in each of these proteins. However, 

no fibril formation was observed in the presence of a simple PC bilayer. The authors 

again postulated that this was due to the neutralisation of cationic charge on the protein 

by acidic lipids which allowed protein aggregation to occur as there would be a 

reduction in repulsive electrostatic forces between the monomers, thus, lipid mediated 

protein aggregation occurs. A similar mechanism has been determined for amyloid 

proteins such as Ap, a-synuclein and prions (Terzi et al., 1994, McLaurin et al., 1998) 

and it has been suggested that due to the wide variety of proteins shown to exhibit these 

properties that acidic lipid mediated fibril formation may be a generic mechanism of 

electrostatically attracted proteins (Zhao et al., 2004). The same group have also 

demonstrated fibril formation with a number of AMPs, including plantaricin A, as 

shown by the staining of protein aggregates with Congo red (Zhao et al., 2006). Also, 

AMPs classically thought to form toroidal pores such as magainin 2, LL-37, melittin, 

temporin L and the non permeabilisng peptide Indolicidin have all been shown to form 

acidic lipid mediated fibrils (Zhao et al., 2001 & 2002). Based on these findings the 

“leaky slit” mechanism briefly discussed in chapter 1 was hypothesised (Zhao et al., 

2006) The amphipathic peptides bind to the acidic lipids neutralising charge, whilst the 

hydrophobic face of the peptide is arranged perpendicular to the lipid bilayer with 

toxicity caused by curvature of the membrane to allow protection of the bilayer 

hydrophobic core from the hydrophilic face of the peptide. This allows a slit to form in 

the membrane due to the high positive curvature of the protecting head groups.
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In relation to the membrane destructive effects of Smp43 it could be hypothesised that 

membrane disruption is a consequence of protein aggregation drivien by the same 

fundamental processes observed in fibril formation and as is observed with fibril 

aggregating AMPs. In the PC:PG bilayer the rapid and far reaching membrane 

disruption observed could be a consequence of PG mediated charge neutralisation 

which easily facilitates increased protein aggregation. In contrast, the more protracted 

destruction observed upon PC:PE interaction can be easily rationalised as the net 

anionic charge of this bilayer is far lower, therefore, aggregation occurs at a much 

slower rate. However, in both videos the formation of actual mature fibrils is not 

observed. Therefore the actual mechanism of peptide orientation within the bilayer still 

remains to be elucidated. The presence of unstructured aggregates that cause membrane 

disruption by inducing increased positive curvature on the top leaflet of the bilayer 

formed in the carpet mechanism could be one conclusion. The complete collapse of 

PC:PG liposomes upon Smp43 attack would be suggestive of such a mechanism instead 

of a “leaky slit” which would be expected to allow far more gradual CF release to occur. 

One possible explanation for reduced disruption of the PC:PE bilayer is that, due to the 

intrinsic negative curvature PE containing bilayers adopt, they have an inhibiting effect 

on carpet model peptides as they cancel out the positive curvature caused by attack 

which is supportive of an aggregate carpet model (Shai et al., 1999).

However, although evidence for protein aggregate formation/membrane disruption is 

apparent the DLA-type patterns seen upon attack could conceivable be driven by 

another process in which, similar to toroidal pore formation where monomer peptide- 

lipid interaction occurs, it is the release of consecutive steric hindrance events caused by 

peptide insertion that drive the process forward allowing for dialectical destruction of 

the bilayer.
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In this hypothesis, initial peptide attack on the PC:PG bilayer would be driven by 

electrostatic attraction with a membrane nucleation event occurring as peptide 

accumulation passes a critical point and insertion occurs. Upon peptide insertion the 

steric hindrance would occur as the lipid head groups lining the peptide-lipid pore 

undergo increased positive curvature to protect the acyl chains from the aqueous 

environment (Matsuzaki et al., 1996). As is seen in a number of studies using AFM 

(Lam et al., 2012, Garcia-saez et al., 2007), and with Smp24 in this study, upon attack 

of phase separated bilayers, at the edges of bilayers or at phase separation boundaries a 

high line tension is observed. Similarly a toroidal pore lumen would have a high line 

tension as lipid head groups undergo positive curvature to protect the acyl chains which 

could easily be exploited by peptides allowing for insertion and decrease in steric 

hindrance (Garcia Saez et al., 2007). This phenomenon has previously been described 

by Rakowski et al. (2013) in which an ever expanding pore mechanism (Fig. 5.24) was 

observed using nano-secondary ion mass spectrometry (nano-SIMS) and AFM until 

complete destruction of the bilayer is observed. Peptide accumulates on the bilayer (S- 

state), insert to form a pore (I state) and then further pore expansion is seen (E state). 

Smp43 could be hypothesised to be acting in such a way where, after nucleation, 

peptides insert to relieve the strain caused by the insertion of a previous peptide and 

expand out in a random pattern.
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An analogy to this is the destructive effect of tectonic plate shift in earthquakes. 

Pressure builds up between two plates leading to a slip relieving pressure. However, in 

turn, further pressure build up along the plate until another slip occurs. This process 

continually repeats itself along the plate boundary until all the pressure is released and 

the system is at its lowest energy state A classical example of this is the North 

Anatolian fault line that crosses Northern Turkey from East to West and has suffered 

earthquakes moving westwards each time as the sequence of pressure build up, release 

and subsequent build up occurs (Stewart., 2005).

Furthermore, as found in a classical toroidal pore mechanism (Matsuzaki e t  al., 2006), 

the insertion of peptide could cause lipid “flip flop” between peptides where negatively 

charged peptides would be promoted to the top leaflet causing further electrostatic 

attraction to the bilayer in a self promoting attack. In this model whilst nucleation on 

negatively charged lipid bilayers would be electrostatically driven, on PC:PE initial 

nucleation could be driven by another process such as curve sensing (Antony., 2011), 

although PC does carry a small net anionic charge so electrostatic attraction cannot be 

ruled out (Zhao et al., 2004). Once integrated, the process of steric hindrance relief 

would be the same. One criticism of this model is that PE is not known for inhibition of 

pore forming peptides (Matsuzaki et al., 1998). However, there are clear differences 

seen between the two bilayers, so what is causing inhibition after nucleation? The 

assumption of pore formation being independent of PE concentration has recently been 

called into question with the unexpected inhibition of alamethicin attack on PE 

containing liposomes (Bodone e t  al., 2012). This blurred the lines between a carpet 

mechanism and a toroidal pore in favour of the interfacial model where electrostatic 

attraction of the bottom leaflet to the peptide, upon peptide insertion into the membrane,
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causes membrane disruption intrinsically driven by polar pockets within the 

hydrophobic segments of AMPs (Wimely et al., 2011). From one viewpoint, the 

presence of PE and retardation of Smp43 attack could be seen as supportive evidence 

for a carpet mechanism of aggregation. Toroidal like mechanism of consecutive steric 

hindrance relief cannot be ruled out, although on the basis of the DLA like patterns 

observed as opposed to the uniform expansion described in by the expanding pore 

model, aggregation and carpet mechanism could be considered more likely.

Further experiments need to be undertaken to determine if this DLA pattern is a 

consequence of protein aggregation or a toroidal pore like model. For example tandem 

AFM-fluorescent microscopy where the peptide has been labelled to determine peptide 

localisation on the bilayer. Similarly, FRET analysis, where two populations of the 

same peptide have been labelled, one with a fluorescent tag and the other with a 

quencher to determine peptide-peptide aggregation could be utilised. Other imaging 

techniques could be employed such as Nano-SIMS (Rakowski et al., 2013) or Laser- 

scanning coherent anti-Stokes Raman scattering (CARS) microscopy (Li and Cheng., 

2008).

Addition of CL to both PC.PG and PC:PE bilayers has a significant effect on the 

activity of both peptides, increasing CF release against all bilayers, except for the attack 

of Smp43 on PC:PG which showed a decrease in release. This increase in membrane 

disruption is in contrast to a number of studies which have all reported decreases in 

membrane damage after cholesterol addition (McHenry et al., 2012). One possible 

reason for this unexpected effect is increased electrostatic attraction due to CL induced 

domain formation.

As revealed by AFM, there is a significant difference observed between the PC:PG and 

PC:PG:CL bilayer after Smp24 attack with larger more concentrated areas of membrane
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disruption occurring rather than discrete pore formation with disruption similar to the 

possible induced non-lamellar peptide mediated structures seen within AFM. The 

reason for this unexpected effect needs to be further examined however a number of 

reasons could be possible. Firstly the effect of CL ordering is not homogenous 

throughout the bilayer with some areas being within the lipid ordered phase (Lo) phase, 

where lipid packing is increased, however others may be in the lipid disordered phase 

(Ld), where lipid packing is decreased, therefore the lateral expansion of these areas due 

to decreased lipid packing could promote non-lamellar phase structures due to increased 

interaction between the acyl chains and the aqueous phase allowing the peptide to 

interact more readily with the bilayer. Secondly, CL could be inducing electrostatic 

imbalance in the membrane due to LO phase domain formation. Using both AFM and 

Frequency Modulated-Kelvin Probe Force Microscopy (FM-KPFM), Drolle et al. 

(2012) determined CL induces slight thickening of the bilayer and domain formation. 

However, these domains where shown to be electrostatic in nature. The same study 

examined the effects of amyloid p proteins on a DOPC bilayer with and without 20% 

CL. A clear increase in peptide binding was observed in the former with the authors 

pointing towards the electrostatic effects of cholesterol. An increased lysis of PC:PE 

membranes due to an increase in electrostatic attraction to these domains is plausible 

especially when considering the propensity of PE containing membranes for segregation 

(Hanley et al., 2010).With both peptides, however, the decrease in CF release seen with 

Smp43 against PC:PG is more in keeping with previously held assumptions of CL 

inhibition and highlights the varying mechanism of action between the two peptides.

In conclusion, the mechanism of action of two AMPs with radically different biological 

activity has been examined. The mechanism of the shorter cytotoxic peptide was 

revealed to be dependent on lipid composition with a toroidal pore like forming 

mechanism indicated in prokaryotic mimicking membranes whilst in eukaryotic



mimicking membranes possible induction of peptide-mediated non-lamellar phase 

formation mechanism and/or lipid segregation. The mechanism of action of the longer 

chain peptide is radically different from the former with DLA like patterns, possibly 

induced by a process of anionic lipid mediated aggregation, seen against the negatively 

charged bilayer. Whilst in a neutrally charged bilayer, a significant retardation of the 

same fundamental process seems to be occurring. Overall, this chapter highlights the 

potential of using AFM to understand AMP mechanism of action and how the 

technology, especially high resolution Fast Scan AFM can change previous assumptions 

on the subject matter.
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6 CHAPTER 6 
CONCLUSIONS AND FUTURE WORK

215



The purpose of this study was to identify novel antimicrobial agents from both snake 

and scorpion venom and to biologically characterise these agents and elucidate 

mechanisms of action.

An empirical approach towards drug discovery was taken with snake venom and 

yielded a both AMPs as well as larger cytotoxic proteins. Elapid venoms yielded a 

number of AMPs of which a promising peptide from Dendroapsis polylepsis was 

identified. Whilst it only exhibited moderate antimicrobial activity it had little cytotoxic 

effect, therefore has the potential to be developed into a novel antimicrobial agent. As 

described in chapter 3, a number of structural motifs within snake venoms, especially 

elapid venoms, have been either recombinantly expressed or chemically synthesised. It 

therefore is highly possibly that after sequence and structural characterisation has taken 

place that this peptide can undergo modification to improve its antimicrobial properties. 

Considering the size of this peptide and its origin, it is most likely a cysteine 

constrained three fingered toxin or waprin peptide which has evolved resistance to its 

prays mammalian degradation mechanisms therefore is an ideal candidate for future 

systemic applications, although its stability against bacterial degradation needs to be 

assessed. Elapid venom is predominantly composed of such cysteine constrained 

medium chain peptides and every effort should be made to investigate their biological 

properties in terms of AMP research and for other disease states.

From viper venom a number of potential PLA2 proteins which, whilst having good 

antimicrobial activity, were also cytotoxic. Therefore in terms of their size and 

biological profile they have limited potential as future antimicrobials. Whilst studies 

have shown that truncating these proteins to short linear helical peptides has resulted in 

peptides with favourable biological activity (Santamaria et al., 2005), the failure of
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large scale peptide library studies to find suitable AMPs of similar size and 

physiochemical properties is a cautionary tale (Fjell et al, 2009).

As discussed by de Lima et al, (2009) perhaps no other natural source on earth has 

evolved to such an extent to specifically interact with a plethora of medical relevant 

drug targets as venoms. Indeed the recent discovery of a new class of peptides with 

Dendroaspis venom which specifically target acid sensing channels and has an 

analgesic effect as strong as morphine, but with none of the associated side effects 

supports this view (Diochot et a l , 2012).

From the genomic analysis of S. maurus palmatus the peptide Smp43 was derived, 

exhibited good antimicrobial activity, especially against Gram positive organisms and 

exhibited extremely low haemolytic activity. Although it showed toxicity in the ATP 

assay it would be useful to re examine this toxicity against primary cells instead of an 

immortalised cell line due to changes in the membrane properties of these immortalised 

cells. Indeed, because of the membrane similarities between bacterial and cancer cells, 

the use of immortalised cell lines as a basis of peptide cytotoxicity needs to be discussed 

within the research field, as a whole as potential drug candidates may be overlooked on 

this basis of its inaccurate toxic effect.

The mechanisms of action of Smp24 and Smp43 have been examined, providing further 

insights into how AMPs interact with both prokaryotic and eukaryotic mimicking 

membranes. Smp43 was examined using Fast Scan AFM and represents one of the 

first studies of its kind to capture the effect of an AMP on hydrated lipid bilayers from 

initial attack to its end, and at the time of writing (October 2014) no published studies 

are available of its kind. Obviously, more work needs to be undertaken to fully elucidate 

its membrane disruptive mechanism, but it highlights the potential the technology has to 

redefine our understanding of an AMPS membrane disruptive properties. Future studies
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to determine the peptides line active nature, the incorporation of cholesterol and 

cardiolipin into the membranes was well as increasing the acyl chain length would 

provide crucial information to distinguish between a possible aggregate carpet 

mechanism or a mechanism that requires insertion.

This possible aggregated mechanism seen with Smp43 highlights a cautionary point to 

be considered in the future widespread clinical use of membrane damaging AMPs. The 

aggregation of proteins onto a lipid bilayer is responsible for a number of devastating 

neuro degenerative diseases such as Alzheimer’s and Parkinson’s with the molecular 

mechanism of these diseases essentially the same as the possible aggregation 

mechanism of Smp43 (Eichner and Radford., 2011).

The potential of certain amyloid proteins, such as a-synuclein, to aggregate onto 

membranes can be driven by the presence of negative phospholipids within membranes 

such as PS, as the proteins cationic charge is neutralised by the anionic lipids allowing 

the other proteins to aggregate on to this seed protein (Terzi et al., 1994). Based on 

these similarities the effect of administering AMPs systemically needs to be further 

elucidated. For example, what are the long term effects of AMPs either aggregating 

onto these enriched membranes or acting as “seed” proteins that could facilitate amyloid 

aggregation? Animal studies would be a good in vivo model to understand this question. 

However, both AFM and liposome leakage assays would be useful in vitro methods for 

determining changes in amyloid formation in the presence of AMPs.

Previous attempts to develop AMPs in the clinical setting have proven frustrating, with 

a number of peptides being rejected during the latter stages of clinical trials (Gordon., 

2005). However, a recent commentary (Fox 2013) examined these failures and provided 

optimism for future AMP development. For example, pexiganan (Lamb 1998), a 22 

residue peptide developed for the treatment of foot ulcers was stopped because of
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manufacturing difficulties and changes in the clinical trial design, leading to a non­

approval letter being issued (1999) due to deficiencies with US Chemistry 

Manufacturing & Controls. The United States Federal Drug Adminsitration (FDA) also 

indicated that pexiganan was no more effective in treating foot ulcers than conventional 

antibiotics Similarly plectasin (NZ2114) (Mygind et al., 2005) developed by 

Novozymes for the treatment of Gram positive infections and licenced (2008) to Sanofi- 

Aventis was abandoned because of commercial rather than scientific reasons. In another 

example, omiganan (Sader et al., 2004), which had good efficacy in inhibiting catheter 

associated infections, was rejected on the grounds of cost when it was demonstrated to 

show no clinical statistical difference when compared to the widely used povidone 

iodine. However recent acceptance of the lipopeptide, Daptomycin (2003) and the 

vancomycin derived Telavancin (2007), which have relatively low therapeutic indices 

compared with conventional p-lactams antibiotics, would suggest a possible change in 

regulating priorities. In this changing climate, pexiganan is re-entering clinical trials, as 

Locilex (Fox., 2013). Although, as argued by Echols. (2011) the impact of withdrawing 

telithromycin (Ketek) from the market in 2006 for use in bacterial sinustsis (ABS) and 

acute bacterial exacerbation of chronic bronchitis (ABECB) has had a dramatic effect 

on the approval of antimicrobial drugs, especially those of novel mechanism of action 

(Brenner et al., 2006). Ketek was rejected on the basis of lack of efficacy against these 

two disease states compared with other antibiotics. However all, these of studies that 

had been done had been in full compliance with FDA guidelines on treating ABS and 

ABECB which has formed the basis of the majority of antimicrobial approvals. 

Therefore the confusion created by this decision has led to a number of other antibiotics 

being rejected or reassessed and a further flight of capital as drug companies and 

venture capitalists seek safer investments.
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Whilst the process of approval still remains a stumbling block to antibiotic 

development, studies such as this in which potential drug candidates are indentified and 

characterised will remain valuable as future regulation will no doubt change and an 

understanding of novel drug candidates in the present will only aid drug development in 

the future.

On the basis of this increased optimism, the potential of developing AMPs into the 

clinical setting has potential. However, it seems a futile exercise to develop new anti 

infective agents if the way in which society views and uses antibiotics remains the 

same. Antibiotics should not be viewed as a commodity within healthcare. Not only do 

they provide a potentially lifesaving treatment option and improve our quality of life, 

they underpin a large array of treatment options for other disease states, for example, in 

immune suppressive regimes required for cancer treatment, organ transplant and 

prosthetic joint replacements.

Proper regulation of antibiotic use needs to be put in place on a global scale. Resistance 

mechanisms do not respect borders and increased global migration and more integrated 

transport systems will only enhance the spread of resistance. Therefore tighter 

regulation and administration of antibiotics in the healthcare setting, coupled with a 

decreased use within farming will be ineffective if only applied to certain parts of the 

world where regulation can easily be bypassed. For example, the use of antibiotics as a 

growth promoter in animal feed was banned within the European union (EU) in 2006, 

however the use of antibiotics still continued although the EU has since tightened the 

regulation allowing only for prescription only administration (Gilbert., 2011). Within 

the United States (US), similar restrictions have been implemented, however this is on a 

voluntary basis with drug companies encouraged to change their labels to require a 

prescription (Gilbert., 2012), and it remains to be seen if this strategy will have any
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effect especially considering that agriculture within the US accounts for 80% of 

antibiotic use (Frieden., 2013). No such regulation has been imposed in other parts of 

the world, as examples, the unregulated use of antibiotics within Chinese pig farming 

(Zhu et al., 2013) and shrimp production in South East Asia (Thuy et al., 2011) have 

both been highlighted as areas of concern. Similarly, human antibiotic consumption in 

China is 10 times higher than that of the US per head of population with patient 

pressure and financial incentives for doctors to administer drugs being part of the 

problem. For example, 75% of patients with seasonal influenza are estimated to be 

prescribed antibiotics, and the rate of antibiotic prescription for inpatients is 80% (Li., 

2014).

In light of the laissez-faire attitude towards antibiotic regulation and use in a number of 

highly populated areas of the globe, our understanding of the resistance mechanisms to 

AMPs needs to be further examined before any widespread administration is 

considered. Whilst pathogens have yet to develop resistance towards AMPs produced 

by our innate immune systems, the continued evolutionary process is dynamic, with 

both innate immunity and bacterial defence evolving, however, what will be the effect 

on this balance if widespread and unnatural levels of AMPs are present within the 

environment?

Evidence of the now ubiquitous nature of conventional antibiotics within our 

environments is abundant (Anderssen and Hughes., 2014) with low concentrations of 

these agents found within our water and soil systems. Although these concentrations are 

low they still have a role to play in the continued development of resistance. As 

highlighted by Anderssen and Hughes. (2014), these sub MIC environments allow for 

enrichment of resistant strains by providing a selective edge over susceptible colonies 

whose growth will be retarded. They also highlight the increased mutation rates of
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bacteria exposed to sub-MIC antibiotic concentrations. Therefore the widespread release 

of an antibiotic, evolutionary related to a critical part of our innate immunity, needs to 

be investigated. For example, how altered are the peptides when they leave the body? In 

the presence of microorganisms found in water treatment systems and soil how long do 

they last and what effect do they have on these organisms?

Ultimately, better public dissemination of information regarding antibiotic resistance 

needs to occur. An understanding of how the routine of our daily lives is compounding 

the problem of resistance so that a social debate can take place and the mistakes of the 

past are not repeated. Combating antibiotic resistance will require a holistic approach, 

novel drug discovery, changes to the approval system, coupled with an increased global 

consensus and tighter regulation of administration to both patients and in agriculture are 

required.

The development of novel classes of antimicrobials will be a cornerstone of any 

concerted effort to tackle the problem. In this thesis the isolation of AMPs exhibiting 

low toxicity has been achieved form both scorpion and snake venom. It has highlighted 

how both a genomic and empirical approach can be used in drug discovery to 

successfully develop new AMPs and how venoms represent an underexploited source of 

new antimicrobials. A plethora of venoms have yet to be investigated, along with a 

range of other natural sources, and this study should be widened to examine these.
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