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ABSTRACT
Attenuated total reflection (ATR) of light in a SiCVSis^ planar waveguide was 

successfully exploited with a view to developing a highly sensitive enzyme sensor for 
monitoring typically agricultural and industrial water pollutants. The SisN4  surface of 
the waveguide sensing window was coated with nanocomposite polyelectrolyte self
assembled (PESA) membranes containing cyclotetrachromotropylene (CTCT) indicator 
and enzymes. The reaction of three enzymes namely urease, acetylcholine esterase or 
butyrylcholine esterase was accompanied by changes in pH, varying the absorption 
coefficient of the CTCT indicator.

An experimental set-up of a single channel enzyme sensor was constructed to 
investigate the capability of the planar waveguide to register small changes in the light 
absorption of the PESA membrane. It was found that due to the multiple reflections 
phenomena, the sensitivity of a planar waveguide was higher than that for traditional 
absorption spectroscopy and previously reported waveguiding structures by at least 
three orders of magnitude. The respective enzyme reactions as well as their inhibition 
with toxic agents such as cadmium and lead ions were studied by in-situ monitoring the 
changes in output intensity of the planar waveguide. The results were remarkable, since 
traces of the above pollutants were detected with concentrations as low as to 1 ppb.

The work was also extended to design and implement a laboratory scale enzyme 
sensor array. A multi-channel reaction cell and light guiding system were designed for 
this purpose. The analysis of the experimental results demonstrated that the multi
channel enzyme sensor was able to produce adequate responses to the presence of 
different pollutants of industrial (cadmium, lead and nickel) and agricultural 
(imidacloprid, paraoxon and DVDP) origin, in the concentration range from 1 ppb to 
1000 ppb. The distinct pattern of sensor responses was analysed by the implementation 
of artificial neural network algorithm. Despite a rather small amount of experimental 
data, the trained neural networks were able to classify and quantify the pollutants with 
an acceptable average error of 6.24 %.
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CHAPTER 1

INTRODUCTION

1.1 Water Pollution and Environmental Legislation

Recently, pollution of water resources with chemical contaminants has become 

one of the crucial ecological problems. The increasing manufacture, use and disposal of 

agricultural and industrial chemicals, particularly pesticides and heavy metal ions, are 

causing worldwide pollution. These toxic agents do not remain where they originate 

(see Figure 1.1). They can be transported to different locations in a number of different 

ways. Some compounds can evaporate and drift away by winds before precipitating as 

rainfall. A study from Switzerland revealed that much of the rain in Europe contains 

high levels of dissolved pesticides, and that it would be illegal to supply this water for 

drinking purposes. Almost 4 /xg/1 of 2,4-dinitrophenol was found in one sample of 

rainwater [Pearce and Mackenzie, 1999].

In addition, runoff from agricultural and urban areas into drainage pipes and 

sewers also contributes to significant pollution of surface and ground water. For 

instance, a field conditions study in Hungary revealed the presence of 154 /xg/1 of 

atrazine, 89.1 /xg/1 of acetochlor, 47.4 /xg/1 of propisochlor, and 0.139 /xg/1 of 

chlorpyrifos in runoff water [Konda and Pasztor, 2001]. While in Japan, 53 pesticides 

ranged from 3 ng/1 to 8.2 /xg/1 were found in waters collected from the Shinano River. 

The presence of pesticides in the river water correlates with the time of pesticide 

application in the rice fields near the river [Tanabe et al, 2001].
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Figure 1.1. Illustration of pollutant transportation [adapted from 

http://europa.eu.int/comm/environment/youth/index_en.html. Last 

accessed on 27 October 2002].
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Pollutants can be deposited on sediments, where they can be attached to 

particulates, such as plankton, or absorbed by aquatic organisms. It has been reported 

that a large area along a 35 km stretch of the southwest coast of Spain, near the joint 

mouth of the polluted Tinto and Odiel Rivers, contains sediments with high 

concentrations of metals, such as 2.5 mg/kg of cadmium and 197 mg/kg of lead [Morillo 

et al, 2003]. These heavy metals can spread easily into the Atlantic Ocean under 

changing environmental conditions. Since water resources are interconnected, pollution 

at one point can spread widely, even globally.

International environmental legislation has been implemented as a precautionary 

measure to ensure the progressive reduction of pollution of water resources, as well as 

to enhance the protection and improvement of the aquatic environment. Regulatory 

frameworks, such as the World Health Organisation (WHO) guidelines values, US 

Environmental Protection Agency (EPA) maximum contaminants levels, EU drinking 

water directive (98/83/EC), EU dangerous substances directive (76/464/EC), and EU 

groundwater directive (80/68/EC), demand that contamination of natural water 

resources should not exceed a certain threshold level. Some of the guidelines are not 

only based on human health criteria, but are also set at the limit of current ability to 

detect pollutants in water. For instance, the maximum permitted concentration for any 

individual pesticide given in the EU drinking water directive is 0.1 jug/1 which 

corresponds to one-tenth of a part per billion (ppb) [Council Directive 98/83/EC, 1998] 

(See Table 1.1).
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Table 1.1. Guidelines for some chemical parameters in the EU drinking water 

directive (98/83/EC) [Council Directive 98/83/EC, 1998, The quality o f water 

intended fo r  human consumption, Official Journal of the European 

Communities, L330, pp. 32-54.]

Compound Parametric value Unit

Arsenic 10 Mg/i

Benzene 1.0 Mg/1

Boron 1.0 mg/1

Bromate 10 Mg/1

Cadmium 5.0 Mg/1

Chromium 50 Mg/1

Copper 2.0 mg/1

Cyanide 50 Mg/1

1,2-dichloroethane 3.0 Mg/1

Lead 10 Mg/1

Mercury 1 Mg/1

Nickel 20 Mg/1

Pesticides 0.1 Mg/I
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1.2 Analytical Devices for Water Analysis

The extensive legislation described above, clearly indicates the need for reliable 

environmental monitoring methods, which are fast, portable, sensitive and cost 

effective. Conventional analytical methods, such as gas chromatography (GC), high 

performance liquid chromatography (HPLC), and inductive by coupled plasma mass 

spectrometry (ICPMS), are very sensitive and reliable [Steen et al, 1997; Saleh et al, 

2001; Angelino and Gennaro, 1997]. However, they suffer from the disadvantages of 

high costs, time consumption, the need for highly trained technicians, and the fact that 

they are mostly laboratory based [Rodriguez-Mozaz et al, 2004; Andreescu et al, 2002]. 

E.g., in many cases, time consuming and difficult preparation procedures, such as 

liquid-liquid extraction and solid-phase extraction, are applied off-line before the HPLC 

measurements [Bovanova and Brandsteterova, 2000]. Therefore, an alternative 

technique is needed to simplify the environmental analysis.

Several sensing systems are already available, such as ion sensitive sensors 

based on sensitive polymer films [Cobben et al, 1992; Mlika et al, 1996; Ali et al, 

2002], and fibre optic chemical sensors consisting of immobilised indicator dyes 

[Vaughan and Narayanaswamy et al, 1998; Malcik et al, 1998; Mahendra et al, 2003]. 

They are portable and can monitor specific compounds or ions in complex samples, on a 

real-time basis. Chemical receptors (the sensitive polymer films and indicator dyes), 

however, are very selective to particular chemical compounds. As a consequence, the 

synthesis of specific receptors is required for every toxic agent. This fact has also 

restricted the application of these chemical sensors as a multi-analyte detector.
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1.3 Biosensors for Monitoring Water Contaminants

An alternative approach is the use of biosensors for pollutants monitoring. The 

biological base of biosensors makes them ideal for toxicological measurements, which 

are suited for health and safety applications [Bemabei et al, 1993; Galassi et al, 1993; 

Farre and Barcelo, 2003]. They are generally defined as analytical devices, 

incorporating bioreceptors, e.g. biological sensing elements (such as enzymes, 

antibodies or microorganisms) integrated within a physicochemical transducer, such as 

electrochemical, optical or piezoelectric transducers [Rogers and Williams, 1995]. 

Specific interactions between the target analyte and recognition sites within the 

bioreceptor produce a physicochemical change, which is detected and can be measured 

by the transducer by transforming it into an electrical signal, as illustrated in Figure 1.2.

In general, biosensors for water pollution monitoring can be separated into two 

main classes [Scheller and Schubert, 1992]:

1) Affinity biosensors, where target analytes are specifically bound to

bioreceptors and a signal is produced as a result of the binding process (no

conversion of the analyte takes place).

2) Catalytic biosensors where target analytes are specifically bound to

bioreceptors, the conversion of the analyte takes place, and a signal is

produced as a result of a catalytic reaction.
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The affinity biosensors for water analysis (commonly known as 

immunosensors), typically use antibodies as the bioreceptors integrated with optical 

transducers which utilize evanescent waves in optical fibers or planar waveguides. The 

antibodies are combined with respective antigens (the target analyte) to give an 

exclusive antibody-antigen complex. This binding process can then be detected by 

variations of the output light intensity after multiple interactions with the sensing film 

within the evanescent field volume of the waveguides.

Different optical techniques based on this sensing principle are described in 

Chapter 2. They show a superior performance, where proteins and pesticides can be 

detected in a wide concentration range from 10'15 M up to 10'8 M. However, these 

optical immunosensors have certain limitations. The selective binding of the antibodies 

with antigens has resulted in the requirement to design specific antibodies for the 

detection of every pollutant. For example, 2,4-dichlorophenoxyacetic acid (2,4-D) 

antibodies and simazine antibodies were used for the detection of the pesticide 2,4-D 

and simazine in water [Klotz et al, 1998]. Therefore, the affinity biosensors are very 

specific and more suitable for single analyte detection.

In contrast, the catalytic biosensors are more versatile. These biosensors 

normally use enzymes as the bioreceptors, and are based on the enzyme inhibition 

mechanism for the pollutants detection. It is possible to implement enzyme sensors for 

multi-analyte detection due to a diversity of pollutants that inhibit a number of enzymes 

in a different ways. For example, it has been demonstrated that a general discrimination 

between pesticides and heavy metal ions in a sample solution is possible due to selective 

inhibition of butyrylcholine esterase by pesticides and urease by heavy metals ions 

[Starodub et al, 1999; Arkhypova et al, 2001]. The type of pesticides or heavy metal



ions can then be determined by comparing the inhibition level of urease or 

butyrylcholine esterase, respectively. Those studies revealed that the array of enzyme- 

inhibition based biosensors containing different enzymes could be a solution for the 

simultaneous determination of various pollutants.

During the last two decades, electrochemical enzyme sensors with amperometric 

[Zhylyak et al, 1995; Palchetti et al, 1997] and potentiometric [Jeanty and Marty, 1998; 

Shi et al, 1997] transducers, have been extensively studied for water pollution 

monitoring. They were successfully tested on a number of pesticides and heavy metal 

ions, such as paraoxon [Zhang et al, 2001], dichlorvos [Andreescu et al, 2002] and

94 -silver ions (Ag ) [Soldatkin et al, 2000]. Figure 1.3 shows the limit of detection and the 

determination range of several electrochemical biosensors for pesticides registration. 

Despite high sensitivity to some pollutants (in ppb level), they usually have a narrow 

detection range of two orders of magnitude concentration. For example, Cremisini et al 

[1995] found a linear detection range from 1.4 ppb (5 x 10'7 M) to 14 ppb (5 x 10'8 M) 

for paraoxon with a low detection limit of 1.3 ppb (4.7 x 10'9 M).

A similar situation was observed for the determination of pesticides and heavy 

metal ions using optical enzyme sensors [Andres and Narayanaswamy, 1997; Preininger 

and Wolfbeis, 1996; Nabok et al, 2000]. A higher detection limit was found by using an 

optical enzyme sensor, as compared to those of electrochemical biosensors. For 

instance, Andres and Narayanaswamy [1997] found a linear detection range for 

paraoxon as 5 x 10'7 M to 5 x 10'6 M with a low detection limit of 1.1 x 10'7 M, 

calculated at 10 % of inhibition. These optical enzyme sensors have limited sensitivity 

because they rely on a single act of light reflection (or transmission) through the sample 

solution, which permits a short interaction of light with the sample medium.

9
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Figure 1.3. The sensitivity of electrochemical biosensors for pesticides registration.
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1.4 Hypotheses of the Research

The use of enzymes as the bioreceptor in the optical evanescence wave 

biosensor, may offer the possibility of multiple analyte detection, while retaining high 

sensitivity of the biosensor. The determination of pollutants using enzymes inhibition 

shows certain advantages: first, a large number of environmental pollutants that can 

inhibit enzymes, and secondly, low pollutant concentrations needed to affect the 

enzymes activity, which can be easily detected using evanescence field transducers.

Several waveguiding structures have been tried for optical evanescent wave 

transducers development, but silicon dioxide/silicon nitride (SiCVSisN^ waveguides 

were demonstrated to have the highest evanescent field volume due to a large difference 

in refractive indices between the core and cladding layers. During the last decade, the 

research in planar optical waveguide sensors was mostly based upon fluorescence and 

interferometric principles [Lukosz et al, 1997; Nabok et al, 2000] (see Chapter 2.2). 

Although they show high sensitivity, most of these sensors are quite complex in terms 

of their fabrication and operation. In addition, they have only been exploited as 

immunosensors using antibodies as the bioreceptors.

In this study, the potential usage of a SiCVSisl^ planar waveguides as enzyme 

sensors is investigated by utilising a simple transducing principle of the attenuation of 

the light intensity during multiple reflections in the waveguide. A nanocomposite 

membrane containing both an organic indicator namely, Cyclotetrachromotropylene 

(CTCT) and enzymes, such as Urease or Acetylcholine Esterase (AChE), produced 

using a polyelectrolyte self-assembly (PESA) technique, is integrated with the planar

11



waveguide transducer, so that the biochemical reactions accompanied by changes in pH 

can be registered with the optical measurements.

Recently, the PESA method proved to be a versatile immobilisation technique 

for proteins [Lvov et al, 1995]. It provides a unique opportunity to incorporate other 

electrically charged macromolecules, such as enzymes and chromophores into the 

polymer matrix [Ariga et al, 1997; Cooper et al, 1995; Nabok et al, 1999]. In addition, 

the PESA method is low cost and environmentally friendly. Therefore, it is expected 

that the combination of a highly sensitive optical technique and a superior 

immobilisation method may improve the functionality of an optical enzyme sensor for 

water pollution monitoring.

12



1.5 Aims and Objectives of the Research

The aim of this research is to develop an optical enzyme sensor for in-situ 

monitoring of heavy metal ions and pesticides in water. This enzyme sensor is expected 

to have a high degree of sensitivity and can be used directly in liquid environments to 

measure individual toxic agents, by exploiting the combination of a PESA 

immobilisation method and a multiple reflection of light in the SiCVSis^ planar 

waveguide as the optical transducing technique.

The following objectives are specified for this research work:

1. To research and produce a literature review into different enzyme sensors 

and optical techniques.

2. To form composite films containing several enzymes and organic indicators 

by means of polyelectrolyte self-assembly techniques.

3. To construct an experimental set-up for a single channel planar waveguide 

sensor.

4. To study the sensitivity of the planar waveguide sensor in comparison to the 

UV-visible spectroscopy method.

5. To investigate the response of composite PESA films to different pollutants 

using the effect of the attenuation of light intensity propagated through the 

planar waveguide.

6. To develop an enzyme sensor array set-up, which consists of a flow cell with 

a number of reaction channels.

7. To design a pattern recognition algorithm to enable the identification and 

quantification of specific pollutants.



CHAPTER 2

LITERATURE REVIEW AND THEORETICAL 

BACKGROUND

2.1 Enzyme Sensors for Water Pollution Monitoring

Biosensors for environmental applications have employed a wide range of 

biochemical recognition systems, utilising a number of bioreceptors such as bacteria 

[Philp et al, 2003], fungal cell [Baronian, 2004; Reiss et al, 1998], enzyme [Marty et al, 

1993; Davis.et al, 1995; Kok and Hasirci, 2004], antibodies [Gonzalez-Martinez et al, 

2001; Rodriguez-Mozaz et al, 2004] and plant tissue [Mazzei et al, 1995; Liawruangrath 

et al, 2001]. Among these, enzyme sensors have recently become the target of intense 

research and development, and have proven to be both fast and highly selective [Karube 

and Nomura, 2000]. There is now a wide selection of enzymes commercially available, 

and the capability of enzyme sensors to operate in diverse media, such as aqueous 

solutions [Bisenberger et al, 1995], organic solvents [Campanella et al, 1998] and air 

[Hammerle et al, 1996] has been demonstrated. Several types of enzyme sensors 

developed for pesticide and heavy metal ions detection in aqueous solutions are 

discussed in the following sections.

14



2.1.1 Enzyme sensor for pesticides detection

The majority of pesticides used are inhibitors for cholinesterase enzymes. Thus, 

biosensors based on the inhibition of enzyme cholinesterase such as acetylcholine 

esterase (AChE) or butyrylcholine esterase (BChE) are frequently proposed for use in 

pesticide detection. This biosensor is usually based on amperometric approaches, which 

is responding to the enzymatic hydrolysis of acetylthiocholine chloride to thiocholine. 

The latter is electrochemically active and can be oxidized at 410 mV (versus the 

Ag/AgCl reference electrode) to disulphide compound according to the following 

equation [Marty et al, 1993, 1995; Jeanty and Marty, 1998]:

AChEacetylthiocholine + water ___________ ^ thiocholine + acetic acid (2.1)

anodic oxidation
2 thiocholine -------------------------- ► dithio-bis-choline + 2H +2e" (2.2)

+ 410 mV

This electrochemical oxidation of thiocholine was performed at 100 mV versus 

the Ag/AgCl reference electrode by applying an organic mediator, namely 7,7,8,8- 

tetracyanoquinonedimethane (TCNQ) on the working electrode [Andreescu et al, 2002; 

Bonnet et al, 2003; Schulze et al. 2002]. The current change due to the participation of 

electrons in this electrochemical process was proportional to the amount of oxidized 

thiocholine. This oxidation was correlated to the enzyme AChE activity. Then, the 

pesticide concentrations were determined by measuring the difference in AChE activity 

before and after the inhibition process. These amperometric biosensors had low 

detection limits for several pesticides, such as carbofiiran and paraoxon at 0.1 ppb 

[Marty et al 1993], and dichlorvos and chlorpyrifos ethyl oxon at 1 ppb [Andreescu et al 

2002].

15



In addition to a single enzyme system, AChE was coupled with the enzyme 

choline oxidase (ChO) to form another type of amperometric biosensor with dual 

enzyme system [Kok et al, 2002; Zhang et al, 2001; Palchetti et al, 1997]. In this 

amperometric biosensor, the enzyme substratum, namely acetylcholine chloride, was 

hydrolysed by AChE to acetic acid and choline. Then ChO converted choline to betaine 

and hydrogen peroxide on consuming oxygen according to the following equation 

[Zhang et al, 2001]:

acetylcholine chloride + water — AChE ^ choline + acetic acid (2.3)

choline oxidase
choline + oxygen --------------------------► betaine + hyrdogen peroxide (2.4)

The hydrogen peroxide produced was oxidized at 600 or 700 mV versus the Ag/AgCl 

reference electrode, and the generated current signal was found to be proportional to the 

amount of active AChE. These amperometric biosensors were also found to be highly 

sensitive to pesticides, such as carbofiiran with a detection limit of 2 jug/1 (2 ppb) 

[Palchetti et al, 1997], aldicarb with a detection limit of 11.7 ppb [Kok et al, 2002] and 

paraoxon with a detection limit of 1.3 ppb [Cremisini et al, 1995] and 10 ppb [Zhang et 

al, 2001].

Potentiometric approaches for monitoring pesticides concentration based on the 

inactivation of cholineterase enzyme were also reported [Ristori et al, 1996; Ivanov et 

al, 2000]. Most of these potentiometric biosensors determined the AChE or BChE 

activity by measuring the pH changes during the hydrolysis of acetyl or butyrylcholine 

to yield choline and acetic or butyric acid, which can easily be done using a pH 

electrode or ion selective field effect transistors (ISFET). They were simple in design
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and operation. However, the sensitivity of these cholinesterase potentiometric 

biosensors was low. E.g., the detection limit for the pesticide malathion [Ristori et al, 

1996] and trichlorfon [Ivanov et al, 2000] was about 0.1 mg/1 (100 ppb) and 0.01 mg/1 

(10 ppb), respectively.

Several attempts to increase the sensitivity of cholinesterase potentiometric 

biosensors were made. Campanella et al [1996] constructed two solid-state biosensors 

with the enzyme BChE as a bioreceptor and either graphite electrode or ISFET as the 

potentiometric transducer. Both transducers were coated with a HsO+ ion selective 

polymeric membrane sensitive to pH and containing tridodecylamine as an exchanger. 

BChE was immobilized either in a nylon membrane or in a polyazetidine prepolymer. 

The biosensors showed high sensitivity to paraoxon with the detection limit of 1 pg/1 (1 

ppb) and 3 pg/1 (3 ppb) using a graphite electrode and an ISFET transducer, 

respectively. Nevertheless, both sensors have narrow determination range from 2.5 to 82 

Hgfl-

Recently, Lee et al [2002] developed a potentiometric flow injection-type 

AChE-biosensor used for the determination of ten phosphorus pesticides. The sensor- 

system consisted of the reactor made with porous glass, and the detector based on a 

tubular H+-selective membrane electrode. AChE was immobilized by cross-linking with 

glutaraldehyde in 0.05 M phosphate buffer, pH 7. The sensitivity of the sensor was 

enhanced by converting phosphorus pesticides to their oxidized forms (stronger 

inhibitors) as shown in Table 2.1. The low detection limit of the sensor was increased
n t # i a

from 10* M before oxidation, to 2 x 10* M after oxidation of pesticides. Despite the 

high sensitivity, this sensor is too complicated, because of the pretreatment of pesticides 

required prior to measurements.

17



Table 2.1. Comparison of the percent inhibition of the sensor enzyme by 

organophosphorus pesticides before and after oxidation [Lee et al, 2002].

Before oxidation After oxidation
Pesticides Inhibition

%
Reactivation

%
Inhibition

%
Reactivation

%
Parathion 17 100 77 97

Fenitrothion 7.7 104 31 89

Fenthion 8.5 107 19 83

Chlorpyrifos 3.9 100 69 80

Diazinon 13 107 73 95

EPN 5.6 100 80 109

Dichlofenthion 11 100 75 80

Parathion-methyl 11 100 48 93

Bromophos-ethyl 7.4 93 12 92

Bromophos-methyl 8.7 92 20 . 88

Other types of cholinesterase biosensors using optical transducers were also 

reported [Andres and Narayanaswamy, 1997; Choi et al, 1998; Doong and Tsai, 2001]. 

Most of these biosensors utilized the fibre-optic device as the light waveguide and used 

either pH-sensitive fluorescence or organic dye as the light indicator. E.g., Andres and 

Narayanaswamy [1997] described a fibre-optic pesticide biosensor based on covalently 

immobilized AChE on preactivated isothiocyanate glass mixed with the thymol blue 

indicator bound on the aminopropyl glass. The liberated acetic acid during the 

hydrolysis of acetylcholine chloride caused a local decrease in pH and the resulting 

colour change of thymol blue indicator was detected, thereby leading to the increase in 

the reflected light intensity at 600 nm. The introduction of pesticides in the flow cell 

reduced the sensor response linearly in the concentration ranges 5 x 10'8 to 5 x 10*7 M

7 f\for carbofiiron and 5 x 1 0 ' to 5 x 10' M for paraoxon. The detection limits, calculated 

at 10 % inhibition, were 1.5 x 10'8 M (3.1 ppb) and 1.1 x 10'7 M (24.7 ppb) for . 

carbofuron and paraoxon, respectively.
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An AChE fibre-optic biosensor using litmus dye indicator was reported [Choi et 

al, 1998]. Instead of being immobilised in the sensor reaction cell, the litmus dye was 

dissolved in the potassium phosphate buffer and mixed with the enzyme substratum, 

acetylthiocholine iodide, using a peristaltic pump before it flowed to the reaction cell. 

The AChE was immobilised by the electrostatic adsorption on a support polymer 

viologen, which was transfered on a glass slide by the Langmuir-Blodgett (LB) 

technique. Decreases in pH value due to the formation of acetic acid from hydrolysis of 

acetylthiocholine iodide by AChE, caused the original blue colour of the litmus dye to 

change to red, which caused an increase in the absorption spectra at 633 nm. When the 

pesticide was introduced, a difference in decrease of the absorption occurred due to the 

inhibition of AChE, which was the proportional to pesticide concentration. The sensor 

showed a narrow detection range of paraoxon that was about 0.2 to 2.0 ppm.

Doong and Tsai [2001] proposed an AChE fibre-optic biosensor with a better 

sensitivity to paraoxon. This sensor consisted of pH-sensitive fluorescent indicator 

encapsulated together with enzyme AChE in a sol-gel network on a glass cap, which 

could be fixed on an optical fibre, and then integrated with a flow through reaction the 

cell for continuous monitoring. Nine fluorescent indicators were tested, and FITC- 

dextran was found to be the most suitable indicator due to the advantages of high 

sensitivity, low leaching rate and low toxicity to AChE. The fluorescence colour of 

FITC-dextran was blue in alkaline solutions and became colourless as the pH decreased 

to 2. Therefore, the enzymatic activity of AChE, resulting in pH change, was given in 

terms of the decrease of the fluorescence light intensity. The ability of the sensor to 

detect the organophosphorus pesticides was investigated with 0.54 pM (152 ppb) of 

paraoxon. A 30 % inhibition of the sensor response was obtained after the paraoxon was 

introduced into the system.
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A different type sensing scheme of fibre-optic biosensors for simple and direct 

detection of organophosphorus pesticide (paraoxon) was described by Choi et al [2001]. 

This fibre-optic biosensor employed the colourless enzyme substratum, o-nitrophenyl 

acetate, which was converted into a yellow product o-nitrophenol in the presence of 

AChE. The AChE was immobilised using a similar method proposed by Choi et al 

[1998]. In the absence of the pesticide, o-nitrophenyl acetate was completely 

hydrolysed, while in the presence of the pesticide the amount of yellow product was 

reduced. This change of absorbance at 400 nm by o-nitrophenol production was related 

to the amount of phosphorus pesticide, and thus the enzyme reaction was not affected 

by the pH. This type of sensor deviated from the indirect detection method (from 

measuring the absorbance change of a pH-sensitive dye due to the formation of an 

acidic product), which was widely used by other optical AChE-biosensors. However, 

the detection range of the sensor was about 0.2 to 2 ppm, which was similar to the range 

obtained from optical enzyme sensor described by Choi et al [1998].

2.1.2 Enzyme sensor for heavy metal ions detection

In the case of heavy metal ions determination, the enzyme urease was commonly 

used as the bioreceptor. Zhylyak et al [1995] described a urease biosensor based on 

amperometric approach for heavy metal ions determination. The biosensor consists of a 

miniaturized conductance glass cell with a pair of reference and gold electrodes. The 

reference electrodes were coated with bovine serum albumin (BSA), and the gold 

electrodes, were coated with a biological sensitive membrane, formed by crosslinking 

urease with BSA in saturated glutaraldehyde vapour. A low noise differential amplifier 

measured the differential signal between the pair of sensitive gold and reference
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electrodes. The urease inhibition by heavy metal ions resulted in reduction of the 

conductivity changes produced by the catalysed hydrolysis of urea. Six heavy metal 

ions were tested and their toxicity towards urease was found in the following decreasing 

order: Hg2+ > Cu2+ > Cd2+ > Co2+ > Pb2+ > Sr2+. The linear dynamic range of the sensor 

for heavy metal ions analysis was in the range of part per million and was presented as 

in Table 2.2. Complete reactivation of immobilized urease using 10 mM of ethylene 

diamine tetra acetic acid (EDTA) in 15 minutes, gave a possibility to re-use the 

biosensor for up to 10 measurements with the relative standard deviation of a sensor 

response of not more than 5 %.

Table 2.2. The linear dynamic range of the conductometric biosensor for heavy metal 

ions analysis [Zhylyak et al, 1995].

Metal ions Hg2+ Cu2+ Cd2+ Co2+ Pb2+ Sr2+

Linear 

dynamic range 

(HM)

1-50 2-100 5-200 10-500 20-5000 100-5000

A urease biosensor based on ISFET as a potentiometric transducer for heavy 

metal ions detection has also been reported [Soldatkin et al, 2000; Hamlaoui et al, 

2002]. The influence of two different immobilisation techniques of urease on ISFET 

(consist a SisN4  pH-sensitive layer) has been studied by Soldatkin et al [2000]. They 

found that covering the deposited urease on the gate surface of ISFET with a charged 

polymer layer increased the sensor stability and sensitivity to urea since the enzyme 

molecules were not cross-linked and in a free configuration. They also found that the 

sensor sensitivity towards the selected heavy metal ions was improved by using a 

negatively charged polymer (Nafion) due to the accumulation of the positively charged
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metal ions in the enzymatic layer. On the other hand, covering the enzyme with a 

positively charged polymer (Poly 4-vinylpyridine-co-styrene) prevented the diffusion of 

heavy metal ions because of the electrostatic repulsion effects between positively 

charged groups of the polymer and the ions. Table 2.3 shows the detection limits for the 

tested metal ions by the urease biosensor with a Nafion membrane.

Table 2.3. The detection limits for the heavy metal ions by the urease ISFET biosensor 

with a Nafion membrane [Soldatkin et al, 2000].

Metal ions Ag2+ Cu2+ Ni2+

Detection limits (pM) 0.035 2 70

A different sensing scheme of urease ISFET biosensor based on a N H /- 

sensitive zeolite membrane was described by Hamlaoui et al [2002]. Rather than 

detecting the hydrogen ions, this ISFET biosensor detected the ammonium ions that 

were produced during urease enzymatic reactions. The ammonium sensitive membrane 

was formed by depositing a mixture of siloprene (a silicon rubber polymer diluted in 

tetrahydrofuran solvent) and zeolite on the ISFET surface. The ammonium sensitive 

membrane was then covered by the layer of enzyme urease, which was cross-linked 

with BSA and glycerol solution in the presence of saturated glutaraldehyde vapour. This
*y t

ISFET biosensor was tested with mercury ions (Hg ) and showed high sensitivity 

where the detection limit obtained was less than 5 x 10'2 pM.

Another urease biosensor that used ammonium sensitive membrane incorporated 

with a disposable cuvette system was proposed by Preininger and Wolfbeis [1996]. The 

sensing scheme of this biosensor was based on the change of light absorption by the
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ammonium sensitive membrane due to the urease enzymatic reaction in a disposable 

polystyrene cuvette. The sensitive membrane was fixed onto one of the cuvette walls. 

The full activity of enzyme urease was measured by the addition of 0.4 ml of 1 M urea 

solution into the cuvette containing a mixture of 2.9 ml maleate buffer and 0.2 ml urease 

solution. The inhibition effect of heavy metal ions was measured by mixing 0.1 ml of 

selected heavy metal solution with 2 . 8  ml maleate buffer and 0 . 2  ml urease solution, 

before the addition of urea solution. The efficiency of inhibition was found not to be 

affected by the incubation time. In spite of utilizing the non-immobilized enzyme 

urease, the detection limits for most of the tested heavy metal ions were still above 1 

ppm as shown in Table 2.4.

Table 2.4. The linear dynamic range of the potentiometric biosensor for

heavy metal ions analysis [Preininger and Wolfbeis 1996].

Heavy metal
LOD

(ppm)

Linear range 

(ppm)

I50

(ppm)

Ag+ 0 . 0 2 0 .0 2 -0 . 2 0.13

Hg2+ 0.07 0.07-1 0.65

Cu2+ 0.25 0.4-0.7 0.55

Ni2+ 3 3-15 7

Co2+ 1 0 10-30 30

Cd2+ 2 0 2 0 - 2 0 0 95

Fe3+ 30 30-60 50

Zn2+ 50 50-70 85

Pb2+ 1 0 0 100-350 2 1 0

LOD -  limit of detection
I5 0  -  concentration of metal ions at 50 % inhibition level
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Registration of heavy metal ions based on the absorbance change of a light 

indicator was also described by Nabok et al [2000]. Here, a pH-sensitive dye 

Cyclotetrachromotropylene (CTCT) was used. A composite film consisting of enzyme 

urease and CTCT was deposited on a glass slide using polyelectrolyte self-assembly 

(PESA) to form a sensitive element of the sensor. The films obtained were characterised 

with UV-visible absorption spectroscopy. The lowest concentration of detected metal 

ion was 10‘4 M (100 ppm). The spectral changes were not very significant for low 

concentrations of metal ions but the principle of optical registration of enzyme reaction 

by combining the enzyme urease and CTCT in the same membrane using PESA method 

was demonstrated.

2.1.3 Multi-enzyme sensor arrays

Biosensors based on enzyme inhibition are typically demonstrated using 

compounds of a few specific chemical classes. Recent reports show these enzyme 

sensors to be inhibited by compounds from diverse chemical classes [Mulchandani el al, 

1998]. Based on this phenomenon, multi-enzyme sensor arrays have been proposed to 

screen various common environmental pollutants. Schmid and co-workers [Bachmann 

and Schmid, 1999; Bachmann et al, 2000] described a sensitive screen-printed 

amperometric multienzyme biosensor for the determination of the pesticides paraoxon 

and carbofiiran mixtures. The multi-enzyme sensor used different types of native, 

recombinant and mutant AChE as the bioreceptors, which were immobilized by screen- 

printing on a four-electrode thick film transducer as illustrated in Figure 2.1. The 

immobilized AChE hydrolyzed acetylthiocholine chloride to produce thiocholine, and 

this reaction was determined by thiocholine oxidation at 100 mV versus Ag/AgCl
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printed electrode. The change of output current measured by a four-channel potentiostat 

was correlated to the AChE activity.

AChE - Printing pastes

Insulation ink

Working electrodes

Reference electrodes

Carbon basal pads

Silver conducting 
tracks

PVC sheet

^  /  ) Electrode/ position 4 
/  ) Electrode/position 3 
x  ) Electrode/ position Z  
) Electrode/ position 1

Multielectrode biosensor

Figure 2.1. Schematic view of multielectrode biosensor assembly by screen- 

printing [Bachmann and Schmid, 1999].

The sensitivity of the multi-enzyme sensor towards pesticide was analysed using 

individual and binary mixtures of paraoxon and carbofuran in a concentration range of 0 

to 20 pg/1 [Bachmann and Schmid, 1999]. It was found that the biosensor was able to 

detect both pesticides in very low concentration down to 0.2 pg/1. However, the 

relationship between concentration and inhibition observed for binary mixtures was not 

linear where each enzyme electrode displayed individual inhibition patterns, depending 

on the type and concentration of the pesticide analysed. Consequently, artificial neural 

network data processing was used to discriminate the two tested pesticides. After 10 

network training runs, the optimised neural network was able to discriminate 50
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samples with different concentrations o f the pesticides. The average errors of prediction 

were 0.9 pg/1 and 1.4 pg/1 for paraoxon and carbofuran, respectively [Bachmann and 

Schmid, 1999].

Arkhypova et al [2001] proposed an enzyme sensor array based on the 

combination of a potentiometric ISFET transducer with three types of biologically 

active membranes consisting enzyme urease, AChE and BChE. The active membranes 

were formed by cross-linking of 5 % (w/v) enzyme with 5 % (w/v) bovine albumin and 

10 % (w/v) glycerol in the presence of saturated glutaraldehyde vapour. It was found 

that the inhibition of cholinesterase enzyme by pesticides and toxic ions depended on 

pollutants concentration in different ways and to different extents, while urease is not 

inhibited by tested pesticides but has considerable inhibition by mercury ions (see Table 

2.5) [Arkhypova et al, 2001].

Table 2.5. Level of inhibition (%) of enzymes by different toxic substances 

[Arkhypova et al, 2001].

Urease BChE AChE

10 pM trichlorfon 0 50 5
50 pM trichlorfon 0 70 25
1 mM trichlorfon 0 100 85
100 pM carbofuran 0 100 50
10 nM Ag+ 0 3 25
50 |iM Ag+ 10 7 70
10 nM Hg2+ 15 3 10
50 gM Hg2+ 40 7 70
Mixture No. 1 20 100 30
Mixture No.3 95 100 90
Mixture No.4 100 100 100
Mixture No.2 30 100 35
Mixture No. 1:10 pM Ag + + 10 pM Hg2+ + 10 pM trichlorfon + 10 pM carbofuran.
Mixture No. 3: 50 pM Ag + + 20 pM Hg2+ + 50 pM trichlorfon + 20 pM carbofuran
Mixture No. 4: 50 pM Ag + + 50 pM Hg2+ + 50 pM trichlorfon + 50 pM carbofuran
Mixture No. 2: unknown mixture
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Starodub and co-workers [Starodub et al, 1999; Kukla et al, 1999] described a 

multi-enzyme electrochemical sensor based on electrolyte-insulator-semiconductor 

(EIS) structures consisting of five channels with an integrated flow-injection system 

(Figure 2.2). Four channels contained enzymatic membranes and one channel served as 

a reference. Each channel consisted of a pH-sensitive multilayer Si-Si02-Si3N4 

structure, an electrolyte and a metallic electrode. The operating principle of each sensor 

channel was based on the measurement of high-frequency C-V curves for the above- 

mentioned multilayer structure. The changes of this parameter with time served as a 

response of the sensor channel during enzyme reactions.

02 03

R2

Figure 2.2. Schematic view of the 5-channel EIS enzyme sensor: (1) sensitive 

Si-Si02_Si3N4 structure, (2) steel contrary electrode, (3) Al contact to Si, (4) 

enzymatic membranes, (5) rubber sealing, (6) organic glass support, (7) flow input, 

(8) flow output; (9) reference electrode, (10) CIV converter, (11) connection to PC 

[Kukla et al, 1999].
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The enzyme membranes were prepared by deposition of 10% enzyme solutions on 

the nitrocellulose membrane-carriers. Enzymes urease, AChE, BChE and glucose 

oxidase (GOD) were used for the pesticides and heavy metal ions detection. The 

registration procedure was as follows. At first, the responses of enzymatic reactions for 

pure substratum or their mixtures of known concentrations were measured. Then model 

pesticide or metal salt solution without substratum was added into the system and held 

there for approximately 15 minutes. After this, the responses of the sensor channels 

under similar conditions were recorded again. The residual enzyme activity was 

estimated from the response drop compared with its initial value. This value of activity 

was used for the determination of pollutant concentrations. The concentrations of 

pesticides and heavy metal ions, which were detected by this sensor, were within the 

range of 10-4 to 10'7 M.
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2.2 Planar Optical Waveguides for Biosensing

Optical biosensors offer many advantages over the existing sensor types due to 

their capability of remote and multiple sensing [Lukosz, 1995]. They are also immune 

to electric interference and easy to miniaturise for the development of an integrated, 

portable and flexible sensor [Kunz, 1997]. In addition, the sensitivity of miniature 

integrated optical sensors has been improved by exploiting the principle of multiple 

reflections of the light beam in fibre optics and planar optical waveguides. In order to 

make full use of this principle, the biological sensing elements are immobilised on the 

top surface rather than on the end (or edge) of the waveguide. In the case of fibre optics, 

it involves difficult preparation processes, where the cladding layer needs to be removed 

from the core layer. Furthermore, the exposed glass core is very fragile and, susceptible 

to chemical degradation and fouling in most sensing environments [DeGrandpre and 

Burgess, 1988]. Thus, the planar waveguide is more preferable for the application of 

this technique due to the convenience in forming such a configuration. Moreover, it is 

very durable and easy to fabricate using a variety of materials and methods.

In general, planar optical waveguides can be formed from thin dielectric films 

(0.095 -  10 pm) or thicker internal reflection elements (0.8 -  1.5 mm). Thin planar 

waveguides are usually supported by a rigid substrate of low refractive index such as 

silicon oxynitride (SiON) and silicon nitride (SisN^ deposited on quartz or silicon 

dioxide (SiCy. Thick planar waveguides are more durable than thin planar waveguides, 

however, the propagating light makes discrete contacts with the waveguide interface 

[Choquette et al, 1992], and its sensitivity is primarily limited by the number of 

reflections (from 10 to 100) [DeGrandpre et al, 1990]. In contrast, light guided by a thin 

planar waveguide makes a continuous energy distribution along the path of propagation.
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In addition, a thin film planar waveguide with approximately 1 pm thickness can have 

thousands of reflections per centimeter [DeGrandpre et al, 1990]. This phenomena is 

explained further in the next section, which describes the theoretical aspects of the 

multiple internal reflection principle.

2.2.1 Multiple internal reflections principle

Generally, an optical waveguide is made from a dense dielectric medium 

surrounded by a less dense medium. As shown in Figure 2.3, light waves travelling in 

an optically denser medium (refractive index, ni) of the waveguide may be transmitted 

or reflected, when they strike the less dense medium with a refractive index, n2 . In this 

case, the transmitted angle is obviously greater than the incidence angle. A critical angle 

occurs when the transmitted angle reaches 90°, and can be determined by the ratio of the 

refractive indices;

0. = sin
r \  

-if 5
Knxj

’ (2.5)

When the incidence angle 0,- exceeds 0C then the wave is only reflected together with the 

existence of an evanescent wave that travels on the medium interface. It is assumed that 

the incident and reflected waves are plane waves. This phenomenon is called total 

internal reflection (TIR). It leads to the propagation of light waves in a dielectric 

medium surrounded by a medium of smaller refractive index [Kasap, 2001]. Figure 2.4 

illustrated the multiple internal reflection of light in a ray optic perspective [Plowman et 

al, 1998].
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Figure 2.3. The effect of increasing the incident angle to the light wave travelling in a 

more dense medium and strikes a less dense medium (plane waves are assumed) 

[Kasap, 2001].

y

U

Figure 2.4. A ray optic perspective of multiple internal reflections in a planar optical 

waveguide, with a part of the dense medium surface covered with a thin absorbing 

material (figure was modified from Plowman et al [1998]).

Lf = (Ie/10df
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Apparently, the evanescent wave is established by the spreading of the incident 

intensity at the interface for each reflection. The evanescent wave interfacial intensity 

(.Ie) per unit incident intensity (//) is given by [Saavedra and Reichert, 1990],

I,  n 24cos9j

n ,[ l-(n 2/n ,)2]

This evanescent wave is used to interact with an absorbing material that replaces the 

rarer medium, based upon the material thickness and absorptivity. The field of the 

evanescent wave (E) is largest at the interface (7e) and decays exponentially, as it 

penetrates further with distance (y) into the less dense medium;

E = / eexp(-y/rfp) (2.7)

The depth of penetration,.^, at which the evanescent field has decayed exponentially 

from its initial value is given by the equation;

d, =  r 2 v } n  (2-8>
27c[sin 0 • -(n2/nj) J

It is obvious from the above equation, by decreasing 0/ closer to the critical

angle, the evanescent field will penetrate more deeply into the rarer medium, and hence

more light energy becomes available for interaction with the external medium. The

depth of penetration is also proportional to the light wavelength, X, and it is greater at

longer wavelength. However, large penetration depth will cause large lateral shift of the

reflected beam at the interface. The lateral shift, Az, known as Goos-Hanchen shift

depends on the angle of incidence and the penetration depth;
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Az « 2 JptanBj (2.9)

Large lateral shift may cause considerable impact on the distance between each 

reflection, which will affect the number of reflections, N  at the interface of the 

waveguide, given by

N  =--------    (2.10)
2(Jtan0. + Az)

where L and d  are the length and the thickness of the waveguide, respectively. Clearly 

from equation (2.10), a decrease in the thickness of the waveguide will reduce the 

distance between reflections and hence increase the number of the reflection. A close 

gap between the reflection points may produce a continuous evanescent energy 

distribution along the path of propagation.

However, not all light waves that have an angle of incidence greater than the 

critical angle will be propagated in the dense medium. This is because the light wave 

will interfere with itself as it travels through the waveguide. In order to propagate 

successfully, the light wave must not interfere destructively, and only certain reflection 

angles give rise to the constructive interference, which means only certain waves can 

exist in the waveguide. These constructive interference waves are called guided modes 

and designated by an integer m = 0, 1, 2... The number of guided modes is dependent 

upon the light wavelength, waveguide thickness and refractive index, and can be 

estimated with the formula [Kasap, 2001],
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(2.11)

where Int (x) is the integer function which drops the decimal fraction of x. A general

waveguide condition for guided waves is given in the form,

(2 .12)

' where (j)m and Qm are the phase change and the incident angle at the interface for the

specific guided mode, respectively. The phase change (j)m of the transverce electric field 

wave is written in the form,

Thus, if the waveguide thickness, refractive index ratio and the light wavelength

equation (2.12) and (2.13). Then all calculations using previous equations must be based 

on the guided modes that needed to replace 0,- with Qm. For instance, in the case of 

silicon oxynitride (SiON) waveguide [Walker et al, 1993] with the thickness of 1.416 

pm, the refractive index ratio of water to SiON, n2/ni = 0.875, and the wavelength of 

excitation, X= 514.5 nm, the self-consistent solution of equations (2.12) and (2.13) give 

the values of 84.32° and 128.63° for 0W and (j)m respectively, for the single mode

COS0
(2.13)

m

J

are known, the value for and Qm can be ascertained by the self-consistent solution of
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propagation (m = 0). Therefore, the number of reflections, N  in the waveguide 

calculated from equations (2.10) is equal to 303 reflections per centimeter.

Normally, light can propagate through the waveguide without significant 

attenuation, since both mediums are transparent in the visible range. However, if  a 

sensitive thin film has a non-zero absorption coefficient deposited on the dense medium, 

optical loss will occur each time reflection takes place at the interface between the 

medium and the sensing film. In this case, the attenuation of the transmitted intensity, 

/out (output light intensity) will normally occur according to the Beer-Lambert law,

/ „  = /„exp(-v<tf) (2.14)

where /jn is the input light intensity, and A is the fractional absorption from each 

encounter with the sensing film, given by

A = 1 -  exp(-ceS) (2.15)

where a  and 8 are the absorption coefficient of the film and the interaction length per 

reflection, respectively. For a very thin film, the term ad is very small and Beer- 

Lambert approximation of exp(-c^) » 1 -  aS can be applied to equation (2.14) and 

(2.15), yielding

= hn exp(-aSAf) (2.16)
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The interaction length, 8 is calculated from the expression [Plowman et al, 1998], 

8 « I f = — rff (2.17)

where Lf is the evanescent path length related to the thickness of the thin film, df. By 

substituting IQ/I\ from equation (2.6) into equation (2.17), the interaction length can be 

expressed by

4n,£/,cos08 » " (2.18) 
n jP - ^ /n J  ]

where nf is the refractive index of the thin film and 0m is the incidence angle at the 

guided mode m.

Equation (2.16) shows that multiple internal reflections in a planar waveguide 

can provide an extremely sensitive tool for registration of small changes in optical 

absorption in the thin film. For example, a monolayer of copper phthalocyanine (CuPc) 

molecules (df » 1.5 nm and a  « 107 m '1) exhibits a large attenuation of 

/ out Ain = exp(-300) [Ray and Nabok, 2002]. Preliminary experiments have shown 

that deposition of two monolayers of CuPc molecules reduced the output light intensity 

from the waveguide down to a noise level. It is therefore anticipated that a high degree 

of sensitivity can be achieved in monitoring different chemical and bio-chemical 

reactions with a planar optical waveguide.

The optical techniques that most frequently use the multiple internal reflections 

principle are attenuated total reflection (ATR), total internal reflection fluorescence 

(TIRF) and planar interferometry. The applications of different types of planar optical 

waveguides for biosensing based on the above optical techniques are reviewed in the 

following sections.
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2.2.2 Planar waveguide as an attenuated total reflection (ATR) transducer

In an ATR transducer, the presence of optically absorbing material on the 

waveguide interface can be monitored as light energy absorbed from the evanescent 

wave of the internally reflected light beam. As expressed by equation (2.16) and (2.17), 

the optical losses at each reflection are proportional to the absorption coefficient and 

thickness of the deposited sensing film. The changes of the film properties parallel to 

the attenuation of the transmitted light provide a simple and effective tool in monitoring 

different bio-chemical reactions or protein deposition on the waveguide surface.

E.g., an ATR immunosensor, which utilised thick multiple internal reflection 

elements to monitor immunoreactions of haemoglobin with rabbit anti-haemoglobin 

antibodies, was reported (Figure 2.5) [Sutherland and Dahne, 1987]. The rabbit 

antibodies were covalently immobilised on the surface of a quartz microscopic slide and 

then reacted with different concentrations of haemoglobin. Light at 410 nm was coupled 

into the quartz slide via a quartz prism, and the incidence angle of the light was varied 

by rotating the mirrors. The attenuation of the reflected light was measured using a 

photomultiplier tube. Specific binding of 10 mg/ml of haemoglobin with the rabbit 

antibodies was clearly detected by the ATR immunosensor.

The application of an ATR transducer for monitoring the adsorption of bovine 

serum albumin (BSA) to the surface of a polymer waveguide was also reported [Walker 

et al, 1993]. The thin film polymer waveguide was prepared by depositing a mixture of 

two types of polymer, namely hydroxyethyl methacrylate (HEMA) and ethyl 

methacrylate (EMA), on a quartz slide substrate using a spin coating technique. The 

spun cast polymer films were macroscopically smooth and optically clear to be suitable
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to perform as a waveguide. The thickness of the polymer waveguide varied within 0.93 

pm to 2.80 pm, depending on the mixture composition of HEMA and EMA. The 

polymer waveguides were assembled into a flow cell, and were placed in parallel with a 

liquid-nitrogen-cooled charged couple device (CCD) camera. An argon laser beam at 

488 nm wavelength was coupled into the waveguide through a high index prism 

configured into the flow cell housing. The attenuation of light intensity due to the 

adsorption of chromorephore-labeled BSA on the polymer film, was measured by 

directly imaging the waveguide streak using the CCD camera. The measurements range 

of BSA surface densities was 34 to 757 ng/cm , with standard deviations ranging from 1 

to 9 ng/cm2. However, this report did not mention the total amount of concentration of 

the adsorbed BSA on the waveguide surface.

Recently, Kovacs et al [2003] described an ATR enzyme sensor based on a 

microscopic glass waveguide (76 x 26 x 1 mm dimensions) coated with an ammonium 

ion selective membrane and a urease enzyme layer for urea concentration 

measurements. Figure 2.6 shows the cross-section of the coated waveguide and the 

instrumental set-up of the ATR enzyme sensor. The flow-through cell consisted of a 

coated microscopic glass waveguide placed in between two 40 x 55 x 15 mm plexiglass 

blocks, with the upper block drilled through, having two holes for inserting the solution 

in- and out-flow tubes. A reaction cell of 30 pi in volume was formed by placing a 100 

pm thick teflon sheet with a 36 mm long and 8 mm wide channel in between the coated 

glass slide and the upper block. Two uncoated tips of the waveguide reaching out at 

both sides of the plexiglas block, were attached to 3 x 5 mm of 750-line/mm transparent 

polyacetate diffraction grating for light in and out coupling.
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HeNe

DAQPad p c

Polyurethane layer (3 pm) Enzyme layer 

NH4+ optode {1 pm)

Glass support

Figure 2.6. Schematic drawing of the instrument setup and cross-section of the coated 

planar waveguide used for optical urea sensor. P—pump, CS—carrier stream, SS— 

sample stream, I—injector, W—waste, MC—mixing coil, FC—flow-through cell, 

HeNe laser source, D l, D2—planar silicon detectors, GR—optical grating [Kovacs et 

al, 2003].

About 11-13 reflections of HeNe laser at 633 nm wavelength were counted on 

the sensing membrane interface after focusing the beam to the in-coupling grating. The 

resultant beam was detected using a photodiode placed above the out-coupling grating. 

When a sample solution containing urea was injected into the reaction cell, a urease 

enzymatic reaction occurred and produced ammonium ions, which could diffuse to 

reach the ammonium sensitive membrane. The ammonium ions were then selectively 

complexed by the nonactin component of the sensitive membrane. Simultaneously the 

other active component of the membrane, namely chromoionophore Nile blue derivative 

became deprotonated in order to keep the membrane electrically neutral. During this
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process, the colour of the indicator changed from blue to red. Thus, the concentration of 

urea can be registered by the level of deprotonation of the indicator. Experimental 

results showed that the ATR sensor could successfully register different urea 

concentrations in the dynamic range from 7 x 10'5 M to 8 x 10'3 M.

The above examples demonstrate that the ATR technique is well suited for 

different biosensing applications. It provides a direct measurement of the analyte with a 

simple preparation of the waveguide and experimental setup. However, the ATR 

transducer needs further improvement as its sensitivity is substantially lower than other 

optical techniques such as TIRF that are reviewed in the next section.

2.2.3 Planar waveguide as a total internal reflection fluorescence (TIRF) 

transducer

A TIRF transducer is constructed by placing a fluorescent material in contact 

with the reflecting surface of a planar waveguide. The evanescent energy generated 

from the propagating light will not only be absorbed as in the case of ATR technique, 

but will also be partly be re-emitted as fluorescent light. The intensity of the emitted 

fluorescence was measured for quantification of the studied analyte. Literature shows 

that different structures of planar waveguide have been used for the development of 

TIRF biosensors.

For instance, a reusable TIRF immunosensor based on a silver ion (Ag+)- 

exchanged waveguiding layer, for clinical analyte theophylline was developed by 

Choquette et al [1992]. The Ag+ waveguiding layer was fabricated using an ion
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diffusion process, by immersing a glass substrate in a molten solution of 1 0  mol % 

silver nitrate (AgNOa) and 90 mol % sodium nitrate (NaNOs), at 280 °C for 15 min to 4 

hours. The diffusion depth of silver ion in the glass substrate was calculated to be 

approximately 6  pm. Fluorescence experiments were performed by monitoring the 

competitive binding reaction of modified liposomes and theophylline with the 

covalently immobilized mouse anti-theophylline IgG layer on the surface of the 

waveguiding layer. Sensor response to theophylline concentration was determined by 

measuring the fluorescence emission of the specifically bound liposome fraction caused 

by the evanescent and scattering components of the propagating Argon ion laser at 488 

nm in the waveguide. The fluorescence emission was measured through the waveguide 

substrate by a rectangular (0.8 mm x 9.7 mm) fused-silica fibre bundle of a fluorometer. 

The TIRF immunosensor responded well to variations of theophylline concentration in 

the range from 2.0 x 10' 5 to 2.0 x 10' 10 M even after 15 sequential measurements, with 

signal degradation less than 1 0  %.

A more sensitive TIRF immunosensor used to detect analyte in femtomolar 

concentrations (less than 1 part per trillion) on a SiON planar waveguide was described 

by Plowman et al [1996]. The planar waveguide was produced by depositing a 1.3 pm 

thick SiON layer on the surface of a 4-inch diameter quartz wafer using the PECVD 

process. The SiON coated wafer was masked, etched and cleaved to have a 23 mm x 69 

mm rectangular waveguide with two 1 mm x 65 mm parallel strips or channels of SiON 

film. The planar waveguide was attached to a flow cell with a dual channel formed by 

two rounded rectangular grooves sealed with two silicone rubber O-ring gaskets. A 

small coupling prism measuring 4 mm wide and 10 mm high was placed on the SiON 

waveguiding layer in each flow channel. Figure 2.7 illustrates the measurement 

configuration of this dual channel TIRF immunosensor. A HeNe laser used to excite the
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Figure 2.7. Schematic illustration of measurement configuration of dual channel TIRF 

immunosensor [Plowman et al, 1996].

reference and sample signals, was split into dual beams and passed through a small hole 

of the flow cell before continuing through a prism coupled into the SiON channels of 

the waveguide. The guided mode was imaged through the quartz plate by back- 

collection with a CCD camera. The TIRF immunosensors showed very high sensitivity 

when tested with low concentration of ligand-receptor systems. Binding of 3 x 10' 15 to 

10*8 M murine monoclonal anti-fluorescein labelled with cyanine dye to immobilized 

avidin was observed.

Plowman et al [1999] has also demonstrated a TIRF immunosensor for multiple 

analyte detection based on the SiON planar waveguide, which consists of a SiON
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waveguiding layer deposited by the PECVD process on 2 cm width quartz substrate. 

Figure 2.8 shows the schematic representation of the multiple analyte immunosensor. 

The 3 mm-sized channel array were formed by three capture polyclonal antibodies, 

namely anti goat-IgG, anti human-IgG and anti rabbit-IgG which were physically 

adsorbed on the surface of the SiON waveguiding layer. The two sections of the 

antibody-free SiON surface were coated with a passivating and preserving solution of 

porcine serum albumin to block non-specific sites. A Diode laser at 635 nm was 

coupled via grating diffraction to establish a continuous streak of light at the waveguide

Sample Out Sample In

SiON

Channel 1 Channel 2 Channel 3

Filtered CCD Array

Channel 1 Channel 2 Channel 3

Increasing Time

Integrated Intensity v. T im e

Channel 1 Channel 2 Channel 3

Figure 2.8. Schematic representation of a multiple analyte immunosensor performed on 

a grating coupled SiON planar waveguide [Plowman et al, 1999].
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interface. Fluorescence excitation was measured using a spatially binned CCD camera 

placed at the bottom of the quartz waveguide. Experiment results for immunoreactions 

of the immobilised antibodies with low concentration (3 x 10' 11 to 10' 7 M) of specific 

antigens (goat-IgG, human-IgG and rabbit-IgG) labelled with cyanine dye were 

registered.

TIRF sensor with microarrays sensing cells, which enable parallel ultra-sensitive 

nucleic acid analysis, was demonstrated by Duveneck et al [2002]. The transducer 

structure consisted of a 150 nm thick Ta2 0 s waveguiding layer with a refractive index 

of 2.092, which was deposited on a planar glass substrate. Two different sizes of plastic 

structure consisting of a number of flow cell arrays were placed on top of the 

waveguiding layer to form two different format transducers (see Figure 2.9). Each cell 

was capable of accommodating a sample volume as low as 15 pi within the cell. The 

cell inlets could be addressed by regular pipette tips, thus, allowing filling of the cells, 

by means of manual or robotic multipipettors.

A red laser light at 635 nm wavelength was coupled into the waveguide through 

a glass substrate using 0.5 mm broad relief diffraction gratings located within the flow 

cells (Figure 2.10). Fluorescence excited in the evanescent field of the waveguide was 

collected by a CCD camera. Experimental results showed that binding of Cy5-labelled 

target cytosine-deoxyribonucleic acid (cDNA) with immobilised double-stranded mouse 

brain cDNA were succestully registered. This TIRF sensor had higher sensitivity than a 

conventional confocal fluorescence scanner. Measured signal-to-noise ratios ranging 

from 5 to 10 for the scanner data and from 300 to 750 for the TIRF sensor results were 

observed.
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Figure 2.9. TIRF planar waveguide chip formats and flow cell arrangements [Duveneck 

et al, 2 0 0 2 ].

Figure 2.10. Excitation light coupled into Ta2 0 s waveguides using diffractive relief 

gratings [Duveneck et al, 2002].



Determination of trace level pesticides using a TIRF immunosensor based on an 

internal multiple reflection elements were explored by Gaulitz and co-workers (Klotz et 

al, 1998; Mallat et al, 2001; Barzen et al, 2002). A schematic of the sensor set-up is 

depicted in Figure 2.11. A bulk optical glass slide (dimensions of 60 mm x 15 mm) with 

a thickness of 1.5 mm and a refractive index of 1.52 was used as the transducer element. 

The surface of the glass slide was polished and modified with a layer of aminodextran, 

which was conjugated with the carboxylic group of pesticide derivatives, to form three 

sensitive spots of 3 mm in diameter and with 2.5 mm distance in between. The glass 

slide waveguide was mounted on a flow cell with a flow channel dimension of 1.7 mm 

width and 0.1 mm depth. Through this flow cell, the sensitive spots were exposed to a 

premixed solution and bound with any non-blocked anti-pesticide labelled with cyanine 

dye, to produce fluorescence signals that were inversely correlated to the pesticide 

concentration.

Detector PC

Fibre optics
Laser

Transducer

Autosampler

Flowcell

Figure 2.11. TIRF immunosensor based on optical glass slide waveguide [Barzen et al, 

2002].
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Fluorescence was excited using a modulated laser diode operated at 635 nm

excitation was collected by high numerical aperture polymer fibres located on the back 

surface of the waveguide opposite the sensitive spots. The collected light was filtered 

and detected by photodiodes using lock-in detection. This TIRF immunosensor offers 

the advantage of performing immunoassays for sets of three pesticides simultaneously

pentachlorophenol and 2,4-dichlorophenoxyacetic acid, simazine, isoproturon)/were 

detected successfully with no cross-reactivity effects occurred. The lowest detection 

limit of this sensor was 0.03 pg/1.

The above reviewed studies shows that TIRF technique provides high sensitivity 

and selectivity for various analyte detection. However, it involves complex preparation 

prior to the experiment such as the target analyte or the sensing element need to be 

labelled with fluorescence material.

2.2.4 Planar waveguide as a planar interferometer transducer

Planar interferometry is a slightly different technique but still utilises the 

multiple reflections, and has been exploited for biosensing. It is based on the change in 

the propagation velocity of light passing through a planar waveguide. Two variations of 

the planar interferometer used are the Mach-Zehnder interferometer and the planar 

polarization interferometer. A Mach-Zehnder interferometer to detect the physical 

adsorption of proteins and immunoreactions was demonstrated by Heideman et al 

[1991, 1993, and 1994]. The planar waveguide structure is illustrated in Figure 2.12. It

coupled into the waveguide through the 45° bevelled waveguide end-face. Fluorescence

in one sample. Two sets of analytes (atrazine, alachlor,
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was fabricated on a 3 inch diameter silicon wafer covered with a 1 pm thick thermal 

growth of SiC>2 substrate layer at 1150 °C. The waveguiding layer of Si3N4  with a 

refractive index of 2.0 and a thickness of 95 nm was deposited using low pressure 

chemical vapour deposition (LPCVD) at 800 °C. On top of the waveguiding layer, a 

protective 1.5 pm thick Si0 2  layer with a refractive index of 1.457 was grown using 

plasma enhanced chemical vapour deposition (PECVD) at 300 °C.

protective 
cover layer

grating

I—  grating — j

~ \ a mJ ~ \_______ f \ w m f *sensing area

Si-wafer

3cm

Figure 2.12. Top view and cross-section (through the line A-B) of SiCVSis^ 

waveguide as a Mach-Zehnder interferometer transducer [Heideman et al, 1994],

Two sensing windows were formed by completely removing the protective layer 

in two rectangles with a width of 3 mm and a length of 10 mm using standard 

photolithography on a positive photoresist layer, followed by wet chemical etching with 

hydrofluoric-ammonium fluoride (HF/NH4 F) solution. The same photolithography and 

wet chemical etching method was applied to develop two gratings (with a remaining 

Si0 2  thickness of 500 nm) used to couple light into and out of the waveguide. He-Ne 

laser light with a wavelength of 633 nm was split into two parallel beams by a cubic 

beamsplitter before being coupled into the waveguide. Detection of protein adsorption 

and immunoreactions on the sensing surface was done by measuring the phase change



of the recombine beams. The adsorption of antibody anti-human chorionic gonadotropin 

(ohCG) with the concentration of 3 x 10' 8 M, and protein bovine serum albumin (BSA) 

with the concentration of 2 x 10'4  M, were successfully determined. Immunoreactions 

with different concentration of antigen human chorionic gonadotropin (hCG) have also 

been done. The lowest detectable concentration of bind hCG was 5 x. 10' 11 M.

A Mach-Zehnder interferometer based on the same Si0 2 /Si3N4  planar waveguide 

structure for immunoreactions detection was described by Lechuga et al [1995]. The 

same fabrication method used by Heidemen et al [1993] was applied to develop SiC>2 

and Si3N4 waveguiding layers. The only difference was the grating coupler system was 

replaced by the end-fire coupling through cleaved and polished end faces of the Si3N4  

planar waveguide. The sensitivity of this interferometer for immunosensing was tested 

using the antibody/antigen system of antihuman serum albumin/human serum albumin 

(a-hSA/hSA). Detection of hSA binding with concentration ranging from 1 x 10' 11 M to 

1 x 10‘7 M was achieved.

Another Mach-Zehnder interferometer based on SiCVSiON waveguide structure 

was described by Brosinger et al [1997] (Figure 2.13). The Si0 2  substrate layer with a 

2.5 pm thickness was produced by thermal oxidation of a silicon wafer. On top of the 

substrate layer, a SiON waveguiding layer with a refractive index of 1.55 and a 

thickness of 350 nm was grown using the PECVD process. The rib of the waveguide 

was structured by standard lithography and reactive ion etching (RIE) with an etch 

depth of 55 nm. A reference guided layer was branched off in front of the classical 

design Y-junction of the Mach-Zehnder interferometer in order to compensate for 

instabilities in the coupling of the light into the waveguide and fluctuations of the 

source. The protective layer of Si0 2 , with a refractive index of 1.46 and a thickness of
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2 nm, was deposited by the PECVD process on top of the waveguiding layer. The 

sensing window of the waveguide with an effective length of 1 2  mm was formed by the 

RIE process in the Si0 2  protective layer. TE-polarized light of a He-Ne laser with a 

wavelength of 633 nm was end-fire coupled into the planar waveguide. The 

immunosensing capability of the interoferometer was tested using antibody/antigen 

system of anti 2,4-dichlorophenoxyacetic acid IgG/2,4-dichlorophenoxyacetic acid (anti 

2,4-D IgG/2,4-D). Determination of 2,4-D at detection limit of 1 pg/ml was achieved 

with immunoreactions of 10 pg/ml anti 2,4-D IgG.
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Figure 2.13. SiCVSiON waveguide as a Mach-Zehnder interferometer transducer, (a) 

waveguide layout, Lsens = sensitive length of the interferometer; (b) cross section of the 

waveguide, w = width of the waveguiding rib, h = height of the waveguiding rib, dRIB 

= thickness of the waveguide under the rib [Brosinger et al, 2002].
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The planar Mach-Zehnder interferometer described previously has shown great 

potential for biosensing applications. However, it has the disadvantage in difficulties of 

coupling the light into the branches of the waveguide. In addition, microstructuring is 

required to fabricate the two branches and the Y-junction of the guided layer. In some 

cases, beam splitters and connectors were necessary to produce two light beams from 

the same source. Due to this drawback, planar polarization interferometer, which 

measured the phase difference between the transverse electric (TE0) and transverse 

magnetic (TM0) modes or s- and p-components of the same polarized light, was 

proposed. The two modes of the polarized light interact differently with the sample on 

the waveguide sensing surface, which produced a time-dependent phase difference 

between them. This method makes the light coupling and waveguide fabrication much 

easier since a wider guided layer is used, and no branches or guided channels are 

needed.

Stamm and Lukosz had explored such an interferometer based on a Si0 2 -Ti0 2  

waveguide structure as a relative humidity sensor, as a refractometer for liquid samples, 

and as an affinity- and immunosensor [Stamm and Lukosz, 1993, 1994,1996; Lukosz et 

al, 1997]. The Si0 2 -Ti0 2  waveguiding layer, with a refractive index of 1.75-1.85 and 

thickness of 140-200 nm, was fabricated by the sol-gel process (at 500 °C and 850 °C) 

on a 3.6 pm thick Si0 2  substrate layer, which was thermally grown on a 500 pm thick 

silicon wafer. The waveguiding layer was covered with a 2 pm thick evaporated Si0 2  

protective layer to prevent any perturbation of the light beam by a flow cell, which was 

pressed against the protective layer above the sensing windows.

Polarized light at a wavelength of 632.8 nm was end-coupled into the 

waveguide and interacted with the sample over a sensitive length of 12-32 mm. The out-
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coupled light was interfered with an additional phase change by a half-wave and 

quarter-wave plate, and was split into four channels using two Wollaston prisms (see 

Figure 2.14). Time-dependent phase difference of TE0 and TM0 modes were determined 

from the intensity of the four channels measured by four photodetectors. This polarized 

interferometer worked well for affinity sensing and immunosensing where an affinity 

reaction of 0.7 nM biotin with immobilized avidins [Stamm and Lukosz, 1993, 1994] 

and immunoreactions of 0.33 nM rabbit IgG with immobilized goat anti-rabbit IgG 

[Stamm and Lukosz, 1996] were clearly detected.

beam splitter

lens
)J2 (22.6*)

waveguide

«#»

m  (4 5 *) detectors

Wollaston
prism

detectors

D1 D2

Figure 2.14. Phase measurement methods of a planar polarization interferometer. The 

outcoupled light is split up into four channels and the phase difference is determined 

from the intensities measured by detectors D1-D4 [Lukosz et al, 1997].

A polarized interferometer with the same working principle as that used for 

immunosensing was described by Fattinger et al [1993] and Schlatter et al [1993]. The 

phase change of the polarized light was measured using the same set-up and method 

used by Stamm and Lukosz [1993]. However, instead of using Si/SiC>2 as the substrate 

layer, a planar glass substrate with a refractive index of 1.52 was used as the base of the
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waveguide. On top of the glass substrate, an inorganic amorphous Ti0 2 -Si0 2  

waveguiding layer, with a refractive index of 1.8 and a thickness of 230 nm, was 

fabricated. The waveguiding layer was covered with a 1 pm thick Si0 2  protective layer 

consists of 1 2  mm long open area for the interaction of the guided lightwave with the 

sample. The sensitivity of the interferometer for immunosensing application was tested 

with different concentrations of anti-human IgG binding to the immobilised human IgG. 

Detection of very low concentration of anti-human IgG at 0.01 nM was registered.

A polarized interferometer based on SisN4  waveguide structure has also been 

explored by Shirshov et al [1998, 2001]. The planar waveguide was fabricated on a 

silicon wafer and has a smaller sensing window of 6  mm length. Figure 2.15 shows the 

general view of the multilayer waveguide structure and the experimental setup of this 

interferometer. It consists of a SisN4  waveguiding layer with a thickness of 0.19 pm and 

refractive index of 2.0, deposited by the LPCVD process on a thermally fornied SiC>2 

substrate layer with a thickness of 1.2 pm and a refractive index of 1.46. 

Phosphosilicate glass (PSG) with a thickness of 1.2 pm and a refractive index of 1.51 

was used as the protective layer. The waveguide surface area was 10 mm x 12 mm and 

its edges were cleaved and polished to improve light guiding both in and out without 

special matching elements (prisms or grating).
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Figure 2.15. A planar polarization interferometer based on SiCVSislSL* waveguide 

structure [Shirshov et al, 1998].

A polarized He-Ne laser beam was focused with a semi-cylindrical lens onto the 

input face of the waveguide and interacted with the substance studied within the sensing 

windows. A 0.2 mm thick film serving as a linear polarizer was placed immediately at 

the light beam output. The output beam was then transmitted to a photomultiplier by a 

glass optical fibre with an input window of 0.5 mm in diameter, which was pressed 

against the polarizer at a distance less than 1 mm from the edge of the waveguide. 

Adsorption studied on the sensing surface shows that proteins such as BSA, mouse anti- 

IgG and rabbit IgG were strongly held on the Si3N4  surface. The polarized 

interferometer was able to register the response of immunoreactions between mouse 

IgG and immobilized mouse anti-IgG [Shirshov et al, 1998], and immunoreactions 

between mouse-antirabbit IgG and immobilized rabbit IgG [Shirshov et al, 2001].
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The capability of a polarized interferometer as an immune sensor in comparison 

to the conventional surface plasmon resonance (SPR) method was also studied by 

Nabok et al [2000]. A similar device, which was described by Shirshov et al [1998], 

was used and instead of PSG material, Si0 2  with a thickness of 1.2 pm and a refractive 

index of 1.46 was used as the covering layer of the waveguide. Different sequences of 

immobilisation of the immune components (human IgG and human anti-IgG) and their 

immunoreactions were studied. High sensitivity of the interferometer method in 

comparison with SPR was observed. A human IgG concentration of 3 ng/ml was 

registered with the inteferometer while the lowest concentration detected by SPR was 

30 ng/ml.
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2.3 Polyelectrolyte Self-Assembly Technique for the 

Formation of Nanocomposite Membranes

The idea of developing a multilayer molecular structure by electrostatic 

interaction was suggested by Iler [1966], who had constructed multilayer films 

composed of positively and negatively charged colloidal particles. This pioneering 

layer-by-layer self-assembly technique was extended to a new preparative method of 

organised thin films by adsorption of oppositely charged polyelectrolytes. The interest 

dates back to early 1990s when Gero Decher and coworkers [Decher et al, 1992; Lvov 

et al, 1993] showed that it was possible to deposit layers of oppositely charged polymers 

onto substrates with molecular-level control over the resultant multilayer structure. 

Since then studies on the properties and application of polyelectrolyte multilayers has 

grown exponentially [Ariga et al, 1997; Decher, 1997; Wu et al, 1998; Onda et al, 1999; 

Mamedov et al, 2001; Li et al, 2001].

Generally, polyelectrolytes exist in the form of salts, and dissolve in water to 

dissociate into polymers chains containing ionic groups and counterions. They form as 

polycations or polyanions solutions, depending upon the charge of the ionic groups. For 

instance, poly(styrene sulfonate) will form as a polyanions solution due to the presence 

of a sulfonate group (SO3 ') in its constituent macromolecules (Figure 2.16). Attraction 

of different charges between the polycation and polyanion become the driving force for 

the polymer film formation through the polyelectrolyte self-assembly (PESA) technique 

[Lvov et al, 1994]. In addition, the electrostatic attraction allows the formation of 

multilayered films on a substrate surface, simply by sequential dipping of the 

electrically charged substrate into the polycations and polyanions solutions.
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Figure 2.16. Chemical structure of poly(styrene sulfonate).

The four steps basic sequence for the polyelectrolyte layer deposition in the 

simplest film architectures, (polyanion/polycation)n is illustrated by Figure 2.17. This 

polyelectrolyte deposition on a glass substrate can be carried out either manually or by 

an automated device [Okayama et al, 2001]. The process starts by immersing a 

positively charge glass substrate in a beaker containing a polyanion solution (Step 1). 

Then it is followed by the rinsing step (Step 2) in deionised water or buffer solution, 

before dipping the substrate in the polycation solution (Step 3). The important rinsing 

steps in between two consecutive polyelectrolyte adsorptions are to remove the non

adsorbed (liquid adhering) or weakly adsorbed polymer molecules, which are loosely 

attached to the preadsorbed polymer layer. The substrate is rinsed again (Step 4), before 

continuing the dipping sequence in the polyanion solution.

cationic
solution

anionic
solution

rinsing rinsing

Figure 2.17. A basic sequence of the polyelectrolyte self-assembly technique.
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During the first contact of the substrate with the polyanion solution, the substrate 

surface charge might be sub-compensated, exactly compensated or overcompensated by 

the electrical charges of the adsorbed polyanion (Figure 2.18) [Decher et al, 1994]. The 

initial adsorption mechanism of the polyanion chains is relatively fast and may be 

completed within a few seconds. As shown in Figure 2.19(a), the polyanion chains start 

to become anchored on the substrate surface due to electrostatic attraction between the 

polymer ionic groups and the positively charged adsorption sites on the substrate 

surface. The remaining adsorption sites are filled during the second stage of the process. 

This involves the adjustment and penetration of other polyanion chains between the 

anchored ones, and this process requires a longer time, usually up to 20 minutes [Lvov 

et al, 1993]. The successful deposition of the next polyelectrolyte layer requires that the 

adsorbed electrical charges overcompensate for the initial electrical charge of the 

substrate (Figure 2.19(b)).

© © ©  ©  ©  © © ®  © ©  ©  ©  

overcompensation

© © © © © © @ @ © © © © © ©  

compensation

© © © © © © © © © © © © ©

sub-compensation

Figure 2.18. Three different types of adsorption of a single polymer 

layer on a substrate surface [after Decher et al, 1994].
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Figure 2.19. Layer-by-layer polyelectrolyte deposition, (a) Anchoring the first 

polyanion layer on a positively charged surface, (b) Stabilized adsorption of the 

polyanion layer, (c) Stabilized adsorption of the polycation layer.

Let G~ and G+s represent the surface charge densities of the polyanion and the

substrate, respectively. Generally, the overcompensation condition can be written in the 

form

g ; = 2 g ; (2.19)

In this case, half of G " is used to compensate for G * , and the other remaining half of 

G~ will be available for binding the next polycation layer. Similar processes of

anchoring and stabilization occur during adsorption of the polycation layer on top of a 

polyanion layer. Figure 2.19(c) shows the resulting polyanion/polycation bilayer
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regarded as a basic repeated unit of multilayered PESA films. If G* denotes the surface

charge density of the polycation, the overcompensation of charges in the polyelectrolyte 

bilayer must satisfy the condition

O* = a -  (2.20)

The above condition describes the intrinsic type of charge compensation for the 

existence of multilayers, and can be achieved by using a strongly charged 

polyelectrolyte pair, such as poly(styrene sulfonate) and poly-2 -vinylpyridine 

[Hoogeveen et al, 1996] during PESA deposition.

Based on the above deposition scheme, the PESA technique is free of some 

problems typical to other popular wet processes such as conventional spin coating or 

Langmuir-Blodget (LB) methods, in developing of thin composite films. Spin coating is 

a very simple and fast technique, which forms ultra thin films by dispercing solutions 

onto rotating substrates. However, the spin coating technique cannot control the 

molecular order and the thickness of the films. In the case of the LB technique, ultrathin 

films are formed by transferring a monolayer of ordered amphilic molecules from the 

water surface onto a solid substrate. The LB technique has high accuracy in controlling 

the film thickness; however, it needs special instrumentation called an LB trough with 

mobile barriers and a Wihelmy balance, to control the surface pressure of the 

amphiphilic monolayer on the water surface. In addition, the materials suitable for the 

LB preparation are usually limited to water insoluble with high purity and surfactant

like properties [Ariga et al, 1997].
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In contrast, the PESA technique allows the fabrication of well defined layer-by- 

layer structures of ultrathin films, without requiring complicated and expensive 

equipment. The adsorption processes are independent of the substrate size and topology. 

The PESA technique also does not require a very high purity of the solution to have a 

satisfactory multilayer deposition [Lvov and Decher, 1994]. However, the layers in 

PESA films are found to be less ordered than those in LB films [Lvov and Decher, 

1994]. Nevertheless, the films are chemically and thermally stable [Lvov et al, 1993; 

Decher et al, 1992] because of strong electrostatic interaction between the polymer 

layers and the substrate. Furthermore, the PESA technique is not only limited to a large 

variety of water-soluble polyions, but also can employ other types of charged 

macromolecules such as organic dyes and proteins, which can be assembled alternately 

with the oppositely-charged polyions.

Multilayer films composed of polyion/organic dye molecule bilayers were 

assembled on a quartz slide and quartz crystal microbalance (QCM) using the PESA 

method by Ariga et al (1997). Prior to the deposition, the substrates were washed with 

alkaline alcohol solution in an ultrasonic bath to generate anionic charges on their 

surface. Several organic dyes with different molecular sizes namely congo red (CR), 

tetraphenylporphine-tetrasulfonic acid (TPPS), acid red 26 (AR26), acid red 27 (AR27), 

ponceau S and indigo carmine (IC) were used in the experiment. Most of the organic 

dyes have a negative surface charge from their SC^TIa* groups, and were successfully 

alternated with polycation poly(diallydimethylammonium chloride) (PDDA).

The in-situ QCM measurement revealed that the dyes adsorbed from their high- 

concentration solutions, tend to be desorbed in the subsequent step, especially in the 

case of higher polyion concentrations. For example, a mass decrease was observed for
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the TPPS-PDDA film at 10 mM TPPS and 19 mM PDDA. Contamination of polyion 

solutions might cause formation of ion complexes in the solution, which makes it 

difficult to conduct multilayer self-assembly by alternate immersions. Constant film 

growth was observed at lower concentrations, such as for CR/PDDA film at 1.0 mM CR 

and 1.9 mM PDDA, and for the TPPS-PDDA film at 1.0 mM TPPS and 1.9 mM PDDA. 

In general, most of the dyes can be assembled alternately with the oppositely charged 

polyions at the lower concentration.

The thicknesses of dye layer were found in the range of 5 to 34 A, which were 

defined by the size, shape and the number of charges in the dye molecule. Obviously, 

large molecules cause larger film growth than small molecules, such as 1 2  A for CR 

(MW 697) and 9 A for IC (MW 466) which have an identical shape and number of 

charges. Difference in the number of charges may also affect the layer growth of the 

dye, as in the case of AR26 and AR27, which have an identical size and shape. The 

third sulfonate (SO3 ’) group at the left side in the AR27 produced a different mode of 

interaction with the polycation surface that gave a larger film growth ( 1 0  A) than the 

AR26 layer (7 A). This estimation of the thickness of the absorbed dye, such as for 

CR/PDDA bilayer (22 A), coincides with the ellipsometric data of a related layer of 

CR/poly(L-lysine) reported by Cooper et al (1995).

Cooper et al (1995) studied the formation of multilayer films by alternately 

assembling the cationic polypeptide poly(L-lysine) with rod-shaped CR dye or plate- 

shape copper phthalocyanine tetrasulfonic acid sodium salt (CPTA), on a glass slide 

substrate. The films were characterised with different optical techniques such as UV- 

visible absorption spectra and ellisopmetry. Low concentration of poly(L-lysine) about 2 

mg/mL and organic dye about 1 mg/ml (1.43 mM for CR and 1.085 mM for CPTA)
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were used for the deposition. Varying the concentration of the dye (0.1, 0.5, 1.0 and 1.5 

mg/ml) and the dipping time from 1 to 300 min, did not show significant variation in 

absorbance spectra (absorbance at 680 nm = 0.0455 ± 0.0015). The ellipsometry 

measurement showed the estimated average bilayer thickness of poly(L-lysine)/CPTA 

and poly(L-lysine)/CR was 19 A and 22 A, respectively. Differences in the film growth 

between the organic dyes was probably due to CPTA (MW 921 with four sulfonate 

groups) tended to form H-aggregates to allow two sulfonate groups to be located in the 

upper and lower faces of CPTA layer, and satisfied the mechanism of the alternate 

adsorption. The results suggested that the adsorption of the dye layer reached saturation 

very rapidly and the dye molecules tended to form certain orientation during the 

adsorption process.

The PESA technique was also demonstrated to have a unique ability to 

incorporate several types of biomolecules such as enzymes [Lvov et al, 1995; Nabok et 

al, 2000], antibodies [Caruso et al, 1997] and DNA [Decher et al, 1994] into the 

polymer matrix. These biomolecules are ideal for PESA deposition because of their 

natural electric charge can be controlled by the pH of a buffer solution beyond the 

isoelectric point of the biomolecules. This technique provides a very natural 

environment for the biomolecules because the immobilization process was performed in 

a mild condition, and did not involve any modification of the biomolecules structures.

A multifunctional composite film can easily be formed with the PESA method, 

since it is possible to incorporate active biomolecules and chromophores molecules with 

transducing characteristics into the same polymer matrix. This composite PESA film 

can serve as a sensing membrane, combining functions of molecular recognition and 

transduction, which is suitable for enzyme or immune sensors. For instance, composite
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films containing enzymes urease and cholinesterase, and respective indicators, 

cyclotetrachromotropylene (CTCT) and Thymol Blue was successfully deposited on 

glass substrate using the PESA method [Nabok et al, 2000]. Biosensing characteristics 

of the sensing membranes were studied using the UV-visible spectroscopy technique. 

The membranes were hydrophilic and permeable for small analyte molecules, which 

allowed biosensing activity, such as the registration of the enzyme reaction and 

inhibition, by the optical measurement.
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2.4 Summary

This chapter contains a comprehensive review of enzyme sensors developed for 

water analysis. The principles of detection of pesticides and heavy metal ions using the 

inhibition of cholinesterase enzyme and urease, respectively, were explained in detail. 

The enzyme sensors based upon electrochemical approaches (particularly amperometric 

technique) were more sensitive than the optical method previously exploited. 

Consequently, the majority of enzyme sensors and sensor arrays were based on the 

electrochemical principles.

The design and implementation of planar optical waveguides for biosensing 

were also described in detail. The theory of multiple internal reflections was revised, 

and its application in several types of waveguide structures as ATR, TIRF and 

interferometer biosensors was reviewed. The ATR sensors were found to be more 

versatile, but its sensitivity especially towards the affinity reaction was substantially 

lower than that in other biosensors. One factor that allowed the TIRF or interferometer 

sensors to achieve high sensitivity was the use of specially designed planar optical 

waveguides, such as SiC^/SiON or Si02/Si3N4, having a thinner waveguiding layer than 

that in the macroscopic glass slide structures.

Finally, detailed descriptions on a universal deposition method namely 

polyelectrolyte self-assembly (PESA) technique was given. The theory and the 

application of the PESA method to form multi-function sensing membranes was 

reviewed. The PESA method proved to be suitable for the formation of composite 

membranes for optical enzyme sensors.
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CHAPTER 3

CONSTRUCTION AND CHARACTERISATION OF 

THE SINGLE CHANNEL ENZYME SENSOR

3.1 Optical Devices of the Planar Waveguide Enzyme Sensor

3.1.1 Planar waveguide transducer

The main idea of the proposed optical biosensor lies in multiple reflections of 

the light beam in the Si(VSi3N4 planar waveguide having a large difference in the 

refractive indices of the core and cladding. This waveguide, shown schematically in 

Figure 3.1, was provided by Prof. Yuri M. Shirshov from the Institute of Semiconductor 

Physics of the National Academy of Sciences of Ukraine. It was produced by standard 

silicon planar technology, where the Si3N4 waveguiding core layer of 0.19 pm thickness 

was deposited by LPCVD process on a thermally formed SiC>2 substrate layer with a 

thickness of 1.5 pm. The SisN4  layer was covered with another 1.5 pm thick SiC>2 layer 

using the PECVD process. The refractive indices are typically 1.46 and 2.0 for SiC>2 and 

SisN4 layers, respectively. The above parameters for core and cladding layers were 

chosen to provide a single mode light propagation [Shirshov et al, 1998], and this 

condition can be confirmed by using equation 2.11, where M = 1 at X = 635 nm.
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Figure 3.1. Schematic diagram of light propagation through the planar waveguide.
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A sensing window, of 4 mm x 6 mm, formed in the central area of the top Si02 

layer using a photolithography and wet etching (with hydrofluoric acid) technique, has 

exposed the surface of the SisN4 layer to the environment. Due to the etching process, 

the SisN4 surface became positively charged because of the presence of Si-NH2 groups. 

The polarity of this surface was further enhanced by refreshing it with 5 % diluted 

hydrofluoric acid. This positive charge was required for the PESA technique to start the 

deposition of the sensing membrane with a compound, which had a negative surface 

charge. The SisN4  surface was first deposited with the organic dye, namely 

cyclotetrachromotropylene. Details on this compound and the formation of the sensing 

membrane are explained in Section 3.2.

3.1.2 Experimental set-up for a single channel enzyme sensor

The effect of single enzyme reactions on light intensity, as well as the process of 

polyelectrolyte deposition, was studied m-situ using an optical experimental set-up, 

shown schematically in Figure 3.2. A diode laser (Coherent 31-0110) with a wavelength 

of 635 nm was used as a light source to produce an elliptical beam with the length and 

width of 5.6 mm and 1.5 mm, respectively. Then, a semi-cylindrical lens was used to 

focus the beam into a narrow horizontal line with a thickness of about 0.5 mm on the 

edge of the Si3N4  planar waveguide. A reaction cell having a volume of 0.2 cm was 

tightly sealed with a square shape rubber frame, and was placed on top of the planar 

waveguide (see Figure 3.3). The rubber seal had a 6 x 8 mm square opening in the 

middle to avoid any contact with the surface of the waveguide window.
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Figure 3.2. Schematic diagram of the planar waveguide experimental set-up. (1) HeNe 

laser source, (2) cylindrical lens, (3) the planar waveguide, (4) reaction cell with inlet 

and outlet, (5) optical power meter, (6) interfaced to the PC.
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Figure 3.3. Expanded diagram of the reaction cell showing rubber seals (dark grey) and 

planar waveguide (light grey).
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Coupling of the beam into the SisN4  waveguiding layer was achieved by 

adjusting the position of the waveguide with a three-directional micropositioner. A 

photodetector (Anritsu Model MA9411A) of an optical powermeter, with an active area 

of 9.5 mm in diameter was placed immediately after the output end of the waveguide. 

The photodetector was able to capture light within the wavelength range of 0.38 pm to 

1.15 pm and within the power range of 0.01 nW to 10 mW. The optical power meter 

(Anritsu Model ML9001 A) was connected to a PC via a GPIB card.

The end-fire coupling approach caused large loses to the output light intensity 

due to the irregular surface of the waveguide edge. Light was reflected out more than 

being coupled into the waveguide at the desired incidence angle. The light intensity was 

dropped from 2 mW down to the range of 300 -  700 nW. The end-fire coupling was not 

the best method to couple the light into the waveguide as compared to the prism or 

grating method reviewed in Chapter 2. Nevertheless, a quite high density of light 

scattered within the waveguide sensing windows was observed, as shown in Figure 3.4. 

The intensity of light propagating in the SisN4  planar waveguide was found to be 

adequate for the registration of some specific bio-chemical reactions, within the 

deposited nanocomposite membrane on the sensing window.
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Figure 3.4. Picture shows amounts of light propagating under the sensing windows of 

the Si3N4  planar waveguide.
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3.2 The Formations of Nanocomposite Membrane using 

PESA Technique

3.2.1 Materials

The polymer namely poly(allylamine hydrochloride) (PAH), was used as a 

polycation for PESA deposition. PAH is a pH-dependent charged compound, and it is 

fully ionized at a pH lower than 7.0 [Mendelsohn et al, 2000]. This compound,

purchased from Aldrich, has a positive surface charge, derived from NH 3  groups in its

structural formula, as shown in Figure 3.5. The advantage of using PAH was that its 

charge is located at the far end of the side chain, which was easily accessible for the 

compensation by other ionic molecules. The molecular weight of PAH was about 70000 

g/mole. It has a pH of 4.37 when diluted to 10' 5 M concentration in an ultrapure water. 

The ultrapure water was obtained by reversed osmosis using RiOs™ Water Purification 

Systems followed by ion exchange and filtration steps using Super-Q™ Plus Water 

Purification Systems. The concentration of PAH used for the deposition was 2 mg/ml 

(2.857 x 10' 5 M). This concentration was considered to be appropriate to provide 

enough charge for PESA deposition, as demonstrated by Lvov et al [1995]. 

Furthermore, a high concentration of the polyelectrolyte caused desorption of the other 

macromolecules, such as organic dyes [Ariga et al, 1997] (as discussed in Chapter 2.3).

Cyclotetrachromotropylene (CTCT) was chosen as an organic indicator for the 

enzyme sensor because of its ability to change the absorption spectrum in a wide pH 

range between pH 3 to 13 [Poh and Lim, 1990]. As shown in Figure 3.6, the boat-like

three-dimensional conformation with four SO^Na* groups provided negative surface
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Figure 3.5. Chemical structure of poly(allylamine hydrochloride) (PAH).
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Figure 3.6. Chemical structure of Cyclotetrachromotropylene (CTCT).
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charges suitable for the PESA deposition. CTCT was synthesised in house by the 

reaction of chromotropic acid disodium salt solution with an excess amount of 

formaldehyde (1:5) in a stoppered flask for a week [Poh et al, 1989]. After evaporation 

of the water from the dark red aqueous solution, CTCT in the form of a dark red plastic

like substance was obtained. This organic indicator decomposed at above 400°C, and it 

was soluble in water. The cyclic tetrameric structure afforded the ability to form 

complexes with some metal ions [Poh et al, 1990], aromatic hydrocarbons [Poh and 

Koay, 1990], amines [Poh and Lim, 1990], amino acids [Poh and Tan, 1994] and 

pesticides [Poh et al, 1993]. However, this complexation occurred only if the mixture 

was in 1 : 1  stoichiometry ratio.

It was reported that CTCT showed an absorption band at Xmax = 540 nm with a 

shoulder at 570 nm in the visible range [Poh et al 1989]. The molecule turned green in 

alkaline solution, and Xmax then shifted to 640 nm. This change was due to the 

deprotonation of CTCT compound, and its original red colour was restored in an acidic 

solution. The molecular weight of CTCT is 1497.048 g/mole and the pH was 4.41 when 

diluted to 10-4 M in ultrapure water. The concentration of CTCT used for the sensing 

membrane development was 1 mg/ml, which was equivalent to 6.6798 x 10*4  M. A 

similar concentration of CTCT was used by Nabok et al [2000] to prepare a multilayer 

PAH/CTCT membrane by alternate dipping of a glass slide in the CTCT and PAH 

solutions.

Three types of enzymes were tested as sensitive elements in the nanocomposite 

membrane. These materials were urease from jack beans, acetylcholine esterase (AChE) 

from electric eel and butyrylcholine esterase (BChE) from horse serum, which were 

purchased from Sigma-Aldrich. Enzyme molecules were known to have both negatively
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charged carboxylic acid groups and positively charged amino groups in their structure. 

The electrostatic balance between these groups depended on the pH of the buffer 

solution in which the enzyme was kept. The enzyme molecule was electrically neutral at 

the isoelectric point, where the electrostatic balance was achieved. In this study, the 

enzymes urease and AChE had their isoelectric point about pH 5, while the isoelectric 

point of BChE was pH 7. Therefore, these solutes were dissolved in Trizmabase-HCl 

buffer solutions at pH 8.3 to make them negatively charged. This was necessary for the 

PESA deposition on the positively charged PAH layer.

The concentration for each enzyme was chosen to be 100 units, equivalent to 

0.3-7 mg/ml. The particular choice depended on their activity as shown in Table 3.1. 

Generally, one unit of enzyme was sufficient to catalyse 1 pinole of the respective 

substratum per minute under standard conditions. According to the experimental results 

of Lvov et al [1995], the amount of enzyme deposited on the polyelectrolyte layer was 

about 5 to 10 % of the enzyme concentration in solution. Therefore, it is assumed that 5 

to 10 units of the selected enzymes can be successfully deposited on the PAH layer, 

which is an adequate quantity to perform the enzyme reaction. Figure 3.7 shows the 

reactions catalysed by these enzymes. Obviously, pH changes will occur due to the 

production of acidic or alkaline compounds during the enzyme reaction. The 

concentrations of the substrata used were as follows: 100 mM urea for Urease reaction; 

10 mM of butyrylcholine chloride for BChE reaction; and 10 mM of acetylcholine 

chloride for AChE reaction. All substrata were dissolved in Trizmabase-HCl buffer 

solutions at pH 7.
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Table 3.1. Concentration of enzymes equivalent to 100 units activity.

Enzymes Activity (units/mg) Concentration
(mg/ml)

Urease 54.3 1.84

AChE 301 0.33

BChE 13 7.69

urea + water —Urease > carbon dioxide + ammonia

(a)

acetylcholine + water —AChE > ch0 nne + acetic acid

(b)

butyrylcholine + water —BChE > choline + butyryl acid

(c)

Figure 3.7. Reaction catalysed by the selected enzyme.
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3.2.2 PESA set-up and deposition process

Fully computer controlled, experimental set-up for polyelectrolyte self-assembly 

deposition has been previously designed and built in-house [Nabok et al, 1999]. A 

block-diagram of the set-up is shown in Figure 3.8. It consisted of a rotated plastic disc 

and a dipping mechanism driven by a stepper-motor. The sample, i.e. a glass slide was 

clamped in a holder at the arm of the dipping mechanism. Two beakers containing 

polycation and polyanion solutions were placed onto the rotated plastic disc alternated 

with two beakers of ultrapure water.

A computer program was written in BASIC to control the PESA set-up to 

perform the following coating procedure. The sample was immersed into a beaker 

containing polyelectrolyte solution typically for 1 0  to 2 0  min at room temperature, by 

moving down the arm of the dipping mechanism. Next, the sample was withdrawn from 

the solution and the disc was rotated by 90° to position the sample above the beaker of 

water. Then the sample was rinsed four times by dipping in ultrapure water. The disc 

was rotated by 90° again to position the sample above the beaker of another 

polyelectrolyte or organic dye solution. The procedure stopped after the required 

numbers of cycles were completed.

The characterisation of the nanocomposite membrane developed in this study 

was performed using a UV-visible spectroscopy technique as well as the planar 

waveguide set-up. Microscopic glass slides were used for the measurement of the UV- 

visible absorption spectra of the PESA membrane. They were cut into small 9 x 50 mm2  

rectangular shapes to fit into a 10 x 10 x 45 mm cuvette. Prior to membrane 

deposition, the surface of the glass slide was modified to enhance their negative charge
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Figure 3.8. A block-diagram of the experimental set-up for polyelectrolyte self- 

assembly film deposition [after Nabok et al, 1999].
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using an ultra sonic bath containing a mixture of 1 % of potassium hydroxide (KOH), 

60 % of ethanol and 39 % of water, for 30 minutes at 60 °C [Lvov et al, 1997]. On the 

surface of soda-lime glass, there exist molecular groups linked to silicon, such as (-Si- 

O-Si-), (-Si-OH) and (-Si-O-Na-). The treatment tended to increase the concentration of 

OH' ions on the glass surface by producing more silanol groups (-Si-OH) in the silica 

network.

The membrane deposition on the glass slide was entirely performed using the 

PESA set-up. The deposition routine of the PAH/CTCT membrane began with the 

formation of PAH and CTCT layers by prolonged soaking of the glass slide for 20 min 

each in the compound solution. Then, the process was followed by the sequential 

dipping in solutions of PAH and CTCT for 10 minutes. Intermediate rinsing in ultrapure 

water for about 1 minute was carried out after each dipping of the glass slide. In the case 

of the planar waveguide, the deposition routine was the same but started with the 

deposition of CTCT, since the surface of silicon nitride in the sensing window was 

made positively charged. Apart from using the PESA set-up, the membrane deposition 

on the planar waveguide was also performed in-situ using the planar waveguide set-up. 

The enzyme layers were then transferred onto the top surface of either 

glass/(PAH/CTCT)n/PAH or Si3N4 /(CTCT/PAH)m structures and finally covered with 

PAH layers. The results of both membrane structures are shown in Figure 3.9.
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Figure 3.9. Nanocomposite membrane structure, (a) on the glass slide, and (b) on the 

Si3N4  surface of the planar waveguide.
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3.3 Characterisation of the Nanocomposite Membrane

3.3.1 Monitoring of CTCT/PAH membrane deposition

Changes in the output signal intensity and UV-visible absorption spectra were 

observed when different numbers of CTCT layers were deposited on the planar 

waveguide and microscopic glass slides, respectively. The UV-visible absorption 

spectra of the CTCT/PAH membrane in Figure 3.10 shows a non linear dependence of 

the absorbance on the number of layers. A value of the normalised attenuation ratio

—  = 4.3 x 10~ 4 per layer was found for relatively thin PESA films containing 16

layers or less. The Beer’s law absorption coefficient for the CTCT/PAH bilayer was 

determined to be 5.7 x 105 m '1.

In-situ monitoring of CTCT/PAH membranes deposition on a planar waveguide 

was carried out using the optical experimental arrangement as described earlier. The 

adsorption kinetics of this process is shown in Figure 3.11. The output signal intensity 

decreased substantially after each layer of CTCT was deposited. The deposition of the 

PAH transparent layers had no influence on the light propagation. The attenuation of the 

initial light intensity by a factor of 10 was observed after four CTCT/PAH layers were

deposited, and the normalised attenuation ratio — - was found to be 0.4 per layer. This
Io

large optical attenuation, which was 3 orders of magnitude greater than in the UV- 

visible spectroscopy, was primarily due to multiple reflections taking place at the 

interface between the core and the cladding of the waveguide.
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Figure 3.10. UV-vis absorption spectra of PAH/CTCT membrane. Number of layers is 

shown near respective curves. The inset shows the dependence of the absorbance at 635 

nm on the number of layers.
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Figure 3.11. In-situ monitoring of the CTCT/PAH deposition onto the planar 

waveguide. Time intervals for the CTCT and the PAH adsorption steps and washing are 

shown
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The number of reflections N at the interface was determined using equation 

(2.16). The self-consistent solution of equations (2.12) and (2.13) gave the values of Qm 

« 72.8° for the single mode propagation. Based on this incidence angle, the interaction 

length was calculated to be 2 nm using equation (2.18). Therefore, the number of 

reflections at the interface of the sensing windows was equal to 670. This value is 15 

times lower than that theoretically predicted by equation (2.10). Nevertheless, these 

calculations showed that the sensitivity of the SisN4 waveguide was greater than that of 

the SiON waveguide [Walker et al, 1993; Plowman et al, 1998] by a factor of three. 

Thus, the potential of Si3N4  waveguides as the optical transducers to achieve much 

improved sensitivity in the ATR technique was demonstrated.

3.3.2 The effect of pH on the CTCT/PAH membrane

The functioning of the CTCT/PAH membrane as an indicator was investigated 

with both planar waveguide and UV-visible spectroscopy measurements in buffer 

solutions of different pH. A set of typical responses of the planar waveguide coating 

with the CTCT/PAH membrane, on exposure to different pH solution is shown in 

Figure 3.12. It is seen that the output signal intensity was increased by the pH of less 

than 5.5 of pure water. However, the signal intensity was diminished by high pH. These 

results agree with those obtained from the UV-visible absorption spectra of Figure 3.13. 

The absorbance of light by the membrane was increased in alkali solutions, while it was 

decreased in acidic solutions.
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Figure 3.12. The effect of pH on the planar waveguide coated with CTCT/PAH 

membrane.
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As pointed out earlier, the observed spectral changes were caused by 

deprotonation of CTCT molecules showing an improved response of this composite 

organic indicator for high pH. The fact that the planar waveguide method was more 

sensitive to pH changes than the UV-visible spectroscopy technique is apparent. This 

result also suggested that the planar waveguide arrangement was capable of registering 

the occurrence of pH changes during the enzymatic reaction.
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3.4 The Performance of Planar Waveguide Enzyme Sensor

3.4.1 Registration of the enzyme reactions

The sensitivity of the SisN4  planar waveguide transducer to enzyme reactions 

was investigated in order to illustrate the performance of the proposed planar waveguide 

set-up as an enzyme sensor. The experiment was conducted in two sequences. First, the 

effect of a substratum on the planar waveguide transducer coated with the CTCT/PAH 

membrane was investigated. A layer of enzyme was then deposited on top of the 

existing membrane and the effect on the respective substratum was recorded again. The 

results of both sequences were compared to the noise signal.

Following the above procedure, it was found in this study that the planar 

waveguides coated with the (CTCT/PAH)4 /(enzyme/PAH) membrane successfully 

registered the respective enzyme reaction. This registration also proved that the 

enzymes were successfully immobilised on top of the CTCT/PAH membrane. As 

shown in Figure 3.14, in the case of the AChE layer on top of the CTCT/PAH 

membrane, the output signal intensity of the planar waveguide enzyme sensor increased 

with the time of soaking in 10 mM acetylcholine chloride solution, in comparison to the 

one without the AChE layer. The reduction in local pH in the membrane, caused by the 

decomposition of acetylcholine chloride to choline and acetic acid, resulted in the 

protonation of the CTCT molecules and respective characteristic changes in the CTCT 

spectrum within the range of 580 to 700 nm.
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Figure 3.14. Kinetics of the AChE reaction:

(a) effect of 10 mM acetylcholine on the CTCT/PAH membrane,

(b) effect of 10 mM acetylcholine on the (CTCT/PAH)4 /(AChE/PAH) membrane.
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A similar effect to the CTCT molecules was observed by soaking the planar 

waveguide coated with a (CTCT/PAH)4/(BChE/PAH) film in a 10 mM butyrylcholine 

chloride solution. Figure 3.15 shows the output signal intensity increased with time 

indicating the production of choline and butyryl acid during the BChE enzyme reaction. 

It corresponded well to the spectral changes caused by the ionisation of hydroxyl groups 

in the CTCT molecules described previously.

Another type of enzyme reaction studied was the decomposition of urea 

catalysed by the enzyme urease. The production of ammonia caused an increase in local 

pH in the film and allowed the registration of this type of reaction with the CTCT 

indicator molecules. The exposure of the planar waveguide coated with the 

(CTCT/PAH)4 /(urease/PAH) membrane to 100 mM urea solution produced a decrease 

in the output signal intensity, as shown in Figure 3.16. The observed behaviour was 

believed to be due to the deprotonation of the hydroxyl groups in the CTCT molecules 

producing a respective increase in the absorbance of the CTCT indicator at 630 nm. 

This is in agreement with the results of the optical spectral study of this reaction in the 

(CTCT/PAH)/urease composite membrane reported earlier [Nabok et al, 1999].

The response of the planar waveguide set-up for all enzyme reactions is 

significant. As it was noticed from the effect of the respective substratum on the 

CTCT/PAH membrane, the noise signal was about 0.05 to 0.1 nW. Changes in the 

output signal intensity due to the enzymatic reaction was about 4 to 5 nW. Thus, the 

signal to noise ratio could be as large as 100. This value was considered adequate to 

provide a sufficient dynamic range for the registration of any suppressed response, 

when the planar waveguide coated with the (CTCT/PAH)4/(enzyme/PAH) membrane 

was exposed to some toxic agents.
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Figure 3.15. Kinetics of the BChE reaction:

(a) effect of 10 mM butyrylcholine on the CTCT/PAH membrane,

(b) effect of 10 mM butyrylcholine on the (CTCT/PAH)4 /(BChE/PAH) membrane.
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Figure 3.16. Kinetics of the urease reaction:

(a) effect of 100 mM urea on the CTCT/PAH films,

(b) effect of 100 mM urea on the (CTCT/PAH)4 /(urease/PAH) membrane.
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3.4.2 Sensitivity of the enzyme sensor towards selected pollutants

This section presents the preliminary result of the enzyme sensor response 

regarding the effect of the selected pollutants on the enzyme activity. The effects of lead 

and cadmium ions on urease activity demonstrate the capability of the planar waveguide 

enzyme sensor in detecting the presence of toxic agents in the sample solution. The 

details of these measurements and the effect of other pollutants are discussed in 

Chapter 5.

Exposing the planar waveguide coated with (CTCT/PAH)4 /(urease/PAH) 

membrane in the urea solution after the inactivation process in heavy metal ions 

solution, reduced the response of the urease enzyme reaction. Figures 3.17 and 3.18 

show the effect of lead and cadmium ions on the kinetics of the enzyme reaction in the 

(CTCT/PAH)4/(urease/PAH) membrane, respectively. The concentration of 1 ppb of 

lead ions caused almost 60 % reduction in the response after 10 minutes of 

measurements. At the same time, the drop of residual output intensity of about 25 % 

was observed for cadmium ions.

The residual activity of the enzyme (defined in Chapter 5 page 129), correlated 

to the concentration of lead and cadmium ions, is shown in Figure 3.19. The observed 

behaviour was believed to be due to the inhibition of the urease enzyme by heavy metal 

ions.
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Figure 3.17. The effect of lead ions on the kinetics of enzyme reaction in the 

(CTCT/PAH)4 /(urease/PAH) membrane; (a) the response to 100 mM urea, (b) the 

response to 100 mM urea after inhibition of urease by 1 ppb of lead ions..
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Figure 3.18. The effect of cadmium ions on the kinetics o f enzyme reaction in the 

(CTCT/PAH)4 /(urease/PAH) membrane; (a) the response to 100 mM urea, (b) the 

response to 100 mM urea after inhibition of urease by 1 ppb of cadmium ions.
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Figure 3.19. Residual activity of urease as a function of lead and cadmium ions 

concentration.



3.5 Summary

The SiCVSis^ planar waveguides produced by standard silicon planar 

technology and previously used as a polarization interferometer transducer for 

immunosensors were successfully exploited in this study as attenuated total reflection 

transducers. It was realised by a simple optical experimental set-up, which was used to 

measure the attenuation of light intensity after multiple interaction with the 

nanocomposite membrane deposited on the sensing window of the planar waveguide.

The sensitive PES A membrane containing the CTCT indicator was characterised 

using a UV-visible spectroscopy technique and the planar waveguide set-up. Large 

optical attenuation was found in the waveguide, with three orders of magnitude greater 

than in the UV-visible spectroscopy technique. The analysis of the experimental data 

showed that the large difference in refractive indices of core and cladding layers of the 

SisN4 planar waveguides, gave rise to an increase in sensitivity by a factor of 3 over 

previously reported waveguiding structures.

This study also proved that, the intensity of light propagating in the Si3N4  planar 

waveguide is adequate for the registration of some specific bio-chemical reactions, 

within the deposited nanocomposite membrane on the sensing window. Individual 

enzyme reactions, as well as their inhibition by the toxic agents, were successfully 

registered by monitoring the change in intensity of light output from the planar 

waveguide. The remarkable result was that the traces of the tested pollutants in 

concentrations down to 1 ppb could be registered with the proposed enzyme sensor.
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The present results provide a background for further development of sensor 

arrays, containing different chromophore/enzyme pairs, which are capable of 

registration and recognition of different industrial and agricultural pollutants in 

extremely small concentrations. The work on the development of the ATR optical 

enzyme sensor arrays for water pollution monitoring is explained in the following 

chapter.
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CHAPTER 4

THE DEVELOPMENT OF MULTI-CHANNEL 

ENZYME SENSOR

4.1 The Design of a Multi-Channel Enzyme Sensor

In order to achieve a simultaneous registration of different enzyme reactions, 

several changes were implemented in the single channel planar waveguide set-up. A 

multi-channel flow cell, and a special shutter rotated by a stepper motor was introduced 

into the sensor system. The configuration of the modified experimental set-up is shown 

schematically in Figure 4.1. This setup allowed the deposition of rianocomposite 

membranes with different types of enzyme on the surface of four waveguide windows. 

Consequently, the light beam was guided to propagate through each channel. The above 

process was achieved due to the unique design of the flow cell and the rotating shutter.

The flow cell consisted of two components, shown in Figure 4.2. The upper 

component was made of a hard plastic with eight holes of diameter 4 mm for solution 

inlets and outlets. The lower part was made of a hard rubber with a symmetric pattern of 

narrow channels and 1 mm holes. Thus, by combining the two parts, the sample 

solutions were able to pass through the narrow channels, and then enter each of the four 

reaction chambers at the bottom of the cell via the 1 mm holes. This multi-channel flow 

cell was placed on top of the SisN4  planar waveguide transducer and the Anritsu light 

detector was put immediately after the other end of the cell.
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2

Top view

Figure 4.1. Schematic diagram of the experimental set-up for the enzyme sensor array. 

(1) HeNe laser source, (2) two semi-cylindrical lenses, (3) shutter with asymmetric slits 

rotated by a stepper motor, (4) SisN4  planar waveguide with multi-channel flow cell, (5) 

Anritsu light detector.
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Figure 4.2. The component of the multi-channel flow cell, (a) Lower part made of a 

hard rubber, (b) upper part made of a hard plastic, (c) bottom view of the lower part.



The purpose of this cell construction was to ease the process of solution 

injection into the small reaction chamber. Unfortunately, the design allowed the 

photodetector to be 2 cm away from the edge of the waveguide and this reduced the 

signal down to the noise level. Therefore, the cell was partially removed to allow the 

photodetector to be placed closer to the edge of the waveguide. Figure 4.3 shows a 

photograph of the multi-channel flow cell after alteration.

The size of the opening in each chamber was 1 x 4  mm, and the gap between 

each chamber was 1 mm. Therefore, the distance across each of these chambers was 

about 7 mm. However, the widths of the waveguide window and the laser beam were 

only about 6 mm and 5.6 mm, respectively. Thus, in order to accommodate all the 

reaction chambers, the following procedure was performed: 1) the waveguide window 

was made 1 mm wider on each side by etching the Si02 layer in 5 % hydrofluoric acid 

for 5 minutes; 2) an additional semi-cylindrical lens was placed vertically in front of the 

light source to increase the width of the beam to 12 mm on the edge of the waveguide.

A special shutter was used to guide the light beam to propagate through a certain 

channel. This shutter had four identical 2 mm wide slits around its perimeter. The 

distance from each slit to the central line of the shutter was made slightly different as 

illustrated in Figure 4.4. As a result, when the shutter rotated by 90° every second, the 

position of the slit at point X was slightly shifted, and a portion of light beam allowed 

through to propagate under different channels.

Figure 4.5 shows a photograph of the main components of the proposed set-up 

of the enzyme sensor array. Further explanation about the operation of this sensor array 

set-up was given in the following section.
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Figure 4.3. The view of multi-channel flow cell after the alteration process.
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Figure 4.4. Schematic diagram of the shutter shows the exact location of the slits.
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Figure 4.5. The experimental set-up of the enzyme sensor array. (A) HeNe diode laser , 

(B) vertical semi-cylindrical lens, (C) horizontal semi-cylindrical lens, (D) shutter with 

asymmetric slits rotated by a stepper motor, (E) Si3N4  planar waveguide with multi

channel flow cell, (F) Anritsu light detector.
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4.2 Software for Multi-Channel Experimental Set-up

The operation of the proposed sensor array set-up was controlled with 

dedicated software written with the Lab VIEW programming language. The main 

function of the software was to synchronize the rotation of the shutter by the stepper 

motor and the data acquisition with the optical power meter. This task was important in 

order to make sure that the output signal was measured from each channel illuminated 

by the laser beam through the slit in the shutter. The software performed the task of 

communication between the main instruments (stepper motor and optical power meter) 

in a sequence illustrated in Figure 4.6. The communication process was repeated four 

times to pro vide the measurements of responses from four channels.

As shown in Figure 4.7, the intensity of the output beam was measured before 

the software has sent the transmission signal to the stepper motor. The acquired data 

was stored and displayed as the response of appropriate channels. In order to rotate the 

shutter by 90°, 50 pulses of 1 kHz TTL signal were generated to drive the stepper 

motor. This procedure was carried out by sending 0 and 5 V transmission signals with a 

1 ms interval to the stepper motor control board. Both signals were sent in a series of 50 

iterations through the computer parallel port. Since the stepper motor used had a single 

step of 1.8°, the series of 50 produced TTL pulses caused the stepper motor (and thus 

the shutter) to rotate by 90° in 0.1 seconds.
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Figure 4.6. Illustration of the communication sequence between the software 

and the main instruments.
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Figure 4.7. The flow process of the operating programme.
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The operating programme had a time delay of 0.9 seconds after the 90° rotation 

of the shutter. This intermediate pause allowed the software to record a stable output 

response from a channel. Experimental results of the sensor array were displayed by 

four graphs at the Lab VIEW graphic window as shown in Figure 4.8. The graphs were 

. plotted concurrently with every measurement of the output signal intensity. This feature 

of the developed programme enabled the kinetic response of the sensor array to be 

observed during the experimental work. The details of this Lab VIEW programme are 

given in the appendix.
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4.3 Signal Calibration and Channel Addressability

A series of tests were performed with a view to evaluating the light intensity 

distribution across the waveguide. Measurements of light intensity both initial (before 

coupling into waveguide) and output (coming out from the waveguide) were carried out.

It was found that the light intensity was distributed non-uniformly along the 

laser beam stripe, giving different light intensities in different channels. The highest 

intensity was obtained at the centre of the light beam (maximum value of about 1 mW). 

The intensity then decreased about 10 times at the edges of the light beam. As shown in 

Figure 4.9, the light intensity in the first and fourth slit was substantially lower than that 

in the second and third slit. Consequently, when the light was coupled into the planar 

waveguide, it was unable to provide adequate responses for channel 1 and 4 (see Figure 

4.10). The output signal intensity from both channels was too low to monitor the 

deposition of one or two layers of the CTCT.

In order to overcome this problem, the measurements were performed in three 

channels. The output signal intensity from these three channels was increased by 

repositioning the slits towards the centre of the light beam. As shown in Figure 4.11, the 

light intensity from the first and third slit was only two times lower than that from the 

second slit. This condition provided adequate response signals for the three channels as 

shown in Figure 4.12. Although the response signal of the multi-channel sensor was 

from 3 to 7 times lower than that of the single channel sensor, it was enough for in-situ 

PES A deposition and registration of any enzyme reaction.
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Prior to PESA deposition, the flow cell of the sensor array was tested for any 

leakage between its channels. A no leakage condition is important to allow split 

formation of nanocomposite membranes on the sensing window of the planar 

waveguide. The test was performed by injecting water into the channels in a sequence, 

beginning with channel 1, and then followed by channel 2 and 3 at 60 seconds interval. 

When each channel was filled with water, the output signal intensity increased due to 

the change of the refractive index from 1.0 (air) to 1.3 (water) in the sensing window of 

the SisN4  planar waveguide. The results of this test, shown in Figure 4.13, proved that 

there was no leakage in the multi-channel flow cell, as the step change in the sensor 

response only occurred on the particular wet channel.

In-situ deposition of the CTCT/PAH membranes on the Si3N4  planar waveguide 

was carried out simultaneously by a series of manual injections of the CTCT and PAH 

solutions into the three channels of the flow cell. The adsorption kinetics of this process 

was found to be similar to the deposition of the CTCT/PAH membranes in a single 

channel planar waveguide as described previously. As shown in Figure 4.14, despite the 

small area of the sensing window and a low intensity of light, a significant decrease of 

the output signal was observed after each deposition of the CTCT layer. The normalised

attenuation ratio was found to be 0.4 per layer of the CTCT in each channel. This

result suggested that the sensitivity of each channel in the enzyme sensor array was 

comparable to the sensitivity of the single channel enzyme sensor. However, the 

formation of the CTCT/PAH membranes were limited to two bilayers only in order to 

obtain sufficient sensor responses from channels 1 and 3.
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4.4 Simultaneous Registration of Several Enzyme Reactions

The feasibility study of the developed sensor array to produce significant 

responses on the activity of different enzymes was implemented simultaneously on the 

three effective channels. The reactions of the enzymes AChE and BChE were analysed 

in channel 1 and 3, respectively. Concurrently, channel 2 was used to examine the 

activity of the urease. The experiment was performed by manually injecting the 

respective substrata into appropriate channels in two sets: before and after the 

deposition of the particular enzyme on the CTCT/PAH membrane. The respective 

substrata and the composition of the sensitive membrane deposited in the channels are 

shown in Table 4.1.

Figure 4.15 shows the response of each channel on exposure to the specific 

substratum. It is obvious that the enzyme sensor array successfully registered the 

activities of the immobilized enzymes. The change in the output signal intensity was 

correlated to the reaction of the particular enzyme in the channels. For instance, the 

decrease in the intensity of the output signal with time indicates the decomposition of 

urea occurring in channel 2. On the other hand, the output signal intensity from channels 

1 and 3 increased with time demonstrating the production of acetyl and butyryl acid 

during the AChE and BChE reaction.

It became very evident from the results obtained that the response of each 

channel in the sensor array was similar to the response of the single channel planar 

waveguide. Generally, the changes in the output signal intensity due to the enzyme 

reactions were found to be about 4 to 5 nW after 10 minutes exposure to the respective 

substratum. The sensor response was 100 times higher than the background signal
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observed from the substrata affect on the CTCT/PAH membrane. This indicates that the 

enzyme sensor array had sufficient dynamic range for the registration of the suppressed 

response caused by pollutants.
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Table 4.1. Membrane configuration and substratum applied to each channel of the 

enzyme sensor array.

Channel Membrane configuration Substratum

1 (CTCT/P AH)2/(AChE/P AH) 10 mM acetylcholine chloride

2 (CTCT/PAH)2/(urease/PAH) 100 mM urea

3 (CTCT/P AH)2/(BChE/P AH) 10 mM butyrylcholine chloride
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Figure 4.15. Responses of the enzyme sensor array when exposed to the respective 

substratum (a) without the enzyme layer, and (b) with the enzyme layer on top of the 

CTCT/PAH membrane.
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4.5 Summary

The multi-channel enzyme sensor was designed and developed. It was based on 

a single light source (laser) in the shape of a light stripe focused and coupled into the 

three-channel waveguide. Addressing of the channels was achieved with the mechanical 

shutter. Dedicated Lab VIEW software was written to control the channel addressing and 

data acquisition. A series of tests proved the feasibility of the multi-channel enzyme 

sensor to register three enzyme reactions simultaneously. The responses agreed with 

those obtained by the single channel enzyme sensor. The results further suggested that 

the multi-channel enzyme sensor was capable of registering and recognizing different 

types of pollutants according to their effect on the enzymes activities.
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CHAPTER 5

RECOGNITION OF POLLUTANTS BY THE 

PLANAR WAVEGUIDE ENZYME SENSORS

5.1 Type of Pollutants and Samples Preparation

The following metal salts and pesticides were used to study the response of the 

planar waveguide enzyme sensor to different concentrations of pollutants: cadmium 

chloride (CdCh), nickel chloride (NiCh), lead nitrate (Pb(NC>3)2), imidacloprid, 

paraoxon and 2,2-dichlorovinyl dimethyl phosphate (DVDP). All compounds are highly 

soluble in water. The metal salts are dissolved as cation (Cd2+, Ni2+, Pb2+) and anion 

((N03)2', Cl2') components. It was assumed that both chloride and nitrate anions exhibit 

practically no effect on the sensing membrane, particularly on the activity of 

immobilized enzymes. Imidacloprid is a chloro-nicotinyl pesticide and it was produced 

as a substitution of highly toxic phosphororganic pesticides, such as DVDP and 

paraoxon [Cox, 2001]. Different classes of pesticides were used in order to investigate 

the sensitivity of the enzyme sensors to pollutants of different toxicity. The pollutants 

were diluted a number of times in ultrapure water to reach concentrations in the range 

from 100 part per million (ppm) down to 1 part per billion (ppb). The dilution process 

began with the preparation of sample solutions of 100 ppm and 10 ppm concentration 

by dissolving 1 mg of respective compound in 10 ml and 100 ml of ultrapure water. The 

dilution process was performed at room temperature in a well-stirred condition to obtain 

a homogeneous mixture of the sample solutions.
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5.2 Measurement Procedure for Pollutants Registration

Two approaches were exploited to measure the pollutants level in sample 

solutions. The first method was based on the registration of the sensor response in the 

mixture of the substratum and the sample solutions. At the beginning, the measurements 

of the respective enzyme reactions were performed in pure substratum solutions. Then, 

residual activities of enzymes in equal volume mixtures (0.5 ml!0.5 ml) of substrata and 

diluted pollutant solutions were recorded. The measurements were conducted 

continuously by increasing the concentration of the pollutant in the sample solution 

within the range from 1 ppb to 100 ppm. After each exposure to the mixture, the 

reaction cell was rinsed several times with ultrapure water. The ratio of the enzyme 

activity in the sample mixture and pure substratum solution was correlated to the 

different level of the pollutant in the solution tested.

This approach was used to study the effect of imidacloprid pesticide on urease 

activity. As shown in Figure 5.1, the enzyme sensor successfully registered the urease 

residual activities when continuously exposed to mixture solutions containing different 

concentration of imidacloprid. The sensor response was gradually decreased in each 

exposure with increasing imidacloprid concentration within the range from 10 ppb to 

100 ppm (Figure 5.1, curve b to curve f). The preliminary explanation of this 

observation was believed to be due to the inhibition effect of imidacloprid on urease. 

However, this inhibition effect was found to be nonpermanent as full recovery of urease 

activity was achieved after rinsing with ultrapure water (Figure 5.1, curve a and g).
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Figure 5.1. Response of the planar waveguide enzyme sensor coated with 

(CTCT/PAH)4/(urease/PAH) membrane after exposure to the pure 100 mM urea 

solution (a and g) and mixed solution of 100 mM urea and different concentrations of 

imidacloprid at 0.01 ppm (b), 0.1 ppm (c), 1 ppm (d), 10 ppm (e), 100 ppm (f).
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A few drawbacks of the first experimental approach were found from this study. 

Despite the fact that the reversible inhibition effect of imidacloprid was reversible, other 

factors also had an affect on the sensor response during the measurements. The pH of 

the mixture was not defined, and therefore the result of the experiment was unknown. 

Due to the small volume (1 ml) of the solution mixture, it is difficult to measure 

changes in pH after mixing the urea and imidacloprid solutions. However, changes in 

the output signal intensity were found when the waveguide coated with the 

nanocomposite membrane without urease, were exposed to the mixed urea and 

imidacloprid solution. As shown in Figure 5.2, the sensor response was slightly 

increased at high concentrations of imidacloprid, most likely because the solution 

became more acidic. This may have possibly had a significant impact on the sensor 

output signal during measurements of urease residual activity.

The 100 % recovery of the urease activity may also mean that the imidacloprid 

pesticide did not inhibit the enzyme. The sensor response in the mixed solutions was 

found to decrease possibly due to the limited access for urea molecules to the urease 

layer covered with adsorbed imidacloprid molecules. This assumption was based on a 

smaller size of the urea molecule having a molecular weight of 60 g/mole as compared 

to the imidacloprid molecule having a molecular weight of 256 g/mole. It was also 

possible that imidacloprid formed a barrier layer on top of the sensing membrane. The 

first method was not suitable for the irreversible inhibition of enzymes since 

measurements were carried out continuously. In this case, the sensor response could be 

masked by the effect of the preceding concentration of pollutants, and the registration of 

the pollutant level by simple comparison of the final enzyme activity with its initial 

activity was not possible.
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Figure 5.2. Response of the planar waveguide enzyme sensor coated with 

(CTCT/PAH) 4  membrane after exposure to the mixed solution of 100 mM urea and 

different concentrations of imidacloprid at 0.01 ppm (a), 0.1 ppm (b), 1 ppm (c), 10 

ppm (d), 100 ppm (e).
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In the second method, the inhibition process and the measurement of the enzyme 

activity were separated, as shown in Figure 5.3. The substrata were dissolved in mildly 

concentrated (1 mM) Trismabase-HCL buffer pH 7.3 to standardise the pH at the start 

of the enzyme reactions. The buffer solution was also injected into the reaction cell 

before each measurement to stabilize the sensor response in neutral conditions. The 

routine began with the registration of the sensor response to an enzyme reaction in the 

substratum solution. Then, a sample solution containing only the pollutant was injected 

into the reaction cell and held there for 15 minutes. After this inactivation process, the 

response to the enzyme reaction was recorded again under similar conditions as before. 

The reaction cell was rinsed with the ultrapure water after each step of the 

measurement. The evaluation of the pollutant concentration in the sample solution was 

performed by comparing the sensor response of the enzyme reaction before and after the 

inhibition.

Since each measurement started at a different background level of sensor signal, 

the absolute response (AI) was defined as a difference between the initial (lb) and final 

(If) values of the output signal:

AI = | Ib -  If | (5.1)

Thus, the relative response of the sensor (also called residual activity of the enzyme) 

can be calculated as,

AR = A i _  x 100% (5.2)
AI„

where AI0 and AIr are the response values of the initial enzyme reaction and that after 

the inhibition process, respectively.
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The study of the pollutant level in water was carried out at room temperature. 

Optimal measuring time of enzyme reactions in all cases was within 10 minutes, while 

optimal time of enzyme incubation in the sample solution was chosen to be 15 minutes. 

These optimal times were based on an earlier report [Starodub et al, 1998], which found 

smaller exposure times have resulted in a decrease of sensitivity of the analysis, and on 

the other hand, no noticeable rise in the sensitivity achieved by increasing the exposure 

time.

Figure 5.4 shows the result of the inhibition effect of 100 ppb Pb2+ ions on 

urease obtained by both measurement methods. Obviously, the first method showed a 

higher reduction in the urease activity than the second one. This is probably because 

factors other than the inhibition effect of the pollutants contributed to the sensor 

response in the first method. The second method was more time consuming than the 

first one, however, the results obtained were more reliable since the reduction in the 

enzyme activity was absolute and caused by pollutants. Therefore, the second method 

was chosen for further investigations described in the following sections.
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Figure 5.4. Absolute sensor response measured by the first and second method after 

exposure to 100 ppb Pb2+ ions.
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5.3 The Reliability of the Sensor Response

The reproducibility of experimental results was studied by repeating at least 

three times the measurements of enzymes reactions and their inhibition. For example, 

the registration of urease reaction in a pure urea solution was performed three times 

after the deposition of nanocomposite membrane on the planar waveguide. As shown in 

Figure 5.5, the output signals were in good agreement and their relative standard 

deviation of 2.2 % was acceptable. Thus, sensor response to the initial enzyme reaction 

(AI0) can be used as a reference for the calculation of the pollutants concentration.

The measurements of the urease reaction were also repeated using three 

Si02/SisN4 planar waveguides. Unfortunately, it was difficult to receive the same signal 

from different planar waveguide devices. As shown in Figure 5.6 (curve a, b and c), the 

planar waveguides coated with the same concentration of urease produced a variation in 

the output signal of about 8 %, when exposed to 100 mM urea solution. Similar 

deviation was observed for the measurements of the urease activity after 15 minutes 

incubation in 100 ppb lead ions (Figure 5.6, curve d, e and f).

Nevertheless, the relative response of the sensor signals calculated by Equation 

5.2 was found to be consistent for all planar waveguides. Table 5.1 and Figure 5.7 show 

the average values and standard deviations of the sensor relative response for a series of 

measurements of urease inhibition by the lead ions. A tolerance of less than 5 % was 

obtained even when the measurements were carried out using different planar 

waveguides. This result proves a feasibility of the registration approach based on the 

relative changes in the sensor output signal.
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Figure 5.5. Response of single channel enzyme sensor to a series of urease reaction on 

the same SiCVSis^ planar waveguide.
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Figure 5.6. Absolute sensor responses to initial urease reaction (curve a, b and c) and 

that after inhibition by 1 0 0  ppb lead ions (curve d, e, and f), measured using three 

SiC>2 /Si3N4  planar waveguides: PW1 (b and e), PW2 (a and b) and PW3 (c and d).
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Table 5.1. Calculation of the standard deviation of the sensor relative response for 

urease inhibition by 100 ppb of lead ions.

Planar waveguide
PW1 PW2 PW3

AIo (nW) 4.6 5.1 3.9

AIr (nW) 1.3 1.4 1.0

Residual activity of urease, ARU (%) 28.3 27.4 25.6

Average residual activity of urease, ARU (%) 27.1

Standard deviation, SD (%) 1.12

Relative standard deviation, RSD (%) 4.1
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Figure 5.7. The relative response of the enzyme sensor at different concentration of 

lead ions. The responses were reproducible within the tolerance of less than 5 %.
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5.4 Simultaneous Registration of Heavy Metal Ions using the 

Enzyme Sensor Array

A series of experiments were carried out in order to analyse the effect of lead, 

cadmium and nickel ions on the activity of the immobilised enzymes in the three- 

channel enzyme sensor array. The inhibition of the cholinesterase enzymes (AChE and 

BChE) by metal ions were detected in channel 1 and 3, respectively. The effect of metal 

ions on the urease reaction was simultaneously investigated in channel 2. All the 

enzymes were exposed to different concentrations of the heavy metal ions in a range 

from 1 ppb to 1000 ppb.

Figure 5.8 presents the relative responses of channel 2 to different 

concentrations of heavy metal ions. The results show that the metal ions strongly and 

irreversibly suppress the activity of urease to different extents. The residual activity of 

urease was found to decrease from 75 % down to 19.6 %, as the concentration of metal 

ions increased from 1 ppb to 1000 ppb. As one can see, lead ions are a stronger urease 

inhibitor than the other two metal ions. The toxicity of heavy metal ions towards urease 

was found to decrease in the following decreasing order: Pb2+ > Ni2+ > Cd2+. These 

findings, however, differ from previous observations of the inhibition of urease by 

heavy metal ions in ppm range [Zhylyak et al, 1995; Preininger and Wolfbeis 1996; 

Kukla et al, 1999]. The concentrations studied in the present investigation were, 

however, smaller by three orders of magnitude.
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Figure 5.8. Residual activity of urease as a function of the concentrations of the 

following heavy metal ions: lead (Pb2+), nickel (Ni2+) and cadmium (Cd2+).
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The dependences of residual activities of AChE and BChE on the concentration 

of heavy metal ions are shown in Figure 5.9 and Figure 5.10. The heavy metal ions were 

found to be less toxic to both cholinesterase enzymes than to urease. The relative 

responses of the sensor signals were found to decrease from 90 % to 50.1 % for the 

AChE reaction and from 87.9 % to 58.3 % for the BChE reaction, after being exposed 

to different concentrations of metal ions. This result is in agreement with the one 

obtained by Starodub et al (1999). Nickel and cadmium had similar inhibition levels on 

the activity of the cholinesterase enzymes. The inhibition effect was slightly higher on 

AChE than BChE. The toxicity of heavy metal ions towards cholinesterase enzymes 

was found to decrease in the following orders: Cd2+ > Ni2+ > Pb2+ for AChE and Pb2+ > 

Cd2+> N i2+for BChE.

The inhibition pattern of metal ions became obvious when the three-dimensional 

plot of residual activity of the enzymes is illustrated (see Figure 5.11). The areas of 

sensor responses to different heavy metal ions are well separated, so the three 

compounds can be easily distinguished according to their toxic level at different 

concentrations.
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Figure 5.9. Residual activity of AChE as a function of the concentrations of the 

following heavy metal ions: lead (Pb2+), nickel (Ni2+) and cadmium (Cd2+).
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Figure 5.10. Residual activity of BChE as a function of the concentrations of the 

following heavy metal ions: lead (Pb2+), cadmium (Cd2+) and nickel (Ni2+).
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Figure 5.11. Residual activities of urease (ARy), AChE (ARa) and BChE (ARb) 

corresponding to different concentrations of heavy metal ions.
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5.5 Simultaneous Registration of Pesticides using the 

Enzyme Sensor Array

This section presents the responses of the multi-channel enzyme sensor to the 

presence of traces of pesticides imidacloprid, DDVP and paraoxon. Data was obtained 

by simultaneous exposure of the three sensing channels of an enzyme sensor array to 

different concentration of pesticides in the range from 1 ppb to 1000 ppb. The 

sensitivity of the sensor array to the pesticide traces was then analysed according to the 

residual activities of enzymes in each channel.

Figure 5.12 shows the residual activities of enzymes after exposure to different 

concentrations of imidacloprid. The response of channel 2 produced a 100 % relative 

signal indicating that no inhibition of urease by imidacloprid was observed. The full 

recovery of the urease activity was found after rinsing the multi-channel flow cell with 

water. This result corresponds to the imidacloprid effect on urease obtained with a 

single channel sensor, as discussed in Section 5.2. At the same time, the reduction of the 

sensor response to imidacloprid was observed for the other two enzymes. The relative 

response of the sensors were found to decrease from 78.4 % to 49.6 % for AChE, and 

from 68.4 % to 37.0 % for BChE, as the concentration of imidacloprid increased from 1 

ppb to 1000 ppb.
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Figure 5.12. Residual activity of enzymes after inhibited by imidacloprid.
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The residual activities of enzymes after their inhibition by DVDP pesticide is 

presented in Figure 5.13. Apparently, the urease activity was strongly suppressed by 

DVDP. In contrast to the effect of imidacloprid, the urease activity dropped from 42.9 

% to 25.0 % due to the presence of 1 ppb to 1000 ppb of DVDP, respectively. In 

addition, the sensor responses were found to be much smaller than the response 

produced by nickel or cadmium ions on urease. DVDP was also found to be highly toxic 

for enzymes AChE and BChE. The residual activities of AChE and BChE decrease 

from 76.9 % to 45.4 % and from 52.4 % to 33.3 %, respectively, as the concentration of 

DVDP increase from 1 ppb to 1000 ppb.

Figure 5.14 presents the results of the inhibition effects of paraoxon. As could be 

seen, the highest inhibition effect of paraoxon was on the enzyme BChE, where the 

sensor responses were found to decrease from 62.5 % down to 40.6 %. In comparison to 

DVDP and imidacloprid, paraoxon showed a moderate inhibition effect on the enzyme 

urease. The residual activity of enzyme urease was found to decrease from 89.4 % down 

to 70.1 %, as paraoxon concentration increased from 1 ppb to 1000 ppb. On the other 

hand, the inhibition effect of paraoxon on AChE was similar to the effect of DVDP and 

imidacloprid. The residual activity of AChE decreased consistently from 72.5 % to 48.5 

%, with the increases in the paraoxon concentration from 1 ppb to 1000 ppb.

It was observed that all pesticides studied have higher inhibition effects on 

BChE than AChE, and these results are in agreement with previously reported results 

[Arkhypova et al, 2001; Dzyadevych et al, 2005]. Regarding the effect of pesticides on 

urease, DVDP shows an unexpected result of a strong suppression of the urease activity 

as compared to other enzymes. This result contradicts the effect of paraoxon and 

imidacloprid on urease, as well as the result of the previous study [Starodub et al, 1999].
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Figure 5.13. Residual activity of enzymes after inhibited by DVDP.
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Figure 5.14. Residual activity of enzymes after inhibited by paraoxon.
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The anamolous behaviour of DVDP may be attributed to the presence of traces of heavy 

metal ions in DVDP’s sample solution. The obtained result showed that the multi

channel enzyme sensor is capable of detecting the effect of a mixture of pollutants on 

the enzymes activity, and this will be discussed in the following section.
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5.6 Response of the Enzyme Sensor Array to the Binary 

Mixtures of Pollutants

The potential use of the enzyme sensor array for multi-analyte detection was 

investigated further in solutions containing binary mixtures of pollutants. Two types of 

sample solutions were prepared. The first sample was formed by mixing two pesticides 

solutions, paraoxon and imidacloprid, in different concentrations from 1 ppb to 1000 

ppb (Mixl). The second sample consisted of the mixture of diluted solutions of 

paraoxon and cadmium ions (Mix2). Paraoxon was chosen as the basic pollutant in the 

mixtures, because of its moderate effect on the activity of the enzymes.

Experimental results show that the inhibition effect of Mixl on AChE and BChE 

was higher than the effect of paraoxon or imidacloprid alone (Figure 5.15a and 5.15c). 

The residual activities of AChE and BChE were found to decrease from 53.2 % to 30.7 

% and from 43.3 % to 25.7 %, respectively, as the concentration of paraoxon and 

imidacloprid in Mixl increase from 1 ppb to 1000 ppb. On the other hand, the sensor 

responses on the inhibition of urease by Mixl were found to be similar to the effect of 

paraoxon alone (Figure 5.15b). This result confirmed that imidacloprid did not inhibit 

urease and therefore the toxicity of Mixl to urease was dominated by paraoxon.

149



100

Imidacloprid

Paraoxon

Mixl

40 -

20  -

100 1000 10000

Concentration of pollutants (ppb)

(a)

120

Imidacloprid
100

Paraoxon

Mixl■o

100 1000 10000

Concentration of pollutants (ppb)

(b)

Imidacloprid

Paraoxon

Mixl

100 1000 10000

Concentration of pollutants (ppb)

(C)

Figure 5.15. Residual activity of enzymes after exposed to Mixl.



The effects of Mix2 on the sensor response are summarised in Figure 5.16a to 

5.16c. Different results for the sensor response were obtained when the enzymes were 

exposed to Mix2. As shown in Figure 5.16b, the mixture of paraoxon and cadmium ions 

strongly suppressed the urease activity. The inhibition of urease by Mix2 was slightly 

higher than that by cadmium ions. The residual activity of urease was found to decrease 

from 70.2 % to 37.1 %, as the concentration of paraoxon and cadmium ions in Mix2 

increased from 1 ppb to 1000 ppb. The sensor responses on the inhibition of AChE and 

BChE by Mix2 were found to be similar to the effect of paraoxon alone (Figure 5.16a 

and 5.16c). Apparently, the presence of cadmium ions did not affect the activity of the 

cholinesterase enzymes. This result suggests that the residual activity of these enzymes 

was strongly affected by their most toxic pollutant present in the mixture solution. 

Therefore, in the binary mixture containing paraoxon and cadmium ions, sensor 

responses on the urease reaction were highly influenced by the cadmium ions, whereas 

the activities of the cholinesterase enzymes were strongly inhibited by paraoxon 

pesticide.

A similar pattern of inhibition by the mixture of pollutants was also 

demonstrated by Arkhypova et al [2001]. The inhibition of urease and the cholinesterase 

enzymes were found to be strongly affected by heavy metal ions and pesticides 

respectively, after being exposed to the mixtures containing pesticides (trichlorfon and 

carbofiiran) and heavy metal ions (mercury and silver ions). Arkhypova et al [2001] also 

found that the combined inhibition effects of mixtures containing trichlorfon and 

carbofiiran on BChE and AChE was higher than the effects of a single pesticide. This 

result corresponds to the combined inhibition effects of paraoxon and imidacloprid in 

Mixl on the activity of BChE and AChE, as presented previously (see Figure 5.19).
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A three-dimensional plot of the residual activity for the three enzymes (AChE, 

BChE, urease) shown in Figure 5.17, clearly illustrates the sensor array response to each 

pollutant and binary mixtures. The position of Mixl (mixture of paraoxon and 

imidacloprid) was found close to the pesticide area, while the position of Mix2 (mixture 

of paraoxon and cadmium ions) was shifted towards heavy metal ions area. These plots 

demonstrated the dependence of both specificity and accuracy (in the determination of 

toxic agents) on the increase of the number of analyzing enzyme sensors. It also places 

the emphasis on the need to design a pattern recognition algorithm to enable 

identification of specific pollutants and their multi-component mixtures.
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5.7 Analysis of Pollutants using Artificial Neural Network 

Algorithm

The experimental data presented previously shows a distinct pattern of sensor 

responses to certain pollutants in water. According to literature, such data patterns were 

treated by various pattern recognition algorithms including principal component 

analysis [Vlasov et al, 2000], partial least squares [Mortensen et al, 2000], multiple 

correspondence analysis [Arkhypova et al, 2001], multiple linear regression [Natale et 

al, 1997], and artificial neural networks [Bachmann and Schmid, 1999]. Among these 

methods, Shaffer et al [1999] demonstrated that the neural network based algorithms 

have the highest accuracy in classifying sets of data obtained from chemical sensor 

arrays.

Artificial neural network (ANN) also performed very well in solving 

overlapping signal distributions or difficult non-linear quantifications [Gutes et al, 

2005]. A variety of applications that deployed ANN as a tool for multi-component 

analysis, have been reported particularly in chemical sensing and biosensing purposes. 

The examples of such applications are: the determination of pesticides using enzyme 

sensors and immunosensors [Bachmann et al, 2000; Reder et al, 2003], the classification 

of neurotoxins [Gholmieh et al, 2003], the analysis of ethanol-glucose mixtures 

[Lobanov et al, 2001] and the quantification of metals and inorganic pollutants in 

groundwaters [Rudnitskaya et al, 2001]. These complex analytical systems are 

sometimes defined as an ‘electronic tongue’ due to their capability to recognise both the 

quantitative and qualitative composition of solutions by mimicking the concept of 

human sensing [Vlasov et al, 2000].
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Commonly, ANN consists of simple processing elements or ‘neurons’ grouped 

together to form three types of layers known as input, hidden and output layers (Figure

5.18). The neurons are linked with each other in a particular configuration, so that the 

output from neurons of one layer becomes the input to the neurons in the next layer. In 

each neuron, the input signal (x,•) is multiplied by a weight factor (w/). The weighted 

input signals are added together and transferred to an activation function (F) that 

generates an output signal (y„eu) of a neuron. The activation function can have any form, 

from a pure linear dependence to an elaborate exponential function, like the hyperbolic 

tangent (tan-sigmoid) function:

F tan-sigmoidÔ1) = [exp(S) -  exp^MexpOS') + exp(-S)] (5.1)

in which

S  = J ]w ixi (5.2)
M

where S  is the sum of p  weighted input signals. ANN typically requires a large set of 

data and long training times. Generally, the networks are trained, so that a particular 

input leads to a specific target output. During training, the weights of the network are 

iteratively adjusted to minimize the average squared error between the network outputs 

(a) and the target outputs (t), normally known as mean square error (MSE):

MSE = ! £ ( e/)2 = - I > / - « , - ) 2 (5'3)n m n /=1

where n is the total number of the network inputs.
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The weights of the network are optimised by several different training algorithms, such 

as Levenberg-Marquardt [Shaffer et al, 1999; Natale et al, 1997], resilient 

backpropagation [Bachmann et al, 2000; Lobanov et al, 2001], scaled conjugate 

gradient [Reder et al, 2003] and Bayesian regularization [Gutes et al, 2005] algorithms.

Based on its adaptability in the sensing application, ANN was implemented as a 

pattern recognition tool for data analysis of the developed multi-channel enzyme sensor. 

MATLAB software (version 6.1, Mathworks, Natick, MA) was employed for the ANN 

modelling, using the supplied functions and algorithms in MATLAB Neural Network 

Toolbox (version 4.0, Mathworks, Natick, MA). Prior to ANN processing, the 

experimental results from the repeated measurements were divided into two data sets, 

which were used for training and testing of the network models. Table 5.2 shows the 

data set applied for the network training in order to identify the pollutants. The ANN 

training procedure exploited the Levenberg-Marquardt algorithm to optimize the 

weights of a hidden layer. This algorithm appeared to be the fastest method for the 

network training using the limited experimental data of this study. The training was 

performed for 10000 epochs (repetitions) with the error (mse) goal set to 1 x 10’10. The 

neural network models, which produced the minimum error for each training run, were 

selected for processing the cumulative data of the sensor array.

For qualitative and quantitative analysis, nine separate network models were 

produced and trained as described above. One of the neural networks was used to 

classify the pollutants. This contained seven neurons in the hidden layer, as illustrated in 

Figure 5.19. The number of neurons in the input layer was set to three, equal to the 

number of channels in the sensor array. Three neurons in the output layer were used to 

describe a three-digit binary code, representing the type of pollutants (see Table 5.2).
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Table 5.2. Data set for training the neural network to classify the pollutants.

Concentration of pollutants (ppb)a 

Pb2+ Cd2+ Ni2+ DP . Para Imid

Input value 

Ra,%  Ru,%  Rb,°/o

Set output 
(target) value
(Binary code)

1 0 0 0 0 0 90.5 40.2 78.3 0 0 1

0 1 0 0 0 0 81.2 75 87.4 1 0 0

0 0 1 0 0 0 81.7 60.2 87.9 1 0 1

0 0 0 1 0 0 76.9 42.9 52.4 0 0 0

0 0 0 0 1 0 72.5 89.4 62.5 0 1 0

0 0 0 0 0 1 78.4 100 68.4 0 1 1

0 0 0 0 1 1 53.2 87.4 43.3 1 1 0

0 1 0 0 1 0 68.1 70.2 61 1 1 1

10 0 0 0 0 0 81.1 37.6 71.4 0 0 1

0 10 0 0 0 0 77.7 70.3 83.1 1 0 0

0 0 10 0 0 0 77.1 52.6 83.3 1 0 1

0 0 0 10 0 0 66.7 35.7 47.2 0 0 0

0 0 0 0 10 0 63.6 85.9 57.1 0 1 0

0 0 0 0 0 10 72 100 61.4 0 1 1

0 0 0 0 10 10 45.1 81.8 37.8 1 1 0

0 10 0 0 10 0 60.3 62.6 53.7 1 1 1

100 0 0 0 0 0 72.3 26.2 66.7 0 0 1

0 100 0 0 0 0 71.4 57.1 72.4 1 0 0

0 0 100 0 0 0 71.7 39.2 77.8 1 0 1

0 0 0 100 0 0 59.8 32.1 40.9 0 0 0

0 0 0 0 100 0 56.7 78.3 47.3 0 1 0

0 0 0 0 0 100 66 100 49.6 0 1 1

0 0 0 0 100 100 38.6 77.3 31.5 1 1 0

0 100 0 0 100 0 55.8 53.2 47.3 1 1 1

1000 0 0 0 0 0 50.1 19.6 58.3 0 0 1

0 1000 0 0 0 0 62.5 42.9 66.7 1 0 0

0 0 1000 0 0 0 61.5 31.1 66.7 1 0 1

0 0 0 1000 0 0 45.4 25 33.3 0 0 0

0 0 0 0 1000 0 48.5 70.1 40.6 0 1 0

0 0 0 0 0 1000 49.6 100 37.1 0 1 1

0 0 0 0 1000 1000 30.7 67.3 25.7 1 1 0

0 1000 0 0 1000 0 42.8 37.1 37.9 1 1 1
a DP for DVDP, Para for paraoxon and Imid for imidacloprid.
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The other eight network models were designed to quantify each pollutant 

(cadmium, lead, nickel, imidacloprid, DVDP and paraoxon) and two binary mixtures 

(Mixl and Mix2). The topology of these network models consisted of three and one 

neuron in the input and output layer, respectively. The number of neurons in the hidden 

layer was either three or five depending on the type of target pollutants (see Figure

5.19). A hyperbolic tangent was used as the activation function for the hidden neurons, 

and a log-sigmoid function was used for the output neurons in all nine neural network 

models.

The results of pollutants classification achieved with the neural network 

algorithms are shown in Table 5.3. The precision of the network model was evaluated 

using 22 randomly selected experimental data points. This test shows that 91 % of the 

test data was correctly classified. False classifications occurred during the determination 

of 1 ppb of paraoxon and 1000 ppb of Mixl (mixture of paraoxon and imidacloprid). 

Classified pollutants were then quantified using the optimized individual network 

algorithm. The results were reasonable since the network models were trained using a 

limited amount of data. As shown in Figure 5.20, a high correlation between the target 

and evaluated concentration of pollutants was observed with an acceptable average error 

of 6.24 %. The successful classification and quantification of randomly selected data 

sets proves that the neural network models were able to generalize the information 

given and could be used to analyse unknown compounds or their mixtures, assuming 

that they belong to the group of six analytes used to build the models.
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Table 5.3. Classification of selected pollutants by the neural network model.

Ra, %

Input value 

Ru, % Rb, % Binary code

Results

Pollutant Accuracy

70.8 58.2 73.3 1 0 0 Cadmium True

73.4 88.7 61.4 1 1 0 Mixl False
(Paraoxon)3

71.1 27.4 67.4 0 0 1 Lead True

77.9 53.1 83.3 1 0 1 Nickel True
60.2 31.4 42 0 0 0 DVDP True
49.4 70.8 41 0 1 0 Paraoxon True
37.4 76.8 32.7 1 1 0 Mixl True

48.2 100 37.8 0 1 1 Imidacloprid True
67.4 70.9 61.8 1 1 1 Mix2 True
65.3 36.2 48.1 0 0 0 DVDP True
81 60.9 88.7 1 0 1 Nickel True

56.3 54.7 48.5 1 1 1 Mix2 True
79.2 36.1 72.1 0 0 1 Lead True
75.2 100 69 0 1 1 Imidacloprid True
81.8 76.5 87 1 0 0 Cadmium True

31.2 68.1 25.1 0 1 0 Paraoxon False
(Mixl)3

64.3 85.1 58.2 0 1 0 Paraoxon True
44.7 24.1 33.9 0 0 0 DVDP True
73 40.7 78.5 1 0 1 Nickel True

78.9 71.1 82.5 1 0 0 Cadmium True
77.3 57.7 46.7 0 1 0 Paraoxon True
82.7 46.8 38.1 1 1 0 Mixl True
Parenthetical compound is t le expected pollutant
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5.8 Summary

The performance of the developed planar waveguide enzyme sensor as a multi

analyte detector was successfully tested with six types of pollutants. A series of 

experiments were conducted according to the measurement routine that separates the 

inhibition process and the evaluation of the enzymes activity. The reliability of the 

sensor responses was achieved using the relative changes in the sensor output signal, 

calculated from the ratio of the enzymes activity before and after the inhibition process. 

The relative responses to the effect of each pollutant on three types of enzymes (urease, 

AChE and BChE) were registered simultaneously using three sensing channels of the 

enzyme sensor array.

The analysis on the experimental results demonstrated that the multi-channel 

enzyme sensor was able to produce adequate responses to the presence of pollutants, in 

the concentration range from 1 ppb to 1000 ppb. Furthermore, the results showed that it 

was possible to discriminate each pollutant and two binary mixtures due to their 

different levels of inhibition on the activity of the enzymes. This has emphasised the 

implementation of the artificial neural network algorithm as a tool for the analysis of the 

distinct pattern of sensor responses. Despite a rather small amount of experimental data, 

the trained neural networks were able to classify and quantify the pollutants with 

acceptable errors of less than 10 %. More accurate and reliable results could be obtained 

by increasing the number of experimental data for each toxic agent and their mixtures.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Thesis Conclusions

The development of an optical enzyme sensor for in-situ monitoring of heavy 

metal ions and pesticides in water was the subject of study in this thesis. The research 

concentrated on the exploitation of light propagation in a SiCb/Sis^ planar waveguide 

as the optical transducing technique. According to literature, such planar waveguides 

were used as total internal reflection fluorescence and interferometer transducers for 

affinity biosensors. This present research work has expanded the implementation of 

these planar waveguides by utilizing them as attenuated total reflection (ATR) 

transducers for enzyme sensors. The formation of sensor sensitive membranes was 

realized with the universal polyelectrolyte self-assembly (PESA) deposition technique.

Multi-functional nanocomposite PESA membranes containing pairs of 

indicator/enzyme, such as CTCT/urease, CTCT/acetylcholine esterase and 

CTCT/butyrylcholine esterase were successfully deposited on the silicon nitride surface 

of the planar waveguide. The membranes produced were very stable, so that 

chromophore molecules cannot be washed out. On the other hand, the polymer matrix 

of the membrane was porous and hydrophilic enough to provide good permeation of 

small analyte molecules in aqueous solution. Study on enzyme reactions proved that the 

PESA method provides a natural environment for the enzymes encapsulated within the 

polymer matrix.
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The experimental set-up of the enzyme sensor was based on end-fire coupling of 

an elliptical light beam to the edge of the planar waveguide. The intensity of light 

propagating in the planar waveguide was found to be adequate for in-situ monitoring of 

the deposition of PESA membranes. The initial light intensity was attenuated by a factor 

of 10 after the deposition of four CTCT/poly(allylamine hydrochloride) layers, and the

normalised attenuation ratio —  was found to be 0.4 per layer. This large optical
Io

attenuation was 3 orders of magnitude greater than that in UV-visible spectroscopy.

This study has also found that a single channel enzyme sensor was able to 

register some specific bio-chemical reactions within the deposited PESA membrane on 

the planar waveguide sensing window. Individual enzyme reactions, as well as their 

inhibition by the toxic agents, were successfully registered by monitoring the changes in 

the intensity of light coming out from the planar waveguide. The presence of 1 ppb of 

cadmium and lead ions in sample solutions was successfully demonstrated. This result 

proved that the combination of a highly sensitive ATR technique and the superior PESA 

immobilisation method has substantially enhanced the performance of optical enzyme 

sensors.

The success of a single channel enzyme sensor has motivated the design and 

development of a laboratory scale enzyme sensor array. The experimental set-up was 

based on a single light stripe focused and coupled into the planar waveguide attached to 

a multi-channel reaction cell. The light was guided to excite the sensing windows of 

each channel in series by using a specially designed shutter. The feasibility of the multi

channel enzyme sensor towards the registration of three enzyme reactions 

simultaneously was proved by several tests. The response of each channel was found to 

be 100 times higher than the background signal. It showed that the enzyme sensor array
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had sufficient dynamic range for the registration of the suppressed responses caused by 

pollutants.

The experimental results demonstrated that the multi-channel enzyme sensor 

was able to register six different pollutants belonging to two groups, namely heavy 

metal ions (cadmium, lead and nickel) and pesticides (imidacloprid, paraoxon and 

DVDP), in a concentration range from 1 ppb to 1000 ppb. The pollutants exhibited 

different levels of inhibition on the activity of the enzymes. A general discrimination 

between the pollutants was possible by plotting a three-dimensional graph of the 

residual activity of three enzymes (acetylcholine esterase, butyrylcholine esterase, and 

urease). The distinct pattern of sensor responses was analysed further by the 

implementation of artificial neural network algorithm. Despite the rather small amount 

of experimental data, the trained neural networks were able to classify and quantify the 

pollutants with an acceptable average accuracy of 6.24 %.
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6.2 Recommendations for Future Work

Although considerable time and efforts were spent during this study for the 

development of the optical enzymes sensors, it was only a small part of a huge of work 

towards the development of a prototype biosensor device. In order to overcome certain 

limitations and to ensure the ability of the optical enzyme sensor for monitoring water 

pollutants in a real environment, further work needs to be done.

1. To use a large variety of pollutants concentrations as compared to the present study 

which only involving 1, 10, 100 and 1000 ppb, in order to have a better view on the 

distribution range of the sensor sensitivity.

2. To expose the optical enzyme sensor to more complex pollutant mixtures in order to 

further evaluate the ability of the sensor system to identify and quantify different 

type of pollutants.

3. To compare the acquired data with the results of any conventional analytical 

techniques, such as mass-spectrometry or liquid chromatography in order to verify 

the sensor performance.

4. To investigate the reversibility of the enzyme sensors after the inhibition by heavy 

metal ions and pesticides, using ethylene diamine tetra acetic acid (EDTA) and 

pyridine-2-aldoxime methiodide (PAM) as recovery agents for urease and 

cholinesterase enzymes, respectively.

5. To integrate the pattern recognition algorithm with the sensor array set-up in order to 

have simultaneous in-situ monitoring and analysis of pollutants in aqueous solutions.

6. To explore the possibility to miniaturize the multi-channel enzyme sensor set-up, for 

example, by using an LED array as the light source or a CCD array as the 

photodetector.
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APPENDIX

The LabView program developed to control the operation of the enzyme sensor array.
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