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Abstract

In this thesis we have developed an anisotropic lattice Boltzmann (LB) model that re-
covers the incompressible isentropic Ericksen-Leslie-Parodi (ELP) equations of con-
tinuum nemato-dynamics in two dimensions with the director confined to the plane.
Suitable validations of the developed model against known solutions of the contin-
uum theory are undertaken as well as investigations into nematic flow in interesting

geometries.

The model is based upon two coupled LBE schemes, the standard momentum den-
sity distribution and a new link angle distribution. To achieve evolution, the link
angle distribution undergoes a Bhatnagar-Gross-Krook (BGK) collision step and
advects (propagates) in unit time with the momentum densities. Anisotropy is in-
troduced into the momentum density evolution scheme through a linearized Lattice
Boltzmann (ILB) collision process which is made anisotropic. Correctly to capture
the macroscopic dynamics, 6 order isotropy of the underlying lattice structure is
required, accordingly we introduce a new variant on the standard 1LB scheme :
a two-dimensional thirteen link (D2Q13) model. Chapmann-Enskog expansions of
the momentum and angle evolution schemes are shown, through a suitable selection
of equilibrium distribution functions and forcing terms, correctly to map onto tile

target macroscopic ELP equations of continuum nemato-dynamics.



Results are presented which validate the new scheme against known analytical solu-
tions of the governing equations to a high degree of accuracy. The validated scheme
is subsequently applied to nemato-dynamic behavior in an applied magnetic field, i.e
the Fréedericksz transition and velocity back-flow with director kick-back. Finally
we simulate the geometrically complex Zenithly Bi-stable Display (ZBD) device to

illustrate some of the advantages of the LB schemes.
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The continuum s that which is divisible into indivisibles that are infinitely divisible,
Aristotle.
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7.19

7.20

7.23

7.24

Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu (x 52 au) with nematic
viscosities characteristic of MBBA shown in table (5.1) and an elasticity K set using @ = 1.5.
ZBD characteristics are h/w = 0.6, d/w = 0.92 and A = 0.5. The bulk directors are aligned

initially to 90° and the field was switched off at time ¢ = 0, snapshot is at time ¢t = 160. .

Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu (& 52 au) with nematic
viscosities characteristic of MBBA shown in table (5.1) and an elasticity K set using @ = 1.5.
ZBD characteristics are h/w = 0.6, d/w = 0.92 and A = 0.5. The bulk directors are aligned
initially to 90° and the field was switched off at time ¢t = 0, snapshot is at time ¢ = 180.

Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu (= 52 au) with nematic
viscosities characteristic of MBBA shown in table (5.1) and an elasticity K set using @ = 1.5.
ZBD characteristics are h/w = 0.6, d/w = 0.92 and A = 0.5. The bulk directors are aligned
initially to 90° kand the field was switched off at time ¢t = 0, snapshot is at time ¢t = 200.

Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu (& 52 au) with nematic
viscosities characteristic of MBBA shown in table (5.1) and an elasticity K set using @ = 1.5.
ZBD characteristics are h/w = 0.6, d/w = 0.92 and A = 0.5. The bulk directors are aligned

initially to 0° and the field was switched off at timet=0. . . . . . . . . . .

Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu (&~ 52 au) with nematic
viscosities characteristic of MBBA shown in table (5.1) and an elasticity K set using @ = 1.5.
ZBD characteristics are h/w = 0.6, d/fw = 0.92 and A = 0.5. The bulk directors are aligned

initially to 0° and the field was switched off at time ¢ = 0, snapshot is at time t =20. . . .

Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu (& 52 au) with nematic
viscosities characteristic of MBBA shown in table (5.1) and an elasticity K set using @ = 1.5.
ZBD characteristics are h/w = 0.6, d/w = 0.92 and A4 = 0.5. The bulk directors are aligned

initially to 0° and the field was switched off at time ¢ = 0, snapshot is at time t =40. . . .

Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu (& 52 au) with nematic
viscosities characteristic of MBBA shown in table (5.1) and an elasticity K set using @ = 1.5.
ZBD characteristics are h/w = 0.6, d/w = 0.92 and A = 0.5. The bulk directors are aligned

initially to 0% and the field was switched off at time ¢ = 0, snapshot is at time ¢ = 60.

Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu (& 52 au) with nematic
viscosities characteristic of MBBA shown in table (5.1) and an elasticity K set using @ = 1.5.
ZBD characteristics are h/w = 0.6, d/w = 0.92 and A = 0.5. The bulk directors are aligned

initially to 0% and the field was switched off at time ¢ = 0, snapshot is at time ¢ = 80.

Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu (=~ 52 au) with nematic
viscosities characteristic of MBBA shown in table (5.1) and an elasticity K set using @ = 1.5.
ZBD characteristics are h/w = 0.6, d/w = 0.92 and A = 0.5. The bulk directors are aligned

initially to 0% and the field was switched off at time ¢ = 0, snapshot is at time ¢ = 100. .
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7.28
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7.31
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7.34

7.36

Director (top) and flow (bottom) fields for a ZBD cell of length 60 Iu (& 52 au) with nematic
viscosities characteristic of MBBA shown in table (5.1) and an elasticity K set using @ = 1.5.
ZBD characteristics are h/w = 0.6, d/w = 0.92 and A = 0.5. The bulk directors are aligned

initially to 0° and the field was switched off at time ¢ = 0, snapshot is at time ¢t = 120.

Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu (= 52 au) with nematic

viscosities characteristic of MBBA shown in table (5.1) and an elasticity K set using @ =15.
ZBD characteristics are h/w = 0.6, d/w = 0.92 and A = 0.5. The bulk directors are aligned

initially to 0° and the field was switched off at time ¢t = 0, snapshot is at time ¢ = 140.

Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu (~ 52 au) with nematic
viscosities characteristic of MBBA shown in table (5.1) and an elasticity K set using @ = 1.5.
ZBD characteristics are h/w = 0.6, d/w = 0.92 and A = 0.5. The bulk directors are aligned
initially to 0° and the field was switched off at time ¢t = 0, snapshot is at time ¢ = 160.

Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu (x 52 au) with nematic
viscosities characteristic of MBBA shown in table (5.1) and an elasticity K set using @ = 1.5.
ZBD characteristics are h/w = 0.6, d/w = 0.92 and A = 0.5. The bulk directors are aligned

initially to 0° and the field was switched off at time t = 0, snapshot is at time ¢ = 180.

Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu (& 52 au) with nematic
viscosities characteristic of MBBA shown in table (5.1) and an elasticity K set using @ = 1.5.
ZBD characteristics are h/w = 0.6, d/w = 0.92 and A = 0.5. The bulk directors are aligned

initially to 0° and the field was switched off at time ¢ = 0, snapshot is at time ¢ = 200.

Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu (= 52 au) with nematic
viscosities characteristic of MBBA shown in table (5.1) and an elasticity K set using @ = 1.5.
ZBD characteristics are h/w = 0.6, d/w = 0.92 and A = 0.5. The bulk directors are aligned
initially to the smooth configuration and at at time ¢ = 0 a magnetic field of strength H = 0.2

(xa = 1) is switched on in the direction of 90°. e e e e e e e e e e e e e e e e

Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu (& 52 au) with nematic
viscosities characteristic of MBBA shown in table (5.1) and an elasticity K set using @ = 1.5.
ZBD characteristics are h/w = 0.6, d/w = 0.92 and A = 0.5. The bulk directors are aligned
initially to the smooth configuration and at at time ¢ = 0 a magnetic field of strength H = 0.2

(Xxa = 1) is switched on in the direction of 90°. Snapshot is at timet=05. . . . . . .

Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu (& 52 au) with nematic
viscosities characteristic of MBBA shown in table (5.1} and an elasticity K set using @ = 1.5.
ZBD characteristics are h/w = 0.6, d/w = 0.92 and A = 0.5. The bulk directors are aligned
initially to the smooth configuration and at at time ¢ = 0 a magnetic field of strength H = 0.2

(X« = 1) is switched on in the direction of 90°. Snapshot is at time ¢t =10. . .

Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu (& 52 au) with nematic
viscosities characteristic of MBBA shown in table (5.1) and an elasticity K set using @ = 1.5.
ZBD characteristics are h/w = 0.6, d/w = 0.92 and A = 0.5. The bulk directors are aligned
initially to the smooth configuration and at at time ¢ = 0 a magnetic field of strength H = 0.2

(Xa = 1) is switched on in the direction of 90°. Snapshot is at time t =15. . .
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7.38

7.39

7.40

7.41

7.42

Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu (& 52 au) with nematic
viscosities characteristic of MBBA shown in table (5.1) and an elasticity K set using @ = 1.5.
ZBD characteristics are h/w = 0.6, d/w = 0.92 and, A = 0.5. The bulk directors are aligned
initially to the smooth configuration and at at time { = 0 a magnetic field of strength H = 0.2

(Xa = 1) is switched on in the direction of 90°. Snapshot is at time ¢t = 20.

Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu (& 52 au) with nematic
viscosities characteristic of MBBA shown in table (5.1) and an elasticity K set using @ = 1.5.
ZBD characteristics are h/w = 0.6, d/w = 0.92 and A = 0.5. The bulk directors are aligned
initially to the smooth configuration and at at time ¢ = 0 a magnetic field of strength H = 0.2

o« = 1) is switched on in the direction of 90°. Snapshot is at time t = 25.
X

Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu (= 52 au) with nematic
viscosities characteristic of MBBA shown in table (5.1) and an elasticity K set using @ = 1.5.
ZBD characteristics are h/w = 0.6, d/w = 0.92 and A = 0.5. The bulk directors are aligned
initially to the smooth configuration and at at time ¢ = 0 a magnetic field of strength H = 0.2

(xa = 1) is switched on in the direction of 90°. Snapshot is at time ¢ = 30.

Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu (& 52 au) with nematic
viscosities characteristic of MBBA shown in table (5.1) and an elasticity K set using @ = 1.5.
ZBD characteristics are h/w = 0.6, d/w = 0.92 and A = 0.5. The bulk directors are aligned
initially to the smooth configuration and at at time £ = 0 a magnetic field of strength H = 0.2

(xe = 1) is switched on in the direction of 90°. Snapshot is at time t = 35.

Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu (~ 52 au) with nematic
viscosities characteristic of MBBA shown in table (5.1) and an elasticity K set using @ = 1.5.
ZBD characteristics are h/w = 0.6, d/w = 0.92 and A = 0.5. The bulk directors are aligned
initially to the smooth configuration and at at time ¢t = 0 a magnetic field of strength H = 0.2

(xa = 1) is switched on in the direction of 90°. Snapshot is at time t = 40.

Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu (= 52 au) with nematic
viscosities characteristic of MBBA shown in table (5.1) and an elasticity K set using @ = 1.5.
ZBD characteristics are h/w = 0.6, d/w = 0.92 and A = 0.5. The bulk directors are aligned
initially to the smooth configuration and at at time ¢ = 0 a magnetic field of strength H = 0.2

(xa = 1) is switched on in the direction of 90°. Snapshot is at time t =45. . .

Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu (= 52 au) with nematic
viscosities characteristic of MBBA shown in table (5.1) and an elasticity K set using @ = 1.5.
ZBD characteristics are h/w = 0.6, d/w = 0.92 and A = 0.5. The bulk directors are aligned
initially to the defect configuration and at at time ¢ = 0 a magnetic field of strength H = 0.2

(xa = 1) is switched on in the directionof 0°. . . . . . . . . . . . o0 0L

Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu (&~ 52 au) with nematic
viscosities characteristic of MBBA shown in table (5.1) and an elasticity K set using @ = 1.5.
ZBD characteristics are h/w = 0.6, d/w = 0.92 and A = 0.5. The bulk directors are aligned
initially to the defect configuration and at at time ¢t = 0 a magnetic field of strength H = 0.2

(xa = 1) is switched on in the direction of 0°. Snapshot is at time¢t=5. . . . . . . .
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Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu (& 52 au) with nematic
viscosities characteristic of MBBA shown in table (5.1) and an elasticity K set using @ = 1.5.
ZBD characteristics are h/w = 0.6, d/w = 0.92 and A = 0.5. The bulk directors are aligned
initially to the defect configuration and at at time ¢t = 0 a magnetic field of strength H = 0.2

{Xxea = 1) is switched on in the direction of 0°. Snapshot is at time t =10. . . .

Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu (& 52 au) with nematic
viscosities characteristic of MBBA shown in table (5.1) and an elasticity K set using @ = 1.5.
ZBD characteristics are h/w = 0.6, d/w = 0.92 and A = 0.5. The bulk directors are aligned
initially to the defect configuration and at at time ¢ = 0 a magnetic field of strength H = 0.2

(xe = 1) is switched on in the direction of 0°. Snapshot is at time t =15. . .

Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu (&~ 52 au) with nematic
viscosities characteristic of MBBA shown in table (5.1) and an elasticity K set using @ = 1.5.
ZBD characteristics are h/w = 0.6, d/w = 0.92 and A = 0.5. The bulk directors are aligned
initially to the defect configuration and at at time¢=0a magnetic field of strength H = 0.2

(Xe = 1) is switched on in the direction of 0°. Snapshot is at time t=20. . . . . . . . .

Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu (= 52 au) with nematic
viscosities characteristic of MBBA shown in table (5.1) and an elasticity K set using @ = 1.5.
ZBD characteristics are h/w = 0.6, d/w = 0.92 and A = 0.5. The bulk directors are aligned
initially to the defect configuration and at at time ¢t = 0 a magnetic field of strength H = 0.2

(xa = 1) is switched on in the direction of 0°. Snapshot is at time t = 25.

Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu (= 52 au) with nematic
viscosities characteristic of MBBA shown in table (5.1) and an elasticity K set using @ = 1.5.
ZBD characteristics are h/w = 0.6, d/w = 0.92 and A = 0.5. The bulk directors are aligned
initially to the defect configuration and at at time ¢ = 0 a magnetic field of strength H = 0.2

(xa = 1) is switched on in the direction of 0°. Snapshot is at time t = 30.

Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu (& 52 au) with nematic
viscosities characteristic of MBBA shown in table (5.1) and an elasticity K set using @ = 1.5.
ZBD characteristics are h/w = 0.6, d/w = 0.92 and A = 0.5. The bulk directors are aligned
initially to the defect configuration and at at time ¢ = 0 a magnetic field of strength H = 0.2

(xa = 1) is switched on in the direction of 0°. Snapshot is at time t = 35. .

Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu (= 52 au) with nematic
viscosities characteristic of MBBA shown in table (5.1) and an elasticity K set using @ = 1.5.
ZBD characteristics are h/w = 0.6, d/w = 0.92 and A = 0.5. The bulk directors are aligned
initially to the defect configuration and at at time ¢ = 0 a magnetic field of strength H = 0.2

(Xa = 1) is switched on in the direction of 0°. Snapshot is at time t =40. . . . .

Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu (% 52 au) with nematic
viscosities characteristic of MBBA shown in table (5.1} and an elasticity K set using @ = 1.5.
ZBD characteristics are h/w = 0.6, d/w = 0.92 and A = 0.5. The bulk directors are aligned
initially to the defect configuration and at at time ¢ = 0 a magnetic field of strength I = 0.2

Xeo = 1) is switched on in the direction of 0°. Snapshot is at timet=45. . . . . . . . .
X
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Chapter 1

Introduction

1.1 Overview

The scientific study of fluid dynamics impacts on virtually every aspect of modern
life. The field has its origins in antiquity but it was not until the late 18" century
that a mathematical continuum description of a fluid was laid down. Until the advent
of computers in the latter half of the 20t* century almost all of the research into fluid
dynamics was performed by either experimentation or simplified analytical solutions
of a theoretical model. But since the foundation of the field of Computational Fluid
Dynamics (CFD), a new and immensely valuable tool has being brought to bear on

the task of obtaining an exact solution of the equations of fluid dynamics.

Modern day computational techniques such as Finite Difference (FD) methods have

had great success in modelling fluid dynamics and can be applied to a variety of



different flow phenomena. It is a measure of the success of these models that CFD
models are today viewed as a complementary tool to the more traditional methods

of experimental fluid dynamics with certain advantages.

The ability in CFD to change the configurational details of the system under study
with relative ease as well as the potential for full data point recovery are major ad-
vantages where experimental solutions are becoming increasingly more complex and
expensive and CFD models have been developed to tackle a variety of different types

of flows including incompressible, compressible, thermal, immiscible and turbulent.

Whereas CFD treats a fluid at the continuum level, molecular dynamics (MD) is a
computational tool to model the motions and interactions of individual molecules.
Current MD and Monte-Carlo (MC) models have had great success, however, the
models are by their very nature microscopic in origin. Although it is theoretically
possible to use them to do macroscopic fluid dynamics, the computational require-

ments to do so are well beyond the capabilities of today’s computers.

This leads us onto the relatively recent development of the lattice models whose most
recent and widely used incarnations are the Lattice Gas (LG) and Lattice Boltzmann
(LB) models. Mapping onto the macroscopic equations of fluid dynamics the LG
and LB models essentially describe particle populations propagating on a lattice of

velocity vectors, undergoing simplified ”collision” rules at the lattice nodes.



These models approximate (coarse grain) the molecular dynamics occurring on the
microscale and use a statistical expansion process to tailor the emergent macroscopic

dynamics of the lattice fluid, as defined by its governing partial differential equations

(pde’s).

For many simulators the LG and LB models operate in the grey area between molec-
ular dynamics and continuum dynamics called the "mesoscale”. It is this ability to
access the best parts from the microscopic and macroscopic models that places the

modern day lattice models in a unique position within the modelling community.

Although still in their infancy, mesoscale models have shown that they can offer some
advantages over more traditional CFD techniques in certain areas of fluid dynamics.
LG and LB algorithms are relatively easy to implement (code) as is bounding the
flows in complex geometries. The models implicit parallisability also allows large
scale simulations on massively large parallel processors. Possibly most importantly
though, algorithmic extensions for e.g. diphasic flow can be devised by appealing
directly to the physics transparently captured by the simple underlying evolution

rules.

These are just a few of the advantages of the LG and LB techniques which have been
developed in recent years. This is apparent from the growing body of literature
on the subject of lattice models, which many believe ultimately should prove to
be an invaluable tool, complementing the more traditional CFD, theoretical and

experimental methods of investigating fluid dynamics.



All the CFD methods discussed above have been widely used in the modelling of
isotropic fluid dynamics which, whilst it has received much interest over the latter
part of the century, is still far from a completely solved problem. The situation
is more extreme whﬁn we turn to modelling anisotropic fluid dynamics which is
still a relatively new area of science. The increasing domination of liquid crystals
in the display industry, however, has motivated a lot of interest in the subject
over the last few decades, since Ericksen, Leslie and Parodi (ELP) developed a
continuum description of a nematic liquid crystal. However, relatively little work
has been carried out in attempting numerical solutions of the fully coupled equations

of nemato-dynamics at the continuum scale.

Historically, microscopic models have been mostly used to simulate liquid érystals
and there is a large literature on this subject, as is the case for experimental work car-
ried out on liquid crystals. A lot of this work deals with the phase transitions which
a liquid crystal undergoes. There are drawbacks such as those that infect isotropic
fluid mechanics. Namely experimental work is by nature expensive and complicated
: MD techniques are for all practical purposes confined to the microscale for the
foreseeable future. Current analytical solutions of the ELP equations of nemato-

dynamics all have to make substantial approximations and/or regime limitations.



1.2 Aims

The work presented in this thesis essentially entails a proof of cohcept. The main
aim involves extending a Lattice Boltzmann (LB) model of fluid dynamics to recover

the anisotropic ELP equations of nemato-dynamics.

Having obtained a clear strategy based upon a second scalar distribﬁtion, the scheme
is to be implemented into an LB model and validated against known theoretical
results. It is hoped that this process of development and implementation/ validation
would produce feed-back and contribute to maturing and refining the model over

the course of the work.

In order to produce an LB scheme for nemato-dynamics it is necessary to clarify
certain fundamental issues within what one might term the core LB methodology:

namely a correct and consistent treatment of forcing.

In the next section we review the overall structure of this thesis describing the work

undertaken to meet the aims stated above.



1.3 QOutline of thesis

The ﬁeld of continuum anisdtropic fluid dynamjcs is introduced in chapter 2. A
brief overview i's followed by a word about the notation used in this thesis. The
appropriate governing equations for isotropic hydrodynamics, namely the mass con-
tinuity equation and the Navier-Stokes equations are subsequently derived. In the
next section we introduce the field of liquid crystals before reviewing the generalized
continuum equations of anisotropic fluid dynamics (nemato-dynamics) in terms of
the Ericksen-Leslie-Parodi (ELP) presentation . Importantly, we then take the vec-
torial equation of motion for the nematic and reduce it to a scalar angle equation of
motion in two dimensions where the director is confined to the plane (2 @ 2). This
reduced form lends itself more conveniently to the methodology employed in later

chapters to generate our models director dynamics.

Having set-out the ”target” macroscopic continuum equations, we proceed in chapter
3 to introduce mesoscopic Lattice Gas (LG) and Lattice Boltzmann (LB) lattice
models. Starting from a historical point of view, we cover the seminal work by
Frisch et al [8] on LGs through to the conception of the two main LB models -
the linearized Lattice Boltzmann (ILB) and the single relaxation Lattice Boltzmann
(BGK) model. In particular a short review of the mapping of an LG model onto
isotropic hydrodynamics is presented along with a literature review of pertinent LG

and LB papers.

In this section we also present the development of the LB models and provide a

full derivation of the particular variant, an isotropic D2Q13 1LB model, used in



this thesis. VThe derivation takes the mesoscopic evolution equation of the D2Q13
ILB model and performs the customary Chapman-Enskog expansion procedure to
tune the model onto the equations of isotropic hydrodynamics. Subsequently a briefr
overview of the methodologies involved in bounding and forcing LG and LB models

is provided.

In chaptér 4 we develop the algorithmic extensions to the isotropic D2Q13 ILB
scheme derived in the chapter 3, which recovers the equations of nemato-dynamics.
A coupled D2Q13 LBGK evolution scheme is devised to recover the scalar director
equation of motion. This ext‘ra degree of freedom is then coupled to the existing
isotropic D2Q13 ILB model to produce anisotropic flow. The result is a fully coupled

mesoscopic model of anisotropic fluid dynamics (nemato-dynamics).

The initial aim of the thesis is a proof of concept and so chapter 5 contains a
validation of the underlying isotropic D2Q13 1LB against a rigorous analytical test
case (duct flow) and then the fully coupled anisotropic model. The validation of the
anisotropic model takes place in two phases, first the response of the director field
to an induced (controlled) steady state flow field is tested and second the response
of flow properties (viscosity) to different director fields is considered. All results

presented are discussed in relation to the expected theoretical results.

Having validated the model for steady state simulations, chapter 6 progresses to
investigate induced transient director and flow fields in simple geometries. Firstly
the well established magnetic Fréedericksz transition is investigated and the results

are compared to the theory. Secondly the nematic effect of velocity ”back-flow” with



director "kick-back”, upon release from a confining magnetic field, is considered.
Results for the back-flow experiments utilize the Fréedericksz aligned nematics from
the earlier computer experiments, qualitatively to shed new light on the origins of

back-flow.

Finally we present in chapter 7, qualitative results from a system with more complex
boundary conditions, namely the Zenithly Bi-stable Display (ZBD) device. This
incipient device has promising implications in the liquid crystal displas/ industry
‘and so there is interest in the use of our model to simulate the fully coupled nematic
ZBD cell. In .this chapter, results are presented not only for steady state simulations
in a variety of geometrical configurations, which demonstrate the flexibility and ease
inherent in the ILB model to change the system configuration but also for dynamical

simulations.

A general conclusion and suggestions for further work are presented in chapter 8.



Chapter 2

Continuum Isentropic

Nemato- dynamics

2.1 Overview

Fluid mechanics is the study of the motion of liquids and gases, which on the
macroscale are regarded as continuous media. The governing equations of hydro-
‘dynar.nics', derived in the late 18t century are therefore sets of partial differential
equations describing the conserved properties of mass, momentum and energy. Un-
fortunately, due to their complexity, these equations at present have not been solved

analytically, except in a few simple cases.

In Computational Fluids Dynamics (CFD), discrete models are used that attempt to

map onto the governing equations of hydrodynamics. Since in this thesis we extend



the isotropic Lattice Boltzmann (LB) method to simulate anisotropic fluids it is
prudent to cover the governing equations of anisotropic fluid dynamics, onto which
we aim to manipulate the macroscopic dynamics of our model. Clearly we cannot
discuss all aspects of the theory of anisotropic fluid dynamics, and the interes"ced
reader is directed to [9] for a comprehensive review of isotropic fluid dynamics and

to [3] for the theory of anisotropic fluid dynamics.

2.2 Brief Note on Notation

Throughout this thesis we shall employ two types of mathematical notation, carte-
sian vector (e.g. V -u) or the tensorial equivalent (e.g. O,uq, where a = x,v, 2).
At any point during an algebraic derivation we employ the notation that is best

adapted to the problem.

When using tensor notation we shall assume that where a repeated subscript occurs,
then the Einstein summation principle is implied. For the example given above, the

repeated subscript is & so we imply a summation over the subscript :

Ol = Opltiy + Oyuy + 0.u,.

Derivatives are also written in a shorthand manner, with the following meanings

o 9 B |
a.’L‘a y 8,5 == , 8,50 = ato etc.

a

Il

10



2.3 Isotropic Fluid Dynamics

2.3.1 Introduction

Completely to describe an isotropic fluid in three dimensions a set of five equations

are required. These are:

e The continuity (mass conservation) equation,
e The Navier-Stokes equations (one for each dimension),

e The energy equation.

These conservation laws of fluid dynamics arise intrinsically at the microscale from
the molecular dynamics of the fluid molecules. However they are equally as valid
at the macroscale through consideration of a volume element (defined below). This
universality across scales has allowed the macroscopic conservation laws to be de-
rived by the averaging of conserved microscopic dynamics. This method is known
as the kinetic theory approach [4] and it is a kinetic theory technique called the
Chapman-Enskog expansion that is traditionally used by Lattice Gas Cellular Au-
tomata (LGCAs) to map their dynamics onto macroscopic fluid dynamics. However
at present our i‘e\riexv of isotropic fluids will deal solely with the derivation of the
target macroscopic conservation laws and so we need to define the term volume

element.

Any small volume element in the {luid is always supposed so large that it still contains

a very great number of molecules. Accordingly, when we speak of infinitely small
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elements of volume, we shall always mean those which are very small compared with
the volume of the body under consideration, but large compared with the distances

between the molecules.

In deriving the macroscopic equations of hydrodynamics there are two different
but equally valid approaches. The first is to consider the conservation of mass,
- momentum and energy of an individual fluid element as it moves along with the
flow. This method does not employ a fixed co-ordinate system and is thus known as
the Lagrangian description. The second method introduces flow variables (density,
velocity and temperature) which are functions of space and time which are defined
on a fixed coordinate system and so the method is know as the Eulerian description.
Integration of the flow variables with respect to a volume element in a sufficiently
small time step results in the Lagrangian properties of mass, momentum and energy.
Although to séme the Eulerian approach may be viewed as more intuitive, I have
chosen in this section to follow the Lagrangian approach taken by [9]. Since this
section, however, only aims briefly to overview the governing equations and not raise

any issues between the two approaches, either method would have sufficed.

In a continuous medium, the continuity equation describes the fact that within the
volume element there are no fluid sinks or sources - 'what flows in, flows out’. A
flow regime that does not satisfy the mass continuity equation for example is one
where bubbles develop within the fluid element. However within the regimes under

discussion here, the continuity equation is a paramount requisite.
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Euler’s equations of motion for an inviscid (ideal) fluid take no account of energy
dissipation processes which fnay occur within the fluid due to internal friction (vis-
cosity) or other processes such as heat transfer. Therefore Euler’s equations describe 7
only the reversible mechanical transport of the fluid particles and the pressure forces
acting on the fluid. Extending Euler’s equations to include viscous dissipation re-
sults in the Navier-Stokes equations of fluid flow, one for each dimension so in 3D
flow there will be three coupled partial differential equations. Although all results
presented in this thésis are for 2D flow, the review of the governing equations will

describe the full 3D set of equations.

To include processes such as heat transfer in the fluid, the equation of energy is
required, however in the absence of such heat exchanges between different parts
of the fluid or any adjoining bodies the fluid flow is said to be adiabatic. Within
an adiabatic flow the entropy of any fluid particle remains constant as the particle
moves around in space, i.e. the fluid is isentropic. The flow regimes we are interested
in: are all assumed to be isentropic and temperature variation is neglected, so we can
discard the equation of energy and fully describe our isotropic fluid using just the

mass continuity equation and the Navier-Stokes equations.

Within the concept of an isentropic flow regime we can also assume that the flow
is incompressible (constant density). This simplifies the governing equations and is
valid within what is known as the hydrodynamic limit of low frequency and long

spatial wavelength.
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2.3.2 Continuity Equation (Mass Conservation)

Consider some volume V; of space, i.e. figure (2.1),

Surface S

Volume V

Figure 2.1: Fluid element of volume V, with a bounding surface S. The magnitude of the
surface element df is its area and the direction is along the outward normal.

the mass of the fluid in this volume is
/ pdV (2.1)
where p is the fluid density and the integration is over the volume V4.

The mass of fluid flowing in unit time through an element df = fi dA of the surface
S bounding the volume V4 is pu-df where the magnitude of the vector df is the area

of the surface element and its direction is along the outward normal to the surface.
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Therefore the total mass flowing out of the surface element in unit time is

j{pu -df (2.2)

where the integration this time is over the whole of the closed surface S surrounding

the volume V4.
Within the volume element V; the decrease in mass per unit time is
— 0 / pdV (2.3)
Conservation of mass requires that the last two equations must balance, therefore
Bt/pdV=—j{pu-df. (2.4)

The surface integral can be transformed into a volume integral by Greens theorem

(also known as the divergence theorem) [9]

?{pu-df = /V - (pu) dV (2.5)
Thus equation (2.4) becomes
/{&p +V-(pu)} dV =0 (2.6)
which, since it is true for any volume, must have a vanishing integrand :
Op+ V- (pu) =0, (2.7)

which is the so-called Continuity equation and expresses the principle of mass con-

servation.
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In the incompressible steady state fluid flow regime, the density p of the fluid is
constant. This leaves us with the incompressible steady state mass conservation

rule

2.3.3 Euler’s Equations (Inviscid flow)

Again let us refer to some volume element V4 in the fluid, figure (2.1). The total

force acting on the element is

j[ Pdf (2.9)

where P is the pressure and the integration is over the entire surface S bounding
the volume V. We can use Green’s theorem again to transform the surface integral

into a volume integral,

?{ Pdf = — / VP dV (2.10)

Hence we can say that the force acting on unit volume of the fluid is equivalent to

-V P and so we can write down the equation of motion for the fluid as
pDju=—-VP (2.11)

where the mass per unit volume is the fluid density p and D;u represents the accel-

eration. Dyu is actually the rate of change of the velocity of a given fluid particle

as it moves about in space which in conventional CFD is termed the substantive

derivative, which may be written in terms of partial derivatives :
Dtu = agu + (u . V) u. (212)
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Substituting the substantive derivative into (2.11) we obtain the Euler equation for

inviscid flow
pou+p(u-Viyu=-VP (2.13)

Assuming the the fluid is incompressible we can write equation (2.13), in tensor

notation
9i(puq) = —0sT1,p . (2.14)

where we have assumed the Einstein summation convention applies and Il,s is de-

fined as the second rank momentum flux tensor
Mag = Pdog + puaug (2.15)
so-called because it is easy to show from equation (2.14) that the surface integration

]{ Mg dfg (2.16)

gives —0; [ puad®r, the rate of change of the a component of momentum associated

with the fluid inside the control volume.
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2.3.4 Navier-Stokes Equations (Viscous flow)

However, in order to obtain the equations describing the motion of a viscous fluid,
we have to include some additional terms into equation (2.14). The momentum flux
tensor described in (2.15) represents a completely reversible transfer of momentum
due to simple mechanical transport of the fluid particles and the pressure forces
acting on the fluid. in viscous fluids there is a dissipative momentum transfer, this
time 'irreversible, from points where the velocity is large to those where it is small.
We model the effect of this process by introducing a term to the momentum flux

tensor to account for irreversible 'viscous’ transfer of momentum in the fluid.
Hap = Tap — 0ug (2.17)
where q;ﬁ is the viscous stress tensor, thus:
MMag = P dap + puqup — o;ﬁ. (2.18)

It is useful to rewrite I, in terms of the components that are due to the direct

mass transport (puyug) and those that are not (P 0ap — J;ﬂ)

Hap = —04p + puaus (2.19)
we define the stress tensor

Oag = —P bag + 0, (2.20)

- and with this definition of stress, the momentum equation (2.14) assumes a form

which we shall find useful
Dt PUy = Bﬁaaﬂ' (221)
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The general form for the viscosity stress tensor depends on spatial velocity gradients
which are supposed to be small so that the viscosity stress tensor depends only upon
the first velocity gradients, i.e that U;B is a linear function of these gradients [9]. In
uniform flow or uniform rotation the viscosity stress tensor clearly needs to be zero.
The most general second rank tensor that satisfies these conditions is [9]
Onp = a(Onttp + Optis) + b0t dag (2.22)
in which the terms may be re-grouped as
/ 2
Oap = N(Gatp + Optia - 587U75aﬁ) + £0yuq00p (2.23)
So now we can write the viscous form of the momentum flux tensor as
2
Hap = P bap + puaug — N(0xup + Opug — 587117(5&5) — E0yuy0up (2.24)

Which can then be substituted back into equation (2.14) to give

2
p(atua + U5aﬂua) = —8ﬂ P(Saﬁ +n 8[3 (80115 + 85Ua - 587u76a5) + & 858,,%5&5
(2.25)

which, on invoking the continuity equation reduces straightforwardly to,
1 1 1
Oyt + uﬂaﬂua = -—;aa P+ vaﬂaﬁua -+ ;(f -+ gn)aaaﬂuﬁ (226)

see reference [9].
Here v = n/p is the kinematic viscosity of the fluid.

We can further simplify the Navier-Stokes equation if we assume the fluid is incom-

pressible (V - u = 0), the final term vanishes and so equation (2.26) reduces to

[N]
™o
~I
N’

1
Btua + uﬂf‘)ﬁua = —;8a P+ uagaﬂua ( .
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2.4 Anisotropic Fluid Dynamics

The term liquid crystal signifies a state of aggregation that is intermediate between
the crystalline solid and the amorphous liquid. As a rule, a substance in this state
is strongly a.nisotropiC in some of its properties and yet exhibits a certain degree
of fluidity, which in some cases may be comparable to that of an ordinary liquid
with similar sized molecules. The first observations of liquid crystalline (mesomor-
phic) behavior were made towards the end of the 18" century by Reinitzer [10]
and Lehmann [11]. Several thousand organic compounds are now known to form
liquid crystals. An essential requirement for the mesomorphism to occur is that the

molecule must be highly anisotropic in shape, like a rod or a disc.

Depending on the detailed molecular structure, the system may pass through one
or more mesophases before it is transformed into the isotropic liquid. Transitions to
these intermediate states may be brought about by purely thermal processes (ther-

motropic mesomorphism) or by the influence of solvents (lyotropic mesomorphism).

The vast majority of thermotropic liquid crystals are composed of rod-like molecules.
Following the nomenclature proposed originally by Friedel [12], liquid crystéls are
classified broadly into three types: nematic,cholesteric and smectic. It is the nematic
phase that concerns us in this thesis. The nematic liquid crystal has a high degree
of long-range orientational order of the molecules but no long-range translational

order, see figure (2.2 b).
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(a) Isotropic (b) Nematic (c) Smectic-A

Figure 2.2: Representation of molecular ordering in the isotropic,nematic and smectic-A
phases.

Thus a nematic differs from an isotropic liquid in that the molecules are sponta-
neously orientated with their long axes approximately parallel. The fluidity of the
nematic is due to the ease with which the molecules slide past one another while
still retaining their parallelism and clearly their relative orientation must affect their

ability to ”shear”.

The interest in nematic liquid crystals over the last century has increased enor-
mously, due mainly to their applicability to display technology. There is now an
extensive literature discussing the physical properties of nematics and their applica-
tions, with new technology utilizing nematic liquid crystals appearing continuously.
However, until relatively recently, the mathematical models describing nematics were
incomplete and most modeling of liquid crystals was performed using MD or MC

techniques [13].

The foundations of the continuum model were laid in the late 1920’s by Oseen [14]

and Zocher [15] who developed a successful static theory. The subject lay dormant
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for nearly thirty years afterwards until Frank [16] re-examined Oseen’s treatment and
presented it as a theory of curvature elasticity. Dynamical theories were put forward
by Anzelius [17] and Oseen [14] but the formulation of the general conservation laws
and constitutive equations describing the mechanical behavior of the nematic state
are credited to Ericksen [18,19] and Leslie [20-22]. Other continuum theories have
been proposed [23-27] but it turns out that the eponymous ELP presentation (P =

Parodi) is the one that is most widely used in discussing the nematic state.

In this chapter we shall review the ELP continuum theory of nematic liquid crys-
tals which captures many important physical phenomena exhibited by the nematic
phase, such as its unusual flow properties and its response to bulk external fields.
Fully to cover the constitutive mechanical equations of a continuum nematic fluid is
rather non-trivial and beyond the scope of the work presented here. Unfortunately
most treatments in the literature (e.g de Gennes [3]) are rather fragmented and (we
suggest) difficult to piece together. Clearly however, there is a need to appreciate
" the physics behind the continuﬁm equations and as such we attempt here to give
an abbreviated but coherent derivation of the continuum description of a flowing
nematic. The interested reader is directed to [3,4,13,28] for a full review of contin-
uum nemato-dynamics, from which a complete and rigorous account can no doubt

be derived.
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2.4.1 Static Nematic Theory

In a nematic liquid crystal the molecules are aligned around an average direction n
called the director. The director is apolar (so that the same state of alignment may
be characterized by +n or by —n) and varies as a function of position in the nematic
n — n(r) but it has unit magnitude |n| = 1. The length scales of the variations
in the director, [, are very large compared to the intermolecular distances of the

nematic liquid crystal, a, and so n (r) can be described by a continuum theory.

Restricting ourselves to nematics below their critical transition temperature T, (Tni)
we can make the assumption that the local properties of a weakly distorted system
a/l < 1 are still those of a uniaxial crystal, with the director orientation able to

rotate.

Accordingly, let us now impose on our bulk nematic some state of distortion de-
scribed through the field n (r) where the distortion is constrained to have the fol-
lowing properties

1. n(r) is of fixed unit length but with variable orientation.

2. n(r) varies slowly and smoothly with r, i.e. aVn <« 1.
The distortion of n (r) introduces a new degree of freedom, a distortion free energy Fy

in the system, which vanishes if Vn = 0. We may expand Fy in terms of Vn within

the constraints given above, always ensuring that F, has the following properties [3]
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1. Fq must be an even function of n (r) and its spatial gradients dang (since n (r)

is apolar).

2. Terms in Fy which are of the form V - u where u is an arbitrary vector field
contribute (through the divergence theorem) to surface (not bulk) energies

only and so may be discarded.

To construct Fy consider the spatial derivatives of n. They form a second rank tensor

gap of the form d,ng which we can deconstruct into its symmetric components
s 1
€ap = 5 (Oanty + Op1a) (2.28)

and anti-symmetric components.

a _
6,.',—

EapOan | (2.29)
yap B

N =

Now referring back to the first requirement for the distortion free energy Fy will be
a quadratic function of the symmetric and anti-symmetric components. Therefore

we can separate the contributions to F, as follows
Fo=F;+F,+ Fos

where the contributions are from symmetric, anti-symmetric and cross-terms respec-

tively.

Under the conditions imposed on the free energy, the most general forms for Fy, F,
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and F, can be written respectively as [3] :

F, = M(V-n)?+X@m-Vxn)’+X@nxVxn)
Fo = m@m-Vxn)+pu@mxVxn)
Foo = v(nxVxn)
Regrouping the equations in (2.4.1) we may write the distortion free energy in the

well known form :
1 2 1 2 1 2
Fd:—2-K1 (V-n) +§K2 (n-V xn) +§K3 (n x V x n) (2.30)

which is the fundamental formula of the continuum theory for nematics [3].
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2.4.1.1 Three elastic constants, K;

-The three constants K; in equation (2.30) are associated with the three basic types

of deformations, see figure (2.3), that can occur in a nematic liquid crystal.

Splay ‘
(le n# 0) (curl nl n) Twist

(a) (b) ()

Figure 2.3: Schematic representation of the three basic types of elastic deformations that can
occur in a nematic, reproduced from [3].

K; : conformations with V -n # 0 (splay)
K, : conformations with n-V xn # 0 (twist)

Ks : conformations with nxV xn # 0 (bend)

All three deformations can be created individually and thus each constant K; must

be positive if not, the undistorted nematic conformation would not correspond to a

.minimum of the distortion free energy F,.
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2.4.1.2 The One Constant Approximation

The full form of equation (2.30) in many cases is too complex to be of practical
use, either because the relative values of the three constants K; are unknown or
the equilibrium equations derived are prohibitively difficult to solve. Therefore it
is often more practical to make a further approximation which assumes all three

constants are equal, i.e.
Ki=K,=K;=K
The distortion free energy (free energy density) then takes the form
Fy~ %K ((V-n)?+ (V x n)?) (2.31)
which ignoring surface terms becomes

Fy~ KVn (2.32)

If we compare some typical values of the three elastic constants from the nematic
material MBBA at 25°C [7].

K (splay) || 6.4 x 1077 dyn
K, (twist) || 3.8 x 1077 dyn
K3 (bend) || 8.11 x 1077 dyn

Table 2.1: Three elastic constants K, (splay), K2 (twist) and K3 (bend)
for MBBA at 25°C. The dimensions of the elastic constants (dyn) is defined
as energy/cm? [7).

we can see that the above approximation cannot be quantitatively correct however
the simpler form of equation (2.32) makes it a valuable tool to reach a qualitative

insight into distortions in nematics.
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For a two dimensional nematic where the orientation of the director is restricted to
lie within the plane (2 @ 2) then thefe can be no contribution from the Kj (bend)
elasticity, since it contains gradients in n,. The remaining distortions (splay and
twist) are about the same a.nd so the distortion free energy in the one constant
approximation can be considered to be an accurate representation of the actual

distortion free energy.

2.4.1.3 Equilibrium Conditions: Molecular Field

In this subsection we shall introduce the central concept of the molecular field h

essentially as an undetermined multiplier, to frame an equilibrium condition.

Following de Gennes [3], we work at present in the absence of any external fields, and

obtain bulk equilibrium conditions by minimizing the total distortion free energy,
Fy= / Fyd’r (2.33)

with respect to director variations. Any variation in the director field is constrained
by the requirement that n (r)2 = 1 everywhere. Thus we appeal to Lagrange and

write
OF4— /%A (r)é (n (r)2) d’r =0 (2.34)

in which X (r) is an undetermined scalar function. The above equation can be

written as

0Fa :/ A(r)n(r)dn(r) d°r (2.35)
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Now the distortion free energy density Fy given in equation (2.30) is a function of

density gradients gog = Jynpg and the director itself ng so

6?}[ =9 {f Fd (n, 2) d3l‘}
= [Fy (n + 6n, g+ 5_g_) d’r— [Fy (n,g) d’r (2.36)
= f{g—fg(inﬂ + %%5gaﬁ} 3y
now making the association ¢ (gag) = 6 (O4ng) = Oadng, then we can write the last

equation as :

oF, oF,

_ “d Zra 3
5Fy = / { St + 50, (anﬂ)} &r. (2.37)

Applying integration by parts, we can transform the second term in the above inte-
grand

oF,
ag af

0Fy O0Fy
0, (0ng) d°r = on dsa—/aa dngd’r 2.38
(Ong) EPL 95" (2.38)

which can be written as :

oF,
ag af

Oy (Ong) dPr = 7{%/3 dng dsg — /8a7raﬂ éng d°r (2.39)

and we have defined

_OF,  OF, 2.40)
" Bgas 0 (Oang) '

Inserting equation (2.39) into equation (2.37) and neglecting the surface terms :

y{ Taf (5n5 dSa (2.41)
we obtain
L 0Fy 0Fy 3
Ofd = / {8nﬁ 5”5 aa (8gaﬂ> 6ng} d’r (242)



Comparing the integrals in equations (2.35) and (2.42) we obtain the general equi-

librium condition of :

0Fy
57),_‘3 — OqTap = /\Tlﬁ (243)

It is customary to define the molecular field h

0Fy
= 2 o, 2.44
hﬁ anﬁ 3 Taf ( )

whereupon equation (2.43) now gives
hﬁ = —)\nﬁ, (245)

from which it is apparent that in equilibrium, the director n at each point must lie

parallel to the molecular field h.

Now, we have an explicit expression for the distortion free energy Fy given by equa-
tion (2.30) and so we can find expressions for 0, , Fy and 0,m,g in the r.h.s of equation

(2.44).
Ong Fu = Ony { K1 (9i3)° + Ko (ni€ijigin)” + K3 (EijinjErimgim)” } (2.46)

with &;;;, the unit antisymmetric tensor. Performing the differentiations w.r.t ng we

obtain

OnsFy =T AV xnlg+ Kyn x (Vxn)x(Vxn)|g (2.47)

where A = (n-V x n). The triple product in the K3 term expands to zero and so

we finally obtain
OnyFa= Ky AV xng (2.48)

30



A similar expression for d,m,s may be obtained from the explicit form of Fy in
equation (2.30), which, when inserted along with equation (2.48) into equation (2.44)

for the molecular field yields the result
h=h;+h;+h, (2.49)

where
h, = K,V (V-n)
h, = —Ky {AV xn+V x (An)} (2.50)

h, = K; {BxVn+V x (nxB)}
with A defined above and B=n x V x n.

In the one-constant approximation h takes a much simpler form

h =K Vn (2.51)

2.4.1.4 External Fields

We now have a definition of the molecular field h for a nematic in the one constant
approximation in the absence Qf any external fields. Howevér most liquid crystals
react strongly to magnetic, electric, flexo-electric and gravitational bulk forces. In
fact the di-electric coupling between the nematic and an external electric field is in
many cases very complex [13]. However, along with flexo-electric and gravitational
forces these shall not be considered here. The coupling for a single nematic liquid
crystal molecule to an homogeneous bulk magnetic field H is very small. However,

on the macroscopic scale a nematic element contains many millions of particles which
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can rotate in unison. Therefore upon application of a magnetic field the director
orientations will tend to align parallel to the applied field in competition with any
imposed wall alignment. Quantitatively we can express the effect of a magnetic field

on a nematic director by the induced magnetization M.

M = xH if, H, is parallel to n (2.52)

= v H if, H, is perpendicular to n

where ) and x, are the nematic magnetic susceptibilities for parallel and perpen-

dicular magnetic field applications respectively.
If H makes an arbitrary angle with n then the induced magnetization becomes
M=xH+x,(H-nH (2.53)

where X, is referred to as the overall magnetic susceptibility (magnetic anisotropy)

of the nematic, defined by
Xo = X| — XL (2.54)

Since the first term in equation (2.53) is independent of the molecular orientation
we can omit it from our description of the magnetic coupling to the nematic. Note
that the second term in equation (2.53) will be minimized when n is collinear with
H which is the requirement for equilibrium. The free energy of the nematic at

equilibrium now entails a magnetic field contribution of
Fon=x.H-n)H (2.55)

which results in the molecular field given in equation (2.51) being expanded to
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include a magnetic term of the form

h,=x.(H-n)H (2.56)

2.4.2 Equilibrium Hydrostatics

Let us re-write our expression for the molecular field, in the presence of an external

magnetic field.

For our purposes, as we are simulating in a gravitational equi-potential, we can write

the molecular field simply as the sum of the contributions from equations (2.44) and

(2.56),
OF,
he = OaTap — 2— + Xo (H-n)H (2.57)
8nﬂ
where, recalling equation (2.40),
o0Fy 0Fy

ﬂ'a,ﬁ

N 8gaﬂ - 5(8,171[3)'
With the molecular field defined as above, the equilibrium condition is simply that

h and the director n be parallel, i.e equation (2.45)

hﬁ = —-/\ (I‘) ng

I

Suppose that a director n (r) is displaced without change of orientation to r
r+u (r) so that
! ’

n(r)=n (r+u())=n(). (2.58)

(We shall consider changes in the director orientation n — n + én below.)
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Now,

871'7 _ 6n; Orq

dr; e Oy (2.59)

in which it should be noted that the summation convention applies. Substituting

from equation (2.58) into equation (2.59) we obtain

on,, _ Ora 9ny (2.60)
Ory  Org Org
and noting that, to first order in derivatives,
Ora 0 (. 0
w7 — ] - = 501 — Uy 2.61
Org  Org (TO‘ ta (r)) g Brﬂu (2:61)
we substitute into equation (2.60) to obtain
on, _ ony  Ony Oug (2.62)
87‘/'3 Org  Org 3’,’5 )
which is re-arranged to give
Bn; on., _ On, Ouy (2.63)

Oryg C Org O, ory
Now the change in the distortion free energy of an incompressible fluid element origi-
nally at position r, when displaced to position r', may be obtained by approximating

equation (2.40) as AFy & 7yq (Agya), whereupon we obtain

AFy = Tyq {A[0yn4]} . - (2.64)
Expanding the braces gives
on, On
AFy= Ty —2——=1, 2.
A {81"7 ar,,} (2.65)

which on appeal to equation (2.63) yields the following expression for the change in

the distortion free energy of the incompressible fluid element,
AFd = Tlya ((()ﬁ’n,y) (87215) dsl‘ (266)
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and for the change in the distortion free energy of the fluid as a whole
0Fy = /aga(')ﬂuadgr (2.67)
with the distortion stress tensor defined as
Oha = —Tgy0aTly. (2.68)

In fact the distortion stress tensor, defined above, is not in general symmetric [3,4].
However, for the particular case of the one constant approximation the distortion

stress tensor becomes symmetric.

Remembering that we are working in an incompressible regime, to write an equilib-
rium condition we must seek the minimum change in the total distortion free energy
resulting from the displacement field (strain) u (r) where V-u = 0; that is from the

condition
§Fy — /p (r)V-udlr=0 (2.69)

where p(r) is again a generalized Lagrange multiplier. Substituting for §Fy from
equation (2.67) and expressing the divergence in tensor notation, we obtain an ex-
pression for the strain-induced variation in a revised distortion free energy, the min-
imum of which will coincide with the minimum of F; for strains which leave the

density constant
0F; = / (085 — p(r) Gap) Oaug dr. (2.70)
The form of equation (2.70) motivates the definition of the Ericksen stress og4 as

Top = Oag — Pag. (2.71)
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We need now to consider fluctuations in director orientation n — n + dn. These
are accounted for in equation (2.42) which we reproduce below for convenience, but

including the surface terms from equation (2.41)

[ [0F, oF, :
5Fd = / {6nﬂ5nﬂ — aa (agaﬂ> 571/3} d I‘+%’ﬂ'aﬂ (5715 ds,.

Replacing the terms inside the braces in the first integrand using the definition of

the molecular field in equation (2.44), we obtain a contribution to the free energy

from director fluctuations

SF; = — / hg dng dr + ?{ Tap Ong dsq (2.72)

adding the above contribution to the free energy to that in equation (2.70) we derive

an expression for the complete variation in the free energy

§fy= / {02, Bty — hg dng} d°r + 7{ Tapdngds, (2.73)

From the last equation we can develop an identity which will prove useful in the

next section.

Clearly any deformation that corresponds to a rotation of both the molecular centres
and their directors by the same angle should leave Fy invariant. Let the vector Q
define a rotation then such a transformation of the director field is u(r) = Q xr

and 6n (r) = Q x n, which in tensor notation yields the identities

aﬂua = ga“ﬂQ“ (9 74)

0ny = Eyupnelly.
Substituting the identities in equation (2.74) into equation (2.73) we obtain an
expression for the corresponding change in total distortion free energy, which we
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know to be zero :

oF
6fa= Qﬂ/ {&wﬁ Ohe + #Swpn,, + Sw,,wﬂvaﬂnp} d’r = 0. (2.75)
v

Transforming the second term in the above equation by parts we obtain :
/ Eapp 05 d°r — / Eqpp (—hyny + 1,087, + M x H + 75,05m,) d°r =0 (2.76)
where we have used the definition of induced magnetization in equation (2.53). We

shall return to use this equation in the next section.

Using the product rule (in reverse) on the terms in 7g, and integrating by parts, it

can be shown

/é'“aﬁ O'ga = / (h x n|, + M x H|,) d®r — %guwwﬂvnp dsg (2.77)

to which equation we shall again return in the next section.

2.4.3 Nemato-dynamics

To derive the governing equations for variables u and n, subject to the usual lim-
~itations of low spatial and temporal gradients, in the isothermal regime, is the
principal objective of this section. We follow the usual route of identifying dissi-
pative losses [3] which derives ultimately from a treétment based in non-equilibrium

thermo-dynamics by de Groot and Mazur [29].

We introduce the nematic fluid’s momentum stress tensor o, in order to write its

acceleration (momentum) equation as in equation (2.21)

Dy pug = 0,044
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For an isothermal process, dissipation D;QQ = T D,S is equal to the decrease in

stored free energy;
1

where the second term F, is a density dependent internal free energy, and all other

terms have their usual meaning. Performing the time differentiation on the first

term in the integrand;/Dt (%pumw) d3r = /pu,thUgd3r

1
/Dt (-Q-puﬂuﬁ) d3r= /puﬁDtuﬂd3r (279)
and using equation (2.21) we obtain
1 3 3
D, S PUsU d°r = p [ upg 0,04p d°r. (2.80)

Using parts and the divergence theorem, the r.h.s may be transformed to

1
/Dt <§pUﬁU5> dBr = /gaﬁaauﬂ d®r + surface terms (2.81)

Consider now the time differentiation of the remaining free energy terms in the
integrand of equation (2.78). The material (substantive) derivative of a strain field
is the velocity field. Accordingly, from the arguments around equations (2.70) and
(2.71), we can see that for flow there is a contribution to the material derivative of

[ Fq dr, of the form :

/—Ugﬁaau5d3r, (2.82)

and for rotation, from equation (2.72), the contribution to material derivative of

. de d3r, is
— [ hg Dyng &®r + surface terms 2.83
B B
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whereupon we can write for the material derivative of [ Fy d®r

-D, /Fd dr = / {—o—;ﬂaauﬁ + hg Dtnﬂ} d®r + surface terms

(2.84)

combining the various contributions in equation (2.78) from (2.81) and (2.84) we

can write
T DS = / {a;ﬂaaw + hg Dtnﬁ} + surface terms

where

/

Oag = Oap — Joezﬂ
and, of course the material derivative of n is given by
Ding = Oing + uqOang.

We resolve the viscous stress into symmetric and anti-symmetric parts

!

[IS]

:g‘s—}—

N —
(1=

where L is a pseudo-tensor :
Fa = Saﬂ.y(f,yﬂ
and

1 ! !
O;ﬁ = ?)‘ (00,5 + Uﬂa) .

(2.85)

(2.86)

(2.87)

(2.88)

(2.89)

(2.90)

Considering equations (2.89) and (2.90) in order, the torque, I',, can be found by

considering the angular momentum of the sample [3] :
DL, = Dy /dBr (r x pu)
= /d3r (r x Dypu + Dir X pu).
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Therefore

DtLa = /d3r (Eaﬁ7r/3 (890’97)) (292)

where we have used the acceleration equation (2.21) and the fact that Dyr x pu =
u X pu = 0 and where £, is the unit anti-symmetric tensor. Applying parts now,

with a = z, it can be shown (see appendix (D)) that :

DL, = /d3r (Oys — Ozy) + jl{r x (ds:g) (2.93)
where ds : g = dsgoga.
Now the rate of change of the total angular momentum of the liquid (the total

torque) derives from the magnetic torque, torques due to external stresses at the

wall and torques on the director at the boundary [3] :

Fzz/d3r(MxH)|z+%rx (ds:g)|z+]4rx (ds:x) |, (2.94)
with the r.h.s terms in the order discussed above. Accordingly we equate (2.93) and

(2.94), cancel the terms [ x (ds: o) and obtain :

/d3r (Oye — Ozy) = /d% (M x H) |, + j[r x (ds:x) | (2.95)

writing the total stress as o,5 = a;ﬁ + 0&s and substituting for the Ericksen stress

in terms of the distortion stress, the integrand of the 1.h.s becomes
(oym — amy) + (o, — 02,) - (2.96)

We obtained equation (2.77) in the previous section which may now be used straight-

forwardly in the form

/ (08, — 08,) d’r = / {(MxH-nxh}|, d® + / {n x (dsgmag)}|:-  (2.97)
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Using expression (2.96) in the argument of the L.h.s integrand of equation (2.95) and
equation (2.97), and the definition of the torque 'y in equation (2.89), we obtain

the beautifully simple result

/{P —nxh}d®r=0 (2.98)
which must be true for any region, whence we see that the torque exerted by the

director on the flow is given by
I'=nxh. (2.99)

Let us know return to the dissipation equation (2.85), we proceed by separating the

velocity gradient tensor into symmetric

1 :
Aaﬁ = '5 (Bauﬂ + 8ﬂua) (2.100)
and antisymmetric parts
1
W= §V X W. (2.101)
We can write the dissipation as
T DS = / {Aapoly —T-w+h-Dn}d’r (2.102)

where 075 is the symmetric part of the viscous stress o;ﬂ. Substituting equation
(2.99) into equation (2.102), we obtain initially, an equation regarded by many as

the fundamental equation of nemato-dynamics,
TD,S = / {Aapois+h-N}d’r (2.103)
where
N=Dmn-wxn (2.104)

represents the rate of change of the director with respect to the background fluid [3].
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In non-equilibrium thermodynamics, entropy sources are regarded as products (con-
tractions) of fluxes and conjugate forces [29], in the sense that the force conjugate to
a flux, when contracted with that flux yields a contribution to the eﬁtropy source.
Accordingly, a glance at equation (2.103) enables us to make a choice of such fluxes

and conjugate forces :

o>, 1s the force conjugate to A,,

203, is the force conjugate to A;, etc. (2.105)

Ty
he is the force conjugate to N,.

(The factor of 2 occurring in the non-diagonal elements expresses the fact that the

terms such as o3, A, appear twice in the entropy source equation (2.103) [3]). In

the limit of weak fluxes, the forces will be linear functions of the fluxes :

foﬂ = Laﬁ75A7§+Maﬁ7N7 (2106)

!’

hy = Mg, Aag +PosNj. (2.107)

The magnetic field effects on the friction constants of the nematic are negligible

which along with the Onsager theorem :
Magy = Mg, (2.108)

simplifies the situation considerably. Moreover, we can state that the only vector
that may appear in the definition of L, M and P is the local director n. Also, since
all measurable properties must be invariant when we change n to —n then 4 and

g’ are invariant, while N and h are odd [3].
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The most general structures for equations (2.106) and (2.107) that satisfy the above

requirements are [3],

S

Oap = POapAuu + pananpAu, + psbagnym, Ay, +
a1nangn,nyA,, + asAap +

(a5 + ag) (N Aus +ngAua) Ny + 3'22 (naNg +ngN,)  (2.109)

N

hy = YanaAap +mN, (2.110)
where the Onsager relation in equation (2.108) imposes that

T =72 (2.111)

In the incompressible limit the trace of the tensor A vanishes and the terms with
coefficients p; and p, drop out of equation (2.109). The term with the p3 coefficient
in equation (2.109) reduces to three diagonal components which we take to be similar

and so can be lumped into the scalar pressure P and are therefore omitted.

The symmetric form for the total stress tensor in equation (2.109) can now be
transformed into an equation for the complete viscous stress g’. The antisymmetric
part of g’ is given explicitly in terms of the molecular field h by equations (2.89)

and (2.99), and the molecular field is given by equation (2.110).
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Regrouping these terms allows us to write the equations for the total viscous stress

tensor and the molecular field respectively as

!

Oug = QNaNpMNyAu, + agAag + asngnuAug +
ogngn, A + aongNg 4+ azngN, (2.112)
h# = /YlNll —I—nynaAa# (2113)

along with the relations

Y1 = Qa3 — Q» (2114)

Yo = Q-+ Q3= Qg— Q5 (2.115)
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2.5 Reduction to the scalar angle, ¢

In this section we shall present the method of reducing equation (2.113), the vector
equation of motion for the director n to an equation of motion of a scalar variable

6. We shall also discuss the consequences and reasons behind such an approach.

2.5.1 The scalar director evolution equation

We start by expressing the director equation of motion given in equation (2.113) in

the form
Dyn, = —0,0,n, + —n,H,H, + (w x n)|, — —n,4,, (2.116)
mn 4! 1
which in two dimensions has two components,
_ I{ Xa f}/z
Dy = —0,0ng + nH Hp + (w X n) |p — —nydye  (2.117)
B! "o - "
K \
Dyny = —0y0yny + &n’nyyHy + (wxmn)l, - 2n,,A,,y (2.118)
mn "N g

Curling D;n,, with n,, effectively couples the two components of the director evolu-

tion equation,

neDiny — nyDing = 7—K] (nz0y0yny — Ny0yO0ynyg) +

%eny (ngny Hy Hy —ny H, Hy) +

(2.119)

ng (W xn) |y — ny (w X n) [+

g% (ngnuAuy + nyn,Ayg)
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The next step is explicitly to replace the vectorial components of n with their scaler

f equivalence, i.e.

ng = -+cos(0)
ny = +sin(6)
Dt’flz = —sin (0) DtO
(2.120)
Din, = +cos(0) D8
0,0,n, = —sin(#)0,0,0 — cos () {0,6% + 0,62
vOy O Y

8,0,n, = -rcos () D,0,0 — sin (0) {0,6% + 9,6%}

After application of some standard trigonometric identities we can write the new

equation of motion of the director in terms of the scalar angle,f.

K
Dy = =0,0,0 + 22M + Q + Ln Ay (2.121)
T 4! T

where, M, is the magnetic field contribution, €2, is the fluid vorticity and, n,A.g, is

designated the source term. These terms are defined respectively as

Q = 1B, — Oyu) (2.122)

nyAys = 3 [sin (20) {Oyus — Oyuy} — cos (20) {0,uy + O u,}]
2.5.2 Advantages of the method

To model an anisotropic fluid we intend to enhance a standard isotropic Lattice
Boltzmann (LB) model. In our model a link density distribution function f; is
collided and propagated on the mesoscale and produces macroscopic observables of

density and momentum. Reducing the director equation of motion to the scalar
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angle variable § allows us to introduce a link angular distribution function 6; on the
mesoscale that produces the director angle as a macroscopic observable. Since we
are attempting, in the spirit of LB, to remain as close to the methodology used in
" the isotropic algorithm, recovering a scalar angle equation of motion is the favoured

scheme.

The director equation (2.119) is not in a conservative form: only certain terms
contain derivatives of the angle . Other terms (the vorticity €2, the magnetic term
M and the designated source term n,A.s) do not and must be added into our LB
scheme for the § macroscopic observable as ”forcing” to control the attending error.
The introduction of a new class of terms into the director evolution equation must

be done with considerable care.



2.6 Summary of Isentropic Nemato-dynamics

In t'his chapter we have reviewed the essential arguments of continuum isentropic
nemato-dynamics and introduced the assumptions used to simplify the governing
equations. As the concepts of isotropic and anisotropic fluid dynamics are intro-
duced, brief historical reviews are presented to develop a framework for the origins

of the governing equations.

We began with a cursory glance at the well established equations of isotfopic fluid
dynamics, namely the continuity and the Navier-Stokes equations. We assume that
the flow regimes we wish to consider in this thesis are isentropic (no temperature
effects) and justifiably omit the equation of energy from our fluid description. Within
this framework the lattice fluid is further assumed to be incompressible (no density
gradients) and suitably reduced the mass continuity and Navier-Stokes equations to

their incompressible forms.

Having reviewed isotropic fluid dynamics we then proceeded to overview the Ericksen-
Leslie-Parodi (ELP) governing equation of anisotropic fluid dynamics. The continu-
ity equations remained unaffected since the nematic fluid cannot possess any mass
sinks or sources. A reduced form of the director equation of motion was introduced,
linking the evolution of the director to a molecular field and velocity gradients. Fi-
nally to complete the coupling, the isotropic viscous stress tensor was enhanced to

represent the six director dependent Leslie viscosity coefficients, aj...a5.
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Several important simplifications/observations were made: which we summarize be-

low

e working in the incompressible nematic regime, i.e. T <7, and V-u = 0.

e the director is apolar, state of alignment can be charécterized by +n or —n.
e the director has unit magnitude |n| = 1.

e working Awithin the one constant approximation of the elastic field.

e no bulk gravitational, electric or flexo-electric field effects.

e the system is reduced to two dimensions with the director being confined to
the plane (2 @ 2). Accordingly, the vectorial director equation of motion is

reduced to a scaler equation for the angle 6.

In the upcoming chapters we shall recover the ELP equations of nemato-dynamics

from a mesoscopic Lattice Boltzmann fluid dynamics model.
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Chapter 3

Foundations of the lattice models

3.1 Introduction - an overview

In this chapter we shall introduce Lattice Gas Cellular Automata (LGCAs) and the
key developments over the last two decades that have led to the Lattice Boltzmann

(LB) models used in this thesis.

Although LB models evolved from the earlier work on Lattice Gases, they are today
viewed as separate models of computational fluid dynamics. Indeed, He et al [30]
showed that the LB algorithm can be obtained directly from the continuum Boltz-

mann equation of kinetic theory.

Historically cellular automata were introduced by von Neumann and Ulam [31].
They consisted of a lattice where each site contained a finite number of states (usually

represented by boolean variables). The automata evolved in discrete steps, with the

50



states ”colliding” according to certain deterministic or non-deterministic rules, and
b))

then were propagated (streamed) on the lattice.

Modern LG models emerged from attempts to construct discrete models of fluids
along the lines of the Ising model of magnetic materials. Pre-cursor Molecular dy-
namics (MD) models actually simulate the real fluid micro-world in order to recover
transport coefficients. They also use discrete particles but with continuous time,
positions and velocities and arbitrary interactions [13]. Broadwell [32] introduced
discrete velocity models to simulate rarefied gases but the space and time variables
were still continuous and the evolution was probabilistic, being governed by scat-
tering rules based on Boltzmann’s equation. The first fully deterministic LG médel
with discrete time, positions and velocities was introduced by Hardy, de Pazzis and
Pomeau (HPP) [33, 34] who managed to simulate certain physical phenomena such

as sound waves (the HPP model).

However the HPP model lacked fluid isotropy and had spurious conservation quan-
tities which resulted in an inability to recover the full incompressible Navier-Stokes
equations at the macroscale. The successor to the HPP model was the Frisch, Has-
slacher and Pomeau (FHP) [8] model, whose lattice possessed sufficient isotropy to
recover incompressible Navier-Stokes hydrodynamics, although specific rescaling of
variables was necessary to obtain Galilean invariance. LB models [35] arose due to
a need to overcome the statistical noise inherent in the boolean particle LG models,
with the disadvantage that they required more computational power, due to the

non-integer arithmetic.
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3.2 The Lattice Gas (LG) models

3.2.1 The HPP model

We will begin by describing the HPP model [33,34]. Consider a 2 dimensional 4 link
square lattice (D2Q4) with unit lattice spacing as shown in figure (3.1). At integer
time steps, particles of unit mass and speed reside on each node of the lattice. The
particles obey an exclusion principle which states that not more than one particle is
to be found at a given time and node moving in a given direction. If two particles
arrive at a node from opposite directions (head-on collision), they leave the node in
the two other previously unoccupied directions, see figure (3.2). This deterministic
collision law conserves mass and momentum and has the same discrete invariance
group as the lattice. Furthermore it is the only non-trivial HPP collision law with

these properties.

€y
—9 L ¢
| .
o

Figure 3.1: (a) The HPP repeating square lattice and (b) the unit cell showing the link speed
indexing, ¢; {i =1---4}.
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We take the 2D HPP lattice shown above and initially specify a square L x L lattice
that for now we assume to be periodic in both directions. Label each node by a
discrete vector r and state that each node of the lattice is joined to its nearest
neighbours by velocity vectors, referred to as lattice links e; where ¢ = 0---4. Each
cell has two possible integer states n;(r,t) = 1 for occupied and n;(r,t) = 0 for
unoccupied. We define a two step cellular automata updating rule on the boolean
field n = {n;(r,t),i =1---4,r € Lattice} in unit time. Step one is a local collision
where the four-bit states (1,0,1,0) and (0,1,0,1) are interchanged and all other
states are left alone. The second step is propagation n; (r,t) — n;(r +e;,t+1)

where the particles are moved around the lattice.

gt
-t

>

Figure 3.2 Non-trivial collision rule for the HPP models. (a) Four bit state (1,0,1,0)
changes to (0,1,0,1). (b) Four bit state (0,1,0,1) changes to (1,0,1,0).

Notably the collision step conserves mass and momentum locally whilst the propaga-
tion step conserves them globally. The dynamics of the HPP model is invariant under
all discrete transformations that conserve the square lattice, discrete translations,

mirror symmetries and rotations by 7/2. Furthermore the dynamics is invariant

93



under duality, which is exchange of 1’s and 0’ (particles and holes) and importantly
momentum in the model is actually conserved along each horizontal and vertical

line, resulting in spurious conservation quantities unrealistic for physical modeling.

3.2.2 The FHP model

Tn 1986 Frisch, Hasslacher and Pomeau [8] matured the HPP model. The lattice in
FHP models is 2 dimensional with a minimum of 6 links (D2Q6) but still possesses a
single lattice speed unit, see figure (3.3). Each node is again connected to its nearest
neighbours but now by six unit vectors éi where ¢ = 0---b and thus, without rest

links each node has a minimum six bit state.

3 )
c 4 61
65 66

(a) (b)

Figure 3.3: (a) The FHP repeating hexagonal lattice and (b) the unit cell showing link speed
indexing, e; {i=1---6}.

Updating for the FHP models is as in the HPP model, collision and then prop-
agation. For a hexagonal lattice, the construction of the collision rules is not as

straightforward as in the HPP model. We must consider both deterministic and
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non-deterministic rules. This is because for head-on collisions with occupied input-
channels (7,7 + 3) there are two possible pairs of occupied output-channels which

conserve mass and momenta, namely (7 + 1,7+ 4) and (i — 1,7 — 4), see figure (3.4).

If we choose always to use one of these channels we have a fully deterministic model
which is chiral, i.e. not invariant under mirror symmetry. Or we can randomly
choose a channel in which case we have a non-deterministic model and the mirror
symmetry is restored. Finally we can can choose to have a pseudo-random choice of

channel, dependent, for example of the parity of a time or space index.

The FHP models also have spurious conservation laws. Head-on collisions conserve
not only the total particle number but also the difference of particle numbers in any
pair of opposite directions (¢,¢ + 3). These additional conservations mean that as
well as conserving mass and momenta, two other scalar quantities are conserved with
the result that the FHP models macro-dynamical behaviour will differ from physical
hydrodynamics. By introducing triple collisions (7,7 + 2, +4) — (i + 1,i + 3,7+ 5)
the superfluous conservation law can be removed, resulting in the physical macro-

scopic hydrodynamics, see figure (3.4).

3.2.2.1 FHP LII and III models

The FHP-I model [36] is the simplest lattice gas model that has no spurious conser-
vation laws and so can be used to recover macroscopic hydrodynamics. The FHP-I
collision rules involve both (pseudo-random) binary head-on collisions and triple

collisions [37]. As a rule FHP-I is not invariant under duality but can be made so
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by inclusion of duals of the head-on collisions. The set of collision rules can also be
saturated (exhausted) by the inclusion of collisions with a spectator particle which

remains unaffected by the collision.

The FHP-II model [36] is a variant of the FHP-I (unsaturated) model that includes a
rest particle and so requires a seven-bit state fully to describe it. The FHP-IT model
has all the collision rules of the FHP-I model described above as well as additional
collisions with the ‘rest-particle’. Binary collisions involving rest particles remove
the spurious conservations, and do so more efficiently at low densities than triple

collisions.

Finally the FHP-IIT model is a collision saturated variant of the FHP-IT model and

contains not only a rest particle, but also a spectator particle [36, 38].

The dynamics of the FHP models are invariant under all discrete transformations
that conserve the triangular lattice, discrete translations, rotations by 7/3 and mir-

ror symmetries with respect to a lattice line (except chiral variants).

Although the FHP IIT and III models are most commonly used, it is possible to
construct other variants. The FHP-IIT model for example has 76 possible collisions

which conserve mass and momentum, allowing a wide choice of collision laws.
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Figure 3.4: Collision rules for the FHP models: (a) head on collision with two output channels
given equal weight; (b) triple collision; (c) dual of head-on collision under particle-hole exchange;
(d) head-on collision with spectator; (e) binary collision involving one rest particle (represented
by a circle).
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3.2.3 The FCHC model

The essential requirement for a LG to recover hydrodynamical macroscopic equations
is that the underlying lattice needs to have sufficient symmetry to ensure macroscopic
isotropy. In 2D, a hexagonal lattice suffices, however, the situation changes when we
try to model 3D flow with a lattice gas. It was found that 3D lattices do not posses
sufficient symmetry to ensure macroscopic isotropy [8,39,40]. To overcome this a
pseudo 3D lattice based upon a multi-speed 4D Face Centered Hyper Cubic (FCHC)
lattice, with one of its dimensions set to unity (see figure (3.5)) was introduced by

d’Humiéres et al [39].

Figure 3.5: The pseudo-4D FCHC model. Only the neighbourhood of one node is shown.
Along the dotted lines only one particle can propagate. Along the solid lines, up to two particles
can propagate.

The model entails a three speed (0,1 and v/2) regular cubic lattice with collision
rules that conserve mass and four momenta. Non-deterministic collision rules are

needed to ensure the collisions have the same invariance group as the lattice. The
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link velocity vectors e; are connected to 24 nearest and next-nearest neighbours
(D3Q24) and so the 3D FCHC model has a minimum 24-bit state. For a more

detailed review of the 3D FCHC model we refer the interested reader to [39,41,42].

We defer further discussion on Lattice Gases until after the following section.

3.2.4 Navier-Stokes hydrodynamics from LG’s

Our analysis, presented for the sake of compléteness, follows closely that of Frisch
et al [8] Taking a D dimensional lattice we label each node by a discrete vector r
and state that it has b distinct links. Any particle movihg on a link has a velocity

e; where i = 0 ... b. We define a boolean occupation of the links

1 if e; occupied
n’i(ra t) = (31)
0 if e; unoccupied

and use the following equation to evolve the system in unit time
ni(r + €6, + &) = ni(r,t) + A;(n) (3.2)

where ¢ is defined as the shortest time step in the model. The collision function

A;(n) describes the change in n;(r, t) during collision in unit time, defined as

,
+1 upon addition of a particle on link e;

Ai(n) = J 0 if link e; is unchanged (3:3)

—1 upon removal of a particle on link e;

\

The collision operator A;(n) relies upon "look-up-tables’ of a normalized probability
A such that an input state s = (s;,¢ = 1...b) will be collided into an output state
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s’ = (s;,4 = 1...b). The collision rules are said to satisfy detailed balance if
A(s = §)=A(s = s) (3.4)
and semi-detailed balance if

Y A(s—s)=1, Vs (3.5)

From the boolean particles n;(r, ¢) we can derive [8] the ensemble average over both

space and time, defined as the mean population given by,
M(r,t) = <7’L,~(I‘,t)>

At each lattice node we can define two macroscopic variables from the mean popula-
tion to establish the link to fluid hydro-dynamics. The zeroth order velocity moment

defines the fluid density, at a lattice site

p= Z Ni(r,t) (3.6)

and the first order velocity moment gives the fluid momentum, at the same site

pu = Z Ni(r,t) e; (3.7)

Due to the particle exclusion principle, enforced in the lattice gas models there results
a steady state equilibrium solution N;?"(p,u) of the mean link population N;(r,?)
based on a Fermi-Dirac distribution function. Under the assumption that the actual
mean population does not vary far from the equilibrium population, then the mean
population can be expanded around the equilibrium population in powers of a small
spatial expansion parameter which is explicitly associated with the shortest time
step 0.
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Performing zero and first order velocity summations on the first and second or-
der extractions of the velocity moments of the Taylor expanded evolution equation,
utilizing equations (3.6) and (3.7) and after substantial algebra, two partial differ-
ential equations for the macroscopic observable p and pu (equations (3.6) and (3.7)

respectively), are derived.
B;p + Op(pug) =0 (3.8)

and

2

‘ c D
Oupa) + 05 (G005 + 060N Tt ) = =05 | (8 (0)+ 50 ) Tosas 0 (ous)|
(3.9)
where

D% b—2p _ c?
G(p) = W b= p and  Topys = Z €ia€if (61'761'5 - 5575) (3.10)

1

and c is the particle (link) speed and 1(p) is as yet undefined [8].

3.2.4.1 Recovering Isotropy

Equation (3.9) still feels the underlying lattice through the 4™ rank tensor Tpp.s
which appears in both the nonlinear and the diffusive terms. In order eventually to
obtain the Navier-Stokes equations, the tensor T,g,5 given by the second term in
equation (3.10) must be isotropic (invariant under the full orthogonal group of the
lattice: for general group-theory material concerning the isotropy of tensors with

discrete symmetries see Wolfram [40]).
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Tapys is isotropic if it has the following form.

bt 2
Topys = m (5ay5ﬁ5 + 0as0py — 5%5575) (3.11)

Substituting equation (3.11) into equation (3.9 ) we obtain

0, (pug) + 0p (pg(p)uatip) + Oa [cgp (1 _ g(p)’c‘—j)] _

(3.12)
Op [(Vc(P) + Vp) (aa (pug) + 5 (pua) — %a'y (puv) 5045)]
with
9(p) =252, =%
Dt bme P (3.13)
Vc(p) = —5%1/)(0) y Vp= _2(54.2)

A couple of things to note here are that g(p) # G(p) and ¢? is the sound speed of
the fluid. We have in equation (3.12) a macroscopic momentum equation that is

very closely related to the Navier-Stokes equations of hydrodynamics.

At this stage we can re-express equation (3.12) to bring out its similarity to the

Navier-Stokes equation for viscous hydrodynamics (2.26)
8: () + OpTlas = Gpong (3.14)

. ! .
where the momentum flux tensor Il,g and the viscous stress tensor Oqp TeSpectively

are equivalent to

u?\
M = cs?p (1 - g(p)EQ—) dap + 9(p) puaugs (3.15)
p 2 .
s = ¥10) 0 pu) + 05(ptc) = 50, (1) (316)

and v(p) is now the kinematic viscosity,

v(p) = ve(p) + vp (3.17)



The kinematic, viscosity can be calculated and is found to be not only a function of

the density p but model dependent through the constants 1 (p) and ¢ [8,41].

A few remarks are now in order. Equation (3.14) bears a strong similarity to the
Navier-Stokes equations for viscous hydrodynamic flow. However, there are a couple

of significant differences.

1. The form of the momentum flux tensor is Ho;ﬁ = Pdop + puqugs for the Navier-
Stokes equations. The scalar pressure term in the LG momentum flux ten-
sor, equation (3.15), contains an extra additive density-dependent contribu-
tion g (p) that is of second order in velocity. In the low Mach number regime
this term vanishes and the term reduces to the expected diagonal pressure
term Pd,g where P is the scalar pressure which is given here as ¢?p. Even
in the low Mach number regime the LG momentum flux tensor contains the
multiplicative density-dependent factor g (p) in the advection (nonlinear) teljm

which destroys Galilean invariance in the lattice fluid.

2. The kinematic viscosity v describes the stress-strain relation for a Newtonian
fluid with vanishing bulk viscosity [9]. The kinematic viscosity in the LG
model, defined in equation (3.17), however, is not only a function of density
but of the LG model used. In fact if the LG model includes a rest particle
then the traceless property of the stress tensor o,g (which is responsible for

the vanishing of the bulk viscosity) is broken.

In order to recover Galilean invariance and hence the proper form of the Navier-
Stokes equations from the LG momentum conservation equation (3.14), a rescaling
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of the space, time and velocity variables needs to be performed. The rescaling forces
the undesirable terms to vanish as the small spatial expansion parameter tends to

Zero.

3.2.4.2 Advantages and disadvantages of Lattice Gas simulation

Like most modeling methods LG’s have advantages and disadvantages. Due to
their integer arithmetic on the underlying basis in direct simulation, there is no
round-off error and so the models are unconditionally stable as well as been highly
suited to parallel implementation. The integer nature of the model also means
that computer memory can be optimally used, allowing larger scale simulations.
Moreover, inclusion of geometrically complex boundary conditions can be realised
with relative ease, compared té other modeling techniques such as Finite Difference.*
Note however, that the problem of closing a simulation lattice so as to replicate

Dirichlet boundary conditions to second order accuracy is unsolved.

Aside from the above considerations, the other main disadvantages of LG’s is the
statistical noise inherent in the method. To extract the macroscopic flow observables,
averaging has to be performed over many different initial configurations, which is
computationally expensive. Finally, depending on the number of dimensions and the
model used, the size of the collision matrix can become computationally demanding,

for example a 3D FCHC model has 2?* possible collisions.

*See the end of this chapter for a discussion of boundary conditions in LG and LB models
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3.3 Brief Review of the Lattice Gas models

Since the seminal paper by Frisch et al [8], LG models have been investigated by
many groups and there are currently several comprehensive review articles on the
subject, most notably [36,40,43,44]. The particular issues of stability, time/length
scales, conservation laws and generalized hydrodynamics of LG’s are discussed in
[45-49]. De los Santos et al [50] have reported on the properties of driven LG’s,
Cornubert et al [51] have discussed bounding issues within LG’s, whilst Gunstensen
et al [52] introduced a Galilean invariant LG satisfying semi-detailed balance. For
work covering the introduction of lattice Boltzmann (LB) models from the parent
LG models, see Higuera et al [47,53], whilst Esposito et al [48] is recommended for

rigour.

In terms‘of applications of the LG model (rather than fundamental statistical me-
chanics), there is a rich variety of problems that can be simulated using a suitably
adjusted cellular automata, including applications outside fluid dynamics, e.g. gran-
ular flow [54,55]. Within the class of fluid dynamics we shall quickly review a few

interesting applications.

Simple two-dimensional Poiseuille (channel) flow in an infinite aspect ratio duct,
driven by a uniform body force was simulated using a FHP model by Kadanoff et
al [56,57]. Quantitative results were in agreement with theoretical predications as
well as reproducing earlier LG work by d’Humiéres et al [38]. Work has also been
carried out investigating flow around solid fixed objects: for general comments see

Hasslacher et al [44].
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Binary fluid mixtures have been simulated extensively using LG models: the work
by McNamara [58] measured diffusion coefficients; recently Boghosian et al [59],
derived the immiscible LG from a particulate basis. Suggested reference material on
LG immiscible fluids is the work by Rothman and Keller [60] who first introduced

the technique.

In the context of the present work, there have been a few attempts to use of LG's s0
far to recover anisotropic fluid flow. Vives et al [61] introduced a two-dimensional
square LG with an extra degree of freedom 6;. This new variable was allowed to
take one of the four possible orientations corresponding to the link directions of
the square lattice. The model produced a smectic-nematic like transition and a
nematic-isotropic like transition. The authors used Monte-Carlo simulations and
mean-field results as comparisons to investigate this first approximation to a real
anisotropic system. The model produced a rich variety of sfructures for the available
parameter space and whilst the order of the transitions could not be determined
unambiguously, qualitatively they were comparable to experimental data. Angelescu
et al [62] uéed the LG technique to investigate long-range ordering of nematics in one
and two dimensions. Results show an orientational ordering transition occurring at
finite temperature, which the author noted was absent in certain continuum nematic

models, although predicted by theory.
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3.4 The Lattice Boltzmann (LB) models

Motivated by the inherent problems in the LG models, McNamara et al [35] de-
veloped the first Lattice Boltzmann (LB) model which utilized the Boltzmann ép-
proximation of molecular chaos to terminate the hierarchy of high order moments of
the expanded N; leading to a closed kinetic evolution equation [35]. The molecular
chaos assumption for low density gases assumes that the mean free path of a particle
is so large that particles entering a collision come mostly from distant uncorrelated

regions. Consequences of this assumption include
1. an irreversible approach to equilibrium.
2. explicit evaluation of the transport coefficients in the limit of weak departures

from local equilibrium (so called Chapman-Enskog limit).

The boolean link occupation states n;(r, t) were replaced by a single-particle distribu-
tion function f;(r,t) representing the ensemble averages of the n; over a conceptually

infinite number of equivalent systems, in effect,

fi(r,t) = Ny(r,t) = (ni(r, t))

The fi(r,t) are now real (non-boolean) continuous functions in the range 0 < f; <1

and the macroscopic variables of density and momentum are now defined as

p(r,t) = Z fi(r, ) (3.18)

pu(r,t) = fi(r, t)e; (3.19)
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And by ensemble averaging the LG evolution equation (3.2) we can derive the evo-

lution equation of the distribution function f;
filr +e;,t+1) = fi(xr,t) + (Ai(n)) (3.20)

We now replace the ensemble average of the boolean collision operator with an

operator dependent only upon the single particle distribution function, i.e.
(Ai(n)) & Q(f) (3.21)

So, to have a microscopic Lattice Boltzmann model giving macroscopic hydrodynam-
ics, a correct form for the collision function (f) needs to be found. No subsequent
averaging of densities is required, since the distribution functions are the averages
themselves : this removes the noise due to statistical fluctuations that plagued LG
techniques. However the technique still acquires the complex collision function de-
pendent on the probabilities A(s — s'). Like the LG models the collision operator
has me input and output states, where m is the number of links on the underlying
lat-tice plus any rest particles. Therefore for a 2D FHP model with one rest particle
Q(f) is a 27 x 2" matrix and for a 3D FCHC model is a 2% x 224 matrix. Obviously
the size of these matrices makes the computational memory requirements quite in-
tensive, rendering the method inefficient. However in [35], McNamara and Zanetti
showed that the method accurately predicted (within 5%) the decay of shear and

sound waves.

In early LBE approaches to hydrodynamics 2 (f) was derived by considering some
underlying CA’s collision rules, and was, in general, non-linear. However, if one
recognizes that the densities f; should be close to equilibrium the collision operator

68



can be considerably simplified.

3.4.1 The linear collision operator

In 1989 Higuera et al [47] linearized the collision operator by assuming the distri-
bution function f; is never far away from equilibrium, thus allowing the distribution

function to be expanded around an equilibrium distribution function
fi=FT+ (3.22)

where f{%" is the equilibrium part of the distribution function, which is dependent

only upon the local values of p and u, i.e.
= [ pyw)

and f/"“"™ where (f]“"™ < f£7™) is the non equilibrium part which can be expanded

in powers of velocity gradients

77 = ef{ + € f7 4+ O(Juf?) (3.23)

1

where the labelling parameter € can be considered as playing an identical role as the
small spatial expansion ¢ introduced in the previous section. The superscripts refer
to the higher order derivatives of u and for non-linear hydrodynamics, contributions
from f"*"™ are at most of order O(fi(g)). Expanding the collision operator in equation
(3.21) about the equilibrium distribution gives

UlS) = Q)+ DS+ O ) (324

J
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where

Q] - g%’ o (3.25)
Invoking the requirement that [63],
Q™) = 0 (3.26)
reduces equation (3.24) to
G(f) = X005 (3.27)

= 2 Qi = ™)
The evolution equation for the linearized Lattice Boltzmann model can now be

written as
filr +eb,t +68) = fi(r, 1) + > Qs (f5 — ) (3.28)
J

As mentioned earlier the collision operator €;; is defined by the underlying boolean
micro-dynamics through the transition probabilities A(s — s') and so suffers from
the same constraints as the LGCA models as well as having the same resultant
macrodynamics. In [47] a full form for the collision operator is given, as well as a
general discussion between the linearized Lattice Boltzmann form and the full (non-
linear) collision operator form for LBE simulation. However the linearized collision
operator is now a m X m matrix, which is clearly a considerable simplification over
the previous 2™ x 2™ form. This allows the linearized Lattice Boltzmann scheme to

be a more practical method for 2D and especially 3D simulations.
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3.4.2 The enhanced collision operator

In [53] Higuera et al proposed that the collision operator could be simplified even
further by changing its form. Instead of obeying an underlying set of LGCA collision
rules, the form of the collision operator was "reversed engineered” from the target
macroscopic equations whilst being constrained by the requirements of isotropy. If
we consider the collision operator ;; its elements (¢, 7 = 1...b) describe the change
in the distribution function f; induced by a change in f; during a collision. Isotropy
dictates that the elements of the collision matrix are dependent only upon the angle

between the colliding links e; and e; and can be tuned to ensure a positive viscosity.

For an D2Q7 FHP hexagonal lattice these angles can take four possible angles 0°,
60°, 120° and 180°. If we include a rest particle ¢ = 0 we must include the influence
of the rest particles on themselves {Jgo and on the moving particles ;0 and (;
(symmetry requires ;o = b, and detailed balance, {)y; = b) where 4,5 # 0. On
general grounds, we can therefore write the entire collision operator for the FHP

hexagonal lattice with one rest particle as a circulant matrix :

r -1

b ay ag ain g @120 Ao
b agp ao agp @120 Q180 Q120
Q120 Ao Qo Ao Q120 aA180 (3‘29)

b awg a0 ag @  agp a2

b aio a0 @20 Qe Qo Ago

b ag aip a0 Q0 Ao g
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Mass and momenta must still be conserved, which imposes the following constraints

upon the elements of (2;;

Z Qij =0 and Z Q,-jeia =0 (330)

which lead to the following constraints

6b+c =0
ag + 2(160 + 2(1120 + ay1g9 + b =0 (331)
ap + agp — A120 — A1gp =0

Consequently, the zero-eigenvalue eigenvectors for the collision matrix can be calcu-
lated taking into account the imposed constraints in equation (3.31) and there are

three distinct non-zero eigenvalues

A= 6((10 + (lso) + 2b
o = —6(ap+ 2ag) — 3b (3.32)
T = —Tb

In fact A can be shown [47] to be related to the kinematic viscosity v by

v= -~ (% " %—) (3.33)

Note that the viscosity in equation (3.33) is specific to the D2Q7 ILB model, i.e. the
viscosity is model dependent. To ensure a positive kinematic viscosity, A is chosen

to lie within the range
-2<2<0

and to allow the f*“’™ contribution to converge as quickly as possible (thus enhanc-
ing stability) o and 7 are usually chosen to be —1 [64].
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Since the collision operator is now independent of the LGCA set of collision rules
the model does not posses unconditional stability and as v — 0 numerical instability
can set in. In general the stability of LBE schemes is a neglected aspect of their
behaviour, and seems to depend upon the "negativity” and local gradients of the

link density distributions [65-67].

However the enhanced collision 1LB model does recover Galilean invariant Navier-
Stokes equations through a careful selection of the form of the equilibrium distribu-

tion function, without the need for rescaling of quantities.

3.4.3 The single relaxation LBGK model

The enhanced collision operator defined in equation (3.29) can be simplified even
further by assuming all particle collisions relax towards equilibrium at a constant

rate [66], i.e.

1

where 7 is the single relaxation parameter that ultimately controls the viscosity of
the isotropic fluid and is valid within the range —2 < 7 < 0. Again instability can
set in as 7 — 0 since ¥ — o0 and we stress that the stability and order of accuracy
of LBE solution, especially with increasing Reynolds number and lattice resolution,

is an on-going issue.

The evolution equation of an LBGK scheme therefore becomes
- 1
ir e t+6) = fi(r,1) = — (i = ) (3.35)
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This form of the collision operator produces what is called an LBGK evolution
equation, because of its similarity to the Bhatnagar Gross Krook (BGK) Boltzmann

operator [68] used to solve the full, classical Boltzmann equation.

In the original LG evolution equation a Fermi-DiraC'distribution‘ is used to find the
local equilibrium. The origins of the Fermi-Dirac distribution form of the equilibrium
distribution derived from the LG exclusion principle, allowing only one boolean
particle to reside on a lattice link at any one time. This resulted in the overall
state of a node being descfibed by a boolean variable and limited the number of
collisions which could take place on a node at each time step. However there is
no physical basis for this exclusion principle, which was introduced to simplify the
computations. The equilibrium distribution in the LBGK model is derived from
an expanded, uniformly translating Maxwe]l-Boltzmann distribution [69], and it is
mainly for this reason (essentially no definite underlying set of collisions) that LB

models today are viewed as separate models to the LG models.

Having selected a single relaxation collision function, the mapping of the LBGK
model onto hydrodynamics is performed in the same vein as the enhanced colli-
sion function mapping (see next section). The important step is to choose a suitable
form for the equilibrium distribution function, that maps correctly onto the required
macroscale hydrodynamical equations. However in the ILB enhanced collision map-
ping, it is the form of collision function €);; that needs to satisfy thé mass and
momentum conservation constraints. In the LBGK model it is the form of the

equilibrium distribution that has to satisfy the conservation constraints.



The momentum density distribution scheme is implemented in this work using an
enhanced collision operator D2Q13 ILB model. The associated (second) angle dis-

tribution scheme is implemented using the single relaxation LBGK model.

3.4.4 D2Q13 ILB Isotropic Incompressible hydrodynamics

We define a two dimensional lattice with a thirteen link velocity basis (D2Q13) [63],

which is a three-speed hexagonal lattice with velocity vectors e, given by

e = {0,0} (3.36)
er = e{%1,0}, e{il/z,iﬁ/z}
e = e {0, i\/§} e {:I:3/2, i\/§/2}
where the subscripts (¢ = 0,1 and 2) are associated with the particles with velocity
0, ¢ and v/3c respectively. This D2Q13 1LB model is an extension of the D2Q7 ILB

model [53] which takes into account not only nearest neighbours but next-nearest

neighbours, see figure (3.6).
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Figure 3.6: The D2Q13 lattice model, (a) depicts the repeated lattice units showing the links
between nearest and next-nearest neighbours. (b) shows a singular lattice unit for clarity, where
the rings indicate the nearest neighbour e; and the next-nearest neighbour e, speeds respectively.
The rest e, speed is represented by the central dot.

The D2Q13 hexagonal lattice shown in figure (3.6) has velocity moment ”tensors”

of the form

Tal...an = Zta (eim "-eian) (337)

where, with respect to the link speed o, t, = 11/25, t; = 9/100 and ¢, = 1/300.

The odd order tensors are zero and the even order tensors are isotropic up to 6%
order, given by [70]

T® = T[2]das

of
4 o i
Tgﬁ)’ye =T [4] (Oaﬂo'ye + Oa75ﬁ5 + 5a6057) (338)
6
Tgﬂ)ww = T[6] A opryegs

where the Aqgyegs term is a sum of products containing 15 terms each of the form

0080vc0ps [70]. The constants T [n] are found to be T[0] =1, T[2] = ¢, T[4] = ¢t

and T [6] = c!/4.
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We create an isotropic collision matrix Qg-s‘)) from block circulant matrices (required
by symmetry [64]) that couples the three velocity sets. The collision matrix is

written-down after the D2Q7 collision matrix [53], see equation (3.29)

C b d
O =1pr A @ (3.39)
" GT E

where b = b = {b,b,b,b,b,b} and d = dT = {d,d,d,d,d,d}. Also A JE and
G = GT are 6 x 6 circulant matrices with first rows, {ao, ago, a120, @180, @120, As0 },

{60, €60, €120, €180, €120, 6’60} and {9307930799079150,9150,990} respectively.

The collision matrix must satisfy the requirements of conservation of mass and mo-
menta laid out in equations (3.30). Whilst it must be stressed that there is a wide
choice of matrix elements that would satisfy the requirements, we make the following

choice of matrix elements.

b = 7/13 , c = 127/13 o d = 7/13
g3 = T/13 ; g0 = T/13 . G150 = T/13
ag = -—(10T+13¢) /39 s aegp = (6T+13¢)

Q190 = (—207' + 13¢) /78 5 aigg = (37’ — 13d)) /39

(3.40)

where 7 and ¢ are eigenvalues of the collision matrix.

There are four eigenvectors with an eigenvalue 7, four with an eigenvalue ¢ and five
with an eigenvalue of zero. For simplicity we explicitly set 7 = —1 and note that the
eigenvalue ¢ is equivalent to —A, the eigenvalue of the D2Q7 ILB model discussed

earlier.



Recalling the ILB evolution equation (3.28), but for our D2Q13 collision matrix
file +e8,t+68) = fi(r,t) + ZQ(’S")f”""”" (3.41)

we note that the macroscopic variables are velocity moments of the link density

distributions, i.e. equations (3.18) and (3.19)
ri):Zfi(r7t) p(rat)u:Zfi(r:t)ei-

Taylor expanding the lL.h.s of equation (3.41) using the spatial parameter § and

retaining terms to second order gives,

2

6 [0c + eiaa] fi + 5 [0 + ciada Z Q) et 10 (%) . (3.42)
where the space and time indexing has being omitted for the sake of clarity.

Expanding, as usual, the link density distribution function f; and the time derivative

0; up to second order about the same small expansion parameter §,

fo= 50+ 6+ 8P+ 0

8 = &, + 00, + 6%, + O().

I
o

(3.43)

Where the equilibrium distribution fi(o) = fi(eqm) actually determines the macro-

scopic observables through the requirements,

p=>_7 , pu=3" %, (3.44)
i 7

thus ensuring that the moments of higher-order components of the link density

distribution are neutral:

=0, S fPe=0 (n>1). (3.45)
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Substituting the expanded terms in equation (3.43) into the evolution equation (3.42)
results in
60y + €iaal S + 8 [0, 10 + (B + €100a) S + 3 (01 + ia0a)” 7]

= 5,08 [o10 +021] + 0 (8%,

(3.46)
taking the terms of first order in ¢ gives
atofi(o) + eiaaafi(o) = Z Qz(';'so)fggl)- (3.47)
J
Taking zero and first order velocity moments respectively
O > FO 48> =3 ol (3.48)
i i ij
Oy J"eip + 00y [Peiaeis =Y 05 fVesg (3.49)
i i ij

which, upon application of the macroscopic variable definitions in equation (3.44)
and the summation constraints on the collision matrix in equation (3.30), produces

the first order contributions to the continuity and Navier-Stokes equations respec-

tively
O, (p) + Oa (pua) =0 (3.50)
Bro (pug) + 0,T15) = 0 (3.51)

where I'Igog is the zeroth order contribution to the momentum flux tensor,

Hgo) = Zfi(o)eiaeiﬂ. . (352)
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Next we extract the second order expansion of the evolution equation,
O [ + (Byy + €iaBa) [V + = (ato + €ia0a Z Qi 1 (3.53)
which upon using the first order expa,nsion‘(3.47) yields
0u f{¥ + (Byy + €iada) £V + ato + €i00q Z Q8 i = EQ(‘S") @ (3.54)

Taking zero and first order velocity moments on equation (3.54) produces the second

order contributions to the continuity and the Navier-Stokes equations respectively

9, (p) =0 (3.55)

B, (pup) + 0aT1L) + = a W) =0 (3.56)

where we have defined the second order contribution to the momentum flux tensor

as
1) = Z [Peitis (3.57)
W
and 5 is defined as
ol = ZQ( 1V eineis (3.58)

Combining the first and second order extractions gives the macroscopic equations

to second order as

0,(p) + B (pua) = 0 (3:59)

1
0, (pug) + 90 (N +T153) +50.00) = 0. (3.60)

We now need to select a suitable form for the equilibrium distribution function that
maps equations (3.59) and (3.60) onto the target macroscopic equations, continuity
and momentum (Navier-Stokes) respectively.
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The most general form of the equilibrium distribution function up to O (u®) that
satisfies these conditions was determined for our D2Q13 ILB model [70] and found

to be equivalent to the the D2Q7 ILB form given by Higuera et al [53]

1 1 1
fl.(o) =pis (1 + 'CEeiaua - -ﬁuaua + 2_04‘eiaeiﬂuauﬂ> (3.61)
S S S

except that, for our D2Q13 ILB model, the velocity of sound is ¢; = 1/3/10 [70].
The first order contribution to the momentum flux tensor Hg)ﬂ) therefore becomes
Hgg = c2pbap + PUsUg (3.62)

and in appendix (B) we demonstrate that to first order in u we can approximate
the right hand side of equation (3.47) as
Q(i)f(l) ~ _1_3 ( Q; | (3.63)
Z gl Y2 () Qine :
j S

where Q;. is defined as
2
Qi'ye =t (ei'yeie - 05575)

and so, using result in equation (3.63), we can re-write equation (3.58) as

1
Q(alﬂ) - g&, (puc) Z Qiye€iatip. (3.64)
s i

Turning now to the momentum flux tensor, the first order link density distribution
f-(l) can be expanded in terms of the eigenvectors & of the isotropic ILB schemes

1

matrix, given in equation (3.39), thus

=>"ae (3.65)



where the a, are the coeflicients of the expansion. Equation (3.63) now takes the

form,

i , 1
Z Ql(j) Z a"gj ~ ga’)' (pue) Qi’ye' (366)
J v s

()
1]

Making an index change EjQ & = A&/, where, A, is the eigenvalue associated

with the eigenvector £ yields

1
Z a,\ € = 22‘87 (pue) Qire- (3.67)

14

Taking the inner product of equation (3.67) with an arbitrary eigenvector with non-

zero eigenvalue gives

Doah ) EE 50, (pu) D& Qe (3.68)

¢
relabelling >, ££'Qiye = ¢fe, where, Qiye = 3, ¢4.& and noting 7, £/'€Y = 4, we

easily obtain an expression for the co-efficients in of the expansion in equation (3.65)

a, ~

1
62/\ a’)’ (pue) qule (3'69)
ST N

This procedure is, however, valid only for eigenvectors with a non-zero eigenvalue,

so for completeness, we can write equation (3.65) as the combination of the contri-

butions from equation (3.69) and the zero eigenvalue contributions.

1 ’ .
RSy 30 (pue) ah + > a2 (3.70)
ST

14 v

It can be shown that, for the case of an isotropic fluid, the second term on the r.h.s

of equation (3.70) vanishes and that the remaining terms can be used to write the

first order distribution function as, [70]

1 1 .
1 50, pud {5 Qu+ (08 + 0 St ol )
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which we can use to write the second order contribution to the momentum flux

tensor as

Hgg - 5 pue) Z { Qz’ye g2§i2 + 935?) 6’)’6 =+ gléil} €in€ig- (372)

The last two terms inside the braces on the r.h.s of equation (3.72) correspond to
eigenvectors of the isotropic collision matrix. In the incompressible limit the terms
~associated with the post-multiplying Kronecker delta &, vanish and the g; term
can be shown to contribute only to the hydrostatic pressure and as such can be

omitted [70].

Replacing the terms in equation (3.60) with equations (3.62),(3.64) and (3.72) we
can write (in the incompressible limit ) the emergent Navier-Stokes equation of the

lattice fluid [70] :
1
Ok (ua) + up0p (uq) = ——;aaP + 10505 (uq) (3.73)

where P is the scalar pressure term, which, for our model, is equivalent to c¢2p and
v is the kinematic viscosity of the isotropic fluid, controlled through eigenvalue ¢

according to :

(% - 1) . | (3.74)

tin the limit of small departures from equilibrium we can replace the approximation with an
equality.
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3.4.5 Dimensionality of LBE models

We need to briefly discuss the dimensional units of a LG or LB model. A lattice
with dimensions L x W, is specified in terms of lattice units (lu). To convert these to
actual units (au), the relevant dimension is multiplied by the lattice link distance.
For the case of the hexagonal lattice, the length unit is traditionally taken to be
unity, therefore a length of L lu’s corresponds to a length L in au’s. However the

width unit is v/3/2 and so a width of W lu’s corresponds to a width of W+/3/2 au’s.

The basic time step is unity and therefore all other quantities such as velocity (lattice

units per time step) are derived from these basic units.

3.5 Review of Principle Applications of LB

Here we briefly review some of the principle applications in fluid dynamics of the
LB scheme. Starting with standard flow applications we shall then move onto the
thermodynamics and lastly immiscible fluids. The latter two fields have seen some
of the most intensive but problematic applications. Finally we shall cover a few

other applications of the technique.

Succi et al [71] introduced LB models for isotropic 2D and 3D fluid dynamics and
since then a number of flow geometries and regimes have been investigated [63].
Koelman [72] presents a simple LB scheme for Navier-Stokes fluid flow and Hou et
al [73] provide a detailed analysis of cavity flow using the LB method. Creeping
flow is investigated by Flekkgy et al [74], Sun [75] investigated high speed flows and
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Amati et al [76] performed simulations of high resolution turbulent channel flow.

Alexander et al [77] introduced an LBGK scheme that modelled thermodynamic flow
of monatomic gases and Chen et al [78] developed higher order schemes that removed
the LB nonlinear deviations from the target equations of macroscopic thermodynam-
ics. Since then LB models have been used to investigate many thermodynamical
problems, including single and two-species thermal turbulence [79, 80], Rayleigh-
Bernard convection [81,82], as well as non-ideal gases and high-Mach number ther-
modynamics [83,84]. A concise study of hydrodynamic and thermo-hydrodynamic
internal pressure-driven flows is presented in [85] which also contains a good review

of current LB thermodynamics.

Gunstensen et al [64,86] introduced 2D and 3D LB models of immiscible fluids,
discussing the observed surface-tension with experimental results. Investigations
into the hydrodynamics of LB immiscible models have been performed in [87-89]
with good reviews of the LBGK two component models covered in [90,91]. Recently
ternary LB models [92-94] have been presented which, when compared to existing

binary LB models, have produced richer and more accessible phenomenology.

Lattice Boltzmann models have also been applied to other areas of fluid dynamics
including non-ideal gases [95], complex fluids [96], bubble growth [97], contact line
dynamics [98], granular flow [99], magneto-hydrodynamics [100,101] and electro-
viscous transport [102]. This list is not exhaustive and is intended only to imply the

extent and range of the LB technique.
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3.6 Boundary Conditions in Lattice Models

Bounding a computational flow domain can be a non-trivial problem even in mature
applications of CFD. However, in LG and LB models the algorithmic process of
imposing a wall can be relatively simple. On the discrete lattice nodes a bounding
wall can be implemented by labelling specific nodes as ’wall’ nodes and applying
a different operation on the propagating particles other than the ’bulk’ collision
at every time step. Wolfram [40] showed that the simplest operation that ensured
non-slip conditions at a bounding wall node was a bounce-back closure rule which,

despite its widespread use, is only first order accurate.

W=l

LL]

= ] W:O f

W=Width-1
(a) Before propagation. (b) After propagation.

Figure 3.7: Schematic of the bounce back wall operation, (a) shows two link distributions

before propagating onto the wall layer (W=0). The white arrows in (b) show the positions of the

link distributions after propagation but before bounce-back is applied, the black arrows show the
link distributions after the bounce-back operation.

Instead of experiencing a collision, the particles on a wall node are returned along the
link on which it approached, see figure (3.7). This effectively introduces friction and
produces a non-slip wall at the designed wall nodes. Cornubert el al [51] showed,
however, that the bounce-back method is only first order accurate and so suppresses

the Knudsen layer associated with a bounding wall. The ease in which a bounce-
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back wall can be implemented allows for the simulation of complex geometries.
However, the exact position of the imposed wall is unknown, in general the first
order accuracy making the effective zero in macroscopic velocity occur slightly off-
lattice. He et al [103] rigorously analyzed the near wall velocity for Poiseuille flow
using a first-order bounce-back closure rule and confirmed an off-lattice wall position

with zero velocity.

The errors introduced in the first order bounce-back boundary closure rules will affect
the accuracy of the method, especially in the near wall lattice fluid. For this reason
several attempts ati producing a second order accurate boundary condition have
being developed, resulting in smaller (higher order) errors. Skordos [104] introduced
velocity gradients into a wall layer equilibrium distribution, Noble et al [105] applied
a pressure constraint at the wall layers and Inamuro et al [106] used a combination
of bounce-back and specular reflection. All the above boundary methods improved
the accuracy of the wall layers and have being studied and compared by Zou et
al [107], but the general problem of lattice closure remains. For the purposes of the
work presented here we concern ourselves with bulk schemes only and neglect lattice

closure as an issue.

3.7 Forcing in Lattice Models

Forcing a LG or LB scheme is usually achieved through one of two methods: body
forcing or equilibrium forcing. In this section we shall briefly discuss both methods
of forcing. However, throughout this work the body forcing method is used.
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Body forcing is associated with the process of imposing a pressure gradient on the
lattice fluid and entails adding/subtracting fixed amounts of link density distribu-
tions from specific/all bulk node links, to produce the required flow profile. When

a forcing term of the form
F,=At,e; (3.75)

is added to all bulk node link densities at every time step within a translationally
invariant channel geometry, at steady state a Poiseuille flow profile develops. The
resultant pressure gradient, Gocg = —0; P is shown, through a suitably adjusted

Chapman-Enskog expansion, to be of the form (see appendix A) [2]

Gop =0 ) t.el,. (3.76)

Equilibrium forcing entails setting a known velocity profile along a specific line of
sites, e.g. a channel inlet and outlet. Along the line of sites, the node densities are
redistributed across the node links using a known equilibrium distribution function
that produces a flow profile .of the correct form. In terms of channel (duct) flow,

equilibrium forcing imposes a pressure gradient down the channel that at steady

state results in a Poiseuille flow profile.

3.8 Summary of the Lattice Models

In this section we have introduced and reviewed the history of the evolution of
discrete lattice models. Since the formulation of cellular automata, a diverse range

of LG and LB models have appeared that map onto macroscopic hydrodynamics.
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A brief explanation of some of the more popular types of LG models used to model
fluids and their differences are presented with a view to covering the general ideas and
methodology of LGs. Next the process of performing a Chapman-Enskog analysis
on an LG evolution equation to recover a set of macroscopic equations that (after
a suitable rescaling of variables) map onto hydrodynamics is reviewed. A general
discussion of some of the intricacies of such an analysis is followed by remarks on
the technique. The section on LGs is finished with a brief literature review of some

of the key applications showing the scope of the method.

Having discussed the LG models, the historical development of the LB models was
introduced. The key developmental stages of the LB models are covered, culminating
in the two main algorithms used within the LB community,i.e. the ILB and LBGK
models. A classical D2Q7 ILB model is introduced along with the simpler single
relaxation LBGK model. Since however we have used a D2Q13 ILB throughout
this thesis, it is this model that we have mapped onto the macroscopic equations
of hydrodynamics by performing a Chapman-Enskog analysis on the D2Q13 ILB

mesoscopic evolution equation.

A short literature review of LB models is presented before the chapter concludes
with a discussion on bounding and forcing issues within LG and LB models. The
boundary and forcing mechanisms introduced in this chapter are consistent with the

mechanisms used to produce the results presented in chapters 5, 6 and 7.
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Chapter 4

Anisotropic Extensions to the

LBE Model

4.1 Introduction

In chapters 2 and 3 we covered the continuum theory of both isotropic and anisotropic
fluids and showed how the macroscopic dynamics of a discrete isotropic Lattice
Boltzmann model recovers the continuum conservation equations of continuity and

momenta.

Having specified the form of our target macroscopic dynamics (i.e. the ELP equa-
tions of nemato-dynamics) we introduce to the isotropic momentum scheme a sec-
ond (link angle) distribution that undergoes its own LBGIK collision step and ad-

vects (propagates) along with the momentum densities. By careful selection of a
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suitable equilibrium distribution and forcing terms we recover on the macroscale,
the coupled equations of motion for the director. Subsequently we introduce the
necessary anisotropic extensions to the core momentum ILB scheme which intro-
duces anisotropy into the rﬁacroscopic momentum equations through the use of an

anisotropic collision matrix and specific forcing terms.

At each time step we calculate the macroscopic observables of mass, momentum
and director angle which are subsequently used to produce the required terms used
in the coupled equations in the evolution schemes of the momentum and angle

distributions.

4.2 Director Equations of Motion

We associate with the lattice Boltzmann link momentum density distributions f; (r, t)
a second distribution, the (scalar) link angle 6; (r,¢). We assume this link angle
distribution advects (propagates) with the momentum density distributions and un-
dergoes its own collision step to achieve evolution. Further, we assume that the
lattice nematic’s Reynolds number is small, that the fluid is incompressible and that
spatial director gradients are small - an assumption already implicit in the formula-
tion of the target dynamics we note. Accordingly, in the spirit of lattice Boltzmann
simulation we propose an evolution equation for the link angle distributions, akin to

the LBGK scheme,

0 (r + 06t +0) =0, (0,1) = @ {0 (r,0) = 617 (0, p0) | +Fe (41
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where @ is the LBGK relaxation parameter, F; represents position/time dependent

eqm) (

forcing terms and 95 6, p,u) is the link angle equilibrium distribution function.

For brevity we shall drop the spatial and time labels in the following analysis.

We define the macroscopic observable as a density weighted summation of link angle

distributions, thus

0 = %Z fibi. (4.2)

The summation is considered more fully at the end of this chapter.

We can expand the link angle, time derivative and, crucially, forcing terms [2] using
the same parameter § as the scheme for momentum densities :
6; — 6+ 066" + 520,
0, — Oy + 00, +06%9,, (4.3)
F, — OFM 4+ 6%F?,

where we note the forcing term contains no §° contributions.

As usual, we implicitly link the zeroth order expansion of the link angle to the link

0) = (g(eqm)

angle equilibrium distribution function 6§ acting on the shortest time

scale 0;,. The specific form of the link angle equilibrium distribution function 91(0) is

confined by the following requirements which we place upon the velocity moments
S =0 e Y eM=0 @m>1) (4.4)
50065 = 20645 + Ouqug.

Substituting the expanded quantities in equation (4.3) into the evolution equation
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(4.1) results in

5[0+ €a0) 7] + & [é%, 08 + (Byy + €ia0a) 6 + % (Bt + €ia0a)” 0

=~ |06 + %] + oFD + 27,

(4.5)
Extracting to first order in ¢ therefore gives
8,0 + 8,6V ¢, = —26") + FY (4.6)

which, upon summation on i, gives the first order contributions to the scalar director

acceleration equation :
01,0 4 0,0 = FOU. (4.7)
where 3=, F{!) = FO) is the cumulative effect of forcing.

Extracting to second order in § using the first order equation (4.6), gives

0,07 + (1= 5) (O + €1000) 6 = —6 + F (4.8)
Upon summation on 7, results in
w
0,0 + (1 - -2—) Oa Zegl)eia — FO (4.9)
1
where F() = D Fi(2).

Using equation (4.6) to replace the first order link angle distribution 01(1) gives

<

1/2
9,6 = 3(5‘1) [ma@eﬁ"’em+aaaﬂ29§°’eiaeiﬂ +  (410)

% (1 - %) 2 (B + €1a0a) Y + FO
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and postponing further discussion of the F' terms in the r.h.s of equation (4.10) until

the end of this section, we write :

(2 1 @
_ G _ 2 _ , (1)
0,0 = ) <—a) 1> 0,0,0 + F'\2 + - (1 2) E (01 + €ia0a) F; (4.11)

Combining equations (4.7) and (4.11), we obtain the macroscopic director equation
of motion derived from the Chapman-Enskog expansion of our scalar link angle

evolution equation as

K 1 !
wypo 1 2 . &)
0u0at +F® + F 4 = (1 2) > (B + eiada) FY (412)

T ;

0i0 + uo0,0 =

we immediately make the association,

K (2
sz 4.1
Mmoo 2 (@ 1) (4.13)

where K is the single elastic constant and 7, a specific combination of the Leslie
coefficients. Thus equation (4.13) tells us that for our particular scheme, the single
elastic constant of our nematic is controlled by the LBGK scalar relaxation param-

eter w.

The forcing terms in the r.h.s for our director equation of motion (4.12) are added
to the link angle evolution equation in the form Fi(") = t,F™. The t,’s are the
rest distribution constants and F' generates the forcing terms derived in equation
(2.122). The forcing in the r.h.s of our lattice fluid director equation (4.12) can‘be
solved independent of the f;’s [2]. On writing Fi(n) = t, F(® (Vy, 0,H), there are
Q Fi(l)’s and Fi(2)’s (where @ = 13 for our scheme) which can be chosen so as
to recover from the last three terms in the r.h.s of equation (4.12),_the appropriate
(target) coupling of the latt.‘ice director to the velocity field.
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The final (target) form of the derived macroscopic director equation of motion is

thus

K
0t + ua 0,0 = —0,0a0 + Q. + anAag + —1—M. (4.14)
! Y 4!

1
So to map our link angle evolution equation onto the target macroscopics we need
to define a suitable link angle equilibrium distribution function 91@) which satisfies

the constraints laid out in equation (4.4). For simplicity, we assume a form of
00 = %0 (4.15)

where f; is the link momentum density distribution and p is the macroscopic density.
It can be shown that our choice of the link angle equilibrium distribution function
satisfies all the requirements in equation (4.4), subject to the arguments presented
below. It should be noted however that this is not a unique solution and there other

possible forms that would equally satisfy all the constraints.

4.2.1 Discussion

Within the methodology discussed above we incur two types of error terms, firstly
any first order forcing contribution Fi(l) will produce an "error” term at second order.
These terms can often be corrected by revised second order forcing contributions
F;.(z) [2]. Second order forcing terms likewise incur third order error terms. Since,
however, we are only recovering the target macroscopics up to second order we need

only discuss error terms due to the first order forcing.

From the last section we see that the Chapman-Enskog procedure applied to our
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angle evolution produces the following first order forcing ”error” terms at second
g p g

order

1 1 1 1
_Eato Z F;( ) and — 530 ZFz( Desa.
1 1

On general grounds [2] we can argue that one appropriate choice for the first order
forcing terni F;(l) in our scheme is the uniform magnetic field contribution. The
forcing is applied according to F; = ¢,F, where F represents the forcing terms
derived at the end of chapter 2 in equatioﬁ (2.122), from which it can easily be
shown that the spatial gradients in the forcing term are always zero. Moreover, the
time derivative forcing error term will be zero except for the instances when the
field is switched on or off at which point the term will be discontinuous. At present
we assume for now the second order "error” terms due to the first order forcing
contribution are negligible and thus ignore them. In fact, in more general situations
the error terms could by removed by insertion of equal but opposite forcing terms at

second order, resulting in all forcing ”error” terms being reduced to third order [2].

A second class of "error” terms produced in the director dynamics are a consequence
of the Chapman-Enskog procedure upon our selection of the link angle equilibrium
distribution function. In equation (4.10) the second term inside the square braces

is of the form

0
00 > 0¢ies
i
where the second velocity moment summation should, according to the constraints

in equation (4.4), equal
Z Ogo)eiaem = 0505,,/3 + Buqug.
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The second term on the r.h.s of the last equation is a consequence of the constraints
on the momentum equilibrium distribution function, fi(o). However, in the director
evolution scheme this is an error term that is of second order in u and therefore it is
small in the target creeping flow. The form of the equilibrium distribution function

in equation (4.15), produces one other error term of the form
1
0, 051105

which involves second order spatial derivatives of the first order contributions to the
momentum flux tensor. In the next section we show that in the anisotropic case the
first order momentum flux tensor is a function.of velocity and director gradients.
We can therefore argue that this term is at most third order and as such can be

ignored.

4.3 Amnisotropic Viscous Stress Tensor

The anisotropy is introduced into the momentum evolution scheme through an
anisotropic collision process. We write the anisotropic momentum evolution equa-

tion as

fi(r +ed,t+0) = fi(r,t) + Z (QE;) - Sij) f;nem + F; (4.16)

J

where Qz(;’) is the anisotropic collision matrix, S;; is defined below, f}neq) is the non-

equilibrium component of the momentum link density distribution and the 'forcing’

term F; is of the form

1
Fi = 7tgeiﬂ8a (CYQTLahg + agngha) . (417)

8
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The forcing term recovers the momentum evolution arising from the oy and a3 terms
of the anisotropic viscous stress tensor. In order to recover the remaining terms, the

anisotropic matrix is taken to be of the form

(@ %5
@) — Y (4.18)
R B R P
where Qgso) is the isotropic collision matrix defined in equation (3.39) and
)\50) = (SO (ejaeja) >\§2) = 52 (6jana>2 )\§4) = (54 (ejana)4 . (419)
The /\5.0) term contributes only to the isotropic viscosity, /\5-2) yields the terms as-

sociated with the a5 and a4 coefficients whilst )\gfl) gives the term associated with
the oy coefficient. In order to recover the oy term from the A§-4) term in the correct
form, it is necessary for the velocity summation tensor introduced in equation (3.37)
to be isotropic up to 8 order. For this reason we do not attempt to recover the

term associated with the oy viscosity in this scheme and concern ourselves only with

(2)

‘h reatrin fop ieatr th
57, which require lattice isotropy up to 6

recovering the terms associated with A
order only.

The S;; term in the momentum evolution equation (4.16) is defined as

7

Sij=Y & e (4.20)

v=4

where the summation is implied over the 4 eigenvectors £*) of the collision matrix
with zero eigenvalue. The effect of the S;; matrix is to remove the contributions of
these eigenvectors from f;* for all n > 1. Tt is necessary to accomplish this removal of
terms in order to recover the required form for the macroscopic anisotropic viscous
stress tensor. A recent development of this scheme with a more general scattering

matrix removes the need for this matrix.
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Following the isotropic Chapman-Enskog analysis performed in chapter 3, the anisotropy

enters through the extension of the first order link density distribution function
£ = (1420 422 g (4.21)

where the gfl) are terms which can be determined from a similar analysis as in

chapter 3 :

1 1 "\
gl(l) = 2587 (pus) (—gQi"/e + (92&(2) + 9361(3)) 6’)’6) + glfi(l) + Zguéi( ) (422)

s v=4

So the first order correction to the equilibrium distribution function is now

1 1
o = (1 + A0 + )‘1(2)) [?37 (puc) <—$Qme + (ngz@ + 93@(3)) 576) "

7
ne +3Y° gu«ff”)} (4.23)

v=4
Now, unlike the isotropic scheme, the last term in equation (4.23) describing the
contributions from the eigenvectors with zerb eigenvalues is non-zero. These contri-
butions are removed in this work by the matrix S;;. However, a more general form of
the scattering matrix removes the need for this ten.sor. In the incompressible limit,
all terms in equation (4.23) multiplied by ¢, vanish and the eigenvector associated
with the g; term can be shown [70] to contribute only to the hydrostatic pressure

and so we can write equation (4.23) as

| 1 1
s (1 + 20 4 )\52)) [E(% (pue) ("EQW()J (4.24)

and inserting the correct form for the /\E") terms from equation (4.19) results in

50 . 52
%&y (Pue) Qi'yeei¢ei60¢5 - _a'y (/Juc) n¢n6Qi7e€i¢6i5
S

m _
f1 C?¢

1
—%87 (pue) Qiye —

(4.25)
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Provided the velocity set has the correct isotropy, the form of fi(l) given by equation

(4.25) leads to the following form for the anisotropic viscous stress tensor.

’ 50 62
O = C2p (1 —% ——37—%) Aap+ (4.26)

2 52 2 52
(E‘% — 012)\) nan,lAms -+ <£‘S$i — 013/\) ngn“Am
Recalling that we are not recovering the term associated with the a; coefficient and

that the terms associated with the a, and a3 coefficients are introduced as forcing

terms, we can make the following identifications

0 2
o = @n(1-3-%-5)
2 52
a; = S8 ay) (4.27)
2 52
Qg = E%*Olg)\

We have therefore obtained a momentum evolution scheme which gives direct con-
. . . . . . . . /
trol over the Leslie viscosity coeflicients in the anisotropic viscous stress tensor OB

through the simulation parameters as, a3, 6%, 6% and ¢.

In order for the algorithm to remain dynamically stable, the parameters associated
with the anisotropic scattering matrix (6°, 62, ¢, 7) must be chosen to ensure that

—2 < 32, &Q:;€7 < 0 for each eigenvector £ and |37, £7Qy;€H| < 1 for v # pu.
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4.4 Anisotropic D2Q13 ILB Implementation

We shall now cover some of the key issues involved in incorporating the anisotropy
into an isotropic D2Q13 ILB model. Implementation of the D2Q13 isotropic model

was carried out after Higuera et al [47].

At each time step we calculate the nodal macroscopic observables of mass p, mo-
mentum pu and director angle 6. The first two are derived using the standard LB
method of summation over ¢ of the zero and first velocity moments of the link den-
sity distribution. However for the macroscopic scalar angle the required summation

is a little more subtle.

The apolar nature of the director imposes a n < —n condition on the nematic.
In our algorithm we adhere to this condition * by finding the principle eigenvalue

eigenvector from a density weighted order matrix of the thirteen link angles [3],

Qaos = }p‘z (3nianig — bap) fi (4.28)

i
obtaining the average angle from the components of the principle eigenvalue eigen-

vector.

However to conform to the Chapman-Enskog expansion our macroscopic variable
needs to be a weighted sum of the link angle distributions, see equation (4.2). For
this reason we subtract the principle eigenvector angle from each link angle before

"ranging” the link angles to lie within —7/2 < 6; < 7/2.

*It should be noted that this is not the only possible solution.
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The density weighted summation in equation (4.2) was then performed on these
suitably adjusted link angles to find, in effect, the average deviation from the prin-
ciple eigenvector angle. Since the model assumes small gradients in the director
field then the deviations from the principle eigenvector angle should be sméll and,
in the situations considered, the apolar nature of n does not now affect the summa-
tion. The average angle 6 is then simply the combination of the principle eigenvalue

eigenvector angle plus the average deviation angle.

Having obtained the macroscopic observables we then use the method covered in
appendix (C) to find the local gradients of the director and velocity fields, required

to calculate the molecular field,
hlb =N (dtnll —wX n|/t) + 72naAa;L

which are used along with the director components to form a 2 x 2 tensor field, Tﬁﬁ

of the form

(012 + 043) lehz (07%) nzh +azn hx
Ths = ! ! (4.29)
oy nyhy + asg ngh, (a2 + as) nyh,

whose gradients (again calculated according to appendix (C)) are used in the anisotropic

forcing term for the momentum evolution equation, i.e. equation (4.17)

1 h |
Fi = —%c—gt(,eiﬁ aaTaﬂ (430)

The forcing terms to the director evolution equation are calculated at every time

step using the velocity gradients calculated in the above process where appropriate.
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4.5 Discussion and Conclusions

We have shown that the coupled set of the ELP equations of nemato-dynamics

introduced in chapter 2 can be mapped onto by our enhanced D2Q13 ILB scheme.

Introduction of a separate link angle distribﬁtion evolution scheme that undergoes
its own LBGK collision process and advects (propagates) along with the momentum
density evolution scheme was shown (with the addition of suitable forcing terms)
correctly to recover the scalar director equation of motion. Enhancing the isotropic
D2Q13 ILB scheme introduced in chapter 3 by inclusion of an anisotropic collision
matrix and suitable forcing terms was shown to recover the anisotropic form of the

viscous stress tensor for the momentum equation of motion.

A general discussion on the forms and order of the incurred error terms for the link
angle distribution evolution scheme was presented and some of the issues involved in
the implementation of the algorithm were discussed. Importantly we have raised the
issue of the apolar nature of the director unit vector, n, and introduced a scheme
that correctly recovers the nodal average angle from the link angle distributions

consistent with the methodology of the Chapman-Enskog procedure.

The algorithmic implementation section concludes with a brief review of how the
forcing contributions by the terms corresponding to the a, and a3 Leslie viscosity

coefficients are introduced into the momentum evolution scheme.
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Chapter 5

Model Validation

5.1 Introduction

This chapter describes the validation of the isotropic scheme developed in chapter 3

and the anisotropic extensions developed in chapter 4.

We first demonstrate that the isotropic model correctly maps onto the hydrodynam-
ical continuum equations of mass continuity and Navier-Stokes. We then show that
the full anisotropic algorithm correctly recovers some known solutions of the ELP

equations of nemato-dynamics.
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5.2 Isotropic D2Q13 ILB scheme

It is prudent to validate the isotropic D2Q13 ILB scheme developed in chapter 3
before any anisotropic extensions are implemented. Naturally there are any number
of flow regimes one could use to validate an isotropic lattice Boltzmann scheme [107].
For the purpose of validating our algorithm the process of matching a constant
body forcing pressure gradient G' in a uniform Poiseuille flow was selected as it
has the advantage of a known analytical solution. Moreover, to obtain the correct
relationship between pressure head and‘resultant flow rate is known to be a stringent

test.

This method not only provides a good way of testing the algorithm but utilizes
the same geometry, boundary conditions and forcing mechanisms used later in the

anisotropic scheme.

5.2.1 Duct Flow

We begin by considering the flow geometry shown in figure (5.1). The system is
bounded in the y-direction by a pair of non-slip walls but is periodic in the z-
direction, hence it is translationally invariant. Although we work in two dimensions,
we can consider that in the z-direction the system is infinitely deep and therefore
the z co-ordinate does not enter into the hydrodynamics. This geometry is generally
referred to as duct flow and imposing a constant body force throughout the fluid

directed along the channel, results in a Poiseuille (parabolic) flow profile. The fluid

105



is at rest at the walls and the maximum velocity occurs at the centre of the channel

width [9].

(LSS

\Y4 y

S S S S S S S

Figure 5.1: Geometrical setup for simple laminar Poiseuille {(duct) flow. The system is periodic
and translationally invariant in the z-direction and bounded by non-slip walls in the y-direction
separated by a distance W. The z-direction can be considered to be infinitely deep and so therefore

does not contribute to the hydrodynamics.

It is well known that for steady state incompressible uni-directional flow, such as

that depicted in figure (5.1), the Navier-Stokes equations [9] reduce to,
1 2
-V P=vV*u (5.1)
p

where u, is the only non-vanishing velocity component. This allows us to write

equation (5.1) as

% Gp=v0, u, (5.2)

where Gg = 0, P and is defined as the pressure gradient.

For Poiseuille flow there is no u,-component of velocity and on general grounds the

uz-component of velocity varies only as a function of y. The solution :

max

4 uf
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where W is the width of the system (in actual units, au) and u%* is the maximum

z-component of velocity is easy to obtain.

Substitution of equation (5.3) into equation (5.2) gives

o W2Gg\ 1

Therefore a plot of u™*® versus 1/v results in a straight line with zero y-intercept

and a slope which allows us to find the emergent pressure gradient Gg from

8p .
Gg=— Wz % Gradient (5.5)

A series of Poiseuille flow simulations in the geometry described above, varying the
viscosity v and measuring u'** therefore allows us to measure a value of the pressure

gradient Gg.

The non-slip bouﬁding walls were implemented in our test-bench D2Q13 ILB model
by applying bounce-back boundary conditions along a pre-design‘a,ted wall layer of
sites on the simulation lattice (usually W = 0). A constant body force of Aty e,
(where A is the free forcing parametér) is applied to all bulk (non wall) node link

distributions at each time step.

At steady state a Poiseuille profile was obtained where the maximum z-component
of the velocity u]**® occurs in the centre of the channel with zero velocity at the

bounding walls.

Using a Chapman-Enskog expansion of the momentum evolution equation, it can

be demonstrated (see appendix A) that the pressure gradient, which is constant
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throughout the system, is related to the free forcing parameter A by

Ger = A, (5.6)

The comparison between the derived pressure gradient Ggg in equation (5.6) and
the emergent (measured) pressure gradient Gg obtained from equation (5.5) over a
range of forcing values A should therefore be in agreement if the algorithm correctly

recovers isotropic hydrodynamics.

Figure (5.2), shows a typical steady state (u,) profile across the width of the system

>max

compared to a parabolic profile with the same (u;)™**. Due to the system being

translationally invariant, the z-component of velocity can be averaged down the

channel to produce {u;). The actual value of {u;)™*"

is dependent on the degree
of forcing applied A and the viscosity v of the fluid set through the simulation

parameter @.
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Figure 5.2: Steady state Poiseuille flow profile obtained from simulation compared to a theo-
retical parabolic profile with the same (ug)™**.

Note that the fully developed flow profile deviates from the theoretical curve as we
approach the walls of the system. This effect is due to the first order accuracy of

the imposed bounce-back boundary conditions™.

*See end of chapter 3 for a general discussion on bounce-back boundary conditions.
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Figure 5.3: Variation of {ug)™® with simulation parameter ¢ for several values of the forcing
parameter A. The increasing slope of the straight lines is indicative of the increase in pressure
head. .

Figure (5.3), show the variation of {u;)™*"

with 1/¢ for several values of forcing
A. As predicted the variations map onto straight lines with specific gradients and

a y-intercept of zero. The emergent pressure gradient Gg is extracted from the

gradients of these curves using equation (5.5).

Figure (5.4), shows the final comparison between the Chapman-Enskog derived pres-
sure gradient and the emergent pressure gradient from the simulations. As can be
seen the results are in very good agreement with the expected values. This com-
parison not only validates the isotropic algorithm but also the forcing mechanism
employed and the applied boundary conditions (which, despite their limited accu-

racy, seem to perform acceptably), all of which will be used in the anisotropic model.

110



50 T T T T T T —T

45 o /4. -

40 g B

A

. 3E -
e
x 20 //’
g i
g 5} 1
g L
o i .
S af ]
8 #

15 yd J

10} e 1

A
5 ,;r’/ .
¥ Gg ——1
GPE e
0 1 ] 1 1 ! L
0 2 4 6 10 12 14 16

8
Forcing (4) x 104

Figure 5.4: Comparison between the emergent pressure gradient Gg and the theoretical
g

pressure gradient G g derived through the Chapman-Enskog expansion of the isotropic D2Q13

1ILB evolution equation.

Note that although the results deviate from the parabolic profile as we approach
a wall, the results are still in good agreemenf with theory because (u,)™" is used
to find the pressure gradient. The maximum velocity occurs in the centre of the

channel where we get a good correlation with the parabolic profile of Poiseuille flow.

Model stability can be monitored by checking the mass does not fluctuate during
the simulation (i.e. there are no mass sinks or source in the simulations). The total

mass of the system at each time step is calculated as

M (t)= > fi (5.7)

Va,y.i

Throughout a typical run the variation in the system mass was of the order of 1077,
indicating not only a stable simulation but that the imposed boundary and flow

conditions are not adding or removing mass from the system.
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We can also test the convergence of the simulation onto a steady state by calculating
the residual of the velocity field. The residual is a common test of convergence in
traditional CFD simulations and essentially calculates the difference in the entire
" velocity field between successive time steps. As the simulation reaches a stable state
the residual, which is calculated from the following equation,

R(t) = Z (|u'x,y7t = [ufeye-1) (5.8)

Ve,y

will tend to zero. Here |u] is the position and time dependent nodal velocity mag-

nitude.

Figures (5.5 a) and (5.5 b) show time correlation plots of the calculated residual
R (t) for the isotropic simulations carried out with the maximum and minimum

forcing values.
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(b) Normalized residuals showing an equal decay time.
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Figure D.0: Residual decays for the maximum (A = 0.0015) and minimum (A = 0.0001)

forcing values used in the isotropic Poiseuille (duct) flow simulations. System size was 10 x 30 lu’s



Note the residual rapidly approaches zero and remains at zero for the remaining
simulation run time, which is taken to indicate that the system has reached steady
state and therefore the (u,)-component of velocity at mid-channel has attained its

. maX
maximum value (u,)

The mass check and residual are calculated at every time step during the simulation
run time and are displayed during the run. All results presented in this isotropic
validation section are for simulations that remained stable during the run time. At
larger values of the forcing parameter A the simulation becomes unstable which set

an upper limit to the available forcing range and accessible Reynolds number.

5.3 Anisotropic D2Q13 ILB Scheme

In chapter 4 the extensions to an isotropic D2Q13 ILB model were introduced and
discussed. To validate these extensions we examine two cases: firstly we consider
the coupling between flow and director orientation by examining the response of the
bulk director due to a simple laminar flow in the absence of any external fields [3].
Secondly we consider how the director orientation affects the flow properties by

matching onto the Miesowicz viscosities of a nematic [3,4,108].
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At this stage we need to specify the Leslie viscosity coefficients of the nematic we are
simulating. Although there are fivel Leslie viscosity coefficients a;...a5 to recover
we shall currently consider only four of these. The term associated with the «;
Leslie coefficient would require 8% order isotropy of our underlying lattice and so we
have chosen not to include this term in our model. Omitting this term should not
seriously alter the resulting nemato-dynamics and it could, in future, be included

by a suitable enhancement to the lattice structure.

From [109] we can write down the relevant Leslie viscosity coefficients for the liquid
crystal N-(p-methoxybenzylidene)-p-n-butyl-aniline (usually abbreviated to MBBA)

at 25°C, well within its nematic phase.

Leslie viscosity coefficients | ELP parameters J
1073 poise | 1073 poise || |
Qy a3 oy Qs Qg T Y2 A
-77.5 | -01.2 | +83.2 | +46.3 | -34.4 || +76.3 | -78.7 || +1.03146

Table 5.1: The 5 relevant Leslie viscosity coefficients for MBBA at 25°C,
well within its nematic phase. Also resulting ELP parameters 1, > and A.

tActually there are six but the Parodi relationship reduces the number to five.
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5.3.1 Director Alignment in Simple Laminar Flow

In validating the director evolution equation, we shall consider the case of director
alignment in simple laminar flow in the absence of any external fields. As in the
isotropic validation method we employ periodic boundaries in the z-direction and

bounded non-slip wall conditions in the y-direction.

+ ++ + + + + +

|

+ + 4+ 4+ + + + +

Figure 5.6: Schematic of the bulk director orientations 0y varying across the system width d
showing the boundary transition regions e; for a simple Couette (shear) flow of magnitude |u| in
the absence of any applied field.

In [3], de Gennes introduces three parameters i, 72 and A that characterize the

nematic in terms of the Leslie viscosity coefficients, thus:

M =03 — 0 Yo=o3+ar A=-2 (5.9)
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For |A| > 1 there is a certain’critical angle 6, between the bulk director orientations
and the direction of the flow field for which the hydrodynamic torque vanishes. Far
from the walls, the molecules will tend to lie precisely at the angle 6, while nearer
to the wall the molecules will experience a transition region e; between the bulk

alignment and the wall alignment.

For |A\| < 1 the hydrodynamic torque is non-zero throughout the nematic and more
complex (unsteady) regimes such as tumbling can be observed [110-113]. For these
validation results and all subsequent anisotropic results discussed in this work we
shall not enter the |A| < 1 regimes, since for most physical nematics || is slightly
larger than unity [3]. The algorithm however does have the ability to enter these

regimes and this could be an interesting future area of study.

In the presence of a steady state simple laminar flow, having fixed ), the bulk

directors should align to the theoretical angle 6,, given by

— 1 -1 1 4
Oy = 5008 ()\) (5.10)

For A = 0 the angle between the bulk director alignment and the direction of the
flow field should be small 8, =~ 0. At larger A the bulk director orientations 4, will

tend towards a maximum deviation away from the direction of flow field. .

19, — 7/4 due to the apolar nature of the nematic director
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To implement the arrangement in figure (5.6) we employ bounce-back boundary
conditions along the W = 0 line of sites, designating them wall nodes. At these wall
nodes we overwrite at every time step the current link angle distributions 6;(r, %)
with the required wall angle 6,, distributing the wall angle onto the links by setting

6;(r,t) = t,8,(r,t), mimicking strong anchoring.

In order to generate a shear flow we apply a constant body force Atye;, (as intro-
duced in the vlast section to recover isotropic Poiseuille flow). However for shear flow
we only apply the forcing along one line of sites (usually W = Width/2). The result-
ing steady state solution corresponds to twé "back-to-back” translationally invariant
(Couette) shear flows. The maximum z-component of velocity (u,)™*" appears at
mid-channel whilst at the walls the fluid is at rest. The u,-component of velocity is

zero and the only non-zero velocity gradient is 0, u,.

Selecting the physical nematic viscosity coefficients ov...cc5 of MBBA shown in table
(5.1) fixes 1 and 2 and therefore A. Higher values of A were achieved by changing
a3 whilst keeping oy fixed. Table (5.2) shows the change in Leslie coefficients upon -
altering the a3 viscosity coefficient and keeping all other simulation parameters

constant.
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Leslie viscosity coefficients ] ELP parameters l

1073 poise | 1073 poise || |

, ) | a3 | 0y Qs l Qg ” Y1 | Y2 ” A | 0, degs |
-077.5 | -001.20 | 083.20 | +044.70 | -033.99 || 76.30 | -078.70 || 1.031455 | 06.949
-077.5 | -003.37 | 083.20 | +049.31 | -031.56 || 74.13 | -080.87 || 1.090909 | 11.778
-077.5 | -004.31 | 083.20 | +051.38 | -030.43 || 73.19 | -081.81 || 1.117647 | 13.263
-077.5 | -007.05 | 083.20 | +057.76 | -026.78 || 70.46 | -084.55 || 1.200000 | 16.779
-077.5 | -010.11 | 083.20 | +-065.51 | -022.10 || 67.39 | -087.61 || 1.300000 | 19.858
-077.5 | -017.88 | 083.20 | +088.76 | -006.62 || 59.62 | -095.39 || 1.600000 | 25.659
-077.5 | -025.83 | 083.20 | +119.76 | +016.45 || 51.67 | -103.33 || 2.000000 | 30.000
-077.5 | -038.75 | 083.20 | +197.26 | +081.01 || 38.75 | -116.25 || 3.000000 | 35.264
-077.5 | -046.50 | 083.20 | +274.76 | +150.76 || 31.00 | -124.00 || 4.000000 | 37.761
-077.5 | -051.67 | 083.20 | +352.26 | +223.10 || 25.83 | -129.17 || 5.000000 | 39.232
-077.5 | -058.13 | 083.20 | +507.26 | +371.64 || 19.36 | -135.63 || 7.000000 | 40.894

Table 5.2: Leslie viscosity coefficients, fixing 71, 72, A and 8, for director
alignment in steady state simple (Couette) shear flow in the absence of any
applied field.

Figures (5.7) and (5.8) show typical steady state director and velocity profiles across

the width of the system respectively. Each figure shows the steady state results for

the cases when the flow field is either coupled or uncoupled from the director field.

Note the velocity graph shows the two back-to-back Couette flow profiles with zero

velocity at the walls and equal but opposite shear gradients.

The full coupling

between the director field and the flow field produces a distorted (bulged) shear

profile and a slightly different bulk director field. The discontinuities in the flow

field profile at the wall and centre positions are a consequence of the imposed flow

and boundary conditions. However the bulk of the flow profile in figure (5.8) is that

of simple shear flow.
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Figure 5.7 Comparison between the steady state director field for the fully coupled system and
the flow field decoupled system. The director field coupling to the flow field affects the resultant
flow profile which consequently re-affects the director field.
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Figure 5.8: Comparison between the steady state flow field (back-to-back Couette flow) for

the fully coupled system and the flow field decoupled system. The effect of the director field on
the resulting flow field is to 'bulge’ the flow from a straight shear profile to a curved profile.
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Figure (5.9) shows a comparison plot of the theoretical curve of 6, versus A over the
range of parameters listed in table (5.2). The free forcing parameter A was chosen
to produce a steady state laminar shear flow below the critical shear rate for flow

instability [114].

30

20 +

Bulk director orientation, (8,,), degrees

5
A=y

Figure 5.9: Steady state director bulk orientations 6, versus nematic parameter A for a
strongly orientating laminar flow in the absence of any applied field. The solid line represents the
theoretical curve obtained from equation (5.10). The points are the steady state results obtained
from simulation.

The results presented in figure (5.9) indicate that, in the absence of an applied mag-
netic field, the coupling behavior between flow and director alignment is successfully
recovered and that the ELP director equations of motion are correctly recovered by
our model. A discussion on the absence of the transition regions e; in our results is

presented at the end of this chapter.
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5.3.2 Measuring the Miesowicz Viscosities

Finally in this section we need to validate the anisotropic extensions to the momen-
tum evolution equation which is aimed at recovering the anisotropic Navier-Stokes
equations. These extensions dictate how the changes in director orientation affect

the flow properties of the nematic.

The Leslie coefficients are often determined experimentally by measuring the Miesow-
icz viscosities from the measurements of laminar shear flow in the presence of a

strongly orientating magnetic field [3,4,13].

In these experiments the bulk director orientations are firmly aligned in one direction
by a constant homogeneous magnetic field H. To achieve such strong alignment we

need to satisfy the following conditions

1. The walls bounding the flow may impose some preferred state of alignment
other than the direction of H. To avoid this we need to ensure the diameter of
our simulation is much larger than the magnetic coherence length of the walls,

i.e. £(H) < d where

¢H) = <€—)_% (5.11)

K is the nematic elastic constant (in the one constant approximation) and x,

is the magnetic susceptibility of the nematic.
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2. We saw in the previous experiment, the flow itself will tend to orientate
the bulk directors. In a velocity gradient A the hydrodynamic torque v A
$ needs to be balanced by the restoring torque of the magnetic field which is

XoH?sin (B4cr). Therefore,

A
Oger ~ sin~! (X,YH"’) (5.12)
Q

and so ensuring that 64, < 1° will result in an essentially unperturbed align-

ment.

With the above two conditions satisfied, figure(5.10) shows three types of alignment
experiments for simple laminar Couette (shear) flow. However since we are only
dealing with a two dimensional system, case (a) in figure (5.10) is not possible,

which leaves us with cases (b) and (c).
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Figure 9.10: Schematic of the three fundamental geometries for viscosity measurements in a
well aligned nematic. n is the bulk director orientation which is firmly aligned by a magnetic field.
The arrows indicate the direction of the imposed shear flow profile.

§A is of order yA, where v is some average of y; and 2.
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For each case an effective viscosity 7,4 can be defined as

!

= Jop 5.13)
neff - 2Aaﬂ ’ ( ‘

where a;ﬂ is the viscous stress tensor given by equation (2.1'12) and A,g is the
symmetric component of the velocity gradient tensor given by equation (2.100).
When applied to the three cases shown in figure (5.10), equation (5.13) yields three

different effective (Miesowicz) viscosities.
’

Na = Tl = %014
T = 77” = % (CY4 + g + CY3) (514)
e = N = 3(0a+as—a)

The Miesowicz viscosities shown in equations in (5.14) can be recast in terms of the

parameters used in our anisotropic 1LB model, i.e. equations (5.15)

3=

1 2 3 (950 21 1 of 1.2
m = s(autastas) = cp(1+2(28°+6%)) =+ (== —3c%p
| 2 ( 1 )¢> ( 2 ) (5.15)

. 2

o= sast+as—ax) = cp(1+3(26°+6%)) % + (—La:_'w - %cﬁp)
where ¢ is the eigenvalue of the isotropic ILB collision matrix controlling the viscosity
of the isotropic fluid and §° and 2 are the simulation parameters used to specify

the anisotropy.

From simulation, we calculate velocity gradients and hence we can find A,s. The
viscous stress tensor o;ﬂ is assumed to be linearly relafed to the free forcing param-
eter A and as such we can use equation (5.13) to calculate an emergent Miesowicz
viscosity. On comparison, the emergent Miesowicz viscosities and the predicted
Miesowicz viscosities should be in close agreement if the coupling of the director

field to the hydrodynamic equations of motion is correctly recovered by our model.
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The mapping will be done in two parts, firstly we shall consider the Miesowicz
viscosities without any c_ontribution from the o and a3 Leslie coefficients. In this
case the two Miesowicz viscosities 1) and 7, in equation (5.14) reduce to a single
anisotropic viscosity ¥ different to the isotropic viscosity but independent of the

director orientation [3] (i.e. viscosity is constant under director rotation).

The second part is when we insert the as and a3 contributions: in this case we
should see a difference between the 7, and 7, viscosities (i.e viscosity changes due

to director rotation).

The geometrical setup is the same as for director alignment in simple laminar flow.
We employ bounce-back boundary conditions at the walls for the momentum densi-
ties and align the wall director orientations to the required angle. The fluid is forced
at the half width line of sites, using the body forcing already introduced in the last
section, resulting in a pair of equal but opposite back-to-back Couette shear flows.
We apply a homogeneous magnetic field strong enough to overcome the deforma-
tions in the director field caused by the presence of the wall alignment and the shear

flow.

Tassuming the Parodi relationship (ag — a5 = as + a3)
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The magnetic field is applied thus :

1. The magnetic susceptibility x, (set to unity for simplicity).
2. The magnitude of the magnetic field, H.

3. The angle of application for the homogeneous magnetic field 6,,. |

The components of the magnetic field in two dimensions are thus

H, = xoHcos(bm) , Hy = xoHsin(6,) (5.16)

The Miesowicz viscosities defined in equation (5.15) are inversely related to ¢ with
identical gradients and non-zero y-intercepts, varying according to the as and as

viscosity coefficients.

Without the terms in the anisotropic viscous stress tensor controlled through the
oy and ag viscosity coefficients, the nematic viscosity is independent of the bulk

director orientations.

We now consider the two conditions required to ensure we have an unperturbed

system in which we can measure the Miesowicz viscosities.

The first condition required is that the wall orientations do not impinge upon the
magnetically aligned bulk orientations. We have to make sure that the diameter of
our system is much larger than the magnetic coherence length given by equation

(5.11).

llwhere 0° is parallel to the z-plane.
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It is not intended to measure the magnetic coherence length in this chapter, rather,
we simply wish to ensure that the bulk director orientations which we shall use to
find the Miesowicz viscosities are not adversely affected by the magnetic coherence

lengths.
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Figure 5.11: Bulk director orientations for increasing magnetic field strength for simulation
of size 10 x 60 lu’s. The wall orientations are strongly anchored parallel to the plane of the
wall whilst the magnetic field application angle is normal to the plane of the wall. The bulk
orientations experience a magnetic coherence layer £ (H) as they approach a wall. The relative
size of the coherence length decreases with increasing magnetic field strength H.

Figure (5.11) shows the bulk director orientations for a system diameter of 10 x 60
lattice units for increasing values of magnetic field. We observe a magnetic coherence
length whose relative size diminishes with increasing field. At higher magnetic field
values we can state that the majority of the bulk director orientations are aligned
to the magnetic field direction and that the coherence length is sufficiently small

¢(H) < d so as not to affect the obtained Miesowicz viscosity. Performing the
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Miesowicz viscosity simulations at these higher field values therefore satisfies the

first condition.

We can however show that the coherence lengths obtained from our simulations do
indeed diminish according to reciprocal field strength. If we take & (H) as the lattice
diameter position just be.fore the bulk director orientation aligns to the imposed
magnetic field direction we can compare the relationship between & (H) and H from

our simulations to the expected theory, given by equation (5.15), see figure (5.12).
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Figure 5.12: Comparison between theory and simulation results for the decrease in the mag-
netic coherence length £ (H) versus increasing magnetic field strength H.

We now turn to the second condition, namely, the re-orientating affects of an imposed
simple laminar flow field. The results presented in figures (5.11) and (5.12) are in the

absence of such a flow field. However we know from the previous section that any
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irﬁposed flow will tend to align the bulk directors to the direction of the flow field.
Taking the above results as guidance we can essentially determine an upper limit to
the strength of the imposed flow field. For the larger magnetic field strengths used
to ensure no coherence length problems we need to select the strength of the flow

field such that the bulk orientations are deformed by less than 1°.
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Figure 5.13: Bulk director orientation deformations due to increasing imposed flow fields for a
magnetic field strength H = 0.1 corresponding to the small magnetic coherence length £ (0.1). The
deformation due to the flow should be less than 1° to satisfy the conditions required to measure
the Miesowicz viscosities. '

Figure (5.13) shows the deformation of the bulk director orientation due to an in-
creasing flow field strength, for a magnetic field strength of H = 0.1 corresponding

to the small coherence length & (0.1).

129



The next step is to measure the effective viscosity, (n.g) **, of the fluid. We should
observe a different effective viscosity for the anisotropic fluid (62 # 0) than for the
isotropic fluid. However without the a, and a3 contributions the anisotropic viscosity

will be invariant with respect to bulk director orientation.

Figure (5.14) depicts the change in the effective viscosity (7.g) across the simulation

channel width for the isotropic and anisotropic simulations.

0.25 |
isotropic ——
anisotropic -------

oIt

0.2

0.15

0.1

0.05

Eftective viscosity, <ngg>
(=3
T

025 1 1 1 [ 1 Il [ | 1 ! il

5 10 15 20 25 30 35 40 45 50 55 60
Simulation width, W lu

Figure 5.14: Difference in the resultant steady state effective viscosity (7.g) between
the anisotropic director orientation independent simulation and the isotropic simulation. The
anisotropic simulation has a higher resultant effective viscosity than the isotropic simulation.

**Again we can take the average down the system length due to the translational invariance of
the geometrical setup.
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Figure (5.15) shows the resulting change in the steady state (u,)-component velocity

profile for the isotropic and anisotropic simulations, due to the change in the effective

viscosity.

<u,> velocity component
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Figure 5.15: Corresponding change in the fluid flow profile between the anisotropic and
isotropic simulations. Since the forcing in both simulations remained constant then the higher
resultant effective viscosity of the anisotropic fluid results in a smaller steady state flow profile.

From figure (5.14) we can see that the viscosity of the anisotropic fluid is markedly

greater than the isotropic fluid. This increase in the effective viscosity causes a

smaller steady state flow profile, for the same forcing value as the isotropic fluid.

This smaller flow profile is shown in figure (5.15).

131



isotropic
anisotropic ---~---

0.8
g
S,
g
g 06
g
3
h=]
73
Q
[
e o4}
@
©
E
o
z

02}

0 L 1 Il “““‘"""“‘-"--1- 1

0 20000 40000 60000 80000 100000 120000 140000

Simulation run time, t

(a) Time correlation function of the normalized residual, R (£) /R (g)max

for the isotropic and anisotropic simulations. Each residual plot is nor-
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Figure 5.16: Isotropic and anisotropic simulation time correlation functions of the residual
and mid-channel (u;)-component of velocity.



Figures (5.16 a) and (5.16 b) show the residual R (¢) and (u,) time correlation
functions for both the isotropic aﬁd anisotropic simulations respectively. Note that
in both cases the total mass of the simulation remained constant throughout, varying
on the order of 1077, indicating a stable simulation. The difference in the residual
profiles is due to the fact that since the anisotropic fluid is more viscous than the
isotropic fluid, a smaller velocity profile is obtained which is also shown in the
different velocity time correlation curves. Both the residual and time correlation

function graphs indicate that the steady state solution has being reached.

Referring back to figure (5.14), we can see that the effective viscosity is constant
across the width of each back-to-back flow profile. The only gradients in the effective
viscosity occur near the wall and in the centre of the channel, where the back-to-back
Couette flows are forced. We can therefore take the value of the effective viscosity
from around the Width/4 lattice position for steady state simulations with pinned

director orientation between 0° and 180°.

Figure (5.17) shows that without the terms associated with the ao and a3, viscosities,
the anisotropic effective viscosity is, as expected, independent of the director angle

with a total variation of only = 0.05%.
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Figure 5.17: Steady state variation in the effective viscosity (n.g) with respect to bulk director
orientations 6, for the case when the terms associated with the a, and ag Leslie coefficients are
not included. The effective viscosity in this case is independent of the bulk director orientation.

Therefore the results from our simulations are in agreement with expected theory.
A similar result is found for the effect of director orientation on the induced shear

flow field.

Figure (5.18) shows the change in the anisotropic effective viscosity (7.7s) with the o
and a3 viscosity terms included. For each simulation the bulk director orientation
was pinned to a specific angle and allowed to reach steady state. The resulting
effective viscosities are now angle dependent being at a maximum and symmetric

about 7/2.
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Figure 5.18: Steady state variation in the effective viscosity (neg) with respect to bulk director
orientations 6, for the case when the terms associated with the a» and ag Leslie coefficients are
included. The effective viscosity now varies with bulk director orientation, being at a maximum
and symmetric about /2.

It is worth noting that when the pinned angle is parallel to the flow direction the
resultant effective viscosity is approximately the same as the effective viscosities
~ obtained in the angle independent case. This is due to the fact that the parallel
alignment case produces the least anisotropic effect on the flow (since the torque

acting on the flow due to the director orientation is at a minimum).

Figure (5.19) depicts the corresponding changes in the steady state (u,)-component

of velocity.
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Figure 5.19: Steady state variation in the mid-channel {uz)-component of velocity, with
respect to bulk director orientations 6 for the case when the terms associated with the as and
a3 Leslie coefficients are included. The velocity profile now varies according to the change in the
effective viscosity of the fluid which varies with director orientation.

The fall in the resulting velocity as the angle changes from being parallel to perpen-
dicular to the flow direction is due to the fact that, as the fluid effectively becomes

more viscous and since we have constant forcing, the resultant flow profile is smaller.

Finally we shall examine the cases for the Miesowicz viscosities, namely the parallel
and perpendicular bulk director alignments. Figure (5.20) shows the linear relation-

ship between effective viscosity (n.g) and 1/¢ for the two Miesowicz viscosity cases.
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Figure 5.20: The variation in the Miesowicz viscosities with reciprocal simulation parameter
¢. The 7 and 7, viscosities map onto straight lines showing the expected theoretical behaviour

of equal gradients with different y-intercepts.

As predicted, the variations produce a pair of straight lines with equal gradients but
different y-intercepts. The ratio of the gradients to the y-intercepts will be indepen-
dent of any pre-multiplying constants relating the theoretical Miesowicz viscosities

to the Miesowicz viscosities obtained from simulation.

| Slope to y-intercept ratio || ny | m |
Theory -1.8425 | -2.6005
Simulation -1.8438 | -2.6000

Table 5.3: Comparison of the predicted slope to intercept ratios and the
ratios from the simulation results of the Miesowicz viscosities ) and 7 .

Moreover, the ratio of the gradients to y-intercepts for the two Miesowicz viscosities
obtained from simulation compared to the predicted ratios from the Leslie viscosity
coefficients for MBBA are shown in table (5.3). The agreement shows a very good
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correlation (less that 0.1% error) between the predicted theory and our results.

We are thus confident that recovering the Miesowicz viscosities to such a high degree
of accuracy validates the second part of our anisotropic extensions to the isotropic

D2Q13 ILB model.

5.4 Discussion and Conclusions

We have developed an isotropic D2Q13 ILB model and performed a suitable valida-
tion exercise (duct flow) upon the model to ensure that the correct macroscopic fluid
dynamics were recovered. During the validation the criteria for model stability and
steady state convergence were introduced and shown to be satisfied by our isotropic
model. From this basis we then proceeded to validate the anisotropic extensions to

our model in two separate stages.

To test the director field’s response to the flow field we used the fact that the bulk
director orientations 6, in a simple laminar flow in the absence of any external fields
is dependent only -upon a specific combination of nematic viscosities A. Results
from these simulations showed good agreement with theory over a wide range of A’s.
However the theory also predicted transition regions e; between the bulk alignment
6, and the strongly anchored wall alignment 6,,. In our simulations we noticed an

absence of such transition regions and so a brief discussion of this fact is necessary.

The transition regions occur in the vicinity of the walls as the bulk director orien-

tations change rapidly to orientate themselves tangential to the strongly anchored
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wall orientations. In chapter 3 a general discussion on bounding lattice models
is presented including the properties of the type of boundary conditions used in
these simulations, i.e. first order bounce-back. Cornubert et al [51] showed that the
"Knudsen layer” in a bounded forced fluid (the region where the flow profile changes
rapidly to become zero at a non-slip wall) is not recovered accurately by the bounce-
back technique. The first order constraint on the bounce-back boundary condition
suppl‘eéses the Knudsen layers associated with the flow field, and since the director
field tfa.nsition regions e; can be likened to a Knudsen layer we can argue that they
are also suppressed by the imposed first order boundary conditions. As support for
this argument we look to Clark and Leslie [5] who discuss the presence of the thin
boundary layers in strong anchoring and state that the director orientation changes
rapidly whilst aligning to the wall orientation and so neglect transition regions in

their subsequent calculations.

The second part of the anisotropic extensions was to modify the momentum density
evolution equation, to recover the specific form of the anisotropic viscous stress
tensor a;ﬁ given by equation (2.112). The flow properties of our nematic should now
be coupled to the director field and so any change in the bulk director orientations
should affect the resultant flow profiles. The method employed here to validate this
coupling (recovering the expected Miesowicz viscosities) showed good agreement

(less than 0.1%) with the theoretical predictions.
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We now confirm a model in which changes in the flow profile cause reorientation
of the director field, and reorientation of the director field can induce flow. The
validations‘ prove the ability of the algorithm to map onto the steady state ELP
theory to a satisfactory degree. In subsequent chapters we use the fully coupled

model to examine some of the more interesting properties of nemato-dynamics.
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Chapter 6

Simple Geometry Simulations

6.1 Introduction

Having, in the previous chapter, validated the algorithm with some known theoret-
ical results we can now proceed to consider other theoretical experiments that can

be performed in the simple geometrical configurations already introduced.

The main topic of the previous chapter was the anisotropic effects in steady state
laminar flow. However some of the more interesting physical properties of nematics
occur in transient flows where rapid direc‘tm' orientation can produce a velocity field
which affects the director dynamics. Accordingly in the following experiments there
will be no imposed flow profile and all velocity fields produced are driven by director

reorientation, are transient and decay away to zero at steady state.
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The first part of this chapter explores the coupling between director orientation and
an imposed bulk maghetic field by considering the well known Fréedericksz transition
[3,4]. Afterwards we shall use the results from our Fréedericksz transition numerical
experiments to investigate the nematic effect of velocity ’'back-flow’ with director
’kick-back’. We shall consider the origins of back-flow and kick-back, commenting

on some previous theoretical work [5,7].

6.2 The Fréedericksz Transition

In two dimensions with the director confined to the plane we consider the experi-
mental situation of a nematic liquid crystal, bounded in the y-direction by non-slip
walls and periodic in the z-direction. Assuming strong uniform anchoring at the
bounding walls, then at steady state the bulk director orientations will be aligned
tangential to the wall director orientations, in the absence of any induced flow or

applied field.

Figures (6.1 a) and (6.1 b) show schematic diagrams of steady state aligned bulk
director orientations for the cases of parallel and perpendicular wall alignments

respectively.
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(a) Parallel wall alignment. (b) Perpendicular wall alignment.

Figure 6.1: Schematic of a wall aligned bulk nematic at steady state in the absence of any
external fields.

If a magnetic field H is applied normal to the wall alignments in figures (6.1 a) and

(6.1 b), an induced magnetic torque is experienced by the bulk directors of the form
Tvy=x.(n-H)nx H (6.1)
which vanishes in an unperturbed configuration (n - H = 0).

At large H values the bulk orientations will be aligned in the direction of the magnetic
field except for two thin transition regions, £ (H), near the walls [3]. In chapter 5
we discussed the appearance of these magnetic coherence lengths for an irr;posed
magnetic field as a bounding wall is approached. At low field strengths the coherence
length will exténd further into the bulk and in the extreme case of the coherence
lengths covering the width of the system then the bulk will all be aligned to t,h.e wall

orientation.
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We can therefore define a critical field strength H. for which the centre of the bulk
first begins to align to the direction of the applied field, away from the imposed wall
orientation. Around this critical field value there will be a phase transition between
the unperturbed configurations shown in figures (6.1 a) and (6.1 b) to the distorted

configurations shown in figures (6.2 a) and(6.2 b).
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(a) Perpendicular applied magnetic field. (b) Parallel applied magnetic field.

Figure 6.2: Schematic of the steady state bulk aligned nematic in the presence of a strongly
orientating magnetic field H > H. applied normal to the easy axis of the wall.

The critical magnetic field strength H, in the one constant approximation is [3,4],

H, = % (K)% | (6.2)

Xa

and so the product of H, and d is a constant dependent on the elasticity & and the

magnetic susceptibility x, of the nematic.
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This phase transition is named after V.Fréedericksz who first observed it optically
in 1927 [115]. The transition is second order (i.e. distortions around the threshold

are small) and can be calculated using an elliptic integral [116,117].
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Figure 6.3: Schematic representations of the properties of the nematic Fréedericksz transition.
(a) and (c) are from [4] and (b) is from [3].

Figure (6.3 a) shows a schematic diagram of the changes in the director orientation
across the width of the system at critical and sub-critical magnetic field values.
Figure (6.3 b) is the theoretical plot of a second order Fréedericksz transition :
where the y-axis corresponds to the director orientation in the centre line of the
system relative to the wall director orientation. The x-axis represents increasing
magnetic field intensity and the point where the curve cuts the x-axis is defined as
the critical magnetic field H,. Finally figure (6.3 c¢) from [4] shows qualitatively the
relaxation of the Fréedericksz transition as the applied magnetic field is tilted away

from the normal towards the wall alignment angle.
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6.2.1 LBE simulation of the Fréedericksz transition

To simulate the Fréedericksz transition using our anisotropic ILB scheme we model
the simple geometrical setup shown in figure (6.1 a). We bound the nematic in the
y-direction with bounce-back wall conditions on the link density distributions [85]
and apply periodic boundaries in the z-direction to produce an infinite length. We
fix the director orientations at the walls to a parallel alignment* by distributing
(overwriting) the wall angle 6,, over the wall link directiqns using 6; = t,0,, at every

time step thus mimicking strong anchoring at the horizontal wall.

The following simulation results were obtained for a lattice 5 lu’s in length and a
width ranging from 5 to 60 lu’s. The Leslie coefficients used were those in table
(5.1) relating to MBBA and the magnetic susceptibility of the nematic x, was set
to unity for simplicity. The value of the single elastic constant K was set according

to a relaxation parameter of @ = 1.8.

We impose no flow profile and align all the bulk directors to a specified initial
orientation. Care has to be taken when selecting the applied magnetic, wall, and
bulk angles to ensure that a bias is given to the Fréedericksz transition. The reason
for biasing the initial director configuration is to eﬁsure that no nematic domains
separated by disclination walls terminating in +1/2 defects [118] are formed during
the simulation. Such defect indubed domains and disclination walls are discussed
elsewhere (chapter 7) since, here we want to concentrate solely on the Fréedericksz

transition and do not wish to enter into these issues.

*The actual wall alignment is slightly biased to ensure a clean transition.
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To prevent the formation of domains we slightly bias the alignment of the wall and
magnetic field so that a single domain is preferred in the bulk. Note, however, that
we have observed in our simulations, when no such biasing was employed, domain

formation which would clearly provide interesting material for future work.

Having selected an initial configuration we gradually increase the strength of the
applied magnetic field from well below the critical value,‘ through the transition and
up to a value well above the transition value. Between each field strength increment
we allow sufficient relaxation time for the bulk orientations to reach the steady
state configuration. In this kind of experiment, with small applied field strength
increments and long intermediate relaxation times, one expects induced velocity

fields to be extremely small and to decay away quickly to zero.

Figure (6.4 a) shows the length averaged bulk director orientations sin® (f) across
the channel width for a simulation with a relatively large diameter. Notice ﬁhe
emergence of a plateau of director orientations at magnetic field values well above
the critical magnetic field value H >> H, corresponding to the direction of the applied
field and the emergence of the coherence lengths € (H) as the director orientation
changes in the approach to a wall. Figure (6.4 b) shows the coherence lengths
¢ (H) diminishing with increasing magnetic field strength. Ultimately at very large
magnetic field values H — oo the magnetic coherence length will tend to zero.
Figure (6.4 c) shows the length averaged bulk director orientations sin® (4,) across
the channel width for a system with a slmall diameter (5 lu’s): even at large field

strengths the size of the plateau is relatively small.
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(c) Final steady state bulk director orientations sin? (g;) across a
small system width (5 lu’s) showing coherence layer £ (H) effects on
the field induced plateau, the magnetic field strength is shown in-
creasing from H = H,. through to H > H..

Figure 6.4: Simulation results for the length averaged bulk director angle response to an
increasing magnetic field strength. Results were obtained for a lattice 5 lu’s in length and a width
of 60 Iu’s in (a) and (b) and 5 lu’s in (c). Leslie coefficients are for MBBA in table (5.1) xq, was

set to unity and K was set according to a relaxation parameter @ = 1.8.
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Using equation (6.2) allows us to calculate the values of the critical field strength H,
in our simulations at various system diameters d. Table (6.1) shows the expected
critical magnetic field strength for several system diameters ranging from 5 to 60
lattice units. The value of the diameter d used in the calculation is for actual units

(au) and so the lattice diameters need to be converted .

System diameter || Critical Field

d (lu) | d (au) H,
5 4.33012 0.07843
10 8.66025 0.03921
15 12.99038 0.02614
20 17.32051 0.01961
30 25.98076 0.01307
40 34.64102 0.00980
50 | 43.30127 0.00784
60 51.96152 0.00654

Table 6.1: Critical magnetic field Hc values for increasing system diame-
ters of a nematic with unity magnetic susceptibility x, and the single elastic
constant K set through the simulation parameter @ = 1.8.

We can now plot the theoretical second order Fréedericksz transitions, as shown in
figure (6.3 b), for the various system diameters and compare them to the simulation

transitions obtained at the central line of the system sin® (6,,)

See chapter 3 for a discussion on the difference between lu and au system dimensions.
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