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Abstract

In this thesis we have developed an anisotropic lattice Boltzmann (LB) model tha t re­

covers the incompressible isentropic Ericksen-Leslie-Parodi (ELP) equations of con­

tinuum nemato-dynamics in two dimensions with the director confined to  the plane. 

Suitable validations of the developed model against known solutions of the contin­

uum theory are undertaken as. well as investigations into nem atic flow in interesting 

geometries.

The model is based upon two coupled LBE schemes, the standard momentum den­

sity distribution and a new link angle distribution. To achieve evolution, the link 

angle distribution undergoes a Bhatnagar-Gross-Krook (BGK) collision step and 

advects (propagates) in unit time with the momentum densities. Anisotropy is in­

troduced into the momentum density evolution scheme through a linearized Lattice 

Boltzmann (1LB) collision process which is made anisotropic. Correctly to capture 

the macroscopic dynamics, 6th order isotropy of the underlying lattice structure is 

required, accordingly we introduce a new variant on the standard 1LB scheme : 

a two-dimensional thirteen link (D2Q13) model. Chapmann-Enskog expansions of 

the momentum and angle evolution schemes are shown, through a suitable selection 

of equilibrium distribution functions and forcing terms, correctly to map onto the 

target macroscopic ELP equations of continuum nemato-dynamics.



Results are presented which validate the new scheme against known analytical solu­

tions of the governing equations to a high degree of accuracy. The validated scheme 

is subsequently applied to nemato-dynamic behavior in an applied magnetic field, i.e 

the Freedericksz transition and velocity back-flow with director kick-back. Finally 

we simulate the geometrically complex Zenithly Bi-stable Display (ZBD) device to 

illustrate some of the advantages of the LB schemes.



The continuum is that which is divisible into indivisibles that are infinitely divisible, 

Aristotle.
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Chapter 1

Introduction

1.1 Overview

The scientific study of fluid dynamics impacts on virtually every aspect of modern 

life. The field has its origins in antiquity but it was not until the late 18th century 

tha t a mathematical continuum description of a fluid was laid down. Until the advent 

of computers in the latter half of the 20th century almost all of the research into fluid 

dynamics was performed by either experimentation or simplified analytical solutions 

of a theoretical model. But since the foundation of the field of Com putational Fluid 

Dynamics (CFD), a new and immensely valuable tool has being brought to bear on 

the task of obtaining an exact solution of the equations of fluid dynamics.

Modern day computational techniques such as Finite Difference (FD) methods have 

had great success in modelling fluid dynamics and can be applied to a variety of
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different flow phenomena. It is a measure of the success of these models th a t CFD 

models are today viewed as a complementary tool to the more traditional methods 

of experimental fluid dynamics with certain advantages.

The ability in CFD to change the configurational details of the system under study 

with relative ease as well as the potential for full data  point recovery are m ajor ad­

vantages where experimental solutions are becoming increasingly more complex and 

expensive and CFD models have been developed to tackle a variety of different types 

of flows including incompressible, compressible, thermal, immiscible and turbulent.

Whereas CFD treats a fluid at the continuum level, molecular dynamics (MD) is a 

computational tool to model the motions and interactions of individual molecules. 

Current MD and Monte-Carlo (MC) models have had great success, however, the 

models are by their very nature microscopic in origin. Although it is theoretically 

possible to use them to do macroscopic fluid dynamics, the computational require­

ments to do so are well beyond the capabilities of today’s computers.

This leads us onto the relatively recent development of the lattice models whose most 

recent and widely used incarnations are the Lattice Gas (LG) and Lattice Boltzmann 

(LB) models. Mapping onto the macroscopic equations of fluid dynamics the LG 

and LB models essentially describe particle populations propagating on a lattice of 

velocity vectors, undergoing simplified ’’collision” rules at the lattice nodes.
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These models approximate (coarse grain) the molecular dynamics occurring on the 

microscale and use a statistical expansion process to tailor the emergent macroscopic 

dynamics of the lattice fluid, as defined by its governing partial differential equations 

(pde’s).

For many simulators the LG and LB models operate in the grey area between molec­

ular dynamics and continuum dynamics called the ’’mesoscale” . It is this ability to 

access the best parts from the microscopic and macroscopic models th a t places the 

modern day lattice models in a unique position within the modelling community.

Although still in their infancy, mesoscale models have shown th a t they can offer some 

advantages over more traditional CFD techniques in certain areas of fluid dynamics. 

LG and LB algorithms are relatively easy to implement (code) as is bounding the 

flows in complex geometries. The models implicit parallisability also allows large 

scale simulations on massively large parallel processors. Possibly most im portantly 

though, algorithmic extensions for e.g. diphasic flow can be devised by appealing 

directly to the physics transparently captured by the simple underlying evolution 

rules.

These are just a few of the advantages of the LG and LB techniques which have been 

developed in recent years. This is apparent from the growing body of literature 

on the subject of lattice models, which many believe ultim ately should prove to 

be an invaluable tool, complementing the more traditional CFD, theoretical and 

experimental methods of investigating fluid dynamics.
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All the CFD methods discussed above have been widely used in the modelling of 

isotropic fluid dynamics which, whilst it has received much interest over the la tter 

part of the century, is still far from a completely solved problem. The situation 

is more extreme when we turn to modelling anisotropic fluid dynamics which is 

still a relatively new area of science. The increasing domination of liquid crystals 

in the display industry, however, has motivated a lot of interest in the subject 

over the last few decades, since Ericksen, Leslie and Parodi (ELP) developed a 

continuum description of a nematic liquid crystal. However, relatively little work 

has been carried out in attem pting numerical solutions of the fully coupled equations 

of nemato-dynamics a t the continuum scale.

Historically, microscopic models have been mostly used to simulate liquid crystals 

and there is a large literature on this subject, as is the case for experimental work car­

ried out on liquid crystals. A lot of this work deals with the phase transitions which 

a liquid crystal undergoes. There are drawbacks such as those tha t infect isotropic 

fluid mechanics. Namely experimental work is by nature expensive and complicated 

: MD techniques are for all practical purposes confined to the microscale for the 

foreseeable future. Current analytical solutions of the ELP equations of nemato- 

dynamics all have to make substantial approximations and /or regime lim itations.
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1.2 Aims

The work presented in this thesis essentially entails a proof of concept. The main 

aim involves extending a Lattice Boltzmann (LB) model of fluid dynamics to recover 

the anisotropic ELP equations of nemato-dynamics.

Having obtained a clear strategy based upon a second scalar distribution, the scheme 

is to be implemented into an LB model and validated against known theoretical 

results. It is hoped th a t this process of development and im plem entation/validation 

would produce feed-back and contribute to m aturing and refining the model over 

the course of the work.

In order to produce an LB scheme for nemato-dynamics it is necessary to clarify 

certain fundamental issues within what one might term  the core LB methodology: 

namely a correct and consistent treatm ent of forcing.

In the next section we review the overall structure of this thesis describing the work 

undertaken to meet the aims stated above.
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1.3 Outline of thesis

The field of continuum anisotropic fluid dynamics is introduced in chapter 2. A 

brief overview is followed by a word about the notation used in this thesis. The 

appropriate governing equations for isotropic hydrodynamics, namely the mass con­

tinuity equation and the Navier-Stokes equations are subsequently derived. In the 

next section we introduce the field of liquid crystals before reviewing the generalized 

continuum equations of anisotropic fluid dynamics (nemato-dynamics) in terms of 

the Ericksen-Leslie-Parodi (ELP) presentation . Importantly, we then take the vec­

torial equation of motion for the nematic and reduce it to a scalar angle equation of 

motion in two dimensions where the director is confined to the plane (2 © 2). This 

reduced form lends itself more conveniently to the methodology employed in later 

chapters to generate our models director dynamics.

Having set-out the ” target” macroscopic continuum equations, we proceed in chapter 

3 to introduce mesoscopic Lattice Gas (LG) and Lattice Boltzmann (LB) lattice 

models. Starting from a historical point of view, we cover the seminal work by 

Frisch et al [8] on LGs through to the conception of the two main LB models - 

the linearized Lattice Boltzmann (1LB) and the single relaxation Lattice Boltzmann 

(BGK) model. In particular a short review of the mapping of an LG model onto 

isotropic hydrodynamics is presented along with a literature review of pertinent LG 

and LB papers.

In this section we also present the development of the LB models and provide a 

full derivation of the particular variant, an isotropic D2Q13 1LB model, used in



this thesis. The derivation takes the mesoscopic evolution equation of the D2Q13 

1LB model and performs the customary Chapman-Enskog expansion procedure to 

tune the model onto the equations of isotropic hydrodynamics. Subsequently a brief 

overview of the methodologies involved in bounding and forcing LG and LB models 

is provided.

In chapter 4 we develop the algorithmic extensions to the isotropic D2Q13 1LB 

scheme derived in the chapter 3, which recovers the equations of nemato-dynamics. 

A coupled D2Q13 LBGK evolution scheme is devised to recover the scalar director 

equation of motion. This extra degree of freedom is then coupled to the existing 

isotropic D2Q13 1LB model to produce anisotropic flow. The result is a fully coupled 

mesoscopic model of anisotropic fluid dynamics (nemato-dynamics).

The initial aim of the thesis is a proof of concept and so chapter 5 contains a 

validation of the underlying isotropic D2Q13 1LB against a rigorous analytical test 

case (duct flow) and then the fully coupled anisotropic model. The validation of the 

anisotropic model takes place in two phases, first the response of the director field 

to an induced (controlled) steady state flow field is tested and second the response 

of flow properties (viscosity) to different director fields is considered. All results 

presented are discussed in relation to the expected theoretical results.

Having validated the model for steady state simulations, chapter 6 progresses to 

investigate induced transient director and flow fields in simple geometries. Firstly 

the well established magnetic Freedericksz transition is investigated and the results 

are compared to the theory. Secondly the nematic effect of velocity ”back-flow” with
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director ”kick-back” , upon release from a confining magnetic field, is considered. 

Results for the back-flow experiments utilize the Freedericksz aligned nematics from 

the earlier computer experiments, qualitatively to shed new light on the origins of 

back-flow.

Finally we present in chapter 7, qualitative results from a system with more complex 

boundary conditions, namely the Zenithly Bi-stable Display (ZBD) device. This 

incipient device has promising implications in the liquid crystal display industry 

and so there is interest in the use of our model to simulate the fully coupled nematic 

ZBD cell. In this chapter, results are presented not only for steady state simulations 

in a variety of geometrical configurations, which demonstrate the flexibility and ease 

inherent in the 1LB model to change the system configuration but also for dynamical 

simulations.

A general conclusion and suggestions for further work are presented in chapter 8 .



Chapter 2 

Continuum Isentropic 

Nem at o- dynamics

2.1 Overview

Fluid mechanics is the study of the motion of liquids and gases, which on the 

macroscale are regarded as continuous media. The governing equations of hydro­

dynamics, derived in the late 18th century are therefore sets of partial differential 

equations describing the conserved properties of mass, momentum and energy. Un­

fortunately, due to their complexity, these equations at present have not been solved 

analytically, except in a few simple cases.

In Computational Fluids Dynamics (CFD), discrete models are used th a t a ttem pt to 

map onto the governing equations of hydrodynamics. Since in this thesis we extend
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the isotropic Lattice Boltzmann (LB) method to simulate anisotropic fluids it is 

prudent to cover the governing equations of anisotropic fluid dynamics, onto which 

we aim to manipulate the macroscopic dynamics of our model. Clearly we cannot 

discuss all aspects of the theory of anisotropic fluid dynamics, and the interested 

reader is directed to [9] for a comprehensive review of isotropic fluid dynamics and 

to [3] for the theory of anisotropic fluid dynamics.

2.2 Brief N ote on Notation

Throughout this thesis we shall employ two types of m athem atical notation, carte­

sian vector (e.g. V • u) or the tensorial equivalent (e.g. dau ai where a  = x ,y , z ) .  

At any point during an algebraic derivation we employ the notation th a t is best 

adapted to the problem.

When using tensor notation we shall assume th a t where a repeated subscript occurs, 

then the Einstein summation principle is implied. For the example given above, the 

repeated subscript is a  so we imply a summation over the subscript :

daua d^ux -(- dyiiy -(- dzuz .

Derivatives are also written in a shorthand manner, with the following meanings



2.3 Isotropic Fluid Dynamics

2.3.1 Introduction

Completely to describe an isotropic fluid in three dimensions a set of five equations 

are required. These are:

• The continuity (mass conservation) equation,

• The Navier-Stokes equations (one for each dimension),

• The energy equation.

These conservation laws of fluid dynamics arise intrinsically a t the microscale from 

the molecular dynamics of the fluid molecules. However they are equally as valid 

at the macroscale through consideration of a volume element (defined below). This 

universality across scales has allowed the macroscopic conservation laws to be de­

rived by the averaging of conserved microscopic dynamics. This method is known 

as the kinetic theory approach [4] and it is a kinetic theory technique called the 

Chapman-Enskog expansion th a t is traditionally used by Lattice Gas Cellular Au­

tom ata (LGCAs) to map their dynamics onto macroscopic fluid dynamics. However 

at present our review of isotropic fluids will deal solely with the derivation of the 

target macroscopic conservation laws and so we need to define the term volume 

element.

Any small volume element in the fluid is always supposed so large th a t it still contains 

a very great number of molecules. Accordingly, when we speak of infinitely small
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elements of volume, we shall always mean those which are very small compared with 

the volume of the body under consideration, but large compared with the distances 

between the molecules.

In deriving the macroscopic equations of hydrodynamics there are two different 

but equally valid approaches. The first is to consider the conservation of mass, 

momentum and energy of an individual fluid element as it moves along with the 

flow. This method does not employ a fixed co-ordinate system and is thus known as 

the Lagrangian description. The second method introduces flow variables (density, 

velocity and tem perature) which are functions of space and tim e which are defined 

on a fixed coordinate system and so the method is know as the Eulerian description. 

Integration of the flow variables with respect to a volume element in a sufficiently 

small time step results in the Lagrangian properties of mass, momentum and energy. 

Although to some the Eulerian approach may be viewed as more intuitive, I have 

chosen in this section to follow the Lagrangian approach taken by [9]. Since this 

section, however, only aims briefly to overview the governing equations and not raise 

any issues between the two approaches, either method would have sufficed.

Tn a continuous medium, the continuity equation describes the fact th a t within the 

volume element there are no fluid sinks or sources - ’what flows in, flows o u t’. A 

flow regime that does not satisfy the mass continuity equation for example is one 

where bubbles develop within the fluid element. However within the regimes under 

discussion here, the continuity equation is a paramount requisite.
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Euler’s equations of motion for an inviscid (ideal) fluid take no account of energy 

dissipation processes which may occur within the fluid due to internal friction (vis­

cosity) or other processes such as heat transfer. Therefore Euler’s equations describe 

only the reversible mechanical transport of the fluid particles and the pressure forces 

acting on the fluid. Extending Euler’s equations to include viscous dissipation re­

sults in the Navier-Stokes equations of fluid flow, one for each dimension so in 3D 

flow there will be three coupled partial differential equations. Although all results 

presented in this thesis are for 2D flow, the review of the governing equations will 

describe the full 3D set of equations.

To include processes such as heat transfer in the fluid, the equation of energy is 

required, however in the absence of such heat exchanges between different parts 

of the fluid or any adjoining bodies the fluid flow is said to be adiabatic. W ithin 

an adiabatic flow the entropy of any fluid particle remains constant as the particle 

moves around in space, i.e. the fluid is isentropic. The flow regimes we are interested 

in are all assumed to be isentropic and tem perature variation is neglected, so we can 

discard the equation of energy and fully describe our isotropic fluid using just the 

mass continuity equation and the Navier-Stokes equations.

W ithin the concept of an isentropic flow regime we can also assume th a t the flow 

is incompressible (constant density). This simplifies the governing equations and is 

valid within what is known as the hydrodynamic limit of low frequency and long 

spatial wavelength.
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2.3.2 Continuity Equation (Mass Conservation)

Consider some volume Vo of space, i.e. figure (2.1),

Surface /  
element df

Surface S

Volume V,

Figure 2.1: Fluid element of volume V0 w ith  a bounding surface S. T he m agnitude of the 
surface elem ent d f is its area and the  direction is along the  outw ard  norm al.

the mass of the fluid in this volume is

J p d V  (2.1)

where p is the fluid density and the integration is over the volume Vo-

The mass of fluid flowing in unit time through an element df — n  dA  of the surface 

S  bounding the volume Vo is p u -d f where the m agnitude of the vector df  is the area 

of the surface element and its direction is along the outward normal to the surface.
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Therefore the total mass flowing out of the surface element in unit tim e is

pu • df (2 .2)

where the integration this time is over the whole of the closed surface S  surrounding 

the volume Vo.

W ithin the volume element Vo the decrease in mass per unit time is

- d t j p d V  (2.3)

Conservation of mass requires th a t the last two equations must balance, therefore

dt [  p dV  =  — 0  pu  • d f . (2.4)

The surface integral can be transformed into a volume integral by Greens theorem 

(also known as the divergence theorem) [9]

I  pu  • d f =  J  V • (pu) dV  (2.5)

Thus equation (2.4) becomes

f  {dtp + V - ( p u ) }  dV = 0 (2.6)

which, since it is true for any volume, must have a vanishing integrand :

dtp + V -  (pu) = 0 , (2.7)

which is the so-called Continuity equation and expresses the principle of mass con­

servation.
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In the incompressible steady state fluid flow regime, the density p of the fluid is 

constant. This leaves us with the incompressible steady state  mass conservation 

rule

V - u  =  0 (2 .8)

2.3.3 Euler’s Equations (Inviscid flow)

Again let us refer to some volume element V0 in the fluid, figure (2.1). The total 

force acting on the element is

j Pdf (2.9)

where P  is the pressure and the integration is over the entire surface S  bounding

the volume V̂ . We can use Green’s theorem again to transform the surface integral

into a volume integral,

j ) P d f  = - J v P d V  (2 .10)

Hence we can say th a t the force acting on unit volume of the fluid is equivalent to 

-V P  and so we can write down the equation of motion for the fluid as

pDtu  = —V P  (2.11)

where the mass per unit volume is the fluid density p and D tu  represents the accel­

eration. D tu  is actually the rate of change of the velocity of a given fluid particle 

as it moves about in space which in conventional CFD is termed the substantive 

derivative, which may be written in terms of partial derivatives :

Dtu  = dtu  +  (u  • V) u. (2.12)
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Substituting the substantive derivative into (2.11) we obtain the Euler equation for 

inviscid flow

p 9 tu +  p ( u - V ) u  =  - V P  (2.13)

Assuming the the fluid is incompressible we can write equation (2.13), in tensor 

notation

dt(pua) =  -<% n a/3 . (2.14)

where we have assumed the Einstein summation convention applies and Tlap is de­

fined as the second rank momentum flux tensor

n a/3 =  PSa/3 +  pUaUp (2.15)

so-called because it is easy to show from equation (2.14) tha t the surface integration

£  n a/J dfp (2.16)

gives —dt f  puad3r, the rate of change of the a  component of momentum associated 

with the fluid inside the control volume.

17



2.3.4 Navier-Stokes Equations (Viscous flow)

However, in order to obtain the equations describing the motion of a viscous fluid, 

we have to include some additional terms into equation (2.14). The momentum flux 

tensor described in (2.15) represents a completely reversible transfer of momentum 

due to simple mechanical transport of the fluid particles and the pressure forces 

acting on the fluid. In viscous fluids there is a dissipative momentum transfer, this 

time irreversible, from points where the velocity is large to those where it is small. 

We model the effect of this process by introducing a term  to the momentum flux 

tensor to account for irreversible ’viscous’ transfer of momentum in the fluid.

and with this definition of stress, the momentum equation (2.14) assumes a form 

which we shall find useful

(2.17)

where a'ap is the viscous stress tensor, thus:

n a/3 = P  6ap + puaup -  aa/3. (2.18)

It is useful to rewrite Tlap in terms of the components th a t are due to the direct 

mass transport (puaiip) and those th a t are not (P  8ap — aa^

(2.19)

we define the stress tensor

(2 .20)

Dt pUa — df}(?aP (2 .21 )
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The general form for the viscosity stress tensor depends on spatial velocity gradients 

which are supposed to be small so th a t the viscosity stress tensor depends only upon 

the first velocity gradients, i.e tha t aap is a linear function of these gradients [9]. In 

uniform flow or uniform rotation the viscosity stress tensor clearly needs to be zero. 

The most general second rank tensor tha t satisfies these conditions is [9]

a a /3  — a(daup +  dpua) +  bd7u76ap ( 2 . 2 2 )

in which the terms may be re-grouped as

/ 2 
&ap P^dopip T  dpua ~̂ d7u75ap} -f- £,d7u75ap (2.23)

So now we can write the viscous form of the momentum flux tensor as

2
Ha/3 P  $otf3 T  puaiip pidoc'Up T  dpU(x ~̂ d7/u78Ctp'} ̂ d7u7S^p (2.24)

Which can then be substituted back into equation (2.14) to give

2
p(9tua T  zipdpU/x'j dp Pbap -f- T] dp(daup -I- dpua ~̂ d7u7Sap^ 4* £ dpd7u7Sap

(2.25)

which, on invoking the continuity equation reduces straightforwardly to,

1 1 1  
dtua + updpua = - ~ d a P  +  vdpdpua +  - (£  +  -p ) d adpup (2.26)

see reference [9].

Here u =  77/p  is the kinematic viscosity of the fluid.

We can further simplify the Navier-Stokes equation if we assume the fluid is incom­

pressible (V • u  =  0), the final term vanishes and so equation (2.26) reduces to

1
dtua +  updpUa = - ~ d a P  +  vdpdpua (2.27)
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2.4 Anisotropic Fluid Dynamics

The term liquid crystal signifies a state of aggregation th a t is interm ediate between 

the crystalline solid and the amorphous liquid. As a rule, a substance in this state 

is strongly anisotropic in some of its properties and yet exhibits a certain degree 

of fluidity, which in some cases may be comparable to tha t of an ordinary liquid 

with similar sized molecules. The first observations of liquid crystalline (mesomor­

phic)i behavior were made towards the end of the 18th century by Reinitzer [10] 

and Lehmann [11]. Several thousand organic compounds are now known to form 

liquid crystals. An essential requirement for the mesomorphism to occur is th a t the 

molecule must be highly anisotropic in shape, like a rod or a disc.

Depending on the detailed molecular structure, the system may pass through one 

or more mesophases before it is transformed into the isotropic liquid. Transitions to 

these intermediate states may be brought about by purely therm al processes (ther­

motropic mesomorphism) or by the influence of solvents (lyotropic mesomorphism).

The vast majority of therm otropic liquid crystals are composed of rod-like molecules. 

Following the nomenclature proposed originally by Friedel [12], liquid crystals are 

classified broadly into three types: nematic, cholesteric and smectic. It is the nematic 

phase tha t concerns us in this thesis. The nematic liquid crystal has a high degree 

of long-range orientational order of the molecules but no long-range translational 

order, see figure (2.2 b).
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(a) Isotropic (b )  Nem atic (c) Sm ectic-A

Figure 2.2: R epresentation of m olecular ordering in the  iso tropic,nem atic and sm ectic-A
phases.

Thus a nematic differs from an isotropic liquid in th a t the molecules are sponta­

neously orientated with their long axes approximately parallel. The fluidity of the 

nematic is due to the ease with which the molecules slide past one another while 

still retaining their parallelism and clearly their relative orientation must affect their 

ability to ’’shear” .

The interest in nematic liquid crystals over the last century has increased enor­

mously, due mainly to their applicability to display technology. There is now an 

extensive literature discussing the physical properties of nematics and their applica­

tions, with new technology utilizing nematic liquid crystals appearing continuously. 

However, until relatively recently, the m athematical models describing nematics were 

incomplete and most modeling of liquid crystals was performed using MD or MC 

techniques [13].

The foundations of the continuum model were laid in the late 1920’s by Oseen [14] 

and Zocher [15] who developed a successful static theory. The subject lay dormant
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for nearly thirty  years afterwards until Frank [16] re-examined Oseen’s treatm ent and 

presented it as a theory of curvature elasticity. Dynamical theories were put forward 

by Anzelius [17] and Oseen [14] but the formulation of the general conservation laws 

and constitutive equations describing the mechanical behavior of the nematic state 

are credited to Ericksen [18,19] and Leslie [20-22]. O ther continuum theories have 

been proposed [23—27] but it turns out th a t the eponymous ELP presentation (P =  

Parodi) is the one tha t is most widely used in discussing the nematic state.

In this chapter we shall review the ELP continuum theory of nematic liquid crys­

tals which captures many im portant physical phenomena exhibited by the nematic 

phase, such as its unusual flow properties and its response to  bulk external fields. 

Fully to cover the constitutive mechanical equations of a continuum nem atic fluid is 

rather non-trivial and beyond the scope of the work presented here. U nfortunately 

most treatm ents in the literature (e.g de Gennes [3]) are rather fragmented and (we 

suggest) difficult to piece together. Clearly however, there is a need to  appreciate 

the physics behind the continuum equations and as such we attem pt here to  give 

an abbreviated but coherent derivation of the continuum description of a flowing 

nematic. The interested reader is directed to [3,4,13,28] for a full review of contin­

uum nemato-dynamics, from which a complete and rigorous account can no doubt 

be derived.
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2.4.1 Static N em atic Theory

In a nematic liquid crystal the molecules are aligned around an average direction n  

called the director. The director is apolar (so th a t the same state of alignment may 

be characterized by + n  or by — n) and varies as a function of position in the nematic 

n  —> n ( r )  but it has unit magnitude |n | =  1. The length scales of the variations 

in the director, /, are very large compared to the intermolecular distances of the 

nematic liquid crystal, a, and so n  (r) can be described by a continuum theory.

Restricting ourselves to nematics below their critical transition tem perature T c (Tni) 

we can make the assumption th a t the local properties of a weakly distorted system 

a/1 <C 1 are still those of a uniaxial crystal, with the director orientation able to 

rotate.

Accordingly, let us now impose on our bulk nematic some state  of distortion de­

scribed through the field n  (r) where the distortion is constrained to have the fol­

lowing properties

1. n ( r )  is of fixed unit length but with variable orientation.

2. n ( r )  varies slowly and smoothly with r, i.e. aV n  <C 1.

The distortion of n  (r) introduces a new degree of freedom, a distortion free energy F f/ 

in the system, which vanishes if V n  =  0. We may expand Ff; in terms of V n  within 

the constraints given above, always ensuring tha t F f/ has the following properties [3]
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1. Fd must be an even function of n  (r) and its spatial gradients danp (since n  (r) 

is apolar).

2. Terms in which are of the form V • u  where u  is an arbitrary  vector field 

contribute (through the divergence theorem) to surface (not bulk) energies 

only and so may be discarded.

To construct consider the spatial derivatives of n. They form a second rank tensor 

gap of the form danp which we can deconstruct into its symmetric components

eap =  \  {d*np +  dpna) (2.28)

and anti-symmetric components.

1
e“ =  - £ iapdanp (2.29)

Now referring back to the first requirement for the distortion free energy F^ will be

a quadratic function of the symmetric and anti-symmetric components. Therefore

we can separate the contributions to Fd as follows

Fd — +  F a +  F as

where the contributions are from symmetric, anti-symmetric and cross-terms respec­

tively.

Under the conditions imposed on the free energy, the most general forms for F s, F n
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and F as can be written respectively as [3] :

F s =  Ai (V • n)2 +  A2 (n • V x n)2 +  A3 (n x V x n)2

F a =  Hi (n • V x n)2 +  /z2 (n x V x n)2

Fa5 =  v (n x V x n)2

Regrouping the equations in (2.4.1) we may write the distortion free energy in the

well known form :

Ftf =  \l< i  (V • n f  +  h < 2 (n  • V x  n )2 +  l- K z (n x V x n )2 (2.30)

which is the fundamental formula of the continuum theory for nematics [3].
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2.4 .1 .1  T hree elastic  constants, K{

The three constants in equation (2.30) are associated with the three basic types 

of deformations, see figure (2.3), th a t can occur in a nematic liquid crystal.

Glass

Nematic

Glass

Bend 
(curl n 1  n) Twist 

(curl n 11 n)

(a) ( b ) (c)

Figure 2.31 Schem atic represen tation  of the th ree  basic types of elastic deform ations th a t  can 
occur in a nem atic, reproduced from  [3].

K i  : conformations with V • n  ^  0 (splay)

I<2 : conformations with n  • V x n  ^  0 (twist)

K 3 : conformations with n  x V x n  ^  0 (bend)

All three deformations can be created individually and thus each constant Ki must 

be positive if not, the undistorted nematic conformation would not correspond to a 

. minimum of the distortion free energy F f/.
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2 .4 .1 .2  T he One C onstant A p p roxim ation

The full form of equation (2.30) in many cases is too complex to be of practical 

use, either because the relative values of the three constants 7Q are unknown or 

the equilibrium equations derived are prohibitively difficult to solve. Therefore it 

is often more practical to make a further approximation which assumes all three 

constants are equal, i.e.

K x = K 2 = K Z = I<

The distortion free energy (free energy density) then takes the form

F„ «  ((V  • n )2 +  (V x n )2) (2.31)

which ignoring surface terms becomes

F rf «  I<V2n  (2.32)

If we compare some typical values of the three elastic constants from the nematic 
material MBBA at 25°C [7].

I<i (splay) 
K 2 (twist) 
K 3 (bend)

6.4 x 10
3.8 x 10
.11 x 10

Table 2.1: T hree elastic constan ts K \  (splay), I< 2  (tw ist) and (bend) 
for MBBA at 25°C. T he dim ensions of the elastic constants (dyn) is defined 
as energy /cm 2 [7].

we can see tha t the above approximation cannot be quantitatively correct however 

the simpler form of equation (2.32) makes it a valuable tool to reach a qualitative 

insight into distortions in nematics.
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For a two dimensional nematic where the orientation of the director is restricted to 

lie within the plane (2 © 2) then there can be no contribution from the Kz (bend) 

elasticity, since it contains gradients in n 2. The remaining distortions (splay and 

twist) are about the same and so the distortion free energy in the one constant 

approximation can be considered to be an accurate representation of the actual 

distortion free energy.

2 .4 .1 .3  E q u ilib r iu m  C o n d itio n s : M o lec u la r  F ie ld

In this subsection we shall introduce the central concept of the molecular field h  

essentially as an undetermined multiplier, to frame an equilibrium condition.

Following de Gennes [3], we work at present in the absence of any external fields, and 

obtain bulk equilibrium conditions by minimizing the to tal distortion free energy,

with respect to director variations. Any variation in the director field is constrained

(2.33)

by the requirement tha t n  (r)2 =  1 everywhere. Thus we appeal to Lagrange and

write

(2.34)

in which (r) is an undetermined scalar function. The above equation can be

written as

(2.35)
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Now the distortion free energy density F^ given in equation (2.30) is a function of 

density gradients gap = dan t3 and the director itself np so

&Tt =  « { / F i (n,g) dh}

= f  Fd ( n  + Sn,g  + 8g) d3r  -  f  Fd (n , g j  d3r  (2-36)

now making the association 5 (gap) — $ (danp) =  da5np, then we can write the last 

equation as :

I  { ^ 5nfl +  ^ t d a { d n f i ) } d h - ( 2 ' 3 7 )

Applying integration by parts, we can transform the second term  in the above inte­

grand

r  d Fh

J dgap

which can be written as :

da (drip) d3r  =  j) “  J  da^ ~ Sn^ r  (2.38)

/  ̂ 9 ^ da d*V = /  ̂  Snp dS" ~~ /  dUf3 d3f ’̂39̂
and we have defined

d F d 6 F d , n  ^
Kap = ~----  =  YJZ-----N • (2-40)dgap 5 (danp)

Inserting equation (2.39) into equation (2.37) and neglecting the surface terms :

j )  7rap 5np dsQ (2.41)

we obtain



Comparing the integrals in equations (2.35) and (2.42) we obtain the general equi­

librium condition of :

OFrl
7^ -  -  da7rap = Xnp. (2.43)

It is customary to define the molecular field h

d F
hp = +  daKap (2.44)

whereupon equation (2.43) now gives

hp =  —A np, (2.45)

from which it is apparent th a t in equilibrium, the director n  at each point must lie 

parallel to the molecular field h.

Now, we have an explicit expression for the distortion free energy Fd given by equa­

tion (2.30) and so we can find expressions for dn0Fd and da7tap in the r.h.s of equation 

(2.44).

dn0Fd = dn0 {K \ (Qa) +  K 2 (nidijkQjk) +  (dijkTljdklmgim) } (2.46)

with Eijk the unit antisymmetric tensor. Performing the differentiations w.r.t np we 

obtain

dn0Fd =  I<2 A V x n|y3 -t- /(3 n x ( V x n ) x ( V x  n) 1̂  (2.47)

where A =  (n • V x n). The triple product in the K$ term expands to zero and so 

we finally obtain

dn0Fd = I<2 A  V x n |p (2.48)
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A similar expression for da7i;ap may be obtained from the explicit form of in

equation (2.30), which, when inserted along with equation (2.48) into equation (2.44)

for the molecular field yields the result

h  =  h 5 +  hf +  h& (2.49)

where

h s -  ^ V ( V - n )

h, =  -I< 2 (A V  x n  +  V x (An)} (2-50)

h b = K 3 {B x V n  +  V x (n x B)}

with A defined above and B =  n  x V x n.

In the one-constant approximation h  takes a much simpler form

h  =  I< V 2n  (2.51)

2 .4 .1 .4  E x te rn a l  F ie ld s

We now have a definition of the molecular field h  for a nematic in the one constant 

approximation in the absence of any external fields. However most liquid crystals 

react strongly to magnetic, electric, flexo-electric and gravitational bulk forces. In 

fact the di-electric coupling between the nematic and an external electric field is in 

many cases very complex [13]. However, along with flexo-electric and gravitational 

forces these shall not be considered here. The coupling for a single nematic liquid 

crystal molecule to an homogeneous bulk magnetic field H  is very small. However, 

on the macroscopic scale a nematic element contains many millions of particles which
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can rotate in unison. Therefore upon application of a magnetic field the director

orientations will tend to align parallel to the applied field in competition with any

imposed wall alignment. Quantitatively we can express the effect of a magnetic field 

on a nematic director by the induced magnetization M .

M  -  X|,H if, H , is parallel to n  (2.52)

M  =  H j is perpendicular to n

where x\\ and x± are fhe nematic magnetic susceptibilities for parallel and perpen­

dicular magnetic field applications respectively.

If H  makes an arbitrary angle with n  then the induced magnetization becomes

M  =  XjlH +  Xa (H  • n) H  (2.53)

where Xa is referred to as the overall magnetic susceptibility (magnetic anisotropy) 

of the nematic, defined by

X a  =  X | |  -  X ±  ( 2 - 5 4 )

Since the first term in equation (2.53) is independent of the molecular orientation 

we can omit it from our description of the magnetic coupling to the nematic. Note 

tha t the second term in equation (2.53) will be minimized when n  is collinear with 

H  which is the requirement for equilibrium. The free energy of the nematic at 

equilibrium now entails a magnetic field contribution of

Fm = X a {  H - n ) H  (2.55)

which results in the molecular field given in equation (2.51) being expanded to
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include a magnetic term of the form

h m = Xa (H  • n) H (2.56)

2.4.2 Equilibrium H ydrostatics

Let us re-write our expression for the molecular field, in the presence of an external 

magnetic field.

For our purposes, as we are simulating in a gravitational equi-potential, we can write 

the molecular field simply as the sum of the contributions from equations (2.44) and

where, recalling equation (2.40),

_  dFd _  SFd 
^ ap dgaf} S (dan p ) '

W ith the molecular field defined as above, the equilibrium condition is simply th a t 

h  and the director n  be parallel, i.e equation (2.45)

hp -  -A  (r) np

Suppose tha t a director n  (r) is displaced w ithout change of orientation to r  = 

r  -f u  (r) so tha t

(2.56)

(2.57)

n  ( r )  =  n  (r +  u  (r)) =  n  ( r ) . (2.58)

(We shall consider changes in the director orientation n  —>■ n  +  6n below.)
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Now,

A  _ A (2.59)
dr'p dra drp

in which it should be noted th a t the summation convention applies. Substituting 

from equation (2.58) into equation (2.59) we obtain

dn dra dn*7    a  ^ ” 7

dr'p dr’p dra

and noting tha t, to first order in derivatives,

(2.60)

drr  = A ( r 'a - uc ( r ) )  (2.61)dr'p dr0 \ a “ v  ’) ap dr

we substitute into equation (2.60) to obtain

dn7 dn7 dn7 dua
drp dr p dra dr'p

which is re-arranged to give

dn7 dn7 dn7 dua

(2.62)

(2.63)
dr'p drp dra drp

Now the change in the distortion free energy of an incompressible fluid element origi­

nally at position r, when displaced to position r ,  may be obtained by approxim ating

equation (2.40) as A «  i\70l (Ag7Q), whereupon we obtain

A Ff/ =  7rTa{A [d7n a]}. (2.64)

Expanding the braces gives

which on appeal to equation (2.63) yields the following expression for the change in 

the distortion free energy of the incompressible fluid element,

A Fd = 7r7a (dpn7) (d7up) d3 r  (2.66)
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and for the change in the distortion free energy of the fluid as a whole

5Fd = / cr%adpuad3r/ (2.67)

with the distortion stress tensor defined as

cr̂ a — 7rpjdaTij. (2 .68)

In fact the distortion stress tensor, defined above, is not in general symmetric [3,4].

However, for the particular case of the one constant approximation the distortion 

stress tensor becomes symmetric.

Remembering th a t we are working in an incompressible regime, to write an equilib­

rium condition we must seek the minimum change in the total distortion free energy

where p (r) is again a generalized Lagrange multiplier. Substituting for 5Fd from 

equation (2.67) and expressing the divergence in tensor notation, we obtain an ex­

pression for the strain-induced variation in a revised distortion free energy, the min­

imum of which will coincide with the minimum of Fd for strains which leave the 

density constant

The form of equation (2.70) motivates the definition of the Ericksen stress o eag as

resulting from the displacement field (strain) u  (r) where V • u  =  0; th a t is from the

condition

(2.69)

(2.70)

® a(i ® a(3 P ^ a P  ■ (2.71)
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We need now to consider fluctuations in director orientation n  n  +  £n. These 

are accounted for in equation (2.42) which we reproduce below for convenience, but 

including the surface terms from equation (2.41)

SFd = J  -  da ( ^ ~ ^ j  j d*r +  drip dsa .

Replacing the terms inside the braces in the first integrand using the definition of 

the molecular field in equation (2.44), we obtain a contribution to the free energy 

from director fluctuations

6Fd = — J  hp drip d3r  +  j )  ixap 5np dsa (2.72)

adding the above contribution to the free energy to th a t in equation (2.70) we derive 

an expression for the complete variation in the free energy

fifd = J  {(Ta^daU^ -  hp drip} d3r  +  j)  7Tap6npdsa (2.73)

From the last equation we can develop an identity which will prove useful in the 

next section.

Clearly any deformation th a t corresponds to a rotation of both the molecular centres 

and their directors by the same angle should leave invariant. Let the vector Q 

define a rotation then such a transformation of the director field is u  (r) =  £2 x r  

and £n (r) =  Q x  n, which in tensor notation yields the identities

9pUa
(2.74)

Sfly ftp'll

Substituting the identities in equation (2.74) into equation (2.73) we obtain an 

expression for the corresponding change in total distortion free energy, which we
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know to be zero :

Sfd — ^  &fia T  ^7HP̂ P ~b ^-ypp^ fijdpTlp ̂  d F — 0. (2.75)

Transforming the second term in the above equation by parts we obtain :

J* &/3a d r  J ^ u p  ( h j T i p  -t- T i p d p T T p ^  T M x H -f  ' f t p y d p ' F i p ' )  d F  —  0 (2.76)

where we have used the definition of induced magnetization in equation (2.53). We 

shall return to use this equation in the next section.

Using the product rule (in reverse) on the terms in and integrating by parts, it

can be shown

J  £pap <7pa = J  (h  x n |/t +  M x E\p) d3r  -  £  E ^ p j U p  ds/? (2.77)

to which equation we shall again return in the next section.

2.4.3 Nem ato-dynamics

To derive the governing equations for variables u  and n, subject to the usual lim­

itations of low spatial and temporal gradients, in the isothermal regime, is the 

principal objective of this section. We follow the usual route of identifying dissi­

pative losses [3] which derives ultimately from a treatm ent based in non-equilibrium 

thermo-dynamics by de Groot and Mazur [29].

We introduce the nematic fluid’s momentum stress tensor aap in order to write its 

acceleration (momentum) equation as in equation (2 .21)

f-h 9a<7ap
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For an isothermal process, dissipation DtQ =  T  DtS is equal to the decrease in 

stored free energy;

terms have their usual meaning. Performing the tim e differentiation on the first 

term in the integrand;

Consider now the time differentiation of the remaining free energy terms in the 

integrand of equation (2.78). The material (substantive) derivative of a strain field 

is the velocity field. Accordingly, from the arguments around equations (2.70) and 

(2.71), we can see tha t for flow there is a contribution to the material derivative of 

f  d3r, of the form :

and for rotation, from equation (2.72), the contribution to material derivative of

(2.78)

where the second term  F0 is a density dependent internal free energy, and all other

J  D( QpU/jM/3 j  d3r =  J  pupDtupd3r (2.79)

and using equation (2.21) we obtain

D( -pw,,u;3 I d3r = p I up <)a<j„;i d3r. (2.80)

Using parts and the divergence theorem, the r.h.s may be transformed to

Dt -^PUPUP ) d3r =  /  VapdaUp d3r + surface terms (2-81)

(2.82)



whereupon we can write for the material derivative of f  F rf d3r

—Dt J  Fdd3r = J  { — a^pdaiip +  hp Dtn^} d3r +  surface terms (2.84)

combining the various contributions in equation (2.78) from (2.81) and (2.84) we

can write

T  D 'S =  f  +  b  Dt» ,}  +  surface terms (2.85)

where

0 * 0  =  Vat) -  irif) (2 .86)

and, of course the material derivative of n  is given by

Dtnp = dtnp +  u adanp . (2.87)

We resolve the viscous stress into symmetric and anti-symmetric parts

g = g *  +  ( 2 - 88 )

where £  is a pseudo-tensor :

Ta = £ap7 a ll3 (2.89)

and

O'a/S =  \  ( a 'c0 +  °/Ja) • (2-90)

Considering equations (2.89) and (2.90) in order, the torque, Ta , can be found by

considering the angular momentum of the sample [3] :

D(Lq =  Dt J  d3r (r x pu) (2.91)

= !  d3r (r x B tp u  +  D*r x p u ) .
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Therefore

D*La =  J  d3r ( S a/3l rp (de(707)) (2.92)

where we have used the acceleration equation (2.21) and the fact th a t D*r x pu =  

u  x pu =  0 and where £QpT is the unit anti-symmetric tensor. Applying parts now, 

with a  = z, it can be shown (see appendix (D)) th a t :

DtLz = J  d3r  (ayx -  axy) +  j)  r  x (ds : g)  (2.93)

where ds : £  =  dspapa.

Now the rate of change of the to tal angular momentum of the liquid (the total 

torque) derives from the magnetic torque, torques due to external stresses a t the 

wall and torques on the director at the boundary [3] :

Tz = J  d3r  (M x H) \z +  j)  r  x (ds : g) \z +  j)  r  x (ds : 7r) \z (2.94)

with the r.h.s terms in the order discussed above. Accordingly we equate (2.93) and 

(2.94), cancel the terms f  r  x (ds : a) and obtain :

J  d3r  (oyx -  oxy) =  J  d3r ( M x H )  |2 +  ^ r x  (ds : £)  \z (2.95)

writing the total stress as crap =  aap +  and substituting for the Ericksen stress 

in terms of the distortion stress, the integrand of the l.h.s becomes

(°'yx ~  A )  +  K *  _  aiy) ■ (2'96)

We obtained equation (2.77) in the previous section which may now be used straight­

forwardly in the form

J  {°yx ~ aiy) d3r = J  {M x H -  n  x h} \z d3r  + J  {n x (d ^ v r^ )}  \z . (2.97)
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Using expression (2.96) in the argument of the l.h.s integrand of equation (2.95) and 

equation (2.97), and the definition of the torque Ta in equation (2.89), we obtain 

the beautifully simple result

J  {r -  n x h} d3r = 0 (2.98)

which must be true for any region, whence we see th a t the torque exerted by the 

director on the flow is given by

r =  n  x h. (2.99)

Let us know return to the dissipation equation (2.85), we proceed by separating the 

velocity gradient tensor into symmetric

and antisymmetric parts

A ap = ^  (dau /3 +  dpua) (2.100)

lj = - V  x u. (2.101)

We can write the dissipation as

T DtS = J  { A ap asap -  T • oj +  h  • D*n} d3r  (2.102)

where a sap is the symmetric part of the viscous stress aap. Substituting equation

(2.99) into equation (2.102), we obtain initially, an equation regarded by many as

the fundamental equation of nemato-dynamics,

T D(S =  f  { A affa sa/j+ h - N } d 3r  (2.103)

where

N  =  D*n — u) x n  (2.104)

represents the rate of change of the director with respect to the background fluid [3].
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In non-equilibrium thermodynamics, entropy sources are regarded as products (con­

tractions) of fluxes and conjugate forces [29], in the sense th a t the force conjugate to 

a flux, when contracted with tha t flux yields a contribution to the entropy source. 

Accordingly, a glance at equation (2.103) enables us to make a choice of such fluxes 

and conjugate forces :

axx is the force conjugate to A xx

2axy is the force conjugate to A xy etc. (2.105)

ha is the force conjugate to N a.

(The factor of 2 occurring in the non-diagonal elements expresses the fact th a t the

terms such as asxyA xy appear twice in the entropy source equation (2.103) [3]). In 

the limit of weak fluxes, the forces will be linear functions of the fluxes :

— ^aPydAjS +  M apyN j  (2.106)

hy = M apyA ap +  'PjsNg. (2.107)

The magnetic field effects on the friction constants of the nematic are negligible 

which along with the Onsager theorem :

Ma/?7 =  K m , (2T08)

simplifies the situation considerably. Moreover, we can state  th a t the only vector

tha t may appear in the definition of L, M and P is the local director n. Also, since

all measurable properties must be invariant when we change n  to —n  then A  and 

gf  are invariant, while N  and h  are odd [3].
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The most general structures for equations (2.106) and (2.107) th a t satisfy the above 

requirements are [3],

® a.fi T  T  T

Oi\Tl0iTlpTl^LTlpA.^lp +  Oi^Aap T*

In the incompressible limit the trace of the tensor A  vanishes and the terms with 

coefficients pi and p2 drop out of equation (2.109). The term  with the ps coefficient 

in equation (2.109) reduces to three diagonal components which we take to be similar 

and so can be lumped into the scalar pressure P  and are therefore omitted.

The symmetric form for the total stress tensor in equation (2.109) can now be 

transformed into an equation for the complete viscous stress a . The antisymmetric 

part of a is given explicitly in terms of the molecular field h  by equations (2.89) 

and (2.99), and the molecular field is given by equation (2.110).

(2 .110)

where the Onsager relation in equation (2.108) imposes th a t

7 2  =  7 2 (2 .111)
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Regrouping these terms allows us to write the equations for the to tal viscous stress 

tensor and the molecular field respectively as

<7a /j G q Tla 7lpTt^TlpA.^p -j- -f- CX̂ TlaTlf1A.^lp -f-

a^npn^A ^a  +  a 2n aN/3 +  a 3n pN a (2.112)

hv = 7 i N ^ - \ - j 2n aA a^ (2.113)

along with the relations

71 =  -  OL2 (2.114)

72 — Ĉ2 &3 — CXq (X§ (2.115)
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2.5 Reduction to the scalar angle, 6

In this section we shall present the method of reducing equation (2.113), the vector 

equation of motion for the director n  to an equation of motion of a scalar variable 

9. We shall also discuss the consequences and reasons behind such an approach.

2.5.1 The scalar director evolution equation

We start by expressing the director equation of motion given in equation (2.113) in 

the form

D tn^ = —  <97d7n /t +  — n7H7Hfl +  (u x n)|M -  — nvA V[l (2.116)
7i 7i 7i

which in two dimensions has two components,

X& ^2fAtXix — d'ydyTix “t- tt7H H x  7  (w x n) Tii/A^x (2.117)
7i 7i 7i
K  Y  Y o

Dtfiy = — djdjUy H— - n 7H7Hy +  (oj x n) L  n vA vy (2.118)
7i 7i 7i

Curling Dtriy with nfl, effectively couples the two components of the director evolu­

tion equation,

nxDtn y -  nyD tnx — ^  {nxd7d7ny -  n yd7d7nx) +

fly (^TlxTlylJjHy Tl-y H j  Hx ) "f"
7 (2.119)
nx (to x n) \y — ny (co x n) l̂ -f-

uAl/y “I- TlyTlyAvx)
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The next step is explicitly to replace the vectorial components of n  with their scaler 

9 equivalence, i.e.

nx = +cos (9) 

ny =  +sin (0 )

D tnx = - s in  (6 ) D t 6
(2.120)

DtUy = +cos (9) D t9 

d7 d7nx = —sin (9) d7 d79 — cos (9) {dx92 +  dy92}

d7 d7 ny = +cos (9) d7 d79 — sin (9) {dx92 +  dy92}

After application of some standard trigonometric identities we can write the new 

equation of motion of the director in terms of the scalar angle,9.

D te = — d^di e + — M + a  + — nyA yl3 (2 .121)
7i 7i 7i

where, M, is the magnetic field contribution, O, is the fluid vorticity and, n7 A 7p , is

designated the source term. These terms are defined respectively as

M =  \ [ 2 c o s { 2 9 ) H xHy + s m { 2 e ) ( H l - H l } }

Q =  \ ( d xuy - d yux) (2-122)

riyAjp = I  [sin (20) {dxux -  dyuy} -  cos (26) {dxuy + dyux}]

2.5.2 Advantages of the m ethod

To model an anisotropic fluid we intend to enhance a standard isotropic Lattice 

Boltzmann (LB) model. In our model a link density distribution function /,• is 

collided and propagated on the mesoscale and produces macroscopic observables of 

density and momentum. Reducing the director equation of motion to the scalar
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angle variable 9 allows us to introduce a link angular distribution function 0t- on the 

mesoscale th a t produces the director angle as a macroscopic observable. Since we 

are attem pting, in the spirit of LB, to remain as close to the methodology used in 

the isotropic algorithm, recovering a scalar angle equation of motion is the favoured 

scheme.

The director equation (2.119) is not in a conservative form: only certain terms 

contain derivatives of the angle 0. O ther terms (the vorticity 0 , the magnetic term 

M  and the designated source term  n^A^p) do not and must be added into our LB 

scheme for the 9 macroscopic observable as ” forcing” to control the attending error. 

The introduction of a new class of terms into the director evolution equation must 

be done with considerable care.
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2.6 Summary of Isentropic Nem ato-dynam ics

In this chapter we have reviewed the essential arguments of continuum isentropic 

nemato-dynamics and introduced the assumptions used to simplify the governing 

equations. As the concepts of isotropic and anisotropic fluid dynamics are intro­

duced, brief historical reviews are presented to develop a framework for the origins 

of the governing equations.

We began with a cursory glance a t the well established equations of isotropic fluid 

dynamics, namely the continuity and the Navier-Stokes equations. We assume that 

the flow regimes we wish to consider in this thesis are isentropic (no tem perature 

effects) and justifiably omit the equation of energy from our fluid description. W ithin 

this framework the lattice fluid is further assumed to be incompressible (no density 

gradients) and suitably reduced the mass continuity and Navier-Stokes equations to 

their incompressible forms.

Having reviewed isotropic fluid dynamics we then proceeded to overview the Ericksen- 

Leslie-Parodi (ELP) governing equation of anisotropic fluid dynamics. The continu­

ity equations remained unaffected since the nematic fluid cannot possess any mass 

sinks or sources. A reduced form of the director equation of motion was introduced, 

linking the evolution of the director to a molecular field and velocity gradients. Fi­

nally to complete the coupling, the isotropic viscous stress tensor was enhanced to 

represent the six director dependent Leslie viscosity coefficients, q:i ...Q'g.
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Several im portant simplifications/observations were made: which we summarize be­

low

• working in the incompressible nematic regime, i.e. T  < T C and V • u =  0.

• the director is apolar, state of alignment can be characterized by + n  or —n .

• the director has unit magnitude | n |  =  1.

• working within the one constant approximation of the elastic field.

• no bulk gravitational, electric or flexo-electric field effects.

• the system is reduced to two dimensions with the director being confined to 

the plane (2 © 2). Accordingly, the vectorial director equation of motion is 

reduced to a scaler equation for the angle 9.

In the upcoming chapters we shall recover the ELP equations of nemato-dynamics 

from a mesoscopic Lattice Boltzmann fluid dynamics model.
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Chapter 3

Foundations of the lattice m odels

3.1 Introduction - an overview

In this chapter we shall introduce Lattice Gas Cellular Autom ata (LGCAs) and the 

key developments over the last two decades th a t have led to the Lattice Boltzmann 

(LB) models used in this thesis.

Although LB models evolved from the earlier work on Lattice Gases, they are today 

viewed as separate models of computational fluid dynamics. Indeed, He et al [30] 

showed that the LB algorithm can be obtained directly from the continuum Boltz­

mann equation of kinetic theory.

Historically cellular autom ata were introduced by von Neumann and Ulam [31]. 

They consisted of a lattice where each site contained a finite number of states (usually 

represented by boolean variables). The autom ata evolved in discrete steps, with the
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states ”colliding” according to certain deterministic or non-deterministic rules, and 

then were propagated (streamed) on the lattice.

Modern LG models emerged from attem pts to construct discrete models of fluids 

along the lines of the Ising model of magnetic materials. Pre-cursor Molecular dy­

namics (MD) models actually simulate the real fluid micro-world in order to recover 

transport coefficients. They also use discrete particles but with continuous time, 

positions and velocities and arbitrary interactions [13]. Broadwell [32] introduced 

discrete velocity models to simulate rarefied gases but the space and tim e variables 

were still continuous and the evolution was probabilistic, being governed by scat­

tering rules based on Boltzm ann’s equation. The first fully deterministic LG model 

with discrete time, positions and velocities was introduced by Hardy, de Pazzis and 

Pomeau (HPP) [33,34] who managed to simulate certain physical phenomena such 

as sound waves (the HPP model).

However the HPP model lacked fluid isotropy and had spurious conservation quan­

tities which resulted in an inability to recover the full incompressible Navier-Stokes 

equations at the macroscale. The successor to the HPP model was the Frisch, Has- 

slacher and Pomeau (FHP) [8] model, whose lattice possessed sufficient isotropy to 

recover incompressible Navier-Stokes hydrodynamics, although specific rescaling of 

variables was necessary to obtain Galilean invariance. LB models [35] arose due to 

a need to overcome the statistical noise inherent in the boolean particle LG models, 

with the disadvantage tha t they required more computational power, due to the 

non-integer arithmetic.
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3.2 The Lattice Gas (LG) models

3.2.1 The H PP model

We will begin by describing the H PP model [33,34]. Consider a 2 dimensional 4 link 

square lattice (D2Q4) with unit lattice spacing as shown in figure (3.1). At integer 

time steps, particles of unit mass and speed reside on each node of the lattice. The 

particles obey an exclusion principle which states th a t not more than one particle is 

to be found at a given time and node moving in a given direction. If two particles 

arrive a t a node from opposite directions (head-on collision), they leave the node in 

the two other previously unoccupied directions, see figure (3.2). This deterministic 

collision law conserves mass and momentum and has the same discrete invariance 

group as the lattice. Furthermore it is the only non-trivial HPP collision law with 

these properties.

Figure 3.1: (a) T he H P P  repeating  square lattice and (b) the  unit cell showing the  link speed 
indexing, e; {i =  1 - - - 4}.
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We take the 2D HPP lattice shown above and initially specify a square L x L  lattice 

tha t for now we assume to be periodic in both directions. Label each node by a 

discrete vector r  and state tha t each node of the lattice is joined to its nearest 

neighbours by velocity vectors, referred to as lattice links ez- where i = 0 • • • 4. Each 

cell has two possible integer states n*(r, t) = 1 for occupied and nz-(r, t) =  0 for 

unoccupied. We define a two step cellular autom ata updating rule on the boolean 

field n = {rii(r ,t), i =  1 • • -4, r  £ Lattice} in unit time. Step one is a local collision 

where the four-bit states (1 ,0 ,1 ,0 ) and (0 ,1 ,0 ,1 ) are interchanged and all other 

states are left alone. The second step is propagation n*(r,^) n* (r -f e*, t +  1) 

where the particles are moved around the lattice.

Figure 3.2: N on-trivial collision rule for the H PP m odels, (a) Four b it s ta te  (1 ,0 ,1 ,0 )
changes to  (0 ,1 ,0 ,1 ) . (b) Four bit s ta te  (0 ,1 ,0 ,1 )  changes to  (1 ,0 ,1 ,0 ) .

Notably the collision step conserves mass and momentum locally whilst the propaga­

tion step conserves them globally. The dynamics of the H PP model is invariant under 

all discrete transformations tha t conserve the square lattice, discrete translations, 

mirror symmetries and rotations by 7r/2. Furthermore the dynamics is invariant



under duality, which is exchange of l ’s and 0’ (particles and holes) and im portantly 

momentum in the model is actually conserved along each horizontal and vertical 

line, resulting in spurious conservation quantities unrealistic for physical modeling.

3.2.2 The FHP model

In 1986 Frisch, Hasslacher and Pomeau [8] m atured the HPP model. The lattice in 

FHP models is 2 dimensional with a minimum of 6 links (D2Q6) but still possesses a 

single lattice speed unit, see figure (3.3). Each node is again connected to its nearest 

neighbours but now by six unit vectors et where i — 0 • • • b and thus, w ithout rest 

links each node has a minimum six bit state.

e,

(a) (b)
Figur e 3.3: (a) T he FH P repeating  hexagonal la ttice  and (b) the  unit cell showing link speed 
indexing, e* {z =  1 • • • 6}.

Updating for the FHP models is as in the HPP model, collision and then prop­

agation. For a hexagonal lattice, the construction of the collision rules is not as 

straightforward as in the HPP model. We must consider both deterministic and
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non-deterministic rules. This is because for head-on collisions with occupied input- 

channels (i} i -f- 3) there are two possible pairs of occupied output-channels which 

conserve mass and momenta, namely (i +  1, i +  4) and (i — 1, i — 4), see figure (3.4).

If we choose always to use one of these channels we have a fully deterministic model 

which is chiral, i.e. not invariant under mirror symmetry. Or we can randomly 

choose a channel in which case we have a non-deterministic model and the mirror 

symmetry is restored. Finally we can can choose to have a pseudo-random choice of 

channel, dependent, for example of the parity of a time or space index.

The FHP models also have spurious conservation laws. Head-on collisions conserve 

not only the total particle number but also the difference of particle numbers in any 

pair of opposite directions (?, i +  3). These additional conservations mean th a t as 

well as conserving mass and momenta, two other scalar quantities are conserved with 

the result tha t the FHP models macro-dynamical behaviour will differ from physical 

hydrodynamics. By introducing triple collisions («, i +  2, i +  4) —>• (i +  1, i +  3, i +  5) 

the superfluous conservation law can be removed, resulting in the physical macro­

scopic hydrodynamics, see figure (3.4).

3.2.2.1 FH P I,II and III m odels

The FHP-I model [36] is the simplest lattice gas model tha t has no spurious conser­

vation laws and so can be used to recover macroscopic hydrodynamics. The FHP-I 

collision rules involve both (pseudo-random) binary head-on collisions and triple 

collisions [37]. As a rule FHP-I is not invariant under duality but can be made so
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by inclusion of duals of the head-on collisions. The set of collision rules can also be 

saturated (exhausted) by the inclusion of collisions with a spectator particle which 

remains unaffected by the collision.

The FHP-II model [36] is a variant of the FHP-I (unsaturated) model th a t includes a 

rest particle and so requires a seven-bit state  fully to describe it. The FH P-II model 

has all the collision rules of the FHP-I model described above as well as additional 

collisions with the ‘rest-particle’. Binary collisions involving rest particles remove 

the spurious conservations, and do so more efficiently a t low densities than triple 

collisions.

Finally the FHP-III model is a collision saturated variant of the FH P-II model and 

contains not only a rest particle, but also a spectator particle [36,38].

The dynamics of the FHP models are invariant under all discrete transform ations 

tha t conserve the triangular lattice, discrete translations, rotations by 7r/3  and m ir­

ror symmetries with respect to a lattice line (except chiral variants).

Although the FHP I,II and III models are most commonly used, it is possible to 

construct other variants. The FH P-III model for example has 76 possible collisions 

which conserve mass and momentum, allowing a wide choice of collision laws.
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Figure 3.4l Collision rules for the  F H P  models: (a) head on collision w ith two ou tpu t channels 
given equal weight; (b) trip le collision; (c) dual of head-on collision under particle-hole exchange; 
(d) head-on collision w ith specta to r; (e) b inary  collision involving one rest particle  (represented 
by a circle).
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3.2.3 The FCHC model

The essential requirement for a LG to recover hydrodynamical macroscopic equations 

is th a t the underlying lattice needs to have sufficient symmetry to ensure macroscopic 

isotropy. In 2D, a hexagonal lattice suffices, however, the situation changes when we 

try to model 3D flow with a lattice gas. It was found tha t 3D lattices do not posses 

sufficient symmetry to ensure macroscopic isotropy [8,39,40]. To overcome this a 

pseudo 3D lattice based upon a multi-speed 4D Face Centered Hyper Cubic (FCHC) 

lattice, with one of its dimensions set to unity (see figure (3.5)) was introduced by 

d ’Humieres et al [39].

Figur e 3.5: T he pseudo-4D FCH C model. O nly the  neighbourhood of one node is shown.
Along the dotted  lines only one particle  can p ropagate. Along the solid lines, up to  two particles 
can propagate.

The model entails a three speed (0,1 and y/2) regular cubic lattice with collision 

rules tha t conserve mass and four momenta. Non-deterministic collision rules are 

needed to ensure the collisions have the same invariance group as the lattice. The



link velocity vectors e* are connected to 24 nearest and next-nearest neighbours 

(D3Q24) and so the 3D FCHC model has a minimum 24-bit state. For a more 

detailed review of the 3D FCHC model we refer the interested reader to [39,41,42].

3.2.4 Navier-Stokes hydrodynamics from LG’s

Our analysis, presented for the sake of completeness, follows closely th a t of Frisch 

et al [8]. Taking a D  dimensional lattice we label each node by a discrete vector r  

and state tha t it has b distinct links. Any particle moving on a link has a velocity 

e* where i = 0 ... b. We define a boolean occupation of the links

where 6 is defined as the shortest time step in the model. The collision function 

A i(n) describes the change in n,-(r, t) during collision in unit time, defined as

f
+1 upon addition of a particle on link ez-

A  such that an input state 5 =  ( s ^ i  = l...b) will be collided into an output state

We defer further discussion on Lattice Gases until after the following section.

1 if e* occupied
(3.1)

0 if e* unoccupied
V

and use the following equation to evolve the system in unit time

rii(r 4- eiS1t + S) = n*(r,;f) +  A t-(n) (3.2)

A i{n ) — \  0 if link ez- is unchanged

— 1 upon removal of a particle on link e t-

(3.3)

V

The collision operator A,-(n) relies upon ’look-up-tables’ of a normalized probability



5 =  (sf,« =  1 ...b). The collision rules are said to satisfy detailed balance if

A(s  —> s )  = A(s  —»■ s) (3.4)

and semi-detailed balance if

(3.5)
s

From the boolean particles n,-(r,i) we can derive [8] the ensemble average over both 

space and time, defined as the mean population given by,

At each lattice node we can define two macroscopic variables from the mean popula­

tion to establish the link to fluid hydro-dynamics. The zeroth order velocity moment 

defines the fluid density, at a lattice site

and the first order velocity moment gives the fluid momentum, a t the same site

Due to the particle exclusion principle, enforced in the lattice gas models there results 

a steady state equilibrium solution N^qm(p, u) of the mean link population A^(r, t) 

based on a Fermi-Dirac distribution function. Under the assumption th a t the actual 

mean population does not vary far from the equilibrium population, then the mean 

population can be expanded around the equilibrium population in powers of a small 

spatial expansion param eter which is explicitly associated with the shortest time 

step S.

(3.6)

(3.7)
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Performing zero and first order velocity summations on the first and second or­

der extractions of the velocity moments of the Taylor expanded evolution equation, 

utilizing equations (3.6) and (3.7) and after substantial algebra, two partial differ­

ential equations for the macroscopic observable p and pu (equations (3.6) and (3.7) 

respectively), are derived.

dtp + dp(pup) =  0 (3.8)

and

dt (pua) +  dfi ( j j p S aP +  pG(p)Ta/j-lsUyUs') = - d p  ('</; (p) +  4 k )  TapyS <% (pus)

(3.9)

where

G {p) 2Q̂b~~b ~p 'I'aP'yS = ^   ̂ (3.10)

and c is the particle (link) speed and 'ip(p) is as yet undefined [8].

3.2.4.1 Recovering Isotropy

Equation (3.9) still feels the underlying lattice through the 4th rank tensor Tap7s 

which appears in both the nonlinear and the diffusive terms. In order eventually to 

obtain the Navier-Stokes equations, the tensor Tapys given by the second term in 

equation (3.10) must be isotropic (invariant under the full orthogonal group of the 

lattice: for general group-theory material concerning the isotropy of tensors with 

discrete symmetries see Wolfram [40]).
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Tapy5 is isotropic if it has the following form.

be4
T T\^OL(}$y5â s D ( D  + 2) jo

Substituting equation (3.11) into equation (3.9 ) we obtain

dt(pup) + dp (pg{p)uaup) + da c2p ( l -  g ( p ) £

with

(3.11)

dfi [(i'c(p) + I',,) (da {pUp) +  dp {pua) -  jjdy (pu7) <i'Q»)]
(3.12)

D- f-2 b—p 

be4
(3.13)

Uc(p) D(D+2)^^P) ’ PP 2(D+2)

A couple of things to note here are th a t g(p) ^  G(p) and c2 is the sound speed of 

the fluid. We have in equation (3.12) a macroscopic momentum equation th a t is 

very closely related to the Navier-Stokes equations of hydrodynamics.

At this stage we can re-express equation (3.12) to bring out its similarity to the 

Navier-Stokes equation for viscous hydrodynamics (2.26)

dt (pua) +  dpTlap = dpoap (3.14)

where the momentum flux tensor Uap and the viscous stress tensor aap respectively 

are equivalent to

n aP = CS2P ( l  -  s ( p ) - ^ j  Sap +  g(p)puaup

°aP =  "(/>) da(pup) + dp(pUa) -  -jrd7 {pUy)Sap
D

(3.15)

(3.16)

and v{p) is now the kinematic viscosity,

y {p) =  Vc(p) +  vP 
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The kinematic, viscosity can be calculated and is found to  be not only a function of 

the density p but model dependent through the constants 'ip (p) and c2 [8,41].

A few remarks are now in order. Equation (3.14) bears a strong similarity to the 

Navier-Stokes equations for viscous hydrodynamic flow. However, there are a couple 

of significant differences.

1. The form of the momentum flux tensor is Tlap = P 8ap +  puaup for the Navier- 

Stokes equations. The scalar pressure term  in the LG momentum flux ten­

sor, equation (3.15), contains an extra additive density-dependent contribu­

tion g (p) tha t is of second order in velocity. In the low Mach number regime 

this term vanishes and the term reduces to  the expected diagonal pressure 

term P5ap where P  is the scalar pressure which is given here as c2sp. Even 

in the low Mach number regime the LG momentum flux tensor contains the 

multiplicative density-dependerit factor g (p) in the advection (nonlinear) term 

which destroys Galilean invariance in the lattice fluid.

2. The kinematic viscosity v describes the stress-strain relation for a Newtonian 

fluid with vanishing bulk viscosity [9]. The kinematic viscosity in the LG 

model, defined in equation (3.17), however, is not only a function of density 

but of the LG model used. In fact if the LG model includes a rest particle 

then the traceless property of the stress tensor aap (which is responsible for 

the vanishing of the bulk viscosity) is broken.

In order to recover Galilean invariance and hence the proper form of the Navier- 

Stokes equations from the LG momentum conservation equation (3.14), a rescaling
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of the space, time and velocity variables needs to be performed. The rescaling forces 

the undesirable terms to  vanish as the small spatial expansion param eter tends to 

zero.

3.2.4.2 Advantages and disadvantages of Lattice Gas sim ulation

Like most modeling methods LG’s have advantages and disadvantages. Due to 

their integer arithm etic on the underlying basis in direct simulation, there is no 

round-off error and so the models are unconditionally stable as well as been highly 

suited to parallel implementation. The integer nature of the model also means 

tha t computer memory can be optimally used, allowing larger scale simulations. 

Moreover, inclusion of geometrically complex boundary conditions can be realised 

with relative ease, compared to other modeling techniques such as Finite Difference.* 

Note however, th a t the problem of closing a simulation lattice so as to replicate 

Dirichlet boundary conditions to second order accuracy is unsolved.

Aside from the above considerations, the other main disadvantages of LG’s is the 

statistical noise inherent in the method. To extract the macroscopic flow observables, 

averaging has to be performed over many different initial configurations, which is 

computationally expensive. Finally, depending on the number of dimensions and the 

model used, the size of the collision m atrix can become computationally demanding, 

for example a 3D FCHC model has 224 possible collisions.

*See the end of this chapter for a discussion of boundary conditions in LG and LB models
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3.3 Brief Review of the Lattice Gas models

Since the seminal paper by Frisch et al [8], LG models have been investigated by 

many groups and there are currently several comprehensive review articles on the 

subject, most notably [36,40,43,44]. The particular issues of stability, tim e/length 

scales, conservation laws and generalized hydrodynamics of LG’s are discussed in 

[45-49]. De los Santos et al [50] have reported on the properties of driven LG ’s, 

Cornubert et al [51] have discussed bounding issues within LG’s, whilst Gunstensen 

et al [52] introduced a Galilean invariant LG satisfying semi-detailed balance. For 

work covering the introduction of lattice Boltzmann (LB) models from the parent 

LG models, see Higuera et al [47,53], whilst Esposito et al [48] is recommended for 

rigour.

In terms of applications of the LG model (rather than fundamental statistical me­

chanics), there is a rich variety of problems th a t can be simulated using a suitably 

adjusted cellular autom ata, including applications outside fluid dynamics, e.g. gran­

ular flow [54,55]. W ithin the class of fluid dynamics we shall quickly review a few 

interesting applications.

Simple two-dimensional Poiseuille (channel) flow in an infinite aspect ratio duct, 

driven by a uniform body force was simulated using a FHP model by Kadanoff et 

al [56,57]. Quantitative results were in agreement with theoretical predications as 

well as reproducing earlier LG work by d ’Humieres et al [38]. Work has also been 

carried out investigating flow around solid fixed objects: for general comments see 

Hasslacher et al [44].
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Binary fluid mixtures have been simulated extensively using LG models: the work 

by McNamara [58] measured diffusion coefficients; recently Boghosian et al [59], 

derived the immiscible LG from a particulate basis. Suggested reference m aterial on 

LG immiscible fluids is the work by Rothm an and Keller [60] who first introduced 

the technique.

In the context of the present work, there have been a few attem pts to use of LG’s so 

far to recover anisotropic fluid flow. Vives et al [61] introduced a two-dimensional 

square LG with an extra degree of freedom 6*. This new variable was allowed to 

take one of the four possible orientations corresponding to the link directions of 

the square lattice. The model produced a smectic-nematic like transition and a 

nematic-isotropic like transition. The authors used Monte-Carlo simulations and 

mean-field results as comparisons to investigate this first approximation to a real 

anisotropic system. The model produced a rich variety of structures for the available 

param eter space and whilst the order of the transitions could not be determined 

unambiguously, qualitatively they were comparable to experimental data. Angelescu 

et al [62] used the LG technique to investigate long-range ordering of nematics in one 

and two dimensions. Results show an orientational ordering transition occurring at 

finite tem perature, which the author noted was absent in certain continuum nematic 

models, although predicted by theory.
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3.4 The Lattice Boltzm ann (LB) models

Motivated by the inherent problems in the LG models, McNamara et al [35] de­

veloped the first Lattice Boltzmann (LB) model which utilized the Boltzmann ap­

proximation of molecular chaos to term inate the hierarchy of high order moments of 

the expanded N{ leading to  a closed kinetic evolution equation [35]. The molecular 

chaos assumption for low density gases assumes th a t the mean free path of a particle 

is so large th a t particles entering a collision come mostly from distant uncorrelated 

regions. Consequences of this assumption include

1. an irreversible approach to equilibrium.

2 . explicit evaluation of the transport coefficients in the limit of weak departures 

from local equilibrium (so called Chapman-Enskog limit).

The boolean link occupation states n*(r, t) were replaced by a single-particle distribu­

tion function f i( r , t )  representing the ensemble averages of the n,- over a conceptually 

infinite number of equivalent systems, in effect,

/ i( r , t) = Ni(r, t)  = (rii(r,t))

The /,-(r, t) are now real (non-boolean) continuous functions in the mnge 0 <  /*■ < 1 

and the macroscopic variables of density and momentum are now defined as

=  (3 -18)
i

PU(r : t ) = Y l  (3‘19)
i
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And by ensemble averaging the LG evolution equation (3.2) we can derive the evo­

lution equation of the distribution function fi

We now replace the ensemble average of the boolean collision operator with an 

operator dependent only upon the single particle distribution function, i.e.

So, to have a microscopic Lattice Boltzmann model giving macroscopic hydrodynam­

ics, a correct form for the collision function f i ( / )  needs to be found. No subsequent 

averaging of densities is required, since the distribution functions are the averages 

themselves : this removes the noise due to statistical fluctuations th a t plagued LG 

techniques. However the technique still acquires the complex collision function de­

pendent on the probabilities A(s  —> s ) .  Like the LG models the collision operator 

has 2m input and output states, where m  is the number of links on the underlying 

lattice plus any rest particles. Therefore for a 2D FHP model with one rest particle 

f i( /)  is a 27 x 27 matrix and for a 3D FCHC model is a 224 x 224 m atrix. Obviously 

the size of these matrices makes the computational memory requirements quite in­

tensive, rendering the method inefficient. However in [35], McNamara and Zanetti 

showed th a t the method accurately predicted (within 5%) the decay of shear and 

sound waves.

In early LBE approaches to hydrodynamics fi ( / )  was derived by considering some 

underlying CA’s collision rules, and was, in general, non-linear. However, if one 

recognizes tha t the densities fi should be close to equilibrium the collision operator

/ ,(r  +  e h t  +  1) =  /;(r, t ) +  (A j(n)) (3.20)

(3.21)
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can be considerably simplified.

3.4.1 The linear collision operator

In 1989 Higuera et al [47] linearized the collision operator by assuming the distri­

bution function fi is never far away from equilibrium, thus allowing the distribution 

function to be expanded around an equilibrium distribution function

f i  = f?9rn + f ? egm (3-22)

where is the equilibrium part of the distribution function, which is dependent

only upon the local values of p and u, i.e.

n qm -> n qmM

and / " e<7m where (ffeqm f^qm) is the non equilibrium part which can be expanded 

in powers of velocity gradients

f „e,m =  e / (D +  £(2 )/2 +  0(|u |3) (3 23)

where the labelling param eter e can be considered as playing an identical role as the 

small spatial expansion S introduced in the previous section. The superscripts refer 

to the higher order derivatives of u  and for non-linear hydrodynamics, contributions 

from f f eqm are at most, of order 0 ( / j 2̂ ). Expanding the collision operator in equation

(3.21) about the equilibrium distribution gives

n,(f) = n i(f‘n  + J2 !T"m% + 0 ( ( / r ,m)2) (3.24)
j
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where

o  -  
ij d f i

(3.25)
Ij—Jj

Invoking the requirement tha t [63],

=  0 (3.26)

reduces equation (3.24) to

*neqm

(3.27)
< M / )  =  E  j toi j f?  

=  E

The evolution equation for the linearized Lattice Boltzmann model can now be 

written as

fi(  r  -f e,-£, t +  6) =  /;( r , t) +  — f j qm) (3.28)
3

As mentioned earlier the collision operator fiy- is defined by the underlying boolean 

micro-dynamics through the transition probabilities A(s  s') and so suffers from 

the same constraints as the LGCA models as well as having the same resultant 

macrodynamics. In [47] a full form for the collision operator is given, as well as a 

general discussion between the linearized Lattice Boltzmann form and the full (non­

linear) collision operator form for LBE simulation. However the linearized collision 

operator is now a m  x m  matrix, which is clearly a considerable simplification over 

the previous 2m x 2m form. This allows the linearized Lattice Boltzmann scheme to 

be a more practical method for 2D and especially 3D simulations.
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3.4.2 The enhanced collision operator

In [53] Higuera et al proposed th a t the collision operator could be simplified even 

further by changing its form. Instead of obeying an underlying set of LGCA collision 

rules, the form of the collision operator was ”reversed engineered” from the target 

macroscopic equations whilst being constrained by the requirements of isotropy. If 

we consider the collision operator its elements ( i , j  =  1 ...b) describe the change 

in the distribution function fi  induced by a change in f j  during a collision. Isotropy 

dictates tha t the elements of the collision m atrix are dependent only upon the angle 

between the colliding links e* and and can be tuned to ensure a positive viscosity.

For an D2Q7 FHP hexagonal lattice these angles can take four possible angles 0°, 

60°, 120° and 180°. If we include a rest particle i = 0 we must include the influence 

of the rest particles on themselves fioo ar*d on the moving particles and Cloj 

(symmetry requires fit-0 =  6, and detailed balance, =  b) where i, j  7  ̂ 0. On 

general grounds, we can therefore write the entire collision operator for the  FHP 

hexagonal lattice with one rest particle as a circulant m atrix :

c b b b b b b

b Oq <260 <*120 <*180 <*120 <*60

b <260 <20 <*60 <*120 <*180 <*120

b <*120 "<*60 <*0 <*60 <*120 <*180

b <*180 <2120 <*60 <*0 <*60 <*120

b <*120 <2180 <*120 <*60 <*0 <*60

b <260 <*120 <*180 <*120 <*60 <*0
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Mass and momenta must still be conserved, which imposes the following constraints 

upon the elements of Oy

£lij =  0 and QijGia — 0 (3.30)
i i

which lead to the following constraints

6 b + c = 0

do +  2a60 +  2a i2o +  <*iso +  b = 0 (3.31)

<*0 +  <*60 ~  <*120 — <*180 — 0

Consequently, the zero-eigenvalue eigenvectors for the collision m atrix can be calcu­

lated taking into account the imposed constraints in equation (3.31) and there are

three distinct non-zero eigenvalues

A =  6 (go +  <*6o) "b 2b

a = —6 ( g0 +  2 g 6o) — 3 b (3.32)

t  = —7b

In fact A can be shown [47] to be related to the kinematic viscosity v  by

+ (3.33)

Note th a t the viscosity in equation (3.33) is specific to the D2Q7 1LB model, i.e. the 

viscosity is model dependent. To ensure a positive kinematic viscosity, A is chosen 

to lie within the range

- 2  <  A <  0

and to allow the f f eqm contribution to converge as quickly as possible (thus enhanc­

ing stability) o and r  are usually chosen to be —1 [64].
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Since the collision operator is now independent of the LGCA set of collision rules 

the model does not posses unconditional stability and as v —y 0 numerical instability 

can set in. In general the stability of LBE schemes is a neglected aspect of their 

behaviour, and seems to depend upon the ” negativity” and local gradients of the 

link density distributions [65-67].

However the enhanced collision 1LB model does recover Galilean invariant Navier- 

Stokes equations through a careful selection of the form of the equilibrium distribu­

tion function, without the need for rescaling of quantities.

3.4.3 The single relaxation LBGK model

The enhanced collision operator defined in equation (3.29) can be simplified even 

further by assuming all particle collisions relax towards equilibrium at a constant 

rate [66], i.e.

where r  is the single relaxation param eter tha t ultim ately controls the viscosity of 

the isotropic fluid and is valid within the range — 2 <  r  < 0. Again instability can 

set in as r  —> 0 since v —> oo and we stress th a t the stability and order of accuracy 

of LBE solution, especially with increasing Reynolds number and lattice resolution, 

is an on-going issue.

The evolution equation of an LBGK scheme therefore becomes

1
(3.34)

T

fi (r +  etS, t + S) = fi (r, t ) - -  (fi -  f D
r

(3.35)
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This form of the collision operator produces what is called an LBGK evolution 

equation, because of its similarity to the Bhatnagar Gross Krook (BGK) Boltzmann 

operator [68] used to solve the full, classical Boltzmann equation.

In the original LG evolution equation a Fermi-Dirac distribution is used to find the 

local equilibrium. The origins of the Fermi-Dirac distribution form of the equilibrium 

distribution derived from the LG exclusion principle, allowing only one boolean 

particle to reside on a lattice link at any one time. This resulted in the overall 

state of a node being described by a boolean variable and limited the number of 

collisions which could take place on a node at each tim e step. However there is 

no physical basis for this exclusion principle, which was introduced to simplify the 

computations. The equilibrium distribution in the LBGK model is derived from 

an expanded, uniformly translating Maxwell-Boltzmann distribution [69], and it is 

mainly for this reason (essentially no definite underlying set of collisions) th a t LB 

models today are viewed as separate models to the LG models.

Having selected a single relaxation collision function, the mapping of the LBGK 

model onto hydrodynamics is performed in the same vein as the enhanced colli­

sion function mapping (see next section). The im portant step is to choose a suitable 

form for the equilibrium distribution function, th a t maps correctly onto the required 

macroscale hydrodynamical equations. However in the 1LB enhanced collision map­

ping, it is the form of collision function th a t needs to satisfy the mass and 

momentum conservation constraints. In the LBGK model it is the form of the 

equilibrium distribution th a t has to satisfy the conservation constraints.
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The momentum density distribution scheme is implemented in this work using an 

enhanced collision operator D2Q13 1LB model. The associated (second) angle dis­

tribution scheme is implemented using the single relaxation LBGK model.

3.4.4 D2Q13 1LB Isotropic Incompressible hydrodynamics

We define a two dimensional lattice with a thirteen link velocity basis (D2Q13) [63], 

which is a three-speed hexagonal lattice with velocity vectors ea given by

e0 = {0,0} (3.36)

6 i =  e { ± 1, 0} , e |= b l /2, ± \ / 3 /2  j 

e2 =  e jo, , e |± 3 /2 , ± \/3 /2  j

where the subscripts (a =  0,1  and 2) are associated with the particles with velocity 

0, c and y/3c respectively. This D2Q13 1LB model is an extension of the D2Q7 1LB 

model [53] which takes into account not only nearest neighbours but next-nearest 

neighbours, see figure (3.6).
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(a) (b)

Figure 3.6: T he D2Q13 la ttice  m odel, (a) depicts the  repeated  lattice  un its showing th e  links 
between nearest and next-nearest neighbours, (b) shows a singular la ttice  unit for clarity, where 
the  rings ind icate  the  nearest neighbour e i and th e  nex t-nearest neighbour e 2  speeds respectively. 
T he rest e0 speed is represented by the central dot.

The D2Q13 hexagonal lattice shown in figure (3.6) has velocity moment ’’tensors” 

of the form

T ai...an =  ^  ^ta (efa i...ez-an) (3.37)
i

where, with respect to the link speed a, to = 11/25, t\ = 9/100 and ^  =  1/300.

The odd order tensors are zero and the even order tensors are isotropic up to 6th 

order, given by [70]

T $  =  T [2] Sap

=  T W ($al3 +  ^ae^y) (3.38)

^ 1 ^ 7 ecp5 =  ^  [6] e(f>5

where the A Ojg7£05 term is a sum of products containing 15 terms each of the form 

Sa/sS^dfps [70]. The constants T [n] are found to be T  [0] =  1, T [2] =  c ,̂ T  [4] =  c\ 

and T  [6] =  c*/4.
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We create an isotropic collision m atrix  from block circulant matrices (required 

by symmetry [64]) tha t couples the three velocity sets. The collision m atrix is 

written-down after the D2Q7 collision m atrix [53], see equation (3.29)

f^ iso) =  ij (3.39)

c b  d 

b T A  G 

d r  G T E

where b =  bT =  {6,6,6,6,6, b} and d =  dT =  {d, d, d, d, d, d}. Also A  ,E and 

G =  G r  are 6 x 6  circulant matrices with first rows, {no, «605 0120, aiso, auo, «6o}, 

{ e o ,  e 6 o , e i 2 o, c i s o ,  e i 2 o, O6o} and { ^ 3 0 , <7 3 0 , <79o5 9 1 5 0 , 9 i 5 0 , 9 9 0 }  respectively.

The collision m atrix must satisfy the requirements of conservation of mass and mo­

menta laid out in equations (3.30). W hilst it must be stressed th a t there is a wide 

choice of matrix elements th a t would satisfy the requirements, we make the following 

choice of m atrix elements.

b =  t / 13 ,

g30 = r / 13 

ao =  — (10r +  13(f)) /39 ,

U120 — (—20r +  130) /78 ,

c = -1 2 r /1 3  

g90 =  r / 13 

aeo =  (6r +  130) 

also =  (3 t — 130) /39

d

9lbO

= r /1 3  

=  r /1 3

(3.40)

where r  and 0 are eigenvalues of the collision matrix.

There are four eigenvectors with an eigenvalue r ,  four with an eigenvalue 0 and five 

with an eigenvalue of zero. For simplicity we explicitly set r  =  — 1 and note th a t the 

eigenvalue 0 is equivalent to —A, the eigenvalue of the D2Q7 1LB model discussed 

earlier.
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Recalling the 1LB evolution equation (3.28), but for our D2Q13 collision m atrix

/.(r +  e A i  +  5) =  fi(r,t) + J2Qfii0)frm (3-41)
j

we note tha t the macroscopic variables are velocity moments of the link density 

distributions, i.e. equations (3.18) and (3.19)

P (r > = p (r ’ u  =  e* *
i i

Taylor expanding the l.h.s of equation (3.41) using the spatial param eter S and 

retaining terms to second order gives,

5 [dt +  ejc*c)a] f i  +  — [dt 4- eia da]2 f i  =  0,^°^ f™eq -f O (<53) . (3.42)
j

where the space and time indexing has being omitted for the sake of clarity.

Expanding, as usual, the link density distribution function /,• and the time derivative 

dt up to second order about the same small expansion param eter 5,

ft = /i0) + 5/ f ) + 52/,(2) + 0 (53)
(3.43)

d t =  d t0 +  6dtl +  62d t2 +  O (d3) .

Where the equilibrium distribution f j 0̂ = f f eqm) actually determines the macro­

scopic observables through the requirements,

P =  £ / i 0) ’ pu  = ^ 2 f i 0)ei (3-44)

thus ensuring tha t the moments of higher-order components of the link density 

distribution are neutral:

£  f l n) = 0 , £ ^ ,  =  0 ( n > l ) .  (3.45)
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Substituting the expanded terms in equation (3.43) into the evolution equation (3.42) 

results in

5 [dt0 +  eiada] &ti +  ( f t0 +  eiada ) +  \  (dt0 +  eia d a )2 f-(o)

= E,- n,(?0) U f P  +  S2f f  +  o  (S3) ,

taking the terms of first order in £ gives

S(„ / f ) + e , 'a 5 a 4 0 )= £ ^ f )/ i 1)-
j

Taking zero and first order velocity moments respectively

^ £ / ‘0) +  ^ £ / f )e ,, =  £ n r )/ ‘1)
i i ij

(3.46)

(3.47)

(3.48)

a<o £  +  d* £  f i a)eiaeip = £ n g r » / < %  (3.49)
y

which, upon application of the macroscopic variable definitions in equation (3.44) 

and the summation constraints on the collision m atrix in equation (3.30), produces 

the first order contributions to the continuity and Navier-Stokes equations respec­

tively

dto (p) +  da (PUa) =  0 (3.50)

dto (PUp)  +  =  0

where n^g is the zeroth order contribution to the momentum flux tensor,

n$ = £ / ‘° W

(3.51)

(3.52)
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Next we extract the second order expansion of the evolution equation,

du f i 0) +  (dto 4- eiada) f - 1̂  4- -  (dto 4- eiada)2 ^  (3.53)
j

which upon using the first order expansion (3.47) yields

+  {dt0 +  eiada) /i(1) 4- -  (dto 4- eiada) ^  n ^ so)/ j 1) =  0 ^ so')/ j 2)- (3.54)
j  j

Taking zero and first order velocity moments on equation (3.54) produces the second 

order contributions to the continuity and the Navier-Stokes equations respectively

dtl (p) = 0 (3.55)

dh (PUp) +  d j l a l  +  \ d c f i a l  = ° (3*56)

where we have defined the second order contribution to the momentum flux tensor 

as

n  {a h J 2 f i 1)e^  0-57)
i

and is defined as

=  £  n i j 0)f P e^ eif> (3-58)
i j

Combining the first and second order extractions gives the macroscopic equations 

to second order as

dt (p) 4- dQ (pua) =  0 (3.59)

dt (pup ) +  da (n<°> + n«) + iaang> = o. (3m )

We now need to select a suitable form for the equilibrium distribution function tha t

maps equations (3.59) and (3.60) onto the target macroscopic equations, continuity

and momentum (Navier-Stokes) respectively.



The most general form of the equilibrium distribution function up to O (u2) tha t 

satisfies these conditions was determined for our D2Q13 1LB model [70] and found 

to be equivalent to the the D2Q7 1LB form given by Higuera et al [53]

fi P t<j T  2 g 2 (3-61)

except that, for our D2Q13 1LB model, the velocity of sound is cs =  ^ 3 /1 0  [70]. 

The first order contribution to the momentum flux tensor n^°j therefore becomes

n a j =  +  PUaUp (3 .62)

and in appendix (B) we demonstrate tha t to first order in u  we can approximate 

the right hand side of equation (3.47) as

X  n y 7 j 1) ~  75dy (t™*) Qiye (3.63)
3

where Q,-7C is defined as

Qt’7e — t(T i&iy&ie ^s^ye) 

and so, using result in equation (3.63), we can re-write equation (3.58) as

Qap —2 &y {P^e) ^   ̂Qiye^ia^ip. (3.64)
i

Turning now to the momentum flux tensor, the first order link density distribution 

f - 1̂ can be expanded in terms of the eigenvectors £% of the isotropic 1LB schemes 

matrix, given in equation (3.39), thus

■ / / l) =  X ° ^ '  (3-65)
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where the au are the coefficients of the expansion. Equation (3.63) now takes the 

form,

Y  Y  a ~  ~2di  (p u Qne* (3-66)
J  V  S

Making an index change = where, A*, is the eigenvalue associated

with the eigenvector yields

Y  auKCi ~  4 ^ 7  (Pue) Qiye- (3.67)CoL> *

Taking the inner product of equation (3.67) with an arbitrary eigenvector with non­

zero eigenvalue gives

X < a „ X ~ ( p « £) X ( s - e s )
v  z * i

relabelling J2ifiQiye <lyo where, QZTe =  E /t QyM' and noting = V  we

easily obtain an expression for the co-efficients in of the expansion in equation (3.65)

av «  - 4 - ^ 7  (PUe) Qye (3-69)
Cs M

This procedure is, however, valid only for eigenvectors with a non-zero eigenvalue, 

so for completeness, we can write equation (3.65) as the combination of the contri­

butions from equation (3.69) and the zero eigenvalue contributions.

(̂1) s X («) <+X (3-70)
/£ 5  U 2

ft can be shown that, for the case of an isotropic fluid, the second term on the r.h.s 

of equation (3.70) vanishes and tha t the remaining terms can be used to write the 

first order distribution function as, [70]

f P  ~  (PU<) (  +  (92$  + M ? )  S-fl +  fll?,11 (3-71)
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which we can use to write the second order contribution to the momentum flux 

tensor as *

The last two terms inside the braces on the r.h.s of equation (3.72) correspond to 

eigenvectors of the isotropic collision matrix. In the incompressible limit the terms 

associated with the post-multiplying Kronecker delta 5le vanish and the g\ term  

can be shown to contribute only to the hydrostatic pressure and as such can be 

omitted [70].

Replacing the terms in equation (3.60) with equations (3.62),(3.64) and (3.72) we 

can write (in the incompressible limit ) the emergent Navier-Stokes equation of the 

lattice fluid [70] :

where P is the scalar pressure term, which, for our model, is equivalent to c2p and 

v is the kinematic viscosity of the isotropic fluid, controlled through eigenvalue 

according to :

(3.73)

(3.74)

bn the limit of small departures from equilibrium we can replace the approximation with an 
equality.



3.4.5 Dim ensionality of LBE models

We need to briefly discuss the dimensional units of a LG or LB model. A lattice 

with dimensions L  x W ,  is specified in terms of lattice units (lu). To convert these to 

actual units (au), the relevant dimension is multiplied by the lattice link distance. 

For the case of the hexagonal lattice, the length unit is traditionally taken to be 

unity, therefore a length of L  lu ’s corresponds to a length L  in au ’s. However the 

width unit is y/S/2  and so a width of W  lu’s corresponds to a width of Wy/%/2 au’s.

The basic time step is unity and therefore all other quantities such as velocity (lattice 

units per time step) are derived from these basic units.

3.5 Review of Principle Applications of LB

Here we briefly review some of the principle applications in fluid dynamics of the 

LB scheme. Starting with standard flow applications we shall then move onto the 

thermodynamics and lastly immiscible fluids. The la tter two fields have seen some 

of the most intensive but problematic applications. Finally we shall cover a few 

other applications of the technique.

Succi et al [71] introduced LB models for isotropic 2D and 3D fluid dynamics and 

since then a number of flow geometries and regimes have been investigated [63]. 

Koelman [72] presents a simple LB scheme for Navier-Stokes fluid flow and Hou et 

al [73] provide a detailed analysis of cavity flow using the LB method. Creeping 

flow is investigated by Flekkpy et al [74], Sun [75] investigated high speed flows and
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Amati et al [76] performed simulations of high resolution turbulent channel flow.

Alexander et al [77] introduced an LBGK scheme th a t modelled thermodynamic flow 

of monatomic gases and Chen et al [78] developed higher order schemes th a t removed 

the LB nonlinear deviations from the target equations of macroscopic thermodynam­

ics. Since then LB models have been used to investigate many thermodynamical 

problems, including single and two-species therm al turbulence [79,80], Rayleigh- 

Bernard convection [81,82], as well as non-ideal gases and high-Mach number ther­

modynamics [83,84]. A concise study of hydrodynamic and thermo-hydrodynamic 

internal pressure-driven flows is presented in [85] which also contains a good review 

of current LB thermodynamics.

Gunstensen et al [64, 86] introduced 2D and 3D LB models of immiscible fluids, 

discussing the observed surface-tension with experimental results. Investigations 

into the hydrodynamics of LB immiscible models have been performed in [87-89] 

with good reviews of the LBGK two component models covered in [90,91]. Recently 

ternary LB models [92-94] have been presented which, when compared to existing 

binary LB models, have produced richer and more accessible phenomenology.

Lattice Boltzmann models have also been applied to other areas of fluid dynamics 

including non-ideal gases [95], complex fluids [96], bubble growth [97], contact line 

dynamics [98], granular flow [99], magneto-hydrodynamics [100,101] and electro- 

viscous transport [102]. This list is not exhaustive and is intended only to imply the 

extent and range of the LB technique.
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3.6 Boundary Conditions in Lattice M odels

Bounding a computational flow domain can be a non-trivial problem even in m ature 

applications of CFD. However, in LG and LB models the algorithmic process of 

imposing a wall can be relatively simple. On the discrete lattice nodes a bounding 

wall can be implemented by labelling specific nodes as ’wall’ nodes and applying 

a different operation on the propagating particles other than the ’bulk’ collision 

at every time step. Wolfram [40] showed th a t the simplest operation th a t ensured 

non-slip conditions at a bounding wall node was a bounce-back closure rule which, 

despite its widespread use, is only first order accurate.

w = o

W=Width-l
(a) Before propagation. (b) After propagation.

Figure 3.7: Schem atic of the bounce back wall operation , (a) shows two link d is tribu tions 
before p ropagating  onto the wall layer (W =0). T he w hite arrow s in (b) show the  positions of the  
link d istribu tions after propagation  but before bounce-back is applied , the  black arrow s show the  
link d istribu tions after the  bounce-back operation.

Instead of experiencing a collision, the particles on a wall node are returned along the 

link on which it approached, see figure (3.7). This effectively introduces friction and 

produces a non-slip wall at the designed wall nodes. Cornubert et al [51] showed, 

however, tha t the bounce-back method is only first order accurate and so suppresses 

the Knudsen layer associated with a bounding wall. The ease in which a bounce-



back wall can be implemented allows for the simulation of complex geometries. 

However, the exact position of the imposed wall is unknown, in general the first 

order accuracy making the effective zero in macroscopic velocity occur slightly off- 

lattice. He et al [103] rigorously analyzed the near wall velocity for Poiseuille flow 

using a first-order bounce-back closure rule and confirmed an off-lattice wall position 

with zero velocity.

The errors introduced in the first order bounce-back boundary closure rules will affect 

the accuracy of the method, especially in the near wall lattice fluid. For this reason 

several attem pts at producing a second order accurate boundary condition have 

being developed, resulting in smaller (higher order) errors. Skordos [104] introduced 

velocity gradients into a wall layer equilibrium distribution, Noble et al [105] applied 

a pressure constraint a t the wall layers and Inamuro et al [106] used a combination 

of bounce-back and specular reflection. All the above boundary methods improved 

the accuracy of the wall layers and have being studied and compared by Zou et 

al [107], but the general problem of lattice closure remains. For the purposes of the 

work presented here we concern ourselves with bulk schemes only and neglect lattice 

closure as an issue.

3.7 Forcing in Lattice M odels

Forcing a LG or LB scheme is usually achieved through one of two methods: body 

forcing or equilibrium forcing. In this section we shall briefly discuss both methods 

of forcing. However, throughout this work the body forcing method is used.
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Body forcing is associated with the process of imposing a pressure gradient on the 

lattice fluid and entails adding/subtracting fixed amounts of link density distribu­

tions from specific/all bulk node links, to produce the required flow profile. When 

a forcing term of the form

Fi =  A t aeix (3.75)

is added to all bulk node link densities at every time step within a translationally 

invariant channel geometry, at steady state a Poiseuille flow profile develops. The 

resultant pressure gradient, G ce  =  —dx P  is shown, through a suitably adjusted 

Chapman-Enskog expansion, to be of the form (see appendix A) [2]

G Ce  =  A  y ^ t ae2ix. (3.76)
i

Equilibrium forcing entails setting a known velocity profile along a specific line of

sites, e.g. a channel inlet and outlet. Along the line of sites, the node densities are

redistributed across the node links using a known equilibrium distribution function

tha t produces a flow profile of the correct form. In terms of channel (duct) flow,
1

equilibrium forcing imposes a pressure gradient down the channel th a t a t steady 

state results in a Poiseuille flow profile.

3.8 Summary of the Lattice M odels

In this section we have introduced and reviewed the history of the evolution of 

discrete lattice models. Since the formulation of cellular autom ata, a diverse range 

of LG and LB models have appeared tha t map onto macroscopic hydrodynamics.



A brief explanation of some of the more popular types of LG models used to model 

fluids and their differences are presented with a view to covering the general ideas and 

methodology of LGs. Next the process of performing a Chapman-Enskog analysis 

on an LG evolution equation to recover a set of macroscopic equations th a t (after 

a suitable rescaling of variables) map onto hydrodynamics is reviewed. A general 

discussion of some of the intricacies of such an analysis is followed by remarks on 

the technique. The section on LGs is finished with a brief literature review of some 

of the key applications showing the scope of the method.

Having discussed the LG models, the historical development of the LB models was 

introduced. The key developmental stages of the LB models are covered, culminating 

in the two main algorithms used within the LB community,i.e. the 1LB and LBGK 

models. A classical D2Q7 1LB model is introduced along with the simpler single 

relaxation LBGK model. Since however we have used a D2Q13 1LB throughout 

this thesis, it is this model th a t we have mapped onto the macroscopic equations 

of hydrodynamics by performing a Chapman-Enskog analysis on the D2Q13 1LB 

mesoscopic evolution equation.

A short literature review of LB models is presented before the chapter concludes 

with a discussion on bounding and forcing issues within LG and LB models. The 

boundary and forcing mechanisms introduced in this chapter are consistent with the 

mechanisms used to produce the results presented in chapters 5, 6 and 7.
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Chapter 4

Anisotropic Extensions to the  

LBE M odel

4.1 Introduction

In chapters 2 and 3 we covered the continuum theory of both isotropic and anisotropic 

fluids and showed how the macroscopic dynamics of a discrete isotropic Lattice 

Boltzmann model recovers the continuum conservation equations of continuity and 

momenta,

Having specified the form of our target macroscopic dynamics (i.e. the ELP equa­

tions of nemato-dynamics) we introduce to the isotropic momentum scheme a sec­

ond (link angle) distribution th a t undergoes its own LBGK collision step and ad- 

vects (propagates) along with the momentum densities. By careful selection of a
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suitable equilibrium distribution and forcing terms we recover on the macroscale, 

the coupled equations of motion for the director. Subsequently we introduce the 

necessary anisotropic extensions to the core momentum 1LB scheme which intro­

duces anisotropy into the macroscopic momentum equations through the use of an 

anisotropic collision m atrix and specific forcing terms.

At each time step we calculate the macroscopic observables of mass, momentum 

and director angle which are subsequently used to produce the required term s used 

in the coupled equations in the evolution schemes of the momentum and angle 

distributions.

4.2 Director Equations of M otion

We associate with the lattice Boltzmann link momentum density distributions fi  (r, t) 

a second distribution, the (scalar) link angle 0,-(r,i). We assume this link angle 

distribution advects (propagates) with the momentum density distributions and un­

dergoes its own collision step to achieve evolution. Further, we assume th a t the 

lattice nem atic’s Reynolds number is small, th a t the fluid is incompressible and th a t 

spatial director gradients are small - an assumption already implicit in the formula­

tion of the target dynamics we note. Accordingly, in the spirit of lattice Boltzmann 

simulation we propose an evolution equation for the link angle distributions, akin to 

the LBGK scheme,

9i (r +  e{5: t + 6 ) =  6{ (r, t) -  u  {<9* (r, t) -  6>fqm) (0, /?, u) j  4- F f (4.1)
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where Q is the LBGK relaxation parameter, F t- represents position/tim e dependent 

forcing terms and $!eqm) (0} u) is the link angle equilibrium distribution function. 

For brevity we shall drop the spatial and time labels in the following analysis.

We define the macroscopic observable as a density weighted summation of link angle 

distributions, thus

8 = ~ Y , f i 0 i -  (4-2)
^  i

The summation is considered more fully a t the end of this chapter.

We can expand the link angle, time derivative and, crucially, forcing terms [2] using 

the same param eter 5 as the scheme for momentum densities :

-> ef } + 50{i } + s2e f \

dt -*  dta + 5dh +  S2dh , (4-3)

Fi -> (5Fj1)+(J2F f ), 

where we note the forcing term  contains no 5° contributions.

As usual, we implicitly link the zeroth order expansion of the link angle to the link 

angle equilibrium distribution function =  #(eqm) acting on the shortest time 

scale dto. The specific form of the link angle equilibrium distribution function 0Z-0̂ is 

confined by the following requirements which we place upon the velocity moments

E i  0.'O) = 8  y > W =  0 (n > 1) (4.4)
i

= 0ua

&ia6ip = cs66ap +  6uaup.

Substituting the expanded quantities in equation (4.3) into the evolution equation
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(4.1) results in

(dto +  eiada) 0\(0) 4- 62 dtl9\0̂  + (dto + eiada) 9 ^ -  (dto + eiada)2 9 ^  

= - uj +  529{2) 1 +  (JF(1} +  82f \2).

(4.5)

Extracting to first order in 5 therefore gives

d t A 0) T- daOl0̂ eia — — co9^ +  F-( i ) (4.6)

which, upon summation on i, gives the first order contributions to  the scalar director 

acceleration equation :

dtJ  +  uadae = F (1).

where Ff =  F (]  ̂ is the cumulative effect of forcing.

(4.7)

Extracting to second order in 5 using the first order equation (4.6), gives

dtl 9-°̂  +  ( l  -  —) (dto +  eiada ) 9 ^  =  —u)9f^ +  F^2) (4.8)

Upon summation on ?, results in

5(i0 +  ( 1 ~ D a “ E ei 1)e“  =  F(2)

where F-(2).

(4.9)

Using equation (4.6) to replace the first order link angle distribution 9 ^  gives

=
1 /  2 
2 ~  1 dadto ^ 0)efa +  d<*dp 9\0)eiaeip

i i

^  ( i  ~  Y ^  f t to+

+  (4.10)
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and postponing further discussion of the F  terms in the r.h.s of equation (4.10) until 

the end of this section, we write :

9t' 6 = I (I ~ 0 d a d J  + F<2) + 5 (X “ I) ?  {di° +  6'ada) F*l) (4-11)'  i

Combining equations (4.7) and (4.11), we obtain the macroscopic director equation 

of motion derived from the Chapman-Enskog expansion of our scalar link angle 

evolution equation as

dte + uadae =  - d ada0 +  F «  +  F<2> +  I ( l - f ) £  (9<0 +  eiada) f V  (4.12) 
7i to ^

we immediately make the association,

where K  is the single elastic constant and 71 a specific combination of the Leslie 

coefficients. Thus equation (4.13) tells us th a t for our particular scheme, the single 

elastic constant of our nematic is controlled by the LBGK scalar relaxation param ­

eter Co.

The forcing terms in the r.h.s for our director equation of motion (4.12) are added 

to the link angle evolution equation in the form F ^  =  taF^n\  The t ^ s  are the 

rest distribution constants and F  generates the forcing terms derived in equation 

(2.122). The forcing in the r.h.s of our lattice fluid director equation (4.12) can be 

solved independent of the f f s  [2]. On writing Ff n  ̂ = taF ^  ( V ^ u ,  0 ,H ), there are 

Q F^ ' s  and Q F^ ' ‘s (where Q = 13 for our scheme) which can be chosen so as 

to recover from the last three terms in the r.h.s of equation (4.12), the appropriate 

(target) coupling of the lattice director to the velocity field.
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The final (target) form of the derived macroscopic director equation of motion is 

thus

K  'Yo 1
dt0 +  uada6 = — dada0 +  HL H----- n aA a0 -\ M. (4.14)

7i 7i 7i

So to map our link angle evolution equation onto the target macroscopics we need

to define a suitable link angle equilibrium distribution function which satisfies

the constraints laid out in equation (4.4). For simplicity, we assume a form of

e f ] = ^ e  (4.i5)

where fi  is the link momentum density distribution and p is the macroscopic density. 

It can be shown tha t our choice of the link angle equilibrium distribution function 

satisfies all the requirements in equation (4.4), subject to the arguments presented 

below. It should be noted however th a t this is not a unique solution and there other 

possible forms tha t would equally satisfy all the constraints.

4.2.1 Discussion

W ithin the methodology discussed above we incur two types of error terms, firstly 

any first order forcing contribution will produce an ” error” term  at second order. 

These terms can often be corrected by revised second order forcing contributions 

[2]. Second order forcing terms likewise incur third order error terms. Since, 

however, we are only recovering the target macroscopics up to second order we need 

only discuss error terms due to the first order forcing.

From the last section we see that the Chapman-Enskog procedure applied to our
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angle evolution produces the following first order forcing ” error” terms at second 

order

andz — uj —i i

On general grounds [2] we can argue th a t one appropriate choice for the first order 

forcing term  F in our scheme is the uniform magnetic field contribution. The 

forcing is applied according to Fi = taF y where F  represents the forcing terms 

derived at the end of chapter 2 in equation (2 .122), from which it can easily be 

shown th a t the spatial gradients in the forcing term  are always zero. Moreover, the 

time derivative forcing error term will be zero except for the instances when the 

field is switched on or off at which point the term will be discontinuous. At present 

we assume for now the second order ” error” terms due to the first order forcing 

contribution are negligible and thus ignore them. In fact, in more general situations 

the error terms could by removed by insertion of equal but opposite forcing term s at 

second order, resulting in all forcing ” error” terms being reduced to  th ird  order [2].

A second class o f ’’error” terms produced in the director dynamics are a consequence 

of the Chapman-Enskog procedure upon our selection of the link angle equilibrium 

distribution function. In equation (4.10) the second term  inside the square braces 

is of the form

dadp eT ]£ia£i(5 
i

where the second velocity moment summation should, according to the constraints 

in equation (4.4), equal

^   ̂@i -̂iâ i/3 — Cs^a/3 T  9uaUp.
i
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The second term on the r.h.s of the last equation is a consequence of the constraints 

on the momentum equilibrium distribution function, f l ° \  However, in the director 

evolution scheme this is an error term tha t is of second order in u  and therefore it is 

small in the target creeping flow. The form of the equilibrium distribution function 

in equation (4.15), produces one other error term  of the form

which involves second order spatial derivatives of the first order contributions to the 

momentum flux tensor. In the next section we show th a t in the anisotropic case the 

first order momentum flux tensor is a function of velocity and director gradients. 

We can therefore argue th a t this term  is a t most third order and as such can be 

ignored.

4.3 Anisotropic Viscous Stress Tensor

The anisotropy is introduced into the momentum evolution scheme through an 

anisotropic collision process. We write the anisotropic momentum evolution equa­

tion as

fi (r  +  ei$51 + 5) = fi (r, t) +  ^ 2  — Sy) / j neq̂  +  Fj (4.16)
3

where O f f  is the anisotropic collision matrix, is defined below, / j neq̂  is the non­

equilibrium component of the momentum link density distribution and the ’forcing’ 

term F t- is of the form

1
F t- =  — ~taeif3da (a2n ahp +  a 3npha) . (4.17)

7i cs

97



The forcing term recovers the momentum evolution arising from the <22 and a 3 term s 

of the anisotropic viscous stress tensor. In order to recover the remaining terms, the

anisotropic m atrix is taken to be of the form

q Oso)

^ =i +a < °> ;w  (4-i8 )

where is the isotropic collision m atrix defined in equation (3.39) and

x f ] = 5° (ejaeja ) x f ] = S2 (ejan af  x f ] =  S4 (ejan a)4 . (4.19)

The A ^ term  contributes only to the isotropic viscosity, A ^ yields the term s as­

sociated with the a 5 and a§ coefficients whilst A ^  gives the term associated with 

the ol\ coefficient. In order to recover the a\  term from the A ^  term  in the correct 

form, it is necessary for the velocity summation tensor introduced in equation (3.37) 

to be isotropic up to 8th order. For this reason we do not a ttem pt to recover the 

term associated with the oq viscosity in this scheme and concern ourselves only with 

recovering the terms associated with X f \  which require lattice isotropy up to 6th 

order only.

The Sij term in the momentum evolution equation (4.16) is defined as

s  ii = T , & )$ ' ) (4-2°)
v= 4

where the summation is implied over the 4 eigenvectors ^  of the collision m atrix 

with zero eigenvalue. The effect of the S^ matrix is to remove the contributions of 

these eigenvectors from / "  for all n > 1. It is necessary to accomplish this removal of 

terms in order to recover the required form for the macroscopic anisotropic viscous 

stress tensor. A recent development of this scheme with a more general scattering 

matrix removes the need for this matrix.
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Following the isotropic Chapman-Enskog analysis performed in chapter 3, the anisotropy 

enters through the extension of the first order link density distribution function

So the first order correction to  the equilibrium distribution function is now

Now, unlike the isotropic scheme, the last term in equation (4.23) describing the 

contributions from the eigenvectors with zero eigenvalues is non-zero. These contri­

butions are removed in this work by the m atrix Sij. However, a more general form of 

the scattering m atrix removes the need for this tensor. In the incompressible limit, 

all terms in equation (4.23) multiplied by 5le vanish and the eigenvector associated 

with the gi term can be shown [70] to contribute only to the hydrostatic pressure 

and so we can write equation (4.23) as

(4.21)

where the are terms which can be determined from a similar analysis as in 

chapter 3 :

7

(4.23)

(4.24)

and inserting the correct form for the terms from equation (4.19) results in



Provided the velocity set has the correct isotropy, the form of f - 1̂ given by equation

(4.25) leads to the following form for the anisotropic viscous stress tensor.

*«/> =  c2s p {  (426)

-  a 2A  ̂ Han^Arf + -  a 3X̂ j n^n^Am

Recalling th a t we are not recovering the term  associated with the a\  coefficient and

that the terms associated with the a 2 and a 3 coefficients are introduced as forcing

terms, we can make the following identifications

«4 =  1 - i - f - C )

«5 = *f-at A (4-27)

ci p$2 \a'6 — ----- '̂3 A

We have therefore obtained a momentum evolution scheme which gives direct con­

trol over the Leslie viscosity coefficients in the anisotropic viscous stress tensor cr'ap 

through the simulation parameters a 2, 0 :3 , £°, £2 and (j>.

fn order for the algorithm to remain dynamically stable, the param eters associated 

with the anisotropic scattering m atrix (£°, $2, r )  must be chosen to ensure th a t 

- 2  <  J2ij €i&ij€j <  0 for each eigenvector and | J V  I <  1 for v ^  fi.
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4.4 Anisotropic D2Q13 1LB Implementation

We shall now cover some of the key issues involved in incorporating the anisotropy 

into an isotropic D2Q13 1LB model. Implementation of the D2Q13 isotropic model 

was carried out after Higuera et al [47].

At each time step we calculate the nodal macroscopic observables of mass p, mo­

mentum pu and director angle 9. The first two are derived using the standard  LB 

method of summation over i of the zero and first velocity moments of the link den­

sity distribution. However for the macroscopic scalar angle the required summation 

is a little more subtle.

The apolar nature of the director imposes a n  <=$ —n condition on the nematic. 

In our algorithm we adhere to this condition * by finding the principle eigenvalue 

eigenvector from a density weighted order m atrix of the thirteen link angles [3],

obtaining the average angle from the components of the principle eigenvalue eigen­

vector.

However to conform to the Chapman-Enskog expansion our macroscopic variable 

needs to be a weighted sum of the link angle distributions, see equation (4.2). For 

this reason we subtract the principle eigenvector angle from each link angle before 

’’ranging” the link angles to lie within —7r/2 < 0{ <  tt/2 .

*It should be noted that this is not the only possible solution.

(4.28)
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The density weighted summation in equation (4.2) was then performed on these 

suitably adjusted link angles to find, in effect, the average deviation from the prin­

ciple eigenvector angle. Since the model assumes small gradients in the director 

field then the deviations from the principle eigenvector angle should be small and, 

in the situations considered, the apolar nature of n  does not now affect the summa­

tion. The average angle 6 is then simply the combination of the principle eigenvalue 

eigenvector angle plus the average deviation angle.

Having obtained the macroscopic observables we then use the method covered in 

appendix (C) to find the local gradients of the director and velocity fields, required 

to calculate the molecular field,

whose gradients (again calculated according to appendix (C)) are used in the anisotropic 

forcing term for the momentum evolution equation, i.e. equation (4.17)

The forcing terms to the director evolution equation are calculated at every time 

step using the velocity gradients calculated in the above process where appropriate.

=  7i (dtnfl -  oj x n\n) +  7 2n aA a^

which are used along with the director components to form a 2 x 2 tensor field, 1* ,  

of the form

1/1 (a 2 +  as) nxhx c%2 n xhy +  n yhx
(4.29)

&2 uyhx +  as nxhy (0:2 +  0 3̂) nyhy

(4.30)
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4.5 Discussion and Conclusions

We have shown tha t the coupled set of the ELP equations of nemato-dynamics 

introduced in chapter 2 can be mapped onto by our enhanced D2Q13 1LB scheme.

Introduction of a separate link angle distribution evolution scheme th a t undergoes 

its own LBGK collision process and advects (propagates) along with the momentum 

density evolution scheme was shown (with the addition of suitable forcing terms) 

correctly to recover the scalar director equation of motion. Enhancing the isotropic 

D2Q13 1LB scheme introduced in chapter 3 by inclusion of an anisotropic collision 

m atrix and suitable forcing terms was shown to recover the anisotropic form of the 

viscous stress tensor for the momentum equation of motion.

A general discussion on the forms and order of the incurred error terms for the link 

angle distribution evolution scheme was presented and some of the issues involved in 

the implementation of the algorithm were discussed. Im portantly we have raised the 

issue of the apolar nature of the director unit vector, n, and introduced a scheme 

that correctly recovers the nodal average angle from the link angle distributions 

consistent with the methodology of the Chapman-Enskog procedure.

The algorithmic implementation section concludes with a brief review of how the 

forcing contributions by the terms corresponding to the a 2 and a 3 Leslie viscosity 

coefficients are introduced into the momentum evolution scheme.
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Chapter 5

M odel Validation

5.1 Introduction

This chapter describes the validation of the isotropic scheme developed in chapter 3 

and the anisotropic extensions developed in chapter 4.

We first demonstrate th a t the isotropic model correctly maps onto the hydrodynam- 

ical continuum equations of mass continuity and Navier-Stokes. We then show tha t 

the full anisotropic algorithm correctly recovers some known solutions of the ELP 

equations of nemato-dynamics.
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5.2 Isotropic D2Q13 1LB scheme

It is prudent to validate the isotropic D2Q13 1LB scheme developed in chapter 3 

before any anisotropic extensions are implemented. Naturally there are any number 

of flow regimes one could use to validate an isotropic lattice Boltzmann scheme [107]. 

For the purpose of validating our algorithm the process of matching a constant 

body forcing pressure gradient G in a uniform Poiseuille flow was selected as it 

has the advantage of a known analytical solution. Moreover, to obtain the correct 

relationship between pressure head and resultant flow rate is known to be a stringent 

test.

This method not only provides a good way of testing the algorithm but utilizes 

the same geometry, boundary conditions and forcing mechanisms used later in the 

anisotropic scheme.

5.2.1 Duct Flow

We begin by considering the flow geometry shown in figure (5.1). The system is 

bounded in the ^-direction by a pair of non-slip walls but is periodic in the re­

direction, hence it is translationally invariant. Although we work in two dimensions, 

we can consider tha t in the z-direction the system is infinitely deep and therefore 

the z  co-ordinate does not enter into the hydrodynamics. This geometry is generally 

referred to as duct flow and imposing a constant body force throughout the fluid 

directed along the channel, results in a Poiseuille (parabolic) flow profile. The fluid
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is a t rest at the walls and the maximum velocity occurs a t the centre of the channel 

width [9].

Figur e 5.11 Geom etrical se tup  for sim ple lam inar Poiseuille (duct) flow. T he system  is periodic 
and transla tionally  invariant in the ;r-direction and bounded by non-slip walls in the y-direction 
separated  by a distance W . T he z-direction can be considered to be infinitely deep and so therefore 
does not con tribu te  to the hydrodynam ics.

It is well known th a t for steady state incompressible uni-directional flow, such as 

tha t depicted in figure (5.1), the Navier-Stokes equations [9] reduce to,

—V P  = v V 2u  (5.1)
P

where ux is the only non-vanishing velocity component. This allows us to write 

equation (5.1) as

I  G e = v dl ux (5.2)

where Ge =  dxP  and is defined as the pressure gradient.

For Poiseuille flow there is no Uy-component of velocity and on general grounds the

lijc-component of velocity varies only as a function of y. The solution :

a „ .m ax

M v )  =  ' (W  - y ) y  (5.3)
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where W  is the width of the system (in actual units, au) and u™ax is the maximum 

x-component of velocity is easy to obtain.

Substitution of equation (5.3) into equation (5.2) gives

Therefore a plot of u™ax versus 1/V results in a straight line with zero ^/-intercept 

and a slope which allows us to find the emergent pressure gradient G e from

A series of Poiseuille flow simulations in the geometry described above, varying the 

viscosity v  and measuring u™ax therefore allows us to measure a value of the pressure 

gradient G e -

The non-slip bounding walls were implemented in our test-bench D2Q13 1LB model

sites on the simulation lattice (usually W  =  0). A constant body force of A t aeiX 

(where A is the free forcing parameter) is applied to all bulk (non wall) node link 

distributions at each time step.

At steady state a Poiseuille profile was obtained where the maximum x-component 

of the velocity u™ax occurs in the centre of the channel with zero velocity at, the 

bounding walls.

Using a Chapman-Enskog expansion of the momentum evolution equation, it can 

be demonstrated (see appendix A) tha t the pressure gradient, which is constant

,m ax (5.4)

x Gradient (5.5)

by applying bounce-back boundary conditions along a pre-designated wall layer of
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throughout the system, is related to the free forcing param eter A by

G c e  =  c^A . (5 -6 )

The comparison between the derived pressure gradient Gce in equation (5.6) and 

the emergent (measured) pressure gradient Ge obtained from equation (5.5) over a 

range of forcing values A should therefore be in agreement if the algorithm correctly 

recovers isotropic hydrodynamics.

Figure (5.2), shows a typical steady state (ux) profile across the width of the system 

compared to a parabolic profile with the same (ux)max. Due to the system being 

translationally invariant, the ^-component of velocity can be averaged down the 

channel to produce (ux). The actual value of (ux)max is dependent on the degree 

of forcing applied A and the viscosity v of the fluid set through the simulation 

param eter (f>.
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Figure 5.2: Steady s ta te  Poiseuille flow profile obtained from sim ulation com pared to  a theo­
retical parabolic profile w ith the  sam e (u x)max.

Note tha t the fully developed flow profile deviates from the theoretical curve as we 

approach the walls of the system. This effect is due to the first order accuracy of 

the imposed bounce-back boundary conditions*.

*See end of chapter 3 for a general discussion on bounce-back boundary conditions.
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Figure 5.3; Variation of ( u r ) max w ith sim ulation p a ram ete r 0 for several values o f th e  forcing 
param eter A. T he increasing slope of the stra igh t lines is indicative of the  increase in pressure 
head.

Figure (5.3), show the variation of (ux)max with l/4> for several values of forcing 

A. As predicted the variations map onto straight lines with specific gradients and 

a ^-intercept of zero. The emergent pressure gradient G e is extracted from the 

gradients of these curves using equation (5.5).

Figure (5.4), shows the final comparison between the Chapman-Enskog derived pres­

sure gradient and the emergent pressure gradient from the simulations. As can be 

seen the results are in very good agreement with the expected values. This com­

parison not only validates the isotropic algorithm but also the forcing mechanism 

employed and the applied boundary conditions (which, despite their limited accu­

racy, seem to perform acceptably), all of which will be used in the anisotropic model.
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Figure 5.4: Com parison between the  em ergent pressure gradient G e  and the  theoretical
pressure gradient G c e  derived through th e  C hapm an-Enskog expansion of the  isotropic D2Q13 
1LB evolution equation.

Note tha t although the results deviate from the parabolic profile as we approach 

a wall, the results are still in good agreement with theory because (ux)max is used 

to find the pressure gradient. The maximum velocity occurs in the centre of the 

channel where we get a good correlation with the parabolic profile of Poiseuille flow.

Model stability can be monitored by checking the mass does not fluctuate during 

the simulation (i.e. there are no mass sinks or source in the simulations). The to tal 

mass of the system at each time step is calculated as

Me (<) =  J2 f t  (5-7)
Vx.y . i

Throughout a typical run the variation in the system mass was of the order of 10-7 , 

indicating not only a stable simulation but th a t the imposed boundary and flow 

conditions are not adding or removing mass from the system.
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We can also test the convergence of the simulation onto a steady state by calculating 

the residual of the velocity field. The residual is a common test of convergence in 

traditional CFD simulations and essentially calculates the difference in the entire 

velocity field between successive time steps. As the simulation reaches a stable state 

the residual, which is calculated from the following equation,

^  (^ ) =  y y ( | u |a;,y,t “  |u | : r ,y , t - l )  ( 5 - 8 )
Vx,y

will tend to zero. Here |u | is the position and time dependent nodal velocity mag­

nitude.

Figures (5.5 a) and (5.5 b) show time correlation plots of the calculated residual 

7Z (t ) for the isotropic simulations carried out with the maximum and minimum 

forcing values.

112



A = 0.0015 
A = 0.00010.05

0.045

0.04

0.035

0.03

oc 0.025

0.02

0.015

0.01

0.005

0 1 000 2000 3000 4000 5000 6000 7000 8000 9000 1 0000
simulation runtim e, t

(a )  Residual decays for th e  m axim um  and m inim um  forcing values.

A = 0.0015 
A = 0.0001

0.6

cc
cr

0.4

0.2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
simulation run time, t
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Figure 5.5; Residual decays for the m axim um  (A  =  0.0015) and m inim um  (A =  0.0001) 
forcing values used in the isotropic Poiseuille (duct) flow sim ulations. System  size was 10 X 30 lu ’s 
and (j> =  1.2.
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Note the residual rapidly approaches zero and remains a t zero for the remaining 

simulation run time, which is taken to indicate th a t the system has reached steady 

state and therefore the (ux)-component of velocity at mid-channel has attained its

i / \m axmaximum value \ux)

The mass check and residual are calculated at every time step during the simulation 

run time and are displayed during the run. All results presented in this isotropic 

validation section are for simulations th a t remained stable during the run time. At 

larger values of the forcing param eter A the simulation becomes unstable which set 

an upper limit to the available forcing range and accessible Reynolds number.

5.3 Anisotropic D2Q13 1LB Scheme

In chapter 4 the extensions to an isotropic D2Q13 1LB model were introduced and 

discussed. To validate these extensions we examine two cases: firstly we consider 

the coupling between flow and director orientation by examining the response of the 

bulk director due to a simple laminar flow in the absence of any external fields [3]. 

Secondly we consider how the director orientation affects the flow properties by 

matching onto the Miesowicz viscosities of a nematic [3,4,108].
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At this stage we need to specify the Leslie viscosity coefficients of the nematic we are 

simulating. Although there are five* Leslie viscosity coefficients 07 ... 0:5 to recover 

we shall currently consider only four of these. The term  associated with the oq 

Leslie coefficient would require 8th order isotropy of our underlying lattice and so we 

have chosen not to include this term in our model. Om itting this term should not 

seriously alter the resulting nemato-dynamics and it could, in future, be included 

by a suitable enhancement to the lattice structure.

From [109] we can write down the relevant Leslie viscosity coefficients for the liquid 

crystal N-(p-methoxybenzylidene)-p-n-butyl-aniline (usually abbreviated to MBBA) 

at 25°C, well within its nematic phase.

Leslie viscosity coefficients 
10-3 poise

ELP parameters
10 3 poise

0 L2 &3 oq &5 Qq 7i 7 2 A
-77.5 -01.2 +83.2 +46.3 -34.4 +76.3 -78.7 +1.03146

Table 5.1 ; T he 5 relevant Leslie viscosity coefficients for MBBA at 25°C, 
well w ithin its nem atic phase. Also resu lting  E L P p aram ete rs 7 1 , 7 2  and A.

^Actually there are six but the Parodi relationship reduces the number to five.
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5.3.1 Director Alignment in Simple Laminar Flow

In validating the director evolution equation, we shall consider the case of director 

alignment in simple laminar flow in the absence of any external fields. As in the 

isotropic validation method we employ periodic boundaries in the ^-direction and 

bounded non-slip wall conditions in the y-direction.

+ + +  + + +. + +

+ + +  + + + + +
Figure 5.6: Schematic of the bulk director orien tations 61, varying across the  system  w idth  d 
showing the boundary  transition  regions e\ for a sim ple C ouette  (shear) flow of m agnitude |u | in 
the  absence of any applied field.

In [3], de Gennes introduces three parameters 71, 72 and A tha t characterize the 

nematic in terms of the Leslie viscosity coefficients, thus:

7 l = a 3 - a 2 , 72 =  a 3 +  a '2 , A =  (5-9)
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For |A| >  1 there is a certain'critical angle 6b between the bulk director orientations 

and the direction of the flow field for which the hydrodynamic torque vanishes. Far 

from the walls, the molecules will tend to lie precisely a t the angle 9b while nearer 

to the wall the molecules will experience a transition region e\ between the bulk 

alignment and the wall alignment.

For |A| <  1 the hydrodynamic torque is non-zero throughout the nematic and more 

complex (unsteady) regimes such as tumbling can be observed [110-113]. For these 

validation results and all subsequent anisotropic results discussed in this work we 

shall not enter the |A| <  1 regimes, since for most physical nematics |A| is slightly 

larger than unity [3]. The algorithm however does have the ability to enter these 

regimes and this could be an interesting future area of study.

In the presence of a steady state  simple laminar flow, having fixed A, the bulk 

directors should align to the theoretical angle 9b, given by

For A ~  0 the angle between the bulk director alignment and the direction of the 

flow field should be small 6b ~  0. At larger A the bulk director orientations 9b will 

tend towards a maximum deviation away from the direction of flow field. L

-» 7r/4 due to the apolar nature of the nematic director
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To implement the arrangement in figure (5.6) we employ bounce-back boundary 

conditions along the W  = 0 line of sites, designating them wall nodes. At these wall 

nodes we overwrite a t every time step the current link angle distributions 0*(r, t) 

with the required wall angle 9W distributing the wall angle onto the links by setting 

6j(r,t) = t aOw(r,t),  mimicking strong anchoring.

In order to generate a shear flow we apply a constant body force A taeiX (as intro­

duced in the last section to recover isotropic Poiseuille flow). However for shear flow 

we only apply the forcing along one line of sites (usually W  = W idth/2). The result­

ing steady state  solution corresponds to two ”back-to-back” translationally invariant 

(Couette) shear flows. The maximum x-component of velocity {ux)max appears at 

mid-channel whilst a t the walls the fluid is a t rest. The Wy-component of velocity is 

zero and the only non-zero velocity gradient is dyux.

Selecting the physical nematic viscosity coefficients of MBBA shown in table

(5.1) fixes 71 and 72 and therefore A. Higher values of A were achieved by changing 

0:3 whilst keeping ol<i fixed. Table (5.2) shows the change in Leslie coefficients upon 

altering the 0:3 viscosity coefficient and keeping all other simulation parameters 

constant.
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Leslie viscosity coefficients 
10-3 poise

ELP parameters
10"J poise

0.2 Qq oq Q?5 Qq 7i 72 A 0b degs
-077.5 -001.20 083.20 +044.70 -033.99 76.30 -078.70 1.031455 06.949
-077.5 -003.37 083.20 +049.31 -031.56 74.13 -080.87 1.090909 11.778
-077.5 -004.31 083.20 +051.38 -030.43 73.19 -081.81 1.117647 13.263
-077.5 -007.05 083.20 +057.76 -026.78 70.46 -084.55 1.200000 16.779
-077.5 -010.11 083.20 +065.51 -022.10 67.39 -087.61 1.300000 19.858
-077.5 -017.88 083.20 +088.76 -006.62 59.62 -095.39 1.600000 25.659
-077.5 -025.83 083.20 +119.76 +016.45 51.67 -103.33 2.000000 30.000
-077.5 -038.75 083.20 +197.26 +081.01 38.75 -116.25 3.000000 35.264
-077.5 -046.50 083.20 +274.76 +150.76 31.00 -124.00 4.000000 37.761
-077.5 -051.67 083.20 +352.26 +223.10 25.83 -129.17 5.000000 39.232
-077.5 -058.13 083.20 +507.26 +371.64 19.36 -135.63 7.000000 40.894

Table 5 .2: Leslie viscosity coefficients, fixing 7 1 , 7 2 , A and for director 
alignment in steady state simple (Couette) shear flow in the absence o f any 
applied field.

Figures (5.7) and (5.8) show typical steady state  director and velocity profiles across 

the width of the system respectively. Each figure shows the steady state  results for 

the cases when the flow field is either coupled or uncoupled from the director field. 

Note the velocity graph shows the two back-to-back Couette flow profiles with zero 

velocity at the walls and equal but opposite shear gradients. The full coupling 

between the director field and the flow field produces a distorted (bulged) shear 

profile and a slightly different bulk director field. The discontinuities in the flow 

field profile at the wall and centre positions are a consequence of the imposed flow 

and boundary conditions. However the bulk of the flow profile in figure (5.8) is tha t 

of simple shear flow.
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Figure 5.7: C om parison between the steady  s ta te  d irector field for the  fully coupled system  and 
the flow field decoupled system . T he d irec to r field coupling to  the  flow field affects th e  resu ltan t 
flow profile which consequently re-affects the  d irecto r field.
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Figur C 5.8: C om parison between the  steady  s ta te  flow field (back-to-back C ouette  flow) for 
the fully coupled system  and the flow field decoupled system . T he effect of the  d irec to r field on 
the resulting flow field is to  ’bulge’ the  flow from a stra igh t shear profile to a curved profile.
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Figure (5.9) shows a comparison plot of the theoretical curve of 9h versus A over the 

range of parameters listed in table (5.2). The free forcing param eter A was chosen 

to produce a steady state laminar shear flow below the critical shear rate for flow 

instability [114].

40
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theory
results

3 42 5 6 7 8 9
X = -y2/y,

Figure 5 -91 Steady sta te  d irector bulk orientations fy, versus nem atic  p a ram ete r A for a 
strongly o rien tating  lam inar flow in the  absence of any applied field. T he solid line represen ts the 
theoretical curve obtained from equation (5.10). T he points are the  steady  sta te  resu lts  obtained 
from sim ulation.

The results presented in figure (5.9) indicate that, in the absence of an applied mag­

netic field, the coupling behavior between flow and director alignment is successfully 

recovered and th a t the ELP director equations of motion are correctly recovered by 

our model. A discussion on the absence of the transition regions ei in our results is 

presented at the end of this chapter.
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5.3.2 M easuring the Miesowicz Viscosities

Finally in this section we need to validate the anisotropic extensions to the momen­

tum  evolution equation which is aimed at recovering the anisotropic Navier-Stokes 

equations. These extensions dictate how the changes in director orientation affect 

the flow properties of the nematic.

The Leslie coefficients are often determined experimentally by measuring the Miesow­

icz viscosities from the measurements of laminar shear flow in the presence of a 

strongly orientating magnetic field [3,4,13].

In these experiments the bulk director orientations are firmly aligned in one direction 

by a constant homogeneous magnetic field H.  To achieve such strong alignment we 

need to satisfy the following conditions

1. The walls bounding the flow may impose some preferred state of alignment 

other than the direction of H.  To avoid this we need to ensure the diam eter of 

our simulation is much larger than the magnetic coherence length of the walls,

i.e. f  (H ) <C d where

K  is the nematic elastic constant (in the one constant approximation) and Xa 

is the magnetic susceptibility of the nematic.

(5.11)
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2. We saw in the previous experiment, the flow itself will tend to  orientate 

the bulk directors. In a velocity gradient A  the hydrodynamic torque 7  A

and so ensuring th a t 9 ^  <C 1° will result in an essentially unperturbed align­

ment.

W ith the above two conditions satisfied, figure(5.10) shows three types of alignment 

experiments for simple laminar Couette (shear) flow. However since we are only 

dealing with a two dimensional system, case (a) in figure (5.10) is not possible, 

which leaves us with cases (b) and (c).

§ needs to be balanced by the restoring torque of the magnetic field which is

X a#2sin (#def)- Therefore,

(5.12)

y: y y

X

n
x x

(a) (c)

Figure 5.10: Schematic of the three fundam ental geom etries for viscosity m easurem ents in a 
well aligned nem atic, n  is the bulk d irecto r o rien tation  which is firmly aligned by a m agnetic  field. 
T he arrows indicate the direction of the  im posed shear flow profile.

is of order yri, where 7  is some average of 71 and j 2 .
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For each case an effective viscosity r)eg can be defined as

/

™  = v f -  (5-13)

where a'a/3 is the viscous stress tensor given by equation (2.112) and A ap is the 

symmetric component of the velocity gradient tensor given by equation (2.100). 

When applied to the three cases shown in figure (5.10), equation (5.13) yields three 

different effective (Miesowicz) viscosities.

?̂a V<3 2 ̂ 4

=  V\\ =  ^ (cv4 +  cr6 +  cv3) (5-14)

r)c = V± = \  (a 4 +  a 5 -  a 2)

The Miesowicz viscosities shown in equations in (5.14) can be recast in term s of the 

parameters used in our anisotropic 1LB model, i.e. equations (5.15)

711 =  l ( a 4 + a6 + a 3) = c2p ( l  +  f  (25° +  52)) ± -  \ c 2sp\
7 (5.15)

?U =  5 («4 +  «5 -  a 2) = c\p ( l  +  f  (2S° +  S2)) i  +  ( ^ j  -  ±c2p)

where </> is the eigenvalue of the isotropic 1LB collision matrix controlling the viscosity 

of the isotropic fluid and £° and S2 are the simulation parameters used to  specify 

the anisotropy.

From simulation, we calculate velocity gradients and hence we can find A ap. The 

viscous stress tensor a'ap is assumed to be linearly related to the free forcing param ­

eter A and as such we can use equation (5.13) to calculate an emergent Miesowicz 

viscosity. On comparison, the emergent Miesowicz viscosities and the predicted 

Miesowicz viscosities should be in close agreement if the coupling of the director 

field to the hydrodynamic equations of motion is correctly recovered by our model.

124



The mapping will be done in two parts, firstly we shall consider the Miesowicz 

viscosities without any contribution from the a 2 and 0:3 Leslie coefficients. In this 

case the two Miesowicz viscosities r]\\ and 777 in equation (5.14) reduce to a single 

anisotropic viscosity  ̂ different to the isotropic viscosity but independent of the 

director orientation [3] (i.e. viscosity is constant under director rotation).

The second part is when we insert the 0:2 and 0:3 contributions: in this case we 

should see a difference between the 77|| and r]± viscosities (i.e viscosity changes due 

to director rotation).

The geometrical setup is the same as for director alignment in simple lam inar flow. 

We employ bounce-back boundary conditions at the walls for the momentum densi­

ties and align the wall director orientations to the required angle. The fluid is forced 

at the half width line of sites, using the body forcing already introduced in the last 

section, resulting in a pair of equal but opposite back-to-back Couette shear flows. 

We apply a homogeneous magnetic field strong enough to overcome the deforma­

tions in the director field caused by the presence of the wall alignment and the shear 

flow.

^assuming the Parodi relationship (og -  q5 =  qo +  03)
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The magnetic field is applied thus

1. The magnetic susceptibility Xa (set to unity for simplicity).

2. The magnitude of the magnetic field, H.

3. The angle of application for the homogeneous magnetic field 9m. H

The components of the magnetic field in two dimensions are thus

H x =  XaHcos (9m) , H y = Xa H sin (9m) (5T6)

The Miesowicz viscosities defined in equation (5.15) are inversely related to cf) with 

identical gradients and non-zero y-intercepts, varying according to the <72 and <73 

viscosity coefficients.

W ithout the terms in the anisotropic viscous stress tensor controlled through the 

<72 and <73 viscosity coefficients, the nematic viscosity is independent of the bulk 

director orientations.

We now consider the two conditions required to ensure we have an unperturbed 

system in which we can measure the Miesowicz viscosities.

The first condition required is tha t the wall orientations do not impinge upon the 

magnetically aligned bulk orientations. We have to make sure tha t the diam eter of 

our system is much larger than the magnetic coherence length given by equation

(5.11).

IIwhere 0° is parallel to the x-plane.



It is not intended to measure the magnetic coherence length in this chapter, rather, 

we simply wish to ensure th a t the bulk director orientations which we shall use to 

find the Miesowicz viscosities are not adversely affected by the magnetic coherence 

lengths.

Figure (5.11) shows the bulk director orientations for a system diam eter of 10 x 60 

lattice units for increasing values of magnetic field. We observe a magnetic coherence 

length whose relative size diminishes with increasing field. At higher magnetic field 

values we can state tha t the majority of the bulk director orientations are aligned 

to the magnetic field direction and th a t the coherence length is sufficiently small 

<C d so as not to affect the obtained Miesowicz viscosity. Performing the

90

i H = 0.10----0 ----1----- 1----- 1----- 1----- 1----- 1___ l___ l___ I___ I___ I___
5 10 15 20 25 30 35 40 45 50 55 60

S im u la tio n  w id th , W  lu

Figure 5.11: Bulk director orien tations for increasing m agnetic field s treng th  for sim ulation  
of size 10 X 60 lu ’s. T he wall o rientations are strong ly  anchored parallel to the  plane of th e  
wall w hilst the m agnetic field application angle is norm al to  the plane of the wall. T h e  bulk 
orientations experience a m agnetic coherence layer £ ( H )  as they  approach a wall. T he relative 
size of the coherence length decreases w ith increasing m agnetic field streng th  H.

127



Miesowicz viscosity simulations at these higher field values therefore satisfies the 

first condition.

We can however show tha t the coherence lengths obtained from our simulations do 

indeed diminish according to reciprocal field strength. If we take f  (H ) as the lattice 

diameter position just before the bulk director orientation aligns to the imposed 

magnetic field direction we can compare the relationship between £ (H ) and H  from 

our simulations to the expected theory, given by equation (5.15), see figure (5.12).
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th e o n
re su l
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M ag n e tic  field, H

FigUl'e 5 .12l Com parison between theory and sim ulation resu lts for the decrease in the  m ag­
netic coherence length £ ( H )  versus increasing m agnetic field s treng th  H.

We now turn to the second condition, namely, the re-orientating affects of an imposed 

simple laminar flow field. The results presented in figures (5.11) and (5.12) are in the 

absence of such a flow field. However we know from the previous section th a t any
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imposed flow will tend to align the bulk directors to the direction of the flow field. 

Taking the above results as guidance we can essentially determine an upper limit to 

the strength of the imposed flow field. For the larger magnetic field strengths used 

to ensure no coherence length problems we need to select the strength of the flow 

field such th a t the bulk orientations are deformed by less than 1°.

92.5
A = 0.00001 
A = 0.00010 
A = 0.00100

91.5

(/)
<D£Ui<5
n© 90.5
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o
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S im u la tio n  w id th .W  lu
5 10 150 5045 55 60

F i g u r e  5 . 1 3 1 Bulk d irecto r o rientation  deform ations due to  increasing im posed flow fields for a 
m agnetic field streng th  H  =  0.1 corresponding to  the  sm all m agnetic coherence length f  (0.1), T he 
deform ation due to  the  flow should be less th an  1 ° to satisfy  the conditions required to m easure 
the  Miesowicz viscosities.

Figure (5.13) shows the deformation of the bulk director orientation due to an in­

creasing flow field strength, for a magnetic field strength of H  =  0.1 corresponding 

to the small coherence length £ (0.1).
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The next step is to measure the effective viscosity, {rje#) **, of the fluid. We should 

observe a different effective viscosity for the anisotropic fluid (52 ^  0) than  for the 

isotropic fluid. However without the a 2 and a 3 contributions the anisotropic viscosity 

will be invariant with respect to bulk director orientation.

Figure (5.14) depicts the change in the effective viscosity (%$) across the simulation 

channel width for the isotropic and anisotropic simulations.

0.25
i s o t r o p ic - - - - - - -

a n i s o t r o p i c - - - - - - -

0.15

A _
45

^  0.05
>.
IDoo0
>a>
o
CD

-0.05

-0.1

-0.15

-0.2

-0.25
10 15 20 25 30 35 40

S im u la tio n  w id th , W  lu
5 45 50 55 60

Figure 5.14: Difference in the  resu ltan t steady  s ta te  effective viscosity {r?efF} between
the anisotropic d irector orientation independent sim ulation and the  isotropic sim ulation . T he 
anisotropic sim ulation has a higher resu ltan t effective viscosity th an  the isotropic sim ulation.

** Again we can take the average down the system length due to the translational invariance of 
the geometrical setup.



Figure (5.15) shows the resulting change in the steady state (wx)-component velocity 

profile for the isotropic and anisotropic simulations, due to the change in the effective 

viscosity.
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Figure 5-151 C orresponding change in the fluid flow profile between th e  anisotropic and 
isotropic sim ulations. Since the  forcing in bo th  sim ulations rem ained constant then  the  higher 
resultant effective viscosity of the  anisotropic fluid results in a sm aller steady  s ta te  flow profile.

From figure (5.14) we can see th a t the viscosity of the anisotropic fluid is markedly 

greater than the isotropic fluid. This increase in the effective viscosity causes a 

smaller steady state flow profile, for the same forcing value as the isotropic fluid. 

This smaller flow profile is shown in figure (5.15).
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(a )  T im e correlation function of the  norm alized residual, H ( t )  /7 £ (f)max 
for the isotropic and anisotropic sim ulations. Each residual plot is nor­
malized to  th e ir respective m axim um  in itial residual value.
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(b )  T im e correlation function of the  m id-channel (u r )-com ponent of ve­
locity showing the steady  s ta te  convergence of the flow profile for the 
isotropic and anisotropic sim ulations.

Figure 5.16: Isotropic and anisotropic sim ulation tim e correlation functions of the residual 
and m id-channel (rtr )-com ponent of velocity.
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Figures (5.16 a) and (5.16 b) show the residual 7Z(t)  and (ux) time correlation 

functions for both the isotropic and anisotropic simulations respectively. Note tha t 

in both cases the total mass of the simulation remained constant throughout, varying 

on the order of 10“7, indicating a stable simulation. The difference in the residual 

profiles is due to the fact th a t since the anisotropic fluid is more viscous than the 

isotropic fluid, a smaller velocity profile is obtained which is also shown in the 

different velocity time correlation curves. Both the residual and time correlation 

function graphs indicate th a t the steady state solution has being reached.

Referring back to figure (5.14), we can see th a t the effective viscosity is constant 

across the width of each back-to-back flow profile. The only gradients in the effective 

viscosity occur near the wall and in the centre of the channel, where the back-to-back 

Couette flows are forced. We can therefore take the value of the effective viscosity 

from around the W idth /4  lattice position for steady state  simulations with pinned 

director orientation between 0° and 180°.

Figure (5.17) shows th a t without the terms associated with the «2 and a'3, viscosities, 

the anisotropic effective viscosity is, as expected, independent of the director angle 

with a total variation of only ^  0.05%.
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Figure 5.17: S teady s ta te  variation  in the  effective viscosity w ith respect to  bulk  d irector 
orientations 9^ for the case when the  term s associated w ith the a -2 and c* 3  Leslie coefficients are 
not included. T he effective viscosity in th is  case is independent of the bulk d irec to r o rien tation .

Therefore the results from our simulations are in agreement with expected theory. 

A similar result is found for the effect of director orientation on the induced shear 

flow field.

Figure (5.18) shows the change in the anisotropic effective viscosity (r}ef f )  with the 0:2 

and a 3 viscosity terms included. For each simulation the bulk director orientation 

was pinned to a specific angle and allowed to reach steady state. The resulting 

effective viscosities are now angle dependent being at a maximum and symmetric 

about 7t/ 2 .

134



0.8

0.6
A_

I
0.4

0.2

0
0 0.5 1 1.5 2 2.5 3

0b , ra d ia n s

Figure 5.18: Steady sta te  variation  in the  effective viscosity (r?eff) with respect to  bulk director 
o rientations 6 for the  case when the  term s associated w ith  the  a -2 and Q3  Leslie coefficients are 
included. T he effective viscosity now varies w ith bulk d irector o rien tation , being at a m axim um  
and sym m etric  about 7t/2.

It is worth noting th a t when the pinned angle is parallel to the flow direction the 

resultant effective viscosity is approximately the same as the effective viscosities 

obtained in the angle independent case. This is due to the fact th a t the parallel 

alignment case produces the least anisotropic effect on the flow (since the torque 

acting on the flow due to the director orientation is at a minimum).

Figure (5.19) depicts the corresponding changes in the steady state (uT)-component 

of velocity.
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Figure 5.19: Steady s ta te  varia tion  in the  m id-channel {«x)-com ponent of velocity, w ith 
respect to  bulk d irector orien tations 6b for the case when the  term s associated w ith  the a -2 and 
a 3  Leslie coefficients are included. T he velocity profile now varies according to  th e  change in the 
effective viscosity of the  ffuid which varies w ith  d irector orientation .

The fall in the resulting velocity as the angle changes from being parallel to perpen­

dicular to the flow direction is due to the fact tha t, as the fluid effectively becomes 

more viscous and since we have constant forcing, the resultant flow profile is smaller.

Finally we shall examine the cases for the Miesowicz viscosities, namely the parallel 

and perpendicular bulk director alignments. Figure (5.20) shows the linear relation­

ship between effective viscosity (?]eff) and 1 /0  for the two Miesowicz viscosity cases.
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FigUfG 5.20". T he variation  in the Miesowicz viscosities w ith  reciprocal sim ulation p a ram ete r 
<p . T he 7j|| and T ] ±  viscosities m ap onto stra igh t lines showing the  expected theoretical behaviour 
of equal gradients w ith different y-intercepts.

As predicted, the variations produce a pair of straight lines with equal gradients but 

different ^/-intercepts. The ratio of the gradients to the y-intercepts will be indepen­

dent of any pre-multiplying constants relating the theoretical Miesowicz viscosities 

to the Miesowicz viscosities obtained from simulation.

Slope to y-intercept ratio *711 V±
Theory -1.8425 -2.6005

Simulation -1.8438 -2.6000

Table 5.3: C om parison of the predicted  slope to  intercept ra tio s and the 
ra tio s from the sim ulation results of the  Miesowicz viscosities T)\\ and T ] ± .

Moreover, the ratio of the gradients to y-intercepts for the two Miesowicz viscosities 

obtained from simulation compared to the predicted ratios from the Leslie viscosity 

coefficients for MBBA are shown in table (5.3). The agreement shows a very good
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correlation (less tha t 0.1% error) between the predicted theory and our results.

We are thus confident th a t recovering the Miesowicz viscosities to such a high degree 

of accuracy validates the second part of our anisotropic extensions to the isotropic 

D2Q13 1LB model.

5.4 Discussion and Conclusions

We have developed an isotropic D2Q13 1LB model and performed a suitable valida­

tion exercise (duct flow) upon the model to ensure th a t the correct macroscopic fluid 

dynamics were recovered. During the validation the criteria for model stability and 

steady state convergence were introduced and shown to be satisfied by our isotropic 

model. From this basis we then proceeded to validate the anisotropic extensions to 

our model in two separate stages.

To test the director field’s response to the flow field we used the fact th a t the bulk 

director orientations in a simple laminar flow in the absence of any external fields 

is dependent only upon a specific combination of nematic viscosities A. Results 

from these simulations showed good agreement with theory over a wide range of A’s. 

However the theory also predicted transition regions e\ between the bulk alignment 

9b and the strongly anchored wall alignment 9W. fn our simulations we noticed an 

absence of such transition regions and so a brief discussion of this fact is necessary.

The transition regions occur in the vicinity of the walls as the bulk director orien­

tations change rapidly to orientate themselves tangential to the strongly anchored
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wall orientations. In chapter 3 a general discussion on bounding lattice models 

is presented including the properties of the type of boundary conditions used in 

these simulations, i.e. first order bounce-back. Cornubert et al [51] showed th a t the 

’’Knudsen layer” in a bounded forced fluid (the region where the flow profile changes 

rapidly to become zero at a non-slip wall) is not recovered accurately by the bounce- 

back technique. The first order constraint on the bounce-back boundary condition 

suppresses the Knudsen layers associated with the flow field, and since the director 

field transition regions e\ can be likened to  a Knudsen layer we can argue th a t they 

are also suppressed by the imposed first order boundary conditions. As support for 

this argument we look to Clark and Leslie [5] who discuss the presence of the thin 

boundary layers in strong anchoring and state th a t the director orientation changes 

rapidly whilst aligning to the wall orientation and so neglect transition regions in 

their subsequent calculations.

The second part of the anisotropic extensions was to modify the momentum density 

evolution equation, to recover the specific form of the anisotropic viscous stress 

tensor a'ap given by equation (2.112). The flow properties of our nematic should now 

be coupled to the director field and so any change in the bulk director orientations 

should affect the resultant flow profiles. The m ethod employed here to validate this 

coupling (recovering the expected Miesowicz viscosities) showed good agreement 

(less than 0.1%) with the theoretical predictions.
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We now confirm a model in which changes in the flow profile cause reorientation 

of the director field, and reorientation of the director field can induce flow. The 

validations prove the ability of the algorithm to map onto the steady state  ELP 

theory to a satisfactory degree. In subsequent chapters we use the fully coupled 

model to examine some of the more interesting properties of nemato-dynamics.
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Chapter 6

Simple G eom etry Simulations

6.1 Introduction

Having, in the previous chapter, validated the algorithm with some known theoret­

ical results we can now proceed to consider other theoretical experiments th a t can 

be performed in the simple geometrical configurations already introduced.

The main topic of the previous chapter was the anisotropic effects in steady state 

laminar flow. However some of the more interesting physical properties of nematics 

occur in transient flows where rapid director orientation can produce a velocity field 

which affects the director dynamics. Accordingly in the following experiments there 

will be no imposed flow profile and all velocity fields produced are driven by director 

reorientation, are transient and decay away to zero at steady state.

141



The first part of this chapter explores the coupling between director orientation and 

an imposed bulk magnetic field by considering the well known Freedericksz transition 

[3,4]. Afterwards we shall use the results from our Freedericksz transition numerical 

experiments to investigate the nematic effect of velocity ’back-flow’ with director 

’kick-back’. We shall consider the origins of back-flow and kick-back, commenting 

on some previous theoretical work [5,7].

6.2 The Freedericksz Transition

In two dimensions with the director confined to the plane we consider the experi­

mental situation of a nematic liquid crystal, bounded in the y-direction by non-slip 

walls and periodic in the rc-direction. Assuming strong uniform anchoring at the 

bounding walls, then at steady state the bulk director orientations will be aligned 

tangential to the wall director orientations, in the absence of any induced flow or 

applied field.

Figures (6.1 a) and (6.1 b) show schematic diagrams of steady state aligned bulk 

director orientations for the cases of parallel and perpendicular wall alignments 

respectively.
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(a )  Parallel wall alignm ent. (b )  P erpendicu lar wall alignm ent.

Figure 6.1: Schem atic of a wall aligned bulk nem atic a t s teady  s ta te  in th e  absence of any 
external fields.

If a magnetic field H is applied normal to the wall alignments in figures (6.1 a) and 

(6.1 b), an induced magnetic torque is experienced by the bulk directors of the form

which vanishes in an unperturbed configuration (n • H =  0).

At large H values the bulk orientations will be aligned in the direction of the magnetic 

field except for two thin transition regions, £ (H), near the walls [3]. In chapter 5 

we discussed the appearance of these magnetic coherence lengths for an imposed 

magnetic field as a bounding wall is approached. At low field strengths the coherence 

length will extend further into the bulk and in the extreme case of the coherence 

lengths covering the width of the system then the bulk will all be aligned to the wall 

orientation.

rM =  X a  (n  • H ) n  x H (6.1)
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We can therefore define a critical field strength Hc for which the centre of the bulk 

first begins to align to the direction of the applied field, away from the imposed wall 

orientation. Around this critical field value there will be a phase transition between 

the unperturbed configurations shown in figures (6.1 a) and (6.1 b) to the distorted 

configurations shown in figures (6.2 a) and(6.2 b).

(a )  Perpendicular applied m agnetic field. (b )  Parallel applied m agnetic field.

Figure 6.2: Schematic of the steady  s ta te  bulk aligned nem atic in the presence of a strongly  
o rien tating  m agnetic field H  H c applied norm al to  the easy axis of the wall.

The critical magnetic field strength H c in the one constant approximation is [3,4],

<62)

and so the product of Hc and d is a constant dependent on the elasticity K  and the 

magnetic susceptibility Xn of the nematic.
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This phase transition is named after V.Freedericksz who first observed it optically 

in 1927 [115]. The transition is second order (i.e. distortions around the threshold 

are small) and can be calculated using an elliptic integral [116,117].
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0.1

0

13o

(a )  Bulk director o rien ta­
tional changes th rough  the 
Freedericksz transition .

(b )  Q ualita tive  second order 
Freedericksz tran s itio n  curve 
showing the ro ta tio n  away 
from th e  im posed wall angle 
for m agnetic fields exceeding 
the  critical field H c .

(c ) R elaxation away from  the  
theoretical curve for applied 
fields angles of (a) 90° (b) 89° 
(c) 85° and (d) 80°.

Figure 6.3: Schem atic representations of the  p roperties of the  nem atic Freedericksz transition , 
(a) and (c) are from [4] and (b) is from [3].

Figure (6.3 a) shows a schematic diagram of the changes in the director orientation 

across the width of the system at critical and sub-critical magnetic field values. 

Figure (6.3 b) is the theoretical plot of a second order Freedericksz transition : 

where the y-axis corresponds to the director orientation in the centre line of the 

system relative to the wall director orientation. The x-axis represents increasing 

magnetic field intensity and the point where the curve cuts the x-axis is defined as 

the critical magnetic field H c. Finally figure (6.3 c) from [4] shows qualitatively the 

relaxation of the Freedericksz transition as the applied magnetic field is tilted away 

from the normal towards the wall alignment angle.
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6.2.1 LBE simulation of the Freedericksz transition

To simulate the Freedericksz transition using our anisotropic 1LB scheme we model 

the simple geometrical setup shown in figure (6.1 a). We bound the nematic in the 

^/-direction with bounce-back wall conditions on the link density distributions [85] 

and apply periodic boundaries in the x-direction to produce an infinite length. We 

fix the director orientations at the walls to a parallel alignment* by distributing 

(overwriting) the wall angle 6W over the wall link directions using =  t a9w at every 

time step thus mimicking strong anchoring at the horizontal wall.

The following simulation results were obtained for a lattice 5 lu’s in length and a 

width ranging from 5 to 60 lu’s. The Leslie coefficients used were those in table 

(5.1) relating to MBBA and the magnetic susceptibility of the nematic Xa was set 

to unity for simplicity. The value of the single elastic constant K  was set according 

to a relaxation param eter of Co = 1.8.

We impose no flow profile and align all the bulk directors to a specified initial 

orientation. Care has to be taken when selecting the applied magnetic, wall, and 

bulk angles to ensure tha t a bias is given to the Freedericksz transition. The reason 

for biasing the initial director configuration is to ensure tha t no nematic domains 

separated by disclination walls term inating in ± 1 /2  defects [118] are formed during 

the simulation. Such defect induced domains and disclination walls are discussed 

elsewhere (chapter 7) since, here we want to concentrate solely on the Freedericksz 

transition and do not wish to enter into these issues.

*The actual wall alignment is slightly biased to ensure a clean transition.
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To prevent the formation of domains we slightly bias the alignment of the wall and 

magnetic field so th a t a single domain is preferred in the bulk. Note, however, tha t 

we have observed in our simulations, when no such biasing was employed, domain 

formation which would clearly provide interesting m aterial for future work.

Having selected an initial configuration we gradually increase the strength of the 

applied magnetic field from well below the critical value, through the transition and 

up to a value well above the transition value. Between each field strength increment 

we allow sufficient relaxation time for the bulk orientations to reach the steady 

state configuration. In this kind of experiment, with small applied field strength 

increments and long intermediate relaxation times, one expects induced velocity 

fields to be extremely small and to decay away quickly to zero.

Figure (6.4 a) shows the length averaged bulk director orientations sin2 {Ob) across 

the channel width for a simulation with a relatively large diameter. Notice the 

emergence of a plateau of director orientations a t magnetic field values well above 

the critical magnetic field value H  Hc corresponding to the direction of the applied 

field and the emergence of the coherence lengths £ (H) as the director orientation 

changes in the approach to a wall. Figure (6.4 b) shows the coherence lengths 

£ (H) diminishing with increasing magnetic field strength. Ultimately at very large 

magnetic field values H  —» oo the magnetic coherence length will tend to zero. 

Figure (6.4 c) shows the length averaged bulk director orientations sin2 {Ob) across 

the channel width for a system with a small diameter (5 lu’s): even at large field 

strengths the size of the plateau is relatively small.
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(c) Final steady sta te  bulk d irec to r o rien tations sin 2 (0^) across a 
sm all system  width (5 lu ’s) showing coherence layer £(77) effects on 
the  field induced plateau, the  m agnetic field stren g th  is shown in­
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Figure 6.4r Sim ulation results for the length averaged bulk d irector angle response to  an 
increasing m agnetic field strength . Results were obtained for a la ttice  5 lu ’s in length and a w idth 
of 60 lu ’s in (a) and (b) and 5 lu ’s in (c). Leslie coefficients are for MBBA in table (5.1) Xa,  was 
set to un ity  and K  was set according to  a relaxation  p a ram ete r u  =  1.8.
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Using equation (6.2) allows us to calculate the values of the critical field strength H c 

in our simulations at various system diameters d. Table (6.1) shows the expected 

critical magnetic field strength for several system diameters ranging from 5 to 60 

lattice units. The value of the diameter d used in the calculation is for actual units 

(au) and so the lattice diameters need to be converted C

System diameter Critical Field
d (lu) d (au) H c

5 4.33012 0.07843
10 8.66025 0.03921
15 12.99038 0.02614
20 17.32051 0.01961
30 25.98076 0.01307
40 34.64102 0.00980
50 43.30127 0.00784
60 51.96152 0.00654

Table 6.1: C ritical m agnetic field I I  c values for increasing system  d iam e­
ters of a nem atic w ith un ity  m agnetic susceptibility  Xa and the  single elastic 
constant K  set th rough the sim ulation p a ram ete r Q =  1.8.

We can now plot the theoretical second order Freedericksz transitions, as shown in 

figure (6.3 b), for the various system diameters and compare them to the simulation 

transitions obtained at the central line of the system sin2 (0m)

^See chapter 3 for a discussion on the difference between lu and au system dimensions.
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Figure 6.5; Sim ulation Freedericksz transition  results (crosses) m apped onto the  expected 
theoretical transition  curves (solid lines) using the critical field values obtained in table  (6.1), for 
system  diam eters between 5 and 60 lattice units. R esults obtained are from the central line of the 
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Figures (6.5 a - h) show the comparisons between the Freedericksz transitions ob­

tained from simulation and the theoretical curves, for several simulation diameters. 

We can see tha t we get very good agreement between simulation and theory. Ac­

cordingly we are re-assured that the transitions observed in our 1LB simulations

scale with system diameter according to equation (6.2).

For small system diameters our results begin to  depart from the theoretical curve. 

This departure is due to the fact that at these small diameters the centre of the 

channel is very close to the wall and so is affected by the magnetic coherence lengths. 

This means that, although at large magnetic fields H  H c, the central angle 

sin2 (9m) will align to the applied field direction but the strongly anchored wall will

exert a competing influence and affect the phase transition.

Clearly, to examine the Freedericksz transition in this ’’wall-influenced” regime would 

necessarily involve some modification of the wall alignment to allow for competition 

between the influence of the wall and the applied field. Indeed the Freedericksz 

transition could be utilized to calibrate some lattice closure rule which is ’’softened” 

by an applied field.

Having obtained what appears to be a second order Freedericksz transition for in­

creasing magnetic field strength, we check tha t our system exhibits no hysteresis, the 

presence of which would undermine the conclusion th a t our observed Freedericksz 

transition is second order.
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However we must be careful in applying such classifications of thermodynamics, 

and emphasize tha t the underlying 1LB simulation is isothermal. Perhaps more 

im portant, the 1LB method in general has no proven H-theorem. So we use the 

term ”second order” in the widest sense for the remainder of this section. However 

the nem atic’s elasticity is incorporated, so it is reasonable to consider the extent to 

which our 1LB model captures the energetically stable state

Once we had obtained fully equilibrated director fields for H  H c shown in figures 

(6.5 a - h), we commenced decreasing the magnetic field by small amounts, again 

ensuring a fully equilibrated state between successive decrements. If no hysteresis 

is present, then the reverse phase transition should follow the same curve as the 

forward Freedericksz phase transition observed above. Figures (6.6 a - h) show 

the decremented magnetic field simulation results against theoretical curves, for the 

same system diameters as before. The results appear to be free of hysteresis.
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Figure 6.6l Sim ulation results of forward and reverse phase transitions to check for hysteresis. 
Results (crosses) are for system  d iam eters between 5 and 60 lattice un its  where again th e  tran s itio n s 
were taken from the central line of the  system  sin2 (0m)•
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6.2.2 Discussion

From the simulations reported here we note tha t the observed transition was very 

sensitive to certain simulation parameters. Careful simulation is essential if one is to 

observe a hysteresis free second order Freedericksz transition, or to  obtain agreement 

with the theoretical critical magnetic field value.

Key considerations were found to be:

1. The exact position of the wall in 1LB models employing bounce-back lattice 

closure is unknown, being off-lattice, (this velocity boundary method is only 

first-order accurate [85]). Since H c depends on the diam eter d and we have a 

small uncertainty in our wall placement, then the actual value of H c cannot 

be determined exactly by our model. Nevertheless fitting the theoretical curve 

to the simulation transition gives the accepted value of H c. This method of 

determining the critical field from curve fitting to a theoretical Freedericksz 

transition has been used before in MC simulations [117].

2. The transition observed from our simulation is dependent on two effects (ap­

plied field and wall alignment) which operate on different time scales. The 

magnetic field is applied homogeneously and instantaneously throughout the 

system and so induces a fast response in the director field. The orientating 

effects of the wall alignment must propagate through the system - and so take 

longer to affect the bulk (depending on the system diameter). A sufficient time 

interval (equilibration time) between field strength increments was found to
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be a crucial factor in controlling the observed hysteresis.

3. Similarly, if the size of the field strength increment was too large one might 

fail to obtain a second order transition. As the system diameter increased, and 

the resulting critical field value decreased, we needed to ensure th a t the step 

increase was small enough to capture the true nature of the transition.

4. Finally system diameter size is im portant. At very small diameters the coher­

ence lengths adversely affected the transition.

Having by inspection resolved the above four issues, we can be confident th a t the 

transitions we obtain from our simulations, shown in figures (6.5 a  - h), are a good 

representation of a second order Freedericksz transition.

Finally in this section we consider the relaxation of our second order Freedericksz 

transitions as the angle of the applied magnetic field is tilted away from the normal 

towards the easy angle of the bounding walls. The plots shown in figures (6.7 a - 

h) are normalized to their respective critical field value H c calculated in table (6.1). 

Comparison of the simulation results to the plot shown in figure (6.3 c) indicates 

good qualitative agreement.
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Figure 6.7: Sim ulation results of the  relaxation  away from the theoretical Freedericksz t r a n ­
sition for applied field angles of 90°, 89°, 85° and 80°. For each result the  plo ts have being 
normalized to their respective critical field streng th  Hc. T he bulk angle was averaged down the 
central line of the system  sin2 (0m ).
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6.3 Velocity Back-flow with Director Kick-Back

In the last section we established th a t our lattice nematic reproduces a second order 

Freedericksz phase transition above a specific critical applied magnetic field H c. We 

shall now consider what happens when an aligned nematic is released from a strongly 

orientating magnetic field.

In the limit of infinite applied magnetic field strength FT —» oo we obtain an idealized 

aligned nematic with a magnetic coherence length £ (H) of zero. For the case of 

parallel wall alignment and perpendicular applied field angle we get the pinned 

system shown in figure(6.8).

Figure 6.8; Schem atic of the  geom etrical se tup  of the ideal s ta rtin g  configuration used to  
sim ulate velocity back-flow w ith d irector kick-back.

Upon release of such a system from the imposing field, the nematic fluid orientations 

near the walls are going to change rapidly inducing a so called back-flow in the 

velocity field which propagates into the bulk. This back-flow subsequently couples 

into the bulk director orientations in the bulk, causing kick-back. The initial back­
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flow rapidly dies away and as the bounding walls re-impose their orientation on the 

bulk directors a smaller forward-flow velocity field is induced decaying away on a 

much longer time scale than the back-flow.

Clark and Leslie [5], performed an approximate analysis of the ELP continuum 

equations for nemato-dynamics and solutions are presented in the form of an infinite 

series [5]. Results of the observed kick-back and back-flow are reproduced here in 

figures (6.9 a) and (6.9 b) respectively and compared well to existing numerical 

integration results by Van-Doorn [7].

•o
S'

120

90

30

60

0 Q1 0.2 s J0 01

(a) D irector tilt angle as a function of reduced 
tim e a t four positions across the ha lf w idth , (0) is 
the centre (1) is the wall.

(b )  Reduced velocity as a function of reduced 
tim e a t four positions across the  ha lf w id th , (0) is 
the centre (1) is the  wall.

Figure 6.9: D irector and flow reduced tim e correlation functions a t various position across 
ha lf the system  d iam eter, from C lark et al [5].

However in the cases considered by Clark and Leslie, the initial director configuration 

contained zero magnetic coherence lengths, corresponding to an infinite applied field 

strength.



6.3.1 Implementation of Back-Flow/Kick-Back Simulations

We can initialize our simulation with the ideal starting director orientation config­

uration assumed by Clark and Leslie [5] and observe the resulting back-flow and 

kick-back upon release of the aligning field. Boundaries are implemented after the 

manner discussed in the previous sections. The system size was 10 x 60 lu’s and 

the nematic parameters are those of MBBA from table (5.1), the elasticity of the 

nematic was set using Q = 1.8 with the susceptibility again set to unity.
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Figure 6.10: Sim ulation result for a system  d iam eter of 60 lu ’s, showing the  length averaged 
angle {0) as a function of the normalized tim e for several positions across h a lf the system  diam eter,
(0) centre (1) wall.

Figure (6.10) shows a normalized time correlation function of the director orientation 

across half our lattice system (the other half being an inverted image of the first due 

to the symmetry of the imposed geometry).
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Note th a t at the mid-channel position, the degree and period of director kick-back 

are at a maximum. As we approach either of the bounding walls, the degree and 

period of director kick-back decreases and it eventually disappears. Each curve in 

figure (6.10) has been normalized to the time when the angle at th a t position first 

exceeded 90°.

Clearly, we observe good qualitative agreement with the Clark and Leslie result (fig­

ure (6.9 a)) and, moreover, a similar degree of maximum kick-back angle. However, 

as we approach the wall in figure (6.10), we observe some deviation in our director 

time correlations from the results presented in figure (6.9a), which has being ac­

centuated by the time normalization. This deviation could be due to our imposed 

boundary conditions and would suggest further investigation.
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We turn now to the induced flow field, figure (6.11) shows a time correlation function 

of the (u^-com ponent of velocity across the same half of the width as figure (6.10).
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Figure 6.11: Sim ulation results for a system  d iam eter of 60 lu ’s, showing the  (n r )-com ponent 
of velocity tim e correlation function a t various positions across ha lf the system  w id th , (0) centre 
(1) wall.

Again the top half of the flow is just the reverse of the bottom  half with the mid- 

channel velocity equal to zero. As can be seen, back-flow is produced at the wall 

layer, which then propagates rapidly into the centre of the bulk, decaying away 

quickly. After a time the flow reverses into a relatively small forward-flow which 

decays away more slowly, as the bulk alignment gradually reorientates towards the 

strongly anchored wall angle.
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The flow profile time correlations from our simulations shown in figure (6.11) indicate 

tha t we correctly recover the two flow modes involved, namely the initial large back­

flow and the longer, more persistent, smaller forward flow. The flow profile from 

Clark and Leslie reproduced here in figure (6.9 b) shows the symmetric but opposite 

flow field to our results. The normalization involved in figure (6.9 b) qualitatively 

changes the appearance of the induced flow field from our results but we can still 

observe the large initial flow and the smaller more persistent secondary flow.

We can visually represent the director field and the induced flow profiles of this ideal 

aligned nematic to get a better qualitative view of the kick-back and back-flow. Each 

snapshot of following time sequence of pictures, figures (6.12) to (6.16), displays the 

averaged director profile (6) across the system width on the left and the averaged 

velocity (u) across the width on the right. The velocity field is normalized to the 

overall induced maximum velocity magnitude. The size and colour of the velocity 

vector represents this normalization.
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Figure 6.12; Time evolution of the director and normalized flow fields for the ideal aligned
nematic back-flow and kick-back simulation, time t — 0 to time t =  450. To show the initial
induced back-flow a time step of 50 is used here.
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Figure 6.13: Time evolution of the director and normalized flow fields for the ideal aligned
nematic back-flow and kick-back simulation, time t  =  500 to time t  =  1400. To capture the
intermediate system dynamics a time step of 100 is used here.
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Figure 6.14: Time evolution of the director and normalized flow fields for the ideal aligned
nematic back-flow and kick-back simulation, time t  =  1500 to time t  =  3300. To capture the
kick-back development, a time step of 200 is used here.
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Figure 6.15: Time evolution of the director and normalized flow fields for the ideal aligned
nematic back-flow and kick-back simulation, time t =  3500 to time t  — 8000. To capture the long
term relaxation of the system, a time step of 500 is used here.
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FigUIG 6.16: Time evolution of the director and normalized flow fields for the ideal aligned
nematic back-flow and kick-back simulation, time t =  8500 to time t =  13000. To capture the long
term relaxation of the system, a time step of 500 is used here.
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The time sequences represented in figures (6.12) to (6.16) show visually the induced 

back-flow and resulting kick-back for the simulations, discussed in figures (6.10) 

and (6.11). The initial back-flow ’’wave” is observed propagating into the centre of 

the bulk and causing a director kick-back. The back-flow quickly decays away and 

reverses into a more persistent forward-flow field, while the director slowly rotates 

from the kick-back angle towards the aligned direction at the wall.

Having observed back-flow and kick-back for the ideal aligned system we shall now 

examine the dependence of the kick-back angle and the induced back-flow on our 

system parameters. Obviously for fixed nematic viscosities, the only free param eter 

apart from the nematic elasticity is the dimensionality of the system. For the geom­

etry considered here, the system is translationally invariant and therefore the effect 

is not dependent on the system length. We can investigate, however, the result of 

varying the system diameter with all other nematic parameters remaining fixed.
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Figure (6.17 a) shows the change in the director kick-back a t the centre of the 

channel for varying system diameters. Figure (6.17 b) shows the same data, focusing 

in on the kick-back section of the graph. The time axis is again normalized to the 

time, for each diameter, when the angle in the centre of the system diam eter first 

exceeds 90°. There are two points to note about these results. First, as the channel 

width increases, we appear to converge onto a maximum kick-back angle (for fixed 

nematic parameters). Figure (6.18) shows the maximum kick-back angle obtained 

in the centre as a function of the system diameter. The degree of kick-back appears 

to be converging onto a final angle of around 107°.
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Figure 6.18; Convergence onto a m axim um  m id-channel length averaged kick-back angle for 
increasing system  diam eters.

Secondly, before the onset of kick-back we observe a kick -forward, i.e. the director 

orientation at the centre of the system diameter rotates a few degrees below 90° 

before increasing to the kick-back angle. We shall return to these observations in 

the discussion section at the end of this section.
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Consider now the equivalent induced flow profiles near the centre of the system for 

the various system diameters.
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Figure 6.19: Sim ulation results of the (u x ) velocity tim e correlation function near m id-channel 
velocity for increasing system  diam eters.

Figure (6.19 a) shows the (ux)-component of velocity a t one lattice unit away from 

the centre of the channel for various system diameters. We observe th a t as the 

system diameter increases the strength of the flow field at the centre decreases. This 

is expected since the flow field is induced by the rapid director changes at the wall 

and then propagates into the bulk: the wider the system, the more the flow field can 

dissipate before the centre is reached. This decay with increasing system diam eter 

is shown in figure (6.19b). Again we observe an initial forward-^ow profile just 

before the back-flow reaches the centre of the system and we tentatively associate 

the kick-forward observed in figure (6.17 b) with this forward-flow.
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We shall now consider simulations for director configurations aligned with a finite 

applied magnetic field. From the previous section we can take the final configurations 

of the Freedericksz aligned systems and observe the resulting director and flow fields 

when the field is switched off. These aligned systems posses a magnetic coherence 

layer £ (H) of a specific thickness, dependent on the strength of the applied field H 

see figure (6.20).

In the following, the field strength is specified as a multiple of the critical field H c 

for a simulation of dimensions 10x60 lu’s, other simulation param eters used are the 

MBBA nematic viscosities from table (5.1), a magnetic susceptibility Xa — 1 and an 

elasticity K  set according to u  =  1.8.
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Figures (6.21 a) shows the normalized time correlation function of the mid-channel 

averaged director orientations upon release, for increasing magnetic field strengths 

(see figure caption).
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Figure (6.21 b) shows the equivalent normalized time correlation function of the 

near mid-channel averaged rr-component of the induced velocity field upon release 

from the various magnetic field ratios.

For ideal and large H /H c values, the kick-back can clearly be observed but as the 

relative strength of the initially aligning magnetic field decreases, the degree of 

kick-back also decreases. As the initial applied field strength drops to around the 

critical field strength, the mid-channel director appears to experience no kick-back 

and simply relaxes monotonically towards the wall alignment. The induced velocity 

fields near the mid-channel position also decrease for smaller initial applied field 

values.

The initial kick-forward observed in the ideal simulation is not apparent in the sim­

ulations with a magnetic coherence length and would suggest th a t the kick-forward 

was an artifact of the imposed first-order boundary conditions. However, the ob­

served initial forward-flow is still apparent in the simulations with a small coherence 

length, only vanishing for larger coherence lengths. We shall reserve further com­

ments on these observations until future publications.

We can tentatively shed some light on the dependence of the back-flow/kick-back 

effect on the initial configuration of the bulk orientations. To observe back-flow and 

kick-back a plateau of aligned bulk orientations is required, the larger the plateau 

(corresponding to a smaller (or zero) magnetic coherence length), the greater the in­

duced back-flow . W ithin the magnetic coherence length the directors rapidly change 

from the imposed wall orientations to the direction of the imposed field. Back-flow
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is induced at the point in the coherence length where there is a large difference 

in orientations between neighbouring directors. The more acute this difference the 

stronger the induced back-flow, for set nematic viscosities and elastic constant. The 

observed kick-back is induced by the back-flow but the degree of kick-back appears 

to be mainly dependent on the nematic viscosities and elasticity. The issues raised in 

this section are intended only as qualitative observations on the simulation results.

6.4 Discussion and Conclusions

We have performed simulations th a t show a second order phase transition between 

the imposed wall orientations and an applied magnetic field angle a t some critical 

field strength Hc. The observed phase transitions agreed very well with the equiva­

lent predicted Freedericksz transition calculated using an elliptic integral [116]. The 

implied simulation critical field strengths agreed with the theoretical value derived 

through equation (6.2) [3] over the range of system diameters considered, inferring 

tha t our LBE simulation transitions scale with system diameter correctly.

Reverse transitions were observed to follow the same curve as the forward transi­

tions and necessary simulation detail considerations required to produce a hysteresis 

free transition were discussed. Finally, results of the relaxation of our simulation 

Freedericksz transitions as the applied field angle is rotated towards to the imposed 

wall orientations were presented, which compared very well with the theoretical 

predictions [4].
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Next we introduced the nemato-dynamic effect of velocity back-flow with director 

kick-back. Results from a simulation with an ideal aligned initial bulk director con­

figuration corresponding to a zero magnetic coherence length were presented. The 

degree and nature of the observed kick-back correlated well with existing simulation 

results [5] whilst the induced back-flow qualitatively appeared to be consistent with 

predictions. Time correlation function plots of the back-flow and kick-back were 

complemented with a visual time sequence of the system showing the evolution of 

the back-flow ’’wave” propagating from the wall into the bulk causing the director 

kick-back effect. Observations suggest th a t the back-flow rapidly decays away, u lti­

mately reversing into a more persistent forward-flow as the bulk directors reorientate 

towards the imposed wall orientations.

Finally the effect of an increasing magnetic coherence length on the observed kick- 

back and back-flow is investigated and the results are again compared to the ideal 

simulation results.
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Chapter 7

Complex G eom etry Simulations

7.1 Introduction

Berreman [119] and de Genne [3] first recognized tha t bulk director orientation can 

be controlled by the geometry of the bounding walls in the nematic cell. In chapters 

5 and 6 a simple planar geometry was imposed resulting in a mono-stable nematic 

cell which, in the absence of any induced flow or external fields, would align the bulk 

orientations tangential to the surface wall orientation.

A relatively new idea in the liquid crystal community is to control bulk alignment 

using a bi-stable grating wall profile. Barbero [120] [121] first reported on the possi­

bility of a bi-stable nematic cell by using a saw-tooth grating. The sharp features of 

the saw-tooth profile pinned disclinations at the peaks and troughs of the grating.
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Recently Brown et al [6] have reported on the properties of a Zenithly Bi-Stable 

Display (ZBD) device. In a ZBD device, an asymmetric grating profile (in which 

the ” saw-teeth” have unequal sides) is used. In this geometry the director field 

configuration has two (local) minima in its energy-configuration landscape, thus 

allowing for configurational bistability. Once the bulk nematic orientations in such 

a device have been aligned to a certain angle by an external field (magnetic or 

electric), then upon removal of the field the cell will relax to one of two stable 

states. Which stable state the cell enters is dependent on the orientation of the bulk 

nematic upon ” release” and the characteristic properties of the asymmetric grating 

(cell wall).

This bi-stability property has many obvious advantages over the mono-stable devices 

used in current liquid crystal displays th a t require constant refreshing to  remain 

aligned *. As an obvious application, the ZBD device could be implemented to 

produce a range of very low power consumption liquid crystal displays th a t once 

set, are likely to remain stationary.

7.2 Zenithly Bi-Stable Display (ZBD) D evice

The ZBD profile is an asymmetric ID surface grating as shown in figure (7.1) where 

the asymmetry of the repeating structure is characterized by the dimensionless ratio 

h /w  relating the peak height h to the peak width w.

*For a fuller review of the ZBD device and the potential applications, the interested reader is 
directed to [6] and the references given therein.
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X
Figure 7.1: Schem atic of the  ZBD m odel geometry. T he nem atic is confined between a p a ir of 
identical but anti-parallel gratings. T he geom etry is fully specified by th ree  quan tities (i) a blaze 
factor A  controlling the  asym m etry  of the g rating  (ii) the  g rating  height to  w idth  ra tio  h / w  and 
(iii) the cell d iam eter to  g ra ting  w idth ra tio  d/ w.

7.2.1 Implementing an LBE simulation of the ZBD device

This asymmetric periodic ID  surface grating profile can be conveniently modeled 

(approximated) using equation (7.1) [6],

1 {x) = ! sin { t ? + ^ in ( t t ) }  (7-1}

where the grating curve is characterized by the peak to trough amplitude h the peak 

period w and an asymmetry (blaze), factor A. The blaze factor controls the degree 

of change from a pure sinusoidal surface profile (A =  0) to a blazed profile (A > 0). 

The ZBD grating surface profile can be reasonably approximated by equation (7.1) 

for a blaze factor of A < 0.5 above which a point of inflection occurs making the 

profile unsuitable for modelling.
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Equation (7.1) gives a continuous profile for the grating which we subsequently 

discretise to map onto our lattice. Figure (7.2) shows a typical discretised profile 

(crosses) in the xy  plane, compared to the continuous profile (line).
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Figure 7.2: Discretised ZBD surface g rating  profile resolved onto the  continuous ZBD surface 
grating  profile, for a sim ulation la ttice  of 60 x 60 lu.

Obviously the approximation of the discretised profile to the actual continuous profile 

will affect the accuracy of the results and the larger the lattice dimensions, the better 

the discretised profile will resolve the continuous profile. By inspection we found 

tha t a lattice with a length of 30 lu’s or greater produces a good approximation to 

the continuous profile.

Having obtained the discretised grating profile we can superimpose the profile onto 

our lattice and label each node tha t the grating covers as a wall node. If the grating 

is placed in the centre of our simulation lattice and we repeat the process (of wall
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node labelling) to make the wall several layers thick we obtain solid wall boundary 

locators as shown in figure (7.3a). At the black sites, the LBE momentum densities 

are set to a value th a t corresponds to a rest equilibrium distribution, effectively 

’’forcing” the fluid th a t occupies this region to zero velocity.

(a) A ctual ZBD boundary  configuration (b )  Shifted ZBD boundary  configuration

Figure 7.3 Lattice B oundary configuration for the  d iscretised ZBD surface g rating  profile.

Note tha t the system is periodic in the horizontal direction, so it is clearly no longer 

translationally invariant, but repeats with period w. The system is periodic in 

the vertical direction at the lattice boundaries but is split horizontally by the wall 

layers in the centre of the cell. If we now associate the bottom  and top of the black- 

shaded region in figure (7.1) with the imposed wall conditions at the top and bottom  

(respectively) of our ZBD cell then we can effectively consider the rest wall layers of 

our simulation in figure (7.3 a) to appear as in figure (7.3 b). t

*Note the actual simulation remains unaffected, the visual shift is purely a graphical means to 
make the resulting images visually resemble the ZBD wall in figure (7.1).
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Next we have to fix the angles a t the wall surfaces. We again set strong anchored 

wall angles by overwriting the wall node link angles by the distributed required 

wall angle, as in chapters 5 and 6. We can select any surface director orientation 

suggested by the microscopic physics and indeed later on in this section we shall 

examine the behaviour resulting from two different wall alignments.

Also note tha t because we have a complicated wall layer structure, it is difficult to 

apply the bounce-back method [122] to produce a non-slip zero velocity wall. The 

equilibrium forcing boundary condition used here produces a first-order approxima­

tion to the required non-slip wall condition F

Finally we shall again impose no flow profile during the simulation (zero forcing) 

so any observed flow-fields are transient and have been induced by director re­

orientations. Accordingly they will tend to zero a t steady state (long times).

*See the discussion on boundaries at the end of chapter 3 .
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Results presented in [6], reproduced in figures (7.4a) and (7.4b) show the low tilt 

singularity free and the high pre-tilt defect steady state solutions of the director field 

respectively. The characteristics of the grating used in the above results from [6] are 

h/.w = 0.6, d /w  = 4 and A = 0.5. Only the bottom  half of the cell is shown for each 

simulation, the rest of the director field may be inferred from symmetry.

(a )  Bulk d irector orientations for the  sm ooth  (b )  Bulk d irector orien tations for the ± 1 /2  defect 

s teady  s ta te  profile. steady  sta te  profile.

Figure 7-4l Results from [6] of a ZBD cell sim ulation  showing the bi-stable sta tes. C alculation 
(in 2©2) of steady s ta te  using conform al m apping techniques to find solutions of Laplace equations.

The defect solution displays what appears to be a —1/2 nematic defect at the peak 

of the profile and a + 1 /2  nematic defect in the trough. The bulk directors for the 

low-tilt singularity free solution are aligned in the parallel stable state whereas for 

the defect solution the bulk is aligned to the perpendicular stable state.
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We now need to review an im portant feature of the ELP equations of nemato- 

dynamics. At the point in a nematic where a disclination forms, the continuum ELP 

equations involve singularities and therefore cannot describe the nematic state [3]. 

However it appears in our model, where we map a discrete lattice onto the continuum 

ELP equations, tha t we can observe what appear to be ± 1 /2  defect disclinations, 

see figure (7.5). These specific disclinations are apparently also recovered by Brown 

et al [6] as shown in figure (7.4b).

We attem pt to resolve this apparent ambiguity by the following argument. In all 

probability, in our 1LB simulation, the ± 1 /2  defect disclination singularity point 

occurs off-lattice (in-between the lattice nodes). The surrounding on-lattice node 

director orientations can then be considered to be governed by the nemato-dynamic 

continuum equations yet be influenced by the ± 1 /2  defect disclinations. The actual 

director singularity therefore is not recovered but the nearby director orientations 

are inferring a 2D disclination in the director field.

(a) -1 /2  defect. (b) + 1 /2  defect.

Figure 7.5: T he ± 1 /2  d isclinations th a t  can appear in a  2D nem atic.
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During simulations described in this thesis we have observed ± 1 /2  defect disclina­

tions. In chapter 6 we had to bias the Freedericksz transition simulations to avoid 

formation of ± 1 /2  defects in the bulk creating nematic domains which affect the 

nature of the transition. Here, we observe the predicted defects in the ZBD experi­

ments forming on the surface.grating profile.

It is appropriate to remark here tha t test runs were carried out for a simple channel 

geometry in which the bulk and wall director initial orientations were set randomly 

and the system allowed to reach steady state. Formation of nematic domains sepa­

rated by disclination walls with a ± 1 /2  defects a t the wall ends was observed. These 

domain structures were similar to those seen in the unbiased Freedericksz transition 

simulations. Once the steady state was achieved a Poiseuille flow was imposed and 

as the flow developed the bulk disclinations were observed to move down the simu­

lation channel. During this bulk disclination movement, annihilation and creation 

of ± 1 /2  defects was observed as several disclinations met and interacted.

These peripheral observations are not emphasized in this thesis since we are a t­

tempting a process of ’proof of concept’ and in most instances require defect free 

simulations to test the algorithm. However the appearance of such defects is encour­

aging and would obviously be a very interesting area of further study. For now we 

shall assume th a t the observed defects are 2D nematic disclinations and investigate 

the ZBD cell without any further diversion. Further comments are postponed until 

future work is discussed.
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7.2.2 Results of ZBD simulations

As stated earlier the bi-stability of the device cell means tha t if we align the bulk 

initially to below a critical orientation near the horizontal then the final steady state 

profile will be the smooth defect free profile. Initially setting the bulk angles above 

this, critical orientation and the steady state becomes the defect profile. If we set 

the initial orientation greater than 90° then we should still initially relax to the 

defect profile. As the initial angle is increased further towards 180° a second critical 

orientation should be observed as the final steady state switches back to the smooth 

profile.

The images in figure (7.6) show the long time steady state of the director field in 

our simulated ZBD cell having been released from a specific initial bulk angle.

The system set-up is a 30 x 60 lu cell with periodic images in the ^-direction and 

bounded by rest walls (see above) in the ^/-direction. For clarity only the bottom  half 

of the cell is represented since we are looking at the behavior of the directors at the 

grating wall. The nematic viscosity ratios are again set to the values characteristic 

of MBBA shown previously in table (5.1), and the nematic elasticity is set using an 

uj relaxation value of 1.5. In terms of the ZBD cell, the peak width w = 30 lu (~  26 

au) with characterizing ratio’s of h /w  = 0.6 and d /w  =  1.83 with a blaze factor 

A = 0.5 §.

§The discretisation of the ZBD curve can potentially alter the ZBD ratios and blaze factor. 
However at present we shall assume that the discretisation is a good approximation to the curve 
and therefore sufficiently recovers the ZBD configuration.
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Figure f .6 l  Tangential wall alignm ent steady  s ta te  d irecto r orientations across 1 /2  th e  w idth 
for different initial bulk orientations.
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From figure (7.6), the switching in the bulk between the two stable states is apparent 

and shows th a t our simulations correctly captures the bi-stability of the surface 

grating. Remember the only difference between these simulations and the back- 

flow/kick-back simulations in chapter 6 is the asymmetric wall profile.

The 0° initial angle simulation results in a clean (defect free) director profile at the 

wall. For the 90° initial angle simulation the resultant director wall profile at steady 

state shows the ± 1 /2  defects exactly at the peaks and troughs of the grating. These 

two results qualitatively correspond very well with those presented in figures (7.4 a) 

and (7.4 b) [6]. From figure (7.6) we can also observe the steady state results from 

initial bulk alignments other than the two extremes discussed above.

Examining more closely the steady state results for all the initial bulk angles, we 

can observe the preferential formation of the defect state  from the smooth state and 

vice-versa. At about a 50° initial bulk angle orientation, ± 1 /2  defects form on the 

long slope and as the initial bulk angle orientation increases towards 90° the position 

of the defect formations moves to the peaks and troughs of the grating respectively. 

Exceeding the 90° initial angle orientation, the defect formation position begins to 

converge along the sharp slope until around the 170° initial angle orientation, where 

the smooth steady state profile occurs.

The exact position of the ± 1 /2  defects on the grating surface, for a specific ini­

tial bulk angle orientation, is dependent on the topology of the grating [6], whilst 

the nemato-dynamics of the stable state transitions is dependent upon the nematic 

viscosities and elasticity.
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We proceed now to consider what happens to the ZBD cell if we change the orienta­

tion of the anchored wall directors from the tangential anchoring used in the above 

simulations, figure (7.7 a), to a normal wall anchoring angle, figure (7.7 b).

*

(a ) T angential wall alignm ent

>

(b )  Norm al wall alignm ent

Figure 7.7: Tangential and Norm al (strongly anchored) wall d irector orientations for th e  ZBD 
grating  surface profile.

From experiments made upon a physical ZBD device, it has been found th a t the 

tangential anchoring configuration , figure (7.7 a), can slip over time causing the 

stable state to change [123]. This has been attributed  to the relatively low wall 

anchoring strength of the tangential configuration. If the nematic wall angles are
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aligned normal to the grating surface profile (figure (7.7 b)) then the anchoring 

strength is two or so orders of m agnitude higher and hence the slipping does not 

occur. Although at present we cannot distinguish anchoring strengths between the 

two aligning orientations (only th a t they are strongly anchored) the problem of 

slipping is a relatively long time scale effect. Since we will be simulating the initial 

steady state  convergence we shall only be interested in the effects of the different 

wall orientations on the bulk orientations and the defect formations at the wall, not 

slipping. The images in figure (7.8) show the same steady state simulations as before 

but this time with the wall angle set normal to the grating surface profile. All the 

simulation parameters remain the same as in the tangentially aligned simulations, 

the only difference is the (strongly anchored) director orientations at the profile wall.
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initial bulk angle initial bulk angle initial bulk angle 2 0

initial bulk angle initial bulk angle initial bulk angle 50

initial bulk angle initial bulk angle initial bulk angle 80

initial bulk angleinitial bulk angle initial bulk angle 10

initial bulk angleinitial bulk angle initial bulk angle . 40

initial bulk angle initial bulk angle initial bulk angle 7 0

Figure 7.8: Norm al wall alignm ent steady sta te  d irector orien tations across 1 /2  the  w idth  for 
different initial bulk orientations.
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In the case of normal director alignment a t the surface grating profile we again ob­

serve relaxation into two different stable states (bi-stability). However the situation 

is the opposite of the tangentially aligned cases. For 0° to around 80° we notice 

defects a t the wall but horizontal (parallel) bulk alignment. Above 80° the direc­

tor field relaxes to the vertical (perpendicular) steady state bulk alignment and the 

surface profile is defect free (smooth). At around 130° we revert to the parallel bulk 

alignment and the defect surface profile.

An im portant issue to raise a t this point is th a t when we observe the formation of a 

defect at the surface of the grating (in either the tangential or normal orientations) 

the defect remains stationary (stuck) at its position on the grating. Hui et al [124] 

have reported defect formations on surface profiles th a t are free to move around 

on the profile. However Hui’s work had a different goal in mind and under the 

assumption of strong anchoring we can reasonably expect our defects to remain 

static where they form on the surface grating.

We now present an informal argument th a t explains the switching of the ZBD cell 

between the two possible stable states, which also explains the dependence on the 

initial bulk orientation of the defect position at the ZBD wall profile during the 

defect steady state.

We first consider a simple channel geometry simulation bounded with a flat, non-slip 

horizontal wall with tangentially aligned wall orientations. If we align the bulk ori­

entations exactly normal to the wall orientations, upon release, the bulk orientations 

are equally as likely to relax to the wall orientations by a clockwise rotation as by
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an anti-clockwise rotation. This produces nematic domains in the bulk separated 

by disclination walls term inating in either of the ± 1 /2  defects, under the condition 

of strong anchoring and the fact tha t, once a defect has formed at the surface, then 

it remains stationary at tha t point unless it is destroyed.

For a ZBD surface profile, however, the surface tangent and normal change as one 

moves along the length of the device. Figure (7.9) shows this variation, for the 

tangential aligned surface, the bottom  curve (+) is the surface tangent and the top 

curve (x )  is the surface normal.
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Figure 7.9: Variation of the norm al (x )  and tangential (+ ) wall o rientations across the  ZBD 
g ra ting  w idth, w.  Dashed lines represent the  banding of the angles to  bulk o rien tations th a t 
correspond to a norm al to the  surface alignm ent and to  bulk o rien tations th a t do not.

Therefore we can bound the surface normal curve (top and bottom continuous lines 

in figure (7.9)) indicating the maximum and minimum surface normal angles for the
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tangentially aligned surface profile. If we align the bulk orientations initially to any 

of the angles within this bounded region, the bulk orientations will correspond to a 

surface normal somewhere along the length of the device. Upon release of the bulk 

orientations a defect will occur on the surface at the point of the surface normal and 

the ZBD cell will relax to the defect steady state configuration.

However, if we initially align the bulk orientations to some angle outside this banded 

range then there is no point across the surface for which the bulk orientations cor­

respond to a surface normal. Upon release of these bulk orientations no defects will 

be formed on the surface profile and the ZBD cell will relax to the smooth (defect 

free) steady state configuration.

In terms of the normal anchoring of the director orientations on the surface profile, 

the situation is reversed. The top curve (x ) are the surface anchored angles and the 

bottom curve (+) represents the tangential angles. Bounding these tangential angles 

(inner continuous lines in figure (7.9)) shows the maximum and minimum angles for 

which a smooth (defect free) steady state is preferred. Initial bulk orientations 

aligned outside this banded range will, upon release, relax to the defect steady state 

configuration.

This geometrical argument not only predicts the bi-stability of the ZBD surface 

profile but the positional dependence of the surface defects on the initial bulk orien­

tations. The results for the tangential surface profile simulations presented in figure 

(7.6) and the normal surface profile simulations presented in figure (7.8) support 

this argument. We observe the transitions between the steady states exactly at the
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angles predicted by the geometrical argument as well as the defect position on the 

surface profile.

However we can go further than just modeling the director field. W ith the fully 

coupled model we can observe the complex interaction between the induced flow- 

field and the bulk director orientations.

We shall look initially at the maximum induced velocity magnitudes |u |max obtained 

in the above simulations. T hat is, for each initial director orientation simulation 

we note the maximum induced velocity as the system converges onto the long-term 

steady state. Figure (7.10) displays |u |max for both the tangential and normal wall 

orientations, as a function of initial bulk director orientation.
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Figure 7.10: M aximum  induced velocity m agn itude’s (crosses) for a series of steady  s ta te  
sim ulations w ith different initial bulk orientations in the absence of any applied field. Both the 
tangential and norm al (strong anchored) wall d irecto r o rien tations are presented  where the lines 
are draw n to guide the eye.
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Figure (7.10) suggests th a t for the tangentially aligned wall nematic orientations, 

the induced flow-held intensity peaks for initial bulk orientation of around 40° and 

150°. These peaks occur just prior to the formation and destruction of the ± 1 /2  

defects respectively in the tangential aligned simulations. The minima in the induced 

velocity intensity occur just prior to the extreme angles of 0° and 90°. Recall th a t 

for the tangential alignment the wall profile is defect free at 0° and has ± 1 /2  defects 

exactly at the peaks and minima of the ZBD grating at 90°. Turning now to the 

normal aligned wall orientations we observe a different scenario. The maxima in the 

induced flow-held occur near the extreme angles around 10° and 80° and the minima 

in the induced flow-field occur around 50° and 130°.

Finally we examine, with a series of snapshots, the time evolution of the ZBD director 

and velocity fields from steady state when a strongly orientating magnetic field is 

either switched on or off. Since the ZBD cell possesses a complicated geometry 

then we characterize the time evolution of director and velocity fields only by a 

qualitative graphical representation in this work. To restrict the size of this thesis 

only the tangential wall profile is shown here. However, the normal wall profile or 

any other configuration could be applied to the ZBD cell just as easily.

The ZBD cell characteristics for the following simulations are w = 60 lu (~  52 

au), h /w  = 0.6, d/w  = 0.92 and A = 0.5, The actual nematic viscosities used are 

again those characteristic of MBBA shown in table (5.1) and the elasticity K  of 

the nematic was set using a uj value of 1.5, In the simulations the strength of the 

applied magnetic field H  was set to 0.2 (ensuring a strong response in the nematic) 

and Xa = 1 for simplicity.
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Since we are only considering the qualitative form of the flow fields we do not 

calculate here the appropriate Reynolds/Ericksen numbers. However, approximate 

values of the Reynolds numbers for the ” relaxation” and ”field-on” simulations are 

6.0 and 50 respectively. These indicate th a t we are working in a low Reynolds 

number regime. The Mach number (maximum velocity magnitude to sound speed 

ratio) for the larger induced flow ”field-on” simulations is approximately 0.06, also 

indicating tha t we are working within the hydrodynamic limit. We shall discuss the 

upcoming results w ithout further reference to flow regimes.

For each snapshot the velocity fields were normalized to 1/3 of the maximum ob­

tained velocity magnitude. This is represented by the colour and size of the velocity 

vectors which were found to produce a good visual representation of the induced 

flow field. The arrowheads on the velocity vectors are indicative of the direction of 

the flow.

The first time evolution sequence represents a ZBD cell initially aligned by the 

strongly orientating magnetic field to 90° (where we imply th a t 0° is along the ZBD 

cell length). At time, t = 0, the field is removed and the initial 200 tim e steps of 

the relaxation of the ZBD cell to the steady state defect configuration are shown in 

intervals of 20 steps. The instantaneous snapshots show the director field a t the top 

of the page with the corresponding flow-field time snapshot underneath.

We recall from figure (7.6) tha t this initial configuration should result in a steady 

state defect profile with the defects occurring at the peaks and troughs of the ZBD 

profile.
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Figure 7.11; Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu («  52 au) 
with nematic viscosities characteristic of MBBA shown in table (5.1) and an elasticity K  set using 
<D s= 1.5. ZBD characteristics are h/w =  0.6, d/w — 0.92 and A =  0.5. The bulk directors are 
aligned initially to 90° and the field is switched off at time t =  0.
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Figure 7.12: D irector (top) and flow (bo ttom ) fields for a ZBD cell of length 60 lu ( «  52 au) 
w ith nem atic viscosities characteristic  of M BBA shown in tab le  (5.1) and an elasticity  K  set using
d) =  1.5. ZBD characteristics are h/ w  =  0.6, d/ w  =  0.92 and A =  0.5. The bulk directors are
aligned initially to 90° and the field was switched off at time t — 0, snapshot is at time t =  20.
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Figure 7.13; D irector (top) and flow (bo ttom ) fields for a  ZBD cell of length 60 lu ( «  52 au) 
w ith  nem atic viscosities characteristic  of M BBA shown in tab le  (5.1) and an elasticity  K  set using
Q =  1.5. ZBD characteristics are h/ w — 0.6, d/ w  =  0.92 and A =  0.5. The bulk directors are
aligned initially to 90° and the field was switched off at time t  — 0, snapshot is at time t  =  40.
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Figlire 7.14: D irector (top) and flow (bo ttom ) fields for a ZBD cell of length 60 lu (?» 52 au) 
w ith  nem atic viscosities characteristic  of M BBA shown in tab le  (5.1) and an elasticity  K  set using 
Q =  1.5. ZBD characteristics are h / w  =  0.6, d / w  =  0.92 and A  =  0.5. T he bulk d irectors are 
aligned initially  to  90° and th e  field was sw itched off a t tim e t  — 0, snapshot is a t tim e t  =  60.
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F ig U f G  7.15: D irector (top) and flow (bo ttom ) fields for a  ZBD cell of length 60 lu ( «  52 au) 
w ith  nem atic viscosities characteristic  of MBBA shown in tab le  (5.1) and an elasticity  K  set using 
Q =  1.5. ZBD characteristics are h / w  =  0.6, d / w  =  0.92 and A  =  0.5. T he bulk d irectors are 
aligned in itially  to  90° and th e  field was switched off a t tim e t  =  0, snapsho t is a t tim e t  =  80.
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Figure 7.16: Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu (fa 52 au) 
with nematic viscosities characteristic of MBBA shown in table (5.1) and an elasticity K  set using
Q — 1.5. ZBD characteristics are h/w  =  0.6, d/w =  0.92 and A =  0.5. The bulk directors are
aligned initially to 90a and the field was switched off at time t =  0, snapshot is at time t =  100.
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Figure 7.17; Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu (fa 52 au) 
with nematic viscosities characteristic of MBBA shown in table (5.1) and an elasticity K  set using
Q =  1.5. ZBD characteristics are h/w =  0.6, d/w  =  0.92 and A =  0.5. The bulk directors are
aligned initially to 90° and the field was switched off at time t =  0, snapshot is at time t =  120.
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Figure 7.18: Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu (fa 52 au)ZBD cell of length 60 lu (fa 52 au) 
with nematic viscosities characteristic of MBBA shown in table (5.1) and an elasticity K  set using

i) fields forDirector (top) and flow (bottoi a>m

Q =  1.5. ZBD characteristics are h/w — 0.6, d/to =  0.92 and A =  0.5. The bulk directors are
aligned initially to 90° and the field was switched off at time t  — 0, snapshot is at time t  =  140.
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Figure 7.19; Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu («  52 au) 
with nematic viscosities characteristic of MBBA shown in table (5.1) and an elasticity K  set using
u> =  1.5. ZBD characteristics are h/w =  0.6, d/w  =  0.92 and A =  0.5. The bulk directors are
aligned initially to 90° and the field was switched off at time t =  0, snapshot is at time t =  160.
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Figure 7.20: Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu (ea 52 au) 
with nematic viscosities characteristic of MBBA shown in table (5.1) and an elasticity K  set using
to — 1.5. ZBD characteristics are ft/to =  0.6, d/to =  0.92 and A =  0.5. The bulk directors are
aligned initially to 90° and the field was switched off at time t =  0, snapshot is at time t  =  180.
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Figure 7.211 Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu («  52 au) 
with nematic viscosities characteristic of MBBA shown in table (5.1) and an elasticity K  set using
Q =  1.5. ZBD characteristics are h/w =  0.6, d/tv =  0.92 and A =  0.5. The bulk directors are
aligned initially to 90° and the field was switched off at time t =  0, snapshot is at time t  =  200.
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Figures (7.11) to (7.21) show the director field relaxing towards the defect configu­

ration with the defects occurring at the peak and troughs of the grating. The steady 

state director field conforms to the 90° tangential director field shown in figure (7.6).

The induced flow appears at the peaks and troughs of the grating wall as multiple 

(paired) recirculation regions. The trough recirculations push flow up the grating 

walls towards the peak, mainly along the ” sharp” wall of the grating, eventually 

dissipating. The induced recirculations a t the peaks are larger and eventually move 

away from the wall and into the bulk. Due to the small diameter to  width ratio 

d/w  of the ZBD cell, the flows from the adjacent opposed peaks converge and form 

a small singular recirculation region across the short part of the bulk.

The effect of the director field on the flow field is apparent however the effect of 

the induced flow on the director field is less obvious and appears to decay to rest 

without seriously re-effecting the director field. The overall maximum magnitude of 

the induced flow in this configuration was 0.004183 which, as we shall see later, is 

relatively small and therefore does not adversely affect the relaxation of the director 

field to the defect steady state. As the number of time steps increases and the 

director field relaxes towards the defect steady state the induced flow field decays 

away to rest.

The second time evolution sequence represents a steady state  ZBD cell, aligned by a 

strongly orientating magnetic field to 0°. At time t =  0 the field is switched off and 

the initial 200 time steps of the relaxation are again observed. From figure (7.6) we 

know tha t this configuration should relax towards the smooth steady state.
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Figure 7.22: Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu («  52 au) 
with nematic viscosities characteristic of MBBA shown in table (5.1) and an elasticity K  set using 
Q =  1.5. ZBD characteristics are h/w — 0.6, d/w  =  0.92 and A =  0.5. The bulk directors are 
aligned initially to 0° and the field was switched off at time t  =  0.

209



Figure 7.23: D irector (top) and flow (bo ttom ) fields for a ZBD cell of length 60 lu (?a 52 au) 
w ith  nem atic viscosities characteristic  of M BBA shown in tab le  (5.1) and an elasticity  K  set using 
Q =  1.5. ZBD characteristics are h / w  =  0.6, d / w  — 0.92 and A  =  0.5. T he bulk d irecto rs are 
aligned in itially  to  0° and th e  field was sw itched off a t tim e t  — 0, snapshot is a t tim e t  =  20.
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Figure 7.24: D irector (top) and flow (bo ttom ) fields for a  ZBD cell of length 60 lu ( «  52 au) 
w ith  nem atic viscosities characteristic  of M BBA shown in tab le  (5.1) and an elasticity  K  set using 
Q — 1.5. ZBD characteristics are h / w  =  0.6, d j w  =  0.92 and A  =  0.5. T he bulk d irectors are 
aligned in itially  to  0° and th e  field was sw itched off a t tim e t  =  0, snapshot is a t  tim e t  =  40.
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Figure 7.25: D irector (top) and flow (bo ttom ) fields for a  ZBD cell of length 60 lu ( «  52 au) 
w ith  nem atic viscosities characteristic  of MBBA shown in tab le  (5.1) and an elasticity  K  se t using 
Q =  1.5. ZBD characteristics are h / w  =  0.6, d / w  =  0.92 and A =  0.5. T he bulk d irectors are  
aligned initially  to  0° and th e  field was sw itched off a t tim e t  =  0, snapsho t is a t tim e t  =  60.
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Pigllie 7.26i D irector (top) and flow (bo ttom ) fields for a  ZBD cell of length 60 lu ( «  52 au) 
w ith  nem atic viscosities characteristic  of M BBA shown in tab le  (5.1) and an elasticity  K  se t using 
u> =  1.5. ZBD characteristics are h / w  =  0.6, d / w  =  0.92 and A  =  0.5. T he bulk d irectors are 
aligned initially  to  0° and th e  field was sw itched off a t tim e t  =  0, snapshot is a t  tim e t  =  80.
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Figure 7.27; D irector (top) and flow (bo ttom ) fields for a  ZBD cell of length 60 lu (f» 52 au) 
w ith  nem atic  viscosities characteristic  of M BBA shown in tab le  (5.1) and an elasticity  K  set using 
w =  1.5. ZBD characteristics are h / w  =  0.6, d / w  — 0.92 and A  =  0.5. T he bulk d irectors are 
aligned in itially  to  0° and th e  field was sw itched off a t tim e t  =  0, snapshot is a t tim e t  =  100.
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Figure 7.28: D irector (top) and flow (bo ttom ) fields for a  ZBD cell of length 60 lu ( «  52 au) 
w ith  nem atic viscosities characteristic  of M BBA shown in tab le  (5.1) and an elasticity  K  se t using 
u> =  1.5. ZBD characteristics are h / w  =  0.6, d / w  =  0.92 and A — 0.5. T he bulk d irectors are 
aligned in itially  to  0° and th e  field was sw itched off a t tim e t — 0, snapshot is a t tim e t  — 120.
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Figure 7.29; D irector (top) and flow (bo ttom ) fields for a ZBD cell of length 60 lu ( «  52 au) 
w ith  nem atic viscosities characteristic  of MBBA shown in tab le  (5.1) and an elasticity  K  set using 
Co — 1.5. ZBD characteristics are h / w  =  0.6, d / w  =  0.92 and A  =  0.5. T he bulk d irectors are 
aligned initially  to  0° and th e  field was sw itched off a t tim e t  =  0, snapshot is a t tim e t  =  140.
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Figure 7.30; D irector (top) and flow (bo ttom ) fields for a  ZBD cell of length 60 lu 52 au) 
w ith  nem atic viscosities characteristic  of M BBA shown in tab le  (5.1) and an elasticity  K  set using 
u> =  1.5. ZBD characteristics are h / w  =  0.6, d / w  =  0.92 and A  =  0.5. T he bulk d irectors are 
aligned in itially  to  0° and th e  field was sw itched off a t tim e t  =  0, snapsho t is a t tim e t  =  160.
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Figure 7.311 D irector (top) and flow (bo ttom ) fields for a  ZBD cell of length 60 lu (fa 52 au) 
w ith  nem atic viscosities characteristic  of M BBA shown in tab le  (5.1) and an elasticity  K  set using 
Q — 1.5. ZBD characteristics are h / w  =  0.6, d / w  =  0.92 and A  =  0.5. T he bulk d irectors are 
aligned initially  to  0° and th e  field was sw itched off a t tim e t  =  0, snapsho t is a t tim e t  — 180.
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Figure 7.32: D irector (top) and flow (bo ttom ) fields for a ZBD cell of length 60 lu (?» 52 au) 
w ith  nem atic viscosities characteristic  of MBBA shown in tab le  (5.1) and an elasticity  K  set using 
Q — 1.5. ZBD characteristics axe h / w  — 0.6, d / w  =  0.92 and A =  0.5. T he bulk d irectors are 
aligned initially  to  0° and th e  field was switched off a t tim e t  — 0, snapshot is a t tim e t  =  200.
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Figures (7.22) to (7.32) show the ZBD cell relaxing towards the smooth configuration 

conforming to the steady state 0° tangential director field shown in figure (7.6).

Initially the induced flow moves down both sides of the grating wall however the peak 

recirculation regions observed in the previous simulation do not now appear. The 

flow appears to push away from the wall with a detached recirculation emerging 

close to the wall. Ultimately the flow forms a large recirculation region, flowing 

around the large part of the bulk.

The effect of the director field on the flow field is again apparent, however the 

induced flow again has little effect on the director field in tha t a t all points in the 

simulation the director reorientates smoothly. There were no observed fluctuations 

in the director field which might indicate a strong influence from the velocity field. 

The maximum overall induced velocity magnitude for this simulation was 0.004019 

which again is a relatively small being only marginally larger than the previous 

simulation. As the system evolves, the director field continues to  relax towards the 

smooth steady state and the flow field again decays to rest.
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The third time evolution sequence represents a ZBD cell tha t has initially been 

allowed to relax to one of its steady states. In this case we take the system considered 

in the last evolution sequence, therefore is is the smooth steady state with no defects 

at the grating wall tha t is produced. At time t = 0 a strongly orientating magnetic 

field in the 90° direction is applied uniformly at all points in the cell.

The reaction of the nematic in the cell to the applied field is very quick, again, it 

appears th a t the flow modes are slaved to the director and so only the first 45 time 

steps of the evolution sequence are shown in 5 time step incremental snapshots. The 

magnetic field is applied continuously throughout the sequence ultim ately pinning 

the director in the direction of the applied field.
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Figure 7.33: Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu («  52
au) with nematic viscosities characteristic of MBBA shown in table (5.1) and an elasticity K  set 
using Q — 1.5. ZBD characteristics are h/w — 0.6, d/w — 0.92 and A =  0.5. The bulk directors 
are aligned initially to the smooth configuration and at at time t  =  0 a magnetic field of strength 
H  =  0.2 (xa =  1) is switched on in the direction of 90°.
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Figure 7.34: Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu {fa 52 
au) with nematic viscosities characteristic of MBBA shown in table (5.1) and an elasticity K  set
using Q =  1.5. ZBD characteristics are h/w — 0.6, d/w =  0.92 and A =  0.5. The bulk directors 
are aligned initially to the smooth configuration and at at time t =  0 a  magnetic field of strength 
H =  0.2 (xo =  1) is switched on in the direction of 90°. Snapshot is at time t  =  05.
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Figure 7.35: Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu (fa 52ZBD cell of length 60 lu (fa 52
au) with nematic viscosities characteristic of MBBA shown in table (5.1) and an elasticity K  set 

1.5. ZBD characteristics are h/w  =  0.6, d/w — 0.92 and A =  0.5. The bulk directors

i) fields forDirector a

using u>
are aligned initially to the smooth configuration and at at time t =  0 a  magnetic field of strength
H =  0.2 (xa — 1) is switched on in the direction of 90°. Snapshot is at time t  =  10.
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Figure 7.36: Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu (w 52 
au) with nematic viscosities characteristic of MBBA shown in table (5.1) and an elasticity K  set
using <D = '  " /  ™................
are aligned initially to the smooth configuration and at at time t

1.5. ZBD characteristics are h/w =  0.6, d/w =  0.92 and A =  0.5. The bulk directors
0 a magnetic field of strength

H — 0.2 (xo =  1) is switched on in the direction of 90°. Snapshot is at time t  — 15.
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Figure 7.37: Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu («  52

1.5. ZBD characteristics are h/w — 0.6, d/w =  0.92 and, A =  0.5. The bulk directors 
are aligned initially to the smooth configuration and at at time t  =  0 a magnetic field of strength

Figure 7.37:
au) with nematic viscosities characteristic of MBBA shown in table (5.1) and an elasticity K  set 
using Q " * ’ - - - •  * * - - —................

Director

H  =  0.2 (xo =  1) is switched on in the direction of 90°. Snapshot is at time t  =  20.
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Figure 7.38: D irector (top) and flow (bo ttom ) fields for a  ZBD cell of length 60 lu (fa 52 
au) w ith nem atic  viscosities characteristic  of M BBA shown in tab le  (5.1) and an e lasticity  K  set
Figure 7.38

using Q =  1.5. ZBD characteristics are h / w  =  0.6, d / w  =  0.92 and A  =  0.5. T h e  bulk d irectors 
are aligned in itially  to  the  sm ooth configuration and a t a t tim e t  =  0 a  m agnetic field of s tren g th  
H  =  0.2 (xa  =  1) is sw itched on in th e  direction of 90°. Snapshot is a t tim e t  =  25.
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Figure 7.39; D irector (top) and flow (bo ttom ) fields for a  ZBD cell of length 60 lu ( «  52 
au) w ith nem atic viscosities characteristic  of M BBA shown in tab le  (5.1) and an e lasticity  K  set 

1.5. ZBD characteristics are h / w  =  0.6, d / w  =  0.92 and A  =  0.5. T he bulk d irec to rs

52
i) w ith nem atic viscosities characteristic  of M BBA shown in tab le  (5.1) and an e lasticity  K  set 

using u> =  1 ", .
are aligned initially to the smooth configuration and at at time ( =  0 a magnetic field of strength
H =  0.2 (xo — 1) is switched on in the direction of 90°. Snapshot is at time t  =  30.
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Figure 7.40: D irector (top) and flow (bo ttom ) fields for a  ZBD cell of length 60 lu (fa 5252
au) w ith nem atic viscosities characteristic  of M BBA shown in tab le  (5.1) and an elasticity  K  set 
using Q =  1.5. ZBD characteristics are h / w  — 0.6, d / w  =  0.92 and A  =  0.5. T he bulk d irectors
are aligned initially to the smooth configuration and at at time i  =  0 a magnetic field of strength
H =  0.2 (xa =  1) is switched on in the direction of 90°. Snapshot is at time t =  35.
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Figure 7 .4 1 :  D irector (top) and flow (bo ttom ) fields for a ZBD cell of length 60 lu ( «  52Figure 7 .4 1
au) w ith nem atic viscosities characteristic  of M BBA shown in tab le  (5.1) and an elasticity  K  set

D irector

using u> =  1.5. ZBD characteristics are h / w  =  0.6, d / w  =  0.92 and A  =  0.5. T he bulk d irectors 
are aligned initially  to  the  sm ooth configuration and a t a t tim e t  =  0 a  m agnetic field of stren g th  
H  =  0.2 (Xa =  1) is sw itched on in th e  direction of 90°. Snapshot is a t tim e t — 40.
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Figure 7.42: D irector (top) and flow (bo ttom ) fields for a ZBD cell of length  60 lu (p» 52 
au) w ith nem atic  viscosities characteristic  of M BBA shown in tab le  (5.1) and an e lasticity  K  set 
using u  =  1.5. ZBD characteristics are h / w  =  0.6, d / w  =  0.92 and A  =  0.5. T h e  bulk d irecto rs
are aligned initially to the smooth configuration and at at time t =  0 a magnetic field of strength
H =  0.2 (Xa =  1) switched on in the direction of 90°. Snapshot is at time t — 45.
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Figures (7.33) to (7.42) show the ZBD cell bulk directors reorientating towards 

the direction of the applied magnetic field. Due to the director orientations at 

the surface grating profile, some of the directors reorientate clockwise while other 

directors reorientate anti-clockwise. Ultimately this creates nematic domains within 

the bulk, separated by disclination walls and term inated at the wall by ± 1 /2  defects. 

As the time sequence progresses we can observe the disclination walls detaching 

from the grating profile and shrinking within the bulk until all the bulk directors 

are aligned in the direction of the applied field.

The formation of these defects and disclination walls produce a much larger flow 

field than in the previous relaxation cases. The overall maximum observed velocity 

magnitude in this case was 0.031897 which is approximately ten times as large as 

the flows tha t are produced in the relaxation cases.

The induced flow follows the disclination wall very tightly, flowing downwards into 

a trough and upwards away from a peak. Flow induced on the slopes of the grating 

is of the same order of m agnitude as in the previous simulations and is effectively 

swamped by the induced flows due to the disclination walls. Moreover the induced 

flow is much larger in this simulation and the time required for the flow to  decay 

to rest is much longer even though the director field is pinned by the magnetic field 

very quickly (within 50 time steps).
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The final time evolution sequence represents a ZBD cell tha t has been allowed to 

reach the defect steady state. At time t — 0 a strongly orientating magnetic field is 

again applied this time in the direction 0°. The magnetic field remains on for the 

duration of the simulation.

The reaction of the nematic cell is again rapid and hence only the first 45 time steps 

are displayed, again in snapshots of every 5 tim e steps.
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Figure 7.43; Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu (fa 52 
au) with nematic viscosities characteristic of MBBA shown in table (5.1) and an elasticity K  set
using Gj =  1.5. ZBD characteristics are h/w  =  0.6, d/to =  0.92 and A .. ..................
are aligned initially to the defect configuration and at at time t =  0 a 
H — 0.2 (xo =  1) is switched on in the direction of 0°.

=  0.5. The bulk directors 
magnetic field of strength
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Figure 7.44: Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu («  
au) with nematic viscosities characteristic of MBBA shown in table (5.1) and an elasticity K
using u> =  j " V  " \  7  ' .. ........................
are aligned initially to the defect configuration and at at time t 
H =  0.2 (xo =  1) is switched on in the direction of 0°. Snapshot

52 
’ set

1.5. ZBD characteristics are h/w =  0.6, d/w =  0.92 and A =  0.5. The bulk directors
0 a magnetic field of strength 
at time t =  5.

length lucell of 60fields for ZBD
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Figure 7.45i Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu (fa 52 
au) with nematic viscosities characteristic of MBBA shown in table (5.1) and an elasticity K
Figure 7. 45 cell length luoffields for 60(top) ZBDandDirector a

' set
using Q =  1.5. ZBD characteristics are h/w — 0.6, d/w — 0.92 and A =  0.5. The bulk directors

0 a  magnetic field of strength 
1) is switched on in the direction of 0°. Snapshot is at time t  =  10.

are aligned initially to the defect configuration and at at time t 
H =  0.2
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Figure 7.46* Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu («  52
au) with nematic viscosities characteristic of MBBA shown in table (5.1) and an elasticity K  set 
using Q — 1.5. ZBD characteristics are h/w =  0.6, d/to =  0.92 and A =  0.5. The bulk directors 
are aligned initially to the defect configuration and at at time t  =  0 a magnetic field of strength 
H =  0.2 (xa — 1) is switched on in the direction of 0°. Snapshot is at time t  =  15.
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Figure 7.47: Director (top) and flow (bottom) fields for a ZBD cell of length 60 lu («  52
au) with nematic viscosities characteristic of MBBA shown in table (5.1) and an elasticity K  set 
using Q =  1.5. ZBD characteristics are h/w =  0.6, d/w =  0.92 and A =  0.5. The bulk directors 
are aligned initially to the defect configuration and at at time t  =  0 a magnetic field of strength 
H =  0.2 (Xa =  1) is switched on in the direction of 0°. Snapshot is at time t  =  20.
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Figure 7.48; D irector (top) and flow (bo ttom ) fields for a  ZBD cell of length 60 lu ( «  52
au) w ith nem atic viscosities characteristic  of MBBA shown in tab le  (5.1) and an elasticity  K  set 
using Q =  1.5. ZBD characteristics are h / w  =  0.6, d / w  =  0.92 and A — 0.5. T he bulk d irecto rs 
are aligned in itially  to  th e  defect configuration and a t a t tim e t  ~  0 a  m agnetic field of stren g th  
H  =  0.2 (xa  =  1) is sw itched on in th e  direction of 0°. Snapshot is a t tim e t  =  25.
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Figure 7.49: D irector (top) and flow (bo ttom ) fields for a  ZBD cell of length 60 lu (as 52
au) w ith nem atic viscosities characteristic  of M BBA shown in tab le  (5.1) and an  elasticity  K  set 
using Gj =  1.5. ZBD characteristics are h / w  =  0.6, d / w  =  0.92 and A  =  0.5. T he bulk d irectors 
are aligned initially  to  th e  defect configuration and a t a t tim e t  =  0 a  m agnetic field of stren g th  
H  =  0.2 (xo =  1) is sw itched on in th e  direction of 0°. Snapshot is a t tim e t  =  30.
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Figure 7.50: D irector (top) and flow (bo ttom ) fields for a  ZBD cell of length 60 lu ( «  52
au) w ith nem atic viscosities characteristic  of MBBA shown in tab le  (5.1) and an e lasticity  K  set 
using Q =  1.5. ZBD characteristics are h / w  =  0.6, d / w  — 0.92 and A  — 0.5. T he bulk d irectors 
are aligned in itially  to  th e  defect configuration and a t a t tim e t  =  0 a  m agnetic  field of s tren g th  
H  =  0.2 (xo =  1) is sw itched on in th e  direction of 0°. Snapshot is a t tim e t  =  35.
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Figure 7.51: D irector (top) and flow (bo ttom ) fields for a  ZBD cell of length 60 lu ( «  52
au) w ith nem atic viscosities characteristic  of M BBA shown in tab le  (5.1) and an elasticity  K  set 
using u> =  1.5. ZBD characteristics are h / w  =  0.6, d / w  =  0.92 and  A  =  0.5. T he bulk d irectors 
are aligned initially  to  th e  defect configuration and a t a t tim e t  — 0 a  m agnetic field of stren g th  
H  =  0.2 (Xa =  1) is sw itched on in th e  direction of 0°. Snapshot is a t tim e t  =  40.
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Figure 7.52: D irector (top) and flow (bo ttom ) fields for a ZBD cell of length 60 lu (ft* 52
au) w ith nem atic  viscosities characteristic  of M BBA shown in tab le  (5.1) and an e lasticity  K  set 
using ui =  1.5. ZBD characteristics are h / w  =  0.6, d / w  =  0.92 and A  =  0.5. T he bulk d irecto rs 
are aligned initially  to  th e  defect configuration and a t a t tim e t  =  0 a  m agnetic field of stren g th  
H  =  0.2 (xa =  1) is sw itched on in th e  direction of 0°. Snapshot is a t tim e t  =  45.
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Figures (7.43) to (7.52) show the ZBD cell director field reorientating from the defect 

state rapidly into the direction of the applied magnetic field. We again observe a 

much more intensive induced flow field than for the relaxation simulations. The 

overall maximum induced velocity magnitude for this simulation was 0.033202.

The flow again adheres to the positions of the disclination walls. However this time 

the velocity flows out from the troughs and onto the peaks. The realignment due 

to the applied magnetic field again occurs very quickly (around 50 time steps) and 

since the induced flow is of the order as the previous simulation the flow decay tim e 

is of a comparative length.

7.3 Discussion and Conclusions

In this last results chapter we have implemented for the first tim e an asymmetric 

wall geometry to study the predications of the model for the nemato-dynamics of 

the new ZBD device. The steady state bi-stability of the device was recovered by 

the model for both the tangential and the normal wall alignments. A geometrical 

argument was advanced to explain the bi-stability of the grating and the positioning 

of the defects on the grating wall for the defect steady state. This argum ent was 

supported by the simulation results under the condition that, in the case of strong 

anchoring, any defect formation at the wall, unless destroyed, remained static.

Our attention then turned to the induced flow in a ZBD cell which, to our knowledge, 

has not been simulated before. The overall maximum induced flows for the bi­
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stability results suggested velocity maxima just prior the switching between the 

stable states.

Finally we considered, in a sequence of time snapshots, the effects on a ZBD cell 

of a strongly orientating applied magnetic field which was switched on or off. The 

size of the images meant th a t we can only present here the tangentially aligned wall 

profile ZBD cell. ^

Interesting low velocity flow fields were observed for the ’field switching off’ cases 

near the wall. Persistent recirculation regions lasting several hundred time steps 

formed, which ultimately decayed to rest. For the relaxation simulations the induced 

flow appeared to decay to rest without seriously re-affecting the director field which 

reorientated smoothly towards its steady state.

In the ’field switching on’ simulations large flow fields were created by disclination

walls in the bulk dominating over any flow fields induced at the walls. These flow

profiles followed the direction of the disclination walls which term inated in wall

defects. Since the magnetic field was applied either parallel or perpendicular, then

the wall defects appeared at the peaks and troughs. Interestingly the disclination

walls separated (shedded) from the grating profile and shrank in size within the bulk,

until the strongly aligning applied field ensured all bulk directors were pinned in the

direction of the field. The relatively large flow fields induced by the disclinations

again appeared to impose a minimal effect on the director reorientations. Moreover

the induced flow fields required a longer time to decay to rest than in the relaxation 

^see accompanying CD for animations of several ZBD geometrical setups.
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simulations.

Although these results are qualitative they are highly informative and reveal several 

interesting features tha t would w arrant further investigation. Unfortunately, due to 

the visual nature of these images the best appreciation of the LBE method and its 

predictive ability derives from watching time sequence animations of the ZBD cell. 

The CD provided with this thesis contains longer animations of the above images 

as well as for the normal aligned wall profile. In addition, several animations of 

simulated ’pulsed’ systems are provided, where the ZBD cell experiences a magnetic 

pulse (of a specific duration) in one direction and then another. The system even­

tually reaches a pseudo-steady state  when the pulsing is repetitive. W ithin these 

pulsed systems interesting director and flow fields are observed, which should help 

to inform both experiments and device design.

In summary it appears th a t useful observations about actual liquid crystal devices 

can be obtained from our nemato-dynamic model. The nature of the LBE models 

allows the configurational details of devices under simulation to be altered quickly 

and easily and the relatively short turn over times for the simulations allows results 

to be obtained quickly. We have developed a valuable tool, which, in conjunction 

with experimentation, can be used to assess/refine the performance of the ZBD 

device.
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Chapter 8

Conclusions and Future Work

8.1 Summary

In this thesis we have established a mapping onto the macroscopic ELP equations of 

nemato-dynamics using the isotropic Lattice Boltzmann fluid modelling technique, 

enhanced with a second distribution. Having developed and implemented the model, 

validation exercises were performed. We shall briefly review the preceding chapters 

detailing the key developments and testing of our new Lattice Boltzmann derivative 

nemato-dynamic model.

In chapter 2 we considered the target governing continuum equations of nemato- 

dynamics onto which we aimed to tune the dynamics of a suitably modified LB 

technique. At the end of the chapter we reduced the three dimensional vectorial 

director equations of motion to a convenient scalar angle equation of motion in two
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dimensions applicable to systems confined in the plane, (2 © 2).

Chapter 3 introduced the ideas and historical developments of the lattice models used 

to recover isotropic fluid dynamics. Taking a chronological approach we reviewed the 

development of key models and showed how an LG is mapped onto fluid dynamics 

(Chapman-Enskog expansion) as well as performing a pertinent literature review on 

LGs.

Extending the isotropic D2Q7 1LB hexagonal lattice model proposed by Higuera 

et al [53] to include next-nearest neighbours, we derived an isotropic D2Q13 1LB 

model th a t possessed the necessary link velocity isotropy up to 6th order (an essential 

requirement for the anisotropic extensions). A full mapping of the new D2Q13 model 

onto isotropic hydrodynamics was presented along with a literature review of key 

LB papers. Chapter 3 concludes with a relevant discussion on the nature of the 

bounding and forcing mechanisms employed in the LG and LB models to derive 

flow.

A new scalar angle variable and associated evolution scheme was introduced in chap­

ter 4 alongside the isotropic momentum scheme. The new distribution propagates in 

tandem with the isotropic momentum densities but undergoes its own LBGK colli­

sion step. The angle evolution scheme was shown to map onto the macroscopic ELP 

director equations of motion after insertion of suitable forcing terms which coupled 

in the effect of the flow field and an external bulk magnetic field upon the lattice 

fluid director. The momentum density evolution scheme was then enhanced so th a t 

the scheme mapped onto the modified Navier-Stokes equations (with an anisotropic
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fluid stress tensor controlled through the 5 recovered Leslie viscosity coefficients 

o^.-.cq;. Implementation details close the chapter.

Having introduced and implemented an anisotropic D2Q13 1LB model, suitable val­

idation exercises were performed in chapter 5. The results from this chapter were 

encouraging, showing th a t not only did the isotropic D2Q13 model map correctly 

onto hydrodynamics but also tha t the anisotropic extensions mapped correctly onto 

known dynamics of an incompressible anisotropic fluid and gave simulation results 

in good agreement with said dynamics.

Chapter 6 proceeded to test the model for transient director and flow field effects 

in simple geometries. The well established magnetic Freedericksz transition was 

successfully recovered and provided essential information about the sensitivity of 

the transition to the rate and magnitude of magnetic field increments. Several 

magnetically pinned equilibrium director field configurations, produced through a 

Freedericksz transition were obtained and subsequently used to investigate the na­

ture of the nematic transient phenomena of director kick-back with velocity back­

flow. The effect of a magnetic coherence length on the subsequently induced kick- 

back and back-flow upon release of the pinned systems was shown.

Having performed tests on the new model in simple geometries in chapter 7 we sub­

sequently used the model to study the dynamics of the recently developed Zenithly 

Bi-stable Display (ZBD) device. The asymmetric grating profile in these device cells 

produces a bi-stable steady state director field which has a potentially huge appli­

cation in liquid crystal display industry. The bi-stability, due to device geometry,
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was shown to be correctly recovered by the new model which moreover qualitatively 

demonstrated, for the first time, the types of flow field induced in the cell upon 

switching between the stable states. This success highlighted one of the advantages 

of the LB model: the complex grating was implemented quickly and relatively eas­

ily into the scheme, allowing the dependence of the resulting nemato-dynamics on 

the properties of the grating to be easily investigated. Chapter 7 produced some 

interesting results in terms of the induced flow-held and what appeared to be wall 

director orientation shedding.

8.2 Concluding remarks

In summary we have developed an isotropic 1LB model and introduced into the 

scheme suitable algorithmic extensions th a t enable the ELP equations of nemato- 

dynamics to be recovered on the macroscopic scale. The implementation of these 

enhancements has provided insights into how to use a discrete lattice model to 

recover macroscopic nemato-dynamics. The validation results presented in chapter 

5 seem to suggest tha t the main aim, a ”proof of concept” , of the thesis has been 

successfully achieved. Known steady-state solutions of the ELP equations of nemato- 

dynamics have been recovered to a high degree of accuracy by the model indicating, 

the suitability of LB scheme in recovering anisotropic fluid dynamics.

Chapter 6 provides evidence that the new model can produce meaningful insights 

into the transient (non-steady state) phenomena of nematics. The observed back­

flow and kick-back in this section has produced interesting avenues of investigation.
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The ability to observe 2D disclination affects even though the disclination singularity 

itself is forced off lattice and is not at present recoverable, is also promising and 

opens up a whole field of possibilities in term s of modeling formation, destruction 

and movement of nematic defects.

Chapter 7 highlighted the fact tha t we still retain all the key advantages of the LB 

technique, i.e. ease of implementation of complex geometries, inherent parallisation 

of the method and quick turn around times. It also produced interesting insights into 

the ZBD device itself not least the reasons for the bi-stability, defect information, 

induced flow-fields and wall director orientation shedding.

It should be stressed however th a t all results presented in the last two result chapters 

are basically qualitative and a more detailed investigation into any one of these areas 

would be an undertaking in itself. Moreover, whilst the model is very promising it is 

still in its infancy and there are issues tha t need resolving. It may be th a t the next 

level of refinement/simplification should aim at recovering a different formulation 

of the target dynamics; one which relies for orientation information upon a tensor 

order parameter, rather th a t the scalar angle, 9. Such an extension is an essential 

pre-requisite to any LB scheme which is extended to three dimensions. It is difficult 

to imagine a practical tool which does not simulate in three spatial dimensions with 

an unconfined director.
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8.3 Future Work

Throughout the work presented in this thesis several interesting avenues of research 

have been noted th a t could be undertaken. In the following we indicate some of 

the key issues th a t still need to be considered and a general review of potential 

applications.

In terms of the theoretical background, the research has raised many insights into the 

use of a discrete model to recover anisotropic fluid dynamics. W ithin the scope of the 

current model we can recover four of the five viscosity coefficients th a t characterize 

a nematic. The methodology to recover the final viscosity coefficient is in place 

but requires a further enhancement to the isotropy of our underlying lattice, raising 

non-trivial bounding and forcing issues within the core LBE scheme. The method of 

producing a second order accurate boundary condition is still not a solved problem 

within the LBE community and as such would be an obvious refinement to  all LBE 

models.

The most obvious consideration for further development/refinement to the anisotropic 

scheme is to describe the orientational information of the nematic in terms of a ten- 

sorial order param eter rather than a scalar angle. Recovery of a tensorial order 

param eter is a necessary requirement before any possible extensions to full three di­

mensional nemato-dynamics can be considered. Full classification of the simulated 

nematic in terms of the viscosities, elasticity and Ericksen Number for the director 

field and the Reynolds Number for the velocity field along with the time scales and 

”physical” size of the simulation are also im portant issues.



The nem atic’s response to an electric field is (generally) more complicated than 

to a magnetic field due to the electric dipole of the nematic being director depen­

dent. Incorporating the electric field coupling into our scheme would allow for richer 

emergent physics and a wider range of potential applications.

Other possibilities include introducing a binary fluid with either one or both fluids 

being anisotropic or inclusion of objects (stationary or movable) within the nematic.

As can be seen the technique is applicable to many areas of interest and appears to 

have a promising future.

253



Appendix A

LBE body forced pressure 

gradient G q e

Assuming a simple setup of a translationally invariant ’channel’ which is periodic 

in the ^-direction and bounded in the y-direction by non-slip walls. Suitable addi­

tion/subtraction of a constant forcing value A across all bulk node link distributions 

fi  at every time step results in a uniform Poiseuille flow profile a t steady state.

Below we shall show by means of a Chapman-Enskog expansion of the link density 

distribution evolution equation, that application of the constant body force results 

in a constant pressure gradient G c e -
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Recalling the evolution equation (3.41) for the isotropic D2Q13 1LB algorithm,

j

where we have introduced the forcing term T), we perform a Taylor expansion in 

terms of the small spatial expansion param eter 5, retaining terms up to second order,

The LBE methodology is in essence a relaxation towards equilibrium on the shortest 

time scale and inclusion of any forcing terms by definition ’forces’ the relaxation away 

from equilibrium. We can therefore, on general grounds, argue th a t constant forcing 

contributions (i.e. no gradients) acting to force the system away from equilibrium

terms involving gradients emerge, therefore, a t second order in 6 or higher.

Taking into account the above argument, and the fact th a t we are introducing a 

constant forcing value A (i.e. vanishing gradients) we do not need any second order 

forcing contributions.

Extracting equation (A .l) to order 0  (5) results in

S [dt0 +  eia da]  ̂ +  52 dtxf \   ̂ +  (dt0 +  eza<9a) / /   ̂ \  (dt0 +  e{a d a) / /  ^

E j n r } \s f j l) +  52 1 + 6 Fl 1] +  Fi 2) +  0 (^3) •

(A .l)

are, like to be treated as O (5) in the Chapman-Enskog expansion. Any forcing

(A.2)
j

Now, we explicitly define the form of the forcing term as

=  A i  e-1 i — L-x (A-3)
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where A is the free forcing param eter used to set the magnitude of the flow. There­

fore

dtJ 0) + eiadaf l 0) =  % / j 1’ +  A taeix. (A.4)
j

The zeroth order velocity moment of the forcing term is odd and therefore zero. As 

such there is no forcing contribution to the continuity equation.

The first order velocity moment of equation (A.4) is

dto ^ 0)e43 +  f i 0)eiaeif] = ^ 2  +  A t aeixeifj
i i ij i

which ultimately becomes

dtQ (pup) +  daU ̂  =  cl A  6xp (A.5)

The extraction of terms of O (S2) from equation (A .l) recovers the viscosity term in 

the usual way. Therefore we have a constant body force (equivalent to c2s A) in the 

plane of the channel appearing in the rr-momentum equation only. As stated, there 

is no contribution to the second order forcing from equation (A.3) and the first order 

forcing in equation (A.3) will produce no error terms at second order.
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Appendix B

E j  approximation

Recalling the isotropic D2Q13 1LB link density equilibrium distribution function 

from equation (3.61),

f(°) -  * (-1 1 1 ^  1J i  p t a  ^ 1  T  ^  U j U s

and neglecting terms of order O (u2) and higher leaves

I i 0) ~  Ptcr +  ~ 2 e i 7 U 7 )  ^B '1^

Now, recalling the first order extraction of the isotropic D2Q13 1LB evolution equa­

tion (3.47).

(ft. +  ei„ a a ) / i(0) =  E n i#)4 1)
j

Rearranging and expanding the brackets, gives

E  = d<Ji0) +  (B-2)
j
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Replacing the full form of the equilibrium distribution function in equation (B.2) 

with the low order approximation form in equation (B .l) results in.

^   ̂Qjj f j  ~  dto i^P^a T  9a ^pta -f- ~^Ujta6iy^ 6{a (B.3)

However we know from the summation properties of our first order extraction th a t

dto (p) =  -da  (pua) 

dt0 {pu7) = ~ d aTlaj 

Therefore equation (B.3) becomes

^   ̂^ ij  f j  ~  9a (pUa) ta “2 d0in\x)ftCT€'i‘y +  da (P) t a6{a H 2^a t)
j Cs Cs

(BA)

Turning now to the zeroth order contribution to the momentum flux tensor, we recall 

the definition

n(°) =  f ^ e -  e-
i

which in the low u  order approximation reduces to

n a°7 ~  { pta ( - 1 +  }  e *'“ e *7 ( B *5 )

therefore, taking into account the velocity summation results in

(B.6)

Substituting equation (B.6) back into equation (B.4), and performing some algebra 

we are left with

f i 3 ) / j - 1 )  ~  da (pu7) t„ (  -  < S a 7 }  (B.7)
j 1 s >
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If we now define a new tensor of the form

Q i a 7 — t a  (®-̂ )

Equation (B.7) becomes

E  fiy ’/ i 1’ ~  (jnh) Qiay (B.9)
3 S

During the second order Chapman-Enskog extraction of the D2Q13 evolution equa­

tion we derive terms th a t are higher order velocity moments of the term . 

Equation (B.9) can be used to evaluate these expressions to an appropriate order.
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Appendix C

Lattice approximations to V -v / and

V2/

We may approximate V 2/  and V7/  to second order in using appropriate moments 

of the velocity vectors e*. Consider first a Taylor expansion of some function of 

position / ( r  +  et) about / ( r).

/  (r +  eia) = f  (r) +  eiadaf  (r) +  ^ eiaeipdad p f  (r) (C .l)

multiplying both sides by ta:

1
/  (r +  eia) ta = f  (r) ta +  eiadaf  (r) ta +  - e iae ^ d ad p f  (r) t a (C.2)

To derive the approximation to V 2/  (r) we perform a summation upon i giving 

^ 2  f  (r +  eia) ta = f  (r) ^  t a +  daf  (r) ^  t aeia +  ^ d Qd p f  (r) taeiaeip (C.3)
i i i  i
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Performing the velocity summations

Y 2  f  (r  +  ei<x) tcr = f  (r ) T  [°] +  ijdadpf (r) T [2] 6ap (C.4)2
i

and upon contraction of the delta function

Y 2  f  (r  +  e*'«) ^  =  /  W  T  [°1 +  \ dPdp f  (r ) T  I2! (C -5)

Which we invert to determine V 2/  (r),

W  W  =  2 ( E i / ( r  +  e^ ~ /( r )T [0 1 )  (C.6)

where we know for our D2Q13 1LB model T [2] =  c2 =  3/10 and T [0] =  1.

In order to approximate V 7/  (r) we multiply equation (C.2) by e*7 and again perform 

a summation over i.

    2  N
^   ̂/  (r +  Cict) ta^i-y = f  (**) ^  ] t ae{j +  9af  (r) ^   ̂t a6{a6ij -f- (r) ^  ^

i i i i

(C.7)

Performing the velocity summations

Y 2 f ( r + e*'Q) ^ e*'7 =  9<*f (r ) T  [21 S<*1 (C*8)
i

and contracting the delta function

Y 2 f ( r +  e* a )^ e*7 =  d7/ ( r ) T [ 2 ]  (C.9)
i

Which we again invert to determine V7/  (r),

d7/ ( r )  =  T i t l £ ± | 2 ^  (C.10)

where as stated T [2] =  c2 =  3/10.
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This method can therefore be used to approximate to second order, gradients and 

higher derivatives of any nodal macroscopic function, i.e. density, velocity, director 

etc.
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Appendix D

Parts Integration of

f  d r £ a ( 3 y ' r ( 3 ^ 6 c r 9 rY

Recalling the form of the integration from equation (2.92) in chapter 2

J  d3r (Safarpdev'o^)

Expanding the implied summation term dooei gives

J  d3r  ( £ af, 7 r p ( d x o'x y  +  d y a'v y  +  d z ( T ' ^

and thus :

£aj3y J  dzdy — J  (7x̂ 5pxdxj” £0 ^ 7  J  dzdx — j  (7ŷ

J  d x d y ^ r p a z l -  J  a s y 6 p z d2| .

Regrouping equation (D.2) results in

j )  r x [g  • ds^ U -  y  d3r S aj3ya 0y6p0



upon contraction due to the Kronecker delta

j) r  x ( g  • ds) | J  d3r  Sa^ a 'Pl (D.4)

and setting a  =  z

j r x (g  • ds) \z -  J d3r - a'yx) (D.5)

we can ultim ately write

J  d3r  (a'yx — axy ĵ +  surface terms. (D.6)
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