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Explorations Into the Behaviour-Oriented Nature of Intelligence: 

Fuzzy Behavioural Maps

by Ana Marfa Gonzalez de Miguel 

A bstract

This thesis explores the behaviour-oriented nature of intelligence and presents the definition and use of 

Fuzzy Behavioural Maps (FBMs) as a flexible development framework for providing complex autonomous 

agent behaviour.

The explorations into the behaviour-oriented nature of intelligence provide an overall view o f what has been 

achieved and, what remains to be done to prove the validity of the Behaviour-Based (BB) approach to 

Artificial Intelligence. The thesis elaborates the fundamentals o f this field, identifies many contributions 

(ideas, tendencies and, perspectives) from Autonomous Agents and, summarises recent implications and 

research issues around the realisation of truly artificial autonomous creatures. Further, it concentrates on the 

development problem, describes current approaches to develop BB Systems and, discusses some technical 

issues found with the application of these various approaches to construct complex BB models.

FBMs are appropriate tools for prototyping BB models. The thesis explores numerous interpretations and 

uses of FBMs. It describes several ways to interpret the design of FBMs, addresses their overall performance 

(using some computing algorithms) and, provides a number of examples with varying degrees o f complexity. 

However, it is important to underline the fact that this thesis does not define (or decide for) any particular 

technique to implement FBMs. It is not a thesis on, for example, Fuzzy Logic Control techniques. It only 

provides some general guidelines and experimental results on the use o f these.

A simple FBM draws pictures about the potential behaviours o f an agent (nodes) and their causal 

interactions (edges). This BB network can be designed using fuzzy numerical information (degrees of  

membership functions o f fuzzy sets) and, fuzzy words (linguistic variables and fuzzy edges) to mean dual, 

intrinsic characterisation of fuzzy sets and fuzzy systems. More complex FBMs incorporate feedback loops. 

These FBMs are designed with recurrent topology networks that make them able to operate dynamically and, 

to converge towards possible asymptotic behaviours. Their behaviour nodes can evolve (over time o f  

interaction) until some terminating condition has been reached.
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The most generic FBMs allow extending and/or refining the number and type o f BB components as to 

consider some possible external modules (relative to the activities, morphological set-up and, environmental 

conditions of the agent) that influence (and/or become causally affected) by the internal behaviour nodes.

The thesis provides a proof-of-concept for simple FBMs, including some experimental results in Mobile 

Robotics and Fuzzy Logic Control. This practical work shows the design o f a collision avoidance behaviour 

(of a mobile robot) using a simple FBM and, the implementation of this using a Fuzzy Logic Controller 

(FLC). The FBM incorporates three causally related sensorimotor activities (moving around, perceiving 

obstacles and, varying speed). This Collision Avoidance FBM is designed (in more detail) using fuzzy 

relations (between levels o f perception, motion and variation o f speed) in the form o f fuzzy control rules. The 

FLC stores and manipulates these fuzzy control (FBM) rules using fuzzy inference mechanisms and other 

related implementation parameters (fuzzy sets and fuzzy logic operators). The resulting FBM-FLC 

architecture controls the behaviour patterns of the agent. Its fuzzy inference mechanisms determine the level 

of activation of each FBM node while driving appropriate control actions over the creature’s motors. The 

thesis validates (demonstrates the general fitness of) this control architecture through various pilot tests 

(computer simulations). This practical work also serves to emphasise some benefits in the use o f FLC 

techniques to implement FBMs (e.g. flexibility o f the fuzzy aggregation methods and fuzzy granularity).

More generally, the thesis presents and validates a FBM Framework to develop more complex autonomous 

agent behaviour. This framework represents a top-down approach to derive the BB models using generic 

FBMs, levels o f abstraction and refinement stages. Its major scope is to capture and model behavioural 

dynamics at different levels o f abstraction (through different levels o f refinement). Most obviously, the 

framework maps some required behaviours into connection structures of behaviour-producing modules that 

are causally related. But the main idea is following as many refinement stages as required to complete the 

development process. These refinement stages help to identify lower design parameters (i.e. control actions) 

rather than linguistic variables, fuzzy sets or, fuzzy inference mechanisms. They facilitate the definition of 

the behaviours selected from first levels o f abstraction. Further, the thesis proposes taking the FBM 

Framework into the implementation levels that are required to build BB control architecture and provides 

and application case study. This describes how to develop a complex, non-hierarchical, multi-agent 

behaviour system using the refinement capabilities of the FBM Framework. Finally, the thesis introduces 

some more general ideas about the use of this framework to cope with some, current complexity issues 

around the behaviour-oriented nature o f intelligence.
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Introduction: An Introduction to ttie Dissertation Presenting tne inesis

Introduction

An Introduction to the Dissertation Presenting the Thesis

Thesis Overview

This dissertation presents a thesis on the definition and use of Fuzzy Behavioural Maps (FBMs) within the 

context of the modelling and building of behaviour-oriented form s o f  intelligence with Autonomous Agents. 

More particularly, this document provides the following main contributions to knowledge (see Figure 1.1):

BBSs
D evelopm ent
"com plexity"

FBM F ram ew o rk

D evelopm ent

M obile R o b o tic s  , 
& C om pute r S im ulations B e h a v io u r -O rie n te d  

Views o f  In te ll ig e n c e  
BB A l .  AR & AAs

FBM Im p le m e n ta tio n
T e s ts  4  R esu lts

J F uzzy  A pproach  
Fuzzy  Logic C ontrol 
4  S o f t  Computing

Figure 1.1: Thesis Overview. Investigations and Contributions to Knowledge.
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introduction: An introduction to tne Dissertation presenting me mesis

1. The presentation of FBMs as a new approach to design behaviour-based models.

2. The development o f  a FBM in Mobile Robotics i.e. the design, implementation and testing of a Collision 

Avoidance FBM for a simulated mobile robot.

3. The extension of all this work into the definition and use o f  a FBM Framework based on some features 

of the current developments o f Behaviour-Based Systems and related complexity research issues.

A. Fuzzy Behavioural Maps

A FBM is a network with a graph topology where the nodes represent behaviours and the edges represent 

their causal interactions. It is a concept fundamentally motivated by:

• Fuzzy Cognitive Maps [Kosko-86a; Kosko-86c; Kosko-87; Kandel-87; Kosko-88; Taber-91; Kosko-94],

•  other Cognitive Mapping Techniques [Tolman-84; Sholl-87; Levenick-91; Branback & Malaske-95],

•  Non-Hierarchical Behaviour Decompositions [Brooks-86; Brooks-91a; Brooks-91b; Mataric-94a; 

Mataric-94b],

•  Behaviour-Based Networks [Maes-89b; Tyrrell-92] and,

• Dynamical Behaviour-Based Systems [Smithers-94; Smithers-95; Steels-94b; Steels-95])

The overall performance of a FBM results from driving causal interactions (cause-effect flows) among the 

levels o f activation o f the behaviours that it represents. Further, it is possible being flexible in the way that 

the design o f this map is addressed and, the way that the terms behaviour and cause-effect interaction are 

interpreted using this.
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BBSs D evelopm ent
B ehaviour-B ased  S y s te m s

FBMs
Designing Tool 

'S im ple and M ore Complex FBMs’

M obile R obotics 
R ecen t In v e s tig a tio n s ,

B e h a v io u r-O rie n te d  Views o f  
In te ll ig e n c e  

BB A l, A utonom ous A g e n ts p
F uzzy  A pproach
Fuzzy S y s te m s  

Fuzzy Logic 
FLC Techniques

1) Fuzzy Behavioural Maps

Figure 1.2: Thesis Overview. Fuzzy Behavioural Maps.

A simple FBM  is a directed graph where the nodes represent behaviour-producing modules the designer is 

hoping to implement within an Autonomous Agent. It is a network that draws pictures about the behaviours 

of the agent and how the firing degrees of these can be causally related with symbolic edges showing either 

positive or negative cause-effect relation. These cause-effect connections provide a view of interaction 

between the behaviour-oriented nodes of the map. But the idea is that both the levels of activation of the 

behaviour nodes and the inter-connections among these should be expressed in terms of Fuzzy Logic using, 

for example, linguistic variables and fuzzy sets or, fuzzy inference mechanisms to determine the level of 

activation of a particular node of a FBM.

Complex FBMs incorporate recurrent feedback loops. These maps are dynamic systems that can be switch on 

with behaviour-activation patterns being propagated until some terminating condition (e.g., timing out or, 

maximum level of activation of behaviour/s) has been reached. Further, we can achieve behaviour co

operation (or, behaviour competition) by means of combining complex FBMs. It is possible aggregating a 

number of low-level FBMs so that these maps modify the levels of activity of each other.
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Introduction: An Introduction to the Dissertation Presenting the Thesis

With these definitions, this dissertation argues that FBMs are flexible designing tools in the sense that their 

use underlines several interpretations and uses. Indeed, one o f the major statements o f this thesis is that we 

can use FBMs with:

•  nodes as physical resources o f an agent (e.g., infrared sensors of a mobile robot) or, other more abstract 

behaviour views (e.g., hunger awareness o f an animal) and,

• edges representing either physical communication links or, other more abstract interactions such as co

operation and (or) competition o f behaviour-producing modules.

B. The Development of a FBM in Mobile Robotics

In recent years, there has been a resurgence of interest in the field o f Robotics inspired, largely, by the 

Behaviour-Based (BB) viewpoint [Brooks-9 la; Brooks-9 lb; Maes-94a; Maes-94b; Mataric-94a] that this 

thesis explores. From the research carried out so far (overviewed in chapter 1), it is clear that, in order to 

produce effective BB Systems, mobile robots will need to acquire and develop their own knowledge in order 

to adapt to the demands of a complex and changing environment. A number o f techniques have been 

proposed and explored to address this issue (explained, for example, in [Brooks-86; Cliff et al-93a; Smithers- 

95; Steels-94a; Mataric-94a; Maes-89b; Rosenblant & Payton-89]).

Whilst successful, this approach to BB Robotics (also called Autonomous Robotics) becomes unwieldy as the 

number and the complexity of the behaviours and interactions involved increase. This leads to difficulties in 

the practical design o f  BB Systems fo r  mobile robots. Artificial Neural Networks have been proposed as 

providing a mechanism to address this problem and some applications of these control systems do appear to 

be able to implement basic BB architectures.
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Introduction: An Introduction to the Dissertation Presenting the Thesis

However, the design of composed behavioural networks (BB Networks) also become more and more 

complex with the desired high level groups of behaviours to be exhibited by a mobile robot (see, for 

example, [Smithers-94]).

The difficulties in applying this technology are similar to those encountered in the development of complex, 

large-scale BB Systems. For example, as with the Subsumption Architecture [Brooks-86], the key problem in 

applying Feedforward Artificial Neural Networks is the need to implicitly design the control process in terms 

of network units and inflexible inter-unit connections (as described in, for example, [Takagi et al-92]). In 

addition other authors argue that, however detailed the inter-unit relations are, and however large the number 

of processors (neurones) may be, there are always unpredictable situations which complicate the design 

process by presenting circumstances which are difficult to foresee [Smithers-94].

BBSs
D evelopm ent
"com plexity"

M obile R obotics 
& C om puter S im ulations

B e h a v io u r-O rie n te d  
Views o f  In te ll ig e n c e  

BB A l, AR & AAsFBM Im p lem en ta tio n
FLC Design 

Collision A voidance Behaviour 
v  T e s ts  & R esu lts

F uzzy  A pproach
Fuzzy Logic C ontrol 
<& S o f t  Computing

2) The Development of a FBM

Figure 1.3: Thesis Overview. The Development of a FBM.
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Introduction: An Introduction to the Dissertation Presenting the Thesis

The thesis presents the FBMs as simple designing tools to try to handle this complexity more effectively, 

exploiting ideas from Fuzzy Systems Theories, Fuzzy Logic Control (FLC) techniques and, some current 

approaches to develop BB Systems.

In this dissertation, we summarises the results o f our initial investigations with FBMs. This work to date 

concentrates on the design and control o f a mobile robot’s behaviour using simple FBMs and FLC 

implementation techniques (see Figure 1.3). We provide a proof-of-concept o f  simple FBMs through the 

design, implementation and testing of a FBM for a mobile robot to exhibit collision avoidance behaviour.

More particularly, this part of the thesis brings:

•  the study o f Fuzzy Systems and FLC techniques (providing a generic FLC architecture) to control 

sensorimotor behaviours of a mobile robot,

•  the design o f a collision avoidance behaviour-producing module using a FBM (a Collision Avoidance 

FBM) and some preliminary analysis o f the avoidance strategy,

•  the implementation process of an FLC architecture,

•  the mapping o f the Collision Avoidance FBM onto the FLC architecture to control the final activation of 

the avoidance behaviour (FBM global node) using fuzzy inference mechanisms and,

•  some pilot tests o f  the resulting FBM-based architecture using different types o f fuzzy inference 

mechanisms (to control the activation of the avoidance behaviour) and the corresponding analysis o f the 

behaviour displayed by the mobile robot.

In general, the use o f Fuzzy Systems (FSs) has been advocated because of their abilities to handle uncertain 

information using fuzzy sets, fuzzy weightings and other operations related to the aggregation and 

comparison of fuzzy sets of objects [Zadeh-65; Bellman & Zadeh-70; Kandel-87; Zadeh & Kacprzyk-92;
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Introduction: An Introduction to the Dissertation Presenting the Thesis

Foulloy-93; Safiotti-97; Gorrini & Bersini-94; McNeill & Thro-94], However, our main reason for believing 

that these systems will be effective for developing BB Systems is due to a specific feature of fuzzy logic 

processing, namely that it provides a changeable output rather than the (straightforward) weighted sum of  

other controllers such as those based on ANNs.

Even though this functionality appears to be suitable for designing BB Systems, FSs do not seem to have 

received much attention in this research area. The only examples found in the literature refer to the 

development of Hybrid or, Fuzzy Neural Nets [Narazaki & Ralescu-92; Keller et al-92; Goode & Chow-94; 

Goonatilake & Khebbal-95; Hercock & Bames-96; Pipe & Winfield-96a; Pipe et al-96b; Safiotti-97] that 

incorporate special network propagation algorithms with computations driven by Fuzzy Logic inference. 

Though, from our point o f view, these examples do not involve direct applications o f Fuzzy Logic such as 

the FLCs based on input-output fuzzy relations and fuzzy inference mechanisms [Mamdani-76; Wang & Loe- 

93].

The analysis o f the collision avoidance strategy discussed in this dissertation begins with a simple linguistic 

algorithm similar to one used by [Braitenberg-84]. Then we improve this strategy designing a Collision 

Avoidance FBM (that exploits some features of the fuzzy approach) and implement it using a FLC 

architecture that includes five functional components (Fuzzification Interface, Data Base, Rule Base, 

Decision Making Logic Unit and Defuzzification Interface).

Basically, the implementation of the Collision Avoidance FBM using the FLC architecture consist o f  

converting the nodes and edges of the map onto fuzzy logic control rules. We have implemented this 

heuristical verbalisation of the Collision Avoidance FBM within the FLC Rule Base so that the fuzzy 

inference mechanisms (driven by the Decision Making Logic Unit) activate the avoidance behaviour of the 

mobile robot. In doing so, we demonstrate that simple FBMs can be implemented using Fuzzy Logic 

parameters such as fuzzy sets, linguistic variables and fuzzy implication methods.
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Further, the results o f the pilot tests presented here demonstrate that the resulting FBM-based architecture 

combines the designing features of the proposed FBMs with some important capabilities o f the fuzzy 

approach. These pilot tests show that in simulation and, using Mamdani and Larsen’s fuzzy inference 

techniques [Mamdani-76; Wang & Loe-93], the mobile robot follows different patterns o f collision 

avoidance behaviour. It displays one behaviour pattern or another depending on the fuzzy inference 

technique that is used (Mamdami or, Larsen’s).

C. The Fuzzy Behavioural Maps Framework

The most generic type of FBM that this thesis introduces refers to FBM-based architectures. This 

dissertation demonstrates that it is possible to extend and/or refine the number and type o f components of the 

behaviour producing modules of an FBM so that some of these sub-modules become causally affected by the 

changes of others that might include (but are not limited to) environmental stimuli, internal components /  

mechanisms o f  the AA or, external resources.

A  generic FBM can incorporate as many nodes (sub-nodes) and interactions (sub-links) as the designer needs 

in order to design a set o f behaviour producing modules and their interactions. The FBM-based architectures 

incorporate different types o f behaviour-oriented modules. They include both internal and external modules 

interacting with each other. Some external modules or, their changes (if identified) can directly cause the 

activation of an FBM (and so, engage the agent to perform the behaviour it represents) or, increase /  decrease 

the levels o f activation of some of its internal behaviour nodes (e.g., make the agent to start performing some 

other actions). Similarly, the level o f activation of the external nodes can be increased /  decreased by the 

effect o f the internal ones. Indeed, the flow of an FBM can include and drive many feedback connections 

(and related computations), to allow changes on the components that influence this map, as to implement 

many possible consequences of behaviours.
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3) The FBM Framework
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Figure 1.4: Thesis Overview. (3) The FBM Framework.

In essence, this dissertation demonstrates that it is possible using many different types of FBMs to design 

behaviour-based models and systems. The nodes, edges and external components (or mechanisms) of an 

FBM-based architecture let the designer establishing a number of behaviour-oriented processes and 

implementing different sort of BB Systems. A more generic FBM  extends a basic one incorporating new 

FBM modules (nodes and edges). The final set up (design) of the map depends on many design aspects such 

as the number and complexity of the behaviour producing modules that are included, how these behaviours 

have been analysed, the morphological set up of the agent(s), the behavioural performance that has to be 

achieved, etc. Using these generic FBMs, the dissertation describes how to derive a non-hierarchical Action 

Selection Mechanism.

More generally, this dissertation proposes the FBM approach as a tool for trying to address some technical 

complexity issues that the thesis identifies in the current approaches to develop BB Systems. This document 

presents a FBM Framework exploring and evaluating the development of complex behaviour-oriented 

structures using FBMs. It discusses how to develop large-scale BB Systems using FBMs.
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The keywords explored here are: levels o f  abstraction and refinement. These extend the mapping o f FBMs 

onto fuzzy architectures considering that it is possible designing FBMs at different levels o f abstraction and, 

refining these by identifying lower behaviour-oriented design parameters rather than linguistic variables, 

fuzzy sets or, fuzzy inference mechanisms.

The thesis presents the FBM Framework in comparison to other current techniques to develop large-scale 

behaviour-oriented models. It describes the key initial features of this framework to assess the advantages of  

this technique. Finally, the dissertation presents an example about how to design a large-scale BB System 

using the FBM Framework. This work is largely inspired by the “Interaction and Intelligent Behaviour” 

presented in [Mataric-92b] and represents our initial work towards the development o f more complex and 

more natural behaviour systems.

Dissertation Outline

Before moving into the presentation o f these contributions to knowledge around the definition and use o f  

FBMs, this dissertation surveys our investigations into the behaviour-oriented nature o f intelligence 

concentrating on the current approaches to develop BB Systems and research issues that have motivated the 

thesis. In doing so, we pursue four main objectives:

1. Presenting an overall view of what has been achieved and what remains to be done to prove the validity 

of the behaviour-oriented viewpoint in Artificial Intelligence (AI).

2. Elaborating the fundamentals of this field by identifying different contributions (e.g. ideas, solutions, 

theories, etc.) made by research groups that, falling into cognitive, technical and biological tendencies, 

study either natural or artificial creatures and establish some scientific basis to the behaviour-based 

models.
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3. Underlying the role played by Computer Science providing useful formal frameworks (e.g., fuzzy 

frameworks, neural nets and soft computing paradigms) together with other more general technological 

perspectives used to build models through the development o f artificial systems (i.e., moving from the 

selected forms of intelligence to the physical or, computational systems).

4. Exploring and evaluating the potential o f the proposed FBMs to design behaviour-based models.

Chapter 1: Research Into Behaviour-Oriented Views of Intelligence

Chapter 1 presents our overall view of the behaviour-oriented nature of intelligence from the foundations of 

three recent research areas (represented in Figures 1.1 to 1.4):

• a relatively new Behaviour-Based Approach to Artificial Intelligence (BB AI, founded around 1985) that 

firstly focused on behaviour-oriented forms of intelligence considering these were “more realistic” than 

using earlier knowledge-based ones,

•  a school called Autonomous Robotics, mainly dedicated to design and build behaviour-based robot 

control systems and,

•  a multi-disciplinary group of research communities known as Autonomous Agents, offering a great 

diversity of ideas and methods to study, model and build different sorts of creatures (not only robots) able 

to act autonomously.

The overview o f the BB AI fundamentals (concepts, ideas, techniques and, methods) presented in this 

dissertation includes three subsections. The first one (1.1.1) shows definitive points of departure that express 

the shift made from an early Knowledge-Based approach to AI (KB AI also called “the conventional 

approach” or, “good-old-fashioned AI”) to BB AI. These are:
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• modelling and building behaviour-based forms of intelligence,

• not using conventional symbolic-processing architectures and,

• avoiding world modelling techniques.

The next subsection (1.1.2) focuses on the beginning of BB AI i.e. the pioneering work o f Rodney A. Brooks 

and the influence of this within the classical field of Robotics. This includes some explorations within the 

Autonomous Robotics school (building behaviour-based control systems for recent generations of “robots”) 

that help to identify some of the basis o f the practical work within BB AI. Finally, the subsection 1.1.3 

summarises the most general insights about the behaviour-oriented viewpoint (“objectives and tasks”, 

“slogan” and “claim”).

The work within AAs (described in section 1.2) offers a broader view on the behaviour-oriented nature of  

intelligence. This extends the BB AI fundamentals into a multi-disciplinary groundwork and identifies 

relevant contributions made by research groups that fall into cognitive, biological and technological 

perspectives. The subsection 1.2.1 briefly introduces the concept of AA and examines some o f its forms. The 

next subsection (1.2.2) discusses how to understand behaviour-oriented views of intelligence with AAs. This 

presents an overview of the state-of-art of Autonomous Agents describing the following major tendencies 

that have motivated the thesis presented in this dissertation:

• understanding behaviours (1.2.2.1),

•  robots as animals and animals as robots (1.2.2.2),

•  brain-like models (1.2.2.3),

• genetic side (1.2.2.4) and,

• technological perspectives (1.2.2.5).
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All these studies include a variety of ideas (e.g., design perspective, mechanisms) that influence and/or 

motivate the behaviour-based models being studied and used in this dissertation. For example, the 

technological perspectives discussed in 1.2.2.5 gathers some design aspects about two successful 

Computational Techniques (Fuzzy Systems and Artificial Neural Networks) while making emphasis on the 

contributions o f the Fuzzy approach.

The next section (1.3) argues for some implications and active research issues. This focuses on the currently 

required higher levels (large-scale models) with which the thesis starts proving some potential benefits o f the 

FBM approach. Further, this subsection discusses how the most recent work within BB AI and AAs points to 

the realisation o f more realistic artificial autonomous creatures that in turn represents a very complex 

problem (that cannot be easily resolved). Section 1.4 completes the survey (the research context o f the thesis) 

by concentrating on the development of BB Systems (principal tools o f the investigations). The introduction 

of this section outlines some key aspects about the development of these systems. The subsection 1.4.1 

provides the most general steps we have found in the literature to develop BB Systems. The subsection 1.4.2 

presents a classification of approaches to the development of these artificial systems (Subsumption 

Architectures, BB Networks, Dynamical BB Systems, Evolutionary Approaches and Hybrid Paradigms). 

Finally, the subsection 1.4.3 discusses some technical problems found with the application o f these various 

approaches i.e. the major motivations of the FBM Framework presented in the thesis.

Chapter 2: Fuzzy Behavioural Maps

In chapters 2 to 5, this dissertation presents the work to date exploring and evaluating the role o f the FBMs 

as designing tools of behaviour-based models.

Chapter 2 introduces the main features of FBMs. Section 2.1 describes influences and motivations. The main 

features of FBMs are described in section 2.2. The next section (2.3) provides examples of simple and more
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complex FBMs. The most general intuitions we have about the definition and use of FBMs are summarised 

in section 2.4.

Chapter 3: The Development of a FBM for a Mobile Robot

The proof-of-concept of FBMs and initial investigations around the use of the Fuzzy Approach to implement 

these maps is widely described in chapter 3.

Section 3.1 introduces some general features about mobile robots and our initial evaluations of FLC 

implementation techniques. Section 3.2 summarises the analysis o f the avoidance behaviour i.e., our 

preliminary studies on perception, motion, avoidance and, the use o f Fuzzy Logic parameters. In the 

Appendix A and, for the convenience of the reader, we summarise Fuzzy Sets and Fuzzy Relations 

definitions used in the rest of the chapter. Similarly, in appendix B, we provide some general features of  

Fuzzy Logic Control techniques.

The Collision Avoidance FBM (and how to map this graph onto our FLC architecture) is shown in sections 

3.3 to 3.5. Section 3.3 provides the design of the FBM. In section 3.4, we identify all the main features, 

functional components and implementation parameters that are required for implementing a FLC 

architecture. Section 3.5 shows the FLC-based implementation of the FBM for the mobile robot called 

Khepera. Finally, section 3.6 describes our computer simulations (3.6.3), including a complete description of 

the FBM-FLC control program that we have developed and built within Khepera Simulator system (3.6.2). 

Further, section 3.6 describes the results of our experiments (testing the general fitness o f this architecture= 

and compares the performance of the avoidance behaviour displayed by the mobile robot (variation in the 

trajectories followed by the robot) when using different types of fuzzy inference techniques (Mamdani and 

Larsen) within the inference mechanism o f the FLC.
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Chapter 4: The FBMs Framework

Chapter 4 extends our explorations with FBMs and defines a development framework based on the use of 

these behaviour-oriented maps. Section 4.1 describes generic FBMs. The next section o f this chapter (4.2) 

outlines the proposed FBM Framework in terms of levels o f abstraction, refinement and the most general 

ideas explored in the thesis to cope with complex BB Systems developments. The next section (4.3) outlines 

an application case study base on the use of this FBM Framework. Finally, section 4.4 presents an 

application case study of the proposed FBM Framework based on the development o f a complex, multi-agent 

BB System.

Chapter 5: Conclusions

Chapter 5 summarises our conclusions i.e. the statements of the thesis and contributions to knowledge around 

the definition and evaluation of FBMs.

Chapter 6: Future Research Work

Finally, chapter 6 describes future research objectives around more definitions and uses o f FBMs as possible 

extensions of the thesis.
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Chapter 1
Research Into Behaviour-Oriented Views of Intelligence

Abstract

This chapter surveys the following investigations as the research context o f the thesis:

a) The description o f BB AI fundamentals to study and use behaviour-based models instead o f the early 

knowledge-based ones (section 1.1).

b) The specification of a broader view on the behaviour-oriented nature o f intelligence based on a multi

disciplinary groundwork known as “Autonomous Agents” and, concentrating on cognitive, biological 

and technological perspectives (section 1.2) that we have been considered to present the FBMs.

c) The identification of active research issues around the currently required higher levels o f intelligence 

(section 1.3) with which the dissertation starts proving the potential benefits o f the FBM Framework.

d) The presentation o f a classification of approaches to the development o f BB Systems (Subsumption 

Architectures, Behaviour-Based Networks, Dynamical Behaviour-Based Systems, Evolutionary 

Approaches and Hybrid Paradigms described in section 1.4) based on some development decisions 

raised with the proposed FBM Framework.
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1.1. Behaviour-Based Artificial Intelligence

The goal o f AI researchers has always been the modelling and building offorms o f  intelligence [Newell-82; 

Wilson-85; McEachem-93]. They have done much work to study intelligence by modelling human activities 

(e.g., reasoning, communication, learning) and applying these models to construct artificial intelligent 

systems (creatures, robot systems or, computer programs). Since 1986, however, “a general belief is that a 

new life has emerged in the study of AI” [Brooks-9lb]; “a new life is being brought to the field...” [Maes- 

92b] (see also [Brooks-90b; Brooks-90c; Brooks-91a; Brooks-91e; Resnick-92; Brooks-94; Wilson-91; 

Mataric-91b; Mataric-94a; Pfeifer-96b]).

The most recent communities of AI investigate an approach called Behaviour-Based AI (BB AI) that has 

challenged conventional Knowledge-Based AI (KB AI) [Maes-92b; Pfeifer & Verschure-95; Saunders et a l-  

94; Wilson-91]. Their main objective is studying intelligence by introducing and using non-conventional, 

behaviour-oriented models and techniques. They investigate new types o f problems, adopt new techniques 

and search for new solutions to design and implement the artificial intelligent systems.

More particularly, the research of these recent communities of AI reflects into the field o f Robotics, a 

benchmark area o f AI for longer than thirty years. Their practical work is being devoted, mainly, to the 

investigation of new robots (artificial creatures with physical bodies) able to perform some activities within 

their natural surroundings. Further, their investigations lead to the institution of a new school known as 

Autonomous Robotics that concentrates on the realisation of autonomous robots (robots that can perform 

some actions without much human intervention) while making strong connections between the biological 

inspiration [Brooks-91e; Brooks-91f; Steels-94a; Brooks-91g] and, the use o f the physical basis o f Artificial 

Neural Networks [Grossberg-78; Grossberg-80; Bose & Liang-96; Kosko-92; Schmajuk-94; Bezdek-92; 

Mariano & Morasso-94] and other Artificial Life techniques [Langston-90; Beer et al.-90; Brooks-91f; Beer- 

90; Moran et al.-95] to develop robot systems.
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All these aspects o f BB AI are discussed below in more detail.

1.1.1. Points of Departure

There are three significant points of departure from the early KB AI to the current BB AI.

1 .1 .1 .1 . M odelling a n d  Building B eh av io u r-B ased  F o rm s of In telligence

In 1986, the AI paradigm shifted from the study and replication of high level and knowledge-oriented forms 

of intelligence [Drescher-91; McEachem-93] to the analysis and synthesis o f lower level and behaviour- 

oriented ones [Brooks-91a; Brooks-91d; Wilson-91; McFarland & Bosser-94; McFarland-95; Maes-92b; 

Mataric-92b]). Indeed, the literature reflects that, while the researchers o f the “good-old-fashioned” KB AI 

focused on knowledge-based models, the recent communities of BB AI study behaviour-based models.

The researchers of the early KB AI associated the concept intelligence to the term knowledge [Newell-82]. 

Their work focused on the study of forms of intelligence such as reasoning or, problem solving [McEachem- 

93; Hendler-88], motivated by the fact that computers could mimic human thoughts [Minsky-86; Grossberg- 

78; Grossberg-82; Grossberg-86; Bond & Gasser-88]. They built artificial intelligent systems by identifying, 

formalising and representing some specific knowledge [Minsky-86]. They had many successful applications 

in areas where the level o f machine intelligence could be measured in terms of the amount and significance 

of knowledge that the systems were able to manipulate (e.g. Game Playing or Reasoning,).

The most recent communities of AI use a concept of intelligence that is strongly related to the term “natural 

behaviour” (behaviour displayed by living organisms) [Brooks-91d; Brooks-91c]. Their work represents a 

general move towards the study of behaviour-based forms o f intelligence such as adaptation, learning or, 

interaction dynamics, mainly, because of two general beliefs. First, the KB concept o f intelligence is “ill- 

defined” in the sense that it does permit “viable machine intelligence with clear biological inspiration”
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[Brooks-9la]. Second, KB models and systems are not realistic enough to advocate AI (they can only work 

for simulated toy problems [Maes-92a; Maes-92b]).

Nowadays, humans and other natural beings (animals) can be said to be intelligent not because they can store 

and process some knowledge but, because they can intelligently respond to their environments [Brooks-9 lb; 

Maes-92b; Pfeifer-96b]. They can determine their own representations and investigate new (appropriate) 

ones [Pfeifer & Verschure-95]. They are observed to adapt their actions to the changes o f their environments 

and learn from this [Brooks-93; Aitken-94; Barto-90; Barto et a l-95; Bryson-96; Maes & Brooks-90c; 

Mataric-90a; Mataric-90b; Maes-92a; Mataric-94b]. “Intelligence is determined by dynamics o f interaction 

with the world” [Brooks-9lb]. It is “an emergent property of the interaction o f the physically embodied agent 

with the real world” [Brooks-9la].

Consequently, the recent communities of AI introduce and use new technical solutions to construct 

behaviour-oriented systems. They use, for example, “bottom-up” development methods (that substitute the 

classical “top-down” methodologies) [Brooks-91b; Brooks-91f; Brooks-91g] or, “non-centralised” control 

mechanisms (that clearly differ from conventional mechanisms which structure and functioning depends on a 

central engine) [Maes-92a; Maes-92b; Brooks-9 la]. Other, more general, points of departure from KB to BB 

AI are described below (see also [Brooks-86; Brooks-94; Mataric-95a; Smithers-95; Pfeifer-96b]).

1 .1 .1 .2 . N ot U sing C onven tional S y m b o lic -P ro cessin g  A rch itec tu res

The classical knowledge-based models were built using conventional symbolic-processing architectures such 

as Sense-Model-Plan-Act (SMPA). These architectures, however, do not seem to be appropriate for building 

the behaviour-based models.

Building a KB model using a SMPA architecture means constructing a system is such a way that, when it is 

placed in a determined situation (well-known environment) and, it is equipped with appropriate symbolic 

representations (goals and copies o f the world), it can recognise certain aspects of its surroundings (sensing)
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and plan actions for achieving its goals (thinking) before performing these (acting). It is a matter o f designing 

and implementing a system based on three specific-purpose units: a sense unit (that collects the symbols 

about the objective features of the environment), a planner unit (or central engine that delivers a plan 

according to the input coming from the sense unit and an internal copy of the environment) and, an act unit 

(that performs the set o f actions delivered by the planner). Further, the effort is concentrated on the logical 

operations of the planner unit. In fact, the system can only perform the required functionality if its planner 

unit “knows” how to correlate the senor unit’s information with its internal, engineered copy of the outside 

world (see, for example, [Newell-82]).

By contrast, building a BB model means constructing a system in such a way that it can adapt its actions to 

(or learn from) the real world situations that it encounters (as described, for example, in [Maes-92b; Mataric- 

92b]). It requires solving issues such as how to design behaviour-producing modules (in a non-centralised 

and self-contained manner) and make these working within the real world situations, not how to symbolically 

represent and process some symbols to respond to a given (well-known) problem domain [Steels-93a; Steels- 

94a]. The BB architectures are not intended to plan some actions according to an engineered environment 

[Maes-92b; Peng & Williams-92; Pfeifer & Verschure-95; Chapman-92; Mataric-91b; Mataric-92a; 

Smithers-94; Pfeifer-94]. They have to be designed using open architectures because the ability o f the 

system to adapt and/or learn depends on its capabilities to dynamically interact with the real world [Brooks- 

91a; Brooks-91b; Pfeifer-94; Smithers-92; Resnick-92; Smithers-94]. They have to relate mutually to their 

natural (non-engineered) domains [Maes-92b]. They have to solve many problems at a time [Brooks-91b; 

Chapman-92; Beer-95]. Their designers need to worry about the “environmental pressures” [Steels-94a].

These and other related behaviour-oriented architectures are discussed in sections 1.1.2 and 1.4.
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1 .1 .1 .3 . Avoiding W orld M odelling T e c h n iq u e s

The conventional world modelling techniques are not appropriate for building behaviour-based models. 

These techniques are unrealistic and limit the well performance of the systems [Mataric-91b; Maes-92b; 

Mataric-92b; Brooks-91b; Pfeifer-94; Steels-93a; Steels-94a].

A world model is unrealistic because it is far remote from the real one; because it can hardly reflect the 

objective reality; because the physical world is too complex to admit of a complete engineered version. 

Making a complete world model is hard to believe and, very difficult to foresee (as discussed, for example, in 

[Mataric-91b; Brooks-90b]). We can only achieve partial models that suffer from the uncertainty and limit 

the well performance of the architecture since they are time-consuming. Indeed, the time that is required for a 

system (or component of a system) to correlate some current input values (like sensor readings o f a robot) to 

a large (even moderate) world model can delay the computation o f the final outputs (actions) until a point 

that makes the creature failing its real time performance [Mataric-92b; Mataric-95a].

[Brooks-9le] proposes an alternative solution to world modelling techniques. This consists o f trying to “find 

out what the creature is sensing and how its sensory information can be organised/manipulated so that it 

accomplishes its tasks successfully”. It is not clear, however, whether this work can effectively substitute the 

use of world models. As we shall see in sections 1.1.2 and 1.4, it is not difficult making the creature to 

display basic behaviours within some not-modelled situations but, the physical world is too complex and, it is 

very difficult making the behaviour-oriented system to successfully respond to very unpredictable situations. 

In section 1.2.2.5, we describe these issues is more detail and discuss how the Fuzzy approach can help to 

solve the uncertainty problem.
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1.1.2. Autonomous Robotics: The Beginning

The project o f constructing mobile robots has a history of several centuries. Previously, control systems for 

such devices varied from simple stimulus/response architectures to more complex ones based upon the 

Physical Symbol System or, the “sense-think-act” model above described. In 1986, Rodney A. Brooks 

criticised those traditional approaches considering that they were “unable to deliver real-time control in 

dynamic worlds”.

1.1.2.1. T h e  P io n eerin g  W ork of R o d n ey  A. B rooks

In 1986, Rodney A. Brooks presented the Subsumption Architecture as a new kind o f robot control structure 

based on simple behaviour producing modules (which could be fully wired from sensors to motor outputs) 

and, more complex ones added as separate layers (affecting the simple ones by inhibition and suppression 

mechanisms). Further, he made the following contributions to start solving the operation o f robots within real 

world situations:

• vertical decompositions (where every component can combine several functions to contribute to a 

particular behaviour) instead of horizontal ones (where each component is responsible for a specific 

function like planning or, world representation) to guarantee real time response when needed (see also 

[Brooks-91b]),

•  new development decisions and analysis tools to achieve the complete engineering o f autonomous robot 

systems (see also [Brooks-91a; Brooks-91b; Brooks-91f]),

•  new architectures to follow biological inspirations while achieving autonomy, interaction and, reactive 

behaviours (see also [Brooks-91c; Brooks-91d; Brooks-91e; Brooks-91f; Brooks-91g; Brooks-93; 

Brooks-94]).
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1 .1 .2 .2 . R e c e n t G e n e ra tio n s  of M obile R o b o ts

The classical robots were developed as thoughtful creatures able to respond to some well-known inputs (as 

discussed, for example, in [Brooks-85; Brooks-91g; Cliff et al.-92; Clancey-95]). By contrast, the recent 

Autonomous Robotics communities build robots as reactive and autonomous creatures able to perform some 

activities without being completely dependent on their designers [Mataric-91b; Maes-92b; Pfeifer & 

Verschure-95; Mataric-92a; Smithers-94; Pfeifer-94].

Following the pioneering developments at MIT, these last roboticists demonstrate the new intelligent skills of 

the robots without using much human intervention. Further, most o f their work focus on finding new 

functional components (e.g. non-centralised control programs [Maes-92a; Mataric94a; Garforth et al.-97]) 

and tools (e.g. programming languages [Brooks-90a; Steels-96]).

Most recent generations of robots are built using simple mechanisms that can directly generate some 

behaviour-oriented activities. These basic mechanisms associate the selected behaviours to low level 

sensorimotor processes that can control the performance of the physical devices (e.g. wheel motors) without 

need of perception, planning or, execution units. The main idea is that the architecture has to include 

complete (non-dependent) behaviour-producing modules incorporating, for example, their own perceptual, 

modelling and planning requirements. Only some arbitration mechanism are aggregated so the robot can 

select (or decide) which module controls which part o f its physical body, at any given instant in time.

More generally, there are three approaches to tackle the design of the new robot systems.

• Brook’s approach based on an incremental but, handcrafted design o f subsumption schemes with vertical 

organisations [Brooks-86; Brooks-91g; Mataric-94a].

•  A learning approach that automates the design of the control systems [Thorton-96; Maes & Brooks90c; 

Barto-90; Aitken-94; Bryson-96; Barto et al.-95; Millan-94; Pipe et al.-9A\ Schmajuk-94]. Here the
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computer sets up, at least, some control parameters that help to automatically generate the behaviour 

specification when the algorithm being used has a clear demonstrable convergence.

• An evolutionary approach that concentrates on evolving the behaviour-based control architectures using 

Genetic Programming techniques [Goldberg-89; Koza-92; Colombetti & Dorigo-92; Dorigo & Bersini- 

94; Reynolds-94; Beer-96]. Here the control system is evolved instead of being designed or, programmed 

by hand [Cliff et al.-92].

1.1 .2 .3 . S o m e  E xplorations with A u to n o m o u s R o b o ts

The literature reflects that most explorations with autonomous robots focus on:

• how to develop the systems,

• how to cope with the uncertainties of the world,

• what behaviours should be displayed and, how to solve behaviour-related processes.

The developments seem to be carried out so that there is no need to isolate the physical embodiments from 

the computational components [Brooks-91e]. The aspects of uncertainty that are investigated refer to: the 

uncertain values that are delivered by the sensors, the sensor readings themselves and, the uncertain effects of  

control/action executions. It is possible trying to avoid some negative effects of these uncertainties by 

designing tight couplings between the robot and its environment (e.g. using low level sensing-acting 

feedback loops [Brooks-9If; Horswill & Brooks-88; Horswill-96]) or, using the Fuzzy Approach [Zadeh-83; 

Bohner-95; Hercock & Bames-96; Pipe & Winfield-96a; Saffiotti-97].

Behaviours such as obstacle avoidance, wall following or, target-seeking have a considerable remark in this 

area (see, for example [Brooks-86; Mataric-94a; Cliff et al.-93a; Schmajuk-94; Duchon-96]). Other 

investigations refer to the behaviour-oriented processes such as: adaptation, robustness, autonomy or,
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emergence. Some behaviour-producing modules are described as being adaptive and/or robust because the 

robots that are equipped with these perform well under different environmental conditions (e.g., they improve 

their movements [Holland & Melhuish-96; Maes-91; Kaelbling-95; Horswill-95]).

The most adaptive and robust behaviour modules can be obtained, for example, identifying the right amount 

and type of control actions that have a global impact on the surroundings of the robot (see, e.g. [Mataric- 

94a]). In other words, adaptive behaviour is very close to intelligent behaviour [Beer-90; Maes-91; 

Smithers-92; McFarland & Bosser-93; Barto et al.-95]; it is the result o f an optimisation process [Verschure 

& Pfeifer-92]. The concept of autonomy describes the interaction between the robot and its environment 

[Beer-95] or, self-controlling [Steels-89; Steels-95]. Finally, the emergence of behaviours (what is not 

designed) has negative and positive side effects. It has negative effects because “it is not predictable” and, it 

has positive effects because it means “less human intervention” [Steels-94a].

1.1.3. Major Insights

There exists strong ties between Autonomous Robotics and BB AI but, as [Steels-94a] suggests, they “should 

not be equated”. The school represents, without any doubt, the main community working with practical 

solutions. Its major goal is the analysis, design and synthesis o f behaviour-based control architectures for the 

robot systems to behave more autonomously than classical ones (see e.g. [Brooks-9lb; Mataric-94a]).

The BB AI researchers, on the other hand, work on general ideas about the study o f the behaviour-oriented 

models. They try to formulate how to replicate behaviour-based models. They also propose philosophical 

statements regarding the potential success of the behaviour viewpoint (see e.g. [Varela & Bourgine-92]). 

Further, they open up “an artificial life route to artificial intelligence” [Steels-93a; Steels-93b; Steels-95; 

Wilson-85; Wilson-91; Meyer & Guillot-94; Smithers-95; McFarland-92] while contributing to the following 

insights.
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1 .1 .3 .1 . O b jec tiv es  a n d  T ask s ; M odels, M ech an ism s a n d  S y s te m s

The main objective is building creatures that can truly sense their environment and physically act upon this 

[Brooks-91e], “artefacts which are 'really' intelligent... intelligent in the physical world, not just intelligent in 

a virtual world" [Steels-94a]. To achieve this, the work is focused on three major tasks:

•  The observation (analysis) o f  natural behaviour displayed by living organisms within real environments 

(discussed in section 1.2).

•  The selection o f  models based on, for example, internal and/or external mechanisms (e.g., simple 

sensorimotor processes or, more complex ones that include learning processes) that contribute to the 

production o f behaviour in terms of actions and/or other functionalities.

•  The realisation o f  the models through the development o f  BB Systems (see section 1.4), including some 

other useful mechanisms such as behaviour-aggregation (finding a way to connect the behaviours as to 

control the performance activities of the creature) or, behaviour selection (the ability to change from one 

behaviour to another and according to the experience o f world [Mataric-90a]).

1.1 .3 .2 . S lo g an : U n d erstan d in g  B ehav iour by Building Artificial C re a tu re s

The slogan means understanding intelligent behaviour by building physical artificial creatures [Pfeifer-96a; 

Pfeifer-96b; Pfeifer-97]. Synthesis is necessary [Mataric-94a]. Indeed, the work in simulation tends to be 

considered as an early stage of development (that can reduce final production costs); as a tool for exploring 

and testing the artificial mechanisms although, “very often results from simulation only partially carry over to 

artificial systems” [Steels-94a].
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1 .1 .3 .3 . C laim : Biological Fidelity of th e  A pproach

KB AI lacks of biological inspiration [Brooks-9lb]. The artificial systems built upon its principles cannot 

display it. BB AI, on the other hand, has a strong biological orientation. It takes inspiration from Biology to 

regulate behaviour change [Brooks-91a; Brooks-91b; McFarland & Bosser-93; Steels-94a; Mataric-95b]; it 

uses biological models [Pfeifer-94], as we shall see in section 1.2.

Engineers and biologists work together for constructing the artificial systems [McFarland-85; Brooks-86; 

Brooks-91b; Brooks-91e; Mataric-91b; Maes-92b; Pfeifer & Verschure-95; Mataric-92a; Smithers-94; 

Pfeifer-94]. This permits analysing the mechanisms that produce the BB forms of intelligence [Pfeifer-94; 

Brooks-91f], investigating what makes natural behaviour being adaptive and intelligent [McFarland-91]), 

how observed behaviour emerges from internal mechanisms [Steels-94a; Brooks-9 lg], how optimal 

behaviour can be associated to adaptation and learning abilities [McFarland & Bosser-93] or, what are the 

links between natural behaviour and learning processes [Maes & Brooks-90c; Brooks-93].

In summary, Nature offers “the keys” to reproduce behaviour (to some extent) and, the investigations 

advance so that the mechanisms being incorporated to the artificial creatures become closer to the biological 

models. In fact, one of the major claims is that it is necessary replicating more biologically inspired models 

of intelligence [Langston-90; Beer et al.-90; Beer-90; Moran et al.-95] instead o f using, for example, simple, 

brain-like models [Roitblat-82; Gregory-66; Grossberg-80; Grossberg-86].

1.2. Autonomous Agents

Here we extend the major BB insights and argue for a multi-disciplinary area of research termed 

Autonomous Agents, based on the belief that a fundamental part o f this contributes to the foundation 

(consolidation) of the behaviour-oriented approach to AI. In addition, we gather some aspects o f successful
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Computational Techniques (e.g. Fuzzy Systems) while making emphasis on the role played by Computer 

Science within the current investigations.

Autonomous Agents (AAs) is a group o f research communities that investigate a more complex paradigm 

than that of BB AI. It represents the result o f many years of investigations within a wide variety o f disciplines 

(e.g., Computer Science, Cognitive Science, Neuroscience, Biology, Ethology, Developmental Psychology, 

Mechanical Engineering, Artificial Life) that look for the establishment o f general theories about the study 

and construction of creatures (agents) able to act autonomously. Indeed, the literature reflects that this group 

appeals to a great diversity of ideas, formalisms and architectures that can be unified by the following 

common concerns:

• searching for general principles to analyse, design and build the biological models (see, for example, 

[Pfeifer-96a; Albus-96; Wilson-96; Horswill-96]),

•  trying to find new development methodologies and techniques (e.g. bottom-up methods [Maes-92a; 

Pfeifer & Verschure-92; Maes-94a; Pfeifer-96a; Pfeifer-97] or, dynamical systems techniques [Smithers- 

92; Steels-94b]),

•  defining and using new characterisations o f  agents (e.g. principled agent-environment interactions in 

robot systems and programs [Smithers-94; Agre-95; Verschure & Pfeifer-92; Beer-95]) and,

•  investigating the use of recent formal-frameworks like, for example, hybrid computational techniques 

[Saffiotti-97; Zadeh-96; Azvine et al.-96; Goode & Chow-94; Goonatilake & Khebbal-95],

in order to guide

•  the study o f living organisms: their morphology (animals’ bodies [McFarland-91; McFarland & Bosser- 

93]), their underlying mechanisms (e.g. observed learning mechanisms [Roitblat-82; Roitblat-94;
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McFarland-95]) and, their abilities (innate and evolved behaviours [Gould-82; McFarland-85; 

McFarland-87; McFarland-92; Nepomnyashchikh & Gremyatchikh-96]),

•  the experimental work with artificial creatures, focusing on the physical setups o f robots [Clancey-95; 

Connell-90; Pfeifer-97; Ferrell-93; Scheider & Mataric-96; Webb-94; Webb & Hallam-96] or, the 

underlying control architectures [Beer-96; Kortenkamp & Chown-92; Belanger & Willis-96],

•  the investigation o f  behaviour-related capabilities such as: autonomy and self-sufficiency [Wilson-85; 

Wilson-96], cognitive control [Sholl-87], emotions and motivations [Toates & Jense-91; Spier & 

McFarland-96], adaptivity and learning [Peng & Williams-92; Thomton-96; Scutt-94; Juille & Pollack- 

96], coorperation [McFarland-94; Mataric-94b; Arkin & Ali-94; Weiss-92; Parker-92; Kube & Zhang- 

92; Watt-96]), evolution [Floreano & Mondada-94; Cliff & Miller-96; Deugo & Oppacher-92], etc.

•  the design and synthesis o f new artificial intelligent agents [Beer et al. -90; Maes-90a; Maes-91; Maes- 

94b; Hallam-95; Mataric-95b; Pfeifer & Verschure-92; Pfeifer-96b; Steels-94b].

The success of the BB approach to AI requires some cognitive, biological and technological tendencies 

investigated within AAs. These tendencies are necessary to re-define concepts, ideas and methods to model 

and build the behaviour-oriented forms of intelligence. They study a wide variety o f creatures (e.g. animals, 

brain-like models, cognitive structures or, hybrid forms) and help to smash the old dilemma o f AI into a 

number of aspects of intriguing interest for the BB AI objectives. They investigate a very complex paradigm 

[Pfeifer-96b] and work on the establishment of quite complete theories. They use scientific basis that are 

necessary to consolidate the validity o f the behaviour viewpoint although, as we shall see in section 1.3, there 

are many research issues that need being resolved before this can be demonstrated.

The following sub-sections describe all these common concerns and ideas in more detail.
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1.2.1. What is an Autonomous Agent?

“Autonomous Agent” is a concept that has been proposed by researchers wishing to explore what acting 

intelligently means; a self-sufficient, adaptive and organised intelligent creature; a creature able to sequence 

its activities without need of human intervention; a concept that is associated (and sometimes identified) with 

many types of systems such as (see also [Maes-90a; McFarland-91; McFarland & Bosser-93; Pfeifer-96a; 

Pfeifer-97]):

• Software agents: computers and networks inhabiting in a cyberspace [Lyons & Arbib-89; Brooks-9 If; 

Lynch-93; Maes-95; Nwana & Wooldridge-96c; Noble & Cliff-96; Pfeifer-97; Tyrrell-93; Tyrrell-94; 

Watt-96; Michel-96; Titmuss e t a l -  96; Belanger & Willis-96].

•  Robotic agents: physical, synthetic robots [Brooks-91g; Cliff et al.-92; Clancey-95; McFarland-91; 

McFarland & Bosser-93; Blumberg et al.-96; Perkins & Hayes-96; Mataric-91b; Pfeifer & Verschure-95; 

Mataric-92a; Smithers-94; Pfeifer-94; Arkin & Ali-94] or, market (useful) robots [McFarland & Bosser- 

93].

•  Cognitive structures: man-like machines based on assimilation processes, accommodation tasks and other 

related human intellectual skills [Khube & Zhang-92; Levenick-91; Albus-96; Williamson-96; 

Rutkowska-94; Blythe et al.-96].

•  Animats: animal-like systems, cyber animals or, biobots that establish important landmarks in Robotics 

and Computer Science (see, for example, [Wilson-85; Wilson-91; Brooks-91e; Meyer & Willot-94; 

Werner & Dyer-92; Bersini-94; Blumberg-94; Blumberg et al.-96; Cliff & Miller-96; Rowe-98]).

•  Hybrids: physical and software agents (e.g. [Dickinson & Dyer-96; Hallam et al.-97]) or, cognitive- 

software agents [Webb-94; Web & Hallam-96; Dygney & Gupta-94; Titmuss-96].
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1.2.2. Understanding Behaviour-Oriented Views of Intelligence

There are many fields that have influenced the thinking in BB AI while investigating AAs. We describe the 

most relevant tendencies (also motivating the thesis presented in this document) in the following sections.

1.2 .2 .1 . U n d erstan d in g  B eh av io u rs

The concept o f intelligent, natural “behaviour” is being studied from psychological, cognitive and ethological 

tendencies.

Psychology and the Study of Behaviours

Psychologists explore what behaviour means. They address numerous experiments while observing 

individuals, measuring their behaviours and, establishing theories that guide some attempts to develop 

artificial organisms. Their Reinforcement Learning Theories, for example, have been extensively used in BB 

AI [Mataric-91a; Prescott-93; Bersini-94; Digney-96; Humphrys-96; Mahadevan & Connell-91; Munos & 

Patinel-94; Ring-92]). Other interesting psychological experiments refer to the motivation and 

accomplishment of behaviour [Werner-94; Spier & McFarland-96; Toates & Jense-91; Deugo & Oppacher- 

92; Donnart & Meyer-94; Donnart & Meyer-96; Dellaert & Beer-96; Nepomnyashchikh & Gremyatchikh- 

96; Blythe et al.-96]. Some criticisms to this work refer to the limitations of the controlled environmental 

conditions on which they (psychologists) work (see, for example, [Mataric-94a]).

Cognition and Behaviours

The problem of building yh// cognitive structures has been extensively studied in KB AI and still represents a 

major issue in BB AI [Piaget-62; Toates-94]. In KB AI, cognition was associated with perceptual, learning, 

reasoning, thinking processes [Watt-96] and related Information Processing Theories [Grossberg-81].
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The BB approach to AI, on the other hand, associates cognitive to behaviour. It focuses on lower levels o f  

cognition [Clancey-95; Deugo & Oppacher-92; Prescott-96b]; it concentrates on “frames o f cognition” for 

describing, for example, “time-varying interactions of the agent with its environment” [Toates-94].

Animal Behaviours

Modem Ethologists study the behaviour o f  animals. They focus on the causation, development and survival 

evolution of the animals’ abilities and behaviours [McFarland-85; Bonner-88; Toates & Jensen-91]. They 

extensively contribute to the current discussions on innate abilities [Gould-82; McFarland-87], intelligent 

interactions [McFarland-85; Webb-96; Beer-90], learning and adaptive behaviours [McFarland-87, 

McFarland-91; Thomton-96; Roitblat-94; Steels-94a; Prescott-96b], ethological perspectives to the analysis 

of intelligent behaviour [McFarland & Bosser-93; Blumberg et al.-96] and, many other related issues.

1 .2 .2 .2 . R o b o ts  a s  A nim als a n d  A nim als a s  R o b o ts

The study of robots as animals and animals as robots represents another important contribution to the BB 

viewpoint [Brooks-91f; Pfeifer-96b; Smart & Hallam-94; Tani-96b; Todd & Wilson-92; Wiener-48; 

McFarland & Bosser-93; Todd et al.-94; Darley-94; Webb & Hallam-96; Werger & Mataric-96; Belanger & 

Willis-96; Prescott & Redgrave-96a]. This establishes some key insights about the behaviours that are 

displayed by both animals and robots (e.g. the creature’s interaction with its environment [Gould-82; Arbib 

& Liaw-95], adaptive behaviour [McFarland-91; Steels-89; Beer-90; Steels-91], autonomy, self sufficiency 

and self-control [McFarland-91; McFarland-95], etc.). Other relevant investigations focus on “the learning 

problem in the context of AAs” [McFarland-85].

Here modem ethologists describe the learning problem in terms of behaviour change [Roitblat-82; Roitblat- 

94; McFarland-95]. Basically, these researchers suggest that natural learning mechanisms involve more 

complicated structures than simple stimulus-response connections and/or inhibitory/excitatory schemes
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[McFarland-85; McFarland-87; McFarland-92; McFarland-95; Smithers-95; McFarland & Bosser-93; Green- 

94; Roitblat-94; Maes & Brooks-90c; Mataric-90b; Brooks-91b; Brooks-93]).

1 .2 .2 .3 . Brain-Like M odels

Here autonomous roboticists and neuroscientists are working together for a better understanding of how 

biological and artificial neural systems work. Their common work points to general observations (formalisms 

and applications) about how to relate structure and junction o f  neural systems, from lessons on Neuroscience 

to Technology and, vice versa [Gregory-66; Grossberg-80; Sholl-87; Tolman-84; Braitenberg-84; Scutt-94; 

McFarland-85; Edelman-87; Beer-90; Beer et al.-90; Brooks-91e; Maes-92b; Pfeifer & Verschure-95; 

Moran et al.-95; Smithers-94; Pfeifer-94].

The most significant biological design principles brought to BB Al can be found in the biological models 

used to design agent’s brains. The engineers reproduce brain-like models using topology networks of  

Artificial Neural Network (ANN) Controllers and related Machine Learning Techniques (see section 

1.2.2.5). They use neural network-like controllers to mimic, for example, the natural connections that link 

some sensory and motor neurones found in the biological brain. Indeed, most mechanisms used to construct 

behaviour-producing modules are based on explicit ANNs that link sensory devices o f mobile robots to their 

actuators (motors) (see, for example, [Schmajuk & Blair-92; Tani-96a; Ziemke-96b; Munos & Patinel-94; 

Miller & Cliff-94]). Further, the work is updated with the latest models, theories and systems so that 

roboticists and neuroscientists help each other.

[Rowe-98] argues that the development of cyber-animals (also called biobots or, animats) is o f interest for 

biologists who are trying to test causality links among certain neural activities and behavioural patterns in 

animals. Basically, as he argues, they (biologists) have spent decades trying to theorise how behaviours of  

animals are associated to neural activities of their brains. They observe and analyse patterns o f behaviour 

while recording samples of their neural activities (neural signalling). However, it has been (and still is)
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extremely difficult for them to demonstrate that both behavioural and neural activities are “causally” linked. 

They can isolate some neural networks and simulate the features of some external stimuli that fire the neural 

activities to control some activities. However, their work cannot be developed using real organisms. The 

building and use o f biobots (cyber animals or, animats) helps them to carry out their experiments.

Using these artificial creatures (animats), they can reproduce certain neural signalling they record in the 

animal and, test whether or not these display the behaviours that have been advocated (anticipated) as 

causally associated. They use robot systems more often than computer programs because they think that the 

artificial creature has to face the real world. Furthermore, they work with roboticists and replicate the 

animal’s mechanisms that are relevant for both neural and behavioural activities [Schmajuk & Blair-92; 

Prescott & Redgrave-96a; Prescott-96b; Prescott-97; Ziemke-96a; Ziemke-96b]). They work together for 

constructing the artificial versions of natural receptors and they need specific ANNs to truly control the 

behaviours of the creature when placed in the real world.

In summary, the use of artificial devices and ANN controllers help biologists to demonstrate what they try to 

theorise and this implies that “it is not necessary for biologists to look too deeply into the results o f their 

experiments” [Rowe-98] because some behaviours can be displayed from extraordinary simple control 

mechanisms. Indeed, some biologists tend to complicate the description of behaviours and the way these are 

linked to neural activity because, for example, they assume that most behaviours need intentions (e.g., goal- 

seeking) that might be located their nervous systems. The problem is that they cannot find intention-like 

neural activities, perhaps, because this does not exist. Thus the simple mechanisms being investigated help 

them to understand that “life might not be as complicated as they think” [Rowe-98].

1.2 .2 .4 . G en e tic  S id e

Evolution is a “designing agent” [McFarland & Bosser-93]. It is characterized by the natural selection and 

reproduction processes that identify best elements in populations [Bonner-88]. It makes living organisms
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learning in their lifetime while evolving their innate behaviours over generations. Further, evolution 

represents one of the most important mechanisms that effect on the formation o f new structures in the brain 

(see e.g. [Edelman-87]).

From a more technical perspective, there exist an evolutionary approach to develop the artificial intelligent 

systems using Artificial Life techniques. Here the evolutionary tools are studied from a mathematical 

viewpoint. The main idea is evolving architectures instead of designing the systems by hand or, using 

learning mechanisms [Cliff et al.-92; Cliff et al.-93a; Cliff et al.-93b; Harvery et al.-94; Floreano & 

Mondada-96], although the differences between evolution and learning approaches do not seem to be clearly 

identified (they usually come together).

The tools used to evolve the architectures that control the activities of the agents fall into Evolution 

Strategies (see e.g. [Schwefel-81]) and, Genetic Algorithms [Goldberg-89]. Simple ANNs (finite state 

machines), for example, can be evolved using Genetic Algorithms [Wilson-91]. Dynamical ANNs can also 

be evolved using the same tools (see e.g. [Yamauchi & Beer-94; Cliff et al.-93b; Miller & Cliff-94; Hallam 

et al.-91 \ Colombeti & Dorigo-92; Floreano & Mondada-94; Floreano & Mondada-96]).

[Koza-91] reports some results about the simulation of navigation behaviours of a robot using genetic 

programming implementations. [Harvey et al.-94] evolve control architectures and use dynamical networks 

[Cliff et al.-93a]. [Gallagher & Beer-92] analyses whether it is possible generating appropriate control 

signals that allow an agent to exhibit adaptive behaviour and conceive this as natural consequence o f the 

dynamics of recurrent networks.

1 .2 .2 .5 . T echno log ical P e rsp e c tiv e s

Here we describe some models, computer programs, programming languages and other techniques that have 

also contributed to the thinking in BB Al.
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The Use of Models

The shift in Al represents passing a frontier in the definition and use of models. From the KB Al perspective, 

the model is the system whereas BB Al provides (is based on) a more physicalist view that might be stated as 

only the system is the system [Brooks-90b; Brooks-90c; Brooks-9 la; Brooks-9 le; Resnick-92; Brooks-94; 

Wilson-91; Mataric-91b; Mataric-94a; Pfeifer-96b].

Scientists use models to describe possible representations about the real facts (phenomena) that they 

observe and analyse [McFarland-87; Roitblat-94; Green-94]. Engineers, on the other hand, are involved with 

the best and more efficient way to construct systems based on these models.

BB Control engineers, for example, decompose the problem of controlling the behaviours o f a creature into a 

number of sub-processes that facilitates the design, implementation and evaluation o f the required systems 

[Hopfield-82; Cliff-91; Lynch-93; Arbib et al.-94; Cruse et al.-96]. Further, they combine all these sub

processes in such a way that optimal, global control is provided for the creature to perform efficient, coherent 

and robust behaviours within real-world situations [Mataric-91b; Maes-92b; Mataric-92b; Pfeifer-94; Steels- 

94a].

Robot Control Programs

The most valuable BB approaches to design robot control programs fall into (see also [Brooks-9If; Steels- 

94a]):

Algorithmic Approaches

Some behaviour-oriented control programs use traditional computer programming techniques (i.e. hand 

coded). An example can be seen in [Brooks-86]. Brook’s architecture uses an algorithm that is compatible 

with Turing descriptions (state-space representations). Other algorithmical approaches are based on Fuzzy 

Logic strategies. An illustration can be in http://bomeo.gmd.de/EIA/moria.html. Here the robot is provided
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with ultrasonic sensors to supply some environmental (sensory) information that is converted into linguistic 

variables to control its navigations.

Artificial Neural Network Approaches

The ANNs can be used to develop control programs in close relation to neural, biological structures. These 

systems represent neural-like control structures based on neurone-like units that are weighted so that, when 

the sum of the weighted inputs to a unit exceeds a pre-established threshold value, an activation process 

propagates through the net and towards its output units [McCullock & Pitts-43]. The learning algorithms 

used to train these networks help to automate the design process of the control mechanisms being 

investigated [Maes & Brooks-90c; Schmajuk & Blair-92; Brooks-93; Millan-94; Tani-96a; Ziemke-96b; 

Spector & Stoffel-96].

Circuit Approaches

Here the programming of combinatorial circuits is used to design hardware implementations of behaviour- 

producing modules using VLSI techniques. The components of these circuits are connected one to other 

forming completely fixed networks, in a similar fashion to static (non dynamical) ANNs.

Dynamic Approaches

These help to formulate dynamic processes using, for example, differential equations (see [Smithers-93a]). 

Here the behaviour programs use a cycle control loop that maintains internal quantities and performs 

appropriate behaviour changes. The major advantage of the approach is that it gives rise to smoother 

behaviours since it is not limited to discrete, fixed conditions (see section 1.4.2.3).

Programming Languages

Some programming languages have been specially defined to develop BB robot control programs. [Brooks- 

90a], for example, presents a behaviour language and uses this to design Subsumption Architectures. [Lyons
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& Arbib-89] presents another programming language for ANN-based control programs. The language 

described in [Steels & Vertommen-93b] serves to implement dynamical behaviour programs.

Environment-Based Programming Techniques

Environment-based programming techniques have been explored in BB Computer Science. [Basye et al. -95] 

presents an example of these techniques. These authors address agent-environment interactions in such a way 

that the agent influences input/output pairs of the environment it is presented by while exploring new 

strategies. The inputs of the environment represent the actions that the agent executes. The outputs 

correspond to some perceptual information that is available for the agent. [Barto et al.-95] presents a 

dynamic programming technique that solves the learning problem (when the system under control is 

completely unknown) while compiling some planning results into reactive strategies (real-time control). 

[Hammond et al.-95] also presents a very innovative approach to match agents to their environments. This 

illustrates an agent that improves its performance by stabilising its environment. [Agre-95] describes some 

simple techniques to develop program agents that decide what to do next from some useful structures that the 

agents find in their environment. He also describes action-oriented perception using Genetic Algorithm 

techniques.

Computational Intelligence: Fuzzy Systems, Artificial Neural Networks and Soft Computing

Computational Intelligence represents a significant shift in Computer Science. It replaces the classical 

Information Processing Theories (used by computer scientists for longer that 40 years) with Agent 

Technologies that incorporate ANNs, Fuzzy Logic and Soft Computing techniques.

Artificial Neural Networks

ANNs are considered as excellent control architectures because these systems allow storage without 

knowledge of location [Grossberg-78; Grossberg-80; Takagi et al.-92; Kosko-92; Bezdek-92]; because 

ANNs propagate activation rather than only storing symbols; because the methods used to design ANNs
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differ from Hard Computing methods (i.e. centralised storage) (see, for example, [Millan-94; Tani-96a; 

Ziemke-96b; Mariano & Morasso-94].

There exist two main types of ANNs: Feedforward ANNs (FANNs) and Recurrent ANNs (RANNs). The 

perceptron was the first (more simple) trainable FANN [McCullock & Pitts-43]. Its learning algorithm 

compares output values with some desired outputs (the training data). The Multilayer FANNs contain several 

layers of units that are connected with leamable connections. Most learning algorithms that are associated to 

these nets consist o f presenting input samples and determining how some error values can be reduced 

adjusting the weights of the connections. The RANNs (continuous-time response ANNs) are non-linear 

dynamical systems. They present very rich temporal and spatial behaviours (fixed points, limit cycles or, 

chaotic behaviours). Further, these nets can learn using unsupervised techniques as to self-organise 

themselves (see, for example, [Hopfield-82; Kosko-92; Mariano & Morasso-94; Bose & Liang-96] for more 

complete descriptions about these dynamical nets and their applications).

The learning techniques for the ANNs fall into two main groups: Unsupervised Learning and Reinforcement 

Learning. In the first group, the system is presented with samples but it does not know how well is doing. 

The second group makes the ANNs receiving some feedback (also called reward or punishment) that tells 

the systems whether their responses are right or not. Then, according to this feedback, the nets use a search 

strategy to try finding the outputs that correspond to maximum rewards. This reinforcement learning 

technique seems to be preferred upon the non-supervised methods, mainly, because the learner does not 

receive complete supervisions [Barto-90; Mataric-94; Munos & Patinel-94; Foner & Maes-94].

[Maes-89b] presents and describes a BB System that is constructed using ANNs (a hierarchy-based 

aggregation of ANNs). This and other examples of ANN-based BB Systems are described in section 1.4.2.2.
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Fuzzy Systems

Fuzzy Systems (FSs) incorporate fuzzy sets [Zadeh-65] and fuzzy logic methods (see section appendix A) to 

cope with the uncertainties of real world situations [Bellman & Zadeh-70; Zadeh-72a; Zadeh72b; Zadeh-72c; 

Zadeh-72d; Zadeh-73a; Zadeh-73b]. They have been advocated because o f their abilities to handle uncertain 

information using fuzzy sets, fuzzy weightings and other operations related to the aggregation and 

comparison of fuzzy sets of objects (see, for example, [Zadeh-72d; Zadeh-74; Zadeh-75; Zadeh-83; Zadeh & 

Kacprzyk-92]).

FSs and, more particularly, Fuzzy Logic Controllers [Mamdani-76; Pappis & Mamdani-77; Smets-88; 

Zadeh-83; Zadeh-89; Foulloy-93; Foulloy-93; Lee-90; Zadeh-83; Zadeh-89; Zadeh-92] have had successful 

applications in Al [Zadeh-83; Kandel-87; Zadeh-89; Dubois & Prade-83; Zadeh-72d; McNeill & Thro-94; 

Wang & Loe-93; Keller et al-92; Schmajuk & Blair-92; Brooks-93; Gorrini & Bersini-94].

However, as far as we are aware at the time of writing this document, there are not many examples of FSs 

within BB Al and AAs research. The unique references that we know at the time of writing this dissertation 

(i.e. [Bohner-95; Hercock & Bames-96; Pipe & Winfield-96a; Pipe et al.-96b; Saffiotti-97]) focus on how 

FSs can deal with the complexity of the real-world situations that cannot be handled using either 

deterministic or stochastic frameworks. j,

This thesis emphasises other potential benefits in the use o f  FSs such as the flexibility of the fuzzy 

aggregation methods, fuzzy granularity and other aspects. Further, our research work has been motivated by 

the fact that FSs could be used in the tractability of complexity in behavioural competences and related 

interaction processes (i.e. in the development process o f rather complex behaviour-oriented systems). 

Because, as we discuss in section 1.3, the complexity issues of the behaviour-oriented approach refer not 

only to the underlying uncertainty of the real world but also, to the complexity o f the behaviour patters that 

must characterize the current artificial intelligent systems. Indeed, the current BB Systems have to reproduce
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more and more complex behaviours displayed by natural systems and, FL tools can help to reduce this 

complexity [Zadeh-83; Zadeh & Kacprzyk-92].

Intelligent Soft Computing

Soft Computing introduces a new revolution o f Intelligent Software Systems and Agent Technologies to 

develop reactive software systems using Hybrid Intelligent Systems [Zadeh-94; Zadeh-96; Smith & 

Mamdami-96; Titmuss et al.-96; Wilde-96; Nwana et al.-96a; Nwana & Ndumo-96b; Azvine et al.-96; 

Goonatilake & Khebbal-95]. Some of these hybrid systems are:

•  Fuzzy Neural Systems [Narazaki & Ralescu-92; Keller et al-92; Goode & Chow-94; Gorrini & Bersini- 

94; Goonatilake & Khebbal-95] and,

•  Fuzzy Genetic Algorithms [Wilson-85; Kosko-92, Mariano & Morasso-94; Wang & Loe-93; Donnart & 

Meyer-94].

All these examples suggest that the fuzzy approach is now bearing fruit.

1.3. Implications and Research Issues

Perhaps, the main problem is that the work carried out so far with autonomous creatures is not extensive 

enough to demonstrate all the claims that have been made with the behaviour viewpoint. In other words, 

things have only been demonstrated to work well in terms of designing principles and practice o f simple 

behaviour-based models whereas, the understanding o f more complex ones are still seen at a quite remote 

(even idealised) distance. But we think that the modelling of more realistic autonomous agents (discussed, 

not solved, within this dissertation) is not even well understood because the multi-disciplinary context of 

AAs raises too many research issues. Indeed, some of the ideas (conjectures) to build truly autonomous 

creatures are actually contradictory and/or exclusive.
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The difficulties found in defining general design techniques [Maes-94a; Pfeifer-94; Pfeifer & Verschure-95; 

Pfeifer-96b], for example, refer to the fact that the design principles that can be o f interest for the cognitive 

scientists differ from those defended by the engineers [Pfeifer-96a; Brooks-91b]. Other serious research 

issues refer to the biological fidelity of the systems being developed. It has been argued that the Organic 

Neural Networks cannot be compared with the ANNs being used (see [Brooks-94; Pfeifer-96a; Pfeifer-97; 

Rowe-98]); that biological methods o f assessment are of no use in appraising ANNs. Formal models are only 

and, the work with ANNs is fundamentally motivated by a very distant goal i.e. the understanding of the real, 

complex nervous system. Perhaps we have to wait until biologists know more about this biological system ...

Furthermore, we believe that, nowadays, there is no general, single methodology to fully support the 

biological fidelity of the behaviour-based models. First, because we are still not sure about the nature o f the 

behaviours and the way these can be related to the internal workings o f the living organisms. Second, 

because the techniques currently used remain too simple to replicate what biologists have experimentally 

demonstrated about how neural systems and behaviours relate to each other.

In summary, “AAs” can be understood as a substantial conceptual problem arising from those different 

perspectives that have contributed to its emergence. However, many authors now feel (e.g., [Brooks-9lb]) 

that discussion on this is untimely unless the other, technical issues (discussed in section 1.4.3) concerning 

the viability of the approach can be resolved. It is necessary finding, at least, the basis o f more general 

frameworks to build large-scale behaviour-based models and, in order to achieve this, it is worth trying to re

solve the technical problems found with the current approaches to develop BB Systems.

This thesis has been strongly motivated by some of these technical research issues. The research work that is 

presented in this dissertation focuses on the problem of modelling large-scale behaviour-oriented networks. It 

follows some suggestions in [Brooks-94] that point to a possible solution by looking for other (new) levels of 

abstraction rather than the action selection mechanisms most widely applied in BB Al [Maes-89b; Maes-90a; 

Beer et al-90; Kortenkamp& Chown-92; Mataric-92b; Parker-92]. The FBMs (presented in chapters 2 to 4)
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are based on innovative levels o f abstraction at which it is possible arriving through a number of refinement 

stages.

1.4. The Development of Behaviour-Based Systems

The main idea is following a bottom-up approach: “... start by decomposing the problem into pieces, solving 

the sub problems for each piece, and then composing the solutions” [Brooks-86].

1.4.1. General Steps

The most general steps for building behaviour-oriented artificial models can be summarised as follows:

1. identifying behaviours,

2. constructing the system to perform these competences,

3. leaving the creature to operate within its real environment,

4. recording data from the way it performs the competences and,

5. comparing these to the original behaviours (the ones that have been observed),

6. stepping back (if necessary) to modify the model until observing more efficient behaviours.

Other key principles about the development of BB Systems (BBS) are outlined below (see also [Maes-90a; 

Maes-92b; Mataric-92b; Mataric-94b; Mataric-95b; Maes-94a; Steels-93a; Steels & Vertommen-93b; Steels- 

94a; Steels-95; Pfeifer-96b]).
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1 .4 .1 .1 . S e lec tin g  a n d  D escrib ing  B ehav iou rs

The development of a BBS usually starts selecting the behaviours, observing the creature that is able to 

perform these and, analysing what causes them [Mataric-92b; McFarland & Bosser-94]. However, the 

mechanisms and/or processes that cause the behaviours are not always observable i.e. analysis does not 

always help.

Following [Steels-94a], “functionalities and behaviours belong to the descriptive vocabulary o f the observer” 

whereas “the mechanisms play a central role in establishing the behaviours”.

• The functionalities (i.e. avoiding obstacles, locomotion, etc.) represent what the agent needs to achieve 

(what robots might be designed for [Brooks-96e]; tasks or goals [Maes-90b; Millan-94]).

• The behaviours represent more theoretical units than the functionalities. Sometimes, a behaviour unit can 

be identified with the functionality (or, functionalities) to which it contributes. However, this is not the 

normal case. Usually, several behaviours contribute to the same functionality and depend on very 

complex internal mechanisms of the creature and external aspects o f its environment. Further, the same 

behaviour can be characterised in a number of different ways. It is possible, for example, identifying 

agent-environment interaction processes [Smithers-95] or, functions dependent on the internal states and 

sensory information of the creature [Pfeifer-96].

•  The mechanisms have physical existence and cause the behaviours. A mechanism can be either an 

internal component of the agent (e.g. sensors, internal states, adaptive mechanisms) or, an internal process 

(e.g. a change of an internal state or, a the transformation of this into control commands, etc.). Simple 

mechanisms can give rise to very complex behaviours [Braitenberg-84; Steels-94; Pfeifer & Verschure- 

95; Pfeifer-97].
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Therefore, neither the behaviours nor the mechanisms might be easily described. It is necessary studying, 

describing and combining the related functionalities, components and/or processes that can be easily 

designed and implemented.

1 .4 .1 .2 . D esigning  a n d  Im plem enting  th e  B ehav iou r-P roducing  M odules

Once we have been able to describe the selected behaviours (using related components, mechanisms and/or 

processes), it is necessary designing and implementing the modules able to produce them. Some guidelines 

for the development of these behaviour-producing modules are:

•  Self-contained behaviour-producing modules. Each module is responsible for producing behaviour. It 

does not need to depend on any other module although interaction might help to produce more complex 

behaviours (see below). The creature has to be able to decide what actions to take without using any 

reasoning engine or, centralised module [Mataric-92b].

•  Avoid user-driven methods when the environment interactions are needed. These modules have to be 

developed so that they can be directly related to the environment o f the agent.

•  Keep them simple. A  strong tendency is designing the behaviour-producing modules as simple as 

possible; selecting the simplest mechanism that produces the desired behaviour. This is directly 

associated to the dislike o f complex objective world models (discussed, for example, in [Brooks-9 le]).

•  Design reactive modules. The behaviour-producing modules cannot be implemented as static structures. 

They must be able to react to the internal changes of the agent and, the external changes o f the physical 

world. For example, a reactive obstacle avoidance module must be able to make the agent avoiding new 

obstacles placed within its real environment.
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• Use reactive control rules. One of the simplest way o f implementing the behaviour-producing modules is 

using simple “if condition do action” rules. In the presence of a condition, the rule is activated so that 

control is driven to the actuators of the robot. Other more complex mechanisms can be used instead. For 

example, we can associate strengths to the rules using, for example, ANNs. Section 1.4.2 describes some 

of these control architectures.

•  Specialisation can reduce complexity. It is much more effective concentrating on the development of 

mechanisms that produce the desired behaviour (e.g. those that can couple sensing and acting) rather than 

designing general-purpose modules [Brooks-9lb, Steels-94a]. And, in order to develop these 

mechanisms, it might be helpful exploiting the physics of the world and the morphology of the agent 

[Brooks-91b; Smithers-94; Smithers-95; Pfeifer-96a; Pfeifer-97]. For example, [Horswill-92] develops a 

navigation module and demonstrates how the complexity of this can be reduced by making assumptions 

about the physics of the environment. He optimises some sub-activities rather than encoding situation- 

specific information. Further, any designer can improve the performance o f an agent by specialising the 

modules. [Horswill-95] makes distinctions between “specialisation to an environment” (related to the 

properties of the environment) and “specialisation to a task” (formal transformation that help to map 

mechanisms with behaviours).

•  Simple and more complex modules. Some behaviour-producing modules might be implemented very 

easily (e.g. sensor-motor connections) whereas other, more complex ones might require more 

computational effort (see, for example, the map building behaviours described in [Mataric-90]).

1 .4 .1 .3 . O rgan ising  a n d  A ggreg atin g  th e  B ehav iou r-P roducing  M odules

The next step consists o f organising and aggregating the behaviour-producing modules into a single 

architecture so that the agent can optimally switch (or select) from one to another. The most general 

principles for building this architecture can be summarised as follows.
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•  The architecture has to be open, scalable, distributed and interaction-based. The overall architecture has 

to be able to cope with the changes of the environment. Another major concern is producing very scalable 

architectures so that new behaviour-producing modules can be aggregated to earlier ones. It is also 

necessary using highly distributed structures because the modules must be able to operate in parallel 

[Maes-92b] while allowing fast reactions [Smithers-95]. Finally, the architecture must incorporate the 

modules in such a way that these can interact with each other as with the physical world (when needed).

•  Selection mechanisms might be useful. Some arbitration methods are commonly used for the agent to 

select the appropriate behaviour. This can solve multiple conflicting actuator commands. For example, 

[Maes-89b] implements a “winner-take-all” arbitration network whereas [Brooks-86] implements a hand- 

coded “priority network” (see also [Kortenkamp & Chown-92]).

•  Hierarchical organisations are not needed. The organisation of the behaviour-producing modules can be 

based on a hierarchy o f layers (as presented in [Brooks-86]) but, this is not needed; it does not seem to be 

a flexible organisation [Maes-92b; Maes-94a].

• Evaluate environmental changes. The architecture should be able to adapt the behaviour selection to the 

environmental changes. [Maes-90] presents a BBS (called Action Selection Mechanism) that evaluates 

some environmental changes doing parallel searches of actions.

1.4 .1 .4 . H ard w are  a n d  S o ftw are  P la tfo rm s

There has been a large amount of work on building the hardware and software platforms for BBSs. Some of 

these are described in sections 1.1.2 (robot control systems), 1.2.2.5 (technological tendencies within AAs) 

and 1.2.3 (the role played by Computer Science using, for example, ANN techniques). Other examples are 

outlined with the classification of approaches presented below.
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1.4.2. A Classification of Approaches

Several authors have classified the development of BBSs according to different, relevant criteria. [Maes- 

94a], for example, distinguishes between “developmental approaches” and, “incremental approaches”. A 

more general classification is discussed in [Pfeifer-96]. This author categorises the work according to three 

different perspectives: functional, learning and developmental and, evolutionary. He suggests that, in 

practice, these perspectives “contribute in a complementary way”. [Steels-94a] follows the line o f  how BB 

Al seems to contribute to Artificial Life and looks at the progress made in designing and implementing 

specific competences (navigation towards a target, avoidance, etc.).

In this dissertation, we provide another valuable classification based on the following development decisions:

e) the description and definition o f the behaviour units (i.e. procedural, algorithmical, etc),

f) the methods used to design and implement the BBSs (i.e. aggregation methods, how to drive the 

functionality, etc.) and,

g) the selection o f  formal frameworks, techniques and tools (e.g. ANNs, Genetic Algorithms, etc.)

and discuss how the major achievements of the behaviour-oriented viewpoint roughly fall into five 

tendencies: Subsumpion Architectures, BB Networks, Dynamical BBSs, Evolutionary Approaches and, 

Hybrid Paradigms.

1.4 .2 .1 . S u b su m p tio n  A rch itec tu res

Brook's Subsumption Architecture (SA) [Brooks-86] and its hierarchical versions (see e.g. [Rosenblant & 

Payton-89; Ferrell-93]) represent the first reactive architectures designed through the use o f layers o f robot 

competences that operate asynchronously. Conflict resolution and communication is allowed between the
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behaviour-producing modules of these architectures. Other important features of this approach can be 

summarised as follows (see also [Kaelbling-87; Maes-89a; Connell-90]).

In all SAs (mostly developed at MIT), each behaviour unit is described as a layer of control that couples 

sensing and acting capabilities of the agent; each behaviour module hides low level design details.

The behaviour units o f a SA are described using algorithms and Turing compatible functions. Each unit is an 

Augmented Finite State Machine with a number of internal registers used to hold input (e.g. sensory signals) 

and output (e.g. the result from some computations) values as well as some states through which it cycles 

until a condition is reached. At any instant of time, each unit can either move to another state or, change the 

contents o f its internal registers.

These behaviours are self-controlled: they can be active (at any instant in time) and change their states 

according to the input hold in the corresponding internal registers. Further, the SAs can use an internal clock 

to make the behaviours waiting during a certain time and resume operation after that.

The overall control mechanism is based on hierarchical and distributed subsumption relations. All the 

behaviour units operate together and drive control from sensors to actuators. One behaviour unit can inhibit 

some input values (or other action parameters) o f another and so, stop the second behaviour unit to change its 

state and resolve computations according to this.

The development of these architectures (also called BB programming) consists o f building control layers in 

an incremental fashion [Brooks-9 If]. New, higher levels behaviour units can be aggregated while the already 

implemented ones keep functioning. Then conflict resolution mechanisms are used to arbitrate the different 

control layers that are needed for the system to perform correctly. These mechanisms usually work at the 

action level i.e. using a priority scheme to decide which particular behaviour unit has its output(s) routed to 

the actuators of the system. These simple action-arbitration schemes seem to be appropriate for navigation 

tasks. The states of each lower level control layers (e.g. leg up) can be used as a precondition to provide
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coherent sequencing of movements and, the higher level layers can modulate the motion of the lower level 

ones.

The use of pure Finite State Automata architectures is large in the scope within the SA approach to develop 

BBSs. There have been a number of state-based characterisations o f behaviour-oriented controllers using 

different variable sets. [Holland et al.-96], for example, defines a motion controller using bi-directional 

sensitivities provided by radial distances to points of sources that the agent has to find. [Mataric-90b] uses 

Subsumption Architectures to implement wall-follow and avoidance behaviours.

Other developments incorporate learning capabilities to the first, “brooksian” approaches; focus on trying to 

solve how to learn behaviours using similar subsumption mechanisms. [Mataric & Brooks-90c] describe this 

problem and propose an ANN-based solution. Here the behaviour units have associated strengths and make 

the system modifying the behaviour outputs according to the inputs that it receives (e.g. using sensor/actuator 

calibrations).

1 .4 .2 .2 . BB N etw orks

This group includes most connectionist approaches used in BB Al [Bond & Gasser-88; Cruse et al.-92; 

Schmajuk & Blair-92; Tyrrell-93; Wemer-94; Schmajuk-94; Ziemke-96a; Ball-94; Aitken-94; Munos & 

Patinel-94; Yamauchi & Beer-94; Morasso & Sanguineti-94; Beer-96; Donnart & Meyer-96; Ferrel-96; 

Blumberg et al.-96\.

The Action Selection Mechanisms [Maes-89a; Maes-89b; Maes-90b; Beer et al.-90; Tyrrell-92; Tyrrell-93; 

Tyrrell-94; Weiss-92; Kortenkamp & Chown-92; Blumberg et al.-96; Humphrys-96] represent a clear 

example of this type of architecture. Here, the definition of the behaviour units consist o f mapping the 

required functionalities into local, simple operations of (simple) processor units that operate in parallel. The 

processor units connect to each other within a network structure. The output of one processor unit is an input
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of another processor unit. The signals propagate through the network and relating sensing to acting. Several 

processing units (a sub network) can be responsible o f a specific behaviour.

The BB Networks are characterised with parallel and local operations that facilitate the design and overall 

performance of the behaviour-oriented control schemes. [Narazaki & Ralescu-92; Aitken-94; Millan-94; 

Schmajuk & Blair-92; Tani-96a; Ziemke-96b; Munos & Patinel-94; Miller & Cliff-94; Moran et al.-95]. 

Additionally, mathematical formalisms can help on the representation and manipulation o f the underlying 

structures o f the BB Networks.

Control in simple BB Networks is due to the selection o f parameters [Beer et a/.-90]. Multi-layered networks 

can be used to implement more complex BB Networks and, more particularly, to combine several behaviour 

units (each provided within one of the layers). Categorisation is also available in the scope o f the BB 

Network approach. This allows the agents to distinguish, in real time (while the agent performs some 

actions), between different aspects of their environments. An adaptive categorisation is investigated in 

[Scheicher & Lambrinos-96]. Their approach includes some actions o f the agent into the categorisation of 

objects.

Traditionally, the classification processes were solved in the basis o f information processing techniques that 

allowed the creature to map some input data (sensory information) onto internal representations and, 

sometimes, via supervised learning schemes. The main problem of this classical approach was the wide 

number of input patterns that could be mapped onto the same internal representation. In the BB Network 

approach, on the other hand, adaptive categorisation can be achieved through sensory-motor coordination 

[Maes & Brooks-90c; Brooks-93]. The Temporal Kohonen’s map described in [Kohonen-82] implements 

such categorisation processes including conditioned associations between learned sensory-motor mappings 

and some behaviours units. An example of this map can be seen in [Ball-94].
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Most BB Networks have been implemented using ANNs. Action Selection Mechanisms are developed using, 

for example, RANNs [Blumberg et a l-  96]. These networks usually associate sensor signals to motor outputs. 

Further, ANNs are beneficial for the construction of BB Networks, mainly, because their learning power can 

automate the design process. Cognitive Mapping represents another valuable technique to develop BB 

Networks. This technique has been widely used to develop navigation systems [Gould-86].

A Cognitive Map represents a record in the central nervous system o f macroscopic relations between 

behaviourally important points in their environment. It is motivated by the fact that some animals (e.g. 

insects) record these relations and use them to plan movements through their environment (to navigate 

according to the geometric position that is represented in the animal’s metric maps). Topological and Feature 

Maps are special types of Cognitive Maps [Tolman-84; Sholl-87; Laszlo et a/.-93; Smart & Hallam-94; Tsuji 

& Li-92]. The Map Builders (e.g. [Levenick-91; Drescher-91; Laszlo et al.-93]) can also be classified within 

the same group. These allow the agent to learn navigation competences through Self-Organising ANNs 

[Malaka et al.-96]; these network-like systems do not represent static models o f the world because they can 

use dynamic processes such as “moving averages from duration to turn angles” [Mataric-95a]. Topographic 

maps are also developed using similar BB Networks (see, for example, [Morasso & Sanguineti-94; Ferrell- 

96]). These can orient the agent towards sources of stimuli (e.g. visual and auditory ones). Orientation 

behaviour can serve the agent to direct its sensory signals while making it to explore its environment. These 

maps seem to be inspired by the discovery o f organised networks within the brain o f mammalian vertebrates 

[Kohonen-82]. In practice, these networks are reproduced with structures of spatio-temporal representations. 

For example, the Topographically Organised Networks used in [Ferrell-96] self-organise and effect multi

modal information (of the space and temporal domains of the agent and its environment) according to 

experience. The dynamics of this network is affected by the behavioural performance o f the agent.

BB Networks vary in form and complexity. Most of them are characterised with simple units (e.g. TLU’s 

used in Perceptron FANNs). There are also more complex BB Networks where the units o f the net are
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associated to specific components of the internal mechanisms/structures o f the agent (e.g. actions and goals). 

[Maes-89a] represents a clear illustration of these networks. [Maes-90a] provides a wide review of Action 

Selection Mechanisms (and other BB Networks). The Action Selection Mechanism presented in [Maes-90b] 

includes time-varying goals using explicit representations of the agent’s goals.

[Maes & Brooks-90c] provides some examples about how to learn (select) behaviours (actions) while trying 

to solve some problems found with the original version of Maes’ architecture (ASM). This last architecture 

introduces some ideas about how to scale-up the BBS (when the arbitration mechanism cannot cope with 

large action-selection problems). The system also introduces time-varying goals; it can be classified within 

“learning to select behaviours” (focuses on what the agent learns).

The learning algorithms are used to adapt the weighting factors of networks. In explicit applications of 

ANNs, several learning algorithms have been proposed and tested according to the time o f  convergence (or 

time required for the learning method to settle on a stable set o f weighting factors that provide the required 

control outputs of the ANN controller). There are supervised and unsupervised learning methods. The 

unsupervised methods, however, seem to be more beneficial for the BB objectives (see e.g. [Mataric-91a; 

Bersini-94; Schmajuk-94; Munos & Patinel-94]). In [Mahadevan & Connell-91], the agent concentrates on 

learning the arbitration network among some primitive actions. This represents another example o f “learning 

from experience” (as suggested by Maes); further, the agent seems to learn “new composite actions” in 

applying Reinforcement Learning through the use of a mechanism that can generalise over the state space. 

[Maes-92a] presents a model builder (learning to select behaviours). She presents an approach to design 

spreading activations where the behaviour is defined in terms o f conditions, primitive (or composite) actions 

and expected results. The architecture is purely “goal-oriented” since the exploration strategy biases 

experimentation of the environment towards the goals of the agent.
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1 .4 .2 .3 . D ynam ical B B S s

This approach to develop BBSs uses dynamical control mechanisms as opposed to conventional information 

processing architectures [Smithers-95; Steels-95; Tani-96a; Tani-96b; Thomton-96; Verschure & Pfeifer-92; 

Gallager & Beer-92; Neven et al.-96; Wilde-96; Pfeifer-96a] or discrete computational systems [Steels-93a].

The main idea is incorporating dynamic aspects into the description of the observed behaviours i.e. avoiding 

the use of discrete characterisations of behaviours.

The description of a dynamic behaviour unit does not need specifying neither observer-based interpretations 

of the environment (i.e. abstracting external situations that effect on the agent’s behaviours) nor static 

associations between these interpretations and appropriate control actions (e.g. fixed sensor-to-motor 

actions). A dynamic behaviour unit is like a property o f a two-component dynamic structure i.e. the 

interaction space of the agent and its environment [Smithers-95; Steels-95]; like a sub-system that includes 

different structures and processes, extracts the information it needs from the physical world and, decides 

when to become active.

A dynamic behaviour unit is commonly defined as a set o f processes that links many continuously varying 

variables [Steels-94a] like sensor readings or, motivational variables [McFarland-87; McFarland & Bosser-

93]. Each o f these processes can increase /  decrease a quantity (as a consequence o f the evolution o f some 

other quantities) while playing different roles in one or more behaviour units.

The design o f the Dynamical BBSs consist o f using dynamical system equations and, representing the 

behaviours that the agent can perform in terms of the stable solutions o f these equations (variable and value 

pairs). Further, there are two key principles for designing these systems: combination and cooperation. The 

overall control mechanism of a Dynamical BBS can be a distributed one. The behaviour-producing modules, 

however, do not influence each other using a subsumption relation. The “combined effect o f the behaviours 

is added at the level o f actions” [Steels-94a]; the behaviour units can cooperate through their effects at the
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level o f actions. Therefore, additive control replaces the layering used, for example, in Subsumption 

Architectures. All the dynamic behavioural solutions are located at the same level and help on scalability 

issues that cannot be easily addressed using simple Subsumption Architectures.

The formal frameworks, techniques and tools used to develop Dynamical BBSs (e.g. difference equations of 

continuous-time dynamic systems) are very similar to those used in Classical Control and Dynamical System 

Theories. The recurrent versions of ANNs can also be used to implement Dynamical BBSs. [Smithers-95; 

Schmajuk-94], for example, use these networks. [Beer-95] provides an interesting example o f a Dynamical 

BBS. This author presents a rather theoretical framework designing an agent and its environment as “two 

coupled dynamical systems” whose interaction is responsible for the agent’s behaviours. The two dynamical 

systems of Beer’s framework fit in an adaptive fashion that can be analysed from the satisfaction of 

constraints in the underlying trajectories.

1 .4 .2 .4 . E volutionary A rch itec tu res

Evolutionary Architectures try to evolve the BBSs instead of having to design them by hand or, using 

learning mechanisms (see, for example, [Cliff et al.-92; Deugo & Oppacher-92; Gallagher & Beer-92; Cliff 

et al.-93a; Cliff et al.-93b; Floreano & Mondada-94; Floreano & Mondada-96; Saunders & Pollack-96; Juille 

& Pollack-96; Werner & Dyer-92; Colombeti & Dorigo-92; Werner-94; Harvery et al.-94; Reynolds-94; 

Beer-96; Cliff & Miller-96]).

An Evolutionary Architecture represents an evolving structure that looks for some internal organisations. 

Here each behaviour units represents a solution in a space of solutions of the architecture. [Koza-91] shows 

how to evolve programs for obstacle avoidance and wall-following behaviour systems. The primitive 

building blocks of the program are: sensory inputs and actions
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The methods used to design these structures start from a population o f behaviour systems, each representing 

a solution in a certain space of solutions. Individuals with higher fitness reproduce more often and, therefore, 

their distribution changes in the global populations.

Reproduction means that copies are made, possibly after mutation (which introduces a random change), or 

recombination (which combines parts o f two algorithms). Recombination may potentially result in a better 

algorithm. The algorithm can be further reinforced by the selection step so that the overall process evolves 

towards better regions of the search space. However, as I describe latter in section 1.4.3, this work has only 

been proved o f benefit in the simulation o f rather simple behaviours.

The behaviour-oriented systems are evolved using Artificial Life Techniques like:

•  Evolution Strategies (see e.g. [Schwefel-81; Brooks-9 If]) or,

•  Genetic Algorithms [Goldberg-89] usually operating on Classifier Systems [Holland-85; Wilson-85; 

Booker-88; Iba et al.-92; Dorigo & Bersini-94].

These techniques allow some parameter optimisations using bit strings that represent the populations o f the 

behaviour units being evolved [Floreano & Mondada-94; Floreano & Mondada-96; Reynolds-94]. [Koza-92] 

reports on a more innovative, higher level o f abstraction for representing Genetic Algorithms. RANNs have 

also been used in combination with Genetic Algorithms to speed up the evolution o f the BBSs (see, for 

example, [Beer-96]).

1 .4 .2 .5 . Hybrid P a ra d ig m s

There are BBSs that cannot be classified within any o f the approaches that I have described before. These 

represent the group o f Hybrid BBSs.

The hybrid behaviour units can be described, for example, as dynamic and distributed systems.
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Some hybrid development methods are discussed in [Hendler-88; Cliff et al.-93b; Koza-91; Laszlo et al.-93; 

Goode & Chow-94],

Fuzzy, Neural and Genetic Systems have been used, in combination, to develop Hybrid BBSs (see, for 

example, [Goonatilake & Khebbal-95; Zadeh-96; Smith & Mamdami-96; Titmuss et al.-96; Wilde-96; 

Nwana et a l -96a; Azvine et al.-96; Hercock & Bames-96]). Various authors (e.g., [Pfeifer-96a]) have 

suggested the potential benefits o f using these hybrid approaches. The FBM approach presented in this 

dissertation can also be classified as a Hybrid BBS. In fact, as I describe latter in chapters 2 to 4, FBMs have 

been widely motivated by the features of BB Networks and Dynamical BBSs.

1.4.3. The Technical Issues

Generally speaking, all the current approaches to develop BBSs work for a short number of rather simple 

behaviour patterns (i.e. with short-scale behaviour-based models); they all can make an artificial creature 

displaying some simple behaviour and/or actions although there are, o f course, important differences from 

one group to another. The current investigations, however, advance towards the construction o f large-scale 

behaviour-based models incorporating more and more complex behaviour patterns and, here is the problem. 

Each group faces some kind of technical problem that makes these complex models difficult to foresee. In 

fact, the validity of the approaches does not seem to be demonstrated with the upper levels o f the bottom-up 

development processes.

SAs based on complex behaviours seem to be difficult to foresee. These architectures have a limited 

scalability because the behaviour units have to be built on top of others and, the required subsumption 

relations can only work well with basic sensory-motor competences [Steels-94a].

The design and implementation o f BB Networks using ANNs is not sufficient either for the development o f a 

complex BBS. These BBSs might be able to perform different (even complex) behaviours which design is
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limited by the use o f ANNs. It is difficult to express the behaviours in neural-network terms [Steels-94a]. 

Further, the nets do not really learn from experience [Pfeifer-96a; Pfeifer-96b]; they behave as fixed 

structures (after the training phase) that limit the adaptation o f the system to its changing environment 

[Pfeifer & Verschure-95; Ziemke-96a; Ziemke-96b]. Building non-computational agents supervised learning 

methods also face a number of problems. [Steels-94a] argues that the “supervised methods require a teacher 

which is more intelligent that the agent”. Further, the time of convergence o f these methods grows with the 

number of behaviours that are implemented within the architectures. Reinforcement learning also faces 

serious difficulties with physical AAs (e.g. “it is unrealistic to assume that the gent gets a clear scalar 

reinforcement signal after each action or series of actions” [Steels-94a]). [Maes & Brooks-90c] suggests that 

the problem of learning new behaviours will not be solved in a near future; that it might be necessary finding 

new learning techniques that can provide an automatic acquisition of new behavioural competences.

The Dynamical BBSs also require further investigations, mainly, because these systems seem to lack of  

appropriate integration methods. Following [Steels-94a], there exist an urgent need o f formal frameworks to 

develop these systems (e.g., mechanisms able to integrate the time-varying behaviour sub-systems). Other 

disadvantages of Dynamical BBSs discussed in [Steels-94a] are: a) the design is hard to admit by those who 

are used to algorithmic approaches, b) it is not possible to explicitly control the timing o f actions. [Steels-95] 

suggests that there exists a fundamental problem in the implementation of structural integration o f dynamic 

BB units.

[Brooks-9If] and [Steels-94] argue that the Evolutionary approach is still not a feasible solution. According 

to this survey, the main problem of this approach is that it takes too much time to converge. [Brooks-9If] 

also explores the difficulties inherent in transferring the evolved programs in a simulated environment to run 

on an actual robot. Other problems discussed by this author are: a) the design of the evolutionary control 

systems depends on structures of search which have to be carefully designed (and need to much 

computational effort [Steels-94a]) and, b) natural evolution affects neural controllers and physical entities
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through the same genetic mechanisms whereas, in the experiments which have been reported so far, this type 

of evolution (co-evolution) does not take place. The problem with the Hybrid approaches is that these require 

additional integration mechanisms that complicate the design process [Mataric-94a]. It is not possible 

guarantying that such hybrid methodologies can help on the construction of large-scale BBSs.

Finally, the technical problems of the BB viewpoint seem to go beyond the suitability o f the current 

approaches to design and implement these systems. In 1994, Rodney Brooks argued that most o f these BBSs 

fail in their approach to reproduce natural systems due to the levels o f abstraction that were used by their 

designers. As he discusses, most of these approaches focus on the abstraction of priority schemes to select 

among one (or maybe more) particular control action(s). The SA, for example, uses fixed selection schemes 

to define the sequences of the agent’s competencies from the activation of some logical rules (preconditions). 

Action Selection Mechanisms are based on the abstraction of actions, goals and environmental conditions 

[Maes-89b]. Their arbitration scheme (in the top level o f the hierarchy o f behaviours) incorporates 

representational information (from the environmental conditions that the robot can experience) to facilitate 

the execution of lower level tasks (show, for example, in [Mataric-94]). “... We must be careful that we 

choose the right abstraction to simulate. Traditional AI chooses the symbol level as a higher abstraction. 

Many now feel that this was the wrong level o f attack. The situated robotics community must also be 

prepared to carefully, and rethink, about its level o f abstraction" [Brooks-94]; “... an appropriate level o f  

abstraction has to be found” [Pfeifer-96a].
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Chapter 2
Fuzzy Behavioural Maps

Abstract

In this chapter, we start presenting the contributions to knowledge o f the thesis i.e. the work to date exploring 

and evaluating the role of the Fuzzy Behavioural Maps.

More particularly, the following sections present:

a) The concept of a Fuzzy Behavioural Map based on some influences from Kosko's Fuzzy Cognitive 

Maps, other Cognitive Mapping Techniques and BB Systems

b) Some examples of Fuzzy Behavioural Maps o f varying degrees of complexity (“simple” and “more 

complex” Fuzzy Behavioural Maps)

c) The most general intuitions we have about Fuzzy Behavioural Maps as designing tools o f behaviour- 

based models (their possible forms and uses).
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2.1. Influences and Motivations

The concept of FBM draws its inspiration from many sources. Foremost amongst these are Kosko’s Fuzzy 

Cognitive Maps (FCMs) [Kosko-86a; Kosko-88], Adaptive FCMs [Kosko-94] and, other Cognitive Mapping 

Techniques (e.g. Cognitive Maps used to represent organism-environment interactions [Tolman-84; Sholl-87; 

Tsuji & Li-92; Levenick-91; Brannback & Malaske-95]).

Non-hierarchical behaviour decompositions [Brooks-86; Mataric-94a; Mataric-94b], BB Networks [Maes- 

89b; Tyrrell-92] and, Dynamical BBSs [Smithers-94; Smithers-95; Steels-95] also influence the definition 

and use o f the FBMs.

The following sub-sections (2.1.1 and 2.1.2) describe the major aspects of these various systems that we have 

considered to define the concept of FBMs.

2.1.1. Fuzzy Cognitive Maps

FCMs model causal webs with simple directed graphs [Kosko-86a; Kosko-88] that “provide qualitative 

information about the (hidden, non apparent) inferences in complex social and psychological models” 

[Craiger & Coo vert-94]. Their nodes and edges show how some concepts o f a specific model effect others. 

They are also non-linear dynamic systems because they incorporate feedback connections [Kosko-88].

FCMs have been used as alternative techniques to classical mathematical models [Kosko-86], differential 

equations [Kosko-94] and statistical models [Craiger & Coovert-94] because they do not state equations nor 

suffer from some limitations commonly attributed to structural equation modelling techniques (i.e. problems 

in model identification). FCMs are suitable tools for modelling real situations (see, for example, [Kosko-

94]). These environments could be modelled using either stochastic or deterministic techniques. But such
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models are “hard to find, hard to solve and hard to run in real time” [Kosko-94]. FCMs can be used instead. 

“They facilitate the modelling of arbitrarily complex, dynamic and time-evolving phenomena and processes... 

FCMs are ideal for prototyping models, and for assessing global information of complex and dynamic social 

and behavioural processes” [Craiger & Coo vert-94].

The following points summarise other, more specific aspects about the FCM approach that we have 

considered to define FBMs. The main differences between FCMs and FBMs are described in section 2.2.1.

a) Labels of ed g es in FCMs

The label of a FCM edge can be: a positive sign (to mean positive relation or change in the same direction), a 

negative sign (to mean negative relation or change in opposite directions) or, null (to mean no causal 

relationship).

bad weather
auto accidents

patrol frequency

If ‘bad weather" increases (decreases) 
then ‘auto accidents* increases (decreases)

If ‘auto accidents" increases (decreases) 
then 'patrol frequency" decreases (increases)

Figure 2.1: Labels of edges in FCMs.
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These symbolic edges represent causal relationships between pairs of nodes. For example, Figure 2.1 

describes two edges of a FCM found in [Kosko-93]. This map incorporates three nodes (“bad weather”, 

“auto accidents” and “patrol frequency”), a positive edge (from “bad weather” to “auto accidents”) and, a 

negative edge (from “auto accidents” to “patrol frequency”) meaning that, if the “bad weather” increases 

(decreases) then “auto accidents” increases (decreases) and, if “auto accidents” increases (decreases) then 

“patrol frequency” decreases (increases).

Figure 2.2 represents a complete FCM found in [Kosko-86a].

Is lam ic
Fundam entalism

A rab
R asicalismS o v ie t

Im p e r ia lis t

PLO
T e rro rismS y rian  C ontrol 

O f  Lebanon

S tr e n g th  
O f  Le bane  be 
G overnm ent

Figure 2.2: An example of a FCM found in [Kosko-86a].

b) Nodes and edges of a FCM “could be fuzzy”

In 1986, Kosko suggested that the nodes of a FCM could be fuzzy sets and that its edges could be 

implemented with fuzzy relations.
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“Nodes stand for fuzzy sets or events that occur to some degree... directed edges stand for fuzzy rules 

‘The FCM system turns each picture into a matrix of fuzzy rule weights” [Kosko-94]. However, published 

examples of FCMs with fuzzy nodes, fuzzy edges or, fuzzy rule weights are difficult to find. An examination 

of the standard literature:

• modelling, analysing and combining expert knowledge [Taber-91],

•  modelling social and psychological processes [Craiger & Coovert-94] and,

•  modelling virtual worlds with Adaptive FCMs [Kosko-94; Dickerson & Kosko-94]

only reveals relatively simple architectures based on crisp strategies.

The nodes and edges o f  a FBM can be fuzzy. Indeed, one o f our ideas around the design o f behaviour- 

oriented models using FBMs is to allow the use offuzzy nodes and fuzzy edges (see section 2.2.1).

c) FCMs behave as dynamic systems

[Kosko-88] draws and uses FCMs as dynamic systems. This author exploits the dynamic behaviour o f FCMs 

to search for hidden patterns o f the edges of these maps. He presents input vectors to the FCMs and let these 

structures evolve until they converge to a hidden pattern that can be either:

•  a fixed point (a recurring pattern; a stable state with length = 1 from which the system provides a stable 

outcome) or,

•  an attractor cycle (a sequence of patterns, a stable state with a length > 1 in which the system remains 

until something was changed or, it was provided with a new input vector) or,

•  a random state (an unstable equilibrium from which the system cannot give any stable outcome).
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The basic threshold FCMs have node strings expressed as (see Figure 2.3)

(Equ. 2.1)

that change according to the following law (see [Kosko-88] for a complete explanation on this equation).

C(0) then equilibrium A” and recall patterns as they equilibrate. What if an initial node string occurs? For 

example, if  the FCM given in Figure 2.3 is presented with an initial node string C(0) = (0, 0, 0, 1, 0), its 

output equilibrium is the answer to “what if ...” and could be a four-step limit cycle C l -> C2 -> C3 -> C4 

resulting from the sequence C2 = C1*E, C3 = C2*E, C4 -  C3*E and, C l = C4*E.

d) Inference equations, connection matrices and augmented FCMs

FCMs are “graphical means o f representing directional influences among concepts (variables)” which 

implications can be calculated simply via matrix algebra and used to evaluate time-evolving effects of its 

components [Craiger & Coovert-94]; like Fuzzy Associative Memory Systems [Kosko-87]. These structures 

can be transformed into connection matrices whose components are the numerical values o f the causal 

relationships of its nodes.

Figure 2.3 shows an example of a FCM found in [Craiger & Coovert-94]. The inference equation of this 

FCM is expressed as:

N

(Equ. 2.2)

The output equilibrium of a FCM is an answer to a causal “what-if ’ question. FCMs store a set o f rules “if

k

(Equ. 2.3)
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where E  represents the connection matrix and C is the nodes string of the map.

Cl: h e rd  
c lu s te r in g  J

C4: survival 
t h r e a t

Figure 2.3: Example of a FCM; Edge Matrix and Nodes String [Kosko-94].

“A FCM weights and adds FCM matrices to combine any number of causal pictures” ... “we can also let a 

FCM node control its own FCM to give nested FCM in a hierarchy of virtual worlds” ... ‘T his is the kind of 

things we can model with FCMs” [Kosko-94].

An Augmented FCM (a combination of FCMs) is converted into an edge matrix form once the links between 

FCM components have been weighted using relative values (wi). This is illustrated in Figure 2.4. In this case, 

the FCM structure has a global connection matrix Fw of the form:

N

Fw = ' £ J Fi *xvi ;N  = 3  (Equ. 2.4)
(= i

where N  represents the number of FCMs and wi the relative weighted connections between the N  FCMs.
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Augmented FCMs

Figure 2.4: Example of an Augmented FCM [Taber-91], 

f) Adaptive and learning features

Perhaps the most interesting application of FCMs is presented in [Kosko-94] where the adaptive version of 

the system is used to model virtual worlds. “The FCM itself acts as a non-linear dynamical system. Like a 

neural net it maps inputs to output equilibrium states” [Kosko-94].

An Adaptive FCM (AFCM) changes its causal connections in time. The causal web of this system learns (i.e. 

changes its edge strengths) from the data that is presented to it and, the combination of AFCMs (augmented 

AFCMs) is used to mean the design of large AFCM structures that can also learn and behave as “true 

adaptive fuzzy systems”. These AFCMs can change via processes of excitation and combination. They can 

also learn (as any ANN) by applying neural learning laws to change their edges and limit cycles. These 

learning algorithms can be used to create and tune large FCMs. “Everytime you change a FCM, you learn in 

some way since learning is change” [Kandel-87]. ’’Neural learning laws change the causal rules and the limit 

cycles” [Kosko-94].
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2.1.2. Behaviour-Based Systems

The concept of FBMs has also been influenced by non-tiierarchical (flexible) behaviour decompositions 

[Brooks-86; Mataric-94a; Mataric-94b] and BB Networks [Maes-89b; Tyrrell-92], namely, to recognise the 

fact that artificial behaviour-producing systems should be built on highly distributed and richly connected 

networks.

In section 2.2.2, we describe the similarities and differences between FBMs and these BB Systems (non- 

hierarchical behaviour systems and, BB Networks).

2.2. Main Features

A Fuzzy Behavioural Map (FBM) is a behaviour-oriented network. Its nodes represent behaviours and, its 

edges represent their causal interactions. It represents a tool that helps to model behaviour-oriented forms of  

intelligence i.e. the natural behaviours that the researchers o f AAs observe and analyse.

The nodes (behaviours) of a FBM can fire to some degree. These have associated levels o f activation that can 

vary on time of interaction of an agent with its environment. The performance o f a FBM results from driving 

its causal interactions (its cause-effect flow) among the levels o f  activation o f  the behaviours it represents.

These behaviour-oriented maps do not state explicit equations about the competences o f the autonomous 

creatures. They do not represent alternative techniques to the current algorithmic, ANN-based or dynamic 

approaches to design behaviour control mechanisms (described in section 1.2.2.5). FBMs are suitable tools 

for modelling the behaviour-oriented structures before identifying and/or implementing any control 

mechanism.

As we shall see later in this dissertation, the fuzzy and dynamic capabilities of the FBMs allow the modelling 

of rather complex behaviour-based situations to later recognize the best way o f designing and implementing
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the required BB System. For example, the designer can use a BB Network approach such as an Action 

Selection Mechanism to develop a behaviour-based control architecture. But complex behaviours and their 

relationships cannot be easily modelled using these approaches (as discussed in section 1.4.3). FBMs can be 

used instead. These maps facilitate the modelling o f  dynamic, time-evolving behaviour-oriented phenomena 

and related processes. In other words, FBMs can be used as tools for prototyping behaviour-producing 

modules before implementing these. They introduce dynamical aspects and fuzzy frameworks that help on 

the modelling of autonomous agents’ competences (and related internal mechanisms).

The following sections concentrate on these modelling capabilities o f simple and more complex FBMs while 

presenting some examples of these structures. Then, in chapters 3 and 4, we focus on the engineering 

problem o f  FBMs. There we decompose the problem of controlling the behaviours of the creature into a 

number of development steps that facilitates the design, implementation and evaluation of the resulting BB 

System. Further, we combine a number o f behaviour-oriented processes in such a way that optimal, global 

control can be provided to make the creature performing the required functionality more efficiently.

2.2.1. FBMs and FCMs

Simple FBMs draw pictures about the behaviours o f AAs and how these can be causally related. They are 

FCM-like networks which symbolic edges show possible causal interactions among the degrees o f firing of  

their nodes (behaviours).

More complex FBMs incorporate feedback cause-effect connections that make FBMs behaving as dynamical 

systems. But the scope o f these dynamic features of FBMs is very different to that o f FCMs.

The convergence (or stability feature) of FCMs has been used to evaluate psychological processes. For 

example, in [Craiger & Coovert-94], the FCM nomenclature is used to evaluate effects o f a specific model by 

introducing a number o f bit vectors with elements representing states of one o f the concepts o f the model.
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This author applies an appropriate inference equation so that the overall output vector (global state of the 

model) changes until the map repeats a hidden pattern (equilibrium after few iterations) and the 

corresponding output vector can be interpreted. [Kosko-94] uses the same procedure (mapping input states to 

limit equilibrium) to give virtual worlds with new equilibrium behaviour (to reveal mode implications).

Complex FBMs help to design behaviour-based models instead of psychological processes or, virtual worlds. 

These maps can be used to evaluate global behaviour models by introducing a number of behaviour-oriented 

units with elements representing the levels o f activation (or firing degrees) o f these. We exploit the dynamic 

features of complex FBMs to model behaviour-oriented forms of intelligence so that the autonomous agent 

can perform stable behaviours (or, actions) from the evolution (time-dependent changes) o f many possible 

behaviours and related mechanisms that causally affect each other.

Other, more specific similarities and differences between FBMs and FCMs are summarised below.

a) The edges of a FBM are labelled and weighted using qualitative and quantitative information

A FBM incorporates nodes and edges that help to model the behaviours of an AA. Here the edges are 

labelled to indicate either positive or negative cause-effect relations among the behaviour nodes.

The weighting factors o f an edge o f a FBM are numbers between -1  and 1. Simple FBMs have edges with 

weighting factors in [-1, 0, +1}. Everytime we connect two behaviours with one o f these edges, we represent 

a causal relationship between their degrees of activation. Further, we can associate a qualitative label (a 

weighting word such as little or, more or less). Thus, FBMs provide quantitative and qualitative data about 

causal relationships of their behaviour nodes.
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b) The nodes of a FBM can fire to some degree

The nodes (behaviours) o f a FBM can fire to some degree (as FCM’s nodes) and, in their most simple forms, 

they can be just on or off (as in Kosko’s FCMs or, in deterministic ANN math structures).

Using simple FBMs, we set behaviour nodes and link them to others. Using large-scale FBMs, we model 

more complex and dynamic behaviour-oriented structures. Each behaviour node can fire on its own time 

scale and, each causal connection can have its own time scale too. Further, it is possible using non-linear 

mechanisms to design these maps so that both nodes and edges change accordingly (see chapter 4).

c) Nodes and edges of a FBM “can be fuzzy”

The structure of FBMs differs from Kosko’s FCMs, mainly, in that the former can incorporate truly fuzzy 

parameters.

Nested FCMs seem to incorporate fuzziness by means of mapping processes. A nested FCM can be used to 

divide a concept (node) into number of sub-concepts (more nodes). For example, the “auto accidents” node 

represented in Figure 2.1 can be divided into three different sub-nodes: “large auto accidents”, “small auto 

accidents” and “medium auto accidents”. Following [Kosko-94], these sub-concepts form a Fuzzy System (or 

a set of fuzzy rules) that map input to outputs by linking fuzzy sets and, in practice, each sub-concept can 

map to different tactics so that new feedback loops are incorporated to the initial FCM.

By contrast, the degrees o f activation of the behavioural nodes and the causal relations o f FBMs can be 

designed using:

•  fuzzy numerical information (degrees of membership functions of fuzzy sets) and,

• fuzzy words (linguistic variables and fuzzy edges)
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to mean “dual, intrinsic characterisation of fuzzy sets and fuzzy systems” [Zadeh-94]; to introduce fuzzy 

functions as any Fuzzy System should do [Zadeh-72d; Zadeh-73a; Zadeh-73b; Zadeh-72d; Zadeh-74; Zadeh- 

75; Zadeh-83] (see also appendix A). In other words, FBMs do apply truly fuzzy design parameters.

The levels o f activation of the FBM nodes can be designed using membership functions and descriptive 

values of fuzzy sets. Here the use of membership functions means that the behaviour nodes of the FBM get 

any value between -1  and 1 (i.e. fuzzy granularity as described, for example, in [Zadeh-65; Zadeh-72a; 

Zadeh72b; Zadeh-72c; Zadeh-72d]). The linguistic variables that characterize the fuzzy sets help to design 

behaviour-oriented maps adding descriptive information about behaviours and their relationships. For 

example, we can design a FBM where some behaviour nodes are completely activated (i.e. it is possible 

observing these behaviours) whereas other competences (behaviours) are somehow activated (i.e. it is 

possible observing these behaviours very soon) or, not activated at all (i.e. these behaviours cannot be 

observed at all).

The edges of an FBM can be fuzzy sets too. It is also possible using the membership functions and 

descriptive values o f fuzzy sets to design the edges o f a FBM. Here the use o f membership functions means 

that the cause-effect relationships between the behaviour nodes can increase (decrease) to some extent (i.e. 

the edges can also get numbers between -1  and 1). The linguistic variables, on the other hand, help to design 

the FBMs so that, for example, some behaviour nodes affect the degree of activation o f others very little, 

quite much, usually or, very often.

Further, we can implement FBMs using fuzzy control parameters. In fact it is possible mapping a FBM onto 

a Fuzzy Logic Controller (or any other Fuzzy System). We can convert the fuzzy relations that the FBM 

represents onto fuzzy control rules and manipulate these using some fuzzy inference mechanisms. The fuzzy 

control rules help to control the behaviours of the agent. The fuzzy inference mechanisms serve to determine 

the level o f activation o f each behaviour node.
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In section 2.3, we present an example of a FBM that incorporates fuzzy sets (membership functions and 

linguistic variables) to design both nodes and edges. In chapter 3, we describe how to design a FBM and map 

this onto a Fuzzy Logic Controller, including complete definitions of fuzzy sets, fuzzy relations, fuzzy 

control rules and, fuzzy inference mechanisms. Doing so, we model, design and control the activation of an 

avoidance behaviour o f a simulated robot. We convert all the fuzzy nodes/edges o f a FBM onto fuzzy control 

rules and use several fuzzy inference mechanisms (and other fuzzy control design parameters) to implement 

the behaviour map (FBM). Further, in chapter 3, we emphasise some potential benefits in the use of the fuzzy 

approach to develop BB Systems, mainly, the flexibility o f the fuzzy aggregation methods, fuzzy granularity 

and other related aspects.

d) Simple formal frameworks to manipulate FBMs

Simple and dynamic FBMs can be manipulated using some of the formal frameworks (tools) that Kosko uses 

with FCMs. For example, we can calculate the behaviour implications o f a FBM using the matrix algebra 

described in [Craiger & Coovert-94] and [Kosko-87]. We can use the equation Equ. 2.1 to express behaviour 

strings (or, behaviour vectors introduced in section 2.3.1) o f a FBM and, Equ 2.2 to represent how these 

behaviours change over time of interaction of an agent with its environment (see example in section 2.3).

The convergence of this law means that we have found a stable behaviour solution. This helps to evaluate 

behaviour-oriented processes. We present the FBM network with behaviour vectors representing the level o f 

activation of some competences of an autonomous agent. The inference equation (Equ. 2.2) helps us to 

evaluate how the global behaviour solution (the behaviours that the agent can display) changes until the map 

repeats some hidden pattern. This is very useful for modelling the behaviour-oriented systems for AAs, as 

described in chapter 1.

Each FBM can be transformed into a connection matrix, as Figure 2.3 illustrates, with components meaning 

numerical values of causal relationships among the behaviour nodes of the map. This helps us to graphically
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represent the influences among the behaviours nodes and, to easily calculate (using the equation Equ 2.3) 

time-dependent evolutions (changes) o f some crisp behaviour activation values (0, 1 or, -1). However, as we 

shall see later in this section, these matrix components should correspond to degrees o f  behaviour activation 

by means of using membership functions of fuzzy sets.

Finally, we can manipulate FBMs as Augmented FCMs (Figure 2.4) to study and model some complex 

behaviour-oriented situations but, again, the matrix components (that, in this case, represent the influences 

among complete behaviour maps) should not be limited to some crisp numerical values. Degrees o f  

behaviour maps activation should be used instead. The equation Equ 2.4 (expressing an inference equation 

for a collection of FBMs that interact with each other), for example, should be converted into truly fuzzy 

inference mechanisms. We use flexible fuzzy relations for manipulating large-scale FBMs rather than crisp 

weighted sums.

In section 2.3, we provide some examples of all these formal representations o f FBMs. The use o f fuzzy 

relations and fuzzy inference mechanisms with FBMs are widely described in chapter 4.

2.2.2. BB Aspects

The main behaviour-oriented features of FBMs can be summarised as follows,

a) The realisation of refined behaviour-oriented systems

Using FBMs, we search for the realisation o f  refined behaviour-oriented systems where it is possible (in 

latter stages o f design), for example, identifying node strings with behaviour-oriented commands that will 

control specific components of a robot/agent (see chapter 4).

Here the concept refinement is used to identify lower design parameters (i.e. control actions) rather than 

linguistic variables or, fuzzy sets (as it corresponds to a fuzzy implementation technique like the FLC
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described in chapter 3). This refinement helps on the definition o f the behaviours selected from first levels o f  

abstraction. For example, an avoid collision behaviour (a FBM node) can be refined down to movements 

and specific control actions over the motors of a mobile robot. This is, the avoidance behaviour o f a mobile 

robot can be defined with control actions such as turn left or turn right that might control the left and right 

wheels of the agent.

This refinement process (that we associate to the design o f FBMs) relates to the fuzzy mapping techniques 

firstly introduced by Lofti Zadeh in 1972. The fuzzy mapping applies to those complex scenarios that can be 

defined using fuzzy terms, as opposed to deterministically described. “For the control o f physical systems 

with uncertainty, it may be desirable to have a robust control, robust in the sense that the controller is simple 

and gives guaranteed performance within the uncertain range. A first step in this direction is the introduction 

of fuzzy functions . . .” [Zadeh-72d].

b) FBMs and Non-Hierarchical BB Systems

Following the investigations summarized in chapter 1, the non-hierarchical behaviour decompositions such 

as Brooks’ Subsumption Architectures) help to design behaviour units as layers o f control that couple 

sensing and acting capabilities of an artificial creature (i.e. low level design details). Further, these systems 

allow self-controlled competences that can be active and change their states according to inputs that the 

creature receives from its environment. At any instant of time, each behaviour unit can either change its 

internal state or, change the contents of some internal registries that hold input and output values for the 

agent to perform the required functionalities.

c) FBMs and BB Networks

The BB Networks facilitate the design of behaviour-oriented control schemes by introducing parallel and 

local operations. The Action Selection Mechanisms [Maes-89a; Maes-89b; Maes-90b; Beer et al.-90;
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Tyrrell-92; Tyrrell-93; Tyrrell-94; Weiss-92; Kortenkamp & Chown-92; Blumberg et al.-96; Humphrys-96], 

for example, help to define behaviour units by mapping the competences o f the creature into local, simple 

operations of some units that are connected to each other using a network structure. Further, most of these 

systems are implemented using Recurrent ANNs because, as discussed in chapter 1, these control structures 

have learning capabilities that help to automate the design processes.

FBMs also represent network structures that help to design behaviour units. However, these maps are not 

intended to map the competences of the creature into simple processing units. Each behaviour unit can 

represent a complex competence that has to be refined before any processing unit can be identified and 

implemented.

The learning capabilities o f FBMs are discussed as possible extensions o f the work presented in this 

dissertation (see chapter 6). These ideas are widely inspired by the learning features of Kosko’s FCMs and 

Learning BB Networks.

Action Selection Mechanisms help to build BB Systems by identifying goals, sensor inputs and behaviour 

networks (e.g. Maes’ Action Selection Mechanisms) for the agents to be able to select actions in diverse 

situations [Maes-89b]. These maps implement communication links from the goals and sensors o f the agent 

to a behaviour network which activation spreads around once this has been activated from some external 

links. However, the literature of AAs seems to reflect that BB Networks lack feedback connections from the 

behaviour network to its external causes; these systems do not seem to implement truly agent-environment 

interactions; it is difficult to describe natural behaviour using their neural-network terms [Steels-94a].

By contrast, FBMs can be activated from external causes that fire/change the level o f activation o f one/all the 

levels o f activation of its behaviour nodes. This dynamical process can effect the external inputs and, in this 

way, FBMs model circular causality that non-hierarchical BB Networks do not seem to implement. We 

describe this in more detail in chapter 4.
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d) FBMs and Dynamical BBSs

The FBMs are closely related to these Dynamical BB Systems too. In fact, both types o f systems emphasise 

the fact that the activities o f an agent (behaviours, actions, goals, etc.) need interacting with each other while 

being modified by (part of) other possible agent-environment interaction processes.

The Dynamical BB Systems approach incorporates dynamic aspects into the description of the behaviour 

units [Smithers-94; Smithers-95; Steels-95; Tani-96a; Tani-96b; Thomton-96; Verschure & Pfeifer-92; 

Gallager & Beer-92; Neven et al.-96; Wilde-96; Pfeifer-96a].

Each behaviour unit o f a Dynamical BBS is a dynamic element that forms part of an interaction space 

between the agents and their environments [Smithers-95; Steels-95]. Further, these dynamical units can 

cooperate with each other at the level o f actions.

The behaviour nodes o f a FBM are like dynamical units. Additionally, we can combine multiple FBMs so 

that these maps cooperate at the level Of activating their behaviour units or, internal components (see chapter 

4).

e) More general BB features of FBMs

A FBM represents something more than a hybrid (FCM, non-hierarchical, distributed and dynamical) system. 

An FBM is a behaviour-oriented system that can be used as a tool to address:

•  the analysis and modelling of behaviour-oriented forms of intelligence (e.g. animal behaviours),

•  the way these seem to be organised and displayed (performed) by complex organisms (refer to examples 

in section 2.3) and,

•  the abstraction and description (through refinement processes described in chapter 4) o f large-scale BB 

Systems.

Dissertation of the Thesis v4.1
Copyright ©Ana Maria Gonzdlez de Miguel, CMS; SHU
June, 2002

Pag. 78



i^napier z :  ru zz y  otriuviuuiui inuyo

The last feature is an extension of the work presented in this chapter. It represents the basis o f the FBM 

Framework i.e. the formal relationships between the FBMs (designing tool) and the development of BB 

Systems (tasks and processes). In chapter 4, we present the basis o f this framework to design and implement 

large-scale FBMs and, a case study on how to derive a BB System using this. As we shall see, this work 

serves to demonstrate that FBMs help in the tractability o f some complex behavioural competences and 

related interaction processes. Because, as we discussed in chapter 1, the complexity issues o f the behaviour- 

oriented approach refers not only to the uncertainties found in real world situations. There are also many 

problems to handle complex behaviour-oriented scenarios.

2.3. Examples

In the following sections, we introduce some examples of FBMs with varying degrees o f complexity.

2.3.1. Simple FBMs

As we described above, simple FBMs is a FCM-like directed graph in which the nodes represent behaviours 

the designer is hoping to implement within an AA and, the edges are labelled to indicate either a positive or 

negative cause-effect relations.

In simple FBMs, a positive edge means a causal increase (change in the same direction) whereas a negative 

edge represents a causal decrease (change in opposite directions). That is, positive (negative) means that as 

the cause increases, the effect on the connected nodes increases (decreases). These cause-effect connections 

provide a view of the interaction between competencies (or, physical components) o f the agent. But the idea 

is that the strengths o f these interconnections should be expressed in Fuzzy Logic terms using, for example, 

fuzzy sets (membership functions and linguistic terms) or, fuzzy inference mechanisms.
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Figure 2.5 shows a very simple example of a FBM. In this map, two physical components (a sensor and a 

motor) of an agent are interconnected using a positive edge so that, when the firing degree of one of them 

(the sensor) increases (decreases), the firing degree of the other component (the motor) increases (decreases) 

too.

motorsensor

Figure 2.5: Simple FBM (1).

Another simple illustration is given in Figure 2.6. In this case, when the level of activation of a rightjsensor 

(left_sensor) increases, the level of activation of the left_motor (right_motor) is also increased whilst that of 

the right_motor (left_motor) is decreased.
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Simple FBMs (2)

Figure 2.6: Simple FBM (2). As object is sensed on left or right, the resulting levels 

of activation will make the robot to turn right or left, respectively. The example is 

inspired by one of the Vehicles of [Braitenberg-84].

The nodes and edges of these simple FBMs can be fuzzy sets. Each behaviour node can be designed using 

membership functions of fuzzy sets so that the cause-effect connections (edges) become fuzzy relations.

For example, the following equation

k )  * ̂ cameaJ f i ,  k )  - >  Hm„ or{ C , k )  (Equ. 2.5)

can be applied to the FBM represented in Figure 2.5 to mean that the activity of the motor at time index k 

(membership function of a fuzzy set C that belongs to the domain of a linguistic variable called speed) is 

given by the fuzzy conjunction (*) between

• the level of activity of the sensor (membership function of the fuzzy set A that belongs to the domain of 

a the linguistic variable called distance) at the same time index k and,
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•  the strength of the connection (membership function of the fuzzy set B that belongs to the domain of a 

linguistic variable called influence).

Similarly, we can design the FBM represented in Figure 2.6 in terms o f the following fuzzy relations:

(Mnght_sensoM,k) * H Com ee, io n (B M x ( H left _sensor(C,k) *  H co n n ec ,io n (D ^ )  H r ight_mo<0r ( E , k )  (EqU. 2.6)

(M r igh '_ s e n s o r (F ’ k ) * M c o n n e c 'i o n ( G ’ k ) ) X ( M lef t_ s e ns o r ( H ’ k ) * M COnnectio n ( I ’ k ) ^ > M lef t _ mo'0r ( E , k )  (EqU. 2.7)

where the levels o f activities of the nodes leftjnotor  and right_motor (at time index K) are given by the 

fuzzy implications of some fuzzy conjunctions between the fuzzy sets of connection links and, the levels o f  

activities o f the right_sensor and left_sensor nodes (see the definitions of fuzzy operators in appendix A). 

We come back to the definition and use o f all these fuzzy sets and fuzzy operators in chapter 3.

2.3.2. More Complex FBMs

As we have describe it so far, a simple FBM seems to only provide us with a static view o f the potential 

behaviours of an AA, where “potential” is used in the sense that not all behaviours need be activated at any 

one instant in time. However, a dynamic element can be introduced by observing the following two aspects. 

First, the use of Zadeh’s Fuzzy Logic [Dubois & Prade-86; Foulloy-93; Lee-90; Hercock & Bamer-96; 

McNeill & Thro-94; Wang & Loe-93; Gonzalez et al-91] suggests that, at any t instant in time, all 

behaviours can be active to some degree and their causal connections can have different (fuzzy) strengths. In 

fact, the activation values of the behaviour units and the strengths of their connections can be formalised as 

time-dependent membership functions like jt(A,t) o f some fuzzy set A which can be shaped in a number of  

ways (see examples of membership functions and fuzzy sets in appendix A).
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Second, a more complex FBM incorporating recurrent feedback loops could be switched on in a similar 

fashion to Hopfield Nets, Bi-directional Associative Memory Systems or, any other RANNs [Bose & Liang- 

96]). Indeed, the behaviour activation patterns of the FBM can be propagated around this map until some 

stable state has been reached or, some other terminating condition (such as timing out or, maximum level of 

activation of behaviour/s) has been satisfied.

To illustrate more complex FBMs, an example is given in Figure 2.7.

hunger_awarepredator_aware

a p p r o a c h _ f o o d  h

■ ■ ■ ■ ■

Figure 2.7: More Complex FBMs. Predator & Food.

This FBM represents the following relationships among behaviours:

• as the degree to which awareness-of-hunger increases, the tendency to approach-food increases,

• as approach-food is highly fired (the agent approaches food), hunger increases (through a sense of 

anticipation),

• as hunger increases (and food is approached), awareness-of-predator decreases and,

Dissertation o f the Thesis v4.1
Copyright © Ana Maria Gonzdlez de Miguel, CMS; SHU
June, 2002

Pag. 83



t^napier z: ruzzy aenuviuurui muy*

•  as awareness-of-predators increases, the urge to flee  rises, the awareness-of-hunger drops and the urge 

to approach-food falls.

Interpreting this diagram in Hopfield Net terms (and using these values with all weights equal), it is not 

difficult to see that if at some instant, the node hunger_aware is activated, then approach-food becomes 

activated. If the predator_awareness node is then switched on, the flee  behaviour is the only behaviour which 

is active.

The fuzzy interpretation is more subtle since we can add both quantitative and qualitative data to define the 

map. The nodes and edges of the map can be defined in terms of membership functions o f fuzzy sets so that 

fuzzy granularity is added to the interpretation provided above.

For example, if we represent the nodes with fuzzy sets and, hungerjxware is “highly” activated, the 

approach_food also activates in a “high” fashion since both nodes are connected using a positive edge. Using 

this fuzzy granularity (in nodes and edges) means that the influences between the nodes is fuzzy too. 

Therefore, the degree of activation of each node (e.g. approach-food) becomes affected by the degree o f the 

communication among them.

An example of these fuzzy connections can be seen in Figure 2.8. Here the level o f activity o f a left_motor is 

“highly” influenced by the level o f activity of a left_sensor whereas the same activity o f the left_motor is 

“low” affected by the level o f activity of a rightjsensor. Both positive influences help an autonomous 

creature to display turn movements considering it is equipped with these simple mechanisms.
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left_motorleft_sensor

right_motorright_sensor

Figure 2.8: Turn Movements with FBMs.

With the three examples, we have been flexible in the interpretation of the term behaviour. In Figure 2.6 

(simple FBM) and Figure 2.8 (turn movements), it has referred to the level of activation of physical resources 

of the AA (sensors and motors of a mobile robot). In Figure 2.7 (predator & food), a more abstract view has 

been adopted. We return to this point {abstraction) in chapter 4.

The examples provided in figures Figure 2.8 and Figure 2.9 illustrate different ways of interpreting the term 

interaction in the context of FBMs. The FBM represented in Figure 2.8 represents some physical, negative 

communication links between the physical resources of a mobile robot whereas the FBM in Figure 2.9 uses 

co-operation and competition to communicate the behaviours it represents. In this last FBM (Figure 2.9), the 

behaviours b l, b2 and b3 (that could be designed down into a number of nodes such as those represented in 

Figure 2.8) are connected in such a way that b2 and b3 compete with each other. There is a high negative 

influence between these nodes so that both (b2 and b3) compete for being highly activated. By contrast, the 

behaviours b l and b2 co-operate with each other. There is a high positive influence from one to another. This 

means both behaviours (b l  and b2) will be able to highly activate each other at some instant in time.

Dissertation o f the Thesis v4.1
Copyright © Ana Maria Gonzdlez de Miguel, CMS; SHU
June, 2002

Pag. 85



Chapter 2: r  uzzy tsenaviourai maps

More Complex FBMs (3)

Figure 2.9: FBMs with Co-operation (edge > 0) and Competition (edge < 0) of Behaviours.

We can also achieve co-operation by means of combining FBMs. For example, Figure 2.10 represents an 

augmented FBM where the low-level FBMs either highly activate or, lowly activate one another. Further, we 

can represent hierarchies o f  behaviour-producing modules. Following [Tyrrell-92], for two nodes b l  and b2, 

b l  is the “boss” of the b2 if the b l  has direct causal influence on b2. Here the term “direct” is meant to imply 

that b l  is directly above b2 in the hierarchy and, the concept “causal influence” is meant to state that b2 is to 

some extent dependent on the state of b2.

Figure 2.11 shows an example of a hierarchy of behaviour-oriented nodes inspired by [Tyrrell-92]. In this 

FBM, the top level nodes represent major “instincts”, all the downward arrows (fuzzy edges of the FBM) 

represent “causal factors” (positive edges) and, the two-way arrows between two nodes at the same level 

represent “mutual suppression” (negative effects between the two nodes).

Dissertation o f the Thesis v4.1
Copyright © Ana Maria Gonzdlez de Miguel, CMS; SHU
June, 2002

Pag. 86



Chapter i:  ruzzy tsenaviourai maps

---------------U FBM3
T -----

FBM2 FBM4

Figure 2.10: Co-operation among FBMs.

A Hierarchy of Behaviour Nodes

Consum otory
A c t

M oto r 
A ction 1

M o to r 
A ction  2

Figure 2.11: A Hierarchy of Behaviours inspired by [Tyrrell-92].
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2.4. General Intuitions

In summary, the most general intuitions we have about FBMs are as follows:

a) A FBM is an hybrid tool that draws its inspiration from many sources

A FBM is a highly distributed network with a graph topology similar to that o f ANNs and Cognitive 

Mapping Techniques. Further, a FBM is an hybrid BB System that draws inspiration from non-hierarchical 

BB Systems, BB Networks and Dynamical BB Systems.

b) FBMs represent flexible tools to design behaviour-based models

FBMs are flexible tools that help to design behaviour-oriented models. These maps allow multiple 

behavioural activity (all behavioural nodes can have the potential o f being activated and can be fired “too 

some degree” at any instant in time), they allow flexible interpretations o f behaviours and interactions and, 

their structure and performance can be addresses in different ways.

c) A FBM can operate dynamically

A FBM can be designed with a recurrent topology network (also used in Dynamic and Evolutionary 

approaches to the design of BBSs). The feedback connections of a FBM make it able to operate dynamically 

and, to converge towards asymptotic net-behaviours. The stability o f this convergence depends on the 

symmetry o f the connection links among its behavioural nodes. For example, a simple symmetrical FBM can 

converge to a stable state of equilibrium. It provides a single outcome of behavioural activities that can be 

taken for execution in combination, if necessary, with other relative computations.

Dissertation o f the Thesis v4.1
Copyright ©Ana Maria Gonzdlez de Miguel, CMS; SHU
June, 2002

Pag. 88



cnapier z : ruzzy tsenaviourai maps

d) The graph structure of a FBM is built upon the use of “fuzzy” parameters

The behavioural nodes and external effectors of the FBM must be characterised with fuzzy sets. Their levels 

of activity can admit different sort of membership functions (e.g. triangular jubl) and linguistic values (e.g. 

“high”, “low”, “moderate”). The edges of these maps can be designed using fuzzy sets. These can also be 

described using both quantitative (membership functions) and qualitative (linguistic values) parameters. 

Finally, the whole map can be converted into a number o f fuzzy rules driven by a fuzzy inference mechanism 

to determine the levels o f activity of all the nodes at any particular instant in time. This last feature can be 

accomplished when the FBM is map onto a Fuzzy Logic Controller (see sections 3.4 and 3.5).

e) FBMs are interaction-based models of activity that can run in asynchronous or parallel mode

The activity of a FBM is the result o f number o f interaction processes (e.g. environment-behaviour, 

behaviour-behaviour, behaviour-resource, etc) that can run in asynchronous or parallel mode depending on 

the (overall) model of dynamics that is selected by the designer. This model of activity strongly differs from 

the centralised model o f activity of classical SMPA systems or, the goal-directed activity o f Action Selection 

Mechanisms and other approaches to the design of BBSs.

f) FBMs can help on the design of complex BB Systems

They can be used as tools for capturing and modelling behavioural dynamics (behaviour producing nodes 

and their internal/external interactions) at different levels o f abstraction (and through different stages of 

refinement) and, in combination with fuzzy formal frameworks (using fuzzy aggregations and other fuzzy 

logic methods). This final feature of the FBMs is outlined in more detail in chapter 4.
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Chapter 3
The Development of a FBM for a Mobile Robot

Abstract

In this chapter we describe our initial research work around the design and implementation o f behaviour- 

producing modules using simple FBMs and FLCs.

More particularly, the following sections provide a practical example on how to design the avoidance 

behaviour o f a mobile robot called Khepera using a simple FBM as well as the implementation o f this 

behaviour-oriented graph using a FLC architecture. Further, we summarise some interesting test results 

around the use of different inference mechanisms to activate the FBM. All this represents an extension o f the 

work presented at the International Workshop on Advanced Robotics and Intelligent Machines [Gonzdlez et 

al-91].
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3.1. Mobile Robots and Control Systems

The physical architecture of a mobile robot is usually equipped with three types of physical components:

• sensors (e.g. infra red or IR, ultrasound, vision, etc.) which allow the artifact to measure some external 

conditions of its environment,

• motors (e.g. wheels) to move around this environment and,

• a scheme of sensorimotor connections responsible for controlling the performance (e.g. motion) of the 

whole (artificial) structure.

Figure 3.1 shows the mobile robot Khepera [Michel-96] as an example of the physical set-up described 

above. This is arranged with two IR proximity sensors (6 in front and 2 on back) and two motors (each 

driving a wheel).

Mobile Robot Khepera

Frond o f  the robot

Figure 3.1: A Top View of the Mobile Robot Khepera.
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In our research studies, we have used a simulated version of this robot. The main components o f this 

Khepera Simulator are outlined in section 3.5.

As described in section 1.1.2, research in Mobile Robotics regarding the controller component o f a mobile 

robot can be classified into two main approaches to the sensorimotor connections involved: the “sense-think- 

act” Robotics and the Autonomous Robotics approach. The first (classical) controllers corresponded to a 

functional decomposition o f the sensorimotor connections in terms o f perception, planning and execution 

units. These architectures attempted to accurately map, at any particular time, the location and direction of 

the robot in its environment [Keller et al-92] by reference to an internal, explicit representation (model) o f 

the environment inhabited by the robot. In contrast, the task-achieving approach of Brooks (Autonomous 

Robotics) leads to the design o f mobile robots according to a layered behavioural decomposition.

This recent research synthesising and analysing behavioural blocks into control architectures is also being 

influenced by disciplines such as Ethology and Neurology. Indeed, the required functionality of the mobile 

robots appears to be very similar to conduct what is observed in the animal kingdom [Goode et al-94; 

Mataric-95b; Roitblat-94; Scutt-94; Schmajuk & Blair-92; Schmajuk-94]. However, although the literature 

reflects successful applications of the ANN systems in the design of simple behavioural competencies, it has 

shown some limitations related to those o f providing high level behaviours through processes o f interaction 

between the robot and (possible) unpredictable situations of the environment.

To address these difficulties encountered in the use of ANNs, some authors have considered the possibility of 

applying Hybrid Fuzzy/Neural Systems (see, for example, [Keller et al-92; Takagi et al-92; Narazaki et al- 

92]) or heterogeneous ANN Systems that include computations driven by fuzzy logic operations (fuzzy logic 

inference), in addition to some special network propagation algorithms.
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In our initial investigations defining and using FBMs (beginning with basic behavioural competencies), we 

have considered Fuzzy Logic Control (or FLC, firstly conceived by [Zadeh-72a]) as an effective technique 

for implementing these behaviour-oriented maps for the reasons that:

• The derivation of a control policy within a FLC (i.e. a set o f fuzzy control rules) appears to be simpler to 

set up and quicker to tune than a traditional control architecture or an ANN.

• The fuzzy weighting factors applied in the inference mechanism o f a FLC (through the contribution of the 

whole set o f fuzzy control rules) provide dynamical processes that strongly differ from the single 

matching typically used in non-fuzzy rule base or, the static operations performed by FANNs once these 

have been trained.

• The FLC structures have a potential capability to react to disturbed input data using both fuzzy partitions 

and smooth transitions given by the membership functions of the fuzzy sets it manipulates.

The following sections describes these, our evaluations of Fuzzy Logic techniques while analysing the 

avoidance behaviour of the Khepera robot. Then we go on to report the design of the Collision Avoidance 

FBM, the implementation o f the FLC architecture and, our experimental results.

3.2. Perception, Motion and Collision Avoidance

One o f the benchmark areas of BB research is collision avoidance. Indeed, several authors have considered 

obstacle avoidance as a basic behaviour to be accomplished by a mobile robot. For instance, in [Brooks-86], 

avoidance of objects corresponds to one of the lowest levels o f competencies desired for an autonomous 

agent. [Mataric-94a] has also proposed a set o f basic behaviours consisting o f avoidance, safe-wandering, 

aggregation, dispersion and homing (as observed in many species of the animal kingdom). [Cliff et al-93a]
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maintains that a fundamental behavioural competence is the ability to move and navigate in changing 

surroundings.

We have analysed the following linguistic strategy (close in principle to one used for vehicles by 

[Braitenberg-84]) that attempts to control a mobile robot as to avoid collisions with obstacles while moving 

around its environment.

REPEAT,

IF no obstacle is perceived, THEN move forwards 

ELSE IF obstacle is perceived on the right, THEN turn left 

ELSE IF obstacle is perceived on the left, THEN turn right

Although a controller built on this navigation routine would make a robot turn left or right according to the 

presence of an obstacle on its right or left side, respectively, it takes into account neither how strongly the 

object is perceived nor the speed with which the robot is moving. Additionally, it can be demonstrated that 

this controller does not assist the robot’s decision making process when it simultaneously perceives obstacles 

on both its left and right sides. Indeed, in simulation, it is seen that the mobile robot gets stuck in the comers 

of a room and stops moving within slim corridors.

We have therefore, modified this basic strategy to allow the robot to, firstly, gradually change its path  as the 

obstacle’s presence is felt more strongly and, secondly, to take into account the speed o f the robot relative to 

this perception o f  objects.
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3.3. The Collision Avoidance FBM

Figure 3.2 shows the Collision Avoidance FBM that we obtained as a result from the previous analysis. This 

map incorporates three nodes: perceiving_obstacles, varying_speed and moving_around that causally 

influence one another in such a way that:

• as the degree to which the robot perceives an obstacle increases (decreases), the speed variation o f its 

motors increases (decreases) and,

• as the degree to which the robot moves around within its environment increases (decreases), the speed 

variation of its motors increases (decreases) too.

varying_speed

perceiving_obstacles

moving_around

Figure 3.2: The Collision Avoidance FBM.
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One of the reasons for which we have introduced fuzzy sets and fuzzy relations to design this FBM concerns 

their form of representing information. In general, fuzzy sets and fuzzy relations (see appendix A) operate at 

a higher (set) theoretic level than the purely numeric deterministic frameworks [Dubois & Prade-83]. The 

fuzzy framework is based on degrees (membership values) to which an element or condition may fit into a 

fuzzy set or a fuzzy relation. Further, this fuzzy granularity reflects in the ability o f Fuzzy Logic Control 

techniques to handle the uncertain aspects o f mechanisms such as:

•  perception (internal reconstruction of visual signals related to speed motion) or,

• robot’s movement (variation of motor speed dependent on sensor signals)

that can be achieved using, for example, fuzzy sets for representing

•  various levels o f perception, such as obstacle lightly perceived or, obstacle moderately perceived  and,

• variation in motor speed in terms of fuzzy sets like very fast, slow, etc.

In practice, we have built the nodes of the Collision Avoidance FBM using fuzzy sensor signals and fuzzy 

motor speed values o f Khepera robot. More particularly, we have mapped the perceiving_obstacles node of 

this simple FBM onto a set o f fuzzy control rules using appropriate fuzzy relations among fuzzified sensor 

signals. That is, we have refined the perceiving_obstacles behaviour unit o f the FBM so that it can be 

defined in terms o f the sensor signals that the robot can receive. Then we have processed these behaviour 

control rules as a Sub-Rule Base o f  an FLC architecture using appropriate fuzzy relations o f fuzzified sensor 

signals called R l. Similarly, we have selected some fuzzy sets of crisp speed motor values to design the 

moving_around node of the Collision Avoidance FBM and, fuzzy sets associated to speed control actions to 

design the varyingjspeed  node. Finally, we have mapped the overall collision avoidance behaviour strategy 

that correspond to the FBM (fuzzy implications of varying_speed fuzzy sets based on all the possible fuzzy 

relations among the perceiving_obstacles and moving_around fuzzy sets) onto another set o f fuzzy control

Dissertation of the Thesis v4.1
Copyright © Ana Marta Gonzdlez de Miguel, CMS, SHU
June, 2002

Pag. 96



cnapier j : i ne ueveiopment oj a v d m  jo r a mooue d o o o i

rules and processed these as another Sub-Rule Base (of the same FLC architecture) called R2. In other words, 

we have designed the Collision Avoidance FBM by means of prototyping fuzzy control rules o f  a FLC 

architecture. This avoidance strategy is widely described in section 3.5.

Figure 3.3 shows two examples of the levels of perception that we have considered for the implementation of 

the Collision Avoidance FBM: obstacle highly perceived and obstacle moderately perceived. Both fuzzy 

relations are related to the speed of the robot in the following way:

• medium distance (d) to an obstacle associated with slow speed (Figure 3.3(a)) builds an obstacle highly 

perceived within the internal scheme of the robot,

• the same proximity value (d) associated to a certain perturbation (Ad) due to a fa s t speed movement 

(Figure 3.3(b)) produces a level of perception equal to obstacle moderately perceived.

Figure 3.3: Perception and Motion, (a) Slow movements, (b) Fast movements, (a) And (b) for medium distance.

Perception <& Motion

O bstacle
highly

perceived
M edium  distance

Slow speed

d + M
b) O bstacle 

m oderately 
perceived

M edium  distance
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Using the simple example shown in Figure 3.3, we have also attempted to model some mechanisms by which 

we (humans) can perceive dimensions o f objects [McEachem-93]. Certainly, when we are moving slowly 

(Figure 3.3(a)), the boundaries o f any object placed at a medium distance from our current position appear 

clear to our visual perception. However, when we run (Figure 3.3(b)), what we perceive is a distortion o f  

what is out there, an image smaller than the real figure. Thus, due to the well-known Physical Principles o f  

Relativity, the immediate effect o f a fast movement is that an obstacle appears to be at a further distance than 

in the case of slow movements or, more generally, that motor speed affects the level o f perception of an 

object.

In this chapter, we have introduced the notion of perception in order to understand and exploit some ideas o f  

abstract FBMs and the implementation of these maps using the FLC architecture that we describe in section

3.4. However, it should be noted that the use of this concept raises some interesting issues, which have yet to 

be fully explored, in relationship to the general ethos of BB Robotics, since it clearly introduces some 

elements of world modelling into the control scheme.

3.4. The FLC Architecture

Fuzzy Logic has provided Control Systems Theories with a broader methodology to cope with dynamic and 

complex processes [Zadeh-83; Zadeh-89; Foulloy-93; Foulloy-93; Lee-90; Zadeh-83; Zadeh-89; Zadeh-92].

One o f the main advantages o f using the Fuzzy Logic Control approach (see appendix B) is that no explicit 

mathematical model of a system under control is necessary for implementing a Fuzzy Logic Controller 

(FLC). Fuzzy Logic Control helps to define non-linear control systems through a development 

(implementation) process that might be difficult to achieve by standard methods o f Classical Control 

techniques.
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In effect, the implementation of a FLC architecture emphasises the fact that fuzzy control rules should be 

seen as an implementation technique o f  non-linear transition functions that can determine effective 

(successful) control actions even in the case of complex external conditions.

The implementation o f a classical controller usually starts with the specification o f a time-dependent variable 

that has to reach a desired value. This time-dependent variable is called output variable and its value is 

controlled with a control variable that can be adjusted. Then, the classical controller is developed so that the 

output variable is determined from the measurement of input values and appropriate time-dependent changes 

on the control variable. But classical control is not only restricted to the measurement o f output variables and 

the change o f these in time steps.

Sometimes, classical control deals with dynamical processes that can determine the change o f the output 

variables instead of computing the control values. Further, the solution o f a control problem can be 

generalised in the form of a control function that maps an input space to an adequate control space using, for 

example, differential equations so that the control solution is the control values set that makes these 

equations converge within an acceptable time towards cero.

The main problem of these classical control methods is that, sometimes, it is impossible finding an accurate 

mathematical structure to control the process at hand (e.g. a set o f accurate differential equations). Indeed, 

the control problem might require a deep physical understanding o f the sub-processes involved (e.g. the 

movements of objects which influence has to be controlled) as well as a deep mathematical knowledge to be 

able to solve the formalisms used to find the control solutions (e.g. approximation o f differential equations).

FLCs seem to help on solving these problems found with classical control techniques [Zadeh-72a; Zadeh- 

72d; Zadeh-94]. There is not need of a deep mathematical knowledge, nor a deep physical understanding of 

the system and situations under control.
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FLCs can be characterised with either table-based control or, non-linear transition functions. The semantic 

foundation of these architectures represents one of the most innovative aspects. Further, the derivation of the 

fuzzy control policies (fuzzy control rules described in section 3.4.3.3) appear to be more easily solved and 

tuned than the crisp ones.

The structure and implementation parameters that we have identified for building a table-based FLC  are as 

follows (see also [Mamdani-76; Dubois & Prade-83; Lee I-II-90; Foulloy-93; Wang & Loe-93]).

3 .4 .1 . S tr u c tu r e  a n d  O p e ra t io n s

Figure 3.4 shows the basic configuration of the table-based FLC architecture. The overall scheme contains a 

generic controlled process and, five functional blocks (controller components): a Fuzzification Interface, a 

Data Base, a Rule Base, a Decision Making Logic Unit and, a Defuzzification Interface.

Basic Structure of a FLC

I
! “ |

---------------------------- D ata  ; R u le   -----------------------------

B ase  B ase  i I
Fuzzification f  M akin g  % D efuzzification

. . .  I SFigure 3.4: Basic Structure of a FLC.
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The controller components compute the action of the controlled process. The Fuzzification Interface (input 

phase) transforms the numerical level of the process being controlled by the FLC into a conceptual level of 

fuzzy sets. Then all the mappings (computations) involving the Rule Base and the Decision Making Logic 

(inference unit) are completed at the level of the fuzzy sets being active. Final actions inferred by the 

inference unit are converted by the Defuzzification Interface (output phase) to the numerical level of the 

controlled process.

3 .4 .2 . C o m p o n e n ts  a n d  Im p le m e n ta t io n  P a r a m e te r s

Table 3.1 shows the implementation parameters (I.Ps) that we have identified as the main functional blocks 

of this FLC (see also [Lee I-II-90] and, appendix B).

Implementation Parameters

C om p onent Im plem en tation  P aram eters o f  a  FLC

1 . F uzzification  

Interface

I P. 1.1. Strategy 
I P. 1.2. Operator.

2 . D a taB ase I P. 2.1. Discretization.
I P. 2.2. Fuzzy partdions.
IP . 2.3. Completeness.
I P. 2.4. Choice ofmembership function o f primary fuzzy sets

3 . R ule B ase IP .  3.1 Choice of process state and control action variables 
I.P. 3.2. Type and derivation o f fuzzy control rules.
IP . 3.3. Completeness and consistency o f the Rule Base.

4 . D ecision  

M akin g Logic 

U nit

IP . 4.1. Definition o f fuzzy implication.
I.P. 4.2. Interpretation of “and” & “also” connective operators 
I.P. 4.3. Definition o f compositional operator.
I P. 4.4. Choice o f the inference mechanism.

5 . D efuzzification  

in terface

I.P. 5.1. Strategy 
I.P. 5.2. Operator.

Table 3.1: Table of Components and Implementation Parameters of a FLC.
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3.4.2.1. ComponenFI: Fuzzification Interface

Fuzzification involves a subjective evaluation that transforms a measurement o f crisp data into a fuzzy set of 

values. It is defined as a mapping from an observed input space to the fuzzy sets required in a Fuzzy System.

The following parameters need to be addressed in the implementation of a Fuzzification Interface.

I.P. 1.1. Strategy

The analysis o f the controlled process constitutes the basis for the input interface (mapping) developed by 

this functional unit. From the observed and, usually uncertain and complex inputs, a basic fuzzification 

strategy involves:

•  specifying the universes of discourse that characterise the controlled process,

•  determining input variables and their crisp (numerical) values,

•  articulating each input variable into its corresponding universe of discourse and,

• converting the numerical data of each input variable into a suitable set o f fuzzy sets which can define 

their related linguistic variables.

I.P. 1.2. Operator

The selection o f the fuzzification operator may depend on the type o f fuzzy sets (as outlined in appendix A) 

that have been chosen for the FLC. Most of fuzzy control applications map the input space into fuzzy 

numbers, or numerical fuzzy sets. However, other examples of FLC techniques present the manipulation of 

functional fuzzy sets. In section 3.5, we provide an example of this last type.
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3.4.2.2. Component2: Data Base

The Data Base of a FLC represents some knowledge of the controlled process in the form of fuzzy data that 

is used in the fuzzy control policy. In the next sections, we address the main parameters required in the 

definition of the fuzzy control policy within the Rule Base (Component 3) as well as the manipulation o f this 

policy and the fuzzy data within the Decision Making Logic Unit (Component 4).

The following implementation parameters I.P. 2.1 to I.P. 2.4 summarise the role o f the Data Base.

I.P. 2.1. Discretization

This depends on the type o f universe o f  discourses obtained from I.P. 1.1. It solely affects to continuous 

input data. In the case that we describe, the discretization process consists o f arranging a certain scale 

mapping for labelling different segments as generic elements o f a discrete space. Then fuzzy sets o f the FLC 

are defined by assigning membership values to each generic element o f the new discrete space (see appendix 

A).

I.P. 2.2. Fuzzy Partitions

There are two important aspects regarding the fuzzy partitions o f a FLC.

•  First, the selection of the primary fuzzy sets, needed for the definition of the terms o f each linguistic 

variable (within the Data Base), and the fuzzy relations defining the control policy (within the Rule 

Base).

•  Second, the design o f the fuzzy sets (form, support and so on) chosen for each universe o f discourse (e.g. 

fuzzy sets of distance supported on a universe o f discourse U=D).
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In practice, a look up table o f  partitions can be used in order to specify the distribution o f the supports o f the 

fuzzy sets that share values in an interval o f crisp data.

Unfortunately, the procedure for finding an optimal partition of these distributions cannot be deterministic in 

the sense that several trials are usually necessary.

This chapter shows a limit function that we have developed in order to help in the implementation of fuzzy 

partitions. The formalisation o f this function is explained in section 3.5.2.

I.P. 2.3. Completeness

After having specified the fuzzy partitions within the Data Base of the FLC, the completeness o f this unit 

must be guaranteed for each universe of discourse [Lee 1-90]. This means, the union o f the supports of each 

set o f terms must cover the corresponding interval (support) o f crisp values. Hence, the fuzzy control 

algorithm applied in the Decision Making Logic (Component 4) can be said to infer a proper control policy 

for every step of the controlled process.

I.P. 2.4. Choice of Membership Function of Primary Fuzzy Sets

The fuzzy sets of the Data Base can be defined with either

• numerical membership function, or

• functional shapes such as triangular, trapezoidal, bell, etc.

A numerical definition is commonly represented as a set o f numbers whose dimension depends on the degree 

of discretization (as mentioned in I.P. 2.1). A Junctional definition deals with the design o f the fuzzy sets that 

allow the manipulation o f some fuzzy arithmetic operations (based on the fuzzy logic operators summarised 

in appendix A) that are explained in the rest o f this section.
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3.4.2.3. Component3: Rule Base

This component consists o f a number of fuzzy control rules often expressed by the following linguistic 

description (see also the fuzzy control rules outlined in appendix A):

IF (a set of conditions is satisfied) THEN (a set of consequences can be inferred) (Def. 1.1)

This can also be reduced to the conditional statement

IF “antecedent/s” THEN “consequent/s” (Def. 1.2)

where “antecedent/s” and “consequent/s” are associated with expressions (e.g. “x” is T(“x”)) which link a 

linguistic variable (“x”) to one of its corresponding fuzzy sets (T(“x”)). Then each antecedent and/or 

consequent o f  a fuzzy control rule is defined as a fuzzy relation (see appendix A) and, additionally, some 

symbolic sentence connectives such as “and” can be applied in case this fuzzy conditional proposition relates 

several antecedents to (several) consequents. For instance, the following fuzzy control rule

IF “x is A" and “y is fi” THEN “z is C” (Def. 1.3)

contains two antecedents (“x is A” & “y is B”) related by a sentence connective “and”. In practice, each 

“and” sentence connective must be converted into a fuzzy conjunction operator. Other sentence connective 

such as “or” are treated as fuzzy disjunction operators. Finally, the consequence/s (e.g. “z is C”) are 

represented by the fuzzy implication operators. All these operators are outlined in appendix A.
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I.P. 3.1. Choice of Process State and Control Action Variables

The selection of the (linguistic) control action variables depends on the implementation objectives (and, 

more particularly, on the desired policy for the controlled process).

These variables have a substantial effect on the general performance o f the FLC. The number o f input 

(process state) and output (process control) variables relies on the complexity o f the fuzzy control system 

being implemented. Simple FLCs only require the use of a Single-Input, Single-Output (SISO) Rule Base. 

More complex fuzzy control structures are referred to as Multiple-Input, Multiple-Output (MIMO) systems 

whose Rule Base is usually expressed as

*  = {*/}?=! (Def. I.4)

where /?/ represents a single fuzzy control rule defined by

IF (“*! is Aj “ and ... and ux p is Ap ”) THEN (“zj is Q  “ and ... and “zq is Cq ”) (Def. 1.5)

where p  is the number o f inputs, q  is equal to the number o f outputs and n corresponds to the total number of 

fuzzy control rules in the MIMO system.

I.P. 3.2. Type and Derivation of the Fuzzy Control Rules

Two main classes o f  fuzzy control rules can be applied within a FLC architecture. These are:

•  state evaluation rules and,

•  object evaluation rules.
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Depending on the source of derivation of the Rule Base, the designer can decide whether to apply fuzzy 

conditional propositions between linguistic input variables (i.e. through state evaluation) or, to predict a 

fuzzy control policy with the use of an object evaluation that is suitable for the system. The first choice 

consists of applying methods such as observation or heuristic verbalisation o f the controlled process. With 

the second type, the control o f the process (which may, o f course, not be easily observed) is analysed and 

expressed in the form of predictive conditional statements.

The literature of Fuzzy Logic Control provides the following four methods for the derivation o f fuzzy control 

rules [Lee 1-90]:

•  Expert experience and control engineering knowledge. Conditional statements such as Def. 1.5 express 

certain domain knowledge and experience in the language of fuzzy IF-THEN rules. The formulation of  

these involves either introspective verbalisation or interrogation o f experts or operators.

•  Operator control actions. This method corresponds to industrial man-machine control system 

applications requiring the manipulation of input-output connections which are not known with sufficient 

precision to use Classical Control Theories.

•  A fuzzy model o f a process. A linguistic description of the dynamic characteristics o f the controlled 

process is used in order to produce a fuzzy model related to FLC implementation. Then the set o f fuzzy 

control rules is generated from this model and through the attainment o f optimal performance of the 

dynamic system.

• Learning. This methodology has been used to emulate human decision making behaviour focused on the 

ability to create fuzzy conditional statements based on experience. An example o f this work is the 

Sugeno’s fuzzy car which has a learning capability to allow this to park “by itself’.

We have implemented our FLC architecture (described in section 3.5) by considering the heuristic 

verbalisation, used in the first method.
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However, we are interested in the identification of the learning capabilities mentioned in the fourth method 

and it is our intention to investigate this in subsequent work.

I.P. 3.3. Completeness and Consistency of the Rule Base

These attributes of the Rule Base refer to the number (completeness) and coherence (consistency) of the 

fuzzy control rules given in Def. 1.5. The maximum number that could be acquired for a certain controlled 

process is a function o f both the type of the system (according to I.P. 3.1) and, the number o f fuzzy partitions 

(from I.P. 2.2). For instance, in the case of a SISO system designed with an input linguistic variable “x” 

which has card(T(“x”)) = 5 and, an output “y” with card(T(“y”)) = 6, the maximum number which can be 

found is equal to 5*6 = 30 fuzzy control rules. Unfortunately, there is no general operation for estimating an 

optimal number of fuzzy control rules.

3 .4 .2 .4 . C o m p o n en t 4: D ecision  M aking Logic Unit

This functional unit performs the fuzzy inference o f  control action/s by evaluating the Data and Rule Bases 

using the fuzzified input variables derived from the Fuzzification Interface.

To describe the parameters of this unit, we consider a MIMO system with a Rule Base R (as in Def. 1.14) and 

a set of fuzzified input variables or fuzzy sets A = ( A j, . . . ,  Ap ).

The inference o f a set o f q  action (output) variables or fuzzy sets denoted by C = ( C \ , . . . , C q ) has been 

defined as the result o f the compositional equation:

C = A ° R  (Def. 1.6)

where the symbol ° represents a sup-star compositional operator (Def. A. 11.1) such as the sub-product 

operation or the sup-min operation.
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I.P. 4.1. Definition of Fuzzy Implication

There are a number of fuzzy relations that can be used to relate antecedents to consequents within each fuzzy 

control rule manipulated in a Decision Making Logic Unit. Some selecting criteria are:

• smoothness,

•  unrestricted inference or,

•  symmetry of inference (see [Lee-90]).

The designer’s final judgement reflects not only the underlying implication of the fuzzy control actions but 

also, the effect o f connecting different fuzzy sets within the inference process. Thus, it is important to notice 

that the selected fuzzy implication operator should be as flexible as possible.

The following formula extends the expression of a MIMO’s fuzzy control rule (given in Def. 1.5) into the 

symbolic definition of a fuzzy implication

( ^ . . . x A p - K ^ X . - . X C , )  (Def. 1.7)

The practical implementation of this entails providing a fuzzy operator for the (x) fuzzy relation and the (—») 

symbolic connective. In our studies, we have used Mamdani’s & Larsen’s methods (see below) to control the 

movements of a simulated mobile robot. But it should be noted that there are other techniques available, as 

listed in appendix A.

I.P. 4.2. Interpretation of “and" & “also” Connective Operators

In applying Def. 1.6 and Def. 1.7, it is understood that the inference mechanism (and so the performance o f  

the FLC) relies on the manipulation of a set o f fuzzy control rules that are related by the twin concepts o f the 

fuzzy implication and the sup-star compositional rule o f inference.
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The overall behaviour of the FLC can be characterised as the combination of the fuzzy relations that 

represent the fuzzy control rules. This is achieved through the use of the sentence connectives “and” (in 

partial connections o f a fuzzy relation) and “also” (in the combination of the whole rule set).

In other words, the “and” operator can be used to connect antecedent conditions and/or consequent 

conditions to each fuzzy control rule (see Def. 1.5). Hence, any fuzzy relation defined as a triangular norm 

(fuzzy conjunction or * operator defined in appendix A) can be applied in its interpretation over the product 

space o f the universes of the underlying related linguistic variables.

When the Rule Base of the FLC is designed and its fuzzy control rules are combined, the ordering o f these is 

immaterial. The “also” sentence connective (having commutative and associative properties) can be defined 

as the union operator and put to use between the different fuzzy relations corresponding to each fuzzy control 

rule. For instance, following the example o f the MIMO system and, applying this sentence connective to its 

Rule Base (in Def. 1.4), the following symbolic expression

R = also( /? i , R2 , ..., Rn ) (Def. 1.8.1)

or, its extended formula

/? = /? !  also R2 also ... also Rn , (Def. I.8.2)

completes the inference mechanism provided in Def. 1.6. The final union operation between the fuzzy control 

rules is shown in our particular inference mechanism (Equ. 3.12 in section 3.5.4.1).
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I.P. 4.3. Definition of Compositional Operator

This parameter consists o f selecting the type of ° operator for the composition (Def. 1.6) which, in practice 

may be expressed as a sup-star composition, where “star” denotes a triangular norm operator chosen for the 

specifications of the FLC (see appendix A).

Again, the literature of Fuzzy Logic Control offers different possibilities (compositional operators), namely

• sup-min operation,

•  sup-product operation and,

•  sup-bounded operation.

These differ from each other according to the combination operator used for the fuzzy control rules that is 

symbolically defined by the “also” (union) connective. The sup-min and sup-product compositional operators 

are the most frequently used in FLC applications (see [Dubois & Prade; Wang & Loe-93). The two methods 

provide similar accuracy but less computational effort.

We have used both compositional operators for the implementation o f the Collision Avoidance FBM. We 

have applied the sup-min operation to Mamdani’s inference mechanism. After this, we have added the sup- 

product operation to Larsen’s inference mechanism. The results o f applying both techniques can be seen in 

the control actions (Equ. 3.14 and Equ. 3.15) of the FLC architecture.

I.P. 4.4. Choice of the Inference Mechanism

The fuzzy operators selected for implementing the sentence connectives “and”, “also” (with related 

compositional operator) and fuzzy implication (—>) configure a type of fuzzy inference mechanism in a FLC.

The FLC’s fuzzy inference method results from the application o f the parameters I.P. 4.1 to I.P. 4.3 

expressing the membership values of the control actions inferred by the Decision Making Logic Unit.

Dissertation of the Thesis v4.1
Copyright © Ana Marla Gonzalez de Miguel, CMS, SHU
June, 2002

Pag. I l l



Chapter 3: The Development o f a FBM for a Mobile Robot

Further, it is associated with firing strengths (or, weighting factors) that measure the contributions of the 

fuzzy control rules depending on the controlled-process input data.

In section 3.5, we describe our experiments with these inference mechanisms using two methods: MamdanVs 

& Larsen’s and include formulas of the control actions as well as the formalisms of the firing strengths using 

3D functional representations (see Figure 3.15(a) & Figure 3.15(b)).

3 .4 .2 .5 . C o m p o n en t 5: D efuzzification In terface

Crisp (numerical or non-fuzzy) control actions are required in many practical applications of FLCs. Thus a 

Defuzzification Interface is necessary in order to calculate a crisp value for each fuzzy control action.

LP. 5.1. Strategy

A defuzzification strategy is a mapping from the space of fuzzy control actions to a space o f non-fuzzy 

control actions. This strategy has to be obtained using the inferred fuzzy control actions at the Decision 

Making Logic Unit. The specification o f the non-fuzzy control actions comes from the I.P. 3.1.

The designer can select between, at least, max criterion, mean of maximum and centre o f area strategies 

described below.

I.P. 5.2. Operator

There are three defuzzification operators that have been widely applied in the literature o f Fuzzy Logic 

Control. These are:

• The Max method. This produces control actions reaching the maximum value.

• The Mean O f Maximum method (MOM) that generates a control action representing the mean value o f all 

the local control actions whose membership functions reach the maximum. The following equation
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expresses the (generic & crisp) action provided by this method in case of a discrete universe o f control 

actions:

w • /
zo = E  Vi <Def- '-9>

M

where wj is the value o f the support of a fuzzy control action at which its membership function reaches the 

maximum value and I represents the (discrete) number of elements in such support.

•  The Centre O f Area method (COA). This is the defuzzification operator most commonly used in FLC 

applications. It outputs the centre of gravity of the possibility distribution o f each control action by 

calculating

n

z0 = — n-------------------------------------------- (Def. 1.10)

£ / * c ( wy)
j=l

where Jlc(wf) is the membership value of the (control action) fuzzy set C with zo e  sup(Q and n is equal 

to the number of its fuzzy partitions.

We have used COA in the FLC. Figure 3.8 (in section 3.5.5) shows a graphical interpretation o f the data- 

driven developed in the Defuzification Interface while applying Def. 1.10.
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3 .5 . T h e  F L C - B a s e d  I m p l e m e n t a t i o n  o f  t h e  C o l l i s i o n  A v o i d a n c e  F B M

This section describes how we have implemented the Collision Avoidance FBM (Figure 3.2) using the table- 

based FLC architecture described above (Figure 3.4), the Khepera Simulator program (see Figure 3.5) and, 

some Fuzzy Logic principles that we summarise in appendix A (Fuzzy Sets and Fuzzy Relations).

Figure 3.5: The Khepera Simulator, the Collision Avoidance FBM and the FLC.

The Khepera Simulator includes two main sources: robot and world. The robot (displayed on the right side 

of Figure 3.5) consists of two lateral motors that can go backward and forward at different speeds and, 8 

infrared (IR) sensors that allow the simulated robot to detect by reflection (explorations of 15 points in a 

triangle) the proximity of objects placed in its surroundings (world shown on the right side of Figure 3.5).
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Motor speed values range between -lOmph and lOmph. A random noise Am = ±10% is added to the 

amplitude of the motor speed while Ar -  ±5% is added to the direction resulting from the difference o f the 

speeds of the motors. The IR sensor values range between 0m and 1023m (plus an amplitude disturbance 

equal to ±10%). Then any suitable control model must read (update) these sensor and motor values from a 

specified position and direction of movement within a simulated world built o f bricks.

The FBM-FLC architecture that we have developed and installed within the Khepera Simulator system 

controls the robot’s movement (see Figure 3.5). At each simulation step, the input interface fuzzifies the 8 IR 

signals and motor speed values.

We have used fuzzified sensor values to implement of the perceiving_obstacles node o f the Collision 

Avoidance FBM. This constructs the present perception of the environment at the right, left and back sides 

of Khepera. Similarly, we have used fuzzified motor values to implement the moving_around node o f the 

FBM. These represent the current motion o f the controlled robot in the level o f  fuzzy sets. Finally, we have 

used some fuzzy inference mechanisms to activate the FBM while increasing /  decreasing the firing degree 

of its varyingjspeed node to control the robot’s movements in its surroundings.

All these mechanisms control the observed perceptions and motions together to produce a fuzzy variation o f  

speed for each motor o f the robot. They fire the level o f  activation o f  the collision avoidance behaviour. The 

Defuzzification Interface of the FLC transforms the resulting fuzzy speed variations (fuzzy sets) into the 

corresponding crisp variations (one for each motor). In the next simulation step o f the controlled process, the 

motor values are modified and the Khepera robot adjusts its speed and direction accordingly i.e., the control 

action {varyingjspeed) o f the Collision Avoidance FBM is fired so that the robot moves accordingly.

The following sub-sections (3.5.1 to 3.5.5) describe all the FLC I.Ps that we have defined to implement our 

Collision Avoidance FBM. The next section (3.6) summarises our experimental results using the resulting 

FBM implementation (FBM-FLC architecture). This includes some explanations about how we have 

converted this architecture onto a C program that runs within the Khepera Simulator System.
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3.5.1. Fuzzification Interface

This functional unit o f the Collision Avoidance FLC fuzzifies crisp values o f two universes o f  discourse: D 

= {0,1023} and S = {-10,10} which characterise Khepera robot’s sensor signals and motor speed, 

respectively.

i o f w i

Figure 3.6: Membership Functions of Primary Fuzzy Sets of the FBM-FLC. (a) Membership functions 

of fuzzy distance: VPB, very positive big; PB, positive big; PM, positive medium; PS, positive small; 

ZE, zero; NS, negative small; NM, negative medium; NB, negative big; VNB, very negative big. (b) 

Membership functions of fuzzy speed VS, very slow; S, slow; NMod, negative moderate; Null, null; 

PMod, positive moderate; F, fast; VF, very fast (c) Membership functions of fuzzy variation of speed. 

hds, highly decrease speed; mds, moderately decrease speed; Ids, lightly decrease speed; nms, no 

modify speed; lis, lightly increases speed; mis, moderately increase speed; his, highly increase speed.

The mapping (I.P. 1.1) from input variables (distance and speed) to the corresponding universe o f  discourse 

is done according to the singleton method operator [Dubois & Prade-83].
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The 8 IR sensor-input data are converted to a term o f the linguistic variable distance defined in D  and 

associated to the perceiving_obstacle node of the FBM. However, left and right motions associated to the 

movingjaround node of the FBM are articulated into a term of speed that is defined in S. All terms (fuzzy 

sets) o f distance and speed  are shown in Figure 3.6(a) and Figure 3.6(b), respectively.

3.5.2. Data Base

We have implemented this functional module within the FLC architecture in order to meet two main 

objectives:

•  the static storage o f  fuzzy partitions and,

• the establishment o f  dynamic connections with the Collision Avoidance FBM mapped onto the Rule 

Base of the FLC architecture.

The discretization (or I.P. 2.1 needed for the design of the fuzzy partitions) has been achieved by assigning 

membership values to each element in the discrete universes of discourse S and D. The set o f fuzzy partitions 

(I.P. 2.2) stored in the Data Base includes those corresponding to the input variables o f the controlled 

process (distance and speed) and other primary fuzzy sets {perception and variation o f  speed) needed for the 

implementation of the fuzzy control rules. These are explained in a later point of this section.

We have constructed all the fuzzy terms associated to the perceiving_obstacle node {perception in the FLC) 

using crisp values from D. Further, we have defined the membership functions o f these fuzzy sets as fuzzy 

disjunction relations between fuzzified distances to obstacles (see Table 3.2).

The primary fuzzy sets o f the varyingjspeed node {variation o f  speed  in FLC) have been designed over the 

universe o f discourse V = {-40,40}, where boundary values (-40 and 40) represent minimum and maximum 

values, respectively, to be output by the Defuzzification Interface.
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Even though real extreme modifications of motor speeds could be restricted to an interval such as {-5,5}, the 

discrete space of variations (V) appears to refine the control by enlarging the number o f membership values 

for each fuzzy variation o f speed shown in Figure 3.6(c). A later validating function implemented within the 

defuzzification module of the FLC is responsible for reducing modified speed motor values to those that 

belong to S. Thus, the FLC is not permitted to output to the Khepera simulated robot control actions bigger 

than lOmph or, smaller than - lOmph.

At each simulation step, the dynamic connection we have developed between the Data Base and the Rule 

Base (Collision Avoidance FBM) allows the Khepera System to build levels o f  perception o f  obstacles (on 

each side o f the simulated robot) using the current fuzzified sensor values at the input interface. Hence, we 

have manipulated the fuzzy sets of the perceiving_obstacle node as a part o f the fuzzy control rule set.

Regarding the distribution of the fuzzy sets, our FLC produces a look up table o f partitions (segments of 

crisp values) by searching maximum membership values. A limit function is responsible for achieving this 

objective. For each ordered pair of fuzzy sets (e.g. A = “PB” & B = “PM”), this function calculates

lim(A,B) = v0 where Ma (vo) = Mb (vo) (Equ. 3.1)

over the intersection o f supports (see this in all fuzzy sets represented in Figure 3.6)

v0 e  sup(A )nsup (B ); VA,B such that A n B  *  {0 }  (Equ. 3.2)

so that the completeness (I.P. 2.3) o f the whole Data Base is guaranteed since resulting fuzzy partitions of  

distance, speed and variation o f speed cover D, S and V, respectively.

Finally, we have used triangular (functional) membership functions (I.P. 2.4) to represent all the fuzzy sets 

(see Figure 3.6). This implementation parameter deals with the fuzzy arithmetic operations that we explain in 

more detail in the next sections.
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3.5.3. Rule Base

The Rule Base that we present in this section is based on state evaluation rather than predictive fuzzy control 

rules (see comments in I.P. 3.2). In fact, this functional unit implements the Collision Avoidance FBM for 

inferring actions from an evaluation of the controlled movements of the Khepera robot rather than from an 

evaluation o f the control actions represented in such map.

According to I.P. 3.1, we selected both distance and speed as linguistic variables that describe the controlled 

process (perceiving_obstacles and moving_around nodes) and, the variation o f  speed  as a control action 

linguistic variable (varyingjspeed  node).

The terms of perception deal with an (additional) internal variable that we have added to develop the Rule 

Base. After this selection o f variables and in order to cope with I.P. 3.2 & I.P. 3.3, we divided the FBM into 

two sub-units and mapped these onto two Rule Bases within the FLC. These two Sub-Rule Bases are as 

follows.

3 .5 .3 .1 . S u b -R u le  B a se  R1: L evels of P ercep tio n

The Sub-Rule Base R1 is an Eight-Input, Three-Output system that allows the construction o f the terms of 

perception by converting 8 fuzzy sets of distance into 3 fuzzy sets (one for each side of perception: left, right 

and back). More particularly, the mapping developed by this sub-unit consist o f grouping the following 

sensor signals o f the simulated robot:

•  IRSO, IRS1, IRS2 —» pleft e  T(“perception”)

•  IRS3, IRS4, IRS5 —> pright e  T(“perception”)

• IRS6, IRS7 —» pback e  T(“perception”)
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The other sub-component (R2) computes the verbalisation of the control policy by a Three-Input, Two- 

Output system. Thus, the FBM-FLC is a control architecture o f the form

(vleft»vright) = Pleft»Pright»Pback »sleft»s right) (Equ. 3.3)

in which both control actions

vieft *vright e  T(“variation of speed”) (Equ. 3.4)

rely on the degree to which an obstacle is perceived (or level o f perception) and, on the fuzzified speed 

motor values. These terms are denoted by

Pleft. Pright. Pback G T(“perception”) (Equ. 3.5)

sleft *sright G T(“speed”) (Equ. 3.6)

The computations (mappings) developed within R1 involve the step-by-step (dynamic) connection o f the 

Rule Base with the Data Base for this sub-unit (R1) to generalise groupings of fuzzified sensor signals into 

terms o f perception. Regarding the formalism used for the construction o f perception, we have applied the 

fuzzy disjunction between a number of terms of distance. Thus, levels o f perception become point wise 

defined by the triangular co-norm operator selected for this fuzzy operation and, by the number and type of  

fuzzy sets o f distance being related.

We have implemented a prototype of this Sub-Rule Base R1 (see Table 3.2) using the union triangular co

norm as fuzzy disjunction between two fuzzy distances. However, it could be experimentally demonstrated 

that the sort of trajectories followed by the Khepera robot would vary modifying this aspect related to the 

construction of a level o f perception. Additionally, we believe that the same consequence could be expected 

when either increasing or decreasing the cardinality of the set o f terms o f the variable perception.
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The fuzzy sets that we have selected for the levels o f perception correspond to T(“perception”) = 

{“collision”, “obstacle highly perceived”, “obstacle moderately perceived”, “obstacle lightly perceived”, “no 

obstacle perceived” }.

Level t f  Perception

collision

obstacle highly perceived Mob = Mm VMM
obstacle moderately perceived

obstacle lightly perceived Mob = MPS VMPM

no obstacle perceived Mncp = MPB'JMVPB

Table 3.2: Prototype of R1. Levels of Perception

Notice in the left part o f Table 3.2 that each o f these fuzzy sets comes from an evaluation o f 1 or 2 fuzzy 

sets. Notice also that the membership functions o f these fuzzy sets are defined by the union triangular co

norm operator (v) as fuzzy disjunction. For instance, the term “obstacle lightly perceived” (“olp”) 

corresponds to the fuzzy disjunction o f the fuzzy distances “N B ” and “NM ”. However, another possible 

prototype o f R1 could be designed for adjusting this fuzzy set to the algebraic sum triangular co-norm  

“NB+NM +NS” as the fuzzy disjunction o f  distances to obstacles. The immediate effect coming from this 

and, without varying the main control policy (definition o f fuzzy variation o f  speed), is that Khepera would 

have a modified understanding o f terms such as “obstacle highly perceived” (“ohp”). Thus, the robot would 

perform different collision avoidance behaviours by following other sorts o f paths.
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3.5.3.2. Sub-Rule Base R2: Collision Avoidance Control Policy

The sub-unit of the control policy (R2) has been built on a set of fuzzy control rules that relate perception to 

motion in the form of fuzzy conditional prepositions expressed as

if “p  is Ap” and “s is As” then “v is Av” (Equ. 3.7)

where Ap represents a fuzzy set of perception (p£ T(“perception”)), As is a fuzzy set of speed 

(seT (“speed”)) and Av is a fuzzy set of the control action variation o f  speed (veT (“variation of speed”)).

Table 3.3 represents a prototype of R2. The three inputs to this control policy are presented in three different 

sub-tables. One for each side of perception.

Left Perception Right Perception Back Perception
Left Motion nop •mp •h p c o l nop olp omp •h p con nop olp om p ohp coil

VS his his his his his his his kis his ims his his his his mis

S his his his his his his his mis mis hs his his his nms nus

NMod his his his mis mis his mis hs hs nms his his mis nms lis

Nulla his mis mis Hs hs his lis nms runs Ids his mis mis lis lis

PMftd his hs hs 21ms Ids his runs Ids Ids mds his mis lis lis nms

F his runs runs Ids mds his Ids mds mds hds his lis lis nms nms

VF his mds Ids mds hds his mds hds hds hds his lis nms nms nms

Right Motion
VS his his his nos hs his his his his his his his his his mis

s his his mis hs nms his his his his his his his his nms mis

NMod his mis hs nms Ids his mis his his his his his mis nms lis

Nulla his hs nms Ids mds his lis mis mis mis his mis mis lis lis

PMoi his runs Ids mds hds his nms hs hs hs his mis lis lis nms

F his Ids mds hds hds his Ids nms nms nms his lis lis nms nms

VF his mds hds hds hds his mds Ids Ids Ids his lis nms nms nms

Table 3.3: Prototype of R2. Collision Avoidance Control Policy

Dissertation o f the Thesis v4.1

Copyright © Ana Maria Gonzdlez de Miguel, CMS, SHU

June, 2002

Pag. 122



The possible combinations “/? is Ap and s is As” make this prototype configurable by 210 fuzzy control rules. 

Note that the three Sub-Rule Bases are divided into 5 terms (fuzzy sets) o f perception x  2 motors x  7 terms 

of speed = 70 fuzzy control rules for each sub-component of R2. All these fuzzy control rules represent the 

final refinement o f  the Collision Avoidance FBM since we have converted its 3 nodes into 210 fuzzy control 

rules that the FLC executes for Khepera to perform collision avoidance behaviour patterns.

The resulting collision avoidance control policy was achieved after several trials involving the simulated 

robot and the FBM-FLC architecture. The methodology we followed to develop this prototype o f R2 

consisted o f selecting approximated speeds (rather than all possible combinations o f Ap &  As) at which 

Khepera was desired to turn in order to avoid the perceived obstacles. Then the control action o f each fuzzy 

control rule was achieved by selecting (depending on the speed As and level o f perception Ap) the variation 

of speed required to achieve those approximated speeds.

For example, in the case o f “collision on the left”, we have taken the approximated speeds equal to “Pmod” 

(positive moderate) and “Nmod” (negative moderate) for left and right motors, respectively, to control a turn 

right movement. Thus, the control actions corresponding to no obstacle perceived  on the left side of the 

Khepera robot (“nop” column o f the left perception sub-table) while moving at the lowest speed (“VS” row 

for the left and right motions) appear in the table equal to “his”. The same can be applied to any other level 

of perception on the left side of the robot while this is moving at left motor speed equal to “VS”. Let us 

consider now the “coll” column at the left perception sub-table. This shows that in the case of running 

Khepera at a “VS” left motor speed, it is possible to give a Av = “his” to the same left motor. By contrast, if  

we consider that the Khepera’s left motor stops (As = “null”), then this cannot be modified more than 

“lightly” (Av = “lis”) because we would like the Khepera’s left robot to acquire a “Pmod” speed. Therefore, 

when Khepera’s left motor speed is equal to “Pmod”, the selected control action Av comes equal to “nms”, 

this is, “no modify speed”.
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Although our pilot tests (described in section 3.6.4) will show that this prototype of R2 (that implements the 

Collision Avoidance FBM) allows Khepera to avoid stable obstacles placed in its way, there are many other 

possible sets o f fuzzy control rules that could provide a suitable control policy. For instance, the whole table 

could be designed by pointing to other pairs of motor speed rather than “Pmod” (positive) and “Nmod” 

(negative) for solving collision on the left. The same could be achieved by considering other different fuzzy 

sets for an starting point on the right side of perception. Furthermore, it does not matter whether the selected 

speeds differ from one column to another. We just need to keep on training positive left and negative right 

motor speed for Khepera to turn right and, negative left and positive right for a turn left movement while the 

level o f perception o f an obstacle increases at left or right side, respectively.

The completeness and the consistency (I.P. 3.3) o f our Rule Base are guaranteed since the number of fuzzy 

relations included in both R1 and R2 seem to allow the FLC to control the required avoidance behaviour of 

the simulated robot.

The performance of both prototypes (Table 3.2 and Table 3.3) can probably be improved by building very 

complex simulated environments. For example, it is worth placing many objects in intriguing situations or, 

using object (predictive) evaluation control statements to build up reactive fuzzy conditional statements 

within both Sub-Rule Bases.

In order to test the presented prototypes of R1 and R2, our computer simulations carried out with the 

Khepera System and the FBM-FLC architecture have been focused on two main objectives:

•  the general fitness o f the Sub-Rule Bases R1 & R2 and,

•  the suitability o f  the fuzzy implication operators needed (Table A.2) for inferring appropriate control 

actions from the whole fuzzy control rules set.

A later section 3.6 provides more detailed descriptions of these pilot tests.
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3.5.4. Decision Making Logic Unit

This unit activates the Collision Avoidance FBM inferring the fuzzy variations o f speed for both Khepera’s 

motors. In effect, the decision making logic we have implemented with the FLC processes two membership 

values: fiAvleft & fjAvright. The required computation uses a compositional rule of inference (see Def. 1.6) 

between the current fuzzified speed values (Equ. 3.6), the side perceptions from R1 (Equ. 3.5) and, the 

control policy encoded within R2 (Table 3.3). Then the result o f this inference process is supplied to the next 

unit (Defuzzification Interface) and Khepera moves accordingly with the new velocity. The compositional 

operators and related I.Ps that we have used to implement this unit are described below.

3 .5 .4 .1 . T h e  F uzzy  In feren ce  M echan ism

In general, the Decision Making Logic Unit o f a MIMO (Multiple-Input-Multiple-Output) FLC performs the 

fuzzy inference of control actions by the compositional equation expressed in Def. 1.6 where A corresponds 

to the set o f fuzzified input operations, C is the set o f fuzzy control actions and the Rule Base R (the set o f  

fuzzy control rules that correspond to the Collision Avoidance FBM) is interpreted as the union o f n fuzzy 

control rules.

By applying these definitions, the main design parameters that we have used for the FBM-FLC architecture 

correspond to the fuzzy implication (—> symbol in I.P. 4.1) and the sup-star composition operators (° or I.P. 

4.3). The fuzzy implication operates on the x  fuzzy relation between antecedents expressed in the fuzzy 

control rules of R2

A p x A s —> Av (Equ. 3.8)

The sup-star composition computes the relation between the whole control policy (R2) and the set o f  current 

perceptions and fuzzified motor speed.
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Current levels o f perception (Equ. 3.5) become defined as the fuzzy disjunction of fuzzified distances 

developed within R l. The fuzzified motor speed (Equ. 3.6) is obtained from the connection of this inference 

unit with the Fuzzification Interface. However, the contribution of the whole set o f fuzzy control rules comes 

from the connection between the Decision Making Unit and the Rule Base. Consequently, the whole 

inference mechanism is expressed by the following equations.

Firstly, the (2D) fuzzy relation among fuzzy sets of perception and speed (see appendix A) in sup-star 

composition with the whole control policy (R2) is expressed (in terms of membership functions o f fuzzy 

sets) by

JdAva =  ( p A p p  x  p A s a ) o R 2  (Equ. 3.9)

where Av e  T(“variation of speed”), oce {left, right}, Ap e  T(“perception”), P  e  {left, right, back} and, 

finally, A s e  T(“speed”).

After this formalisation and, following Def. 1.8.2, our Sub-Rule Base R2 is defined in the form

7
* 2  = UUU®/ (Equ. 3.10)

a  i=l

in which i=l,...,7 corresponds to the cardinality of the set o f terms of variation o f  speed  and, the fuzzy 

relation

S R ( =  A p p  * A s a (Equ. 3.11)

represents (from Equ. 3.8) the fuzzy conjunction (*) between the antecedents of the fuzzy control rules in the 

Sub-Rule Base R2).
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In the end, we have developed an inference mechanism by a later implementation o f the equation

7

p A v a = ( p A p p X j U A s a ) o ( \ J \ J \ J ( A p p * A s a ) (Equ. 3.12)
a p /=1

that denotes how the membership functions of the control actions pA va  e  [0,1] are derived from the 

contribution of the whole control policy and, by comparison of this to the membership values o f the current 

fuzzy data pAp  & pAs e  [0,1].

The completion of this fuzzy inference mechanism, in contrast to other methods o f inference [Zadeh et al- 

92; Wang et al-93], is achieved by firing the whole set o f  fuzzy control rules. Each consequent obtained after 

the fuzzy implication (—») o f each rule is weighted by how close its antecedents matches the current fuzzy 

data and, finally, the results o f the firing control policy (R2) are combined by sets o f fuzzy control rules with 

equal consequent Av.

From the operations carried out in this inference mechanism, we have considered another important 

parameter. This is, the fuzzy conjunction * operator (or also fuzzy connective “and” as commented in I.P. 

4.2) which relates the antecedents of a fuzzy control rule. The sup-star composition (I.P. 4.3) matches the 

current fuzzy data to the antecedents o f all the rules. However, the * operator mainly determines the 

weighting factors for each fuzzy control rule.

Resulting contributions may be combined by the disjunction performed through the sentence connective 

“also” and, consequently, the interpretation of this last parameter coincides with the union (a, ft, and /=1,..,7) 

which represents the disjunction of the number of combinations o f antecedents for inferring each possible 

action Avar of the different fuzzy relations SRj expressed in the Equ. 3.11.

Considering this, the membership functions o f the control actions (a  = left & right) inferred by the Decision 

Making Logic Unit o f the FLC architecture becomes determined by extending Equ. 3.12 into a new formula
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3 70 7= U UU (pAp*J“As)k -»  pAvj (Equ. 3.13)
j=lk= i/=i

where j  is the number of sub-components of R2 according to sides of perception (card(fij), k corresponds to 

the number of combinations of antecedents and, i is the number of fuzzy sets o f speed. Additionally, this last 

expression also denotes the earlier weighting o f fuzzy control rules that, from our point o f view, establishes 

the most important aspect any FLC architecture (to be considered from I.P. 4.4).

3 .5 .4 .2 . W eighting F ac to rs  a n d  F uzzy  In feren ce

Each weighting factor (firing strength) defines, along with the contribution o f the ith rule, the inference 

mechanism given in Equ. 3.13.

Figure 3.7 represents a flow diagram o f the fuzzy input data used in this mechanism. Here the functional 

units: Data Base, Rule Base, Fuzzification and Decision Making Logic Unit have been connected according 

to the data-transfer operations involved in the inference process. At each control stage, the Fuzzification 

Interface provides the fuzzy sets of speed (As) due to the connection with the Data Base (see the functional 

representation o f a few fuzzy set within this last functional unit in Figure 3.6). The Sub-Rule Base R1 deals 

the fuzzy levels o f perception (Ap).

The contribution of R2 comes from its corresponding Sub-Rule Base. Finally, the Decision Making Logic 

operates by applying all these fuzzy values in Equ. 3.13, according to a fuzzy inference technique.

In FLC applications, there exist different types of approximate (fuzzy) inference techniques [Zadeh et al-92; 

Lee I-II-90] that have been associated with inference mechanisms. Each type o f fuzzy inference technique 

appears intrinsically defined by the fuzzy implication used in the application. Then each fuzzy implication is 

determined by the selection of the operators: * (fuzzy conjunction or triangular norm operator) and T (fuzzy 

disjunction or triangular co-norm operator).
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The Inference Mechanism of th e  FLC

Af)  C R l-Y Y Y S R i

Figure 3.7: Flow Diagram of Input Data to the Inference Mechanism of the FBM-FLC

For instance, in the case of Mamdani’s minioperation rule, the inference has been associated with the 

intersection as fuzzy conjunction operator (* = a )  and the union fuzzy disjunction (+  = v). In what follows, 

i.e. in the FBM-FLC architecture, the firing strengths applied for the Mamdani’s minioperation rule of 

inference measure the contribution of the ith fuzzy control rule within R2 through the expression

a { =(juApAjuAs)iĉ v .. .v (p A p A ju A s)/c=1Q (Equ. 3.14)

Other types of firing strength correspond to Larsen’s product operation rule (second type of fuzzy 

inference). For the computation of these, the fuzzy implication becomes point wise defined by the algebraic 

product as triangular norm (* = .) for the fuzzy conjunction and the union triangular co-norm (+  = v) for the 

fuzzy disjunction. Hence, this technique applied to the definition of the firing strengths for the FBM-FLC 

architecture is defined by

ctf = (juAp.juAs)k=]v...v(pAp.juAs)k=70 (Equ. 3.15)
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Our FBM-FLC program (outlined in section 3.6.2) allows the manipulation of the first type (Mamdani’s) and 

the second type (Larsen’s) o f fuzzy inference. Each space of firing strengths differs from each other since 

their values c& depend on the operations of the membership values (Equ. 3.14 & Equ. 3.15). However, the 

dimensionality, cardinality and universe of discourse coincide for both sets of firing strengths. The 

cardinality and dimensionality can be seen in the 3D views o f Figure 3.15.

The last implementation parameter (universes of discourse) of the Decision Making Logic unit corresponds 

to the product space o f the universes D  and S due to the supports of Ap and As, respectively. This makes the 

control architecture to compute, independently of the fuzzy inference technique, the firing strengths CGE [0,1] 

in a 2D-support o f 1023x21 = 21483 pairs (d, s) o f crisp data.

Having developed the previous computations for the contributions of our fuzzy control rules, the final 

expression applied in the Decision Making Logic Unit is expressed as

pAva =|JLk = Êqu‘ 3,1
j =i m

3.5.5. Defuzzification Interface

The functionality of this module is to output, at each step of the simulation, two crisp control actions: vleft 

and vright for modifying the left and right motor speed, respectively. The defuzzification strategy (I.P. 5.1) 

that we have implemented follows the association o f the Avright & Avleft pointed to by the Sub-Rule Base R2 

with the corresponding inferred membership values pAv right & pAvleft e  [0,1]. Before transferring the 

resulting crisp variation of speeds, the connections required between the Defuzzification Interface and the 

rest of the FBM-FLC architecture are as follows.

Firstly, the fuzzy set that corresponds to maximum firing strength (e.g. “his”) is identified from the Sub-Rule 

Base unit R2. Then the Decision Making Logic Unit has to provide the membership value corresponding to

Dissertation o f the Thesis v4.1

Copyright ©Ana Maria Gonzalez de Miguel, CMS, SHU

June, 2002

Pag. 130



sim pler j : i ne ueveiopmem oj a ra m  ja r  a iviuuut i\uuui

the fuzzy contribution of all the firing strengths. Finally, the defuzzification operator is responsible of 

providing the crisp control actions vleft & vright E  V that modify the motor speed of the simulated robot 

Khepera. For this aim we have applied the Center Of Area method (given in Def. 1.10) as the design 

parameter I.P. 5.2.

D efuzzification Strategy o f th e  FLC

Decnon

T1 v2

Figure 3.8: Defuzzification Strategy of the FBM-FLC.

Figure 3.8  shows a flow-diagram representation of the connections among the FLC’s functional units and, 

the main data driven operations involved in this Defuzzification strategy. In this figure, the term pAva  

denotes one of the membership functions (a=  left or right) computed by the Decision Making Logic Unit. 

The fuzzy set represented in the left part of the figure corresponds to one of the Av a fuzzy control actions 

known by the Defuzzification Interface. This fuzzy set (with maximum firing strength) is pointed to by the 

Sub-Rule Base R2. The COA method operates by applying in Def. 1.10 each crisp motor value (vi and V2) 

identified in Figure 3 .8  as wj E  sup(Ava). Then this CO A(vi,V 2) operation produces the centre of gravity 

which corresponds to the final (left and right) crisp variation of speed supplied by the FBM-FLC in the 

current simulation step.
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3.6. Pilot Tests and Results

This section compares pilot tests o f computer simulations driven with the FBM-FLC architecture within 

Khepera Simulator system.

3.6.1. Khepera Simulator

Khepera Simulator allows writing and testing control algorithms using C or C++ languages. This software 

package runs on UNIX workstations and provides a X I 1 graphical interface (shown in Figure 3.5 and Figure 

3.9) to visualize the robot, its surroundings and, the results o f some controller components available in the 

system. Further, the system includes a number of libraries and control functions to facilitate the construction 

of new controllers driving the motors of the robot.

The graphical interface (Khepera’s main window) is divided into two main parts: the robot and, the world 

(see Figure 3.5 and Figure 3.9). The robot (right side of the window) allows observing how Khepera’s 

sensors and motors change according to the control architecture that the user initiates within the system. This 

part of the window can also be modified to display variables, graphics, explanations and other possible 

results coming from the controller components. Finally, in the world part, the user can observe the 

behaviours displayed by the robot.

Khepera source code is written in ANSI C. Its main C structures, libraries and functions are coded in the 

following files (available in a SRC directory):

•  sim.c (main program),

•  sim.h (sim header file),

•  robot.c (robot drivers),

•  robot.h (robot header file),
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•  world.c (world management; allows creating new worlds for testing the controllers),

•  world.h (world header file),

•  graphics, c (X I1 graphical interface),

•  graphics, h (graphic header file) and,

• include.h (to be included by user.c).

New controllers must be written into a USER directory, compiled into an OBJ directory and, linked to 

Khepera’s source files. A successful operation using one of these new controllers consist o f making the 

simulator to continuously call the corresponding control functions until the robot performs the desired 

functionality. Basically, this operation requires:

• building the new system (using a make file that links the simulator source files and the new controller)

•  placing the robot in one of the available worlds (that Khepera loads from a WORLD directory),

•  pressing a “run” button to drive the controller actions to the motors of the robot,

• observing the behaviour of the robot within the world,

• unpressing the “run” button when the desired functionality has been reached and,

•  displaying and observing the path followed by the robot (to record the final results).

3.6.2. The FBM-FLC Program

We programmed our FBM-FLC architecture using the Khepera software package and, coding all the source 

files described below.
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3 .6 .2 .1 . F uzzy  Logic S o u rc e  Files

The Khepera Simulator version that we used for our computer simulations did not provide any

implementation of fuzzy sets or, fuzzy logic operators. Thus, we needed to design, code and compile the

following C source files (see Appendix C):

a) fuzzysets.h

The fuzzysets.h is the fuzzysets header file. It provides some basic C structures (degree of membership 

function values, 1-dimensional and 2-dimensional fuzzy sets, etc.) to implement the membership functions 

of fuzzy sets.

b) fuzzysets.c

The fuzzysets.c file implements a fuzzy sets framework for all the FBM-FLC units. More particularly, this 

file codes the following fuzzy sets definitions and operators:

• Singleton definitions.

•  Triangular membership functions for 1-dimensional and 2-dimensional fuzzy sets.

•  Fuzzy sets generation functions (to initiate the structure o f one fuzzy set).

• Fuzzy sets cardinality functions.

•  Fuzzy sets printing (to display the fuzzy sets as part of the graphical interface of our FBM-FLC).

•  Writing fuzzy sets to files (to store data about the generated fuzzy sets).

•  Reading fuzzy sets from file (to generate a fuzzy set structure from one data file).

•  Fuzzy set theoretic operators (union, cartesian products, etc.).

•  Triangular norms and co-norms.
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The following source files implement all the functional units o f our FBM-FLC architecture (widely 

described in section 3.5).

a) flc.h

This is the main header file o f the FBM-FLC. In addition, it provides all the constants that are required to 

define the fuzzy partitions of this controller and includes some (common) dynamic structures used by all the 

functional units.

The constant values correspond to the minimum, maximum and centre values o f the supports o f the fuzzy 

sets represented in Figure 3.6 (section 3.5.1). Some of the dynamic structures defined within this file are:

•  Partition of distances.

•  Partition of Speeds.

•  Perception o f speeds.

•  Speed variation.

•  Rule Component.

•  Rule Base.

b) flc.c

The flc.c file implements:

•  fuzzy sets boolean functions from the examination o f the sensors and motors o f the robot (used by the 

Fuzzification interface) and,

•  some common control functions (called by the Data Base and Rule Base units in some o f our computer 

simulations).
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c) database.c

This is the Data Base unit file. It creates all the fuzzy sets (and partitions) using the constants, structures and 

functions earlier described (flc.h and fuzzysets.h), provides some other functions called by the Fuzzification 

and Defuzzification interfaces (to manipulate and manage such fuzzy sets) and, guarantees the completeness 

of the database that we have designed. Some o f these last functions allow:

• Finding distance partition members.

•  Finding speed partition members.

•  Fuzzifying sensor values.

•  Fuzzifying motor values.

The file also implements some useful functions to write the partitions and fuzzified values to data files.

d) rulebase.c

The rulebase.c is the Rule Base unit file. This implements all the fuzzy control rules that we have designed

within the R1 and R2 sub-rule bases (see equations in section 3.5.3). Some o f its functions allow:

• Creating fuzzy sets of perception (as the fuzzy disjunction of fuzzified sensor values).

•  Writing fuzzy sets o f perception to data files.

•  Creating fuzzy sets of speed variation (“his”, “mis”, etc.).

•  Reading a fuzzy control rule antecedent.

•  Reading consequences of a fuzzy control rule.

•  Creating an empty rule component.

•  Creating an empty rule base.
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•  Reading a rule base from a data file.

•  Writing a rule base to a data file.

e) inference.c

The Decision Making Logic unit has been implemented in the inference.c file. This provides the fuzzy 

inference mechanisms earlier described (section 3.5.4), including some relevant functions to calculate and 

operate on the firing strengths (section 3.5.4.1) o f the fuzzy control rules. Some o f the specific functions 

included here are:

•  Creating firing strengths.

• Calculating firing strengths disjunction.

•  Writing firing strengths to a data file.

•  Selecting final fuzzy set o f speed variations (control action).

•  Calculate Mamdani’s fuzzy inference mechanism.

• Calculate Larsen’s fuzzy inference mechanism.

•  Inferring crisp control action (crisp speed variation).

f) interface.c

The Fuzzification and Defuzzification interfaces have been implemented in one single file (the interface.c 

file). Some o f its functions allow:

• Creating fuzzy partitions of distances and speeds.

•  Writing fuzzy partitions (of distances and speeds) to data files.

•  Fuzzifying speed and motor values and, defuzzifying fuzzy variations of speed.
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3 .6 .2 .2 . U se r S o u rc e  F iles

The following C libraries and functions correspond to the source files that we coded within the Khepera 

USER directory.

a) user.h (FBM-FLC user header file)

This file defines all the constant values and extern functions that are required to build one FBM-FLC within 

Khepera.

b) userl.c (FBM-FLC user file)

The userl file allows Khepera simulator calling the FBM-FLC for the robot to perform collision avoidance 

behaviours. Some of these functions are as follows (see code in Appendix C).

void Userlnit (struct Robot *robot)

{

gnuplotjile = popen("gnuplot","w"); 

if (gnuplot_file == NULL)

{

fprintf(stderr,"Warning: gnuplot not available");

}

ShowUserlnfo(1,1);

CreatePrimaryFuzzyDistancesO;

CreatePrimaryFuzzySpeeds();

dist_partition = CreatePartitionOfDistances(khepera_crisp_sensor_values); 

speed_partition = CreatePartitionOfSpeeds(khepera_crisp_motor_values); 

CompleteDistanceFuzzification(robot,dist_partition,fuzzy_distances); 

CompleteSpeedFuzzification(robot,speed_partition,fuzzy_speeds);

CreateFuzzySetsOfPerceptionQ;
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fuzzy_states = CreateFuzzyPerceptionStates(fuzzy_distances); 

rulebase = CreateEmptyRuleBase();

CreateFuzzySetsOfSpeedVariation();

firing_strengths = CreateFiringStrengths( "Union2", l,Triangular2",dist_partition, speed_partition); 

rule_contribs = DisjunctionOfFiringStrengths(firing_strengths,Malg union"); 

fuzzy_variation = CreateNullSpeedVariation();

}

Khepera calls the Userlnit function when the user starts a new simulation. We have completed this function 

to initialise all the fuzzy partitions o f our fuzzy sets (described in section 2.5.2) as to create an empty rule 

base.

void NewRobot (struct Robot *robot)

{

pas = 0;

ShowUserlnfo(2,1);

FreeRuleBase(rulebase);

FreeSpeedVariations(fuzzy_variation);

DML_right = 0.0;

DMLJeft = 0.0;

crisp_variation[RIGHT] = 0; 

crisp_variation[LEFT] = 0;

}

The NewRobot function is called when the “new robot” button is pressed in Khepera’s main window. Our 

implementation of this function serves to initialise all the fuzzy control variables that are manipulated by the 

FBM-FLC. Note that this function frees, for example, current fuzzy control rules and crisp speed values 

(output by the Defuzzification interface).
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void RunRobotStart (struct Robot *robot)

{

path_file = fopen("STATS/path.dat","w"); /* modify to "a"*/ 

leftspeed_file = fopen(”STATS/leftspeed.dat"I"w"); 

rightspeed_file = fopen("STATS/rightspeed.dat"I"w"); 

leftsensors_file = fopen("STATS/leftsensors.dat',,"w"); 

rightsensorsjile = fopen("STATS/rightsensors.dat","w"); 

backsensors_file = fopen("STATS/backsensors.dat,l,"w"); 

step_controller = fopen("EXAMPLES/FBM_FLC/step.controller,,f"w"); 

lnitStepControllerFile(step_controller); 

if (GetUserlnfo()!=3 || Get(JserlnfoPage()!=1)

ShowUserlnfo(3,1); 

fuzzy_variation = CreateNullSpeedVariation();

}

The RunRobotStart function opens some data files (storing statistical information about the current trial o f  

the controller) and initialises the FBM-FLC functional units.

boolean StepRobot (struct Robot *robot)

{

pas++;

DrawStep(pas);

DrawPositionRobot(robot);

DML_right = 0.0;

DMLJeft = 0.0;

fprintf(path_file,"%lgl %lg\n"frobot->X,1000.0-robot->Y); 

fprintf(leftspeed_file,"%ldI %ld\n",pasIrobot->Motor[LEFT].Value); 

fprintf(rightspeed_file,"%ld, %ld\nHtpas,robot->Motor[RIGHT].Value);
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/* Fuzzification 7

CompleteDistanceFuzzification(robot,dist_partitionffuzzy_distances);

CompleteSpeedFuzzification(robot,speed_partition,fuzzy_speeds);

DrawFuzzySpeeds(robot,speed_partition,fuzzy_speeds);

DrawFuzzyDistances(robot,dist_partition,fuzzy_distances);

/* write fuzzy distances and fuzzy speeds to file 7  

fuzzy_states = CreateFuzzyPerceptionStates(fuzzy_distances);

DrawFuzzyPerceptions(robot,fuzzy_states);

/* select rules and discriminate perceptions 7  

fuzzy_variation = Fuzzylmplication(fuzzy_states,fuzzy_speeds,

rulebase,firing_strengths,

speed_partition,fuzzy_reasoning);

/* DML: Applying fuzzy reasoning.7 

!* Fuzzy implications and firing strengths 

for infering control action 7

DML_right=lnferControlActionMembership(rule_contribs, fuzzy_variation->FtightVariation,fuzzy_reasoning); 

DML_left=lnferControlActionMembership(rule_contribs, fuzzy_variation->LeftVariation,fuzzy_reasoning);

/* Defuzzification 7  

crisp_variation[RIGHT] = CAM(fuzzy_variation->RightVariation,DML_right); 

crisp_variation[LEFT] = CAM(fuzzy_variation->LeftVariation,DML_left);

/* Applying control action 7  

robot->Motor[RIGHT].Value += crisp_variation[RIGHT]; 

robot->Motor[LEFT].Value += crisp_variation[LEFT];

CorrectMotorValues(robot);
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DrawFuzzySpeedVariation(robot,fuzzy_variation); 

fprintf(leftsensors_file,"%ld, %lg\n",pas,1000.0-10); 

fprintf(rightsensors_file,"%ld, %lg\n",pas,1000.0-10); 

fprintf(backsensors_file,"%ld, %lg\n",pas,1000.0-10);

fprintf(step_controller,"%6d%6d\n",crisp_variation[RIGHT], crisp_variation[LEFT]); 

return(TRUE); /* continue the run of the robot 7

}

The StepRobot function is called by the simulator as long as the “run” button (of its graphical interface) is 

down. This is the core function of our controller user files. We have implemented this function to call all the 

FBM-FLC functional units to control the robot’s behaviour. In addition, this function calls our FBM-FLC 

graphical components to display some relevant information on Khepera’s main windows (see section 3.6.3).

c) user J n f .h  (FBM-FLC graphical interface header file)

d) user2 .c (FBM-FLC graphical interface)

We have coded the user2 source file to display the FBM-FLC functional units and show all the fuzzy values 

that this architecture calculates /  manipulates. We show all the functions o f this source file in Appendix C.

3 .6 .2 .3 . M akefile

Our makefile compiles the FBM-FLC source files (fuzzy libraries and user files) using a C compiler (gcc -c), 

links these to Khepera software and, creates object files into the OBJ directory to finally produce an FBM- 

FLC executable file.

VPATH=OBJ/:SRC/:USER/

CFLAGS = -l/usr/include \ -l/usr/openwin/share/include \ -03  

LIBS = -L/usr/lib -L/usr/openwin/lib -1X11 -Im
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cc = gcc $(CFLAGS) -c 

CC = gcc $(LIBS)

sim: sim.o robot.o world.o graphics.o khep_serial.o fuzzy.o userl .0 user2.o interface.o inference.o

$(CC) OBJ/sim.o OBJ/robot.o OBJ/world.o OBJ/graphics.o OBJ/khep_serial.o OBJ/fuzzy.o 

OBJ/user1.0 OBJ/user2.o OBJ/interface.o OBJ/inference.o -o sim 

sim.o: sim.csim.h

$(cc) SRC/sim.c -0 OBJ/sim.o 

robot.o: robot.c robot.h

$(cc) SRC/robot.c -0 OBJ/robot.o 

world.o: world.c world.h

$(cc) SRC/world.c -0 OBJ/world.o 

graphics.o: graphics.c graphics.h

$(cc) SRC/graphics.c -0 OBJ/graphics.o 

khep_serial.o: khep_serial.c khep_serial.h gen_types.h 

$(cc) SRC/khep_serial.c -0 OBJ/khep_serial.o 

fuzzy.o: CONTRIB/fuzzysets.c CONTRIB/fuzzysets.h SRC/include.h 

$(cc) CONTRIB/fuzzysets.c -0 OBJ/fuzzy.o 

userl .0: userl .c user.h userjnfo .h  include.h 

$(cc) USER/user1 .c -0 OBJ/user1.0 

user2.o: user2.c user.h userjnfo .h  include.h 

$(cc) USER/user2.c -0 OBJ/user2.o 

interface.o: CONTRIB/interface.c CONTRIB/flc.h robot.h include.h 

$(cc) CONTRIB/interface.c -0 OBJ/interface.o 

inference.o: CONTRIB/inference.c CONTRIB/flc.h robot.h include.h 

$(cc) CONTRIB/inference.c -0 OBJ/inference.o 

header.h: types.h graphics.h sim.h robot.h world.h 

touch SRC/header.h

clean:

rm -f sim OBJ/*.o
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The following section describes our computer simulations using the resulting FBM-FLC executable file.

3.6.3. Computer Simulations

Several computer simulations were needed (analysed) before establishing a heuristic verbalisation o f our 

Collision Avoidance FBM. The first simulations were carried out with a crisp version o f a control program 

based on the FBM described in section 3.3. Then it was observed that Khepera needed more complete 

statements in order to gradually avoid collisions depending on the degree of activation of the 

perceiving_obstacles node (as discussed in section 3.2). Finally, when the FBM-FLC executable file was 

built, several trials were also necessary to tune the first prototype of fuzzy control rules.

Figure 3.9 shows Khepera’s main window and the graphical interface of our FBM-FLC program (displayed 

the simulator when it calls our user2 source file and related functions which write fuzzy values to data files).

This window shows Khepera robot placed in a world, the robot and, a graphical look-up table of I/O fuzzy

data that we have built within Khepera system to show the results o f our control architecture. Basically, this 

look-up table displays the progressive (step by step) performance o f the FBM-FLC program. From one 

controlled movement to the next, it shows:

• the number of current simulation steps,

• the position of the Khepera simulated robot,

•  the fuzzified distances and speed motor values,

•  the levels o f perception read from R1 and,

•  the fuzzy variations inferred by the Decision Making Logic Unit.

Later crisp motor speeds obtained when adding the output of the Defuzzification Interface to previously 

achieved motions can be observed in the plan view o f the simulated robot (top-right side o f Figure 3.9).
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Running Khepera with th e  FLC

■J W*»j m>l fe«oiJ _?j

Figure 3.9: Running Khepera, Simulated Environment and Initialised I/O Fuzzy Data of the FBM-FLC.

In addition, our FBM-FLC program uses Khepera’s facilities to plot the paths followed by the simulated 

robot after any desired number of steps and provides the following commands (specially useful for driving 

our pilot tests):

•  reading a new set o f fuzzy control rules,

• modifying fuzzy partitions and,

• displaying 3D views of control surfaces.

Our computer simulations driven with the FBM-FLC program were focused on two main objectives. First, 

testing the general fitness of Fuzzy Control techniques to develop collision avoidance behaviours. Second, 

investigating the fuzzy inference mechanisms (described in section 3.5.4) that would be more suitable for the 

simulated robot to optimally avoid collisions with stable obstacles. Our intention was that the robot should 

follow smooth parabolic trajectories rather than make inflexible angle turn movements.
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The first goal was satisfactorily achieved even before the Sub-Rule Base R2 was accurately tuned since 

Khepera was observed to avoid obstacles effectively. Regarding the second objective, we evaluated the 

shapes of the paths followed by the robot within a number o f  environments (worlds built on bricks).

We executed early experiments using simple worlds, not only to test our FBM-FLC program and to 

gradually fix an optimal set o f fuzzy partitions but also, to tune the whole Rule Base (RJ and R2) described 

in section 3.5.3 (Tables 3.2 and 3.3). Then we carried out our final computer simulations on the environment 

(world) shown on the left side of Figure 3.9.

Figures 3.10 to 3.12 show the results of some of our early simulations using an “empty world”. Here we 

gradually fixed the fuzzy control rules set until observing that Khepera was able to avoid the wall of the 

environment while producing large right turn movements (following smooth parabolic trajectories). For all 

these simulations we placed the robot in the middle of the world.

Path of Khepera in Empty World (1)
P a th  o f  Khef>«"a Robot

"STATS/path, d a t '

1000

Figure 3.10: Running Khepera in an empty world (1).
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Figure 3.11: Running Khepera in an empty world (3).

Path of Khepera in Empty World (3)

"STA TS/p*th.det"

Figure 3.12: Running Khepera in an empty world (3).
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The resulting (first) collision avoidance policy (mainly defined in flc .h ) was achieved after several trials 

involving our FBM-FLC program built on Khepera system. Basically, we achieved a first R2 prototype 

selecting the speeds at which the simulated robot was desired to avoid the wall and, modifying the control 

actions (fuzzy variation of speed) required to achieve those speeds.

Figures 3.13 & 3.14 illustrates the path followed by robot while we were trying to fix the first set of fuzzy 

controls rules (flc.h constants) so that the robot could avoid the two worlds of one of the top-left corners of 

the empty world. Basically, we had to train all the levels of perception (producing a first R1 prototype) and 

slightly modify the first R2 prototype until the robot was able to negotiate the corner.

For the experiment driven for Figure 3.13, we focused on turn right movements for avoiding the two walls of 

the corner. The path displayed in Figure 3.14 corresponds to a very parabolic turn left movements.

Path of Khepera in Empty World (4)
P ith  o f Khopori Robot

•STATS/>>ath.dat"

Figure 3.13: Running Khepera in an empty world (4).
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Path of Khepera in Empty World (5)
Pa th  o f  Kh*p«ra Robot

;S T A ?S /> ath .da f

< « .f3 ll.g !f>
Camar. L, woll jallow3.tot>i: 

initial pooitian  ** <£*80, 70 >  ™ t

Figure 3.14: Running Khepera in an empty world (5).

3 .6 .4 . E x p e r im e n ta l  R e s u l ts

We built the collision avoidance environment shown in Figure 3.9 to offer diverse tests of our FBM-FLC 

architecture equipped with different types of inference mechanisms. Starting with the distribution of 

obstacles in the sub-environment A and finishing with the corridor B, we carried out around 50 pilot tests 

following four major steps:

• selecting the inference mechanism and installing this within the FBM-FLC program,

• initiating the FBM-FLC program within Khepera system,

• running the simulator until the robot was observed to achieve an exit of the corridor and, finally,

• saving and studying the shape of the path followed by the robot, taking note of the number of simulation 

steps needed for the current test.
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For each selected fuzzy inference technique, our FBM-FLC program computes and stores the firing  

strengths that evaluate the contribution o f  the fuzzy control rules (the Collision Avoidance FBM) in the 

product space of the supports of perception and speed (D xS). For each pair (do,so) with distance doE D and 

crisp speed motor values soeS, Figure 3.15 shows the corresponding firing strengths ai obtained from 

juAp(do) & juAs(so) by applying the rule of inference related to one of the fuzzy inference techniques.

From this figure (3.15), it is clear that values Cti(do,so) calculated by M amdani’s minioperation rule of 

inference (first type of fuzzy inference shown in sub-Figure 3.15(a)) differ significantly from those 

corresponding to Larsen’s product operation rule (second type of fuzzy inference shown in sub-Figure 

3.15(b)). Thus, for any particular environmental situation, the control actions inferred by the FBM-FLC may 

also differ from one type of inference mechanism to another.

Firing Strengths

Figure 3.15: Firing Strengths of the FBM-FLC with (a) Mamdani’s and (b) Larsen’s Fuzzy Implications.

Some representative results of our pilot tests using (Mamadani's and Larsen’s) fuzzy inference techniques 

while Khepera was controlled in sub-environments A and B are shown in Figure 3.16 and Figure 3.17,
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respectively. Basically, these pictures show that Khepera was observed to follow different paths when the 

type of fuzzy inference was modified within the inference mechanism of our FBM-FLC. This is due, as was 

commented before, to the differences among the firing strengths that contribute to the control actions 

inferred by the FLC.

In any particular simulation step, the fuzzy variation of speed computed for the next run of the system varies 

from one fuzzy inference mechanism to another. Therefore, the motions and resulting directions of 

movement are also different when adding the defuzzified variations of speed to the crisp motions 

corresponding to a previous simulation step.

Path of Khepera in Corridor A

Figure 3.16: Paths of the Khepera robot in corridor A for: (a) the Mamdani’s fuzzy inference 

technique, (b) the Larsen’s fuzzy inference technique.

As Figure 3.16 shows, it does not matter where Khepera is located within the world before a control process 

starts. The final positions attained after several simulation steps differ from one mechanism to another.
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The paths in Figure 3.16(a) and Figure 3.16(b) show the results for the robot initialised in the top-left corner 

of the corridor A and directed to move at 320 degrees to the motor axis.

In the case of Mamdani’s minioperation rule (see Figure 3.16(a)), the corresponding firing strengths control 

movements whose directions vary between 35 and 40 degrees of the corridor walls. When any internal side- 

perception is built as “obstacle moderately perceived”, the fuzzy variations produce large turn movements 

rather than U-turns (20 to 45 degrees) as happens with Larsen’s product rule of inference. Thus, after a 

certain number of simulation steps, the first fuzzy inference technique allows Khepera to go further than 

when it is controlled by the second fuzzy inference technique (see Figure 3.16(b)).

The pilot tests carried out within sub-environment B are shown in Figure 3.17. We built this world to 

investigate the fitness of fuzzy inference techniques to allow Khepera to move through a T-corridor.

Figure 3.17: Paths of the Khepera robot in corridor B for: (a) the Mamdani’s fuzzy inference 

technique, (b) the Larsen’s fuzzy inference technique.
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It follows from the previous analysis that the second inference mechanism makes the robot run into a wall 

almost immediately. Thus, the number of times that the levels of perception (derived from the Sub-Rule 

Base R1) are equal to “coll” remains, in the second inference mechanism, bigger than in the first. Higher 

fitness levels in a T-corridor deal with a lower number of collisions in order to allow a robot to negotiate 

away from the walls. This means, frequently following the corridor’s middle line so that the robot can 

proceed easily down the sub-environment B. Therefore, according to this measure of fitness, the inference 

mechanism based on Mamdani’s technique can be expected to perform at a higher level than the inference 

mechanism based on Larsen’s technique.

Table 3.4 summarises the results of 10 runs of each fuzzy inference method. We have achieved all of them 

by initialising robot’s position in the top-right entrance and pointing in a “south-west” direction (230 

degrees).

Pilot T ests  in Corridor B

Step* Fuzzy Reasoning Exit Trial*

340 Mamdami south 2
310 Mamdami north-east 7
420 Mamdami north-west 1
430 Larsen north-east 10

Decerrcer <6. 20Ci

Table 3.4: Pilot Tests in Corridor B.
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Note in the Table 3.4 that only 2 runs achieve the “south” exit o f the T-corridor. Note also that both pilot 

tests correspond to a control program based on the first fuzzy inference techniques. An example of this 

behaviour is shown in Figure 3.17(a). However, most of the trials in Table 3.4 show Khepera’s tracks going 

out of the T-corridor (B) through the same entrance selected for the initialisation o f robot’s position. This 

sort o f performance can be seen and understood in Figure 3.17(b) for motion controlled by the second 

approach. In this case, and after the first 270 simulation steps, the mobile robot was observed to impact into 

the second wall opposite the entrance following a consequent turn back movement (160 degrees) to finally 

arrive at the “north-east” exit.

All these results for the sub-environments A and B appear to indicate that the FLC built on Mamdani’s 

inference technique behaves with a higher level o f  fitness than Larsen’s inference technique. Thus, 

Mamdani’s fuzzy implication scheme seems to provide more reliable control actions than those conferred by 

Larsen’s product operation.

The firing scheme derived from the intersection fuzzy conjunction o f perception and motion (Equ. 3.14 & 

Figure 3.15(a)) ensures the avoidance of a higher percentage of collisions than those related to the algebraic 

sum (Equ. 3.15 & Figure 3.15(b)). Additionally, from one simulation step to another, there exists a smooth 

transition of membership functions induced by Mamdani’s minioperation rule o f inference. The evidence 

refers to control membership values (jJAvleft & juAv right from Equ. 3.16) stored and analysed by our control 

program. These control actions were observed to vary less strongly for Mamdani’s minioperation rule o f  

inference than in the case o f Larsen’s product operation. Thus, the resulting directions of movement acquired 

by Khepera allow it, most of the time, to follow the middle line of the corridor rather than bumping into the 

brick walls.

Figures 3.18 to 3.20 illustrate some other collision avoidance behaviours displayed by the robot involving 

the Mandani's fuzzy implication scheme.
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For these last pilot tests, we initialised the robot in the down-middle side of the A sub-environment and 

directed it to move towards the down entrance of the T-corridor (see Figure 3.9). The final objective of these 

last runs was observing that the robot was able to negotiate the T-corridor and reach any of the top (right or 

left) exits. But our results where not very successful in the sense that the robot could only get any of the top 

exists in few runs (1 out of approximately 30).

■STATS/path.dat'

Figure 3.18: Path of Khepera robot passing through the T-corridor.

In Figure 3.18, Khepera reaches the entrance to the T-corridor and makes some rounds (collisioning into the 

walls) until it finally comes back passing through the same entry point. Figures 3.19 and 3.20 show a couple 

of runs where the robot was observed to move towards the exit points. In the first trial (3.19), the robot 

tracks going through the T-corridor to try to reach the right exit. By contrast, in Figure 3.20, the robot passes 

through the left side of the B sub-environment to finally reach the left exit.
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Negotiating Corridor (1)

Figure 3.19: Path of Khepera robot negotiating the T-corridor (1).

Negotiating Corridor (2)

&T«TS/p»th.6*f

Figure 3.20: Path of Khepera robot negotiating the T-corridor (2).
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Chapter 4
The FBMs Framework

Abstract

“As the complexity of a system increases, our ability to make precise and yet significant statements about its 

behaviour dimishes until a threshold is reached beyond which precision and significance (or relevance) 

become almost mutually exclusive characteristics” (Principle o f  Incompatibility, by L. Zadeh).

This chapter presents a FBM Framework based on the use of more generic FBMs, levels o f  abstraction and 

refinement stages to develop BBSs. This work extends the definition and use of FBMs earlier discussed and, 

concentrates on the “development of large-scale BBSs” while introducing some more general ideas to solve 

the complexity issues outlined in chapter 1.
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4.1. Generic FBMs

We can make FBMs driving several interaction types. We can add connection links to these maps as to 

represent the following two models o f  interaction:

•  a top-view model o f interaction between the levels o f activation of the behavioural nodes and,

•  a lower model o f  interaction between some internal components o f the behavioural nodes and external 

elements/mechanisms.

The problem with this type o f  FBM is that it becomes necessary identifying what the behaviours are or at 

least, those specific components / parameters of the behaviours that should be closely related at a lower level 

o f design. This is, we need refining the design o f the structure and performance o f the FBM (see further 

discussions in chapter 4). Though we can also be flexible in the way we address this. For example, we can 

extend the number and type of its nodes and causal interactions as to become useful tools for the modelling 

of more natural behaviours (e.g., animal behaviour)

Following the ethological studies outlined in section 1.2.2.1, living organisms are observed to perform 

different sort of behaviours according to their environmental stimuli and their internal (physiological and 

motivational) states. Then, once the agent accomplishes behaviour, the environmental and/or internal states 

change accordingly.

Using FBMs for modelling animal behaviours, we must refine the number and type of components o f the 

behaviour producing modules (nodes) so that some of these (e.g., actions) become active and causally 

affected by the changes (e.g. state transition) o f others. The causal flow o f some behaviour modules can be 

fired and causally affected by other modules such as:
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•  environmental stimuli o f the agent (e.g. IR sensor readings of mobile robots) that might become active 

once the agent starts interacting with its environment; they can engage the agent to perform the 

behaviours that they causally affect,

•  internal components/mechanisms o f the agent (e.g. physiological, motivational states or physical 

resources of its morphological set-up) that can also activate the FBM while determining which 

behaviours are more relevant in a given situation and,

•  resources (e.g. energy levels of the agent, fuel, temperature, etc.) that might be required (and could be 

consumed) during the performance (accomplishment, execution) o f behaviours or, during specific 

behavioural change.

These components or, their changes (e.g., state transitions) can directly cause the activation o f a FBM and so, 

engage the agent to perform the behaviour(s) that it represents. Some of these components can also be 

considered as part of the internal causal flow o f the map; they can increase/decrease the degrees o f activation 

of the behaviours (at any instant in time). Further, these external components can also be affected by the 

FBM. This map can be designed to drive feedback connections to external conditions and / or implement 

possible consequences of behaviour activations (executions). This is, the flow o f an FBM can be extended as 

to include (and drive) some feedback connections (and related computations) that allow changes on the 

components it is affected by.

In essence, what all these behaviour-oriented modules (sub-modules) and interaction processes tell us is that 

we can address the overall performance of the FBM through a number of stages that might include (but are 

not limited to):

1. Wait for firing conditions from external components and modify degrees o f activation accordingly

2. Drive the internal causal flow until terminating condition is reached
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3. Wait for behavioural performance o f the agent (“behaviour execution” that could be part of the 

computations o f the map)

4. Drive feedback connections to external components and modify them (execute “consequences of 

behaviours”) accordingly

5. Wait fo r  the completion o f  all consequences o f behaviour execution and, return to 0.

During step 1, the FBM is in a resting position (state). All its nodes have the potential o f being activated or, 

causally effected, by the external components that determine the current situation o f  the agent. Then, once 

something happens, it starts driving the causal links that its edges represent and keeps on swirling until a 

terminating condition (e.g. maximum degree o f activation in one o f the behaviours) is reached. In the next 

step (step number 2), the FBM waits for the execution o f behaviour.

In practice, the designer of the FBM might map the behaviour nodes o f the FBM onto specific tasks or, non

central control actions that allow the agent exhibiting the required functionality (e.g. we can model task- 

achieving behaviours). These computations can be time consuming and make the behaviour map stopping 

from further evolution. More importantly, all the processes must be completed in such a way that the causal 

flow and components o f the FBM are appropriately changed.

Following [McFarland & Bosser-93], a transition in the internal state of an agent is a logical consequence of 

the accomplishment of a specific behaviour. This has to be reflected in the corresponding components of the 

FBM. Some behaviour nodes will be responsible for changing some specific parameters of the environmental 

stimuli (i.e., pushing an object). Finally, some resources of behaviours will be consumed during the step 

number 1, in time of interaction o f the behavioural map with the environment o f the agent.
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For example, if a behaviour such as moving around gets maximum degree of activation (the agent performs 

this behaviour) it is necessary updating the FBM so that the level of a fuel resource is modified (decreased) 

accordingly.

The same sort of consequence might be necessary during a transition stage (not only when one or more 

behaviour modules are ready to perform some actions). Thus, the number and complexity of causal links will 

depend on the number and complexity of behaviours (and external components) that are designed using the 

FBM.

Figure 4.1 represents a generic (and dynamic) FBM with a set o f  behaviours (b l , ..., b4) which degrees of 

activation are causally related to a set o f  external resources (e l , ..., e4) considered during the design process 

of such behaviour producing modules.

Figure 4.1: “Generic FBM”: External Effectors, Internal Flow and Consequences of Behaviours.
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Note that the strengths of the connections used in this map are fixed  in the sense that they do not change 

when the map is running. Further modifications on the definitions of these (fuzzy) connections might be 

considered in a future work (when we try to accomplish the design and implementation of Learning FBMs). 

Some examples of these generic FBMs are described below.

Figure 4.2 illustrates a top-view model o f  interaction of a FBM that has been largely inspired by Maes’ 

Action Selection Mechanisms [Maes-89a; Maes-89b; Maes-90a; Maes-90b; Maes-91]. A low-view model o f  

interaction for this map is represented in Figure 4.3.

moving_around

'a lw a y s '

drinking

'always"

sleeping

Figure 4.2: Top-View Model of Interaction of a FBM.

The high-level network (Figure 4.2) represents four behaviour nodes (moving_around, drinking, eating and 

sleeping) with negative causal connections among them (i.e. they cannot be displayed by the agent at the 

same time). However, we can be flexible in the way we design this FBM. In fact, we can refine its behaviour 

nodes down to a number of behaviour-oriented mechanisms.
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Figure 4.3 represents one of these low-level mechanisms. Here the high-level behaviours have been 

decomposed into two types of components (actions and external resources) so that an agent can display a 

high-level behaviour by means of action selection. This low-level behaviour network illustrates an action 

selection mechanism  as a continuous process. It takes place once the level of activity of an action reaches a 

maximum value (i.e. “ 1”).

aggression

curiosity
avoid

obstacle

explore

lazyness
go-to-water

thirst
water

Figure 4.3: Low-View Model of Interaction of a FBM.

All the actions (white nodes) are connected using either positive causal links (meaning that they change their 

levels of activity in the same direction) or, negative causal links (meaning that they change their levels of 

activity in opposite directions). For example, as the degree to which the selection of the go-to-food action 

increases (decreases), the tendency to which the eat action can be selected increases (decreases) too. By 

contrast, if the level of activity of the run_away action increases (decreases), then the level of activity of the 

sleep action decreases (increases). Therefore, the agent can display a high-level behaviour (or another) by 

means of increasing (decreasing) the selection of one or more actions.
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The external resources (green nodes) represent inputs to the behaviour network. These causally influence the 

action selection processes. More particularly, there are two types o f external resources: external stimuli (from 

sensors of the environment) and motivations (derived from internal stimuli/mechanisms of the agent). The 

external stimuli correspond to water and food. The rest o f the external resources (curiosity, fear, aggression, 

etc) represent motivations of the agent that can also influence the behaviour network.

The external stimuli become active once the agent starts interacting with its environment. They can engage 

the agent to select any of the actions that contribute to the high-level behaviours. The motivations also 

activate the action selection process but these are derived from internal stimuli o f the agent. All these 

external resources influence the levels o f activity of the actions. They can directly cause the action selection 

mechanism. For example, if  the level offood  increases (decreases) then the tendency to which the go-to-food 

action can be selected decreases (increases). Similarly, if the level o f water increases (decreases) then the 

tendency to which the drink action can be selected increases (decreases) too.

Once this low-level FBM becomes active (some threshold is reached in any o f the external stimuli and/or 

motivations), such activation is spread inside the network. Further, we can address the overall procedure 

through the following stages:

1. Calculate the level o f activity of the external stimuli and motivations

2. Spread activation along all the action nodes

3. Let the most internal map (the one that communicates all the action nodes) evolve until some maximum 

level o f activity (activities) is reached

4. If no action(s) is selected, repeat the cycle

5. Wait for the agent to complete action(s) and, repeat cycle.
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4.2. The FBMs Framework

As we have demonstrated so far, we can develop FBMs using two major approaches. First, we can design a 

FBM and implement this using a FLC architecture (chapter 3). Second, we can design a generic high-level 

FBM and refine this down to a low-level behaviour network (section 4.1) that can be developed as any other 

BB Network (e.g. using ANNs).

Using the first development approach, we have designed a Collision Avoidance FBM at a first level o f  

abstraction (identifying sensorimotor activities that help to perform collision avoidance behaviour) and 

mapped the fuzzy relations of this map onto fuzzy control rules. Further, we have developed a complete FLC 

to store the fuzzy control rules, fire these (using some flexible inference mechanisms also incorporated into 

the FLC architecture) and optimise the behaviour performance of the robot. This is, we have refined the FBM 

down to an implementation level, using some fuzzy inference mechanisms and related functional units 

(fuzzification and defuzzification interfaces, etc) that help to optimise the first abstraction.

Following the second approach, we have started with a high-level FBM and refined this down to an action 

selection mechanism (section 4.1) that can be developed using some principles found in BB Networks 

(section 1.4.1.2).

In this section, we go a bit further regarding the development of FBMs. We discuss how FBMs can be 

developed using many different techniques (not only Fuzzy Systems or, BB Networks).

The FBM Framework (development framework) that we present here provides new fundamentals about how 

to develop FBMs using two keywords levels o f abstraction and refinement. Its principal scope is to help on 

the design of large-scale and complex behaviour-based models where dynamic elements and related cause- 

effect relations are needed. Further, this FBM Framework can be taken into the implementation details that 

are required to develop physical BB architectures like, for example, Subsumption Architectures [Brooks-86].
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The following sections describe these ideas while introducing some technical aspects about how to develop 

FBM-based architectures and, more particularly, a complex multi-agent BB Systems based on non- 

hierarchical Subsumption Architectures.

4 .2 .1 . L e v e ls  o f A b s tra c t io n  o f FB M s

FBMs can be used to adopt abstract views of behaviours as to design very low level behaviour-oriented 

processes such as the sensorimotor activities. That is, we can start up the development process of a BBS with 

a high level abstraction of behaviour-oriented modules and their interactions (a first FBM) and, move down 

to lower level abstractions by a number of refinement stages (see Figure 4.4).

Refinement

Figure 4.4: FBM Framework. Levels of Abstraction and Refinement.

The first level of abstraction represents a qualitative net of some behavioural nodes. It is a top-level, 

dynamic, and interaction-based model of potential behaviours based on the behaviour-oriented structures
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that we have identified for abstract, simple FBMs. The complexity of this (first) FBM model depends on the 

decisions made by the designer. But it is important to emphasise the fact that it is not intended to be a 

physical model, namely, because this is the purpose o f the refinement stages that characterise the framework.

An FBM is abstracted from the selection of behaviours and the first (top level) interactions among these. The 

designer does not need to worry about what the behaviour producing modules should be (i.e. a goal- 

attainment modules) or, what the agent is equipped with. Most BB Systems are designed so that the 

morphological set up of the agent and the control actions (that are required to perform the required 

functionality) are identified first. This is not considered using FBMs as abstract views of behaviour systems. 

The morphological set up of the agent(s), control actions and other parameters can be identified in the latest 

stages of development (once the FBM is targeted for a specific creature and/or control situation).

The abstraction of environment-related mechanisms can also be avoided to some extent. The environmental 

resources can be used to see how to activate the behavioural nodes of the map. Environmental conditions 

effecting on the degree of activation of these nodes might also be identified at lower levels abstraction. Some 

of these can be treated as constants over certain periods of time. Other environmental conditions might be 

dynamic ones (processes /  mechanisms).

In summary, the development framework that we propose uses abstractions and refinement stages to find out 

those behaviour-oriented parameters that are relevant for the activation o f behaviour-producing modules and 

their causal interactions.

4.2.2. The Refinement of FBMs

We exploit the mapping of FBMs onto BB architectures searching for the realisation of refined behaviour- 

oriented systems where it is possible (in latter stages of design) identifying node strings with behaviour- 

oriented commands that in turn might control specific components o f an agent (or, external resources).
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Therefore, we use this refinement of FBMs to identify lower design parameters (rather than fuzzy sets or 

variables as it was to the fuzzy implementation provided in chapter 4 while helping on the definition of the 

behaviour-oriented processes identified at first levels o f abstraction.

The nodes and edges can change from one level o f abstraction to another. Indeed, once one behavioural 

node and its interactions with others have been refined, it might occur that the structure changes completely. 

One node might be divided into a number of sub-nodes. One connection link might also be divided into 

different links adding new qualitative and quantitative information. Further, the changes in the connection 

links might come from the identification of either co-operative or competitive behaviours (their activities 

change in either the same or opposite directions).

The behavioural interactions are refined so that these become either implicitly or explicitly specified. In 

implicit specifications of behavioural interaction, the activity of one behaviour increases or decreases the 

activity of another. In the explicit description of behavioural interactions, information exchange and, 

parameter passing mechanisms is taken into account. This last refinement has been inspired by the work 

presented in [Brooks-94].

Further, the refinement is based on different criteria. The most obvious refinement process is based on 

identifying basic abilities that are relative to the selected behaviours. For example, if we want to design a 

“seek for light” behaviour, it is necessary refining this behaviour into basic tasks such as “moving_around”, 

“light identification” or, “detecting the proximity of the lights”. The ability to move around is independent o f  

that of identifying the light sources. The agent needs to perform both at the same time. However, if the agent 

strongly identifies a light source, it should check the proximity of this. In fact, a detection o f the light might 

cause the measurement of distance to this. Then, as the detection o f proximity to the light sources increases 

(it is very close to the light), the agent should decrease the activity o f moving around. Therefore, these two 

abilities might change in opposite directions. Similarly, if the agent strongly identifies a light source, it
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should stop moving around and make a movement a head (rotation angle). This provides us with a final FBM 

that we can try to implement with some sort o f sensorimotor connections and control actions.

Another possible refinement is that based on states o f  the agent. Notice that this state-based refinement gives 

us a final FBM that could be implemented using Finite State Automata techniques.

Finally, we can use a neural-based refinement identifying the neural structures (sub-systems) that are 

associated to the selected behaviours. This would be the most biological approach to refine FBMs.

As we can see, the FBMs can be easily scaled up and refined so that it becomes a large-scale system where 

numerous interaction processes can take place. The final level o f abstraction that is achieved can be ready for 

implementation or not.

The fact is that only when deciding for the implementation level, the map might be able to operate so that the 

behaviours become activated and operate according to the interactions that have been designed. The most 

general FBM-architecture, as suggested earlier, can also incorporate some external modules that might be 

behaviour-independent.

4.3. An Application Case Study

This section provides some initial steps about how to use the FBM Framework to derive a complex, multi

agent and non-hierarchical BB System presented in [Mataric-92b] (largely inspired by Brook’s Subsumption 

Architecture).

Basically, the Subsumption Architectures [Brooks-86] are developed in an incremental fashion. These BB 

Systems are built by means o f implementing basic behaviours (as layers o f agent competences that couple 

sensing and acting capabilities) and aggregating new ones (based on the same design principles). Each 

behaviour unit (identified first) hides low-level design details. It is designed to drive some control actions
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from the sensors to the actuators of the agent while being able to stop other behaviour units from performing 

any computation. The overall system (control mechanism) is based on parallel operations and subsumption 

relations. Priority schemes are used so that it is possible to arbitrate which behaviour unit (control layer) can 

route its outputs to the actuators o f the agent.

By contrast, using the FBM Framework, we start at a high level o f abstraction (with an abstract view about 

behaviours and their interactions) and try to design low-level behaviour-oriented processes (e.g. sensorimotor 

activities) that can be implemented using, for example, the strengths of the behaviour units that characterize 

the Subsumption Architectures. The main idea, as described in section 4.2, is following as many refinement 

stages as required to complete the development process.

[Mataric-92b] uses Brook’s approach (the Subsumption Architecture) to develop a multi-agent BB System. 

This author builds five basic behaviours (safe-wondering, following, dispersion, aggregation and homing) as 

building blocks for complex group behaviour in a multi-agent system. Basically, the development process 

that is followed in [Mataric-92b] consist of:

•  selecting the basic behaviours (control laws) following some special criteria (i.e. being able to generate 

the required complex group behaviour),

•  preparing formal specifications for all the basic behaviours (using position, distance and threshold 

parameters),

•  designing appropriate algorithms for each basic behaviour and implementing these,

• evaluating all the basic behaviours (optimisation)

• combining all the basic behaviours (using some kind of combination operator) so that the complex group 

behaviours can be displayed by all the agents.
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The basic development process that we follow to derive a BB System that is able to display the same target 

behaviours (group behaviours) using the FBM Framework can be summarized as follows:

• analysing the target behaviours (group behaviours)

• abstracting the target behaviours and high-level interactions among these (first FBM based on group 

behaviours and causal influences among these)

• refining first FBM until implementation details o f each basic behaviour can be specified (second FBM 

with more refined group behaviours and causal influences among these)

• designing appropriate algorithms for each basic behaviour and implementing these,

•  evaluating all the target behaviours (optimisation)

[Mataric-92b] investigates four group behaviours that are mutually exclusive. Figure 4.5 represents a first 

level o f abstraction for these mutually exclusive behaviours. Following the experiments reported in Mataric- 

92b], flocking behaviour can be designed, as a direct combination o f safe_wandering, aggregation and 

homing basic behaviours. In our FBM, direct combination means that all the basic behaviours must have an 

appropriate level o f activation to reproduce the high level one. Foraging is initiated by dispersion, then 

safejwandering. This temporal composition requires a positive influence between these two basic 

behaviours. Surrounding can be obtained from a direct combination between aggregation and following. 

Herding can also be displayed from a direct combination between flocking and surrounding.
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flocking

herdingsurounding

foraging

Figure 4.5: First Level of Abstraction.

The following FBM (Figure 4.6) represents the resulting second level of abstraction.

following

dispersionaggregation

safe_wandering

i—«y'.2oc

Figure 4.6: Second Level of Abstraction.
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Figure 4.7 represents a final abstraction that can be taken into implementation details. Here the low-level 

behaviours (represented in Figure 4.6) have been decomposed into some actions that can be specified in 

terms of control parameters (distance, position and threshold values). Next step is using the formal 

specifications and algorithms described in [Mataric-92b]. Complete experimental results must be obtained 

for prototyping more behaviour networks. This evaluation process helps optimising the lowest-level of 

abstraction in terms of agent competences and interactions. New, high-level behaviours can be integrated at 

any of the levels of abstraction that have been obtained.

disperseaggregate

<(avoid_obstacli

Figure 4.7: Third Level of Abstraction.

4.4. Complexity Considerations

This section summarises the most general ideas explored in the thesis to cope with some complexity issues 

(discussed in chapter 1) using the FBM Framework.
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4.4.1. Abstraction and Description of Behaviours

The nature of behaviours is not well understood. It is difficult to abstract and describe what is observed in 

natural environments. The ideas summarised here refer to some clues about the way behaviours could be 

modelled through abstraction, description and organisation mechanisms.

Multiple, Heterogeneous Abstractions

We use levels o f abstraction to produce behaviour-based models in terms of: behaviours, their causal 

interactions and, some possible external and/or internal mechanisms (generic FBMs). Complex behavioural 

dynamics could be modelled through the identification o f these heterogeneous components. But not all 

behaviours can be abstracted in the same way; they might not be associated to the same neural control 

structures. It is necessary focusing on different abstraction levels.

Implementation Details at the End of the Abstraction Processes

The design process presented in this dissertation consists o f identifying a number of refinement stages 

leading to different possible levels of abstraction that should be tested before actually moving into 

implementation details (e.g., control parameters).

No matter, for example, if part o f the design process is automated using ANN models and their learning 

algorithms or, any other implementation technique. There will also be decisions such as number o f  neurons 

or which inputs might fire the activity o f  a particular behaviour that must be carefully considered before 

moving any further. Especially in the case of complex behaviours that are not well understood (cannot be 

observed).
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Goal Oriented Abstraction is not Necessary

Following [Maes-89b; Maes-92a], goal-directed behaviours can be designed without need o f goals or, copies 

of the world [Pfeifer & Verschure-95]. The FBM framework does not introduce any goal-based design.

External and Internal Factors

As we discussed earlier (in chapter 1), BB AI rejects the use of conventional world modelling techniques. 

This rejection differs from one approach to another. For instance, in using Dynamical BB Systems, there is a 

two-component dynamic system (agent & environment). In the application o f Action Selection Mechanisms, 

on the other hand, the environment seems to be characterised as a set o f external conditions that switch on the 

behaviour network. Thus, even if the environment is not engineered, it seems to be analysed and described in 

such a way that some information is passed onto the behaviour system. This is the type o f external 

component that we have introduced in the generic version of FBMs. It is some sort of useful condition for 

designing stages (first levels o f abstraction) that might not be implemented when the map is built on an agent.

Simplicity

Using multiple abstraction levels does not mean that we try to complicate things. Simple neural-based 

systems can be developed to drive the behaviours and, without need of complicating the abstraction o f the 

system by introducing intentions, goals, motivations and the like. Biologists tend to complicate the 

description o f behaviours and the way these are linked to neural activity. Some o f them assume that most 

behaviours of animals need of intentions (i.e. recognition and goal-seeking) that might be located somewhere 

in their nervous systems. But they cannot find such intention-like neural activities maybe because they do not 

exist [Rowe-98].
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No Abstraction of Functionalities

This is emergent from the performance of the FBMs that have been introduced. Following [Brooks-9lb], 

intelligent functionality might emerge from the interaction of the behaviours.

Analysis and Descriptive Levels

We need to analyse and try to describe the behaviours of living and artificial organisms. The analysis of 

behaviours is more close to the Nature side than to the engineering objectives [Mataric-94a]. We analyse 

behavioural dynamics and try to abstract this using the nodes and edges of FBMs. The engineering part does 

not need to take place until we arrive to an implementation or, control level (the lowest level o f design).

Multiple Neural Controllers

Some behaviours cannot be associated to one single neural control systems; it might be necessary designing 

the same behaviour-producing module from the use o f more than one neural controller.

Descriptive Variables Cannot be the Same for Animals and Robots

We cannot characterise all behaviours with on single set o f variables. Following [McFarland and Bosser-93], 

animals have time-dependent physiological states and their brains govern their behaviours according to these 

states. But robots have no physiology as such. They can have some state variables (e.g., fuel supply, 

operating temperature, etc.) that might be influenced by their own behaviours.
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4.4.2. Organisation, Activity and Execution of Behaviours 

No External Organism Scheme

We try to drive the interaction among the behaviour-producing modules and, more particularly, the cause- 

effect links among their levels o f activity. We tend to avoid driving the selection o f  these modules from an 

external organisation scheme.

The FBM Framework lets the designer of the BB System establishing the functionality of the behaviour- 

producing module in such a way that no external mechanism is required to control the selection of the 

behaviours. As described in chapter 3, each behaviour-producing module controls the actions o f the agent 

(robot) having its own control mechanisms. This implementation technique (based on the use of FLC 

implementation parameters) lets developing behaviour modules that are independent in terms o f low level 

actions and control mechanisms.

The same implementation technique can be applied so that several behaviour maps (FBMs) are causally 

communicated to influence the level of activity of each other without need of adding any central reasoning 

unit (special unit to select the behaviour that has to be displayed by the creature).

Not Static Sequencing

Activating what and when? In KB AI, the activities were designed as a result o f a deliberative thinking 

process developed by a central system (engine). Most approaches to develop BBSs tend to reproduce 

sequences of behaviours. Independent (self-contained) behaviours can be activated one at a time so that there 

is only one which drives the control actions to the actuators o f the agent. However, living organisms are not 

observed to follow sequences of behaviours.
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Flexible Interactions

Some approaches use interaction links among the behaviour-producing modules. For example, in Action 

Selection Mechanisms, a behaviour can activate / inhibit other behaviours. The higher level behaviours of a 

Subsumption Architecture also subsume (inhibit) other lower level ones. FBMs incorporate causal interaction 

links. Using FBMs, we try to address causal flows o f behavioural activities; flexible combinations of  

behavioural activities where more complex behaviours can take place from the causal-effects of others. 

[Hercock & Bames-96] implements an FLC to give negative feedback to the behaviours o f the architecture. 

This dynamically adjusts some contributions of the behaviours incorporated into their architecture. In this 

way, the robot is said “to focus its response”. Similarly, FBMs implement both positive and negative 

feedbacks between the levels o f activities of the behavioural nodes.

Scaling Up the System

New behavioural nodes can be added on an FBM either in first levels o f abstraction or, through refinement 

stages. We can augment the FBMs in a similar fashion than FCMs i.e., the FBM can scale up to become a 

large scale model. This represents an incremental approach to design the behaviour-oriented system.

Degrees of Activity and Situations

The level o f activity of one behaviour must be a matter of degree. It depends on a number o f behaviour- 

oriented components and interaction processes; it cannot be just either activated or not. Fuzzy granularity 

seem to be appropriate to design these degrees of activation. Additionally, the activation o f one or more 

behaviour must be relevant to the situation of the agent and, this situation cannot be designed (cannot be 

incorporated into the FBM).
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Execution, Control and Resting

Once we move onto the implementation level, the behaviour activities might be mapped onto specific control 

actions i.e., a behaviour strategy associated to each particular node might be executed so that the agent can 

act accordingly. But not all levels o f activities of a behaviour node need to be associated to the same control 

actions. Some behavioural activities imply resting or very little actions.

4.4.3. Evaluation and Optimisations

Evaluation of Behavioural Activities: Fitness Functions and Decision

BBSs have to be reactive. Following [McFarland & Bosser-93], the behaviour-producing modules should 

extract information from the environment and from their interaction with other behaviours. Consequences o f  

behaviours (lower level actions) should be evaluated by the agent before it actually decides for specific 

behaviours. It is difficult to see, then, that each behaviour has its own control parameters and decides on its. 

Hierarchical models o f behaviour decision processes do not seem to be appropriate either [McFarland & 

Bosser-93]. Living organisms behave in such a way that certain behaviours are more relevant than others 

depending on the environmental situations they encounter. They do not decide for certain behaviours because 

these are more beneficial. They decide depending on many different factors and these might not be resolved 

from centralised decision units. The decision making processes have to be able to balance conflicting 

situations. All behaviours must have the potential of being activated and focus on the experience o f the agent 

[Maes-92a].

Optimisation and Learning

The performance of the behaviours has to be also considered when these become activated. This is strongly 

related to learning processes.
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4.4.4. Technical Aspects to Design and Implement the Systems 

Refinement

This is the key aspect we consider to design large-scale BBSs using FBMs. In KB AI, refinement was used to 

translate plans (provided by plan programs operating on symbolic representations) into atomic plans. We 

look at refinement stages to help on the design and computational/physical implementation of behaviour 

producing modules and their cause-effect interactions. Doing so, we intend to find relevant parameters 

(variables) that can describe FBMs as dynamic models to control the behavioural activities o f the agent.

Asynchronous and Parallel Models of (Dynamic) Systems

In parallel architectures, all behaviour-producing modules operate at the same time. Their levels o f activity 

are increased/decreased at the same time. Parallel interaction of behaviours requires all connection links 

providing input signals (to the effected nodes) at the same time. This allows for faster adaptation [Maes-92b].

Useful Mechanisms

After the behavioural map has been refined, sensor signal accumulators and motor action accumulators can 

be shared by different behaviours. These sensorimotor mechanisms can be seen as useful mechanisms for 

behavioural performance.

Computational Requirements

The key principle is KISS. However, this cannot be taken too far, specially, when the behaviours being 

designed and implemented are too complex (cannot be easily analysed).
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Chapter 5
Conclusions

This document has presented a thesis on the definition, exploration and evaluation of Fuzzy Behavioural 

Maps providing the following contributions to knowledge:

A) The Investigation into the Behaviour-Oriented Nature of Intelligence

The thesis has explored many investigations around the behaviour-oriented nature o f intelligence. It has been 

focused on the problem of building behaviour-based models and identified many research issues o f  

philosophical, biological and technical nature that need to be resolved in order to validate the BB approach.

However, the thesis has not been intended to discuss the philosophical and biological questions around the 

behaviour oriented views of intelligence. It has been assumed, following [Brooks-9la], that discussion is 

such points is “untimely unless the technical ones concerning the viability o f the behaviour viewpoint can be 

resolved”. The thesis has been concerned with the technological part o f this viewpoint and identified those 

technical issues by classifying the work on the development o f BBSs (presenting the classification o f  

approaches to the development of BBSs) and bringing to knowledge the major problems found in the 

application o f these approaches.

The fundamentals of the BB approach have been explored in terms o f the models, systems, techniques and 

tools being investigated by a wide variety o f research communities. Many features o f the behaviour-based 

models have been identified as well as some practical ideas for building these models with BBSs (e.g.
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designing and implementing self-contained behavioural modules, using distributed and open architectures, 

using bottom-up development methods, not using world models, etc.). A broader view on the behaviour- 

oriented nature of intelligence has been identified with the multi-disciplinary groundwork o f AAs. Indeed, 

the thesis has explored some AAs tendencies (e.g., some cognitive, biological and technological ones) that 

influence the thinking in BB AI and help to consolidate this approach by re-defining the ideas, concepts and 

methods firstly introduced by the researches of BB AI and AR.

Further, the investigation has outlined some key principles about the development of BBSs and presented a 

classification of the current approaches to development these systems (Subsumption Architectures, BB 

Networks, Dynamical BB Systems, Evolutionary Approaches and Hybrid Paradigms) based on some 

development decisions raised with the proposed FBM Framework. Finally, the major technical problems 

found with the application of these approaches (to develop the BBSs) have been discussed to conclude the 

survey of the investigations around the behaviour-oriented nature o f intelligence that have motivated the 

definition and use o f FBMs.

B) The Definition, Exploration and Evaluation of FBMs

The thesis has presented several types o f FBMs o f varying degrees o f complexity and established some o f  

their uses within the BB viewpoint i.e., as designing tools of behaviour-based models. Simple FBMs have 

been introduced as directed graphs which nodes represent behaviour-producing modules the designer is 

hoping to implement within an AA; behaviour networks drawing pictures about the behaviours o f AAs and 

how the firing degrees of these can be causally related with symbolic edges showing either positive or 

negative cause-effect relation. More complex FBMs have been defined as dynamic behaviour-oriented 

networks that incorporate feedback cause-effect connections with behaviour-activation patterns being 

propagated until some terminating condition is satisfied.
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The most generic FBMs have been defined as networks divided into behavioural nodes that can be casually 

affected by external components relative to the activities, morphological set-up and environmental situations 

of the agent. Further, it has been suggested that time-dependent changes o f variables (processes) feeding 

FBMs can be considered as conditions that activate the operation of these maps (not a world mode, o f  

course). A specific behavioural node can be executed making the agent to experience natural consequences 

such that other behaviour and/or internal resources can become also affected. That is, the use of FBMs has 

been extended as to implement possible consequences of the execution of the behavioural nodes such as the 

modification of the causation of the behaviours (e.g. increasing, decreasing or producing the state transition 

of environmental stimuli, internal states and/or the resources that feed its nodes).

Finally, the explorations around the use of these FBMs have shown the differences among the design and the 

implementation of FBMs. An FBM (either simple or complex) serves to design behaviour-producing 

modules. Then, it is possible using any suitable implementation technique (e.g., FLC) to map the FBM (set of  

FBMs) onto a functional architecture.

C) The Collision Avoidance FBM: Development, Pilot Tests and Results

The work presented in chapter 3 has shown how to use FBMs to design an avoidance behaviour-producing 

module based on sensorimotor connections for a mobile robot. Our final intention o f this practical work was 

to obtain a proof-of-concept of simple FBMs (i.e., to demonstrate that these maps can be used to design 

behaviour-oriented systems) but this has also served us for three major purposes. First, to demonstrate that 

FBMs can be implemented using Fuzzy Logic Control parameters (e.g., fuzzy sets, linguistic variables, fuzzy 

implications, fuzzy inference mechanisms and others). Second, to show how FBMs can be mapped onto 

functional control architectures such as FLCs. Third, the work has shown the flexibility o f the resulting BB 

and Fuzzy architecture.

Dissertation of the Thesis v4.1
Copyright © Ana Maria Gonzdlez de Miguel, CMS, SHU
June, 2002

Pag. 183



This work has presented several fundamentals of mobile robots and Control Theories including some studies 

on perception, motion and, the basic avoidance behaviour to be exhibited by an architecture based on the 

current Behaviour-Based Robotics. It has been focused on the use o f FBMs, Fuzzy Logic Control Theory and 

related concepts from Fuzzy Logic (its mathematical framework).

The FBMs have been used in combination with FLC techniques to control the avoidance behaviour o f mobile 

robots. A simple FBM has been used to design an avoidance behaviour-producing module while an FLC 

architecture has been implemented and tested to drive the functionality o f the map and, more particularly, to 

fire the level o f activation o f its nodes and edges (converted into fuzzy control rules).

The use of this (fuzzy) methodology has being presented for implementing and testing an avoidance strategy 

designed with the FBM and fired within an FLC using two different types o f fuzzy inference techniques: 

Mamdani’s minioperation rule of inference and, Larsen’s product operation. The control policy has been 

obtained through heuristic verbalisation and analysis o f the dynamic features o f the FBM. This map has been 

divided into two sub-units and converted into two sets of fuzzy control rules manipulating the levels o f  

perception and fuzzified motor values o f a simulated robot. Levels o f perception have been treated in the 

form of fuzzy disjunction relations of fuzzified sensor signals. Fuzzy partitions have been designed and 

implemented for manipulating both fuzzy sets of sensor and motor signals plus fuzzy control actions in terms 

of motor speed variations.

The flexibility provided by this FBM-FLC architecture has been analysed through pilot tests and carried out 

using computer simulations. These have revealed that (in simulation) a mobile robot can be able to follow 

different types of trajectories depending on the underlying formalism of the inference mechanism and without 

even modifying the fuzzy control policy (the FBM) stated at the beginning o f the development process.

Regarding the accuracy of this FBM-FLC architecture and, from the measurement o f the contribution o f its 

Rule Base, the pilot tests have shown a higher level o f fitness for the construction o f firing strengths
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(contribution of fuzzy control rules) using Mamdani’s minioperation than provided by Larsen’s product 

operation.

D) The FBMs Framework: Definition and Application Case Study

The thesis has presented our initial (first intuitive) ideas around the Framework of FBMs and the 

development of large-scale BBSs, assuming that it is necessary identifying different levels o f abstraction and 

refinement stages to cope with the technical complexity issues found with the current approaches to develop 

BBSs.

In chapters 2 and 4, we have described how the nodes and external components /  mechanisms o f a simple / 

complex FBMs can let the designer establishing a number of interaction processes that are observed with 

natural behaviours. The thesis has introduced the concept of generic FBM to mean that, FBM-based 

architectures can incorporate a number of internal and/or external behaviour-oriented modules and causal 

links whose number and complexity depend on the morphological set up o f the agent(s) as on the desired 

behavioural performance.

The proposed Framework o f FBMs has been defined to capture and model behavioural dynamics (behaviour 

producing modules and their internal/external interactions) at different levels o f abstraction (through different 

levels o f refinement). Its major scope is the design of dynamic BB networks. Most obviously, this framework 

maps some required behaviours into connection structures o f behaviour-producing modules that are causally 

linked.

Here the concept refinement is used to identify lower design parameters (i.e. control actions) rather than 

linguistic variables or, fuzzy sets (as it corresponds to a fuzzy implementation technique like the FLC 

described in chapter 3). This refinement helps on the definition of the behaviours selected from first levels o f  

abstraction.
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The thesis has also proposed taking the FBM Framework into the implementation levels that are required to 

build (derive) behaviour-based control architectures like SAs [Brooks-86]. Indeed, the framework has been 

intended to allow the refinement o f FBMs (from one level o f abstraction to another) for identifying lower 

level behaviour-oriented design parameters (instead of the fiizzy implementation parameters identified in the 

mapping of the Avoidance FBM onto the FLC). Final levels o f abstraction correspond to implementation 

ones. Using the FBM Framework (its levels o f abstraction, refinement stages and complexity considerations), 

it is possible developing large-scale BBSs.

The thesis has also described a case study to validate our initial steps towards the development o f complex 

BB Systems using the FBM Framework. More particularly, it has been described how to develop a complex, 

non-hierarchical, multi-agent behaviour system using refinement capabilities o f the FBM Framework.

Finally, the thesis has introduced some general ideas about the use of this framework to cope with some, 

current complexity issues around the behaviour-oriented nature o f intelligence.
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Chapter 6
Future Research Work

In a near future we plan to continue our research work around the definition and use o f FBMs having in mind 

that it is worth working on the following tasks.

A) Using Simple FBMs to Design and Control Behaviour-Producing Modules

Our main intention is to evaluate large-scale FBMs designing numerous behaviours and the interaction 

among these. Then we shall follow implementations and pilot tests in a similar way to that exposed in chapter 

3. This is, selecting an implementation technique, developing the resulting architecture and testing this with 

the appropriate agent /  robot.

B) Implementing Simple FBMs using other possible Fuzzy Systems

The results o f our pilot tests have revealed a strong potential for the application of Fuzzy Logic to control 

movements o f mobile robots. More particularly, this work has shown the flexibility provided by the fuzzy 

inference (and weighting) methods in different simulations of obstacle avoidance as well as the possible 

manipulation o f levels o f perception under the Fuzzy approach. We aim to carry on our studies in these 

Fuzzy Logic applications.
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Fuzzy weighting factors and fuzzy methods will be an important support for this research. Regarding the 

levels o f perception handled by the FLC, we believe that this is still a research issue that is open for further 

developments.

Considering these ideas, we intend to focus our practical work on the relevance of other Fuzzy Systems such 

as Fuzzy Cognitive Maps, Hybrid NN models or Recurrent Fuzzy Systems to possibly implement FBMs. In 

doing so, we would like to contribute to the development of new BB architectures.

C) A Proof-of-Concept for More Complex FBMs

The thesis has introduced the concept of “more complex FBMs”. In a near feature, we shall provide more 

examples of these structures as well as some possible implementations and evaluations.

D) Prototyping more BB Systems using either Simple or More complex FBMs

The thesis has presented an implementation of a simple FBM using FLC implementation techniques. One of 

our motivations for future explorations is that we can prototype other possible FBM-based architectures. This 

might also follow the general ideas the thesis has introduced regarding the FBM framework o f  development. 

For example, it would be possible trying to derive some o f the BBSs reviewed in chapter 1 (section 1.4).

E) Defining, Using and Evaluating Learning FBMs

Some interesting (cognitive) processes introduced in this chapter 1 (e.g. learning, assimilation and 

adaptation) will also be considered in our future work due to their particular relevance in the BB viewpoint 

we have investigated. Indeed, we also intend to explore the definition and use o f Learning FBMs from a 

more detailed study o f the learning approaches within BB AI and AAs.

F) The Development of Large-Scale BBSs Using the FBMs Framework
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Finally, we shall extend the work around the FBM Framework. In Chapter 4, we have introduced our 

preliminary ideas about how to develop large-scale BBSs using FBMs. In a near future, we shall complete 

this work while deriving more complex BBSs.
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Appendix A

Fuzzy Sets and Fuzzy Relations

Classical Set Theory (“black or white”) assumes that an element either does or does not belong to a set. 

Fuzzy Set Theory (“grey is better”) extends this idea by considering that an element can belong to a fuzzy set 

to a certain degree (or membership value). A classical set is characterised with membership functions that 

map elements from a given universe of discourse to a two-valued set (bi-valued logic with crisp distinction 

between 0 and 1; between non-membership and whole membership). By contrast, the membership functions 

of the fuzzy sets map the same universe of discourse to a multi-valued set (multi-valued logic between 0 and 

1; fuzzy granularity with infinite degrees of membership [Zadeh-65]).

Zadeh states that Fuzzy Logic is used to mean Fuzzy Sets Theories [Zadeh-72b; Zadeh-72d; Zadeh-92]. He 

introduced numerous fuzzy logic methods from the need of non-classical logical connectives to handle fuzzy 

sets [Zadeh-73b; Zadeh-75]. Each fuzzy logic connective (e.g. Zadeh’s fuzzy implication) is associated with 

a mapping by which the truth value of a combined proposition can be determined by the truth values of 

atomic propositions. These mappings have been termed fuzzy relations.

Some definitions of fuzzy sets and fuzzy relations are listed below (see also [Zadeh-65; Zadeh & Kacprzyk- 

92; Dubois & Prade-83; Wang & Loe-93]).

Universe of Discourse

A universe of discourse is a discrete or continuous collection o f objects denoted as:

U = {u} (Def. A.1)
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A fuzzy set is a class of objects with a continuum of grades of memberships [Zadeh-65; Wang & Loe-93]. 

Such a set on a universe of discourse U is defined as a collection of ordered pairs of the form

A = {(u,juA («)) such that u e U )  (Def. A.2)

where u represents a generic (crisp) element of U and juA (u) is the degree of membership to which u 

belongs to A i.e. a characteristic function:

ju A : U  >[0,1] (Def.A.3)

Functional Fuzzy S e ts

^̂ bipjr(A)

Jire 18. 2C0 )

Fig. A.1: Diagrammatic Representation of a (Triangular) Functional (a) 1D fuzzy set A, (b) 2D fuzzy set A.
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Support of a Fuzzy Set

The support o f the fuzzy set A given in Def. A.2 is the crisp interval (see Fig. A. 1(a)) containing elements of 

U which have non-zero membership degrees. This is denoted by:

sup(A) = { « G i7 ;///i(M )>0} (Def. A.4)

Fuzzy Singleton

Fuzzy sets o f cardinality equal to 1 are referred to as fuzzy singletons.

Crossover Point

A crossover point (see Fig. A. 1(a)) o f a fuzzy set A is an element u e  U  such that / /  A (u) = 0 5 .

In general, fuzzy sets can be either numerically or functionally represented. The following definition 

expresses the differences among these representations.

Numerical and Functional Fuzzy Set

A numerical fuzzy set (fuzzy number) corresponds to the interval of its support. A functional fuzzy set can be 

differently shaped (e.g. in triangular, bell or trapezoidal form). Fig. A. 1(a) shows a simple example o f a one- 

Dimensional (ID) triangular (functional) fuzzy set.

Dimension of a Fuzzy Set

The dimension of a fuzzy set A is the dimension of the universe of discourse U on which it is supported. 

Hence, a two-dimensional (2D) fuzzy set A (see Fig. A. 1(b)) defined on a generic 2D (product space) 

universe o f discourse UxV can be defined as
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A = {(u,v , f iA (w,v)} such that (w,v) e  U x V  (Def. A.5)

Fuzzy Set Theoretic Operations

The fuzzy set-theoretic operations of union (u ), intersection (n ) and complement (=) are extensions (in 

terms o f membership functions) o f the same classical binary operations.

Considering two fuzzy sets A and B defined over the same universe o f discourse U, these extensions are 

given by the following formulas

V u e U \ j u AuB(u) = max(ju A (u), ji  B (u)) (Def. A.6.1)

\ / u e U ; f i  AnB (u) = min(// A (u), fi B (u)) (Def. A.6.2)

V u e U \ n AM  = \ - n A{u) (Def. A.6.3)

where /*AuB, MAnB an^ Ma~ are the membership functions (see Def. A.2) o f the fuzzy sets 

corresponding to A u  B, A n  Band A ~ , respectively.

Cartesian Product of Fuzzy Sets

The Cartesian product of the fuzzy sets A j, A2 , . . . ,  An on U \ , U 2 »• • •, Un , respectively,

is a fuzzy set defined on the n-Dimensional (nD) product space o f universes f/j x  f / 2 x . . .xUn with a 

membership function

MAlxA2x.~xA„ ( « l , « 2 . - . « n )  = {Ma, ( « 2 K ) }  (Def* A-7)
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where * could be any triangular operator (see Table A. l )  such as the intersection (triangular norm) or union 

(triangular co-norm).

Linguistic Variable

A linguistic variable is a fuzzy concept [Zadeh-73b] characterised by: its name “x”, a universe o f discourse U 

and a set o f terms, or linguistic values, T(“x”). For instance, considering a space o f distances U = [0,1023], 

the following set

T(“distance”) = {“big”, “medium”, “small” }.

defines three possible terms (linguistic values) o f the linguistic variable “distance” which, in practice, 

correspond to three fuzzy sets (see Def. A .l & Def. A.2) on the ID support U.

Membership Functions of Fuzzy Relations

M A-MB - M a P B

M A ® M b  “  n ax (0 . m a + Mb ~  *)

M a  V P B  = m » x ( / J A . / ' B )

Table A.1: Membership Functions of (a) Triangular Norms, (b) Triangular Co-Norms.
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Fuzzy Relations: Conjunction, Disjunction & Implication

A fuzzy relation (in the context of the fuzzy sets) is a natural extension of a classical relation (in the context 

of the crisp sets). By definition, an n-ary fuzzy relation R between n fuzzy sets (see Def. A.7) is another fuzzy 

set given by

where ( u \ , m2 »• • • * un ) corresponds to any point in the n-dimensional product space U\ x £ /2 x . . .xUn .

Different fuzzy relations are obtained [Lee 1-90; Wang & Loe-93] depending on which triangular (x) 

operator is applied between their membership functions. The three categories that have received most 

attention in Fuzzy Theory are:

• fuzzy conjunctions or fuzzy relations defined with triangular norms (see Table A. 1(a)),

•  fuzzy disjunctions or fuzzy relations defined with triangular co-norms (see Table A. 1(b)),

•  fuzzy implications which are defined on both types o f triangular operators (see Table A.2).

Let us consider the fuzzy sets A and B defined on the universes o f discourse U and V, respectively. Then a 

fuzzy conjunction between A and B is a fuzzy relation (AxB) or 2D fuzzy set on the product space UxV  with 

a membership function related to those of A and B by the formula

and, a fuzzy disjunction between the same fuzzy sets A and B is another fuzzy relation (AxB) or 2D fuzzy set 

on UxV  with a membership function defined as

^ t / , X t / 2X „X t /n “  { ( W l ,M 2 , . . . , M n ) , / / ^ ( M l , M 2 , . . . , M / l ) } (Def. A.8)

Ma x b (u’v ) = Ma (“) * M b (v ) (Def. A.9.1)
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M A x B v )  = juA (u) + v B (v) (Def. A.9.2)

The relevance o f these categories (of a fuzzy relation) is in their application in the implementation o f FLC 

architectures. Indeed the sort o f fuzzy control rules (see Def. A. 10.1 & Def. A. 10.2) used in any FLC consist 

o f fuzzy implications which link antecedents and consequents, both being defined as either the fuzzy 

disjunction or the fuzzy conjunction o f different fuzzy sets. Furthermore, nearly 40 distinct fuzzy 

implications [Lee 1-90] have been described in the literature o f Fuzzy Logic Control for the manipulation of 

the fuzzy control rules that characterise the inference mechanisms o f these architectures (see appendix B).

Table A.2 shows the membership functions o f the fuzzy implications most commonly used in fuzzy inference 

mechanism. These are: Mamdani’s mini-operation rule, Larsen’s product operation rule, Zadeh’s (I) max-min 

rule and Zadeh’s (II) arithmetic rule.

Author Operation

M A->B (“ • v) E P b  (v)Mamdaml

VA->B(u’v) -UaMubW
/j A_ fl(u. v) = (p A (u)r\ /ifl(v)) v ( l -  fiA 60)Zadeh (I)

»  A-»B  (“ • v)  “  1 n  (* -  M a  (“ )  +  MB  M )Zadeh (ID

Table A.2: Fuzzy Implications.
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The operations carried out with the fuzzy implication techniques o f Mamdani and Larsen are explained in 

more detail within chapter 3. More information about the fuzzy implication operators can be seen in the 

corresponding implementation parameter included in appendix B.

Fuzzy Control Rule

A fuzzy control rule (or fuzzy inference rule) is a conditional proposition which can be represented as

IF “x is A” THEN “y is B’ (Def. A.10.1)

or also

A - + B  (Def. A.10.2)

where A and B are fuzzy sets (terms) o f the linguistic variables “x” and “y”, respectively, (i.e. A G T(“x”) and 

B G T(“y”)) and, the sentence connective THEN (—») represents a generic fuzzy implication operator.

Sup-Star Composition and Sup-Star Compositional Rule of Inference

The sup-star composition R ° S between two fuzzy relations R, on UxV  and S, on VxW, is another fuzzy 

relation given by the formula

R o S UxW ={((u,w),supv ( / iR(u,v)*jus (v,w)))}  (Def. A.11.1)

where * represents any o f the triangular norms (Table A. 1(a)). As an extension of this definition, the sup-star 

compositional rule of inference, expressed as,

Y = X °  R (Def. A.11.2)

Dissertation o f the Thesis v4.1
Copyright © Ana Maria Gonzdlez de Miguel, CMS, SHU
June, 2002

Pag. 197



corresponds to the inference o f the fuzzy set Y g T(“y”) by the 0 sup-star composition applied to the fuzzy set 

Xe  T(“x”) and the fuzzy relation (or set of fuzzy relations) R.

For instance, considering a fuzzy set “small” G T(“distance”), a fuzzy set “fast” G T(“speed”) and a fuzzy 

relation R (which could be the whole fuzzy control rules set of a FLC), the following formula

“fast” = “small” ° R

produces the inference of the fuzzy set “fast” by the sup-star composition o f “small” and the fuzzy relation R.
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Appendix B

Fuzzy Logic Control

Since Zadeh established the fundamentals o f both Fuzzy Sets and Fuzzy Systems, the area o f Fuzzy Logic 

Control has emerged as one of the most productive applications of his pioneering work. The spectrum of 

applications includes cement-kiln process control, robot control, image processing, motor control, automatic 

train operation, servo loop control, aircraft control and many others.

FLC Design

In designing a Fuzzy Logic Controller (FLC), the principal factors include:

•  the inputs and outputs and, their universes of discourse,

•  the scale factors of all the input-output variables,

•  the membership functions of all the fuzzy sets and,

• the fuzzy control rule base.

The construction of the fuzzy sets (their membership functions) and the fuzzy control rules represent the key 

issues in designing a FLC. Depending on these, the resulting architecture may also have self-organising and 

learning capabilities.

Basic Structure of FLCs

The purpose of a FLC is to compute values of control action (output) variables from the observation o f input 

variables of the process(es) under control. Here the relation between the input and output variables is viewed 

as a set o f logical rules that the FLC architecture evaluates for every single input set.
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The main functional components of a FLC are: a fuzzification unit, a decision making logic unit, a data base, 

a rule base and, a defuzzification unit.

Depending on the design objectives and the type of process(es) that need being controlled, different types of 

FLCs can be constructed. For instance, the FLC can have a fixed number o f fuzzy control rules or, it may 

have learning capabilities through the modification o f its data base.

The data base o f the FLC have to be designed so that it contains all the membership functions defining the 

fuzzy sets of the input/output variables. The rule base maps all the fuzzy values of the inputs to the fuzzy 

values of the outputs. The input values are measured from the controlled process and, the output values are 

used by the FLC to control the process(es). The definition o f all the fuzzy sets is one of the most important 

steps in the design of a FLC. Finally, the fuzzification and defuzzification operations are needed to map the 

crisp values of the input/output variables to and from the fuzzy sets that uses the FLC.

For some crisp variable, a fuzzification strategy involves:

•  acquiring the crisp values of the input values,

•  mapping the crisp values of the input values into the corresponding universe o f discourse and,

• converting the mapped data into fuzzy sets.

For the output values, the defuzzification usually occurs as part of the fuzzy differencing. This last 

mechanism involves weighting and combining a number of fuzzy sets resulting from the fuzzy inference 

process that characterizes the decision making logic unit.

The rule base o f the FLC defines the fuzzy control policy i.e. the control relationships among input and 

output fuzzy sets. These rules are usually expressed in the form “if-then” format.
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The data base may be static or, dynamic. A dynamic data base is required to permit a learning FLC. The 

fuzzy decision making logic unit uses fuzzy logic operators (selected by the designer) to perform the fuzzy 

inference mechanism arriving at the fuzzy control actions that have to be executed. This mechanism also 

involves evaluating the data base for the fuzzified inputs that reach the FLC.

During a fuzzy inference, the following operations have to be performed.

• Determine the degree of match between the fuzzy input data and the defined fuzzy sets for each input 

variable.

•  Carry out the fire strength calculations for each rule based on the degree o f match and the fuzzy 

connectives (e.g. “and”, “or”) used in the antecedent part of the rule.

•  Derive the control (output) based on the calculated fire strength and the defined fuzzy sets for each 

output variable in the consequent part of the rule.

The final crisp control action is inferred either by selecting or, by combining the calculated control outputs 

and depends upon the defuzzification strategy that has been selected by the designer of the FLC.

In controlling a process, all the fuzzy control rules are compared to the current inputs (observations) and 

fired. The action of each rule is weighted by how close the antecedent part o f the rule matches the current 

observation.

Hence, a good way of tuning a FLC is to modify the set of fuzzy control rules i.e. adding or, deleting rules 

until appropriate outputs (control actions) are observed.

Design of Fuzzy Control Rules

From the design perspective, fuzzy control rules have been constructed based on the following:
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Heuristic Approach

This is largely based on qualitative information about the behaviour of the systems (processes) under control. 

In control engineering, the control rules are often organised by using a closed-loop system trajectory in a 

phase plane. Then, once the designer observes the effects of parameters adjustment based on phase plane 

analysis and of system’s behaviour, the approach can be applied.

Deterministic Approach

This determines the linguistic structure or parameters of the fuzzy control rules that satisfy the control 

objectives and constraints.

Fuzzy Modelling Technique

This is used to build qualitative models of the systems under control and without any prior knowledge about 

it. Using this technique, the controlled process can be directly modelled provided that sufficient input and 

output data is available for the process (system) under control.

The FLC can be designed once the fuzzy model of the controlled process has been established.

Adaptive FLCs

Adaptive control is identified with the process o f accommodating the changes o f a process in a dynamic 

environment.

If a designed FLC does not perform satisfactorily after a time due to some changes in the process dynamics, 

it is required adapting all its design parameters so that it performs the required control actions.

Initial design parameters such as fuzzy sets, membership functions, universes o f discourse and control rules 

may need to be modified and adjusted to meet the design objectives.
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An adaptive FLC is often constructed with self-tuning and learning capabilities so that it is able to:

• generate new fuzzy rules,

•  modify the existing fuzzy rules,

•  modify the designed fuzzy sets,

•  adjust all the membership functions of its data base and,

•  adjust the universes of discourse.

This adaptive FLC may include the following elements: a performance measurement module, a supervising 

and tuning module and, the FLC that has to be adapted.
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Appendix C

The FBM-FLC Program

FUZZYSETS.H

#ifndef FUZZYSETS.H 
#define FUZZYSETS.H 
#define MAX.CARD 250
#define MAX.TEXT 50

struct Valuel 
{

short int CrispX;
float MembershipValue;
struct Valuel ‘Next;

};

struct Value2 
{

short int CrispX.CrispY;
float MembershipValue;
struct Value2 ‘Next;

};

struct FuzzyProperties 
{

char Name[25];
char MembershipFunctionType[25];
short int Cardinality;

};

struct FuzzySetl /* 1 -Dimensional fuzzy sets */
{

struct FuzzyProperties Properties; 
short int Support[2];
float Center;
struct Valuel ‘Values;
struct FuzzySetl ‘Next;

};

struct FuzzySet2 /* 2-Dimensional fuzzy sets 7
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struct FuzzyProperties Properties;
short int 
float
struct Value2

SupportX[2],SupportY[2];
CenterX.CenterY;
‘Values;

struct FuzzySet2 ‘Next;
};

#endif

FUZZYSETS.C

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <fcntl.h>
#include "../SRC/include.h" 
#include \./SRC/types.h" 
#include "fuzzysets.h"
#define FreeValue(x) free(x);

void Singletonl (short int X1, float X2, short int X3, short int X, float *mf) 
{

if (X = X2)
*mf = 1.0; 

else 
*mf = 0.0;

}

void Singleton2(short int X1, float X2, short int X3, short int Y1, float Y2, short int Y3, short int X, short int Y,

{
if ((X = X2) && (Y = Y2)) 

*mf = 1.0; 
else 

‘mf = 0.0;
}

void Triangularl (short int X1, float X2, short int X3, short int X, float ‘mf) 
{

float ml = 1/(X2-X1), 
b1 = X1/(X1-X2), 
m2 = 1/(X2-X3), 
b2 = X3/(X3-X2);

if ((X >= X1) && (X < X2)) *mf = (ml *X)+b1; 
else if ((X > X2) && (X <= X3)) ‘mf = (m2‘X)+b2; 
else /‘(X = X2)*/ *mf=1.0;

}

float *mf)
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/*
/ * ’

1-DIM FUZZY SETS
7
7

7

void AddValuesI (struct Valuel "valuel, struct Valuel *value2) 
{

value2->Next = valuel->Next; 
valuel->Next = value2;

}

struct Valuel *CreateValue1 (short int X, float m)
{

struct Valuel "value;

value = (struct Valuel *)malloc(sizeof(struct Valuel));
value->CrispX = X;
value->MembershipValue = m;
value->Next = NULL;
return(value);

}

void FreeValuesI (struct Valuel "value) 
{

if (value)
{

FreeValuesI (value->Next); 
FreeValue(value);

}
}

struct FuzzySetl "CreateEmptyFuzzySetl ()
{

struct FuzzySetl *fuzzy_set;

fuzzy_set = (struct FuzzySetl *)malloc(sizeof(struct FuzzySetl)); 
strcpy(fuzzy_set->Properties.Name, "new");
strcpy(fuzzy_set->Properties.MembershipFunctionType, "Singletonl");
fuzzy_set->Properties.Cardinality = 0;
fuzzy_set->Values = (struct Valuel *)NULL;
fuzzy_set->Support[0] = 0;
fuzzy_set->Support[1 j = 0;
fuzzy_set->Center = 0.0;
fuzzy_set->Next = NULL;
return(fuzzy_set);

}

void FreeFuzzySetl (struct FuzzySetl *fuzzy_set) 
{

FreeValuesI (fuzzy_set->Values); 
free(fuzzy_set);

}
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short int Cardinalityl (short int X1, short int X2) 
{

short int cardl = 0, 
num = X1; 
while (num <= X2)
{

card l++; 
num++;

}
return(cardl);

}

struct FuzzySetl *CreateFuzzySet1 (char name[MAX_TEXT],
char membership_function[MAX_TEXT], 

short int universe_of_discourse[2], 
short int support[2], 
float center)

{
struct FuzzySetl *fuzzy_set; 
struct Valuel *value1, *value2;

short int U,
U1 = universe_of_discourse[0],
Un = universe_of_discourse[lj; 

float mf_valor = 0.0;

fuzzy_set = CreateEmptyFuzzySet1(); 
strcpy(fuzzy_set->Properties.Name, name);
strcpy(fuzzy_set->Properties.MembershipFunctionType, membership_function);
fuzzy_set->Properties.Cardinality = Cardinalityl (support[0], support[1]);
fuzzy_set->Support[0] = support[0];
fuzzy_set->Support[1 ] = support[1 j;
fuzzy_set->Center = center;
valuel =CreateValue1(U1,0.0);
fuzzy_set->Values = valuel;
U = U1+1;
while (U < support[0])
{

value2 = CreateValue1(U,0.0);
AddValuesI (valuel ,value2); 
valuel = valuel->Next;
U++;

}
while (U <= support[1])
{

if (strcmp(membership_function,Triangular1 ")==0)
T riangularl (support[0],center,support[1 ],U,&mf_valor); 

else if (strcmp(membership_function,MBell1")==0)
Belli (support[0],center,support[1],U,&mf_valor); 

else/* (strcmp(membership_function>HSingletonr)==0) */
Singleton1(support[0],center,support[1],U,&mf_valor); 

value2 = CreateValuel (U,mf_valor);
AddValuesI (valuel ,value2); 
valuel = valuel->Next;
U++;

}
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while (U <=  Un)
{

value2 = CreateValue1(U,0.0); 
AddValuesI (valuel ,value2); 
valuel = valuel->Next;
U++;

}
return(fuzzy_set);

struct Valuel ‘FindValuel (struct FuzzySetl *fuzzy_set, short int X) 
{

struct Valuel ‘search, ‘found;

search = fuzzy_set->Values; 
found = NULL; 
while(search)
{

if((search->CrispX-X)==0)
{

found = search; 
search = NULL;

}
else

search = search->Next;
}
return(found);

}

short int DecFindCrispValuel (struct FuzzySetl *fuzzy_set, float mf,
short int init, short int end)

{
struct Valuel ‘search; 
short int found;
search = FindValue1(fuzzy_set, init);
found = init;
while(search)
{

if((search->MembershipValue-mf)<=0)
{

found = search->CrispX; 
search = NULL;

}
else

search=search->Next;
}
return(found);

}

short int IncFindCrispValuel (struct FuzzySetl *fuzzy_set, float mf, short int init, short int end) 
{

struct Valuel ‘search; 
short int found;
search = FindValuel (fuzzy_set,init);

Dissertation o f the Thesis v4.1
Copyright © Ana Maria Gonzdlez de Miguel, CMS, SHU
June, 2002

Pag. 208



found = init; 
while(search)
{

if((search->MembershipValue-mf)>=0)
{

found = search->CrispX; 
search = NULL;

}
else

search=search->Next;
}
retum(found);

}

float Sum(struct FuzzySetl *fuzzy_set)
{

float sum;
struct Valuel *value;

value = FindValue1(fuzzy_set,fuzzy_set->Support[0]); 
sum = (value->MembershipValue)*(value->CrispX); 
value = value->Next; 
while(value)
{

sum = sum+((value->MembershipValue)*(value->CrispX)); 
if(value->CrispX==fuzzy_set->Support[1]) 

value = NULL; 
else

value=value->Next;
}
retum(sum);

}

void PrintValuel (struct Valuel *val)
{

char buffer1[15],buffer2[15];

sprintf(buffer1l"X%7d",val->CrispX);
sprintf(buffer2,"mf%8d">val->MembershipValue);
printf("%s*,buffer1);printf("%s",buffer2);

}

void PrlntFuzzySetl (struct FuzzySetl *fuzzy_set)
{
struct Valuel *value;

printffPrimary Fuzzy Sets.\n\n");
printf(" -Name:%s",fuzzy_set->Properties.Name);
printf(" -Membership Function Type:%s",

fuzzy_set->Properties.MembershipFunctionType); 
printf(" -Cardinality:%d\n",fuzzy_set->Properties.Cardinality);
printfj" -XSupport:[%d,%d,%d]\n",fuzzy_set->Support[0], fuzzy_set->Center, fuzzy_set->Support[1 ]);
value = fuzzy_set->Values;
while(value)
{
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printf("\t");
PrintValuel (value); 
value = value->Next; 
if(value==fuzzy_set->Values) 

value=NULL;
}

}

void WriteFuzzySet1ToFile(struct FuzzySetl *fuzzy_set,FILE *file) 

struct Valuel ‘value;

fprintf(file,“# File : PRIMARY FUZZY SETSAn"); 
fprintf(file,B# Author: Ana Maria Gonzalez de MiguelAn"); 
fprintf(file,B# Date : \nB);
fprintf(file,"------------------------------------------------- -\n\n\n");
fprintf(file," -Name: %s\n\fuzzy_set->Properties.Name);
fprintf(file," -Membership Function Type: % s\n \ fuzzy_set->Properties.MembershipFunctionType);
fprintf(file,B -Cardinality: %d\nB, fuzzy_set->Properties.Cardinality);
fprintf(file," -XSupport: [ %d,%d]\nB, fuzzy_set->Support[0],fuzzy_set->Support[1]);
fprintf(file," -XCenter: %f\nB,fuzzy_set->Center);
fprintf(file,B -Values:\n\nB);
value = FindValue1(fuzzy_set,fuzzy_set->Support[0]); 
while((value) && (value->CrispX<=fuzzy_set->Support[1]))
{

fprintf(file,"\tX = %d \tB,value->CrispX); 
fprintf(file,Bmf = %f\n",value->MembershipValue); 
value = value->Next;

}

void ReadFuzzySet1FromFile(struct FuzzySetl *fuzzy_set,FILE ‘file) 
{
}

/* 2-DIM FUZZY SETS */

void AddValues2(struct Value2 ‘valuel, struct Value2 ‘value2) 
{

value2->Next = valuel->Next; 
valuel->Next = value2;

}

struct Value2 *CreateValue2(short int X, short int Y, float m)
{

struct Value2 ‘value;

value = (struct Value2 *)malloc(sizeof(struct Value2));
value->CrispX = X;
value->CrispY = Y;
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value->MembershipValue = m; 
value->Next = NULL;
retum(value);

}

void FreeValues2(struct Value2 ‘value) 
{

if (value)
{

FreeValues2(value->Next);
FreeValue(value);

}
}

struct FuzzySet2 *CreateEmptyFuzzySet2()
{

struct FuzzySet2 *fuzzy_set; 
short int i;

fuzzy_set = (struct FuzzySet2 *)malloc(sizeof(struct FuzzySet2)); 
strcpy(fuzzy_set->Properties.Name, "new");
strcpy(fuzzy_set->Properties.MembershipFunctionType, "Singleton2"); 
fuzzy_set->Properties.Cardinality = 0; 
fuzzy_set->Values = (struct Value2 ‘) NULL;
for(i = 0;i < 2;++i)
{

fuzzy_set->SupportX[i] = 0;
fuzzy_set->SupportY[i] = 0;

}
fuzzy_set->CenterX = 0;
fuzzy_set->CenterY = 0;
fuzzy_set->Next = NULL;
return(fuzzy_set);

}

void FreeFuzzySet2(struct FuzzySet2 *fuzzy_set) 
{

FreeValues2(fuzzy_set->Values);
free(fuzzy_set);

}

struct FuzzySet2 *CreateFuzzySet2(char name[MAX_TEXT], char membership_function[MAX_TEXT],
short int universe_of_discourseX[2], short int universe_of_discourseY[2], 

short int supportX[2], short int supportY[2], 
float centerX, float centerY)

{
struct FuzzySet2 *fuzzy_set; 
struct Value2 ‘valuel, *value2;

short int i, Ux, Uy,
Ux1 = universe_of_discourseX[0],
Uxn = universe_of_discourseX[1],
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Uy1 = universe_of_discourseY[0],
Uyn = universe_of_discourseY[lj; 

float mf_valor = 0.0;

fuzzy_set = CreateEmptyFuzzySet2(); 
strcpy(fuzzy_set->Properties.Name, name);
strcpy(fuzzy_set->Properties.MembershipFunctionType, membershlp_function); 
fuzzy_set->Properties.Cardinality = Cardinality! (supportX[0], supportX[1])*

Cardinality 1 (supportY[0], supportY[1]);
for(i = 0; i< 2; ++i)
{

fuzzy_set->SupportX[i] = supportX[i];
fuzzy_set->SupportY[i] = supportY[ij;

}
fuzzy_set->CenterX = centerX;
fuzzy_set->CenterY = centerY;
valuel = CreateValue2(Ux1 ,Uy1,0.0); 
fuzzy_set->Values = valuel;
Ux = Ux1;
Uy = Uy1;
while (Ux < supportX[0])
{

while(Uy < supportY[0])
{

value2 = CreateValue2(Ux,Uy,0.0);
AddValues2(value1, value2); 
valuel = valuel->Next;
Uy++;

}
Ux++;

}
while (Ux <= supportX[1])
{

while(Uy <= supportY[1])
{

if (strcmp(membership_function,Triangular2")==0) 
Triangular2(supportX[0],centerXfsupportX[1], 

supportY[0],centerY,supportY[1 j,
Ux,Uy,&mf_valor); 

else if (strcmp(membership_function>"Bell2")==0) 
Bell2(supportX[0],centerX,supportX[1], 

supportY[0],centerY,supportY[1],
Ux,Uy,&mf_valor); 

else /* (strcmp(membership_function,"Singleton2")==0) */ 
Singleton2(supportX[0],centerX,supportX[1], 

supportY[0],centerY,supportY[1 ],
Ux,Uy,&mf_valor); 

value2 = CreateValue2(Ux,Uy,mf_valor);
AddValues2(value1 ,value2); 
valuel = valuel->Next;
Uy++;

}
Ux++;

}
while (Ux <= Uxn)
{

while(Uy <= Uyn)
{
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value2 = CreateValue2(Ux,Uy,0.0); 
AddValues2(value1, value2); 
valuel = valuel ->Next;
Uy++;

}
Ux++;

}
retum(fuzzy_set);

}

struct Value2 *FindValue2(struct FuzzySet2 *fuzzy_set, short int X, short int Y) 
{

struct Value2 ‘search, ‘found;

search = fuzzy_set->Values; 
found = NULL; 
while(search)
{

if(((search->CrispX-X)==0) && ((search->CrispY-Y)==0))
{

found = search; 
search = NULL;

}
else

search = search->Next;
}
retum(found);

}

void PrintValue2(struct Value2 *val)
{

char bufferl [15],buffer2[15],buffer3[15];

sprintf(buffer1,"X%d",val->CrispX);
sprintf(buffer2,"Y%d",val->CrispY);
sprintf(buffer3,"mf%d",val->MembershipValue);
printf("%s‘, bufferl);
printf(#%s",buffer2);
printf(M%s",buffer3);

}

void PrintFuzzySet2(struct FuzzySet2 *fuzzy_set)
{
struct Value2 ‘value;

printffPrimary Fuzzy Sets.\n\n");
printff -Name:%s",fuzzy_set->Properties.Name);
printff -Membership Function Type:%s\n",

fuzzy_set->Properties.MembershipFunctionType); 
printf(" -Cardinality:%d\n",

fuzzy_set->Properties.Cardinality); 
printf(" -XSupport:[%d,%d,%d]\n",

fuzzy_set->SupportX[0], 
fuzzy_set->CenterX, 

fuzzy_set->SupportX[1 ]); 
printff -YSupport:[%d,%d,%d]\n",
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fuzzy_set->SupportY[0], 
fuzzy_set->CenterY, 
fuzzy_set->SupportY[1 ]); 

printff -Values:\n\n"); 
value = fuzzy_set->Values; 
while(value)
{

printf(“\t");
PrintValue2(value);
printf("\n");
value = value->Next;

}
}

void WriteFuzzySet2ToFile(struct FuzzySet2 *fuzzy_set,FILE ‘file)
{

struct Value2 ‘value;

fprintf(file,"#FILE: PRIMARY 2-DIM. FUZZY SETSAn"); 
fprintf(filef“# Author: Ana Maria Gonzalez de MiguelAn"); 
fprintf(file,“# Date : \n");
fprintf(file,"------------------------------------------------- -\n\n\n");
fprintf(file," -Name: %s\n",fuzzy_set->Properties.Name); 
fprintf(file," -Membership Function Type: %s\n">

fuzzy_set->Properties.MembershipFunctionType); 
fprintf(file," -Cardinality: %d\n",

fuzzy_set->Properties.Cardinality); 
fprintf(file," -XSupport: [%d,%d]\n"f

fuzzy_set->SupportX[0],fuzzy_set->SupportX[1]); 
fprintf(file," -YSupport: [%d,%d]\n",

fuzzy_set->SupportY[0],fuzzy_set->SupportY[1]); 
fprintf(file," -XCenter: %f\n",fuzzy_set->CenterX); 
fprintf(file,B -YCenter: %f\n",fuzzy_set->CenterY); 
fprintfjfile," -Values:\n\n"); 
value = FindValue2(fuzzy_set,

fuzzy_set->SupportX[0], 
fuzzy_set->SupportY[0]); 

while((value) && (value->CrispX<=fuzzy_set->SupportX[1]) && 
(value->CrispY<=fuzzy_set->SupportY[1]))

{
fprintf(file,"\tX = %d \t",value->CrispX); 
fprintf(fiIe,"\tY = %d \t",value->CrispY); 
fprintf(file,"mf = %f\n\value->MembershipValue); 
value = value->Next;

}

void ReadFuzzySet2FromFile(struct FuzzySet2 *fuzzy_set,FILE ‘file) 
{
}

/‘ FUZZY OPERATORS */
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struct FuzzySetl *Union1 (struct FuzzySetl *A, 
struct FuzzySetl *B, 
char name[MAX_TEXT], 
short int univ[2])

{
struct FuzzySetl *C; 
struct Valuel *value1, *value2;

short int U,
X1 = A->Support[0],
Xn = B->Support[1],
U1 = univ[0],
Un = univ[1]; 

float mf_value = 0.0;

C = CreateEmptyFuzzySetl (); 
strcpy(C->Properties.Name, name); 
strcpy(C->Properties.MembershipFunctionType, 

A->Properties.MembershipFunctionType);
C->Properties.Cardinality = Cardinalityl (X1 ,Xn);
C->Support[0] = X1;
C->Support[1] = Xn;
C->Center = X1 + ((Xn - X1 )/2); 
valuel = CreateValuel (111,0.0);
C->Values = valuel; 
while (U < X1)
{

value2 = CreateValuel (U,0.0);
AddValuesI (valuel ,value2); 
valuel = valuel ->Next;
U++;

}
while (U <= Xn)
{

if (strcmp( A->Properties.MembershipFunctionType,Triangular1 ")==0) 
Triangularl (X1 ,C->Center,Xn,U,&mf_value); 

else if (strcmp( A->Properties.MembershipFunctionType,l,Belir)==0)
Belli (X1 ,C->Center,Xn,U,&mf_value); 

else /* (strcmp( A->Properties.MembershipFunctionType,"Singletonr)==0) 7  
Singletonl (X1 .Co-Center.Xn.U.&mLvalue); 

value2 = CreateValuel (U,mf_value);
AddValuesI (valuel ,value2); 
valuel = valuel->Next;
U++;

}
while (U <= Un)
{

value2 = CreateValuel (U,0.0);
AddValuesI (valuel ,value2); 
valuel = valuel->Next;
U++;

}
return(C);
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struct FuzzySetl *Complement1 (struct FuzzySetl *A,
short int Univ[2])

{
struct FuzzySetl ‘complement; 
struct Valuel ‘value; 
short int X,

X1 = A->Support[0],
Xn = A->Support[1]; 

short int supportC[2] = {X1 ,Xn}; 
float mf_value;

complement = CreateFuzzySet1(A->Properties.Name, A->Properties.MembershipFunctionType,
Univ.supportC, A->Center); 

value = FindValuel (complement,X1);
X = X1 •
while (X<=Xn)
{

mf_value = value->MembershipValue; 
value->MembershipValue = 1.0 - mf_value; 
value = value->Next;
X++;

}
return(complement);

}

struct FuzzySet2 *Complement2(struct FuzzySet2 *A, short int UnivX[2], short int UnivY[2]) 
{

struct FuzzySet2 ‘complement; 
struct Value2 ‘value; 
short int X,Y,

X1 = A->SupportX[0],
Xn = A->SupportX[1],
Y1 = A->SupportY[0],
Yn = A->SupportY[lj;

short int XsupportC[2] = {X1 ,Xn},
YsupportC[2] = (Y1 ,Yn}; 

float mf_value;
complement = CreateFuzzySet2(A->Properties.Name,

A->Properties.MembershipFunctionType,
UnivX.UnivY,
XsupportC, YsupportC,
A->CenterX,A->CenterY); 

value = FindValue2(complement,X1,Y1);
X = X1;
Y = Y1;
while (X <= Xn)
{

while (Y <= Yn)
{

mf_value = value->MembershipValue; 
value->MembershipValue = 1.0 - mf_value; 
value = value->Next;
Y++;

}
X++;

}
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return(com plem ent);
}

struct FuzzySet2 ‘CreateNullCartesianProductl 1 (short int univU[2],
short int univV[2])

{
struct FuzzySet2 *cart_product; 
struct Value2 ‘v aluel, *value2; 
short int i, u, v;

cart_product = CreateEmptyFuzzySet2(); 
for(i = 0; i< 2; ++i)
{

cart_product->SupportX[i] = univll[i];
cart_product->SupportY[i] = univVfi];

}
valuel = CreateValue2(univU[0],univV[0],0.0); 
cart_product->Values = v aluel; 
for(u = univll[0];u<=univU[1];++u) 
for(v = univV[0];v<=univV[1];++v)
{

value2 = CreateValue2(u,v,0.0); 
AddValues2(value1, value2); 
valuel = valuel->Next;

}
return(cart_product);

}

/* TRIANGULAR NORMS
/*.*******************************************************<

void TNormlntersection(float mf1, float mf2, float *mf) 
{

if ((mf1 - mf2)>= 0.0)
*mf = mf2; 

else
*mf = mf 1;

}

void TNormProduct(float mf1, float mf2, float *mf) 
{

*mf = mf1*mf2;
}

void TNormBoundedProduct(float mf1, float mf2, float *mf) 
{

7
*/

7
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if ((mf1+mf2-1)<=0) 
*mf = 0.0;

e*mf = mf1+mf2-1;
}

void TNormDrasticProduct(float mf1, float mf2, float *mf) 
{

if (mf2 == 1.0)
*mf = mf 1; 

else if (mf 1 == 1.0)
*mf = mf2; 

else
*mf = 0.0;

}

/* TRIANGULAR CO-NORMS 7

void TCoNormUnion(float mf1, float mf2, float *mf) 
{

if (mf1-mf2>=0)
*mf = mf 1; 

else
*mf = mf2;

}

void TCoNormSum(float mf1, float mf2, float *mf) 
{

*mf = (mf1+mf2-mf1*mf2);
}

void TCoNormBoundedSum(float mf1, float mf2, float *mf) 
{

if ((mfl-mf2)<=1)
*mf = mf1-mf2;

else
*mf =  1 ;

}

void TCoNormDrasticSum(float mf1, float mf2, float *mf) 
{

if (mf2 == 0.0)
*mf = mf 1; 

else if (mf1 == 0.0)
*mf = mf2; 

else
*mf = 1.0;

}
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void TCoNormDisjointSum(float mf1, float mf2, float *mf) 
{

float m ini, min2;

mini = 1-mf2; 
if (mf1<min1) 

mini = mf1; 
min2 = 1-mf1; 
if (mf2<min2) 

min2 = mf2; 
if (min1>min2) 

*mf = m ini; 
else

*mf = min2;
}

FLC.H

#ifndef FLC_H
#define FLC H
#define MAX TEXT 50
#define MIN DIST -101
#define MAX DIST 1101
#define NUM DIST SETS 9
#define NUMJRSENSORS 8
#define VPBmin -100
#define VPBct 0.0
#define VPBmax 100
#define PBmin 75
#define PBct 150.0
#define PBmax 225
#define PMmin 200
#define PMct 300.0
#define PMmax 400
#define PSmin 375
#define PSct 450.0
#define PSmax 525
#define ZEmin 475
#define ZEct 550.0
#define ZEmax 625
#define NSmin 575
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#define NSct 650.0
#define NSmax 725
#define NMmin 700
#define NMct 750.0
#define NMmax 800
#define NBmin 775
#define NBct 850.0
#define NBmax 925
#define VNBmin 900
#define VNBct 1000.0
#define VNBmax 1100
#define MIN SPEED -11
#define MAX SPEED 11
#define NUM SPEED SETS 7
#define NUM_MOTORS 2
#define VFmax 11
#define VFct 10.0
#define VFmin 9
#define Fmax 10
#define Fct 7.0
#define Fmin 4
#define PModmax 5
#define PModct 3.0
#define PModmin 1
#define NULLmax 2
#define NULLct 0.0
#define NULLmin -2
#define NModmin -1
#define NModct

oCO•

#define NModmax -5
#define Smin -4
#define Set i o

#define Smax -10
#define VSmin -9
#define VSct -10.0
#define VSmax -11
#define HDSmin -20
#define HDSct -30
#define HDSmax -40
#define MDSmin 
#define MDSct -20

-10

#define MDSmax -30
#define LDSmin 0
#define LDSct -10
#define LDSmax -20
#define NMSmin -10
#define NMSct 0
#define NMSmax 10
#define LISmin 0
#define LISct 10
#define LISmax 20
#define MISmin 10
#define MISct 20
#define MISmax 30
#define HISmin 20
#define HISct 30
#define HI Smax 40

/* negative small 7

/* negative medium 7

/* negative big 7

/* very negative big 7  
/* max IRS = min distance 7  
/* universe of speeds 7

/* very fast 7  

/M ast 7

/* positive moderate 7  

/* null 7

/* negative moderate 7  

/* slow 7  

/* very slow 7  

/* highly decrease speed 7  

/* moderatly decrease speed 7

/* lightly decrease speed 7  

/* no modify speed 7  

/* lightly increase speed 7  

/* moderatly increase speed 7  

/* highly increase speed 7
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struct PartitionMember 
{

short int lntervalMember[2];
struct FuzzySetl ‘FuzzySet;

};

struct PartitionOfDistances 
{

char Name[MAX_TEXT];
short int lnterval[2];
struct PartitionMember Members[NUM_DIST_SETS-1];

};

struct PartitionOfSpeeds 
{

char 
short int
struct PartitionMember

};

struct PerceptionStates 
{

struct FuzzySetl *LeftState; 
struct FuzzySetl ‘RightState; 
struct FuzzySetl *BackState;

};

struct SpeedVariation 
{

struct FuzzySetl ‘LeftVariation; 
struct FuzzySetl ‘RightVariation;

};

struct RuleComponent 
{

struct FuzzySetl ‘A n teced en t;
struct FuzzySetl *Antecedent2;
struct FuzzySetl ‘Consequent;
struct RuleComponent ‘Next;

};

struct RuieBase 
{

struct RuleComponent ‘Left;
struct RuleComponent ‘Right;
struct RuleComponent ‘Back;
char Name[MAX_TEXT];

Name[MAX_TEXT];
lnterval[2];

Members[NUM_SPEED_SETS-1 ];
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Appenuut i.

extern struct FuzzySetl *CreateEmptyFuzzySet1 ();
extern struct FuzzySetl *CreateFuzzySet1 (char name[MAX_TEXT]p

char membership_function[MAX_TEXT], 
short int universe_of_discourse[2], 
short int support[2], 

float center);
extern void PrintFuzzySetl (struct FuzzySetl *fuzzy_set);
extern FreeFuzzySetl (struct FuzzySetl *fuzzy_set);
extern void WriteFuzzySet1ToFile(struct FuzzySetl *fuzzy_set,FILE *file);
extern void ReadFuzzySetl FromFile(struct FuzzySetl *fuzzy_set,FILE *file);
extern struct Valuel *FindValue1 (struct FuzzySetl *fuzzy_set,

short int X);
extern short int DecFindCrispValuel (struct FuzzySetl *fuzzy_set, float mf,

short int init, short int end); 
extern short int IncFindCrispValuel (struct FuzzySetl *fuzzy_set, float mf,

short int init, short int end); 
extern float Sum(struct FuzzySetl *fuzzy_set); 
extern struct FuzzySet2 *CreateFuzzySet2(char name[MAX_TEXT],

char membership_function[MAX_TEXT], 
short int universe_of_discourseX[2], 

short int universe_of_discourseY[2], 
short int supportX[2], 
short int supportY[2], 
float centerX, 
float centerY);

extern void PrintFuzzySet2(struct FuzzySet2 *fuzzy_set);
extern void FreeFuzzySet2(struct FuzzySet2 *fuzzy_set);
extern struct FuzzySet2 *CreateEmptyFuzzySet2();
extern void WriteFuzzySet2ToFile(struct FuzzySet2 *fuzzy_set,FILE *file);
extern void ReadFuzzySet2FromFile(struct FuzzySet2 *fuzzy_set,FILE *file);
extern struct Value2 *FindValue2(struct FuzzySet2 *fuzzy_set,

short int X, 
short int Y);

extern struct FuzzySetl *Union1 (struct FuzzySetl *A,
struct FuzzySetl *B, 

char name[MAX_TEXT], 
short int univ[2]);

extern struct FuzzySet2 *CreateNullCartesianProduct11 (short int UnivU[2],
short int UnivV[2]); 

extern void TNormlntersection(float mf1, float mf2, float *mf); 
extern void TNormProduct(float mf1, float mf2, float *mf); 
extern void TNormBoundedProduct(float mf1, float mf2, float *mf); 
extern void TNormDrasticProduct(float mf1, float mf2, float *mf); 
extern void TCoNormllnion(float mf1, float mf2, float *mf); 
extern void TCoNormSum(float mf1, float mf2, float *mf); 
extern void TCoNormBoundedSum(float mf1, float mf2, float *mf); 
extern void TCoNormDrasticSum(float mf 1, float mf2, float *mf); 
extern void TCoNormDisjointSum(float mf1, float mf2, float *mf);

#endif
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FLC.C

#include "../SRC/include.h"
#include H../SRC/types.h"
#include "flc.h"

struct Robot *robot;

boolean PositiveBigSpeedMotor(struct Robot *r, short int motor) 
{

retum( r->Motor[motor].Value <= SPBmax && 
r->Motor[motor].Value >= SPBm in);

}

boolean PositiveBigSpeed(struct Robot *r)
{

retum(PositiveBigSpeedMotor(r,LEFT) || 
PositiveBigSpeedMotor(r,RIGHT));

}

boolean PositiveMediumSpeedMotor(struct Robot *r, short int motor) 
{

return( r->Motor[motor].Value <= SPMmax && 
r->Motor[motor].Value >= SPMmin);

}

boolean PositiveMediumSpeed(struct Robot *r)
{

return( PositiveMediumSpeedMotor(r.LEFT) || 
PositiveMediumSpeedMotor(r,RIGHT));

}

boolean PositiveSmallSpeedMotor(struct Robot *r, short int motor) 
{

return( r->Motor[motor].Value <= SPSmax && 
r->Motor[motor].Value >= SPSm in);

}

boolean PositiveSmallSpeed(struct Robot *r)
{

retum( PositiveSmallSpeedMotor(r,LEFT) || 
PositiveSmallSpeedMotor(r,RIGHT));

}

boolean ZeroSpeedMotor(struct Robot *r, short int motor) 
{

return( r->Motor[motor].Value <= SZEmax && 
r->Motor[motor].Value >= SZEmin);

}
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/ipptnuix i/

boolean ZeroSpeed(struct Robot *r)
{

return( ZeroSpeedMotor(r,LEFT) || 
ZeroSpeedMotor(r,RIGHT));

}

boolean NegativeSmallSpeedMotor(struct Robot *r, short int motor) 
{

return( r->Motor[motor].Value <= SNSmin && 
r->Motor[motor].Value >= SN Sm ax);

}

boolean NegativeSmallSpeed(struct Robot *r)
{

return( NegativeSmallSpeedMotor(r,LEFT) || 
NegativeSmallSpeedMotor(r,RIGHT));

}

boolean NegativeMediumSpeedMotor(struct Robot *r, short int motor) 
{

return( r->Motor[motor].Value <= SNMmin && 
r->Motor[motor].Value >= SNMmax);

}

boolean NegativeMediumSpeed(struct Robot *r)
{

return( NegativeMediumSpeedMotor(r,LEFT) || 
NegativeMediumSpeedMotor(r,RIGHT));

}

boolean NegativeBigSpeedMotor(struct Robot *r, int motor) 
{

return( r->Motor[motor].Value <= SNBmin && 
r->Motor[motor].Value >= SNBmax);

}

boolean NegativeBigSpeed(struct Robot *r)
{

return( NegativeBigSpeedMotor(r,LEFT) || 
NegativeBigSpeedMotor(r.RIGHT));

}

boolean PositiveBigDistance(struct Robot *r, short int sensor)
{

return( r->IRSensor[sensor].DistanceValue <= MPBmax && 
r->IRSensor[sensor].DistanceValue >= MPBmin );

}
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boolean PositiveMediumDistance(struct Robot *r, short int se n so r) 
{

retum( r->IRSensor[sensor].DistanceValue <= MPMmax&& 
r->IRSensor[sensor].DistanceValue >= MPMmin);

}

boolean ObstaclePerceivedOnRight(struct Robot *r) 
{

return( PositiveBigDistance(r,3) || 
PositiveBigDistance(r,4) || 
PositiveBigDistance(r,5) || 
PositiveMediumDistance(r,3) || 
PositiveMediumDistance(r,4) jj 
PositiveMediumDistance(r,5));

}

boolean ObstaclePerceivedOnLeft(struct Robot *r) 
{

return( PositiveBigDistance(r.O) || 
PositiveBigDistance(r,1) || 
PositiveBigDistance(r,2) jj 
PositiveMediumDistance(r,0) || 
PositiveMediumDistance(r,1) jj 
PositiveMediumDistance(r,2));

}

boolean ObstaclePerceivedlnBack(struct Robot *r) 
{

retum( PositiveBigDistance(r,6) || 
PositiveBigDistance(r,7) || 
PositiveMediumDistance(r,6) || 
PositiveMediumDistance(r,7));

}

boolean PositiveSmallDistance(struct Robot *r, short int se n so r)
{

retum( r->IRSensor[sensor].DistanceValue <= MPSmax && 
r->IRSensor[sensor].DistanceValue >= MPSmin);

}

boolean ZeroDistance(struct Robot *r, short int se n so r)
{

return( r->IRSensor[sensor].DistanceValue <= MZEmax && 
r->IRSensor[sensor].DistanceValue >= MZEmin);

}

boolean ObstacleLightlyPerceivedOnRight(struct Robot *r) 
{

return( PositiveSmallDistance(r,3) || 
PositiveSmallDistance(r,4) ||
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PositiveSmallDistance(r,5) || 
ZeroDistance(r,3) ||
ZeroDistance(r,4) jj
ZeroDistance(r,5));

}

boolean ObstacleLightlyPerceivedOnLeft(struct Robot *r) 
{

return( PositiveSmallDistance(r,0) || 
PositiveSmallDistance(r,1) || 
PositiveSmallDistance(r,2) jj 
ZeroDistance(r,0) j|
ZeroDistance(r,1) jj
ZeroDistance(r,2));

}

boolean ObstacleLightlyPerceivedlnBack(struct Robot *r) 
{

return( PositiveSmallDistance(r,6) || 
PositiveSmallDistance(r,7) || 
ZeroDistance(r,6) ||
ZeroDistance(r,7));

}

boolean NegativeSmallDistance(struct Robot *r, short int sensor)
{

return( r->IRSensor[sensor].DistanceValue <= MNSmin && 
r->IRSensor[sensor].DistanceValue >= MNSmax);

}

boolean NegativeMediumDistance(struct Robot *r, short int sensor)
{

return( r->IRSensor[sensor].DistanceValue <= MNMmin && 
r->IRSensor[sensor].DistanceValue >= MNMmax);

}

boolean NegativeBigDistance(struct Robot *r, short int sensor)
{

return( r->IRSensor[sensor].DistanceValue <= MNBmin && 
r->IRSensor[sensor].DistanceValue >= MNBmax);

}

boolean NoObstaclePerceivedOnRight(struct Robot *r) 
{

return( NegativeSmallDistance(r,3) || 
NegativeSmallDistance(r,4) (| 
NegativeSmallDistance(r,5) jj 
NegativeMediumDistance(r,3) || 
NegativeMediumDistance(r,4) jj 
NegativeMediumDistance(r,5) jj 
NegativeBigDistance(r,3) || 
NegativeBig Distance^,4) jj 
NegativeBigDistance(r,5));
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}

boolean NoObstaclePerceivedOnLeft(struct Robot *r) 
{

return( NegativeSmallDistance(r,0) || 
NegativeSmallDistance(r,1) || 
NegativeSmallDistance(r,2) jj 
NegativeMediumDistance(r,0) || 
NegativeMediumDistance(r,1) jj 
NegativeMediumDistance(r,2) jj 
NegativeBigDistance(r,0) || 
NegativeBigDistance(r,1) jj 
NegativeBigDistance(r,2));

}

boolean NoObstaclePerceivedlnBack(struct Robot *r) 
{

return( NegativeSmallDistance(r,6) || 
NegativeSmallDistance(r,7) || 
NegativeMediumDistance(r,6) || 
NegativeMediumDistance(r,7) jj 
NegativeBigDistance(r,6) || 
NegativeBigDistance(r,7));

}

boolean CollisionOnLeft(struct Robot *r)
{

return( PositiveBigDistance(r,0) || 
PositiveBigDistance(r,1) || 
PositiveBigDistance(r,2));

}

boolean CollisionOnRight(struct Robot *r)
{

return( PositiveBigDistance(r,3) || 
PositiveBigDistance(r,4) || 
PositiveBigDistance(r,5));

}

boolean CollisionlnBack(struct Robot *r)
{

return( PositiveBigDistance(r,6) || 
PositiveBigDistance(r,7));

}

void LightlylncreaseSpeed(struct Robot *robot) 
{

robot->Motor[LEFT].Value += 1; 
robot->Motor[RIGHT].Value += 1;

}
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void lncreaseSpeed(struct Robot *robot)
{

robot->Motor[LEFT].Value += 2; 
robot->Motor[RIGHT].Value += 2;

}

void LightlyDecreaseSpeed(struct Robot *robot) 
{

robot->Motor[LEFT].Value -= 1; 
robot->Motor[RIGHT].Value -= 1;

}

void DecreaseSpeed(struct Robot *robot)
{

robot->Motor[LEFT].Value -= 2; 
robot*>Motor[RIGHT].Value -= 2;

}

void TurnRight(struct Robot *robot)
{

robot->Motor[LEFT] .Value = SPSmax; 
robot->Motor[RIGHT].Value = SNMmin;

}

void TurnLeft(struct Robot *robot)
{

robot*>Motor[LEFT].Value = SNMmin; 
robot->Motor[RIGHT].Value = SPSmin;

}

boolean DifferentEffectorsDirection(struct Robot *robot)
{

return ( ( robot->Motor[LEFT].Value) != ( robot->Motor[RIGHT].Value));

}

void CorrectDirection(struct Robot *robot)
{

if ( ( robot->Motor[LEFT].Value) > ( robot->Motor[RIGHT].Value)) 
robot->Motor[RIGHT].Value = robot->Motor[LEFT].Value; 

if ( ( robot->Motor[RIGHT].Value) > ( robot->Motor[LEFT].Value))

robot->Motor[LEFT].Value = robot->Motor[RIGHT].Value;
}

void SpeedDownMovement(struct Robot *r)
{

if ( DifferentEffectorsDirection(r))
if ( PositiveSmallSpeed(r) || ZeroSpeed(r)) 

CorrectDirection(r);
else

LightlyDecreaseSpeed(r);
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else
DecreaseSpeed(r);

}

void SpeedUpMovement(struct Robot *r)
{

if ( DifferentEffectorsDirection(r))
if ( PositiveSmallSpeed(r) || ZeroSpeed(r)) 

CorrectDirection(r);
else

LightlylncreaseSpeed(r);
else

IncreaseSpeed(r);
}

void SolveCollisionOnLeft(struct Robot *r)
{

if ( ZeroSpeed(r) || PositiveSmallSpeed(r)) 
TurnRight(r);

else
LightlyDecreaseSpeed(r);

}

void SolveCollisionOnRight(struct Robot *r)
{

boolean ans = FALSE;
ans = ( ZeroSpeed(r) || PositiveSmallSpeed(r)); 
if ( ans = TRUE)

TurnLeft(r); 
if ( ans = FALSE)

DecreaseSpeed(r);
}

void CorrectRobotEffectors(struct Robot *r)
{

int i;
for(i=0; i<=1; ++i)
{

if (r->Motor[i].Value > SPBmax)
r->Motor[i].Value = SPBmax; 

if (r->Motor[i].Value < SNBmax)
r->Motor[i].Value = SNBmax;

}
}

DATABASE.C

Dissertation o f the Thesis v4.1
Copyright ©Ana Maria Gonzdlez de Miguel, CMS, SHU
June, 2002

Pag. 229



Appendix i

#include "../SRC/include.h" 
#include \./SRC/types.h" 
#include "flc.h"
#include "fuzzysets.h" 
struct Robot ‘robot;

/* Primary Fuzzy Distances */

struct FuzzySetl *vpb, *pb, *pm, *ps, *ze, *ns, *nm, ‘nb, *vnb; 

/* Primary Fuzzy Speeds */

struct FuzzySetl ‘vf, *f, ‘pmod, ‘nulla, ‘nmod, ‘s, *vs;

/* Supports of primary Fuzzy Sets */

short int univ_distances[2] = {MIN_DIST,MAX_DIST};
short int supportVPB[2] = {VPBmin.VPBmax};
short int supportPB[2] = {PBmin.PBmax};
short int supportPM[2] = {PMmin.PMmax};
short int supportPS[2] = {PSmin.PSmax};
short int supportZE[2] = {ZEmin.ZEmax};
short int supportNS[2] = {NSmin.NSmaxj;
short int supportNM[2] = {NMmin.NMmax};
short int supportNB[2] = {NBmin.NBmax};
short int supportVNB[2] = {VNBmin.VNBmax};
short int univ_speeds[2] = {MIN_SPEED,MAX_SPEED};
short int supportVF[2] = {VFmin.VFmax};
short int supportF[2] = {Fmin.Fmax};
short int supportPMod[2] = {PModmin.PModmax};
short int supportNULL[2] = {NULLmin.NULLmax};
short int supportNMod[2] = {NModmax.NModminj;
short int supportS[2] = {Smax.Smin};
short int supportVS[2] = {VSmax.VSmin};

I* PRIMARY FUZZY SETS: generation of fuzzy distances and fuzzy speeds */

void CreatePrimaryFuzzyDistances()
{

vpb = CreateFuzzySet1("VPB",
T rian g u la rrfuniv_distances,supportVPBfVPBct); 

pb = CreateFuzzySet1("PB",
"Triangularr.un^distances.supportPB.PBct); 

pm =CreateFuzzySet1("PM",
‘Triangularr.univ.distances.supportPM.PMct); 

ps =CreateFuzzySet1("PS",
"Triangularr.un^distances.supportPS.PSct); 

ze =CreateFuzzySet1("ZE",
"Triangularr,univ_distances,supportZE,ZEct); 

ns = CreateFuzzySet1("NS\

Dissertation o f the Thesis v4.1
Copyright © Ana Maria Gonzdlez de Miguel, CMS, SHU
June, 2002

Pag. 230



"Triangularr,univ_distances,supportNS,NSct); 
nm = CreateFuzzySetl ("NM",

"Triangular! M,univ_distances,supportNM,NMct); 
nb = CreateFuzzySetl ("NB",

"Triangularr,univ_distances,supportNB,NBct); 
vnb = CreateFuzzySetl ("VNB\

"Triangularr,univ_distances,supportVNB,VNBct);
}

void CreatePrimaryFuzzySpeeds()
{

vf = CreateFuzzySetl ("VF",
"T riangularl ",univ_speeds,supportVF,VFct); 

f = CreateFuzzySetl ("F",
"T riangularl ",univ_speeds,supportF,Fct); 

pmod = CreateFuzzySetl ("PMod",
"Triangularl",univ_speeds,supportPMod,PModct); 

nulla = CreateFuzzySetl ("NULL",
MTriangularr,univ_speeds,supportNULL,NULLct); 

nmod = CreateFuzzySetl ("NMod",
"Triangularr,univ_speedspsupportNMod,NModct); 

s  = CreateFuzzySetl ("S",
"T riangularl M,univ_speeds,supportS,Sct); 

vs = CreateFuzzySetl ("VS",
"Triangularr,univ_speeds,supportVS,VSct);

}

/* FUZZY PARTITIONS: completeness of the database 7

short int LimitPartitionMember(struct FuzzySetl *fs1,
struct FuzzySetl *fs2)

/* fs1 and fs2 may be ordered 7  
{

struct Valuel ‘search 1, ‘search2;
short int element, in tersec tion^ , intersection_2;

searchl = (struct Valuel *)malloc(sizeof(struct Valuel));
search2 = (struct Valuel *)malloc(sizeof(struct Valuel));
intersection^ =fs2->Support[0];
intersection_2=fs1 ->Support[1 j;
element = in tersec tion^;
if ((abs(intersection_2) - intersection_1) > 0)
{

searchl = FindValue1(fs1 .intersection^); 
search2 = FindValue1(fs2,intersection_1); 
while (searchl && search2)
{

if ((search2->MembershipValue - search 1->MembershipValue) > 0 .0) 
{

element = (searchl->CrispX) -1 ; 
searchl = NULL; 
search2 = NULL;
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A p p e n u i x  u

}
else
{

searchl = search 1->Next; /* next value of the support of fs1 */
search2 = search2->Next;

}
}

}
return(element);

struct PartitionOfDistances *CreateEmptyPartitionOfDistances()
{

struct PartitionOfDistances *partition; 
short int num;

partition = (struct PartitionOfDistances *)
malloc(sizeof(struct PartitionOfDistances)); 

strcpy(partition->Name,Mnew"); 
partition->lnterval[0] = 0; 
partition->lnterval[1] = 0; 
for(num = 0;num < NUM_DIST_SETS;++num)
{

partition->Members[num].lntervalMember[0] = 0; 
partition->Members[num].lntervalMember[1] = 0; 
partition->Members[num].FuzzySet = (struct FuzzySetl *)

malloc(sizeof(struct FuzzySetl));
}
return(partition);

}

void FreeDistanceMembers(struct PartitionOfDistances ^partition) 
{

short int num;

for(num = 0;num < NUM_DIST_SETS - 1;++num) 
FreeFuzzySet1(partition->Members[num].FuzzySet);

}

struct PartitionOfDistances *CreatePartitionOfDistances(short int interval[2]) 
{

struct PartitionOfDistances ‘partition;

partition = CreateEmptyPartitionOfDistances(); 
strcpy(partition->Name,"FUZZY PARTITIONS OF DISTANCE VALUES"); 
partition->lnterval[0] = interval[0];
partition->lnterval[1 ] = interval[1]; /* to be modified with previous*/

/* connection of fuzzy distances */

partition->Members[0].FuzzySet = vpb; 
partition->Members[0].lntervalMember[0] = interval[0]; 
partition->Members[0].lntervalMember[1 j = LimitPartitionMember(vpb,pb);
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partition->Members[1].FuzzySet = pb;
partition->Members[1].lntervalMember[0] = partition->Members[0].lntervalMember[1]+1; 
partition->Members[1].lntervalMember[1] = LimitPartitionMember(pb,pm); 
partition->Members[2].FuzzySet = pm;
partition->Members[2].lntervalMember[0] = partition->Members[1].lntervalMember[1]+1; 
partition->Members[2].lntervalMember[1] = LimitPartitionMember(pm,ps); 
partition->Members[3].FuzzySet = ps;
partition->Members[3].lntervalMember[0] = partition->Members[2].lntervalMember[1]+1; 
partition->Members[3].lntervalMember[1] = UmitPartitionMember(ps,ze); 
partition->Members[4].FuzzySet = ze;
partition->Members[4].lntervalMember[0] = partition->Members[3].lntervalMember[1]+1; 
partition->Members[4].lntervalMember[1 ] = LimitPartitionMember(ze,ns); 
partition->Members[5].FuzzySet = ns;
partition->Members[5].lntervalMember[0] = partition->Members[4].lntervalMember[1]+1; 
partition->Members[5].lntervalMember[1 j = LimitPartitionMember(ns,nm); 
partition->Members[6].FuzzySet = nm;
partition->Members[6].lntervalMember[0] = partition->Members[5].lntervalMember[1]+1; 
partition->Members[6].lntervalMember[1] = LimitPartitionMember(nm,nb); 
partition*>Members[7].FuzzySet = nb;
partition->Members[7].lntervalMember[0] = partition*>Members[6].lntervalMember[1]+1; 
partition->Members[7].lntervalMember[1 j = LimitPartitionMember(nb,vnb); 
partition->Members[8].FuzzySet = vnb;
partition->Members[8].lntervalMember[0] = partition->Members[7].lntervalMember[1]+1; 
partition->Members[8].lntervalMember[1] = partition->lnterval[1];

retum(partition);

}

struct PartitionOfSpeeds *CreateEmptyPartitionOfSpeeds()
{

struct PartitionOfSpeeds ‘partition; 
short int num;

partition = (struct PartitionOfSpeeds *)malloc(sizeof(struct PartitionOfSpeeds));
strcpy(partition->Name,Bnew");
partition->lnterval[0] = 0;
partition->lnterval[1] = 0;
for(num = 0;num < NUM_SPEED_SETS;++num)
{

partition->Members[num].lntervalMember[0] = 0; 
partition->Members[numj.lntervalMember[1 j = 0;
partition->Members[num].FuzzySet = (struct FuzzySetl *)malloc(sizeof(struct FuzzySetl));

}
return(partition);

}

struct PartitionOfSpeeds *CreatePartitionOfSpeeds(short int interval[2]) 
{

struct PartitionOfSpeeds ‘partition;

partition = CreateEmptyPartitionOfSpeeds(); 
strcpy(partition->Name,"FUZZY PARTITIONS OF SPEED VALUES"); 
partition->lnterval[0] = interval[0]; 
partition->lnterval[1] = interval[lj;

Dissertation o f the Thesis v4.1
Copyright ©Ana Maria Gonzdlez de Miguel, CMS, SHU
June, 2002

Pag. 233



Appenuut l

partition->Members[0].FuzzySet = vs;
partition->Members[0].lntervalMember[0] = interval[0]; 
partition->Members[0].lntervalMember[1] = LimitPartitionMember(vs,s); 
partition->Members[1].FuzzySet = s ;
partition->Members[1].lntervalMember[0] = partition->Members[0].lntervalMember[1]+1; 
partition->Members[1 j.lntervalMember[1 ] = LimitPartitionMember(s,nmod); 
partition->Members[2].FuzzySet = nmod;
partition->Members[2].lntervalMember[0] = partition->Members[1].lntervalMember[1]+1; 
partition->Members[2].lntervalMember[1 j = LimitPartitionMemberjnmod,nulla); 
partition->Members[3].FuzzySet = nulla;
partition->Members[3].lntervalMember[0] = partition->Members[2].lntervalMember[1]+1; 
partition->Members[3].lntervalMember[1 ] = LimitPartitionMemberjnulla.pmod); 
partition->Members[4].FuzzySet = pmod;
partition->Members[4].lntervalMember[0] = partition->Members[3].lntervalMember[1]+1; 
partition->Members[4].lntervalMember[1] = LimitPartitionMember(pmod,f); 
partition->Members[5].FuzzySet = f;
partition->Members[5].lntervalMember[0] = partition->Members[4].lntervalMember[1]+1; 
partition->Members[5].lntervalMember[1 j = LimitPartitionMemberif.vf); 
partition->Members[6].FuzzySet = vf;
partition->Members[6].lntervalMember[0] = partition->Members[5].lntervalMember[1]+1; 
partition->Members[6].lntervalMember[lj = interval[1];

retum(partition);
}

void WritePartitionOfDistancesToFile(struct PartitionOfDistances ‘partition, FILE *file)
{

short int num;
fprintf(fiie,,,#File :FUZZY|distancespartition\n"); 
fprintf(file,"#Description: %s\n“,partition->Name); 
fprintf(file,“# Author : Ana Maria Gonzalez de MiguelAn"); 
fprintfjfile,"# Date : \n");
fprintf(file,“-------------------------------------------------- \n\n\n");

fprintf(file,“ - Interval of crisp distances: ^d.^od^n'.partition^lntervaltO],
partition->lnterval[1 ]);

fprintf(file," - Members:\n\nM);
for(num = 0; num < NUM_DIST_SETS; ++num)
{

fprintf(file," \t-Number of fuzzy distance m em ber: %d\n",num); 
fprintfifile," \t-lnterval of crisp distances: [%d,%d]\n",

partition->Members[num].lntervalMember[0], 
partition->Members[num].lntervalMember[lj); 

fprintf(file," \t-Fuzzy distance set member: %s\n\n",
partition->Members[num].FuzzySet);

fprintf(file," \t\t-XSupport: [%d,%d]\n"f
partition->Members[num].FuzzySet->Support[0], 
partition->Members[num].FuzzySet->Support[lj); 

fprintf(file," \t\t-Center: %f\n“, partition->Members[num].FuzzySet->Center); 
fprintf(file," \t\t-Membership Function Type: %s\n\n\n\n",

partition->Members[num].FuzzySet->Properties.MembershipFunctionType);
}

}

void WritePartitionOfSpeedsToFile(struct PartitionOfSpeeds ‘partition, FILE ‘file)
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{
short int num;
fprintf(file,*# File : FUZZY|speedspartition\n"); 
fprintfjfile,"# Description: %s\n\partition->Name); 
fprintfjfile,*# Author : Ana Maria Gonzalez de MiguelAn"); 
fprintf(file,"# Date : \n");
fprintfjfile,"------------------------------------------------- -\n\n\n");
fprintfjfile," - Interval of crisp speed values: [%d , %d]\n",partition->lnterval[0],

partition->lnterval[1 ]);
fprintf(file," - Members:\n\n");
for(num = 0; num < NUM_SPEED_SETS; ++num)
{

fprintf(file," \t-Number of fuzzy speed member: %d\n",num); 
fprintfjfile," \t-lnterval of crisp speed values: [%d,%d]\n\

partition->Members[num].intervalMember[0], 
partition->Members[num].lntervalMember[1]); 

fprintf(file," \t-Fuzzy speed set member: %s\n\n",
partition->Members[num].FuzzySet);

fprintf(file," \t\t-XSupport: [%d,%d] \n",
partition->Members[num].FuzzySet->Support[0],
partition->Members[num].FuzzySet->Support[1]);

fprintf(file," \t\t-Center: %f\n",
partition->Members[num].FuzzySet->Center); 

fprintf(file," \t\t-Membership Function Type: %s\n\n\n\n",
partition->Members[num].FuzzySet->Properties.MembershipFunctionType);

}
}

void FreeSpeedMembers(struct PartitionOfSpeeds ‘partition) 
{

short int num;

for(num = 0;num < NUM_SPEED_SETS -1 ;++num) 
FreeFuzzySet1(partition->Members[num].FuzzySet);

}

short int FindMaxPartitionMember(short int IR1, short int IR2,
short int KheperaSensorFuzzyValues[NUMJRSENSORS-1])

{
short int max_partition_member, i;

max_partition_member = KheperaSensorFuzzyValues[IR1]; 
for(i = IR1; i <= IR2; ++i) 

if((KheperaSensorFuzzyValues[i] - max_partition_member) > 0) 
max_partition_member = i; 

return(max_partition_member);
}

/* FUZZIFICATION STRATEGY */

short int FindDistancePartitionMember(short int crisp_distance,
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struct PartitionOfDistances ‘partition)

{
struct PartitionMember member; 
short int found, num;

num = 0; 
found = -1;
member = partition->Members[num];
while((found == -1) && ((NUM_DIST_SETS - num) > 0 ))
{

if(((crisp_distance - member. I ntervalMember[0]) >= 0) &&
((crisp_distance - member.lntervalMember[1]) <= 0)) 
found = num;

else
{

num++;
member = partition->Members[num];

}
}
return(found);

}

short int FindSpeedPartitionMember(short int crisp_speed,
struct PartitionOfSpeeds ‘partition)

{
struct PartitionMember member; 
short int num, found; 
num = 0; 
found = -1;
member = partition->Members[num];
while((found == -1) && ((NUM_SPEED_SETS - num) > 0 ))
{

if(((crisp_speed - member.lntervaiMember[0]) >= 0) &&
((crisp_speed - member.lntervalMember[1]) <= 0)) 
found = num;

else
{

num++;
member = partition->Members[num];

}
}
retum(found);

}

short int SensorValueFuzzification( struct Robot ‘robot,
short int sensor,
struct PartitionOfDistances ‘partition)

{
short int dist_member;

dist_member=FindDistancePartitionMember(robot->IRSensor[sensor].DistanceValue, partition); 
return(dist_member);

}
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short int MotorValueFuzzification(struct Robot ‘robot,
short int motor,
struct PartitionOfSpeeds ‘partition)

{
short int speed_member;

speed_member = FindSpeedPartitionMember(robot->Motor[motor].Value, partition); 

return(speed_member);
}

void CompleteDistanceFuzzification(struct Robot ‘robot,
struct PartitionOfDistances ‘partition,
short int KheperaSensorFuzzyValues[NUM_IRSENSORS-1])

{
short int num_sensor;

for(num_sensor = 0; num_sensor < NUMJRSENSORS; ++num_sensor)
{

KheperaSensorFuzzyValues[num_sensor] = SensorValueFuzzification(robot, num_sensor, partition);
}

}

void CompleteSpeedFuzzification(struct Robot ‘robot,
struct PartitionOfSpeeds ‘partition,
short int KheperaMotorFuzzyValues[NUM_MOTORS-1])

{
short int num_motor;

for(num_motor = 0; num_motor < NUM_MOTORS; ++num_motor)
{

KheperaMotorFuzzyValues[num_motor] = MotorValueFuzzification(robot, num_motor, partition);
}

}

void WriteCurrentFuzzyDistancesToFile(FILE ‘file,
short int KheperaSensorFuzzyValues[NUM_IRSENSORS-1], 
struct PartitionOfDistances ‘partition, 
short int step)

{
short int sensor,num; 
struct FuzzySetl ‘member;
fprintf(file,"# File : FUZZY\fuzzy_distancessensors\n"); 
fprintfjfile,"# Author : Ana Maria Gonzalez de MiguelAn"); 
fprintf(file,"# Description : Current FUZZY DISTANCES of Khepera\n"); 
fprintfjfile,"# Date \n");
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fprintf(file,"------------------------------------------------ An");
fprintfjfile," ‘STEP: %d\n",step);
fprintfjfile,"------------------------------------------------ An\n\n“);
fprintfjfile," ‘Khepera Infra Red Sensors:\n\n"); 
for(sensor = 0; sensor < NUMJRSENSORS; ++sensor)
{

num = KheperaSensorFuzzyValuesfsensor]; 
if (sensor==0 || sensor==1 || sensor==2) 

fprintf(file," IR Sensor %d LEFTVn",sensor); 
else if (sensor==3 || sensor==4 || sensor==5) 

fprintf(file," IR Sensor %d RIGH7\n",sensor); 
else/* (sensor==6 || sensor==7) */ 

fprintfjfile," IR Sensor %d BACK\n",sensor); 
fprintf(file," \t-Number of fuzzy distance member: %d\n",num); 
fprintfjfile," \t-lnterval of crisp sensor values: [%d,%d]\n">

partition->Members[numJ.lntervalMember[0], 
partition->Members[num].lntervalMember[1]); 

member = partition->Members[num].FuzzySet;
fprintf(file," \t-Fuzzy distance set member: %s\n\n", member->Properties.Name); 
fprintfjfile," \t\t-XSupport: [%d,%d]", member->Support[0], member->Support[1]); 
fprintfjfile," \t-Center: %f\n\n", member->Center);

}
}

void WriteCurrentFuzzySpeedsToFile(FILE ‘file,
short int KheperaMotorFuzzyValues[NUM_MOTORS-1], 
struct PartitionOfSpeeds ‘partition, 
short int step)

{
short int motor,num; 
struct FuzzySetl ‘member;

fprintf(file,"# File : FUZZY\fuzzy_speedsmotors\n“); 
fprintfjfile,"# Author : Ana Maria Gonzalez de MiguelAn"); 
fprintfjfile,"# Description : Current FUZZY SPEEDS of Khepera\n"); 
fprintfjfile,"# Date : \n");
fprintfjfile,"--------------------------------------------------\n");
fprintfjfile," ‘STEP: %d\n",step);
fprintfjfile,"-------------------------------------------------An\n\n");
fprintfjfile," ‘Khepera motors:\n\n"); 
for(motor = 0; motor < NUM_MOTORS; ++motor)
{

num = KheperaMotorFuzzyValues[motor]; 
if (motor == 0)

fprintf(file," Motor %d: RIGHTXn",motor); 
else /*(motor= 1)*/

fprintf(file," Motor %d: LEFlAn",motor); 
fprintf(file," \t-Number of fuzzy speed member: %d\n\num); 
fprintf(file," \t-lnterval of crisp motor values: [%d,%d]\n",

partition->Members[num].lntervalMember[0], 
partition->Members[num].lntervalMember[1]); 

member = partition->Members[num].FuzzySet; 
fprintf(file," \t-Fuzzy speed set member: %s\n\n",

member->Properties.Name);
fprintf(file," \t\t-XSupport: [%d,%d]",

member->Support[0], 
member->Support[1 ]);
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fprintf(file," \t-Center: %f\n\n",member->Center);
}

}

RULEBASE.C

#include "../SRC/include.h"
#include "../SRC/types.h"
#include "fuzzysets.h"
#include "flc.h"

#define NUM_PERCEP_STATES 5 
#define NUM_VARIATIONS 7
#define MIN_VARIATION_SPEED -40 
#define MAX_VARIATION_SPEED 40 
#define LEFT_SIDE 0
#define RIGHT_SIDE 1
#define BACK_SIDE 2
#define NUM_SIDE_RULES 70

#define FreeComponent(x) free(x);

struct Robot ‘robot;

/* Supports of fuzzy speeds variations */

short int supportHIS[2] = {HISmin, HISmax}, 
supportMIS[2] = {MISmin, MISmax}, 
supportLIS[2] = {LISmin, LISmax}, 
supportNMS[2] = {NMSmin, NMSmax}, 
supportLDS[2] = {LDSmax, LDSmin}, 
supportMDS[2] = {MDSmax, MDSmin}, 
supportHDS[2] = {HDSmax, HDSmin};

short int distances[2] = {MIN_DIST, MAX_DIST},
variations[2] = {MIN_VARIATION_SPEED, MAX_VARIATION_SPEED};

extern struct FuzzySetl *vpb, *pb, *pm, *ps, *ze, *ns, *nm, *nb, *vnb; 
extern struct FuzzySetl ‘vf, *f, ‘pmod, ‘nulla, *nmod, *s, *vs;

/‘ FUZZY CONTROL RULES */

/* States of perception */ 

struct FuzzySetl ‘collision,
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/iyyvuuix ^

*ohp, /* obstacle highly perceived 7  
*omp, /* " moderatly perceived 7  
*olp, /* ■ lightly perceived 7  
*nop; /* ■ no perceived 7

/* Speed variations 7

struct FuzzySetl 'his, 
'mis, 
'lis, 
*nms, 
'Ids, 
*mds, 
*hds;

/* highly increase speed 
/* moderatly increase speed 
/* lightly increase speed 
/* no modify speed 
/* lightly decrease speed 
/* moderatly increase speed 
/* highly increase speed

void CreateFuzzySetsOfPerception()
{

nop = Unionl (vpb,pb,"No Obstacle Perceived",distances); 
nop->Support[0] = 0;
olp = Unionl (pm.ps, "Obstacle Lightly Perceived",distances); 
omp = Unionl(ze.ns,"Obstacle Moderatly Perceived",distances);
ohp = Unionl (nm,nb,"Obstacle Lightly Perceived",distances); 
collision = Unionl (vnb,vnb,"Collision",distances); 
collision->Support[1] = 1023;

}

short int CountEqualFuzzyDistances(short int s1 , short int s2,
short int KheperaSensorFuzzyValues[NUM_IRSENSORS-1], 
short int partition_member_1, 
short int partition_member_2)

{
short int number, sensor; 

number = 0;
for(sensor = s1 ; sensor <= s2; ++sensor) 

if ((KheperaSensorFuzzyValues[sensor] == partition_member_1) || 
(KheperaSensorFuzzyValues[sensorj == partition_member_2)) 

number++; 
return(number);

}

struct FuzzySetl *CreateSidePerceptionState(short int s1 , short int s2,
short int KheperaSensorFuzzyValues[NUMJRSENSORS-1])

{
struct FuzzySetl 'perception; 
short int number;

perception = (struct FuzzySetl *)malloc(sizeof(struct FuzzySetl)); 
number = CountEqualFuzzyDistances(s1 ,s2,KheperaSensorFuzzyValues,0,1); 
if(number >= 1) 

perception = nop;
number = CountEqualFuzzyDistances(s1 ,s2,KheperaSensorFuzzyValues,2,3);
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if(number >= 1) 
perception = olp;

number = CountEqualFuzzyDistances(s1 ,s2,KheperaSensorFuzzyValues,4,5); 
if(number >= 1) 

perception = omp;
number = CountEqualFuzzyDistances(s1 ,s2,KheperaSensorFuzzyValues,6,7); 
if(number >= 1) 

perception = ohp;
number = CountEqualFuzzyDistances(s1 ,s2,KheperaSensorFuzzyValues,8,8); 
if(number >= 1) 

perception = collision;

return(perception);
}

struct PerceptionStates *CreateFuzzyPerceptionStates(short int
KheperaSensorFuzzyValues[NUM_IRSENSORS-1])

{
struct PerceptionStates 'perceptions;

perceptions = (struct PerceptionStates ')malloc(sizeof(struct PerceptionStates)); 
perceptions->LeftState = CreateSidePerceptionState(0,2,KheperaSensorFuzzyValues); 
perceptions->RightState = CreateSidePerceptionState(3,5,KheperaSensorFuzzyValues); 
perceptions->BackState = CreateSidePerceptionState(6,7,KheperaSensorFuzzyValues);

retum(perceptions);
}

void WriteFuzzyPerceptionStatesToFile(struct PerceptionStates 'perceptions,
struct Robot 'robot, 
short int step,
FILE 'file)

short int sensor;

fprintf(file,"# File : FUZZY|fuzzy.perceptions\n"); 
fprintfjfile,"# Author : Ana Maria Gonzalez de MiguelAn"); 
fprintfjfile,"# Description : Current FUZZY PERCEPTION states of Khepera\n“); 
fprintfjfile,**# Date : \n“);
fprintfjfile,"--------------------------------------------------------- \n");
fprintf(file,H 'STEP: %d\n",step);
fprintfjfile,"-------------------------------------------------------- -\n\n\n");
fprintfjfile," - IR Sensors Crisp Distance ValuesAn"); 
for(sensor = 0; sensor < NUMJRSENSORS; ++sensor) 

if (sensor==0 || sensor— 1 || sensor==2) 
fprintf(file," IR Sensor %d (LEFT): %d\n",sensor,

robot->IRSensor[sensor].DistanceValue); 
else if (sensor==3 || sensor==4 || sensor==5) 

fprintf(file," IR Sensor %d (RIGHT): %d\n",sensor,
robot->IRSensor[sensor].DistanceValue); 

else /* (sensor==6 || sensor==7) */
fprintfjfile," IR Sensor %d (BACK): %d\n",sensor,

robot->IRSensor[sensor].DistanceValue);

fprintf(file," - LEFT IR Sensors interpretation : %s\n",
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perceptions->LeftState->Properties.Name); 
fprintf(file," - RIGHT IR Sensors interpretation: %s\n",

perceptions->RightState->Properties.Name); 
fprintf(filet" - BACK IR Sensors interpretation : %s\n",

perceptions->BackState->Properties.Name);

}

void CreateFuzzySetsOfSpeedVariation()
{

his = CreateFuzzySet1("Highly_increase_speed",,,T riangularrf 
variations,supportHIS.HISct); 

mis = CreateFuzzySet1("M oderatlyJncrease_speedYTriangularr, 
variations, supportMIS.MISct); 

lis = CreateFuzzySet1(BLightly_increase_speed","Triangular1", 
variations, supportLIS.LISct); 

nms = CreateFuzzySet1("No_modify_speed","Triangularr, 
variations, supportNMS.NMSct);

Ids = CreateFuzzySet1("Lightly_decrease_speed","Triangularr, 
variations, supportLDS.LDSct); 

mds = CreateFuzzySet1("Moderatly_decrease_speed",MTriangular1", 
variations, supportMDS.MDSct); 

hds = CreateFuzzySet1(“Highly_decrease_speed","Triangularr, 
variations, supportHDS.HDSct);

}

struct SpeedVariation *CreateNullSpeedVariation()
{

struct SpeedVariation 'variations;

variations = (struct SpeedVariation ')malloc(sizeof(struct SpeedVariation)); 
variations->LeftVariation=CreateEmptyFuzzySet1(); 
variations->RightVariation=CreateEmptyFuzzySet1(); 
return(variations);

}

struct SpeedVariation FreeSpeedVariations(struct SpeedVariation 'variations) 
{

FreeFuzzySet1(variations->LeftVariation);
FreeFuzzySet1(variations->RightVariation);
free(variations);

}

struct FuzzySetl 'ReadAntecedentl (char ant[4]) 
{
struct FuzzySetl 'an teced en tl;

if (strncmp(ant,"nop",3)==0) 
antecedentl = nop; 

else if (strncmp(ant,“olp",3)==0) 
antecedentl = olp; 

else if (strncmp(ant,"omp",3)==0) 
antecedentl = omp;
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else If (stmcmp(ant,Bohp",3)==0) 
antecedentl = ohp; 

else I*if (stmcmp(ant,"cor,3)==0)7 
antecedentl = collision; 

retum(antecedentl);
}

struct FuzzySetl *ReadAntecedent2(char ant[6]) 
{
struct FuzzySetl *antecedent2;

if (strncmp(ant,"VS',,2)==0) 
antecedent2 = vs; 

else if (stmcmp(ant,nS",1)==0) 
antecedent2 = s; 

else if (stmcmp(ant,"Nmod,,>4)==0) 
antecedent^ = nmod; 

else if (stmcmp(ant,"Nulla",5)==0) 
antecedent2 = nulla; 

else if (stmcmp(ant,"Pmod",4)==0) 
antecedent2 = pmod; 

else if (strncmp(ant,“F,'>1)==0) 
antecedent2 = f; 

else /* if (stmcmp(ant,"VF“,2)==0)7 
antecedent2 = vf;

return(antecedent2);
}

struct FuzzySetl *ReadConsequent(char cons[4]) 
{

struct FuzzySetl 'consequent;

if (strncmp(cons,"his",3)==0) 
consequent = his; 

else if (strncmp(cons>"mis",3)==0) 
consequent = mis; 

else if (strncmp(cons,',lis"f3)==0) 
consequent = lis; 

else if (stmcmp(cons,"nms",3)==0) 
consequent = nms; 

else if (strncmp(cons>"lds",3)==0) 
consequent = Ids; 

else if (strncmp(cons>"mds",3)==0) 
consequent = mds; 

else /'if (strncmp(cons("hds",3)==0)7 
consequent = hds;

return(consequent);

}

struct RuleComponent *CreateEmptyRuleComponent() 
{

struct RuleComponent 'component;
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component = (struct RuleComponent *)malloc(sizeof(struct RuleComponent));
component->Antecedent1 = NULL;
component->Antecedent2 = NULL;
component->Consequent = NULL;
component->Next = NULL;

return(component);
}

struct RuleComponent *CreateRuleComponent(struct FuzzySetl *ant1,
struct FuzzySetl *ant2, 
struct FuzzySetl 'conseq)

{
struct RuleComponent 'component;

component = CreateEmptyRuleComponent(); 
component->Antecedent1 = a n ti ; 
component->Antecedent2 = ant2; 
component->Consequent = conseq; 
component->Next = NULL;

retum(component);

}

void AddComponents (struct RuleComponent 'com ponentl, 
struct RuleComponent *component2)

{
component2->Next = component1->Next; 
component1->Next = component2;

}

void FreeComponents(struct RuleComponent 'component) 
{

if(component)
{

FreeComponents(component->Next);
FreeComponent(component);

}

}

void FreeRuleBase(struct RuleBase *rule_base) 
{

FreeComponents(rule_base->Left);
FreeComponents(rule_base->Right);
FreeComponents(rule_base->Back);
free(rule_base);

}
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struct R u le B a se  *C reateE m ptyR uleB ase()
{

struct RuleBase *rule_base; 
short int percept;

rule_base = (struct RuleBase *)malloc(sizeof(struct RuleBase));
strcpy(rule_base->Name,"new");
rule_base->Left = NULL;
rule_base->Right = NULL;
rule_base->Back = NULL;
return(rule_base);

}

struct RuleBase *ReadRuleBaseFromFile(FILE *file)
{

struct RuleBase 'rule_base;
char side[5], s1 [2], anti [4], s2[2],

ant2[6], s3[4], cons[4]; 
struct FuzzySetl *a1, *a2, *c;
struct RuleComponent 'com ponentl, 'component2;
short int rule, percept;

rule_base = CreateEmptyRuleBase(); 
strcpy(rule_base->Name,"FUZZY CONTROL RULES"); 
a1 = (struct FuzzySetl *)malloc(sizeof(struct FuzzySetl)); 
a2 = (struct FuzzySetl *)malloc(sizeof(struct FuzzySetl)); 
c = (struct FuzzySetl ')malloc(sizeof(struct FuzzySetl )); 
componentl = CreateEmptyRuleComponent(); 
component2 = CreateEmptyRuleComponentj); 
for(percept=LEFT_SIDE;percept<=BACK_SIDE;++percept)
{

fscanf(file,"%4s%1 s%3s%1 s%5s%3s%3s\n",side,s1 ,ant1 ,s2,ant2,s3,cons);
a1 = ReadAntecedent1(ant1);
a2 = ReadAntecedent2(ant2);
c = ReadConsequent(cons);
componentl = CreateRuleComponent(a1 ,a2,c);
switch (percept)
{

case  0: rule_base->Left = com ponentl; 
break;

case  1: rule_base->Right = com ponentl; 
break;

case  2: rule_base->Back = com ponentl; 
break;

}
for(rule=2;rule<=NUM_SIDE_RULES;++rule)
{
fscanf(file,"%4s%1 s%3s%1 s%5s%3s%3s\n",side,s1 ,ant1,82,8^2,s3,cons);
a1 = ReadAntecedentl (an ti);
a2 = ReadAntecedent2(ant2);
c = ReadConsequent(cons);
component2 = CreateRuleComponent(a1, a2, c);
AddComponents(component1, component2);
componentl = componentl->Next;

}
}
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return(rule_base);
}

struct FuzzySetl 'SelectLeftConsequent (struct RuleBase *rule_base,
struct FuzzySetl *a1, 
struct FuzzySetl *a2, 
short int side)

{
struct FuzzySetl 'found; 
struct RuleComponent 'search;

search = (struct RuleComponent *)malloc(sizeof(struct RuleComponent)); 
switch (side)
{

case 0: search = rule_base->Left; 
break;

case  1: search = rule_base->Right; 
break;

case  2: search = rule_base->Back; 
break;

}
found = (struct FuzzySetl ')mal!oc(sizeof(struct FuzzySetl)); 
found = NULL; 
while (search)
{

if (((a1 ->Center-search->Antecedent1 ->Center)==0.0)&& 
((a2->Center-search->Antecedent2->Center)==0.0))

{
found = search*>Consequent; 
search = NULL;

}
else

search = search->Next;
}
return(found);

}

struct FuzzySetl 'SelectRightConsequent (struct RuleBase 'rule_base,
struct FuzzySetl *a1, 
struct FuzzySetl *a2, 
short int side)

{
struct FuzzySetl 'found; 
struct RuleComponent 'search; 
short int count;

search = (struct RuleComponent ')malloc(sizeof(struct RuleComponent)); 
switch (side)
{

case 0: search = rule_base->Left; 
break;

case  1: search = rule_base->Right; 
break;

case  2: search = rule_base->Back; 
break;
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found = (struct FuzzySetl *)malloc(sizeof(struct FuzzySetl)); 
found = NULL; 
while (search)
{

for(count=1 ;count<=7;++count) 
search = search->Next; 

for(count=1 ;count<=7;++count)
{

if(((a1 ->Center-search->Antecedent1 ->Center)==0.0)&& 
((a2->Center-search->Antecedent2->Center)==0.0))

{
found = search->Consequent;
search = NULL;
break;

}
else

search = search->Next;
}

}
return(found);

}

struct RuleComponent *FindLeftComponent(struct RuleBase *rule_base,
struct FuzzySetl 'a 1 , 
struct FuzzySetl *a2)

{
struct RuleComponent 'search , 'found; 
struct FuzzySetl 'a n ti ,'ant2; 
float cen te rl, center2;

anti = (struct FuzzySetl *)malloc(sizeof(struct FuzzySetl));
ant2 = (struct FuzzySetl *)malloc(sizeof(struct FuzzySetl));
centerl =a1->Center;
center2 = a2->Center;
search = rule_base->Left;
found = NULL;
while(search)
{

anti = search->Antecedent1; 
ant2 = search->Antecedent2;
if(((ant1 ->Center-center1 )==0.0) && ((ant2->Center-center2)==0.0))

{
found = search; 
search = NULL;

}
else

search = search->Next;
}

retum(found);
}

void WriteRuleBaseToFile(struct RuleBase *rule_base,FILE 'file) 
{

struct RuleComponent 'component; 
short int percept, rule;
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fprintf(file,"# File : EXAMPLES|FL_EX2|FUZZYZ|flc2.rules\n"); 
fprintfjfile,"# Author : Ana Maria Gonzalez de Miguel\nN); 
fprintfjfile,"# Description : FUZZY CONTROL RULES for Khepera mobile robot\n"); 
fprintfjfile,"# Date : \nN);
fprintfjfile,"--------------------------------------------------------- \n\n");
f p ri ntf jf i I e , "\t\t** %s **\n\n",rule_base->Name); 
percept = LEFT_SIDE; 
while(percept<=BACK_SIDE)
{

fprintf(file," PERCEPTION %d:",percept); 
switch(percept)
{

case  0: fprintf(file,"LEFT side IR sensors.\n\n"); 
component = rule_base->Left; 

break;
case  1: fprintf(file,"RIGHT side IR sensors.\n\n"); 

component = rule_base->Right; 
break;

case  2: fprintf(file,"BACK side IR sensors.\n\n"); 
component = rule_base->Back; 
break;

}
for(rule=1;rule<NUM_SIDE_RULES;++rule)
{

fprintf(file," Rule %3d : a1: %s\n",rule, component->Antecedent1->Properties.Name); 
fprintf(file," a2: %s\n", component->Antecedent2->Properties.Name);
fprintfjfile," --> %s\n\n", component->Consequent->Properties.Name);

component = component->Next;
}
percept++;
fprintf(file,"\n\n\n");

}
}

struct FuzzySetl *DiscriminatePerceptions(struct FuzzySetl *f_speed,
struct FuzzySetl *percept1, 
struct FuzzySetl *percept2, 
struct FuzzySet2 ‘strengths, 
char Disjunction[MAX_TEXT], 
short int ‘side)

struct FuzzySetl *fuzzy_set;
short int speed, distance;
float c1, c2, max_firing1, max_firing2, max;

fuzzy_set = (struct FuzzySetl *)malloc(sizeof(struct FuzzySetl));
c1 = percept1->Center;
c2 = f_speed->Center;
distance = ( short in t) c1;
speed = (short in t) c2;
max_firing1 = FindFiringStrength(distance,speed,strengths); 
c1 = percept2->Center; 
distance = (short int) c1;
max_firing2 = FindFiringStrength(distance,speed,strengths); 
if (strncmp(Disjunction,"Union",5)==0)
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TCoNormUnion(max_firing1,max_firing2,&max); 
else /‘Algebraic Sum */ 

TCoNormSum(max_firing1,max_firing2,&max); 
if((max - max_firing1)==0.0)
{

fuzzy_set = percep tl;
‘side = 1;

}
else
{

fuzzy_set = percept2;
‘side = 2;

}
retum(fuzzy_set);

}

struct FuzzySetl *SelectMotorVariation(short int motor,
struct PerceptionStates ‘perceptions, 
short int KheperaMotorFuzzyValues[NUM_MOTORS-1], 
struct FuzzySet2 ‘strengths, 
struct PartitionOfSpeeds ‘partitions, 
struct RuleBase *rule_base, 

char Disjunction[MAX_TEXT])
{

struct FuzzySetl ‘speed, ‘temp, ‘selected, ‘variation;
short int num,side1,side2;
struct PartitionMember member;
variation = CreateEmptyFuzzySet1();
speed = CreateEmptyFuzzySetl ();
temp = CreateEmptyFuzzySetl ();
selected = CreateEmptyFuzzySetl ();

num = KheperaMotorFuzzyValues[motor]; 
member = partitions->Members[num]; 
speed = member.FuzzySet;
temp = DiscriminatePerceptions(speed,perceptions->LeftState,

perceptions->RightState,strengths,
Disjunction,&side1);

if ((side1-1)==0) 
sidel = LEFT_SIDE; 

else
sidel = RIGHT_SIDE;

selected = DiscriminatePerceptions(speed,temp,perceptions->BackState, strengths,Disjunction,&side2); 
if ((side2-1)==0)

side2 = s id e l;
else

side2 = BACK_SIDE;

switch (motor)
{

case  RIGHT:
variation = SelectRightConsequent(rule_base,selected, speed,side2); 
break;

Dissertation o f the Thesis v4.1
Copyright © Ana Maria Gonzdlez de Miguel, CMS, SHU
June, 2002

Pag. 249



Appenaix u

case  LEFT:
variation = SelectLeftConsequent(rule_base,selected,speed,side2); 
break;

}
return(variation);

}

struct SpeedVariation *Fuzzylmplication(struct PerceptionStates ‘perceptions,
short int KheperaMotorFuzzyValues[NUM_MOTORS-1], 
struct RuleBase *rule_base, 
struct FuzzySet2 ‘strengths, 
struct PartitionOfSpeeds ‘partition, 
char lmplication[MAX_TEXT])

{
struct SpeedVariation ‘variations;

variations = (struct SpeedVariation ‘)malloc(sizeof(struct SpeedVariation)); 
if (stmcmp(lmplication,"Mamdami",7)==0)
{

variations->RightVariation = SelectMotorVariation(RIGHT,perceptions,
KheperaMotorFuzzyValues,strengths, 

partition,rule_base,"Union"); 
variations->LeftVariation = SelectMotorVariation(LEFT,perceptions,

KheperaMotorFuzzyValues,strengths, 
partition,rule_base,"Union");

}
else /* Larse fuzzy implication 7  
{

variations->RightVariation = SelectMotorVariation(RIGHT,perceptions,
KheperaMotorFuzzyValues,strengths, 

partition,rule_base,"Algebraic Sum"); 
variations->LeftVariation = SelectMotorVariation(LEFT,perceptions,

KheperaMotorFuzzyValues,strengths, 
partition,rule_base,"Algebraic Sum");

}
return(variations);

}

float *ConjunctionAlphaVariation(float alpha, struct FuzzySetl ‘variation, char lmplication[MAX_TEXT]) 
{

short int U0,U;
float mf, ‘temp,‘conjunction;
struct Valuel ‘value;

value = (struct Valuel ‘)malloc(sizeof(struct Valuel));
UO = variation->Support[Oj; 
value = variation->Values;
‘conjunction = alpha;

for(U=U0;U<=variation->Support[1];++U)
{

mf=value->MembershipValue;
if(strncmp(lmplication,"Mamdami*,7)==0)
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{
TNormlntersection(mf,a!pha,temp); 
TNormlntersection(*temp,‘conjunction, conjunction);

}
else /* Larse fuzzy implication 7  
{

TNormProduct(mf,alphaItemp); 
TNormProduct(*temp,‘conjunction,conjunction);

}
value = value->Next;

}
retum(conjunction);

}

float lnferControlActionMembership(float alpha.struct FuzzySetl ‘variation, char lmplication[MAX_TEXTj) 

{
float inference,temp, mf;
struct Valuel ‘value;

value = (struct Valuel *)malloc(sizeof(struct Valuel)); 
value = FindValuel (variation,variation->Support[Oj); 
inference = alpha; 
while(value)
{

mf = value->MembershipValue; 
if(strncmp(lmplication,"Mamdami,,,7)==0)
{

TNormlntersection(alpha,mf,&temp);
TNormlntersectionjtemp,inference,&inference);

}
else /* Larse fuzzy implication */
{

TNormProduct(alpha,mf,&temp);
TNormProductjtemp,inference,&inference);

}
value = value->Next;

}
retum(inference);

}

float lnferControlAction(float alpha.struct FuzzySetl ‘variation, char lmplication[MAX_TEXTj) 
{

float inference,center;
struct Valuel ‘value; 
short int speed;

value = (struct Valuel *)malloc(sizeof(struct Valuel));
center = variation->Center;
speed = ( short in t) center;
value = FindValuel (variation,speed);
inference = value->MembershipValue;
if(strncmp(lmplication,"Mamdami",7)==0)

Dissertation o f the Thesis v4.1
Copyright © Ana Maria Gonzdlez de Miguel, CMS, SHU
June, 2002

Pag. 251



txyytiiiiuK w

TNormlntersectionfalpha.inference.&inference); 
else /* Larse fuzzy implication 7  

TNormProduct(alpha,inference,&inference);

return(inference);
}

void CorrectMotorValues(struct Robot ‘robot) 
{

short int motor;

for (motor=0;motor<=1 ;++motor)
{

if (robot->Motor[motor].Value > 10) 
robot->Motor[motorj. Value = 10; 

if (robot->Motor[motorj. Value < -10) 
robot->Motor[motorj.Value = -10;

}
}

INFERENCE.C

#include "../SRC/include.h"
#include "../SRC/types.h"
#include "fuzzysets.h"
#include "flc.h"

#define NUM_PERCEP_STATES 5
#define NUM_VARIATIONS 7
#define MIN_VARIATION_SPEED -40
#define MAX_VARIATION_SPEED 40
#define LEFT_SIDE 0
#define RIGHT_SIDE 1
#define BACK_SIDE 2
#define NUM_SIDE_RULES 70

#define FreeComponent(x) free(x);

struct Robot ‘robot;

short int supportHIS[2] = {HISmin, HISmax}, 
supportMIS[2] = {MISmin, MISmax}, 
supportLIS[2] = {LISmin, LISmax}, 
supportNMS[2] = {NMSmin, NMSmax), 
supportLDS[2] = {LDSmax, LDSmin}, 
supportMDS[2] = {MDSmax, MDSmin}, 
supportHDS[2] = {HDSmax, HDSmin};

short int distances[2] = {MIN_DIST, MAX_DIST),
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variations[2] = {MIN_VARIATION_SPEED, MAX_VARIATION_SPEED};

extern struct FuzzySetl *vpb, *pb, *pm, *ps, *ze, *ns, *nm, *nb, *vnb; 
extern struct FuzzySetl *vf, *f, ‘pmod, ‘nulla, *nmod, ‘s, *vs;

/* States of perception */

struct FuzzySetl ‘collision,
*ohp, /‘ obstacle highly perceived */ 
*omp, /* " moderatly perceived */
*olp, /* " lightly perceived */
‘nop; /* " no perceived */

/* Speed variations */

struct FuzzySetl ‘his, 
‘mis, 
*lis, 
*nms, 
‘Ids, 
*mds, 
*hds;

/* highly increase speed */
/* moderatly increase speed */
/* lightly increase speed */
/* no modify speed */
/* lightly decrease speed */
/* moderatly increase speed 7
/* highly increase speed */

void CreateFuzzySetsOfPerception()
{

nop = Unionl (vpb,pb,"No Obstacle Perceived",distances);
nop->Support[0] = 0;
olp = Unionl (pm.ps, "Obstacle Lightly Perceived",distances);
omp = Unionl (ze.ns,"Obstacle Moderatly Perceived",distances);
ohp = Unionl (nm.nb,"Obstacle Lightly Perceived",distances);
collision = Unionl (vnb.vnb,"Collision",distances); 
collision->Support[1] = 1023;

}

short int CountEqualFuzzyDistances(short int s1 , short int s2,
short int KheperaSensorFuzzyValues[NUM_IRSENSORS-1], 
short int partition_member_1, 
short int partition_member_2)

{
short int number, sensor; 

number = 0;
for(sensor = s1 ; sensor <= s2; ++sensor) 

if ((KheperaSensorFuzzyValues[sensor] == partition_member_1) || 
(KheperaSensorFuzzyValues[sensorj == partition_member_2)) 

number++; 
return(number);

}

struct FuzzySetl *CreateSidePerceptionState(short int s1 , short int s2,
short int KheperaSensorFuzzyValues[NUMJRSENSORS-1])

{
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struct FuzzySetl 'perception; 
short int number;

perception = (struct FuzzySetl *)malloc(sizeof(struct FuzzySetl)); 
number = CountEqualFuzzyDistances(s1 ,s2,KheperaSensorFuzzyValues,0,1); 
if(number >= 1) 

perception = nop;
number = CountEqualFuzzyDistances(s1 ,s2,KheperaSensorFuzzyValues,2,3); 
if(number >= 1) 

perception = olp;
number = CountEqualFuzzyDistances(s1 ,s2,KheperaSensorFuzzyValues,4,5); 
if(number >= 1) 

perception = omp;
number = CountEqualFuzzyDistances(s1 ,s2,KheperaSensorFuzzyValues,6,7); 
if(number >= 1) 

perception = ohp;
number = CountEqualFuzzyDistances(s1 ,s2,KheperaSensorFuzzyValues,8,8); 
if(number >= 1) 

perception = collision;

return(perception);
}

struct PerceptionStates *CreateFuzzyPerceptionStates(short int
KheperaSensorFuzzyValues[NUM_IRSENSORS-1])

{
struct PerceptionStates 'perceptions;

perceptions = (struct PerceptionStates ')malloc(sizeof(struct PerceptionStates)); 
perceptions->LeftState = CreateSidePerceptionState(0,2,KheperaSensorFuzzyValues); 
perceptions->RightState = CreateSidePerceptionState(3,5, KheperaSensorFuzzyValues); 
perceptions->BackState = CreateSidePerceptionState(6,7,KheperaSensorFuzzyValues);

return(perceptions);
}

void WriteFuzzyPerceptionStatesToFile(struct PerceptionStates 'perceptions,
struct Robot 'robot, 
short int step,
FILE 'file)

{
short int sensor;

fprintf(file,"# File : FUZZY|fuzzy.perceptions\n"); 
fprintfjfile,"# Author : Ana Maria Gonzalez de MiguelAn"); 
fprintfjfile,"# Description : Current FUZZY PERCEPTION states of Khepera\nM); 
fprintfjfile,"# Date : \n");
fprintfjfile,"--------------------------------------------------------- \n");
fprintfjfile," 'STEP: %d\n",step);
fprintfjfile,"-------------------------------------------------------- -\n\n\n");
fprintfjfile," - IR Sensors Crisp Distance Values:\n"); 
for(sensor = 0; sensor < NUMJRSENSORS; ++sensor) 

if (sensor==0 || sensor==1 || sensor==2)
fprintf(file," IR Sensor %d (LEFT): %d\n",sensor,robot->IRSensor[sensor].DistanceValue);

else if (sensor==3 || sensor==4 || sensor==5)
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fprintf(file," IR Sensor %d (RIGHT): %d\n",sensor,robot->IRSensor[sensor].DistanceValue);
else /* (sensor==6 || sensor==7) 7

fprintfjfile," IR Sensor %d (BACK): %d\n",sensor,robot->IRSensor[sensor].DistanceValue);

fprintf(file," - LEFT IR Sensors interpretation : %s\n",perceptions->LeftState->Properties.Name); 
fprintfjfile," - RIGHT IR Sensors interpretation: %s\n",perceptions->RightState->Properties.Name); 
fprintfjfile," - BACK IR Sensors interpretation : %s\n",perceptions->BackState->Properties.Name);

}

void CreateFuzzySetsOfSpeedVariation()
{

his = CreateFuzzySet1("Highly_increase_speed","Triangularl", 
variations, supportHIS.HISct); 

mis = CreateFuzzySet1("Moderatly_increase_speed","Triangularl", 
variations,supportMIS.MISct); 

lis = CreateFuzzySet1("Lightly_increase_speed","Triangularl", 
variations,supportLIS.LISct); 

nms = CreateFuzzySet1("No_modify_speed","Triangularl", 
variations, supportNMS.NMSct);

Ids = CreateFuzzySet1("Lightly_decrease_speed","Triangularl", 
variations,supportLDS.LDSct); 

mds = CreateFuzzySet1("Moderatly_decrease_speed","Triangularl", 
variations, supportMDS.MDSct); 

hds = CreateFuzzySet1("Highly_decrease_speed","Triangularl", 
variations,supportHDS.HDSct);

}

struct SpeedVariation *CreateNullSpeedVariation()
{

struct SpeedVariation ‘variations;

variations = (struct SpeedVariation *)malloc(sizeof(struct SpeedVariation)); 
variations->LeftVariation=CreateEmptyFuzzySet1(); 
variations->RightVariation=CreateEmptyFuzzySet1 j);

retum(variations);

}

struct SpeedVariation FreeSpeedVariations(struct SpeedVariation ‘variations) 
{

FreeFuzzySet1(variations->LeftVariation);
FreeFuzzySet1(variations->RightVariation);
free(variations);

}

struct FuzzySetl *ReadAntecedent1(char ant[4j) 
{
struct FuzzySetl ‘an teceden tl;

if (strncmp(ant,"nop",3)==0) 
antecedentl = nop; 

else if (strncmp(ant,"olp",3)==0) 
antecedentl = olp;
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else if (strncmp(ant,"omp",3)==0) 
antecedentl = omp; 

else if (strncmp(ant,"ohp",3)==0) 
antecedentl = ohp; 

else /‘if (stmcmp(ant,"cor,3)==0)7 
antecedentl = collision;

return(antecedentl);

}

struct FuzzySetl *ReadAntecedent2(char ant[6]) 
{
struct FuzzySetl *antecedent2;

if (strncmp(ant,"VS",2)==0) 
antecedent2 = vs; 

else if (strncmp(ant,"S",1)==0) 
a n te c e d en t = s; 

else if (strncmp(ant,"Nmod",4)==0) 
antecedent2 = nmod; 

else if (strncmp(ant,"Nulla",5)==0) 
a n te c e d en t = nulla; 

else if (strncmp(ant,"Pmod",4)==0) 
antecedent2 = pmod; 

else if (strncmp(ant,"F",1)==0) 
antecedent2 = f; 

else /* if (strncmp(ant,"VF",2)==0)7 
antecedent2 = vf;

return(antecedent2);

}

struct FuzzySetl *ReadConsequent(char cons[4]) 
{

struct FuzzySetl ‘consequent;

if (strncmp(cons,"his",3)==0) 
consequent = his; 

else if (strncmp(cons,"mis",3)==0) 
consequent = mis; 

else if (strncmp(cons,"lis",3)==0) 
consequent = lis; 

else if (strncmp(cons,"nms",3)==0) 
consequent = nms; 

else if (strncmp(cons,"lds",3)==0) 
consequent = Ids; 

else if (strncmp(cons,"mds",3)==0) 
consequent = mds; 

else /‘if (strncmp(cons,"hds",3)==0)7 
consequent = hds;

return(consequent);
}

Dissertation o f the Thesis v4.1
Copyright © Ana Maria Gonzdlez de Miguel, CMS, SHU
June, 2002

Pag. 256



struct R u leC om p on en t *C reateE m ptyR uleC om ponent()
{

struct RuleComponent ‘component;

component = (struct RuleComponent ‘)malloc(sizeof(struct RuleComponent));
component->Antecedent1 = NULL;
component->Antecedent2 = NULL;
component->Consequent = NULL;
component->Next = NULL;

retum(component);
}

struct RuleComponent *CreateRuleComponent(struct FuzzySetl *ant1,
struct FuzzySetl *ant2, 
struct FuzzySetl ‘conseq)

{
struct RuleComponent ‘component;

component = CreateEmptyRuleComponent(); 
component->Antecedent1 = a n ti ; 
component->Antecedent2 = ant2; 
component->Consequent = conseq; 
component->Next = NULL;

retum(component);

}

void AddComponents (struct RuleComponent ‘com ponentl, 
struct RuleComponent *component2)

{
component2->Next = componentl->Next; 
componentl ->Next = component2;

}

void FreeComponents(struct RuleComponent ‘component) 
{

if(component)
{

FreeComponents(component->Next);
FreeComponent(component);

}

}

void FreeRuleBase(struct RuleBase *rule_base) 
{

FreeComponents(rule_base->Left);
FreeComponents(rule_base->Right);
FreeComponents(rule_base->Back);
free(rule_base);
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struct R u le B a se  *C reateE m ptyR uleB ase()
{

struct RuleBase *rule_base; 
short int percept;

ru le.base = (struct RuleBase *)malloc(sizeof(struct RuleBase));
strcpy(rule_base->Name,"new");
rule_base->Left = NULL;
rule_base->Right = NULL;
rule_base->Back = NULL;
retum(rule_base);

}

struct RuleBase *ReadRuleBaseFromFile(FILE *file)
{

struct RuleBase *rule_base;
char side[5], s1 [2], anti [4], s2[2],

ant2[6], s3[4], cons[4];
struct FuzzySetl *a1, *a2, *c;
struct RuleComponent ‘com ponentl, *component2;
short int rule, percept;

rule_base = CreateEmptyRuleBase(); 
strcpy(rule_base->Name,"FUZZY CONTROL RULES"); 
a1 = (struct FuzzySetl ‘)malloc(sizeof(struct FuzzySetl)); 
a2 = (struct FuzzySetl *)malloc(sizeof(struct FuzzySetl)); 
c = (struct FuzzySetl ‘)malloc(sizeof(struct FuzzySetl )); 
componentl = CreateEmptyRuleComponent(); 
component2 = CreateEmptyRuleComponentj); 
for(percept=LEFT_SIDE;percept<=BACK_SIDE;++percept)
{

fscanf(file,"%4s%1 s%3s%1 s%5s%3s%3s\n",side,s1 ,ant1 ,s2,ant2,s3,cons);
a1 = ReadAntecedent1(ant1);
a2 = ReadAntecedent2(ant2);
c = ReadConsequent(cons);
componentl = CreateRuleComponent(a1 ,a2,c);
switch (percept)
{

case 0: rule_base->Left = com ponentl; 
break;

case  1: rule_base->Right = com ponentl; 
break;

case  2: rule_base->Back = com ponentl; 
break;

}
for(rule=2;rule<=NUM_SIDE_RULES;++rule)
{

fscanf(file,"%4s%1 s%3s%1 s%5s%3s%3s\n",side,s1 ,ant1 ,s2,ant2,s3,cons);
a1 = ReadAntecedent1(ant1);
a2 = ReadAntecedent2(ant2);
c = ReadConsequent(cons);
component2 = CreateRuleComponent(a1, a2, c);
AddComponents(component1, component2);
componentl = componentl->Next;
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}
}

retum(rule_base);
}

struct FuzzySetl *SelectLeftConsequent (struct RuleBase *rule_base,
struct FuzzySetl ‘a1 , 
struct FuzzySetl *a2, 
short int side)

{
struct FuzzySetl ‘found; 
struct RuleComponent *search;

search = (struct RuleComponent *)malloc(sizeof(struct RuleComponent)); 
switch (side)
{

case  0: search = rule_base->Left; 
break;

case  1: search = rule_base->Right; 
break;

case  2: search = rule_base->Back; 
break;

}
found = (struct FuzzySetl *)malloc(sizeof(struct FuzzySetl)); 
found = NULL; 
while (search)
{

if (((a1 ->Center-search->Antecedent1 ->Center)==0.0)&& 
((a2->Center-search->Antecedent2->Center)==0.0))

{
found = search->Consequent; 
search = NULL;

}
else

search = search->Next;
}
return(found);

}

struct FuzzySetl ‘SelectRightConsequent (struct RuleBase ‘rule_base,
struct FuzzySetl *a1, 
struct FuzzySetl *a2, 
short int side)

{
struct FuzzySetl ‘found; 
struct RuleComponent ‘search; 
short int count;

search = (struct RuleComponent *)malloc(sizeof(struct RuleComponent)); 
switch (side)
{

case  0: search = rule_base->Left; 
break;

case  1: search = rule_base->Right; 
break;
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case  2: search = rule_base->Back; 
break;

}
found = (struct FuzzySetl *)malloc(sizeof(struct FuzzySetl)); 
found = NULL; 
while (search)
{

for(count=1 ;count<=7;++count) 
search = search->Next; 

for(count=1 ;count<=7;++count)
{

if(((a1 ->Center-search->Antecedent1 ->Center)==0.0)&& 
((a2->Center-search->Antecedent2->Center)==0.0))

{
found = search->Consequent;
search = NULL;
break;

}
else

search = search->Next;
}

}
return(found);

}

struct RuleComponent *FindLeftComponent(struct RuleBase *rule_base,
struct FuzzySetl *a1, 
struct FuzzySetl *a2)

{
struct RuleComponent ‘search, ‘found; 
struct FuzzySetl *ant1 ,*ant2; 
float cen te rl, center2;

anti = (struct FuzzySetl *)malloc(sizeof(struct FuzzySetl));
ant2 = (struct FuzzySetl *)malloc(sizeof(struct FuzzySetl));
centerl = a1->Center;
center2 = a2->Center;
search = rule_base->Left;
found = NULL;
while(search)
{

anti = search->Antecedent1; 
ant2 = search->Antecedent2;
if(((ant1->Center-center1)==0.0)&&((ant2->Center-center2)==0.0))
{
found = search; 
search = NULL;

}
else

search = search->Next;
}

return(found);
}

void WriteRuleBaseToFile(struct RuleBase *rule_base,FILE ‘file)
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{
struct RuleComponent ‘component; 
short int percept, rule;

fprintf(file,"# File : EXAMPLES|FL_EX2|FUZZYZ|flc2.rules\n"); 
fprintf(file,"# Author : Ana Maria Gonzalez de Miguel\n"); 
fprintfjfile,"# Description : FUZZY CONTROL RULES for Khepera mobile robot\n"); 
fprintf(file,"# Date : \nM);
fprintf(file,"--------------------------------------------------------- \n\n");
f p ri ntf (f i le, "\t\t“  %s **\n\n",rule_base->Name); 
percept = LEFT_SIDE; 
while(percept<=BACK_SIDE)
{

fprintf(file," PERCEPTION %d:*,percept); 
switch(percept)
{

case  0: fprintf(file,"LEFT side IR sensors.\n\n“); 
component = rule_base->Left; 

break;
case  1: fprintf(file,"RIGHT side IR sensors.\n\n"); 

component = rule_base->Right; 
break;

case  2: fprintf(file,"BACK side IR sensors.\n\n"); 
component = rule_base->Back; 
break;

}
for(rule=1;rule<NUM_SIDE_RULES;++rule)
{

fprintf(file," Rule %3d : a1 : %s\n",rule,
component->Antecedent1 ->Properties.Name); 

fprintf(file," a2: %s\n",
component->Antecedent2->Properties.Name); 

fprintf(file," --> %s\n\n",
component->Consequent->Properties.Name); 

component = component->Next;
}
percept++;
fprintf(file,"\n\n\n");

}

}

struct FuzzySet2 ‘CreateFiringStrengths (char Conjunction[MAX_TEXT],
char m_function[MAX_TEXT], 
struct PartitionOfDistances *part_dists, 
struct PartitionOfSpeeds *part_speeds)

struct FuzzySet2 ‘strengths;
struct Value2 ‘strength;
short int dist_partition, speed_partition;
short int univU[2], univV[2];
struct PartitionMember dist_member, speed_member;
short int dist=0, speed=0, d0,d1 ,s0,s1;
struct Valuel *dist_value, *speed_value;
float dist_mf, speed_mf,strength_value=0.0;
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univU[0] = part_dists->lnterval[0];
univU[1] = part_dists->lnterval[lj;
univV[0] = part_speeds->lnterval[OJ;
univV[1] = part_speeds->lnterval[lj;
strengths = CreateNullCartesianProductl 1(univU,univV);
strcpy(strengths->Properties.Name,"FIRING STRENGTHS");
strcpy(strengths->Properties.MembershipFunctionType, m_function);
strengths->CenterX = (1024/2);
strengths->CenterY = 0.0;
strengths->Properties.Cardinality = 1024*21;
strength = (struct Value2 *)malloc(sizeof(struct Value2));
strength = strengths->Values;

for (dist_partition = 0; dist_partition<NUM_DIST_SETS; ++dist_partition)
{
dist_member = part_dists->Members[dist_partition]; 
dO = part_dists->Members[dist_partition].lntervalMember[0]; 
d1 = part_dists->Members[dist_partition].lntervalMember[lj; 
for(dist = d0;dist<= d1 ;++dist)
{

dist_value = FindValue1(dist_member.FuzzySet,dist); 
dist_mf = dist_value->MembershipValue;
for (speed_partition = 0; speed_partition<NUM_SPEED_SETS; ++speed_partition) 
{

speed_m em ber = part_speeds->Members[speed_partition]; 
sO = speed_member.lntervalMember[0]; 

s1 = speed_member.lntervalMember[1]; 
for(speed = sO;speed <= s1 ;++speed)

{
speed_value = FindValue1(speed_member.FuzzySet,speed);

speed_mf = speed_value->MembershipValue; 
if (strncmp(Conjunction,"lntersection">12)==0)

TNormlntersection(dist_mf>speed_mf,&strength_value); 
else /* Algebraic product 7

TNormProduct(dist_mflspeed_mfl&strength_value); 
strength->CrispX = dist; 
strength->CrispY = speed; 

strength->MembershipValue = strength_value; 
strength = strength->Next;

}
}

}
}

return(strengths);

}

float FindFiringStrength(short int distance, short int speed,
struct FuzzySet2 ‘strengths)

{
float firing; 
struct Value2 ‘value;

value = (struct Value2 ‘)malloc(sizeof(struct Value2)); 
value = FindValue2(strengths, distance, speed); 
firing = value->MembershipValue;
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retum(firing);
}

float DisjunctionOfFiringStrengths(struct FuzzySet2 ‘strengths, char Disjunction[MAX_TEXT]) 
{

/* calculating the fuzzy interpretation of the 
"also" operator between the fuzzy control 
rules of each sub_side component */

float alpha, disjunction=0.0; 
short int i, j;

disjunction = FindFiringStrength(0,-10,strengths); 
for(i=-9;i<=10;++i) 

for(j=100;j<=1000;j+=100)
{

alpha = FindFiringStrength(j,i,strengths); 
if (stmcmp(Disjunction,"Union",5)==0)

TCoNormUnion(alpha,disjunction,&disjunction); 
else /‘Algebraic Sum */

TCoNormSum(alpha,disjunction,&disjunction);
}

return(disjunction);
}

void WriteFiringStregthsToFile(struct FuzzySet2 ‘strengths, FILE ‘file)
{

struct Value2 ‘value;

fprintf(file,"#FILE: FIRING_STRENGTHS.\n"); 
fprintfjfile,"# Author: Ana Maria Gonzalez de MiguelAn"); 
fprintfjfile,"# Date : \n");
fprintfjfile,"------------------------------------------------- -\n\n\n");
fprintfjfile," -Name: %s\n",strengths->Properties.Name); 
fprintfjfile," -Membership Function Type: %s\n",

strengths->Properties.MembershipFunctionType); 
fprintf(file," -Cardinality: %d\n",strengths->Properties.Cardinality); 
fprintfjfile," -XSupport: [%d,%d]\n",strengths->SupportX[0],strengths->SupportX[1]); 
fprintfjfile," -YSupport: [%d,%d]\n",strengths->SupportY[0],strengths->SupportY[1]); 
fprintfjfile," -XCenter: %f\n",strengths->CenterX); 
fprintfjfile," -YCenter: %f\n",strengths->CenterY); 
fprintfjfile," -Values:\n\nM); 
value = strengths->Values;
while((value) && (value->CrispX<=strengths->SupportX[1j) && 

(value->CrispY<=strengths->SupportY[1j))
{

fprintf(file,"\t crisp distance = %3d ,",value->CrispX); 
fprintfjfile,"crisp speed = %2d ->",value->CrispY); 
fprintfjfile,"firing strength = %f\n",value->MembershipValue); 
value = value->Next;

}
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struct FuzzySetl *DiscriminatePerceptions(struct FuzzySetl *f_speed,
struct FuzzySetl *percept1, 
struct FuzzySetl *percept2, 
struct FuzzySet2 'strengths, 
char Disjunction[MAX_TEXT], 
short int 'side)

{
struct FuzzySetl *fuzzy_set;
short int speed, distance;
float c1, c2, max_firing1, max_firing2, max;

fuzzy_set = (struct FuzzySetl *)malloc(sizeof(struct FuzzySetl));
c1 = percept!->Center;
c2 = f_speed->Center;
distance = ( short in t) c1;
speed = (short in t) c2;
max_firing1 = FindFiringStrength(distance,speed,strengths); 
c1 = percept2->Center; 
distance = (short int) c1;
max_firing2 = FindFiringStrength(distance,speed,strengths); 
if (stmcmp(Disjunction,"Union",5)==0) 

TCoNormUnion(max_firing1,max_firing2,&max); 
else /'Algebraic Sum */

TCoNormSum(max_firing1,max_firing2,&max); 
if((max - max_firing1)==0.0)
{

fuzzy_set = perceptl;
's ide  = 1;

}
else
{

fuzzy_set = percept2;
'side  = 2;

}
return(fuzzy_set);

}

struct FuzzySetl *SelectMotorVariation(short int motor,
struct PerceptionStates 'perceptions,
short int KheperaMotorFuzzyValues[NUM_MOTORS-1],
struct FuzzySet2 'strengths,
struct PartitionOfSpeeds 'partitions,
struct RuleBase *rule_base,
char Disjunction[MAX_TEXT])

{
/* final implemntation of "also" 

operator for each 
perception_side rule base */

struct FuzzySetl 'speed , 'tem p, 'selected, 'variation; 
short int num,side1,side2;
struct PartitionMember member;

variation = CreateEmptyFuzzySetl (); 
speed = CreateEmptyFuzzySetl ();
temp = CreateEmptyFuzzySetl ();
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selected = CreateEmptyFuzzySetl ();

num = KheperaMotorFuzzyValues[motor]; 
member = partitions->Members[num]; 
speed = member.FuzzySet;
temp = DiscriminatePerceptions(speedIperceptions->LeftState,

perceptions->RightState,strengths,
Disjunction,&side1);

if ((sidel-1)==0) 
sidel = LEFT_SIDE; 

else
sidel = RIGHT_SIDE;

selected = DiscriminatePerceptions(speed,temp,perceptions->BackState,strengths,Disjunction,&side2); 
if ((side2-1)==0)

side2 = s id e l;
else

side2 = BACK_SIDE;

switch (motor)
{

case RIGHT:
variation = SelectRightConsequent(rule_base,selected,

speed,side2);
break; 

case  LEFT:
variation = SelectLeftConsequent(rule_base,selected,

speed,side2);
break;

}
return(variation);

}

struct SpeedVariation *Fuzzylmplication(struct PerceptionStates 'perceptions,
short int KheperaMotorFuzzyValues[NUM_MOTORS-1],
struct RuleBase *rule_base,
struct FuzzySet2 'strengths,
struct PartitionOfSpeeds 'partition,
char lmplication[MAX_TEXT])

{
struct SpeedVariation 'variations;

variations = (struct SpeedVariation ')malloc(sizeof(struct SpeedVariation)); 
if (stmcmp(lmplication,"Mamdami",7)==0)
{

variations->RightVariation = SelectMotorVariation(RIGHT,perceptions,
KheperaMotorFuzzyValues, strengths, 

partition,rule_base,"Union");
variations->LeftVariation = SelectMotorVariation(LEFT, perceptions,

KheperaMotorFuzzyValues,strengths, 
partition,rule_base,"Union");

}
else /* Larse fuzzy implication */
{

variations->RightVariation = SelectMotorVariation(RIGHT,perceptions,
KheperaMotorFuzzyValues,strengths, 

partition,rule_base,"Algebraic Sum");
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variations->LeftVariation = SelectMotorVariation(LEFT,perceptionsf
KheperaMotorFuzzyValues,strengths, 
partition,rule_base,"Algebraic Sum");

}
return(variations);

}

float *ConjunctionAlphaVariation(float alpha, struct FuzzySetl 'variation,
char lmplication[MAX_TEXT])

{
short int U0,U;
float mf, 'temp,'conjunction;
struct Valuel 'value;

value = (struct Valuel ')malloc(sizeof(struct Valuel));
UO = variation->Support[Oj; 
value = variation->Values;
'conjunction = alpha; 
for(U=U0;U<=variation->Support[1];++U)
{

mf=value->MembershipValue;
if(strncmp(lmplication,"Mamdami",7)==0)
{

TNormlntersection(mf,alpha,temp);
TNormlntersection(*temp,'conjunction,conjunction);

}
else /* Larse fuzzy implication */
{

TNormProduct(mf, alpha, temp);
TNormProduct(*temp,'conjunction,conjunction);

}
value = value->Next;

}

return(conjunction);
}

float lnferControlActionMembership(float alpha,struct FuzzySetl 'variation,
char lmplication[MAX_TEXTj)

{
float inference,temp, mf;
struct Valuel 'value;

value = (struct Valuel *)malloc(sizeof(struct Valuel)); 
value = FindValuel (variation,variation->Support[Oj); 
inference = alpha; 
while(value)
{

mf = value->MembershipValue; 
if(strncmp(lmplication,"Mamdami",7)==0)
{

TNormlntersection(alpha,mf,&temp);
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TNormlntersection(temp,inference,&inference);

}
else /* Larse fuzzy implication */
{

TNormProduct(alpha,mf,&temp); 
TNormProduct(temp,inference,&inference);

}
value = value->Next;

}

retum(inference);
}

float lnferControlAction(float alpha,struct FuzzySetl 'variation,
char lmplication[MAX_TEXT])

{
float inference,center;
struct Valuel 'value; 
short int speed;

value = (struct Valuel *)malloc(sizeof(struct Valuel)); 
center = variation->Center; 
speed = ( short in t) center; 
value = FindValuel (variation,speed); 
inference = value->MembershipValue; 
if(strncmp(lmplication,"MamdamiM,7)==0) 

TNormlntersection(alpha,inference,&inference); 
else / '  Larse fuzzy implication */

TNormProduct(alpha,inference,&inference);

retum(inference);
}

INTERFACE.C

#include "../SRC/include.h" 
#include "../SRC/types.h" 
#include "flc.h"
#include "fuzzysets.h"

struct Robot 'robot;

/* PRIMARY FUZZY SETS '/  

/ '  Primary Fuzzy D istances'/
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struct FuzzySetl *vpb, 'pb , *pm, *ps, *ze, *ns, *nm, *nb, *vnb; 

/* Primary Fuzzy Speeds 7

struct FuzzySetl *vf, *f, 'prnod, 'nulla, 'nrnod, *s, *vs;

/* Supports of primary Fuzzy Sets */

short int univ_distances[2] = {MIN_DIST,MAX_DIST};
short int supportVPB[2] = {VPBmin.VPBmax};
short int supportPB[2] = {PBmin.PBmax};
short int supportPM[2] = {PMmin.PMmax};
short int supportPS[2] = {PSmin.PSmax};
short int supportZE[2] = {ZEmin.ZEmax};
short int supportNS[2] = {NSmin.NSmaxj;
short int supportNM[2] = {NMmin.NMmax};
short int supportNB[2] = {NBmin.NBmax};
short int supportVNB[2] = {VNBmin.VNBmax};
short int univ_speeds[2] = {MIN_SPEED,MAX_SPEED};
short int supportVF[2] = {VFmin.VFmax};
short int supportF[2] = {Fmin.Fmax};
short int supportPMod[2] = {PModmin.PModmax};
short int supportNULL[2] = {NULLmin.NULLmax};
short int supportNMod[2] = {NModmax.NModmin};
short int supportS[2] = {Smax.Smin};
short int supportVS[2] = {VSmax.VSmin};

void CreatePrimaryFuzzyDistances()
{

vpb = CreateFuzzySet1("VPB",
Triangularr,univ_distances,supportVPB,VPBct); 

pb =CreateFuzzySet1("PB",
"Trianguiar1,,,univ_distances,supportPB,PBct); 

pm = CreateFuzzySetl ("PM",
"Triangularr,univ_distances,supportPM,PMct); 

ps = CreateFuzzySetl ("PS",
"Triangular1",univ_distances,suppoitPS,PSct); 

ze = CreateFuzzySetl ("ZE",
"Triangularr,univ_distances,supportZE,ZEct); 

ns = CreateFuzzySetl ("NS",
Triangular1",univ_distances,supportNS,NSct); 

nm = CreateFuzzySetl ("NM",
"Triangular! ",univ_distances,supportNM,NMct); 

nb = CreateFuzzySetl ("NB",
"Triangular1",univ_distances,supportNB,NBct); 

vnb = CreateFuzzySetl ("VNB",
"Triangular1",univ_distances,supportVNB,VNBct);

}

void CreatePrimaryFuzzySpeeds()
{

vf = CreateFuzzySetl ("VF",
"Triangularr,univ_speeds,supportVF,VFct); 

f = CreateFuzzySetl ("F",

Dissertation o f the Thesis v4.1
Copyright © Ana Maria Gonzdlez de Miguel, CMS, SHU
June, 2002

Pag. 268



"Triangular1",univ_speeds,supportF,Fct); 
pmod = CreateFuzzySetl ("PMod",

"Triangularr,univ_speeds,supportPMod,PModct); 
nulla = CreateFuzzySetl ("NULL",

"Triangular!",univ_speeds,supportNULL,NULLct); 
nmod = CreateFuzzySetl ("NMod",

"Triangular1",univ_speeds,supportNMod,NModct); 
s  = CreateFuzzySetl ("S",

"Triangular1",univ_speeds,supports,Set); 
vs = CreateFuzzySetl ("VS",

"Triangular! ",univ_speeds,supportVS,VSct);
}

short int LimitPartitionMember(struct FuzzySetl *fs1,
struct FuzzySetl *fs2)

/* fs1 and fs2 may be ordered 7  
{

struct Valuel 'sea rch -!, 'search2;
short int element, intersection.-!, intersection_2;

searchl = (struct Valuel *)malloc(sizeof(struct Value-!)); 
search2 = (struct Valuel *)malloc(sizeof(struct Valuel)); 
intersection_1 =fs2->Support[0]; 
intersection_2=fs1 ->Support[1 j; 
element = in tersec tion^;

if ((abs(intersection_2) - intersection.-!) > 0)
{

searchl = FindValue1(fs1,intersection_1); 
search2 = FindValue1(fs2,intersection_1); 
while (searchl && search2)
{

if ((search2->MembershipValue - searchl->MembershipValue) > 0 .0 ) 
{

element = (searchl->CrispX) -1 ; 
searchl = NULL; 
search2 = NULL;

}
else
{

searchl = searchl ->Next; /* next value of the support of fs1 7  
search2 = search2->Next;

}
}

}
retum(element);

}

struct PartitionOfDistances 'CreateEmptyPartitionOfDistancesO 
{

struct PartitionOfDistances 'partition; 
short int num;

partition = (struct PartitionOfDistances *)
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Appenaix  l

malloc(sizeof(struct PartitionOfDistances)); 
strcpy(partition->Name,"new"); 
partition->lnterval[0] = 0; 
partition->lnterval[1] = 0; 
for(num = 0;num < NUM_DIST_SETS;++num)
{

partition->Members[num].intervaiMember[0] = 0; 
partition->Members[num].lntervalMember[1] = 0; 
partition->Members[numj.FuzzySet = (struct FuzzySetl *)

malloc(sizeof(struct FuzzySetl));
}
return(partition);

}

void FreeDistanceMembers(struct PartitionOfDistances 'partition) 
{

short int num;

for(num = 0;num < NUM_DIST_SETS -1 ;++num) 
FreeFuzzySet1(partition->Members[num].FuzzySet);

}

struct PartitionOfDistances 'CreatePartitionOfDistances(short int interval[2])
{

struct PartitionOfDistances 'partition; 

partition = CreateEmptyPartitionOfDistances();
strcpy(partition->Name,"FUZZY PARTITIONS OF DISTANCE VALUES"); 
partition->lnterval[0] = interval[0];
partition->lnterval[1] = interval[1]; /* to be modified with previous'/

/* connection of fuzzy d istances '/

partition->Members[0].FuzzySet = vpb;
partition->Members[0].lntervalMember[0] = interval[0]; 
partition->Members[0].lntervalMember[1] = LimitPartitionMember(vpb,pb);

partition->Members[1].FuzzySet = pb;
partition->Members[1].lntervalMember[0] = partition->Members[0].lntervalMember[1]+1; 
partition->Members[1 j.lntervalMember[1 j = LimitPartitionMemberipb.pm);

partition->Members[2].FuzzySet = pm;
partition->Members[2].lntervalMember[0] = partition->Members[1].lntervalMember[1]+1; 
partition->Members[2].lntervalMember[1 ] = LimitPartitionMember(pm,ps);

partition->Members[3].FuzzySet = ps;
partition->Members[3].lntervalMember[0] = partition->Members[2].lntervalMember[1]+1; 
partition->Members[3].lntervalMember[1] = LimitPartitionMember(ps,ze);

partition->Members[4].FuzzySet = ze;
partition->Members[4].lntervalMember[0] = partition->Members[3].lntervalMember[1]+1; 
partition->Members[4].lntervalMember[1 ] = LimitPartitionMember(ze,ns);

partition->Members[5].FuzzySet = ns;
partition->Members[5].lntervalMember[0] = partition->Members[4].lntervalMember[1]+1; 
partition->Members[5].lntervalMember[1] = LimitPartitionMember(ns,nm);
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partition->Members[6].FuzzySet = nm;
partition->Members[6].lntervalMember[0] = partition->Members[5].lntervalMember[1]+1; 
partition->Members[6].lntervalMember[1 j = LimitPartitionMember(nm,nb);

partition->Members[7].FuzzySet = nb;
partition->Members[7].lntervalMember[0] = partition->Members[6].lntervalMember[1]+1; 
partition->Members[7].lntervalMember[1 j = LimitPartitionMember(nb,vnb);

partition->Members[8].FuzzySet = vnb;
partition->Members[8].lntervalMember[0] = partition->Members[7].lntervalMember[1]+1; 
partition->Members[8].lntervalMember[1] = partition->lnterval[1 ];

retum(partition);

}

struct PartitionOfSpeeds 'CreateEmptyPartitionOfSpeeds()
{

struct PartitionOfSpeeds 'partition; 
short int num;

partition = (struct PartitionOfSpeeds ')malloc(sizeof(struct PartitionOfSpeeds));
strcpy(partition->Name,"new");
partition->lnterval[0] = 0;
partition->lnterval[1] = 0;
for(num = 0;num < NUM_SPEED_SETS;++num)
{

partition->Members[num].lntervaiMember[0] = 0; 
partition->Members[num].lntervalMember[1] = 0;
partition->Members[num].FuzzySet = (struct FuzzySetl *)malloc(sizeof(struct FuzzySetl));

}
return(partition);

}

struct PartitionOfSpeeds *CreatePartitionOfSpeeds(short int interval[2])
{

struct PartitionOfSpeeds 'partition;

partition = CreateEmptyPartitionOfSpeeds(); 
strcpy(partition->Name,nFUZZY PARTITIONS OF SPEED VALUES"); 
partition->lnterval[0] = interval[0]; 
partition->lnterval[1] = interval[1];

partition->Members[0].FuzzySet = vs;
partition->Members[0].lntervalMember[0] = interval[0]; 
partition->Members[0].lntervalMember[1 j = LimitPartitionMember(vs,s);

partition->Members[1].FuzzySet = s ;
partition->Members[1].lntervalMember[0] = partition->Members[0].lntervalMember[1]+1; 
partition->Members[1].lntervalMember[1] = LimitPartitionMember(s,nmod);

partition->Members[2].FuzzySet = nmod;
partition->Members[2].lntervalMember[0] = partition->Members[1].lntervalMember[1]+1;
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partition->Members[2].lntervalMember[1 ] = LimitPartitionMember(nmod,nulla); 

partition->Members[3].FuzzySet = nulla;
partition->Members[3].lntervalMember[0] = partition->Members[2].lntervalMember[1]+1; 
partition->Members[3].lntervalMember[1] = LimitPartitionMemberjnulla.pmod);

partition->Members[4).FuzzySet = pmod;
partition->Members[4].lntervalMember[0] = partition->Members[3].lntervalMember[1]+1; 
partition->Members[4].lntervalMember[1 j = LimitPartitionMemberjpmod.f);

partition->Members[5].FuzzySet = f;
partition->Members[5].lntervalMember[0] = partition->Members[4].lntervalMember[1]+1 ; 
partition->Members[5].lntervalMember[1 ] = LimitPartitionMemberjf,vf);

partition->Members[6].FuzzySet = vf;
partition->Members[6].lntervalMember[0] = partition->Members[5].lntervalMember[1]+1; 
partition->Members[6].lntervalMember[1] = interval[1];

retum(partition);
}

void WritePartitionOfDistancesToFile(struct PartitionOfDistances ‘partition,
FILE ‘file)

{
short int num;
fprintf(file,"#File :FUZZY|distancespartition\nH); 
fprintfjfile,"#Description: %s\n",partition->Name); 
fprintfjfile,"# Author : Ana Maria Gonzalez de MiguelAn"); 
fprintfjfile,"# Date : \n");
fprintfjfile,"------------------------------------------------- -\n\n\n");

fprintf(file," - Interval of crisp distances: [%d,%d]\n",partition->lnterval[0],
partition->lnterval[1 ]);

fprintf(file," - Members:\n\n");
for(num = 0; num < NUM_DIST_SETS; ++num)
{

fprintf(file," \t-Number of fuzzy distance m em ber: %d\n",num); 
fprintfjfile," \t-lnterval of crisp distances: [%d,%d]\n",

partition*>Members[num].lntervalMember[0], 
partition->Members[num].lntervalMember[1]); 

fprintf(file," \t-Fuzzy distance set member: %s\n\n",
partition->Members[num].FuzzySet);

fprintf(file," \t\t-XSupport: [%d,%d]\n",
partition->Members[num].FuzzySet->Support[0],
partition->Members[num].FuzzySet->Support[1]);

fprintf(file," \t\t-Center: %f\n",
partition->Members[num].FuzzySet->Center); 

fprintf(file," \t\t-Membership Function Type: %s\n\n\n\n",
partition->Members[num].FuzzySet->Properties.MembershipFunctionType);

}
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void WritePartitionOfSpeedsToFile(struct PartitionOfSpeeds ‘partition, FILE ‘file) 
{

short int num;
fprintf(file,“# File : FUZZY|speedspartition\n"); 
fprintfjfile,"# Description: %s\n",partition->Name); 
fprintfjfile,"# Author : Ana Maria Gonzalez de MiguelAn"); 
fprintfjfile,"# Date \n“);
fprintfjfile,"------------------------------------------------- -\n\n\n");

fprintf(file," * Interval of crisp speed values: [%d , %d]\n",partition->lnterval[0],
partition->lnterval[1 ]);

fprintf(file," - Members:\n\nM);
for(num = 0; num < NUM_SPEED_SETS; ++num)
{

fprintf(file," \t-Number of fuzzy speed member: %d\n",num);
fprintfjfile," \t-lnterval of crisp speed values: [%d,%d]\n", partition->Members[num].lntervalMember[0], 

partition->Members[num].lntervalMember[1]); 
fprintf(file," \t-Fuzzy speed set member: %s\n\n",partition->Members[num].FuzzySet); 
fprintfjfile," \t\t-XSupport: [%d,%d] \n",partition->Members[num].FuzzySet->Support[0], 

partition->Members[num].FuzzySet->Support[1]); 
fprintf(file," \t\t-Center: %f\n",partition->Members[num].FuzzySet->Center); 
fprintfjfile," \t\t-Membership Function Type: %s\n\n\n\n",

partition->Members[num].FuzzySet->Properties.MembershipFunctionType);
}

}

void FreeSpeedMembers(struct PartitionOfSpeeds ‘partition) 
{

short int num;

for(num = 0;num < NUM_SPEED_SETS -1  ;++num) 
FreeFuzzySet1(partition->Members[num].FuzzySet);

}

short int FindMaxPartitionMember(short int IR1, short int IR2,
short int KheperaSensorFuzzyValues[NUM_IRSENSORS-1])

{
short int max_partition_member, i;

max_partition_member = KheperaSensorFuzzyValues[IR1]; 
for(i = IR1; i <= IR2; ++i) 

if((KheperaSensorFuzzyValues[i] - max_partition_member) > 0) 
max_partition_member = i;

return(max_partition_member);
}

short int FindDistancePartitionMember(short int crisp_distance,
struct PartitionOfDistances ‘partition)
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/* return fuzzyset member and 
the number of membership of this to the partition 7

{
struct PartitionMember member; 
short int found, num;

num = 0; 
found = -1;
member = partition->Members[num];
while((found == -1) && ((NUM_DIST_SETS - num) > 0 ))
{

if(((crisp_distance - member.lntervalMember[0]) >= 0) && 
((crisp_distance - member.lntervalMember[1]) <= 0))

found = num;

else
{

num++;
member = partition->Members[num];

}
}
return(found);

}

short int FindSpeedPartitionMember(short int crisp_speed,
struct PartitionOfSpeeds *partition)

{
struct PartitionMember member; 
short int num, found;

num = 0; 
found = -1;
member = partition->Members[num];
while((found == -1) && ((NUM_SPEED_SETS - num) > 0 ))
{

if(((crisp_speed - member.lntervalMember[0]) >= 0) &&
((crisp_speed - member.lntervalMember[1]) <= 0))

found = num;

else
{

num++;
member = partition->Members[num];

}
}
retum(found);

}

short int SensorValueFuzzification(struct Robot *robot,
short int sensor,
struct PartitionOfDistances ‘partition)

{
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short int dist_member;

dist_member=FindDistancePartitionMember(robot->IRSensor[sensor].DistanceValue,partition); 
return(dist_member);

}

short int MotorValueFuzzification(struct Robot *robot,
short int motor,
struct PartitionOfSpeeds ‘partition)

{
short int speed_member;

speed_member = FindSpeedPartitionMember(robot->Motor[motor].Value,partition); 

return(speed_member);
}

void CompleteDistanceFuzzification(struct Robot ‘robot,
struct PartitionOfDistances ‘partition, 
short int KheperaSensorFuzzyValues[NUM_IRSENSORS-1]) 

/* returns a  group of member of partition of distance */
{

short int num_sensor;

for(num_sensor = 0; num_sensor < NUMJRSENSORS; ++num_sensor)
{

KheperaSensorFuzzyValues[num_sensor] = SensorValueFuzzification(robot,
num_sensor,
partition);

}
}

void CompleteSpeedFuzzification(struct Robot ‘robot,
struct PartitionOfSpeeds ‘partition, 
short int KheperaMotorFuzzyValues[NUM_MOTORS-1]) 

/* returns a  group of member of partition of speeds */
{

short int num_motor;

for(num_motor = 0; num_motor < NUM_MOTORS; ++num_motor)
{

KheperaMotorFuzzyValues[num_motor] = MotorValueFuzzification(robot,
num_motor,
partition);

}
}

void WriteCurrentFuzzyDistancesToFile(FILE ‘file,
short int KheperaSensorFuzzyValues[NUM_IRSENSORS-1], 
struct PartitionOfDistances ‘partition, 
short int step)
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Appendix  i.

short int sensor,num; 
struct FuzzySetl ‘member;
fprintf(file,"# File : FUZZY\fuzzy_distancessensors\n"); 
fprintfjfile,"# Author : Ana Maria Gonzalez de MiguelAn"); 
fprintfjfile,"# Description : Current FUZZY DISTANCES of Khepera\n"); 
fprintfjfile,"# Date : \n");
fprintfjfile,"------------------------------------------------- An");
fprintf(file," ‘STEP: %d\n",step);
fprintfjfile,"-------------------------------------------------- \n\n\n");
fprintfjfile," ‘Khepera Infra Red Sensors:\n\n"); 
for(sensor = 0; sensor < NUMJRSENSORS; ++sensor)
{

num = KheperaSensorFuzzyValues[sensor]; 
if (sensor==0 || sensor==1 || sensor==2) 
fprintf(file," IR Sensor %d LEFTAn",sensor); 

else if (sensor==3 || sensor==4 || sensor==5) 
fprintf(file," IR Sensor %d RIGHTAn",sensor); 

else /* jsensor==6 || sensor==7) */ 
fprintfjfile," IR Sensor %d BACK\n",sensor); 

fprintf(file," \t-Number of fuzzy distance member: %d\n",num); 
fprintfjfile," \t-lnterval of crisp sensor values: [%d,%d]\n",

partition->Members[num].intervalMember[0], 
partition->Members[num].lntervalMember[1]); 

member = partition->Members[num].FuzzySet; 
fprintf(file," \t-Fuzzy distance set member: %s\n\n",

member->Properties.Name);
fprintf(file," \t\t-XSupport: [%d,%d]",

member->Support[0], 
member->Support[1 j);

fprintf(file," \t-Center: %f\n\n",
member->Center);

}

void WriteCurrentFuzzySpeedsToFile(FILE ‘file,
short int KheperaMotorFuzzyValues[NUM_MOTORS-1], 
struct PartitionOfSpeeds ‘partition, 
short int step)

{
short int motor,num; 
struct FuzzySetl ‘member;

fprintf(file,"# File : FUZZY\fuzzy_speedsmotors\nM); 
fprintfjfile,"# Author : Ana Maria Gonzalez de MiguelAn"); 
fprintfjfile,"# Description : Current FUZZY SPEEDS of Khepera\n"); 
fprintfjfile,*# Date : \n");
fprintfjfile,"--------------------------------------------------\n");
fprintf(file," ‘STEP: %d\n",step);
fprintfjfile,"--------------------------------------------------\n\n\n");
fprintfjfile," ‘Khepera motors:\n\n"); 
for(motor = 0; motor < NUM_MOTORS; ++motor)
{

num = KheperaMotorFuzzyValues[motor]; 
if (motor == 0)

fprintf(file," Motor %d: RIGHTAn",motor); 
e ls e /‘(motor = 1)*/
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fprintf(file," Motor %d: LEFTAn",motor); 
fprintf(file," \t-Number of fuzzy speed member: %d\n",num); 
fprintfjfile," \t-lnterval of crisp motor values: [%d,%d]\n",

partition->Members[num].lntervalMember[0], 
partition->Members[num].lntervalMemberjlj); 

member = partition->Members[num].FuzzySet; 
fprintf(file," \t-Fuzzy speed set member: %s\n\n",

member->Properties.Name);
fprintf(file," \t\t-XSupport: [%d,%d]",

member->Support[0], 
member->Support[1 ]); 

fprintf(file," \t-Center: %f\n\n",member->Center);
}

short int CAM (struct FuzzySetl ‘variation, float inference) 
{

float ponderation; 
short int crisp_value,

varO, v a r l, var;

varO = DecFindCrispValuel (variation,inference,
variation->Center, variation->Support[1 ]);

varl = IncFindCrispValuel (variation,inference,
variation->Support[0],variation->Center);

crisp_value = ( short int )(varO + var1)/2; 
crisp_value = j short in t) crisp_value/10;

retum(crisp_value);
}

USER.H

#ifndef USER_H 
#define USER_H

#define WORLD_SCALE (double) 2 
#define WORLD_OFFSET_X 35 
#define WORLD_OFFSET_Y 22

#include "../CONTRIB/fuzzysets.h" 
#include "../CONTRIB/flc.h"
#include "../SRC/include.h"
#include "../SRC/types.h"

#include <X11/Xatom.h>
#include <X11/Xos.h>
#include <X11/keysym.h>
#include <X11/cursorfont.h>
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#include <X11/Xutil.h>

#define FUNCTION_TEXT 25
#define TEXT_SIZE 64
#define INFO_NEXT 20

extern struct FuzzySetl *vf, ‘f, ‘pmod, ‘nulla, ‘nmod, *s, *vs;
extern struct FuzzySetl *vpb, *pb, *pm, *ps, *ze, ‘ns, *nm, *nb, *vnb;
extern struct FuzzySetl ‘nop, *olp, *omp, *ohp, ‘collision;
extern struct FuzzySetl ‘his, ‘mis, *lis, *nms, ‘Ids, *mds, *hds;
extern struct Context ‘context;
extern struct Robot *r;
extern struct Button *b;
extern void CreatePrimaryFuzzyDistances();
extern void CreatePrimaryFuzzySpeeds();
extern void CreateFuzzySetsOfPerception();
extern struct PartitionOfDistances *CreatePartitionsOfDistances(short int i[2]); 
extern struct PartitionOfSpeeds *CreatePartitionOfSpeeds(short int i[2]);

extern void WritePartitionOfDistancesToFile(struct PartitionOfDistances ‘partition,
FILE ‘file);

extern void WritePartitionOfSpeedsToFile(struct PartitionOfSpeeds ‘partition,
FILE ‘file);

extern short intFindMaxPartitionMember(short int IR1, short int IR2,
short int fd[NUM_IRSENSORS-1]); 

extern void CompleteDistanceFuzzification(struct Robot ‘r,
struct PartitionOfDistances ‘partition, 
short int fdINUMJRSENSORS-1]); 

extern void CompleteSpeedFuzzification(struct Robot *r,
struct PartitionOfSpeeds ‘partition, 
short int fs[NUM_MOTORS-1]); 

extern void WriteCurrentFuzzyDistancesToFile(FILE ‘ffile,
short int fd[NUM_IRSENSORS-1], 
struct PartitionOfDistances ‘partition, 
short int step); 

extern void WriteCurrentFuzzySpeedsToFile(FILE ‘ffile,
short int fs[NUM_MOTORS-1], 
struct PartitionOfSpeeds ‘partition, 
short int step);

extern struct PerceptionStates *CreateFuzzyPerceptionStates(short int 
fd[NUM_IRSENSORS-1]); 

extern void WriteFuzzyPerceptionStatesToFile(struct PerceptionStates ‘percetions,
struct Robot ‘robot, 
short int step,
FILE ‘file);

extern void CreateFuzzySetsOfSpeedVariation();
extern struct RuleBase *CreateEmptyRuleBase();
extern void FreeRuleBase(struct RuleBase ‘rule_base);
extern struct RuleBase *ReadRuleBaseFromFile(FILE ‘file);
extern void WriteRuleBaseToFile(struct RuleBase *rule_base,FILE ‘file);
extern struct FuzzySet2 ‘CreateFiringStrengths (char Conjunction[MAX_TEXT],

char m_function[MAX_TEXT], 
struct PartitionOfDistances *part_dists, 
struct PartitionOfSpeeds *part_speeds); 

extern void WriteFiringStregthsToFile(struct FuzzySet2 ‘strengths, FILE ‘file); 
extern struct SpeedVariation *Fuzzylmplication(struct PerceptionStates ‘perceptions,

short int KheperaMotorFuzzyValues[NUM_MOTORS-1], 
struct RuleBase *rule_base,
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struct FuzzySet2 ‘strengths, 
struct PartitionOfSpeeds ‘partition, 
char lmplication[MAX_TEXT]); 

extern float DisjunctionOfFiringStrengths(struct FuzzySet2 ‘strengths,
char Disjunction[MAX_TEXT]); 

extern short int CAM (struct FuzzySetl ‘variation, float inference); 
extern void CorrectMotorValues(struct Robot ‘robot); 
extern struct SpeedVariation *CreateNullSpeedVariation();
extern struct SpeedVariation FreeSpeedVariations(struct SpeedVariation ‘variations); 
extern float I nferControl Action (float alpha,struct FuzzySetl ‘variation,

char lmplication[MAX_TEXT]); 
extern float lnferControlActionMembership(float alpha,struct FuzzySetl ‘variation, char 
lmplication[MAX_TEXT]);

#define DrawPlateUp(x,y,w,h) DrawPiate(x+X_0,y+Y_0,w,h,GREY,PLATE_D0WN);
#define DrawPlateDown(x,y,w,h) DrawPiate(x+X_0,y+Y_0,w,h,LIGHT_GREY,PLATE_UP);
#define DrawPlateColor(x,y,w,h,c) DrawPiate(x+X_0,y+Y_0,w,h,c,PLATE_UP);
#define DrawFuzzyDistances(r,pd,fd) DrawlnputFuzzySet(40,125,180,70,r,pd,fd);
#define DrawFuzzySpeeds(r,sp,fs) DrawOutputFuzzySet(40,235,180,55, r.sp.fs);
#define DrawFuzzyPerceptions(r.per) DrawStatePerception(245,125,220,70,r,per);
#define DrawFuzzySpeedVariation(r,var) DrawSpeedVariation(245,235,220,55,r,var);
#define DrawStepTable(r) DrawTable(40,90,r);

extern void DrawPlate(int x, int y, int w, int h, u_char c, u_char state); 
extern void DrawlnputFuzzySet(int x, int y, int w, int h, struct Robot *r,

struct PartitionOfDistances ‘partition, 
short int fd[NUM_IRSENSORS-1]); 

extern void DrawOutputFuzzySet(int x, int y, int w, int h, struct Robot *r,
struct PartitionOfSpeeds ‘partition, 
short int fs[NUM_MOTORS-1]); 

extern void DrawStatePerception(int x, int y, int w, int h, struct Robot ‘robot,
struct PerceptionStates ‘perceptions); 

extern void DrawSpeedVariation(int x, int y, int w, int h, struct Robot ‘robot,
struct SpeedVariation ‘variation); 

extern void DrawTable(int x, int y, struct Robot *r); 
extern void DrawUserlnformation(); 
extern void DrawUserlnformation2(); 
extern void PlotFuzzyProximities(); 
extern void PlotFuzzySpeeds(); 
extern void DrawFuzzification(); 
extern void DrawDataBase(); 
extern void DrawRuleBase(); 
extern void DrawDecisionMakingLogic(); 
extern void lnitStepControllerFile(FILE ‘file); 
extern void WriteStepController(FILE ‘file, short int pas); 
extern short int FindMaxProximity(short int IR1, short int IR2, struct Robot ‘robot); 
extern void WaitCursor(); 
extern void PointerCursor();

#endif
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Appendix c

USER1.C

#include \./SRC/include.h"
#include "../CONTRIB/flc.h"
#include "userjnfo.h"
#include "user.h"

extern struct FuzzySetl ‘his, ‘mis, *lis, *nms, ‘Ids, ‘mds, *hds; 

long int pas=0;
short int khepera_crisp_sensor_values[2] = {0,1023},

FILE *gnuplot_file, 
*path_file, 
*leftspeed_file, 
*rightspeed_file, 
*leftsensors_file, 
*rightsensors_file, 
*backsensors_file, 
*step_controller;

void Userlnit(struct Robot ‘robot)
{

gnuplotjile = popen("gnuplot","w"); 
if (gnuplotjile == NULL)
{

fprintf(stderr,"Warning: gnuplot not available");
}
ShowUserlnfo(1,1);
CreatePrimaryFuzzyDistances();
CreatePrimaryFuzzySpeeds();
dist_partition = CreatePartitionOfDistances(khepera_crisp_sensor_values); 
speed.partition = CreatePartitionOfSpeeds(khepera_crisp_motor_values); 
CompleteDistanceFuzzification(robot,dist_partition,fuzzy_distances); 
CompleteSpeedFuzzification(robot,speed_partition,fuzzy_speeds); 
CreateFuzzySetsOfPerception();
fuzzy_states = CreateFuzzyPerceptionStates(fuzzy_distances);

char

f uzzy_distances[N U M J RSENSORS-1 ], 
fuzzy_speeds[NUM_MOTORS-1], 
khepera_crisp_motor_values[2] = {-10,10}; 
fuzzy_reasoning[MAX_TEXT] = "Mamdami";

struct PartitionOfDistances
struct PartitionOfSpeeds
struct PerceptionStates
struct SpeedVariation
struct RuleBase
struct FuzzySet2
float
float
short int

*dist_partition;
‘speed_partition;
*fuzzy_states;
‘fuzzy_variation;
‘rulebase;
*firing_strengths;
rule_contribs;
DML_right,DML_left;

crisp_variation[2];
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rulebase = CreateEmptyRuleBase();
CreateFuzzySetsOfSpeedVariation();
firing_strengths = CreateFiringStrengths( "Union2", "Triangular2", dist_partition, speed .partition); 
rule.contribs = DisjunctionOfFiringStrengths(firing_strengths,"alg union"); 
fuzzy.variation = CreateNullSpeedVariationQ;

void UserClose(struct Robot ‘robot)
{

if (gnuplot_file) pclose(gnuplot_file);
FreeRuleBase(rulebase);
FreeSpeedVariations(fuzzy_variation);

}

void NewRobot(struct Robot ‘robot)
{

pas = 0;
ShowUserlnfo(2,1); 
FreeRuleBase(rulebase); 
FreeSpeedVariations(fuzzy_variation); 
DML.right = 0.0;
DMLJeft = 0.0;
crisp_variation[RIGHT] = 0; 
crisp_variation[LEFT] = 0;

}

void LoadRobot(struct Robot ‘robot,FILE ‘file) 
{

ShowUserlnfo(2,1);

void SaveRobot(struct Robot ‘robot,FILE ‘file) 
{

Showllserlnfo(2,1);
}

void RunRobotStart(struct Robot ‘robot)
{

path.file = fopen("STATS/path.dat","w"); /* modify to "a"*/ 
leftspeed_file = fopen("STATS/leftspeed.dat","w"); 
rightspeed_file = fopen("STATS/rightspeed.dat","w"); 
leftsensors.file = fopen("STATS/leftsensors.dat",,,w"); 
rightsensors_file = fopen("STATS/rightsensors.dat","wM); 
backsensors.file = fopen("STATS/backsensors.dat","w"); 
step_controller =fopen("EXAMPLES/FBM_FLC/step.controller","w"); 
lnitStepControllerFile(step_controller); 
if (GetUserlnfo()!=3 || GetUserlnfoPage()!=1)

ShowUserlnfo(3,1); 
fuzzy_variation = CreateNullSpeedVariation();

}
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void RunRobotStop(struct Robot *robot) 
{

fclose(path_file);
fclose(leftspeedjile);
fclose(rightspeedjile);
fclose(leftsensorsjile);
fclose(rightsensorsjile);
fclose(backsensorsjile);
fclose(step_controller);
ShowUserlnfo(3,1);

}

boolean StepRobot(struct Robot *robot)
{

pas++;
DrawStep(pas);
DrawPositionRobot(robot);
DML_right = 0.0;
DMLJeft = 0.0;

fprintf(path_file,"%lg, %lg\n“, robot->X,1000.0-robot->Y);
fprintf(leftspeed_file,"%ld, %ld\n">pas,robot->Motor[LEFT].Value);
fprintfirightspeedjile.^/old, %ld\n"lpas,robot->Motor[RlGHT].Value);
CompleteDistanceFuzzification(robotIdist_partition>fuzzy_distances);
CompleteSpeedFuzzification(robot,speed_partition,fuzzy_speeds);
DrawFuzzySpeeds(robot,speed_partition,fuzzy_speeds);
DrawFuzzyDistances(robot,dist_partition,fuzzy_distances);
fuzzy_states = CreateFuzzyPerceptionStates(fuzzy_distances);
DrawFuzzyPerceptions(robot,fuzzy_states);
fuzzy_variation = Fuzzylmplication(fuzzy_states,fuzzy_speeds,

rulebase,firing_strengths,
speed_partition,fuzzy_reasoning);

DML_right=lnferControlActionMembership(rule_contribs,
fuzzy_variation->RightVariation,fuzzy_reasoning);

DMLJeft=lnferControlActionMembership(rule_contribs,
fuzzy_variation->LeftVariation,fuzzy_reasoning); 

crisp_variation[RIGHT] = CAM(fuzzy_variation->RightVariation,DML_right); 
crisp_variation[LEFT] = CAM(fuzzy_variation->LeftVariation,DMLJeft); 
robot->Motor[RIGHT].Value += crisp_variation[RIGHT]; 
robot->Motor[LEFT].Value += crisp_variation[LEFT];
CorrectMotorValues(robot);
DrawFuzzySpeedVariation(robot,fuzzy_variation); 
fprintf(leftsensorsJile,"%ld, % lg\n\pas,1000.0-10); 
fprintf(rightsensorsJile,"%ld, %lg\n",pas,1000.0-10); 
fprintf(backsensorsJile,"%ld, % lg\n\pas,1000.0-10); 
fprintf(step_controller,"%6d %6d\n",crisp_variation[RIGHT]> 

crisp_variation[LEFT]); I* for control action surface */ 
return(TRUE); /* continue the run of the robot 7

}
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void FastStepRobot(struct Robot *robot) {}

void ResetRobot(struct Robot *robot)
{

FILE *test1, *test2, *test3, *test4, *test5, *test6;

testl = fopen("STATS/path.dat","r"); 
test2 = fopen("STATS/leftspeed.dat","r"); 
test3 = fopen("STATS/rightspeed.dat\Y); 
test4 = fopen("STATS/leftsensors.dat","r"); 
test5 = fopen("STATS/rightsensors.dat","r"); 
test6 = fopenfSTATS/backsensors.datYr");

if (testl)
{

fclose(testl);
system frm  STATS/path.dat");

}
else if (test2)
{

fclose(test2);
system("rm STATS/leftspeed.dat");

}
else if (test3)
{

fclose(test3);
system(Hrm STATS/rightspeed.dat");

}
else if (test4)
{

fclose(test4);
system("rm STATS/leftsensors.dat");

}
else if (tests)
{

fclose(test5);
system("rm STATS/rightsensors.dat");

}
else if (test6)
{

fclose(test6);
system(“rm STATS/backsensors.dat");

}
pas = 0;
ShowUserlnfo(3,1);

}

void UserCommand(struct Robot *robot,char *text)
{

FILE *file, *ffile, ‘rules;
char file_name[rEXT_SIZE], name[TEXT_SIZE], extension[TEXT_SIZE]; 
short int num;
struct FuzzySetl ‘member;
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if (strcmp(text, "plot path")==0)
{

fprintf(gnuplot_file,"load ’GNUPLOT/path.gnuW); 
fflush(gnuplot_file);
WriteComment("path plotted");

else if (strcmp(text, "plot left speed values")==0)

fprintf(gnuplot_file,"load ’GNUPLOT/leftspeed.gnuVi"); 
fflush(gnuplot_file);
WriteCommentfLeft Speed plotted");

else if (strcmp(text, "plot right speed values")==0)

fprintf(gnuplot_file,"load ’GNUPLOT/rightspeed.gnuVi"); 
fflush(gnuplot_file);
WriteComment("Right Speed plotted");

else if (strcmp(text, "plot left sensor values")==0)

fprintf(gnuplot_file,"load ’GNUPLOT/leftsensors.gnu’Vn"); 
fflush(gnuplot_file);
WriteComment(" Maximum Left IR Sensor Values plotted");

else if (strcmp(text, "plot right sensor values")==0)

fprintf(gnuplot_file,"load ’GNUPLOT/rightsensors.gnu\n"); 
fflush(gnuplot_file);
WriteComment("Maximum Right IR Sensor Values plotted");

else if (strcmp(text, "plot back sensor values")==0)

fprintf(gnuplot_file, "load ’GNUPLOT/backsensors.gnu\n"); 
fflush(gnuplot_file);
WriteComment("Maximum Back IR Sensor Values plotted");

else if (strcmp(text, "write primary fuzzy distances to file")==0)

if (GetUserlnfo()!=4 || GetUserlnfoPage()l=1) ShowUserlnfo(4,1);

WriteComment("saving FUZZY DISTANCES");
member = (struct FuzzySetl *)malloc(sizeof(struct FuzzySetl)); 
for(num = 0; num < NUM_DIST_SETS; ++num)
{

member = dist_partition->Members[num].FuzzySet;
strcpy(name,member->Properties.Name);
strcpy(extension,".fuzzyset");
strcat(name,extension);
strcpy(file_name,"FUZZY/");
strcat(file_name,name);
ffile=fopen(file_name,"w");
WriteFuzzySet1ToFi!e(member,ffile);
fclose(ffile);

}
WriteComment("FUZZY DISTANCES saved");

else if (strcmp(text, "write primary fuzzy speeds to file")==0)
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{
if (GetUserlnfo()!=4 || GetUserlnfoPage()!=2) ShowUserlnfo(4,2);
WriteComment( saving FUZZY SPEEDS");
member = (struct FuzzySetl *)malloc(sizeof(struct FuzzySetl)); 
for(num = 0; num < NUM_SPEED_SETS; ++num)
{

member = speed_partition->Members[num].FuzzySet;
strcpy(name,member->Properties.Name);
strcpy(extension,".fuzzyset");
strcat(name,extension);
strcpy(file_name,"FUZZY/");
strcat(file_name,name);
ffile=fopen(file_name,"w");
WriteFuzzySet1ToFile(member,ffile);
fclose(ffile);

}
WriteComment("FUZZY SPEEDS saved");

}
else if (strcmp(text, "write partition of distances to file")==0)
{

if (GetUserlnfo()!=4 || GetUserlnfoPage()!=1) ShowUserlnfo(4,1);
WriteComment("saving ...partition of distances");
strcpy(name,"distances.partition");
strcpy(file_name,"FUZZY/");
strcat(file_name,name);
ffile=fopen(file_name,"w");
WritePartitionOfDistancesToFile(dist_partition,ffile);
fclose(ffile);
WriteComment("partition of distances....saved");

}
else if (strcmp(text, "write partition of speeds to file")==0)
{

if (GetUserlnfo()!=4 || GetUserlnfoPage()!=2) ShowUserlnfo(4,2);
WriteComment("saving ....partition of speeds");
strcpy(name,"speeds.partition");
strcpy(file_name,"FUZZY/");
strcat(file_name,name);
ffile=fopen(file_name,"w");
WritePartitionOfSpeedsToFile(speed_partition,ffile);
fclose(ffile);
WriteComment("partition of speeds ....saved");

}
else if (strcmp(text, "write current fuzzy distances to file")==0)
{

if (GetUserlnfo()!=4 || GetUserlnfoPage()!=1) ShowUserlnfo(4,1);
WriteComment("saving ....Khepera current FUZZY DISTANCES");
strcpy(name,"fuzzy_distances.sensors");
strcpy(file_name,"FUZZY/");
strcat(file_name,name);
ffile=fopen(file_name,"wM);
WriteCurrentFuzzyDistancesToFile(ffile,fuzzy_distances,distj3artition,pas);
fclose(ffile);
WriteComment("current Khepera FUZZY DISTANCES ....saved");

}
else if (strcmp(text, "write current fuzzy speeds to file")==0)
{
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if (GetUserlnfo()!=4 || GetUserlnfoPage()!=2) ShowUserlnfo(4,2);
WriteComment( saving ....Khepera current FUZZY SPEEDS");
strcpy(name,"fuzzy_speeds.motors");
strcpy(file_name,"FUZZY/");
strcat(file_name,name);
ffile=fopen(file_name,"w");
WriteCurrentFuzzySpeedsToFile(ffile>fuzzy_speeds,speed_partition,pas);
fclose(ffile);
W riteCommentfcurrent Khepera FUZZY SPEEDS ....saved");

}
else if (strcmp(text, "write fuzzy perceptions to file")==0)
{

if (GetUserlnfo()!=4 || GetUserlnfoPage()!=1) ShowUserlnfo(4,1);
WriteComment( saving ....Khepera current FUZZY PERCEPTIONS");
strcpy(name,"fuzzy.perceptions");
strcpy(file_name,"FUZZY/");
strcat(file_name,name);
ffile=fopen(file_name,"w");
WriteFuzzyPerceptionStatesToFile(fuzzy_statesIrobot,pas,ffile);
fclose(ffile);
WriteComment("current Khepera FUZZY PERCEPTIONS ....saved");

}
else if (strcmp(text, "write fuzzy sets of speed variations")==0)
{

if (GetUserlnfo()l=2 || GetUserlnfoPage()!=1) ShowUserlnfo(2,1); 
WriteComment("saving....FUZZY VARIATIONS OF SPEEDS"); 
member = (struct FuzzySetl *)malloc(sizeof(struct FuzzySetl)); 
member = his;
strcpy(name,member->Properties.Name); 
strcpy(extension,".fuzzyset"); 
strcat(name,extension);
strcpy(file_name,"EXAMPLES/FL_EX2/FUZZY/");
strcat(file_name,name);
ffile=fopen(file_name,"w");
WriteFuzzySet1ToFile(member,ffile);
fclose(ffile);
member = mis;
strcpy(name,member->Properties.Name); 
strcpy(extension,".fuzzyset"); 
strcat(name,extension);
strcpy(file_name,"EXAMPLES/FL_EX2/FUZZY/");
strcat(file_name,name);
ffile=fopen(file_name,"w");
WriteFuzzySet1ToFile(member,ffile);
fclose(ffile);
member = lis;
strcpy(name,member->Properties.Name); 
strcpy(extension,".fuzzyset"); 
strcat(name,extension); 
strcpy(file_name,"FUZZY/"); 
strcat(file_name,name); 
ffile=fopen(file_name,"w");
WriteFuzzySet1ToFile(member,ffile);
fclose(ffile);
member = nms;
strcpy(name,member->Properties.Name); 
strcpy(extension ,".f uzzyset");
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strcat(name,extension);
strcpy(file_name>"EXAMPLES/FL_EX2/FUZZY/");
strcat(file_name,name);
ffile=fopen(file_nameI"w");
WriteFuzzySet1ToFile(member,ffile);
fclose(ffile);
member = Ids;
strcpy(name,member->Properties.Name); 
strcpy(extension.f uzzyset"); 
strcat(name,extension);
strcpy(file_name,"EXAMPLES/FL_EX2/FUZZY/");
strcat(file_name,name);
ffile=fopen(file_name,"w");
WriteFuzzySet1ToFile(member,ffile);
fclose(ffile); /* TO BE MODIFIED 7
member = mds; /* GETTING SETS 7
strcpy(name,member->Properties.Name); I* FROM RULES 7
strcpy(extension,".fuzzyset"); 
strcat(name,extension);
strcpy(file_name,"EXAMPLES/FL_EX2/FUZZY/");
strcat(file_name,name);
ffile=fopen(file_name,"w");
WriteFuzzySet1ToFile(member,ffile);
fclose(ffile);
member = hds;
strcpy(name,member->Properties.Name); 
strcpy(extension,".f uzzyset"); 
strcat(name,extension);
strcpy(file_name,"EXAMPLES/FL_EX2/FUZZY/");
strcat(file_name,name);
ffile=fopen(file_name,"w");
WriteFuzzySet1ToFile(member,ffile);
fclose(ffile);
WriteComment("FUZZY VARIATIONS OF SPEEDS saved");

}

I* Setting the control policy for the behavioural performance 7  
I* This command allows the analysis of different control policies 7  
/* Note: different RBs can be installed while Khepera is moving in env 7

else if (strcmp(text, "AFLC")==0)
{

if (GetUserlnfo()!=2 || GetUserlnfoPage()!=1) ShowUserlnfo(2,1);
WriteComment("reading....fuzzy control rules");
rules = fopen("ROBOT/rules1 .robot","r");
rulebase = ReadRuleBaseFromFile(rules);
fclose(rules);
WriteComment(" done");

}
else if (strcmp(text, "WFFLC1")==0)
{

if (GetUserlnfo()!=2 || GetUserlnfoPage()!=1) ShowUserlnfo(2,1); 
WriteComment( reading....fuzzy control rules"); 
rules = fopen("ROBOT/wall_follow1 .robot","r"); 
rulebase = ReadRuleBaseFromFile(rules);
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fclose(rules);
WriteComment(" done");

}
else if (strcmp(text, "WFFLC2a")==0)
{

if (GetUserlnfo()!=2 || GetUserlnfoPage()!=1) ShowUserlnfo(2,1);
WriteComment("reading....fuzzy control rules");
rules = fopen("ROBOT/wall_follow2a.robot","r");
rulebase = ReadRuleBaseFromFile(rules);
fclose(rules);
WriteComment(" done");

}
else if (strcmp(text, “WFFLC2b")==0)
{

if (GetUserlnfo()!=2 || GetUserlnfoPage()!=1) ShowUserlnfo(2,1);
WriteComment("reading....fuzzy control rules");
rules = fopen("ROBOT/wall_follow2b.robot">"r");
rulebase = ReadRuleBaseFromFile(rules);
fclose(rules);
WriteComment(" done");

}
else if (strcmp(text, *WFFLC2")==0)
{

if (GetUserlnfo()!=2 || GetUserlnfoPage()!=1) ShowUserlnfo(2,1);
WriteComment("reading....fuzzy control rules");
rules = fopen("ROBOT/wall_follow2.robot","r");
rulebase = ReadRuleBaseFromFile(rules);
fclose( rules);
WriteComment(" done");

}
else if (strcmp(text, "WFFLC3")==0)
{

if (GetUserlnfo()!=2 || GetUserlnfoPage()!=1) ShowUserlnfo(2,1);
WriteComment("reading....fuzzy control rules");
rules = fopen("ROBOT/wall_follow3.robot","r");
rulebase = ReadRuleBaseFromFile(rules);
fclose(rules);
WriteComment(* done");

)
else if (strcmp(text, *WFFLC4")==0)
{

if (GetUserlnfo()!=2 || GetUserlnfoPage()!=1) ShowUserlnfo(2,1);
WriteComment("reading....fuzzy control rules");
rules = fopen("ROBOT/wall_follow4.robot","r");
rulebase = ReadRuleBaseFromFile(rules);
fclose(rules);
WriteComment(" done");

}
else if (strcmp(text, "WFFLC5")==0)
{

if (GetUserlnfo()!=2 || GetUserlnfoPage()!=1) ShowUserlnfo(2,1);
WriteCommentfreading....fuzzy control rules");
rules = fopen("ROBOT/wall_follow5.robot","r");
rulebase = ReadRuleBaseFromFile(rules);
fclose(rules);
WriteComment(" done");

}
else if (strcmp(text, "WFFLC6")==0)
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{
if (GetUserlnfo()!=2 || GetUserlnfoPage()!=1) ShowUserlnfo(2,1);
WriteComment( reading....fuzzy control rules");
rules = fopen("ROBOT/wall_follow6.robot\"r");
rulebase = ReadRuleBaseFromFile(rules);
fclose(rules);
WriteComment(" done");

}
else if (strcmp(text, "WFFLC6a")==0)
{

if (GetUserlnfo()!=2 || GetUserlnfoPage()!=1) ShowUserlnfo(2,1);
WriteComment("reading....fuzzy control rules");
rules = fopen("ROBOT/wall_follow6a.robot","r");
rulebase = ReadRuleBaseFromFile(rules);
fclose(rules);
WriteComment(" done");

}
else if (strcmp(text, "WFFLC7")==0)
{

if (GetUserlnfo()!=2 || GetUserlnfoPage()!=1) ShowUserlnfo(2,1);
WriteComment( reading....fuzzy control rules");
rules = fopen("ROBOT/wall_follow7.robotM,"r");
rulebase = ReadRuleBaseFromFile(rules);
fclose( rules);
WriteComment(" done");

}
else if (strcmp(text, "WFFLC8")==0)
{

if (GetUserlnfo()!=2 || GetUserlnfoPage()!=1) ShowUserlnfo(2,1);
WriteComment("reading....fuzzy control rules");
rules = fopen("ROBOT/wall_follow8.robot","r");
rulebase = ReadRuleBaseFromFile(rules);
fclose(rules);
WriteComment(" done");

}

/* end of commands for setting the fuzzy control rules 7

else if (strcmp(text, "write rule base")==0)
{

if (GetUserlnfo()!=2 || GetUserlnfoPage()!=1) ShowUserlnfo(2,1);
WriteComment("saving ...fuzzy control rules");
strcpy(name,"flc2.rules");
strcpy(file_name,"EXAMPLES/FL_EX2/FUZZY/");
strcat(file_name,name);
ffile=fopen(file_name,"w");
W riteRuleBaseT oFile(rulebase,ffile); 
fclose(ffile);
WriteComment("fuzzy control rules....saved");

}
else if (strcmp(text, "write firing strengths")==0)
{

if (GetUserlnfo()!=2 || GetUserlnfoPage()!=1) ShowUserlnfo(2,1); 
WriteComment( saving ...firing strengths"); 
strcpy(name,"firing.strengths");
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strcpy(file_name,"EXAMPLES/FLJEX2/FUZZY/");
strcat(file_name,name);
ffile=fopen(file_name,"w");
WriteFiringStregthsToFile(firing_strengths,ffi!e);
fclose(ffile);
WriteComment("firing strengths....saved");

}
else If (strcmp(text, "apply Mamdami")==0)
{

strcpy(fuzzy_reasoning,"Mamdami");
WriteComment("Mamdami fuzzy reasoning technique... by A.M. Gonzalez");

}
else if(strcmp(text,"apply Larsen")==0)
{

strcpy(fuzzy_reasoning,"Larsen");
WriteComment("Larsen fuzzy reasoning technique... by A.M. Gonzalez");

}
else

WriteComment("unknown command"); I* no commands 7

void Drawllserlnfo(struct Robot *robot,u_char info,u_char page) 
{

char text[256];

switch(info)
{

case  1: 
switch(page)
{

case  1: DrawUserlnformation(robot); 
break;

case 2: DrawUser Information (robot);
}
break; 

case  2: 
switch(page)
{

case  1: DrawController(); 
break;

case  2: DrawFuzzification(); 
break;

case  3; DrawDataBaseQ; 
break;

case  4; DrawRuleBase(); 
break;

case  5: DrawDecisionMakingLogic(); 
break;

}
break; 

case  3:
switch(page)
{

case  1: DrawStepTable(robot); 
break;

}
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break;
case 4: /* primary fuzzy sets 7  

switch(page)
{

case  1: PlotFuzzyProximities(); 
break;

case  2: PlotFuzzySpeeds(); 
break;

}
break;

}
}

USER2.C

#include "../SRC/include.h" 
#include WCONTRIB/flc.h" 
#include "../CONTRIB/fuzzysets.h" 
#include "user.h"

extern long int pas; 
extern Display ‘display;
extern struct PartitionOfDistances ‘dist_partition; 
extern struct PartitionOfSpeeds *speed_partition; 
extern struct PerceptionStates 
extern struct SpeedVariation 
extern short int 
extern short int 
extern float 
extern short int 
extern float 
extern char

*fuzzy_states;
*fuzzy_variation;
fuzzy_distances[NUMJRSENSORS-1]; 
fuzzy_speeds[NUM_MOTORS-1 ]; 
DML_right,DMLJeft; 
crisp_variation[2]; 
rule_contribs;
fuzzy_reasoning[MAX_TEXT];

void DrawPositionRobot(struct Robot ‘robot) 
{

char text[10]; 
short int x,y;

x = (robot->X); 
y = (robot->Y);
sprintf(text,"position = < %3d,%3d >",x,y); 
DrawPlateUp(250,50,208,35); 
Color(BLACK);
DrawText(270,70,text);

}

void DrawWindowPosition(int x, int y, int w, int h, struct Robot ‘robot) 
{

DrawPlateUp(x,y,w,h);
DrawPosition Robot(robot);

}
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void DrawStep(int p)
{

char text[256];

sprintf(text, "step = %d", p); 
DrawPlateUp(55,50,148,35); 
Color(BLACK); 
DrawText(75,70,text);

void DrawWindowStep(int x, int y, int w, int h, int p) 
{

DrawPlateUp(x,y,w,h);
DrawStep(p);

}

void DrawlnputFuzzySet(int x, int y, int w, int h, struct Robot ‘robot, 
struct PartitionOfDistances ‘partition, 
short int KheperaSensorFuzzyValues[NUMJRSENSORS-1])

{

char fuzzy_set_name[MAX_TEXT]; 
short int MaxLeft, MaxRight, MaxBack; 
struct FuzzySetl ‘member;

DrawPlateUp(x,y,w,h);
Color(BLUE);
DrawText(x,y-5,"Fuzzy d istances:");
Color(BLACK);
DrawText(x+10,y+20,"Left Sensors :");
DrawText(x+10,y+40,"Right S e n so rs :");
DrawText(x+10,y+60,"Back Sensors :");
Color(BLUE);
MaxLeft = FindMaxPartitionMember(0,2,KheperaSensorFuzzyValues); 
member = partition->Members[MaxLeft].FuzzySet; 
strcpy(fuzzy_set_name,member->Properties.Name);
DrawText(x+140,y+20,f uzzy_set_name);
MaxRight = FindMaxPartitionMember(3,5,KheperaSensorFuzzyValues); 
member = partition->Members[MaxRight].FuzzySet; 
strcpy(fuzzy_set_name, member->Properties.Name); 
DrawText(x+140,y+40,fuzzy_set_name);
MaxBack = FindMaxPartitionMember(6,7,KheperaSensorFuzzyValues); 
member = partition->Members[MaxBack].FuzzySet; 
strcpy(fuzzy_set_name,member->Properties.Name);
DrawText(x+140,y+60,f uzzy_set_name);
Color(BLACK);
DrawText(x+180,y+20,">»");
DrawText(x+180,y+40,"»>");
DrawText(x+180,y+60,"»>");

Dissertation o f the Thesis v4.1
Copyright © Ana Maria Gonzdlez de Miguel, CMS, SHU
June, 2002

Pag. 292



void PlotFuzzyProximities()
{

DrawPlateDown(20,20,460,295); 
WriteComment("Fuzzy Sets");
Color(BLUE);
DrawText(40,40,"Fuzzy Sets of Distances:"); 
Coior(BLACK);
DrawLine(83,70,83,275); 
DrawLine(50,275,450,275);
DrawText(75,110,"1");
DrawText(50,288,"-100"); 
DrawText(75,271,"0");
DrawText(88,288,"0");
DrawText(106,288,"100");
DrawText(139,288,"200");
DrawText(171,288,"300"); 
DrawText(205,288,"400"); 
DrawText(237,288,"500"); 
DrawText(270,288,"600"); 
DrawText(306,288,"700"); 
DrawText(339,288,"800"); 
DrawText(372,288,"900"); 
DrawText(405,288,"1000");
DrawText(441,288,"1100");
Color(BLUE);
DrawLine(50,275,83,100);
DrawLine(83,100,119,275);
DrawLine(107,275,152,100);
DrawLine(152,100,193,275);
DrawLine(176,275,201,100);
DrawLine(201,100,226,275);
DrawLine(218,275,234,100);
DrawLine(234,100,250,275);
DrawLine(234,275,250,100);
DrawLine(250,100,266,275);
DrawLine(250,275,266,100);
DrawLine(266,100,283,275); 
DrawLine(274,275,299,100);
DrawLine(299,100,327,275); 
DrawLine(307,275,352,100);
DrawLine(352,100,393,275); 
DrawLine(385,275,418,100);
DrawLine(418,100,450,275); 
DrawText(72,97,"VPB");
DrawText(145,97,"PB");
DrawText(195,97,"PM");
DrawText(225,97,"PS"); 
DrawText(244,97,"ZE");
DrawText(261,97,"NS"); 
DrawText(293,97,"NM"); 
DrawText(345,97,"NB");
DrawText(405,97,"VNB");

}

void DrawOutputFuzzySet(int x, int y, int w, int h, struct Robot ‘robot,
struct PartitionOfSpeeds ‘partition,

Dissertation o f the Thesis v4.1
Copyright © Ana Maria Gonzdlez de Miguel, CMS, SHU
June, 2002

Pag. 293



Appendix c

short int KheperaMotorFuzzyValues[NUM_MOTORS-1])
{

struct FuzzySetl ‘member; 
short int partition_member; 
char fuzzy_set_name[MAX_TEXT];

DrawPlateUp(x,y,w,h);
Color(RED);
DrawText(x,y-5,"Fuzzy speeds:");
Color(BLACK);
DrawText(x+10,y+20,"Left Motor :");
DrawText(x+10,y+40,"Right Motor :");
Color(RED);
partition_member = KheperaMotorFuzzyValues[OJ; 
member = partition->Members[partition_member].FuzzySet; 
strcpy(fuzzy_set_name,member->Properties.Name); 
DrawText(x+135,y+20,fuzzy_set_name); 
partition_member = KheperaMotorFuzzyValues[1]; 
member = partition->Members[partition_member].FuzzySet; 
strcpy(fuzzy_set_name,member->Properties.Name); 
DrawText(x+135,y+40,fuzzy_set_name);
Color(BLACK);
DrawText(x+180,y+20,"»>");
DrawText(x+180,y+40,"»>");

void PlotFuzzySpeeds()
{

DrawPlateDown(20,20,460,295); 
WriteComment("Fuzzy Sets"); 
Color(RED);
DrawText(40,40,"Fuzzy Sets of Speeds:"); 
Color(BLACK);
DrawLine(250,70,250,275); 
DrawLine(30,275,470,275); 
DrawText(242,105,"1"); 
DrawText(242,271,"0"); 
DrawText(22,288,"-11"); 
DrawText(42,288,"-10"); 
DrawText(67,288,"-9"); 
DrawText(87,288,"-8");
DrawText(107,288,"-7");
DrawText(127,288,"-6");
DrawText(147,288,"-5"); 
DrawText(167,288,"-4");
DrawText(187,288,"-3"); 
DrawText(207,288,"-2"); 
DrawText(227,288,"-1"); 
DrawText(247,288,"0"); 
DrawText(262,288,"1"); 
DrawText(282,288,"2");
DrawText(302,288,"3"); 
DrawText(322,288,"4");
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DrawText(342,288,"5"); 
DrawText(362,288,"6"); 
DrawText(382,288,"7"); 
DrawText(402,288,"8"); 
DrawText(422,288,"9"); 
DrawText(442,288,"10"); 
DrawText(462,288,"11"); 
Color(RED);
DrawLine(30,275,50,100); 
DrawLine(50,100,70,275); 
DrawLine(50,275,110,100); 
DrawLine(110,100,170,275) 
DrawLine(150,275,190,100) 
DrawLine(190,100,230,275) 
DrawLine(210,275,250,100) 
DrawLine(250,100,290,275) 
DrawLine(270,275,310,100) 
DrawLine(310,100,350,275) 
DrawLine(330,275,390,100) 
DrawLine(390,100,450,275) 
DrawLine(430,275,450,100) 
DrawLine(450,100,470,275) 
DrawText(42,92,"VS"); 
DrawText(107,92,"S"); 
DrawText(182,92,"NM"); 
DrawText(237,92,,,NULL"); 
DrawText(305,92,"PM"); 
DrawText(390,92,"F"); 
DrawText(445,92,"VF");

}

void DrawSpeedVariation(int x, int y, int w, int h, struct Robot ‘robot,
struct SpeedVariation ‘variation)

{

char fuzzy_set_name[MAX_TEXT];

DrawPiateUp(x,y,w,h);
Color(CORAL);
DrawText(x,y-5,"Fuzzy variation of speed:");
strcpy(fuzzy_set_name,variation->LeftVariation->Properties.Name);
DrawText(x+10,y+20,fuzzy_set_name);
strcpy(fuzzy_set_name,variation->RightVariation->Properties.Name); 
DrawText(x+10,y+40,fuzzy_set_name);

}

void DrawStatePerception(int x, int y, int w, int h, struct Robot ‘robot,
struct PerceptionStates ‘perceptions)

{

char fuzzy_set_name[MAX_TEXT];

DrawPlateUp(x,y,w,h);
Color(SEA_GREEN);
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DrawText(x,y-5,"Fuzzy perception state:");
Color(SEA_GREEN);
strcpy(fuzzy_set_name,perceptions->LeftState->Properties.Name);
DrawText(x+10,y+20,fuzzy_set_name);
strcpy(fuzzy_set_name,perceptions->RightState->Properties.Name); 
DrawText(x+10,y+40,f uzzy_set_name);
strcpy(fuzzy_set_name,perceptions->BackState->Properties.Name); 
DrawText(x+10,y+60,f uzzy_set_name);

}

void DrawTable(int x, int y, struct Robot ‘robot)
{

char text[MAX_TEXT]; 
char text2[MAX_TEXT];

DrawPlateDown(25,20,460,300);
Color(RED);
strcpy(text2,"Fuzzy Reasoning Technique:"); 
strcat(text2,fuzzy_reasoning); 
strcat(text2,"’s  Fuzzy Implication");
DrawText(20,19 ,text2);
DrawWindowStep(55,50,148,35,pas); 
DrawWindowPosition(250,50,208,35,robot); 
DrawlnputFuzzySet(40,125,180,70,robot,dist_partition, 

fuzzy_distances);
DrawStatePerception(245,125,220,70,robot,fuzzy_states); 
DrawOutputFuzzySet(40,235,180,55,robot,speed_partition, 

fuzzy_speeds);
DrawSpeedVariation(245,235,220,55,robot,fuzzy_variation); 

Color(BLACK);
DrawText(25,335,"Avoidance FLC version 1.0 by A.M. Gonzalez");

void DrawController()
{

char text[100]; 
char text2[MAX_TEXTJ; 
struct FuzzySetl ‘set;

WriteComment("FUZZY LOGIC CONTROL by A.M. Gonzalez"); 
Color(RED);
DrawText(20,20,"Basic Structure of a  FLC:");
DrawPlateDown(20,25,460,285);
DrawPlateColor(190,50,120,50,LIME_GREEN);
Color(BLACK);
Drawl_ine(100,75,190,75);
DrawLine(310,75,400,75);
DrawLine(100,75,100,105);
DrawLine(400,75,400,105);
DrawText(215,70,"Knowledge");
DrawText(230,85,"Base“);
DrawLine(250,100,250,150); 
DrawPlateColor(30,105,140,50,SEA_GREEN);
Color(BLACK);
DrawText(45,135,"Fuzzification");
DrawLine(120,155,120,190);
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DrawLine(120,190,190,190);
Color(RED);
DrawLine(80,155,80,260);
DrawLine(80,260,130,260);
DrawText(60,280,"OUTPUT");
DrawPlateColor(330,105,140,50,SEA_GREEN);
Color(BLACK);
DrawText(345,135,"Defuzzification");
DrawLine(360,155,360,190);
DrawLine(360,190,310,190);
Color(BLUE);
DrawLine(420,155,420,260);
DrawLine(420,260,180,260);
DrawText(395,280,"INPUT");
DrawPlateColor(190,130,120,90,AQUAMARINE); 
Color(BLACK);
DrawText(220,160,"Decision");
DrawText(225,180,"Making");
DrawText(230,200,"Logic");
DrawPlateColor(120,240,260,50,CORAL);
Color(BLACK);
DrawText(155,260,"Controlled System Process"); 
DrawText(150,280,"Simulation STEP of K hepera"); 
DrawText(10,330,"For more information, press V  button.");

}

void DrawFuzzificationQ

void DrawDataBaseQ

void DrawRuleBaseQ

void DrawDecisionMakingLogic()

void DrawUserlnformation()
{

Color(RED);
DrawText(160,20,"FUZZY LOGIC: Example 2 by A.M. Gonzalez"); 
Color(BLACK);
DrawText(10,60,"This example shows the implementation of a Fuzzy Logic"); 
DrawText(10,80,"Avoidance Controller for the Kephera mobile robot."); 
DrawText(10,120," Posible commands are:");
DrawText(100,150,B- plot path");
DrawText(100,170,"- plot left sensor values");
DrawText(100,190,"- plot right sensor values");
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DrawText(100,210,"- plot back sensor values");
DrawText(100,230,"- plot left speed values");
DrawText(100,250,"- plot right speed values");
DrawText(100,270,"- write primary fuzzy distances to file"); 
DrawText(100,290,"- write primary fuzzy speeds to file"); 
DrawText(10,330,"For more information, press V  button.");

void DrawUserlnformation2()
{

Color(RED);
DrawText(160,20,"FUZZY LOGIC: Example 2");
Color(BLACK);
DrawText(10,60,"some more available commands are:*); 
DrawText(100,100,"- write partition of distances to file"); 
DrawText(100,120,"- write partition of speeds to file "); 
DrawText(100,140,"- write current fuzzy distances to file"); 
DrawText(100,160,"- write current fuzzy speeds to file"); 
DrawText(100,180,"- write fuzzy perceptions to file");
DrawText(100,200,"- write fuzzy sets of speed variations"); 
DrawText(100,220,"- read fuzzy control rules from file");
DrawText(100,240,"- write fuzzy control rules to file");

DrawText(100,260,"- write firing strengths to fiel");
DrawText(10,310,"To see  the structure of the Fuzzy Logic Controller,"); 
DrawText(10,330,"press ’info’ button.");

void lnitStepControllerFile(FILE ‘file)
{

short int p;

fprintf(file,"# File : EXAMPLES|FL_EX2|FUZZYZ|flc2.rules\n"); 
fprintf(file,"# Author : Ana Maria Gonzalez de Miguel\n"); 
fprintf(file,"# Description : FUZZY LOGIC CONTROLLER variables\n"); 
fprintfjfile,"# Date : \n");
fprintfjfile,"------------------------------------------------------ \n\n");
fprintf(file,"*%s:\n",dist_partition->Name); 
for(p=0;p<NUM_DIST_SETS;++p) 

fprintf(file,"p %d: %s\n",dist_partition->Members[p].FuzzySet->Properties.Name); 
fprintf(file,"\n");
fprintf(file,"*%s:\n",speed_partition->Name);
for(p=0;p<NUM_SPEED_SETS;++p)
fprintf(file,"p %d: %s\n",speed_partition->Members[p].FuzzySet->Properties.Name); 
fprintf(file,"\n\n");

}

void WriteStepController(FILE ‘file, short int pas)
{

fprintf(file,"----------------------------------------------------- -\n\n");
fprintf(file,"*STEP: %d\n\n",pas); 
fprintf(file," - Fuzzy Distances\n");
fprintf(file,"\t Left Side IR Sensors : %s\n",fuzzy_distances[0]); 
fprintf(file,"\t Right Side IR Sensors: %s\n",fuzzy_distances[1]); 
fprintf(file,"\t Back Side IR S en so rs : %s\n\n",fuzzy_distances[2]); 
fprintf(file," - Fuzzy Speeds\n");
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fprintf(file,"\t Left Motor : %s\n",fuzzy_speeds[RIGHT]); 
fprintf(file,"\t Right Side Motor : %s\n\n",fuzzy_speeds[LEFT]); 
fprintf(file," - Fuzzy Perception States\n");
fprintf(file,"\t Left Side Percep. : %s\n",fuzzy_states->LeftState->Properties.Name); 
fprintf(file,"\t Right Side Percept. : %s\n",fuzzy_states->RightState->Properties.Name); 
fprintf(file,"\t Back Side Percept. : %s\n\n",fuzzy_states->BackState->Properties.Name); 
fprintfjfile," - Fuzzy Variation of Speed\n");
fprintf(file,"\t Left Variation. : %s\n",fuzzy_variation->LeftVariation->Properties.Name);
fprintf(file,"\t Right Variation : %s\n\n",fuzzy_variation->RightVariation->Properties.Name);
fprintfjfile,"- Decision Making Logic\n");
fprintf(file,"\t DML Left: %f\n,,,DML_left);
fprintfjfile,"\t DML Right: %f\n\n",DML_right);
fprintfjfile,"- Defuzzification\n");
fprintf(file,"\t Left Defuzzification : %d\n",crisp_variation[1]); 
fprintf(file,"\t Right Defuzzification: %d\n",crisp_variation[0]);

}

USERJNF.C

#ifndef USERJNFO_H

#define NUMBER_OFJNFO 4
#define PAGES_INFO_1 2
#define TITLEJNFCL1 "User Information"
#define PAGES_INFO_2 5
#define TITLEJNFO_2 "Fuzzy Logic Controller"
#define PAGES_INFO_3 1
#define TITLE_INFO_3 "Fuzzy I/O of Controller Process"
#define PAGESJNFO_4 4 
#define TITLEJNFO_4 "Fuzzy Sets"

#include "../SRC/user_info.c" /* assigns the values for the info pages 7  

#endif
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