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Abstract

The ongoing electrical activity of the brain is known as the electroencephalograph (EEG). 
Event related potentials (ERPs) axe voltage deviations in the EEG elicited in association 
with stimuli. Their elicitation require cognitive processes such as response to a recognised 
stimulus. ERPs therefore provide clinical information by allowing an insight into neurological 
processes. The amplitude of an event-related potential is typically several times less than the 
background EEG. The background EEG has the effect of obscuring the ERP and therefore 
appropriate signed processing is required for its recovery. Traditionally ERPs are estimated 
using the synchronised averaging of several single trials or sweeps. This inhibits investigation 
of any trial-to-trial variation, which can prove valuable in understanding cognitive processes. 
An aim of this study was to develop wavelet-based techniques for the recovery of single trial 
ERPs from background EEG.

A novel wavelet-based adaptive digital filtering method for ERPs has been developed. The 
method provides the ability to effectively estimate or recover single ERPs. The effectiveness 
of the method has been quantitatively evaluated and compared with other methods of ERP 
estimation.

The ability to recover single sweep ERPs allowed the investigation of characteristics that 
are not possible using the conventional averaged estimation. The development of features 
of a cognitive ERP known as the contingent negative variation over a number of trials was 
investigated. The trend in variation enabled the identification of schizophrenic subjects 
using artificial intelligence methods.

A new technique to investigate the phase dynamics of ERPs was developed. This was suc­
cessfully applied, along with other techniques, to the investigation of independent component 
analysis (ICA) component activations in a visual spatial attention task. Two components 
with scalp projections that suggested that they may be sources within the visual cortex were 
investigated. The study showed that the two components were visual field selective and that 
their activation was both amplitude and phase modulated.
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Chapter 1

Introduction

1.1 Chapter Summary

In this chapter a brief introduction to the background of this study is provided. The aims 

and objectives of the research are stated. An outline of the thesis is provided.

1.2 Introduction

The recorded, ongoing electrical activity of the brain is known as the electroencephalograph 

(EEG) [1]. Evoked potentials (EPs) are voltage deviations in the EEG elicited in association 

with stimuli [2]. For example, a light flashed into the eye would produce a visual evoked 

potential. EPs are classified with respect to their stimuli and include, for example, auditory 

and somatosensory evoked potentials. Event-related potentials (ERPs) are voltage devia­

tions in the EEG produced by a cognitive response to a stimulus [3], For example a subject 

may be asked to recognise an event or respond to a specific stimulus.

ERPs provide clinical information by allowing an insight into neurological processes [4]. 

ERPs, such as the contingent negative variation (CNV), are used to investigate abnormal 

brain processes and disorders, for example schizophrenia [5].
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Chapter 1. Introduction

The magnitude of an event-related potential is typically several times less than the back­

ground EEG. The background EEG has the effect of obscuring the ERP and therefore 

appropriate signed processing is required for its recovery and analysis [6].

Traditionally ERPs are estimated using the synchronised averaging of several single trials. 

A number of single sweeps (or trials) are combined to produce a single averaged waveform 

that is an estimate of the underlying ERP. This however loses important clinical information 

on trial-to-trial variation and attenuates signal components not phase-locked to stimulus [7].

ERPs axe transient, non-stationaxy signals. Therefore their signal characteristics vary with 

time. The signal processing techniques employed for both filtering and analysis of ERPs 

must cater for these properties. As a result, more advanced signal processing techniques 

have been applied to the analysis and estimation (filtering) of ERPs [8] [9].

The processing of neurophysiological signals relies on assumptions based on the characteris­

tics of the signal in question. Recently developed wavelet based signal processing methods 

allow a multiresolution analysis of waveforms in the time-scale domain [10] [11]. Wavelets 

have been successfully applied to a  range of biomedical signals [12] [13] including ERPs [14].

In this study, state of the art digital signal processing techniques were applied to improve 

the analysis of ERPs. ERPs axe transient waveforms that warrant the utilisation of joint 

time-frequency analysis techniques. The recently developed family of wavelet transforms 

[15] provides the basis for the techniques developed in this study.

A novel adaptive wavelet-based filtering technique was developed to recover single trial 

ERPs. The technique was carefully evaluated and optimised. This method was then used 

in the investigation of the trial-to-trial variation of a particular type of ERP, known as the 

contingent negative variation (CNV).

The trial-to-trial differences between schizophrenic and matched normal control subjects 

were used to automatically differentiate subject categories based on this variation.

A new technique to investigate the phase dynamics of ERPs was developed. The results 

obtained when combined with existing joint time-frequency analysis methods revealed new 

information concerning the functioning of the brain.
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Chapter 1. Introduction

1.3 Aims and Objectives of the Study

The aim of the study was to develop and apply novel signal processing techniques to improve 

the estimation, analysis and interpretation of event-related potentials. The objectives of the 

study were as follows.

1. Developm ent o f novel wavelet-based filtering techniques for the recovery o f  

single trial event-related potentials.

Traditionally evoked and event-related potentials have been estimated using the syn­

chronised averaging of several single trials. This however loses valuable clinical infor­

mation on trial-to-trial variation. An ideal filter would improve the signal to noise 

ratio (SNR) of a given trial whilst maintaining essential trial specific details. The 

amount of improvement in signal SNR as a result of filtering is largely dependent on 

the amount of spectral overlap between signal and noise. Due to the characteristics 

of ERPs, the use of a deterministic filter will either attenuate signed detail or fail to 

sufficiently attenuate the background EEG.

The family of wavelet transforms facilitates the representation of a waveform in the 

time-scale domain [16]. Develop a wavelet-based filter that is suited to ERP charac­

teristics.

2. Evaluation o f the developed filtering techniques and their comparison w ith  

other approaches.

Develop a method to evaluate and compare the performance of a range of filtering 

techniques and make a quantitative comparison between the methods.

Compare a number of conventional and wavelet-based filtering approaches with the 

filter developed in this study.

3. Investigation o f the contingent negative variation trial-to-trial variation  

trend in normal and schizophrenic subjects.

The magnitude of the averaged CNV is reduced in schizophrenic subjects when com­

pared with matched normal control subjects [5]. Possible causes are that all individual
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Chapter 1. Introduction

trials are reduced in magnitude or that there is a considerable peak latency variation 

(jitter) between trials resulting in the attenuation of averaged trials.

Using recovered single trials from schizophrenic and matched normal control subjects, 

investigate the trial-to-trial variation of the CNV. Investigate trends in variation within 

subject categories and examine the feasibility of classification based on these trends.

4. Investigation o f alpha phase resetting in visual event-related potentials.

Investigate the development of the early components of a visual P300 ERP [19] (a 

positive peak observed around 300 ms post-stimulus). In particular consider the genesis 

of the N100 peak (a negative peak observed between 100 and 200 ms post-stimulus) 

in a visual spatial attention task. Consideration was given to the two hypotheses 

concerning ERP genesis, i.e. the additive model and phase reordering [17].

Employ the spatial filtering technique of independent component analysis [18] to es­

timate signal sources within the visual cortex. Investigate the characteristics of these 

components.

1.4 Organisation of Thesis

An overview of the aims and objectives of this study and an outline of the thesis is provided 

in this chapter.

Chapter 2 covers information on ERPs including the recording method and analysis by 

conventional techniques such as synchronised averaging of several single trials or sweeps and 

peak analysis. The two ERPs, the CNV and visual P300, investigated in this study are 

described. A brief description of their clinical and other applications is provided.

In chapter 3 background information on the digital signal processing techniques used in this 

study is provided. The discussion leads to the time-scale approach facilitated by ’wavelets’. 

Other techniques employed including independent component analysis and artificial neural 

networks are briefly described.

In chapter 4 the filtering of event-related potentials is discussed. Synchronised averaging 

inhibits investigation of trial-to-trial variation, which can prove valuable in understanding
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Chapter 1. Introduction

cognitive processes. An objective of this study was to develop wavelet-based techniques for 

the estimation of single trial ERPs. Estimation can be regarded as the filtering or removal of 

unwanted EEG thus leaving the enhanced underlying ERP. A comparison of wavelet-based 

filtering approaches for single trial recovery is made. A novel wavelet-based method for the 

adaptive digital filtering of event-related potentials has been developed in this study. The 

development of the adaptive filtering approach is presented. The effectiveness of the method 

was quantitatively evaluated and compared with the conventional and other methods of 

ERP estimation. The developed adaptive filtering method provides the ability to effectively 

estimate or recover single ERPs.

In chapter 5 the investigation of the trend in trial-to-trial variation of the CNV in normal 

and schizophrenic subjects is discussed. The the filter developed in this study and detailed 

in chapter 4 was applied to recover single sweep CNVs from 20 schizophrenic and 20 age 

and sex matched normal control subjects. This enabled the investigation of characteristics 

that axe not possible using conventional averaged ERPs. In particular, the development of 

the CNV features over a number of trials was investigated. The observed subject specific 

trend in trial-to-trial variation was used as the input to a Kohonen self-organising artificial 

neural network. This analysis enabled the differences in the CNV trend for both subject 

categories to be investigated and the possibility of using this information for automatic 

subject classification to be explored.

In chapter 6 a fundamental investigation of the genesis of event-related potentials using 

novel phase analysis methods and joint time frequency techniques is provided. The methods 

developed for analysis of the phase of alpha component in the P300 recorded during visual 

spatial attention experiments show the importance of phase information in understanding 

the complex dynamics of cortical processes. The relationship of known active regions of 

the brain during a visual spatial attention task and the topographical distribution of the 

P300 was considered using the developed techniques following the application of independent 

component analysis.

Chapter 7 provides a conclusion to the study. This study lead to the development of novel 

techniques that facilitated an increased understanding of event-related potentials. A novel 

wavelet-based filter was developed to estimate single trial ERPs. The effectiveness of the

5
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filter was evaluated in comparison with other techniques. The application of new analysis 

techniques was demonstrated in the differentiation of schizophrenic and matched normal 

subjects and in the understanding of the development of the P300 in a visual spatial attention 

task.
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Chapter 2

EEG and Event-Related 

Potentials

2.1 Chapter Summary

This chapter provides an introduction to event-related potentials (ERPs). First an overview 

of the ERP recording method is provided. Some factors that need to be considered dur­

ing recording are discussed. The conventional method of estimating an ERP from several 

recorded trials is introduced. The two event-related potentials used in this study axe dis­

cussed. The applications of ERPs in clinical and other studies are outlined.

2.2 Introduction

The electrical activity of the brain was first reported by Caton [20]. The electroencephalo­

graph (EEG) is the observed electrical signal at various sites on the scalp. Event-related 

potentials (ERPs) are electrical signals generated by the brain in a cognitive response to 

a stimulus [21]. They cause a voltage deviation from the ongoing electrical activity of the 

brain (EEG).
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ERPs are time locked or synchronised to the stimuli that elicited the response. The func­

tioning of the brain can therefore be investigated by considering event-related potentials 

(ERPs). The analysis of ERPs can reveal valuable clinical information about particular 

brain disorders.

2.3 ERP Characteristics

Event-related potentials are recorded from a number of sites on the scalp. A marked variation 

in ERP amplitude is generally observed at topographically distinct points [22]. ERPs are 

electrical signals generated by compound neural activity in a cognitive response to a stimulus. 

The magnitude of an ERP is typically several times smaller than the background EEG.

An ERP cannot usually be observed without appropriate signal processing due to the pres­

ence of larger amplitude background noise sources. The contaminating noise can be of an 

order of magnitude larger than the desired signal. For example the magnitude of a particular 

ERP known as the contingent negative variation (CNV) [23] is typically 20 /xV. This signal is 

obscured by noise of typically 100 /xV. The source of noise is both physiological e.g. ongoing 

electroencephalogram (EEG), electrooculargram (EOG), electromyogram (EMG) and non- 

physiological such as instrumentation noise, electromagnetically induced signals from mains 

electricity and radio broadcasts [7].

By inspecting gross deviations in the recorded waveforms, severely contaminated waveforms 

can be rejected from subsequent processing and analysis. Even after differential recording, 

ocular artefact removed and bandpass filtering, the ERP is still obscured by background 

EEG.

The conventional signal to noise ratio (SNR) improvement method employed in ERP anal­

ysis is synchronised or coherent averaging [7] [6]. This approach assumes that the ERP is 

deterministic and appears coherently in successive trials whilst being uncorrelated with the 

ongoing background EEG. The improvement in SNR is proportional to the square root of 

the number of trials used [24].

Various factors such as age and sex are known to affect the characteristics of ERPs. When
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Chapter 2. EEG and Event-Related Potentials

using ERPs to investigate brain malfunction, the patients are usually matched with normal 

control subjects in terms of these contributing factors.

2.3.1 ERP Models

The electrical activity recorded on the surface of the scalp is widely assumed to be the sum­

mation of a number of signal sources within the cortex [25]. Functional imaging studies of 

the brain [26] show small distinct regions (of the order of a cubic centimetre) activated in 

response to a given task. The time course of these activations suggests the hypothesis that 

spatially independent groups of neurons are recruited to accomplish a given task. Further­

more, different regions of the brain are known to be responsible for given tasks, i.e. visual 

and motor cortex.

In trying to understand the functionality of the brain several models have been suggested 

[17]. Most models are based on grouping of a number of neurons into a single source 

or generator of electrical activity. The way in which the models differ is related to the 

constraints which are placed on the sources. In particular the types of signal or activity 

they produce.

Each signal source can be considered to be an oscillator which has analogies in both electrical 

and mechanical engineering [27]. An oscillator has a number of parameters which alter its 

characteristics. These are the amplitude, frequency and phase of the signal’s oscillation.

2.4 ERP Analysis

An ERP is a combination of transient components. The latency of signal features from 

stimuli allows the electrical response to be separated into two sections. The evoked potential 

which lasts for typically 100ms following the stimulus and the event-related potential that 

reflects cognitive processing. The latter commences approximately 300ms after the onset of 

the stimulus and can last for several hundred milliseconds.

ERPs are time locked or synchronised to external stimuli. The standard signal-to-noise ratio

9



Chapter 2. EEG and Event-Related Potentials

(SNR) improvement method of synchronised or coherent averaging relies on this idea [7] [6]. 

The assumptions made are that successive signals contain a constant signal component (i.e. 

ERPs are deterministic) and an uncorrelated noise component (background EEG in this 

case)that is representative of a zero-mean Gaussian process.

Following SNR improvement techniques, ERPs are typically characterised using peak polar­

ity, amplitude and latency measures. For example, the P300 is a positive peak occurring at 

around 300 milliseconds following the presentation of the stimulus.

2.5 ERPs Considered in this Study

The ERPs included in this study were the contingent negative variation and the visual P300.

2.5.1 The Contingent Negative Variation

A well known ERP is the contingent negative variation (CNV) first described by Walter et 

al. [28] in 1964. In this study subjects received two successive stimuli. The first was a click 

(known as the warning stimulus, SI) and this was followed by a continuous tone (imperative 

stimulus, S2) one second later. The subjects terminated the imperative stimulus by pressing 

a hand held push-button.

A typical CNV waveform in a normal subject is shown in Fig.2.1.

Immediately following the warning stimulus a negative voltage shift was observed in the 

background electroencephalogram (EEG). The negative potential returned to its original 

baseline after the imperative stimulus and the subjects’ response to it.

In normal subjects the CNV magnitude is approximately 20 /xV. CNV amplitude reaches 

its peak after a number of recordings (trials). This CNV development time can vary with 

the mental state of the subject and the particular experimental conditions. For example, in 

a study the CNV development time was reported to be about 10 trials [29].

The CNV amplitude depends on a number of cognitive processes. The focus was initially on 

the effect of expectancy [28]. Later studies emphasised conation or intention to act [30] and
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Figure 2.1: A CNV produced as an average of 32 single trials recorded from a normal subject. 

The stimuli are presented at 0 and 1 seconds

motivation [31] to explain their findings. Level of attention is believed to be important in 

CNV development. In a study designed to investigate this, letters were presented to normal 

subjects during the interstimulus interval of randomly selected CNV trials and randomly 

omitted during others [32]. It was observed that CNV amplitude increased for the trials in 

which no letters were shown. This was considered to reflect the state of undivided attention 

in the no-letter trials. Factors which might increase attention (such as experiments requiring 

a faster motor response to S2 or providing an S2 that is harder to detect) increase CNV 

amplitude [33]. Distraction is believed to be one of the most significant factors that can 

affect CNV amplitude development [23].

2.5.2 Late Positive Event-Related Potential (P300)

The P300, or late positive complex, was first reported by Sutton et al. in 1965 [19]. The 

P300 can be elicited in both auditory and visual tasks [4], however in this study only a visual 

spatial attention paradigm was selected.

The P300 is most commonly recorded using an oddball paradigm [36]. In such a paradigm,
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the target stimulus occurs infrequently in a random sequence of a number of different stimuli. 

For example, in this study, each subject received a psuedorandom sequence of visual stimuli 

presented in one of number of spatial locations. The subjects were asked to respond to 

targets (stimuli appearing at a given position) by pressing a button.

A typical P300 waveform in a normal subject is shown in Fig 2.2.

10

-2

100 400 
T i m e  ( m s )

200 300 500 600 700

Figure 2.2: A P300 produced as an average of 100 single trials recorded from a normal 

subject. The visual stimulus is presented at time 0

From Fig.2.2 it can be seen that a relatively large positive peak is evoked approximately 300 

ms post-stimulus. In normal subjects the P300 magnitude is approximately 10 fiV

Late positive responses are evoked in response to relevant but infrequent visual, auditory 

and somatosensory stimuli (pertaining to the electrical stimulation of peripheral nerves) 

[36]. The fact that the P300 is typically present only in target trials suggests that it reflects 

information processing [37]. The cognitive nature of the P300 has been exploited in the 

investigation of brain disorders [38]. The peak amplitude and latency vary with several 

task-related variables including attention and novelty [39].
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2.6 Clinical and Other Applications of ERPs

An understanding of the genesis and workings of ERP’s leads to increased knowledge of 

the complex system associated with the brain. This knowledge has application in a number 

of areas. Most importantly, in understanding the workings of the brain, mental disorders 

including schizophrenia and epilepsy can be better understood and perhaps treated more 

efficiently. This knowledge also allows modeling of the brain and hence the ability to produce 

improved artificially intelligent systems. The application of such systems is widespread and 

is likely to change the way in which computers operate. The intermediate ground is in 

the area of human computer interfacing. Thought control used to be a figment of science 

fiction. Recent reports [40] show that control of computers by severely disabled people will 

be possible in the near future.

2.7 Conclusion

Cognitive event-related potentials lend themselves to studies in brain disorders, for example 

the CNV in schizophrenia. Conventional synchronised averaging produces a single ERP 

from many trials. One severely contaminated trial can have a large effect on the averaged 

waveform. An effective single trial ERP recovery method would extract more information 

from the recorded waveform data. This increase in information will allow a more detailed 

analysis of ERPs to be possible. Currently, the ability to investigate the development of 

an ERP over a number of trials (habituation) is inhibited. This trial-to-trial variation is 

important in understanding the functioning of the brain. Similarly the opportunity for real 

time monitoring of brain processes may become viable.

An effective single trial recovery method would improve the signal to noise ratio of the ERP 

whilst maintaining trial specific detail.

13



Chapter 3

Signal Processing and 

Interpretation Techniques Used 

in this Study

3.1 Chapter Summary

An overview of a number of signal expansion techniques used in this study is provided in 

this chapter. A general introduction to discrete signal expansions is initially presented. 

The Fourier transform and its time varying derivative are covered. The family of wavelet 

transforms are then introduced from a filter bank perspective. The other analysis techniques 

employed are briefly discussed. These axe the Hilbert transform, independent component 

analysis and the Kohonen artificial neural network.

3.2 Introduction

Signal processing uses mathematical techniques to perform operations on data. The use of 

signed expansions provides alternative representations of the same data. By considering the
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characteristics of the signal and the aim of the signal processing, the correct representation, 

or view, of the data can be identified. The chosen view should facilitate the subsequent data 

processing in a more efficient manner.

The signals considered in this study were discrete. During the recording process the con­

tinuous electrical activity was sampled at discrete time intervals and quantised to discrete 

amplitude values. All subsequent processes can thus be considered as digital signal process­

ing [41] [42].

3.3 Discrete Signal Expansions

The signal of interest x  can be expressed as a linear combination of a set of elementary 

functions, i.e.

x = ^ 2 a m  (3.1)
i

where a* are the expansion coefficients and <pi are the basis functions [16].

The expansion coefficients in (3.1) can be computed by (3.2).

(*i = ^ 2  ̂ M XM (3-2)
n

Where (pi is the dual of the basis functions

The expansion coefficients are a measure of similarity between the signal and elementary 

function. The larger the similarity, the larger the coefficient. Equation (3.2) is the inner 

product of two vectors i.e. the elementary or basis function and the signal. This can be 

denoted as <ipi,x>.

The set {<£,•} is complete for the space S  if all signals x  € S  can be expanded as in (3.1).

If the set {y?»} is complete and orthonormal then we have an orthonormal basis for S. The 

basis and its dual are the same i.e. ipi —

15



Chapter 3. Signal Processing and Interpretation Techniques Used in this Study

A set is orthonormal if < tpj > =  Sij where Sij = 1 if i = j ,  and 0 otherwise.

If the set is complete and the elementary functions are linearly independent but not orthonor­

mal, then we have a biorthogonal basis. The basis and it’s dual satisfy < >— Sij [43].

If the set is complete but not linearly independent then we have an overcomplete represen­

tation called a frame and not a basis [11]. An overcomplete representation may contain a 

number of bases.

3.4 Fourier Transforms

the Fourier transform use harmonically related sinusoids as elementary functions (the com­

plex exponential in (3.3) and (3.4)) [44]. The Fourier transform may be expressed as

/OO

f { t ) e - juidt (3.3)
-OO

F(w) =<> (3.4)

where F(ui) are the Fourier transform coefficients for function f (t )  at angular frequency ui. 

The discrete Fourier transform, for a signal of length N , is given by (3.5).

N - 1
— J 2-7T

F(k) = ] T  f[n]W%k where WN =  (3.5)
n = 0

The discrete Fourier transform provides a view of the signal purely in the frequency domain. 

Any transient features and discontinuities are not well represented.

3.5 Inter-Trial Coherence

Coherence provides a measure of the similarity of phase angle between two or more signals 

at a given frequency [41]. For two signal vectors x  and y of length n, the coherence is a
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function of the power spectra of x  and y and the cross spectrum of x  and y [45] and may be 

denoted by

< U « )  =  F '  (3'6)V GXX(u)Gyy(Cj)

where Gxy(u) is the cross spectrum of x  and y at frequency cj. For a vector of length N  

where X n(u) and Yn(u) are the complex FFTs then Gxy{u) is given by,

1 N
G*,(w) =  jv E  x n(u)Yn (u) (3.7)

n=1

and Gxx (u) and Gyy(u) are the power spectra of x  and y denoted by

N

= (3-S)
N  ,n = l

G»-(w) = ^ E l F"(“ )|2 (3-9)
n = l

respectively. The algorithm used in this study provides an estimate of the magnitude squared 

coherence [48] denoted by,

( 3 - l 0 )

An application of coherence to the analysis of visual evoked potentials is provided by Challis 

and Kitney [45].

3.6 Deterministic and Adaptive Filters

Ideal deterministic filters (finite impulse response (FIR) or infinite impulse response (IIR)) 

allow or pass a section of the spectrum of a signal whilst rejecting or stopping the remainder. 

For example applying a lowpass filter with a cutoff frequency of 10 Hz to a signal would
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allow all frequencies below 10 Hz to remain unaffected whilst attenuating all frequencies 

higher theui 10 Hz.

An example of the application of deterministic filters to EEG analysis is in mains line 

removal.

5assumed to be stationary. The characteristics of event-related potentials

The characteristics of deterministic filters do not reflect the nature of single-trial ERPs in 

which the ongoing EEG is considered to be the additive noise. ERPs have non stationary 

spectral characteristics which completely lie within the frequency spectrum of the back­

ground EEG. In the general ERP case, a deterministic filter cannot separate desired signed 

from noise.

3.6.1 Conventional Adaptive Filters

Adaptive filters automatically adjust their coefficients (hence frequency response) to optimise 

the SNR of the desired underlying signal [46]. A separate channel is employed that provides 

a time series estimate of the additive noise. Ifeachor et al. [47], applied an adaptive filter 

to the problem of ocular artifact removal from EEG. An estimate of the noise (the ocular 

artefacts) was obtained from the electrooculogram recorded from a number of electrodes 

located around the eyes. This noise estimate was subtracted from each EEG channel to 

produce an ’artefact free’ EEG.

The application of conventional adaptive filters to the reduction of background EEG (noise 

in this case) is not suitable due to a number of limitations. The primary concern being that 

they require a good model of the ’noise’. That is no noise channel exists for EEG and since 

EEG is non-stationary the method usually does not provide satisfactory results.

3.7 Discrete Hilbert Transform

The instantaneous frequency characteristics of a real signal can be obtained from its Hilbert 

transform [48]. The Fourier transform of the original signal is calculated. The negative
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frequencies are set to zero and the inverse Fourier transform is computed. To compensate 

for removing half of the signal energy (by setting negative frequencies to zero), the calculated 

signal is then multiplied by two. The resulting complex signal is called the analytic signal 

[49].

The real part of the analytic signal is the original time series and the imaginary part is 

a 90 degree phase shifted version of the original time series [42]. From this, estimates of 

the instantaneous frequency and phase can be obtained [41]. The discrete analytic signal is 

complex and can be expressed in terms of its magnitude and phase by

s(n) =  j4(n)eW"> (3.11)

where the magnitude of the signal A(n) in terms of its real (sr ) and imaginary (si) parts is 

given by,

A(n) = yjsl(n) +  s?(n) (3.12)

and the instantaneous phase 4>(n) is expressed as,

<f>(n) =  arctan—~% (3.13)
sr(n)

The technique has been used to obtain the amplitude envelope of single harmonics for the

analysis of the dynamics of EPs [55]. In this study the Hilbert transform was used to

estimate the instantaneous phase of the alpha band activity in a visual P300 ERP. This 

facilitated the investigation of event-related phase dynamics [50] [51].

3.8 Short-Time Fourier Transform

In order to obtain some temporal localisation of the Fourier transform, the short-time Fourier 

transform was developed [52] [53]. The STFT is obtained by computing the Fourier transform 

of several temporal sections of the signal. The sectioning of the signal is implemented using
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window functions which also decrease the edge effects incurred when processing a finite 

length signal. The window for a given transformation is fixed in size. The choice of the 

window size is a compromise between time and frequency localisation.

The window function v(t) can act on either the signal or basis functions (complex exponen­

tials). Some examples of windowed basis functions are shown in 3.1.

Figure 3.1: Basis functions used in the STFT. The horizontal axis shows time. The fixed 

length and amplitude window function is shown as a dotted line.
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The short-time Fourier transform of a signal f(t)  can be expressed as,

or alternatively,

where

/ OO

f(t)v(t -  T ) e ~ j u t d t

■OO

STFT(u , t) =< >

ga,r = v(t -  r)eJiut

and r  is the time shift between successive transformations.

The transformed signal can be viewed on a time-frequency plane as shown in Fig.3.2

Frequency
(Hz)

     ►

Time (S)

(3.14)

(3.15)

(3.16)

Figure 3.2: The time-frequency plane produced by the STFT
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The type or size of window function is chosen based on the signal characteristics and the 

aim of subsequent processing. From Fig.3.2, it can be seen that the size of the window, and 

hence time-frequency bins, remains constant during transformation. The optimal window 

for good time and frequency resolution is Gaussian shaped.

Due to the basis functions used, the STFT is well suited to localised oscillations, i.e periodic 

signals of short time duration, but is less well suited to pulses or spikes, i.e. transient 

components.

3.9 Event-Related Spectral Perturbation

The event-related spectral perturbation (ERSP) [54] is a method of averaging normalised 

time-frequency transforms. Pfurtschellers method of event-related desynchronisation (ERD) 

and event-related synchronisation (ERS) [55] [56] provide a measure of event-related changes 

in single frequencies. The ERSP extends this ideas by generalising them to be broadband. 

The ERSP is a tool for the analysis of ERPs. It focuses in particular on their dynamics. The 

technique is applicable to all joint time-frequency transforms and to data sets that consist 

of several epochs with similar underlying responses.

The methodology employed is as follows. For each single sweep recorded from a single chan­

nel, the joint time-frequency (STFT in this case) is calculated. This includes a section of 

pre-stimulus baseline EEG. The spectral distribution is normalised using the mean base­

line spectrum (calculated by taking bootstrap [57] samples from the recorded pre-stimulus 

signal). The scale is converted to be logarithmic. The ERSP is obtained by repeating the 

above procedure for several trials then calculating the average time frequency distribution. 

A subsequent processing step using bootstrap data is to set significance levels which are 

then used to threshold the data. All non-significant values are set to a central value (zero). 

This enables the regions of significance to be more easily observed from the plots.

The application of the technique to auditory event-related potentials [54] shows the effec­

tiveness of such a joint time-frequency technique. The dynamics of the EEG spectrum in re­

sponse to a stimulus is revealed. The ERSP has also been applied to magneto-encephalogram
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(MEG) recordings of an auditory ERP [58].

Makeig [54] discussed a problem in the ERSP as proposed in that the time resolution is 

not fine enough to reveal a relatively high frequency Gamma burst (a transient period of 

EEG activity in the 30-80 Hz range). He suggested that a future ERSP method may use a 

finer or variable time resolution method. Wavelets provide a solution to this problem. They 

inherently provide higher temporal resolution at higher frequencies.

The ERSP however does not reveal the amplitude and latency variability of individual single 

trials. This is best investigated using single trial analysis methods (Chapter 6) and visualised 

using techniques such as Jung et o/.’s erpimage [59] (see also phase analysis chapter 6).

3.10 Wavelet Transforms

A family of wavelet transforms was developed recently from research in the different disci­

plines of mathematics and signal processing [60] [61]. The time-scale representation promises 

improved performance in a wide range of signal processing applications [62]. In particular, 

wavelets may be applied to biomedical applications [12]. Their application to the analysis 

of EEG is currently an active area of research [63] [64] [65]. Wavelets are also emerging as an 

ideal tool for modeling the dynamics of the brain [66].

Wavelets can be considered a natural development of the short-time Fourier transform [67]. 

In the STFT, the basis functions are time shifted and modulated versions of the primary basis 

function. The time shift and scaling of a prototype basis function provides a constant relative 

bandwidth analysis known as the wavelet transform (WT). The WT can offer a better 

compromise in terms of time and frequency. At low frequencies, the frequency (or more 

correctly scale) resolution is increased at the expense of temporal resolution. Conversely at 

higher frequencies temporal resolution is increased to the detriment of scale resolution.

The term wavelets covers a family of transforms. In this chapter, wavelet transforms appli­

cable to discrete signals are discussed.
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3.10.1 Continuous Wavelet Transform

The continuous wavelet transform (CWT) [68] provides a representation of a signal on a 

time-scale plane. The CWT of a signal/(t) can be expressed as 3.17 [69]

CW T(u,r) = (3.17)

Where u  € 9?+ is the scale factor, r  € 9? is the time shift and is the prototype basis 

function.

The CWT can also be expressed mathematically as an inner product as in 3.18

CWT(w, r)  = <  * w,r (*), f(t) > (3.18)

Where the basis functions $ W)T are given by

(3J9)

That is we measure the similarity between the signal and shifts and scales of an elementary 

function. Some scaled and translate (shifts) of a wavelet are depicted in Fig.3.3 [70].

A popular basic wavelet is Morlet function [70], expressed as 3.20

$(*) =  ejuote ~  (3.20)

Its corresponding Fourier transform is 3.21

9 ^ )  = ^ e = Sl̂ a£- (3.21)

By setting the centre frequency o>o =  5-3, Morlet function closely approximates the necessary 

properties for a basic wavelet [71]. The approximation of both the basis functions and the 

transform allows the application to digital signal processing.
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1

Figure 3.3: Wavelet basis functions produced by scaling a single prototype. The horizontal 

axis shows time. The variable length and amplitude window function is shown as a dotted 

line.
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3.10.2 Discrete Wavelet Transform

The discrete wavelet transform represents a signal x(t) by the relationship

«<t) =  E  < « . * « > * * ■ »  (3-22)
j,k

Where the DWT coefficients < x, j,k > are a measure of the energy of the signal compo­

nents located at (2-J fc,2J’) on the time-frequency plane [43].

If the basis functions are implemented as filters, the discrete wavelet transform can be

implemented by as a tree structured filter bank [61].

From a filter bank perspective, the discrete wavelet transform processing element can be

considered to be a two channel filter bank [72]. As the name implies, the filter bank sep­

arates the signed into two channels, or subbands. This is achieved through the use of a 

complementary pair of high and low pass filters for analysis and a similar pair for synthesis.

The two subbands have the same sampling rate as the original signal and hence contain 

reduntant information (there are two full length signals where previously there was one). 

The bandwidth of each subband is half of that of the original signal so the sampling rate 

can be downsampled, or decimated, by a factor of two. That is, every other sample may be 

thrown away. For an N  band filter bank, each subband can be decimated by a factor of up 

to N. When the factor by which each subband is downsampled is equal to the number of 

bands in the filter bank, the filter bank is said to be maximally decimated.

The process of downsampling or decimation is usually depicted by a down arrow followed 

by the decimation factor. The corresponding upsampling operation in the synthesis bank, 

denoted by an up arrow follwed by the upsampling factor, introduces zero valued samples 

into each subband. The effect is to increase the sampling rate.

Fig.3.4 shows a two channel, maximally decimated, orthogonal filter bank. The low and 

highpass filters in the analysis section are represented by Hq and Hi respectively. The 

corresponding filters in the synthesis section are F0 and Fi.
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Analysis Bank Synthesis Bank
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Figure 3.4: A two channel, maximally decimated filter bank (QMF)

It can be seen in Fig.3.4 that the analysis filter comprises a high pass /  low pass filter pair 

followed by a decimator. The frequency response of the analysis filters is shown in Fig.3.5.

Magnitude

W
n TCFrequency

Figure 3.5: The frequency response of a QMF
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Figure 3.6: A two level tree structured filter bank

The analysis filter decomposes a signal into two subbands or channels. The lowpass channel 

is the trend of the signal, the highpass is its detail. Each channel is then down sampled by 

a factor of two. The synthesis filter is comprised of an interpolator (upsampler) and a high 

pass /  low pass filter pair (matched or mirrored with the analysis filter). The aliasing, or 

the error caused by a spectral overlap, introduced by the analysis filters is cancelled by the 

correct design of the synthesis filters [73]. The repeated application of the analysis filter to 

the lowpass channel leads to a tree structured filter bank as shown in Fig.3.6.

The highpass channel, which contains the details of the signal at a given level in the tree, is 

not further processed. The analysis filter is then applied to the lowpass channel. The sub­

sequent splitting of the lowpass channel is carried out until the signal has been decomposed 

to a pre-determined number of levels or the length of the signal has been downsampled to 

1.

The discrete wavelet transform (DWT) produces a proportional bandwidth filter bank, each 

filter has a bandwidth proportional to its centre frequency as shown in Fig.3.7. This ar­

rangement provides, respectively, the spectral/temporal resolution trade-off at lower/higher
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frequencies.

Magnitude
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Figure 3.7: The frequency response of two level tree structured filter bank

The application of the filter bank results in the signal being separated into frequency bands. 

The lowest frequency band represents the trend of the signal. Each subsequent addition of 

higher frequency bands results in more details being added to the signal. Hence the idea 

of multiresolution [74]. The signal can be viewed at different levels of resolution simply 

by adding or removing detail as necessary. Each channel or subband can be processed 

independently. The signal is synthesised by the repeated application of the synthesis filter 

starting with the lowest frequency channels.

3.10.3 Wavelet Packet Transform

The wavelet packet transform (WPT) [75] is a superset of the discrete wavelet transform 

[76]. Instead of applying the analysis filter solely to the lowpass channel as in the case of 

the wavelet transform, in the wavelet packet transform the filter is applied to the highpass 

channel as well [78]. As with the discrete wavelet transform the WPT can be implemented 

by the repeated application of a maximally decimated, two channel filter bank [73], i.e. 

recursively splitting a signal into two sub-bands which are then decimated by a factor of 

two. The time-scale plane produced is shown in Fig.3.8, the vertical axis represents scale,
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while the horizontal axis is time. Each bin or rectangle in the table has the same area 

resulting from constant Q filters. The trade-off between time and scale resolution can be 

seen in Fig.3.8.

f
Seal ©

Time — > -

Figure 3.8: The time-scale plane (or wavelet packet table) the vertical axis is scale, horizontal 

is time

The resulting transform is overcomplete allowing a basis to be chosen that best matches the 

processing task. For example Wickerhauser’s best basis search algorithm selects the best 

basis in terms of the minimisation of an information cost function [77]. As such Wicker­

hauser’s best basis is ideally suited to signal compression. Another basis that spans the 

wavelet packet table is the wavelet basis. Which is, in fact, the discrete wavelet transform. 

The transform can be ’adaptive’ since the basis can be chosen from a set of bases to meet 

the needs of the application.
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3.11 Independent Component Analysis (ICA)

Independent component analysis (ICA) performs a blind signed source separation on a linear 

mixture of unknown signals [18]. Significant progress has been made recently in the area 

of separating independent components from signal mixtures. An number of information 

theoretic based approaches are reviewed by Lee [79]. The aim of a signal source separation 

method is to minimise the mutual information between the separated components thus 

making them statistically independent. The goal of ICA is therefore to perform a linear 

transform which makes the resulting variables as statistically independent from each other 

as possible [79].

ICA uses an unsupervised learning algorithm based on information theory [18] to obtain an 

unmixing matrix that maximises the mutual entropy of the input and output vectors. The 

algorithm is outlined in the following steps.

The unmixing matrix W  is initialised to the identity matrix.

The signal sources are estimated by U = W X  where U contains the unmixed components 

and X  contains the original mixed signals.

The estimated signal sources U are transformed by a non-linear transfer function such as a 

sigmoid function. The output Y  of a sigmoid transfer function is denoted by 3.23.

Y  =   yjj——r (3.23)14- e-(u+wo) v •

where ujq is a weight vector whose elements are initialised to zero.

A learning rule is used to determine the change of the weights in the nnmmng matrix W. 

The learnig rule is expressed in 3.24.

AW =  [1WT)~1 +  (1 -  2Y ) X t  (3.24)

The symbols T  and —1 denote matrix transpose and inversion respectively. The change in 

the bias weigth vector is given by 3.25.
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Awb =  1 -  2Y  (3.25)

The algorthim repeats the above steps, updating the unmixing matrix and bias vector each 

iteration. The algorithm stops when the magnitude of change of the unmixing matrix falls 

below a predefined small value. The magnitude of change of matrix is calculated using the 

mean squared difference between the corresponding elements in the matrix obtained before 

and after each iteration.

In the analysis of cortical electrical activity, ICA aims to spatially filter the recorded EEG 

from multiple electrodes into a number of temporally independent components or signal 

sources [80]. Consideration of the projected location of signal sources along with existing 

knowledge of regions of the brain active during a given task enhances the investigation of 

cortical dynamics. Sources producing specific signal components for a given experiment 

can be identified considering the scalp distribution of components. Ocular artefacts for 

example can be greatly attenuated by identifying and removing components that represent 

electroocculargram (EOG) components [59]. A quantitative comparison of ICA and other 

signal source separation techniques was reported by Vigon et.al. [81]. Where it was shown 

that ICA was more effective than decorrelation methods.

3.12 Kohonen Artificial Neural Network

Artificial neural networks (ANNs) are parallel processing structures which attempt to simu­

late the learning behaviour of the brain. They consist of interconnected neurons capable of 

storing and processing information. Their applications included pattern recognition, process 

control, forecasting, modelling and optimisation [82]. Compared to statistical methods of 

data analysis, ANNs are more effective for analysing noisy signals and less sensitive to the 

distribution of their input data. The process of learning in an ANN can be supervised or 

unsupervised. In applications requiring pattern recognition, a supervised learning algorithm 

involves presenting known patterns and their corresponding classification categories to an 

ANN. The ANN can then adjust its parameters to become capable of recognising the pat­

terns from those categories. In the unsupervised learning however, the pattern categories
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are not presented to the ANN. The learning algorithm is therefore a form of clustering in 

which the patterns are grouped on the basis of their similarities.

The self organising feature map (SOFM) developed by Kohonen [83] typically performs a 

transformation of patterns from a high dimensional feature space into a two dimensional, 

topologically ordered map shown in Fig.3.9.

Links
(For clarity 
Most are 
Shown)

Kohonen Lager

Input Lager Nodes (Neurons)

Figure 3.9: The Kohonen self-organising feature map

The network has a two layers of neurons (processing elements). An input layer which 

provides connections to the Kohonen layer or map [84]. Typically each neuron in this map 

is connected to all the inputs to the network. Associated with each connection there is a 

weight. For clarity, only the connections of some of the neurons are shown in Fig.3.9. The 

Kohonen map can be arranged in various topologies, including rectangular and hexagonal.

The network employs an unsupervised competitive learning algorithm and hence self organ­

ises [85]. The network is initialised by setting the connection weights to small random values 

between 0 and 1 [84]. Data is presented to the network via the input layer. The input vector 

which represents a set of input patterns is denoted by,

X  -  (3.26)
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where p is the number of elements in a given input pattern.

The resulting effect on each neuron in the Kohonen layer is calculated by determining the 

Euclidean distance between an input pattern and the connection weights for each neuron. 

The weight vector for node j  in the Kohonen layer is denoted by,

Wj =  [tuji, Wj2, w jp]T for j  = 1,2,...,N  (3.27)

where Wji is the weight of the link connecting input node i to Kohonen node j  and N  is the 

number of nodes in the Kohonen Layer. Since each node in the Kohonen layer is usually 

connected to every input node, the nodes weight vector comprises p  weights. The winning 

neuron j  for an input vector X  is said to be the neuron which has the smallest Euclidean 

distance d between it’s weights and the input vector calculated using,

d(X) £ > *  -  wjky  for j  =  1,2,..., N  (3.28)
i

The weights associated with winning neuron are then updated in such a way that gradually 

the winning neuron becomes representative of a specific pattern category using,

Wj =  Wj  +  a(xi -  Wj) (3.29)

where Wj is the the updated weight, Wj the weight prior to updating, a  is the learning 

rate and (a:,- — Wj) provides a measure of the error between the winning node and the input 

pattern X{. The group of neurons around the winning neuron are known as a neighbourhood. 

The weights associated with neurons in the neighbourhood around the winning neuron are 

also updated. Generally the learning rate for a given node is decreased with increasing 

topological distance from the winning node. This enables specific regions of the Kohonen 

map to be associated with different pattern categories. The value of the learning rate a  for 

all nodes is generally scaled using a neighbourhood function centred on the winning node. 

A typical choice [82] of neighbourhood function fi is a gaussian-type function such as,
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a2
0Ptq = e- i $  (3.30)

where the amplitude of Ppq for node q centred on winning node p  is maximal when node 

q is the winning node (i.e. p  =  q) and decreases with increases topological distance d. a 

represents the size of the neighbourhood. The learning rate and neighbourhood size are 

reduced gradually during the many training iterations (presentations of input patterns). 

This allows the network to self organise and cluster similar patterns in topographically 

distinct regions whilst gradually increasing the separation between dissimilar patterns.

The discrete time (n) algorithm for network training [82] of Kohonen node j  can be expressed 

as,

Wj{n +1) =  Wj(n) +  a(n)ftjti(n)[X(n) -  W}(n)] (3.31)

The trained network maps similar features in feature space to similar areas in the output 

layer of the network. Since the learning process is unsupervised, the network clusters the 

input data based on patterns that it discovers. The Kohonen SOFM is commonly used as 

an investigative classification tool when the output categories are unknown.

3.13 Conclusion

A brief overview of the signal analysis techniques used in this study has been presented. 

Generic discrete signal expansions have been introduced along with the corresponding ter­

minology. The Fourier transform was briefly discussed. The improvement on temporal 

localisation provided by the time-varying short-time Fourier transform was introduced. The 

natural successors (and recently developed) wavelet transforms have improved time-scale 

characteristics.
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Chapter 4

Development of a 

W avelet-Based Single Trial ERP  

Recovery Technique

4.1 Chapter Summary

In this chapter, a comparative investigation of wavelet-based filtering is carried out [104]. 

The methodology and results obtained are discussed. An adaptive multiresolution analysis 

filter has been developed [105]. The implementation details are provided. Plots of simulated 

CNVs and the estimated single trials produced by the different filtering approaches are 

provided and the results are compared.

4.2 Introduction

The conventional method of recovering event-related potentials (ERPs) from the background 

electroencephalogram (EEG) is synchronised averaging. The assumption is that the back­

ground EEG tends to be random while the ERP is consistent both in amplitude and latency.
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The process of synchronised averaging therefore enhances the ERP while attenuating the 

background EEG. A shortcoming of the method is that it inhibits measurement of the trial- 

to-trial variations which can develop as a result of factors such learning, changes in the level 

of attention, fatigue etc.

The aim of filtering is to enhance the desired signal by attenuating unwanted ’noise’ com­

ponents. This is usually achieved in the transform domain. Transform domain filtering is 

a three stage process. Transform the signal, leave out the coefficients that best represent 

the noise and then reconstruct the now filtered signal. The resulting signal has an improved 

signal-to-noise ratio (SNR). Deterministic filtering can be considered as filtering in the fre­

quency domain. Filtering is achieved through the maintenance of selected frequency bands 

whilst attenuating the remainder. This method works well when there is a separation of the 

signal spectrum from the noise spectrum. Unfortunately in the case of ERPs, there is a large 

spectral overlap between the desired signal and the unwanted noise. The transformation of 

the recorded waveform into the frequency domain does not separate the desired ERP from 

the unwanted background EEG. A more suitable form of digital filtering can be achieved by 

transforming the signal into a domain that provides a better separation of signal components 

from noise.

ERPs recorded during a given task is severely obscured by background EEG and therefore 

their SNR is very low. Typical magnitudes are 5-20 fjtV for the desired signal (ERP) and 

100 /iV for the noise (background EEG in this case). Single trial recovery is the removal of 

unwanted noise from a single sweep ERP recorded from a single scalp electrode. The ideal 

recovered signal component would contain only stimulus related brain activity. The on-going 

background EEG would be removed along with any ocular, motor and other unwanted 

electrical activity. Currently ERPs are analysed following the synchronised averaging of 

many trials to improve the SNR. The application of time domain averaging attenuates all 

signal components not time and phase locked to the stimulus.

The validity of synchronised averaging has been challenged for many years. [86]. The 

assumption made for averaging, that the ongoing EEG is random and uncorrelated with 

the ERP has been questioned [87]. Similarly averaging relies on the fact that the ERP 

components are the same for every stimulus. This does not take into account the random
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variation in latency, or jitter, of peaks in the ERP. The effect of jitter is to temporally smear 

peaks and reduce their amplitude. Woody suggested an approach based on correlating time- 

shifted individual trials to reduce the effects of jitter [88]. The limitations of the method are 

that it will not allow the trial-to-trial variation to be investigated and it requires a reference 

trial for it’s correlation process.

Latency differences of later components result in attenuation in the averaged ERP [89]. In 

particular the variation in latency has most effect at increasing temporal distance from the 

time point used for synchronisation. This leads to the smearing of later peak positions 

and attenuation of amplitude. These components are observed as being of lower frequency 

and longer duration. This characteristic may be purely as a result of using averaged trials. 

Similarly components not phase locked to stimulus are attenuated. The phase reordering 

post-stimulus cannot be seen in averages however this important brain dynamic is observable 

using more recent techniques described in chapter 6.

The ability to effectively recover single trials will allow the investigation of brain dynamics 

of any given trial within a set of trials. Also the effects of habituation to task and fatigue 

e.t.c. can be investigated by considering the evolution of ERP over a number of trials [90]. 

The investigation of trial-to-trial variation for subject group is described in chapter 5.

Chan et al. [91] described an improvement on adaptive filtering of a brain stem auditory 

evoked potential (EP) using an ensemble average as a reference signal. Although he com­

mented on EP trial-to-trial variability, his method did not fully rectify this. The method 

is an improvement on standard synchronised averaging methods because the number of 

running averages is reduced.

Filtering approaches that consider the time-varying characteristics of ERPs have yielded 

improved results over conventional deterministic filters. Adaptive filtering approaches [92] 

including Kalman filtering [93] have been applied to evoked potentials. Unfortunately this 

approach suffers from the lack of a valid noise model when applied to ERPs.

The Weiner filter is the optimal deterministic filter in the least mean square error sense when 

applied to a known deterministic signal with known deterministic noise [94]. The application 

to ERP filtering has been of the a posteriori type [95]. That is an estimate of the statistics of
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both the signal (taken from the spectrum of the synchronised average) and noise (estimated 

as the average spectrum of the recorded waveforms). With the assumptions and estimates 

considered it provides improved filtering on a subject level however no consideration is 

given to the time-varying nature of ERPs. In a development of this approach, deWeerd 

proposed time-varying Weiner filters [96] [97]. Simulated ERP waveforms were used to test 

the performance of the filters. The method was applied to averaged ERPs and is not suited 

to single trial estimation due to the need for accurate noise models.

The methods discussed so far have not met the requirements set by the characteristics of 

event-related potentials. In summary the main signal characteristics are time varying nature 

with only a heuristic model for both the signal itself and the noise. Recent developments in 

digital signal processing have provided new tools which are more suited to non-stationary 

signals. In particular the joint time frequency /scale methods which can be grouped under 

the heading of wavelets.

4.3 Wavelet-Based ERP Filtering

Relevant features in event-related potentials are localised temporally. For example the sec­

tion of interest may be centred on the time at which a subject presses a button in response 

to a stimulus. Some noise will occur continuously in time whilst other noise artifacts will be 

synchronised with some external events but not with the event that produces the ERP. For 

example the ERP may be obscured by some ongoing mains noise, ongoing EEG and a ran­

dom transient eye movement. The electrophysiological activity of the brain readily maps to 

short duration bursts of activity within a given frequency range. For example the short term 

oscillatory response to a given stimulus. Wavelet methods enable a signal to be decomposed 

into temporally localised components within a given bandwidth. The multi-scale concept of 

wavelets maps well with the compound signal produced from many signal generators [98].

Wavelets have been succesfully applied to the analysis of several electrophysiological signals 

[13] [12] [71]. This suggests that wavelet based filtering may be suited for the estimation 

of single sweep EPs. A small number of studies have been carried out investigating the 

applicability of wavelets to ERP filtering and analysis.
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The approach used in transform domain filtering may be employed for use with the wavelet 

transfom. The process involves transforming the data using the transform of choice. The 

ideal choice of transform is that which, upon application, separates the desired signal from 

the undesired noise. Specific transform domain coefficients relating to noise components are 

selected and their values are set to zero. The non-noise coefficients axe left intact. The 

coefficients are then inverse transformed to produce a filtered (de-noised) signal.

Bartnik et al. [99] applied the approach described above to single-trial, auditory evoked 

potentials (AEPs). The 1 second section of data recorded immediately following the stimulus 

was assumed to contain the EP. The subsequent 1 second section, following the EP, was 

assumed to be pure EEG. Regression and discriminant analysis were used to provide the 

5 wavelet coefficients that ’best’ represented the evoked potential as opposed to the EEG. 

The remainder were set to zero prior to signal reconstruction by inverse wavelet transform. 

The reconstruction from 5 coefficients was suggested as being relatively noise free, however, 

most details were lost.

Thakor et al. [100] used multiresolution wavelets in the analysis of averaged EPs. They did 

not try to recover single trials but the practical methodology employed may be developed 

further. If Thakor et al.1 s approach was developed to utilise a constantly updating running 

average then a method for single trial estimation based on the idea of running averages 

could be employed provided a small number of trials are used (2-4 and not 16-20). Thakor 

et al. [100] also suggested that wavelets should be used in conjunction with other methods 

to improve the SNR.

Bertrand et a/. [101] improved the procedure of [99]. This method used Meyer’s wavelets 

(those based on the DFT of a ” wavelets” spectrum) to improve the SNR of averaged middle- 

latency auditory evoked potentials (MLAEP). Consideration was given to the characteristics 

of the signal being non-stationary. A time-varying filter adapted to the signal was proposed. 

However, this was used after synchronised averaging. The wavelet coefficients were chosen 

manually and the remainder were set to zero prior to reconstruction. A discussion on the 

search for an optimal filter for evoked potentials was given. This lead to a proposed time- 

frequency optimal filter in the least mean squared error sense.

Wavelet networks [107] combine wavelets and neural networks and are typically used for
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discrimination of ERPs. Heinrich et al [106] applied wavelet networks to the analysis of 

single trial auditory ERPs. Real EEG was added to simulated ERPs which were used to 

determine the performance of the approach. The filtered ’ERPs’ were good estimates of 

the original ERPs. The measurement of trial specific time-frequency features permits the 

analysis of trial-to-trial variation.

In this study a novel method of recovering single trial ERPs from the background EEG was 

developed and its effectiveness was evaluated [105]. The analysis was based on a type of ERP 

known as the contingent negative variation (CNV). The method involved the application 

of the discrete wavelet transform (DWT). The signal was decomposed by a tree-structured 

filter bank implementation of the DWT. The resulting wavelet coefficients were scaled using 

an adaptively computed scaling factor. The goal being to maintain trial specific detail 

whilst attenuating the background EEG. The estimated single trial was recovered using the 

tree-structured synthesis bank implementation of the inverse DWT.

In order to find the optimum performance for the developed wavelet transform based adap­

tive filter, a number of different basis functions were explored. The performance of the filter 

for each case was quantified. The results obtained were compared with those obtained by 

deterministic, finite impulse response filters.

4.4 Adaptive Wavelet-Based ERP Filtering Technique

Filtering in the wavelet domain is achieved through the scaling (attenuation) of selected 

wavelet coefficients. By setting the value of the selected coefficients to zero (the approach 

taken by previous methods) the assumption made is that the specific coefficients represent 

noise rather than desired signal. If it is the case that the attenuated coefficients were more 

representative of noise rather than the desired signal then the SNR of the desired signal 

would be improved.

However whilst this method of hard thresholding the coefficients may improve the SNR, 

any ERP features that are decomposed into the same time-scale bins as noise will also be 

attenuated. The recovered single-trial ERP would appear distorted. The main goal of single
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trial filtering is to maintain trial dependant response information whilst improving the SNR.

Due to the spectral overlap between the ERP and the unwanted ’noise’, the wavelet trans­

form does not completely separate signal from noise. For a given set of coefficients the 

relative contribution of desired signal and noise components is not deterministic. A method 

which uses some a priori knowledge of the desired signal characteristics would therefore be 

beneficial. This would allow the coefficients to be scaled with a real value between 0 and 1 

to meet the requirements of increasing SNR whilst minimising distortion.

The novel algorithm developed in this study computed the optimum scaling factor for each 

level of the DWT adaptively [105]. An approach to single trial ERP filtering using the 

subject average as a template to provide the a priori knowledge was developed. The single­

trial wavelet coefficients were adaptively scaled using this a priori knowledge.

4.4.1 The Adaptive Wavelet-Based Filtering Algorithm

In order to investigate the effectiveness of the developed algorithm a set of 32 simulated 

single trials ERPs was produced. This enabled the recovered simulated single trial to be 

compared with the original waveform and thus allowing a quantitative evaluation of the 

filtering method to be carried out.

To produce the simulated single trials, real EEG was added to a model of a contingent 

negative variation (CNV) ERP. The model (shown in Fig.4.1) had similar characteristics 

to those of an averaged CNV. It had a zero mean before stimulus. Immediately following 

the ’presentation’ of the first stimulus, there was an auditory evoked potential. A negative 

shift follows the EP in anticipation of the impending second stimulus. The second stimulus 

produced another auditory EP before the ERP returned to the pre-stimulus (baseline) level.

32 simulated single trials were produced by adding 32 different recordings of EEG to the 

model. The number of trials was chosen to maintain the similarity between the processing of 

the simulated waveforms and the recorded CNVs of which there were 32 trials from each of 

40 subjects. The simulated single trials were bandlimited to 30Hz and the sampling rate was 

125Hz, again to reflect the recorded trials. A 512 point section (covering approximately 4
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Figure 4.1: A simulated ERP

seconds from 1 second preceding the first stimulus) of each waveform was used in subsequent 

processing. A simulated single trial is depicted in Fig.4.2.

The filtering technique employed a template to provide the algorithm with a priori signal 

knowledge. In the case of reed ERPs, this was the synchronised average of the 32 trials from 

the same subject,. To replicate the processing of real ERPs, the average of the set of 32 

synthetic single trials (shown in Fig.4.3) was used as a template rather than the original 

simulated ERP which is too dissimilar from the real averages.

An overview of the procedure for the adaptive wavelet based filtering of single trial ERPs 

developed in this study is provided below. This process was repeated for each single trial.

• Apply the discrete wavelet transform to both the single trial and template waveform.

• For each level of decompositon, use the template coefficients to guide the adaptive 

algorithm in setting the scaling factor for the single trial coefficients.

• Apply the inverse discrete wavelet transform to the scaled coefficients to construct the,
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Figure 4.2: A simulated single trial
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Figure 4.3: The time domain average of 32 simulated single trials
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now filtered, single trial waveform.

The details of the approach are now discussed.

Although the wavelet transform is suitable for non-stationary signal analysis, it was found 

that the negative shift of the CNV dominated the transform coefficients. To improve the 

time-varying characteristics of the algorithm, the single trial waveform was broken down 

into a series of sections in the time domain. In effect the filter worked on 8 points of the 

original signal before moving on to the next 8 points until all of signal has been processed. 

The choice of 8 points from the 512 points of the whole signal provided a good resolution for 

the time-varying filter. However, two problems arose from the use of such a small section 

relating to the practicalities of wavelet filtering: The edge effects introduced by finite length 

filters had a more significant effect on the recovered data and the number of levels of wavelet 

decomposition were governed by the signal length. This effected the frequency resolution 

and hence effectiveness of the wavelet transform. To overcome these effects, a series of longer 

overlapping windows, centred on the 8 point section of interest, was used to provide a longer 

section of signal to process. This redundant extra processing held minimal effect on the 

overall filtering time.

A sliding window technique (Fig.4.4) was used to extract 32 points at a time from both the 

recorded waveform and the corresponding template.

The 32 point section was filtered using the algorithm discussed below. Following filtering 

the central 8 points of the 32 point section were used to produce the reconstructed signal. 

The sliding window was then moved by 8 points before extracting the next 32 point section 

and repeating the algorithm.

For clarity in the following discussion of the algorithm, the section of the single trial will be 

called the signal and the section of the template will be called the template.

The discrete wavelet transform (DWT) of both the signal and template were calculated. The 

resulting wavelet transform consisted of coefficients at a number of levels of decomposition or 

scales. For a signal of length N  points, the maximum number of levels of wavelet transform 

decompositon, L , is equal to (log2N ) — 1. For each level of decomposition the scaling factor
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Figure 4.4: The sliding window technique

for the signed coefficients was computed and applied using the procedure shown in Fig.4.5.

• The algorithm parameters were initialised. The scaling factor (SF) and scaling factor 

increment (INC) were set to 0.5, the midpoint of their range. The Euclidean distance 

difference (EDD) was initialised to 1.

• The Euclidean distance (EDI) between signal and template coefficents was calculated.

• The following steps were then repeated until any further iterations caused the Eu­

clidean distance between the coefficients of the signal and those of the template to 

increase, i.e. the optimum scaling factor has been obtained.

• The signal coefficients were scaled by obtained value of SF.

• If the scaling caused the Euclidean distance between the coefficients to be reduced (i.e. 

EDI is greater than ED2), the seeding factor value remained unchanged. Otherwise 

the signal coefficients were restored to their value of the previous iteration and the 

scale factor was incremented by half its current value.

Once the optimum scaling factors were determined for the section being processed, the
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Figure 4.5: The adaptive filtering algorithm
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wavelet coefficients were multiplied by the factor. The algorithm was repeated for the next 

section of the signal.

Following the application of the process to the whole signal, the single trial waveform was 

reconstructed using the scaled wavelet coefficients. The use of this sectioning technique 

introduced small discontinuities in the recovered waveform. A subsequent processing step 

was used to reduce these unwanted, and artificially introduced, features. This was achieved 

by linear rotation of each 8 point section to coincide with the first point of the following 

section as depicted in Fig.4.6.
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Figure 4.6: The linear rotation technique to remove discontinuities. The dotted line depicts 

the original signed. The solid line is produced as a result of applying the rotation technique

The resulting estimated single trial had an improved SNR. The filtering process had signif­

icantly reduced the background EEG but trial specific detail was maintained.
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4.4.2 Analysis of the Effectiveness of the Filtering Technique

The use of simulated rather them recorded CNV waveforms enabled the effectiveness of the 

method to be quantified. As discussed above, the aim of the filtering algorithm was to 

improve the signal-to-noise ratio of single trials whilst maintaining tried specific features. 

The evaluation of the filtering algorithm was based on a comparison of two parameters, the 

noise factor improvement and signal distortion. Noise factor improvement was the ratio 

of SNR after filtering (SNRp) to SNR before filtering (SNRo). The value of SN Ro  was 

computed using (4.1).

<7i.2
SNRo =  *" (4-1)

£ * = i  n k2

where S, and n were samples of CNV model and the added background EEG respectively. 

The number of samples N was chosen to be 512 points. The signal-to-noise ratio after the 

application of the single tried recovery method (SNRp) was determined using (4.2).

ypN A 2

SNRp =  —» ■ *=?   (4.2)
E t A S k - s *)2

where S were samples of the recovered simulated single tried. The noise fetctor improvement 

was then cedculated as the ratio of SNRP to SNRo (4.3).

SNR
Noise factor improvement =  c,_rr>p (4.3)

SNRq

The larger the vedue of the noise factor, the more effective the filtering operation.

The amount of signed distortion after filtering was estimated by compeiring the Euclidean 

distances between the simulated CNV and that of recovered single trial (4.4).

Distortion
N

£ ( & - S * ) 2 (4.4)
k=1
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The smaller the value of the distortion parameter, the closer the recoverd signal is to the 

desired signal.

For the wavelet analysis and synthesis filters used in this study, the effectiveness of three 

popular orthogonal filters, namely Daubechies, Coiflet (Coifman), and Symmlet were eval­

uated. A selection of wavelet basis functions are shown in Fig.4.7. Each filter or basis 

function can be implemented with a different number of coefficients. For Daubechies all 

even numbered coefficients between 2-20, for Coiflet 6,12,18,24, and 30 coefficients and for 

Symmlet all even coefficients between 8-20 were used. The values of the coefficients for these 

filters are available in reference [67].
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Figure 4.7: A selection of wavelet basis functions
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4.5 Comparison of the Developed Method With Other 

Filtering Approaches

In producing the adaptive wavelet-based filtering technique, a number of decisions were 

made. These included the choice of transform, the choice of basis function and the method 

for coefficient scaling. The decisions made were based on the results obtained by comparing 

a range of alternatives at each stage of development. The effectiveness of the adaptive 

wavelet-based filtering technique developed in this study was compared with a number of 

other methods [104]. These methods were deterministic finite impulse response filters and 

two wavelet packet transform based approaches.

The method for evaluating a given technique was based on that discussed in section 4.4.1. A 

simulated ERP was produced. This waveform had similar characteristics to those expected 

from an averaged CNV in a normal subject. Real EEG was added to this ERP to produce 

a simulated single trial. The use of a simulated tried allowed the effectiveness of the filter to 

be quantified using measures of SNR improvement (equation 4.3) and distortion (equation 

4.4).

To reduce the effect that the characteristics of the simulated single trial may have on a given 

filtering technique, three different simulated trials were used. Each technique considered was 

used to filter each of the three trials. An average of the three calculated values was used on 

an estimate of the performance of each technique.

Lowpass finite impulse response (FIR) filters with 21 coefficients were also used to process 

single trials. The cutoff frequencies of the filters ranged from 3.1 Hz to 19.2 Hz. The 

performance of the FIR filtering method was quantified using the measures described.

The wavelet packet transform was used to decompose the single trials. A number of basis 

functions were compared. Following transformation, the desired basis tree, that spans the 

overcomplete wavelet packet table, was selected. Two such basis trees were considered, the 

wavelet basis, which is the same as the discrete wavelet transform, and Wickerhauser’s best 

basis [78], a popular basis designed primarily for signal compression.

For each basis tree a number of coefficients which best represented the waveform were
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maintained whilst the remainder were set to zero prior to reconstruction. The number of 

coefficients to use when hard thresholding was determined experimentally. The number of 

coefficients needed to reconstruct the CNV model without visible distortion was found to be 

30. After decomposition and the selection of the desired basis tree, the coefficients in that 

tree were sorted in magnitude order. The largest 30 coefficients were kept, the remainder 

were set to zero. (Bartnik et al.’s method [99] used only 5 coefficients resulting in what 

appeared to be a lowpass filtered estimation of the EP and hence most features were lost.)

Finally the best result from each method was compared with the developed adaptive fil­

ter. The traditional approach of synchronised averaging was used to provide a datum for 

comparison. Note that this is a technique currently employed to improve the signal-to-noise 

ratio of a number of trials but is not a method for single-trial recovery as such.

4.6 Results and Discussion

The results for the performance of the adaptive wavelet-based filtering algorithm developed 

in this study axe included in this section. This is followed by the results of the comparative 

study of the developed technique with other filtering approaches.

4.6.1 Results for the Adaptive Algorithm

For each set of variables in the filter design, three single trials were processed and the average 

result was used for subsequent evaluation. Considering the noise factor improvement and 

distortion, Daubechies filter with 16 coefficients yielded the best results (Table.4.1). However 

in all cases, the magnitude of the noise factor improvement was approximately 3 and the 

amount of distortion was around 1.8 xlO-4.

The Daubechies 16 wavelet basis function was therefore chosen for subsequent analysis and 

processing of real CNV waveforms. The results for the application of the algorithm to two 

simulated single trials is shown in Fig.4.8. The average of 32 simulated single trials is shown 

in Fig.4.8 a  and b for comparison. The two simulated single trials are shown in c and d. 

Note in particular, the noise artifact causing the negative deviation in the baseline EEG
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Basis function Noise Factor 

Im provem ent

D istortion

xlO-4

Daubechies 4 2.95 1.803

Daubechies 6 2.99 1.794

Daubechies 8 3.01 1.793

Daubechies 10 2.98 1.801

Daubechies 12 2.97 1.800

Daubechies 14 2.99 1.790

Daubechies 16 3.01 1.789

Daubechies 18 3.00 1.794

Daubechies 20 2.97 1.800

Coiflet 1 2.95 1.807

Coiflet 2 2.99 1.793

Coiflet 3 2.99 1.792

Coiflet 4 3.00 1.789

Coiflet 5 2.99 1.791

Symmlet 4 2.97 1.799

Symmlet 5 3.00 1.794

Symmlet 6 2.98 1.796

Symmlet 7 2.97 1.800

Symmlet 8 2.99 1.789

Symmlet 9 2.98 1.800

Symmlet 10 2.98 1.792

Table 4.1: Comparison of Basis functions for adaptive wavelet transform based filtering of 

ERPs. Note that the similarity of the values suggest that choice of basis function is not 

significant for the filtering application.
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before the presentation of the first stimulus at time 0. The results of applying the adaptive 

filtering algorithm, to the trials shown in c and d is shown in e and f  respectively. Note 

that a large amount of background EEG has been removed leaving some ERP detail.

The technique was then applied to the estimation of real single-trial CNV waveforms. Fig.4.9 

a  and b show a subject averaged CNV waveform which was used as the template. Fig.4.9 

c shows a single trial CNV waveform recorded from the same person. Fig.4.9 d shows a 

contaminated (artifact immediately before the first stimulus) single trial CNV waveform 

recorded from the same person. The result of the adaptive wavelet-based filtering algorithm 

when applied to these single trial CNV waveforms are shown in Fig.4.9 e and f  respectively. 

The background EEG is significantly attenuated while the waveform’s details are mainly 

preserved.

Plots of six single trial CNVs, their recovered waveforms and the subject average are shown 

superimposed in Fig.4.10. From Fig.4.10 it can be seen that for each trial, the recovered 

waveform (shown in black) is more similar to the averaged ERP (shown in blue) than the 

original trial (shown in red). Most trial specific details are maintained particularly around 

the auditory evoked potentials (AEPs) following stimuli presentation at 0 and 1 seconds. 

It can also be seen that the application of the algorithm maintains the amplitude of those 

single trials which axe larger than the average.

When the above analysis was repeated using the CNV grand average, produced from 20 

normal subjects each consisting of 32 trials, as the template, the recovered single tried CNV 

waveform was not significantly different from that shown in Fig.4.10.
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Figure 4.8: a  and b show the average of 32 simulated trials, c and d are simulated single 

trials, e and f  are the recovered simulated single trials of c and d respectively

55





Chapter 4. Development of a Wavelet-Based Single Trial ERP Recovery Technique

>
□
<D
"0
3

a
E
<

>
3

(D
TJ
3

a
E
<

Time(s)
c

Time (s) 
d

>
3

a
E
<

>
3

0
•0
34->
Q.
E
<

50

■50
2

>
3

<D
"0
3

a
E
<

>
3

0
V
3■M
Q.
E
<

Time (s) 
e

Time (s) 
f

0

2

0

2
Time (s) Time (s)

Figure 4.9: a  and b show the average of 32 real trials from a normal subject, c and d are 

real single trials, e and f  are the recovered real single trials of c and d respectively
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Figure 4.10: A number of recovered single trials recorded from a normal subject. The single 

tried is shown in red, the average of 32 trials is shown in blue and the recovered single trial 

is shown in black
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4.6.2 Results for the Comparative Study of Wavelet-Based Filter­

ing Approaches

A deterministic filtering approach using a number of 21 tap finite impulse response filters 

was included for comparison. The results are summarised in Table.4.2.

Cutoff

Frequency

Noise Factor 

Im provem ent

D istortion

xlO-4

3.1 Hz 2.71 2.007

6.2 Hz 2.65 2.053

12.4 Hz 2.43 2.230

19.2 Hz 2.30 2.357

Table 4.2: Comparison of FIR filtering of ERPs

From the table it can be seen that the best results were obtained using the lowest frequency 

range. The energy in a CNV waveform is concentrated in the lowest frequency components. 

The FIR results reflect this. An estimated simulated single trial produced by FIR lowpass 

filtering is depicted in Fig.4.11 d. The results for FIR lowpass filtering of a real CNV from 

a normal subject are shown in Fig.4.12 d.

It can be observed from both Table.4.2, Fig.4.12 d and Fig.4.11 d that almost all detail 

is lost (the filtered waveform is distorted) while a significant amount of background EEG 

reamins, when FIR filtering is employed.

The following wavelet basis functions were considered for wavelet packet based filtering 

using Wavelab [108]. Daubechies 2-20, Coiflet 1-5, and Symmlet 4-10. Two popular basis 

trees, the wavelet basis and Wickerhauser’s best basis, were investigated. The results are 

summarised in the Tables 4.3 and 4.4. The wavelet basis is summarised in Table.4.3. The 

results employing Wickerhausers best basis are included in Table.4.4.

The average noise factor and distortion did not vary significantly between choice of basis 

functions. The best result for the thresholding approach for both basis trees considered was 

used as a representative for the evaluation of that technique. Following reconstruction, the
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Figure 4.11: A Summary of Single trial recovery methods for a simulated ERP: a  is the 

average of 32 simulated trials, b is a simulated single trial, c is the recovered waveform of 

b using the 30 largest wavelet coefficients of the best basis, d  is the FIR lowpass filtered 

vesrion of b  and e is the adaptive wavelet-based filtered version.
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Figure 4.12: A Summary of Single trial recovery methods for a real CNV: a  is the average 

of 32 single trials from a normal subject, b is a single trial, c is the recovered waveform of 

b using the 30 largest wavelet coefficients of the best basis, d is the FIR lowpass filtered 

vesrion of b and e is the adaptive wavelet-based filtered version.

60



Chapter 4. Development of a Wavelet-Based Single Trial ERP Recovery Technique

Basis function Noise Eactor 

Im provem ent

D istortion

xlO-4

Daubechies 4 2.29 2.341

Daubechies 6 2.29 2.353

Daubechies 8 2.28 2.370

Daubechies 10 2.30 2.358

Daubechies 12 2.30 2.350

Daubechies 14 2.33 2.347

Daubechies 16 2.31 2.366

Daubechies 18 2.33 2.354

Daubechies 20 2.31 2.35

Coiflet 1 2.32 2.328

Coiflet 2 2.33 2.336

Coiflet 3 2.33 2.329

Coiflet 4 2.30 2.366

Coiflet 5 2.29 2.359

Sym m let 4 2.36 2.315

Symmlet 5 2.35 2.314

Symmlet 6 2.33 2.341

Symmlet 7 2.31 2.348

Symmlet 8 2.32 2.354

Symmlet 9 2.32 2.338

Symmlet 10 2.35 2.327

Table 4.3: Comparison of basis functions employed for wavelet packet based filtering of 

ERPs using the wavelet basis. Note that the similarity of the values suggest that choice of 

basis function is not significant for the filtering application.
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Basis function Noise Eactor 

Im provem ent

D istortion

xlO "4

Daubechies 4 2.25 2.404

Daubechies 6 2.27 2.389

Daubechies 8 2.26 2.428

Daubechies 10 2.28 2.397

Daubechies 12 2.22 2.440

Daubechies 14 2.31 2.385

Daubechies 16 2.26 2.421

Daubechies 18 2.25 2.408

Daubechies 20 2.28 2.380

Coiflet 1 2.31 2.376

Coiflet 2 2.27 2.396

Coiflet 3 2.28 2.400

Coiflet 4 2.29 2.394

Coiflet 5 2.28 2.400

Symmlet 4 2.25 2.413

Symmlet 5 2.28 2.390

Symmlet 6 2.27 2.408

Symmlet 7 2.28 2.397

Symmlet 8 2.27 2.411

Symmlet 9 2.29 2.400

Symmlet 10 2.29 2.394

Table 4.4: Comparison of basis functions employed for wavelet packet based filtering of 

ERPs using Wickerhauser’s best basis. Note that the similarity of the values suggest that 

choice of basis function is not significant for the filtering application.
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F ilter

M ethod

Noise Factor 

Im provem ent

Percentage

Im provem ent

D istortion

xlO-4

Percentage

Im provem ent

Synchronised

Average

17.36 100 58.7 100

FIR Lowpass 

3.1 Hz Cutoff

2.71 15.6 2.007 342

Coiflet 1 

(Best basis)

2.31 13.3 2.376 405

Symmlet 4 

(Wavelet basis)

2.36 13.6 2.315 394

Daubechies 16 

(Adaptive scaling)

3.01 17.4 1.789 305

Table 4.5: Summary of single trial ERP filtering methods

signal is an estimate of the original ’noisy’ waveform (Fig.4.11 c and Fig.4.12 c for simulated 

and real ERPs respectively). The measures of performance reflect this effect.

The best result for each of the approaches considered was used as a representative of that 

method for comparison in Table.4.5.

From the Table.4.5 it can be seen that the hard thresholding approach to coefficient atten­

uation in the wavelet domain leads to a lower performance than that of the FIR filtering 

approach. Some noise components were represented by large magnitude coefficients in the 

wavelet domain. The selection of coefficients to keep is based on magnitude and hence does 

not discriminate between signal detail and noise. In this study, the choice of basis tree 

appeared not to be very significant. The use of the WT as opposed to the overcomplete 

(redundant) WPT improved the speed of computation because transform calculated only 

the time-scale bins that were considered.
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4.7 Conclusion

A novel adaptive wavelet-based filtering algorithm was developed and was used for the single 

trial recovery of a cognitive cortical event-related potential (ERP) known as the contingent 

negative variation (CNV). A method for evaluating its effectiveness was devised and was 

used to select the most suitable orthogonal filter (basis function) for the process. It was 

demonstrated that the method can reduce the background EEG by a factor of 3 while 

preserving the main features of the CNV waveform.

The adaptive wavelet-based filtering algorithm was compared with a number of similar tech­

niques. The traditional approach of synchronised averaging was used to provide a datum for 

comparison. A filtering approach based on the wavelet packet transform was also explored. 

A range of filters and basis trees spanning the wavelet packet table were evaluated.

The results obtained suggested that the choice of basis tree appears not to be very significant. 

The use of the DWT as opposed to the overcomplete, hence redundant, WPT improved the 

speed of decomposition. The coefficient scaling method chosen had the most impact on the 

effectiveness of the filter. The results demonstrated that the developed adaptive DWT based 

approach was the most effective technique considered.
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Chapter 5

Investigation of the Trend of 

CNV Trial-To-Trial Variation in 

Schizophrenic Subjects

5.1 Chapter Summary

In this chapter, the study of the trend in trial-to-trial variation of the contingent negative 

variation (CNV) in schizophrenic subjects is covered. The adaptive wavelet-based filtering 

algorithm, developed in this study, was used to improve the signal-to-noise ration (SNR) 

of single trial CNVs from both schizophrenic and matched normal control subjects. An 

estimate of the power of the negative variation for each trial was obtained. This feature 

was used to investigate the group trend in CNV trial-to-trial variation. The feature was 

then used by a Kohonen artificial neural network to classify subject categories based on the 

trial-to-trial variation infomation.
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Figure 5.1: A CNV produced as an average of 32 single trials recorded from a normal subject

5.2 Introduction

The contingent negative variation (CNV) is a slow negative potential that develops in the 

interval between a warning and an imperative stimulus to which a motor response is required 

in the form of a hand-held button press [28]. As the name suggests, this ERP largely consists 

of a negative voltage shift in the baseline of the EEG in anticipation of the imperative 

stimulus (Fig.5.1).

The inter-stimulus interval (ISI) is the section of the CNV between the two stimuli. It is 

during this time that the CNV is observed.

Various factors effect the magnitude of the CNV [110]. For example omitting the requirement 

for a motor response to the second stimulus, distraction and age all reduce its magnitude. 

Attention to task is also related to the CNV magnitude immediately prior to the second 

stimulus [23]. The attention-arousal model for CNV magnitude changes [110] shows a linear 

relationship between magnitude and attention (i.e. The magnitude of the CNV increases 

with an increase in subject attention.) and a non monotonic (inverted U) relationship 

between magnitude and arousal, (i.e. The magnitude of the CNV initially increases with 

an increase in subject arousal until a maximal magnitude peak is reached. Any subsequent
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increase in arousal results in a decrease in CNV magnitude until at very high levels of 

subject arousal no CNV is observed.) The CNV increases with conditioning in the early 

stages and decreasing with inattention and boredom [111]. Hillyard [29] reported that the 

CNV development period was approximately 10 trials. That is the trial number at which 

the CNV magnitude ceases to increase any further.

Schizophrenia is a mental illness afflicting about 1% of the population worldwide [113]. The 

illness presents itself via a diverse range of symptoms including hallucinations and delusions, 

not all of which need to be present in each subject [114]. Structural abnormalities are known 

to exist in the brains of schizophrenic subjects [115]. The relationship between abnormalities 

in ERPs and cognitive impairment in patients has been suggested [116]. The CNV is known 

to have a generally reduced magnitude in schizophrenic subjects [109][38]. The magnitude 

of the CNV is thought to reflect the degree of psychotic symptoms in acute schizophrenics. 

That is the more severe the condition, the smaller the CNV [5]. The reduced CNV amplitude 

is present in the averaged waveform. There are a number of hypotheses as to the reason for 

the CNV reduced amplitude in the averaged waveforms. These include:

• an actual reduced amplitude produced by neural subsystems employed during the task 

[117],

• an increased jitter (relative misalignment of successive trials) in the individual trials 

resulting in reduced peak amplitude following time domain averaging [112].

The analysis of single trials allows these hypotheses to be considered.

In a previous study [118] in which averaged CNVs were used to investigate the detection of 

Schzophrenia and othere mental illness, no work on single trial analysis was carried out.

The focus of this work is the understanding of single trial event-related potentials. The 

aim of this study was to investigate the trend in trial-to-trial variation of CNVs in both 

normal and schizophrenic subjects with a view to demonstrating that the CNV trial-to-trial 

variation in normal and schizophrenic subjects is significantly different and that the observed 

differences may be used to discriminate schizophrenic subjects.

67





Chapter 5. Investigation of the Trend of CNV Trial-To-Trial Variation in Schizophrenic
Subjects____________________________________________________ ________________

5.3 Experimental Method

32 CNV single trial waveforms, recorded from 20 medicated schizophrenics and their age 

and sex matched normal control subjects, were analysed. Full subject details including 

the severity of subjects symptoms and type and dosage of mediaction is provided in [34]. 

Previous studies [118] have shown that medication does not effect the CNV significantly. The 

analysis of the effects of any medication on the results have therefore not been investigated 

in this study.

The group average trial-to-trial variation was first investigated. This allowed the identifi­

cation of gross trends within the two subject categories. For all normal subjects, the trials 

were averaged across trial number e.g. the average of trial 1 across normal subjects. Each 

subsequent set of trials where processed in a similar way until all 32 trials had been averaged. 

The process was repeated for schizophrenic subjects.

To enable the CNV trial-to-trial variation to be investigated for each individual subject and 

to facilitate subsequent categorisation, an estimate of each single trial ERP was required. 

The adaptive wavelet-based filtering algorithm (Chapter 5 [105]) was used to estimate each 

of the 32 single trials recorded from the 40 subjects under consideration. That is, the 

individual CNV trials were recovered from the background EEG. Full details of the subjects, 

the recording system and procedure are provided in [118].

The CNV amplitude, the main feature in the CNV, was the focus for classification. This 

measure has been successfully used in other studies [34] for the classification of schizophrenic 

subjects.

To represent the inter-stimulus interval (ISI) by a suitable parameter, the power of a section 

of the CNV from the ISI was calculated. The ISI covers the 1 second period from the 

presentation of the first stimulus until the occurrence of the second stimulus. The first 300 

ms section of the ISI contains the auditory evoked potential (AEP) produced in response 

to the first stimulus and contains no relevant cognitive components. The 64 sample values 

(corresponding to 0.5 s section of the ERP prior to the presentation of the imperative 

stimulus) were selected for analysis. This is the section in which the CNV amplitude is 

generally maximal and since it is immediately prior to the imperative stimulus it contains
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cognitive information relating to attention. The section’s power (P) was computed using 

equation 5.1.

250

p  =  £  S*2 (5.1)
*=187

where Sk represented the samples of the section of each CNV signal (note, the section of 

interest included sample numbers 187 to 250 inclusive). As 32 trials were recorded from each 

subject, this operation produced 32 values representing a measure of the CNV trial-to-trial 

variations for each subject.

Even after the application of the wavelet-based adaptive filtering the estimated single trials 

CNVs contained some residual background EEG. This resulted in unnaceptable fluctuations 

in the trial-to-trial variation of each subject. The trial-to-trial variation was therefore char­

acterised by its trend. This was achieved by fitting a polynomial to the 32 CNV power 

values. Several different polynomials were considered but a 5th-order polynomial was finally 

chosen heuristically.

A type of artificial neural network known as the Kohonen self organising feature map [83] 

was used to detect possible clusters formed as a result of similar CNV trial-to-trial patterns.

The Kohonen map used had a square topology as shown in Fig.5.2. The parameters for 

network learning (as suggested by Haykin [82]) were as follows,

The network weights were initialised to random values between 0.45 and 0.55. During 

the first 10000 iterations, the learning rate was reduced linearly from 0.4 to 0.1 and the 

neighbourhood size was reduced from 5 to 1. Then the learning rate was reduced linearly 

from 0.1 to 0.01 over another 20000 iterations and the neighbourhood size was set to zero. In 

updating the weights for the neurons in the neighbourhood region, their topological distance 

to the winning neuron was taken into account [82]. The weights of the neurons closer to the 

winning node were updated more strongly as compared with those further away. This was 

achieved by using a Gaussian function described as,
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Figure 5.2: The topology of the Kohonen self organising feature map

where, d represents the topological distance of a given node from the winning node and n is 

the size of the neighbourhood region.

To ensure any clustering is purely a representation of the trial-to-trial variations, the 32

data points of each polynomial were normalised between 0 and 1. The polynomials could

not be used directly as input to the Kohonen network as this would have resulted in clusters 

which represented both the magnitudes of the CNV waveforms as well as their trial-to-trial 

variations. Therefore the data used as input to the Kohonen network were 40 polynomials, 

each consisting of 32 values, and normalised between 0 and 1.

5.4 Results and Discussion

The group average trial-to-trial variation is illustrated in Fig.5.3. This shows the category 

specific, gross trend in CNV development.

From Fig.5.3 it can be seen that there are differences between the average trial-to-trial
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Figure 5.3: The average trial-to-trial variation of ISI power of 32 single trials averaged for 

normal and medicated schizophrenic subjects

variation in normal and schizophrenic subjects. In normal subjects, their was an increase 

in amplitude of the CNV over the first 6 trials before reaching a steady state. This gradual 

increase in amplitude may relate to novelty and habituation to task. It supports the CNV 

development period of 10 trials reported by Hillyard [29]. These systematic changes may be 

attributed to the alteration of the rate of post-synaptic summation in response generation 

pathways [7].

The trend in schizophrenic subjects is for a steady state in CNV amplitude. This may be 

a result of the effect of averaging a collection of randomly varying trials. The gross trends 

observed suggested that the groups may be separable based on the evolution of the CNV 

power over the increase in trial number. The analysis of individual trials was necessary for 

this purpose.

The general consistency of the patterns’ trends during first 6 trials in normal subjects might 

be a reflection of a more orderly learning process and increasing attention in performing the 

required experimental tasks in that subject category. These findings indicate that the first 

6 trials may be more informative in analysing the schizophrenics states than the remaining 

CNV trials.
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Figure 5.4: The Kohonen self organising feature map showing categorisation of normal and 

medicated schizophrenic subjects. The numbers 2 and 4 on circles in the left hand column 

show 2 and 4 overlapping normal subjects respectively.

The Kohonen map following training is shown in Fig.5.4. The numbers on the top and left 

hand sides of the map represent the neurons coordinates. The normal and schizophrenic 

subjects are represented by circles with different shadings.

As can be observed in Fig.5.4 the network identified two main clusters representing the two 

categories. The ability of the Kohonen network to form these clusters suggested that the 

CNV evolved significantly differently from one trial to the next in the two subject categories.

5.5 Conclusion

A study of contingent negative variation (CNV) trial-to-trial variation in 20 medicated 

schizophrenics and their normal control subjects was carried out. The results reported in 

this study are unique in that for the first time it was demonstrated that there is a significant 

difference between the CNV trial-to-trial variation in normal and schizophrenic subjects.
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The findings of this study also indicated that the first 6 trials provide valuable information 

concerning the development of the CNV. It is known that the CNV amplitude is related 

to attention and task habituation. The early development of the CNV in normal subjects 

reflects these cognitive processes. In schizophrenic subjects however, the higher variation in 

the trend of CNV development may suggest a much less orderly approach to task habituation 

and may reflect difficulty in maintaining attention.

Using the Kohonen network, it was possible to differentiate the majority of schizophrenics 

from normal subjects on the basis of their CNV trial-to-trial variations. Early detection of 

schizophrenia is difficult. This study has provided another avenue to improve the under­

standing of the disorder and a novel approach for it’s identification.
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Chapter 6

Development and Application of 

a Phase Analysis Technique

6.1 Chapter Summary

In this chapter,1 the phase dynamics of the brain relating to P300 ERP genesis in a visual 

spatial attention task are investigated. A new technique to visualise these dynamics was 

developed and applied. The technique focuses on the alpha band activity, in particular the 

event-related phase dynamics. Independent component analysis (ICA) was used to filter 

the recorded ERP’s into spatially fixed, temporally independent components. The phase 

dynamics of a number of components were then investigated.

6.2 Introduction

The EEG activity within the 8-13 Hz frequency range is known as the alpha rhythm. It has

been suggested that alpha rhythms may reflect a controlling mechanism of brain functions
1The work in this chapter was carried out whilst visiting the computational neurobiology laboratory of 

the Salk Institute at San Diego, California, USA.
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[119]. They have recently been associated with cognitive processing in auditory P3O0S [127]. 

Despite a large number of functional correlates of the alpha rhythm the genesis of this EEG 

activity is not exactly known. It has been suggested that the rhythm may be produced by 

a number of distributed generators [64].

The most common and important model of EEG is that the activity at any instant is the 

algebraic sum of statistically independent signal and noise components [7]. This model has 

however been challenged on the grounds that the pre-stimulus EEG affects the subsequent 

EP [87].

The model may be classified further by the considering the spectral components of each 

signal generator. The spectrum of the EEG may be analysed using Fourier techniques. 

This allows the EEG to be separated into a number of components each having a specific 

frequency range [119]. For example the alpha band covers frequencies in the range 8-13 

Hz whilst beta encompasses those frequencies between 17 and 30 Hz [56]. The spectral 

components produced by a generator (both signal and noise) may be controlled by both 

amplitude and phase modulation.

Pfurtscheller [55] introduced the terms event-related desynchronisation (ERD) and event- 

related synchronisation (ERS) to describe the amplitude attenuation of rhythmic compo­

nents. The attenuation or blocking of rhythmic EEG components such as the alpha band is 

termed ERD. The result of event-related regionally induced oscillations which are not phase 

locked is termed ERS. The technique calculates the energy of a specific frequency band at 

each point in time from a number of scalp locations. Scalp maps show the relationship 

between coherent and incoherent regions in response to the task. The consideration of both 

the ERD and ERS produced in response to a task provides a measure of the dynamics of 

the brain.

A similar technique that considers the envelope of alpha activity is reported by Kaufman 

[50]. The technique uses the variation from the mean of bandpass filtered ERPs from several 

scalp locations. The results show location dependent alpha amplitude modulation.

The case for event-related phase reordering of harmonics which result in the observed ERP 

has been suggested by Basar [120] and Brandt [51] amongst others. This phase resetting or
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locking of oscillations has been linked to temporary recruitment of disparate groups of neu­

rons to perform a cognitive task [121] [122]. The short-term synchronisation of topographical 

distinct regions of the brain has been proposed as a mechanism for learning [123].

The terms evoked and induced rhythms are commonly used to describe tightly or loosely 

phase coupled event-related oscillations respectively. [124]. Non phase-locked components 

are oscillations that are not synchronised with the moment of stimulus, although they may 

relate to information processing [17]. The averaging procedure employed in traditional ERP 

analysis focuses on phase-locked components. Non phase-locked components are attenuated 

by the process of averaging.

Jervis et al. [125] carried out an investigation to establish whether auditory evoked potentials 

are predominantly due to phase reordering of the background signal (EEG) or to an added 

signal. They showed that whilst both explanations produce a phase ordering their results 

were inconclusive in determining which model is the most valid.

Kolev and Yordanova [126] used a min/max approach to identify phase relationships. The 

phase of the bandpass filtered single-trial AEPs was quantised based on the time of occur­

rence of the wave extrema. That is, when do the minimum and maximum values occur. 

This resulted in a binary coded string which was then used in an averaging process of all 

trials to obtain a histogram of wave extrema occurrence. The technique was applied to the 

analysis of AEPs, in particular age-related differences in alpha phase-locking which were 

used to differentiate two age groups based on their phase response.

Brandt [51] also studied alpha phase dynamics in EPs. The phase resetting of both auditory 

and visual EPs were investigated. The methodology employed was similar to that of Kolev 

and Yordanova [126]. Each single trial was bandpass filtered between 8-13 Hz to extract 

the alpha band. The pre-stimulus peak to peak latency was measured to determine if the 

trial had relatively stable alpha characteristics and hence could be included in subsequent 

analysis. The phase angle at the time of stimulus was calculated using the latency difference 

between the stimulus and the pre-stimulus peak or trough of the waveform. Brandt showed 

the effect of pre-stimulus alpha amplitude and phase on the N1 in both auditory and visual 

EP components. The results concerning the dynamics of alpha components in the EEG 

showed partial phase resetting in EP morphology.
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Due to the large amounts of data involved in ERP analysis, waveforms are typically sum­

marised by averaging. The averaged data loses single trial information that is not phase 

locked to the stimulus. Phase in this context means the time of occurance of a feature (a 

peak for example) in a given single trial relative to the time of stimulus. The process of syn­

chronised averaging maintains features that have the same polarity and time of occurance in 

the majority of individual trials. The same averaging process attenuates features that do not 

occur at the same point in time as that of the average. Hence, if a feature has a high variance 

in time of occurance amongst individual trials (the feature is not strongly phased locked to 

stimulus) then it will be severely attenuated (possibly lost) by the averaging process.

The desire for analysis of single trials has produced a number of techniques, some of which 

are discussed in this thesis.

A number of consecutive single trial ERPs can be combined to produce a two dimensional 

image in which the horizontal and vertical axis represent time and trial number respectively 

[128]. The amplitude of peaks in individual trials is portrayed by colour. The contribution of 

each single trial to the ensemble average is highlighted by this approach. To enhance trends 

in the image, is common to apply a moving average or low pass filter [129]. The image 

approach to visualisation and analysis of single trial ERPs may be extended by sorting 

the order of trials based on some experimental factor such as reaction time [59]. This ERP 

image facilitates the investigation of features such as those locked to response. Jung et al [59] 

applied the ERP image technique to the activation of independent components produced by 

independent component analysis (ICA).

ICA is a spatial filtering technique that deconvolves linear mixtures of independent sources 

[18]. Makeig et al [80] first reported the application of ICA to EEG analysis. It is known that 

topographically distinct regions of the brain are responsible for different processing tasks. 

For example the visual cortex, a large region located to the rear (posterior) of the brain, is 

responsible for vision. In the analysis of single trial event-related potentials the technique 

decomposes an ERP recorded from e scalp electrodes into c (c < e) spatially fixed electro- 

physiologic signal sources (components) whose activations are temporally independent.

Makeig et al [130] [89] applied ICA to the analysis of components of the P300 in a visual 

spatial attention task. Their work is explained first and then the work carried out in this

77





Chapter 6. Development and Application of a Phase Analysis Technique

study follows from section 6.3.2 (Study Specific Experimental Method) onwards. For a group 

of ten normal subjects, ICA was used to spatially filter each subject’s averaged ERPs into 

functionally independent components. Those components whose activations contributed 

most to the generation of the late positive complex or P300 where considered. The results 

of Makeig et al are included and discussed here because they form the basis of the work 

carried out in this study. The same data were used in this study hence further details are 

provided in the experimental method section.

A plot of the six most significant components for the 10 subjects and their scalp projections 

is shown in Fig.6.1. The most significant ICA components were deemed to be those with 

the largest amplitude variance during the time period of interest. Those components of 

particular importance are those whose activations have a peak that corresponds both in 

time and polarity to peaks in the averaged ERP.

The plot shows the activation of a number of ICA components (in colour) along with the 

envelope of of the data (in black) over a period of 400ms. The envelope of the data represents 

the most negative and positive values for all channels at each instance in time [130].

The scalp maps show contours of equal potential that would result when the activation of 

the corresponding component are back projected (through the ICA mixing matrix) onto the 

sites of the recording electrodes. This allows the location of possible signal generators to be 

estimated.

It can be seen from Fig.6.1 that ICA identifies several components that contribute to the 

genesis of the P300 or late positive complex. In particular note the symmetrically lateral 

scalp maps of the nil and n lr components. The activations of these components were found 

to be left and right visual field selective [130]. Along with the Nib component the two 

components contribute significantly to the genesis of the N1 peak that would be observable 

in the ensemble average.
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N1r N1I N1b P2a P3f P3b

time (ms)

Figure 6.1: The six most significant ICA components in the genesis of the early components 

of the P300. Produced using the data from Makeig et. al. [130]
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Time (ms)

Figure 6.2: ICA Components of a single subject contributing N1 and P I

Independent component analysis was then applied to all trials of a single subject. A plot of 

the activations of the seven most significant components in terms of the generation of the 

N1 and P I peaks for all tasks, and their scalp projections is shown in Fig.6.2.

Two components (number 4 and 9) observed in the single subject for all 512 trials exhibit 

similar scalp projections to those observed in the group average. The component responses 

to attended targets in the left and right visual fields were considered separately. The left 

visual field was considered to be targets appearing in the two leftmost boxes out of the 

possible five. Similarly the right visual field was considered to be the two right most targets. 

For attended targets (those to which the subject is to respond) appearing the the left hand

80



Chapter 6. Development and Application of a Phase Analysis Technique

100 150 200
Time (ms)

Figure 6.3: ICA components for targets in the left visual field

visual field it can be seen from Fig.6.3 that component 4 contributes most to the generation 

of the N1 peak whilst component 9’s contribution is attenuated from that of all trials.

Conversely, for attended targets appearing the the right hand visual field it can be seen 

from Fig.6.4 that component 9 contributes most to the generation of the N1 peak whilst 

component 4’s contribution is attenuated from that of all trials.

In this study a further investigation into the response and visual field selectivity of these 

components was carried out. A novel technique for analysing event-related phase dynamics 

was developed and applied to the activation of these components. Phase dynamics in this
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Figure 6.4: ICA components for targets in the right visual field

context relates to how a narrowband waveform changes its phase (in the single frequency 

sense) in response to the presentation of the stimulus.

The dominant frequency of the ICA component activations was around 10 Hz. This corre­

sponded to the alpha frequency band well known in EEG research. Further it can be seen 

that the early positive and negative peaks in the P300 were spaced approximately 50 ms 

apart which correspond to a 10 Hz characteristic. The genesis of the early components in 

relation to phase and amplitude models was investigated. The mechanisms controlling the 

activation of these two components were studied using the phase analysis technique and 

Makeig’s event-related spectral perturbation (ERSP) [54]. The amplitude and inter-trial
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Figure 6.5: The visual spatial attention task 

coherence of the alpha band components were also calculated.

For the purposes of comparison, the analysis techniques were applied to single trials as 

recorded at two scalp electrodes that were located above the most likely source of the ICA 

components considered.

6.3 Experimental Method

6.3.1 Subjects and Task

P300 ERPs were recorded during a visual spatial attention task [89]. Ten right handed 

volunteers with normal or corrected to normal vision participated in the task. The subjects 

were asked to fixate on a cross in the centre of a black screen. Five empty 1.6 cm square 

boxes where displayed horizontally 0.8 cm above a central fixation cross as shown in Fig.6.5. 

The horizontal visual angles from the central cross were 5.5, 2.7, 0, -2.7, -5.5 degrees.

Each of the boxes was designated in turn as the target box (coloured green) for one hundred 

trials. The subjects were asked to spatially attend the target box whilst maintaining visual
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Figure 6.6: The visual spatial attention task showing a target

fixation on the cross in the centre of the screen. The subjects were instructed to respond to 

stimuli (filled white squares) appearing in the target box (Fig.6.6) by pressing a button.

For each target, 500 stimuli were displayed for 117 ms in of each the boxes in a pseudo 

random sequence. A non-target was classified as the filled white square appearing in any 

box other than the target, as illustrated in Fig.6.7 for example.

The occurrence of a stimulus in each box was equiprobable. The inter-stimulus interval was 

250-1000 ms in 4 equiprobable 250 ms steps.

EEG for each trial was recorded from 29 electrodes at locations based on a modified inter­

national 10-20 system [89]. The recording system anti-aliasing filter had a cut off frequency 

of 50 Hz. The sampling rate was 512 Hz. Following recording, the effects of line noise were 

reduced by the application of a 40 Hz lowpass digital filter. Individual trials with ocular 

artifacts greater than 70 fiV where discarded.

One subject from the 10 was selected at random. ICA was used to decompose the subject’s 

single trial data for each of the 500 stimuli.
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Figure 6.7: The visual spatial attention task showing a non target

6.3.2 Study Specific Experimental M ethod 

Phase Sorted ER P Image

For each single trial activation of each ICA component under consideration, the power 

spectral density (PSD) was calculated [45]. The PSD enabled the peak alpha frequency to 

be identified. That is, the frequency within the range 7 - 13 Hz that has the most power. A 3 

Hz bandpass filter centred on the peak alpha frequency was produced for each trial. Ideally 

the bandpass filter would be able to extract only the peak alpha frequency to enable a true 

measure of phase to be obtained. In practice this was not possible. The bandwidth was 

chosen as a compromise between being wide enough so as to reduce the effects of non-ideal 

digital filters and narrow enough to improve the accuracy of phase estimation. The resulting 

filter was used to extract the alpha band of the signal.

The Hilbert transform (See Chapter 3) was applied to the alpha band to obtain an estimate 

of instantaneous phase angle throughout the time course. The resulting 90 degree phase 

shift, inherent to the Hilbert transform, can effectively be ignored since all trials are phase 

shifted equally. The phase at stimulus was estimated by considering the phase angle over 

five samples centred on the stimulus. The number of samples chosen was a compromise
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Figure 6.8: An alpha phase-sorted ERP image with time in ms on the horizontal axis and 

trial number vertically.

between reducing the effects of ’noisy’ trials and the complexity of curve fitting a sine wave 

to a known transient waveform. This non-stationarity is as a result of the need to use a 

real bandpass filter to extract the alpha band. The phase angles of the five samples were 

’unwrapped’ [131] to remove any wrapping effects as the angle changes from 27r to 0. The 

mean phase angle was then calculated modulo 27t.

The single estimate of phase angle, in the range 0 - 27r, was used to determine the position 

of the single sweep relative to the other sweeps in the ’image’.

An image was constructed indexed horizontally by time and vertically by trial. The single 

trials where ordered on the calculated phase angle at stimulus. A 15 point moving average 

filter was applied to the image to reduce the effects of noise. The only post-recording filtering 

employed was the ICA spatial filtering hence the activations were not noise free. When the 

alpha phase-sorted image was produced for data recorded from a single scalp electrode, no 

post-recording filtering was carried out.
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Analysis o f Phase Sorted ER P Image

The phase-ordered image facilitates the visual analysis of the effects of the alpha phase at 

stimulus on the ensuing ERP. This is achieved by highlighting the relationship of features 

of any single trial with those of all other trials focussing in particular on the temporal 

position of peaks with respect to the time of stimulus. The image shown in Fig.6.8 has 

a cyclic relationship with the starting point chosen arbitrarily. After one complete cycle 

the image wraps around so that the bottom and top trials of the image are contiguous. 

The image is a result of placing several single sweeps next to each other, which are then 

viewed from above. The similarity between trials is enhanced following the application of 

a 15 point moving average filter [73]. The resulting peaks in colour (yellow for positive 

polarity, blue for negative) correspond to peaks (positive polarity) and troughs (negative 

polarity) in each single trial. When there is no similarity between single trials, the image 

has a random colour distribution, the baseline region for example. When neighbouring trials 

exhibit similar features, the colour remains almost constant for the region of similarity.

The assumption made was that at the point of stimulus the brain is in a random state (an 

assumption that is made in most ERP analysis). In a large sample of trials there will be a 

uniform distribution of alpha phase angle at this point. The diagonal lines of fixed colour 

reflect this. Starting at the time of stimulus, from the bottom of the image, the phase angle 

rotates through 27r radians linearly until the top of the image. The yellow line is the peak 

of each trial following sorting on this feature. After one complete cycle the image wraps 

around so that the bottom and top of the image are next to each other. The peak line has 

advanced (or retarded) 100 ms in one cycle. This reflects the dominant 10 Hz characteristic 

that was investigated.

The most striking feature is centred on the stimulus. The image can be thought of as looking 

down on a liquid. The yellow represents the tops of the waves whilst the blue is the trough. 

At stimulus, the waves travel at an angle to the vertical. If we take a section through the 

wave at the time of stimulus we would see one cycle of a cosine wave. Starting from the 

bottom of the image there is the crest of the wave (yellow) as we move through the trials 

vertically the amplitude drops (becomes blue) and then rises once more to the crest (yellow) 

of the preceding wave. We have moved through one complete cycle of the range of phase
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angles. The image is wrapped around so that the top of the image and bottom of the image 

are contiguous. The diagonal waves can now be thought of as a screw thread. The pitch 

of the screw thread is 100 ms. That is in one complete cycle of the image the wave has 

moved forward 100 ms. The 100 ms period is a result of the dominant 10 Hz characteristic 

frequency.

The presence of this feature at stimulus is as a result of the ordering of trials whilst con­

structing the image. The existence of the feature before and after stimulus is as a result of 

the inertia of alpha band signals. The alpha band waveform can be thought of as a ran­

domly phase modulated 10 Hz sine wave. As we move away from the point of ordering, the 

compounding effect of the modulation becomes more significant, hence noticeable. The im­

age approaches an almost random distribution of phase angle at 500 ms pre-stimulus when 

compared with the uniform distribution at stimulus.

The peak line is not vertical which would show a constant phase angle in all trials at that 

particular point in time. If this were the case then this would reflect phase synchronisation 

or alignment.

Other Analysis Techniques Employed

The ensemble average for the component activations was included for comparison and com­

pleteness. The average represents the component’s contribution to the ERP.

The inter-trial coherence (ITC) [45] (see Chapter 3) was calculated for the peak alpha 

frequency of the components PSD for each single trial. This provided a measure of phase 

synchronisation. The ITC becomes significant above the red line.

The root mean squared (RMS) of the alpha amplitude throughout the duration of the ERP 

was calculated. This allowed the additive model for ERP genesis to be considered along 

with the phase synchronistaion model.

The PSD shows the peak alpha amplitude for the set of trials considered. This value is used 

in the production of most plots as discussed above and is provided for interest.

The scalp map shows the projection of the signal source under investigation onto the surface
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of the scalp. In the simple case this is a single electrode. In the case of an ICA component, 

the projection is more complex suggesting a source within the cortex.

The event-related spectral perurbation (ERSP) [54] (See Chapter 3) for the component 

under consideration was also calculated. The ERSP provided a measure of the combined 

time-frequency changes throughout the group of trials. The application of this technique 

established the broad band dynamics of the waveforms under analysis as opposed to the 

narrow band characteristics highlighted through the phase-sorted ERP image.

6.4 Results and Discussion

The results for the analysis of the two ICA components (numbered 4 and 9) from a single 

subject are presented. The components were selected because they contributed to the gen­

esis of the N1 peak (Fig.6.2) and exhibited scalp projections that suggested signal sources 

within the visual cortex. The results for the analysis of component 4 is provided first. The 

corresponding results for component 9 follow. For comparison the results for the analysis of 

the unfiltered data direct from the scalp electrode is then provided.

6.4.1 Component 4

The ICA components of the subject’s response to the two leftmost targets is shown in Fig.6.3. 

From Fig.6.3 it can be seen that component 4 is the major contributor to the genesis of the 

N1 peak. That is the activation of component 4 has the largest negative peak approximately 

coinciding with the N1 peak of the averaged ERP.

The analysis of the activation of component 4 in response to targets presented in the left 

visual field (the two left most boxes) whilst the subject is mentally attending the left visual 

field is shown in Fig.6.9.

The power spectral density showed that the peak alpha frequency of this component was 9.5 

Hz. The component scalp map suggested a source within the left hemisphere of the visual 

cortex.
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Figure 6.9: Component 4 response to attended targets in the left visual field
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Prom the phase sorted ERP image it can be seen that the phase ordering produces the 

uniform distribution of alpha phase angle at the time of stimulus. The effects of the slight 

random frequency modulation of the alpha band between trials is illustrated by the almost 

random distribution of phase angle at 500 ms pre-stimulus.

The most interesting feature was observed in the 600 ms following the presentation of the 

stimulus. After 200 ms the waves rotated from their diagonal alignment to become vertically 

aligned. That is the distribution of phase angles has moved from being uniform at stimulus 

to being normally distributed about a narrow range of angle. At 400 ms the peaks had 

become vertically oriented reflecting a phase synchronisation. That is the individual single 

trials have approximately the same alpha phase angle at that point in the genesis of the 

ERP. This phase synchronisation was maintained for a few cycles until after 600 ms when 

the distribution tended toward being random once more.

We can see by looking at the time domain average of the trials that the baseline (pre-stimulus 

area) is flat. This characteristic is maintained until approximately 200 ms when a 10 Hz 

burst can be seen. This corresponded to the phase alignment of the individual trials.

Once the phase alignment of individual trials had disappeared (after approximately 600 ms 

post-stimulus) the alpha burst observed in the time domain response became attenuated 

before the the ERP returned to the pre-stimulus baseline.

The RMS of the amplitude of the averaged alpha waveform during the time period of the 

ERP showed an increase in alpha power.

The inter-trial coherence (ITC) for the frequency of interest (9.5Hz in this case) provided 

a measure of phase synchronisation. The plot shows that the ITC becomes significant (i.e. 

above the red line) for the time period of the ERP (200-600 ms post-stimulus). The ITC 

peaks at approximately 400 ms post-stimulus reflecting the phase alignment of the individual 

trials.

The ERSP showed a broadband amplitude increase, relative to baseline, in the time period 

of 200-600 ms post-stimulus. In particular note the three most significant time-frequency 

features during the 200-600 ms time period in the approximate frequency ranges 0-2 Hz, 

12-16 Hz and 20-25 Hz. Note also that there was no significant amplitude increase in the
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alpha band.

In terms of the alpha band, the contribution of this component to the genesis of the ERP 

is a product of both alpha phase synchronisation and an relatively small increase in alpha 

(energy). There was a significant broadband amplitude increase.

The ICA comoponents of the subject’s response to the two rightmost targets is shown in 

Fig.6.4. From Fig.6.4 it can be seen that component 4 does not contribute significantly to 

the genesis of the N1 peak.

The analysis of the activation of component 4 in response to targets presented in the right 

visual field (the two right most boxes) whilst the subject is mentally attending the right 

visual field is shown in Fig.6.10.

From the phase sorted ERP image it can be seen that within the 200 ms post-stimulus, the 

waves rotated from their diagonal alignment to become vertically aligned. This synchroni­

sation was maintained until approximately 600 ms post-stimulus.

The time domain average of the trials shows the baseline (pre-stimulus area) is flat and 

extends until approximately 150 ms post-stimulus when a 10 Hz burst could be seen. This 

corresponded to the early phase alignment of the individual trials. Following the dissipation 

of the alpha burst (after approximately 600 ms post-stimulus) the ERP returned to baseline 

within 200 ms.

The RMS of the amplitude of the averaged alpha waveform over the time period showed no 

increase in alpha power during the presence of the ERP.

The inter-trial coherence (ITC) showed that the ITC becomes significant after only 150 ms. 

The ITC peaked at approximately 300 ms. The alpha coherence was significant until 500 

ms.

The ERSP showed an alpha amplitude decrease in the period 150-500 ms post-stimulus with 

an increase in amplitude of a narrow frequency band centred on approximately 15 Hz. There 

was a broadband amplitude increase in the 600-900 ms period which include the alpha band.

The contribution of this component to the genesis of the ERP is purely a product of alpha
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Figure 6.10: Component 4 response to attended targets in the right visual field

93



Chapter 6. Development and Application of a Phase Analysis Technique

phase synchronisation. There was a significant post ERP broadband amplitude increase.

The two remaining task conditions that were investigated are when targets appear in the 

non-attended visual field. That is when the subject is told to attend left but targets appear 

in the right visual field or targets that appear in the left visual when the subject is attending 

right.

The analysis of the activation of component 4 in response to targets presented in the left 

visual field (the two left most boxes) whilst the subject is mentally attending the right visual 

field is shown in Fig.6.11.

Prom the phase sorted ERP image it can be seen that a weak phase synchronisation occurred 

at approximately 200 ms post-stimulus. Almost immediately the distribution of phase angle 

tended toward being random once more.

The time domain average of the trials showed little deviation from the pre-stimulus baseline 

level. A small peak was produced at 200 ms.

The RMS of the amplitude of the averaged alpha waveform over the time period of the ERP 

showed an increase in alpha power at approximately 200 ms post-stimulus.

The inter-trial coherence (ITC) showed no significant phase synchronisation.

The ERSP showed an' early amplitude increase, relative to baseline, in the time period 

starting almost immediately at stimulus presentation and lasting for approximately 300 ms 

for frequencies in the 8 -16 Hz range.

The contribution of this component to the genesis of the ERP was a purely product of small 

alpha amplitude increase. No phase synchronisation occurred.

The analysis of the activation of component 4 in response to targets presented in the right 

visual field (the two right most boxes) whilst the subject is mentally attending the left visual 

field is shown in Fig.6.12.

EVom the phase sorted ERP image it can be seen that a phase synchronisation occurred 

at approximately 150ms post-stimulus. The synchronisation was maintained until 400 ms 

post-stimulus, when the distribution of phase angle tended toward being random.
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Figure 6.11: Component 4 response to targets in the left visual field whilst attending right
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We can see by looking at the time domain average of the trials that a burst of approximately 

10 Hz frequency, was produced in the period 150-400 ms post-stimulus. Following this alpha 

burst, the ERP returned to the pre-stimulus baseline.

The RMS of the amplitude of the averaged alpha waveform over the time period of the ERP 

showed an decrease in alpha power.

The inter-trial coherence (ITC) showed a significant phase synchronisation in the period 

150-400 ms post-stimulus.

The ERSP showed a broadband amplitude decrease, relative to baseline, in the time period 

starting almost immediately at stimulus presentation and lasting for approximately 800 ms. 

In particular note the distribution of the significant time-frequency features.

The contribution of this component to the genesis of the ERP was a product of alpha phase 

synchronisation. Indeed there was a significant broadband amplitude decrease including the 

alpha band.

The results for component 4 for the four task combinations considered suggest differing 

control mechanisms in each case. The analysis of the laterally symmetrical component 9 

was investigated for comparison.

6.4.2 Component 9

The ICA comoponents of the subject’s response to the two leftmost targets is shown in 

Fig.6.4. From Fig.6.4 it can be seen that component 9 does not contribute significantly to 

the genesis of the N1 peak.

The analysis of the activation of component 9 in response to targets presented in the left 

visual field (the two left most boxes) whilst the subject is mentally attending the left visual 

field is shown in Fig.6.13.

The power spectral density showed that the peak alpha frequency of this component was 

9.75 Hz. The component scalp map suggested a source within the right hemisphere of the 

visual cortex.
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Figure 6.13: Component 9 response to attended targets in the left visual field
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Chapter 6. Development and Application of a Phase Analysis Technique

From the phase sorted ERP image it can be seen that by 200 ms post-stimulus, the waveforms 

rotated from their diagonal alignment to become vertically aligned. This phase synchronisa­

tion was maintained for a few cycles until after 500 ms when the distribution tended toward 

being random once more.

We can see by looking at the time domain average of the trials that the baseline (pre-stimulus 

area) is flat. This characteristic was maintained until approximately 150 ms when a response 

could be seen. The voltage deviation returned to baseline after 500 ms. Activity was still 

present until 800 ms post-stimulus.

The RMS of the amplitude of the averaged alpha waveform during the time period of the 

ERP showed a noticeable decrease in alpha power.

The inter-trial coherence (ITC) became significant after only 150 ms. The main coherent 

activity lasted until 400 ms although some bursts of coherent activity were observed at 

approximately 500 ms and 700 ms following stimulus presentation.

The ERSP showed an alpha amplitude decrease in the period 150-600 ms post-stimulus with 

an increase in amplitude of a narrow frequency band centred on approximately 15 Hz. There 

were amplitude increases in the 600-900 ms period for two narrow bands centred on 13 and 

22 Hz approximately.

In terms of the alpha rhythm, the contribution of this component to the genesis of the ERP 

was purely a product of phase synchronisation. A marked decrease in alpha energy was 

observed.

The ICA comoponents of the subject’s response to the two rightmost targets is shown in 

Fig.6.3. Ifrom Fig.6.3 it can be seen that component 9 is the major contributor to the genesis 

of the N1 peak.

The analysis of the activation of component 9 in response to targets presented in the right 

visual field (the two right most boxes) whilst the subject is mentally attending the right 

visual field is shown in Fig.6.14.

From the phase sorted ERP image it can be seen that by 200 ms post-stimulus, the waves 

rotated from their diagonal alignment to become vertically aligned. This synchronisation
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Chapter 6. Development and Application of a Phase Analysis Technique

was maintained until approximately 600 ms post-stimulus.

The time domain average of the trials shows a relatively flat pre-stimulus baseline. The 

characteristics of which were maintained until 100 ms after stimulus presentation when a 10 

Hz burst began. This alpha burst lasted until approximately 600 ms post-stimulus. After 

which, the ERP returned to the pre-stimulus baseline.

The RMS of the amplitude of the averaged alpha waveform over the time period increased 

during the presence of the ERP.

The inter-trial coherence (ITC) became significant after only 100 ms. The ITC peaked at 

approximately 250 ms and remained significant until 500 ms.

The ERSP showed a broadband amplitude increase, relative to baseline, in the time period 

of 200-600 ms post-stimulus. In particular note the three most significant time-frequency 

features during the 200-500 ms time period in the approximate frequency ranges 0-2 Hz, 12- 

16 Hz and 20-25 Hz. The amplitude of the two lower frequency components was significantly 

increased until approximately 800 ms following stimulus presentation. Note also that there 

was no significant amplitude increase in the lower frequency range of the alpha band.

In terms of the alpha band, the contribution of this component to the genesis of the ERP 

is a product of both alpha phase synchronisation and an relatively small increase in alpha 

(energy). There was a significant broadband amplitude increase.

The two remaining task conditions that were investigated are when targets appear in the 

non attended visual field. That is when the subject is told to attend left but targets appear 

in the right visual field or targets that appear in the left visual when the subject is attending 

right.

The analysis of the activation of component 9 in response to targets presented in the left 

visual field (the two left most boxes) whilst the subject is mentally attending the right visual 

field is shown in Fig.6.15.

Prom the phase sorted ERP image it can be seen that a phase synchronisation occurred at 

approximately 200 ms post-stimulus. At approximately 400 ms post-stimulus, the distribu­

tion of phase angle tended toward being random once more.
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A burst of approximately 10 Hz frequency, was produced in the period 200-600 ms post­

stimulus. Following this alpha burst, the ERP returned to the pre-stimulus baseline.

The RMS of the amplitude of the averaged alpha waveform over the time period of the ERP 

showed a relatively large decrease in alpha power.

The inter-trial coherence (ITC) showed a significant phase synchronisation in the period 

200-400 ms post-stimulus.

The ERSP showed a broadband amplitude decrease, relative to baseline, in the time period 

starting almost immediately at stimulus presentation and lasting for approximately 600 ms. 

In particular note the distribution of the significant time-frequency features.

In terms of the alpha rhythm the contribution of this component to the genesis of the 

ERP was a product of phase synchronisation. There was a significant broadband amplitude 

decrease including the alpha band.

The analysis of the activation of component 9 in response to targets presented in the right 

visual field (the two right most boxes) whilst the subject is mentally attending the left visual 

field is shown in Fig.6.16.

From the phase sorted ERP image it can be seen that a weak phase synchronisation occurred 

at approximately 300ms post-stimulus. Almost immediately the distribution of phase angle 

tended toward being random once more.

The time domain average of the trials showed little deviation from the pre-stimulus baseline 

level. A small burst of alpha activity was observed between 200 and 600 ms.

The RMS of the amplitude of the averaged alpha waveform over the time period of the ERP 

showed a slight increase in alpha power at approximately 200 ms post-stimulus. A post ERP 

decrease in alpha power was also observed.

The inter-trial coherence (ITC) showed a phase synchronisation between 200 and 400 ms 

with a relatively low significance.

The ERSP showed amplitude increases, relative to baseline, in the time period between 

250 and 500 ms following stimulus presentation for narrow frequency bands approximately
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Figure 6.16: Component 9 response to targets in the right visual field whilst attending left
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centred on 2, 10 and 18 Hz.

In terms of the alpha rhythm, the contribution of this component to the genesis of the 

ERP was a product of a small alpha amplitude increase and phase synchronisation with a 

comparatively low significance.

6.4.3 Unfiltered Scalp Recordings

For comparison, the single scalp electrode that was nearest to the identified independent 

component in the left hemisphere of the visual cortex was investigated. The scalp electrode 

that reflected the laterally symmetric component in the right hemisphere was also analysed.

Fig.6.17 depicts the results when attended targets appear in the left hand visual field. That 

is the subject is attending left and the target appears to the left.

Fig.6.18 depicts the results when attended targets appear in the right hand visual field. 

That is the subject is attending right and the target appears to the right.
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6.5 Conclusion

A new technique, the phase sorted erpimage, was developed to investigate the phase dynam­

ics of ERPs. This was successfully applied, along with other techniques, to the investigation 

of independent component analysis (ICA) component activations in a visual spatial atten­

tion task. Two components with scalp projections that suggested sources with the visual 

cortex were analysed.

There were differences in the component activations in response to targets being in the 

left or right visual field. The scalp projections of components 4 and 9 suggested that they 

represent homologous and physiologically plausible signal generators within the visual cortex. 

The mechanisms controlling the activation of these two components was investigated. The 

time domain response of components 4 and 9 were analysed in terms of the contribution 

of alpha power changes and phase synchronisation to the genesis of the ERP. The results 

are summarised in Fig.6.19 and further reinforce the symmetry and independence of the 

components.

The similarity between the analysis of the raw data from the scalp electrode and that activa­

tion of the independent component further illustrates the power of ICA as a spatial filtering 

technique for EEG analysis. The analysis of the unprocessed single trials demonstrated 

the effectiveness of the phase sorted ERP image in the investigation of event-related phase 

dynamics. The technique yields good results when applied to noisy data.

The results suggest that two laterally symmetrical regions of the visual cortex are visual 

field selective.
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Chapter 7

Conclusions and Further Work

7.1 Chapter Summary

This chapter provides a conclusion to the study. Some suggestions for further work are 

provided.

7.2 Chapter Conclusions

The trial-to-trial variation had immediate effect on the recovery of event-related potentials 

(ERPs) from the larger amplitude background electroencephalogram (EEG). A novel tech­

nique for estimating single trial ERPs was developed and evaluated. The method was based 

on the wavelet transform which provided a representation of the ERP in the combined time 

and scale domain. The choice of the wavelet transform based approach reflected the time- 

varying characteristics of ERPs. The developed adaptive wavelet-based filtering algorithm 

was used for the single trial recovery of a cognitive cortical event-related potential (ERP) 

known as the contingent negative variation (CNV).

A method for quantitatively evaluating its effectiveness was devised and was used to select 

the most suitable orthogonal filter (basis function) for the process. The adaptive wavelet-
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based filtering algorithm was compared with a number of other possible techniques. The 

traditional approach of synchronised averaging was used to provide a datum for comparison. 

A filtering approach based on the wavelet packet transform was also explored in which a 

range of filters and basis trees spanning the wavelet packet table were evaluated.

The results obtained suggested that the choice of a particular basis tree appears not to 

be very significant. The method chosen for coefficient scaling had the most impact on the 

effectiveness of the filter. The results demonstrated that the developed adaptive wavelet- 

based filtering approach was the most effective technique considered. The method could 

reduce the background EEG by a factor of 3 while preserving the main features of the CNV 

waveform.

The ability to effectively estimate single trial ERPs allowed the analysis of the trial-to-trial 

variation of an ERP in schizophrenic and matched normal subjects. A study of contingent 

negative variation (CNV) trial-to-trial variation in 20 medicated schizophrenics and their 

normal control subjects was carried out. The study showed distinct differences in the time 

evolution of the CNV waveforms with trial numbers between each of the two subject cate­

gories. The findings of this study indicated that the first 6 trials provide valuable information 

concerning the development of the CNV.

The possibility of using the trend of the trial-to-trial variation for the purpose of subject 

classification was investigated. Using the Kohonen self-organising artificial neural network, it 

was possible to differentiate the majority of schizophrenic from normal subjects on the basis 

of their CNV amplitude trial-to-trial variation. Since trial-to-trial variation carries cognitive 

information, this study successfully revealed that schizophrenic subjects undergo a different 

cognitive process during the CNV recording experiments as compared with normal subjects.

A new method for the analysis of the event-related phase dynamics was developed. The 

technique was applied to P300 ERPs produced in a visual spatial awareness task. The genesis 

of the P300 and its relationship to the alpha rhythm was investigated for two spatially fixed, 

temporally independent signal sources identified following independent component analysis. 

The scalp projections of the two components suggested that the sources were within the 

visual cortex. The mechanisms controlling the activation of these two components, in terms 

of the contribution of alpha power changes and phase synchronisation was investigated.
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There were differences in the component activations in response to targets being in the left 

or right visual field. The results suggested that the two physiologically plausible components 

were homologous and that two laterally symmetrical regions of the visual cortex are visual 

field selective.

The power of the phase analysis method was illustrated following successful application to 

data taken directly from scalp electrodes. The similarity between the analysis of the raw 

data from the scalp electrode and that activation of the independent component further 

demonstrates the power of ICA as a spatial filtering technique for EEG analysis. Similarly, 

the analysis of the unprocessed single trials showed the effectiveness of the phase sorted ERP 

image in the investigation of event-related phase dynamics. The technique could successfully 

be applied to noisy data.

7.3 Thesis Conclusion

This study lead to the development of novel joint time-frequency techniques that facilitated 

increased understanding of event-related potentials. Wavelet transforms are ideally suited 

to the characteristics of single channel ERPs. For higher frequencies, their high temporal 

resolution at the expense of frequency resolution and the opposite of lower frequencies reflects 

the current classification of ERP components in terms of bursts of activity within frequency 

bands.

For ERP noise reduction, the ability to separate components with overlapping spectra but 

occuring at temporally different locations is essential. Wavelet transforms lend themselves to 

these non-stationary waveforms. The effectiveness and importance of wavelet based filtering 

to single trial ERP recovery was demonstrated by facilitating the investigation of trial-to-trial 

variation of ERPs and the subsequent analysis resulting in identification of schizophrenic 

subjects.

The ability to estimate the phase of a single frequency component from a single trial ERP 

at a given instance in time has allowed the event-related phase dynamics to be investigated. 

This has lead to a greater understanding of the complex mechanisms involved in the genesis
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of ERPs.

Wavelets and other joint time-frequency analysis techniques are ideally suited to the filtering 

and analysis of single trial ERPs.
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7.4 Suggestions for Further Work

The suggestions for further work are separated into two sections. The first focuses on 

wavelet based filtering of single channel ERPs. The second concerns the application of ICA 

and wavelets for the analysis of multichannel data.

7.4.1 Wavelets

The effectiveness of the wavelet based filtering algorithm could be improved in three areas.

Firstly, the development of a wavelet basis function more suited to single trial ERP recovery. 

However, the investigation undertaken in this study suggested that the basis function had 

minimal effect on the SNR improvement. This is to be expected since the constraints on 

wavelet design lead to functions with similar frequency responses. The application of optimal 

wavelets may be more suited to signal or feature detection.

Secondly, the use of the overcomplete wavelet packet transform could be developed further 

with the aim of selecting the best basis tree in terms of filtering performance. An information 

theoretic approach to basis tree selection, similar to Wickerhauser’s algorithm, with the aim 

being SNR improvement as opposed to signal compression.

Finally, The development of an ’intelligent’ coefficient scaling system. The results from this 

study suggested that the method for selecting and attenuating the signal coefficients in the 

wavelet domain was the most significant factor in SNR improvement. A method employing 

fuzzy logic and/or an artificial neural network may be able to learn which time frequency 

components are more related to noise than desired signal and hence attenuate the coefficients 

accordingly. This may lead to the development of a coefficient scaling method that does not 

rely on a time and phase locked average.

An improved single trial recovery method would facilitate a more detailed investigation of 

ERP trial-to-trial variation by allowing more subtle features to be considered. This may 

lead to the possibility of correlating trial-to-trial variation with the severity and types of 

symptoms in schizophrenia and other psychiatric disorders.
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Figure 7.1: The phase-sorted ERP image of an ICA component exhibiting a late d.c. offset 

dependent on alpha phase at stimulus

7.4.2 ICA and Wavelets

The combination of independent component analysis and joint time-ffequency methods is 

ideally suited to the analysis of multi-channel ERPs. ICA provides a spatial filter which 

separates the recorded data into temporally independent components. The activation of 

these components can subsequently be analysed using joint time-frequency techniques.

The results in this study have shown that the activation of two physiologically plausible com­

ponents, identified by the ICA algorithm is modulated by some underlying mechanism. The 

source and characteristics of this mechanism could be explored. Perhaps by the application 

of ICA to the activation of a component.

An observation made during this study was that a centrally located component in the visual 

cortex (almost beneath the OZ electrode) exhibited a post-stimulus d.c. offset dependent 

on alpha phase at stimulus as shown in Fig.7.1.

The effect can be more easily seen when the single trials are separated into two groups 

dependent on phase at stimulus. The plot of the average of each group is shown in Fig.7.2.

sorted

115



Chapter 7. Conclusions and Further Work

T i m e  d o m a i n  a v e r a g e s  o f  " R e d "  a n d  " B l u e "  t r i a l s

1500
t i m e  ( m s )

Figure 7.2: The time domain averages of trials with a late d.c. offset dependent on alpha 

phase at stimulus

Several other components exhibited this characteristic. This may be a fruitful area of inves­

tigation. From and engineers perspective, this may relate to storing the state of the brain 

at the time of stimulus, prior to dealing with it.

Finally ICA and the techniques developed in this study may be employed for single trial 

recovery. Jung et al. [59] have reported some results in this area. A development is to 

use the phases sorted erpimage, as produced in this study, to observe and quantify the 

event-related alpha phase shift for each trial. Using this information the single trials can be 

stretched to align peaks of interest.
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Adaptive multiresolution analysis based evoked 
potential filtering
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C. Gibson  
J.W.K.Rowe  
E.M.Allen

Indexing terms: Multiresolution analysis, Wavelet transform, Sigital detection. Evoked potentials

Abstract: Evoked potentials (EPs) are electrical 
activities of the brain synchronised with external 
stimuli. They have proved valuable for the 
understanding of the functioning of the brain and 
in investigating several brain related disorders. 
EPs are usually obscured by the background 
electroencephalogram (EEG) and thus require 
appropriate filtering. As the frequency spectra of 
the EEG and EPs overlap, the application of 
deterministic filters on their own is usually 
inadequate. Synchronised averaging improves the 
signal-to-noise ratio; however it inhibits 
measurement of the important variations which 
develop from one EP recording or trial to the 
next. The presence of these variations also makes 
an averaged EP a distorted version of an EP 
which evolves with time. A novel adaptive 
filtering algorithm based on the wavelet 
transform method of multiresolution analysis 
(MRA) was developed and was successfully used 
for single trial recovery of a type of EP known as 
the contingent negative variation (CNV). Both 
simulated and real CNV waveforms were 
processed. A technique to evaluate the 
effectiveness of the developed method was devised 
and was used to select the best orthogonal filter 
among Daubechies, Coifman and Symmlet for 
the adaptive MRA based filtering operation. The 
technique enabled the magnitude of the 
background EEG to be reduced by a factor of 5 
while preserving the main features of the CNV 
waveform.

1 Introduction

The electrical activity of the brain, electroencephalo­
gram (EEG) was first described by Caton [1]. The EEG 
represents the spontaneous electrical activity of the
© IEE, 1997
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1997
M.R. Saatchi, C. Gibson and J.W.K. Rowe are with the School of 
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brain. In addition to the EEG, it is also possible to 
record electrical activities of the brain which are syn­
chronised to the occurrence of external stimuli such as 
visual and auditory stimuli. These waveforms are 
known as evoked potentials (EPs). Cognitive EPs are 
known as event-related potentials (ERPs) and they 
require the subject to co-operate during the recording 
by recognition or response.

EPs are a valuable tool for understanding of the 
functioning of the brain and thus they have proved 
effective for investigating a number of brain related dis­
orders including schizophrenia [2, 3], Huntington’s dis­
ease [4] and Parkinson’s disease [5]. They complement 
the information obtained using the methods such as 
computerised tomography (CT) and magnetic reso­
nance imaging (MRI).

The techniques for the recording of EPs are now well 
established. The principal difficulty in analysing EPs is 
that they have a very poor signal-to-noise ratio. The 
magnitude of an EP is up to 30 pV. This is embedded in 
the background EEG which has a magnitude up to 
lOOpV. As the spectra of EPs and the background 
EEG overlap, the use of deterministic filters on their 
own usually does not result in an adequate reduction of 
the background EEG.

The magnitude of the background EEG is 
significantly reduced by the process of synchronised 
averaging. In this process a number of EPs recorded 
under similar experimental conditions are averaged. 
The assumptions are that the background EEG is an 
additive random signal which is uncorrelated with the 
desired EPs and the individual EPs are consistent in 
amplitude and latency from one recording or trial to 
the next. However the cognitive processes such as 
learning, memory and attention play an important role 
in the generation of many EPs causing an averaged EP 
to be an approximation of the true EP. In a number of 
studies ways of improving the effectiveness of 
averaging have been explored. These include: latency 
correction [6] and selective averaging by cross­
covariance [7]. Another shortcoming of the averaging 
method is that it inhibits measurement of the trial-to- 
trial variations as EPs evolve in amplitude and latency 
from one trial to the next. For example, in normal 
subjects the amplitude of a type of cognitive EP known 
as the contingent negative variation (CNV) initially 
increases and then decreases with time [8]. The cause(s) 
of these may be related to factors such as fatigue, 
learning and variation in the level of attention. The 
impairment of cognitive processes in subjects with
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disease and Parkinson’s disease may make their EP 
trial-to-trial variations different from those in normal 
subjects. The measurement and quantification of this 
information can thus provide valuable clinical 
information about the disorder.

In several studies, attempts were made to recover 
single trial EPs from the background EEG. These 
included autoregressive modelling [9], Kalman filtering
[10] and adaptive filtering [11]. The difficulty with such 
methods is that they rely on assumptions which are dif­
ficult to fulfil. For example, to use conventional adap­
tive filtering an EEG record is required. This must be 
closely correlated with the contaminating EEG and it 
must also be uncorrelated with the desired EP.

Recent advances in the field of wavelet transforms
[12] and their successful applications in the analysis of 
various signals, including biomedical signals [13], 
pointed to the possibility of using them to develop 
methods for the recovery of EPs. In a study, it was 
demonstrated that, by performing the wavelet 
transform of an EP and setting its specific wavelet 
transform coefficients to zero before performing the 
inverse wavelet transform, the contribution of the 
background EEG can be significantly reduced [14]. In 
another study, a time varying filter was developed 
using the wavelet transform and was successfully 
applied to two types of EPs [15]. The problem with the 
current wavelet transform based methods of EP 
recovery is that the signal-to-noise ratio improvement 
is achieved by causing significant loss in EPs details.

In this study, an adaptive filtering algorithm based 
on the wavelet transform method of multiresolution 
analysis (MRA) was developed. This algorithm was 
successfully used for the recovery of a type of cognitive 
EP known as the contingent negative variation (CNV). 
Several orthogonal filters were considered for the 
MRA process and the effectiveness of each for the 
recovery of the CNV waveform was evaluated.

H3(z J H2(z ) H-j(z J H0(z)

0 ji jt

Fig-1 Frequency responses o f  analysis filters

y2(k)

y0tM
Fig.2 Tree-structured analysis filter bank

2 Multiresolution analysis

MRA is an application of the wavelet transform. 
Detailed description of the method is provided in many 
articles, for example [16-18]. The MRA technique 
decomposes a signal using a set of filters with fre­
quency responses shown in Fig. 1. The network to 
achieve this is based on Fig. 2. It should be noted that 
\n represents decimation (down sampling) by a factor

n, t u g  a u i u u u i  u i  u c i ' i u i a u u i i  111 t a c i i  u i a t i c i i  u i  u i c

Fig. 2 is proportional to the bandwidth of the filter 
preceding the decimator in that branch.

Suppose H(z) and G{z) are the frequency responses 
of a highpass filter and a lowpass filter, each with the 
cut-off frequency of nil. The desired frequency 
responses of Fig. 1 can be realised by a set of filters 
expressed as [18],

H0(z) =  H(z)
H 1(z) = G(z)H(z2)
H2(z) = G(z)G(z2)H(z i )
H3(z )= G (z )G (z2)G(zl ) (1)

In practice, the equivalent of Fig. 2 shown in Fig. 3 is 
used as it is easier to implement. The signal can be 
reconstructed from its MRA coefficients (i.e. yo(/c), 
y\{k), ...) using the structure shown in Fig. 4. This 
network is based on a synthesis lowpass filter Gs{z) and 
a synthesis highpass filter Hs(z). The filters G(z), H(z), 
Gs(z) and Hfz)  are very closely related and therefore, 
given G{z), the other three filters can easily be derived 
from it [18]. The analysis and synthesis filters must 
satisfy a number of conditions to ensure perfect 
reconstruction (i.e. x{k) = x(A:) [18].
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3 Contingent negative variation and its 
preprocessing

The CNV is a cortical EP which consists of slow 
surface negativity in the EEG that depends on the 
association or contingency of two successive stimuli 
[19]. The first stimulus (SI) serves as a warning 
stimulus for the second imperative stimulus (S2) to 
which a response of some sort (usually motor) is made. 
An averaged CNV waveform from a normal subject is 
shown in Fig. 5. The CNV is thought to be generated 
principally by the frontal cortex as well as the midbrain 
including frontal association, motor and somatosensory 
zones [20]. The CNV is a cognitive EP because its 
generation depends on a sequence of brain activities 
such as attention, recognition, memory and motivation
[19]. The CNV has been extensively studied in 
schizophrenia because symptoms such as inattention
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and lack of motivation are characteristic symptoms of 
the condition [2, 3].

-15-

- 2 0 - -

- 2 5 -

-3 0

time, s

SI S2
Fig. 5 Averaged CNV waveform hi hohttal subject

The CNV recording system and the required preproc­
essing procedure are described in [21]. The system con­
sisted of an EEG machine, a personal computer, a unit 
which amplified, filtered, and digitised the signals. The 
passband of the filter was 0.1 to 30Hz. Programmable 
gain amplifiers were used to improve the accuracy of 

'  signal digitisation. The signals were digitised with a 12- 
bit analogue to digital converter using a sampling rate 
of 125Hz.

Thirty two CNV waveforms (trials) were recorded 
per subject from the convexity of the scalp (vertex) 
using silver-silver chloride electrodes and with the 
linked earlobes as reference. The duration of each trial 
was 12 seconds. The warning (SI) and imperative (S2) 
stimuli, were presented at 1 and 2 seconds, respectively. 
SI was a click and S2 was a continuous tone. The sub­
jects were asked to terminate the tone by pressing a 
hand-held push-button. All data recordings were car­
ried out in an EEG recording room by an experienced 
EEG technician.

4 Description of adaptive multiresolution 
analysis based filtering algorithm

A basic procedure for the MRA method of recovering 
an EP from the background EEG is as follows, (i) 
Decompose the waveform using MRA network of 
Fig. 3. (ii) Select the MRA coefficients at one or more 
levels and set these to zero. This selection needs to be 
carried out heuristically. (iii) Reconstruct the signal 
using the network of Fig. 4. As the MRA coefficients 
at some levels are more representative of the back­
ground EEG, this operation will improve the signal-to- 
noise ratio. This process can be improved by scaling 
the MRA coefficients with a value between 0 and 1. As 
the required scaling factor needs to determined heuris­
tically, this technique is inefficient.

The algorithm developed in this study was based on 
the principle described above; however, the optimum 
scaling factor for each level of the MRA was computed 
adaptively. The algorithm required a CNV template. 
Two forms of templates were possible. The first was 
subject specific template obtained by averaging 32 
CNV trials from the subject whom individual trials 
were required. The other was the CNV grand average 
produced by obtaining the averaged CNV waveforms 
(over 32 trials) from a number of subjects (in this study

20 subjects) and averaging the resulting waveforms. 
The latter template is only for the recovery of the CNV 
waveforms from the subjects of the category where the 
CNV grand average was obtained.

decompose s(k) 
decompose slk) 

m = 0

parameters initialisation: 
SF=0.5
!NC = 0.5
EDO: 1 .0

ED1 = IziyJki-yJU))2
m=m»1

no

Vkrl
yj*<) =yJ»<i#sFm m

EDD>0

reconstruct 
slk) E ( y J k l - y J U l 2ED2 =

ED1<ED2

yj^yjw *-rn m g  p

INC: INC*0.5 jfo(k) = #JkrSF

SF=SF*INC

ym lk )  = y k ) ‘SF

EDD=ABSl ED1-ED2)

| e D1 = ED2.

Fig. 6 Flowchart fo r adaptive MRA filtering algorithm 
S(k): CNV template 
s(fc): single trial CNV 
N: number o f sample points
>’m: M RA coefficients o f  s(k) a t level under consideration 
y m: M RA coefficients o f s(k) a t level under consideration 
SF: scale factor
GDI: Euclidean distance before scaling operation
ED2: Euclidean distance after scaling operation
INC: scale factor increment
EDD: Euclidean distance difference
ABS: absolute value operator
L: number o f M RA  levels

The operation of the adaptive MRA based filtering 
algorithm is outlined in the flowchart of Fig. 6. Ini­
tially, both the single trial CNV waveform ($(£)) and 
the CNV template (s(k)) were decomposed using the 
network shown in Fig. 3. Then, the MRA coefficients 
at each level (y0(k), yi(k), ...) were scaled using the fol­
lowing procedure. The initial Euclidean distance (EDI) 
between the MRA coefficients of the two signals at the 
level under consideration were computed. The scaling 
factor (SF) and scaling factor increment (INC) were 
initialised to 0.5. The Euclidean distance difference 
(EDD) parameter needs to be initialised with a positive 
value for the algorithm to start correctly. The signifi­
cance of SF, INC and EDD becomes clear once the 
rest of the algorithm is described. The MRA coeffi­
cients of the single trial CNV at the level under consid­
eration were scaled by current value of SF (initially,
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0.5). If this scaling caused the Euclidean distance 
between the MRA coefficients of the single trial CNV 
and those of the corresponding CNV template to be 
reduced (i.e. EDI > ED2), the scaling factor value 
remained unchanged. Otherwise* (i) the MRA coeffi­
cients of the single trial CNV at the level under consid­
eration were restored to their original values* (ii) the 
scale factor was incremented by half its current value, 
and (iii) the MRA coefficients at the level under con­
sideration were scaled with the new scaling factor. Fol­
lowing this, the absolute value of the difference 
between the current and previous Euclidean distances 
was computed. The current Euclidean distance was 
reinitialised with the previous Euclidean distance value. 
The process continued until any further scaling caused 
the Euclidean distance between the MRA coefficients 
of the single trial CNV and those of the CNV template 
to increase. The MRA coefficients at the remaining lev­
els were scaled similarly. For a signal of N  points, the 
number of MRA levels, L, is equal to log2N- l .  This 
operation resulted in an optimum scaling factor for the 
MRA coefficients at each level. Following this process, 
the single trial CNV was reconstructed using the scaled 
MRA coefficients.

5 Analysis procedure

The adaptive MRA filtering algorithm was imple­
mented as described in the previous Section. Tests were 
carried out to ensure the software worked correctly. 
Perfect reconstruction was achieved when the output of 
the network shown in Fig. 3 was used directly as input 
to Fig. 4. It was observed that subsectioning of the 
CNV waveform and its template would improve the fil­
tering operation. With this scheme, each section was 
processed by the algorithm independently. However, 
this caused discontinuities in the reconstructed signal. 
To minimise this effect, a section of the signal consist­
ing of 32 samples was processed, and the eight samples 
at the centre of the section were kept. Then the next 
section of the waveform was selected such that the 
eight samples at the centre of the section were the con­
tinuation of the eight samples kept from the previous 
operation. This process was repeated until the complete 
waveform was processed.

To be able to evaluate the effectiveness of the 
method, it was necessary to use simulated rather than 
recorded CNV waveforms. A simulated CNV 
waveform consisted of a piecewise CNV model to 
which real EEG was added. The piecewise CNV model, 
together with a simulated CNV waveform, are shown 
superimposed in Fig. 7. The simulated CNV is a very 
simplified representation of the CNV waveform, and 
therefore many components such as those developed as. 
a result of the onset of stimuli are not represented.
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The estimate of the evaluation of the CNV recovery 
method was based on computation of noise factor and 
signal distortion. Noise factor is the ratio o f signal to 
noise power ratio after filtering operation (SNRp) to 
signal to noise power ratio before the filtering process 
(SNR0).

atcn
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O
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Fig.8  Simulated CNV waveform after adaptive MRA basedfiltering

310 2
fig-9 Fig. 8 following application o f  wavelet packets and Wickerhauser 
best basis algorithm

The value of SNR0 was computed by
piecewise CNV model power

S N R 0 = additive EEG power

E L  4

E Z .1
(2)

where sk and nk are samples of the piecewise CNV 
model and the background EEG, respectively. The 
number of samples (AO was 512 points. The signal-to- 
noise ratio after the application of the CNV recovery 
method (SNRp) was estimated using

recovered simulated CNV power
S N R P = residual EEG power

s2sk

time, s
F ig .7 Piecewise CNV model superunposed on simulated CNV waveform

/ C f c = l  ( Sfc Sb) 
where sk are samples of the recovered simulated CNV. 
It should be noted that (sk -  sk) are samples of the esti­
mate of the residual background EEG. The larger the 
value of the noise factor, the more effective would be 
the process of EP recovery. The amount of signal dis­
tortion after filtering was estimated by comparing the 
Euclidean distances between the piecewise CNV model 
and that of recovered CNV waveforms. The smaller is 
the magnitude of this parameter, the smaller would be 
the amount of distortion.

For the analysis and synthesis networks of Figs. 3 
and 4, it was decided to use three popular orthogonal 
filters, namely Daubechies, Coiflet (Coifman), and 
Symmlet, and to evaluate their effectiveness (in recov­
ering the simulated CNV) with different number of 
coefficients. For Daubechies all even numbered coeffi­
cients between 2 and 20, for Coiflet 6, 12, 18, 24, and 
30 coefficients and for Symmlet all even coefficients
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between 8 and 20 were tried. The coefficients for these 
filters are available in [22].

6 Results and discussion

Considering the magnitudes of noise factor and distor­
tion, Daubechies filter with 16 coefficients, Coiflet filter 
with 6 coefficients and Symmlet with 20 coefficients 
provided best results. In each of these three cases, the 
magnitude of the noise factor was about 5.2 and the 
amount of distortion was about 6.3 x 10-5.

The output of the adaptive MRA based filtering 
algorithm for the simulated CNV waveform of Fig. 7 is 
shown in Fig. 8. The Daubechies filter with 16 
coefficients was used for this process. Traces of 
discontinuities are still visible in the recovered 
waveform. To completely remove these and to further 
attenuate any residual background EEG, the recovered 
waveform was processed using the \vavelet packets and 
the best basis algorithm of Wickerhatrser. The resulting 
waveform is shown in Fig. 9. The techniques and 
methods of implementation of wavelet packets and the 
best basis algorithm of Wickerhauser are described in 
detail in [23]. For this operation, Daubechies filter with 
16 coefficients was used and the signal was 
reconstructed with the 25 largest Wickerhauser best 
basis coefficients. It should be noted that signal 
decomposition using wavelet packets is similar to that 
of MRA except that, when using wavelet packets, the 
outputs of both lowpass and highpass filters are 
decomposed at each level.

o -10

uj .20

2 310
t im e .S

F ig.10 Averaged CNV waveform (32 trials) in normal subject

1 3 A0 2
t im e , s

Fig. 11 Mildly contaminated single trial CNV waveform

2 -10

u j -2 0

10 2 3
time, s

F ig .12 Adaptive MRA based filtering output for input signal shown in 
Fig. 11 and the template shown in Fig. lu
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Fig. 10 shows an averaged CNV waveform. Fig. 11 
shows a mildly contaminated single trial CNV 
waveform recorded from the same person. The output 
of the MRA based filtering algorithm for this single 
trial CNV waveform is shown in Fig. 12. The template 
used was the averaged CNV (Fig. 10). As can be 
observed, the background EEG is significantly 
attenuated while the waveform’s details are mainly 
preserved. Fig. 13 shows the waveform obtained by 
processing Fig. 12 with the techniques of wavelet 
packets and Wickerhauser best basis algorithm. The 
procedure followed to obtain Figs. 12 and 13 was 
similar to that followed to obtain Figs. 8 and 9. When 
the above analysis was repeated using the CNV grand 
average as the template, the recovered single trial CNV 
waveform was not noticeably different from that shown 
in Fig. 13. This shows that, if it is not possible to 
obtain an averaged CNV waveform from the person to 
use as the template, the CNV grand average (provided 
it is obtained from the same subject category) may be 
used as the template.

Fig. 12 shows a severely contaminated single trial 
CNV waveform recorded from the subject whose 
averaged CNV is shown in Fig. 10. The recovered 
CNV following the filtering operation is shown in Fig. 
15. Again, the CNV waveform is clearly visible in the 
recovered signal.

u j  -20

3 A0 1 2
t im e , s

Fig. 13 Fig. 12 following application o f wavelet packets and Wicker­
hauser best basis algorithm
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Fig. 14 Severely contaminated single trial CNV waveform
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Fig. 15 Fig. 14 following application o f wavelet packets and Wicker­
hauser best basis algorithm
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Fig. 16 Spike plot o f  MRA coefficients for Fig. 10
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A spike plot of the MRA coefficients of the average* 
CNV waveform of Fig. 10 is shown in Fig. 16. As th< 
length of the CNV waveform was 512 points, the signa 
is decomposed to eight levels. The convention of repre 
senting the coarsest level as level -1 is used here. Th< 
spike plots of MRA coefficients for Figs. 14 and 15 ar< 
shown in Figs. 17 and 18, respectively. Comparison o: 
Figs. 16, 17 and 18 indicates that the levels -5  to -8 arc 
significantly attenuated by the filtering process. This ii 
to be expected as the CNV energy is mainly concen­
trated at very low frequencies.
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Fig. 18 Spike plot of MRA coefficients for Fig. 15

It is intended to use the developed EP recovery 
method to perform a detailed analysis of trial-to-trial 
variations in several types of EPs and in a number of 
brain related disorders in particular schizophrenia. The 
aim is to relate the information to the cognitive proc­
esses affected in the brain disorders considered. An 
analysis of trial-to-trial variations using different EPs 
may also provide further insight into the differences 
between EPs as well.

7 Conclusion

An adaptive multiresolution analysis based filtering 
algorithm was developed and was used for the single 
trial recovery of a cognitive cortical evoked potential 
(EP) known as the contingent negative variation 
(CNV). A method for evaluating its effectiveness was 
devised and was used to select best orthogonal filter for 
the process. It was demonstrated that the method can 
reduce the background EEG by a factor of 5 while pre­
serving the main features of the CNV waveform. 
Although the CNV waveform was used in this study,'

-1

- 2  — L

-7

-8
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the technique is also applicable to other EPs. It is 
planned to use the method to study the trial-to-trial 
variations in a number of EPs and in specific brain 
related disorders, in particular schizophrenia. This may 
provide further insight into the cognitive processes 
affected in those disorders.
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