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Abstract

The ongoing electrical activity of the brain is known as the electroencephalograph (EEG).
Event related potentials (ERPs) are voltage deviations in the EEG elicited in association
with stimuli. Their elicitation require cognitive processes such as response to a recognised
stimulus. ERPs therefore provide clinical information by allowing an insight into neurological
processes. The amplitude of an event-related potential is typically several times less than the
background EEG. The background EEG has the effect of obscuring the ERP and therefore
appropriate signal processing is required for its recovery. Traditionally ERPs are estimated
using the synchronised averaging of several single trials or sweeps. This inhibits investigation
of any trial-to-trial variation, which can prove valuable in understanding cognitive processes.
An aim of this study was to develop wavelet-based techniques for the recovery of single trial
ERPs from background EEG.

A novel wavelet-based adaptive digital filtering method for ERPs has been developed. The
method provides the ability to effectively estimate or recover single ERPs. The effectiveness
of the method has been quantitatively evaluated and compared with other methods of ERP
estimation.

The ability to recover single sweep ERPs allowed the investigation of characteristics that
are not possible using the conventional averaged estimation. The development of features
of a cognitive ERP known as the contingent negative variation over a number of trials was
investigated. The trend in variation enabled the identification of schizophrenic subjects
using artificial intelligence methods.

A new technique to investigate the phase dynamics of ERPs was developed. This was suc-
cessfully applied, along with other techniques, to the investigation of independent component
analysis (ICA) component activations in a visual spatial attention task. Two components
with scalp projections that suggested that they may be sources within the visual cortex were
investigated. The study showed that the two components were visual field selective and that
their activation was both amplitude and phase modulated.
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Chapter 1

Introduction

1.1 Chapter Summary

In this chapter a brief introduction to the background of this study is provided. The aims

and objectives of the research are stated. An outline of the thesis is provided.

1.2 Introduction

The recorded, ongoing electrical activity of the brain is known as the electroencephalograph
(EEG) [1]. Evoked potentials (EPs) Aare voltage deviations in the EEG elicited in association
with stimuli [2]. For example, a light flashed into the eye would produce a visual evoked
potenfial. EPs are classified with respect to their stimuli and include, for example, auditory
and somatosensory evoked potentials. Event-related potentials (ERPs) are voltage devia-
tions in the EEG produced by a cognitive response to a stimulus [3]. For example a subject

may be asked to recognise an event or resx;ond to a specific stimulus.

ERPs provide clinical information by allowing an insight into neurological processes [4].
ERPs, such as the contingent negative variation (CNV), are used to investigate abnormal

brain processes and disorders, for example schizophrenia [5].
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Chapter 1. Introduction

The magnitude of an event-related potential is typically several times less than the back-
ground EEG. The background EEG has the effect of obscuring the ERP and therefore

appropriate signal processing is required for its recovery and analysis [6].

Traditionally ERPs are estimated using the synchronised averaging of several single trials.
A number of single sweeps (or trials) are combined to produce a single averaged waveform
that is an estimate of the underlying ERP. This however loses important clinical information

on trial-to-trial variation and attenuates signal components not phase-locked to stimulus [7].

ERPs are transient, non-stationary signals. Therefore their signal characteristics vary with
time. The signal processing techniques employed for both filtering and analysis of ERPs
must cater for these properties. As a result, more advanced signal processing techniques

have been applied to the analysis and estimation (filtering) of ERPs [8] [9].

The processing of neurophysiological signals relies on assumptions based on the characteris-
tics of the signal in question. Recently developed wavelet based signal processing methods
allow a multiresolution analysis of waveforms in the time-scale domain [10][11]. Wavelets

have been successfully applied to a range of biomedical signals [12](13] including ERPs [14].

In this study, state of the art digital signal processing techniques were applied to improve
the analysis of ERPs. ERPs are transient waveforms that warrant the utilisation of joint
time-frequency analysis techniques. The recently developed family of wavelet transforms

[15] provides the basis for the techniques developed in this study.

A novel adaptive wavelet-based filtering technique was developed to recover single trial
ERPs. The technique was carefully evaluated and optimised. This method was then used
in the investigation of the trial-to-trial variation of a particular type of ERP, known as the

contingent negative variation (CNV).

The trial-to-trial differences between schizophrenic and matched normal control subjects

were used to automatically differentiate subject categories based on this variation.

A new technique to investigate the phase dynamics of ERPs was developed. The results
obtained when combined with existing joint time-frequency analysis methods revealed new

information concerning the functioning of the brain.



Chapter 1. Introduction

1.3 Aims and Objectives of the Study

The aim of the study was to develop and apply novel signal processing techniques to improve

the estimation, analysis and interpretation of event-related potentials. The objectives of the

study were as follows.

1. Development of novel wavelet-based filtering techniques for the recovery of
single trial event-related potentials.
Traditionally evoked and event-related potentials have been estimated using the syn-
chronised averaging of several single trials. This however loses valuable clinical infor-
mation on trial-to-trial variation. An ideal filter would improve the signal to noise
ratio (SNR) of a given trial whilst maintaining essential trial specific details. The
amount of improvement in signal SNR as a result of filtering is largely dependent on
the amount of spectral overlap between signal and noise. Due to the characteristics
of ERPs, the use of a deterministic filter will either attenuate signal detail or fail to
sufficiently attenuate the background EEG.
The family of wavelet transforms facilitates the representation of a waveform in the
time-scale domain [16]. Develop a wavelet-based filter that is suited to ERP charac-

teristics.

2. Evaluation of the developed filtering techniques and their comparison with
other approaches.
Develop a method to evaluate and compare the performance of a range of filtering
techniques and ma:ke a quantitative comparison between the methods.
Compare a number of conventional and wavelet-based filtering approaches with the

filter developed in this study.
3. Investigation of the contingent negative variation trial-to-trial variation
trend in normal and schizophrenic subjects.

The magnitude of the averaged CNV is reduced in schizophrenic subjects when com-

pared with matched normal control subjects [5]. Possible causes are that all individual
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trials are reduced in magnitude or that there is a considerable peak latency variation
(jitter) between trials resulting in the attenuation of averaged trials.

Using recovered single trials from schizophrenic and matched normal control subjects,
investigate the trial-to-trial variation of the CNV. Investigate trends in variation within

subject categories and examine the feasibility of classification based on these trends.

4. Investigation of alpha phase resetting in visual event-related potentials.

Investigate the development of the early components of a visual P300 ERP [19](a
positive peak observed around 300 ms post-stimulus). In particular consider the genesis
of the N100 peak (a negative peak observed between 100 and 200 ms post-stimulus)
in a visual spatial attention task. Consideration was given to the two hypotheses

concerning ERP genesis, i.e. the additive model and phase reordering [17].
Employ the spatial filtering technique of independent component analysis [18] to es-
timate signal sources within the visual cortex. Investigate the characteristics of these

components.

1.4 Organisation of Thesis

An overview of the aims and objectives of this study and an outline of the thesis is provided

in this chapter.

Chapter 2 covers information on ERPs including the recording method and analysis by
conventional techniques such as synchronised averaging of several single trials or sweeps and
peak analysis. The two ERPs, the CNV and visual P300, investigated in this study are
described. A brief description of their clinical and other applications is provided.

In chapter 3 background information on the digital signal processing techniques used in this
study is provided. The discussion leads to the time-scale approach facilitated by ’wavelets’.
Other techniques employed including independent component analysis and artificial neural

networks are briefly described.

In chapter 4 the filtering of event-related potentials is discussed. Synchronised averaging

inhibits investigation of trial-to-trial variation, which can prove valuable in understanding
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cognitive processes. An objective of this study was to develop wavelet-based techniques for
the estimation of single trial ERPs. Estimation can be regarded as the filtering or removal of
unwanted EEG thus leaving the enhanced underlying ERP. A comparison of wavelet-based
filtering approaches for single trial recovery is made. A novel wavelet-based method for the
adaptive digital filtering of event-related potentials has been developed in this study. The
development of the adaptive filtering approach is presented. The effectiveness of the method
was quantitatively evaluated and compared with the conventional and other methods of
ERP estimation. The developed adaptive filtering method provides the ability to effectively

estimate or recover single ERPs.

In chapter 5 the investigation of the trend in trial-to-trial variation of the CNV in normal
and schizophrenic subjects is discussed. The the filter developed in this study and detailed
in chapter 4 was applied to recover single sweep CNVs from 20 schizophrenic and 20 age
and sex matched normal control subjects. This enabled the investigation of characteristics
that are not possible using conventional averaged ERPs. In particular, the development of
the CNV features over a number of trials was investigated. The observed subject specific
trend in trial-to-trial variation was used as the input to a Kohonen self-organising artificial
neural network. This analysis enabled the differences in the CNV trend for both subject
categories to be investigated and the possibility of using this information for automatic

subject classification to be explored.

In chapter 6 a fundamental investigation of the genesis of event-related potentials using
novel phase analysis methods and joint time frequency techniques is provided. The methods
developed for analysis of the phase of alpha component in the P300 recorded during visual
spatial attention experiments show the importance of phase information in understanding
the complex dynamics of cortical processes. The relationship of known active regions of
the brain during a visual spatial attention task and the topographical distribution of the
P300 was considered using the developed techniques following the application of independent

component analysis.

Chapter 7 provides a conclusion to the study. This study lead to the development of novel
techniques that facilitated an increased understanding of event-related potentials. A novel

wavelet-based filter was developed to estimate single trial ERPs. The effectiveness of the
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filter was evaluated in comparison with other techniques. The application of new analysis
techniques was demonstrated in the differentiation of schizophrenic and matched normal
subjects and in the understanding of the development of the P300 in a visual spatial attention
task.



Chapter 2

EEG and Event-Related

Potentials

2.1 Chapter Summary

This chapter provides an introduction to event-related potentials (ERPs). First an overview
of the ERP recording method is provided. Some factors that need to be considered dur-
ing recording are discussed. The conventional method of estimating an ERP from several
recorded trials is introduced. The two event-related potentials used in this study are dis-

cussed. The applications of ERPs in clinical and other studies are outlined.

2.2 Introduction

The electrical activity of the brain was first reported by Caton [20]. The electroencephalo-
graph (EEG) is the observed electrical signal at various sites on the scalp. Event-related
potentials (ERPs) are electrical signals generated by the brain in a cognitive response to

a stimulus [21]. They cause a voltage deviation from the ongoing electrical activity of the

brain (EEG).
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ERPs are time locked or synchronised to the stimuli that elicited the response. The func-
tioning of the brain can therefore be investigated by considering event-related potentials
(ERPs). The analysis of ERPs can reveal valuable clinical information about particular

brain disorders.

2.3 ERP Characteristics

Event-related potentials are recorded from a number of sites on the scalp. A marked variation
in ERP amplitude is generally observed at topographically distinct points [22]. ERPs are
electrical signals generated by compound neural activity in a cognitive response to a stimulus.

The magnitude of an ERP is typically several times smaller than the background EEG.

An ERP cannot usually be observed without appropriate signal processing due to the pres-
ence of larger amplitude background noise sources. The contaminating noise can be of an
order of magnitude larger than the desired signal. For example the magnitude of a particular
ERP known as the contingent negative variation (CNV) [23] is typically 20 V. This signal is
obscured by noise of typically 100 V. The source of noise is both physiological e.g. ongoing
electroencephalogram (EEG), electrooculargram (EOG), electromyogram (EMG) and non-
physiological such as instrumentation noise, electromagnetically induced signals from mains

electricity and radio broadcasts [7].

By inspecting gross deviations in the recorded waveforms, severely contaminated waveforms
can be rejected from subsequent processing and analysis. Even after differential recording,
ocular artefact removal and bandpass filtering, the ERP is still obscured by background
EEG.

The conventional signal to noise ratio (SNR) improvement method employed in ERP anal-
ysis is synchronised or coherent averaging [7][6]. This approach assumes that the ERP is
deterministic and appears coherently in successive trials whilst being uncorrelated with the
ongoing background EEG. The improvement in SNR is proportional to the square root of
the number of trials used [24].

Various factors such as age and sex are known to affect the characteristics of ERPs. When
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using ERPs to investigate brain malfunction, the patients are usually matched with normal

control subjects in terms of these contributing factors.

2.3.1 ERP Models

The electrical activity recorded on the surface of the scalp is widely assumed to be the sum-
mation of a number of signal sources within the cortex [25]. Functional imaging studies of
the brain [26] show small distinct regions (of the order of a cubic centimetre) activated in
response to a given task. The time course of these activations suggests the hypothesis that
spatially independent groups of neurons are recruited to accomplish a given task. Further-
more, different regions of the brain are known to be responsible for given tasks, i.e. visual

and motor cortex.

In trying to understand the functionality of the brain several models have been suggested
[17]. Most models are based on grouping of a number of neurons into a single source
or generator of electrical activity. The way in which the models differ is related to the
constraints which are placed on the sources. In particular the types of signal or actiﬁty

they produce.

Each signal source can be considered to be an oscillator which has analogies in both electrical
and mechanical engineering [27]. An oscillator has a number of parameters which alter its

characteristics. These are the amplitude, frequency and phase of the signal’s oscillation.

2.4 ERP Analysis

An ERP is a combination of transient components. The latency of signal features from
stimuli allows the electrical response to be separated into two sections. The evoked potential
which lasts for typically 100ms following the stimulus and the event-related potential that
reflects cognitive processing. The latter commences approximately 300ms after the onset of

the stimulus and can last for several hundred milliseconds.

ERPs are time locked or synchronised to external stimuli. The standard signal-to-noise ratio
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(SNR) improvement method of synchronised or coherent averaging relies on this idea [7][6].
The assumptions made are that successive signals contain a constant signal component (i.e.
ERPs are deterministic) and an uncorrelated noise component (background EEG in this

case)that is representative of a zero-mean Gaussian process.

Following SNR improvement techniques, ERPs are typically characterised using peak polar-
ity, amplitude and latency measures. For example, the P300 is a positive peak occurring at

around 300 milliseconds following the presentation of the stimulus.

2.5 ERPs Considered in this Study

The ERPs included in this study were the contingent negative variation and the visual P300.

2.5.1 The Contingent Negative Variation

A well known ERP is the contingent negative variation (CNV) first described by Walter et
al. [28] in 1964. In this study subjects received two successive stimuli. The first was a click
(known as the warning stimulus, S1) and this was followed by a continuous tone (imperative
stimulus, S2) one second later. The subjects terminated the imperative stimulus by pressing

a hand held push-button.
A typical CNV waveform in a normal subject is shown in Fig.2.1.

Immediately following the warning stimulus a negative voltage shift was observed in the
background electroencephalogram (EEG). The negative potential returned to its original

baseline after the imperative stimulus and the subjects’ response to it.

In normal subjects the CNV magnitude is approximately 20 uV. CNV amplitude reaches
its peak after a number of recordings (trials). This CNV development time can vary with
the mental state of the subject and the particular experimental conditions. For example, in

a study the CNV development time was reported to be about 10 trials [29).

The CNV amplitude depends on a number of cognitive processes. The focus was initially on

the effect of expectancy [28]. Later studies emphasised conation or intention to act [30] and

10
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Figure 2.1: A CNV produced as an average of 32 single trials recorded from a normal subject.

The stimuli are presented at 0 and 1 seconds

motivation [31] to explain their findings. Level of attention is believed to be important in
CNV development. In a study designed to investigate this, letters were presented to normal
subjects during the interstimulus interval of randomly selected CNV trials and randomly
omitted during others [32]. It was observed that CNV amplitude increased for the trials in
which no letters were shown. This was considered to reflect the state of undivided attention
in the no-letter trials. Factors which might increase attention (such as experiments requiring
a faster motor response to S2 or providing an S2 that is harder to detect) increase CNV
amplitude {33]. Distraction is believed to be one of the most significant factors that can
affect CNV amplitude development [23].

2.5.2 Late Positive Event-Related Potential (P300)

The P300, or late positive complex, was first reported by Sutton et al. in 1965 [19]. The
P300 can be elicited in both auditory and visual tasks [4], however in this study only a visual
spatial attention paradigm was selected.

The P300 is most commonly recorded using an oddball paradigm [36]. In such a paradigm,
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the target stimulus occurs infrequently in a random sequence of a number of different stimuli.
For example, in this study, each subject received a psuedorandom sequence of visual stimuli
presented in one of number of spatial locations. The subjects were asked to respond to

targets (stimuli appearing at a given position) by pressing a button.

A typical P300 waveform in a normal subject is shown in Fig 2.2.
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Figure 2.2: A P300 produced as an average of 100 single trials recorded from a normal
subject. The visual stimulus is presented at time 0

From Fig.2.2 it can be seen that a relatively large positive peak is evoked approximately 300
ms post-stimulus. In normal subjects the P300 magnitude is approximately 10 uV

Late positive responses are evoked in response to relevant but infrequent visual, auditory
and somatosensory stimuli (pertaining to the electrical stimulation of peripheral nerves)
[36]. The fact that the P300 is typically present only in target trials suggests that it reflects
information processing [37]. The cognitive nature of the P300 has been exploited in the
investigation of brain disorders [38]. The peak amplitude and latency vary with several
task-related variables including attention and novelty [39].
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2.6 Clinical and Other Applications of ERPs

An understanding of the genesis and workings of ERP’s leads to increased knowledge of
the complex system associated with the brain. This knowledge has application in a number
of areas. Most importantly, in understanding the workings of the brain, mental disorders
including schizophrenia and epilepsy can be better understood and perhaps treated more
efficiently. This knowledge also allows modeling of the brain and hence the ability to produce
improved artificially intelligent systems. The application of such systems is widespread and
is likely to change the way in which computers operate. The intermediate ground is in
the area of human computer interfacing. Thought control used to be a figment of science
fiction. Recent reports [40] show that control of computers by severely disabled people will

be possible in the near future.

2.7 Conclusion

Cognitive event-related potentials lend themselves to studies in brain disorders, for example
the CNV in schizophrenia. Conventional synchronised averaging produces a single ERP
from many trials. One severely contaminated trial can have a large effect on the averaged
waveform. An effective single trial ERP recovery method would extract more information
from the recorded waveform data. This increase in information will allow a more detailed
analysis of ERPs to be possible. Currently, the ability to investigate the development of
an ERP over a number of trials (habituation) is inhibited. This trial-to-trial variation is
important in understanding the functioning of the brain. Similarly the opportunity for real

time monitoring of brain processes may become viable.

An effective single trial recovery method would improve the signal to noise ratio of the ERP

whilst maintaining trial specific detail.
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Chapter 3

Signal Processing and
Interpretation Techniques Used

in this Study

3.1 Chapter Summary

An overview of a number of signal expansion techniques used in this study is provided in
this chapter. A general introduction to discrete signal expansions is initially presented.
The Fourier transform and its time varying derivative are covered. The family of wavelet
transforms are then introduced from a filter bank perspective. The other analysis techniques
employed are briefly discussed. These are the Hilbert transform, independent component

analysis and the Kohonen artificial neural network.

3.2 Introduction

Signal processing uses mathematical techniques to perform operations on data. The use of

signal expansions provides alternative representations of the same data. By considering the
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characteristics of the signal and the aim of the signal processing, the correct representation,
or view, of the data can be identified. The chosen view should facilitate the subsequent data

processing in a more efficient manner.

The signals considered in this study were discrete. During the recording process the con-
tinuous electrical activity was sampled at discrete time intervals and quantised to discrete
amplitude values. All subsequent processes can thus be considered as digital signal process-

ing [41] [42].

3.3 Discrete Signal Expansions

The signal of interest z can be expressed as a linear combination of a set of elementary

functions, i.e.

x= Z a;p; (3.1)

where o; are the expansion coefficients and ¢; are the basis functions [16].

The expansion coefficients in (3.1) can be computed by (3.2).

a; = Z gE,[n]x[n] (3.2)

Where ¢; is the dual of the basis functions ;.

The expansion coefficients are a measure of similarity between the signal and elementary
function. The larger the similarity, the larger the coefficient. Equation (3.2) is the inner
product of two vectors i.e. the elementary or basis function and the signal. This can be

denoted as < @,z >.
The set {¢;} is complete for the space S if all signals € S can be expanded as in (3.1).

If the set {¢;} is complete and orthonormal then we have an orthonormal basis for S. The

basis and its dual are the same i.e. p; = ;.
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A set is orthonormal if < tpj >= Sij where Sij = 1ifi =/, and 0 otherwise.

Ifthe set is complete and the elementary functions are linearly independent but not orthonor-

mal, then we have a biorthogonal basis. The basis and it’s dual satisfy < >—Sij [43].

If the set is complete but not linearly independent then we have an overcomplete represen-
tation called a frame and not a basis [11]. An overcomplete representation may contain a

number of bases.

3.4 Fourier Transforms

the Fourier transform use harmonically related sinusoids as elementary functions (the com-

plex exponential in (3.3) and (3.4)) [44]. The Fourier transform may be expressed as

/00 f{t)e-juidt (3.3)
Fow) = (3.4)

where F(ui) are the Fourier transform coefficients for function f(#) at angular frequency ui.

The discrete Fourier transform, for a signal of length N, is given by (3.5).

N-1 —zZr
F(k) = 1T fIn]W%k where WN = (3.5)
n=0

The discrete Fourier transform provides a view ofthe signal purely in the frequency domain.

Any transient features and discontinuities are not well represented.

3.5 Inter-Trial Coherence

Coherence provides a measure of the similarity of phase angle between two or more signals

at a given frequency [41]. For two signal vectors x and y of length n, the coherence is a
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function of the power spectra of z and y and the cross spectrum of z and y [45] and may be

denoted by

Cay(w) = Gy () (3.6)

VGzz(W)Gyy (w)

where Gy(w) is the cross spectrum of z and y at frequency w. For a vector of length N

where X, (w) and Yy (w) are the complex FFTs then Gy (w) is given by,

N
Cay(@) = - 3 Xnl) V() 3.7)

n=1

and Gz;(w) and Gy, (w) are the power spectra of z and y denoted by

1 N

Gorl@) = 3 Y- Xl 8)
n=1
1 X

Gyyw) = N Z Yo (W) (3.9)

respectively. The algorithm used in this study provides an estimate of the magnitude squared

coherence [48] denoted by,

2 |Gy
|Czy (W) = m (3.10)

An application of coherence to the analysis of visual evoked potentials is provided by Challis
and Kitney [45)].

3.6 Deterministic and Adaptive Filters

Ideal deterministic filters (finite impulse response (FIR) or infinite impulse response (IIR))
allow or pass a section of the spectrum of a signal whilst rejecting or stopping the remainder.

For example applying a lowpass filter with a cutoff frequency of 10 Hz to a signal would
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allow all frequencies below 10 Hz to remain unaffected whilst attenuating all frequencies
higher than 10 Hz.

An example of the application of deterministic filters to EEG analysis is in mains line

removal.
5assumed to be stationary. The characteristics of event-related potentials

The characteristics of deterministic filters do not reflect the nature of single-trial ERPs in
which the ongoing EEG is considered to be the additive noise. ERPs have non stationary
spectral characteristics which completely lie within the frequency spectrum of the back-
ground EEG. In the general ERP case, a deterministic filter cannot separate desired signal

from noise.

3.6.1 Conventional Adaptive Filters

Adaptive filters automatically adjust their coefficients (hence frequency response) to optimise
the SNR of the desired underlying signal [46]. A separate channel is employed that provides
a time series estimate of the additive noise. Ieachor et al. [47], applied an adaptive filter
to the problem of ocular artifact removal from EEG. An estimate of the noise (the ocular
artefacts) was obtained from the electrooculogram recorded from a number of electrodes
located around the eyes. This noise estimate was subtracted from each EEG channel to

produce an ’artefact free’ EEG.

The application of conventional adaptive filters to the reduction of background EEG (noise
in this case) is not suitable due to a number of limitations. The primary concern being that
they require a good model of the ’noise’. That is no noise channel exists for EEG and since

EEG is non-stationary the method usually does not provide satisfactory results.

3.7 Discrete Hilbert Transform

The instantaneous frequency characteristics of a real signal can be obtained from its Hilbert

transform [48]. The Fourier transform of the original signal is calculated. The negative
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frequencies are set to zero and the inverse Fourier transform is computed. To compensate
for removing half of the signal energy (by setting negative frequencies to zero), the calculated
signal is then multiplied by two. The resulting complex signal is called the analytic signal

(49].

The real part of the analytic signal is the original time series and the imaginary part is
a 90 degree phase shifted version of the original time series [42]. From this, estimates of
the instantaneous frequency and phase can be obtained [41]. The discrete analytic signal is

complex and can be expressed in terms of its magnitude and phase by

s(n) = A(n)e*™ (3.11)

where the magnitude of the signal A(n) in terms of its real (s,) and imaginary (s;) parts is
given by,

A(n) = 1/82(n) + s2(n) (3.12)

and the instantaneous phase ¢(n) is expressed as,

&(n) = arctan

si(n) (3.13)

sr(n)
The technique has been used to obtain the amplitude envelope of single harmonics for the
analysis of the dynamics of EPs [55]. In this study the Hilbert transform was used to
estimate the instantaneous phase of the alpha band activity in a visual P300 ERP. This
facilitated the investigation of event-related phase dynamics [50][51]. '

3.8 Short-Time Fourier Transform

In order to obtain some temporal localisation of the Fourier transform, the short-time Fourier
transform was developed [52][53]. The STFT is obtained by computing the Fourier transform

of several temporal sections of the signal. The sectioning of the signal is implemented using
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window functions which also decrease the edge effects incurred when processing a finite
length signal. The window for a given transformation is fixed in size. The choice of the

window size is a compromise between time and frequency localisation.

The window function v(t) can act on either the signal or basis functions (complex exponen-

tials). Some examples of windowed basis functions are shown in 3.1.

Figure 3.1: Basis functions used in the STFT. The horizontal axis shows time. The fixed

length and amplitude window function is shown as a dotted line.
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The short-time Fourier transform of a signal f(¢) can be expressed as,

STFT(w,7) = / F(®)v(t — )e i dt (3.14)
or alternatively,
STFT(w,7) =< gu,r(t), f) > (3.15)
where
Gur =v(t - 7)™ (3.16)

and 7 is the time shift between successive transformations.

The transformed signal can be viewed on a time-frequency plane as shown in Fig.3.2.

Frequency
(Hz)

Time (S)

Figure 3.2: The time-frequency plane produced by the STFT

21



Chapter 3. Signal Processing and Interpretation Techniques Used in this Study

The type or size of window function is chosen based on the signal characteristics and the
aim of subsequent processing. From Fig.3.2, it can be seen that the size of the window, and
hence time-frequency bins, remains constant during transformation. The optimal window

for good time and frequency resolution is Gaussian shaped.

Due to the basis functions used, the STFT is well suited to localised oscillations, i.e periodic
signals of short time duration, but is less well suited to pulses or spikes, i.e. transient

components.

3.9 Event-Related Spectral Perturbation

The event-related spectral perturbation (ERSP) [54] is a method of averaging normalised
time-frequency transforms. Pfurtschellers method of event-related desynchronisation (ERD)
and event-related synchronisation (ERS) [55] [66] provide a measure of event-related changes
in single frequencies. The ERSP extends this ideas by generalising them to be broadband.
The ERSP is a tool for the analysis of ERPs. It focuses in particular on their dynamics. The
technique is applicable to all joint time-frequency transforms and to data sets that consist

of several epochs with similar underlying responses.

The methodology employed is as follows. For each single sweep recorded from a single chan-
nel, the joint time-frequency (STFT in this case) is calculated. This includes a section of
pre-stimulus baseline EEG. The spectral distribution is normalised using the mean base-
line spectrum (calculated by taking bootstrap [57] samples from the recorded pre-stimulus
signal). The scale is converted to be logarithmic. The ERSP is obtained by repeating the
above procedure for several trials then calculating the average time frequency distribution.
A subsequent processing step using bootstrap data is to set significance levels which are
then used to threshold the data. All non-significant values are set to a central value (zero).

This enables the regions of significance to be more easily observed from the plots.

The application of the technique to auditory event-related potentials [54] shows the effec-
tiveness of such a joint time-frequency technique. The dynamics of the EEG spectrum in re-

sponse to a stimulus is revealed. The ERSP has also been applied to magneto-encephalogram
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(MEG) recordings of an auditory ERP [58].

Makeig [54] discussed a problem in the ERSP as proposed in that the time resolution is
not fine enough to reveal a relatively high frequency Gamma burst (a transient period of
EEG activity in the 30-80 Hz range). He suggested that a future ERSP method may use a
finer or variable time resolution method. Wavelets provide a solution to this problem. They

inherently provide higher temporal resolution at higher frequencies.

The ERSP however does not reveal the amplitude and latency variability of individual single
trials. This is best investigated using single trial analysis methods (Chapter 6) and visualised
using techniques such as Jung et al.’s erpimage [59] (see also phase analysis chapter 6).

3.10 Wavelet Transforms

A family of wavelet transforms was developed recently from research in the different disci-
plines of mathematics and signal processing [60] [61]. The time-scale representation promises
improved performance in a wide range of signal processing applications [62]. In particular,
wavelets may be applied to biomedical applications [12]. Their application to the analysis
of EEG is currently an active area of research [63](64](65]. Wavelets are also emerging as an
ideal tool for modeling the dynamics of the brain [66].

Wavelets can be considered a natural development of the short-time Fourier transform [67)].
Inthe STFT, the basis functions are time shifted and modulated versions of the primary basis
function. The time shift and scaling of a prototype basis function provides a constant relative
bandwidth analysis known as the wavelet transform (WT). The WT can offer a better
compromise in terms of time and frequency. At low frequencies, the frequency (or more
correctly scale) resolution is increased at the expense of temporal resolution. Conversely at

higher frequencies temporal resolution is increased to the detriment of scale resolution.

The term wavelets covers a family of transforms. In this chapter, wavelet transforms appli-

cable to discrete signals are discussed.
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3.10.1 Continuous Wavelet Transform

The continuous wavelet transform (CWT) [68] provides a representation of a signal on a

time-scale plane. The CWT of a signalf(¢) can be expressed as 3.17 [69]

CWT(w,7) = % /82 w0 syan (3.17)

Where w € Rt is the scale factor, 7 € R is the time shift and ¥ is the prototype basis
function.

The CWT can also be expressed mathematically as an inner product as in 3.18

CWT(w,7) =< ¥y (t), f(t) > (3.18)

Where the basis functions ¥, , are given by

1 _t—1
Yyr = E‘I’('w—) (3.19)

That is we measure the similarity between the signal and shifts and scales of an elementary

function. Some scaled and translate (shifts) of a wavelet are depicted in Fig.3.3 [70].

A popular basic wavelet is Morlet function [70], expressed as 3.20

T(t) = efvote™ (3.20)

Its corresponding Fourier transform is 3.21

T(w) = vame =232 (3.21)

By setting the centre frequency wy = 5.3, Morlet function closely approximates the necessary
properties for a basic wavelet [71]. The approximation of both the basis functions and the

transform allows the application to digital signal processing.
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Figure 3.3: Wavelet basis functions produced by scaling a single prototype. The horizontal
axis shows time. The variable length and amplitude window function is shown as a dotted

line.
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3.10.2 Discrete Wavelet Transform

The discrete wavelet transform represents a signal z(£) by the relationship

z(t) = Z <z, ¥x > V() (3.22)
Jk
Where the DWT coefficients < z, ¥ > are a measure of the energy of the signal compo-

nents located at (277k,27) on the time-frequency plane [43].

If the basis functions are implemented as filters, the discrete wavelet transform can be

implemented by as a tree structured filter bank [61].

From a filter bank perspective, the discrete wavelet transform processing element can be
considered to be a two channel filter bank [72). As the name implies, the filter bank sep-
arates the signal into two channels, or subbands. This is achieved through the use of a

complementary pair of high and low pass filters for analysis and a similar pair for synthesis.

The two subbands have the same sampling rate as the original signal and hence contain
reduntant information (there are two full length signals where previously there was one).
The bandwidth of each subband is half of that of the original signal so the sampling rate
can be downsampled, or decimated, by a factor of two. That is, every other sample may be
thrown away. For an N band filter bank, each subband can be decimated by a factor of up
to N. When the factor by which each subband is downsampled is equal to the number of
bands in the filter bank, the filter bank is said to be maximally decimated.

The process of downsampling or decimation is usually depicted by a down arrow followed
by the decimation factor. The corresponding upsampling operation in the synthesis bank,
denoted by an up arrow follwed by the upsampling factor, introduces zero valued samples

into each subband. The effect is to increase the sampling rate.

Fig.3.4 shows a two channel, maximally decimated, orthogonal filter bank. The low and
highpass filters in the analysis section are represented by Hy and H; respectively. The

corresponding filters in the synthesis section are Fy and Fj.
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Analysis Bank Synthesis Bank
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Figure 3.4: A two channel, maximally decimated filter bank (QMF)

It can be seen in Fig.3.4 that the analysis filter comprises a high pass / low pass filter pair
followed by a decimator. The frequency response of the analysis filters is shown in Fig.3.5.

Magnitude
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Figure 3.5: The frequency response of a QMF
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Figure 3.6: A two level tree structured filter bank

The analysis filter decomposes a signal into two subbands or channels. The lowpass channel
is the trend of the signal, the highpass is its detail. Each channel is then down sampled by
a factor of two. The synthesis filter is comprised of an interpolator (upsampler) and a high
pass [ low pass filter pair (matched or mirrored with the analysis filter). The aliasing, or
the error caused by a spectral overlap, introduced by the analysis filters is cancelled by the
correct design of the synthesis filters [73]. The repeated application of the analysis filter to

the lowpass channel leads to a tree structured filter bank as shown in Fig.3.6.

The highpass channel, which contains the details of the signal at a given level in the tree, is
not further processed. The analysis filter is then applied to the lowpass channel. The sub-
sequent splitting of the lowpass channel is carried out until the signal has been decomposed
to a pre-determined number of levels or the length of the signal has been downsampled to

1.

The discrete wavelet transform (DWT) produces a proportional bandwidth filter bank, each
filter has a bandwidth proportional to its centre frequency as shown in Fig.3.7. This ar-

rangement provides, respectively, the spectral/temporal resolution trade-off at lower/higher
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frequencies.
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Figure 3.7: The frequency response of two level tree structured filter bank

The application of the filter bank results in the signal being separated into frequency bands.
The lowest frequency band represents the trend of the signal. Each subsequent addition of
higher frequency bands results in more details being added to the signal. Hence the idea
of multiresolution [74]. The signal can be viewed at different levels of resolution simply
by adding or removing detail as necessary. Each channel or subband can be processed
independently. The signal is synthesised by the repeated application of the synthesis filter
starting with the lowest frequency channels.

3.10.3 Wavelet Packet Transform

The wavelet packet transform (WPT) [75] is a superset of the discrete wavelet transform
[76]. Instead of applying the analysis filter solely to the lowpass channel as in the case of
the wavelet transform, in the wavelet packet transform the filter is applied to the highpass
channel as well [78]. As with the discrete wavelet transform the WPT can be implemented
by the repeated application of a maximally decimated, two channel filter bank [73], i.e.
recursively splitting a signal into two sub-bands which are then decimated by a factor of

two. The time-scale plane produced is shown in Fig.3.8, the vertical axis represents scale,
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while the horizontal axis is time. Each bin or rectangle in the table has the same area

resulting from constant Q filters. The trade-off between time and scale resolution can be

seen in Fig.3.8.

Scale .

Time —

Figure 3.8: The time-scale plane (or wavelet packet table) the vertical axis is scale, horizontal

is time

The resulting transform is overcomplete allowing a basis to be chosen that best matches the
processing task. For example Wickerhauser’s best basis search algorithm selects the best
basis in terms of the minimisation of an information cost function [77]. As such Wicker-
hauser’s best basis is ideally suited to signal compression. Another basis that spans the
wavelet packet table is the wavelet basis. Which is, in fact, the discrete wavelet transform.
The transform can be ’adaptive’ since the basis can be chosen from a set of bases to meet

the needs of the application.
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3.11 Independent Component Analysis (ICA)

Independent component analysis (ICA) performs a blind signal source separation on a linear
mixture of unknown signals [18]. Significant progress has been made recently in the area
of separating independent components from signal mixtures. An number of information
theoretic based approaches are reviewed by Lee [79]. The aim of a signal source separation
method is to minimise the mutual information between the separated components thus
making them statistically independent. The goal of ICA is therefore to perform a linear
transform which makes the resulting variables as statistically independent from each other

as possible [79].

ICA uses an unsupervised learning algorithm based on information theory [18] to obtain an
unmixing matrix that maximises the mutual entropy of the input and output vectors. The

algorithm is outlined in the following steps.
The unmixing matrix W is initialised to the identity matrix.

The signal sources are estimated by U = WX where U contains the unmixed components

and X contains the original mixed signals.

The estimated signal sources U are transformed by a non-linear transfer function such as a

sigmoid function. The output Y of a sigmoid transfer function is denoted by 3.23.

1
= T 070 (3:23)
where wyp is a weight vector whose elements are initialised to zero.

A learning rule is used to determine the change of the weights in the unmixing matrix W.

The learnig rule is expressed in 3.24.

AW = [WT)1 + (1-2Y)XT (3.24)

The symbols T' and —1 denote matrix transpose and inversion respectively. The change in

the bias weigth vector is given by 3.25.
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Awo =1-2Y (325)

The algorthim repeats the above steps, updating the unmixing matrix and bias vector each
iteration. The algorithm stops when the magnitude of change of the unmixing matrix falls
below a predefined small value. The magnitude of change of matrix is calculated using the
mean squared difference between the corresponding elements in the matrix obtained before

and after each iteration.

In the analysis of cortical electrical activity, ICA aims to spatially filter the recorded EEG
from multiple electrodes into a number of temporally independent components or signal
sources [80]. Consideration of the projected location of signal sources along with existing
knowledge of regions of the brain active during a given task enhances the investigation of
cortical dynamics. Sources producing specific signal components for a given experiment
can be identified considering the scalp distribution of components. Ocular artefacts for
example can be greatly attenuated by identifying and removing components that represent
electroocculargram (EOG) components [59]. A quantitative comparison of ICA and other
signal source separation techniques was reported by Vigon et.al. [81]. Where it was shown

that ICA was more effective than decorrelation methods.

3.12 Kohonen Artificial Neural Network

Artificial neural networks (ANNS) are parallel processing structures which attempt to simu-
late the learning behaviour of the brain. They consist of interconnected neurons capable of
storing and processing information. Their applications included pattern recognition, process
control, forecasting, modelling and optimisation [82]. Compared to statistical methods of
data analysis, ANNs are more effective for analysing noisy signals and less sensitive to the
distribution of their input data. The process of learning in an ANN can be supervised or
unsupervised. In applications requiring pattern recognition, a supervised learning algorithm
involves presenting known patterns and their corresponding classification categories to an
ANN. The ANN can then adjust its parameters to become capable of recognising the pat-

terns from those categories. In the unsupervised learning however, the pattern categories
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are not presented to the ANN. The learning algorithm is therefore a form of clustering in

which the patterns are grouped on the basis of their similarities.

The self organising feature map (SOFM) developed by Kohonen [83] typically performs a

transformation of patterns from a high dimensional feature space into a two dimensional,

topologically ordered map shown in Fig.3.9.

Xohonen Layer

e

Links
(For Cclarity
Most are not
Shown)

Input Layer kl\rodes (Neurons)

Figure 3.9: The Kohonen self-organising feature map

The network has a two layers of neurons (processing elements). An input layer which
provides connections to the Kohonen layer or map [84]. Typically each neuron in this map
is connected to all the inputs to the network. Associated with each connection there is a
weight. For clarity, only the connections of some of the neurons are shown in Fig.3.9. The

Kohonen map can be arranged in various topologies, including rectangular and hexagonal.

The network employs an unsupervised competitive learning algorithm and hence self organ-
ises [85]. The network is initialised by setting the connection weights to small random values
between 0 and 1 [84]. Data is presented to the network via the input layer. The input vector
which represents a set of input patterns is denoted by,

X = [21,%2, -y Tp)" (3.26)
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where p is the number of elements in a given input pattern.

The resulting effect on each neuron in the Kohonen layer is calculated by determining the
Euclidean distance between an input pattern and the connection weights for each neuron.

The weight vector for node j in the Kohonen layer is denoted by,

W; = [wjr, wjz, -.ry wj,,]T forji=12,.,N (3.27)

where wj; is the weight of the link connecting input node i to Kohonen node j and N is the
number of nodes in the Kohonen Layer. Since each node in the Kohonen layer is usually
connected to every input node, the nodes weight vector comprises p weights. The winning
neuron j for an input vector X is said to be the neuron which has the smallest Euclidean

distance d between it’s weights and the input vector calculated using,

P
> (@k—wi)? for j=1,2,.,N (3.28)

=1

The weights associated with winning neuron are then updated in such a way that gradually

the winning neuron becomes representative of a specific pattern category using,

VVJ{ =W; +a(z; — W;) (3.29)

where W} is the the updated weight, W; the weight prior to updating, a is the learning
rate and (z; — W;) provides a measure of the error between the winning node and the input
pattern z;. The group of neurons around the winning neuron are known as a neighbourhood.
The weights associated with neurons in the neighbourhood around the winning neuron are
also updated. Generally the learning rate for a given node is decreased with increasing
topological distance from the winning node. This enables specific regions of the Kohonen
map to be associated with different pattern categories. The value of the learning rate a for
all nodes is generally scaled using a neighbourhood function centred on the winning node.

A typical choice [82] of neighbourhood function 8 is a gaussian-type function such as,
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Bpg = e 2t (3.30)

where the amplitude of B,y for node g centred on winning node p is maximal when node
¢ is the winning node (i.e. p = ¢) and decreases with increases topological distance d. &
represents the size of the neighbourhood. The learning rate and neighbourhood size are
reduced gradually during the many training iterations (presentations of input patterns).
This allows the network to self organise and cluster similar patterns in topographically

distinct regions whilst gradually increasing the separation between dissimilar patterns.

The discrete time (n) algorithm for network training [82] of Kohonen node j can be expressed

as,

Wi(n + 1) = W;(n) + a(n)B;,i(n)[X (n) — W;(n)] (3.31)

The trained network maps similar features in feature space to similar areas in the output
layer of the network. Since the learning process is unsupervised, the network clusters the
input data based on patterns that it discovers. The Kohonen SOFM is commonly used as

an investigative classification tool when the output categories are unknown.

3.13 Conclusion

A brief overview of the signal analysis techniques used in this study has been presented.
Generic discrete signal expansions have been introduced along with the corresponding ter-
minology. The Fourier transform was briefly discussed. The improvement on temporal
localisation provided by the time-varying short-time Fourier transform was introduced. The
natural successors (and recently developed) wavelet transforms have improved time-scale

characteristics.
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Chapter 4

Development of a
Wavelet-Based Single Trial ERP

Recovery Technique

4.1 Chapter Summary

In this chapter, a comparative investigation of wavelet-based filtering is carried out [104].
The methodology and results obtained are discussed. An adaptive multiresolution analysis
filter has been developed [105]. The implementation details are provided. Plots of simulated
CNVs and the estimated single trials produced by the different filtering approaches are

provided and the results are compared.

4.2 Introduction

The conventional method of recovering event-related potentials (ERPs) from the background
electroencephalogram (EEG) is synchronised averaging. The assumption is that the back-
ground EEG tends to be random while the ERP is consistent both in amplitude and latency.
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The process of synchronised averaging therefore enhances the ERP while attenuating the
background EEG. A shortcoming of the method is that it inhibits measurement of the trial-

to-trial variations which can develop as a result of factors such learning, changes in the level

of attention, fatigue etc.

The aim of filtering is to enhance the desired signal by attenuating unwanted ’noise’ com-
ponents. This is usually achieved in the transform domain. Transform domain filtering is
a three stage process. Transform the gignal, leave out the coefficients that best represent
the noise and then reconstruct the now filtered signal. The resulting signal has an improved
signal-to-noise ratio (SNR). Deterministic filtering can be considered as filtering in the fre-
quency domain. Filtering is achieved through the maintenance of selected frequency bands
whilst attenuating the remainder. This method works well when there is a separation of the
signal spectrum from the noise spectrum. Unfortunately in the case of ERPs, there is a large
spectral overlap between the desired signal and the unwanted noise. The transformation of
the recorded waveform into the frequency domain does not separate the desired ERP from
the unwanted background EEG. A more suitable form of digital filtering can be achieved by
transforming the signal into a domain that provides a better separation of signal components

from noise.

ERPs recorded during a given task is severely obscured by background EEG and therefore
their SNR is very low. Typical magnitudes are 5-20 xV for the desired signal (ERP) and
100 pV for the noise (background EEG in this case). Single trial recovery is the removal of
unwanted noise from a single sweep ERP recorded from a single scalp electrode. The ideal
recovered signal component would contain only stimulus related brain activity. The on-going
background EEG would be removed along with any ocular, motor and other unwanted
electrical activity. Currently ERPs are analysed following the synchronised averaging of
many trials to improve the SNR. The application of time domain averaging attenuates all

signal components not time and phase locked to the stimulus.

The validity of synchronised averaging has been challenged for many years. [86]. The
assumption made for averaging, that the ongoing EEG is random and uncorrelated with
the ERP has been questioned [87]. Similarly averaging relies on the fact that the ERP

components are the same for every stimulus. This does not take into account the random
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variation in latency, or jitter, of peaks in the ERP. The effect of jitter is to temporally smear
peaks and reduce their amplitude. Woody suggested an approach based on correlating time-
shifted individual trials to reduce the effects of jitter [88]. The limitations of the method are
that it will not allow the trial-to-trial variation to be investigated and it requires a reference

trial for it’s correlation process.

Latency differences of later components result in attenuation in the averaged ERP [89]. In
particular the variation in latency has most effect at increasing temporal distance from the
time point used for synchronisation. This leads to the smearing of later peak positions
and attenuation of amplitude. These components are observed as being of lower frequency
and longer duration. This characteristic may be purely as a result of using averaged trials.
Similarly components not phase locked to stimulus are attenuated. The phase reordering
post-stimulus cannot be seen in averages however this important brain dynamic is observable

using more recent techniques described in chapter 6.

The ability to effectively recover single trials will allow the investigation of brain dynamics
of any given trial within a set of trials. Also the effects of habituation to task and fatigue
e.t.c. can be investigated by considering the evolution of ERP over a number of trials [90].

The investigation of trial-to-trial variation for subject group is described in chapter 5.

Chan et al.[91] described an improvement on adaptive filtering of a brain stem auditory
evoked potential (EP) using an ensemble average as a reference signal. Although he com-
mented on EP trial-to-trial variability, his method did not fully rectify this. The method
is an improvement on standard synchronised averaging methods because the number of

running averages is reduced.

Filtering approaches that consider the time-varying characteristics of ERPs have yielded
improved results over conventional deterministic filters. Adaptive filtering approaches [92]
including Kalman filtering [93] have been applied to evoked potentials. Unfortunately this
approach suffers from the lack of a valid noise model when applied to ERPs.

The Weiner filter is the optimal deterministic filter in the least mean square error sense when
applied to a known deterministic signal with known deterministic noise [94]. The application
to ERP filtering has been of the a posteriori type [95]. That is an estimate of the statistics of
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both the signal (taken from the spectrum of the synchronised average) and noise (estimated
as the average spectrum of the recorded waveforms). With the assumptions and estimates
considered it provides improved filtering on a subject level however no consideration is
given to the time-varying nature of ERPs. In a development of this approach, deWeerd
proposed time-varying Weiner filters [96][97]. Simulated ERP waveforms were used to test
the performance of the filters. The method was applied to averaged ERPs and is not suited

to single trial estimation due to the need for accurate noise models.

The methods discussed so far have not met the requirements set by the characteristics of
event-related potentials. In summary the main signal characteristics are time varying nature
with only a heuristic model for both the signal itself and the noise. Recent developments in
digital signal processing have provided new tools which are more suited to non-stationary
signals. In particular the joint time frequency /scale methods which can be grouped under
the heading of wavelets.

4.3 Wavelet-Based ERP Filtering

Relevant features in event-related potentials are localised temporally. For example the sec-
tion of interest may be centred on the time at which a subject presses a button in response
to a stimulus. Some noise will occur continuously in time whilst other noise artifacts will be
synchronised with some external events but not with the event that produces the ERP. For
example the ERP may be obscured by some ongoing mains noise, ongoing EEG and a ran-
dom transient eye movement. The electrophysiological activity of the brain readily maps to
short duration bursts of activity within a given frequency range. For example the short term
oscillatory response to a given stimulus. Wavelet methods enable a signal to be decomposed
into temporally localised components within a given bandwidth. The multi-scale concept of

wavelets maps well with the compound signal produced from many signal generators [98].

Wavelets have been succesfully applied to the analysis of several electrophysiological signals
[13][12][71]. This suggests that wavelet based filtering may be suited for the estimation
of single sweep EPs. A small number of studies have been carried out investigating the

applicability of wavelets to ERP filtering and analysis.
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The approach used in transform domain filtering may be employed for use with the wavelet
transfom. The process involves transforming the data using the transform of choice. The
ideal choice of transform is that which, upon application, separates the desired signal from
the undesired noise. Specific transform domain coefficients relating to noise components are
selected and their values are set to zero. The non-noise coefficients are left intact. The

coefficients are then inverse transformed to produce a filtered (de-noised) signal.

Bartnik et al.[99] applied the approach described above to single-trial, auditory evoked
potentials (AEPs). The 1 second section of data recorded immediately following the stimulus
was assumed to contain the EP. The subsequent 1 second section, following the EP, was
assumed to be pure EEG. Regression and discriminant analysis were used to provide the
5 wavelet coefficients that ’best’ represented the evoked potential as opposed to the EEG.
The remainder were set to zero prior to signal reconstruction by inverse wavelet transform.
The reconstruction from 5 coefficients was suggested as being relatively noise free, however,

most details were lost.

Thakor et al.[100] used multiresolution wavelets in the analysis of averaged EPs. They did
not try to recover single trials but the practical methodology employed may be developed
further. If Thakor et al.’s approach was developed to utilise a constantly updating running
average then a method for single trial estimation based on the idea of running averages
could be employed provided a small number of trials are used (2-4 and not 16-20). Thakor
et al.[100] also suggested that wavelets should be used in conjunction with other methods
to improve the SNR.

Bertrand et al.[101] improved the procedure of [99]. This method used Meyer’s wavelets
(those based on the DFT of a ”"wavelets” spectrum) to improve the SNR of averaged middle-
latency auditory evoked potentials (MLAEP). Consideration was given to the characteristics
of the signal being non-stationary. A time-varying filter adapted to the signal was proposed.
However, this was used after synchronised averaging. The wavelet coefficients were chosen
manually and the remainder were set to zero prior to reconstruction. A discussion on the
search for an optimal filter for evoked potentials was given. This lead to a proposed time-

frequency optimal filter in the least mean squared error sense.

Wavelet networks [107] combine wavelets and neural networks and are typically used for
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Chapter 4. Development of a Wavelet-Based Single Trial ERP Recovery Technique

discrimination of ERPs. Heinrich et al.[106] applied wavelet networks to the analysis of
single trial auditory ERPs. Real EEG was added to simulated ERPs which were used to
determine the performance of the approach. The filtered ’ERPs’ were good estimates of
the original ERPs. The measurement of trial specific time-frequency features permits the

analysis of trial-to-trial variation.

In this study a novel method of recovering single trial ERPs from the background EEG was
developed and its effectiveness was evaluated [105). The analysis was based on a type of ERP
known as the contingent negative variation (CNV). The method involved the application
of the discrete wavelet transform (DWT). The signal was decomposed by a tree-structured
filter bank implementation of the DWT. The resulting wavelet coefficients were scaled using
an adaptively computed scaling factor. The goal being to maintain trial specific detail
whilst attenuating the background EEG. The estimated single trial was recovered using the
tree-structured synthesis bank implementation of the inverse DWT.

In order to find the optimum performance for the developed wavelet transform based adap-
tive filter, a number of different basis functions were explored. The performance of the filter
for each case was quantified. The results obtained were compared with those obtained by

deterministic, finite impulse response filters.

4.4 Adaptive Wavelet-Based ERP Filtering Technique

Filtering in the wavelet domain is achieved through the scaling (attenuation) of selected
wavelet coefficients. By setting the value of the selected coefficients to zero (the approach
taken by previous methods) the assumption made is that the specific coefficients represent
noise rather than desired signal. If it is the case that the attenuated coefficients were more
representative of noise rather than the desired signal then the SNR of the desired signal

would be improved.

However whilst this method of hard thresholding the coefficients may improve the SNR,
any ERP features that are decomposed into the same time-scale bins as noise will also be

attenuated. The recovered single-trial ERP would appear distorted. The main goal of single
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trial filtering is to maintain trial dependant response information whilst improving the SNR.

Due to the spectral overlap between the ERP and the unwanted ’noise’, the wavelet trans-
form does not completely separate signal from noise. For a given set of coefficients the
relative contribution of desired signal and noise components is not deterministic. A method
which uses some @ priori knowledge of the desired signal characteristics would therefore be
beneficial. This would allow the coefficients to be scaled with a real value between 0 and 1

to meet the requirements of increasing SNR whilst minimising distortion.

The novel algorithm developed in this study computed the optimum scaling factor for each
level of the DWT adaptively [105]. An approach to single trial ERP filtering using the
subject average as a template to provide the a priori knowledge was developed. The single-

trial wavelet coefficients were adaptively scaled using this a priori knowledge.

4.4.1 The Adaptive Wavelet-Based Filtering Algorithm

In order to investigate the effectiveness of the developed algorithm a set of 32 simulated
single trials ERPs was produced. This enabled the recovered simulated single trial to be
compared with the original waveform and thus allowing a quantitative evaluation of the

filtering method to be carried out.

To produce the simulated single trials, real EEG was added to a model of a contingent
negative variation (CNV) ERP. The model (shown in Fig.4.1) had similar characteristics
to those of an averaged CNV. It had a zero mean before stimulus. Immediately following
the ’presentation’ of the first stimulus, there was an auditory evoked potential. A negative
shift follows the EP in anticipation of the impending second stimulus. The second stimulus

produced another auditory EP before the ERP returned to the pre-stimulus (baseline) level.

32 simulated single trials were produced by adding 32 different recordings of EEG to the
model. The number of trials was chosen to maintain the similarity between the processing of
the simulated waveforms and the recorded CNVs of which there were 32 trials from each of
40 subjects. The simulated single trials were bandlimited to 30Hz and the sampling rate was
125Hz, again to reflect the recorded trials. A 512 point section (covering approximately 4
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Figure 4.1: A simulated ERP

seconds from 1 second preceding the first stimulus) of each waveform was used in subsequent

processing. A simulated single trial is depicted in Fig.4.2.

The filtering technique employed a template to provide the algorithm with a priori signal
knowledge. In the case of real ERPs, this was the synchronised average of the 32 trials from
the same subject,. To replicate the processing of real ERPs, the average of the set of 32
synthetic single trials (shown in Fig.4.3) was used as a template rather than the original
simulated ERP which is too dissimilar from the real averages.

An overview of the procedure for the adaptive wavelet based filtering of single trial ERPs

developed in this study is provided below. This process was repeated for each single trial.

o Apply the discrete wavelet transform to both the single trial and template waveform.

o For each level of decompositon, use the template coefficients to guide the adaptive

algorithm in setting the scaling factor for the single trial coefficients.

e Apply the inverse discrete wavelet transform to the scaled coefficients to construct the,
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Figure 4.2: A simulated single trial
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Figure 4.3: The time domain average of 32 simulated single trials
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now filtered, single trial waveform.

The details of the approach are now discussed.

Although the wavelet transform is suitable for non-stationary signal analysis, it was found
that the negative shift of the CNV dominated the transform coeflicients. To improve the
time-varying characteristics of the algorithm, the single trial waveform was broken down
into a series of sections in the time domain. In effect the filter worked on 8 points of the
original signal before moving on to the next 8 points until all of signal has been processed.
The choice of 8 points from the 512 points of the whole signal provided a good resolution for
the time-varying filter. However, two problems arose from the use of such a small section
relating to the practicalities of wavelet filtering: The edge effects introduced by finite length
filters had a more significant effect on the recovered data and the number of levels of wavelet
decomposition were governed by the signal length. This effected the frequency resolution
and hence effectiveness of the wavelet transform. To overcome these effects, a series of longer
overlapping windows, centred on the 8 point section of interest, was used to provide a longer
section of signal to process. This redundant extra processing had minimal effect on the

overall filtering time.

A gliding window technique (Fig.4.4) was used to extract 32 points at a time from both the

recorded waveform and the corresponding template.

The 32 point section was filtered using the algorithm discussed below. Following filtering
the central 8 points of the 32 point section were used to produce the reconstructed signal.
The sliding window was then moved by 8 points before extracting the next 32 point section
and repeating the algorithm.

For clarity in the following discussion of the algorithm, the section of the single trial will be

called the signal and the section of the template will be called the template.

The discrete wavelet transform (DWT) of both the signal and template were calculated. The
resulting wavelet transform consisted of coeflicients at a number of levels of decomposition or
scales. For a signal of length N points, the maximum number of levels of wavelet transform

decompositon, L, is equal to (logsN') — 1. For each level of decomposition the scaling factor
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Figure 4.4: The sliding window technique

for the signal coefficients was computed and applied using the procedure shown in Fig.4.5.

¢ The algorithm parameters were initialised. The scaling factor (SF) and scaling factor
increment (INC) were set to 0.5, the midpoint of their range. The Euclidean distance

difference (EDD) was initialised to 1.
e The Euclidean distance (ED1) between signal and template coefficents was calculated.

e The following steps were then repeated until any further iterations caused the Eu-
clidean distance between the coeflicients of the signal and those of the template to

increase. i.e. the optimum scaling factor has been obtained.
o The signal coefficients were scaled by obtained value of SF.

o If the scaling caused the Euclidean distance between the coeflicients to be reduced (i.e.
ED1 is greater than ED2), the scaling factor value remained unchanged. Otherwise
the signal coeflicients were restored to their value of the previous iteration and the

scale factor was incremented by half its current value.
Once the optimum scaling factors were determined for the section being processed, the
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