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ABSTRACT

S Gharib ~ "Interactive Computer Graphics in Non-Tinear
Optimization"

The thesis surveys the current state of knowledge in the field of
both interactive computer graphics and non-linear optimization.

The potential contribution of interactive computer graphics in non-
linear optimization is then evaluated from the points of view of model
formulation and solution, and the requirements of an interactive system
for realizing this potential are outlined.

Such a system is developed and described, together with a full
account of its applications to both real and standard test problems. A
novel application is the direct optimization of N-dimensional (N > 2)
problems by visual analysis of 1 and 2 dimensional sub-problems, following
on the formal development of an algorithm for this approach. The inter-
active gontro] of conventional methods through computer graphics is also
featured.

On the basis of these accounts an evaluation is given of the contri-.

bution which interactive computer graphics is capable of making in both
teaching and research in the general field of non-linear optimization.

C (i)



"~ "CONTENTS

ACKNOVWLEDGEMENT
ABSTRACT

/
CHAPTER ONE: Interactive Computer Graphics

1.1 The Evolution of Computer Graphics

1.2 The Elements of Interactive Computer Graphics

1.3 Applications of Intéractive Computer Graphics

1.4 The Design of Interactive Computer Gréphics Systems

1.5 Summary

CHAPTER THO: "Non=Tinear Optimization

2.1 PreTiminary Aspects of Optimization
2.2 Mathematical Models

2.3 Local and Global Optima

2.4 Classification of Objective Functions
2.5 Methods of Optimization

2.6 Comparison of Algorithms

.............

3.1 Interactive Computer Graphics in Optimizatioh
3.2 Evaluation of Potential

3.3 System Requirements

“'Optimization

4.1 Hardware Mechanism

4.2 Software

(ii1)

14
17
20

22
22
23
24
25
25
37

39
39
40
42

44
44
45



CHAPTER FIVE: Applications to Test Problems

5.1 Problens in One-dimension
5.2 Problemsin Two—dimensidns
5.3 Problemsin N-dimensions

5.4 Plane Analysis Method

CHAPTER SIX: A Practical Application

6.1 Molecular Vibrational Analysis
6.2 Minimization Problem
6.3 Methods of Solution

6.4 Comparison of Methods

CHAPTER SEVEN: Appraisal and Conclusion

APPENDIX

REFERENCES

(iv)

67
68
89
106

127

159
159
168
169
177

181

184

186



CHAPTER ORE

" Interactive Computer Gfaphics

~In thig chapter some of the general principles concerning the
history, applications and design of interactive computer graphics
systems are discussed.

The infroductory section presents the origin and the development
of gfaphical techniques. Ih the following section, the facets of
hardware and software for interactive graphics are considered.

An account of some of the application areas of interactive graphics
and the merits of graphical computing methods is given in the next
section. Finally, in the last section of this introductory chapter,
some specific factors relating to the design of an interactive graphics

system are considered.

1.1 The Evolution of Computer Graphics

| The need for increased ca]cu]éting power to solve comp1ex
scientific problems gave rise to the invention of computers.
Since their invention, over thirty years ago,‘computers have been
'closely lTinked to the developments of mahy scientific and engin-
eering methods. Until the Tate 1940's computers were only capable
of producing numerical results, using a high speed line-printer.
However, it was found that these numerical results were not suffi-
cient when dealing with empirical quantities and data exhibiting com-
plex relational attributes. It was felt that some numerical results

could be more meaningful if presented in graphical forms rather



than tabular forms. There are several reasons.for'this assertion.
(i) Graphical illustrations are easier to.understand, specially
if the user is looking for comparison or trends in large
files of output data. In subject areas such as statistics,
computer;—produced tabulations are used as raw déta to produce
graphical presentation of data. These graphs aré useful aids
_ " to the detection of errors in large input data files.
- (i1) When presenting the output graphically, there is more flexi-
‘ bility in the showing of emphasis on key areis.
(iii) The graphs are more compact, since many pages of numerical
output- can be contained in a few graphs.
(iv) .Data can be seen in two dimensions as opposed to a one dimen-
sional Tist of figures. This is particularly useful for
showing relationships betweeh variables, allowing a better

interpretation of the data.

It was only natural that there would soon be a demand for the
computer to be able to communicate its results in a graphical form
whenever appropriate. However, technology has not allowed this
feature to develop at so rapid a rate as the manipulation of numeri-

~cal data, and it was not until 1953, that the Benson-Lchner
Corporation introduced a digital graph-plotter. Graph-plotters
operate slowly when compared with general computer.processing.

They are 1arge1y used in the place of manual graph plotting, which
means that the graphical operation is a passive one, and is thus
usually referred to as non-interactive graphics. 'The graph-plotters

are distinctly inefficient when a sequence of further computation



depends upon the analysis of the disp]ayed‘graph, and this draw-
back has Ted to the development of specialised equipment which
enables the graphing operation to be performed under interactive
control. |
- Interactive computer graphics can be defined as a close

interaction between thé user and the computer through the use of
a visual display, an input device, and a special compdtgr language.
The user is able to communicate with the computer and to receive
a direct response 1:om it. This two way conversation may be of a
graphical or pictorial nature, and, as a resy]t of previous pro-
gramming, the computer can analyse the output, perform calculations,
and almost instantaneously present a revised display for further
analysis if required. |

The pioneering‘work in the field of interactive computer
graphics was é%rried out by the US Air Force. In the early 1950's
a system called SAGE (1), Semi Automatic Ground Environment, was
designed in order to help to protect the United States Trom sur-
prise air attacks. SAGE became dperationa] with one computer centre
- 1in 1958 and has now been used in many centres.

SAGE presented visual information on aircraft positions, and
the air force personnel could communicate with the computer using
a light'ben. This system laid the foundafion for further hardwére
and software deve]opménts in the field of interactive computer
graphics. ’
In 1962, Sutherland and Johnson (2), announced the development

of a system known as 'Sketchpad', at M.I.T.



1.2

In parallel with Sutherland's work on sketchpad, research
vas being carried out in industry mainly at General Motors (3),
and Itek Laboratorieé (4).

Iﬁ 1959, with a contribution made by IBM, General Motors
produced DAC-1, 'Design Augmented by Computer', a computer aided
design system for the automobile industry. The Itek Laboratories
were also. involved in developing an on line graphics system for
lens design. This system was based on the laboratory's early
research work on graph piotters.

The systems mentioned so far had two bothersbme charactefis—

. tics in common;

(i) the hardware was expensive
(i1) the software used a great amount of time.

By the early seventies, there had been further hardware develop-
ments Teading to the improved interactive computer graphics systems
which are being used by industryﬁand researéh establishments today.
These developments inc]udé the emergence of the storage tube, the micro-
processor and satellite computers, aiming to provide more computing
power at substantially reduced costs, and hence more effective
computer graphics.

Modern systems are usually described in‘terms of their hard-
ware configurations, and their software needs and capabilities.

These will be briefly discussed in the following section.

The Elements of Interactive Computer Graphics

This section briefly describes the hardware and software
current]y available generally for use in interactive graphics

systems.



1.2.1 Interactive Graphics Systems

There are two main types of interactive graphics installa-

tion in common use -

(b)

(a) Stand-alone system
(b) Time-éharing system

Stand-alone System |

A typical system of this type would consist of a
processor with 8k words, a visual disp]ay,‘and a gfaphica]
input-output device. The software of’suchzasystem»is‘compact,
yet fairly complex, frequently written in éssembly language
or even machine code.

ThiS type of system can be used for app]ications‘which
require'little processing power. It offers the advantage of
rapid pgrsona]ised data processing, particularly when it
possesség interactive features.

Many such systems exiét, and perform useful jobs in
industrial laboratories and research establishments.

Time-sharing System

This type of graphics installation provides graphics
terminals as part of a general time-sharing system. This
sxstem can be useful for applications which require the
computer to perform extensive calculations under the control
of the user. The processor in such a system is normally

available for non-graphical applications, although it can

- support graphical applications.



The’syétem,used for the development of the project
which forms the central part of this thesis is a time-
sharing system. It consists of an IBM/370 main computer;
linked to a Tektronix 4014 graphics terminal. The dispTay :
file is held in the core of the main computer, where the
display controller had access to it. ‘

The main difficulty which arises with operating a time-
sharing system is that each user receives services only
“intermittentiy. A user with a display however, requires that
the display should be animated continuously, and that for
certain services, the user should receive instantaneous response.

These conditions can best be met if the disp]ay'file .
is driven by avsmall computer connected as a satellite to a
time-shgring system. Such arrangement does offer several
distiné% advantages:

1. It provides an indepeﬁdent sourcé of computing power.

2. Allows the flexibility of choosing the position of the
equipment. '

3. It can act as a concentrator for multiple display consoles.

4, It can operate as a stand-alone system without interrupting
the host computer for servicing.

The main disadvantage of host-satellite systems is that
expérience in their use is relatively limited, and if the
satellite is situated remotely from the host, program develop-
ment can produce problems. Furthermore, if either the 1ink‘

or the host computer fails, the system 1s-norma11y unuseable.



Thus, when there are doubts about the effectiveness of

a satellite system, then either.a stand-alone or a conven-

tional timé-éharing system with display unit can be coﬁ-

sidered to be better suited alternatives. However, contin- -
uing developments of graphics facilities allied to micro-
computers may eventually swing the balance in favour of the
stand-alone system for virtually all types of appiication,
other than those involving major computations.

1.2.2 Hardwaie'

An interactive computer graphics terminal is usually struc-
tured és an extension of a large computer. The basic elements of
grpahics hardware are -

Display Channel

Disp]ay Controller

Display Console

- Input Devices

~ The functipn of this hardware is to é]low application brograﬁ§
to use the display unit for graphical output, while running in the
central processor unit.

A Comp1icated picture will call for a long list of data and
charécter descriptions. The graphical display instructions, the
data containing the picture, or. the resu1t4of.an analysis can all
be stored in the display file. The display file is continuoﬁs1y
aééessed by the display channels and graphical commandé—ére sent

to the display controller. This has two main advantages. First,'v



Cor

the display channels become much simpler devices, as the computer
does not have to refresh them regularly. Sécond, the load on |
fhe computer can be reduced by increasing the f]éxibi]ity of the
display controller to handle some of the graphical instructidns.
This effectively changes the display controller into a small
computer itself, called the display processor.

To produce a continuous picture the display processor reads
the display file, and executes the operations required to display
the picture, and refreshes it as often as fifty times a second.

Interactive computer graphics consoles require atleast one
input device for use in conjunction with the display. A keyboard
is essential so that alphanumeric information can be entered,
but it is also necessary to have some means of transferring
geometrica]jinformation fo the computer.

There aﬁé two ways for passing geometrical information to
fhe ¢omputer, ‘ »

(i) pointing

‘ (ii) positioning

The Tight pen is one of the poinfing devices which is more
commonly used. It has the advantage over the other input devices
in that its positional data is determined by the program, and it
does not depend on any physical measurements of the actual pen
position.' The disadvantage of the light pen is that it is very
sensitive to surrounding illumination, and it cannot be con-

veniently used with the storage tube.



1.2.3

The joystick, trackball and cursor are positioning devices,
and they do use the screen directly. A more recent development
in this field is the 'MOUSE' (5), produced by the Stanford
Research Institute. A1l these devices operate on the principle
of moving a control to pass two-dimensional information to the
computer. | '

The input device used in tﬁe project described in this

‘thesis is the cursor. Two crossed lines appear on the screen,

by the user's requzst, and the co-ordinates of the point of
interaction of the two lines can be recorded. The two lines
can be repositioned by thumb-wheel when the co-ordinates of a

new point are required.

Software

In a computer graphics system, the software produces an

interface between the computer and the graphics devices. There

are three fundamental components in the software -
(i) The executive
(ii) The applications progfams
(ii1) Graphics software

(i) The Executive

This part of the software attempts to blend the best
féatures of the hardware, the applications programs and the
user in such a way that the user can interact in a‘harmonious
dialogue with the computer. The executives are usua11y

supplied by the computer manufacturers, and most of them are



(1)

not graphics'oriented, since they control all other programs
running in a computer system. In a multi?tefmina1‘computer
system, thevexecutive is responsible for the sharing of
time between all the terminals attached to the drive pro-
cessor, |

Applications Programs

The épp]icatibng prbgrams are.simi1ar‘to fﬂe problem-
oriented pfograms in a batch system with the difference that
they run in rea]-fime. They specify what is to be displayed
by producing definite commands or constructing a data struc-
ture representing the picture. The amount of structuring
used by the applications programs to describe a picture
depends entirely on the applications. If no particular
structure exists, the picture will be described in terms of
co-ordinates.

In general, a graphical system contains three groups
of data -

(a) the data base for the applications programs
(b) the data structure representing the display
(c) the data fpr the display file

In many systems the display file is combined with the
dfsp]ay structure.Figure 1.1 shows the data pdth through a
typical graphics system.

Tﬁe commands in the applications programs are‘written
in a high level Tanguage which must be able to program the

app]ications,_and to handle the graphics devices.

=10 -
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Fig. 1.1 Data Path Through A System.
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FORTRAN is the most commonly used language in computer
graphics. The main reason for this is its wide range of
scientific applications, and also because on many small and
medium size computers it is the only language used. Unfor-
tunately, FORTRAN, has weaknesses. It gives no programming
structure, and its subroutines and functions are non-
recursive. The usage of its ‘DO LOOP and 'IF' statements
is limited but it has the advantage of completing a task
more rapidly than an equivalent program written in another
high level language.

ALGOL 68, PL/1, BASIC and JOSS are some of the other
high level languages used for computer graphics. The last
two languages mentioned are conversational, but because of
their limited data structure facilities are only suitable
for informal problem solving. For the present time, however,
APL remainsthe only conversational language suitable for
complex problem solving using graphics.

A more recently developed language for computer graphics
is EULER This language is designed by Wirth (6), as a
generalisation of ALGOL 60. The program structure facilities
of this language are very powerful and it is a language of
free type declaration.

In general, some of the high level languages have
facilities for manipulating and structuring data, others
have very flexible input-output procedure, and a few of

these languages possess a good conversational mode. Recent

- 12 -
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researches suggest that a language suitable for computer
graphics users should havé all the above mentioned attri-
butes as well as being machine and problem independent.
However, since a language with all these properties'has
not yet been introduced, FORTRAN remains the most widely
used language in the general field of computer graphics.

’(iii) Graphics Software

The graphics software consists of a large group of
routines, which are called by the applications programs.
This operation requirés the use of one of the high level
languages with an efféctive]y large syntax. vThe languages

-~ are often referred to as.graphjcs.Ianguages. One such
graphics language is AED, Algol Extended for Design,
developed at MIT (7).

The main function of graphics softwafe is to transfer
data between the applications programs and the display
hardware. |

The application-dependent part of the graphics software
receives instructions from the applications programs to scan
the data structure produced by the applications programs,
and to generate a description in a two-dimensional space,

The display-dependent part of the software manipulates
the two-dimensional field to a suitable form for the display
hardware. Theoretically, the field extends to infinity in
all directions, but practically it is limited to the range

of the numbers presented.

- 13 -
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In order to produce an efficient software the applica-
tions programs written in one of the high level languages
are often combined with a graphics software package which
can be used to deal with attention handiing, display file
routines etc.

- The graphics software package used in the investiga-
tions dgscribed later in this thesis is known as TCS,
Tektronix Control -System. The package is = comprehensive
set of subroutines which allows terminal-independent graphics
programming. The design is basically sysiem and computer

- independent and enables the experienced programmer to work
at the terminal level, and it also provides the facilities.
for the occasional user to operate easily at the conceptual
level. .

1.3 Applications of Interactive Computer Graphics

The use of computer graphics techniques ranges throughout
research, engineering, design and édministration. Major applica-
tion areas may involve several of these broad fields of activity
and they can also overlap each other. |

In general, interactive computer graphics can be applied to
two main areas. These are - |
(a) Design, where emphasis is placed on drawing to assist the

designer by stimulating the creative process.

(b) Science, whiéh requires less cfeative ability on the part
of the user but requires ability to analyse the displayed
information, in order to modify it as part of the problem-

solving process.

-14 -



1.3.1

1.3.2

(a)

Graphics in design-oriented problems

Since 1960 efforts have been made to use graphics in
many branches of industry to help reduce 5 the cost and
also to produce better results.

Developments in design have taken place in areas such
as engineering, chemical design, textiles, animation etc.

Detailed descriptions of some of these applications are
given by Green and Parslow (8). Numerous illustrated examples
of design work in tﬁe aircraft industry in the 1960's are
given by Prince (9). Recent work in this field has been

carried out at MC Donnell Douglas Corporation who have found

graphics valuable in building the new F—18 fighter piane.

One area which has profited from the developments in
computer aided design is architecture. Paterson (10), has
produced a system which improves the design and construction
processes. This system rep{aced an earlier experimental
program developed in-1965 (11), which has laid the foundation
for further advances of graphics in architecture. One of |
the latest pieces of research work is beihg carried out at
Leeds Polytechnic. There, the aim is to develop a computer

architectual modelling system (12).

Graphics for scientific users

Although, computer graphics was introduced as a tool for

designers, in recent years efforts have been made to use graphics
for solving technical problems in scientific fields such as

chemistry, physics, mathematics and medicine.

=15 -
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Scientists are usually concerned with rapid recognition
of contours, trends, peaks and valleys which demonstrate inter-
re]atibnships between variables. To satisfy such needs attempts
have been made to take advantages of progressive innovations
in computer hardware and software that provides opportunitiés
“for generating information iﬁAgraphica1 form.

Cardwell (13) describes certain practical applications of
‘computer graphics at OakvRidge National Laboratory, which have
contributed to the deve]bpment of nuclear reactors. Reactor
development experiments generate large quantities of data which
have to be analysed. Computer generated graphics have been
found to materially aid the analysis by conso1idating large
volumes of Tine printer tabulated numerical data into geometric
diagrams. The introduction of computer graphics has terminated
the tedious manual plotting from voluminous 1ine printer outputs.
It has also allowed the parametric relationships to be deduced
more rapidly and clearly. |

Mac Elroy (14), also deséribes a computer model which was
designed to investigate the conformation of molecules and subse-
quent complexes. The system is knows as AIMS, Ames Interactive
Molecular Modelling System, and it is used to\study pre-biotic
molecular evolution towards 1ife. The system is capable of
:simulating molecular structures and their transformation. It
comprises a library and four-programs. Interaction, manipulation
of molecular complexes containing a large amount of atoms, three

dimensional viewing, and co-ordinate retrieval can provide the

- 16 -



biologist with a molecular modelling capability that is

easier to handle and more reliable than the fraditiona] wire
modél]ing techniques. ‘In addition, the system allows further
investigation of structures by calculation of -

(i) conformational energy |

(i1) the interaction between molecules or submolecular fragments

The above examples are only two of many examples of computer
graphics in science. Cooper (15) discusses further the general
principles involved in the design and‘application of interactive
computer graphics systems to scientific problems, and quotes
several additional examples.

The progress of computer graphics has not been as repid as
that in the design area, but it has been predicted that the
development of more effective software, the eventual design of
a good graphics language, and the emergence of substantial]y
reduced cost and high performance hardware will widen the
application areas of interactive computer graphics in science (16).

1.4 The Design of Interactive Computer Graphics Systems

The development of interactive computer graphics, depends to
a great extent on effective system planning and design. Therefore,
the art of design of an interactive computer graphics system is -
(i) to determine, for any application which are the parts
which are best treated by suitable interaction with the
'computer. -

(ii) to translate these parts into a suitable form of communica-

tion with the computer.

- 17 -



(iii) to bring together, considering the time-cost limita-
~ tions, the correct hardware and software which can
process one or more particular applications.
However, in general, a system capable of prqcessing the
requirements of one app]icétion may not be suitable for another.
Therefore, the overall aims of the graphfcs system should be
considered alongside the-hardware and software components.
Newman and Sproul (17), have identified three types of
interactive'graphics system, each designed to meet the need of
a different type of user. They are -
(I) Picture-editing systems
(II) Specialised application systems
- (III) General purpose systems
Having identified the type of system to be developed,
consideration should be given to - |
(a) interactive dialogue

(b) command and control

(a) Man-machine Dialogue

It is essential to keep the user in mind when deciding

on the mode of the interactive dialogue. .

For the user, who on many occasions will be a different
peéson than the programmer, the diaiogue should display
concise messages whenever possible, explaining what the user
should do next. | ‘ .

The dialogue should be simpie and consistent.‘ Therefore,

a single style of command should be chosen and used throughout.

- 18 -



(b)

This has the advantage that the dialogue can be designed

~ so that abbreviated commands are accepted. Another alterna-

tive is by pointing or positioning. This type of command
is machine initiated, since a menu of available optid%s |
appears automatically at each decision point, and the user
must select the required menu qitem.

Often, the decision about the choice of a type of
dialogue wi]].have to ‘be made partly on economic grounds.
However, to make the dialogue suitab]e\for particular applica-
tions the best features of each basic form of dialogue may
be combined. |

Command and Control

It is good programming technique to give the user as much
control over the program being run, as the circumstances
permit.iuThus it is desirable that the user should be able
to - |
(i)‘ select any feasible sequence of operation, and

(i1) return easily to earlier stages of the program to

modify, if desired,

(iii) to examine previously entered data.

A11 these require a degree of'flexibi1ity often not found
in many existing graphics programs, which impose too many
restfictions on what the user is allowed to do. ’

| The user should be given control over the flow of the
program using the keyboard or the 1ight pen as the major |

control device over program options.

- 19 -



At all times the user should be made fully aware of
the current position of the program, and of the choices of
the functions available. The right amount of information
should be provided, neither too much information to cause
cluster, nor too little to leave the user in doubt. There-
fore it is practical to employ a hierarchy of information
‘messages féﬁéiﬁérf}om’a»gg;; ﬁinfmum’émouh%wé%uégfbfmatioh
for the experienced user, to optional more detailed messages
for users who require guidance on any particular option.

An additional feature is to provide messages to be printed
in response to the command.

Finally, a user's error should be fecoverable, and to
help avoid errors it is advisable to include a procedure
which must be followed by way of confirming a decision actioh.
For example, when using a menu type of dialogue, all others
but the selected item may be deleted,.before a further action

by the user causes fhe command to be obeyed.

1.5 Summary
The description of interactive computer graphics and its applica-
tions in the previous sections leads to the following observations:
(1) 'Graphs and diagrams can be produced far more quickly and
accurately compared with traditional methods |
- (i1) . When applied to séientiffc problems, the interactive graphics
approach enables the scientist potentially to obtain a |
better understanding of the problems than can be gained by

conventional methods.

_20 -



'({ii) A graphical presentation of the relationship between two
variables is immediately available, and features such as
maxima, minima, trends, etc., become apparent more rapidly.

(iv) Method deficiencies, software errors and system design

faults, where they exist,quickly become apparent when using
' __interactive graphics. | 7
(v) Through repeated interactive computer runs, it becomes
possib1e°to obtain a better understanding of the solution
procedure. This is particularly so when the complete problem
~is approached by the use of a graphics system.

Therefore, it may be concluded that computer graphics is undoubtedly
capable of making substantial contributions to the several phases of
scientific investigations. Such contributions can be expected to be
most significant in those investigations réquiring human interaction’
in computer programﬁ, and where the current state of the computation
can be summarised graphically. A proélem of this nature is described

Tater in this thesis.

- 21 -



CHAPTER WO

Non-linear Optimization

In this chapter the general aspects concerning optimization and
some of the available methods are discussed.
The introductory sections present some of the preliminary concepts

of optimization, and a classification of objective functions.

Brief accounts of some of the available methods, their development

and their applicability are given in the remaining sections of the
chapter.

The purpose of this chapter is to lay the theoretical foundations
for later descriptions of interactive computer graphics used in the
testing, evaluation and application of optimization methods.

2.1 Preliminary Aspects of Optimization
The requirement for methods of optimization may be said to
arise from the mathematical complexity necessary to describe the
theory of systems. Optimization methods are used to explore the
local region of operation and predict the way that the system’s

parameters should be adjusted to optimize system performance.

In an industrial process, the criterion for optimum operation

is often in the form of minimum cost, where the product cost can
depend on a large number of inter-related control parameters.
In the scientific field, the performance criterion could be to

minimize the integral of a squared difference. In both cases it

required to minimize a single quantity by manipulation of a number

of variables.

Since the beginning of this century many solution methods have
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2.2

been developed to solve linear and non-linear optimization problems.
These methods aim at extremisation of some entity while satisfying
side conditions known as constraints.

| Linear programming methods are concerned with optimization of

a linear function subject to linear constraints and their main feature
is that they a]wayé lead to global optimal solutions for well formula-
ted linear problems. In contrast to linear programming, however,

only special types of non-linear problems can be solved with an
assurance of reaching the global optimum. Depending on the non-linear

problem, and the starting vaTues assigned to the variables, a given

“non-linear algorithm may converge to any one of several different

local optimal solutions.

In practicé,vmost probiems are constraint bound, but this type
of prob]em can often be reduced to an unconstrained one by a suitable
transforhation of variables. In consequence, this thesis is mainly
concerned with methods for unconstrained problems, some of which are
described in this chapter and app]fed later on. However, the poten-
tial of interactive computer graphics in the solution of constrained
problems is demonstrated in the last two chapters.

Mathematical Models

In general the objective function, F, depends on n real indepen-
dent component variables, X5 Xps5 «ee Xpo often assembled for abbrevia-

tion into an n-component column vector, or point, X.

- x'I “1 ) e
X = Xo = (x],xz, ces xn)T
L *n -
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2.3

In many practical optimization problems there are constraints
on the values of the parameters which restrict the search region.
An objective function may be subjected to two types of constraints;

(a) Explicit constraints, which are definedas follows:

£ x. U.i =1, ... N
where and are the lower and upper bounds on the indepen-
dent variables x, ......... X.
1 N

(fa) Implicit constraints, which are expressed as:

' A,J « F.(X) « E j =1 ... N

J )

AJ. and 5j are the lower and upper bounds of the implicit con-

straint function F..
W

Local and Global Optima

As was indicated in section 2.1, an important part of non-linear
optimization is the concept of local and global optima.

The parameters X #* which give an optimum value F*., of the
objective function within a local area of search is termed a local
optimum. The global optimum of a problem is the local optimum of
all possible optima.

In practice5 especially for non-linear functions, it is very
difficult to determine if the optimum obtained is a global one or
not. Normally, a point will be accepted if its position approximates
to the expected location of the optimum as determined by the nature
of the problem. Otherwise* further searches from a different initial
point will need to be initiated.

Most optimization problems tend to aim at minimization of the
objective function. Since maximization and minimization are equiva-
lent problems, i.e.the minimum of (F) and the maximum of (-F) occur
at the same point, Min (F) = Max (-F), only minimization is considered

here.
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2.4 Classification of Objective Functions

. Objective functions can be grouped into four classes depending
on whether they~are finite or continuous, and whether their first
or second order partial derivatives are available or not. The four
classes are:
(i) Objective functions with a finite number of discontinuities.
(i1) Continuous objective functions.
(iii) Objective functions which poséess finite and continuous first
| partial derivatives.
(iv) bbjective functions which possess finite and continuous first
and second part{al derivatives.
The above classification gives ah insighf to thevapplicabi1ity
of the avéi]ab]e methods of optimizatibn,
An objectiyé‘function with two variables can be envisaged as
the surface of a hilly landscape. The problem of minimization is
to locate the Towest point on thig_surface with constraints defining
the bounds within which the search is to be made. If the function
. is assumed to have a continuous and finite first derivative there
- will be at least one minimum in the feasible region. If there is no

feasible minimum the required minimum must 1ie on the constraints.

2.5 Methods of Optimization

A non-Tinear problem can be approachéd by two sets of methods;

(i) Analytical methods. |

(i1) Numerical methods. .
‘ Figure 2.1 shows a genetic tree of the methods which will be

described in the fo]]owing sections.
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2.5.1 Ana]ytica]‘Methods
In principle, these methods allow direct 1o¢ation of the-
optimum point. A vafiety of analytical methods exists, and two of
these are Euler's method and Geometric Programming method (18).
Both of these methods are only applicable to functions with finite
and continuous partial derivatives. They also require information
| regarding the secon&vﬁartfa] dé;{VQtiQéé; ThéﬂcbmbTéxify'éndvsiie“

of modern problems 1imit the usefulness of analytical methods such
as these.

2.5.2 Numerical Methods

Analytical methods present a computational problem in solving
- the large number of non-linear simultaneous algebraic eguations
which results from system description. The introduction of digital
computers in the 1950's allowed optimization problems wifh more than
three or four variables to be attempted, and this has led to the
development of several efficient numerical methods.

Numerical methods are classified according to whether the func-
tion is
(i) One-dimensional or,

(ii) Multi-dimensional.

Some of the one dimensional methods have been extended to deal.
with multi-dimensional.prob]ems, either by multiple application or
by generalising the one dimensional search in a multi-dimensional
space. |

2.5.2.1 One4dimensiona1'objéctive’function'methods

These methods are important as some of them provide the basis
of,severai multi-dimensional methods. They have two broad classi-

fications:
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(a) Non-graphical methods

These methods do not require explicit use of the first

| dérivatives of the objective function. Nevertheless, they do
require the objective function to have a finite and continuous
first derivative. Furthermore, they require an initial point
..in the neighbourhood of the minimum, and some use repeated
quadratic fits through the test points to predict the minimum
itself. fhe quadratic fit Timits the method< available to those
functions with finite and continuous first partial derivatives.
There are two commonly used algorithms, differing mainly in the
means of selecting the three test points for é quadratic fit.

' Daviés, Swann and Campey's (19) method involves taking
steps of increasing size from the given starting point until the
function values at each step indicate that the minimum has been
overshot. An additional function evaluation ét the'centre of
the final interval produces four equally spaced points which
span the minimum. ~One of these points is redundant for the
purpose of quadratic approximation. Therefore the point most
remote from the evaluation giving a minimum value of the function
is discarded. A single quadratic fit through the final three
test points is then used to interpoiate the minimum. The
process is repeated until the desired degree of accuracy has
been reached.

Powell's algorithm (20) differs from that of Davies, Swann
and Campey in that a step of fixed length is taken from the
given initial point, giving a second point. From the values of
‘the function at these two points a third point is calculated.

The minimum of a quadratic fit through these three points is



e

then located and the test point which yields the highest
functions value is rejected. The two remaining test points
and the point of minimum given by the quadratic fit are then
taken to be the updated three points for a further'quadrafic
fit. The process is repeated until the required minimum has
been reached to within the desired accuracy.

Less efficient, but often used on account of their.simpli-
city are the 'direct search' univariate methods such as |
Fribonacci (21) and Golden section (22) algorithms.

(b) Gradient Methods

There are two types of gradient methods. Methods-which
require the first derivatives of the objective function only,
and those methods which need the first and second dérivatives
of the objective function in order to obtain the optimum.

Théjihree methods of the first category which are investi-
gated later in this thesis are,
(1) Midpoint method
(2) Linear search method
(3) Davidson's method

The midpoint and linear search methods find the derivative
of the objective function, and evaluate it at the two points
defining the search region. The value of the derivatives at a
third point is then calculated. This point replaces one of the
other two poinfs, depehding~on the sign of the derivative value
when compared with the value of the other two derivatives.

As for the non-gradient methods, Davidson's method predicts
the location of the minimum through repeated use of a low order

polynomial fit (cubic) through the test points. This method is



very powerful, but is limited to functions with finite and

continuous first and second derivatives.

. The second type of gradient method consists of those

which require explicitly the second derivatives of the objective

functfon. One of the methods in this category is the Newton-
}1Raphson method. » |

Some of the methods for one;dimensional objective functions

mentioned 'so far have been extended to the multi-dimensional

case where a sequence of one-dimensional searches is carried

out in the multi-dimensional space along multi-dimensional search

directions.

2.5.2.2 Methods for Multi-dimensional Objective Function

In the previous section the problem of finding the optimum vé]ue
of a function with one variable was considered. It was found that the
various types bf methods were each most suitable for differing classes
of functions, and situations. Tﬁé same conclusion can be expected'to
hold when the number of variables is increased.

In general the optimization methods to solve multi-dimensional
functions can be classified into two broad categories:

(i) Gradient methods

(i1) Direct search methods.

(i) Gradient Methods

 The gradient methods can be divided into two groups,
depending on whether they require matrix inversion or not.

(a) Methods with matrix inversicn

The two methods included in this category are the Newton-
Raphson method (23), and its variations, and Powell's algorithm

(24) specifically for minimizing a sum of squared terms.
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The Newton-Raphson method requires the exact determina-
tion of the inverse of the second derivative matrix, G. The

iterative form is

1
x(k+l) “ xk' (k) 9(k) 5

where g is the -1 gradient vector. This method does not reach
an optimum if the second derivative matrix is not positive
definite. This also causes the method not to distinguish between
maxima, minima and saddle points.

Many variations of Newton-Raphson have been proposed, and
the most common ones are the Quasi-Newton or variate metric
formulae. These were first proposed by Davidon in 1959 and were

based on the fact that for aquadratic function

y Gd for all Kk,

We% , o(W).gk , (2.D

and d = =(W ).XW

Given a positive definite matrix H**, the basic idea is
to construct a sequence of matrices having the property

that

by imposing the quasi-Newton conditions

Hk+1) y - d (2.2)

Biggs and Dixon (25) suggested an algorithm in which the
Newton-Raphson prediction is made whenever it is possible to do
so, but a step in the direction of thegradient is substituted

for it where Gis singular.
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Powell's algorithm has proved to .be efficient on a large
‘range of functions. With this method the number of function
evalautions required'is'usua11y for less than with methods which
do not explicitly recognise the sum of squared terms, and also
there is a reduction in computing from a third order to second
order arithmetic step per iteration. An‘improved version‘of
fhis method due to Powe]] (26) is available, which retains the
advantages described‘above, and it also improves a constraint
in.the direction of steepest descent as the step length is
decreased. It appears that for difficult test cases, this is
one of the consistently successful algorithms ir this category.
However, as with all algorithms that involve the inversion of
a matrix, its efficiency will fall as the number of variab1e§
increases.

(b) Methods without matrix inversion

One of the oldest of all numerical methods is Cauchy's
steepest descent, which dates back to 1817. This method requires
only a numerical approximation to the gradient, and the directioﬁ
taken at each stage is that of the gradient. This method does
ultimately converge, but the rate of convergence is rather poor.

Forsyth and Matzkin (27) advocate a procedure which .
involves steepest deécent coupled with pattern move, known as
the accelerated step descent search method. The advantages of

this method are that it,

(1) requires few iterations,
(2) does not require evaluation of the gradient at the

start of each one dimensional search,
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(i1)

(3) possesses the quadratic convergence property.
In the region around their optima functions can be

approximated by a quadratic function of the form

. T T
F(X) = C+AX+3XGX - : (2.3)

where G is an n by n positive definite matrix, A is a column

‘vector of coefficients, and C is a constant.

A set of column vectors U], UZ’ .o Un can be defined

that are mutually conjugate with respect to a, i.e.

i G Uj = 0 for i1#].

Optimization methods based upon such vectors as sets of
conjugate directions search, each direction in tukn in search
of the minimum. For a quadratic function of N variables, thé '
optimum value of the function is'expécted to be found within
N unidiréctiona] searches. One such.methéd which has been con-
éidered in this thesis is tﬁat of Fletcher-Reeves (28). - In
this method a Tinear search is undertaken along each conjugate
search direction using cubic'interpo1ation. This method is

described in more detail in chapter five.

Direct Search Methods

In many problems, the function value is difficult to

- evaluate, and the expression for the gradient may be complicated

or even-unavailable. In both cases it is acceptable in principle
to estimate the value of the gradient by numerical approximation
méthods and then apply one of the gradient methods. The calcu-
lation of these estimates may involve considerabel computation,
and difficulties often arise when numerical rounding errors

affect the estimate of the gradient and interact with the con-



. vergence criteria. Therefore, algorithms have been written
that do not involve the gfadient either accurately or approxi-
mately. These algorithms can be divided into three main '
categories:

(a) Univariate search methods

~(b) Unidirectional search methods

(c) Methods based upon evolutionary operations.

(a) Univariate search methods

These methods search along predetermined directions. Two
of the more commonly usad algorithms in this category are those
suggested by Hooke and Jeeves (29) and Rosenbrock (30).

The Hooke and Jeeves'metﬂod is app]icab]é to any continuous
objective function. It combines univariate search with pat{ern
moves. The basic pattern move takes incremental steps after
suitable directions have been found by univariate search. If
the search progresses well in terms of decrementing the objective
function, the stép size 1is }hen increased, otherwise the step
size is decreased. When the step size is reduced below a set
value the search is terminated.

The‘Rosenbroqk algorithm is similar to the Hocke and Jeeves
method in following a 'valley', but it requires the re-orienta-
tion of the orthogonal direction to do so. The re-orientation
pf direction vectors is achieved by using the G ram Schmidt
procedure. This algorithm does not depend on the properties of
quadratic functions, and it usually obtains a local optimum.
However,‘for functions which are quadratic near their optimum
this method is not efficient when compared with other methods

which take the quadratic convergence property into con;ideration.
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(b) Unidirectional search methods

There are tWo variants of the unidirectional search approach,
namely that of Davies, Swann and Campey and further methods based
on conjugate directions. |

The Davies, Swann and Campey method can be considered as
a development of Rosenbrock's propmsal of rotating the search
directions. The final stage of limmar search consists of a
quadratic interpolation which couldl equally be replaced by that
of Powell. This method is restricted to functions with finite
and continuous first partial deri%aﬁfves, because of . the quad-
ratic interpolation used during the linear searches.

The methods.of conjugate search direction use a séquence
of one-dimensional searches along conjugate search directions
and havezghe advantage of being quadratically convergent.

Onégbf the first methods to be based on conjugate search
directions is due~t6 Smith (31). Bﬂthés the disadvantagé of
béing rather inefficient for problazms involving a large number
of variables. ‘There are two»reéSOﬂ;fbr this inefficiency.
F{rst,‘the method is unable to coniinually update the test point
so that the optimum can bé found tz the required degree of
accuracy for a‘non-quadratic objective function. Second, the
first of the N search directions is explored N times more fre-

‘quently than the Nth search direction. |

Powell's method (32) is an inprovement on Smith's method
and uses a different approach for generating the conjugate
directions. This method may fail i produce an optimum for

functions which have a steep valley skewed to the co-ordinate
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directions. This may be due to either loss of the quadratic
convergence property, or by failure to generate new conjugate
directions.
(c) Evolutionary operation methods

The original idea of evolutionary operation for optimiza-
tion was introduced by Box (33) for a large scale industrial
operation using statistical methods. Although the method demands
only continuity of the objective function, it has the disadvan-
tage that a large number of function evaluations are required.
If Nis the number of independent variables of the objective
function, then the method requires function evaluations.

The use of a simplex in a 'hill climbing1 context was first
suggested by Spendleyand Hext (34). The number of vertices used
in the simplex method is (N+l) of which N points are re-used in
the next iteration. Hence, only one function evaluation is
required for each iteration. The original simplex method of
Spendly and Hext had difficulty in negotiating a narrow curved
valley and once out of the valley the simplex method could not
expand for a quick move towards the extremum point. The method
was further improved by Nelder and Mead (35) through the use
of reflection, expansion and contraction coefficients. The main
advantages of this method are; first, it does not involve uni-
directional searches, and second, it does not use quadratic
approximations to the function, so it can therefore be applied
to functions that contain discontinuous derivatives and to func-

tions where the neighbourhood of the optimum may not be quadratic.
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The major defect of this method is that it produces a good
- approximate answer efficiently but then terminates without
locating the exact optimum. |

2.6 The Comparison of Algorithms

In‘the previous sections some of the different methods of
finding the optimum of a function of one and N variables have been
discussed. It can be concluded that there is no one algorithm
which could be considered as the most suitable for all types of
optimization problems. Some of the methods may work for certaiq
objective functions, whereas they may be very inefficient for others.
However, the choice of methods depends entirely ¢ the type of |
objective function to be optimized. For exémple, if the objective
function does not have the sum of squared form, and its first deri-
vatives are not available, then it is advisable to use a direct
search routine. On the other hand, if the objective function is
likely to contain discontinuitiesnin its gradient, then the simplex

‘ method is recommendable. For functions with a large numbe« of
variables, the Fletcher and Reeves méthod may be used since it does
not require any matrix to be stored or inverted. If all the require-
ments are avéilable, then a Quasi-Newton method can be applied to

| produce a rapid optimum value. ) '

Ghani and Barnes (36) give an account of some of the available
methods, modifcations to them and their agplicability to different
classes of functions. _ L

Box (37), also compares the performance of eight methods for
unconstrained optimization using a set of prob]ems with ypto twenty»

variables.
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In the later chapters of this thesis some of these methods
are described in more detail and their performances are illustrated

graphically for comparison purposes, using a set of test functions.

!



CHAPTER THREE

In the first chapter some general aspects of interactive computér
graphics and its uses were described. Chapter two introduced the basic
optimization prob]em and discussed solution methods.

The present chapter aims to bring together the themes of the f1rst
two chapters and to assess the contribution which‘interactive computer
graphics might make in the field of non-linear optimization.

The ihtroductory section gives a brief account of the potential of
interactive computer graphics in optimization, in problem formulation,
model development and solution, preseﬁtation of resu]ts and in teaching
and research.

In the following section some of the advantages and disadvantages a}e‘
discussed in an evaluation of this potential}

Finally some br{ef requirements of a system to realise the potential

benefits are given.

3.1 Interactive Computer Graphics in Optimization

Non-graphical.methods are well established in optimization and
recent technological developments have enabled the computer to con-
tribute directly to graphical work in tﬁis area.

Interactive computer graphics is undoubted]y capable of making
substantial contribution to the many stages of optimization; Its
real potential in situations where a system 1is available are:-

(1) Problem formulation

(2) Model deVelopment, which involves data analysis.
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(3) Solution of model by a choice of methods. This may be com-
bined with sets of known methods. The user chooses a method
and can participate in controlling the solution process,
observe the results from different methods and use this informa-
tion and experience to evaluate various methods. The results
obtained by numerical methods could also be compared with the
results of visual analysis in the case of one and two dimen-
sional problems or sub-problems. This,raises the interesting
possibility of solving problems in more than two dimensions by
visual analysis.

(4) Presentation of results. The results of a problem, both inter-
mediate and final, can be pfesented graphica]ly.as well as
numerically. Graphical presentation of the solution gives tﬁe
user a better understanding of the behaviour of methods, and
interpretation of the results becomes easier. This can aiso
Tead to the’ developinent of new methods.

(5) Evaluation of solutions. Us;ng graphical display of solutions,
comparisons can be made between the behaviour of model and that

of the real situation.

Eva]uation of Potential

Some of the generél benefits and.prob1ems connected with the
operation of interactive graphics system have been discussed in
chapter one. Now some of the advantages and disadvantages associated
with the use of interactive éomputer.graphics in optimization are

presented.



3.2.1 Advantages

The main advantages of interactive computer graphics in this

context are:-

(1)

(i1)

(i11)

(iv)

Faster input/output, enabies decisions to be made and acted
upon more quickly.

Speedier extrapolation to optimal solutions is achieved
through graphicg] presentatioh and analysis of intermediate
solutions.

Gives some insight into how the methods work for both two
and N-dimensional problems. This is essential because it
enables one to obtain a visual analysis where methods have
failed to converge.

Interactive computer graphics can also be useful to new;
comers in the field of optimization. It gives them a 'feel’
of the problem and a better understanding of how different
optimization methpds work. This is achieved by the user's
intervention at severaleecision points which are included

in the program.

3.2.2 Disadvantages

(1)

| (if)

The main disadvantage of using interactive graphics is that

it is heavy on function evaluation, a major difficulty with

complex problems. However, the difficulty can be partialiy
overcome by using lower definition graphics.
Complex problems inevitably lead to slow picture generation.

Applications are lTimited to situations where pictures can be

produced in a reasonable time, or where relatively few are

required.



(iii) The combination of applications, optimization and graphics
software may overload the computer system. Therefore

economics need to-be made whenever possible.

3.3 Systems Requirements

. .Many applications recently reported are either!not,interactive
or not graphics based. In most areas of optimization where interac-
tive computer g;aphics has been involved, its use has béen restricted
to either early presentation of the initial input data or the final
analysis of the result. The complete research process has seldom
been carried out through the medium of interactive graphics.

The quality of interaction can vary depending on the degree of
involvement demanded of the user. An optimization program will be
effective when it is able to provoke a response on the part of the
user. Having initiated a response from the user, it is then essen-
tial to provide a feedback quick]y.' Without any feedback at a11,’
the user will have>no basis on which to modify the performance of a
method, or to improve the input values. The combination of resources
in a truly interactive graphical system is thus a powerful one, but
it will be a useful took when applied to certain optimization
prob1ems. '

: Before designing a graphics system a‘decision needs to be made
as to whether the system is for non-expert or expert users, and
whether it is designed for teaching or research. If a combination
is required then speciai instructions should be provided to allow
both fypes of users to decide on the degree of interaction and

decision making in the optimization process. A new user can then
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supply only the initial information to activate the process and
allow other decisions to be taken by the system until he becomes
more familijar with the system. This gives the user time to analyse
the optimization pattern and also an insight into how the system
works. For exémp]e a new user may not be able to choose a suitable
step size tb draw a curve, in which case the original step size

may be chdsen automatically by the system. Observing the curve the
user can then reduce the step size to a desired value at the critical
region.

In some cases, however, even an experienced user may not have
sufficient information about a particular function. Therefore, it
may be advisable to allow the system to provide the user with more
information about the function, before participating in the optimiza-
tion procéss. For example in cases where the functions are complex
it may be difficult to choose the contour'size, the user can allow
the contour to be drawn by the system, and, by analysing the contour
its size can be increased or reduced as required.

In chapter four one such system and its features have been
described and its applications are illustrated in chapter five and

six.
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CHAPTER FOUR

An Interactive Computer Graphics

System for Optimization

In this chapter a system consisting eséential]y of two séts of
comprehensive programs is described. The programs are written in
FORTRAN and implemented on an IBM 370 computer with a Tektronix graphical
display unit. | | |

The chépter begins wi;h a sectioﬁ describing the general aspects of
the graphics system. This introductory section includes

(i) The hardware mechanism -

(i1) The programming language.
in'the main section which follows, some general aspects of the

software are discussed.

4,11 ~ Hardware Mééﬁanism

The Tektronix 4014-1 graphic§~di5p1ay terminal is shown in
* Figure 4.1. The device is linked to an IBM 370, and it consists
6f a storage tube screen together with a keyboard. The Tektronix
. is connected to a hard-copying device, so that the user can make
»ahd retain copies of the graph-plotted outputs.
The user\can interact with the display ﬂﬂit in two ways, by
either,
(a) the keyboard, which is a hardware facility enabling textual
| and numerical information to be entered, or .
(b) the cursor which is a software means of interacting with the
display. |

A track cross ﬁay be programmed to appear on the screen, then
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Fig. 4.1 Tektronix Visual Display Unit.
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" the user can move the centre of the cross to a desired point and
its co-ordinates are recorded. These co-ordinates, if acceptable to
the user, can be returned to the program for further calculations,
otherwise another point can be selected and examined.

4.1.2 Programming Language

An important point to be considered when writing programs for
‘”coﬁpﬁter grapﬁfténfé'fhé:tﬁsfééhsf ﬁfbgfémming.iaﬁguaéé. It was
decided to use ‘FORTRAN in this project. Some of the advantages and |
disadvantéges of FORTRANjhaVe already been diécu55ed in chapter one,
but the factors which dominated the choice here were;
(i) The availability of the graphics package, TCS, which is written
in FORTRAN. '
(11) The scientific nature of problems which were to be used.
(ii1) Some of the existing FORTRAN subprograms for optimization could
be incorporated.
4.2 Software |
The system is designed for the user who is familiar with the funda-
mental methods and terminology of optimization. The user is also expected
to have some knowledge of computer graphics. However, brief instructions
are displayed to help the user at certain decision points. The variable
names and messages appearing on the display are made compatible with
optimization and graphics terminology which should readily be understood
by the user.
The system pkoduces graphical representations of functions, and
allows the user to apply either a visual or an analytical method to obtain
solutions to problems. The proérams within the system can be divided

into two broad categories,
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(i) Control programs
(ii) Optimization programs
The optimization programs are used to locate the optimum in three
types of problems -
(a) Problems in one dimension
(b) Problems in‘twq dim§nsioq§‘A”

(c) Problems in N-dimensions

4.2.1 Control Programs

These programs are Qsed in the system to provide substantial
interaction between the user and the display. They also control
the presentation of graphical output by obeying user's commands.
These programs consist of sets of sub-programé, which are -

(i) Terminal control system
(ii) Subroutine MENU
(iii) Subroutine GRAF
| (iv) Subroutine FUNEQ

(1) Terminal Control System (TCS)

This is a Tektronix software package and consists of a
set of FORTRAN subroutines. The Terminal Control System sub-
routines communicate with one anohher primarily through thé
Terminal Statics Area, a set of common variables which contin-
uously represents the current state of the terminal and main-
tains the data necessary teo generate output according to the
user's level of need. - -

These subroutines give many conveniences to the user.
Bright and dark vectors are displayed on the terminal screen.
The former indicates the 'DRAW' routine and the 1attér a 'MOVE'

routine which is the equivalent of a bright vector. Calls to



(i)

(iil)

other subroutines such as subroutines to provide the user with
the cursor or to start the process on a clear screen are also

dependent on TCS.

"Subroutine MENU

The user interacts'with the display by selecting the next
stage in the program. At the end of each stage, the subroutine
MENU (ICU) 1s automatically called to display the available
options at that stage. The displayed opt{ons are identified by}
numbers or letters, corresponding to the instructions in the
program. The instructions are obeyed when the options are selec-
ted and the appropriate keys of the keyboard.are pressed. Sub-
routine MENU (ICU) has 6n1y one parameter, ICU, which acts as
a code for the 1list of options to be displayed. The Tist of
options tq.be displayed at different stages of the optimization
process ig”control1ed by the value assigned to ICU at various
stages. Figure 4.2(a) and ngure 4.2(b) show two different sets
of options displayed by the subroutine MENU (ICU) at two
different stages of the program.

Subroutine'GRAF

Prior to the graphical display of the function, the user
may.be‘requested to input the search area or the extreme ranges

of the x and'y axis. These extreme values determine the size

‘'of the plotted output, since they are representative of the size

of the window within which the curve is plotted.
- After each graphical display the user may wish to enlarge
the disb]ayed graph for closer observation and better analysis.

This system was deiégned‘and tested on a CRT display unit, and
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so the zooming effect was not directly available. Therefore,
to achieve zooming a new range of extreme points has to be
specified. This is carried out by pressing ihe key represent-
ing the option 'New window'. This activates a call to the
subroutine GRAF, and the user can then input the appropriate
__new values for a close-upof the output. | 7

\ This subroutine can also produce two types of'axis, speci-
fied by the user to suit the graphical output.

The subroutine GRAF is of the form

CALL GRAF (DXA,DXB,DYA,DYB,GXA,GXB,GYA,GYB,IGRF,IGA)

where the variables have the fqliowing meanings -
DXA,DXB,DYA,DYB - The range of the window in user's units.
}These are automatically adjusfed.to suitable values when the
user declares the extreme points of the x and y axis.
GXA,GXB,GYA,GYB - The extreme points of the axes, which must
be proVided by'the user. |
IGRF‘- A code which controls thevadjustments of the screen
window. The value of IGRF changes automatically in the program
when the modification has been made.
IGA - The value for this variable specifies the type of axis
required. ' |
IGA = 1 axes for one;dimensional functions.
IGA = 2 axes for two and N-dimensional functions.
The abové values are automatically assigned to;IGA, but
the user may over-ride this and select- the type of axis preferred.
'Some illustrations of the capabilities of GRAF are given

in figures 4.3(a) and 4.3(b).
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Fig. 4 3a Search Pattern of the Rosenbrock
Function.
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Display of Zooming Effect of the Search
Pattern of the Rosenbrock Function.
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(iv)

Figure 4.3(a) shows a search pattern using the Nelder
and Mead method to minimize the Rosenbrock function,

2

F(x) = 100 (x, = x5) + (1 - x;) (4.1)

!

Figure 4.3(b) shows a close-up of the above search pattern.
This is obtained by a reduction in the size of the window.

Figures 4.4(a) and 4.4(b) show the two types of available
axes, with IGA = 1 and IGA = 2 respectively. | |
Subroutine FUNEQ

Before choosing a method of optimization the user must
identify the type of function which is to bc optimized, i.e. a
oné;dimensional or an N-dimensional function. This information
is used for the display of options. The user is then requesfed
to set up the function which must be in polynomial form, and a

FORTRAN call to the subroutine 'FUNEQ' allows the user to do so.

The user must supply the subroutine with thé polynomial coeffi-

cients in order of ascending power of the variables. From this
information the derivative of the function is set up in the
subroutine and its value is calculated whenever required. This
facility affords considerable interactive flexibility for test-
ing optimization methods on new or established polyncmial test
functions. The system is easily extended to cope with test
functlons other than those in polynomial form

"~ The subroutlne 'FUNEQ' is automatically called at the

start of the main program, so that the first functlon can be

set up. ~ But after each opt1m12at1on process, the user is given

the choice of either obtaining the optimum value of the same
function with another method, or to set up a new function and

évaluate its optimum value. Such an arrangement allows the
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user to analyse and calculate the optimum value of more than
one function in one session. This also saves computer time,
since the user does not have to load the program each time a
newffunction is optimized and,therefore, continuity of the
-operation is maintained.

4.2.2 QOptimization programs

" Once the function is identified and set up the user then selects
one of the available optimization methods. Those presently available
are discussed below.

(i) One-dimensional functions

. For a one-dimensional function the user can choose one of
four optimization methods. They are:
(a) Midpoint
(b) Linear search
(c) Davies, Swann and Campey
(d) Davidon's. cubic searcﬂ
The system is also flexible enough to allow additiona’?
search methbds to be included and tested.
The optimum can also be obtained visually, before or after
| applying one of the ébove methods. The cursor is used to find
the optimum value. The cursor locates the ;q-ordinates of a |
point .on the displayed curve of the function. These co-ordinates
correspond to the variable and the function value at that poinf.
For comparison puhpcses the user can find the Optimum value of
a function by all four analytical methods as well as by visual
means. |
The user is requiréd to specify whether the function is

to be displayed after each method is terminated or not.
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'Figure 4.5 shows the minimum of the function

Fx) = x* - 83 - 6x% + 4x + 4 (4.2)

being located usually on the function curve. The value of the function
is'displayed on the left-hand side of the screen.

 Figures 4.6(a), 4.6(b), 4.6(c) and 4.6(d) show the

minimum of the function (4.2) found by the midpoint, linear

search, Davies, Swann and Campey and Davidson's methods respec-
tively. | |

(i1) N-dimensional objective functions

To find the optimum of an N-dimensional function three
methods have been used. They are
(a) Fletcher and Reeves method
(b) Nelder and Mead, simplex method
(c)v Plane analysis method |

Detailed deécriptionsof the use ofveach of these methods
are given in the next chaptér. However, the distinctive
characteristic 6f method (c) is its dse of two-dimensional
slices in N-dimensional space.

Due to obvious 1imitations,'contours of an N-dimensional
function can only be shown as a series of two-dimensfonal con-
structs. The facility brovided in the system allows the user
to specify the two dimensidnal space for which the contours are -
to be drawn. Before entering in the optimization routine the
user can produce a series of contours at different planes,
record'any desired values using the cursor, thén start optimiza-
tion with these values.

The program is also capable of displaying the céntours

of constrained functions as well as unconstrained ones.
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Figure 4.7 shows two contours of the Rosenbrock function
(4.1). Figures 4.8(a) and 4.8(b) show contours of Wood's
functions

{100(x?~xf)2 + (1-x-,)2 + 90(x4-x])2 + (1-x3)2 +
F(x) =
10.1(x2-1)2 + 10.1(x4-1)2 + 19.8(x2-1)(x4-1) }
(4.3)
in the (x-j,x2) and (x*x”) two-dimensional spaces respectively.

Figure 4.9 presents a constrained function. The dotted
closed, contour is the non-linear constraint, the straight line
with the letter C at both ends is the linear constraint, and
the horizontal straight line is the function. The function and

the constraints are

F(x) = x2 (4.4)
subject to

C1 = X1+x2+x3 = 1

Q = 2x2 - x* M. (4-6)

The constraint is presented in the (XpX2) plane to

correspond to the constraint C2 and the objective function.
A flow chart of the total system is presented in figure
4.10. This shows the decision points and routines available in

the system.

In  concluding this chapter which hasdescribed the principal features
of the interactive graphics system, it is useful tolist the purposes for
which the system was designed and to which it has already been applied,

as will be described in the remaining chapters;

n 60



(11)

(iii)

(iv)

(V)‘

(vi)

-

Analysis, evaluation and comparison of one-dimensiona] seafch
methods, visually and analytically.

Analysis, evaluation and comparison of N-dimensional methods

on two and N-dimensional problems. _

Investigation of performance of oﬁe-dimensiona1 search methods
within N-dimensional methods.

Interactively controiling optimizatibn with established methods.
Investigatioh of direct intéractive optimization of N-dimensional
functions, using contour‘mabs only. *

Presenting con*ours and investigating optima of constrained

prdb]ems.



s0. 10U LS0bomio

O o dug

62 -



08

O s - Y ow
@b3 N w

-

o' G- .m,cmL.Q _”mXﬁMXM
ot do uolljone
T R00;, ¥0 40 004

g5 88 g * bis



ift

— 288 ¥« *Jdwow
6% Ex3 0= vsWw

oz | XA
8 00z E5 ocl400m3
> ooy So 330»000

a8 >

<
o g
28 &5 veS e "o oof 025 Y = .3
£6="2% Fof t oY "o 008t  eed't  oFf la
88%° 419 5=8°1 ©©©.M ©©w«m ec0s’ LI
1ge%2s B2 d {eFadc) @e5° o= T L3 e b%
: 585
_ 20%9& LoN 33 & (a W
. *L m S 3 ! QWJ . ~— -
380538 60 ¥ ' ¢ o38% Bize | TexiD¥O Sxo Bhomo ob  IB3Nd «Q:Qo IS v F 22 TID
05035x &L BoVd w3x ¥ Aewo Hs mmw,ma D % o xci H@ m
. SNolkee 50 ' Tooo*XTx wmo&w - .pmmom Oa/hmewmwm .Uw =t
1893 = 3 x3xc0 R< se3:d oOxnm.w g wom.,m ®3n Soo x #B386 .....@Mqu 4= my
3z:5 5«8 32: ooB0x0 oL ££290 ooxd m8 So0s mSn Qou x S588% xR 5 O£ F e e

64 -



8-d (g

Q0! fooms
qu_.MOw‘OOo

%3233N mmwf

£

$00rRoo So weoo NIT
coxl3g B So0d M
QA -~ T w d?.@v_
832 s< oo<I, «.fﬂm
8523w

M0 doo oi8' 6

a?

R

cr»a> <n cn
L-J1U uj UJ
nzcc oz

!

LJXH
cn o) cn cn
cLCLCL CL

)
Q.u -
d@w 3&;“. OE
T
T o-
0-
—0
L 0010607 3N 107]cg
H@ *%X &S_A.w_ mCOO v
8 s
1
3
g
oN 3% vo%0 &b 2 g
oOxmm..* i w o)
So8¥0 =
XmZnu &£ o

65

t/; co<scn
bJLUtU Ic.%

CLCEU

u.cc.co



Fig. 410 Flowchart o the System.



‘ " CHAPTER FIVE
Applications to Test Prop]ems

Having outlined the basic properties and capabi1{ties of the
graphics system in the previous chapter, the present chapter’goes on:fo
describe in detail some of the practicaliuses to which it has been put:
In each case considered the aim has been to evaluate the contribution
which interactive computer graphics might make, either to supb]ement
existing procedures or possibly to replace them.

It was shown in the previous chapter how tﬁe system enables a user .
to select and test procedures for both one and N~-dimensional optimizatidn.
It was also indicated thai facilities are available for the selection of
standard or new test functions, as desired.

The first section of this chapter deals with cne-dimensional func-
tions and methods. Taking a series of test functiens and minimizing them
by means of several different procedures, it demonstrates the value, not
only of having a flexible interactive éystem available for this purpose,
but also that of Being able to prrduce comparative pictures which are
useful in both feaching and research.

Widening the scope to look at problems in more than one dimension,
interactive computer graphics can immediately be seen to offer some
potential in the case of two-dimensional problems, where contour maps
of the function can be drawn and the progress of minimization procedures
méy be obtained and analysed. Hence, the next section, after describing
cqﬁfouring methods, goes on to illustrate the paths takeh by some standard

routines on several test functions.



Finally, attention is turned to problems in more than twﬁ‘dimensions,
where the contribution of interactive graphics may be Tess obvious. !
However, two significant developments are described.

The first consists of inserting an optional graphics feature into an
existing N-dimehsiona] algorithm. This enables the univariate search part
of the algorithm to be observed and>interrupted or modified if desired.

The feature is especially useful wheh an algorithm is causing problems in
difficult cases. It offers an insight into the'behavidur of the univariate
search procedure itself, and also illustrates the joint behaviour of the.
chosen one and N-dimensional procedui-es working together. Although the
actual running of the program may take longer in c.p.u. ¢ime, the user does
have a greater degree of control since the system enables the user to
terminate a linear search at any time and at any point along the direction
of search.

The second area of development consists of investigations’into the
possibility of using graphics in direct search optimization of functions
of more than two variables. Clearly, the image presented can only be in
any two of the variables at any time.. However, by making systematic slices
"in the N-dimensional space and observing the resulting contours in two-
dimensional displays, some interesting results are obtained. A theoretical
investigation of the procedure applied to quadratic forms leads to an

algorithm which is, in principle, more generally applicable.

5.1 Problems in One-dimension

There are two commonly used approaches to finding the optimum
of a one-dimensional function, |
(i) approximation methods,

(i1) search methods.
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The first approach uses the fact that‘near that critical point
the function may,iﬁ principle, be expandéd using a Taylor series to
obtain a better approximation to the optimum by fitting a simple
function through a number of computed points. The two methods used
here are:- |
(a) Quadratic approximation.

(b) Cubic approximation.

The search methodé are based on finding the roots of F'(X) = 0.
Mény numerical methods follow the same principle, and the two choices
for this project are: '

(c) Midpoint method,
(d) Linear search method.

The general aim is to find the local minimum of a continuous
function of X which is differentiable. No further assumptions are
made about F(X). | _

The disadvéntages which may occur with ejther of the two search '
methods are:-

(1) it may diverge under undesirable circumstances.

(2) it may fail to find a local minimum by computational oscillation,

(3) it may involve an excessive amount of computation for tomplex
functions,

(4) it depends to a large extent on the initial estimate of the

minimum and the search interval.

A graphical presentation will be seen to give a better understand-
fng of the difficulties inherent in the use of these methods, and the

optimization pattern followed by each.
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5.1.1 A program for one-dimensional problems

This program has been designed to find the minimum of a con-
tinuous test function which can be presented in the form of a poly-
nomial, although with minor program modifications more general func-
tions can be used. The system is structured to allow easy incorpora-
tion of further, possibiy experinental, one-dimensional methods which
can then be tested against the ones already included, using a variety
of test functions. The system allows the user to cheose the method,
set up the test function as a polynomial, then input the other require-
ments such as step size, the initiél value of the variable, etc.

The output produced for a method consists of a visual display of
either the function curve or the derivative curve and its axes. On
the upper'right hand corner of the screen the ﬁame of the method may
be displayed. After an iteration has been performed and visually
displayed, the user is given the opportunity to clear the screen and
set up the curve and axes given.

When choosing the midpoint or linear search methods the optimum
of the test function can be determined in two ways. First, by direct
aﬁplicaiion of the chosen method, 1in Which_case after the minimum has
been located, the gradient curve is displayed. Alternatively, the
function curve may be displayed and the minimum located visually by
use of the cursor. |

Figure 5.1 shows the flow diagram of the one-dimensional pregram.
When the main program is entered the initial display frame appears
automatically. This frame tests the initial instructions and the

methods to which the program may branch.
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When the method is términated the user is presented with a
set of options which is displayed on the left hand side of the
screen in the form of a menu, as is shown in figure 5.4.

There are eight opfions which are commonly used by all four
methods. The extra option is only applicable to the linear search
and the midpoint methods. This option allows one of the two types
of previously mentioned curves to be displayed.

- The options can be divided into two categories. The first set
operates 'within' the method. For example, the user may view the
display more closely by declaring new co-ordinates for the window.

It is also possible to test a new function using the method already
in use. |

The second set of options are those Qﬁich allow the user to
control the overall program by either requesting to use another
method, by transferring into the N-dimensional phése, or by terminating
the program. Hdving chbsen a new method, the user can test the same
function or set up a new one. | |

Figure 5.2 shows the tlow diagram of the methods once the
brancﬁing off from the main program is done. This diagram also shows
-the general piéture of the layout of the options. Detailed flow -

diagrams for each method are given later.

(a) 'Quadfatic approximation
| This method is based on Davies, Swann and Campey's algorithm
and produces three equally spaced points which are used to define

a quadratic of the form:-

y = ax2+bx+c ' | (5.1)
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Three simultaneous Tinear equatidns are obtained by sub-
stitution in the above equation, and these are solved to find
three unknowns, a, b, and c.

The quadratic approximation to the curve iS found using a
standard package, SiMQ. |

Figure 5.3 shows the flow diagram of the complete method.
Figure 5.4 shows the last iteration to find the minimum of the

function,
F(X) = x =-4x =-6x +4x + 4. (Function 1)

~ The method is illustrated on the function curve. The three
points which span the minimum are indicated by letters A, B and .
C. These points have been choéen such that A <B < C and
F(A) > F(B) < F(C). The co-drdinateé of these three points are
printed on the left hand side of the screen.

A parabola is fitted through the points A; B and C. This
curve is shown as a dashed line and the Tetter 'R' indicates
the predicted minimum. At the end of each iteration the user
may produce a hard copy, or proceed, as desired.

This procedure is continued until the magnitude of the
distance between two extreme points is sufficiently small, in
which case the value of x to give the minimum value of the

function is taken as the-last value of 'R', that is

and

F(x . ) = F(R).
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(b) Davidon's cubic technique

This method obtains the minimum value of a function by
approximating it to a cubic over its critical part, using both
‘the value and the derivative of the function at two distinct
points.

The value of the initial point A and the step size H have
to be selected at the start of the procedure. The next step is
to calculate the value of the derivative F'(A) at point A, If
F'(A) <0 then, Hy = -H otherwise, H1 = H. A new point B is
found and its derivative F'(B) is calculated, where B = A + Hy.
The sign of F'(B) is compared to that of F'(A;. If they have
equal signs, the point B replaces A as the new origin, the
step size H] is doubled and the above process is repeated to find
a new origin. If the signs differ, or the value of the deriva-
tive at point B is zero, then a cubic is fitted to the points
A and B using the ﬁrevious1y-ca1cu1ated values of F(A), F'(A),
F(B) and F'(B). The cubic is of the form; |

y = ax® + bx? + cx + d | (5.4)

~where a, b,c and d are unknown. They may be found by solving a
set of four simultaneous equations, where for convenience the

origin is taken at point A. The four equations are;

F(A) = d
F'(A) = ¢ . ) 5.5)
#(B) = ax3 + bxz +CcX + d L

F'(B) = 3ax2 + 2xb + ¢

where x = H.
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Having solvéd these four linear equations using SIMQ, the
minimum value of this cubic can be estimated. This minimum value
.is then taken as an approximation to the minimum value of the
iest}function. This point, referred to as 'R' replaces either
point A or the point whose derivative has the same sign as
F'(R). The above procedure is repeated until the absolute value
of the derivative of the root of the cubic approximation F'(R)
is less than a prescribed value. Figure 5.5 shows the flow
diagraonf this method. A

Figure 5.6 presents a graphical illustration of this method
used to obtain a minimum for function (1).

It shows the function and the two points A and B after-a:
cubic fﬁt, and the ]ettefs A and B specify the positioﬁ of the
two po{nts on the x axis. Two vertical lines are é]so drawn
from F(A) and F(B) to the x axis. These two vertical lines show
the values of F(A) and F(B) on the graph.

" A cubic is fitted at the points A and B. This curve is

drawn using a dashed 1ine. The minimum of this curve is labelled

"~ 'R' and a Tine is drawn from this point on the x axis to the

curve which indicates‘the position of F(R). This minimum value
is taken as an approximation of the minimum of the function.
The value of minimum point 'R' and its function value are
displayed.

If more than one cubic fit is required before the minimum
is reached, the process is stopped after each iteration to al1ow
the user to observe the output or to produce a hard copy before

continuing the process.
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Cubic Search Enter J
Initial

Values

Yes

<f'(A).F'(B
\ <0 X

[ extrapolate

d-(B-A) (w-v~z) / (F1(B)-F" (A)+2w)

E=Stopping criteria

Yes

Cubic inter
polation

F(A)

Fig. 5.5 Flow Diagram of Cubic Search Method.
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(c)

Once the minimum is reached the minimum point and its
function value are displayed on the left hand side of the screen.

The midpoint search technique

This method is also known as the "Method of bisection",
It requires two points A and B to specify the search interval
of variable x. These two points should be chosen so that A < B.

The values of the derivative of the function at these two poinfs

~F'(A) and-F'(B) are calculated and a check is made to ensure

that they are of opposite signs. If this condition is satisfied
then F'(x) must have a root or a discontinuity within this
search intérval.

~ The value of the derivative is calculated for a third point
C, where C = (A+B)/2, F'(C).is then compared with F'(A) and F'(B).
If F'(C) has the same sign as F'(A), the point C replaces point
A; otherwise the point C becomes the new point B. This process
is repeated until the_magnitdde of the distance between the
current points of A and B or the value of F'(C) is sufficiently
small, in which case the value of the root of F'(<) will be the

Tast value of C, that is'

Xnin = c, and F(Xmin)

= F(C).

Figure 5.7 shows an iilustration of this method to find
the minimum value of function (1).

The curve is that of the derivative of the function. On

the curve, the search interval specified by,the points A and B

is indicated by drawing two vertical'lines, one from F'(A) and

the other from F'(B) to the x axis. The actual points on the
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(d)

curve are shown by the letters A and B on the x axis at the
position of the points A and B respectively. These two
vertical lines are ndt numbered, indicating that no iteration
has yet been performed. The nekt line drawn represents the
midpoint of the interval AB at the point C. A vertical Tine
is drawn from F'(C) to the x axis. This Tine is given the
number '1', which signifies the result of the first iteration.
On the left hand side of the screen the value of C which is
assigned to x, the function value and the point which has been
rep1aced by C ure printed. Each new midpoint which is drawn
usiﬁg the above method is annotated with its iteration number.
The numbers on the curve also give an indication of how the
interval has been reduced.

This illustration shows that six iterations have been
performed before a minimum has been reached. |

The linear search technique

This method starts by initia]]y finding two points, A
and B such that A< B and F'(A) and F'(B) are of oppasite signs.
It is assumed that the derivative curve in the neighbourhood
of its root can be approximated by a straight 1ine,‘whose slope
and intercept are linear combinations of F'(A) and F'(B). The

point wnere this line crosses the x axis is taken as an

approximation to the root of the derivative curve. With respect

to this assumption a point C is found where C is givén by the
expression

C

A - ((B-A)F'(A)/(F'(B)-F'(R))) (5.6)

The value of F'(C) at this point is calculated and its sign

is compared with that of F'(A) and F'(B}. If F'(C) has the same
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sign as F'(A) the point C becomes the new point A, otherwise
point C will replace point B. The process of obtaining a
third point is repeated ﬁnti] the magnitude of the distance
| betwgen the two cUrrent points A and B has become smaller
than a predetermined tolerance, in which case the value accepted

as the root of F'(x) is the value of C.

Both the linear search and midpoint methods are based on the
same basic principle, except for the way in which they obtain the
third point C. Figure 5.8 shcws the flow diagram for both methods.

A graphical illustration of the linear search method for
function'(l) is shown in figure 5.9a. As for the previcus method the
search interval is specifjed by drawing two vertical lines from
F'(A) and F'(B) to the points A and B on the x axis. A straight'1ine
joins the current F'(A) at the point A to the current F'(B) at
point B, after each iteration until a value for the root is obtained
or the method is interactively terminated by the user on the basis
of diSplayéd evidence. |

At the start of the method the usér is requested to specify the
number of iterations after which the current values of the function,
the gradient and the variable are to be printed out on the left
hand side of the screen for inspection., At this stage, the user is
given the qhoice of continuing the process, or terminating it if the
results are not satisfactory.

| If the starting condition, that is F'(A) and F'(B) should have
- the opppsite sign, is not initially satfsfied, then the user is
requested to submit a new range. This proceSS can continue until

the starting condition is met. .
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| Set search /

F'(A)*

Yes

C = (A+B)/2 or
C = A-(B-A)Fn(A)
F(B)-F(A)

PRINT MIN
VALUES

Fig. 5.8 Flow Diagram of Linear Search and Mid-Point
Techniques.
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The minimum vaiue for the function (1) is reached after twenty
three iterations, which indicates that the method is slow in
obtaining the minimum when compared to the previous method, where

the minimum was reached after six iterations.

5.1.2 Test functions:

Five test functions have been chosen to test the four one-
dimen;ional methods avéi1ab1e. Two of the functions are the ones
referred to by Dixon (23). |

Function 1

F(x) = x* -4x® - 6x2+4x + 4 : (5.7) .

The illustrations of the four methods to find the minimum
of this function have already been presented. The true value
of the root of the derivative of this function is 3.73205. If
tﬁis value {s compared to the results produced by the four
methods, it can be seen that the minimum obtained by the Tinear
search method, x = 3.732, shown in figures 5.9(a), is the nearest
to the true value. However, ah approximate minimum can also be
obtained analytically as shown in figure 5.9(b), where the user
predicts the minimum using the cursor. The value obtained is
acceptable when compared with the other results produced by

" optimization methods. .

Function 2

F(x) = -3x* + 44x3 - 120x% - 384x + 1

- This function has a minimum at 4.0. Figures 5.10(a), (b)
show the minimum found by the mid-point, linear search, Figures

5.10(c) and 5.10(d), Davies, Swann and Campey methods respectively.
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For’this particular function within the search region of 1
and 6, the 1inéar search method has proved to be more suitable
than the others. This method obtains the minimum in one itera-

tion with the exact value of x = 4.0.
Function 3

F(x) = x2

This function has-a minihum at the point x = 0.0, and all
four methods are illustrated on this function. Figures 5.11
(b), (c), (d) and (e) show the graphical i]]Qstrations of the '
midpoint, 1inear search, Davies, Swann and Campey and Davidon's
cubic methods respectively. The minimum as predicted by the
Tinear search method is again more accurate and only one itera-
tion is used. The midpoint method however, required seven
iterations before the minimum was found and this vaiue is not
as accurate as the value found by the other three methods. The

performance and the minimum found by Davies, Swann and Campey

and Davidon's cubi: method are relatively similar.

\

Function 4
F(x) = x* =-4x® 6x* - 16x +4

The minimum of this function occurs at the point x = 4.0.
The other roots are imaginary. Figures 5.12 (b), (c), (d)
show the three methods, midpoint, Tinear search and Davies,
. Swann and Campey, used to find the minimum value of this func-
tion. Figure 5.12(a) shows the minimum predicted viéua]ly.
This value is reasonably accurate when compared with the mini-

mum found by numerical methods.
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For this function Davidon's method, figure 5.72e finds
the minimum in one cubic interpolation to a reasonable .

degree of accuracy.

Function 5
F(x) = x* -4x3-6x2 + 64x + 4.

) The minimum of this function is at-2.0. Fiéures 5.13 (a),
(b),'(é)'and‘(d) shOW‘graphical 11lustrations of the midpoint; .
1inear search, Davies Swan and Campey's and Davidon's method.
From the five test functions and the results obtaiied by
each method, it is apparent that for each functidn a different
method was found to be more suitable, depending on the starting
values. However, the performance of the midpoint technique was
found to be consistent for all five functions. In all five
~ cases, it required seven or eight iteratidns to locate the
approximate minimum and the minimum valdes were generally less

accurate than those found by other methods.

5.2 Problemsin Two-dimensions

The problem is to find the values of,x], Xy which give the least
value of f(x]-’, xz).
It fs possible to visualise a two dimensional function in terms
of a landscape where f is the height of land at the point (x],xz)
.and to plot contours at equal increment of f. The problem of mini-
mization is to locate the lowest point on the surface of the land-
scape.‘
There are many optimization methods which are used to find the

minimum of a two-dimensional function, such as Fletcher and Reeves
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and Simplex. These two methods and their application to a two-
dimensional function will be discussed in the later sections.
Howevers the approach which is used here is based on drawing the
contour of the function and finding its minimum visually.

5.2.1 Contour plotting routine

There are several methods for plotting contours, namely
Dayhoff(38)s Robinson and Scarton (39), Cottafava and Le Moli. (40)
and Crane (41). These methods are based on the evaluation of exact
roots along the sides of rectangles and the generation of one or
two straight lines to join them. McLain (42) and Sutcliffe (43)
use algorithms which are based on subdivision of the rectangle into
a grid of smaller rectangles and the generation of many of straight
lines so that apparently continuous smooth curves join the roots
along the side of the rectangle.

It is an adaptation of the last method which is used in the
work of this thesis, the original, ALGOL procedures having been
translated to FORTRAN for the purpose.

The program starts by asking the user to input certain initial
values. These include the number of variables, the step size, window
range and the value for xmin, xmax, y * and ymax. If the function
does have any constraints the user must specify the types of con-
straints and the number of each type.

The area between x * , xmfiX, ynn and ymax is divided into four
quadrants and since tracing the contour curve is the same for all
four quadrants the procedure is only described for one quadrant.

Having defined the co-ordinates of the corner points of the
quadrant the function value is found at points(x?, y*), (x*, y*)

where x* and y* are the points where the x axis and y axis have to
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be divided, Xg = Xpoy If the two functidn values have the same
sign, it indicates that there are no roots, so the function values

at the other corner points(xA, yB) and(xB, yB) are calculated and
their signs are compared. If there is. no change of sign in the-
function value on any of the four sides of the rectangle, then the
search for.a root ﬁust be directed to the next quadrant because

this §hows that the contour does nct pass through the first quadrant.
The same process is carried out for each quadrant until a root is
found.

If a sign change i{s detected, then for the given interval length
the number of intervals along the side is calculated. The midpoint
of the side, rounded to an integer number of intervals is found. The
function vaiue at this point is calculated. The sign of this function
determines which half the root 1ies in. This procedure is now
applied to this half line and is repeated until tha length is
equal to that of an interval. This prdcess allows a relatively
precise location of the root on the interval length of the chosen
side. This interval is used as the starting base line for the small -
rectangles into which the quadrant is being divided. The'sign of
the function is determined at the other two corners. The sign
change along a side indicates that the curve will proceed fiom this
side and this forms the base T1ine for the next rentangle. This
process is repéated unitil the edge of the quadrant is reéched and
- the exit point is then recorded. The other corners are in turn
investigated for a root and if the root is not in the exit list,
then the above procedure is repeated. Otherwise, the other quadrants

are examined to trace the curve.

; , =105 -~



5.3

5.2.2 Application of contour plotting routine to a two-dfmensiona]
probiem | |

The coﬁtour plotting routine is designed to plot the smallest
contour for the specified region, unless it is instructed otherwise
by the user. This has proved to be useful especially for two-
dimensiona1 functions whose minimum can be visually located within
the pTot of a single contour. However, if the user is not satisfied
with the minimum found in the first contour, the minimum values

may then be used to specify a new region within which anothev contour

.is smaller than the previous value. It can therefore be concluded

that for a two-dimensional function it is in principle possible to
locate a minimum by simply reducing the size of the contour and
locating the minimum visually each time.

Figure 5.14 (a) shows the contour of the two-dimensional
Rosenbrock function and its approximate minimum at the second point.
In this case the user has chosen the size of the contour. The
co-ordinates of the second point haVe been used to define a new
region for which a second contour is drawn. This is illustrated in
figure 5.14 (b).

* Figure 5.15 shows a close up of the second contour and as it
can be seen the minimum has been visually located which is an

acceptable value.

Problems in N-dimensions

The methods in general use for finding the optimum of a function

of N-variables can be divided into two categories:-

- 106. -
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- (i) methods which use derivatives of the function,

(i1) methods which do not require derivatives of the function.

In this thesis one method from each category has been chosen
to be compared with a direct search graphical analysis procedure
which uses contours of an N-dimensicnal function in a two-dimensional

space. The two conventional methods are:-

(1) Fletcher and Reeves method

(2) Simplex search method.

The above two methods and the graphical method are combined to
produce the second ﬁart of the system which consist of a suite of

N-dimensional optimization methods.

5.3.1 A program for N-dimensional problems

The basic structure of this program is similar to that of the
one-dimensional programAproviding the same range of facilities for
the user. For exémple, thé user can test more than one function with
more than one method in any session.

When entering this program an initial display frame is presented
to the user. This frame consists of the initial instructions and a
1i$t of available methods.

After each method is terminated a 1list of options is displayed
on the screen. These options-can be divided (as bafore) into two
groups. The 'internal' options and the ‘external' options. The
number of options available for both types differ for each method
and a list of them will be g{ven when each is described.

Figure 5.16 shows the flow diagram of the N-dimensional program.
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Fig. 5.16 Flow Diagram of N-dimensional Program.
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5.3.2 Method of Fletcher and Reeves

This is a quadratically convergent method and was first

-introduced in 1964. It makes use of conjugate gradient vectors.
This method is applied to functions of N-variables whose func-

tion va]ue'of f(xi) and gradient vector g(xi) can be evaluated at

any general point Xis soees i=1, ... N. The basic algorithm is;

X, = starting point
9o = 9(x5) » Py = g
Xig] = point of minimur of f(x) on the line through X; and

in the direction of Pse
Cubic interpolation is used in the linear search part of the-
algorithm. -It has been found that the cubic interpclation technique,
when applied to certain test functions, predicts a minimum th close
to one of the bounds so that the range becomes effectively constant.
- Dixon (44) has introduced a safegUarded method which requires at
least one more function evaluation at each iteration. This approach
cuts down the range in one cycle rather than having to reduce the
range several times. |
The method is terminated when one ;f the two conditions is
satisfied: |
(1) For a poiut X to be minimum, the value g? must be zero
or within sufficiently small tolerance criterion.
(2) The iteratiomsare continued until a complete cycle of
(N+1) iterations has produced no reduction in the value of
the function.
A further safeguard to save unnecessary wastaa2 of computer time
is to apply some arbitrary 1im{t to the number of (N+1) iterations

allowed.

e



The Fletcher - Reeves method is one of the most efficient
algorithms utilising conjugate gradients. This method has also‘
been embodied in procedures for constrained optimization because
of its modest membry requirements - it only requires two vectors
| to be stored. The last factor has influenced the choice of the
method for this thesis. . ‘

The‘FORTRAN subroutine used here is based on the ALGOL procedure
produced by Fletcher & Reeves (28). The program has been modified
to suit the computer graphics user. The program now provides the
user with a certain degree of interaction and control over the running
of the algorithm.

' Initially, the number of variables, their starting values, and
the estimate of the value of the function are input. The user must
then define the values for two limits. ~The first limit is on the
number of cubic interpolations performed after each linear search.
This 1imit gives an indication of how the interpolation is proceeding.
When the number of interpo]ation‘reaches‘the 1imit a message is
displayed on the screen which allows the user either to proceed with
the interpolation with a new 1imit,‘or to choose one of the available
options which will be displayed on request.

The second Timit is for the number of iterations performed in
search of the minimum. The procedure is terminated when the number
of iterations exceeds the 1imit, indicating that the function has
ndt converged with the given initial values. This is fo]lowed by a
disp]ay of bptions from which'the user can decide on tﬁe next step,
i.e. cﬁange\the initial value, change the method, or test a new

function etc.

| ~1N3 -



At the start of the procedure the user can ésk for a display
bf the linear search and the approximate curve. The display of this
curve is under user's control.

After the display of the linear search and the approximate curve
is completed, the cursor can be employed to locate the minimum, te’
visually. The user can then over-ride the calculation of te
and input fhe minimum value which has been Tocated visually. The
user has this éhoice every time a linear search is performed.

To provide the user with more information about the performance
of the method a minimization path in any two dimensjons could also

be displayed once the procedure is terminated.

For difficult functions, where slow convergence has been encoun-
tered, the graphical presentation of the function may prove to be
useful in giving an insight into how the method is working. The rate
of convergencé could also be speeded up by the input of estimates -
treated visually in some cases.

Figures 5.17 (a) and 5.17 (b) sﬁow the steps used by this method

to find the minimum value of the Rosenbrock function.
| Figure 5.17 (a) shows the pattern of the linear search. The
aétual values of the points on the graph are shown on the left hand
side of the screen. The pause at this stage allows the user to get
a hard copy of the display before proceeding to the next stage by
pressing the key F.. |

Figure 5.17 (b) shows the approximate curve and the function
value after the cubic interpolation. The available options are also
displayed and the user can now choose the option 'B' for cursor

investigation of a few points on the curve and compare these values .
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with the ones found by cubic interpolation. If none produce better
results, then option 'D' uses the cubic minimum to end the linear
search. Otherwise option 'C' replaces the cubic minimum with the
one selected by the user. In the case illustrated however, the
cursor has not been used and the user has chosen to accept the cubic
minimum and continue with the minimization process which finds the
minimum after thirty three iterations.

The user can also request to see the minimization path. This
path can also be drawn after a contour of the function has been plotted.
Figure 5.18 shows the minimization path of the Rosenbrock function
and its contours. _ v

Figure 5.19 shows the flow diaéram of the Fletcher and Reeves
method.

- 5.3.3 Simplex method

This method involves placing observations at the vertibes of an
equilateral triangle and evaluating the function at each point.

A simplex in N-dimension: consists of a pattern of at least
(N+1) points denoted by Xis 1= 1, ... N%l. The initial 'Simplex'
is normally found by making an estimate X1 and then taking a step
along éach axis. At any one stage the vaiues Fi’ i=1, ... N+l of
the function at the points x.; are stored. The values Fi are compared

i
to determine,

F(xH) = Fy = ma¥ Fs i=1, o0y N4
F(xG) = Fg = ma? F; i=1, ..., 41 , 1 #H

1
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Fig. 5.18 Contours and Minimization Path of Rosenbrock Function.
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The direction of movement is that from the vertex with the
maximum value of function through a point half way between the two
remaining vertices. The distance moved is such thats initially,
the new search position also forms an equilateral triangle with the
coomon base. The sequence is repeated, with automatically generated
contraction and expansion of the simplex also being undertaken when
appropri ate.

This method is applicable to all continuous functions but it
requires a large number of function evaluations, that is (2N+I)
function evaluations for each iteration.

The subroutines for this method are those provided byNAG library,
There are three subroutines, two of which are supplied bythe user.
The first one is subroutine ‘ALNCT which calculates the value of the
function for any set values of the variables. The second one is the
subroutine ‘MOMIT1 which is involved with the printing out of the
results of searches. This subroutine has been modified to provide
the user with a graphical presentation of the search path in any two
nominated dimensions.

To activate the process the initial values of the variables are
selected, and the user must specify the number of variables, maximum
number of iterations and the axial variables,i.e. to specifythe
plane for presenting the search path.

The search pattern can either be presented in complete form, or
the user may wish to control the build-up of the pattern if hard
copies of each individual step are required. The user decides by
pressing the appropriate key after the first triangle has been
presented. Other facilities such as change of initial points, change

of window, chance of method etc., are also included in this program.



5.4

and these are presented in the form of menu of options, when the
optimization procedure is terminated.

Figure 5.20 shows the flow chart of this program. This includes
the basic idea of the simplex method.

Figures 5.21 (a), 5.21 (b) and 5.21 (c) show three steps of
the search pattern for the Rosenbrock function being built up in
individual steps. Figure 5.21 (d) shpws the complete search pattern

for the same function with the starting points of
X-l = 1.] 'y . XZ = "].0.

Figure 5.22 skowys the Rosenbrock function with a different
starting point |

Xy = 0.2 . Xy = 0.2.

It can be seen that although the starting values are very different

the calculated minimum values of Xy and X, are nearly the same.

Plane Analysis Method

This method involves driwing cdntours of an N;dimensiona1 func-
tion on different two-dimensional planes and then by visual analysis
of these planes and contours a minimum is obtained.

The program for this method utilises the contour plotting routine
doscribed earlier.

The minimum of an N-dimensional function (N > 2), is obtained

- by successive direct searches on and between defined planes. The

approach is applicable to general functions, but as is customary,
it will be described and developed theoretically with respect to

quadratic form in N-dimensions.

21 -
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Rosenbrock Function

Fig. 5.21a First Step of Simplex Method Search Pattern



Rosenbrock Function

Fig. 5.21b Second Step of Simplex Method Search Pattern



Rosenbrock Function

Fig, 5.21c Third Step of Simplex Method Search Pattern
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5.4.1 Development for quadratic forms

The minimum of a quadratic function of three variables for
example is found by setting one of the variables at two fixed values
and locating the minimum of the two slices of the plane. A seafch
along the 1ine joining the two setsof points will find the true

minimum, i.e., when N = 3 and the plane is Xy Xy then Tet

X3 Py » the minimum is A(a], gy a3)

X3 = Py 5 " " " B(by, by, by)

A search a]ong the 1line AB will give the minimum C(c], Cps c3).
Therefore to find the minimum two plane slices and one search are

required.

Consider, now a function in four variables. Let

X = G]
X3 = Py ", the first minimum is at A(a1, 35, 83, a4)
Xg = Py s the second minimum is at B(b],’bz, b3, b4) .

A one-dimensional search between A and B gives C(c], Cos cé; c4).

| Now let Xg = G2

n

X3 Py , the first mini@um is at A'(ay's a,'s a3's ;') |
_x3 = P4 ss the second minimum is at B’(bl', bz', b3', b4')

One-dimensional search between A' and B' givesthe new minimum

' C‘(c]', c2', c3', c4'). Now a third search betﬁeen C and C' gives

, D(D], Dy, D35 D4) the global minimum, i.e. four p]ane'slic;s and

three searches are required.

Therefore it can be concluded that sfor a N-dimensional quadratic

function, oN-2 plane s]iges and N-1 linear searches are required.
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The mathematical basis for the above procedure for 2 quadratic
function is as follows:
Theorem

The minimum of a quadratic function F in (n+1) variables can be
_found by éearching along a line joinihg two points, each obtained by
setting one of the variables to an arbitrary constant and minimizing
the resultant form in'n variables. |

The minimum of F along the line corresponds exactly fo the
global minimum of the quadratic form in (n+1) variables.

Proof

let F = C+Db' x+ 3 X'AX be a quadratic form in (n+1)

variables. Suppose b and A are partitioned as follows: (1) -
b A 2 |
= [ ] R @

so that a and b have dimension (nx1), A is (nxn), and a and b are
scalars.,

Now the minimum of F occurs at

X = -%'E | (3)
and since it can be shown that,
| i
Al e a7 aa' e 140 a
| D e f
LI R pommmmmmmeee )
"] ] ‘] | |
p2 A R
B I -
where D = a -a' A" a,



* )
then x may be written in partitioned form as,.

e T )

where Zf has dimension (nx1) and x is(1 x 1).

However, if one of the original variables x is set equal to an
arbitrary constant K, and the resuitant quadratic form in n
variables is minimized, this gives rise to a point (in the original

n+1) dimensional space).

* A Tb-kATa
AR R U | (6)

Any point on the line joining two such points (corresponding to

arbitrary constants K] and KZ) mai.be written,

N 2 T_~Jc * l -1 -1
¥q Yo =¥ | = I-A b - A" a (K (Ky - Kp))
T o I N e e cm————
- . - T (7)
*
o N |
where 0 < A € 1 and such that A = 0 gives y = j-==-| , and
* Ky
I |
A =1gives y = |----

K

Note that A = X~ Ky however,

Qoo x =Ky H A(K2 - K]), enabling equation (7) to be written as




= |-ATb-xa"la | (8)

i.e., the minimum of F with respect to A will occur simultaneously
with the minimum with respect to x. |
Substituting (8) into (1) gives F as a function of the

single variable x,
‘ | b

C +|--- y +31y' Ry
b

e

latbxts b'A baxb'A Ta-xa'a™!

— — e —_— —

1

= C-b' ATb - xbA”
-x%g'A' a+x®a

1

C-b'A " - xb'Aa +bx+ 2 b'ATTb-Ra'A lasla

on account of A”) being symmetric.

At the minimum of F with respect to x,

0 = -R'A'lg+b+-x -E'A'1_§+a =-_b_'A'13+b+xD
therefore

x = 1 (b'A7a - b) (9)

5 = 2
Hence, ] -1 -1 -1 -1
-Ab-1A"ap A la+bAa
P D D
B B (10)
1b' A a - b |
| D D ] -

and, remembering that A'1 is symmetric, this corresponds exactly -
with the location of the true (n+1) dimemsional minimum given by

ok
X 1in equation (8). It is, of course, independent of K1 and K,.
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Finally, note that in practical terms, confirmation of the
* ,
minimum can be obtained at x = x by minimizing the n-dimensional
*
quadratic form resulting from setting K = x . It can be seen from

K
equation (6) that this also gives the point x .

.....

The function which has been minimized using the theory for a

quadratic form is;
Fo= (8] + 3%y + 2Xg + X4 = 20)% + (~Xq + X5 = X3 + X, = 2)%
(X + 2% - Ay = Xy + 2)% + (2% - Xp + 2X3 = Xy - 2)?

Figures 5.23(a) and 5.23(b) show the coniours of the function
on two different planes, and the minimum on each plane is Tocated.
The variable X, is set at a fixed value, Xg = 0, and two values
are given to x3,vi.e. Xg = 0 and Xq = 1. The co-ordinates of the -
two minimum points are used to find the minimum along the 1ine
joining the two points. Figui'e 5.23(c) shows the curve of the
" lTinear search and the function value at F = 5.36.

Figures 5.24(a) and 5.24(b) show second set of contours on
the planes of Xg.= 1 with Xg = 0 and Xg = 1. The two mihimum points
are located visually, and a.linear search is performed as before to
find the minimum along the Tine joining the two points. Figure
- 5.24(c) shows the curve, the function value and the co-ordinates of
the minimum. o

The last stage of the minimization process is to find the mini-
mum between the two sets of values which is also the minimum value

of the function. Figure 5.25 shows the curve, the values of the

variables and the function minimum.
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5.4.3 Application to functions of non-quadratic form

The minimum value of functions which do not possess quadratic
forms and constrained functions can be found using a modification
of the approach previously described.

Consider a general three-dimensional function. To perform a
direct search two sets of values are required, that is one set of
values from each plane.

To start the process the user specifies the plane through which
the minimization process is carried out, and the ranges of planar
variables. The other variable, referred to as the non-planar variable,
is set to a fixed value, and the contours of the function for this
set of values is plotted. The minimum value of the function for this
plane is located. Now a new value is assigned to the non-planar
variable and the second minimum value is obtained. With these two
sets of values the user can now proceed with the linear search.

The linear search process is the same as the one used for quadratic
form functions.

To start the process the user must define the range cf the
window, the step size for the search and the number of iterations.
The step size and the number of iterations can also be set automati-
cally in the program if instructed by the user. The iteration number
allows the user to find out how the search is proceeding. When the
number of iterations reaches the limit, the user can either reduce
the step size, input a new iteration limit, and proceed with the
search of ask the menu of options to be displayed.

The set of values found by the linear search is used to plot a

contour of the function on a new plane and the minimum is obtained
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as before. The first set of values is now discarded and a direct
search is perfokmed between the last two sets io find a new minimum.
This process is repeated until the required minimum has been reached.

The same idea may ‘be used to obtain the minimum of functions
with larger number of variables. |

This method .was" - originally introduced to deal with uncon-
strained N-dimensional functions, but it has now been extended and
certain facilities have been incorporated iﬁ this'program which
allow contours of constrained functions to be plotted. The constraints
are also drawn which specify the feasible region.

In the initialization stage the user defines types and the
number of constraints of each type. Three types of constraints have

been declared here:-
(1) Single valued constraints,

4ai £ X5 £ bi i= ], eees N

In most cases these constraints are not drawn.

(2) Linear constraiuts,

(3) Non-linear constraints

The constfaints are plotted on the same plane as the functions,
and the non-planar variables will have the same’va1ues assigned to
them when plotting the contours of the function equation.

When the constraints are drawn, the user will have a better
knowledge of the feasible region and where the minimum on a particular

slice may be. B
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The minimization process is basically the same as for uncon-
strained functions, except that when a set of points are found, '
either by using the cursor to locate the minimum value on'the plane
. slices or by means of the direct search routine, a check is auto-
matically carried out to verify'if the points satisfy the constraints
or not.

When the points are located visually and the constraints are not
satisfied, a message is displayed to point out to the user the
variables are not within the feasible region, otherwise, as before
the value of the function and tne variables are displiayed.

When the direct search routine is used, the calculated points
are tested at each stage and if any of these values do not satisfy
the constraints then, the search is terminated, presenting the user
with the curve of the direct search, the results at the stage before
the process is terminated and a menu of options from which the user
can choose the next step. “

In chapter six the minimum of a constrained functicn <s found
using the process which‘has already been described.

- Figure 5.26 shows the flow diagram of the plane analysis method.

5.4.4 Test functions

The minimum of the Powel]'s function was found using the alterna-
tive approach. The function is;

F o= = {(xq#10%5)2+ 5(x3-X4)? + (x9-2x3)* + 10(x-x4)"*}

This function has a minimum at 5f = (0.0, 0.0, 0.0, 0.0).
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Figures 5.27a and 5.27b show two contours of this function.X1
and X2 were chosen as the planar variables and X3 and X4 are set
to fixed values, X3 = 1.0, X4 = 1.0 for the first contour and
X3 = 0.0, X4 = 0.0 for the second contour. The minimum of each con-
tour was located using the cursor and a direct search'was carried
out between the two sets of points. Figure 5.27c shows the curve
and the results of this search. The values obtained from the direct
seérch were used to plot a new contour, shown in figure 5.27d. The
minimum of this contour was located. The values of the first contoub
were discarded and a direct search was performed befween the last
two sets of points, shown in figure 5.27e. Figure 5.27f shows the
last contour drawn using the results of the p?&vious direct search.
The minimum of this contour was visually located. This value was
found to be satisfactory and the process was ferminated at this point.
The minimum of Wood's . function was aiso found using the |
above, The function is; ) |

F = ;{100(x2-x12)?+ (1-x])2+ 90(x4-x§3 + (1-x3)2+

10.1(xp=1)2+ 10.1(x4-1)%+ 19.8(x57%1) (x,-1)1.

- Figure 5.28a shows the contours of this function. The planar
variables are again set at X] and X2 and X3 and‘X4 are both set to
(0.0). Figure 5.28b shows a close up of the second contour with its
minimum vé]ue at the fourth point. Figure 5.28c siows the contour
of the function with X3 = 1.0 and Xg = 1.0. "Figure 5.28d shows the
Tinear search which was carried out between the two set of minimum
values. The results of this direct search were used to draw a new
cdntour shown in figure 5.29 which is a close-up of the contouf. The

.. . . & .
- minimum of this contour was visually Tocated and it can be seen that
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it is close to the true minimum at~X1 = 1.0,VX2 = 1.0, X3 = 1.0 and
Xq = 1.0. ' |

The third function whose minimum was found using this approach
was the three-dimensional Rosenbrock function. The function is of
the form:-

Fo= ={100(X,=% )%+ (1-X;)%+ 100(x3-x§) + (1-X,)2}

It has a minimum at X* = (0.0, 0.0, 0.0). Figure 5.30a shows
the contour plots of this function of the plane X] and X5 with
X3 = 0.0. Figure 5.30b shows the second contour with X3 = 1.0.
Figure 5.30c shows the direct search between the minimum values of
the contours. The result obtained from the direct search was used
to plot a new.contoﬂr and its minimum was Iocatéd visually shown in
figure 5;30d. The values of the first contour were discarded and a
direct search was carried out between the last two set of values as
before. The curve and the results of this search are shown in
figure 5.30e. The same process was repeated until the minimum was
obtained. Figures 5.30f to 5.30m shown the graphical illustratio.
of the procéss. Figure 5.30m Shows the curve of the last direct search
with a function value of F* = 0.006. This value was found to be
close to the actual minimum of F = 0.0. The process was terminated

at this stage.
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"'CHAPTER "SIX

“"A'Practical Application

“The previous chapter described how a serfésvdf test functions has
been used to compare some of the optimization methods and to illustrate
the facilities available on the grapﬁics system.

In this chapter a desckiption of hbw the system has been épp]ied to
a problem in molecular vibrational analysis is presented. This problem
was chosen bécause it appeared to offer scope for optimization methods in
general and because the graphical approach in particular also seemed to
offer'some promise. The problem had originally been attempted by a research
': chemist using an ad hoc approach. | _

The béckground to the problem is first describea and then the origind]
vapproach‘and’its drawbacks are discussed. This is folIowed'by a descrip-
tion of how the éxistingfprograms were modified and how the problem was set
up for solution by optimization methodéiand how it was;thén solved oﬁ the
interactive system using a conventional direct search optimisation proce-
dufe. | | |

A graphical approach to this problem is presented next, and the
résu]ts are compared'with those obtained by-the,other approaches.

Finally the merits of the graphical approach are discussed fromvthe

point of view of the user.

6.1 ‘Molecular Vibrational Analysis

Consider a diatomic molecule constrained to move along the x-axis.

k
O ooz go00
™ My
% * Xx-axis
X1 X2 |



I
The molecule is free to move as a whole and each atom is free to move

relative to the other atom, within the Timits of the chemical bond
which may be represented as a spring. ‘The chemical bond exerts a
force on €ach atom tending to restore the atoms to the position which

is characteristic of the equilibrium bond length . Mathematically,

the force is given by F -k(r-ré),‘where 'r' represents the instaneous

bond length, given by r (xz-x]), and re'is the equilibrium bond
length, ré = (xz-x])e. The atoms afe sufficiently heavy that they
obey ‘classical mechanics' to a good degree of approximation; that is,
the force on either atom causes a motion of the atom which responds

to the force according to Newton's equatlon of mot1on F = Medss where
F is the force acting on atom i of mass m., causing an accelerat1on
ai. This equatlon is only valid in a right hand cartesian co-ordinate
system, which is not always convenient to use for molecules. It is

a fairly simple matter to show for the above equation'that an equiva-

lent equation is the Lagrange Equation of motion:

a—( P r )= 0 =12 W
X |

where T is the expression for the kinetic energy of the system,
expressed as a functionbdf velocities ii = dxi/dt = Vi and V is the
potential energy expression for the system, expresSed in terms of the

atom positions x;. The expressions for T and V are:

1

Q ‘ 0 |
ZT = m]x% + mzxé s and’ ’ (2) ‘

V= 3K = {(xgXop) = (KqXq)E - (3)



It is now convenient to define cartesian displacement co-ordinates,
which represent the displacement of the atoms from their positions
corresponding to the equilibkium configuration of the molecule, by

-0 0
X; = (xi - X Since,xie represents a constant Xj = Xy and

jel:
the kinetic and potential energies can be written in terms of the
displacements co-ordinates as:
| 9, o, 2
2T =my'x3 +my x5 and 2V = K(Xp=Xq) v (4)

Now applying the Lagrange Equation of Motion, equation(1)to both

X1 andvxzz '
T S0 : “ - .
%2; =. Xy %{ ,9;_ = MyX; where Xy represents the second

' ax]

derivatives of Xy with respect to time.

oV _ _
3;; = k(X x2) therefore,
0= myXy + kx] -~kx2 and O = MyXy + kx2 - kx] (5)

The aifferential equations (5) are ipfinite in number, but it
turns out that there is a solution for’x] and Xy which is simple and
~in terms of which any other solution can be written as a Tinear combina-
tion. This pakticular set of solutions for X1 and Xo is called the
'Normal Mode Solution', the motion is simple in that afoms 1 and 2.
move in-phase,.and with the same frequency of harmonic oscillation
about the equi]ibrium’positions.4 Mathematically, the'sdiﬁtions are

of the form:

o - Rl @
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where Ai is the makimum amplitude of displacement from equilibrium
position for atom 1, X = 472 V2 and V is.the frequency of vibration
and ¢ is the phase of the vibration; In order to substitute equétion

- (6) into equation (5) the derivatives must be calculated. The |

derivatives are:
X; = Aé Aivcos(Aét +p) 3 X; = Mg sin(A%t + )
Now substituting into equation (5)

0 -m A Sin(AEt + §) + k(A-8,)Sin(aBt + y)

(7)

0 -m2§5251n(x%t +9) + k(Ay - Aj)Sin(AEt + )

Since these equations must be valid at all times t, the sin (Aét + )
terms all can be cancelled, leaving two simultaneous equations, known |

- as normal equations;

0

(k - m]A)A] ' kAz - !
| (8)

o
I

Equations (8) have non-trivial solutions if and only if the determinant

of the'Ai's vanishes, that is if
mmoA% - (mytmy)ka = O | (9)

whose roots are; Ay = 0 and A, = (my+m, )k/m.m, .

The kinetic and potential energy expressions can be written in matrix

foﬁ;- o B . ) o | ST
* m] 0 ' x]
0 a _ 0p . O
2T = { xy x,} 11, =x Tx (10)
1o My X2 |
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K -k . | |
N = '&1 X;;] 1 = xfEx -
o -k k '

where T is the kinetic energy matrix and F is the potential energy

matrix. The vibrational secular equation for the system can now be
defined as:
[E-AT] = 0 ' (12)

where A = 472V2 and a scalar. *

Equation (10) when solved yields the eigenvalue g "Since each
- eigenvalue Ai has a set of amplitudés associated with it, the ampli-
tudes can be referred to as Ai] and AiZ' For the diatomic system,
Ay =0and Aj/Aq, = 1 and Ay = k/w and Ayr /Ay, = - my/my.

The two normal equations must be simultaneously satisfied for each
eigenvalue X; and A,, and thereforé is it necessary to have the set
of equations below which arise from associating the appropriate

amplitudes with each eigenva.ve:

kAjp - KA = miMAg KAy = KRgp = mydohy
and - (13)
KAyp + KAjp = moriAys ~kRyy + kAgy = morshs,

A diagonal eigenvalue matrix is now defined as:

| om 0
A = . o (14)
0 2

and an eigehvector matrix, with ith

column elements proportional

to the Ai amplitudes for the corresponding eigenvalue Aj s
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| o 1
1Ay eh1p
L = . ' . (15)

e1h12 )

The above four equations can be written as:
FL=TLA | 'f 1)

If equation'(16) is mu1tiplied by (Lf]) on both sides, then,

LTEL = L1 | o

where a matrix product of Lf]_E_L is called a unitary transformation
of the matrix F.

IFLVTL = E, then L]

FL=A, and the problem of finding

the frequencies (i.e., A) and normal modes (i.e. amp]1tudes or L)

" reduces to finding a un1tary transformat1on that will simuitaneousiy

diagonalize T and F, T is a diagonal E or unit matrix, and F matrix
to the diagonal A matrix. R

A more usual method of treat1ng equation (16) is to muitiply the
left hand side by T~ -1

-1

= G to obtain

-1

T EL =T TLAor GFL=LA (18)

This equation is known as the Wilson GF equation, where G is the
inverse kinetic energy matrix and the equation above is‘equivalent to
the determinantal equation:

6 F - 2] = 0 (19)

-1

Equation (18) is multiplied by L * on the Teft hand side to

obtain

LT @R L=4 ) S (20)
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which indfcétes that the solution is accomplished by finding a
matrix L which will diagnolize the produét matrix G F by a unitary
transformation. By subh a diagnolization both eigenvalues (A) and
eigenvectors (L) are obtained, which correspond to the frequencies
and normal modes of the vibrations of the molecular system, respéctively.
One problem arises in the above process whereas both F and G are |
symmetric matrices (i.e., fij = fji and gij'% gji)’ the product G F
is not symmetric, and special techniques are needed to accomplish
the diagonalization. |

Recently, a more efficient method of performing vibrationaT
analysis, which involves a single matrix diagonalization has been
introduced Ey W. D. Gwinn (45), and since most of the computer time
is involved with the matrix diagonaiization step, this method takes
roughly half the computer time as the older Wiison G F matrix method
which needs two diagonalizations. In order to understand this method,
some consideration shou}d be given to the co-ordinate -systems in which .
the kinetic and potential energy expressions are expressed. |

The kinetic energy is expressed in Cartesian co-ordinates as
a]ready;described. Briefly the expressioh consists of the sum of-
3 mV2 terms, three for each atom since each can move in general in
three dimensions, thus I_fs generally of order 3N x 3N for an N-atom
molecule. |

The potential energy is generally not expressed in Cartesian
co-ordinates. Instead, the co-ordinates which have been found to
be most useful for changes in potential eﬁergy as a molecule vibrates
are called ‘internal displacement éd-ordinates'. These consist of
stretching of chemical bonds, bending of yalencé ano]és,'out of plane

bending, and torsion about non-terminal bonds. Other types of co-
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ordinate§ are sometimes defined, but the above are sufficient to com-
"pletely describe molecular vibrations. Usually there are 3N - 6, or
3N - 5 for a linear molecule, .internal co-ordinates, since movement
and rotation are not internal motions which change internal distances
in molecules, but are rather external motions of the molecules as a
whole. |

The pdtentia] energy is generally taken to be a sum of quadratic

terms in the internal co-ordinates, Rj, j=1,2, ... 3N - 6, therefore

o - R/TF

2V-}{ﬁj%% = R FR

: 15

7 .
where R = RysRy ... Ryy o : (21)

The kinetic energy expression in Cartesian co-ordinates is:

. oT o0 . : .
2T = X MX | ' (22)

Since the potential energy matrix F is of order (3N - 6 x 3N - 6),
while thevkinetic energy matrix ﬂ.ié (3N x 3N), they cannoi be added ;
or subtracted to give the vibrational secular équation. There are
two ways of proceeding, either change the kinetic energy matrix T to
represent internal motion in terms of co-ordinates 5;.orfto change
tﬁe potential énérgy matrix F to represent forces required to stretch
bond, trend angles etc. The first alternative leads to the Wilson G F
matrix method.

The second approach is the Gwinn method which can be described
i

as follows. The mass-weighted co-ordinates are defined by‘qi = (mi)%x.

org-= Méz, If left hand side is multiplied by ﬂfé it gives



M*ég_or X M’éé_and Xt = The Tast ekpression

X = M - otk
follows from the fact that M is a diagonal matriix of masses, and

hence M : is a diagonal matrix containing 1/m% as diagonal elements
ix. Thus in .

and the transpose of a diagonal matrix is the same matrix
terms of mass weighted Cartesian co-ordinates the kinetic energy

I-Qn '
166

tux-gtwinwig-gteg-

becomes:
E in mass-weighted cartesian co-ordimates, since the result

>o
=

2T =
ie.,T=E
of pre and post multiplying M by M K is to form a unit matrix.
The potential energy matrix is also convertec to mass-we1ghted

co-ordinates as follows:

V=R FR=X"B'FBX-q'(?B'FBN
Thus; in Gwinn's approach, the force constants for internal

co-ordinates are read in and converted by a matrix product above,

involving matrix B and the atomic masses, to force constants appropriate
37

for mass-weighted Cartesian co-ordinates, indicated by clements V
for moving each atom in

These may be thought of as force constants

the x, y, z direction, divided by the mass of the atom
V in mass-weighted Cartesian co-ordinates,

Since T=Eand F =

vthe equation (12) becomes
v o= A = 0

or equation (16) becomes,

VL =LA
*_'] VL=A. The value of

i.e. matrix V can now be diagnolized by L

V is often used to produce calculated frequencies.
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6.2 The Minimization Problem

‘Given certain input data it is. required to manipulate the values
of a set of force constants in order to achieve a set of calculated
frequencies which are as close as possible te a corresponding set of
observed frequencies.

When the calculated frequencies are found the next step is to
compute, at each temperature, the‘vibrational entropy and the cohtri-
bution to the total vibrational entropy from each calculated and
observed frequency. These two va]ueslére used to obtain fhe sum of
squares of weightéd error. This is taken as the criterion of fit
between the two sets of frequencies and is to be minimized.”

To start the procedure data on molecular geometry and specifica-
tions mﬁst bevprovided. _The existihg programsrequike as input:-

(1) Atom cd-ordinates, which may be either cartesian co-ordinates,
or more usually the polar co-ordinates of each atom, which are
written in terms of the bond distances andlanglés of symmetfy.

The input for each atom cdnsists of 'I', the aton number; -

'JJ' the position of the»origin; 'KK', the polar axis; 'R', 'e’,

‘¢', the polar co-ordinates of the atom; 'LL', a rotation code;

‘NAX' fhe axis about which the rotation is to be carried out,

and 'ALPHA"isAthe angle of rotation.

(2) NAT; number of atoms. |

(3) NLBE; number of linear angle bonding.

(4) WT; atomic weight of atoms. l' e

(5) NANG; number of angles to be calculated.

(6) NFK; number of force cohstants.

(Z) INDEX; this ihtéger assigns a particular value to a certain

pair of vibrational co-ordinates.
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(8) FK; the force constants.

ATl of the input values except the force constants are fixed for
any given molecule. The valﬁes of the force constants have a direct
effect on‘the calculation of the computed frequencies, which results
in the reduction or the increase of the sum of squares of the weighted

error. Therefore, the initial values assigned to force constants are

' of great importance, and they can only vary between zero and given

upper limits. These points are analyzed in more detail in the next

A Y

section.

‘Methods of Solution

Three approaches have been compared, using the molecule ethane,
which produces 18 frequencies from 5 force constants.
(1) ‘Hit and miss' approach. A _
(i1) Conventional direct search,optimizatibn method.
(ii1) Graphical plane analysis'method.

6.3.1 Hit and miss approach

This problem was originally being dealt with by a research
chemist using a 'hit and miss' approach. That is by altering the
initial values of force constants, one at a time, and observing any
changes in the sum‘of squares of weighted errors. If the error was

reduced, then the force constant was kept at this value, the next

-one altered and the result examined. This procesé could, in princip]e,

be carried out until a desirable result was obtained. The disadvantage
of this approach was that it was very time consuming, especially when
conducted in batch computing mode. Also, most force constants, when

altered; tend to changc frequencies of the same symmetry. Therefore,
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although one frequency may be changed to a value‘closer to its
respective observed frequency, the other frequencies wi]]lbe affected
by this chanée and their value will be increased, resulting in no
change or an increase of the weighted error. |

With the hit and miss approach the change of force constants
resulted in a value of the error where any further reduction in the
size o% the error was found to be difficult to obtéin. The value for
the error and respective force constanﬁs for ethane were:-

Sum of squares of weighted error (SSQWR) = 37093.5430, Qith the

force constants

4,3870; FK2 = 4,6999; FKy = 0.6449; FKg = 0.5400;

-
FKs

These values were used as the starting points for the optimiza-

0.0240.

tion method to investigate if further reduction is possible.

6.3.2 Conventional direct search bptimization method

The problem was next set up as an optimization problem. The
objective function is defined as the sum of squares of weighted
errors, i.e.

Min F(EE) = SSQWR
subject to | '

a; ¢ FK; < b, i=1, ... NFK
The upper and lower limits on the force constants are as follows:-

4.0 ¢ FK] € 6.5; 4.0 < FK2 'S 6.5' 0.4 < FK3 £ 0.75;

0.4 < FK; < 0.8 and 0.02 < FK; < 0.085..

The direct search optimization method chosen was the simp]ex‘
method and the algorithm has been described in the previous chapter.
The main'reason for choosing this method is that it does not require

the evaluation of the derivdtives of the function, which in this case
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would be computationally expensive.

In the process of Simplex expansion and contraction the values
of the variables (force constants) may become negative or zero
leading to fewer calculated ffequencies. This prevents the ca]cu]aF
tion of the sum of squares of weighted error. For such cases the
standard program has been modified in so far as a large value is
assigﬁed to the objective function whenever the above situation occurs.
This large value indicates that no further steps should be taken in
that direction. The same thing mayvhappen if the force constants
are widely out of their specified ranges, in which case extra fre-
quencies will be calculated. A similar modification is applied to
V}prevent this from happening.

Figufes 6.1(a) énd 6.1(b) §how two such éases occuring in the
simplex optimization process. In the first case a step is taken in
the negative direction for FKS, and this produces seventeen frequen-
cies. In the second case, FK, takes a large positive value which
gives nineteen frequencies. In botﬁ cases further advances have been
stopped in either direction by assigning a vaiue ofl'lO8 to the SSQNR.

The first reduction in the size of the abjective function occurs
after twenty-six function evaluations. The SSQWR ié reduced from
37038.83 to 4052.204. After sixty-six function evaluations the func-
tion is further reduced.to,1430.65 with the force constants still

‘within the acceptablé ranges. The next reduction occurs after eighty
one function,eva]uations with SSQWR = 219.87%. This value was found
to be acceptable by the chemist since the sum of squares of weighted
error is not expected to be reduced to zero. The reason for this is

because it uses a force field of a simple form. However, the mini-
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Fig. 6.1a Value of Force Constant Less than its Lower Bound.
This reduces the number of frequencies to 17.
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Fig. 6.1c Final Result by Simplex Method.
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- mization procéss was carried out further and after ninety-six function
,evaiuations the SSQWR = 199.291. Aftéh this stage‘furthef reduction
.did not appear to be signifitant and whenever a reduction in the size .
of SSQWR did‘occur the force constants were not within the acceptabje
" range. Hence the process was.terminated. In fact a substantial
reduction had been made in the size of the sum of squares of weighted
errors i.e. from a value of 37038.83 to a value of 199.291 .

Figure 6.1(c) shows the final print out of the force constants,

calculated frequencies and the sum of squafes of weighted errors.

6.3.3  Plane analysis method

The last force constant FKNFK’ is known as the tortional force
constant. The difference between the upper and lower bounds of this
force constant is very small and it was found that a slight chénge
in its value has a significant effect on the calculated frequencies
and the sum of squares of weighted errors. In general, due to the
nature of the problem which principally cbnsiders the vibrational
entropy, changes in the Tow range forcé constants are more signifi-
cant than those of high r2nge force constants.

The first step of this method is to'define the planar and non-
planar variables. Taking into consideratioh the féct that the Tow
valued variables, force constants, are the important ones, a choice
of planar variables had to be made between FK3, FK4 ahd FK5. In this

cése FK3 and FK4 were chosen as planar variables, and FK], FK2 and
FK5-wére set at fixed values within the acceptable ranges.

' Had FKg been chosen as a planar variable, a very small step size
would be needed to draw the contours because the contours can only
be considered for a small range of this variable. - Hence, it 1is

advisable to set this force constant at a fixed value initially, and
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allow the user to choose a second value for it for the next slice.

To plot the Contour of the function for the first plane slice,
the non-planar variables were set at fixed values of FKy = 4.5; FK, = 5.8
and FK = 0.07. The planar variab]és were given a range of 0.4 < FK3s
FKﬁ-s 1.0. Figure 6.2(a) shows the contours of the first slice, and
the minimum value of the function, which had been located visually,

‘was  F = 778.528. |

To draw the next slice the ranges of planar variables were kept
constant, but the value of non-planar variables were increaszd by one
unit, i.e. FK; = 5.5; FK, = 6.6 and FK; = 0.08:

As before, the approximate minimum value of the function and the
values of its corresponding variables were visually located. Since
.thfs probiem is constrained and the user can adjust the‘values of non-
planar variables, in particular the tortional force constant, it is
considered adequate to perform just one Tinear search, and not the
full searéh algorithm as defined earlier for ﬁnconstrained quadratic
forms. _ | |

.Figures 6.2(a) and 6.2(b) show the two contours from different
plane slices. The minimum on the first contour haé been located and
has a value of F = 778.528. On the second contour the minimum has been
found to have a value of 168.122 which is smaller than thé,value
found by the simplex method, but because the value of FKz-is greater
than its upper bound a direct search was performed to find an acceptable
point. -
Figure 6.2(c) shows the result of the direct search with a sum

of squares of weighted error of SSQWR = 199.7551 with force constants;
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6.4

“FKy = 5.25 FK, = 6.3; FKy = 0.54; FK; = 0.57; FK; = 0.077

Although this value is higher than the one located visually on
the second contour the constraints are satisfied. However, if the
user required a better accuracy to obtain the result a smaller step

size could be taken to pefform the search.

Comparisdn'of the Methods

The hit and miss approach has the disadvantage that the change
of value of one force field may result in bringing the value of one
calculated frequency closer to the respective observed frequency, but
at the same time changes the values‘of other frequencies, which may |
result in increaSing the value of sum of square of weighted error.
This aﬁproach was found to be Qery time consuming since smail stepé
should be taken when‘changing the force cbnstants and eéch force con-
stant had to be modified in turn in order to obtain a reasonable
result.

The basic simplex method does not take account of the problem

constraints. The modification described recognises infeasibility and

brings about a step back to feasibility. This leads to acceptable
results but only after a lengthy process, since the variables are

taken sequentially in numerical order, without regard to their contri-

bution ratings.

The advantage of the interactive graphical plane analysis approach
s that the user is in control of the running of the solution process.
Since this problem fs constrained the initial value of non-planar
variables can be chosen by the user so that they will lie Qithin thé

bounds. Once the contours are drawn the location cf a few points

- within the contours by means of the cursor will give the user an in-

e



- sight to what range of values could be taken for the variables.
The user immediately realizes when one of the variables does not
satisfy the constraints and by modifying this variable an aéceptab]e
value of the function can be obtained. | .

Therefore it can be concluded that by using the plane analysis
method the usef can obtain a better understanding of the problem and
participate fully in obtaining the result. A price is paid in terms
of the number of;function evaluations required. However, with
experience, it is possible to get by with 'course' contdurs and
linear searches selected initially, with higher resolution graphics
brought in later if required. . o

The approach should also be successful when applied to larger
molecules than ethane, since once again the more significant force

constants. - may be selected for variation and'graphical‘diSplay.
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" CHAPTER SEVEN

Appraisal and Conclusion

This thesis haé brought together reviews of the current position in
the fields of interactive computer graphics and non-linear optimization,
and, through the development of and experiments with a comprehensive
system, has shown'that there are advantages to be gained by using inter-
" active graphics'to solve optimization problemé.

. The system developed on an IBM 370/135 Tinked to a Tektronix 4014_
graphics display device has been used in several éxperiments.

The behaviour of existing routines on standard test problems in cne
and two dimensions has}been illustrated graphically, and the system has
been used as é means of. interactively controlling conventional method
for N-dimensional problems.. -

| Experiments have also been conducted into the direct interactive
_ visual optimization of low order N-dimensional functions and an algorithm
has been derived for duadratic forms.

Finally, the system has been used to solve a constrained optimiza-
tion pfoblem arising in molecular vibrational analysis. | 4

In each app]icatibn described there has been clear evidence that
interactive computer graphics provides an extra degfee of insight into
the behaviour of both existing and new techniques. - Graphics is seen to
enhance both analysis and presentation and often points the way ahead
when other appro&cheﬁ falter. Consequently, it is be]ievgd_that graphics
has a substantial contribution to make in ﬁeaching, in method‘research
and in practical problem solving. |

With the equipment used here,'the price paid for those advantages

. gained has generally been extended c.p.u. time, largely through the
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use of an ihcreased number of function evaluations. However, in‘
terms of hardware, a faster céntral‘processor and a refreshed-type
graphics. display unit would undoubtedly enable more complex or

larger problems to be tackled. On the software side, a faster con-
Vtouring p;ckage would be of value, although the facility currently |
,offered for user control of step size does enable economies to be

- made. Having said this, all of the problems described in this thesis
have'been capable of being dealt with in standard éession times on
the graphics system currently installed.

TUrningvnow to‘further'possible deve]opmgpts, there would seem
to be ample scope for éttempting solution of more problems involving
constraints. Time has preVented the investigation of mdre than one
such problem in this work, but the results were encouréging.- Con-
strained problems are often more difficult to solve than unconstrained
ones using conventional procedures and yet, with the aid of a capable
graphics system, they could pose {ittle extra difficulty using
approaches along the lines of those proposed here.

Similarly, problems known to have several Tocal minima would
appear to offer interesting possibilities.

There is interest in graphics applications within optimization
at other centres. A very recent paper by L G Birta (46) describes a
package which Timits its attention to the control of convehtidna1
non-linear optimization procedures, in a mainer similar to that
facility incorporated into the system énd described earliier. The
Numerical Optimization Centre at Hatfield Po]ytechnic’is also active

in this specific area and has investigated one-dimensional procedures

using graphics.
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The practical problem dealt with in this thesis was particu-
larly suitable for the interactive graphical approach, and it seems
Tikely that other such problems may exist within the fieldsof pure-
and appligd science or operational research. It on]d be worthwhile
to conduct investigation into fhe potential in other fields, for
there are relatively few reported applications of interactive computer
- graphics to problem solving in general.

It is hoped that thé work described in this thesis might inspire
further, more ambitious applications of interactive computer graphics
to the solution of non-linear optimization pfoplems, whatever their
source, and that the ideas expressed here mighf leud to the further
use of interactive graphics as a means of deriVing, testing and

implementing methods for non-linear optimization.
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During the period of this work the author has attended the
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design" - University of Leicester, September 1978.

(iii) GINO Users Group meeting - University of Salford, July 1979.

| The author has aiso regularly attended seminars held by the Institute

of Mathematics and Its Applications and the Operational Research Society

at Sheffield University and Sheffield City Polytechnic.
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W H Swann, (OTiver & Boyd 1969).
(¢) "Non-Tlinear optimization" - L C W Dixon (EUP 1972).
State of art; ‘ B
(d) “Towards g]dba]ioptimization", L C W Dixon, G P Szego
(N Holland 1975). |
(e) "A preliminary investigation of function optimization by a
combination of methods" - D A Philips (Comp. J. 17, No. 1, 1974).
(f) "An algorithm for drawing the curve f(X,Y) = 0" - D éiSutcliffe
(Comp. J. 19, No. 3, 1976). |
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(3) Computer gfaphics;
' (9) “Principles of interactive computer graphiés“ - W N Newman and
R F Sproull (McGraw-Hill 1973).
(h) "Computer graphics - whence and hence" - J Potts (CAG Vol. 1,
1975). -
ki) "Applications of interactive computing in scientific environment" -
T J Martin and A Sykes (On-line Conference 72).
The reading 1list also includes the journals of Computer Aided Design,
Computer and Graphics, Computers'and Education, and several others in

Operational Research, Mathomatics and Computing have been consulted.
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